
Agentry Language Reference

SAP Mobile Platform 3.0

DOCUMENT ID: DC-01-0300-01
LAST REVISED: November 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Agentry Language Reference ...1
Application Level Definitions Overview1

Application Definition ...2
Module ...9
Data Table ..10
Complex Table ...16
Transmit Configuration ...26
System Connection ..30
Global ..34
Style ...35
Image ...37

Module-Level Data Definitions Overview38
Object ..40
Object Read Step ..41
Object Property ..42
Transaction ..43
Transaction Validation Rule49
Transaction Server Data State Steps50
Transaction Server Update Step52
Transaction Error Handling Steps53
Fetch ..54
Fetch Validation Rule ...56
Fetch Client Exchange Step57
Fetch Server Exchange Step58
Fetch Removal Step ..59
Transaction and Fetch Properties59
Property Data Types ..61
Push ...76
Push Retrieval Step ...79
Push Removal Step ...80
Push Read Step ...81

Agentry Language Reference iii

Push Response Step ...82
Push Error Handling Step82
Service Event ...83
Step ...91
Step Type: File Command Line Step100
Step Type: File Document Management Step .. .101

Module-Level User Interface Definitions Overview105
User Interface Definition Types107
Screen Set ...107
Platform ...108
List Screen ...111
List Screen Column ...116
Detail Screen ...117
Button ..119
Detail Screen Fields ...121
Action ...165
Action Step ..167
Report ..181
Report Column ..183

Rule Function Terms Overview184
Conversion Functions for Rules185
Logical Functions for Rules190
Mathematical Functions for Rules206
Property Functions for Rules219
String Functions for Rules238
System Functions for Rules247
Table Functions for Rules260

Syclo Data Markup Language263
SDML Data Tags Overview264
<<user>> Data Tag Container266
<<user.client>> Data Tag Container266
<<user.info>> Data Tag Container270
<<server>> Data Tag Container270
Data Tags for Application Globals271
Query Constants Files and Data Tags272

Contents

iv SAP Mobile Platform

Password Data Tags ..275
Complex Table Data Tags275
Data Table Data Tags ..276
Property Data Tags Overview276
Data Tags and Property Data Types280
<<agent>> Data Tag Container286
SDML Function Tags Overview286

Agentry Test Script Overview312
Agentry Test Script: Script Elements Overview . 314
Agentry Test Script: Button Elements Overview 316
Agentry Test Script: Field Elements Overview ...321
Agentry Test Script: List Elements Overview329
Agentry Test Script: Tree Elements Overview340
Agentry Test Script: Scanner Elements

Overview ...348
Agentry Test Script: SQL Elements Overview . . .351
Agentry Test Script: Tab Elements Overview360
Agentry Test Script: Window Elements Overview

...362
Agentry Test Script: Client Elements Overview . 366
Agentry Test Script: Client Host Elements

overview ..369
Agentry Java API ..373

com.syclo.agentry package373
Index ..539

Contents

Agentry Language Reference v

Contents

vi SAP Mobile Platform

Agentry Language Reference

Use the Agentry Language Reference to learn about the following.

Application Level Definitions Overview

Within the application project structure in Agentrythe definitions at the application level are at
the top of the hierarchy. These definitions affect the application as a whole. The definitions
that are direct children of the application are those that affect communications behavior,
globally available constant values used for configuration and other purposes, and also include
data storage on the client in the form of tables and records accessible to the entire application.
In addition are the definitions that can affect the appearance of the user interface.

The application itself is represented as a definition type within the application project. Within
a project there is only one application definition. The child definitions to the application are
then referred to as the application-level definitions. Regardless of functionality, most of the
application-level definitions will be used in a given application.

Following is the structure of the application level definitions within the application project.
For all definitions in this graphic the child definitions are also shown, with the exception of the
module. Modules are a robust definition type and the structure of the module is provided with
the module-level discussions.

As illustrated in this graphic, the child definitions to data tables and complex tables related to
synchronization are dependent on the type of system connection for which those definitions
were created. The synchronization logic will be encapsulated in the language or methodology
matching that back end system type.

As denoted in the illustration the system connections of type HTTP-XML include child
definitions related to user validation. The user validation request is sent according to these
definitions, including arguments to that request. Responses from the request are then mapped
to the data components of the mobile application.

The module definition type contains numerous child definitions not represented in this
graphic. These are illustrated in the sections covering the module-level definition types.

Agentry Language Reference

Agentry Language Reference 1

In general when working within the Agentry Editor to either develop an application or to
modify an existing one, the application-level definitions dictate and control aspects of the
application behavior overall, rather than within a given module or lower-level of granularity.

Application Definition

The application definition type represents the mobile application within the project and all
definitions for the application are its descendents. The attributes of the application definition
are those that affect application-level behaviors. These include the application name and
version, the appearance of built-in Client screens, login and password settings, application-
wide screen and user interface behaviors, and other similar items. The application definition is
the single root definition in the application hierarchy and as such has no parent definition.

When a new application project is created in the Agentry Editor, an application definition is
automatically created. Its attributes are set to defaults that should be reviewed thoroughly
early in the development process. These attributes can affect security, appearance, and
numerous other behaviors of the application.

General Setting Attributes
The general setting attributes for the application a provide project name, the application’s
display name, and a version value.

• Name: This is the internal name of the application. This value is used for certain checks
during publish.

• Display Name: This is the name of the application as displayed on the Agentry Client.
This value appears in the title bar of the application and in the About dialog displayed from
the Agentry Client’s Help menu. For any newly created application project this is set to a
default of Agentry and should be changed.

• Version: This value is also displayed to the user in the About screen. This value is not
related in any way to the application’s publish version number. This attribute value is
provided for branding purposes only and will not impact any aspect of the application’s
behavior. Typically this reflects the application’s release version.

Application Setting Attributes
Table Settings - These attributes affect the behavior of data synchronization related to the two
table definition types, data tables and complex tables.

• Check Data Tables: Specifies how often the application will check for new or changed
data for the application’s data tables. The choices are “Every Transmission”, “Once per
day”, and “Once per week”. In between the specified intervals, no synchronization
components of the application’s data tables will be processed during a transmit. A
published change to the data table definition will override this attribute, forcing a reload of
the data table during the next Agentry Client transmit.

• Check Complex Tables: Specifies how often the application will check for new or
changed data for the application’s complex tables. The choices are “Every Transmission”,
“Once per day”, and “Once per week”. In between the specified intervals, no

Agentry Language Reference

2 SAP Mobile Platform

synchronization components of the application’s complex tables will be processed during
a transmit. A published change to the complex table definition will override this attribute,
forcing a reload of the complex table during the next Agentry Client transmit.

• User Request: This setting specifies whether or not users can explicitly check for changes
to the application’s complex tables and data tables. This is a means of providing users with
a manual override for the Check Data Tables and Check Complex Tables attribute
settings. When User Request is enabled, users will be able to force the synchronization
process to include the processing of the data table and complex table definitions’
synchronization components. Users will be able to force this behavior by selecting the
menu item “Check for Table Updates” in the Agentry Client’s Off-Line menu. This
attribute will have no effect when the Check Data Tables and Check Complex Tables
attributes are set to “Every Transmission”.

Client Settings - Client Settings affect various behaviors of the client application at runtime.

• When Exiting Client: This enables a warning message displayed to the user if there are
pending transactions stored on the Agentry Client when they exit the application.

• Prompt on User Change: This enables a prompt when a user change occurs, informing
the user that a synchronization with the Agentry Server must take place to change users
and gives the user the option to cancel the user change. If this is disabled, the
synchronization will still occur to complete a user change, but no prompt will be displayed.

• Module Menu Item: This attribute specifies whether or not the menu item for the current
module is enabled or disabled in the Agentry Client’s View menu at runtime. Selecting the
current module from the View menu will return the user to the module’s main screen set,
regardless of where they may be in the navigation. When disabled, the menu item for the
current module is disabled. Users can always select other module items in this menu for
applications with multiple modules regardless of this setting.

• Synchronize Clocks: This attribute specifies whether or not the system time on the client
device will be reset to that of Agentry Server’s host system time during each transmit. Note
that this time is not the time of the back end system with which the Agentry Server
communicates. It is the system time as reported by the operating system of the Agentry
Server’s host system. This is typically disabled in deployments involving multiple time
zones.

• Screen Size: This setting specifies the size of all screens displayed to the user on the
Agentry Client. This attribute will only effect Agentry Client applications running on a
Windows PC platform capable of full VGA screen resolution. The screen sizes available
for this setting range from 240 x 320 (1/4 VGA) to 1366 x 768. The Screen Size value will
override the screen size attribute for all platform definitions. There is also the available
setting “Allow Resize”. If any selection other than Allow Resize is made, users will not be
able to resize Agentry Client screens. The screen size for all mobile devices, including
smart phones tablets, and other devices, is always full resolution of those devices and users
can never resize the screens.

• Battery Status: For mobile devices, the status of the battery can be displayed on the
Agentry Client. This will appear in either the upper or lower portion of the screen,

Agentry Language Reference

Agentry Language Reference 3

depending on the device. Note that this setting has no effect on the Windows PC builds of
the Agentry Client.

• WinCE Navigation: This setting enables support for the arrow keys of a device’s
hardware keyboard. When a user clicks one of the arrow keys, the focus of the screen will
be changed to the next or previous control on that screen. This attribute has no effect on the
Windows PC builds of the Agentry Client, where full keyboard navigation is always
enabled.

• Scan Trigger Shortcut Key: For devices equipped with a scanner, this attribute allows for
the specification of a shortcut key to activate the scanner. This key will be universal to the
application, and will activate both socket and built-in scanners. This attribute will have no
affect on Agentry Clients running on devices not equipped with a scanner.

• Voice Support: Enables voice support for devices that support this feature.
• Title Bar Buttons: This attribute specifies whether or not the close buttons (either an X or

an OK button) are displayed on the title bar of screens within the mobile application. Due
to the behavior of Pocket PC devices, it is recommended that these buttons not be displayed
and that actions are defined within the Agentry application project to close screen sets
within the application, and that users close the application itself using either the File | Exit
menu item, or through an action containing an Exit Application action step. Note that on
Pocket PC devices, screens closed with the title bar’s OK button are not destroyed, but
rather only moved to the end of the “Z” order, hiding them from view. Applications closed
with the X button of the title bar are not actually exited. Any defined behaviors for exiting
an application will not be exhibited. Furthermore, the application itself will still be
running. The behaviors described here are not present on a Windows PC platform.

• Theme Selection: This attribute specifies whether or not the Theme menu item within the
Preference menu of the Agentry Client is displayed. When true (checked) the user can
change the Agentry Client theme using this menu. When false, the user cannot change the
Agentry Client theme and the theme displayed is always the one selected in the Default
Theme attribute. Allowing user’s to select a different theme can have unexpected impact
on the UI of the Agentry Client if styles are defined and in use.

• Default Theme: The theme selected is the default theme displayed on the Agentry Client
at run-time. If Theme Selection is disabled, the selected Default Theme is always
displayed and the user cannot change the theme selection. If Theme Selection is enabled,
the selected Default Theme will be the initially applied theme on the Agentry Client, but
the user can select a different theme at any time.

• Win32 Buttons - Use large buttons: This attribute specifies whether or not to use large
sized buttons. This attribute affects only the Windows PC platform types. When true,
screen buttons are displayed in a large size, generally intended for touch screen support.
This setting affects button definitions for list and detail screens. Built-in buttons, such as
ellipses buttons, icon buttons, and similar controls are not affected. Note that large buttons
are not displayed in the Agentry Editor’s layout view or visual screen editor for screen
definitions. They are displayed in the Agentry Test Environment when the selected
platform is Windows.

Agentry Language Reference

4 SAP Mobile Platform

Application Styles Attributes
The attributes listed in the Application Styles tab define how styles are to be applied to all
components of the application’s user interface. These style settings may be overridden at
lower levels in the application’s structure. The style settings here also impact what styles are
applied to the Agentry Client’s built in screens and dialogs, such as those for complex table
searches, the transmit dialog, and others. For all style attributes, the option “--Default--” will
default to the operating system’s default font and color options.

Screen Styles

• Tabs: The style to apply to the tab controls representing each screen within an object
screen set. This attribute has no effect on screens within a transaction or fetch screen set.

• Buttons: The style to apply to all button definitions on all application screens. This
includes buttons displayed on built-in Agentry Client screens as well as buttons within
screen definitions.

• Focused Buttons: The style to apply to the button that currently has the focus. This
includes buttons displayed on built-in Agentry Client screens as well as buttons within
screen definitions.

Detail Screen Styles

• Screen: The style to apply to all detail screens defined within the application. This will
affect all portions of the screen not displaying a field or button.

• Fields: The style to apply to all fields displayed on a detail screen.
• Focused Fields: The style to apply to the detail screen field that currently has the focus.
• Read-Only Fields: The style to apply to a detail screen field defined to be read-only. If not

specified, the Fields style is applied.
• Hyperlinks: The style to apply to detail screen field labels defined to be hyperlinks.
• In Progress Edit Screens: The style to apply to screens in which changes are currently

being made and have not yet been applied. This affects screens displayed in List Tile View
and Tile Edit fields.

List Screen Styles

• Screen: The style to apply to all list screens as a whole. This will affect all portions of the
screen not displaying a list, header label, detail pane, or button.

• Header Label: The style to apply to all list screen header labels. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control. This
style is applied to the column labels of any screen containing a list control, including both
built-in Agentry Client screens as well as list screen definitions, and list view field
definitions.

• Rows: The style to apply to all rows on a list screen. The Hyperlinks optional style will
override the Rows style for cells with hyperlinks. This style is applied to the list items of

Agentry Language Reference

Agentry Language Reference 5

any screen containing a list control, including built-in Agentry Client screens, list screen
definitions, and list view field definitions.

• Alternate Rows: The style to apply to every other row in a list, beginning with the second
row. The Hyperlinks optional style will override the Alternate Rows style for every other
row where there are cells containing hyperlinks.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style attribute should not be set at the application level. The platform and list
screen definition types both contain a Highlight Rows attribute that should be used.

• Selected Rows: The style to apply to the row or rows currently selected by the user in the
list control. The optional Hyperlink style will be applied to any cells within the selected
row containing a hyperlink.

• Selected No Focus Row: The style to apply to the row or rows currently selected by the
user in the list control, when the input focus is set to some control other than the list control.
The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

• Detail Pane: The style to apply to both the foreground (text) and background of a list
screen’s detail pane. If no detail pane is defined this attribute has no effect on the screen.

Application Images

• About Box Dialog Image: This attribute specifies an image definition to display in the
Agentry Clients’ about box.

• Login Dialog Image: This attribute specifies an image definition to display in the Agentry
Clients’ login screen.

• Module Menu Dialog Image: This attribute specifies an image to display in the Agentry
Clients’ module selection dialog. This dialog is displayed after users log into Agentry
Client applications with multiple modules. Note that within this same module selection
dialog, each module may also display an image. The image defined at the application level
is separate from the module images. For applications with a single module, this attribute
has no effect as the module selection dialog is never displayed.

Application Security Attributes
The attributes in this section control overall security related to items such as failed login
attempts, locking the user out of the client application after failing validation, user ID and
password rules, and idle timeout settings.

User Settings

• Login: This attribute specifies whether or not users are required to perform a transmit
every time the Agentry Client application is started and the user logs in. Note that setting
this option to true requires an available network connection for the client device and users
will be required to perform a successful transmit before the user can use the client
application.

• Login Attempts: This attribute specifies the maximum number of failed login attempts
that may occur before locking the user out of the application. “Unlimited” will never lock

Agentry Language Reference

6 SAP Mobile Platform

the user out. A failed login will occur if the user enters an incorrect password for the
entered User ID when not required to connect to the Server during login; or if the user fails
user authentication when the Login attribute is set to true and the number of failed attempts
exceeds the value entered here. The resulting behavior of locking out a user is defined in
the Lockout Level attribute described below.

• Lockout Level: This attribute specifies the action to take when a user is to be locked out of
the Agentry Client. This may occur as a result of exceeding the defined Login Attempts,
or based on failed attempts to authenticate the user against the back end system. The four
possible settings for this attribute are:
• Critical: This lockout level specifies that the entire Agentry Client be reset. This

includes the removal of all production data and all application data, as well as
removing the stored user ID and password. Users will be required to log into the
Agentry Client application and perform a successful transmit with the Agentry Server
before being allowed to access the Agentry Client application.

• Severe: The severe lockout level specifies that all module-level production data, i.e.
object instances and pending transactions, be removed from the Agentry Client
application. Complex table and data table records will not be removed. The user will be
required to perform a successful transmit with the Agentry Server before being
allowed to access the client application.

• Medium: This lockout level specifies the Agentry Client will exit and the user will be
required to log into the Agentry Client and perform a successful transmit with the
Agentry Server before being allowed to access the client application. No data is
removed from the application.

• None: This setting indicates that no lockout behavior should take place. This setting
will result in any lockout events being ignored by the Agentry Client.

• Client Database will be encrypted: When true, this attribute specifies the database in
which all client data is stored on the client device, including both production data and
application data, will be encrypted.

User ID

• Case: This attribute specifies the case in which the user ID should be entered and will be
stored. The options are mixed case, uppercase, and lowercase. Note that mixed case does
not require a mixed case user ID, but rather allows for variable case. User IDs may then be
in all upper, all lower, or mixed case.

• Scan User ID: This attribute specifies whether or not users can enter user IDs via the
device’s barcode scanner. This attribute does not require the ID to be scanned, but only
allows for the option. This attribute has no effect on Agentry Clients running on devices
not equipped with a barcode scanner.

Password

• Password Change: This attribute specifies whether or not users can initiate password
changes on the Agentry Client. When true, the users will be able to change the password
based on responses from the back end system indicating their passwords are about to
expire or have expired. Users are required to enter the old password and the new one to

Agentry Language Reference

Agentry Language Reference 7

change passwords. Note that enabling this behavior requires the implementation of logic
to process a password change for the user in the back end system.

• Scan Password: This attribute specifies whether or not users can enter passwords via the
device’s barcode scanner. This attribute does not require the password to be scanned, but
only allows for the option. This attribute has no effect on Agentry Clients running on
devices not equipped with a barcode scanner.

Idle Timeout

• Timeout: This attribute specifies whether or not to require users to re-enter their user ID
and password if the device is left idle for a defined duration of time. The duration is set as a
part of this attribute. Also an option is whether or not the user ID should be populated
automatically.

Password Rules

• Minimum Length: This attribute specifies the minimum number of characters of the
password entered on the Agentry Client. The minimum length must be at least 1 to enable
the First Character attribute. This value must be at least 2 to enable the Character Mix
attribute. This value must be equal to or less than the Maximum Length attribute. The
default minimum is none, which does not require a password to be entered on the Agentry
Client.

• Maximum Length: This attribute specifies the maximum number of characters of the
password entered on the Agentry Client. This value must be equal to or greater than the
Minimum Length attribute, or be set to default, which is no maximum length.

• Password Case: This attribute specifies the case in which the user’s password is stored on
the Agentry Client and will be sent to the Server. This may be set to Mixed Case,
Lowercase Only, or Uppercase Only. Note that Mixed Case does not enforce a requirement
of a mixed case password. Rather it merely specifies that the case of the password
characters will not be changed from how they are entered by the user.

• Character Mix: This attribute requires the Minimum Length attribute to be set to at least
2. Character Mix requires passwords entered on the Agentry Client must contain at least
one alphabetical character and one non-alphabetical character. Non-alphabetical
characters exclude non-printable characters.

• First Character: This attribute requires the Minimum Length attribute to be set to at
least 1. First Character specifies that the first character of the password must be an
alphabetical character.

• New vs. Old: This attribute specifies that a new password entered by the users on the
Agentry Clients must be different from the previous password. A difference is based on the
change of at least one character from the previous password to the new one. This attribute
may be impacted by the Password Case attribute. Mixed Case will treat the same letters in
the old and new password as different if at least one letter is entered in a different case. For
Uppercase Only and Lowercase Only Password Case settings, case is ignored and the
same letters entered in a different case will not be treated as a different password.

Agentry Language Reference

8 SAP Mobile Platform

Module

The module definition is a grouping of definitions providing functionality that logically
belongs together. The module’s attributes and child definitions define the majority of the
behavior and functionality exhibited on the Agentry Client at runtime.

The modules of an application contain the functionality related to the user interface on the
Agentry Client, data storage and structures, data synchronization, and data capture. The child
definitions of a module also have access to all application-level definitions.

An application project must contain at least one module. When multiple modules are defined
for an application, users will be required to select which module to work with when logging
into the Agentry Client application. They will be able to switch from one module to another
using the Agentry Client’s View menu, which will list the defined display name for each
module within the application.

The module’s child definitions are primarily intended to work with other definitions within
the same module. Cross-module functionality can be defined using actions within one module
that may execute actions of another module within the same application.

Module Child Definitions

• Action - An action defines navigation and user interaction for the Agentry Client, bringing
the other components of the Client’s UI together.

• Fetch - A fetch defines how the Agentry Server synchronizes data for a target object
collection by referencing the step definitions to perform this task.

• Object - An object definition encapsulates a business entity and its related data.
• Push - A push defines when it is necessary to push an object in real time from the back end

system to the Agentry Client and how that object’s data is retrieved.
• Report - A report defines a printed tabular report format for the contents of an object

collection on the Agentry Client.
• Rule - A rule defines evaluation logic processed on the Agentry Client that returns a single

value to the caller of the rule.
• Screen Set - The screen set is the main Client user interface definition and defines what

definition type its child screens display.
• Service Event - A service event defines how the Agentry Server synchronizes data

between two back end systems, usually based on a change or “event” occurring in one of
the systems.

• Step - A step defines a piece of processing to be performed by the Agentry Server with a
specific back end system.

• Transaction - A transaction definition defines what data is captured on the Client, how
that data affects a target object instance on the Client, and how the captured data is
processed by the Agentry Server.

Agentry Language Reference

Agentry Language Reference 9

Module Attributes
• Name - This is the unique name of the module. This value must be unique among all

modules defined within the application.
• Display Name - This is the text displayed to the users on the Agentry Client application at

runtime. This value appears in the Agentry Client’s Module Selection Screen to represent
the module and also appears in the View menu of the Agentry Client as a menu item.

• Preserve Objects - This attribute specifies whether or not the objects within the module
will be preserved when a new user logs into the Agentry Client on the same device as a
previous user. If checked, the objects will be preserved from one user to the next. If left
unchecked, a user change will result in the objects being removed prior to synchronizing
object data for the new user.

• Image: Specifies the image definition to associate with the module definition. This image
is then displayed for the module in the Agentry Client’s Module Selection Screen
displayed after login for multi-module applications.

• Successful Login Action: Specifies an action defined within the module to be executed
after a user successfully logs into the application. The action executed here targets the
module main object. For multi-module applications where more than one module defines a
Successful Login Action, the order in which those actions are executed is undefined.

• Application Exit Action: Specifies an action defined within the module to be executed
just prior to exiting the application. The action executed here targets the module main
object. For multi-module applications where more than one module defines an
Application Exit Action, the order in which those actions are executed is undefined.

Data Table

A data table definition defines a set of records stored on the Client. Each record consists of two
fields containing a key and value. A data table is intended to contain a small number of records
(less than 100) that may be displayed to users in drop-down lists and other uses. A data table is
defined at the application level and is available to all modules of the application. Its structure
also defines how its data is synchronized.

The intended purpose of a data table is to provide short lists of records that can be created
quickly and with little overhead related to maintaining the data. A data table has no built-in
search support and if searching is necessary it is performed row-by-row (e.g., no binary or
other search algorithms are employed).

As a part of its definition, the data table contains the components to synchronize data. This
includes determining if new data is needed for the table as well as the processes to retrieve the
records for the data table. The definition of a data table requires the selection of an existing
system connection. The type of synchronization components a data table contains is based on
the type of the selected system connection.

Though the synchronization components will differ in form and structure related to the type of
back end system for which they are intended, they are required to always return two general
categories of data to the Agentry Server. The first is a date and time value retrieved from the

Agentry Language Reference

10 SAP Mobile Platform

back end that indicates the last time when the data source for the data table was last modified in
the back end system. The second is the actual data for the data table’s records.

The date and time value is compared to a date and time value stored internally on the Agentry
Client for each data table instance. This internal value is called the data table’s last update
value. This last update value indicates when the data table was downloaded to the Agentry
Client. When the date and time retrieved from the back end is newer than the Agentry Client’s
last update value for the data table it is the indication that the records for the data table must be
retrieved. The existing records on the Agentry Client will be deleted and replaced with the new
data retrieved for the data table. This is an all-or-none operation and individual records cannot
be selectively replaced.

The specifics of how the date and time values for the data tables are retrieved, and how the
records are retrieved for the data table are provided in the discussions specific to each of the
possible system connection types that may be selected for the data table definition when
initially defined.

Data Table Attributes
The following attributes are applicable to all data tables, regardless of the system connection a
given data table may be using.

• Name: This is the unique name of the data table. This value must be unique among all data
tables defined for the application.

• Display Name: This is the default text displayed to the user on the Agentry Server for the
data table.

• Connection: This is the system connection defined for the back end system containing the
data source for the data table. This attribute is set when the table is initially created. It
cannot be edited for an existing data table definition. The system connection to be used
must exist prior to defining the data table.

• Reload: This attribute specifies whether or not the records of the data table should be
reloaded when a user change occurs on the Agentry Client. When true, all records in the
data table are deleted and completely reloaded during the first transmit of the new user.
Otherwise the records will remain on the Agentry Client during the user change. This
attribute should be set to true when the data table contains records that are user-specific.

SQL Data Table Synchronization Components

When a data table is defined to use a SQL Database system connection, the synchronization
components include a Sync Query and a Data Query.

The Sync Query is expected to return a value identified as LastUpdate. This value should
indicate the date and time the source table in the database was last modified. This value is then
compared to the last update value for the data table provided from the Agentry Client. If the
date and time value returned by the Sync Query is not newer than the one for the data table, no
further processing for the data table occurs.

Agentry Language Reference

Agentry Language Reference 11

If the Sync Query LastUpdate value is newer than the Agentry Client’s last update value
for the data table, the Data Query is run. This query is expected to return all records for the data
table, whether or not an individual record is different in the database. This query is expected to
return two columns identified as CODE and VAL to the Agentry Server. The value of the CODE
column must be unique within the return set provided by the Data Query.

Sync Query and Data Query Attributes

• Sync Query - File: Specifies the name and location of the text file (.sql extension)
containing the SQL statement for the Sync Query.

• Data Query - File: Specifies the name and location of the text file (.sql extension)
containing the SQL statement for the Data Query.

HTTP-XML Data Table Synchronization Components

When a data table is defined to use an HTTP-XML system connection, the synchronization
component it contains is an HTTP request.

This request is a child definition to the data table. It can be defined to make a request to a
specified URL and may use the request methods GET, POST, HEAD, or PUT. The HTTP
request itself contains two types of child definitions: Request Arguments and Response
Mappings.

The request arguments contain the data values passed as arguments to the back end system as a
part of the request being made. The response mappings are defined using XPaths to retrieve
data from structured XML return values provided by the back end system as a result of the
HTTP request. These mappings can include the back end system’s last update value for the
data table’s data source, the data values for the records to be stored in the data table, and other
types of data.

There is a single request made to synchronize the data table, with the value mapped to the
LastUpdate value determining whether or not the data values returned should be used to
replace the data table on the Agentry Client.

Data Table HTTP Request Child Definitions
Following is a list of the child definitions for the HTTP Request within an HTTP-XML data
table.

• Request Arguments: This definition encapsulates an argument to be passed with the
request to the back end system. These arguments can include data contained within the
mobile application.

• Response Mappings: This definition encapsulates the XML data returned by the HTTP
Request. The specific values are extracted from the XML return data using XPaths defined
within each response mapping. The mapping “maps” the extracted values to values within
the mobile application.

Agentry Language Reference

12 SAP Mobile Platform

Data Table HTTP Request Attributes
The following attributes pertain the HTTP Data Request of a data table defined to use an
HTTP-XML system connection.

• Name: The name of the request, set automatically based on the parent data table name.
May be modified if desired.

• URL: The URL to the specific CGI or other process being called by the HTTP request to
synchronize the data table.

• Method: The HTTP request method for the request. May be one of GET, POST, HEAD, or
PUT.

HTTP Request Argument

The request argument definition encapsulates a data value to be passed from the mobile
application to the process being called by the parent HTTP request definition. The request
argument specifies the argument type, which may be CGI Argument, Cookie, HTTP Header,
or XML Body. The request argument also specifies the data or data source within the mobile
application to pass as the argument to the process or service being called by the parent HTTP
request definition.

For a data table, the data value may be the user ID, the name of the data table, a fixed string
whose value is defined as a constant within the request argument, or markup text. A given
parent HTTP request may contain multiple request arguments. The order in which they are
passed to the process or service when called is defined in the parent HTTP request’s list of
request arguments.

HTTP Request Argument Attributes
The attributes of a request argument depend in part on the data type of the argument (Data
Type attribute). The following list makes note of those attributes specific to a certain argument
data type.

• Argument Type: This attribute specifies the type of argument the definition contains.
This may be one of CGI, Cookie, HTTP Header, or XML Body.

• Name: Alternately displayed as Argument Name, Cookie Name, Header Name, or Name
depending on the Argument Type selection. This value must be unique among all request
arguments defined within the same parent HTTP request definition.

• Data Type: Specifies the data value or source for the data value for the request argument.
For a data table this may be the Table Name, User ID, Small or Large Markup, or a Fixed
String value.

• String: This attribute is available only when the Data Type attribute is set to Fixed String.
String contains the constant string value that is the request argument’s data.

• Markup Text: This attribute is available only when the Data Type attribute is set to Small
Markup or Large Markup. Markup Text contains the single line (Small Markup) of

Agentry Language Reference

Agentry Language Reference 13

markup text or the contents of the Markup File (Large Markup) that is the data for the
request argument.

• Markup File: This attribute is available only when the Data Type attribute is set to Large
Markup. Markup File contains a reference to the text file containing the multi-line
markup text. This file is displayed in the Markup Text field directly below the file name in
the Editor and can be authored or modified directly in this multi-line field.

HTTP Request Response Mapping

The response mapping definition is a child to an HTTP request definition. This definition
maps a data value returned from the process called by the HTTP request to a value within the
mobile application. This value may be extracted from structured XML using XPath or XSL. It
may also be a Cookie value or the HTTP Header.

For a data table the values may be mapped to the code or value fields in a data table record, an
error message, the last update value to be compared against the data table’s last update, a local
data tag or local XML value, or to the user ID value that may be used in place of the ID entered
to log into the Agentry Client.

HTTP Request Response Mapping Attributes
The response mapping attributes are in part dependent on the selection made in the Mapping
Type attribute. Those specific to a certain type are denoted in the following list.

• Mapping Type: This attribute specifies the mapping type. This may be Cookie, HTTP
Header, XPath Expression, or XML Transformation.

• Base XPath: This attribute is only available when the Mapping Type is set to XPath
Expression or XSL Transformation. This attribute is optional and should be used when
returning multiple instances of the same data element in the XML content. When a Base
XPath is defined for a response mapping, the same value will be set by default in the add
wizard for subsequent response mappings within the same parent HTTP request
definition.

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath markup to extract the desired value from
structured XML data returned from the HTTP Request.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data to be mapped
to a value for the request.

• Cookie Name: This attribute is only available when the Mapping Type is set to Cookie. It
contains the name of the cookie for the response mapping.

• Header Name: This attribute is only available when the Mapping Type is set to HTTP
Header. It contains the name of the HTTP header for the response mapping.

• Maps To: This attribute specifies where the value extracted by the response mapping is
stored in the mobile application. This may be one of the following values for a data table:

Agentry Language Reference

14 SAP Mobile Platform

• Data Table Key: This selection specifies the value extracted by the mapping contains
the key or code field value for each data table record.

• Data Table Value: This selection specifies the value extracted by the mapping contains
the value field value for each data table record.

• Error Message: This selection will map the data to error text displayed by the mobile
application.

• Last Update: This selection specifies the extracted value is a date and time indicating
when the data table’s source in the back end system was last modified. This value is
compared against the internal last update value for the data table as provided by the
Agentry Client.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will be the value extracted by the response mapping. When selected, the attribute
String Name will be available to name the new local data tag. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping. When selected, the
attribute XML Name will be available to name the new local data tag. This is the
equivalent to calling the SDML function tag <<localXML ...>>.

• User ID: This selection will map the value extracted by the response mapping to the
user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Agentry Server set
the user ID, setting it here will override that value. This will then be the value available
for all HTTP-XML system connection processing where the data tag <<user.id>>
is referenced.

• String Value: This attribute is available when the map type is set to Local String. It
contains the name of the data tag being created by the mapping. This is the name by which
the data tag is referenced in subsequent references.

• XML Name: This attribute is available the map type is set to Local XML. It contains the
name of the data tag being created by the mapping. This is the name by which the data tag is
referenced in subsequent references.

Java Virtual Machine Data Table Synchronization Components

When a data table is defined to use a Java Virtual Machine system connection, its
synchronization component is a single Java source file. This file contains the skeleton
structure for a Java class that extends the Agentry Java API class DataTable. The name
given to this class matches the name of the data table definition itself and should not be
changed.

When the table is defined, the wizard for creating Java classes provided with the Eclipse Java
perspective is used. This allows the developer to select the package to which the new class will
be added. The source .java file created will then be stored according to the configuration of

Agentry Language Reference

Agentry Language Reference 15

the project and package selected for the new class. Alternately an existing class in a package
within the Java perspective may be selected. This class must extend the Agentry Java API class
DataTable.

This skeleton class declaration includes three methods:

• The Constructor method.
• An override method for the data table iterator() method. This method is intended to

contain the logic to retrieve the data from the back end system via the Java interface it
provides. It is then intended to return an iterator for the data table object.

• An override method of isOutOfDate(). This method is expected to return true or false
based on whether or not the data for the table is out of date. When true is returned by this
method, the iterator() method will be called. When false, processing for the data table by
the Agentry Server will be complete.

In versions of the Agentry Mobile Platform prior to 5.1, the source class was stored on the
Agentry Server’s file system. This behavior is deprecated in versions 5.1 and later. Agentry
application projects created prior to this release are still supported and the Java logic will still
be processed correctly. New data tables for Java Virtual Machine system connections should
use the new procedure for defining the Java synchronization component.

Complex Table

The complex table definition defines a table of records containing multiple fields stored on the
Agentry Client in a structured and searchable format. A complex table can contain large
amounts of data with records numbering in the thousands. Included in the complex table are
the fields for its records and indexes on fields to provide search functionality and structure to
the overall data in the table. The complex table definition also defines how its data is
synchronized.

The fields and indexes of a complex table define the structure of the records. A complex table
must have a minimum of one index definition, which is the primary index. This index is
defined for the field containing the unique identifier for each record. This field and index are
then used during synchronization to identify records for addition, replacement, or removal.

The synchronization components of a complex table depend on the system connection the
table definition uses for its data source. The synchronization components will match the
system connection type. Independent of the system connection type, the synchronization logic
for a complex table should account for retrieving all records when the table is in a rebuild state,
retrieving just new or modified records during normal synchronization, as well as determining
which records should be removed from the complex table.

The rebuild state of a complex table is set under various conditions. These include a published
modification to the complex table definition, a user change occurring on the Agentry Client,
and optionally based on the rebuild state being forced via administrator actions. During
synchronization between the Agentry Client and Agentry Server, the Agentry Server will
indicate if the complex table is in a rebuild state to the Agentry Client. The Agentry Client will
remove all records for the complex table from the client device. The synchronization

Agentry Language Reference

16 SAP Mobile Platform

processing will retrieve all current records for the complex table and send them to the Agentry
Client, rebuilding the table. This synchronization processing requires the developer to account
for this situation.

When not in a rebuild state, the complex table can be updated selectively. Using an exchange
data model for processing, only those records to be added, those records that need to be
replaced, or those that need to be removed from the Agentry Client are retrieved by the
Agentry Server from the back end system for the complex table. Any unchanged records will
be left unmodified.

Complex Table Child Definitions

• Field: A complex table field definition defines a single piece of data for a complex table
record, including its data type and size.

• Index: A complex table index definition orders the table’s records by a field, making the
table searchable by that field.

Complex Table Attributes

• Name: This is the unique name of the complex table. This value must be unique among all
complex tables defined within the application.

• Display Name: This is the default text displayed to the user on the Agentry Client
identifying the complex table.

• Connection: This is the system connection used by the complex table’s synchronization
components to synchronize the records of the complex table on the Agentry Client.

• Reload: This attribute specifies whether or not the records of the complex table should be
fully reloaded when a user change occurs on the Agentry Client. When true, all records in
the complex table are deleted and completely reloaded during the first transmit of a new
user. When false, the records downloaded by the previous user are kept. This attribute
should be set when the records of the complex table are user-specific.

Complex Table Fields

A complex table field definition defines a field in each record of the table, including the data
type of the field and the size of the data the field can store. A record within the table can consist
of multiple fields of varying types and sizes.

A Complex Table is made up of records on the Agentry Client. Each record in the table is made
up of Fields. Within a Complex Table definition in the Agentry Editor, you define the fields
that make up the table’s records.

Complex Table Field Settings

• Name: This is the name used to uniquely identify the field within the Complex Table.
• Display Name: This is the text value displayed on the Agentry Client to for the field. This

includes the column headers in a Complex Table Search screen, as well as other places.

Agentry Language Reference

Agentry Language Reference 17

• Type: This attribute specifies the data type of the field. This is discussed further shortly.
• No. of Characters: This attribute is available only for one of the String type of fields and

specifies the maximum number of characters the field can hold. Note that this is not
necessarily the same as the number of bytes, as is explained in the section of the field data
types. When setting this attribute, the value should be large enough to accommodate the
strings the records will contain. However, it should not be simply set to an overly large
value, as this will waste significant resources on the Client, both in storage and memory.

Field Data Types
There are six data types possible for a Complex Table Field definition. Each controls, first, the
type of data that can be stored in the field and, second, how that data is sorted within the table.
This last aspect can have a significant impact on how a user can search the complex table on a
particular field. Following, each of the data types for a field are listed, along with a description
of the impact each type has.

• ASCII String (case-insensitive): This field type specifies that the field will contain string
characters, each one byte in length. This will support the standard ASCII characters. The
case-insensitive portion indicates that, when the table is searched or sorted on this field, the
case of the characters is not considered. That is, the lett ‘A’ is treated as equal to the letter
‘a’.

• ASCII String (case-sensitive): This field type specifies that the field will contain string
characters, each one byte in length. This will support the standard ASCII characters. The
case-sensitive portion indicates that, when the table is searched or sorted on this field, the
case of the characters is considered. That is, the letter ‘A’ will be sorted after the lett ‘a’.

• International String (case-insensitive): This field type specifies that the field will
contain string characters in the UNICODE format. This supports the non-english language
characters, such as those in Hebrew or Chinese. Note that this also includes characters with
an accent mark. This field type will still include the ASCII characters, as well. The case-
insensitive portion indicates that, when the table is searched or sorted on this field, the case
of the characters is not considered. That is, the letter ‘A’ is treated as equal to the letter
‘a’.

• International String (case-sensitive): This field type specifies that the field will contain
string characters in the UNICODE format. This supports the non-english language
characters, such as those in Hebrew or Chinese. Note that this also characters with an
accent mark. This field type will still include the ASCII characters, as well.

• Number: This field type specifies that the field will contain numeric values only. These
values may be whole numbers or decimal values and may be positive or negative. If you
wish to index a field containing numerical values for the purpose of providing search
functionality to the user on the Agentry Client, that field type should be string. Currently,
Agentry does not contain the control types on the Agentry Client to support searching
numerical values in a complex table.

• Identifier: This field type specifies that the field will contain numeric values only. These
values may only be whole, positive values. Decimal and negative values are not supported.
The purpose of this field type is to explicitly support an identifier field for each record.

Agentry Language Reference

18 SAP Mobile Platform

Note that this is not a requirement, as the other field types can also be used as the identifier
value for a record. This is covered in detail in the section in Indexes later in this chapter.

Complex Table Indexes

A complex table index definition orders the records of that table by the field for which the
index is created. A field must be indexed to allow for the table to be searched on that field. A
complex table can have multiple indexes. Indexes can be defined to have a parent-child
relationship to give structure to the table’s records.

The Index definition is the most important of the Complex Table. It is this definition type that
makes the Complex Table so useful. When an index is defined, you specify the field to be
indexed. When the Complex Table is downloaded to the Agentry Client, its records will be
sorted by the fields you have indexed. Only those fields that have been indexed can be searched
by the user on the Agentry Client.

Additionally, all Complex Tables must contain at least one index. This is the primary index of
the table. The field for this index must contain the unique value for each record in the table.
Whenever you define the indexes for a Complex Table, the first index defined is the one treated
as the primary index. This cannot be changed once set, so be sure to determine which field
should contain the Primary index beforehand. Also, any complex table definition that does not
contain a primary index cannot be selected for use by any other definition in the application.

Though only those fields which contain an index can be searched on the Agentry Client, do not
simply define one index for each field in the table. There is a certain amount of overhead that
goes into each index definition. Also, whenever the records in the complex table are changed,
each index must be resorted for each new, updated, or deleted record in the table. This also
takes a certain amount of time and resources during a transmit. In a table with a large number
of records, superfluous indexes can result in an unnecessary delay for users during transmit.

Complex Table Index Attributes

• Name: The internal name of the index. This value must be unique among all index
definitions within the same parent complex table.

• Display Name: The value displayed for the index definition on the Agentry Client’s user
interface. In most contexts the index is, to the user, the same as the field and it is a common
practice to set the display name of the index to match the display name of the field for
which it is defined.

• Field: The field for which the index is being created and by which the complex table
records will be sorted.

• Parent Index: The parent index, set to create parent-child indexes within the complex
table.

• Order: This attribute specifies the order in which records should be sorted; either
ascending (default) or descending.

Agentry Language Reference

Agentry Language Reference 19

Parent-Child Indexes
In addition to index a field within the complex table, indexes can also be defined to have parent
indexes. This can allow you to create a parent-child relationship among the records of a
complex table. The Primary index cannot be defined to have a parent index.

This structure can be very useful when the records of the table support this kind of
relationship. One example of such data would a complex table containing locations, with each
record representing one location within an industrial park. These locations can be structure to
have parent-child relationships and the indexes for the complex table can be created to support
this. In this case, a parent location could be a building. Within this building there may be five
child locations, one for each floor. Within the first floor of the building, there may be 20 child
locations, one for each office suite. Within the first suite, there may be 15 child locations as
well, one for each room within the suite. Within the Complex Table, each record would
contain, among the other fields, one for the location’s ID and one for its parent location, named
LocationID and ParentID, respectively.

When defining the indexes for the complex table, an index could be defined on the ParentID
field, named ParentIDIdx. Then, a second index definition can be defined for the LocationID
field, and this index would have a parent index of the ParentIDIdx index. Within the user
interface definitions in Agentry, there are the field types used to create a Cascade. If a cascade
were defined for the Locations complex table, the user would first be required to select the
Parent ID. Then, they would be presented with a list of just those records in the table with a
parent ID equal to the one selected. In the Agentry Editor, these controls are defined to use
these parent and child indexes.

SQL Complex Table Synchronization Components

When a complex table is defined to use a SQL Database system connection type, the
synchronization components consist of three SQL statements: Reload State Query, Deleted
Query, and Data Query.

The reload state query can be enabled or disabled based on preference. When enabled, this
query is expected to return the text values “true” or “false.” When the query returns true, the
complex table will set to its rebuild state. The condition under which this query returns true is
completely dependent on the need of the application or implementation. Its intent is to select
from the back end system based on some value or condition that an administrator can easily set
when it is desirable to force the complex table to be fully reloaded on the Agentry Client.
When this query is disabled, it will not be run by the Agentry Server during synchronization
for the complex table.

The data query is always run during synchronization and should include two separate select
statements. Both statements are expected to return records from the database to the Agentry
Server containing the field values for the complex table records. The columns of this return set
must be named to match the names of the complex table fields. The difference between the two
statements contained in the data query is the logic related to which records they will select.
One statement should be written to select all records to be stored in the complex table on the

Agentry Language Reference

20 SAP Mobile Platform

Agentry Client and under the assumption that the Agentry Client currently contains no
records. This statement will then be run for only the rebuild state. The second statement should
include logic in support of the exchange data model of synchronization, and should retrieve
only new or modified records from the database that will be updated to the records stored on
the Agentry Client. To determine if the complex table is in a rebuild state, the SDML data tag
<<rebuild>> is used. This tag will return true when the rebuild state is set, and false when it
is not. The data query will likely check this data tag using the <<if...>> function tag,
which should then return the appropriate statement.

The deleted query is only run when the complex table is not in a rebuild state. This query is
expected to return a single column identified as the key field in the complex table. Any values
returned by this query will be sent to the Agentry Client so that the Agentry Client will delete
the records with the matching key field value from the complex table.

Reload State, Data, and Deleted Query Attributes

• Enabled: This attribute is only found for the reload state query. It specifies whether the
reload state query is enabled or disabled. The reload state query is only run during
synchronization when it is enabled.

• File: All three query components contain the File attribute. It specifies the location of the
text file (.sql file extension) relative to the Agentry Development Server’s installation
location.

Java Complex Table Synchronization Components

When a complex table is defined to use a Java Virtual Machine system connection type, its
synchronization component consists of a Java source file. This file contains a skeleton class
declaration. This class is created specific to the complex table definition and extends the
Agentry Java API class ComplexTable.

When the table is defined, the wizard for creating Java classes provided with the Eclipse Java
perspective is used. This allows the developer to select the package to which the new class will
be added. The source .java file created will then be stored according to the configuration of
the project and package selected for the new class. Alternately an existing class in a package
within the Java perspective may be selected. This class must extend the Agentry Java API class
ComplexTable.

This skeleton class includes the following methods:

• The Constructor method for the class
• An override implementation of dataIterator(). This method is intended to contain

the logic to retrieve the data from the back end system for the complex table records. It
returns an iterator to the data object created to store this returned data. The Agentry Server
calls this method during synchronization and uses the returned iterator to extract the data
for the records from the array of data objects. Records returned by this method are sent to

Agentry Language Reference

Agentry Language Reference 21

the Client to be added to the complex table, or to replace those records with matching key
field values.

• An override implementation of deleteIterator(). This method is intended to
contain the logic to retrieve the key field values from the back end system for the complex
table records to be deleted from the client application. It returns an iterator to an array of
the data object created to store this returned data. The Agentry Server calls this method
during synchronization and uses the returned iterator to extract the key field data for the
records from the array of data objects. Records returned by this method are deleted from
the Client.

• The method willRebuildTable() can be created within the complex table class if
needed.This method is called by the Agentry Server after the constructor method has been
called. Its logic should check for any administrator defined conditions within the back end
system to force a complex table rebuild. This method is expected to return a Boolean value.
True will set the rebuild state for the complex table.

• The method build() can be created within the complex table class if needed. This
method is provided to allow for a single call to the back end system to retrieve new,
updated, and deleted records. If a build method is present it will be called by the Agentry
Server before the iterator methods. In this scenario, the iterator methods are still expected
to provide access to the returned data. However, the build method will have already
retrieved it. If two separate calls are needed to retrieve updates to the table and deletions
from the table, the build() method should not be used. The logic for those separate calls
should be contained in the iterator methods, which are always called by the Agentry
Server.

In versions of the Agentry Mobile Platform prior to 5.1, the source class was stored on the
Agentry Server’s file system. This behavior is deprecated in versions 5.1 and later. Agentry
application projects created prior to this release are still supported and the Java logic will still
be processed correctly. New complex tables for Java Virtual Machine system connections
should use the new procedure for defining the Java synchronization component.

HTTP-XML Complex Table Synchronization Components

When a complex table is defined to use an HTTP-XML system connection, its
synchronization components consist of three HTTP request child definitions: Update
Request, Rebuild Request, and Deleted Request.

Each request has the same overall structure and attributes, which includes the URL for the
request and the request method. Likewise, the request argument and response mapping child
definitions also contain the same attributes. The difference between these requests is when
they are sent to the back end system, and what the data they are expected to return is used for in
relation to the complex table.

The update request definition is sent to the back end during normal synchronization. This
request is expected to return data for the complex table representing records to be added or
replaced on the Agentry Client. Therefore it should contain one child data mapping definition
for each field in the complex table.

Agentry Language Reference

22 SAP Mobile Platform

The rebuild request is sent to the back end system when the complex table is in a rebuild state.
This request is expected to return the data for all records that should be stored in the complex
table on the Agentry Client. The rebuild state means the complex table on the Agentry Client is
going to be cleared of all records before the request is sent. This request should contain child
data mapping definitions for each field in the complex table.

Complex Table HTTP Request Child Definitions
Following is a list of the child definitions for each of the HTTP Requests within an HTTP-
XML complex table.

• Request Arguments: This definition encapsulates an argument to be passed with the
request to the back end system. Includes the ability to use data within the mobile
application with the argument.

• Response Mappings: This definition encapsulates the XML data returned by the HTTP
request. The specific values are extracted from the XML return data using XPaths defined
within each response mapping. Attributes are also set to map the extracted values to data
structures within the mobile application.

Complex Table HTTP Request Attributes
The following attributes are set in all three HTTP request definitions within an HTTP-XML
Complex Table.

• Name: The name of the request, set automatically based on the parent complex table name
and the request type. May be modified as needed.

• URL: The URL to the specific CGI or other process being called by the HTTP request to
synchronize the complex table.

• Method: The HTTP request method for the request. May be one of GET, POST, HEAD, or
PUT.

HTTP Request Argument

The request argument definition encapsulates a data value to be passed from the mobile
application to the process being called by the parent HTTP request definition. The request
argument specifies the argument type, which may be CGI Argument, Cookie, HTTP Header,
or XML Body. The request argument also specifies the data or data source within the mobile
application to pass as the argument to the process or service being called by the parent HTTP
request definition.

For a complex table, the data value may be the user ID, the name of the complex table, a fixed
string whose value is defined as a constant within the request argument, or markup text. A
given parent HTTP request may contain multiple request arguments. The order in which they
are passed to the process or service when called is defined in the parent HTTP request’s list of
request arguments.

Agentry Language Reference

Agentry Language Reference 23

HTTP Request Argument Attributes
The attributes of a request argument depend in part on the data type of the argument (Data
Type attribute). The following list makes note of those attributes specific to a certain argument
data type.

• Argument Type: This attribute specifies the type of argument the definition contains.
This may be one of CGI, Cookie, HTTP Header, or XML Body.

• Name: Alternately displayed as Argument Name, Cookie Name, Header Name, or Name
depending on the Argument Type selection. This value must be unique among all request
arguments defined within the same parent HTTP request definition.

• Data Type: Specifies the data value or source for the data value for the request argument.
For a complex table this may be the Table Name, User ID, Small or Large Markup, or Fixed
String.

• String: This attribute is available only when the Data Type attribute is set to Fixed String.
String contains the constant string value that is the request argument’s data.

• Markup Text: This attribute is available only when the Data Type attribute is set to Small
Markup or Large Markup. Markup Text contains the single line (Small Markup) of
markup text or the contents of the Markup File (Large Markup) that is the data for the
request argument.

• Markup File: This attribute is available only when the Data Type attribute is set to Large
Markup. Markup File contains a reference to the text file containing the multi-line markup
text. This file is displayed in the Markup Text field directly below the file name in the
Editor.

HTTP Request Response Mapping

The response mapping definition is a child to an HTTP request definition. This definition
maps a data value returned from the process called by the HTTP request to a value within the
mobile application. This value may be extracted from structured XML using XPaths or XSL.
It may also be a Cookie value or the HTTP Header.

For a complex table the values may be mapped to the fields in a complex table record, an error
message, the last update value to be compared against the complex table’s last update, a local
data tag or local XML value, or to the user ID value that may be used in place of the ID entered
to log into the Agentry Client.

HTTP Request Response Mapping Attributes
The response mapping attributes are in part dependent on the selection made in the Mapping
Type attribute. Those specific to a certain type are denoted in the following list.

• Mapping Type: This attribute specifies the mapping type. This may be one of Cookie,
HTTP Header, XPath Expression, or XML Transformation.

• Base XPath: This attribute is only available when the Mapping Type is set to XPath
Expression or XSL Transformation. This attribute is optional and should be used when
returning multiple instances of the same data element in the XML content. When a Base

Agentry Language Reference

24 SAP Mobile Platform

XPath is defined for a response mapping, the same value will be set by default in the add
wizard for subsequent response mappings within the same parent HTTP request
definition.

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath value to extract the desired value from
structured XML data returned from the HTTP Request.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data to be mapped
to a value for the request.

• Cookie Name: This attribute is only available when the Mapping Type is set to Cookie. It
contains the name of the cookie for the response mapping.

• Header Name: This attribute is only available when the Mapping Type is set to HTTP
Header. It contains the name of the HTTP header for the response mapping.

• Maps To: This attribute specifies where the value extracted by the response mapping is
stored in the mobile application. This may be one of the following values for a complex
table:
• Complex Table Field: This is the default selection and will result in the value being

mapped to the selected complex table field in the table records. This enables the field
Field Name, where the complex table field to which the return value is mapped.

• Error Message: This selection will map the data to error text display by the mobile
application.

• Last Update: This selection specifies the extracted value is a date and time indicating
when the complex table’s source in the back end system was last modified. This value
is mapped to each record. However, the latest date and time value for all records is the
one stored with the complex table on the Client.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will the value extracted by the response mapping. When selected, the attribute String
Name will be available to name the local data tag created. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping.

• User ID: This selection will map the value extracted by the response mapping to the
user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Server set the user
ID, setting it here will override that value. This will then be the value available for all
HTTP-XML system connection processing where the data tag <<user.id>> is
referenced.

• Field Name: This attribute is available when the map type is set to Complex Table Field.
This attribute specifies the complex table field to which the values extracted by the
mapping is assigned in the complex table records.

Agentry Language Reference

Agentry Language Reference 25

• String Value: This attribute is available when the map type is set to Local String or Local
XML. It contains the name of the data tag being created by the mapping. This is the name
by which the data tag is referenced in subsequent references.

Transmit Configuration

The transmit configuration defines how the application on the Agentry Clients can
communicate with the Agentry Server. It can define what application-level data definitions to
synchronize and the address and port number of an Agentry Server. It also defines whether to
log a user out of the Server when a transmit has completed, or to keep them connected to
provide real-time communications functionality.

The areas of the communications behavior include:

• The Agentry communications protocol to be used.
• What actions to take, if any, in the event of a communications error.
• Whether or not data tables and complex tables should be synchronized.
• Address and port numbers for the Agentry Server and Midstation.
• Whether or not the client should remain logged in for real-time communications.
• Various aspects of using a modem, such as the Windows Network connection to use, what

to do if not currently connected, and other related behaviors.

A transmit configuration is defined for an available communications method on the client
device. As an example, if a wireless LAN connection will be available to client devices in the
deployment, a transmit configuration for this connection should be defined. If a wireless WAN
connection is also available, a transmit configuration should also be defined for this
connection type.

Each transmit configuration defined in the application will be listed in the built-in screen
called the Transmit Dialog on the Agentry Client. For this reason it is important to consider the
proper setting for each transmit dialog’s Display Name, as it is this value that will be listed to
the user.

Within the transmit configuration’s attributes is the Connect Type. This attribute can be set to
one of three options:

• Agentry Next Generation Encryption Layer, or ANGEL.
• Midstation
• Unencrypted Network Connection

Each of these connection types perform communications using the TCP/IP protocol. The
connection type refers to the type of connection in the context of the application to be used
when the transmit configuration is selected by the user on the client application.

Syclo recommends the ANGEL connection for all applications developed going forward.
Applications developed using versions of the Agentry Mobile Platform prior to 4.4 being
upgraded to the latest platform should be modified so that all transmit configurations use the
ANGEL connect type. The Midstation and unencrypted Network Connection types are still

Agentry Language Reference

26 SAP Mobile Platform

available for the purposes of backwards compatibility and will be deprecated in a future
release of the platform.

Transmit Configuration Attributes
General Settings:

• Name: This is the unique name of the transmit configuration. This value must be unique
among all transmit configurations defined for the application.

• Display Name: This is the text displayed to the user on the Agentry Client for the transmit
configuration in the Client’s Transmit Dialog.

• Connect Type: This is the communications protocol the Agentry Client is to use when
synchronizing with the Agentry Server The options here are ANGEL or Unencrypted
Network Connection. This attribute will not be definable in a future release of Agentry and
all transmit configurations will use the ANGEL protocol.

• Group: This is the group into which the transmit configuration is organized within the
application. This designation is provided for organizational purposes, and there are two
options available by default: Fast and Slow. A new group can be created by entering a name
in this field. It will then be available in this same drop down for all transmit configurations
within the same application project.

• Failover to: This attribute can be set to any other transmit configuration within the
application. When set the Agentry Client will switch to the selected transmit configuration
if it is unable to connect the Agentry Server using the first transmit configuration.

• Check Data Tables: This attribute specifies whether or not the data tables within the
application should be synchronized when the transmit configuration is used. This is
normally unchecked for transmit configurations intended for slower connection types.

• Check Complex Tables: This attribute specifies whether or not the complex tables within
the application should be synchronized when the transmit configuration is used. This is
normally unchecked for transmit configurations intended for slower connection types.

Server Address Settings:

• Address: This attribute can be set to the IP address or network name of the host system for
the Agentry Server. When set to default, the host will be the one entered by the user on the
Client during the initial transmit.

• Port: This attribute can be set to the port number of the Agentry Server with which the
Client is to connect using the transmit configuration. This is normally set to allow for
multiple Agentry Servers running on the same host system, or to allow access through a
firewall between the Client and Server.

Transmit Configuration - Session Attributes
General Settings:

• Stay Logged In: This attribute controls whether the client user will remain logged in and
the Agentry Client will remain connected to the Agentry Server. The purpose of setting
this attribute is to support real-time communications within the mobile application, which
includes Background Sending and Push behaviors. This requires a constant network

Agentry Language Reference

Agentry Language Reference 27

connection be available to the Client’s. This attribute must be set for any of the other
Session attributes to be enabled for the transmit configuration.

• Prompt on Log In: This attribute applies when a the connection between the Agentry
Client and Agentry Server is lost, and when the transmit configuration is defined to attempt
to reconnect. A prompt can be displayed to the user in this situation when the connection is
re-established, or hidden from the user based on this attribute setting.

• Prompt on Log Out: This attribute controls whether or not the user is prompted when the
Agentry Client is logged out of the Agentry Server. When set to false, no prompt is
displayed. This only applies when the connection for the transmit configuration is lost and
the transmit configuration is set to stay logged in.

• Inactive Timeout: This attribute specifies the time limit, in hours, minutes, and seconds,
the Agentry Client should remain connected to the Agentry Server with no activity.
Activity is defined as the transmission of data between the Client and Server.

• When Off-line: This attribute controls whether or not the Agentry Client should attempt
to reconnect to the Agentry Server when the connection has been lost. If the Client should
reconnect, the duration of time to wait before attempting to reconnect is set in minutes and
seconds.

• Attempts: This numeric attribute is set only when the When Off-line attribute is set to
reconnect. The attempts attribute defines how many attempts to make before failing. If the
number of attempts is tried without success, the behavior of the Agentry Client is dictated
by the transmit configuration’s Failover to attribute, as well as the Prompt on Log In/Log
Out attributes.

Background Sending:

• Allow: This attribute enables background sending of pending transactions on the Agentry
Client. When this attribute is enabled the Client will attempt to send transactions to the
Agentry Server in the background as soon as they are applied.

• Retry Period: This attribute specifies the amount of time in hours, minutes, and seconds
to wait between failed attempts to send a transaction in the background.

• Attempts: This specifies the number of attempts to make at sending a transaction in the
background before failing.

Push Session:

• Allow: This attribute enables Server Push functionality. This functionality also requires
the definition of a push within a module of the application. When enabled, users
connecting the server using the transmit configuration will be logged in to the Agentry
Server as a Push User. This also opens the Agentry Client to receiving push data.

• Retry Period: This attribute specifies how long the Agentry Server should wait before
attempting to re-send data for a push when a failure occurs.

• Attempts: This attribute specifies how many attempts the Agentry Server should make to
re-push data before failing.

Agentry Language Reference

28 SAP Mobile Platform

• Client Port: This attribute specifies the port upon which the Agentry Client listens for
push communications from the Server. The default port is 7001.

Transmit Configuration - Modem Connection Attributes

• Check for Modem Connection: This attribute specifies whether or not the Agentry Client
should check for a modem connection when the transmit configuration is used. If true, this
check is made prior to beginning the transmit. This attribute must be true for any of the
remaining modem attributes to be enabled.

• Connection Name: This attribute can be set to the name of any Windows network
connection configured on the client device. It can also be set to Any Dial-Up Connection.
In the case of the former, it will use the settings of the named connection to establish the
modem connection to the network. If set to “Any Dial-Up Connection,” the user will be
required to establish the network connection manually outside the mobile application
before beginning the transmit. In this case, the remaining modem connection attributes are
not enabled.

• If Not Connected: This attribute specifies whether the Agentry Client should attempt to
create a connection using the Windows network connection named in Connection Name
when there is no current connection. If this is set to false, the remaining modem connection
attributes are disabled.

• Connect Prompt: This attribute is set to the message to display to the user prior to the
Agentry Client attempting to create a modem connection. If this attribute is left blank, no
message will be displayed to the user prior to creating the connection. Normally the
contents of this message prompt the user to connect a phone line or perform similar actions
in order for the connection to be made.

• Username: This attribute prompts the user to enter a user name for the network
connection. This will be used as the login name for the network connection once the
modem’s hand shaking processes are successful. If this is set to false, the users Agentry
Client login will be used.

• Password - This attribute prompts the user to enter a password for the network connection.
If this attribute is set to false, the users Agentry Client password will be used.

• Modem Init Wait: This attribute specifies the amount of time in milliseconds the Agentry
Client should wait for the client device’s modem to initialize before beginning the dial-up
process.

• Post-connect Wait: This attribute specifies the amount of time in milliseconds the
Agentry Client should wait after the network connection has been made before beginning
the transmit process between the Client and Agentry Server.

• Close Connection: This attribute specifies whether the connection made by the transmit
configuration should be closed if no data has been transmitted between the Agentry Client
and Agentry Server for the specified amount of time. The attribute can be set to Never,
meaning the connection will not be closed, or to the minutes and seconds to wait before
closing the connection.

Agentry Language Reference

Agentry Language Reference 29

System Connection

A system connection sets the connection type the Agentry Server will use to synchronize data
with a back end system. A system connection specifies what type of system the Agentry
Server is communicating with: SQL Database, Java Virtual Machine, HTTP-XML Server, or
File System.

An Agentry application project must have at least one system connection. More system
connections can be added if the application requires the Agentry Server to communicate with
multiple back end systems. Each system connection may be of different types, or multiple
connections for the same type can be defined, depending on the environment in which the
mobile application will run.

There are four supported System Connection types:
• SQL Database - This system type is used when the Agentry Server needs to communicate

with a database system using the Structured Query Language, or SQL. This includes
database types such as Oracle or SQL Server.

• Java Virtual Machine - This system type is used when the Agentry Server needs to
communicate with an interface using the Java Virtual Machine. This logic is implemented
using the Java development language and includes usage of the Agentry Java API.

• HTTP/XML Server - This system type is used when the Agentry Server needs to
communicate with an HTTP server by making HTTP requests that will return structured
XML data.

• File System - This system type is used when the Agentry Server needs to communicate
with the host system upon which the Server has been installed, specifically for file access
or command-line processing.

The SQL Database and File System connection types have only the two attributes of Name and
the ID number. The name is set by the developer when the system connection is defined. The
ID number is generated automatically by the Agentry Editor. This ID number ties the
definition to the set of configuration options, configured in the Agentry Server.

The Java Virtual Machine connection type contains the additional attribute API Version. This
attribute specifies the version of the Agentry Java API to be used by the mobile application.
For all new development, version 5 of this API should be used. Version 4 is available for
existing applications developed on versions of the Agentry Mobile Platform prior to the
version 5.0 release.

A system connection defined for the HTTP-XML connection type contains the child
definition type Validate User Request. This is an HTTP Request definition intended to validate
the client user, as well as to capture user information to be stored in the <<user.info>>
SDML data tag.

Validate User Request

When a system connection is defined for an HTTP-XML connection type, it can contain one
or more HTTP Request child definitions called Validate User Requests. These requests can be

Agentry Language Reference

30 SAP Mobile Platform

made to validate the client user during transmit. This request can also be used to create one or
more <<user.info>> SDML data tags.

The validate user request is sent to the back end system at the beginning of the transmit process
as a part of the user validation behavior. Each validate user request definition includes child
definitions to encapsulate the request arguments, as well as those to map any data returned by
the request to structures within the mobile application.

Validate User Request Child Definitions

• Request Arguments: This definition encapsulates an argument to be passed with the
request to the back end system. Includes the ability to use data within the mobile
application with the argument.

• Response Mappings: This definition encapsulates the XML data returned by the HTTP
Request. The specific values are extracted from the XML return data using XPaths defined
within each response mapping. The mapping “maps” the extracted values to values within
the mobile application.

Validate User Request Attributes

• Name: The name of the request, set by default to ValidateUser. May be modified if desired.
• URL: The URL to the specific CGI or other process being called by the HTTP request.
• Method: The HTTP request method for the request. May be one of GET, POST, HEAD, or

PUT.

Validate User Request Argument

The request argument definition encapsulates a data value to be passed from the mobile
application to the process being called by the parent validate user request definition. The
request argument specifies the argument type, which may be CGI Argument, Cookie, HTTP
Header, or XML Body. The request argument also specifies the data or data source within the
mobile application to pass as the argument to the process or service being called by the parent
validate user request definition.

For an HTTP-XML system connection, the data value may be the user ID, the user’s password,
a fixed string whose value is defined as a constant within the request argument, or markup text.
A given parent validate user request may contain multiple request arguments. The order in
which they are passed to the process or service when called is defined in the parent validate
user request’s list of request arguments.

HTTP Request Argument Attributes
The attributes of a request argument depend in part on the data type of the argument (Data
Type attribute). The following list makes note of those attributes specific to a certain argument
type.

Agentry Language Reference

Agentry Language Reference 31

• Argument Type: This attribute specifies the type of argument the definition contains.
This may be one of CGI, Cookie, HTTP Header, or XML Body.

• Name: Alternately displayed as Argument Name, Cookie Name, Header Name, or Name
depending on the Argument Type selection. This value must be unique among all request
arguments defined within the same parent validate user request definition.

• Data Type: Specifies the data value or source for the data value for the request argument.
For a complex table this may be the User ID, user’s password, Small or Large Markup, or
Fixed String.

• String: This attribute is available only when the Data Type attribute is set to Fixed String.
String contains the constant string value that is the request argument’s data.

• Markup Text: This attribute is available only when the Data Type attribute is set to Small
Markup or Large Markup. Markup Text contains the single line (Small Markup) of
markup text or the contents of the Markup File (Large Markup) that is the data for the
request argument.

• Markup File: This attribute is available only when the Data Type attribute is set to Large
Markup. Markup File contains a reference to the text file containing the multi-line markup
text. This file is displayed in the Markup Text field directly below the file name in the
Editor.

Validate User Request Response Mapping

The response mapping definition is a child to a validate user request definition. This definition
maps a data value returned from the process called by the HTTP request to a value within the
mobile application. This value may be extracted from structured XML using XPaths or XSL.
It may also be a Cookie value or the HTTP Header.

For an HTTP system connection the values may be mapped to the user ID, validation, partial
validation, the <<user.info>> set of SDML data tags, an error message, a local data tag,
or a local XML data tag.

HTTP Request Response Mapping Attributes
The response mapping attributes are in part dependent on the selection made in the Mapping
Type attribute. Those specific to a certain type are denoted in the following list.

• Mapping Type: This attribute specifies the mapping type. This may be one of Cookie,
HTTP Header, XPath Expression, or XML Transformation.

• Base XPath: This attribute is only available when the Mapping Type is set to XPath
Expression or XSL Transformation. This attribute is optional and should be used when
returning multiple instances of the same data element in the XML content. When a Base
XPath is defined for a response mapping, the same value will be set by default in the add
wizard for subsequent response mappings within the same parent HTTP request
definition.

Agentry Language Reference

32 SAP Mobile Platform

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath value to extract the desired value from
structured XML data returned from the HTTP Request.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data to be mapped
to a value for the request.

• Cookie Name: This attribute is only available when the Mapping Type is set to Cookie. It
contains the name of the cookie for the response mapping.

• Header Name: This attribute is only available when the Mapping Type is set to HTTP
Header. It contains the name of the HTTP header for the response mapping.

• Maps To: This attribute specifies where the value extracted by the response mapping is
stored in the mobile application. This may be one of the following values for a complex
table:
• User ID: This selection will map the value extracted by the response mapping to the

user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Agentry Server set
the user ID, setting it here will override that value. This will then be the value available
for all HTTP-XML system connection processing where the data tag <<user.id>>
is referenced.

• Validation: This selection will map the value extracted by the response mapping to the
validation structures for the Agentry Server. This value is used to indicate whether or
not the user passed validation.

• Partial Validation: This selection will map the value extracted by the response
mapping to the validation structures for the Agentry Server. This differs from the
Validation selection in that mapping the validation result to partial validation can fail
user validation with a false response, just as the validation response will, but true for
Partial Validation will not fully validate the user. This is intended to provide support for
validation using multiple system connections.

• Error Message: This selection will map the data to error text display by the mobile
application.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will the value extracted by the response mapping. When selected, the attribute String
Name will be available to name the local data tag created. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping.

• Save to User info: This selection will map the value extracted by the response mapping
to the set of data tags in the <<user.info>> group. When this selection is made,
you will also be required to enter a name for the data tag. Referencing these values is
then accomplished via the syntax <<user.info.name>>.

Agentry Language Reference

Agentry Language Reference 33

• String Value: This attribute is available when the map type is set to Local String or Local
XML. It contains the name of the data tag being created by the mapping. This is the name
by which the data tag is referenced in subsequent references.

• With Name: This attribute is available when the map type is set to Save to User Info. it
contains the name of the data tag being created by the mapping. This is the name by which
the data tag is referenced in subsequent references.

Global

A global definition defines a constant value, including data type, for the application. This
value can be referenced throughout the application, both by the attributes of other definition
types and for use in synchronization components. A global value cannot be changed on the
Client at run-time but can be overridden during synchronization.

A global’s value is constant and cannot be modified on the Agentry Client. It can be
overridden at run time during synchronization.

The value of a global definition is dependent on the global’s data type. Following is a list of the
global data types:

• Boolean: A value that may be either true or false.
• Date: A value representing a calendar date.
• Date and Time: A value containing a calendar date and time of day.
• Decimal Number: A numeric value that contains a fractional portion and that may be

positive or negative.
• Duration: A value containing a duration of time in hours, minutes, and seconds.
• Identifier: A numeric value that is primarily used to represent an identifying value. Can

contain whole, positive numeric values.
• Integral Number: A numeric value containing whole numbers that may be positive or

negative.
• Selection: A special data type for a global definition that represents an attribute setting that

is selected from a list. This data type cannot be selected when defining a global, but rather
is the automatic data type of the global when it is created specifically for an attribute whose
setting is selected from a drop-down list in the Editor. Valid values for this type of global
are those found in the specific list for the attribute.

• String: A value containing alphanumeric or other printable characters.
• Time: A value containing a time of day.

The data type of a global is important as it will determine where in the application the Global
can be used. The data type of the attribute and the global definition used to set it must be the
same. For example, string properties contain attributes for their size, i.e., the number of
characters they can contain. This size attribute is an integral number. This then requires the
user of a global with a data type of integral number.

A global definition may be added to the application project from either the list of globals for
the application, or at the point where it will be referenced by another attribute that may be set

Agentry Language Reference

34 SAP Mobile Platform

via a global. In the latter case, the data type of the global is set automatically based on the data
type for that attribute.

Global Attributes

• Global Type: The data type of the global, selected when the global is added to the
application, or set automatically by the Editor based on the attribute to use the global for its
setting.

• Group: The group into which the global definition will be organized. Unlike the group
setting for other definitions, a global’s group is a required attribute. References to the
global definition throughout the application must include its group as well as its name.

• Name: The unique identifier for the global definition. This value must be unique among all
global definitions within the same group.

• Value: The value of the global definition returned when the global is referenced. Valid
values for a global depend on its defined Global Type.

Style

A style definition defines a set of style elements that can be applied to the Agentry Client’s
user interface to affect its appearance. These elements include text and background colors,
font face and size, borders, and other similar UI items. A style may be defined for all supported
application platforms or for a single platform.

The Agentry Editor allows the developer to create display styles for screens, buttons, text,
fields and list controls. A style is defined as a collection of display elements combined to
provide an overall look and feel to the application.

Styles exist at the application level in a project. They are then available to be used, or “applied”
at the application, module, platform, screen and control levels. Each attribute, or “style
element” of a style definition may be set to a specific value or default. Default results in the
system default being used for that aspect of the user interface.

If styles are applied at multiple levels within the application they are merged at run time before
being applied to the user interface. The style definition applied at a lower level in the
application hierarchy will override the settings of a style applied at a higher level. If the lower
level style has an element set to default, the setting for that same element in the higher level
style definition will be used. This merge then results in the overall appearance of the user
interface component to which the style is applied.

A style may defined for a specific platform. Multiple styles may be defined with the same
name but with different platform selections. When a style is applied to the user interface, only
the name is referenced. At run time, a given client device type will receive only the styles with
a matching platform. This is optional behavior and a style may defined for all platforms.

iPhone and iPad/iPod Touch Platform Note
Due to the nature of the iOS devices, the current style support for these device platforms is
limited to the specification of the Font Face and the Foreground Color. Styles can only be

Agentry Language Reference

Agentry Language Reference 35

applied to specific controls and the affects of the two supported style attributes are the font in
which text is displayed and the color of that text.

Style Attributes
Following is a list of the attributes for a style definition. In the context of a style definition these
attributes are commonly referred to as “style elements” and the terms are interchangeable:

• Foreground Color: This attribute specifies the color of any text displayed on the user
interface component to which the style is applied. If a particular user interface component
has no text, the Foreground Color setting will have no affect on its appearance.

• Background Color: This attribute specifies the color of the background of the user
interface component. The background of a screen or control is the area that contains no
controls, text, or list items.

• Font Face: This attribute specifies the font used to display any text on the user interface to
which the style is applied. Within the Agentry Editor, the Font Face attribute field contains
a drop-down list. Its contents will be any fonts installed on the host system of the Editor.
The name of a font may also be manually entered if it is one that is known to be available on
the client devices, even if it is not available on the Editor’s host system. Any font face
entered manually in the list will be available in this same list for all style definitions within
the application. If a font name is entered that is not available on a client device, the
behavior will be the same as if Default had been selected for the Font Face attribute.

• Point Size: This attribute specifies the size of the text displayed to the user. If the point size
is larger than the viewable area given to that text value, that viewable area will not be
increased in size.

• Font Style: This attribute specifies whether the text is displayed normally (referred to as
the regular font style), or in bold, italics, or bold italics. The Font Style attribute may not
have an effect on the appearance of the text based on the selected Font Face. Certain fonts
are inherently bold or italicized, or may not support either behavior.

• Underline: This attribute specifies whether the text is underlined. This attribute may have
no effect on certain Font Face selections, as the selected font may not support underline or
may be inherently underlined.

• Border Style: This attribute controls how the border around certain UI components will
appear. This includes detail screen fields and buttons. The border style can be None, Flat,
or 3-D.

• Text Alignment - Horizontal Alignment: This attribute specifies the alignment of the
text displayed by the UI component to which the style is applied. The options are:
• “Align Left” - This selection specifies that the text is to be aligned to the left of the

viewable area allotted for the text being displayed.
• “Align Right” - This selection specifies that the text is to be aligned to the right of the

viewable area allotted for the text being displayed.
• “Center” - This selection horizontally centers the text within the viewable area allotted

for the text being displayed.

Agentry Language Reference

36 SAP Mobile Platform

• “Default” - This selection will horizontally align the text according to the default
behavior of the item containing the text.

Image

An image definition incorporates an image file into the application data. This image can be
displayed on various components of the Agentry Client’s user interface. An image can be used
to add icons and interactive graphics to the UI for branding purposes and to enhance the user
experience.

Once an image has been defined it can be referenced in several components of the user
interface definitions. This can include button icons, list icons, and detail screen fields, as well
as the login dialog, the module selection dialog, and the help dialog. The first group of
definition types that may reference an image definition support the use of image lists, which
can allow for the display of a different version of the image based on some condition.

When an image definition is created, it must use a file of one of the types:

• Bitmap
• JPEG/JPG
• GIF
• PNG

The selected file must exist prior to creating the image definition. The file is copied within the
application project definitions. Modifications to the selected source file after this point will
not effect the appearance of the image within the application. This image can be edited from
within the Editor if necessary.

An image may be defined for a specific platform. Multiple image definitions may exist with
the same name and different selected platforms. References to images from other definitions
within the application are made by name only. At run time a given device type will receive the
images defined only for the matching platform. This is optional behavior and an image
definition can be created for all platforms.

Image Attributes

• Name: This is the internal name of the image definition. This value must be unique among
all Images with the same setting in the Platform attribute.

• Platform: The platform attribute specifies the platform of the client devices to which the
image will be downloaded. This can be either All, or one of the available platforms listed.
Selecting a specific platform will prevent the image from being downloaded to any device
of any other platform. This can be used to download images with different file sizes to
different client devices while using the same name.

• Image File: This value is the file name that will be used to store the image file within the
application project, as well as by the Agentry Server and Agentry Client. The default

Agentry Language Reference

Agentry Language Reference 37

Image File value is a combination of the Name and Platform attribute values. It is rarely
necessary to change the Image File setting.

• Mask Color: This optional attribute can be used to create a mask color for the image,
which will be incorporated into the image’s display on the Agentry Client. This setting
does not affect the image file itself, but rather is applied at run time. It is set using the RGB
values, or by selecting the desired color from the Windows color palette. A mask color is
used to remove a color from the displayed image, such as the white background of an
icon.

• Image: This is the actual image file that contains the image. This is selected by clicking the
ellipsis button to the far right of the field, which will display the standard Windows File
Dialog. From here you can select the file to be used for the image definition. You will only
be allowed to select files of the types .bmp, .gif, .jpeg, .jpg, or .png.
Once the file has been selected it will be displayed in the image definition within the
Agentry Editor.

Module-Level Data Definitions Overview

Within the module level of the application project in Agentry there are definitions for both data
and user interface encapsulation. The data-focused definition types include those for business
entity encapsulation, data capture, and data synchronization between the Agentry Client and
Agentry Server.

Most of the data definitions at the module level have child definitions of their own. Each child
definition encapsulates some aspect of the parent’s behavior related to the data for which it
was defined. This can include the values for the parent definition, or the methodology for data
synchronization.

Following is an illustration representing the structure of the module-level data definitions
within the application project. This includes the definitions within the module provided to
encapsulate data storage or synchronization, as well as the child definitions to each. Excluded
from this graphic are the user interface definitions within the module. Note that this separation
is for discussion purposes only. Within the application project structure, all child definitions to
the module exist at the module level with no distinction made between them in the Agentry
Editor in relation to whether they are data or user interface definitions.

Agentry Language Reference

38 SAP Mobile Platform

A common child definition to objects, transactions, and fetches are the properties. A property
is a variable data value stored within the parent definition. The purpose for these values differs
depending on the parent definition, but the property definition type itself is the same among all
three.

Many of the child definitions to the module-level data definitions are referred to as “step usage
definitions.” This term describes a definition that references a step definition within the same
module. This reference provides the context to the step, specifying why and when it should be
executed by the Agentry Server during synchronization. Any child definition to a module-
level definition that includes the term “Step” in its name is a step usage definition. The creation
of a step usage definition requires that the step to be used exists first.

As illustrated in this graphic, the step definition itself is defined for different types of
processing. Steps are defined for a specific system connection within the application. The step
definition has a type that matches the system connection type. The step will then contain a
component matching that type, such as a SQL statement or Java logic. HTTP-XML steps
include two child definitions that define the arguments passed to the HTTP server with the step
request, and mappings between the data returned from that request to the data components of
the mobile application.

The data definitions illustrated and described here are displayed, modified, and exposed to the
mobile application uses via the module-level user interface definitions. The data definitions
must exist before the user interface definitions can be created, as the UI definitions will need to
reference the data definitions they display.

Agentry Language Reference

Agentry Language Reference 39

Object

An object definition encapsulates a business entity and its related data. An object’s child
property definitions give that object its characteristics. An object can also define how its data is
retrieved from the back end system.

The object definition is in essence a container for the properties defined within it. Objects are
defined to encapsulate the different business entities in a module in support of the
functionality to be provided in the mobile application. The properties then define the data
stored within that object.

A special type of object will exist in every module defined within an application project. This
is the module main object, named by default MainObject. The intent of this main object is to be
the starting point, or top level of the module’s overall object data structure. Via the use of the
collection property data type, object instances may be stored within other object instances at
run time. This then results in a parent-child relationship within the module’s data structure. At
the top of this structure is the module main object.

When a new module is defined, the module main object will be added automatically.
Additionally, a prompt is displayed in the New Module Wizard for the definition of another
object. The object defined in the New Module Wizard is normally the primary object for the
module. The primary object is a term of convenience used to denote the object around which
most of the module’s functionality will revolve. This includes the functionality provided to the
end user in the form of information and data capture, as well as synchronization processes for
the module. Examples of a primary object include a work order object for a work management
module, or a message object for a mail module. The module main object will include a single
collection property defined to store instances of the primary object.

Object Child Definitions

• Property: An object property defines a single piece of data for the parent object.
• Object Read Step: An object read step references a step definition run to retrieve data

from a back end system to populate an object's properties.

Object Attributes

• Name: This is the unique name of the object. This value must be unique among all objects
defined within the same module.

• Display Name: This is the default name displayed for the object on the Agentry Client.
• Key Property: The key property for an object is used whenever that object is to be a part of

a collection. The value of this property must be a value that uniquely identifies the object
and in most cases will be the same value as the key value from the back end system. Note
that almost all object definitions are stored in collections and therefore must have this
attribute set. The property to be used must be defined before setting this attribute.

• Transmit Display Property: This attribute specifies the object property value to display
to the user on the Agentry Client transmit screen. When an object is being retrieved from

Agentry Language Reference

40 SAP Mobile Platform

the back end system, the property specified here is displayed to the user during its retrieval.
By default the value displayed is the object’s key property.

• Main Object: This attribute specifies whether or not the object is the main object for the
module. Each module contains a main object. This attribute is set to true for that object, and
to false for all other objects. This attribute is displayed for reference purposes within the
Editor and cannot be modified.

Object Read Step

An object read step references a step definition within the same module. Its purpose is to
retrieve data for instances of the object from the back end system. The steps are processed by
the Agentry Server during a transmit. The step being referenced can be executed once per
transmit or iteratively.

The data returned by the object read step is expected to be identified to match the property
values of the object. How this data is identified is dependent on the type of step being executed.
A given read step need not return all data values, but must always include the key property of
the object type for which it is retrieving data and the key property of any parent objects up to
the top-level object in the module’s data structure.

Object read steps are executed by the Agentry Server in any of the following situations related
to the parent object definition:

• When a fetch is processed that is defined to target a collection of the read step’s parent
object type.

• When a push defined to target a collection of the read step’s parent object type polls the
back end for data changes and finds this to be true, and when that push is defined to use the
object’s read steps to retrieve the data rather than the push read steps.

• When the processing of a transaction targeting the read step’s parent object type sends a
client response of replace client object.

In any of these situations, the read steps for an object will be run and the data returned will be
used to either create new object instances or replace existing object instances that will
ultimately be sent to the Client.

It is important to note that the step being executed by the read step must account for which
situation it is being run. The read step definition itself is not aware of the synchronization
context in which it is being executed.

Object Read Step Attributes

• Step: This attribute references the step definition within the same module to run as an
object read step for the parent object.

• Run: This attribute specifies how to run the read step during a single transmit. This may be
set to one of the following values:
• Run one Time: This setting will run the read step a single time for a given

synchronization context. This setting assumes the step need be executed only once to

Agentry Language Reference

Agentry Language Reference 41

return the data for all object instances to be added or replaced during synchronization,
or the step being executed is not returning data but rather is being run in support of
synchronization.

• Run once per Object: This setting will execute the read step once for each object
instance in the collection that is being synchronized. This includes both those object
instances sent by the Client to the Server, as well as any that may have been added by
previous synchronization steps. For push processing the step will be executed once for
each object instance created prior to the read step’s execution. For transaction
processing this setting will have the same behavior as “Run one Time.”

• Run once per Collection Object: This setting will execute the object once for each
object instance in the child collection referenced by the Read Into attribute. This child
collection is assumed to have been populated with object instances prior to the read
step’s execution. Note that this setting is primarily intended for file transfer
functionality, though it is not limited to this purpose.

• Read Into: This attribute specifies the child or descendent object collection property of
the read step’s parent object into which the data returned by the step should be read. This
attribute has a default setting of “None.” This default means the data will not be read into a
child collection but will instead be used to create object instances of the read step’s parent
object. Other valid options for this attribute are any child collection properties of the read
step’s parent object, or any descendent collections (e.g. collections within collections) of
the parent object.

Object Property

An object property definition defines a single piece of data and its type. A property can also
define minimum and maximum values, a default, or “special value” and other data-related
behaviors.

The properties of an object define the aspects of the business entity the object is intended to
encapsulate. Each object must include a key property that will uniquely identify each instance
of the object at run time. The object key property is important to all aspects of object data
synchronization. Both the Agentry Client and the Agentry Server use this value to determine if
an object is added to a collection, or if it should be replaced. On the Agentry Client, a new
object cannot be added to a collection using an add transaction if the instance it creates has the
same key property value as an existing object instance.

The key property is specified in the object definition itself in the Key Property attribute. The
property to be used as the key property must be defined first.

The attribute Name is an important one to consider when defining the properties of an object.
In addition to uniquely identifying the property definition within the parent object, it also
plays a part in the downstream synchronization of objects at run time.

When a step definition returns data for an object, the values returned will be identified in some
manner depending on the type of step. For a SQL step this is the column name designated in
the SELECT portion of the step’s query. In a Java step, it is the name of the members of the

Agentry Language Reference

42 SAP Mobile Platform

returnData structure. HTTP-XML and File steps use different mechanisms involving
mapping behaviors. Regardless of the step type, the name used by the step to identify a value
must match the name of the property definition. The Agentry Server will populate a property
with the value in the data returned by the step with the same name or identifier as that property
definition’s Name.

Properties are defined to be of a certain data type, of which there are many in Agentry. They are
a child definition to the object, transaction, and fetch definitions. Each property data type has
its own set of attributes specific to that type. Review the information on property data types for
more detailed information on properties.

Transaction

The transaction definition defines data to be captured on the Agentry Client. As a part of its
definition, the transaction includes a target object type, data values to be captured, client-side
data validation, and processing its data to the back end system by the Agentry Server during
synchronization. Transactions can add new object instances, edit an existing object, delete an
object, or modify an complex table or data table record. Each of these behaviors is exhibited by
a different transaction type, selected during the creation of the transaction.

A transaction definition is created within the application to target a specific object type within
the same module. Transactions are instantiated on the Agentry Client one at a time as the result
of the execution of a transaction step within a client action. A transaction instance can target
only one instance of an object.

The transaction can be displayed to the user in a screen set, which will behave as a wizard
allowing the user to enter data in a series of one or more screens.

There are five different types of transactions that can be defined for an application. Each
captures data for a specific type of change on the Agentry Client. The transaction types are:

• Add: An add transaction type is defined to allow the user to create a new object instance on
the Agentry Client.

• Edit: An edit transaction is defined to allow the user to edit the property values of an
existing object instance on the Agentry Client.

• Delete: A delete transaction is defined to remove an object instance from the Agentry
Client.

• Data Table Change: A data table change transaction is defined to allow the user to add or
edit a data table record on the Agentry Client.

• Complex Table Change: A complex table change transaction is defined to allow the user
to add or edit a complex table record stored on the Agentry Client.

Transaction Child Definitions
All transactions, regardless of type, have the same child definitions. The purpose of these child
definitions is the same for all transaction types.

Agentry Language Reference

Agentry Language Reference 43

• Properties: A transaction property defines a single piece of data a transaction will capture,
including its data type and initial value.

• Validation Rules: A transaction validation rule defines what rule definition will be used to
validate the transaction’s data and how failed validation is handled on the Agentry Client.

• Server Data State Steps: A transaction server data state step references a step definition
within the same module to be run by the Agentry Server to check the back end system for
data collisions during transaction processing.

• Server Update Steps: A transaction server update step references a step definition that is
run during transmit to update the back end system with the data captured by the
transaction.

• Error Handling Steps: A transaction error handling step references a step definition that
is run during transmit if an error occurs while processing the transaction’s data state or
update steps.

Transaction Attributes
Transaction attributes specify the type of transaction, the object type it targets, the key
property of the transaction, and the transaction’s name and display name. There are also type-
specific attributes for the different transaction types. Review the information on the specific
transaction types for details on these attributes.

Transaction Authentication

Transaction authentication is definable behavior for all transaction types and is available to
support user authentication during data capture, often referred to as “electronic signatures”.
To define this behavior, attributes specific to authentication must be set within the transaction
definition after it has been defined. These attributes are not displayed in the add transaction
wizard.

These attributes are used to define transaction authentication on the Agentry Client. This
functionality provides the means to authenticate users when they make data changes. Using
transaction authentication you can require users to enter their user ID, password, and other
information as may be necessary.

Transaction authentication is defined for each transaction definition. This allows for
authentication behavior to be exhibited only for data capture operations that require it.

This information can be captured in properties of the transaction itself, or in an instance of an
object defined specifically for this purpose, called the authentication object. A separate screen
set defined to display the authentication object to the user must exist prior to defining the
authentication within the transaction.

Transaction Authentication Attributes
The following attributes are common to all transaction types. They are set to define the
transaction authentication behavior. They can only be modified for existing transactions and
are not displayed during the add transaction wizards.

Agentry Language Reference

44 SAP Mobile Platform

• Screen Set: This attribute is set to the screen set to display to the user for the purpose of
entering the authentication information you wish to capture. This can include the user ID,
password, and other information as may be necessary. If this is set to “No Authentication”
the authentication functionality is disabled for the transaction.

• Authenticate When: This attribute determines when the transaction requires
authentication. This can be set to: “Do Not Authenticate”, disabling the behavior; “Always
authenticate”, or can be based on a rule definition. When a rule is referenced by this
attribute, it is evaluated in the context of the transaction and is expected to return a boolean
value. A true return will require the user to authenticate. A false return will not and the
authentication screen set will not be displayed.

• Information In: This attribute is set to either “Properties of this transaction” or to an
object type defined within the same module. If set to the former, the properties displayed in
the Authentication Screen Set are defined within the same transaction. If set to an object,
the properties of that object are displayed and store the authentication data.

Transaction Type: Add

An add transaction type is defined to allow the user to create a new object instance on the
Agentry Client. An add transaction definition includes a target object collection property to
which the new object instance will be added. This transaction type should contain all non-
collection properties found in the object type it creates.

Add Transaction Attributes
Following are the attributes for an add transaction:

• Type: This attribute specifies the type of transaction. For add transactions this is set to
“Add”. This attribute cannot be changed once the transaction has been defined.

• Object: The Object attribute specifies the type of object the add transaction instantiates on
the Agentry Client. This may be any existing object defined within the same module.

• Collection: The collection attribute specifies the collection property in which the new
object instance will be stored on the Agentry Client when the transaction is applied.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Agentry Client’s Transmit Screen when an
instance of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. This is almost always the transaction property that targets the object’s key
property and is set as such by default.

Transaction Type: Edit

An edit transaction is defined to allow the user to edit the property values of an existing object
instance on the Agentry Client. This type of transaction should, at a minimum, include the key
property of the object type and all property values that should be changed in the object.

Agentry Language Reference

Agentry Language Reference 45

It is highly recommended that users never be allowed to edit the key property of an object, as
this can make it difficult, if not impossible, to update the enterprise system with any other
changes for the object. Remember that the key property of an object is the value that uniquely
identifies that object within both the mobile application and the enterprise system.

When an edit transaction is applied, the value of the properties are copied to the object
properties they target. These new values will replace the previous values of the object
properties. Object properties not modified by the transaction will not be changed. Once an
object property is updated from an edit transaction, the previous value of that object property is
lost and cannot be recovered.

When designing and developing an Edit transaction, the developer should consider whether or
not the transaction definition should include merge functionality. Transaction merging is the
behavior when an instance of an edit transaction is merged with an existing pending
transaction targeting the same object instance on the Agentry Client. This functionality is
controlled by the Edit transaction’s merge attributes and is optional behavior.

Edit Transaction Attributes
Following are the attributes for an edit transaction:

• Type: This attribute specifies the type of transaction. For edit transactions this is set to
Edit. This attribute cannot be changed once the transaction has been defined.

• Object: The Object attribute specifies the type of object the edit transaction targets on the
Agentry Client. This may be set to any object type defined within the same module.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. This is almost always the transaction property that targets the object’s key
property and is set as such by default.

• Merge When: This attribute specifies when the transaction should be merged. This can be
set to either “Merge with adjacent transactions only” or “Merge with any transaction” to
enable transaction merging on the Client. Adjacent transactions means the last transaction
applied on the Client. Any transaction means the transaction will be merged with the first
transaction found to meet the proper criteria for merging. This begins with the most
recently applied transaction for the same object instance. The search continues back to the
first applied transaction, or until a transaction is found that the edit transaction can be
merged with.

• Merge With: This attribute specifies the type of transaction the edit transaction should be
merged with. This can be set to “Same transaction type only” or “Similar transactions.”
The same transaction type is only another instance of the same edit transaction that targets
the same object instance on the Client. A “Similar transaction type” also must target the

Agentry Language Reference

46 SAP Mobile Platform

same object instance on the client, but may be an instance of any add or edit transaction that
meets the merge criteria.

• Timestamp: The timestamp can be set to either “New Timestamp” or “Original
Timestamp.” This attribute specifies whether the timestamp from the original transaction
is kept after the merge, or whether the timestamp from the new transaction instance is
used.

Transaction Type: Delete

A delete transaction is defined to remove an object instance from the Agentry Client. When
applied, this transaction will remove the object instance from the Client and may also remove
any pending transactions for that object instance. A delete transaction should, at a minimum,
contain the key property of the object type it targets.

When a delete transaction is applied, the object instance targeted by the transaction is removed
from the Client. All data properties of the object instance, including any object collection
properties, are removed.

When defining a delete transaction, the developer should ensure that the object should be
allowed to be deleted. This is normally controlled by defining an enable rule for the action that
will instantiate the delete transaction. The object and its data removed by the delete transaction
cannot be recovered once the transaction has been applied.

Delete Transaction Attributes
Following are the attributes for a delete transaction:

• Type: This attribute specifies the type of transaction. For delete transactions this is set to
“Delete”. This attribute cannot be changed once the transaction has been defined.

• Object: The Object attribute specifies the type of object the delete transaction targets and
will remove from the Agentry Client.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Client to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. This is almost always the transaction property that targets the object’s key
property and is set as such by default.

• Discard Pending Transactions: This attribute specifies whether or not pending
transactions for an object instance removed by the delete transaction should also be
removed. If this attribute is set, pending transactions targeting the deleted object instance
will be removed. If false, these pending transactions will remain on the Agentry Client
until the next transmit.

Agentry Language Reference

Agentry Language Reference 47

Transaction Type: Complex Table Change

A complex table change transaction is defined to allow the user to add or edit a complex table
record stored on the Agentry Client. This transaction type is still defined to target an object
type. It should, at a minimum, contain a property for the key field of the table and the
properties to target each field to be modified by the transaction. To allow for the addition of a
new record, it should contain one property for each field in a table record.

When a complex table change transaction is applied, the transaction first looks for a record in
the complex table whose key field value is equal to the value of the corresponding property in
the transaction. If a match is found, the record is updated with the property values of the
transaction. If no match is found, a new record is added to the complex table. The indexes of
the complex table are then updated to match the new or modified record.

Complex Table Change Transaction Attributes
Following are the attributes for a complex table change transaction.

• Type: This attribute specifies the type of transaction. For complex table transactions this is
set to “Complex Table Change.” This attribute cannot be changed once the transaction has
been defined.

• Object: The Object attribute specifies the type of object the transaction targets. Though
primarily intended to change a complex table record, this transaction type must still target
an object.

• Table: The table attribute specifies the complex table the transaction targets and that will
be changed when the transaction is applied.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. If no change is made to the targeted object, this attribute need not be set.

Transaction Type: Data Table Change

A data table change transaction is defined to allow the user to add or edit a data table record on
the Agentry Client. This transaction is still defined to target an object type. It should, at a
minimum, contain a property for the key and value fields of a data table record.

When a data table change transaction is applied, the transaction first looks for a record in the
data table with the same key value as the corresponding key property in the transaction. If one
is found, that record will be updated from the property for the value field. If there is no match
on the key field, then a new record will be added to the data table using the values of the two
properties for the key and value fields. Data table change transactions cannot delete a record
from a data table.

Agentry Language Reference

48 SAP Mobile Platform

Data Table Change Transaction Attributes
Following are the attributes for a data table change transaction.
• Type: This attribute specifies the type of transaction. For data table transactions this is set

to “Data Table Change.” This attribute cannot be changed once the transaction has been
defined.

• Object: The Object attribute specifies the type of object the transaction targets. Though
primarily intended to change a data table record, this transaction type must still target an
object.

• Table: The table attribute specifies the data table the transaction targets and that will be
changed when the transaction is applied.

• Name: This is the identifier for the transaction definition. This value must be unique
among all transaction definitions within the same module.

• Display Name: The display name is the value shown to users for the transaction on the
Client. This is normally seen by the user in the Client’s Transmit Screen when an instance
of the transaction is sent to the Agentry Server to be processed.

• Key Property: This attribute specifies the property within the transaction to be treated as
the key property. If no change is made to the targeted object, this attribute might not be
set.

Transaction Validation Rule

A transaction validation rule defines what rule definition will be used to validate the
transaction’s data and how failed validation is handled on the Agentry Client. The rule
referenced is called in a Boolean context and is expected to return true or false. False indicates
failed validation, which may be treated as a warning or error. Messaging may be displayed to
the user in relation to failed validation. An error requires the user to change the offending
value(s) before proceeding. A warning displays an informational message giving the user the
option to change the value(s), but does not require a change.

Not every transaction will have validation rules. Certain types of values do not need to be
validated using a validation rule. Simple requirements such as the size of a string value or the
minimum and maximum values of a numeric property can be enforced by the property itself.
In other cases the information may not need to be validated. An example of this is some sort of
note or description entry where the user is entering free form text.

Validation rules are used when more complex validation is required, such as when the valid
value for a property is dependent on the value of a second property. Also, validation rules offer
the flexibility to differentiate between a warning and an error. With a warning, the user is given
the option of changing the value that violates the rule or leaving it as is. If treated as an error,
the user must change the value before being allowed to proceed.

Validation rules are evaluated when the user clicks any navigation buttons in the wizard screen
set displaying the transaction. If a validation rule references a property not yet displayed in the
wizard, it will not fail validation. A false return by the rule is treated as a validation failure and
the validation rule definition will then dictate the behavior of the Agentry Client.

Agentry Language Reference

Agentry Language Reference 49

Validation Rule Attributes

• Rule: This attribute specifies the rule definition within the same module to be used as a
validation rule for the transaction. The rule is expected to return a Boolean value is
evaluated in the context of the current transaction instance.

• Type: This attribute can be set to either “Warning” or “Error” and determines how a false
return from the rule is treated by the validation rule. Warning means a failed validation
does not require the user to change the value. The user will be displayed a message and
given the option to change the value or keep it as set. An error type requires the user to
change the value before proceeding.

• Caption: This is the text displayed in the title bar of the message for the validation rule.
• Text: This is the message displayed to the user when validation fails.
• OK Label: This is the text to label the OK button for the message screen on the Agentry

Client.
• Cancel Label: This is the text to label the Cancel button for the message screen on the

Agentry Client. This attribute is available only when the Type attribute is set to “Warning.”

Transaction Validation Rule Properties

Rule properties associate one or more object properties with a transaction validation rule. Rule
properties are used to set the cursor focus on the Client when a validation warning or error rule
is triggered. The focus is set to the first property on the current screen set screen that is
included in the Rule Properties list. If no match is found or if all of the listed properties are
contained in a screen other than the current screen shown on the Client, no focus is set.

Validation rules and their associated rule properties are evaluated when the user clicks any
navigation buttons in the wizard screen set displaying the transaction. If the rule returns false,
the rule runs through all properties on the rule list until it finds one that matches a transaction
property that is displayed on the Client screen. At that point, the ‘next’ or ‘finish’ process is
stopped, the user remains on the same screen, and the cursor focus is set to the matching
property. Any property controls that are hidden, disabled, or set to read-only will be ignored.

Validation rule properties are available on the following transaction types: Add, Edit,
Complex Table Change, and Data Table Change.

Setting rule properties is optional. If no rule properties are set and a rule returns false, only the
error or warning message associated with the rule is displayed on the Client.

Transaction Server Data State Steps

A transaction server data state step references a step definition within the same module to be
run by the Agentry Server to check the back end system for data collisions during transaction
processing. Server data state steps are the first steps run by the Server when a transaction is
being processed. When a data state step’s return is true, its defined data state is set for the
transaction. This data state will then affect which server update steps for the transaction are

Agentry Language Reference

50 SAP Mobile Platform

run by the Server. A data state step may also define a response to be sent to the Client to
perform some additional action in relation to the object instance targeted by the transaction.

The step executed by a data state step should be defined to either return data or not, based on
some condition. The data returned by a data state step is unimportant in most cases. The
exception to this is when the Client Response attribute is set to “Update Client Key Property.”
In this scenario the Agentry Server will expect the step to return a value identified as the key
property for the target object.

Other than in this situation, the Server only looks to see if data is returned by the step. By
default, when data is returned by a data state step, the Server treats this as a true response and
will set the defined data state for the transaction. No data will be treated as false. This logic
may be inverted, with data return treated as false and no data treated as true, if the logic of the
step being executed is more efficient or more practical to be written in this manner.

If multiple server data state steps return true for a single transaction instance, the defined data
state for the last step with a true return will be the one set for the transaction. The server data
state steps may be defined to halt further data state step processing for the transaction if one of
them returns true. The order in which server data state steps are processed is defined in the list
of these definitions displayed in the transaction definition’s properties view of the Editor.

The Client Response attribute allows for the definition of a response to be sent to the Client in
relation to the object targeted by the transaction. This response will be sent after the
transaction has been successfully processed by the Server. The defined Client Response for a
data state may be overridden by a subsequent data state step, or by the transaction’s server
update steps.

Server Data State Step Attributes
The following is a list of the attributes for a server data state step definition:

• Step: This attribute references the step definition within the same module to run as a server
data state step for the transaction.

• Data State: This text value is the name of the data state the data state step will set if its
return is true. This value can then be referenced by the server update steps for the same
transaction.

• Step is True if: This attribute is set to define what is treated as true for the data state step.
When a data state step is true, its defined data state is set for the transaction. Its available
options depend on the type of step selected in the Step attribute:
• SQL Step: For a SQL step, this attribute can be set to “1 or more rows are returned” or

“0 rows are returned”. The former will treat data being returned as true and no data
returned as false. The latter will treat data returned as false and no data returned as
true.

• Java Step: For a Java step, the options are “doSteplet returns True” and “doSteplet
returns False”. The first will treat a true return from the doSteplet() method of the
Java step as true. The second will treat a false response from the doSteplet()
method as true.

Agentry Language Reference

Agentry Language Reference 51

• HTTP-XML Step: For an HTTP-XML step, the available options for this attribute are
“All response mappings succeed” and “A response mapping fails”. The former will set
true for the data state when the HTTP-XML step is able to map all of the responses, per
its definition. The latter will treat one or more failed mappings as true.

• If True: This attribute specifies whether the remaining server data state steps for the
transaction should be processed if the data state step returns true.

• If False: This attribute specifies whether the remaining server data state steps for the
transaction should be processed if the data state step returns false.

• Response to Client: This attribute specifies what response is sent to the Agentry Client
after the Update Step has been processed. The response defined here will only be sent if the
data state step is run and returns true. The responses that may be sent are “Delete Client
Object”, “Replace Client Object”, “Update Client Key Property”, and “No Action
Required”. If “Update Client Key Property” is set, the step being run by the server data
state step is expected to return a value identified as the transaction’s target object’s key
property. This value will replace the current value of this property on the Client for that
object instance.

Transaction Server Update Step

A transaction server update step references a step definition within the same module that is run
during transmit to update the back end system with the data captured by the transaction. This
step has access to all of the properties of the transaction using the SDML or mechanisms
available using the Agentry Java API. The value of these properties can be used by the steps to
update the back end system. An update step can be defined to run or not run based on a data
state being set for the transaction. An update step can also define a response to be sent to the
Client to perform some additional action in relation to the object instance targeted by the
transaction.

Using the data state functionality, update steps may be defined for a single transaction that
process the data captured in the transaction normally, and other steps that run only when data
states are set to provide data collision handling. Each server update step can contain its own list
of selected data states, that is, the data states it is aware of. It can then be defined to run or not
when one of its selected data states is set.

Server update steps can send a client response after they have been processed by the Agentry
Server. This response will only be sent if the step that defines it is run. Only one response is
sent for a transaction. There are different responses possible, and which one is ultimately sent
to the Client is based on the type of response.

Server Update Step Attributes
Following is a list of the attributes for a server update step definition:

• Step: This attribute references the step definition within the same module to be run by the
Agentry Server as a server update step for the transaction.

• Run for which States: This attribute defines when the step is run in relation to the
transaction’s data states. This can be “All Data States”, “Data States except selected”,

Agentry Language Reference

52 SAP Mobile Platform

“Only selected data states”, and “Do Not run Step”. This last option is normally only set for
testing purposes, as the step will never be run if this option is selected. When set to one of
the two data state options, a second tab is available in the Properties view of the Agentry
Editor. This second tab lists all selected data states for the update step and allows for
additional data states to be added.

• Response to Client: This attribute specifies what response is sent to the Agentry Client
after the Update Step has been processed. The response defined here will only be sent if the
update step is run. The responses that may be sent are “Delete Client Object”, “Replace
Client Object”, “Update Client Key Property”, and “No Action Required”. If “Update
Client Key Property” is set, the step being run by the server update step is expected to
return a value identified as the transaction’s target object’s key property. This value will
replace the current value of this property on the Client for that object instance.

Transaction Error Handling Steps

A transaction error handling step references a step definition that is run during transmit if an
error occurs while the Server is processing the transaction. This includes errors returned by the
data state or update steps. Error handling steps are run only when transaction failure handling
is enabled, via a configuration option of the Agentry Server. An error handling step can
respond to the Client to indicate the proper action to take in relation to the error that has
occurred.

Error handling steps can perform multiple tasks to resolve such an issue. These include:

• Any post-error processing that may be necessary
• Setting the error fatality level
• Returning messaging to the Agentry Client for display to the user

One of the key components to transaction error handling steps is the error fatality. This term
refers to the severity of the error and the proper way in which the transaction should be handled
as a result of the error. This can include retrying the transaction, possibly after a change is
made to it by the user, or removing the transaction from the Agentry Client and storing its data
to the failed transactions queue on the Agentry Server.

Error handling steps may not need to be defined as a apart of the transaction failure handling.
The Agentry Server contains configuration options to set default behaviors, including the
fatality level of an error. Error handling steps are normally defined to override these defaults
where necessary.

Error Handling Step Attributes

• Step: This is the step definition within the module to be run as an error handling step for the
transaction. The step referenced here should be defined to return data in the event of an
error, or a specific type of error.

• Error Type: This attribute determines the behavior of the application when the error
handling step returns true, indicating the error that occurred should be handled by the step.
The options for this attribute are:

Agentry Language Reference

Agentry Language Reference 53

• Fatal with Message - The transmit will be aborted automatically and a message will be
displayed to the user. The transaction will be removed from the Client and the data for it
stored in the failed transactions que on the Server.

• Fatal without Message - The transmit will be aborted automatically and no message
will be displayed to the user specific to the transaction. The transaction will be
removed from the Client and the data for it stored in the failed transactions que on the
Server.

• No Change - This selection will not change the error fatality for the transaction. Either
another error handling step for the transaction will handle this, or the default fatality
based on the error information returned by the back end system will remain. This is
normally set for steps that either create messaging displayed to the user, or that perform
other actions against the back end system to handle the error.

• Retry with Change - The user will be able to choose to abort the transmit and to change
the data for the transaction. This requires transaction merging be enabled, as a new
transaction will be instantiated by the user and it will then merge with the pending
transaction as a result of an error. This will be an option for the user and, should the user
choose not to retry, the transmit will continue. The transaction will be removed from
the Client and saved to the failed transactions queue on the Server.

• Retry without Change - The user will be able to retry the transaction without editing the
data it contains.

• Step is true if: This attribute controls whether data returned by the step is treated as a true
or false return. When this attribute is true and the step returns data, this is treated as a true
response.

• If True: This attribute defines whether or not the remaining error handling steps for the
transaction should be run if the current error step returns true.

• If False: This attribute defines whether or not the remaining error handling steps for the
transaction should be run if the current error step returns false.

• Notification: This Boolean attribute controls the external notification on the client device.
If this attribute is true, a true result for the error handling step will result in the LED on the
client device being activated and the transmit dialog flashing.

• Sound: This attribute defines whether or not the system default sound on the client device
should be played when the error step returns true. It also controls the number of times to
repeat the sound.

• Interval: If the Sound attribute is set to play the system sound two or more times, the
interval attribute can be set to the number of seconds in between each time the sound is
played.

Fetch

A fetch defines how the Agentry Server synchronizes data for a target object collection. This
object collection must be a top-level collection within the module. A fetch is made up of steps
that retrieve the data for the collection from the back end system. These steps are grouped into
three categories within the Fetch definition: Client Exchange Steps, Server Exchange Steps,

Agentry Language Reference

54 SAP Mobile Platform

and Removal Steps. A fetch may also include properties to store data captured from the user
and validation rules for those property values.

A fetch may be a main or non-main fetch. A main fetch is processed during every transmit
between the Agentry Client and Server. A given module may contain multiple main fetches.
The order in which multiple main fetches, either within the same module or within multiple
main fetches, are processed is undefined and should therefore not be a factor in the
synchronization logic.

A non-main fetch will only be executed when an action step of type transmit explicitly defines
such a fetch to be processed. Non-main fetches are normally defined to provide the search
functionality to end users.

The basic structure of a fetch definition is intended to support the exchange data model of
synchronization. This model is intended to allow for the synchronization of data in a more
efficient manner, where only data changes on the back end system as compared to the current
data on a given client are retrieved. Any data that has not been changed as compared to the
client’s data is not retrieved.

A fetch definition can be defined to retrieve new object instances to be added to a client
application, replace existing objects on that client, a remove any objects the client should no
longer store locally. The read steps of the object type targeted by the fetch are run after the
fetch has been processed and may also retrieve objects for the client to either add them or
replace existing instances.

Fetch Child Definitions

• Property: A fetch property defines data to be captured on the Agentry Client for use
during fetch processing by the Agentry Server.

• Validation Rule: A fetch validation rule defines what rule definition will be used to
validate the fetch’s data and how failed validation is handled on the Agentry Client.

• Client Exchange Step: A fetch client exchange step defines how information about the
target collection is processed by the Agentry Server.

• Server Exchange Step: A fetch server exchange step defines how information about the
back end system’s data is processed.

• Removal Step: A fetch removal step is defined to determine which objects should be
removed from the collection targeted by the parent fetch.

Fetch Attributes

• Collection: This attribute references the object collection property within the same
module and that is a direct child of the module main object for which the fetch will
synchronize data. Steps executed by the fetch’s child step usage definition will be
processed by the Agentry Server in the context of this collection.

• Name: This attribute contains the name that identifies the fetch. This value must be unique
among all fetch definitions within the same module.

Agentry Language Reference

Agentry Language Reference 55

• Display Name: This attribute contains the value that identifies the fetch on the client. This
is displayed during synchronization in the Client’s Transmit Screen when the fetch is
processed by the Server.

• Clear Collection: This attribute specifies whether or not the object instances stored in the
targeted collection should be removed from the Client prior to processing the fetch during
synchronization. This attribute is normally only left set on when the fetch is either not
using the exchange data model for synchronization, or when it is a non-main fetch
performing search functionality and the previous search results should be removed from
the client before performing a new search.

• Main Fetch: This attribute specifies whether the fetch is a main fetch. When checked, the
fetch will be processed during every transmit between the Client and Server. When
unchecked, the fetch will only be run when an action step of type Transmit explicitly lists
the fetch to be processed and that action step is the one that initiates the transmit.

Fetch Validation Rule

A fetch validation rule defines what rule definition will be used to validate the fetch’s data and
how failed validation is handled on the Agentry Client. The rule referenced is called in a
Boolean context and is expected to return true or false. False indicates failed validation, which
may be treated as a warning or error. Messaging may be displayed to the user in relation to
failed validation. An error requires the user to change the offending value(s) before
proceeding. A warning displays an informational message giving the user the option to change
the value(s), but does not require a change.

Not every fetch will have validation rules. Certain types of values do not need to be validated
using a validation rule. Simple requirements such as the size of a string value or the minimum
and maximum values of a numeric property can be enforced by the property itself. In other
cases the data may simply not need to be validated.

Validation rules are used when more complex validation is required, such as when the valid
value for a property is dependent on the value of a second property. Also, validation rules offer
the flexibility to differentiate between a warning and an error. With a warning, the user is given
the option of changing the value that violates the rule or leaving it as is. If treated as an error,
the user must change the value before being allowed to proceed.

Validation rules are evaluated when the user clicks any navigation buttons in the wizard screen
set displaying the fetch. If a validation rule references a property not yet displayed in the
wizard, it will not fail validation. A false return by the rule is treated as a validation failure and
the validation rule definition will then dictate the behavior of the Client.

Validation Rule Attributes
• Rule: This attribute specifies the rule definition within the same module to be used as a

validation rule for the fetch. The rule is expected to return a Boolean value in the context of
the current fetch instance.

• Type: This attribute can be set to either “Warning” or “Error” and determines how a false
return from the rule is treated by the validation rule. Warning means a failed validation

Agentry Language Reference

56 SAP Mobile Platform

does not require the user to change the value. The user will be displayed a message and
given the option to change the value or keep it as set. An error type requires the user to
change the value before proceeding.

• Caption: This is the text displayed in the title bar of the message for the validation rule.
• Text: This is the message displayed to the user when validation fails.
• OK Label: This is the text to label the OK button for the message screen on the client.
• Cancel Label: This is the text to label the Cancel button for the message screen on the

client. This attribute is available only when the Type attribute is set to “Warning”.

Fetch Validation Rule Properties

Rule properties associate one or more object properties with a fetch validation rule. Rule
properties are used to set the cursor focus on the Client when a fetch warning or error rule is
triggered. The focus is set to the first property on the current screen set screen that is included
in the Rule Properties list. If no match is found or if all of the listed properties are contained in a
screen other than the current screen shown on the Client, no focus is set.

Validation rules and their associated rule properties are evaluated when the user clicks any
navigation buttons in the wizard screen set displaying the transaction. If the rule returns false,
the rule runs through all properties on the rule list until it finds one that matches a fetch
property that is displayed on the Client screen. At that point, the ‘next’ or ‘finish’ process is
stopped, the user remains on the same screen, and the cursor focus is set to the matching
property. Any property controls that are hidden, disabled, or set to read-only will be ignored.

Validation rule properties are available on the following fetch types: Add, Edit, Complex
Table Change, and Data Table Change.

Setting rule properties is optional. If no rule properties are set and a rule returns false, only the
error or warning message associated with the rule is displayed on the Client.

Fetch Client Exchange Step

A fetch client exchange step defines how information about the target collection is processed
by the Agentry Server. This definition references a step definition within the same module.
This step has access to information about the target collection, as well as to any data captured
in fetch properties. A client exchange step can be defined to execute once or iteratively, and
can return data for an object collection. A fetch can contain multiple client exchange step
definitions, which are processed by the Server in a defined order.

Though a client exchange step can return data to create and populate object instances, its
intended purpose is to provide information about the current objects stored in the collection
property targeted by the parent fetch (target collection) definition. A Client exchange step has
access to the key property and last update value for each object instance in the target
collection. This information is provided in support of the exchange data model. The intent is
that the client exchange steps update this information to an exchange data object in the back
end for later comparison to determine which data may need to be retrieved to update the
Client.

Agentry Language Reference

Agentry Language Reference 57

Client Exchange Step Attributes

• Step: This attribute references the step definition within the same module to run as a client
exchange step for the parent fetch.

• Run: This attribute specifies how to run the client exchange step during a single transmit.
This may be set to one of the following values:
• Run one Time: This setting will run the client exchange step a single time for the fetch

processing. This setting assumes the step needs to be executed only once to return the
data for all object instances to be added or replaced during synchronization, or the step
being executed is not returning data but rather is being run in support of
synchronization.

• Run Once per Object: This setting will execute the client exchange step once for each
object instance in the collection that is being synchronized. This includes both those
object instances sent by the Client to the Server, as well as any that may have been
added by previous fetch steps.

• Read Into: This attribute specifies the child or descendent object collection property of
the target collection into which the data returned by the step should be read. This attribute
has a default setting of “None”. This default means the data will not be read into a child
collection but will instead be used to create object instances of the target collection. Other
valid options for this attribute are any child collection properties of the target collection, or
any descendent collections (e.g. collections within collections).

Fetch Server Exchange Step

A fetch server exchange step defines how information about the back end system’s data is
processed. This definition references a step definition within the same module. This step has
access to information about the target collection, as well as to any data captured in fetch
properties. A server exchange step can be defined to execute once or iteratively, and can return
data for an object collection.

The server exchange step definition is intended to perform one of two tasks within the
exchange data model. First, it should compare information provided by the client exchange
steps concerning which object instances the Client currently has and when they were retrieved
to information in the back end system about when that same data was last modified or added.
Second, it can then retrieve the data needed by the Client based on the differences found during
this comparison. These tasks are normally accomplished by separate server exchange steps.
Alternately or in addition to these definitions, the object read steps defined in the object type
targeted by the fetch may retrieve data for the object instances.

Server Exchange Step Attributes

• Step: This attribute references the step definition within the same module to run as a server
exchange step for the parent fetch.

• Run: This attribute specifies how to run the server exchange step during a single transmit.
This may be set to one of the following values:

Agentry Language Reference

58 SAP Mobile Platform

• Run one Time: This setting will run the server exchange step a single time for the fetch
processing. This setting assumes the step needs to be executed only once to return the
data for all object instances to be added or replaced during synchronization, or the step
being executed is not returning data but rather is being run in support of
synchronization.

• Run Once per Object: This setting will execute the server exchange step once for each
object instance in the collection that is being synchronized. This includes both those
object instances sent by the Client to the Server, as well as any that may have been
added by previous fetch steps.

• Read Into: This attribute specifies the child or descendent object collection property of
the target collection into which the data returned by the step should be read. This attribute
has a default setting of “None”. This default means the data will not be read into a child
collection but will instead be used to create object instances of the target collection. Other
valid options for this attribute are any child collection properties of the target collection, or
any descendent collections (e.g. collections within collections).

Fetch Removal Step

A fetch removal step is defined to determine which objects should be removed from the
collection targeted by the parent fetch. A removal step references a step definition within the
same module. This step has access to information about the target collection, as well as to any
data captured in fetch properties. The step referenced by a removal step definition is expected
to return the key property of any object(s) that should be deleted from the target collection on
the Agentry Client.

Removal Step Attributes
• Step: This attribute references the step definition within the same module to run as a

removal step for the parent fetch.
• Run: This attribute specifies how to run the removal step during a single transmit. This

may be set to one of the following values:
• Run one Time: This setting will run the removal step a single time for the fetch

processing. This setting assumes the step need be executed only once to return the data
for all object instances to be removed during synchronization, or the step being
executed is not returning data but rather is being run in support of synchronization.

• Run Once per Object: This setting will execute the removal step once for each object
instance in the collection that is being synchronized. This includes both those object
instances sent by the Client to the Server, as well as any that may have been added by
previous fetch steps.

• Read Into: This attribute has no effect on a fetch removal step and will be deprecated in a
future release.

Transaction and Fetch Properties

A transaction property defines a value to be captured by a transaction. Definable behaviors
include the initial value for the property, the object property or table record field it targets, as

Agentry Language Reference

Agentry Language Reference 59

well as data-related behaviors. These include minimum and maximum values, a special value,
and similar settings. These last behaviors will vary depending on the data type of the property.

A fetch property defines data to be captured on the Agentry Client for use during fetch
processing by the Agentry Server. A fetch that contains properties is normally displayed in a
screen set to allow the user to enter the desired values. The steps of the fetch then have access to
these property values for use during synchronization. The fetch properties themselves define
the data types of the values, and the initialization values when the fetch is instantiated.

Both transaction and fetch properties contain attributes related to initialization. These
attributes are a part of all transaction and fetch property definitions regardless of the property
data type. These attributes are in addition to the data type specific attributes.

For both a fetch and a transaction property, the purpose is to capture data on the Client. How
this data is used depends on the property’s parent. A transaction property’s value will be
copied to the object property it targets when the transaction is applied. This value will then also
be available to the steps used by the transaction during synchronization and, depending on the
defined processing, will likely be updated to the back end system.

A fetch property will be stored with the fetch and sent to the Agentry Server during
synchronization. This will make the value available to all steps run by the fetch. However, the
fetch property value will not affect the object property, as fetch properties do not modify object
instances on the Client.

Transaction and Fetch Property Attributes
The following list of attributes are specific to properties defined for a transaction or fetch.
These attributes are common to all properties regardless of data type:

• Object Property: This attribute specifies the object property targeted by the transaction or
fetch property. This value may be used for initialization. For a transaction, this is also the
object property the transaction property will set when the transaction is applied.

• Initial Value: This attribute specifies the data source to initialize the property. This may be
the object property targeted by the transaction or fetch property, the property of a different
object not targeted by the fetch or transaction, a constant value, or via a rule. When a rule is
used, the rule may be evaluated before or after data entry.

• Constant: This attribute is enabled only when Initial Value is set to “Constant”. The
Constant attribute then contains the constant value to which the property will be
initialized whenever the parent transaction or fetch is instantiated on the Client. This may
be left blank for many property data types to initialize the property to null.

• Rule: This attribute is enabled only when the Initial Value attribute is set to either “Rule -
before data entry” or “Rule - after data entry”. It contains a reference to the rule definition
to be evaluated to initialize the property.

• Other Property: This attribute is enabled only when the Initial Value attribute is set to
“From a different object property”. Other Property then contains the target path to the
object property whose value will be used to initialize the property.

Agentry Language Reference

60 SAP Mobile Platform

Property Data Types

The property data type definition can be a child to an object, transaction, or fetch definition. A
property is defined to be a certain data type when it is created. This data type then specifies the
type of data and its behavior within the property. The data types range from primitive types
common to most or all development platforms, to more robust types that in other languages
would be created by developers as classes, structures, or objects depending on the tool or
language in use.

Following a brief description of each property data type available in Agentry:

• Boolean: The Boolean property data type stores a true or false value.
• Collection: The collection property data type is defined to store multiple object instances

of the same type as a property of a parent object, transaction, or fetch.
• Complex Table Selection: The complex table selection property type is used to store a

selection made by the user from a complex table.
• Data Table Selection: The data table selection property type is used to store a selection

made from a data table.
• Date: The date property type is used to store a calendar date value.
• Date and Time: The date and time property type stores a value consisting of a calendar

date and time of day.
• Decimal Number: The decimal number property data type stores numeric value with a

fractional component.
• Duration: The duration property data type is used to store a duration of time.
• External Data: An external data property stores a reference to a file stored on the client

device’s file system and that is external to the production data of the application.
• Identifier: The identifier property data type stores a non-negative integer value that is a

unique identifier for an object.
• Image: The image property stores a still picture or other image captured on the client

device from either the device’s camera or selected from the file system.
• Integral Number: An integral number property stores whole numbers.
• Location: A location property stores a location value returned by a GPS unit that includes

the latitude, longitude, dilution, and number of satellites.
• Object: The object property data type stores an object instance as a property of a parent

definition.
• Signature: The signature property type stores a signature entered by a user on the Agentry

Client.
• String: The string property data type stores any character values as a single string.
• Time: The time property data type stores a time of day value.

Boolean Property Type

The Boolean property data type stores a true or false value. When a Boolean property value is
set, a null value is treated as false and any other value is treated as true.

Agentry Language Reference

Agentry Language Reference 61

The attributes for a Boolean property include the true and false value. These values define
what will be displayed when the property contains a true or false value.

Boolean Property Attributes

Note: This property type does not have Special Value attributes.

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• True Value: This attribute contains the value to display when the Boolean property is set
to true.

• False Value: This attribute contains the value to display when the Boolean property is set
to false.

Collection Property Type

The collection property data type is defined to store multiple object instances of the same type
as a property of a parent object, transaction, or fetch. The object type used in a collection
property must have a defined key property to uniquely identify each object instance within the
collection property. The default initialization for a collection property is an empty collection.

Each object instance within a collection is considered a child instance to the parent definition
of the collection property. In objects, collection properties are commonly used to store object
instances within a module to provide a data structure within the module representing the
relationship between the different business entities for the module. Collection properties
defined in the module main object are commonly referred to as “top-level collections”.
Collection properties defined within an object other than the main object are referred to as
nested collections.

The collection property type may also store other data types. However, in practice there is
limited use for this type of definition. A collection defined to store another collection is not
valid.

Collection Property Attributes

Note: This property type does not have Special Value attributes.

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

Agentry Language Reference

62 SAP Mobile Platform

• Property Type: This attribute specifies the type of property the collection will contain.
The default and most common setting for this attribute is Object. There are limited use
cases for collections storing instances of any other type of data.

• Object: This attribute is available when Property Type is set to “Object”. It lists all object
definitions within the module and the selection made specifies the type object instances the
collection property will contain. The object type to be stored in the collection property
must have been defined previously and must have its Key Property attribute set prior to
selecting it in the Object attribute field of the collection property definition.

Complex Table Selection Property Type

The complex table selection property type is used to store a selection made by the user from a
complex table. The value stored in a complex table selection property is the key field of the
selected record within the complex table. The data type of this value will be a string, integral
number, or decimal number, based on the data type of the key field.

The complex table selection contains a single attribute specific to the data type named
complex table. The setting of this attribute specifies the complex table definition that is the
source for the property.

The value contained within a complex table selection property requires a brief explanation of
complex tables. Complex tables are made up of records. The records are made up of multiple
fields. Within the complex table definition, indexes are defined on the fields to allow users to
search the table. Each complex table is required to contain a unique index, which is defined for
the field that contains the unique value for each record. The complex table selection property
will contain the value of this field for the record selected by the user.

Complex Table Selection Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Complex Table: This attribute specifies the complex table definition within the
application that the property will use. Only selections from the complex table specified
here can be stored in the property. The complex table definition must exist and contain at
least one field and the primary index before it may be selected for the Complex Table
attribute of the property definition.

Data Table Selection Property Type

The data table selection property type is used to store a selection made from a data table. The
value stored in a data table selection property is the code field of the selected data table record.
This value will always be a string data type.

Agentry Language Reference

Agentry Language Reference 63

The data table selection property type includes display options for its value within the
definition. Whenever this property type is displayed, the entire data table record may be
displayed for its code. Also, only the code field or the value field may be displayed. Which is
shown on the client is defined within the data table selection property definition.

It is important to note that it is not a requirement that a value selected from a data table be
stored in a data table selection property. It is only one of the options available, and other
property data types may be used for this purpose.

Data Table Selection Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Data Table: This attribute specifies the data table from which the selection will be made
for the value stored in the property. Only selections for the data table definition chosen here
can be stored in the property. The data table definition selected here must exist within the
application prior to defining this property type.

• Display Type: This attribute specifies how the selected data table record stored in the
property will be displayed. The options are to display the code field, value field, or code
and value field of the selected data table record; or to specify format text.

• Format Text: This attribute is available only when Display Type is set to “Format Text.” It
specifies the format string to display the selected data table record stored in the property.
This attribute may contain any printable characters plus the format strings %code and
%value.

Date Property Type

The date property type is used to store a calendar date value. This value is stored internally as
the number of days before or after the Agentry epoch date of January 1st, 2001. Negative
values reflect dates prior to epoch. A date property is displayed on the Agentry Client in the
format MM/DD/YYYY by default.

The date property may also be unset or invalid. In this case the year portion of the date property
is set to zero (0000). This condition may be checked to determine if the date property has been
set.

Date Property Type Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

Agentry Language Reference

64 SAP Mobile Platform

• Blank: This attribute specifies whether or not a blank value is displayed for a date property
when it has not been set (year is zero).

Date And Time Property Type

The date and time property type stores a value consisting of a calendar date and time of day.
This value is stored internally as the number of seconds before or after the Agentry epoch date
of January 1st, 2001 12:00:00 am. Negative values reflect dates prior to epoch. A date and time
property is displayed on the Agentry Client in the format MM/DD/YYYY HH:MM:SS am/
pm by default.

A date and time property may contain an unset or invalid value. This is indicated by the year
portion of the value, which is set to the year zero (0000). This condition may be checked to
determine if the date and time property is invalid.

Date And Time Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Blank: This attribute specifies whether or not to display a blank field when the date and
time property does not contain a valid date and time (year is 0000).

• Display Order: This attribute specifies the order in which to display the date and time
components of the property value. This may be set to either “Date - Time” or “Time -
Date”.

• Time Zone Adjust: This attribute specifies whether or not to adjust the date and time
value of the property during synchronization based on differences in time zones. For object
properties the value retrieved from the back end system may be adjusted from the back end
systems local or standard time, or from universal time, to the client device’s time zone. For
transaction properties the date and time value can be adjusted from the client device’s time
zone to the local or standard time of the system connection or to universal time. The default
for this attribute is “Do not adjust”, which will not modify the date and time value during
synchronization.

Decimal Number Property Type

The decimal number property data type is used to store a numeric value with a fractional
component. The definable behaviors of a decimal number property include standard or NIST
rounding, precision, and significant digit math options.

Values stored in a decimal property can contain values with a precision of up to 20 places past
the decimal point. The values may be positive or negative.

Agentry Language Reference

Agentry Language Reference 65

Decimal Number Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Minimum Value: This is the smallest value that may be contained within the property.
This attribute and the Precision attribute are interdependent. You cannot specify a
minimum value with more decimal places than is specified in the Precision attribute. To
force the value to be positive, set the this attribute to 0. The minimum value specified here
can be no greater than the defined Maximum Value.

• Maximum Value: This is the maximum value that the decimal property can contain. This
is dependant on the Precision attribute. You cannot specify a maximum value with more
decimal places than is specified in the Precision attribute. The value defined here can be no
less than the defined Minimum Value.

• Precision: This attribute specifies the maximum number of places past the decimal point.
A negative precision indicates places before the decimal, with any values past this point
padded with zeroes. A precision of 0 specified whole numbers only, though consider using
an integral number property for this purpose.

• Blank - This is a Boolean attribute that specifies whether to display a blank for the property
when it has a value of 0.

• Math: This is a Boolean attribute that specifies whether or not to use significant figure
math in any calculations that use the property value.

• Rounding: This attribute specifies the rounding method to use when this value is rounded.
This may occur within rule definitions (ROUND function term) or when calculations
involving this property are performed. The resulting value for the property will be rounded
to the defined precision, as well as based on the significant digits operations. The methods
for rounding are Nearest or NIST. Nearest is the typical rounding method in which the
digit immediately after the digit to be rounded determines value of that rounded digit.
Values below 5 leave the digit unchanged. Values 5 or above increment the rounded digit
by 1. The NIST rounding method rounds values according to the rules set forth by the
National Institute of Standards and Technology, specifically as they relate to calibrations
measurements.

Duration Property Type

The duration property data type stores a duration of time. The value of a duration property is
stored in seconds and may be positive or negative. It is possible to convert the value to other
time units, including hours, minutes, or milliseconds when referenced in a step definition.
This behavior is controlled by the definition of the duration property.

This data type does not store fractional seconds. During downstream synchronization, if the
back end units for this property include precision smaller than whole seconds, the fractional

Agentry Language Reference

66 SAP Mobile Platform

second portion of the value will be truncated when assigned to the property. The logic of the
synchronization step should round the value prior to returning it to the Server if this is not the
desired behavior. If it is necessary to keep the fractional portion of the duration value during
synchronization, a decimal number property should be used.

Duration Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Minimum Value: This attribute specifies the minimum duration value the property will
accept. This is set in hours, minutes and seconds and is converted to total number of
seconds within the property. This value can be no greater than the defined Maximum
Value.

• Maximum Value: This attribute specifies the maximum duration value the property will
accept. This is set in hours, minutes and seconds and is converted to total number of
seconds within the property. This value can be no less than the defined Minimum
Value.

• Display Format: This attribute specifies the format in which to display the duration value.
The options are Fractional Hours, Hours:Minutes:Seconds (“H:M:S”), Minutes:Seconds
(“M:S”), or Hours:Minutes (“H:M”).

• Back End Units: This attribute specifies the units in which the duration value is stored in
the back end system. For object properties the value returned from the back end system
will be converted from the unit selected here to seconds. For transaction and fetch
properties the value will be converted from seconds to the units specified here.

External Data Property Type

An external data property is used to reference a file stored on the client device’s file system.
This file is external to the application’s production data. The file data itself is not stored with
the production data. This property type is normally used in conjunction with the file transfer
functionality. The default display value of an external data property is the full path and file
name of the referenced file.

For object properties the attributes of this property type related to the location for the file
specify where the file will be stored on the client device when retrieved from the back end
system. For transaction properties these same attributes specify the default location from
which the user should make a selection. The file dialog opened in this case does allow the user
to navigate the file system to select the desired file. Two separate paths can be defined for the
external data property, one for client devices running the Windows PC group of operating
systems, and a second for client devices running supported versions of the Mobile Windows
OS’s.

Agentry Language Reference

Agentry Language Reference 67

The attributes of this data type also allow for designating whether the file should be read-only
on the client device, the file extension for the file, and whether or not to delete the file when the
parent object to the property is deleted.

The recommended use for this property type is define an object that represents the document
and includes this property, as well as other information about the file. The external data
property itself will reference the location of the file and can return the file’s full path and name,
just the file name, just the file path, just the file extension, as well as metadata about the file
such as its last modified date and time and whether or not it has been modified since it was
downloaded to the client device. Many of these values are exposed via rules and/or format
strings. A separate property of a data type other than external data must exist and be referenced
by the external data property that contains the name the file will be given when saved on the
client device. This value must be set during synchronization prior to transferring the file itself.

External Data Property Attributes

Note: This property type does not have Special Value attributes.

General Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

Client File Attributes

• File Name: This attribute references a property within the same parent definition as the
external data property. The referenced property’s value will be used as the file name for the
file referenced by the external data property when it is downloaded from the back end
during object synchronization. In a transaction, the File Name property will store the name
of the file as saved on the client device.

• File Extension: This attribute is optional and can contain the file extension for the file
referenced by the external data property. For objects this extension will be appended to the
file when it is downloaded from the back end and saved on the client device. For
transactions this extension will be used to filter the options displayed to the user in the file
dialog when selecting the file. Only files with the same extension will be displayed. If this
attribute is not set, files saved to the Agentry Client during object synchronization will
keep the same file extension as provided by the back end. For transactions, all files will be
listed in the File Dialog to the user, regardless of file extension.

• When Object is Deleted: This attribute specifies what to do with the file referenced by the
external data property when the parent object of the property is deleted from the Agentry
Client. The options are to always delete the file, never delete the file, or only delete the file
when retrieved from the back end by the mobile client application. This last option will
exclude files attached locally on the Agentry Client via a transaction. This option is

Agentry Language Reference

68 SAP Mobile Platform

unaffected by the Read Only attribute, meaning if this setting results in the file being
deleted, it will be removed regardless of whether or not it is read-only.

• Read Only: This attribute specifies whether or not the file’s read-only switch will be true.
When set, this will prevent the user from modifying the file but will not prevent the
Agentry Client from deleting or otherwise accessing the file.

• Use Most Recent Location: This attribute specifies whether, when selecting a file on the
Agentry Client to be referenced bu the external data property, the file dialog displayed
should be opened to the most recently selected folder, or to the default folder regardless of
the previous selection made.

Filter

• File Filter: This attribute specifies the file type that may be selected or referenced by the
external data property.

• File Filter Description: This attribute allows for the specification of a file description to
be associated with the file extension listed in the File Filter attribute.

• Restricted Files: This attribute allows for the specification of file names or file extensions
that may not be selected. Multiple files or file types can be listed here separated by semi-
colons.

Windows 9.x/NT/2000/XP

• Base Path: This attribute specifies the base path to which the file will be saved (objects) or
the default location the user will be displayed in the file dialog to select a file
(transactions). This attribute is for Windows PC operating system builds for PC’s, laptops,
and tablets. This may or may not be the entire path for the application, dependent on the
Relative Path attribute. Options for this attribute include:
• Absolute Path: This selection will result in the value of the Relative Path attribute

being used and is assumed to contain the full path, including drive letter, for the files
location.

• Application Data: This selection will set the file’s location to be the path configured in
Windows to be the location for application data.

• My Documents: This selection will set the file’s location to be the path configured in
Windows to be the user’s My Documents folder.

• My Pictures: This selection will set the file’s location to be the path configured in
Windows to be the user’s My Pictures folder.

• Program Files: This selection will set the file’s location to be the path configured in
Windows to be the Program Files folder.

• Windows Temporary Directory: This selection will set the file’s location to be the
path configured in Windows to be the Windows TEMP folder.

• Relative Path: The value of this attribute will be appended to the path resulting from the
Base Path attribute setting. If Base Path is set to Absolute Path, the value of Relative Path
will be used as the full path for the file’s location.

Windows CE (Mobile Windows versions)

Agentry Language Reference

Agentry Language Reference 69

• Use Path: This attribute, when checked, will use the same path as defined in the Windows
9.x/NT/2000/XP set of attributes. This will disable the Base Path and Relative Path
attributes for mobile devices.

• Base Path: This attribute specifies the base path to which the file will be saved (objects) or
the default location the user will be displayed in the file dialog to select a file
(transactions). This attribute is for Mobile Windows operating system builds. This may or
may not be the entire path for the application, dependent on the Relative Path attribute.
Options for this attribute include:
• Absolute Path: This selection will result in the value of the Relative Path attribute

being used and is assumed to contain the full path, including drive letter, for the files
location.

• My Documents: This selection will set the file’s location to be the path configured in
Windows to be the user’s My Documents folder.

• Program Files: This selection will set the file’s location to be the path configured in
Windows to be the Program Files folder.

• Windows Temporary Directory: This selection will set the file’s location to be the
path configured in Windows to be the Windows TEMP folder.

• Relative Path: The value of this attribute will be appended to the path resulting from the
Base Path attribute setting. If Base Path is set to Absolute Path, the value of Relative Path
will be used as the full path for the file’s location.

Identifier Property Type

The identifier property data type is used to store a non-negative integer value that is a unique
identifier for an object. The intent of this data type is to be used as a key property for an object.
This is not a requirement and a property of a different data type may be used as an object key
property.

Identifier Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Blank: This attribute specifies whether to display a blank value or 0 when the identifier
property has not been set.

Image

The image property stores a still picture or other image captured on the client device from
either the device’s camera or selected from the file system. This property type is provided as a
part of the overall image capture functionality that may be implemented in the mobile
application. This property should only be displayed in detail screen fields with an edit type of
image capture.

Agentry Language Reference

70 SAP Mobile Platform

This property type will simply store an image captured from the client device’s camera or
selected from the device’s file system. Its contents can be displayed to the user in detail screen
fields of type image capture. It has no attributes beyond the standard property attributes. For an
object these are the name and display name. If the parent is a transaction, which it should be in
most cases, the standard transaction property attributes are set, including name, display name,
the initial value attributes, and optionally special value attributes.

To synchronize data for an Image property, the file document management step type can be
used to store the image as a .jpg file on the file system of the Agentry Server. Also, SDML
data tags can be used to access the image data within other step types.

Integral Number Property Type

The integral number data type stores a whole number. An integral number property can define
the minimum and maximum values it can contain. The hard minimum and maximum limits for
this data type are equivalent to a 32-bit value, allowing for a positive/negative indicator bit.

Integral Number Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Minimum Value: This attribute specifies the minimum value accepted by the property.
This attribute can be no greater than the defined Maximum Value.

• Maximum Value: This attribute specifies the maximum value accepted by the property.
This attribute can be no less than the defined Minimum Value.

• Blank: This attribute specifies whether to display a blank value or 0 when the value of the
property is zero.

Location Property Type

A location property stores a location value returned by a GPS unit that includes the latitude,
longitude, dilution, and number of satellites. The location property value can be invalid if the
parameters of the property definition are not met. The transaction property location type
includes attributes to define these parameters for the location value. The location property
may also be set via rule functions that take the latitude and longitude values, converting them
to a location value.

When defining this property type there are certain attributes specific to it for transactions and
fetches verses objects. The object location property will contain attributes to initialize the
value with a latitude, longitude, position dilution, and satellite count.

For a transaction or fetch location property, these same attributes can be set. In addition to
these, there are also attributes to specify what is considered the minimum requirements for a
valid location value for that property. These attributes set the minimum number of satellites,

Agentry Language Reference

Agentry Language Reference 71

and the maximo age and position dilution for a location value returned from the GPS unit. If
these minimums are not met, the behavior is definable within the property. The value can still
be accepted, or it can be rejected.

For transaction and fetch location properties, there also exist the common initialization
attributes. These attributes will override the defined latitude, longitude, position dilution, and
number of satellites values for the property.

Location Property Attributes

• Name: Contains the internal unique name for the property definition. This value must be
unique among all properties within the same parent definition.

• Maximum Reading Age: This attribute specifies the maximum reading age in seconds for
the value returned by the GPS unit. This reading age represents the last time the unit took a
reading. The Maximum Reading Age will dictate the oldest allowable reading for the
location property. A location with a reading age older than the one specified in this
attribute will be considered an invalid location.

• Minimum Number of Satellites: This attribute specifies the minimum number of
satellites used to calculate the location. There is a minimum of 3 satellites required for any
GPS location. A higher minimum may be specified. Note that this differs from the number
of satellites the unit can see. This value specifies the number actually used to calculate the
location. If this number is less than the minimum number specified the location will be
considered invalid.

• Maximum Position Dilution: This attribute specifies the maximum acceptable position
dilution for a location returned to the location property. This is an integral number with a
range of values from 1 through 50, inclusive. If the position dilution returned with the
location value exceeds this maximum the location will be considered invalid.

• Accept Invalid Data: This attribute specifies whether or not a location value that does not
meet the criteria set for a valid location value to be accepted. If this attribute is set, invalid
locations will be accepted. The property will return an invalid location value, which may
be checked using the rule function term @IS_VALID_LOCATION.

Transaction and Fetch Attributes - The standard fetch and transaction attributes for initializing
the property and targeting object properties are available for the Location property type. The
attribute Initial Value includes the normal available settings plus the options listed below,
which are specific to the Location type.

• Current Location After Data Entry: This option specifies the property should be
updated to the device’s location after the transaction has been finished and just before it is
applied. This value is obtained from the device’s GPS unit.

• Current Location Before Data Entry: This option specifies the property should be
updated to the device’s location before the transaction is displayed to the user. This value is
obtained from the device’s GPS unit.

Agentry Language Reference

72 SAP Mobile Platform

Object Property Type

The object property data type is used to define an object as a property. The object property type
stores a single object instance of a defined type as a property of a parent object, transaction, or
fetch.

Object Property Attributes

Note: This property type does not have Special Value attributes.

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Object: This attribute specifies the type of object the property is to contain. The object
selected here must already exist within the same module before the property is defined.

Signature Property Type

The signature property type stores a signature entered by a user on the Agentry Client. This is
an actual, written signature that can be entered on the device using a stylus or some other
electronic pen. This signature is stored internally as a bitmap image. Normally only
transaction definitions contain signature properties.

Signature properties may not be initialized to the value of another property. Also, it is outside
the normal usage to target an object property with a transaction property of type signature. The
primary intent of the signature property is to capture a signature in bitmap format on the client
device and to then transfer that bitmap image to the back end system as a part of the
transaction’s synchronization processing.

This property type includes definable behaviors covering the control that will display the
property, and the minimum height and width of the bitmap image captured to treat as a valid
signature.

This property type has several associated SDML data tags for accessing its bitmap data. The
information on these should be reviewed when working with this property type.

Signature Property Attributes

Note: This property type does not have Special Value attributes.

General Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

Agentry Language Reference

Agentry Language Reference 73

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

• Required: This attribute specifies whether or not the signature is required. For a
transaction when this attribute is true, the user will not be able to advance the wizard until
the signature has been captured. This includes meeting the Minimum Signature Size
Requirements attribute settings.

• Time and Date: This attribute specifies whether to embed the client device’s current date
and time in the image.

• Update Rule: This attribute references a rule definition, the return value from which is
expected to be a string. This value will be embedded in the bitmap image with the
signature.

• Signed: This attribute contains the text value displayed in the detail screen field targeting
the property when the signature has been captured.

• Get Signature: This attribute contains the text value displayed in the detail screen field
targeting the property before the signature has been captured.

Maximum Window Size

• Height: This attribute specifies the maximum height of the window, in pixels, where the
signature is entered.

• Width: This attribute specifies the maximum width of the window, in pixels, where the
signature is entered.

Minimum Required Signature Size

• Height: This attribute specifies the minimum height, in pixels, for the signature value. If
the signature does not meet this minimum, the signature will not be accepted. If the
signature is required, the user will not be able to advance the wizard until the signature has
been entered with this minimum height.

• Width: This attribute specifies the minimum width, in pixels, for the signature value. If the
signature does not meet this minimum, the signature will not be accepted. If the signature
is required, the user will not be able to advance the wizard until the signature has been
entered with this minimum width.

String Property Type

The string property data type stores any character values as a single string. Definable
behaviors of a string property include the ability to word wrap its contents upon display, to trim
leading or trailing spaces within the string, and to treat the value as a password.

String Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

Agentry Language Reference

74 SAP Mobile Platform

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Agentry Client. This will also be the default label for any screen
control that displays this property.

• Case: This attribute specifies the case of the characters within the string property. This also
can affect how multiple parent definitions, such as objects, are sorted based on the value of
the property. The options for this attribute are: Lowercase Only, Uppercase Only, Mixed
(case-insensitive), and Mixed (case-sensitive). The lower and uppercase settings will force
any characters within the property to either lower or uppercase, respectively. The two
Mixed case options will preserve the case of the characters as entered. The case-sensitive
and case-insensitive settings specify how the value of the property is compared, either with
respect to case or ignore it.

• Format: This attribute specifies how the value contained within the string property should
be treated by the device or, more specifically, the operating system of the device. The
options available for this attribute include email address, telephone number, and URL.
Specifying this one of these options will result in the value being passed to the operating
system with instructions to “open” the value in the corresponding application for the
selected format; e.g. specifying the option URL will open the device’s web browser and
navigate to the value in the string property.

• Minimum Length: This attribute specifies the minimum number of characters the
property will accept. For transaction string properties, the user will not be able to advance
the wizard unless this minimum number of characters is entered or set for the property.

• Maximum Length: This attribute specifies the maximum number of characters the
property can contain. Editable fields displaying this property will not allow the entry of
more than this number of characters. Object properties will truncate any value to this
maximum number of characters for the string property.

• Carriage Return: This attribute will affect properties that are displayed in fields with
multiple lines. If set to true, when the user hits the Enter key, or if a carriage return value
exists in the string, a new line will be started within the multi-line field.

• Word Wrap: This attribute is another that affects properties displayed in multi-line fields.
When set to true, if the text contained within the property is longer than the width of the
field in which it is displayed, it will automatically wrap to the next line of the field, rather
than scrolling past the far right edge.

• Password: This attribute controls whether the value entered for the property should be
displayed or hidden. When set to true, the value for the property will not be displayed, but
rather each character will be replaced by an asterisk (*). This is also true when users enter a
value for this property.

• Trim: This attribute specifies whether white space characters at the beginning or end of the
string should be preserved. When set to true, any leading or trailing white space will be
trimmed from the value. Any white space within the string will not be trimmed.

Agentry Language Reference

Agentry Language Reference 75

Time Property Type

The time property data type stores a time of day value. This value is stored internally as the
number of seconds after midnight, with midnight itself represented as 0. The default display
format of a time property is HH:MM:SS am/pm.

Time Property Attributes

• Name: This is the unique identifier for the property definition. This value must be unique
among all properties within the same parent definition.

• Display Name: This attribute sets the default display name to label or otherwise identify
the property value on the Client. This will also be the default label for any screen control
that displays this property.

Push

A push defines when it is necessary to push an object from the back end system to the Agentry
Client and how that object’s data is retrieved. A push provides real-time data synchronization
for server-to-client data transfer, targeting a top-level object collection property within the
same module. The push determines if changes have been made to the back end system and also
retrieves the needed data to send those changes to the client. Part of the push definition is the
optional behavior to notify users when data has been pushed to their clients.

There are five child definitions to the push, each a step usage definition. These steps provide
the behaviors of polling the back end system for data changes that include new or modified
business objects, polling and retrieving data for objects to be removed from clients, steps to
retrieve data when changes have been found during a poll, updating the back end system after
the new objects have been processed, and error handling steps.

The push itself defines how often to poll the back end system for changes, whether or not to
display notifications on the Client of data after is has been pushed down and the nature of that
notification, and an optional action that may be executed for each object pushed down to a
Client.

The Push definition is the primary definition for implementing push behavior, but it is not the
only definition type involved. The application-level definition transmit configuration also
plays a part in this behavior. Specifically, a transmit configuration must be defined to maintain
a constant connection between the Agentry Client and Agentry Server.

Additionally, if the system connection to be used for push processing is a SQL Database
connection type, the configuration file SqlBE.ini for the Agentry Server is likely to need
modification. Two sections within this file, EnablePushUser and DisablePushUser
are processed by the Server as a part of the overall push processing for a database system. For
other system connection types this file is not involved. Information on this configuration file
can be found in the Agentry Implementation Guide for both Windows and Linux.

Agentry Language Reference

76 SAP Mobile Platform

Push Child Definitions

• Retrieval Step: A push retrieval step references a step definition run to determine if object
data has changed in the back end system and how that data is retrieved.

• Removal Step: A push removal step references a step definition run to determine what
objects should be removed from the collection on the Agentry Client.

• Read Step: A push read step references a step definition to be run to continue the data
retrieval for the object collection targeted by the push.

• Response Step: A push response step references a step to be run after the Agentry Server
receives notification from the Agentry Client that an object has been successfully pushed
down.

• Error Step: A push error step references a step definition to be executed when one of the
other step usage definitions within the push return an error.

Push Attributes
General Attributes

• Collection: This attribute specifies the target object collection for which the push will
synchronize data. This must be a top-level object collection property within the same
module as the push definition.

• Name: This is the internal definition name for the push. This must be unique among all
push definitions within the same module.

• Display Name: This is the default display value for the push definition when reference is
made to it on the Agentry Client.

• Poll Interval: This attribute contains a duration value in hours, minutes and seconds,
specifying how often to poll the back end system for modifications. At each poll interval
the push retrieval steps and push removal steps will be processed by the Agentry Server.
The value of the Poll Interval must be less than the transmit configuration attribute
Inactive Time attribute of the transmit configuration defined to support the push behavior.

• Read Steps: This attribute specifies whether to use the read steps defined in the object type
for the push’s target collection property. When this attribute is checked, the read steps in
the object type will be processed to synchronize data rather than the push read steps.

• Queue Messages: This attribute allows for push messages from the Agentry Server to the
Agentry Client to be queued if they are not successfully sent after the first attempt or if the
Agentry Client indicates it is still processing the previously received message.

Notification Attributes

• Dialog Pops Up: This attribute specifies whether or not a notification dialog is displayed
on the Agentry Client after an object has been pushed down to the Client and when that
dialog should be displayed. The options for this attribute are:
• After all data received: This setting will display the notification after all objects have

been successfully pushed to the Client.

Agentry Language Reference

Agentry Language Reference 77

• Immediately: This setting will display the notification after each object has been
successfully pushed to the Client. If multiple objects are pushed based on a single poll,
the notification dialog will displayed once for each object.

• No Dialog (sound only): This setting will not display any notification dialog to the user,
with the client’s default system sound being the only one played.

• When user clicks icon: This setting will display an icon on the Agentry Client after
objects have been pushed down. The notification dialog will then not be displayed until
the user clicks this icon.

• Data Received Text: This attribute specifies whether or not to display notification text for
new or replaced object instances and, if enabled, the contents of the notification message.
This includes both the message to display to the user and the text in the notification dialogs
title bar.

• Data Removed Text: This attribute specifies whether or not to display notification text
when object instances are removed and, if enabled, the contents of the notification
message. This includes both the message to display to the user and the text in the
notification dialogs title bar.

• Rec’d & Rem’d Text: This attribute specifies whether or not to display notification text
when both new object instances received from the push and other object instances are
removed. If enabled, the contents of the notification message are also a part of this attribute
setting. This includes both the message to display to the user and the text in the notification
dialogs title bar.

• Notification: This attribute enables or disables the external notification behavior. When
enabled, the client device’s hardware LED light will be activated by the Agentry Client.
This attribute has no affect on client devices without such hardware.

• Play Sound: This attribute enables or disables the system’s default sound for notification
when objects are synchronized by the push. When this attribute is enabled, the option for
how many times to play the sound is set. This will also enable the Interval Between Sounds
attribute.

• Interval Between Sounds: This attribute is enabled when the Play Sound attribute is
enabled and it specifies the sound be played multiple times. The Interval Between Sounds
attribute then specifies the duration of time between each instance of the sound.

Action Attributes

• Action After Object Received: This attribute references an action to execute when an
object is pushed down to the Agentry Client. When an action is selected here, that action
will be executed for each object instance pushed to the Client, targeting that object. This
action is not executed when objects are removed based on the push synchronization. If the
user is currently executing an action when an object is pushed to the client (e.g., the user is
viewing a transaction wizard), the action defined for the push is queued and will be
executed when the current action is completed.

• Action When Push Completes: This attribute references an action to execute when the
push has finished pushing down all object instances to the Agentry Client. This action
targets the object collection targeted by the push.

Agentry Language Reference

78 SAP Mobile Platform

• Cancel Action: This attribute specifies whether or not any action currently being executed
on the Agentry Client is cancelled when objects are pushed down. If this option is disabled
and an action is being executed while an object is being pushed down to the Agentry
Client, the object will not be received by the Agentry Client.

Push Retrieval Step

A push retrieval step references a step definition run to determine if data has changed in the
back end system and how that data is retrieved. A retrieval step can be executed either once, or
iteratively based on the number of users logged in to receive push data. A push retrieval step is
run as a part of the back end polling performed by the push. The step referenced by a push
retrieval step is expected to return the key property of any object instances to be pushed to the
Agentry Client. It may also return additional property values for the object type. If defined to
one run once per poll period it is also expected to return the Client user ID to which the object
will be sent.

A push retrieval step can also return data for the object type targeted by the fetch, as well as for
its child objects. However, it is recommended that child, or nested collections be synchronized
by the push read steps or the object read steps (depending on how the push is defined). Since
retrieval steps are run every poll period, the step definitions they use should be defined to
perform the least amount of processing necessary to determine if new object data needs to be
retrieved. Non-collection property values for the target object type can also be retrieved by the
retrieval step in this model, but no additional data should be retrieved here for the sake of
efficiency of the push’s polling activity.

The retrieval step may be executed, or run, in one of two ways for a given poll. First it may be
defined to run once per user currently logged in to receive push data. For this type of execution,
the data returned by the retrieval step will be organized internally by the Server for each user.
The step being run should then include logic that includes retrieving data specific to each user,
matching the criteria for the implementation related to how objects are synchronized. The step
itself will then be executed multiple times, once for each user, during a single poll of the back
end. Note that this can be a significant number of executions in a production environment,
where it is common for hundreds of users to be connected to the Server for push processing.
When run in this manner, the user ID value for each user is acessible via the <<userID>>
SDML data tag.

The second option for running push retrieval steps is to run them once per poll period. This
behavior will run the step a single time for a given poll regardless of the number of users
currently connected to the Server for push data. In this scenario, the data returned by the step
must include the user ID specifying which client user will receive a given object. This value
should be identified to the Server as UserID. Once the object instance has been created by the
Server and the synchronization of the push overall is completed, the object instance will be
pushed to that user. When run in this manner individual user ID’s are not available to the step.

When a push retrieval step returns the key property of the push’s target object type, the push
read steps or the object read steps (depending on the definition of the push) will be run to

Agentry Language Reference

Agentry Language Reference 79

continue the synchronization of the target object collection. If no key property is returned by
any push retrieval step, it is assumed no new data needs to be pushed to the Client. No read
steps will be run in this situation.

Retrieval Step Attributes

• Step: This attribute references the step definition within the same module to be run as a
push retrieval step. These steps may return values for any property within the targeted
object type of the push, but must return the key property of that object to indicate that one
or more objects should be synchronized by the push and sent to the Client. For steps run
once, the data returned by the step must also include the Client user ID to which the object
will be sent.

• Run: This attribute specifies how often to run the referenced step during a single poll
interval. This may be set to either Run One Time, or Run Once Per User. The former will
execute the step once for a given poll period and the user ID value is not available. The
latter will execute the step once per user currently connected to the Server for push data
during a given poll period and the user ID value is available.

• Read Into: This attribute specifies for which object within the data structure of the
targeted object collection the step will return data. While retrieval steps can return data for
nested collections, it is recommended that this be handled by the push read steps, as these
will only be run when the retrieval steps indicate new data is needed.

Push Removal Step

A push removal step references a step definition run to determine what objects should be
removed from the target collection on the Agentry Client. A removal step can be executed
either once, or iteratively based on the number of users logged in to receive push data. A
removal step is run as a part of the back end polling performed by the push. The step referenced
by a push removal step definition is expected to return the key property of any object instance
to be deleted from the Client. If defined to run once per poll period it is also expected to return
the Client user ID from which the object will be removed.

A removal step may be run once per poll of the back end system, or once per user per poll
period, depending on how it is defined. When a removal step is run once per user, data returned
by the step will be organized according to each user. Note that this scenario can result in a large
number of executions of the step per poll, as the number of users logged in into the Server is
commonly in the hundreds or more in a production environment. When run in this manner, the
user ID value for each user is accessible via the <<userID>> SDML data tag.

When a removal step is defined to run one time, it will be executed once per poll period,
regardless of the number of users connected to the Server. In this situation, the data returned by
the removal step should also include the user ID as entered on the Client, indicating which
client will receive the key property for the object to be removed. It is recommended that this is
how most, if not all removal steps are defined within a push as it is a more efficient model of
data synchronization. When run in this manner individual user ID’s are not available to the
step.

Agentry Language Reference

80 SAP Mobile Platform

Removal Step Attributes
• Step: This attribute specifies the step definition within the same module as the push to be

run as a push removal step.
• Run: This attribute specifies how often to run the step in a given poll period. The options

for this attribute are Run One Time or Run Once Per User. The former will execute the step
once during the poll period and individual user ID’s are not available. The latter will
execute the step once per user currently connected for push data and individual user ID’s
are available to the step.

• Read Into: Not currently supported - leave set to default.

Push Read Step

A push read step references a step definition to be run to continue to read data for the target
object collection. This is a continuation of the synchronization process begun by the retrieval
steps for the push. A push read step can be executed once or iteratively based on the number of
objects and number of users logged in to receive push data. A push read step is only run if the
retrieval steps indicate their are objects to be retrieved.

The execution of the read step can be based on the number of objects created by the retrieval
steps, the number of objects in a nested collection created by previous retrieval or read steps, or
based on the number of users currently connected to receive push data.

When run once per user, the step will have access to individual user ID’s via the SDML data
tag <<user.agentryID>>. Also, any values stored in the <<user.info>> data tag are
still available. When run in this manner it is important to note that the step will be executed
once for each user during each poll period when the retrieval steps indicate there is data to be
synchronized. For production systems it is not uncommon for the number of users connected
for push data to be in the hundreds or more.

When run once per object, the read step will be executed for each object instance for the
collection targeted by the push created by any other push steps prior to the current step’s
execution. When run in this manner the step will have access to the key property of the object
for which it is currently executing.

When run once per collection object, the read step should target (Read Into) a nested collection
of the collection targeted by the push. The step will then be executed once for each object
instance within in this nested collection created by the push steps prior to the current step’s
execution. The step is expected to return property values for the object type stored in the nested
collection. It should also return the key property of any object between the nested object and
the top-level object type in the data hierarchy of the module. This configuration is primarily
intended for file transfer functionality and it is recommended it not be used for other purposes
unless no alternative is available.

When the read step is defined to run once per poll period, it is expected to return data for the
object type in the collection it targets, which will either be the same as the push’s target
collection, or a nested collection of that target. It will not have access to individual user ID’s or

Agentry Language Reference

Agentry Language Reference 81

to any object key properties. It must also return the Client user ID indicating to which user the
object should be sent.

Read Step Attributes

• Step: This attribute specifies the step definition within the same module as the push to be
run as a push read step.

• Run: This attribute specifies how often to run the step in a given poll period. The options
for this attribute are Run One Time or Run Once Per User. The former will execute the step
once during the poll period and individual user information is not available. The latter will
execute the step once per user currently connected for push data and individual user
information, including user ID’s are available to the step.

• Read Into: This attribute specifies which objects to create with the data returned by the
step. This may be the same collection as is targeted by the fetch, or one of its nested
collections. To read data into the push’s target collection, this attribute is left set to its
default value of “None.” For nested collections, the desired collection is selected in the
Add Wizard or in the properties view.

Push Response Step

A push response step references a step to be run when the Agentry Server receives notification
from the Agentry Client that an object has been successfully pushed down. This step is run to
update the necessary back end objects that the object has been processed by the push. A push
response step is always executed once per object pushed to the Client.

Response Step Attributes

• Step: This attribute specifies the step definition within the same module as the push to be
run as a push response step.

• Run: This attribute cannot be changed for this step usage definition. This step type is
always run once per object.

• Read Into: Not currently supported - leave set to default.

Push Error Handling Step

A push error step references a step definition to be executed when one of the other step usage
definitions within the push return an error. An error step is always executed once per object.

The intended purpose of a push error step is to perform any cleanup or similar actions in the
event an error occurs in processing on of the push’s steps. This may include items such as
marking the object data in the back end as not pushed, or other similar processing.

Error Handling Step Attributes

• Step: This attribute specifies the step definition within the same module as the push to be
run as a push error step.

Agentry Language Reference

82 SAP Mobile Platform

• Run: This attribute cannot be changed for this step usage definition. This step type is
always run once per object.

• Read Into: Not currently supported - leave set to default.

Service Event

A service event defines how the Agentry Server synchronizes data between two back end
systems. A service event will normally perform such a synchronization when a change or
“event” occurs in a source back end system that must be reflected in a destination back end
system. Depending on its type, a Service Event can either actively poll a back end system, or
listen to the source back end for messages notifying it of a change. A service event targets an
object collection to facilitate this data transfer, with the object instances in that collection
storing the data retrieved from the source back end. The synchronization processing of a
service event does not involve or affect any Agentry Clients.

The service event creates object instances based on data retrieved from the source back end
system. It then updates this object data to the destination back end system. The components of
the service event that retrieve data from the source back end system differ for each service
event type. The child definitions to update the destination back end system are the same set of
step usage definitions for all service event types.

There are four types of service events that may be defined:

• Poll With Step: A Poll With Step service event type references a step definition that is run
by the Agentry Server periodically to actively poll the source back end system for data
changes.

• Java Callback: A Java Callback service event type includes a Java code component that is
an extension of the ServiceEvent Agentry Java API class that allows a the source back end
system to call into the Agentry Server as a notification of a modification to that back end
system’s data.

• HTTP-XML Message Received: An HTTP-XML message received service event type
includes XML message mappings that will map messages sent from the source back end
system to the Agentry Server to indicate data has changed in that back end system.

• File System Monitor: A File System Monitor service event type is defined to monitor a
specified directory on the Agentry Server’s host file system for changes and includes
document mappings to map data in that directory’s files to the properties of the service
event’s target object type.

Service Event Child Definitions
While each service event type has different components to capture data changes in the source
back end system, all service event types contain the same child definitions to update the
destination back end system:

• Read Step: A service event read step references a step definition run to retrieve any
additional data for the target object collection from the source back end system.

Agentry Language Reference

Agentry Language Reference 83

• Data State Step: A service event data state step references a step definition run to check
for data collisions in the destination back end system before the service event makes any
changes to it.

• Update Step: A service event update step references a step definition run to update the
destination back end system with data stored in the service event’s target object collection.

• Error Handling Step: A service event error handling step references a step definition run
only when one of the other service event child step usage definitions returns an error.

Service Event Attributes
The attributes for a service event vary depending on the service event type. See the service
event type-specific information for details on these attributes.

Service Event Type: Poll With Step

A Poll With Step service event type references a step definition that is run by the Agentry
Server periodically to actively poll the source back end system for data changes. This step
definition is commonly a SQL step, though this is not a requirement. The step polling the
source back end must return the key property of the object for which the service event has been
defined to indicate there is data to be updated to the destination back end system. When the
step returns this value, the service event’s read, data state, and update steps are processed.

This service event type is typically defined when the source back end is a SQL Database
system connection, although any back end may be actively polled provided the correct step
type definition is used. The only requirement of the step referenced by the service event to poll
the source back end is that it return the key property for each object instance of the target object
type to be synchronized.

This service event type includes the poll interval, which is the duration of time between polls
of the source back end by the service event. The number of objects retrieved from the source
back end can be limited to a maximum number of instances per poll interval.

Poll With Step Service Event Attributes

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Step: This attribute references the step definition to be run by the service event to poll the
source back end system. The step referenced here should be written to return the key
property of the target object type of the service event whenever data has changed in the
source back end.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Poll Interval: This attribute specifies the duration of time between polls of the source back
end by the service event. This attribute is set in hours, minutes and seconds. The step

Agentry Language Reference

84 SAP Mobile Platform

definition referenced in the Step attribute will be run periodically based on the value in the
Poll Interval attribute.

• Object Limit: This attribute specifies the maximum number of object instances to create
using the data returned by the service event’s defined step. If this step returns the key
property values for objects than specified here, the order in which the step returns them
will determine which object instances will be created and which will not.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

Service Event Type: Java Callback

A Java Callback service event type includes a Java code component that is an extension of the
ServiceEvent Agentry Java API class. Included in this class must be a method into which the
source back end system can the Agentry Server as a notification of a modification to that back
end system’s data. this class is instantiated when the service event is loaded by the Server
during startup. The information passed to this method must include the key property of the
service event’s defined object type. When a message is received by this class that includes the
service event’s target object’s key property the read steps, data state steps, and update steps
will be processed by the Agentry Server to update the destination back end system.

The Java code component of this service event type is initially created as a skeleton class. The
developer must then implement the methods for this class to process the message received
from the source back end system. It may include additional methods for processing the
message once received, but only one method within the class can be called by the source back
end. Data captured from the source back end must then be passed from this class to the
Agentry Server using the standards within the Agentry Java API.

Java Callback Service Event Attributes:

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Connection: This attribute references a Java Virtual Machine system connection within
the application. This system connection is the one to with which the service event will
communicate. This connection will be the one over which the source back end system
sends the message to the service event when a data change occurs. This system connection
must exist prior to defining the service event and it must be of type Java Virtual Machine.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

Agentry Language Reference

Agentry Language Reference 85

Service Event Type: HTTP-XML Message Received

An HTTP-XML message received service event type includes XML message mappings that
will map messages sent from the source back end system to the Agentry Server to indicate data
has changed in that back end system. This call is made by the back end system via a CGI
message containing XML data or an XML document. The service event will filter messages
using an XPath value. The service event will then handle this message by processing the read,
data state, and update step definitions to update the destination back end system.

This type of service event includes a child definition called message mapping. A given HTTP-
XML Message Received service event may have one or more message mapping. Each
mapping definition is intended to map data from the XML message or document to the
properties of the target object of the service event, or to one of a selection of other data items
within the application.

As a part of the HTTP-XML service event type, an HTTP response is defined. This response is
sent by the Agentry Server back to the HTTP server that initially sent the XML message; that
is, the response is sent back to the source back end system. Included in this response is one of
the standard HTTP response status codes, as well as other possible information. This
information can include fixed string data, or HTTP markup. This response after all processing
for the service event has completed, including all read, data state, and update step execution.

HTTP-XML Message Received Service Event - General Attributes

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Connection: This attribute references an HTTP-XML system connection type within the
same application. This connection is the one over which the source back end system will
send the message to the Agentry Server containing the XML data or document to be
processed by the service event. This system connection must exist prior to defining the
HTTP-XML Message Received service event and must be of type HTTP-XML.

• Message Filter: This attribute contains the XPath statement to filter messages received by
the service event. If the service event can select one or more nodes within the message
document using this XPath, the service event will process the message. If it cannot make
such a selection, it will ignore the message.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

• Run Push: This attribute specifies a push definition to run when this service event type is
called from the back end system. This is provided as an alternative to the default polling

Agentry Language Reference

86 SAP Mobile Platform

behavior of a push definition, allowing them to be run on demand by the back end system
instead.

HTTP-XML Message Received Service Event - HTTP Response Attributes
HTTP Response

• HTTP Response Code: This attribute specifies the HTTP response status code sent by the
Agentry Server to the source back end system that initially called the service event.

• Response Data Type: This attribute specifies the data type of any data within the HTTP
response status sent by the Agentry Server. This can be set to Fixed String, Small Markup
or Large Markup. A fixed string is a single string value defined in the Response attribute.
Small Markup is a short piece of HTML text, also set in the Response attribute. Large
Markup is a larger chunk of HTML text, likely spanning multiple lines. This text is stored
in the file referenced by the Markup File attribute.

• Markup File: This attribute is available only when the Response Data Type is set to Large
Markup. Markup File references the text file containing the HTML text to be sent as a part
of the HTTP Response by the service event.

• Response: This attribute is available when Response Data Type is set to either Fixed
String or Small Markup. For fixed string, the Response attribute can contain any text value.
For Small Markup the Response attribute should contain HTML text. The contents of the
Response attribute are sent as a part of the HTTP Response by the service event.

Error Response

• Error Response Code: This attribute specifies the HTTP response status code sent by the
Agentry Server to the source back end system that initially called the service event.

• Error Data Type: This attribute specifies the data type of any data within the HTTP
response status sent by the Agentry Server. This can be set to Fixed String, Small Markup
or Large Markup. A fixed string is a single string value defined in the Response attribute.
Small Markup is a short piece of HTML text, also set in the Response attribute. Large
Markup is a larger chunk of HTML text, likely spanning multiple lines. This text is stored
in the file referenced by the Markup File attribute.

• Markup File: This attribute is available only when the Response Data Type is set to
Large Markup. Markup File references the text file containing the HTML text to be sent
as a part of the HTTP Response by the service event.

• Response: This attribute is available when Response Data Type is set to either Fixed
String or Small Markup. For fixed string, the Response attribute can contain any text
value. For Small Markup the Response attribute should contain HTML text. The contents
of the Response attribute are included as a part of the HTTP Response sent by the service
event.

HTTP-XML Service Event Message Mapping

The HTTP-XML service event type includes the child definition type Message Mapping.
Service events of this type can contain one or more of these child definitions. The purpose of a

Agentry Language Reference

Agentry Language Reference 87

message mapping is to map data in the XML document that is a part of the message received by
the service event to the properties or other data values within the application.

A part of the message mapping definition is the XPath to the location of the data in the XML
structure. When a data value is found it is then mapped, according to the message mapping, to
either the property values of the object type targeted by the service event, or to one of a list of
other options for data sources within the application.

HTTP XML Service Event Message Mapping Attributes

• Mapping Type: This attribute specifies the mapping type. This may be either XPath
Expression or XML Transformation.

• Base XPath: This attribute is optional and should be used when returning multiple
instances of the same data element in the XML content. When a Base XPath is defined for
a response mapping, the same value will be set by default in the add wizard for subsequent
message mappings within the same parent service event.

• XPath: This attribute is only available when the Mapping Type is set to XPath
Expression. This attribute contains the XPath value to extract the desired value from
structured XML data contained in the message received by the service event.

• XSL: This attribute is only available when the Mapping Type is set to XML
Transformation. It contains the XSL expression to transform the XML data contained in
the message received by the service event.

• Maps To: This attribute specifies where the value extracted by the message mapping is
stored in the application. This may be one of the following values for a service event:
• Last Update: This selection specifies the extracted value is a date and time indicating

when the object’s source in the back end system was last modified. This value is
mapped to the last update value within the object instance created by the service event.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent message mappings in the same parent service event. The value of this data
tag will be the value extracted by the response mapping. When selected, the attribute
String Name will be available to name the local data tag created. This is the equivalent
to calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent message mappings in the same service event. The value of this
data tag will be the value extracted by the response mapping.

• Parent Object Key Property: This selection will set the value extracted by the message
mapping to the key property of the parent object to the object created by the message
received by the service event. This will not change the parent object’s key property, but
rather is used by the Agentry Server to identify which object is the parent object.

• Property Path: This select will set the value extracted by the message mapping to the
property selected in the Property Path field. This will change the value of the property
to the value extracted from the message received by the service event.

Agentry Language Reference

88 SAP Mobile Platform

Service Event Type: File System Monitor

A File System Monitor service event type is defined to monitor a specified directory on the
Agentry Server’s host file system for changes. When a file system monitor service event is
defined and published to the Server, the Server will begin monitoring the directory the service
event has been defined to watch, which is then the source back end system for the service
event. When a change occurs to the contents of this directory, the Server will attempt to open
each file in the directory for reading. Once a file is opened successfully, the service event’s
defined command will be executed, followed by its read, data state, and update step definitions
to update the destination back end system.

If the Agentry Server is unable to open a file for reading, it will wait a short period and attempt
the operation again. If it is unable to open the file after this second attempt, it will skip the file
and process the next on found in the directory. When a file is successfully opened, the defined
command for the service event is executed for that file. The service events child step usage
definitions are then processed. Once this is complete, the next file in the directory is processed
according this same procedure. Note that the Agentry Server will delete all files from the
directory that it successfully processes. To prevent this behavior, the command should include
copying the file to a different location, or rename the file to one that does not match the File
Filter attribute of the service event definition.

The command defined for this service event type is primarily intended to prepare files for
transfer or reading by the service event. The command can be any executable file type and is a
Windows batch file (.bat) by default. The file type may be changed by editing the file
extension of the file name in the File attribute of the Command tab.

A file system monitor service event includes the document mapping child definition type. The
service event may contain one or more of these child definitions, each of which will map a file
or file-related data to the properties of the object type targeted by the service event; or
alternately one of the other data components of the application.

File System Monitor Service Event Attributes

• Name: The internal unique name for the service event definition, must be unique among
all service events defined within the same module.

• Connection: This attribute references a File system connection type to the Agentry
Server’s host file system. The directory monitored by the service event must exist on this
file system. The Agentry Server must have read-write access to this directory. The system
connection must be of type File System and must exist prior to defining the service event.

• Directory: This attribute specifies the directory to be monitored by the service event. This
path can be either a full path beginning with the file system root, or it may be a relative path
to the installation location of the Agentry Server. The Server must have read-write
privileges to this directory. Changes to this directory monitored by the service event
include the addition of new files or modifications of existing files determined by changes
to the modification date in the file’s metadata.

Agentry Language Reference

Agentry Language Reference 89

• File Filter: This attribute can contain any file name matching characters to specify which
files or file types the service event should monitor. This value can include wild cards in the
form of asterisks. Any files at the location specified by the Directory attribute that match
the file name pattern specified in File Filter will be monitored. Any others will be ignored
by the service event. If File Filter is left blank, all files within the directory will be
monitored.

• Object Type: This attribute specifies the target object type of the service event. The
properties of this object will store the data retrieved from the source back end to be updated
to the destination back end. This may include child object collections where necessary.

• Read Steps: This attribute specifies whether to retrieve data from the source back end
system using the read steps defined in the service event, or those defined in the target object
type of the service event. When this attribute is true, the object’s read steps will be used and
the service event’s read steps will not be processed.

File System Monitor Service Event Document Mapping

The File System Monitor service event type includes the child definition type Document
Mapping. A document mapping is defined to map a file or other data generated by the service
event’s command to a property within the application. Data that may be mapped includes a file
created by the command, output written by the command to standard error or standard output,
or the exit code passed to the operating system by the command.

Multiple document mappings may be defined for the same parent service event to capture each
of these values. This can allow the application to determine if an error occurs when the service
event’s command is executed, as well as specific information about the error.

File System Monitor Service Event Document Mapping Attributes

• Property: This attribute specifies the property to which the data extracted by the
document mapping is assigned. The data type of the property selected should reflect the
setting for the Output Type attribute.

• Output Type: This attribute specifies which output from the service event’s command
contains the data to be mapped to the item referenced in the Property attribute. This may
be set to one of the following options:
• Command Exit Code: This selection specifies the value returned by the command to

the operating system. This exit code will be the value stored in the item selected in the
Property attribute. The property selected should of type integral number to store the
command exit code in most cases.

• File Created by Command: This selection specifies that the file created by the service
event’s command should be assigned to the item referenced in the Property attribute.
This data of the selected property should be External Data when this Output Type is
defined.

• STDERR: This selection specifies that any output from the service event’s command
written to STDERR, or standard error, is assigned to the item referenced in the Property

Agentry Language Reference

90 SAP Mobile Platform

attribute. The data type of the selected property should be String when this Output Type
is defined.

• STDOUT: This selection specifies that any output from the service event’s command
written to STDOUT, or standard output, is assigned to the item referenced in the
Property attribute. The data type of the selected property should be String when this
Output Type is defined.

• File Name: This attribute is available only when the Output Type is set to File Created by
Command. The File Name attribute specifies the name of the file created by the service
event’s command that is to be referenced by the item selected in the Property attribute.
This attribute can include the SDML <<script>>, which expands to the name of the file in
which the service event’s command is stored. It is common to use this value as a part of the
name for the file generated by the command.

• Delete File: This attribute specifies whether or not to delete the file created by the service
event’s command. When set, the file will be removed after the service event has finished
processing it. Otherwise the file will remain after the service event has completed
processing.

Step

A step defines a single piece of processing to be performed by the Agentry Server with a
specific back end system. There are different types of steps, defined based on the system
connection for which the step is defined. A step defines what action to take and against which
back end system. It will not be executed by the Agentry Server unless it is referenced by
another definition that defines Server processing.

The step definition must be used by a step usage definition to give it context and purpose. The
step itself defines the back end system and the task to perform. The context of the step will
dictate what values the step will have access to within the application data.

Regardless of the type of step, all may update data to a back end system, including adding,
editing, or deleting that data; and all may retrieve data from the back end system, returning it to
the Agentry Server for use in the application.

There are five types of steps that may be defined, with one each for the Java Virtual Machine,
SQL Database, and HTTP-XML system connection types. The File system connection
supports two step types. When a step definition is created in the Agentry Editor the first
information entered is the system connection for which the step is defined. Based on this
selection the type of step can then be entered. Following are the types of step definitions that
can be defined. The appropriate system connection must exist prior to defining the step.

• SQL Query: A SQL Query step is defined for a SQL Database system connection and
contains the SQL logic to be processed by the Agentry Server for a database back end
system.

• Java Steplet: A Java Step, or Steplet, is defined for a Java Virtual Machine system
connection and contains the Java logic to be processed by the Agentry Server for a Java
interface.

Agentry Language Reference

Agentry Language Reference 91

• XML via HTTP: An XML via HTTP step is defined for an HTTP-XML system
connection and defines a URL called by the Agentry Server and also defines how the XML
data returned from this call is mapped to the data members of the mobile application.

• File Command Line: A File Command Line step is defined for a File System Connection
and defines a command to be executed by the Agentry Server on the host system of the
Server.

• File Document Management: A File Document Management step is defined for a File
System Connection and defines a command to be executed by the Agentry Server on the
host system of the Server in support of transferring files between the Server and the
Agentry Client.

Step Type: SQL Query

A SQL Query step is defined for a SQL Database system connection and contains the SQL
logic to be processed by the Agentry Server for a database back end system. The logic for a
SQL Query step is contained in a text file with a .sql extension. The contents of this file are
processed by the Agentry Server prior to submission to the database for execution. This
preprocessing includes expanding any SDML tags. The results from this expansion must be a
valid SQL statement for the target database type.

The contents of the query file for this step type may be accessed directly on the Agentry
Development Server for the application project. The file path listed for this file is relative to the
installation location of this Server. If this file is modified it is not necessary to publish the
application project for the change to be exhibited. In a production environment this file is not
directly accessible in this manner and must be modified through the Agentry Editor. Changes
made in a production environment must be published.

SQL Query Step Attributes
• Name: Contains the unique internal name of the step definition. This value must be unique

among all step definitions within the same module.
• Connection: This attribute references the system connection for which the step is defined.

This attribute is set when the step is initially created and cannot be modified. For a SQL
Query step this must be a SQL Database system connection type.

• File: This attribute contains the path and file name of the .sql file containing the step’s
SQL statement. This path is relative to the path

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location of the Agentry Development
Server.

Step Type: Java Steplet

A Java Step, or Steplet, is defined for a Java Virtual Machine system connection and contains
the Java logic to be processed by the Agentry Server for a Java interface. The logic for a Java
Steplet is contained in a Java source file with a .java extension. This file is added to an

Agentry Language Reference

92 SAP Mobile Platform

existing Java project in the Eclipse Java perspective. This class created is an extension of the
Agentry Java API class Steplet. The contents of this file are processed by the Java Virtual
Machine running on the host system for the Agentry Server.

With the release of the Agentry Mobile Platform version 5.1 the process for creating of a Java
step definition has changed. The new procedure reflects support for the Java perspective
provided within the Eclipse and allows the developer to add Java logic for a step definition to
existing projects within the Java perspective. The creation of the Java logic portion of a step
definition is now performed through the Java perspective’s wizard for creating classes, and
allows for the selection of the package to which the step is to be added. Java steps created in
previous versions of the mobile platform are still supported and will still reside on the Server’s
file system. New Java steps defined for the application should be created using the Java
wizards provided by the Java Perspective. The file for these steps will then be saved to the file
system according to the configuration of the Java project to which the Steplet is added.

Java Steplet Attributes

• Name: Contains the unique internal name of the step definition. This value must be unique
among all step definitions within the same module.

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For a Java
Steplet this must be a Java Virtual Machine system connection type.

• Source Type: This attribute specifies the source of the Java logic for the step and may be
set to one of the following options:
• Existing Class: This selection will allow for the selection of an existing class within a

project in the Java perspective. The class selected will be the one called when the Java
step is processed by the Server at run time. This class must be an extension of the
Agentry Java API class Steplet.

• New Class: This selection will create a new Java class that is an extension of the
Agentry Java API class Steplet. The Java class wizard within the Java perspective in
Eclipse will be displayed to allow for the creation of this class, including specifying the
project and Java package to which it should be added.

• Source (deprecated): This selection, as indicated, is deprecated and is provided to
support the now deprecated method of managing Java classes for an Agentry mobile
application. This selection will use and store a .java file on the Agentry Server’s file
system. Note that this selection will prevent the ability to organize the source file for
the step in a Java project within the Eclipse Java perspective.

• File: Note that this attribute is deprecated as of version 5.1 of the Agentry Mobile
Platform. While still supported for existing Java steps, it should not be used in new step
definitions. It is only valid when the Source Type attribute is set to the option “Source.”
This attribute contains the path and file name of the .java file containing the step’s SQL
statement. This path is relative to the path

ServerDirectory\Application\Development\Scripts

Agentry Language Reference

Agentry Language Reference 93

where ServerDirectory is the installation location of the Agentry Development
Server.

Step Type: XML via HTTP

An XML via HTTP step is defined for an HTTP-XML system connection and defines a URL
called by the Agentry Server and also defines how the XML data returned from this call is
mapped to the data members of the mobile application. This step includes two child
definitions that encapsulate the arguments passed by the Server to the defined URL, and the
mapping of return values to the data members of the application. An XML via HTTP step is
defined for a specific definition type within the same module.

The first information entered for an XML via HTTP step is the definition for which it is
defined, which may be an object, transaction, or fetch. This information is needed by the step
definition for use in its child definitions, which must have access to the property values of the
selected data definition as a part of their behaviors.

Within this step type is the HTTP request. This portion of the step defines the URL called by
the Agentry Server and the HTTP request method. This may be one of GET, HEAD, POST, or
PUT.

The child definitions to an XML via HTTP step include its request arguments and response
mappings. Request arguments provide access to the property values and other data values in
scope for the step to be passed to the URL defined by the step. Included in this definition is the
type of argument the data represents.

Response mappings extract data from the structured XML data or document returned from the
request. They may use of XPaths to locate and retrieve these values from the XML and define
to which property or other data member of the application the XML contents will be mapped.
Response mappings may be used to extract a specific XML element’s contents, or a parent
element may be specified with a second, child element within that parent of which there may
be multiple instances.

XML via HTTP Child Definitions

• Request Argument:
• Response Mapping:

XML via HTTP Step Attributes
General Attributes

• Used For: This attribute specifies the data definition within the module for which the step
will synchronize data. This may be any fetch, transaction, or object definition within the
application. This attribute set by first selecting the type of definition and then selecting the
specific definition within the project.

• Name: Contains the unique internal name for the step definition. This must be unique
among all steps within the same module.

Agentry Language Reference

94 SAP Mobile Platform

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For an XML
via HTTP step this must be an HTTP-XML system connection type.

HTTP Request Attributes - These attributes are accessible after the step has been defined.
They are organized as a child definition to the step itself and can be navigated to in the Editor
within the Application Explorer view. The HTTP Request for an XML via HTTP step is one of
the rare instances within the Agentry project structure where there may be only one instance of
a child definition within a given parent.

• Name: Contains the unique internal name for the HTTP request within the step definition.
This is set by default to the name of the parent step definition. It may be modified. A given
XML via HTTP step will have only one HTTP request.

• URL: This attribute contains the URL to which the Agentry Server will make a request.
This value will be appended to the value configured as the base URL for the HTTP-XML
system connection. This base URL is configured within the HTTP-XML system
connection configuration options for the Agentry Server. Proper use of both this base URL
option and the URL entered in the requests of the step definitions can support portability
for the application, with the base URL being the implementation-specific portion and the
step’s URL being the portion not likely to change for the same back end system from one
implementation to the next.

• Method: This attribute specifies the HTTP request method for the request. This may be set
to one of GET, HEAD, POST, or PUT.

XML via HTTP Step Request Argument

An HTTP Request Argument is a child definition to the XML via HTTP step definition,
defining the data values passed as arguments to the parent step’s defined URL. Included in the
request argument definition is the type of request and the property value or other data value in
scope for the step to be passed as the argument. Request arguments also have a data type,
which specifies the source for the argument’s data.

A request argument is defined for the parent step only when it is necessary to pass arguments to
the step’s defined URL request. The request allows for access to the property values of the
definition for which the step was defined, as well as values at the user or application level via
the SDML. A fixed string value may also be defined to passed as the argument.

The values accessed via the SDML can be contained in either a small or large markup value.
Both allow for the use of HTML markup text. The difference between these two items is the
manner in which the markup is stored. For a small markup argument, a single field that can
contain one line of markup text is available within the request argument.

Each of these data sources is a different data type within the request argument. A data type is
selected first within the definition, followed by the specific value of that type.

The argument itself also has a type. This may be one of CGI Argument, Cookie, HTTP Header,
or XML Body. The selection of the argument type specifies how the data for the request
argument is passed to the URL defined in the parent step definition.

Agentry Language Reference

Agentry Language Reference 95

A given XML via HTTP step can contain multiple arguments. All arguments are listed within
the Properties View of the parent step definition. Within this list, the position of each request
argument definition specifies the order in which the arguments will be passed to the URL
request. This order can be changed by moving the arguments up or down within the list.

Request Argument Attributes

• Argument Type: This attribute specifies how the data within the argument will be passed
to the URL defined in the parent step definition. This may be one of CGI Argument,
Cookie, HTTP Header, or XML Body.

• Name: Contains the unique internal name of the request argument. This value must be
unique among all request arguments within the same step definition. The field label in the
Editor for this attribute will change based on the selection of the Argument Type attribute.

• Data Type: This attribute specifies the type of the data for the argument. This selection
determines the source for the argument data within the mobile application.
• Fixed String: This selection specifies the argument will be a plain text value. When this

is selected the String attribute will be enabled, allowing for the entry of text value to be
passed for the argument.

• Large Markup: This selection specifies the argument will be HTML markup. The
markup text will be stored in a text file. This file is accessible on the Agentry
Development Server for the application project and may be edited directly from this
location, or from within the Agentry Editor. The relative path and name for this file is
listed in the Markup File attribute, which is enabled when the “Large Markup” type is
selected in the Data Type attribute.

• Property Path: This selection specifies that the argument value is contained in a
property of the definition for which the parent step has been defined. When this
selection is made the Property Path attribute is enabled, where the property can be
selected.

• Small Markup: This selection specifies the argument will be HTML markup. The
markup text will be entered in the Markup Text attribute field, which will be enabled
for this selection. This argument Data Type allows for a single line of HTML markup to
be entered for the argument.

• User ID: This selection specifies that user’s login ID for the Agentry Client is passed as
the argument value. No other attributes are enabled in relation to this selection.

• String: This attribute is enabled when the Data Type attribute is set to Fixed String. The
String attribute contains the plain text value passed as the argument value to the parent
step’s URL request.

• Mask in Log: This attribute can be set to hide the value of the argument in logs generated
by the Agentry Server. in place of the value, a series of asterisks is recorded. Typically this
is used for passwords and other sensitive values.

• Markup File: This attribute is enabled when the Data Type attribute is set to Large
Markup. The Markup File attribute lists the relative path and file name for the text file
containing the HTML markup text. This path is relative to the Agentry Development
Server’s installation location. The default value is the location:

Agentry Language Reference

96 SAP Mobile Platform

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location for the development server. This
path may be changed, relative to this location, though this is rarely necessary for this
definition type.

• Property Path: This attribute is enabled when the Data Type attribute is set to Property
Path. The Property Path attribute references the property definition within the definition
for which the parent step was defined. The value of this property will the value passed as
the argument to the parent step’s URL request.

• Markup Text: This attribute is enabled when the Data Type attribute is set to Small
Markup. The Markup Text attribute can contain a single line of HTML markup text that
will be passed as the argument to the parent step’s URL request.

XML via HTTP Step Response Mapping

An XML Response mapping is a child definition to the XML via HTTP step definition,
defined to extract data returned by the parent step and map it to the property values or other
data members of the application. Data returned may be extracted by the mapping when that
takes the form of a Cookie, HTTP Header, or XML. The value extracted may be assigned to the
properties of the definition for which the step was defined, or to one of several other data
values within the application.

The response mapping defines both the source type, or “Mapping Type,” of the data returned
by the step definition, and the data component of the mobile application where the value is
stored. If the mapping type is an XPath Expression or XSL Transformation, the return data
must be structured XML. Included in the response mapping then is the XPath or XSL to extract
the data from the XML document received by the step after its request was submitted.

Once the data is extracted by the response mapping definition it is assigned to the data
component of the mobile application as specified within the mapping definition. This can
include a property within the definition for which the parent step was defined, as well as
messaging, user ID, the creation of local and local XML data tags, the parent object’s key
property, or the value may be used for validation.

A given XML via HTTP step can contain multiple response mappings. Each will extract data
from the same data set returned by the step to the Agentry Server. The parent step definition’s
property view contains a list of all response mappings. The order in which the mappings are
processed is the position in which the mappings are listed in this view. This order can be
modified by moving the mappings up or down within the list.

Response Mapping Attributes

• Mapping Type: This attribute specifies the type of data from which the value will be
extracted for the response mapping. This may be one of Cookie, HTTP Header, XPath
Expression, or XSL transformation. If XPath or XSL is selected, the return set from the
step is assumed to be an XML document. This requires the definition of the Base XPath

Agentry Language Reference

Agentry Language Reference 97

and XPath, or XSL attributes to specify which components of the XML document are to be
extracted.

• Name: Contains the unique internal name for the response mapping. This value must be
unique among all response mappings within the same parent step. The label for this
attribute field in the Editor will change based on the selected Mapping Type.

• Base XPath: This attribute is enabled when the Mapping Type attribute is set to either
XPath Expression or XSL Transformation. The Base XPath is set to locate an element
within the XML Document that contains one or more child elements of the same type. The
XPath attribute then specifies the specific child element type within the element specified
by the Base XPath. The response mapping will iterate over all instances of the child
element, extracting the value of each and assigning to the value specified in the mapping
attributes. This is most commonly used when synchronizing data object instances within a
collection property.

• XPath: This attribute contains the XPath expression for the specific element within the
XML Document whose contents are to be extracted by the response mapping. This
expression is used in combination with the Base XPath (if specified) to provide iterative
processing of multiple instances of the same element within the same parent element
within the document.

• XSL:
• Maps To:

• Error Message: This selection will map the data to error text display by the mobile
application.

• Last Update: This selection specifies the extracted value is a date and time indicating
when the data table’s source in the back end system was last modified. This value is
compared against the internal last update value for the data table as provided by the
Client.

• Local String (<<local>>): This selection will create a local data tag available to
subsequent data mappings in the same parent HTTP Request. The value of this data tag
will the value extracted by the response mapping. When selected, the attribute String
Name will be available to name the local data tag created. This is the equivalent to
calling the SDML function tag <<local ...>>.

• Local XML (<<localXML>>): This selection will create a local XML data tag
available to subsequent data mappings in the same parent HTTP Request. The value of
this data tag will be the value extracted by the response mapping.

• Notification [Cancel] Button Label: This selection specifies that the value extracted by
the response mapping should be used to label the cancel button displayed in the
Notification Dialog displayed by push definitions. If the step is used in any other
manner than push processing, this selection will have no effect.

• Notification [OK] Button Label: This selection specifies that the value extracted by the
response mapping should be used to label the OK button displayed in the Notification
Dialog displayed by push definitions. If the step is used in any other manner than for
push processing, this selection will have no effect.

Agentry Language Reference

98 SAP Mobile Platform

• Notification Text: This selection specifies that the value extracted by the response
mapping should be used as the message text displayed in the Notification Dialog
displayed by push definitions. If the step is used in any other manner than for push
processing, this selection will have no effect.

• Notification Title: This selection specifies that the value extracted by the response
mapping should be used as the title bar text of the Notification Dialog displayed by
push definitions. If the step is used in any other manner than for push processing, this
selecting will have no effect.

• Parent Object Key Property: This selection specifies that value extracted by the
response mapping should be matched with the key property of the parent object to the
object being synchronized. This is primarily used in fetches and object read steps,
where the data for a nested collection is being retrieved. When this option is selected,
the Key Property attribute will be enabled to allow for the selection of the parent key
property to match with the value.

• Property Path: This selection specifies that value extracted by the mapping is assigned
to a property within the object definition for which the step has been defined. This
selection has no meaning for steps defined for fetch definitions. For steps defined for
transactions this option is selected when the parent step is expected to return the key
property of the object targeted by the transaction. This is only the case when the
transaction step usage definition defines a client response of Update Client Key
Property.

• User ID: This selection will map the value extracted by the response mapping to the
user’s ID. This value is the equivalent to the SDML data tag <<user.id>>. If a
previous response mapping in any HTTP Request processed by the Server set the user
ID, setting it here will override that value. This will then be the value available for all
HTTP-XML system connection processing where the data tag <<user.id>> is
referenced.

• Validation: This selection allows for validation within of the user during the request
made by the step. When the validation item is selected, the XPath defined for the step
must successfully locate and XML element. The failure to locate the element is treated
as failed validation.

• String Name: This attribute is enabled when the Maps To attribute is set to “Local String
(<<local>>).” This attribute contains the name of the local data tag to be created. This
name can be set to any character consisting of alphanumeric characters.

• XML Name: This attribute is enabled when the Maps To attribute is set to “Local XML
(<<localXML>>).” This attribute contains the name of the local XML data tag to be
created. This name can set to any string consisting of alphanumeric characters.

• Key Property: This attribute is enabled when the Maps To attribute is set to “Parent
Object Key Property.” The Key Property attribute is set to the key property of an object
that is an ancestor to the object being synchronized.

• Property: This attribute is enabled when the Maps To attribute is set to “Property Path.”
The Property attribute is set to the property whose value will be set to the one extracted by

Agentry Language Reference

Agentry Language Reference 99

the parent step definition. The property selected here should be defined within the
definition for which the parent step was defined

Step Type: File Command Line Step

A File Command Line step is defined for a File System Connection and defines a command to
be executed by the Agentry Server on the host system of the Server. This command is
contained in a script file, with a default file extension of .bat, which is the Windows batch
file extension. This extension may be changed to match the script language used in the file.
The command executed by the Agentry Server can be monitored for its return value. The script
file is processed by the Server to expand any SDML tags it may contain prior to execution
against the host system.

The contents of the script file for this step type may be accessed directly on the Agentry
Development Server for the application project. The file path listed for this file is relative to the
installation location of this Server. If this file is modified it is not necessary to publish the
application project for the change to be exhibited. In a production environment this file is not
directly accessible in this manner and must be modified through the Agentry Editor. Changes
made in a production environment must be published.

As an alternative to storing the command in an external file, it may be contained in the
Command attribute of the step. Such a command must consist of a single line. By default the
Command attribute is set to the SDML tag <<script>>, which expands at run time to the
file referenced in the steps File attribute.

A file command step can be defined to wait for the command it calls to complete execution.
When defined in this manner, the back end synchronization for a user will not continue until
the command returns, or until the defined wait period expires. If the wait period is exceeded,
the Agentry Server will log an error and the synchronization will be halted.

If the step is not defined to way for the command to complete, an error will only be logged if
the defined command cannot be executed by the Server for any reason.

The script file or the text in the Command attribute for this step is processed by the Agentry
Server, which runs it through the Server’s SDML pre-processor before executing the step. The
results of this SDML expansion are written to a temporary directory, based on the Server’s
configuration.

File Command Line Step Attributes

• Name: Contains the unique internal name of the step definition. This value must be unique
among all step definitions within the same module.

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For a File
Command Line step this must be a File system connection type.

• File: This attribute contains the path and file name of the script file containing the step’s
commands. This path is relative to the path

Agentry Language Reference

100 SAP Mobile Platform

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location of the Agentry Development
Server.

• Command: This attribute is set the SDML data tag <<script>> by default. This tag
expands to the script referenced in the File attribute. If the command does not contain this
data tag, its contents are assumed to be the command to be executed by the Server. In this
case the command must be a single line, which may contain SDML tags.

Wait Attributes

• Wait: This attribute specifies whether or not the Agentry Server should wait for the
command executed by the step to complete before processing the next step in the
synchronization process. When set to true, the Server will wait for the duration of time
specified in the Wait Period Limit attribute. If the command does not complete within this
limit, the Server will attempt to kill the command process. It will then log an error message
and halt synchronization.

• Wait Period Limit: This attribute specifies the duration of time the Agentry Server is to
wait for the command executed by the step to complete. This attribute is available only
when the Wait attribute is set to true.

• Delete Script File: This attribute specifies whether or not the script file created by the
Agentry Server as result of processing the script file for SDML expansion should be
deleted or kept. This attribute is available on when the Wait attribute is set to true.

Step Type: File Document Management Step

A File Document Management step is defined for a File System Connection and defines a
command to be executed by the Agentry Server on the host system of the Server in support of
transferring files between the Server and the Agentry Client. The command for this step is
stored in a text file executed as a script by the Server. This step type also includes a child
definition to encapsulate mappings between the file data and the data members of the mobile
application. A File Document Management step is defined for a specific definition type within
the same module.

A file document management step can define a command to be executed to retrieve a file from
a file system or version control system so that it may be transferred to the Agentry Client. The
child definition document mapping can then associate this file with an object property,
normally of type External Data. It may also define a command that moves a file referenced by
an External Data property within a transaction to a permanent location on the file system or
version control system. The file is also associated with the property via the document mapping
child definition.

The definition for which the step is defined may be an object, transaction, or fetch. The
property referencing the file to be transferred should be a child property of the selected
definition.

Agentry Language Reference

Agentry Language Reference 101

A component of this definition is the Document Management Script. This script contains the
command or commands the Agentry Server will execute in support of the file transfer
behavior. This script is by default a Windows batch script (.bat). The file extension for the
script may be changed to reflect the type of script language it contains.

The document management step can be defined to wait for the command it executes to return,
or it can execute the command without waiting. If defined to wait for the command, the next
step to be processed in the synchronization will not be run until the command has completed
execution, or until a defined wait period has been exceeded. If the wait period is exceeded, the
Agentry Server will log an error and synchronization will stop.

For downstream synchronization, i.e. fetch, push, or object read step processing, the
command is expected to product a file to be transferred to the Agentry Client. For upstream
synchronization, i.e. transaction processing, the command is expected to process the file after
it has been transferred from the Agentry Client to the Server’s host system. This may include
moving it to another location on the file system, or checking it in or updating it to a version
control system, or any other post-transfer processing that should occur for the file.

In addition to the file itself, it is also possible to capture values from the document
management command run by the step. This is behavior is also defined in the child definition
document mapping. Return values, error codes, and similar data can be assigned to properties
of the appropriate data type.

The contents of the script file for this step type may be accessed directly on the Agentry
Development Server for the application project. The file path listed for this file is relative to the
installation location of this Server. If this file is modified it is not necessary to publish the
application project for the change to be exhibited. In a production environment this file is not
directly accessible in this manner and must be modified through the Agentry Editor. Changes
made in a production environment must be published.

File Document Management Step Child Definitions
Document Mapping: A document mapping definition is a child to a file document
management step and defines the correlation between the file produced by that step to a
property definition, normally of type External Data.

File Document Management Step Attributes

• Name: Contains the unique internal name of the step definition. This value must be unique
among all step definitions within the same module.

• Connection: This attribute references the system connection for which the step is defined.
This attribute is set when the step is initially created and cannot be modified. For a File
Document Management step this must be a File system connection type.

Wait Attributes

• Wait: This attribute specifies whether or not the Agentry Server should wait for the
command executed by the step to complete before processing the next step in the
synchronization process. When set to true, the Server will wait for the duration of time

Agentry Language Reference

102 SAP Mobile Platform

specified in the Wait Period Limit attribute. If the command does not complete within this
limit, the Server will attempt to kill the command process. It will then log an error message
and halt synchronization.

• Wait Period Limit: This attribute specifies the duration of time the Agentry Server is to
wait for the command executed by the step to complete. This attribute is available only
when the Wait attribute is set to true.

• Delete Script File: This attribute specifies whether or not the script file created by the
Agentry Server as a result of processing the script file for SDML expansion should be
deleted or kept. This attribute is available only when the Wait attribute is set to true.

Document Management Script Attributes

• File: This attribute contains the path and file name of the script file containing the step’s
commands. This is relative to the path

ServerDirectory\Application\Development\Scripts

where ServerDirectory is the installation location of the Agentry Development
Server.

• Command: This attribute is set to the SDML data tag <<script>> by default. This tag
expands to the script referenced in the File attribute. If the command does not contain this
data tag, its contents are assumed to be the command to be executed by the Server. In this
case the command must be a single line, which may contain SDML tags.

Document Mapping

A document mapping definition is a child to a file document management step and defines the
correlation between the file produced by that step to a property definition, normally of type
External Data. The specific behavior of a document mapping differs depending on the type of
definition for which the parent step was defined. For objects and fetches, the document
mapping defines where and how to access the file produced by the parent step’s command. For
a transaction, the document mapping defines how and where the file should be provided to the
step’s command.

Because of the differences between a document mapping for an object and fetch, and one for a
transaction, there are different attributes for this definition type depending the how the parent
step has been defined.

When a document mapping is defined within a file document management step for an object or
fetch, the purpose of the document mapping is to capture output from the parent step
definitions document script and map it to a property within the object or fetch. This output is
primarily intended to be a file that is mapped to an external data property. This file will be
transferred down to the Agentry Client. Other outputs may be captured from the document
script, including output written to standard out and standard error, as well as the command’s
exit code as returned to the operating system.

When a document mapping is defined within a file document management step for a
transaction, the purpose of the document mapping is to provide the contents of a property to

Agentry Language Reference

Agentry Language Reference 103

the parent step definition’s document script. This input to the command may be provided from
an external data property and passed to the command by either writing the file to the file
system, or by piping it to the commands standard input. When piped to standard input, the
option exists to pass the EOF character to that command after all file data has been passed in.
When writing the file to the file system, the command is then expected to look for the file at
that location and process it accordingly. When the command has completed processing the
file, the option exists to delete the file from the file system. Note that this option will not be
available if the parent document management step has been defined to not wait for the
document script to complete execution.

Document Mapping Attributes - Object and Fetch

• Property: This attributes specifies the property to which the output from the parent step’s
command will be mapped. For a file produced by the command this should be a property of
type External Data. For other output types, the proper data type of the property will vary.

• Output Type: This attribute specifies which output from the command to map to the
selected property. The options to this attribute are:
• Command Exit Code: This selection specifies that the exit code returned by the

command to the operating system should be captured and mapped to the selected
property.

• File Created By Command: This selection specifies that a file created by the command
should be mapped to the selected property. For this output type the Property attribute
should be set to a property of type External Data.

• STDERR: This selection specifies that any output written by the command to standard
error should be mapped to the selected property. This may be done to determine if an
error has occurred, and the nature of that error.

• STDOUT: This selection specifies that any output written by the command to standard
out should be mapped to the selected property.

• File Name: This attribute is enabled when the selected Output Type is “File Created By
Command.” The File Name attribute specifies the name of the file to be mapped to the
selected property. This value may include SDML tags, with the default being
<<script>>-1.tmp.

• Delete File: This attribute is enabled when the selected Output Type is “File Created By
Command.” The Delete File attribute specifies whether to keep the file created by the
command after it has been transferred, or if it should be deleted.

Document Mapping Attributes - Transaction

• Property: This attribute specifies the transaction property containing the value to be
passed to the document command. If the Input Type is “File Input to Command Line,”
this should be an External Data property.

• Input Type: This attribute specifies how the value or file referenced by the selected
property will be passed to the document command of the parent step. This can be set to one
of the following options:

Agentry Language Reference

104 SAP Mobile Platform

• File Input to Command Line: This selection specifies that file referenced by the
selected property should be written to the file system and that the command will the
read it in from that location. The File Name attribute is enabled when this option is
selected, and specifies the file name to which the file will be saved.

• STDIN: This selection specifies that the value of the selected property should be piped
to the document command through standard input. For external data properties the file
data will be streamed directly to the command without being written to the file system.
When this selection is made the Send EOF attribute is enabled, indicating whether the
EOF character should be sent to the command after the property data as been piped to
the command.

• File Name: This attribute is enabled when the Input Type attribute is set to “File Input to
Command Line.” This attribute contains the name to be given to the file when it is saved to
the file system. This value may include SDML tags. It is set to <<script>>-1.tmp by
default.

• Delete: This attribute is enabled when the Input Type attribute is set to “File Input to
Command Line.” The Delete attributes specifies whether the file saved to the file system
by the Server should be deleted after the document command has finished processing it.

• Send EOF: This attribute is enabled when the Input Type attribute is set to “STDIN.”
This attribute specifies whether or not to send an End of File character to the document
command at the end of the file data. This is provided in support of those processes that
require this character to indicate no further input is being sent.

Module-Level User Interface Definitions Overview

Within the module level of the application project in Agentry there are definitions for both data
and user interface encapsulation. The user interface definitions encapsulate the screens and
behaviors that expose the functionality within the application to the mobile users on the
Agentry Client. These definitions do not have any direct impact on the behavior or
functionality of the application as defined for the Agentry Server.

Of the user interface definitions, those that encompass the screens displayed on the Client are
the most robust. The structure of these definition types is deeper than any of the other module-
level definitions within the application.

Following is a graphic illustrating the module-level user interface definitions and their child
and descendent definition types. This includes definitions that encapsulate the screens and
screen controls displayed on the Agentry Client, the behaviors and functionality, and other
similar user interface-related application components. Excluded from this graphic are the data
definitions within the module. Note that this separation is for discussion purposes only. Within
the application project structure, all child definitions to the module exist at the module level
with no distinction made between them in the Agentry Editor in relation to whether they are
data or user interface definitions.

Agentry Language Reference

Agentry Language Reference 105

The rule definition type within the module is actually one that crosses the line between a user
interface and data definition. It is organized here with the user interface definition types, as a
large portion of the rules written for a module affect this aspect of the behavior. However, rules
can also be written and used within data definition types. The rule definition is described in
this reference manual in its own section.

As indicated in this graphic, the screen set definition type is a deep structure, with several
levels of child definitions below it. Note that, while separated in the above graphic, the list
screen and detail screen items are both the same definition type, screen. A screen is a child
definition to the screen set and, when defined, is either a list or detail screen. Each screen type
has distinct child definitions, and thus are separated in the graphic shown here.

The field child definition to the detail screen can have child definitions of its own. This is
dependent on the type of field defined, or the field’s “edit type.” The edit type of a field impacts
the fields appearance and behavior on the Agentry Client. Certain field edit types include child
definitions that support their intended behaviors. Field edit types are discussed individually
within this section of the manual and those that include child definitions are noted.

Overall the user interface definitions within the module display, expose, and provide the
means to capture data to and from the mobile users. User interface definitions can display not
only data from the module, but also data stored in the application level definitions data table
and complex table.

Agentry Language Reference

106 SAP Mobile Platform

User Interface Definition Types

The definition types within Agentry that define the Agentry Client’s user interface are the
screen set, platform, and screen.

• Screen Set: The screen set is the main Client user interface definition and defines what
definition type its child screens display.

• Platform: The platform definition defines how the screens it uses within the same screen
set appear on a specific device type.

• Screen: A screen definition defines how the property values in the definition being
displayed are presented to the user on the Agentry Client. There are two possible screen
types that may be defined, list screens and detail screens. Screen definitions have
additional child definitions for the controls they display. These child definitions are
dependent on the type of screen (list or detail) and the definition type displayed by the
parent screen set.

Each of these definition types provide a separate portion of the UI functionality to the
application and are broken out into these separate, but related definitions primarily to provide
the separation of data and interface. This separation allows for the multi-device support by a
single Agentry application. The overall structure of the definition hierarchy within Agentry,
and the UI definitions’ place within it, allows the business logic of an application to be
separate from the UI. This also allows the UI to be defined to take full advantage of the
capabilities of each device type.

Screen Set

A screen set definition defines the Agentry Client's user interface. The screen set defines the
definition type to be displayed, which can be an object, transaction, or fetch within the same
module. The properties of this definition type can then be displayed by the screen definitions
within the screen set. Screen sets contain the child definitions screen and platform.

The type of data definition a screen set is defined to display will have an effect on the types of
screens it may contain and how those screens are presented on the Agentry Client. When a
screen set is defined to display an object it may contain both detail and list screens. Each screen
within the screen set is displayed within the same window, with the screens represented by tab
controls. In most cases the fields displayed on these screens are read-only.

When the screen set is defined to display a transaction or fetch it can only contain detail
screens. These screens are displayed in a wizard format, with each screen displayed one at a
time and containing navigation buttons to advance, reverse, cancel, or complete the wizard.
Note that this navigation will also be affected by the action that displays the screen set. The
fields of these screens can be read-only or editable based on each field’s definition.

When a new module is added to an application project a single screen set will be defined within
it automatically. This will be the main screen set for the module, making it the first screen set
displayed on the Agentry Client when that module is viewed by the user. There is only one
main screen set per module. This screen set definition can be altered but cannot be deleted.

Agentry Language Reference

Agentry Language Reference 107

Screen Set Child Definitions
The following definitions are child definitions to the screen set:

• Platform: The platform definition defines how the screens it uses within the same screen
set appear on a specific device type.

• Screen: A screen definition defines how the property values in the definition being
displayed are presented to the user on the Agentry Client.

Screen Set Attributes

• Displays: This is a two part attribute consisting of the definition type and the specific
definition of that type the screen set will display. Screen sets can be defined to display
objects, transactions, or fetches. The selection made here makes the data (properties)
within that definition available to the screens defined within the screen set.

• Name: This is the unique internal name of the screen set that identifies the definition
within the module. This value must be unique among all other screen sets in the same
module and can contain no white space.

• Main Screen Set: This attribute cannot be set by the developer and is displayed in the add
screen set wizard and properties screen in the Agentry Editor for reference purposes only.
The main screen set for a module is created automatically by the Editor whenever a new
module is defined.

Platform

A platform definition defines how a screen set’s screens will appear on a specific device type.
A platform is defined to use one or more screens within the same parent screen set. There are
different platform types, each corresponding to a different type of client device. The platform
affects the placement of buttons and the form factor of the screens it uses.

The most important attribute to the platform definition is the Platform Type. This attribute
specifies the platform upon which the screens it uses will be displayed and how those screens
will appear. A given screen set can contain one or more platform definitions. At least one
platform must be defined before screens can be added to the screen set. During publish, at least
one screen must be used by at least one platform within the screen set or an error will be
returned and the publish will not be allowed to proceed.

A platform can use more than one screen within the same screen set. A screen can be used by
more than one platform as well. At run time, when a screen set definition is sent to a client, the
client’s device type will determine which screens that client receives based on the platform
using the screens.

Platform Attributes
General Attributes

Agentry Language Reference

108 SAP Mobile Platform

• Platform Type: This is the type of device platform to be supported by the screens used by
the platform and will affect the form factor and behavior of those screens.

• Caption: This is the title text displayed in the window on the Client at run time for the
screen set. Since this is at the platform level, the screen set’s window can contain a
different caption on different target devices. This value may be set statically or via a rule
definition for more dynamic text. A rule used here is expected to return a string value and is
evaluated in the context of the object displayed by the screen set.

• Size: This attribute only applies to platform definitions for the Windows desktop, laptop,
and tablet operating systems. For this type of platform the Size attribute specifies the initial
display size of the screens it uses. For other Platform Types this attribute is disabled and
all screens used by the platform are displayed in the full screen size of the device type. Note
that this attribute may be affected or negated by the application definition’s Screen Size
attribute.

• Button Placement: This attribute contains four possible settings: Bottom, Top, Left, and
Right. This attribute specifies where the buttons for all screens used by the platform are
displayed.

• List Navigation: This attribute controls whether or not the object displayed by the screens
used by the platform definition can be changed via navigation buttons drawn automatically
on the Client. When true, these buttons will allow a user to change the object displayed in
the current screen set based on a list of objects in the previous screen in the navigational
flow. In this previous list, the previous or next item in the list is selected and the action
executed to display the current screen set is executed again. This attribute has no effect on
platforms for the module main screen set or for platforms within screen sets displaying a
transaction or fetch. This behavior is applicable when the previous screen was a list screen,
or when it was a detail screen containing a list view or list tile view field.

• Screen Navigation: By default a screen sets screens are displayed as tabs on the Client at
run time. Selecting this option removes the tabs and instead displays a menu button
containing the caption value of each screen definition to allow the user to select different
screens.

Platform Screen Type

The following attributes are only valid for platforms of type iPad or Android and support the
display of a pop up screen using the platform’s screens.

• Screen Types: The options for this attribute include Full Screen and Overlay View. Full
Screen creates standard screens on the Client. Overlay View creates popup screens that
overlay the screen from which the user navigated. These screens can be used for both read
only information as well as for data capture. When Overlay View is selected, the Height
and Width attributes are enabled to specify the size of the overlay screen displayed.

• Height: The vertical size of the overlay screen in pixels.
• Width: The horizontal size of the overlay screen in pixels.

Platform Style Attributes
The style attributes of a platform specify the styles applied to different aspects of the screens
used by the platform. Style definitions must exist before these attributes can be set. The final

Agentry Language Reference

Agentry Language Reference 109

appearance of the screen will be affected by the overall application of styles according to the
style hierarchy. There are three groups of style elements for the platform: Screen Styles, Detail
Screen Styles, and List Screen Styles. Screen styles affect all screens used by the platform
regardless of screen type. Detail screen and list screen styles affect only those screens of the
corresponding type.

All style attributes for the platform definition may be set statically by selecting the style from a
list, or by returning the name of a style to apply from a rule definition. Rules evaluated for style
attributes are expected to return a string value containing the name of the style to apply and are
evaluated in the context of the object displayed by the parent screen set.

Screen Styles

• Tabs: The style to apply to the tab controls representing each screen within an object
screen set. Has no affect on screens within a transaction or fetch screen set.

• Buttons: The style to apply to all button definitions for screens used by the platform.
• Focused Buttons: The style to apply to the button that currently has the focus.

Detail Screen Styles

• Screen: The style to apply to the screen as a whole. This will affect all portions of the
screen not displaying a field or button.

• Fields: The style to apply to all fields displayed on the screen.
• Focused Fields: The style to apply to the field that currently has the focus.
• Hyperlinks: The style to field labels defined to be hyperlinks.

List Screen Styles

• Screen: The style to the list screen as a whole. This will affect all portions of the screen not
displaying a list, header label, detail pane, or button.

• Header Label: The style to apply to the list screen’s header label. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control.
• Rows: The style to apply to all rows on the list screen. The Hyperlinks optional style will

override the Rows style for cells with hyperlinks.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row. The Hyperlinks optional style will override the Alternate Rows style for every
other row, specifically cells containing hyperlinks within the row.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style should always be returned via a rule definition that evaluates the object
being listed. The optional Hyperlinks style will be applied to the highlighted row’s cells
containing a hyperlink.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control. The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

Agentry Language Reference

110 SAP Mobile Platform

• Detail Pane: The style to apply to both the foreground (text) and background of the list
screen’s detail pane. If no detail pane is defined this attribute has no affect on the screen.

Platform Button Attributes
Platforms defined within a screen set displaying a transaction or fetch include an additional set
of attributes related to the buttons displayed on screens used by the platform. Screens within
this type of screen do not contain button definitions, but rather contain buttons added to each
screen automatically by the Client based on the action that displayed the parent screen set and
the position of each screen within the screen set.

• Cancel Action Details: The label for cancel buttons that will cancel the action currently
being executed.

• Previous Screen Details: The label for buttons that allow users to navigate to the previous
screen in the current screen set.

• Previous Record Details: The label for buttons that allow users to navigate to the previous
transaction instance. This button is displayed on the first screen of a screen set when being
displayed by an action with looping behavior.

• Next Screen Details: The label for buttons that allow users to navigate to the next screen in
the current screen set.

• Next Screen (no back up) Details: The label for buttons that allow users to complete the
current instance of a wizard in a loop and start the next iteration; or to move from one
wizard to the next when multiple wizards are displayed by the action.

• Complete Action Details: The label for buttons displayed on the last screen of a screen
set, when there are no additional screen sets displayed by the action and when the current
screen set is not being displayed in a loop.

• Complete Action Details: The label for buttons displayed on the last screen of screen set
being displayed in a loop and that will end that loop.

Platform Screens List
The Properties view for a platform definition within the Agentry Editor includes a Screens tab.
This tab lists all screens within the same parent screen set of the platform. Within this list the
screens to be used by the platform can be selected. The screens listed here are not child
definitions to the platform, but rather a children of the screen set. If a new screen is added to the
screen set by starting the Add Screen Wizard from the platform view, that screen will
automatically be used by that platform.

List Screen

A list screen definition displays an object collection property on the Agentry Client. Object
instances from the collection are displayed as rows in the list. A list screen contains the child
definitions column and button. A column is defined to display the property value for each
object instance in the collection. Buttons are defined to execute actions related to the object
instances. List screens include definable behaviors related to filtering, scanning, and sorting,
as well as other screen enhancements for displaying data stored in the object instances of the
target collection property.

Agentry Language Reference

Agentry Language Reference 111

The list screen may or may not display a header label above the list control. A header label can
contain static or dynamic text about the items displayed in the list. A list screen may also
display a detail pane containing static or dynamic text. The detail panes intended usage is to
display the property values of the currently selected object in the list control, reducing the need
for horizontal scrolling on the Agentry Client.

List screens can be defined to include double-click actions, executed when the user double-
clicks an item in the list control, scanning actions and scan filtering, and include rules to
determine what items are displayed in the list. A list screen can also be enabled or disabled via
a rule definition. Disabled screens are not displayed in the screen set on the Agentry Client.

List Screen Child Definitions

• Column Definition: A list screen column defines what object property is displayed for
each record in a list control and how it is formatted on the screen.

• Button Definition: A button definition defines a button control to be displayed for the
screen that will execute an action or display a menu when selected.

List Screen General Attributes
The General Screen attributes set the basic behavior of the List Screen, including how Styles
can be applied to the List Screen.

General Attributes

• Name: The internal name of the list screen. This value must be unique among all screen
definitions, regardless of type, within the same parent screen set.

• Caption: Labels the tab on the Agentry Client for the list screen. This value may or may
not be displayed when there is only one screen displayed within the parent screen set,
depending on the client device type.

• Screen Icon: This is a reference to an image definition within the application. This image
is used as the icon displayed for this screen in tabs.

• Collection: References the object collection property the list screen is to display. This
collection is normally a property of the object definition the parent screen set is defined to
display.

• Enable Rule: References a rule definition expected to return a Boolean value and that is
evaluated in the context of the object definition for the parent screen set. When false is
returned, the screen will be disabled and no tab for it will be displayed within the screen set
window. If all screens within a screen set are disabled, that screen set will not be displayed
and any actions defined to display it will also be disabled. If the main screen set for a
module is disabled, that module cannot be displayed on the Agentry Client.

• Include Rule: References a Rule definition expected to return a Boolean value and that is
evaluated once for and in the context of each object in the collection displayed by the list
screen. When an include rule is specified, only those objects for which the rule evaluates to
true will be listed in the screen’s list control.

• Icons Image: References an image definition to be displayed on the tab for the list screen,
to the left of the screen’s caption text, within the screen set window on the Agentry Client.

Agentry Language Reference

112 SAP Mobile Platform

The name of this image may be selected from a list, or it may be returned from a rule. When
a rule is referenced, it is expected to return a string value and is evaluated in the context of
the object displayed by the parent screen set.

List Screen Styles

• Screen: The style to apply to the list screen as a whole. This will affect all portions of the
screen not displaying a list, header label, detail pane, or button.

• Header Label: The style to apply to the list screen’s header label. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control.
• Rows: The style to apply to all rows on the list screen. The Hyperlinks optional style will

override the Rows style for cells with hyperlinks.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row. The Hyperlinks optional style will override the Alternate Rows style for every
other row, specifically cells containing hyperlinks within the row.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style should always be returned via a rule definition that evaluates the object
being listed. The optional Hyperlinks style will be applied to the highlighted row’s cells
containing a hyperlink.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control. The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

• Selected No Focus Rows: The style to apply to the selected rows in a list view control or
list screen where the list control does not have the input focus. The optional Hyperlinks
style will be applied to any cells within the selected row containing a hyperlink.

• Detail Pane: The style to apply to both the foreground (text) and background of the list
screen’s detail pane. If no detail pane is defined this attribute has no affect on the screen.

• Buttons: The style to apply to all button definitions on the screen.
• Focused Buttons: The style to apply to the button that currently has the focus.

Actions/Sorting Attributes
The Action/View/Selection attributes control how the user interacts with the List Screen,
including double-clicking on or off an item in the list and behaviors related to sorting and
reordering the columns.

• Double-Click On Item - Action: Specifies the action to execute when the user double-
clicks a list control record.

• Double-Click On Item - Target: Specifies the target of the Double-Click On Item Action.
A target must always be specified for the action and is typically the selected object in the
list.

• Double-Click Off Item - Action: Specifies an action to be executed when the user double-
clicks the list without clicking on an item. This is most commonly used to execute an action
that instantiates an add transaction for the object type being listed.

Agentry Language Reference

Agentry Language Reference 113

• Double-Click Off Item - Target: Specifies the target of the Double-Click off Item Action.
A target must always be specified for the action. Typically the target is the parent object of
the object collection property displayed by the list screen.

• Fixed Sort Property: Specifies the property definition within the object type being listed
used to sort the records in the list. The user will not be allowed to re-sort the list when this
attribute is set. The Order option to this attribute is set to specify the sort order, either
ascending or descending.

• Allow Sort: Specifies if the user can resort the list by clicking on a column header. This is
enabled by default, and is disabled if a Fixed Sort Property is set.

• Initial Sort Column: Specifies a column definition by which the list will be sorted upon
initial display of the screen. This attribute requires that a column definition exists before it
can be set. The Order option to this attribute is set to specify the sort order, either ascending
or descending. If the list screen allows the list to be sorted (Allow Sort is true) the list will
be displayed sorted to the order of the last sort action. If a Fixed Sort Property is set, this
attribute is disabled.

• Allow Reorder: Specifies whether or not the user can reorder the columns displayed in the
list by dragging and dropping the column headers in the list. This is enabled by default.

• Allow Filter: Specifies whether or not the user can filter the items in the list. A filter icon is
displayed at the bottom of the screen when enabled. The user can click this icon to select
sorting options. This sets the filter behavior for the entire list screen. This is enabled by
default. Individual column definitions may be defined to prohibit filtering on those
columns.

• Allow Multi-Row Select: Specifies if the user can select more than one record in the list at
the same time. If multiple items are selected in a list, actions that target the selected object
in the list will be executed once for each selected object. The default for selecting multiple
objects requires a Ctrl+Click combination or a click and drag operation by the user,
depending on the device type. The Enable Single Click option may be set to allow
multiple records to be selected with a single click by the user. Deselecting a record requires
the user to click it again. This feature is normally most useful on touch screen devices using
a stylus, as it allows non-sequential records in the list to be selected.

Header/Detail Pane Attributes
Using these attributes, you can display Header text and a Detail Pane in addition to the main
list control of the List Screen.

Header and Detail pane attributes are set to display additional information about the list as a
whole or about the currently selected item in the list. The Header Label is a static line of text
displayed above the list. This text may be static, set via certain available format strings, or set
via a rule. A rule referenced for this purpose is expected to return a string value and is
evaluated in the context of the object displayed by the parent screen set.

The Detail Pane is redrawn each time a new object is selected in the list and almost always
contains either format strings or is set via a rule’s return value. Rules are evaluated in the
context of the selected object in the list and are expected to return a string value.

Agentry Language Reference

114 SAP Mobile Platform

• Header Label: Specifies the Header text for the list screen. A common use for this header
label is the total number of objects displayed in the list vs. the total number of objects in the
collection, which may be different when a filter is enabled. The format strings used for this
purpose are %DisplayedCount and %TotalCount.

• Detail Pane: Displays a text box on the list screen. The detail pane is updated each time the
user changes their selection in the list screen.

• Position: Controls where the detail pane is displayed on the screen in relation to the list
control. You can position the detail pane below it or to its right.

• Size: Sets the pixel size of the detail pane on the screen. The default is 50. If the Position is
“Bottom” the detail pane will span the width of the screen and the Size will set its height. If
the Position is “Right” the detail pane will span the height of the screen and the Size will
set its width.

• Word Wrap: When enabled, lines of text longer than the width of the detail pane will be
wrapped to the next line. When disabled, text will continue off the screen. The user will
need to scroll the detail pane to view the text.

• Format: Sets the values displayed in the Detail Pane. This pane can be set to a combination
of static text and format strings, which take the form %propertyName. The
propertyName is the name of a property defined within the selected object and will be
updated with the value of that property each time a different object is selected. It may also
be set to the return value of a rule, which is evaluated in the context of the selected object
instance and is expected to return a string.

Scanner Attributes
The scanner attributes for a list screen affect only those list screens used by a scanner platform
within the screen set and only when the list screen is displayed on a client device with a
barcode scanner. At least one column definition within the list screen must be defined to
support scan filtering.

A scanned value will be compared to the column(s) defined for scan filtering and only those
matching this value will then be displayed. Actions may be defined when only one record
matches the scan filter and when no records match.

• Single Match Action: Specifies what action is executed when a scanned barcode value
matches one of the records displayed in the list screen. The target of the action will always
be the record found to match.

• No Match Action: Specifies what action is executed when the scanner filter criteria does
not match any records on the list. This is optional. The target of the action is the object that
is the parent to the collection property displayed by the list.

• Label Type: Specifies what barcode types are accepted by the Agentry Client. If no Label
Type is specified, all types supported by the client device will be supported.

• Minimum Value: The minimum number of characters accepted by the Agentry Client
from the device scanner.

Agentry Language Reference

Agentry Language Reference 115

• Maximum Value: The maximum number of characters to be accepted by the Agentry
Client from the device scanner. If the value scanned in contains more characters, it will be
ignored.

List Screen Column

A column definition defines what object property is displayed in a list control column. The
column definition also controls behaviors such as formatting, sorting the list on the column,
whether or not the column can be resized or moved, and whether or not the list can be filtered
on the column. Columns may also be defined to execute an action via hyperlink control.

In addition to or in place of a property value, a column may also display an image definition as
an icon, which can be different for each record based on a Rule definition.

Column Attributes

• Name: Internal name for the column definition. This value must be unique among all
columns definitions in the list screen.

• Label: Specifies the label for the column header. This text is displayed at the top of the
column on the Agentry Client to identify the contents of the column.

• Object Property: Specifies the property to display in the column on the list screen. Set
this to None, to display either a value derived from a format string or only an icon image.
Selecting both an Object Property and specifying an icon image will display both in the
column.

• Enable Rule: References a rule definition evaluated in the context of the object displayed
by the screen set and expected to return a Boolean value. When the rule returns true, the
column is enabled and displayed on the Agentry Client. When it returns false, the column
is disabled and not displayed.

• Icon Image: References an Image definition within the application to specify an icon for
the column. The image name can also be returned using a rule definition to dynamically
determine the image to display for each record. This rule is evaluated in the context of the
object instance for the record and is expected to return the name of an image definition as a
string. Note that not using a rule for this attribute will display the same image for all
records in the list

• List Filter: Specifies if the column should be included in those listed in the filter dialog for
the list. This attribute is ignored in filtering has been disabled for the list screen.

• Scanner Filter: Enables scan filtering functionality for the column. When this attribute is
enabled, the value scanned in by the device will be compared to the values of the column to
create a filter. Multiple columns can be defined for this behavior. However, the values in
the columns should be mutually exclusive. The order of the columns evaluated against the
scanned value is undefined. This attribute is only supported for screens used by a scanner
platform and displayed on a scanner-enabled device.

• Format: Can contain a format string to display one or more property values from the
object type being displayed by the list in a different format than the default for the
property’s data type. This text can also be set via a rule definition, where the expected

Agentry Language Reference

116 SAP Mobile Platform

return value is a string and is evaluated in the context of the object instance for the record in
the list. To set the format attribute set the Object Property attribute must be set to None.

• Column Width: Specifies the initial size of the column on the Agentry Client. The user
can resize the columns if the list screen definition has not disabled this behavior. If the user
changes the width of a column, the new width is saved by the Agentry Client and will
override the Column Width attribute.

• Hyperlink: Specifying a hyperlink action enables each cell within the column to execute
an action when the user single or double clicks on the hyperlink drawn in that column. The
text of the hyperlink will be the value the column is defined to display. This functionality
can include columns with images. Hyperlink contains two attributes:
• Hyperlink Action: Specifies the action that will be executed when a user single-clicks

a column in a populated row in the list.
• Hyperlink Target: Specifies the target of the Hyperlink Action.

Detail Screen

A detail screen definition displays a single instance of an object, transaction, or fetch on the
Agentry Client. The properties of the definition instance are displayed in fields, a child
definition to the detail screen. Definable behaviors of a detail screen are predominantly
controlled by the screen’s child field and button definitions, which can include read-only or
read-write values within the fields, as well as numerous field type behaviors. Detail screens for
transactions and fetches do not have the child definition button.

The detail screen definition contains attributes for the screen's caption, enabling and disabling
the screen, and the initial focus of the screen. The detail screen is separated into multiple rows
and columns, based on the definition. These row and column positions are used to specify the
location of fields on the screen.

The values of the definition instance displayed by the detail screen are exposed to the user via
the field definitions.

Detail Screen Child Definitions

• Detail Screen Fields: A detail screen field defines field controls for display on a detail
screen to display data to and capture data from the Agentry Client user.

• Buttons: A button definition defines a button control to be displayed for the screen that
will execute an action or display a menu when selected. Detail screens only have button
definitions when the parent screen set is defined to display an object.

Detail Screen Attributes
General Settings

• Name: Internal name for the screen definition. This value must be unique among all screen
definitions within the same parent screen set, regardless of screen type.

• Caption: Labels the tab on the Agentry Client for the detail screen when a part of an object
screen set. For transaction a fetch screen sets, the detail screen caption text is displayed in

Agentry Language Reference

Agentry Language Reference 117

the title bar of the window on the Agentry Client. This value may be set to a rule. This rule
is evaluated in the context of the definition instance being displayed, and is expected to
return a string value.

• Screen Icon: This is a reference to an image definition within the application. This image
is used as the icon displayed for this screen in tabs.

• Enable Rule: References a rule definition evaluated in the context of the definition
displayed by the parent screen set and expected to return a Boolean value. When the return
is false, the screen will be disabled and will not be displayed to the user.

• Rows: Sets how many rows the screen will contain. This attribute is used to divide the
screen into rows, which are referenced by the field definitions to determine the position of
each field on the screen. The default settings will vary depending on the platform using the
screen. The grid created by the Rows and Columns attributes is not displayed on the
screen at run time, but is visible in the Agentry Editor for development purposes.

• Columns: Sets how many columns the screen will contain. This attribute is used to divide
the screen into columns, which are referenced by the field definitions to determine the
position of each field on the screen. The default settings will vary depending on the
platform using the screen. The grid created by the Rows and Columns attributes is not
displayed on the at run time, but is visible in the Agentry Editor for development
purposes.s

• Initial Focus: Sets the field to be the initial focus when the screen is first displayed on the
Agentry Client. This attribute requires that fields have been defined for the detail screen.

• Label Position: Specifies the position of the label text for all fields displayed on the detail
screen. The options for this attribute are either Left or Top, with the Left being the default.

Detail Screen Style Attributes

• Screen: The style to apply to the screen as a whole. This will affect all portions of the
screen not displaying a field or button.

• Fields: The style to apply to all fields displayed on the screen.
• Focused Fields: The style to apply to the field that currently has the focus.
• Hyperlinks: The style to apply to any labels define to be hyperlinks.
• Buttons: The style to apply to all buttons on the screen.
• Focused Buttons: The style to apply to the button that currently has the focus.

Images Attributes

• Screen Background Image: This attribute allows for the selection of an image definition
within the application which is displayed as the background image for the detail screen.
This behavior is currently only supported on detail screens used by iOS and Android
platforms.

• Fit to Screen (Lock Aspect Ratio): This attribute specifies that the image should be
resized to fit within the viewable area of the screen. The aspect ratio of the original image is
maintained. This attribute is mutually exclusive from Fit to Screen (Stretch) and Crop to
Screen.

Agentry Language Reference

118 SAP Mobile Platform

• Fit to Screen (Stretch): This attribute specifies that the image is to be resized to fit within
the viewable area of the screen. The aspect ratio of the original image is not maintained and
the image will always fill the entire viewable area of the screen. This attribute is mutually
exclusive from Fit to Screen (Lock Aspect Ratio) and Crop to Screen.

• Crop to Screen: This attribute specifies that the image is to be cropped to fit within the
viewable area of the screen. Images larger than the viewable area of the screen will not be
fully displayed if this attribute is selected. This attribute is mutually exclusive from Fit to
Screen (Lock Aspect Ratio) and Fit to Screen (Stretch).

• Background Image Position: This attribute specifies the position of the image within the
viewable area of the screen. There are nine radio buttons displayed for this attribute, each
corresponding to the position of the image on the screen both vertically and horizontally.

• Field Opacity - Fields Cover Images: This attribute sets the opacity of the image
displayed on the screen. If selected, fields on the detail screen will always be displayed on
top of the background image. If not selected, the image will overlay the fields on the
screen.

Button

A screen button defines a button control to be displayed on a Client screen. The button may be
displayed as a standard button control, a tool bar button, a menu or menu item, or as a
separator. A button is defined to execute an action when clicked or tapped, unless defined as a
menu or separator. When executing an action the button also defines the target object instance
provided to the action for processing.

The button definition itself allows for different Button Types. These include a traditional
button, called an Action Button; an item to be added to the Action menu displayed on the
Agentry Client’s menu bar, called an Application Menu; a Toolbar Button, which is displayed
on the Agentry Client’s tool bar; and a Separator button, which places extra space between
other button definitions, or a separator line in a menu.

In addition, an Action Button can be defined to be a Popup Menu button. In this case, the
button displayed on the screen will not execute an action, but instead display a menu when
clicked. The contents of the menu are other button definitions for the same screen that will
execute actions when selected. These other buttons must meet the criteria of, first, being
positioned after the menu button, and second, the Popup Menu attribute must be set to true.

All button types except for the separator are defined to execute an action when clicked. The
action definition to execute must exist before creating the button definition. Buttons also
include a target attribute where the object instance targeted by the action being executed is
specified. The selected target object type must be the same as the object type selected for the
action being executed, with the exception of those actions defined with a For Object attribute
setting of None.

Agentry Language Reference

Agentry Language Reference 119

Button Attributes
Following are the attributes for a button definition. Some of these attributes are not applicable
to a button definition based on the selection made in the Button Type attribute. The attribute
descriptions in this list specify this information:

• Button Type: This attribute specifies the type of button to define for the screen. The
options are:
• Action Button: Displays a button control on the screen at the position specified by the

platform using the screen at run time.
• Application Menu: Adds a menu item to the Agentry Client’s Action menu. This

menu item will only be a part of the Action menu when the parent screen to the button
has the focus.

• Separator: Places extra space between Action Buttons, or a separator in a popup
menu, depending on where the separator button is displayed Separators cannot be
added to the Agentry Client’s Action menu.

• Toolbar Button: Places a button on the Agentry Client’s toolbar. This button type
must have an image as it will not have a label.

• Name: The unique name for the button definition. This value must be unique among all
buttons within the same screen.

• Image: This attribute references an image definition within the application to be used as
the icon for the button control displayed on the screen. For action button types the icon is
displayed to either the left or right of the button’s label depending on the device’s OS shell.
The image icon for toolbar buttons is required. This will be the image used to identify the
toolbar button. For both Separator and Application Menu Button Types, or if the Action is
set to Popup Menu, the image attribute field is disabled.

• Label: This attribute specifies the label to identify the button on the screen. This value is
the label for Action Button Types, or the text listed as a menu item for both Action Menu
Button Types or Action Buttons included on a popup menu. This attribute is disabled for
both Toolbar and Separator Button Types.

• Action: This is the action to execute on the Agentry Client when the button is clicked or
tapped by the user. This action must be defined before creating the button definition. At run
time if this action is disabled, the button will also be disabled. This attribute may also be set
to Popup Menu. In this case the button will not execute an action, but rather will display a
popup menu when clicked or tapped. The items in this menu will be other button
definitions within the same screen defined to be drawn on the popup menu. Popup menu
buttons do not have an image or a target object instance. Also, the Popup Menu attribute is
not available, as a popup menu button cannot be placed within another popup menu.

• Target: This attributes specifies the target object instance of the button to be passed to the
action the button executes. The object type selected here must match the definition type
defined in the For Object attribute in the action the button is defined to execute. At run time
if the selected Target object instance is not currently in scope, the button will be disabled.
As an example, if the target is the selected object in a list screen, and no object is currently
selected, there is not valid target in scope and the button will be disabled. Separator Button

Agentry Language Reference

120 SAP Mobile Platform

Types and buttons with an Action attribute setting of Popup Menu do not have a target as
they do not execute an action.

• Popup Menu: This attribute specifies whether the button should be displayed in a popup
menu on the Agentry Client. If this attribute is set to true, and of a button definition
positioned before the current definition is defined with Action attribute of Popup Menu,
the current button definition will be added as a menu item rather than a button control. This
attribute may only be set for Action Button Types.

• Style: This attribute specifies a style to apply to the button definition. The Style attribute is
only available for Action Button Types.

• Focused Style: This attribute specifies a style to apply to the button when the button has
the focus. This attribute is not available for Separator Button Types.

• Shortcut Key: This attribute specifies whether a shortcut key is associated with the button
and the specific key or key combination. This attribute includes the ability to set
combinations of the Ctrl, Alt, and Shift keys, as well as any alphanumeric keys,
function keys from F1 through F24, or hardware buttons (Button 1 through Button 5) on
mobile devices. When setting this attribute, verify the key combination selected is not
configured for any other shortcut, either within the current screen of the mobile application
or for any system shortcuts configured on the client device.

Detail Screen Fields

A detail screen field defines a field control for display on the parent screen. The field displays
data to the user and, when displaying a transaction or a fetch, can capture data from the user. A
field can be defined to have one of several edit types that will affect both the appearance and
behavior of the field on the screen, especially when capturing data.

There are several different edit types that may be selected for a field definition. This edit type
will significantly impact the field’s behavior on the Agentry Client. Despite this, however,
there are several attributes that are common among most fields regardless of edit type. For
many field edit types these common attributes are the only attributes. For others there are
additional attributes specific to the edit type selected for the field definition.

In many use cases a field definition will target a property within the definition it displays. The
value of that property will be displayed to the user and, for transaction and fetch screens, the
user may be able to edit that value. In these situations, the value of the field will be assigned to
the property when the user advances the wizard past that screen. This may be the case when the
user clicks a next button or finish button.

The field may also target other definitions within the application. If the target of a field is not a
property definition, the value of the field will not be copied to that definition. It will only use it
as a data source for the value to display. These targets can be selected using the target browser
and can include other fields on the current screen or other screens within the same screen set.

With the release of the Agentry Mobile Platform version 5.1, when the target is another screen
field that is one of the edit types for displaying complex tables, it is possible to select a
complex table record field from the currently selected record in that target screen field. In

Agentry Language Reference

Agentry Language Reference 121

previous releases it was necessary to define an update rule for the field that would retrieve the
complex table record and field to display in the screen field. The additional target browser
behavior negates the need to define such a rule. Existing applications using an update rule for
this purpose will still behave correctly, and can be modified to use the new behavior or left as is
with the same result.

The target for a screen field can also include a field on screens in other screen sets, provided
those screen sets currently exist on the Agentry Client, but are hidden from view due to the
focus being on the current screen.

A field on a wizard screen displaying a property value will enforce the data limits of that
property. This means minimum and maximum values or string lengths defined for the target
property will be enforced by the field definition. For strings, no more than the maximum
number of characters may be entered. For numeric values, the target property’s attributes
related to precision and maximum values will be enforced. For minimum values the user will
receive an error message when trying to advance the wizard of either the minimum number of
characters or the minimum numeric value has not been entered.

The labels for a field may be defined as static text or as a hyperlink. Hyperlink labels may only
be defined for a field displayed on a detail screen that displays an object instance. When a label
is defined as a hyperlink, an action is defined to be executed when the user clicks that label.

Fields may have their displayed value set through an update rule. These fields can still target a
property, normally for transactions and fetches, in which case the value of the field as set by the
update rule will be the value assigned to the property when the user advances the wizard.
When displaying an object, there is normally no reason to target a property with a field
definition whose value is set via an update rule.

Fields may also be hidden and/or disabled via rule evaluation. A hidden field will not be
displayed on the detail screen. An optional behavior related to a hidden field is disabling that
field when it is hidden. A field may also be disabled via a separate rule independent or in lieu of
a hidden rule. A disabled field on a wizard screen will not enforce any required values as
defined by the target property.

Fields are positioned and sized on the detail screen using the columns and rows into which the
detail screen is broken up. The position of a field is set based on the upper left corner of the
field and is specified using the row and column position. The width of the field is specified in
columns, and the height is specified in rows, counting from the position in the field which its
placed.

Common Field Attributes
The following attributes are common to most or all field edit types and result in the same
behaviors for most of the different types of fields.

• Object/Transaction Property: Sets the property definition or other definition whose
value is displayed by the field and/or that is updated with the field’s value. This definition

Agentry Language Reference

122 SAP Mobile Platform

is said to be “targeted” by the field. This attribute can be set to “-- None --”, in which case
the value displayed by the Field must come from some other source.

• Name: The unique internal name of the Field definition. It must be unique among all fields
within the same detail screen. This is commonly set to match the name of the property the
field targets.

• Label: Sets the label for the field. This text is displayed on the left side of the field. This
label text will be rendered as a hyperlink if that behavior is also defined. This value is
optional and if not set no label nor the space for one will be displayed on the screen.

• Placeholder: This attribute references a rule definition which returns a string value used
as the place holder for the field definition.

• Edit Type: Sets the edit type for the field, selected from a list. This may also be set to “--
Default --”, in which case the edit type of the field will match the data type of the property
being displayed.

• Read-only: Sets the field to be read-only or read/write. Fields targeting an object property
are always read-only and are not affected by this attribute. Fields with any other target will
respect the Read-only attribute setting.

• Shortcut Key: Sets a key or key combination that, when entered by the user, will set the
focus to the field on the detail screen. This can include both keyboard keys and hardware
keys on the client device.

• Format: Sets any format text for the value displayed in the field. If using a format string
the Object/Transaction Property attribute should be set to “-- None --.”

• Label Width: Sets the number of characters that can be displayed in the space given to the
label on the Screen. Character size will vary depending on the font used for the label text.
The total size of a field on the screen does not change based on the Label Width. The
amount of space within the specified size that is given to display the field itself is decreased
as the Label Width is increased. Label text longer than the space provided based on the
Label Width is word wrapped on the screen.

• Position - Column & Row: Sets where the upper-left corner of the field will be displayed.
The column and row specified correspond to the number of columns and rows the detail
screen is defined to contain.

• Size - Width & Height: The Size attributes specify the Width and Height of the field. The
Width is set to the number of columns the field should span and the Height is set to the
number of rows.

Rules/Hyperlink/Special Value Attributes

• Change Focus: Sets if the field will keep the focus of the screen. If this attribute is
checked, when focus is set to the field, it will automatically be redirected to the next field
on the screen. When unchecked, the field will keep the screen focus until the user selects
another control.

• Update Rule: References a rule definition evaluated in the context of the definition being
displayed and expected to return a string value. This rule is evaluated each time the user
interacts with any part of the detail screen. The value returned by the rule is displayed in the

Agentry Language Reference

Agentry Language Reference 123

field. Note that this rule will not change the value of the field if it returns the same value for
two or more consecutive evaluations.

• Hidden Rule: References a rule definition evaluated in the context of the definition being
displayed and expected to return a Boolean value. If the rule returns true, the field will be
hidden on the detail screen. If false, the field will be displayed.

• Disable When Hidden: When checked, the field will be disabled whenever the Hidden
Rule returns true. The Enable Rule will not be evaluated. If unchecked, then the Enable
Rule will determine whether the field is enabled independently of whether or not the field
is hidden.

• Enable Rule: References a rule definition evaluated in the context of the definition being
displayed and expected to return a Boolean value. When the rule returns true the field is
enabled. A false return will disable the field. A disabled field will appear grayed out, and
the user will not be able to interact with it. A disabled field will also not update its target
property and no attributes related to the required property value will be enforced.

• Clear When Disabled: When checked, the field will clear any value in the transaction
property it targets if the field is disabled. Disabled fields include are those disabled by the
Enable Rule; or those with the Disable When Hidden attribute is true and the field is
hidden by its Hidden Rule. This attribute only affects fields with the following edit types:
• Boolean
• Date
• Date and Time
• Decimal Number
• Duration
• Identifier
• Integral Number
• String
• Time

• Pattern Recognizer: This attribute enables or disables the behavior of recognizing certain
patterns within text values of the field; e.g., e-mail addresses or phone numbers. When set
to true, the user can hold down the hyperlink text to invoke some OS-defined operation.
Examples may include allowing the user to compose and send an e-mail; or to send a text
message or place a call to a phone number. This functionality is available on iOS Agentry
Clients version 6.0.6 or later and only when the application is configured in an Agentry
Editor version 6.0.8 or later.

• Hyperlink - Action: This attribute references an action and when set will enable the
hyperlink behavior for the field’s label. The label itself will be displayed as hyperlink and
the user will be able to click on the label to execute the defined action. This behavior is only
valid for fields displayed on an object screen.

• Hyperlink - Target: Sets the target object for the Hyperlink Action.
• Hyperlink - Shortcut Key: Sets a shortcut key for the hyperlink. When this key

combination is entered on the Client, the defined Hyperlink Action is executed.
• Special Value: Sets a default value for the field. When a field has a Special Value defined, a

radio button is displayed on the detail screen as a part of the field’s definition. It is drawn

Agentry Language Reference

124 SAP Mobile Platform

between the label for the field and the actual field control. A second radio button is also
drawn to the immediate left of the field control. When the first radio button is selected, the
Special Value defined for the field is set as the field's actual value, which will then update
the property targeted by the field. When the second radio button is selected, the field
control itself becomes enabled, and the user can enter a value.

• Display Value: The value to display in the field when the property value is equal to the
field’s special value. This only impacts fields on detail screens displaying an object
instance.

• Auto Label and Width: This attribute can contain a label for the first radio button
displayed for special value fields. This label is displayed to the right of the radio button and
can indicate to the user that they are selecting the default value.

• Edit Label and Width: This attribute can contain a label for the second radio button that
enables the field control on the Agentry Client. This label is displayed to the right of the
second radio button and can indicate to users that its selection requires them to enter a
value.

Detail Screen Field Edit Types

Following are the different field edit types that may be selected from the Edit Type attribute’s
list. All field edit types include the Common Field Attributes as a part of their definition. Many
edit types also include additional attributes related to their edit type-specific behavior. These
edit types are denoted as such with an asterisk(*) in this list. Look to the additional information
provided for these field edit types for information on their type-specific attributes.

• Default: Selecting this edit type option will force the field to take on the edit type matching
the data type of the property it targets. If a field has a default edit type and does not target a
property, the field will be a string field.

• Barcode Scan*: The barcode scan field edit type receives input from a barcode scanner.
Use of this field type requires the device to have a barcode scanner, and for the parent detail
screen to be used by a platform that supports scanning. This type of field may also accept
manual input from the user, depending on how it is defined.

• Button*: The button field edit type defines a detail screen field with button behaviors to
execute actions and capture values. This field type will draw a button control on the detail
screen in any position where a field can be placed. For object screens this button may
execute an action. For wizard screens the button can set the value of a property. The type of
button displayed may be a push button, check box, or radio button. Check boxes and radio
buttons may be grouped (meaning only one can be selected at a time) by all targeting the
same property. A value can be defined for this field that will be set to the property the Field
targets when the user clicks this button. There are three types of buttons: Radio Button;
Check Box; and Push Button. This is the default for displaying a Boolean Property.

• Calendar View*: The calendar view field edit type provides an interactive calendar to
display an object collection property, with each object treated as a calendar event. The
objects in the collection property displayed by this field must include properties for start
and end date and times, as well as other calendar related values.

Agentry Language Reference

Agentry Language Reference 125

• Complex Table Drop Down*: The complex table drop down field edit type displays
unique values from a defined record field from a complex table in a drop down list. Using a
succession of fields with this edit type can create a cascade. This is a representation of
parent-child values where the users will be required to select a parent value first, and then
select from only those values that are children of the selected parent. Use of this edit type
requires the supporting structure be first defined in the complex table the field displays. A
cascade can also be created using a combination of this field edit type and Complex Table
List fields.

• Complex Table List*: The complex table list field edit type displays the records of a
complex table in a list control on the detail screen. Using a succession of fields with this
edit type can create a cascade. This is a representation of parent-child values where the
users will be required to select a parent value first, and then select from only those values
that are children of the selected parent. Use of this edit type requires the supporting
structure be first defined in the complex table the field displays. A cascade can also be
created using a combination of this field edit type and Complex Table Drop Down fields.

• Complex Table Search*: The complex table search field edit type displays the records of
a complex table in a searchable list of records. This screen is displayed when the user clicks
the associated button for this field type. This is a built-in screen within the Client and will
display the records of the complex table in rows and columns. The user may select any
index for a string field and enter search text to locate a record within the table.

• Complex Table Tree*: The complex table tree field edit type displays the records of a
complex table in a tree control, providing a parent-child relationship to the records. This
screen is displayed when the user clicks the associated button for this field type. This is a
built-in screen within the Client and will display the records of the complex table in a tree
control. The records are organized in this tree using the parent-child index relationships
defined in the complex table.

• Data Table Selection*: The data table selection field edit type lists the records of a data
table in a drop down list control on the detail screen. The code value of the record selected
by the user is returned to the field. If the number of records is too large to fit in a drop down
control, a popup dialog will display the records in a list box.

• Date: The date field edit type allows the user to enter a date value selected from a
calendar control. The user may also manually type a date value into this field. When using
the calendar control, the user clicks the ellipsis button drawn to the right of the field on the
detail screen. This will display the calendar where the user can select a date by scrolling
through the months. It is recommended that this edit type only be used with properties
defined to be date values.

• Date And Time: The date and time field edit type allows the user to enter a date and time
value selected from calendar and time controls, respectively. In this type of field, the user
can enter a date value by selecting it from a calendar and enter a time value in the time
portion of the field. It is recommended this field edit type only be used with date and time
properties.

Agentry Language Reference

126 SAP Mobile Platform

• Decimal Number: The decimal number field edit type captures decimal values, allowing
only numeric values, a single decimal value, and a negative sign. Any other characters will
not be accepted by this field type.

• Duration: The duration field edit type allows the user to enter a duration value in hours,
minutes and seconds. This field displays a control similar to a time entry, but the values
entered represent a duration of time, rather than a time of day.

• Embedded Image*: The embedded image field edit type displays an image definition on
the detail screen that can be interactive. A transparent grid can overlay this image and each
section, or “cell” within this grid can have an action associated with it. When a given cell is
clicked on the Client that action will be executed. Fields with this edit type have a child
definition called Cell that represents each cell in the grid overlaying the image.

• External Data: The external data field edit type displays controls to show the Windows
File Dialog on the client to allow a file to be selected for an external data property.

• External Field - Active X Control*: The external field-ActiveX Control field edit type is
defined to call out from a field to an active X control, passing values to the control. Use of
this Edit Type also requires use of the Active X interface available with the Agentry Mobile
Platform.

• HTML: The HTML field edit type supports the formatted display of HTML markup text,
or the display of a defined URL for internet navigation.

• Identifier: The identifier field edit type requires the user to enter only positive integers.
This edit type is intended to support the capture and storage of values intended to uniquely
identify some business entity.

• Image Capture*: The image capture field edit type provides integration with the client
device’s built-in digital camera, allowing for images to be captured and stored in
properties of the application.

• Integral Number: The integral number field edit type allows the user to enter only whole
numeric values and an optional negative sign. Any other characters will not be accepted in
this field.

• Label: The label field edit type displays only the label portion of a field definition,
excluding any actual field control. The Label edit type prevents any editing, and no field is
drawn on the detail screen. As will be readily apparent in the Agentry Editor, many of the
common field attributes are disabled for fields with an edit type of Label.

• List Selection*: The list selection field edit type displays a drop down list of values, the
source of which may be an object collection, data table, or complex table. Using an include
rule, you can also list a sub-set of the source items. The values listed in this field edit type
are treated as a temporary data table that exists only in working memory and only for as
long as the field is displayed.

• List Tile View: The list tile view field edit type displays an object collection property in a
tiled view allowing for add and edit interaction with the collection through the field. This
field type will use other screen sets containing detail screens within the same module to
display each object in the collection in a list with each object displayed in it’s own tile. This
can include different screen sets to display, add, or edit objects within the collection.

Agentry Language Reference

Agentry Language Reference 127

• List View*: The list view field edit type displays an object collection property in a list
control on a detail screen with the same functionality as provided by a list screen. A field of
this edit type contains the child definition column, matching the column child definition to
the list screen definition.

• Location: The location field edit type is intended to display the value of a location
property, displaying the latitude and longitude in degrees for the location. This field can be
read-only or editable, allowing the user to manually enter latitude and longitude values.
When the field targets a transaction property, it will automatically retrieve the latest
location value from the GPS unit. When this field edit type displays an object property, or if
it does not target any property, a rule can be written to update the field using the
@GPS_LOCATION rule function to update the field.

• Password Validation*: The password validation field edit type requires users to enter
their client password and validates the value entered against the password for the client.
This entered value is hidden with character placement, displaying asterisks in place of
each entered character. Includes the ability to define a message to the user when the
password entered is not valid.

• String: The string field edit type allows the user to enter any printable character values.
This field type can be used to provide a large text field to capture user input by spanning
multiple columns and rows on the detail screen.

• Signature Capture: The signature field edit type allows for the entry of a signature on a
client’s screen that is stored as a bitmap image. The signature edit type cannot be selected
from the edit type list. This is, rather, the default edit type for a field when that field targets
a property with a data type of Signature. To display such a property the correct edit type
selection is “Default.” No other edit type should be used when targeting a signature
property as the behavior of such a combination is undefined.

• Tile Edit*: The tile edit field type displays object properties in a tiled view allowing for
add and edit interaction without starting a wizard screen.

• Tile Display*: The tile display edit type displays an object instance in a tiled view.
• Time: The time field edit type allows the user to enter a time of day value using a time

control. This edit type will display three controls for the field to display and capture the
hours, minutes, and seconds portions of the time value. It is recommended that this field
edit type only be used with time property types.

Field Edit Type - Property Data Type Cross Reference

When the edit type of a field is set to “Default,” the field will take on the behavior of the edit
type that matches the data type of the property the field targets. The table provided here
contains the cross reference between the field’s edit and the property data type. This will then
be the type of field displayed on the detail screen when it targets a property of the type listed
and the edit type of the field is set to “Default.” This refers only to the field edit type on wizard
detail screens. Object detail screens will always display property values in read-only string
fields.

Agentry Language Reference

128 SAP Mobile Platform

Property Data Type Default Field Edit Type

Boolean Button (check box type)

Collection read-only string field (field should have edit
type specified).

Complex Table Selection Complex Table Search List

Data Table Selection Data Table Selection

Date Date

Date and Time Date and Time

Decimal Number Decimal Number

Duration Duration

External Data External Data

Identifier Identifier

Integral Number Integral Number

Object read-only string field (field should have edit
type specified)

Signature Signature

String String

Time Time

Field Definitions With Edit Type-Specific Attributes

Many of the field edit types available include attributes beyond those common to all fields.
These edit type-specific attributes are necessary to define the behaviors specific to a given
field’s edit type. As an example, a field defined to display complex tables will require
attributes that specific the complex table to be displayed, the index used to sort the records, and
so on.

The following section lists each of these field edit types and describes their type-specific
attributes.

Barcode Scan

The barcode scan field edit type receives input from a barcode scanner. This type of field may
also be defined to behave like a string field, accepting input from the device's keyboard. The
scanning functionality is only available on detail screens used by scanner platforms on devices
equipped with a barcode scanner.

Agentry Language Reference

Agentry Language Reference 129

Barcode Scan Attributes
Following are the attributes specific to a barcode scan field edit type. These are in addition to
the common field attributes:

• Label Types: This attribute specifies the name of the barcode label type or types to support
for this field. If the barcode being scanned is not one of these types, it will not be scanned. If
this attribute is left blank, any label type supported by the device will be scanned.

• Minimum Length: This attribute specifies the minimum number of characters to scan in.
If the number of characters is less than this minimum, the value will be ignored. The
default for this attribute is no minimum. This value must be less than or equal to the
Maximum Length attribute value.

• Maximum Length: This attribute specifies the maximum number of characters to scan in.
If the number of characters is greater than this maximum, the value will be ignored. The
default for this attribute is no maximum. This value must be equal to or greater than the
Minimum Length attribute value.

• Allow Typing: This attribute specifies whether or not the user can type a value into the
field in addition to scanning one in. If true, the user can type a value directly into the field.

• Show Scan Button: This attribute specifies whether or not a Scan button is drawn to the
right of the barcode scan field. This button is labeled “Scan” and will activate the device’s
scanner just as if the hardware scanner button is pressed.

• Maintain Scan Focus: This attribute specifies whether or not the scan focus should
always exist for the field when displayed on the current screen. When selected, and when
the user scans a barcode the value scanned in will be set to the barcode field regardless of
where the current input focus may be on the screen.

Button Field Edit Type

The button field edit type defines a detail screen field with button behaviors to execute actions
and capture values. A value can be defined for this field to set the value of the target transaction
property of the field. When displaying an object the button can execute actions. Part of the
definable behavior is the type of button to display, which may be a radio button, check box, or
push button. This is the default edit type for fields targeting Boolean properties.

Included in the functionality of a button field is the ability to group multiple button fields on a
detail screen. If multiple button fields are defined for the same detail screen, and they also
target the same property, these button fields are then grouped. The resulting behavior of such a
configuration is that only one of the buttons may be selected at the same time. This is most
commonly the case when the button fields are defined to display radio button controls.
However, this same behavior will be exhibited for any of the button display types.

Buttons fields defined for object detail screens should be used to execute actions. Button fields
for wizard detail screens displaying a transaction or fetch should be defined to set the value of a
property.

An image can be defined for display in place of one of the available button controls. In this
situation, the image referenced can be an image list, with each image in the list being a square

Agentry Language Reference

130 SAP Mobile Platform

and the same size. Which image is used is based on the state of the button field. These images
are then used based on their position, as follows:

1. Enabled, not selected
2. Enabled, selected
3. Disabled, not selected
4. Disabled, selected

Button Field Edit Type Attributes
Following are the attributes specific to a Field with an Edit Type of Button.

• Button Type: This specifies the kind of button control to be drawn for the field. This can be
a radio button, check box, or a push button.

• Value When Selected: This attribute specifies the value to be assigned to the target
property of the field when that field is displayed on a transaction or fetch detail screen. For
a button field on a transaction, fetch, or object detail screen, if the target property matches
the value set for this attribute, the button will be in a selected state.

• Action When Selected: This attribute is only enabled for button fields when the parent
detail screen displays an object. The action referenced is executed when the button is
selected. Normally the Button Type for this situation is a Push Button. The Target
attribute references the target object of the action referenced in the action attribute.

• Button Image: This attribute references an image definition to be displayed for this field.
In this situation the Button Type attribute will be ignored and the image selected in the
Button Image attribute will be displayed in its place. The image itself will behave as if it is
a button and will either execute an action when selected or set the value of the field’s target
property.

Calendar View

The calendar view field edit type provides an interactive calendar to display an object
collection property, with each object treated as a calendar event. Properties of the object type
used should represent an event title, an event start date and time and an event end date and time.
Definable behaviors include allowing users to change viewing options, setting start and end
times for a work day, and days included in a work week.

As a part of the calendar view field edit type, actions may be defined for double-clicking a
calendar event as well as for double-clicking a calendar day and time that currently contains no
events. When defining this field edit type, it is likely the field will comprise most, if not all of
the viewable screen area.

The resulting display will be a calendar control that may include events. A given event is
represented by an object instance containing the event’s title, and its start and end date and
times. The event will then be represented in the calendar view as a block spanning the days and
times as provided by the start and end date and time values. Users will be able to interact with
these events and/or with empty time periods on the calendar based on double-click actions that
can be set for the field.

Agentry Language Reference

Agentry Language Reference 131

Note that this field edit type was only supported on the desktop builds of the Windows
operating system supported by the Agentry Client in versions of the Agentry Mobile Platform
prior to 5.1. Release version 5.1 and later of the Agentry Mobile Platform provide support for
the mobile Windows operating systems supported by the Agentry Client.

Calendar View Data/Style Attributes
The following attributes for a field with a calendar view edit type define the collection
property to use, and the properties within each object instance contained in the object
collection to use for displaying events in the calendar view. They also include the styles that
may be applied to the calendar view events.

Calendar Data

• Collection: Sets the object collection property that will be used as the data source for
calendar events. Each object instance in this collection will be treated as a calendar event
by the field.

• Event Title: This attribute specifies the value to display as the title of a given event. This
may be either an object property within the objects of the collection, or the return value of a
rule. If set to a rule, the rule is evaluated in the context of the object instance for the event
and is expected to return a string value. This rule will be evaluated once for each object
currently displayed in the calendar view. Changing the view options of the calendar on the
Agentry Client at run time will result in the rule being evaluated again for each object
displayed.

• Event Start: This attribute specifies the value to treat as the start date and time for an
event. This may be either an object property within the objects of the collection, or the
return value of a rule. If set to a rule, the rule is evaluated in the context of the object
instance for the event and is expected to return an integral number treated as an Agentry
date and time value. This rule will be evaluated once for each object currently displayed in
the calendar view. Changing the view options of the calendar on the Agentry Client at run
time will result in the rule being evaluated again for each object displayed.

• Event End: This attribute specifies the value to treat as the end date and time for an event.
This may be either an object property within the objects of the collection, or the return
value of a rule. If set to a rule, the rule is evaluated in the context of the object instance for
the event and is expected to return an integral number treated as an Agentry date and time
value. This rule will be evaluated once for each object currently displayed in the calendar
view. Changing the view options of the calendar on the Agentry Client at run time will
result in the rule being evaluated again for each object displayed.

• Include Rule: Sets the name of the rule that can be used to limit the objects in the
collection that will be displayed.

• Tool Tip Rule: Sets the rule that can be used to format a tool tip text when a user hovers the
cursor over an event displayed in the calendar as an event.

Calendar Styles

• Highlight Events: This attribute provides the style to apply to events that should be
highlighted in the calendar view. This style should be set based on a rule in any real-world

Agentry Language Reference

132 SAP Mobile Platform

use cases. The rule is evaluated in the context of the object instance representing the event
and is expected to return a string value containing the name of the style to apply to those
events that should be highlighted. An empty string will use the default style.

• Selected Events: This attribute provides the style to apply to a selected event in the
calendar view. The style to be applied may be selected from those that are defined, or the
name of the style can be returned from a rule. If a rule is used, it will be evaluated in the
context of the object instance representing the event when the user selects the event. The
rule is expected to return a string value containing the name of the style to apply.

Calendar View Options Attributes
The calendar view options attributes define behaviors related to the options a user may set,
including whether or not to allow the user to set those options. These include the different
views the calendar supports, the days of the week to treat as work week days vs. weekends, and
whether or not those weekend days should be compressed in the month view.

Calendar Options

• Allow User to modify Options: This attribute controls whether or not users can change
the calendar options on the Agentry Client. If set to true, the remaining attributes set here
are treated as the defaults for the calendar behavior, which the users can then override. If
this attribute is set to false, the options set here will define the behaviors exhibited at all
times for each view supported by the calendar.

• View: Sets the default view for the Calendar:
• Day: Displays the current day
• Month: Displays the entire month, including weekends.
• Week: Displays the entire week, Sunday through Saturday, including both work and

not work days.
• Work week: Displays the current work week. The days in the work week are defined in

the Work Week section.

Day View - These attributes affect the appearance and behavior of the calendar view when set
to the Day View on the Agentry Client.

• Time Scale: Sets the time scale, in minutes, for the time rows in the calendar. Options for
Time scale are in minutes, can be in increments of:60, 30, 15, 10, 6, or 5.

• Start Time: Sets the calendar start time in increments of 30 minutes. The calendar uses a
white background color when displaying times between the start time and end time.

• End Time: Sets the calendar end time in increments of 30 minutes. The calendar uses a
white background color when displaying times between the start time and end time.

Work Week View - These attributes affect the appearance and behavior of the calendar view
when set to the Week or Work Week view on the Agentry Client.

• Sunday - Saturday check boxes: Sets which days of the week are included in a Work
Week. Unchecked days are treated as weekends.

Agentry Language Reference

Agentry Language Reference 133

• First Day of Week: Sets the first day of the week displayed on the calendar as the left-most
day.

Month View - This attribute affects the calendar only when the field is set to the month view.

Compress weekends: Check to compress Saturday and Sunday in the calendar month view.
Unchecked, and Saturday and Sunday will display like the other days in the week.

Calendar View Actions Attributes
The attributes for actions in a calendar view allow for the definition of actions to be executed
when the users double-click an event in the calendar, and when double-clicking an open time
slot within the calendar.

• Double-Click on Event Action and Target: These attributes allow for the definition of an
action to be executed when a user double-clicks an event in the calendar, and the target
object of that action. This target is normally the object representing the event just selected.
In most use cases the action may display that event and/or allow the user to edit that event.

• Double-Click off Event Action and Target: These attributes allow for the definition of
an action to be executed when a user double-clicks a time slot within the calendar that does
not currently contain an event. This target is normally the parent object of the collection
being displayed by the calendar view field. In most use cases the action will allow the user
to add a new event starting at the day and time slot double-clicked in the calendar. The
selected begin or end date may be retrieved via the rule function SCREENFIELDVALUE
by passing the name of the calendar view field and either of the parameters
SelectedBeginDate or SelectedEndDate.

Complex Table Drop Down

The complex table drop down field edit type displays a drop down list of unique values from a
defined complex table field. This screen field edit type is normally used in a cascade control
series, allowing users to drill down through records within the table that have a parent-child
relationship.

A cascade is a series of multiple fields all displaying the same complex table. Each cascade
field displays a different complex table field. The records displayed in a field are the child
records to the selected record in the field before it in the cascade. The parent-child relationship
is determined by the structure of the indexes for the complex table being displayed.

The overall behavior of a cascade will force a user to make a selection in the first field in the
cascade, which is a top-level parent record in the complex table. The next field in the cascade
will not be enabled until this selection is made. At this point, the values listed in the second
field will be only those complex table records that are children to the record selected in the first
screen field.

This behavior repeats for each field in the cascade. Defining such a cascade requires that the
complex table displayed by these fields have the needed parent-child indexes defined. Each
cascade screen field must then have a matching child table index at the same level.

Agentry Language Reference

134 SAP Mobile Platform

As an option to displaying the values of a complex table, this field type can display a complex
table search dialog. Within this dialog the records of the complex table will be listed within
multiple columns, one for each complex table field. The records displayed in this dialog will
be dependent on the selections made in previous fields in the cascade control series. Also as
definable behaviors in this dialog are options to specify which indexes to allow a user to search
on and the specific complex table fields to display in the list.

This field edit type also supports scanning as input. When this behavior is enabled, the value
scanned in must be one that can return a record using the index specified for the screen field.

Both the complex table drop down and complex table list field edit types support cascade
behavior. Fields of both types may used in the same cascade series of fields on a given detail
screen.

Complex Table Drop Down Attributes
Following are the attributes specific to fields with an edit type of complex table drop down.
These are in addition to the common field attributes:

• Complex Table: This attribute specifies the complex table the field is to display. In a
cascade it is possible for each field to display a different complex table, provided the values
selected in one can be used to search the next. This is not the recommended method for
using cascades, as it is more efficient to use a single complex table for all cascade fields.

• Table Index: This attribute specifies the complex table index that should be used to search
that table. For the first field in a cascade, this index should be the top-level index, that is, an
index that does not have a parent index. For subsequent cascade fields, the selected index
should be the child index to the index selected in the field that precedes it in the cascade.

• Cascade Parent: This attribute references another screen field on the same detail screen to
use as the cascade parent for the field. If left set to Auto, the cascade will be determined
based on the selected Table Index. The field whose Table Index is set to the parent index of
the selected Table Index for the field will be treated as the cascade parent screen field. If the
proper index structure is in place in the complex table, the cascade parent can be left set to
auto.

• Display Field: This attribute specifies the complex table field to display for the table
records. Leaving this attribute set to Auto will display the field upon which the index
selected in Table Index is defined. This is the recommended selection for this attribute.
Only unique values of this field will be listed.

• Return Field: This attribute contains the complex table field to return from the selected
record. When left set to Auto, the return field will the field upon which the index selected in
Table Index is defined. This is the recommended selection for this attribute, as this value
will be the one passed to the next field in the cascade.

• Selection Method: This attribute specifies how the records of the complex table being
displayed by the screen field are displayed to the user. Following are the options for this
attribute:
• Always Drop Down Menu - Always list the records of the complex table in a drop down

list.

Agentry Language Reference

Agentry Language Reference 135

• Always Open Dialog - Always list the records in a popup dialog.
• Always Open Dialog with Search - Always open a complex table search list dialog that

provides the user with the ability to enter search text to locate the desired record. This
dialog will list all fields, or only those selected in the Search Dialog Indexes list, for
each record in the complex table.

• Open Dialog if Needed - Allows to the specification of record threshold. For this
option, the default is to display the records in a drop down list. If the number of records
to list exceeds the defined threshold, a popup dialog is displayed listing the records in a
list box control.

• Open Threshold: This attribute can be set only of the Selection Method is set to Open
Dialog if Needed. This attribute can be set to the Default, which will vary from one client
device to another, or to a specific number of records. When the Open Threshold is
exceeded, the popup dialog is displayed, listing the records from the table.

• Scanning: This attribute, when set to true, will enable the client device’s scanner (if
present). The user can scan a barcode value, which will be used to search the complex table
by that value using the defined Table Index. If a single matching record is found, that will
be the selection for the field. This attribute only has an impact if the client device has a
scanner, and if the parent detail screen is used by a scanner platform.

• Handle Special Value By: This attribute is available only if a special value has been
defined for the screen field. This attribute specifies what to do when the cascade parent
value changes. You can define the field to then set itself back to the special value, change to
the default text of “Please select,” or to change to the “Please select text” only if the current
selection is not the special value.

Search Dialog Indexes
For detail screen fields defined with an edit type of complex table drop down, there are two
lists of items shown in the properties view of the Editor. The first is the Search Dialog Indexes
tab. Listed in this tab will be one item for each top-level index defined in the complex table the
screen field is displaying. For complex table drop down lists the selected search indexes will
only affect behavior when the Selection Method attribute is set to “Always Open Dialog with
Search.” Each item contains a check box which, when selected, will display that index to the
user as one that can be searched on. Those indexes not checked in this list will not be displayed
to the user.

Search Dialog Fields
For detail screen fields defined with an edit type of complex table drop down, there are two
lists of items shown in the Properties view of the Editor. The second is the Search Dialog
Fields tab. Listed in this tab will be one item for each field defined in the complex table being
displayed by the screen field. For complex table drop down lists the selected fields will only
affect behavior when the Selection Method attribute is set to “Always Open Dialog with
Search.” Each item contains a check box which, when selected, will display that field to the
user in the list of records. Fields that are not selected will not be shown to the user.

Agentry Language Reference

136 SAP Mobile Platform

Complex Table List

The complex table list field edit type displays the records of a complex table in a list control on
the detail screen. Definable behaviors include the complex table fields to display, the complex
table field value to return when a record is selected, and an action to execute when a record is
double-clicked. This field edit type is normally used in a cascade control, though this is not a
requirement.

A cascade is a series of multiple fields all displaying the same complex table. Each cascade
field displays a different complex table field. The records displayed in a field are the child
records to the selected record in the field before it in the cascade. The parent-child relationship
is determined by the structure of the indexes for the complex table being displayed.

The overall behavior of a cascade will force a user to make a selection in the first field in the
cascade, which is a top-level parent record in the complex table. The next field in the cascade
will not be enabled until this selection is made. At this point, the values listed in the second
field will be only those complex table records that are children to the record selected in the first
screen field.

This behavior repeats for each field in the cascade. Defining such a cascade requires that the
complex table displayed by these fields have the needed parent-child indexes defined. Each
cascade screen field must then have a matching child table index at the same level.

Both the complex table drop down and complex table list field edit types support cascade
behavior. Fields of both types may used in the same cascade series of fields on a given detail
screen.

Complex Table List Attributes
Following are the attributes specific to the complex table list field edit type. These attributes
are in addition to the common field attributes:

• Complex Table: This attribute specifies the complex table the field is to display. In a
cascade it is possible for each field to display a different complex table, provided the values
selected in one can be used to search the next. This is not the recommended method for
using cascades, as it is more efficient to use a single complex table for all cascade fields.

• Table Index: This attribute specifies the complex table index that should be used to search
that table. For the first field in a cascade, this index should be the top-level index, that is, an
index that does not have a parent index. For subsequent cascade fields, the selected index
should be the child index to the index selected in the field that precedes it in the cascade.

• Cascade Parent: This attribute references another screen field on the same detail screen to
use as the cascade parent for the field. If left set to Auto, the cascade will be determined
based on the selected Table Index. The field whose Table Index is set to the parent index of
the selected Table Index for the field will be treated as the cascade parent screen field. If the
proper index structure is in place in the complex table, the cascade parent can be left set to
auto.

Agentry Language Reference

Agentry Language Reference 137

• Fields to Display: This attribute can contain the name of each complex table field to
display in the list. Each table field name is listed here, separated by a comma. If no fields
are listed here, all fields are displayed in the list. Each field displayed in the list is
represented by a list column.

• Return Field: This attribute contains the complex table field to return from the selected
record. When left set to Auto, the return field will the field upon which the index selected in
Table Index is defined. This is the recommended selection for this attribute, as this value
will be the one passed to the next field in the cascade.

• Double-Click Action: This attribute references an action to execute if the user double-
clicks a record in the list. The target of this action will always be the object instance the
parent detail screen is displaying. The complex table record the user double-clicks is the
current record and can be accessed as such through the target browser. This attribute can
only be set when the field is displayed on an object detail screen and will have no affect on a
wizard detail screen for a transaction or fetch instance.

• Handle Special Value By: This attribute is available only if a special value has been
defined for the Field. In this case, this attribute specifies what to do when the cascade
parent value changes. You can define the Field to then set itself back to the special value,
change to the default text of Please select, or to change to the Please select text only if the
current selection is not the special value.

Complex Table Search

The complex table search field edit type displays the records of a complex table in a searchable
list. This field edit type displays a field with an ellipses button. When the ellipses button is
clicked, the searchable list screen is displayed. By default users may search the records of the
complex table on any defined top-level index for a string field. Alternately, a single search
index may be specified as a part of the screen field’s definition. This field edit type also
supports scanner functionality to select a record.

When scanner functionality is enabled, the scanned value will be used to search the complex
table on the selected search index. Only those records that match will be listed and the user
may make a selection from this filtered list.

Complex Table Search Attributes
Following are the attributes specific to the complex table search field edit type. These
attributes are in addition to the common field attributes:

• Complex Table: This attribute specifies the complex table whose records will be listed in
the search screen.

• Search Index: This attribute can be set to restrict the index used to search the complex
table. If an index is selected for this attribute, the user will only be able to search the
complex table using that index. By default, all top-level indexes on string fields can be used
to search the records. The Search Index can be defined any index, parent or child, which
will then be used for all searches of the complex table when using this field.

Agentry Language Reference

138 SAP Mobile Platform

• Parent Value: This attribute can be set to the value by which the records should be filtered
when the Search Index is set to an index that is a child to another index.

• Initial Value: This attribute can be set to a property of the definition. This will set the
initial value of the field to the value of this property. The user can still select a complex
table record to change this value. By default, there is no Initial Value.

• Display Field: This attribute can be set to any field within the complex table and specifies
the field value to display in the screen field for the selected table record. By default the
value displayed in the screen field is the field upon which the complex table’s primary
index has been defined, i.e., the field containing the unique value for each table record.

• Return Field: This attribute can be set to any field within the complex table and specifies
the table field to return to the screen field from the selected table record. By default the
value returned is the table field upon which the complex table’s primary index has been
defined, i.e., the field containing the unique value for each table record.

• Allow Scanning as Input: This attribute can enable scanner functionality for the search
screen. When enabled, the user can scan a value that will be used to search the complex
table using the selected search index. Only those records matching this search will be
listed. This attribute will only affect screen fields for detail screens used by a scanner
platform displayed on client devices with barcode scanners.

Search Dialog Indexes
For detail screen fields defined with an edit type of complex table search, there are two lists of
items shown in the properties view of the Editor. The first is the Search Dialog Indexes tab.
Listed in this tab will be one item for each top-level index defined in the complex table the
screen field is displaying. Each item contains a check box which, when selected, will display
that index to the user as one that can be searched on. Those indexes not checked in this list will
not be displayed to the user.

Search Dialog Fields
For detail screen fields defined with an edit type of complex table search, there are two lists of
items shown in the Properties view of the Editor. The second is the Search Dialog Fields tab.
Listed in this tab will be one item for each field defined in the complex table being displayed
by the screen field. Each item contains a check box which, when selected, will display that
field to the user in the list of records. Fields that are not selected will not be shown to the user,
unless all fields are not selected, in which case all fields of the complex table are displayed as
columns in the list.

This dialog also allows the developer to specify the order in which columns should be
displayed in the list control of the search dialog. For the selected fields, a position value is
assigned and can be adjusted by moving the field up or down in the list.

Complex Table Tree

The complex table tree field edit type displays the records of a complex table in a tree control,
providing a parent-child relationship to the records. Each node in the tree control represents a
complex table record. This edit type displays a field on the detail screen with an ellipses

Agentry Language Reference

Agentry Language Reference 139

button. When this button is clicked the screen containing the tree control is displayed.
Definable behaviors include the table indexes to be treated as the parent and child indexes, the
starting point of the records, the number of levels below the start point to display, and the
complex table field values to display from each record in each node of the tree control.

The complex table tree field edit type allows for the creation of parent-child relationships that
do not exist in the complex table’s structure. Part of the definition of a field of this type is the
selection of two indexes in the complex table, both of which are top-level indexes. One will be
used as the parent index and the other the child. This relationship will only exist while the tree
control screen is displayed.

Complex Table Tree Attributes
Following are the attributes specific to the complex table tree field edit type. These attributes
are in addition to the common field attributes:

• Complex Table: This attribute references the complex table whose records will be
displayed in the tree control screen.

• Parent Index: This attribute references the index within the complex table to use as the
parent index. Records will be organized in the tree control according to their common
parent based on this index. Each node will contain child nodes with the same value in the
field for which this index is defined.

• Child Index: This attribute references the index within the complex table to use as the
child index. Each record with a unique value in the field upon which this index was created
will be listed in the tree control under the parent record.

• Search Index: This attribute can be set to restrict the index used to search the complex
table. If an index is selected for this attribute, the user will only be able to search the
complex table using that index. By default, all top-level indexes on string fields can be used
to search the records.

• Parent Root: This attribute can be set to a value found in the complex table field for which
the selected Parent Index is defined. Any records with the Parent Root value in this field
will be treated as the top-level parent records by the complex table tree field. The resulting
behavior will be that these records will be listed as the root nodes in the tree control.

• Display Field: This attribute references a complex table field whose value will be
displayed for each node in the tree control. This same value will also be the one returned to
the field for display on the detail screen containing the complex table tree field definition.
If this value is not set, the default is to display the field for which the complex table’s
primary index was defined. The Display Format attribute to this screen field edit type can
also affect the appearance of the nodes in the tree control.

• Return Field: This attribute specifies the complex table field to return for the selected
record for the purpose of setting the property targeted by the screen field. By default, the
complex table field for which the primary index was defined is the value returned.

• Display Type: This attribute can specify how each node in the tree control will be
displayed. The default is to display the table field value from the Display Field attribute for
the record each node represents. The other alternatives are to display not only the value for
that record, but also the values of each ancestor to that record. This can be in either a

Agentry Language Reference

140 SAP Mobile Platform

parent-to-child order (Root to Selected Item), or in a child-to-parent order (Selected Item
to Root). The value from each record displayed in the node can be separated in the display
using the Connect Items With attribute (discussed below). The Display Field attribute
contains the field value displayed for each record.

• Display Format: This attribute can contain format strings to format the display of the
selected record in the detail screen field. To access the values of the selected record, use the
format string syntax of %fieldName where fieldName is the name of the complex
table field whose value is to be displayed.

• Tree Format: This attribute can contain format strings to format the display of the nodes in
the tree control. Using these format strings, you can display additional complex table fields
for each record in its respective node. This will be in addition to the value selected in the
display field attribute. To reference a complex table field, the syntax is %fieldName
where fieldName is the name of the complex table field.

• Connect Items With: This attribute can contain a character that will be placed in between
each of the values displayed in a single node. This attribute is only available if the Display
Type is set to either Root to Selected Item, or Selected Item to Root. The character(s)
contained in the Connect Items With attribute will be placed between the values for each
record in the hierarchy within a single node of the tree control.

• Word Wrap: This attribute, when set to true, will wrap the text of the nodes to the next
line, if it spans beyond the viewable area of the screen. The default is to not wrap the node
values, requiring the user to horizontally scroll the tree control for longer values.

• Sort: This attribute controls how child nodes are sorted in relation to nodes that begin with
a hyphen. In many cases, a complex table will contain a default record, such as “--
None--”. The Sort attribute can specify that such records are sorted either before or after
the other nodes. The default setting will place these items wherever they may be sorted
according to the locale settings of the client device.

• Depth: This attribute can specify how many levels of the hierarchy within the complex
table you to display in the tree control. The number of levels refers to the number of
descendents to display below the root node. This value is relative to the Parent Root, if one
is specified. Note that this value does not specify the actual level, but rather the number of
levels counting from the Parent Root.

• Search: If this attribute is enabled the search controls in the complex table tree screen will
be hidden.

• Scanning: This attribute can enable barcode scan searches of the complex table records
within the tree control. The complex table will be searched using the specified Child Index
for the value scanned in. The first matching record will be selected in the tree control. This
attribute only affects complex table tree fields defined for detail screens used by a scanner
platform and displayed on a device equipped with a barcode scanner.

Data Table Selection

The data table selection field edit type lists the records of a data table in a drop down list
control on the detail screen. Definable behaviors of this list include the data table field to
display, the sort order for display, and the value by which to sort. A popup screen may be

Agentry Language Reference

Agentry Language Reference 141

displayed based on the number of records in the data table. This threshold is different for each
supported device type.

When displaying the records from the data table in the drop down list, the code, value, or both
may be displayed. Additionally, format strings may be used to format the text for each record.
When a selection is made in the list, the value returned to the field is always the code portion of
the selected record. This will be the value set to the target property of the field.

Data Table Selection Attributes
The following attributes are specific to the data table selection field edit type and are in
addition to the common field attributes.

• Data Table Name: This attribute references the data table whose records will be listed in
the drop down list for this field.

• Sort By: This attribute allows you to sort the values listed in the drop down list by one of
several options: Code, which is the code field in each table record; Value, which is the
value field in each record; Displayed Text, which is the text displayed for each record in the
field; and Order in Data Table, which is the order in which the records are listed in the data
table itself.

• Sort Order: This attribute specifies whether the records displayed are sorted in ascending
or descending order. This is a string sort.

Field Attributes

• Display Type: This attribute specifies which fields from the data table records should be
displayed in the drop down list. The options are: Code, meaning the code field in each table
record; Value, which displays the value field from each record; Code - Value, which
displays both fields from each record, separating them with a hyphen; and Format Text,
which allows you to specify format strings to format the values displayed in the list for
each record.

• Format Text: If the Display Type attribute is set to “Format Text” this attribute will be
enabled. Format strings can then be entered in this attribute to format each record from the
data table. The valid format strings for this field are %code, %value and %position.
This last will display the position number of each record as stored in the data table. This
last option is used mostly for testing purposes and is generally not found in the production
version of an application. This attribute can also contain any other printable characters,
excluding tabs and carriage returns, to format the display of the table’s records.

• Editable: This attribute specifies whether or not users can manually enter text values in the
field for values not found in the data table displayed by the field. When this attribute is set
users can either select from the list or enter a value manually. When not set, users will be
required to select an item from the list. This attribute can be set if the field is defined to be
read-only if the field also has an update rule defined, if that rule can return values not found
in the data table.

Popup Dialog Attributes

Agentry Language Reference

142 SAP Mobile Platform

• Define separate display type for popup dialog: This attribute allows you to display the
records from the data table differently in the popup dialog vs. the drop down list for the
field. If set to false, the display and format attributes listed above will also affect the popup
dialog. If set to true, the attributes listed next will provide separate display behaviors for
the popup dialog.

• Display Type (Popup Dialog): The options for this attribute are the same as the Display
Type options listed previously. The option selected here will impact the appearance and
behavior of the popup dialog displayed for larger data tables.

• Format Text (Popup Dialog): The format strings for this attribute are the same as the
Format Text options listed previously. The format text entered here will impact the
appearance and behavior of the popup dialog displayed for large data tables.

Embedded Image Field

The embedded image field edit type displays an application-level image definition on the
detail screen that can be interactive. Definable behaviors include whether or not to resize the
image to fit in the space allocated for the field, the cropping behavior of the image displayed,
and the ability to divide the image into cells to elicit different behaviors when different
portions of the image are selected.

Each cell in an embedded image field is represented by a child definition to the field in the
Editor. This definition type is called an image cell. There will be as many of these image cells
as there are cells in the image, which is a multiple of the rows and columns defined for the
field.

Note that the embedded image field edit type was named the image field edit type in versions
of the Agentry Mobile Platform. Starting with version 5.1 and going forward, this field edit
type has been named embedded image. This is to distinguish this field edit type from the image
capture field, which displays the contents of image properties. The embedded image field is
provided to display image definitions at the application level of the application project
hierarchy.

Child Definitions

• Image Cell: The image cell definition is a child definition to fields with an edit type of
embedded image and represents a specific portion of the image being displayed. An image
cell defines the action to execute or the value to set when the corresponding cell of the
image field is selected by the user.

Image Field Edit Type Attributes
The following attributes are specific to the embedded image field edit type. These are in
addition to the common field attributes:

• Image: This attribute specifies the image definition within the application that this field is
to display.

Agentry Language Reference

Agentry Language Reference 143

• Grid: This attribute contains two numeric values, rows and columns. The product of these
two values determines the number of image cell definitions for the field. A one by one grid
will create a single cell representing the entire image field.

• Resize to Fit: This attribute specifies whether the image should be resized to fit in the
space allotted to the field.

• Lock the Aspect Ratio: Available only when resize to fit is true, this attribute specifies
whether or not the aspect ratio of the image should remain the same. If true, the aspect ratio
will be locked. If false, an image too large for the field will be resized to the size and shape
of the field, regardless of its affect on the appearance of the image.

• Crop to Fit: This attribute is only available when the resize to fit attribute is false. If Crop
to Fit is true, the image will be cropped on its right and bottom edges to fit within the
field.

• Position: This attribute specifies the position of the image within the space allotted to the
field on the detail screen. This can be one of: upper-left; top; upper-right; left-center;
center; right-center; bottom-left; bottom; or bottom-right.

• Highlight: This attribute specifies whether or not the currently selected cell on the image
field is highlighted. If this attribute is true, you can specify how to highlight the cell(s).
This may be either in 3D, or by specifying a mask color to be applied to the selected cell(s).
Cells are considered selected if either the user selects them on the screen or if the value the
cell is defined to set is equal to the value of the property targeted by the field.

• Highlight Cells on Hover: This attribute specifies whether or not the cell over which the
mouse cursor is currently hovering is highlighted. If this is true, you can specify whether to
highlight the cell in 3D or by specifying a mask color to be applied to that cell. This
attribute only affects the Windows PC platforms.

Image Cell

The image cell is a child definition to a field with an edit type of image. The image cell
definition represents a cell for the parent image field. A cell definition can define an action to
execute or a value to assign to the field’s target property when the cell is selected. Actions may
be executed from detail screens for objects. Values may be assigned to properties from detail
screens for transactions or fetches.

The editor allows for a single image cell to be edited within the image, or to edit multiple cell
images at the same time. This is accomplished using the layout view for the image field. The
grid will overlay the defined image in this view, and the cells may be selected and edited via
right-clicking a cell. Multiple cells may be selected using Ctrl+Click. A single cell can be
defined to set a value or execute an action, and then additional cells can be defined to be the
same as that cell. This allows for multiple cells to be combined to define a region of the image,
based on its appearance.

Image Cell Attributes
The following attributes define the behavior of the image field child definition image cell:

Agentry Language Reference

144 SAP Mobile Platform

• Cell: This attribute specifies which cell the definition represents. This is a numeric value
displayed in the format (Row, Column), where Row and Column are the points where the
row and column intersect to create the cell.

• Name: This attribute is the name of the cell definition, which is set by default to
Cell_R_C, where R and C are the row and column that make up the Cell.

• Value When Selected (Transactions and Fetches): This attribute is available for
transaction and fetch detail screens and defines the value to be set to the property targeted
by the cell’s parent field definition when the cell is selected.

• Action (Objects): This attribute references the action to execute on object detail screens
when the user selects the cell.

• Action Target: This attribute specifies the object instance that is targeted by the action
executed.

• Tooltip When Hovered Over: This text field can contain any text value. This will be the
text displayed on the client when the user hovers the mouse cursor over the cell. This
attribute only impacts image fields displayed on detail screens for the Windows PC
platforms.

External Field - ActiveX Control

The external field-ActiveX control edit type is defined to call out from a field to an ActiveX
control. Values may be passed to this control from the Agentry Client.

Use of this field requires an ActiveX control exist on the client devices and that control be built
using the Agentry ActiveX Control API, including the implementation of all Expected
Methods.

Using the Agentry Data and Actions tabs allows an ActiveX control to query Agentry for
data and for an ActiveX control to call for Agentry to execute actions. Agentry can also query
the ActiveX control for any values listed in the External Values tab.

External Field - Active X Control Attributes
The following attributes are specific to the External Field - ActiveX control field edit type.
These are in addition to the common field attributes:

• ActiveX Class Name (Prog ID): This attribute contains the class name that the Agentry
Client will interface with for the ActiveX control.

• Allow Scanning as Input: This attribute specifies whether or not the field displayed will
accept barcode scan values as input. This attribute will only impact fields displayed on
detail screens used by a platform that supports scanner behavior and on client devices
equipped with a barcode scanner. When value is scanned for the field, the ActiveX control
expected method AgentryUpdateScanData to pass the barcode value to the ActiveX
control.

• External Values Tab: The External Values tab is a list of values provided by the ActiveX
Control. This will allow the Agentry Client to query the control for data. From the tab, you
can add and delete value names from the list. The ActiveX control referenced by the detail
screen field must include the proper processing within the

Agentry Language Reference

Agentry Language Reference 145

AgentryGetSpecificValue method to return the value(s) associated with each of
the External Values listed in this tab.

• Agentry Values Tab: The Agentry Values tab is a List of names and target paths for values
within Agentry, made available to the ActiveX Control. From the tab, you can link Agentry
data with the external values for the ActiveX Control. Both primitive data types as well as
object instances and collection properties can be made available to the ActiveX control.
The name associated with the selected data item is the identifier exposed to the ActiveX
control, which can call the GetPropertyFromMappings Agentry Client-Side API
method, passing the name to retrieve the desired value.

• Actions: Allows the ActiveX control to call for Agentry to execute actions. The Properties
tab gives you a list of Actions and target paths. Within this list actions can be added and
deleted. When an action is added it must also specify a target object for the action. The
ActiveX control can call the ExecuteAgentryAction Agentry Client-Side API
method, passing the name of the action to be executed.

HTML

The HTML field edit type supports the formatted display of HTML markup text, or the display
of a defined URL for internet navigation. Definable behaviors for this field include whether or
not to display the navigation toolbar, a list of parameters to be pased to a URL, and the ability
to provide either a list of permitted or prohibited URL’s to restrict the navigation allowed by
the user.

Included in this field edit type are two child definitions, which are the Domain List and the
URL Parameters. The domain list items can be used to specify to which URL’s users can
navigate. The URL parameters can define the parameters to pass to a URL. These values are
derived from a rule and can therefore be dynamic.

The HTML field edit type can also display HTML pages or text retrieved from some source,
such as the back end system. This allows for a web page to be displayed within the field on the
detail screen, which can then provide links to internal or external pages.

HTML Child Definitions

• Domain: The domain definition is a child definition to detail screen fields with an edit type
of HTML, and can specify the URL’s to which users can navigate or those they should be
prevented from viewing.

• URL Parameter: The URL parameter is a child definition to detail screen fields with an
edit type of HTML, and can specify an argument value to be passed to the URL the field is
defined to display.

Attributes
Navigation Bar

• Initial State-Show Navigation Bar: This attribute specifies whether or not to display the
navigation bar for the HTML field when the parent screen is initially displayed. If this

Agentry Language Reference

146 SAP Mobile Platform

option is not set, the user can display the navigation bar by right-clicking the field and
selecting the popup menu item to display it.

Domain List

• Domain List Contains: This attribute specifies whether the domains added to the HTML
field as child definitions specify those URL’s to which the user is allowed to navigate, or
those URL’s to which they should be prevented from viewing.

Domain and URL Parameter

The domain definition is a child definition to detail screens with an edit type of HTML, and
can specify the URL’s to which users can navigate or those they should be prevented from
viewing. This definition type contains a single attribute of Name, which contains the URL for
the domain definition. The parent HTML field then specifies whether all child domain
definitions are those that are allowed to be viewed, or those that should be blocked.

The URL parameter is a child definition to detail screen fields with an edit type of HTML, and
can specify an argument value to be passed to the URL the field is defined to display. The value
for each URL parameter is specified via a rule definition, making the values dynamic.

Image Capture

The image capture field edit type provides integration with the client device’s built-in digital
camera, allowing for images to be captured and stored in properties of the application. Using
this field type it is also possible to select an image file on the client device to store in the
property. This field edit type is intended for use only with properties of type image.

The image capture field edit type interacts with the client device’s camera, if one is available.
When displayed on the detail screen, the field will include up to two buttons. One will allow
the user to select a file from the client device’s file system. The other will interact with the
camera, taking a picture that will be captured and displayed in the field. This behavior is
exhibited only on detail screens displaying a transaction or fetch. For object screens, the image
capture field will display the image stored in an image property in a read-only field.

When the camera button for the image capture field is clicked, a dialog is displayed allowing
the user to take a picture using the device’s camera. When the image is captured it is displayed
as a thumbnail in the image capture field. The user can then click this image to display a popup
screen of the image. The size of the image displayed in this popup is dependent on the Initial
Popup Mode attribute for the image capture field. This option allows for the image to initially
be displayed in either full size or to be scaled to fit within the popup screen. This screen will be
no larger than the viewable area of the client device’s display. Within this popup screen the
user can click the image to switch between the scaled and full size image views. The dialog
will contain scroll bars to allow the user to scroll the image if it is larger than the viewable
display area.

Agentry Language Reference

Agentry Language Reference 147

Image Capture Attributes

• Allow Image Camera Capture: This attribute specifies whether or not to allow the field
to interact with the device’s camera, if one is available. When this attribute is set, the field
will include a button control that will activate the camera to take a picture

• Allow Image File Capture: This attribute specifies whether or not to allow the field to
capture an image file stored on the device’s file system. When this attribute is set, the field
will include button control that will display the Windows file dialog, allowing the user to
select an image file from the file system.

• Initial Popup Mode: This attribute specifies how the image should be initially displayed
in the popup screen when the image capture field is clicked by the user. The options are
display the captured image in full size or to scale the image display to the size of the popup
dialog. This is the initial display mode and the user can switch between the two by clicking
the image in the popup dialog.

• Image Location: Specifies the location in which the image should be stored once it has
been captured.

• Image Name Prefix: Specifies a string value to affixed to the beginning of the image file
name.

List Tile View

The list tile view field edit type displays an object collection property in a tiled view allowing
for add and edit interaction with the collection through the field. For a given object, the
properties of that object can be displayed in the list tile view in tiles within that object’s record.
The values of a given object can be edited directly in this list, and new object instances can also
be added. This field edit type also supports scan filter functionality.

The list tile view will make use of an existing screen set defined to display the same object type
as is stored in the collection being listed by the field. As a part of a list tile view’s definition, a
screen set is selected to display the objects within the collection. This screen set must be
defined to display the same object type as is found in the collection, and must contain a single
detail screen. When the list tile view field is displayed, each object instance within the
collection will be displayed within the field in a list. Each tile within the list will be shown in
the detail screen from the selected screen set. Two screen sets can be used for read-only display
of the objects within the collection. One is used for all rows within the list. The selected row
screen set can be defined, with a detail screen containing more fields. This will then be the
screen set used to display the selected object.

Similar to this behavior is the ability to add and edit objects for the collection from within the
tile view. A transaction for the add and edit behaviors must exist, as must a screen set to be used
to display the transactions. When an item is selected in the list, the user can click the add icon
button. A new tile will be displayed at the bottom of the list. The screen set in which it will be
displayed will be the one defined for the add behavior. For an edit, the user can select an object
in the list tile view and click the edit icon button. In this case the currently selected tile will

Agentry Language Reference

148 SAP Mobile Platform

change to use the edit screen set, displaying the edit transaction. The user can change the
values on the screen. They can then either cancel or accept the changes they have made.

As alternatives to this behavior, an action can be specified for both add and edit behaviors.
When the action is executed it will dictate the behavior, displaying the add or edit transaction
in the wizard screen set just as with any other action.

Filtering can be enabled or disabled for the entire list tile view field. When enabled, the
properties of the object type being listed are selected. The user will then only be able to filter
the list on these properties. When a property is selected for this purpose, a Tile Filter child
definition is added to the list tile view. Users will then only be able to filter the items in the list
on one of the selected property values.

Related to the manual filtering, this field edit type also supports scanner filtering. A tile filter
can be defined to support scanner filtering. When a barcode value is scanned in it will be
compared to the values of that tile filter’s property. Only those items that match will be listed.
The parent field can then be defined to execute an action when a single item in this list matches
the scan filter, and a separate action to execute when no items match.

List Tile View Child Definitions

• Tile Filters: The tile filter is a child definition to a detail screen field with an edit type of
list tile view, defining the values upon which the items listed in the parent field can be
filtered.

• Sort Properties: This child definition is a simple list of the object properties by which the
list tile view can be sorted at run time on the Agentry Client. When adding a sort property a
selection is made from the properties defined in the object type for the collection which the
List Tile View field is defined to display.

List Tile View - Collection/Styles Attributes
The list tile view field edit type does not support the following general field attributes:

• Object/Transaction Property
• Format
• Field Style
• Focused Field Style
• Change Focus
• Update Rule
• Special Value

The list tile view data and style attributes set the basic behavior of the view, including how
styles can be applied to the list tile view field.

General Settings

Agentry Language Reference

Agentry Language Reference 149

• Collection: References the object collection property the list tile view is to display. This
collection is normally a property of the object definition the parent screen set is defined to
display.

• Include Rule: References a rule definition expected to return a Boolean value and that is
evaluated once for and in the context of each object in the collection displayed by the list
view. When an include rule is specified, only those objects for which the rule evaluates to
true will be listed in the list tile view.

Styles Settings

• Header Label: The style to apply to the list tile view’s header label. If no header label is
defined this attribute has no affect on the screen.

• Rows: The style to apply to all rows on the list tile view.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row.
• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that

row. This style should always be returned via a rule definition that evaluates the object
being listed.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control.

List Tile View - Settings Attributes
Selection Settings

• Allow Multi-Row Select: Specifies if the user can select more than one record in the list at
the same time. If multiple items are selected in a list, actions that target the selected object
in the list will be executed once for each selected object. The default for selecting multiple
objects requires a Ctrl+Click combination (mouse input) or a click and drag operation
(stylus input) by the user, depending on the device type. The Enable Single Click option to
this attribute may be set to allow multiple records to be selected with a single click by the
user. Deselecting a record requires the user to click it again. This feature is normally most
useful on touch screen devices, as it allows non-sequential records in the list to be selected.
If this option is enabled the attributes related to editing the objects in the list tile view will
be disabled. These objects may still be edited as the selected object in the list tile view, but
the action must be executed from a control on the same screen as the list tile view field,
rather than from within the list tile view itself.

Action Settings

• Allow Tile Adds: This attribute specifies whether or not users will be able to add a new
object to the collection being displayed by the list tile view field from within the field.
When this option is selected, the Add Screen Set and Add Transaction attributes must
also be set.

• Allow Tile Edits: This attribute specifies whether or not uses will be able to edit an object
within the collection displayed by the list tile view field. When this option is selected, the

Agentry Language Reference

150 SAP Mobile Platform

Edit Screen Set and Edit Transaction attributes must also be set. Allow Tile Edits is
disabled if the attribute Allow Multi-Row Select is enabled for the list tile view field.

• Allow Single Click Action: This attribute specifies whether to allow for an action to be
executed when a tile is selected in the list with a single click. If this attribute is set to true, all
default behaviors of the list tile view field for a single click of a tile are disabled, as are the
related attributes within the definition. This includes the following attributes:
• Allow Tile Edits
• Allow Multi-Row Select/Enable Single Click Selection
• All attributes in the section Edit Actions/Tiles

Screen Sets

• Row: This attribute specifies the screen set containing the detail screen to display each
object contained in the collection being listed in the list tile view field. The screen set
selected here will be used for each tile in the list that is not currently selected. The screen
set referenced must be defined for the same object type as is contained in the collection
being listed by the list tile view. The screen set must also contain a single detail screen used
by the same platform as the parent screen of the list tile view.

• Selected: This attribute specifies the screen set containing the detail screen to display each
selected tile in the list tile view field. The screen set selected here will be used only for a
selected tile in the list. The screen set referenced must be defined for the same object type
as is contained in the collection being listed by the list tile view. The screen set must also
contain a single detail screen used by the same platform as the parent screen of the list tile
view.

Add Actions/Tiles

• Add Screen Set: This attribute is enabled when the Allow Tile Adds attribute is set. Add
Scree Set is set to the screen set in which the Add Transaction will be displayed within the
list tile view field. This screen set is displayed when the user selects clicks the add icon
button for the field, allowing the user to add the values for the new object instance.

• Add Transaction: This attribute is enabled when the Allow Tile Adds attribute is set.
Add Transaction is set to the transaction that will capture the values from the user for the
new object instance to be added to the collection being displayed by the list tile view field.
The transaction will be displayed in the list tile view field, with the tile using the screen set
selected in Add Screen Set.

• Add Action: This attribute is enabled when the Allow Tile Adds attribute is not set. Add
Action can be set to the action to execute when the user clicks the add icon button for the
list tile view field. This action will be executed, targeting the object selected in Add
Target. The purpose of the Add Action attribute is to execute an action that will add a new
object instance to the collection being displayed by the list tile view field.

• Add Target: This attribute is enabled when the Allow Tile Adds attribute is not set. Add
Target is set to the object instance that the Add Action should target when executed. In

Agentry Language Reference

Agentry Language Reference 151

almost all scenarios the Add Target should be set to the parent object of the collection
being listed by the list tile view field.

• Add Shortcut Key: This attribute is set to the shortcut key combination that will allow the
user to add an object to the collection being displayed by the list tile view field. The
shortcut key will exhibit the same behavior as if the add icon button for the list tile view
field were clicked or tapped by the user, meaning either the defined Add Action will be
executed, or the defined Add Screen Set and Add Transaction will be displayed in a new
tile in the list tile view field.

Edit Actions Tiles

• Edit Screen Set: This attribute is enabled when the Allow Tile Edits attribute is set. Edit
Screen Set is set to the screen set in which the Edit Transaction will be displayed within the
list tile view field for the selected tile. This screen set is displayed when the user selects a
tile in the list and clicks the edit icon button for the field, allowing the user to edit the values
of the selected object instance.

• Edit Transaction: This attribute is enabled when the Allow Tile Edits attribute is set.
Edit Transaction is set to the transaction that will capture the values from the user to
modify the object instance selected in the list tile view field. The edit transaction will be
displayed in the list tile view field with the tile using the screen set selected in Edit Screen
Set.

• Edit Action: This attribute is enabled when the Allow Tile Edits attribute is not set. Edit
Action can be set to the action to execute when the user clicks the edit icon button for the
list tile view field. This action will be executed, targeting the object selected in Edit
Target. The purpose of the Edit Action attribute is to execute an action that will allow the
user to edit the selected object instance in the collection being displayed by the list tile
view field.

• Edit Target: This attribute is enabled when the Allow Tile Edits attribute is not set. Edit
Target is set to the object instance that the Edit Action should target when executed. In
almost all scenarios the Edit Target should be set to the selected object instance of the
collection being listed by the list tile view field.

• Edit Shortcut Key: This attribute is set to the shortcut key combination that will allow the
user to edit the selected object in the list tile view field. The shortcut will exhibit the same
behavior as if the edit icon button for the list tile view field were clicked or tapped by the
user, meaning either the defined Edit Action will be executed, or the defined Edit Screen
Set and Edit Transaction will be displayed in the selected tile of the list tile view field.

Single Click Action - These attributes are enabled only of the attribute Allow Single Click
Action is set to true.

• Single Click Action: This attribute specifies the action to be executed when the user
selects a tile in the list.

• Single Click Target: This attribute specifies the object to be targeted by the Single Click
Action when it is executed.

Agentry Language Reference

152 SAP Mobile Platform

List Tile View - Filter/Sort Attributes
General Settings

• Fixed Sort Property: Specifies the property definition within the object type being listed
by which to sort the objects in the list tile. The Order option to this attribute is set to specify
the sort order, either ascending or descending. For the list tile view it is recommended that
this attribute be set, as the list tile view cannot be sorted by the user. If a Fixed Sort Property
is not set, the order of the objects in the list will be the order in which they are stored in the
collection.

• Enable Groups: Enables or disables the group and indexing behavior available in iOS
Agentry Clients. When selected, the defined Fixed Sort Property is used to group the
objects listed in the List Tile View field. Tiles will be sorted based on this selection and
grouped by those with the first x number of characters (defined in No. Chars option) sorted
relative to each other and exclusive to those in other groups. If the Fixed Sort Property is a
string property, the No. Chars option is enabled where the number of characters to group
on is defined. For numeric types, grouping is based on the first (highest order) digit. This
value should be less than the maximum length of the selected string property. When
Enable Groups is set to true, the attribute Allow Filter is disabled.

• Show Group Index: This attribute is only available when Enable Groups is selected.
When set to true, this attribute will result in the display of a group index on the right side of
the List Tile View field. The user can select one of the items in this list to filter the List Tile
View to only the matching items.

• Allow Sort: This attribute enables or disables sorting of the List Tile View’s tiles on the
Agentry Client by the user. When enabled, a button is displayed on the top of the list tile
view field that displays a sort dialog when clicked by the user. The user can select a
property within the object type being listed and the sort order of either ascending or
descending. This attribute is disabled if a Fixed Sort Property is defined.

• Initial Sort Property: This attribute allows for the selection of property to sort the list tile
view field on during its initial display on the Agentry Client. If a property is selected for
initial sorting, the option Order is available to define whether or not the initial sort order
should ascending or descending. This attribute is not available unless Allow Sort is set to
true.

• Allow Filter: Specifies whether or not the user can filter the items in the list tile view. A
filter icon is displayed for the list tile view field when enabled. The user can click this icon
to select filter options. Only those properties for which tile filters have been defined within
the list tile view field can be selected by the user in the displayed filter dialog.

• Shortcut Key: This attribute specifies the shortcut key combination the user can enter on
the Agentry Client to display the filter dialog for the list tile view field. This attribute will
have no affect if Allow Filter is not set.

Header

• Header Label: Specifies the header text for the list tile view. A common use for this
header label is the total number of objects displayed in the list vs. the total number of

Agentry Language Reference

Agentry Language Reference 153

objects in the collection, which may be different when a filter is enabled. The format
strings used for this purpose are %DisplayedCount and %TotalCount.

List Tile View - Scanner Attributes
The scanner attributes for a list tile view affect only those list tile view fields defined for a
detail screen that is used by a scanner platform within the screen set and only when the screen
set is displayed on a client device with a barcode scanner. At least one tile filter must be defined
within the list tile view to support scan filtering.

Single Match

• Use Edit Row: This attribute specifies whether or not to use the defined edit behavior for
the single object that matches the scan filter settings. When set, the selected object will be
edited via either the defined Edit Action, or the defined Edit Screen Set and Edit
Transaction in the List Tile View Settings attributes. If this attribute is set, the Single
Match Action attribute will be disabled.

• Single Match Action: Specifies what action is executed when a scanned barcode value
uniquely matches an object in the list tile view. The target of the action will always be the
object instance found to match. This attribute will be disabled if the Use Edit Row attribute
is set.

No Match

• Use Add Row: This attribute specifies whether or not to use the defined add behavior of
the list tile view field. When set, defined Add Action will be executed, or the defined Add
Screen Set and Add Transaction in the LIst Tile VIew Settings attributes will be displayed
in a new tile added to the list. If this attribute is set, the No Match Action attribute will be
disabled.

• No Match Action: Specifies what action is executed when the scan filter criteria does not
match any records in the list. The target of the action is the parent object to the collection
property displayed by the list tile view. This attribute will be disabled if the Use Add Row
attribute is set.

Label

• Label Types: Specifies what barcode types are accepted by the Agentry Client. If no
Label Type is specified, all types supported by the client device’s scanner will be
supported. To restrict the label types, enter the name of each label type to support,
separated by a comma. Barcodes not listed will not be processed by the Agentry Client.

• Minimum Value: The minimum number of characters accepted by the Agentry Client
from the device scanner. If the value scanned in contains fewer characters, it will be
ignored.

• Maximum Value: The maximum number of characters to be accepted by the Agentry
Client from the device scanner. If the value scanned in contains more characters, it will be
ignored.

Agentry Language Reference

154 SAP Mobile Platform

• Shortcut Key: This attribute allows a shortcut key combination to be defined to activate
the device’s barcode scanner. This should be set to a key combination not already defined
as a shortcut for any other items on the current screen or any system-level shortcut keys.

Tile Filter

The tile filter is a child definition to a detail screen field with an edit type of list tile view. A tile
filter defines the property within the object type being listed upon which the items listed in the
parent field can be filtered. This includes both manual, user defined filters as well as barcode
scan filters.

A tile filter targets an object property within the object type being listed by the parent list tile
view field. For this property, the tile filter then defines whether or not the user can filter on this
property manually, and whether or not scan filtering is enabled for this value within the list tile
view.

Tile Filter Attributes

• Object Property: This attributes contains the target path to the object property for the tile
filter.

• Allow Filter: This attribute specifies whether or not the user can select this property from
the list of object properties displayed in the filter dialog on the Agentry Client.

• Scan Filter: This attribute specifies whether or not the value scanned in by the client
device’s barcode scanner should be compared to the value of the property targeted by the
tile filter. It is considered a best practice to set this attribute to true for only one tile filter
within the same list tile view field, but this is not a requirement.

List Selection

The list selection field edit type displays a drop down list of values, the source of which may be
an object collection, data table, or complex table. This list is treated as a temporary data table
created at run time. Part of the definition of this edit type is to specify the values to be treated as
the code and value fields for each record. Definable behaviors include whether to display the
code, value, or both for each item listed. The code field is always the value returned from the
selected item in the list.

A field with this edit type is displayed as a drop down list on the detail screen. If the number of
records displayed in the list is large, a popup dialog will displayed when the user selects the
field.

To use this edit type, either an object collection property or complex table is selected as the
source for the items listed. Within this selected source two data members (object properties or
complex table fields) are selected as the code and value for the records in the temporary data
table.

Another aspect of this edit types behavior is the option to define an include rule. If used, this
rule will be evaluated for each object or record in the defined source and only those items for
which the rule returns true will be listed in the field. Note that this rule evaluation should be

Agentry Language Reference

Agentry Language Reference 155

made as efficient as is possible when working with complex tables with large numbers of
records.

List Selection Attributes
The following attributes are specific to the list selection field edit type and are in addition to the
common detail screen field attributes.

• Source: This attribute specifies the source object collection property or complex table for
the field. The collection or complex table may be returned via a rule, or it may selected
from the target browser. Within the target browser, options exist for selecting object
instances or a range of complex table records via a rule. Note that this is separate from
using an include rule, which is another attribute to the field type. In most situations simply
the object collection or complex table is selected here. It may be desirable for complex
tables to return a range of records based on a table index. In this case the search value is
provided in the target browser, which may come from an object property or a rule.
Specifying a search value for the complex table to reduce the number of records for the
field can significantly reduce the number of evaluations needed for the include rule, if one
is used.

• Include: The Include attribute can reference a rule definition that will filter the records
listed to the user. This rule is evaluated in the context of each data instance (object or
complex table record) returned by the Source attribute and is expected to return a Boolean
value. Only those data instances for which this rule returns true will be listed in the field. If
no Include rule is selected, all instances of the selected source will be listed.

• Key: This attribute specifies the data definition within the Source instances to be used as
the code (also known as the Key) field for each record in the temporary data table. This will
either be an object property or complex table field, depending on the selected source.

• Value: This attribute specifies the data definition within the Source instances to be used as
the value field for each record in the temporary data table. This will be either an object
property or complex table field, depending on the selected source.

• Sort By: This attribute allows you to sort the values listed in the drop down list by one of
several options: Code, which is the code field in each table record; Value, which is the
value field in each record; Displayed Text, which is the text displayed for each record in the
field; and Order in Data Table, which is the order in which the records are listed in the data
table itself.

• Sort Order: This attribute specifies whether the records displayed are sorted in ascending
or descending order. This is a string sort.

• Display Type: This attribute specifies which fields from the data table records should be
displayed in the drop down list. The options are: Code, meaning the code field in each table
record; Value, which displays the value field from each record; Code - Value, which
displays both fields from each record, separating them with a hyphen; and Format Text,
which allows you to specify format strings to format the values displayed in the list for
each record.

• Format Text: If the Display Type attribute is set to “Format Text” this attribute will be
enabled. Format strings can then be entered in this attribute to format each record from the

Agentry Language Reference

156 SAP Mobile Platform

data table. The valid format strings for this field are %code, %value and %position.
This last will display the position number of each record as stored in the data table. This
last option is used mostly for testing purposes and is generally not found in the production
version of an application. This attribute can also contain any other printable characters,
excluding tabs and carriage returns, to format the display of the table’s records.

• Editable - Allow User-Entered Values: This attribute specifies whether or not the user
can manually enter values not found in the source of the list. When set users will be able to
either select an item from the list or manually enter a text value in the field. When not set
the users will be required to select from the items in the list. Note that if the field is set to
read-only, this attribute should still be set if the field has an update rule defined, and if that
rule can return a value not found in the data source for this field.

• Define separate display type for popup dialog: This attribute allows you to display the
records from the data table differently in the popup dialog vs. the drop down list for the
field. If set to false, the display and format attributes listed above will also affect the popup
dialog. If set to true, the attributes listed next will provide separate display behaviors for
the popup dialog.

• Display Type (Popup Dialog): The options for this attribute are the same as the Display
Type options listed previously. The option selected here will impact the appearance and
behavior of the popup dialog displayed for larger data tables.

• Format Text (Popup Dialog): The format strings for this attribute are the same as the
Format Text options listed previously. The format text entered here will impact the
appearance and behavior of the popup dialog displayed for large data tables.

List View

The list view field edit type displays an object collection property in a list control on a detail
screen. This list contains all of the same definable behaviors as a list screen, but is contained
within a detail screen. Multiple list views may be displayed on a single detail screen. This is
the default edit type for a field targeting an object collection property.

When a field is defined with a list view edit type, that field will have column child definitions.
A list view field can be defined on a wizard detail screen for a transaction or fetch. However,
the attributes for the double-click actions will be disabled, as actions may not be executed from
a wizard.

List View Child Definitions

• Column Definition: A list screen column defines what object property is displayed for
each record in a list control and how it is formatted on the screen.

List View Data/Styles Attributes
The list view data and style attributes set the basic behavior of the view, including how styles
can be applied to the list view field.

List Data

Agentry Language Reference

Agentry Language Reference 157

• Collection: References the object collection property the list view is to display. This
collection is normally a property of the object definition the parent screen set is defined to
display.

• Include Rule: References a Rule definition expected to return a Boolean value and that is
evaluated once for and in the context of each object in the collection displayed by the list
view. When an include rule is specified, only those objects for which the rule evaluates to
true will be listed in the list view.

• Icons Image: References an image definition containing an image list to be displayed in a
column on the list view. This is an image list with the positions of the images in each list
then referenced by the child column definition’s Icon attribute. Note that columns may
also reference image definitions to use for this same purpose, though they may not be
image lists.

List Styles

• Header Label: The style to apply to the list view’s header label. If no header label is
defined this attribute has no affect on the screen.

• Column Labels: The style to apply to the column labels on the screen’s list control.
• Rows: The style to apply to all rows on the list view. The Hyperlinks optional style will

override the Rows style for cells with hyperlinks.
• Alternate Rows: The style to apply to every other row in the list, beginning with the

second row. The Hyperlinks optional style will override the Alternate Rows style for every
other row, specifically cells containing hyperlinks within the row.

• Highlight Rows: The style to apply to a row for the purposes of drawing attention to that
row. This style should always be returned via a rule definition that evaluates the object
being listed. The optional Hyperlinks style will be applied to the highlighted row’s cells
containing a hyperlink.

• Selected Rows: The style to apply to the row currently selected by the user in the list
control. The optional Hyperlink style will be applied to any cells within the selected row
containing a hyperlink.

• Detail Pane: The style to apply to both the foreground (text) and background of the list
view’s detail pane. If no detail pane is defined this attribute has no affect on the screen.

List View Actions/Sorting Attributes
The list view actions and sorting attributes control how the user interacts with the list view,
including double-clicking on or off an item in the list and behaviors related to sorting and
reordering the columns. Note that the double-click attributes will be disabled for list view
fields defined on wizard detail screens.

Double-Click Actions

• Double-Click On Item - Action: Specifies the action to execute when the user double-
clicks a list view record.

Agentry Language Reference

158 SAP Mobile Platform

• Double-Click On Item - Target: Specifies the target of the Double-Click On Item -
Action. A target must always be specified for the action and is typically the selected object
in the list view.

• Double-Click Off Item - Action: Specifies an action to be executed when the user double-
clicks the list view without clicking on an item. This is most commonly used to execute an
action that instantiates an add transaction for the object type being listed.

• Double-Click Off Item - Target: Specifies the target of the Double-Click off Item -
Action. A target must always be specified for the action. Typically the target is the parent
object of the object collection property displayed by the list view.

Sorting and Selection

• Fixed Sort Property: Specifies the property definition within the object type being listed
by which to sort the items in the list. Selecting a property here prevents the user from
resorting the list on any other column. The Order option to this attribute is set to specify
the sort order, either ascending or descending.

• Allow Sort: Specifies if the user can sort the list by clicking on a column header. This is
enabled by default, and is disabled if a Fixed Sort Property is set.

• Initial Sort Column: Specifies a column definition by which the list will be sorted upon
initial display of the list view. This attribute requires that a column definition exist before it
can be set. The Order option to this attribute is set to specify the sort order, either
ascending or descending. If the list view allows the list to be sorted (Allow Sort is true) the
list will be displayed sorted in the order of the last sort action. If a Fixed Sort Property is
set, this attribute is disabled.

• Allow Multi-Row Select: Specifies if the user can select more than one record in the list at
the same time. If multiple items are selected in a list, actions that target the selected object
in the list will be executed once for each selected object. The default for selecting multiple
objects requires a Ctrl+Click combination (mouse input) or a click and drag operation
(stylus input) by the user, depending on the device type. The Enable Single Click option to
this attribute may be set to allow multiple records to be selected with a single click by the
user. Deselecting a record requires the user to click it again. This feature is normally most
useful on touch screen devices using a stylus, as it allows non-sequential records in the list
to be selected.

• Allow Reorder: Specifies whether or not the user can reorder the columns displayed in the
list view by dragging and dropping the column headers. This is enabled by default.

• Allow Filter: Specifies whether or not the user can filter the items in the list. A filter icon is
displayed at the bottom of the list view field when enabled. The user can click this icon to
select filter options. Individual column definitions may be defined to prohibit filtering on
those columns.

List View Header/Detail Pane Attributes
Using these attributes, a header label or a detail pane may be added to the list view field.
Header label and Detail pane attributes are set to display additional information about the list
as a whole or about the currently selected item in the list. The Header Label is a static line of
text displayed above the list view, within the area given to the field. This text may be static, set

Agentry Language Reference

Agentry Language Reference 159

via certain available format strings, or set via a rule. A rule referenced for this purpose is
expected to return a string value and is evaluated in the context of the object displayed by the
parent screen set.

The Detail Pane is redrawn each time a new object is selected in the list and almost always
contains either format strings or is set via a rule’s return value. Rules are evaluated in the
context of the selected object in the list and are expected to return a string value. The detail
pane drawn on the screen is a multi-line, read-only text box that may be scrolled horizontally
or vertically if needed. The detail pane is drawn within the are given to the list view field and
will reduce the amount of space for the list items.

Header

• Header Label: Specifies the header text for the list view. A common use for this header
label is the total number of objects displayed in the list vs. the total number of objects in the
collection, which may be different when a filter is enabled. The format strings used for this
purpose are %DisplayedCount and %TotalCount.

Detail Pane

• Detail Pane: When true, a text box on the list view. The detail pane is updated each time
the user changes their selection in the list view.

• Position: Controls where the detail pane is displayed on the screen in relation to the list
control. This may below the list or to its right.

• Size: Sets the pixel size of the detail pane within the list view field. The default is 50. If the
Position is “Bottom” the detail pane will span the width of the space given to the field and
the Size will set its height. If the Position is “Right” the detail pane will span the height of
the space given to the field and the Size will set its width.

• Word Wrap: When enabled, lines of text longer than the width of the detail pane will be
wrapped to the next line. When disabled, text will continue off the detail pane. The user
will need to scroll the detail pane to view the text.

• Format: Sets the values displayed in the detail pane. This pane can be set to a combination
of static text and format strings, which take the form %propertyName. The
propertyName is the name of a property defined within the selected object and will be
updated with the value of that property each time a different object is selected. It may also
be set to the return value of a rule, which is evaluated in the context of the selected object
instance and is expected to return a string.

List View Scanner Attributes
The scanner attributes for a list view affect only those list view fields defined for a detail screen
that is used by a scanner platform only when the detail screen is displayed on a client device
with a barcode scanner. At least one column definition within the list view must be defined to
support scan filtering.

A scanned value will be compared to the column(s) defined for scan filtering and only those
matching this value will then be displayed. Actions may be executed automatically when a
single record matches the scan filter, or when no records match.

Agentry Language Reference

160 SAP Mobile Platform

• Show Button: This attribute specifies whether or not a button is displayed to activate the
device’s barcode scanner.

• Single Match Action: Specifies what action is executed when a scanned barcode value
matches one of the records displayed in the list view. The target of the action will always be
the object instance found to match.

• No Match Action: Specifies what action is executed when the scan filter criteria does not
match any records in the list. The target of the action is the parent object to the collection
property displayed by the list view.

• Label Types: Specifies what barcode types are accepted by the Agentry Client. If no Label
Type is specified, all types supported by the client device’s scanner will be supported. To
restrict the label types, enter the name of each label type to support, separated by a comma.

• Minimum Value: The minimum number of characters accepted by the Agentry Client
from the device scanner. If the value scanned in contains fewer characters, it will be
ignored.

• Maximum Value: The maximum number of characters to be accepted by the Agentry
Client from the device scanner. If the value scanned in contains more characters, it will be
ignored.

• Shortcut Key: This attribute can define a shortcut key combination to activate the device’s
barcode scanner. This shortcut cannot be the same as any other shortcut defined for the
current screen or any system level shortcuts configured on the client device.

List View Column

A column definition defines what object property is displayed in a list control column. The
column definition also controls behaviors such as formatting, sorting the list on the column,
whether or not the column can be resized or moved, and whether or not the list can be filtered
on the column. Columns may also be defined to execute an action via hyperlink control.

In addition to or in place of a property value, a column may also display an image definition as
an icon, which can be different for each record based on a rule definition.

Column Attributes

• Object Property: Specifies the property to display in the column on the list view. Set this
to None, to display either a value derived from a format string or only an icon image.
Selecting both an Object Property and specifying an icon image will display both in the
column.

• Name: Internal name for the column definition. This value must be unique among all
columns definitions in the list view.

• Label: Specifies the label for the column header. This text is displayed at the top of the
column on the Agentry Client to identify the contents of the column.

• Enable Rule: References a rule definition evaluated in the context of the object displayed
by the screen set and expected to return a Boolean value. When the rule returns true, the

Agentry Language Reference

Agentry Language Reference 161

column is enabled and displayed on the Client. When it returns false, the column is
disabled and not displayed.

• Format: Can contain a format string to display one or more property values from the
object type being displayed by the list in a different format than the default for the
property’s data type. This text can also be set via a rule definition, where the expected
return value is a string and is evaluated in the context of the object instance for the record in
the list. To set the format attribute set the Object Property attribute must be set to None.

• Icon Image: References an Image definition within the application to specify an icon for
the column. The image name can also be returned using a rule definition to dynamically
determine the image to display for each record. This rule is evaluated in the context of the
object instance for the record and is expected to return the name of an image definition as a
string. Note that not using a rule for this attribute will display the same image for all
records in the list

• Column Width: Specifies the initial size of the column on the client. The user can resize
the columns if the list view definition has not disabled this behavior. If the user changes the
width of a column, the new width is saved in the registry on the client device and will
override the Column Width attribute.

• List Filter: Specifies if the column should be included in those listed in the filter dialog for
the list. This attribute is ignored in filtering has been disabled for the list view.

• Scanner Filter: Enables scan filtering functionality for the column. When this attribute is
enabled, the value scanned in by the device will be compared to the values of the column to
create a filter. Multiple columns can be defined for this behavior. However, the values in
the columns should be mutually exclusive. The order of the columns evaluated against the
scanned value is undefined. This attribute is only supported for screens used by a scanner
platform and displayed on a scanner-enabled device.

• Hyperlink: Specifying a hyperlink action enables each cell within the column to execute
an action when the user single or double clicks on the hyperlink drawn in that column. The
text of the hyperlink will be the value the column is defined to display. This functionality
can include columns with images. Hyperlink contains two attributes:
• Hyperlink Action: Specifies the action that will be executed when a user single-clicks

a column in a populated row in the list.
• Hyperlink Target: Specifies the target of the Hyperlink Action.

Password Validation

The password validation edit type requires users to enter their password on a detail screen. The
value entered is validated against the password stored for the Agentry Client for the current
user. The characters entered in this field are replaced with asterisks. This field edit type is used
primarily with transaction authentication functionality.

The value entered in this field is validated against the user’s password when the wizard or
authentication screen set is advanced. If the value entered is not a valid password a message
will be displayed. This message may be the default message provided by the Agentry Client,
or it may be defined as a part of the screen field using the Message attribute.

Agentry Language Reference

162 SAP Mobile Platform

Password Validation Attributes
The following attributes are specific to the password validation field edit type. These are in
addition to the common field attributes:

• Password Failure Message: This attribute specifies the message to display to the user if
the password entered in the field is invalid. This may be the default message, which is
displayed when Auto is selected, or it may be a message entered in the text box for this
attribute field.

Tile Edit

The tile edit field type displays object properties in a tiled view allowing for add and edit
interaction without starting a wizard screen. For a given object, the properties of that object
can be displayed in the tile edit view in tiles within that object instance. The layout of the tile
edit is defined in a separate screen set and detail screen, used by the tile edit field. The values of
a given object can be edited directly, and new object instances can also be added.

Prior to defining a field with this edit type, the screen set and the transaction it is to use must be
defined. Both are required information when defining a new tile edit field. The screen set must
be defined to display the transaction to capture the data. The screen set must contain a single
detail screen displaying the properties from the transaction.

At run time this field type is displayed within its own detail screen. Within the field is then the
single detail screen from the separate screen set. The fields of this detail screen are displayed
within the tile edit field in the same manner in which they are laid out in the detail screen. The
user can edit any fields defined in the separate detail screen that are not read-only. Within the
tile edit field, if the detail screen displayed is larger than the space given to the field, a vertical
scroll bar is displayed to allow the user to scroll up and down to display fields not immediately
shown.

The tile edit field type does not support the following common field attributes:

• Object Property
• Read-only
• Format
• Change Focus
• Update Rule
• Special Value

Tile Edit Attributes
The following attributes are specific to the tile edit field type. These are in addition to the
common field attributes:

• Tile Edit Screen Set: This attribute specifies the screen set to display for edits. This screen
set should be defined to display the transaction definition specified in the Tile Edit
Transaction attribute.

Agentry Language Reference

Agentry Language Reference 163

• Tile Edit Transaction: This attribute specifies the edit transaction instantiated to capture
data entered by the user in the Tile Edit Screen Set. An instance of this transaction is
created, applied, and saved as a pending transaction when the user enters data changes.

• Tile Target: This attribute specifies the object instance that is targeted by the transaction.
• Modify Row Height By: This attribute allows for all rows displayed on the screen within

the Tile Edit field to be modified by the value set in this attribute.
• Hide Buttons: This attribute will hide the OK and Cancel buttons displayed when the tile

is being edited. These are displayed by default. When hidden, values entered by the user
are automatically applied, as is the define transaction, when the Tile Edit field no longer
has the input focus.

• In Progress Edit: This attribute will enable the In Progress Edit style to be applied to the
field when it is currently being edited and the changes it contains have not been applied.
This is a visual indicator to the user that the Tile Edit field currently has the focus and is
actively being edited.

Tile Display

The tile display edit type displays an object instance in a tiled view. The layout and appearance
of the values is defined in a separate screen set and its detail screens. This separate screen set is
used by the tile display field, with its detail screens displayed within the tile display field as a
tab control.

Prior to defining a field with an edit type of tile display, the separate screen set it is to display
must be defined. This screen set must be defined to display the object type desired for display
in the tile display field. The separate screen set can contain a single detail screen. The fields of
this detail screen display the property values of the selected object type.

When the detail screen containing the tile display field is displayed on the client, the separate
screen set and its detail screen are displayed within the viewable area of the tile display field.
These values are read-only.

The tile display edit type does not support the following general field attributes:

• Object Property
• Read-only
• Format
• Change Focus
• Update Rule
• Special Value

Tile Display Attributes
The following attributes are specific to the tile display edit type. These are in addition to the
common field attributes:

• Tile Display Screen Set: This attribute specifies the screen set to display the object
instance within the tile display field. This screen set can contain one detail screen. The

Agentry Language Reference

164 SAP Mobile Platform

fields of this detail screen are displayed within the tile display field. The screen set must be
defined to display the object definition specified in the Tile Target attribute.

• Tile Target: This attribute specifies the object instance targeted by the tile display field.
This object instance must be of the type the Tile Display Screen Set is defined to display.

• Modify Row Height By: This attribute specifies the rows within the screen being
displayed by the Tile Display field be modified by the value set in this attribute.

• Display Single Screen: This attribute forces the Tile Display field to display only a single
screen from the selected screen set. Otherwise each screen in the screen set is displayed
within the Tile Display, with a tab control displayed for each screen.

Detail Screen Fields With Implicit Edit Types

In addition tot hose detail screen field edit types already addressed, there is a small handful of
edit types which are implicitly set based on the data type of the property the field is defined to
display. These implicit field edit types do not contain any edit type-specific attributes. The
general field behaviors, e.g., position, size, read-only, etc., are defined just as any field would
be. The edit type-specific behaviors are typically take driven by the definition of the property
being displayed.

These edit types cannot be selected from the Edit Type attribute for the field definition.
Instead, when a field is defined to display one of the property data types with which the field
edit type corresponds, the field definition’s Edit Type should be left set to --Default--. As an
example, when displaying a signature capture property type, the field to display this property
will not contain a corresponding Signature Capture edit type. Rather, it is left set to an Edit
Type of --Default--. At run time, the field displayed on the client will be a signature capture
field, and the behavior of the field is driven by the definition of the signature property.

Signature

The signature field edit type allows for the entry of a signature on a client’s screen that is stored
as a bitmap image. This is an implicit edit type in that it cannot be selected when defining a
field definition. Any detail screen field with an edit type of “Default” and targeting a property
with an data type signature will be a signature field. This field edit type has no additional
attributes beyond those of the common field attributes. Much of the behavior of this field is
dictated by the signature property it targets.

Action

An action defines navigation and user interaction for the Agentry Client. Actions are
composed of a series of action steps of varying types. An action is defined to allow the user to
interact with the application in some way.

The action defines the object its steps will act upon, any may also define whether or not users
will be permitted to cancel the action once it has been executed, and also an optional separate
action to execute if the action is cancelled.

Agentry Language Reference

Agentry Language Reference 165

The behavior of the action is dictated primarily by its child action step definitions. There are
different types of action steps for different types of Agentry Client behaviors. Each action step
defines a specific task to be performed on the Agentry Client.

Actions can be referenced by several different components of the user interface, such as
buttons, list screens, and others. Whenever an action is executed it will be passed an object
instance. This object instance is determined by the user interface component executing the
action. The action must be defined for an object type. This object type for the action and the
type of object passed to the action on the Agentry Client must be the same. The exception this
is when the action is not defined for any object. Such actions are limited in use and normally
pertain to performing transmits between the Agentry Client and Agentry Server, or actions
that close screen sets but do not open others.

Action Child Definitions
Action Step: An action step defines a single task within an action that is a part of the overall
action execution on the Agentry Client.

Action Attributes

• Name: This is the unique internal name for the action within the application project. This
value must be unique among all actions defined within the same module.

• Display Name: This attribute contains the name displayed for the action on the Agentry
Client.

• Group: This attribute specifies the group into which the action will be organized within
the application project. This attribute has no impact on the action’s behavior at run time.

• For Object: This attribute specifies the object for which the action is defined. An instance
of this object must be passed to the action by the Agentry Client user interface component
executing the action. Therefore, both this attribute and UI component must have the same
type of object defined or in scope when the action is executed.

• Enable Rule: This attribute references a rule definition called in the context of the object
currently in scope on the user interface and is expected to return a Boolean value. When the
rule returns true the action will be enabled and can be executed. When the returns false the
action will be disabled and cannot be executed. Any buttons defined to execute a disabled
action will be displayed as disabled controls.

• Disable Cancel: This attribute specifies whether or not users can cancel an action once its
execution begins. This setting primarily affects the behavior of screen sets defined to
display transactions or fetches and are displayed by the action. When Disable Cancel is set
to true, screen sets will not contain a cancel button, preventing the user from canceling the
action. When set to false (default) the wizards will contain a cancel button.

• Cancel Action: This attribute references another action within the same module to be
executed when the parent action is canceled. The cancel action will be executed in the
same context as the action that was executed first and then canceled by the user. The action
selected here must exist prior to making a selection.

Agentry Language Reference

166 SAP Mobile Platform

Action Step

An action step defines a single task within an action that is a part of the overall action execution
on the Agentry Client. There are multiple action step types. Each type of step is defined for a
different type of task. These can include navigation, transaction instantiation and display,
transmit initiation, and other behaviors. Each action step type contains its own type-specific
attributes.

The action step definition encapsulates a single task to be performed within the action as a
whole. A given action can contain one or more action steps. Much of the client-side
functionality and behavior that may be defined for a mobile application is exposed in the
action steps.

Action Step Types
Following are the different types of action steps that may be defined:

• Apply: The apply action step type applies all transactions instantiated and completed
before it in the same action.

• Exit Application: The exit application client action step will close the Agentry Client
application when executed.

• External Field Command: The External Field Command action step issues a command
to an ActiveX control when executed.

• List Selection: The List Selection action step type selects the specified row or item in the
selected screen set and screen.

• Message: The message action step type displays a message screen on the Agentry Client
to the user that can contain one or two buttons.

• Navigation: The navigation action step type displays an object screen set on the Agentry
Client.

• Open URL: The Open URL action step type defines a URL to be opened by the client
device’s web browser.

• Print Report: The print report action step type will print the defined report definition on a
printer connected to the client device.

• Save Tile Transactions:
• SubAction: The SubAction action step type executes an action definition from within

another action.
• Transaction: The transaction action step type instantiates a transaction on the Agentry

Client and defines what screen set to display the transaction instance in.
• Transmit: The transmit action step type initiates communications between the Agentry

Client and Agentry Server.
• Windows Command: The Windows command action step type executes a command on

the client device.

Agentry Language Reference

Agentry Language Reference 167

Action Step Type: Apply

The apply action step type applies all transactions instantiated and completed before it in the
same action. An apply step is required in any action containing one or more transaction steps
in order for those transactions to affect their target objects and to be saved on the Client.

The apply step definition itself contains no attributes other than a name. However, it is an
important part of transaction behavior within the Agentry Client. The absence of an apply step
within an action that also includes a transaction step will result in the transaction not being
save or applied on the Agentry Client.

The intended purpose of the separate apply step to apply and save a transaction is to allow for
actions continuing multiple transaction steps followed by a single apply step. This allows for
the requirement that multiple transactions be instantiated and completed by a user within a
single action, and to not save any data until all transactions have been finished.

Apply Step Attributes
This action step type has only a Name attribute, which must be unique among all steps within
the same parent action.

Action Step Type: Exit Application

The exit application client action step will close the Agentry Client application when
executed. When this step is performed within an action it will result in the same behavior as if
the Exit menu item is selected in the File menu of the Client. A step of this type should only be
defined as the last step to be executed within an action, as no other action steps that follow it
will be executed.

The primary purpose of this action step type is to support the true and clean shutdown of the
Agentry Client when running on client devices that do not support this behavior easily. Many
client devices and the shells they run will no truly exit an application when the user clicks the
title bar close button. Rather, the application is simply hidden from view. It remains running on
the client device. Additionally, the application does not exhibit any behaviors defined to occur
when the application exits, such as check for, and notifying the user of any pending
transactions.

To support a cleaner shut down, the users should always be instructed to use either the Exit
menu item in the client’s File menu, or to execute an action defined with an Exit Application
action step type.

Exit Application Step Type Attributes
This action step type has only a Name attribute, which must be unique among all steps within
the same parent action.

Agentry Language Reference

168 SAP Mobile Platform

Action Step Type: External Field Command

The External Field Command action step issues a command to an ActiveX control when
executed. It references the External Field - ActiveX Control field to specify the control to
which the command is to be issued. The action step passes the value of the defined command
string to the ActiveX control, which is then responsible for receiving and processing the string
command accordingly.

The defined command string within this action step type is passed by the Agentry Client to the
ActiveX control through the expected method AgentryExecuteCommand. This method
should be implemented to process the provided command string in the manner deemed
appropriate for that control.

External Field Command Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This must be unique among all steps within the same parent action.

• Screen Set: This attribute specifies the screen set containing the detail screen within
which the External Field - ActiveX Control field is defined. Valid selections for this
attribute include any screen set defined to display an object definition. Screen sets for
transactions and fetches are not valid.

• Screen: This attribute specifies the detail screen containing the External Field - ActiveX
Control field.

• External Control: The External Field - ActiveX Control detail screen field that references
the ActiveX control to which the command string is to be issued.

• Command: The string to be passed to the ActiveX control’s
AgentryExecuteCommand method. This attribute value can be entered into the
attribute field directly, or can be set to the return from a rule definition. A rule referenced by
this attribute is evaluated in a string context and in the context of the action to which the
action step is being added and the object for which that action is defined.

Action Step Type: List Selection

The List Selection action step type selects the specified row or item in the selected screen set
and screen. The specific list control on the screen must also be specified if more than one type
of list field is defined for that screen. The action allows for the specification of record to select
by one of several options, as described in the Select Rows attribute of the field definition.

List Selection Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This must be unique among all steps within the same parent action.

• Screen Set: This attribute specifies the screen set containing the screen and list in which a
selection is to be made.

Agentry Language Reference

Agentry Language Reference 169

• Screen: This attribute specifies the screen containing the list in which a selection is to be
made.

• List Control: This attribute specifies the list on the selected detail screen in which a
selection is to be made.

• Select Rows: This attribute specifies how the item in the list is to be selected. Options for
this attribute include:
• By Position: Selecting this option enables the Position attribute, where the position

number of the item to be selected can be specified. This is a numeric value that must be
one or greater and indicates the item to select from either the top or bottom of the list.

• By Rule: This option specifies a rule is to be used to determine the item to be selected.
The object being listed sets the context for the rule being evaluated, with either a true or
false value returned by the rule. The first item for which the rule returns true will be the
one selected in the list.

• First Row: The first row in the list based on it’s current sort order.
• Last Row: The last row in the list based on it’s current sort order.
• Next Row: The row immediately following the row currently selected in the list.
• None (Clear selection): This clears the selection state of any items that may be

currently selected in the list.
• Previous Row: The row immediately preceding the row currently selected in the list.

Action Step Type: Message

The message action step type displays a message screen on the Agentry Client. This screen can
contain a defined title, message text, and either an OK or an OK and Cancel button. When a
Cancel button is clicked in a message screen the parent action of the step is canceled. No
subsequent steps within the action will be executed.

This step type can provide the user with the ability to cancel an action based on some decision.
This step type is commonly used within actions that will delete an object instance on the client.
A message step with two buttons can be defined to confirm the delete of the object prior to
executing the transaction step that will delete it.

When a message step is displayed with only a single button, the user will not be able to cancel
the action within the message displayed. Rather, the single button is displayed for the user to
confirm they have read the message. Once clicked, the action will continue execution with its
next defined action step.

Message Step Attributes

• Step Name: This attribute contains the unique name for the action step. This value must be
unique among all steps within the same parent action.

• Caption: This attribute contains the text to display in the title bar of the message dialog
displayed by the Message Step.

• Message Text: This attribute contains the text to display in the main portion of the
message dialog displayed by the Message Step. Format strings may be used within this

Agentry Language Reference

170 SAP Mobile Platform

text, or the entire message may be built and returned by a rule. A rule definition referenced
here is evaluated in the context of the object passed to the step by the action. The rule is
expected to return a string value.

• OK Label: This attribute contains the text to label the OK button in the message dialog.
Regardless of the label, clicking this button will always confirm the message, or be
considered a positive response to the message, continuing execution of the action.

• Cancel Label: This attribute can enable or disable the cancel button behavior in the
message log. When disabled, no cancel button is displayed. When enabled, the cancel
button will be displayed and this attribute also then contains the label for that button.
Regardless of the label text, clicking this button will always be considered a negative
response and cancel the parent action’s execution.

Action Step Type: Navigation

The navigation action step type displays an object screen set on the Agentry Client. It includes
optional definable behaviors to specify the screen and control on the screen to which the initial
focus is set. It may also be defined to close the previous screen set displayed. Screen sets may
be defined to display an object, transaction, or fetch. A navigation action step is defined to
display only those screen sets defined to display an object.

When selecting a specific screen within a screen set to be the first one displayed, you will
typically select any of the screens not at position one within the screen set. The screen at
position one within the screen is displayed first by default. If the navigation step displays a
screen set with multiple platforms, and the selected screen definition is not used by one or
more of the platforms, the screen at position one within the screen set is displayed first on those
device platforms.

Similar behavior is exhibited when a specific field is selected within a detail screen to have the
initial focus. If the field does not exist on a screen for a given platform, the default focus field,
as defined within the screen, will contain the initial focus.

If the initial screen defined to be displayed is a list screen, the optional behavior of selecting
one or more rows by default within that list can be defined. There are several options for
selecting the rows, including: by position within the list; conditionally based on a rule; or to
not select any record within the list.

The definable behavior of closing the previous screen set, or closing all open screen sets, can
be used when navigating from one screen set to the next. However, it is recommended that
closing the previous screen behavior not be defined when navigating from a module main
screen set, as closing the main screen set is considered undesirable user interface behavior
except in rare circumstances. Closing all open screen sets will never close the current
module’s main screen set.

Closing the previous screen set or all non-main screen sets may also be defined in a navigation
step that does not display a new screen set. This definition option results in the user being
returned to the previously displayed screen set, i.e. the one from which they navigated to the
current screen set, or the module main screen set. These behaviors are supported to ensure that

Agentry Language Reference

Agentry Language Reference 171

a screen set and its screens are truly destroyed when the user wishes to close them. Certain
client devices and their shells do not close a screen once opened. Rather, when a user clicks the
close button (or sometimes an OK button) displayed in a title bar, the screen itself is simply
hidden, but still remains in the background. The navigation step will close a screen set by
destroying the screen object in memory. Closing all open screen sets other than the module
main screen set provides an easy means of returning the user to the module main screen set if
they are multiple levels deep into the application’s screen flow.

Navigation Step Attributes

• Step Name: Contains the unique internal name of the action step definition. This must be
unique among all steps within the same parent action.

• Screen Set: Specifies the object screen to be displayed by the navigation step. This screen
must be defined and exist within the module prior to defining the navigation step. This may
be set to “Do No Display Screen Set,” which will also set the Close Screen attribute to
“Close the screen you are leaving when this navigation step runs.”

• Close Screen: Specifies that the screen set currently displayed when the action is executed
be closed, or alternately that all screen sets other than the module main screen set be
closed. The default setting for this attribute is to not close any screen sets. Valid options for
this attribute include:
• None: Do not close any screen sets. Display the screen set defined in the Screen Set

attribute.
• Close the screen you are leaving when this navigation step runs: The currently

displayed screen set will be closed when the action step is executed. The screen set
defined in the Screen Set attribute, if any, will then be displayed.

• Close all screens except main when this navigation step runs: All open screen sets
except the module main screen set will be closed. The screen set defined in the Screen
Set attribute, if any, will then be displayed. In an application with multiple modules, the
main screen set for all modules except the current module will be closed.

• Screen: Specifies the screen within the screen set to display first. By default, the first
screen displayed is the screen at position one within the screen set. If a detail screen is
selected, the Initial Focus attribute field is enabled. If a list screen is selected, the Select
Rows attribute field is enabled.

• Initial Focus: Available only when the Screen attribute is set to a detail screen. The Initial
Focus can specify a field on the selected detail screen that will have the initial focus when
the navigation step displays the screen set. By default, the field at position one within the
screen will have the initial focus.

• Select Rows: Available only when the Screen attribute is set to a list screen. The following
are the options for this attribute, each of which specifies which row or rows within the list
screen should be selected automatically when the list screen is displayed:
• All Rows: This selection will result in all rows in the list screen being selected initially.

This selection is only applicable to list screens for which the multi-row select behavior
has been enabled.

Agentry Language Reference

172 SAP Mobile Platform

• Auto: This selection is the default and will not change the selected row on the list
screen.

• By Position: This selection will enable the Position attribute field where the selected
row in the list is specified by its position within the list.

• By Rule: This selection specifies that the initially selected row or rows in the list will be
determined by a rule. When this option is selected, the Row attribute field will be
enabled where the rule can be selected.

• First Row: This selection specifies that the first row in the list will be selected. This is
always the first row from the top of the list.

• Last Row: This selection specifies that the last row in the list will be selected. This is
always the last row from the bottom of the list.

• None (Clear Selection): This selection specifies that no rows will be selected in the
list.

• Position: Available when the Select Rows attribute is set to By Position. The Position
attribute can then be set to a numerical value specifying the row at this position will be
selected. As options to this attribute, the position can be determined by counting from the
top of the list down or counting from the bottom up.

• Rule: Available when the Select Rows attribute is set to By Rule. The Rule attribute can
then be set to the First, Last, or All Rows, where the selected Rule returns either True or
False. All rows is applicable only to list screens for which the multi-row select behavior
has been enabled. The rule referenced here is evaluated once for and in the context of each
object listed on the screen. It is expected to return a Boolean value.

Action Step Type: Open URL

The Open URL action step type defines a URL to be opened by the client device’s web
browser. As a option to this defined URL it is possible to also specify one or more URL
parameters to be passed to the URL. These parameters can be set via a rule, which allows for
the specification of dynamic values obtained from the applications data.

Child Definitions
• URL Parameters: Contains a value to be passed to the defined URL as a parameter (such as

a CGI argument or similar). This can be set via a rule definition to expose access to any
value within the mobile application.

Open URL Attributes
• Step Name: Contains the unique internal name of the action step definition. This must be

unique among all steps within the same parent action.
• URL: Specifies the URL to be passed to the client device’s default web browser. This can

be either a constant value set directly in the field, or returned by a rule definition.

Action Step Type: Print Report

The print report action step type will print the defined report definition on a printer connected
to the client device. This step can control which objects for the report are printed via an include

Agentry Language Reference

Agentry Language Reference 173

rule. It can also be defined to allow the user to skip printing the report. At least one report
definition must exist within the same module before a print report action step can be defined.

Print Report Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This value must be unique among all steps within the same action.

• Report: This attribute references the report to be printed by the action step. The report
definition must be defined prior to selecting it for this attribute.

• Include Rule: This attribute allows for optionally including only certain objects within the
collection targeted by the report being printed by the action step. When a rule is referenced
here it is evaluated once for, and in the context of each object instance in the report’s
targeted collection. The rule is expected to return a Boolean value. Only those objects for
which the rule returns true will be printed in the report.

• Allow Skip: This attribute can allow the user to skip printing the report. When this
attribute is set to false (default) the report will always be printed. When set to true, the user
will be prompted to continue with the print job or to cancel.

Action Step Type: Save Tile Transactions

The Save Tile Transactions action step applies all transactions begun in a tile edit or tile list
detail screen field that have not been applied. This can occur based on the overall screen flow
and navigational options defined within the application project.

Save Tile Transactions Action Step Attributes

• Step Name: This attribute contains the unique internal name of the action step definition.
This value must be unique among all steps within the same action.

• Save Option: This attribute specifies which transactions are to be applied when the step is
executed. The options include:
• Active Screen Set: Any unapplied transactions from any tile controls on any screen in

the current screen set.
• All Screen Sets: Any unapplied transactions from any tile controls on any screen in

any screen set within the current module.

Action Step Type: SubAction

The SubAction action step type executes an action definition from within another action.
When the sub-action has completed execution the parent action will continue. A SubAction
step can execute an action once or iteratively based on various available criteria. A SubAction
step is also used to execute an action in a different module.

The SubAction step type supports modularity within the actions of an application, providing
for the reuse of actions that provide behaviors applicable to multiple areas of functionality.
SubAction steps are also the primary means by which iterative processing can be implemented
within the client application’s behavior. This step type is also the primary means of providing

Agentry Language Reference

174 SAP Mobile Platform

cross-module functionality. Using a SubAction step an action in one module may be executed
from an action in another module.

A primary part of a SubAction step’s definition is the object the action it executes targets. This
object should normally be within the context of the parent action’s object. As an example, if
the parent action is defined for Object A, which contains a collection of Object B, the
SubAction step can target an instance of Object B within that collection. The exception to this
is cross-module action execution.

To execute an action across modules, the target object for the SubAction step must be an object
defined in the other module. When an object from a different module is defined as the target,
the actions that may be selected for the SubAction step will be those defined in that module.
Execution of the parent action on the Agentry Client will then result in the action in the second
module being executed as defined. The parent action will then proceed as defined after the
SubAction step has completed execution.

SubAction Step Attributes
General Attributes

• Name: Contains the unique internal name for the step definition. This value must be
unique among all steps within the same parent action.

• Execution Type: Specifies how the sub-action should be executed. There are several
options available for this attribute, many of which providing iterative behavior. When one
of these selections is chosen, the SubAction step is referred to as a Looping SubAction
step. Lopping SubAction steps will have additional attributes that will differ depending on
how the SubAction step loops. Following are the available items for this selection.
• Always - Execute until stopped: This selection will define the SubAction step to

execute repeatedly until the user explicitly ends the processing. This item should only
be selected when the SubAction executes and action that allows the user to either
cancel or finish the processing, normally within a transaction wizard screen set.

• Execute Once: This selection will execute the defined action a single time when the
SubAction step is executed.

• Execute once if rule is true: This selection will execute the defined action a single time
only when the rule referenced in the Execution Rule attribute returns true. If the rule
returns false, the defined sub-action will not be executed and the parent action will
continue execution as defined.

• Execute until rule is false: This selection will execute the defined action until the rule
referenced in the Execution Rule attribute returns false. This rule will be evaluated
after each iteration of the sub-action. This behavior means the SubAction step will
always execute the defined action at least once, as the rule will not be evaluated until
after execution has completed.

• Execute while rule is true: This selection will execute the defined action while the rule
referenced in the Execution Rule attribute returns true. This rule will be evaluated
before the first iteration of the sub-action and before each additional iteration. This

Agentry Language Reference

Agentry Language Reference 175

behavior means the SubAction step may or may not execute the defined action, as the
rule will be evaluated to determine if the sub-action should be executed.

• Loop over collection: This selection will execute the sub-action once for each object
instance referenced in the Collection attribute. This may be limited by referencing a
rule in the Execution Rule attribute. In this case, the Execution Rule will be evaluated
once for, and in the context of each object instance in the collection. The rule is
expected to return a Boolean value. The sub-action will then only be executed for each
object instance where the rule returns true.

• Loop over list screen: This selection will execute the sub-action once for each object
listed in the current list screen. This may be limited by referencing a rule n the
Execution Rule attribute. In this case, the Execution Rule will be evaluated once for,
and in the context of each object currently displayed in the list screen. The rule is
expected to return a Boolean value. The sub-action will then only be executed for each
listed object instance where the rule returns true.

• Loop over selected list screen objects: This selection will execute the sub-action once
for each selected object in the current list screen. This selection is provided in support
of the multi-select behavior that may be enabled for list screens. If no items are selected
in the list screen, the sub-action will not be executed by the SubAction step.

• Collection: This attribute is only enabled when the Execution Type is set to “Loop over
collection.” The Collection attribute references the object collection property the
SubAction step is to loop over.

• Execution Rule: This attribute is enabled when the Execution Type is set to “Loop over
collection,” “Loop over list screen,” or to one of the execution types involving a rule. The
Execution Rule references the rule definition to be evaluated to determine the execution
behavior of the sub-action.

• Act on Object: This attribute references the object instance the sub-action is to target. This
selection is normally a child object to the object for which the parent action is defined, or
an instance of the object type for the parent object. It may also be an object defined in
another module. When this last type of object is selected, the available items listed for the
Actions attribute will those actions within the same module as the selected object.

• Action: This attribute references the action the SubAction step will execute as a sub-action
to the step’s parent action. The action selected here must be defined prior to the definition
of the SubAction step. The selected action must be defined for the object type selected in
the Act on Object attribute.

• Begin Loop with Selection: When the Execution Type is set to Loop over displayed list
items, this attribute is enabled allowing for the specification of the first item to be executed
on. When selected, the first item is the one currently selected in the list. When not
specified, the first item is the one at the beginning of the list.

Looping Attributes - These attributes are available only when the Execution Type attribute is
set to one of the iterative options. Depending on the type of iteration, different attributes listed
here will be enabled or disabled.

• Dialog: This attribute is available only when the Execution Type is set to “Loop over
collection” or “Loop over list screen.” The Dialog attribute specifies whether or not to

Agentry Language Reference

176 SAP Mobile Platform

display a message when there are no items for the SubAction to loop over. This can occur if
the selected collection contains no object instances, or if the list screen currently lists no
items. When Dialog is set to true, the Dialog Message attribute will be enabled allowing
for the definition of the message to display.

• Dialog Message: This attribute is available only when the Dialog attribute is set to true.
The Dialog Message can contain the message text to display when the item to loop over is
empty. The default message displayed is “No valid records found.”

• Back Up: This attribute specifies whether to complete the SubAction step when the user
clicks the Back button in a screen set displaying a transaction or fetch.

• Allow Done: This attribute specifies whether to display a Done button in last screen of a
wizard screen set. The Done button differs from the standard Finish button in that the Done
button will break out of the SubAction’s loop and return execution control to the parent
action. When a SubAction step’s Execution Type is set to “Always - Execute until
stopped,” the Allow Done attribute should be set to true. In other looping SubAction steps,
the Done button will allow the user to end the loop regardless of any other constraints
related to the looping behavior.

Action Step Type: Transaction

The transaction step type instantiates a transaction on the Agentry Client. A transaction step
also defines the screen set in which the transaction instance should be displayed, if any. A
transaction step can also define a target for the transaction as well as a sub-action to execute
after the transaction has been completed.

A transaction step can define a transaction to be instantiated but not displayed in a screen set.
This is a common occurrence when the transaction is a Delete transaction type. Other
transaction types may also be defined in this manner if it is not necessary to capture any data
from the user for the transaction. To not display a transaction instance, the Screen Set attribute
should be set to No Screen Set.

The target object and target property for the transaction may be set in the transaction step. By
default, the target object is passed to the transaction step from the action. The transaction step
can then change the target to a different object, provided it is a valid item within the context of
the object passed in by the action. In many cases it is not necessary to change the target of the
transaction within the transaction action step. This target is normally set when there are
multiple transaction steps within the same action, and one or more of those transactions is
defined for the object type for which the action is defined. In the situations where the target is
specified, it is normally a child object to the object type for which the parent action is defined.

The option of defining a SubAction to execute when the transaction has been completed
provides a means of executing a second action from the transaction step. This sub-action will
be executed only when the transaction step completes the transaction processing; i.e., if the
user clicks cancel in the wizard screen set displaying the transaction the defined SubAction
will not be executed. The action executed as a SubAction to the transaction step is executed as
the last task of the transaction step. This results in the condition that the sub-action is executed
before any apply step within the parent action. The transaction will, therefore, not yet be

Agentry Language Reference

Agentry Language Reference 177

applied to the object it targets. This will impact the current data values that will be accessible
within that target object and may, therefore, impact how the sub-action itself is defined, as well
as how any other definitions it references will be defined, specifically as to which data values
the sub-action will have access.

Transaction Step Attributes

• Step Name: This attribute contains the unique internal name for the step definition. This
attribute must be unique among all step definitions within the same parent action.

• Transaction: This attribute references the transaction to be instantiated by the transaction
step. The transaction selected here must exist prior to defining the transaction step.

• Screen Set: This attribute references the screen set in which the transaction will be
displayed. Only screen sets defined to display transactions may be selected for this
attribute. The screen set must exist prior to defining the transaction step.

• Target Object: This attribute can be set to change the target of the transaction from the
object instance passed in by the action, to a different object instance. This attribute is
optional and, if left set to its default, the target of the transaction will be the object instance
passed to the transaction step by the action. The selection of a Target Object should be to an
object instance that is easily related to the action’s object instance wherever possible.

• Target Property: This attribute is obsolete in current versions of the Agentry Mobile
Platform. It exists as a result of behaviors exhibited in early versions of the platform and in
current implementations is no longer necessary. It is still provided for backwards
compatibility and may be deprecated in a future release.

• SubAction: This attribute can specify an action to be executed as a sub-action to the parent
action of the transaction step. The transaction selected for this attribute will only be
executed when the transaction instantiated by the transaction step is completed
successfully. Note that this sub-action is executed prior to the transaction being applied.

Action Step Type: Transmit

The transmit action step type initiates communications between the Agentry Client and
Agentry Server. This includes displaying the Client’s built-in transmit dialog where users can
select a transmit configuration and begin the transmission. Alternately the transmit step can be
defined to begin the transmission automatically and to hide the transmit dialog unless an error
is encountered. The transmit step also defines the non-main fetches to be processed, if any.

Each module will contain at least on action with a defined transmit step. Additional actions
may defined as needed that include transmit steps for various purposes.

The transmit step can be defined to start transmission between the client and server
automatically. The default behavior is to display the Client’s Transmit Dialog, where the user
can select a transmit configuration and then start the transmit. When the transmit step is
defined to automatically start the transmission, the transmit will begin when the step is
executed. The transmit configuration used will be the last one selected by the user; optionally
the transmit step can define the transmit configuration to be used.

Agentry Language Reference

178 SAP Mobile Platform

The transmit step can also be defined to automatically finish the transmit. By default when a
transmit is complete, the user must close the Transmit Dialog by clicking the finish button.
The transmit step can close this screen automatically when the transmit completes
successfully.

If the transmit step is defined to automatically start and finish the transmit, it can also be
defined to hide the Transmit Dialog. In this case, the dialog will not be displayed to the user
unless an error occurs during the transmission.

The transmit step is where non-main fetches must be selected for processing. The main fetches
of a module will always be run when a transmit occurs. A non-main fetch must be explicitly
selected in a transmit step and will only be processed when that transmit step is executed.

A transmit step can be defined to skip fetch processing altogether. This can only be defined
when the step is first defined to use a transmit configuration for which real-time
communications have been defined. The transmit step can then be defined to simply connect
the user to the Server, process any pending transactions, and the remain connected to receive
push data and/or to allow for background sending. Note that this behavior can negatively
impact the push functionality if the push is defined to use exchange data initially generated by
a fetch. This exchange data will not exist as the fetch will not be processed.

Transmit Step Attributes

• Step Name: Contains the unique internal name of the step definition. This value must be
unique among all step definitions within the same parent action.

• Transmit Config: This attribute can be set to a specific transmit configuration within the
application. If a transmit configuration is selected here, the user will not be able to change
the transmit configuration when the transmit step is executed.

• On-line/Off-line: This attribute specifies whether to change the on-line state of the client
when the transmit step is executed. This will override any selection the user makes on the
client for this state. It will also override the on-line state of the client if it is set to Off-line as
the result of a disconnect.

• Initiate Asynchronous Transmit Only: This attribute is only available if the Transmit
Config attribute is set to a transmit configuration defined to support real-time
communications. If this attribute is set to true, no fetches will be processed during the
transmit. Pending transactions will be sent to the Server to be processed and complex table
and data table definitions will be synchronized.

• Allow user to skip: This attribute allows the user to skip the transmit. This is normally
only set when the parent action contains multiple step definitions, including the transmit
step. The user may skip the transmit behavior when this attribute is set to true and when the
client is in an Off-line state.

• Automatically start transmission: When this attribute is true, the transmission between
the client and server will begin automatically when the transmit step is executed. The
default is to require the user to click the Start button in the Transmit Dialog to being the
transmission.

Agentry Language Reference

Agentry Language Reference 179

• Automatically finish transmission: When this attribute is true, the Transmit Dialog will
be closed automatically when the transmit has completed successfully. The default is to
require the user to click the Finish button in this dialog when the transmission has
completed.

• Hide transmission screen: This attribute is available only when the Automatically start
transmission and Automatically finish transmission attribute are both true. The Hide
transmission screen can then be set to true, which will result in the Transmit Dialog not
being displayed when the transmit step is executed. The Transmit Dialog is always
displayed if an error occurs during transmission, regardless of this attribute setting.

• Hide Screen Timeout: This attribute is available only if the Hide transmission screen
attribute is set to true. This timeout value is set in minutes and seconds. If the transmission
takes longer than the duration entered in Hide Screen Timeout, the Transmit Dialog will be
displayed to the user indicating the progress of the transmission. This timeout value should
be selected based on the typical duration of a transmit for the application.

Action Step Type: Windows Command

The Windows command action step type executes a command on the client device. This step
type can be defined to wait for the command to complete execution, to capture the return code
of the external process, and to display an error message based on a non-zero return code. The
Windows command step type is also used to display external files on the client device by
setting the full path and file name as the command. This will result in the file being opened by
the default application for the file type.

The command executed by the Windows command step must include the full path and file
name of the executable to be run or file to be opened. When waiting for the command to return,
the step will block action execution until the command completes, or until the defined wait
period expires. An expired wait periods is treated as a timeout error by the Windows command
step.

Additional error conditions include a non-zero return value by the command to the operating
system. If a non-zero value is returned, the Windows command step will treat this as an error
condition.

The timeout and the error conditions each have associated messages that may be displayed as
defined in the Windows command step. This step type allows for providing the user with the
option to continue or cancel the parent action’s execution. Alternately, the step can be defined
to not allow action execution to continue, or to not allow the user to cancel the action
regardless of the error.

Windows Command Step Attributes

• Step Name: Contains the unique internal name for the step definition. This value must be
unique among all step definitions within the same action.

• Command Line: This attribute contains the command to execute or pass to the operating
system. This may be a string value set within the attribute field, or it may be returned from a
rule definition. The command may contain one or more format strings consisting of the

Agentry Language Reference

180 SAP Mobile Platform

property names for the object passed to the command step form the action. These format
strings take the form %propertyName. Note for properties of type External Data, the
format string will return the full path and file name of the file referenced by the property. If
a rule is referenced for the command, it may not return a string containing format strings.
The rule is evaluated in the context of the object passed to the Windows command step by
the action. The rule is expected to return a string value.

• Wait: This attribute specifies whether the Windows command step should wait for the
command it executes to return. The default is to not wait, in which case the command line
will be executed and the step will end execution. The timeout message will not be
displayed. The only error captured by the step will be if the command line cannot be
executed by the operating system, e.g. if the command referenced does not exist, or the file
cannot be found. When the Wait attribute is set to true, the Wait Period Limit attribute is
enabled.

• Wait Period Limit: This attribute is enabled only when the Wait attribute is set to true. In
this case, the Wait Period Limit specifies the duration of time the Windows command
step should wait for the command it executes to complete processing and return. If this
duration is exceeded without a return from the command, the step’s defined Timeout
Message will be displayed.

• Error Message: This attribute contains the text to display when an error occurs. This may
be displayed if the command fails to execute, or if the command returns a non-zero value
after completing execution.

• Timeout Message: This attribute contains the text to display when the Wait Period Limit
is exceeded without a return from the command executed by the step. This behavior also
requires the Wait attribute to be set to true.

• Continue Label: This attribute contains the label for the Continue button that is a part of
the dialog that displays the Error Message and Timeout Message. At run time, when this
button is clicked the Windows command step will complete execution and the action will
execute the next defined step. This button may be hidden by selecting the option Not
Allowed, preventing the user from allowing the action to continue the action’s execution
when an error occurs executing the defined command.

• Cancel Label: This attribute contains the label for the Cancel button that is a part of the
dialog that displays the Error Message and Timeout Message. At run time, when this
button is clicked the Windows command step will complete execution and the parent
action will be canceled. This button may be hidden by selecting the option Not Allowed,
preventing the user from cancelling the action when an error occurs executing the defined
command.

Report

A report defines a printed tabular format for the contents of an object collection on the Agentry
Client. Reports can be generated for any object collection within the application data. A report
can then be printed on the client device, provided it is equipped with a printer.

The report definition defines the object collection for the report and the property values for the
collection’s object type to include in the printed report. The report definition does not include

Agentry Language Reference

Agentry Language Reference 181

any behaviors related to when to print the report. To print a report on the Agentry Client the
action step type Print Report must be defined within an action.

A report defines the point size for the values it contains. It can also define the header and footer
text to display in the report. Three separate header and footer values may be defined to be
displayed on the left, center, and right of the page across the top and bottom of the report.
Separate point sizes may be defined for the header and footer text. Note that the header and
footer within the report definition are not the same as the report column headers. They are
intended for general information about the report as a whole, not to label individual values
within the report.

The child definition Report Columns defines the which properties to display from the object
type within the target collection, as well as the column header labels within the report table.
The order of the columns within the report definition will specify the order in which the
columns are printed in the report from left to right.

Report Child Definitions
Report Column: A report column defines which property values are listed in the
corresponding printed column of a report.

Report Attributes
General Attributes

• Name: Contains the unique internal name for the report definition. This must be unique
among all reports within the same module.

• Display Name: Contains the default name for the report definition displayed on the Client.
• For Object: This attribute references the parent object of the collection for which the

report will be generated.
• Collection: This attribute references the object collection property whose contents will be

printed in the report.
• Point Size: This attribute specifies the font point size for the data printed in the report. This

excludes the report header and footer, which specify their own point sizes.
• Gridlines: This attribute specifies whether or not to print grid lines in the report to separate

columns and rows in the table. When set to true these lines will be printed in the report
table. When false they will be omitted.

Header/Footer Attributes

• Left, Center, and Right Text: These three text boxes within the definition contain the text
to display at the left, center and right sides of the report page. These values are not column
labels, but are intended for general information to display in the header and/or footer of the
report.

• Point Size: This attribute specifies the font point size of the header or footer text.
• Bold: This attribute specifies whether or not to display the text in bold. When true, the text

will be in bold. When false it will not be.

Agentry Language Reference

182 SAP Mobile Platform

Report Column

A report column defines which property values are listed in the corresponding printed column
of a report. The column definition includes attributes for formatting the values of the column
and the order of the columns within the report.

Each column defines a property of the object type in the parent reports target collection to be
printed in the report. Included in the column definition is the label for the column in the report
table. Basic formatting can also be defined for the column, including whether or not the
column label should be in bold text, whether or not to word wrap the text within the column,
alignment of the values within the column, and the width of the column as a whole.

As an alternative to selecting a property whose value will be displayed in the column, format
strings or format text may be specified. To make use of this behavior a column should not be
selected, but rather the Format attribute should be set to specify the value to be displayed for
each object. This attribute may contain format strings referencing the properties of the object,
as well as plain text. This attribute may also be set via the return value of a rule, which will be
expected to build the entire string to be displayed in the column for each object.

Report Column Attributes

• Name: Contains the unique internal name for the report column definition. This value
must be unique among report columns within the same report.

• Label: Contains the column label for the header row of the report table.
• Object Property: This attribute references the object property to be printed in the column

for each object instance in the target collection.
• Bold Label: This attribute specifies whether or not he label for the column should be

printed in bold text. When true the label will be printed with bold text.
• Wrap: This attribute specifies whether or not the values of the column should be word

wrapped. If true the values printed in the report will be word wrapped to fit in the space of
the column. If false, the column width will be expanded to allow for the size of the text.

• Alignment: This attribute specifies the alignment of the text within the column. The
options for this attribute are “Left Justified,” “Right Justified,” or “Centered.”

• Column Width: This attribute specifies the width of the column. The units for this
attribute are the number of average sized characters. If left set to Auto, the width of the
column will be set by evenly spacing all Auto Width columns within the report, after space
is allocated for all columns with a defined width.

• Format: This attribute can contain a combination of format strings and standard text to
specify the format of the values printed in the column. Alternately the value printed in the
column can be the return from a rule definition. If a rule is used for this attribute, it will be
evaluated once for, and the context of each object instance within the reports target
collection property. It is expected to return a string value. If this attribute is set either
format text or a rule definition, the Object Property attribute should be set to None.

Agentry Language Reference

Agentry Language Reference 183

Rule Function Terms Overview

Rule functions terms are the heart of most rule definitions within an application. While there
are situations where a rule may be defined to contain a single rule term that returns the value of
a global or other such data definition type, most rules are more complex than this and consist of
multiple function calls.

Most rule functions take one or more arguments, each of which contains a data value for the
function. When the function is evaluated, these data values are processed in some manner. The
result of this processing is a single return value that is passed to the function’s caller. A
function will always provide the caller with a value in the data type the caller asks for. Not all
function support all data types for their return values. If a data type is not one supported by the
function, that function will return the null-equivalent of that data type.

There are over a hundred different functions available for a rule definition. These are
organized into Function Categories. These categories denote the general types of behavior for
the functions. The rule editor presents the functions to the developer organized into one of
these categories.

• Conversion Functions - Conversion functions set the context of a given term to a specified
data type. A conversion function supports all return types within the rule definition. The
names of conversion functions dictate what data type they will set for the context of a
function call.

• Logical Functions - Logical functions are those that provide the comparison and decision
making functionality to a rule. This includes if-then-else and comparison operations and
behaviors.

• Mathematical Functions - Mathematical functions provide math operations to rules.
This includes addition, subtraction, multiplication, division, and modulus operations, as
well other mathematical functions, such as rounding, and working with significant digits.

• Property Functions - Property functions are those that operate on properties, usually of a
certain data type. Most property functions are provided for the intended purpose of
working with a given type of property, such as an object collection or external data
property.

• String Functions - String functions provide behaviors for manipulating string values,
including concatenation and parsing operations, string search and replacement, and other
string-related operations.

• System Functions - System functions are those that provide access to information about
the Agentry Client’s host system, or information that is general to the client. This can be
information such as the system’s time and date, or the user ID of the current user. This
category also includes functions to access hardware components of the client device such
as barcode scanners and GPS units.

Agentry Language Reference

184 SAP Mobile Platform

• Table Functions - The table functions provide access to the records of complex table and
data tables stored on the Agentry Client.

Note that the function categories do not directly impact where a function can be used, or which
rules can use a given function. The categories are an organizational aid built into the rule editor
to aid the developer in locating the rule function that is needed.

Conversion Functions for Rules

The Conversion functions category of rule function terms provide the means for changing the
context in which a function or data term within a rule is called. Within this category of
conversion functions there is one function for the integral number, string, and property data
types. The decimal number data type has two conversion functions, one of which is for use
with significant digit math.

The name for each conversion function represents the data type to which it will set the context
of the term that is its argument. The function term name, then, does not represent the data type
to which a value will be converted, but the data type from which a value will be converted.
Each conversion function supports all return types.

Conversion functions are most commonly used when it is necessary to obtain the return value
of a function that may exhibit different behaviors in different contexts, or when the desired
return data type does not match the supported return type of a given function. The caveat to this
is that the conversion desired is type safe.

An example of this is the string function @FIND. This function searches a source string for a
given sub-string. The function supports three return types, string, integral number and
Boolean. The context in which this function is called will then dictate what type of value it will
return. In a string context the function returns the sub-string when found within the source
string. When called in an integral number context, the function returns the position, as a
number, of the first character within the source string of the found sub-string. In a Boolean
context the function will return true if the sub-string is found and false when it is not. For this
function call a conversion function may be used to change the data type of the context in which
it is called in order to obtain the desired value.

@FROM_DECIMAL_NUMBER

The FROM_DECIMAL_NUMBER function sets the context of its single parameter to a data
type of decimal number. It supports the decimal number, integral number, string, and property
return types. The value of its single parameter will be converted from the decimal number data
type to the data type of the context of the FROM_DECIMAL_NUMBER function call.

One of the main uses of this function is to set the context of another function call to a decimal
number. Certain functions do not directly support non-numeric data types for return. The
FROM_DECIMAL_NUMBER function allows for these other functions to be called in a
decimal number context and to then return that value in a data type such as string. While this
function supports the decimal number return type, it is unnecessary to call this function in this
context.

Agentry Language Reference

Agentry Language Reference 185

Parameters

@FROM_DECIMAL_NUMBER
(Convert Parameter, [Precision,
[Rounding Method]])

Convert Parameter Required decimal number parameter, contains the value
to be converted to the data type of the function’s context.

Precision Optional integral number parameter, contains the preci-
sion to which the returned decimal number should be
rounded. Positive values specify the number of digits after
the decimal place. Negative numbers specify number of
digits before the decimal.

Rounding Method Optional integral number parameter, specifies how the
return value should be rounded. The default is to round to
the nearest value. If this parameter is set to 1, the rules
pertaining to NIST rounding will be used to round the
value returned by the function.

Supported Return Types

• Integral Number
• Decimal Number
• String
• Property

@FROM_INTEGRAL_NUMBER

The FROM_INTEGRAL_NUMBER function sets the context of its single parameter to a data
type of integral number. It supports the decimal number, integral number, string, and property
return types. The value of its single parameter will be converted from the integral number data
type to the data type of the context of the FROM_INTEGRAL_NUMBER function call.

One of the main uses of this function is to set the context of another function call to integral
number. Certain functions do not directly support non-numeric data types for return. The
FROM_INTEGRAL_NUMBER function allows for these other functions to be called in an
integral number context and to then return that value in a data type such as string. While this
function supports the integral number return type, it is unnecessary to call this function in this
context.

Agentry Language Reference

186 SAP Mobile Platform

Parameters

@FROM_INTEGRAL_NUMBER (Convert
Parameter)

Convert Parameter Required integral number parameter, contains the
value to be converted to the data type of the func-
tion’s context.

Supported Return Types

• Integral Number
• Decimal Number
• String
• Property

@FROM_STRING

The FROM_STRING function sets the context of its single parameter to a data type of string.
It supports the decimal number, integral number, string, and property return types. The value
of its single parameter will be converted from the decimal number data type to the data type of
the context of the FROM_STRING function call.

One of the main uses of this function is to set the context of another function call to string. The
FROM_STRING function allows for other functions to be called in a string context and to then
return that value in a data type such as integral or decimal number, depending on the context of
the FROM_STRING function call. While this function supports the string return type, it is
unnecessary to call this function in this context.

Note that converting from a string to a numeric data type is not considered type safe. Such
operations should be limited in use and all reasonable precautions should be made to ensure
the string value being converted to a numeric data type contains only numeric characters. The
FROM_STRING function processes each character of a string one at a time and, in a numeric
conversion, will stop processing with the first non-numeric character found in the source
string. The value returned will then be the numeric value at the point the processing ended,
which is not likely to be a useful value.

Parameters

@FROM_STRING (Convert
Parameter)

Convert Parameter Required string parameter, contains the value to be conver-
ted to the data type of the function’s context.

Agentry Language Reference

Agentry Language Reference 187

Supported Return Types

• Integral Number
• Decimal Number
• String
• Property

@FROM_SIG_DECIMAL_NUMBER

The FROM_SIG_DECIMAL_NUMBER function sets the context of its single parameter to a
data type of decimal number. It supports the decimal number, integral number, string, and
property return types. The value of its single parameter will be converted from the decimal
number data type to the data type of the context of the FROM_SIG_DECIMAL_NUMBER
function call. The decimal number of this parameter will respect the rules of significant digit
math.

One of the main uses of this function is to set the context of a decimal value that is either not
stored in a decimal property, or one that is stored in a decimal number property but that does
not have the significant digits math attribute set.

An optional parameter to this function is Precision. This parameter will specify the
number of digits after the decimal to keep, with the last digit being rounded. If the precision is
greater than the number of digits after the decimal, the value will be padded with zeros up to
the specified precision.

Parameters

@FROM_SIG_DECIMAL_NUMBER
(Convert Parameter [, Precision])

Convert Parameter Required decimal number parameter, contains the
value that will be treated as a decimal number with
respect of significant digit math.

Precision Optional integral number parameter, specifies the
number of digits to keep after the decimal in the
value provided by Convert Parameter. If

this value is greater than the number of digits after
the decimal the value will be padded with zeros up to
the specified precision.

Supported Return Types

• Integral Number
• Decimal Number

Agentry Language Reference

188 SAP Mobile Platform

• String
• Property

@FROM_PROPERTY

The FROM_PROPERTY function takes a variable number of arguments. Each argument is
evaluated as a property and this evaluation is within the context dictated by the argument that
precedes it in the arguments to the function. The overall purpose of this function is to provide a
kind of drill-down access to the value of a property that may be a descendent of the current
object.

One of the main uses of this function is to set the context of another function call to property.
Certain property functions do not directly support other data types for return. The
FROM_PROPERTY function allows for these other functions to be called in a property
context and to then return that value in another data type.

When taking multiple parameters, the FROM_PROPERTY function is likely to be used in an
overall search of a collection for a given object based on a property value, returning another
property within the same object instance.

Parameters

@FROM_PROPERTY
(Property 1 [, ..., Property
N])

Property 1 Required property parameter, contains the value to be evaluated as a
property in the context of the function call. This parameter sets the
context of the next parameter to the function, if present. If this is the
only parameter, it will be returned in the context of the function call.

Property N Optional property parameter(s), contains the value to be evaluated as
a property in the context of the preceding parameter to the function.
This parameter sets the context of the next parameter to the function,
if present. If this is the last parameter, it will be returned in the context
of the function call.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

Agentry Language Reference

Agentry Language Reference 189

Logical Functions for Rules

The Logical category of rule function terms within the rule definition provide the decision
making and comparison logic to a rule. Many, though not all, of these functions support the
Boolean return type and will return true or false in this context based on some decision or
comparison. The functions within this category provide behaviors including conjunctions,
value comparisons, and if-then-else if and switch-case logic.

Unlike similar constructs in other development tools, many of the functions within the logical
category support more than two arguments. As an example, the @AND function will take two
or more arguments, returning true only when all of its arguments are true. In other
development languages to provide similar logic, multiple operators may be needed, as in:

if (value1 && value2 && value3 && value4)

Here the presence of multiple and operators are required. In the rule functions, the same logic
would use a single @AND function call, with each value passed as an argument to the
function:

AND (value1, value2, value3, value4)

Many of the other functions provide similar support within the context of their behavior.

@AND

The AND function performs a logical conjunction between its parameters, returning true or
false based on this conjunction. Each of its parameters is evaluated in the order provided as
Boolean values. If any parameter is evaluated as false, the return value is false. Otherwise the
function returns true. The function must have at least one parameter and may contain as many
more as is needed.

Parameters

@AND (Expression
1 [, ..., Expression
N])

Expression 1 Required Boolean parameter, the first to be evaluated by the function. If
false, evaluation stops and the function returns false. If true, the function will
return true if no other parameters are provided or evaluate the next param-
eter.

Expression N Optional Boolean parameters, each evaluated by the function in the order
provided. Evaluation stops for the first false value found and the function
returns false. Otherwise the function returns true.

Agentry Language Reference

190 SAP Mobile Platform

Supported Return Types
Boolean

@CASE

This function has been deprecated and will not be supported in future releases. It should be
replaced with one of the following: CASE_INT, CASE_STRING, CASE_DEC, or IF. The
CASE function provides switch-case logic, allowing for the evaluation of a single test value
for the purpose of returning one of a multiple number of possible values. The CASE function
takes a variable number of parameters, but with a minimum of three. The first parameter is
evaluated as an integral number. This value is then treated as a positional value for one of the
other parameters to the function, with the second parameter at position 1. The parameter at the
position specified by the position parameter is then returned. The data type of the other
parameters varies depending on the function’s context. For example, if the context of the
function call is a string, the parameters Position1 through PositionN of the function
will be treated as strings.

Parameters

@CASE (Position
To Match, Position1
[, ..., PositionN])

Position To Match Required integral number parameter, indicating which of the case parame-
ters the function should return.

Position 1 Required parameter, evaluated when the Postion To Match param-

eter evaluates to 1. The data type is dictated by the context in which the
function is called.

Position N Optional parameter, evaluated when the Position to Match pa-

rameter evaluates to N, where N is the position of the parameter in the
function’s parameter list. The data type is dictated by the context in which
the function is called.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

Agentry Language Reference

Agentry Language Reference 191

@CASE_INT

The CASE_INT function is used to return a single value from a variable list of multiple
possible returns, with a comparison made between a switch and 1 or more case values, both of
type integral number. The first parameter to the function is evaluated as an integral number.
The last parameter to the function is the default return value and is optional. Parameters
between the first and last are provided in pairs. The first parameter in a pair is the value to
which the switch value is compared. If these two values are equal, the second value of the pair
is returned by the function. The comparison between the switch value and the first parameter
of a pair is performed as an integer comparison. The data type for the second parameter in each
pair is dependent on the context in which the function is called. If none of the case parameters
match the switch parameter and a default parameter is provided, that parameter is evaluated
and returned by the function. If no default parameter is provided, the default null equivalent of
the context’s data type is returned, e.g. 0, False, null string, etc.

Parameters

@CASE_INT
(Integer To Match,
Integer 1, Return 1
[, ..., Integer N,
Return N] [,
Otherwise])

Integer To Match Required integral number parameter, contains the value upon which the
function will switch, i.e. compare against each of the Integer N pa-

rameters in turn until a match is found.

Integer 1 Required integral number parameter, contains the value to which Inte-
ger To Match is compared. This parameter must be followed by the

Return 1 parameter, which is the value returned when Integer To
Match matches the Integer 1 value.

Return 1 Required parameter with a context-dependent data type, contains the value
returned if Integer To Match matches Integer 1.

Agentry Language Reference

192 SAP Mobile Platform

@CASE_INT
(Integer To Match,
Integer 1, Return 1
[, ..., Integer N,
Return N] [,
Otherwise])

Otherwise / Integer N Optional parameter(s), the data type in which it is evaluated is dependent on
whether it is the last parameter to the function, or if it is followed by another
parameter. When this is the last parameter to the function, it will be evalu-
ated in the data type corresponding to the context of the function call. In this
situation the parameter is the default Otherwise parameter, evaluated

by the function when Integer To Match does not match any of the

Integer N parameters. If this parameter is followed by another function

parameter, it is evaluated as an integral number. In this situation it is eval-
uated by the function to determine if the value matches the Integer To
Match parameter value. If it matches, the subsequent parameter is evalu-

ated by the function. If not, the function evaluates the next parameter. Mul-
tiple Integer N parameters can be provided with the requirement that

they are paired with corresponding Return N parameters. Only one

Otherwise parameter may be provided.

Return N Optional parameter(s) with a context-dependent data type, contains the
value returned if Integer To Match matches the corresponding

Integer N parameter.

Supported Return Types:
• Boolean
• Integral Number
• Decimal Number
• String
• Property

@CASE_STRING

The CASE_STRING function is used to return a single value from a variable list of multiple
possible returns, with a comparison made between a switch and one or more case values, each
of type string. The first parameter to the function is evaluated as a string. The last parameter to
the function is the default return value and is optional. Parameters between the first and last are
provided in pairs. The first parameter in a pair is the value to which the switch value is
compared. If these two values are equal, the second value of the pair is returned by the
function. The comparison between the switch value and the first parameter of a pair is
performed as a case-sensitive string comparison. The data type for the second parameter in
each pair is dependent on the context in which the function is called. If none of the case

Agentry Language Reference

Agentry Language Reference 193

parameters match the switch parameter, and a default, non-paired parameter is provided, that
parameter is evaluated and returned by the function. If no default parameter is provided, the
default null equivalent of the context’s data type is returned, e.g. 0, False, null string, etc.

Parameters

@CASE_STRING
(String To Match,
String 1, Return 1 [, ...,
String N, Return N,] [,
Otherwise])

String To Match Required string parameter, contains the value upon which the function
will switch, i.e. compare against each of the String N parameters in

turn until a match is found.

String 1 Required string parameter, contains the value to which String To
Match is compared. This parameter must be followed by the Re-
turn 1 parameter, which is the value returned when String To
Match matches the String 1 value.

Return 1 Required parameter with a context-dependent data type, contains the
value returned if String To Match matches String 1.

Otherwise / String N Optional parameter(s), the data type in which it is evaluated is depend-
ent on whether it is the last parameter to the function, or if it is followed
by another parameter. When this is the last parameter to the function, it
will be evaluated in the data type corresponding to the context of the
function call. In this situation, the parameter is the default Other-
wise parameter, evaluated by the function when String To
Match does not match any of the String N parameters. If this

parameter is followed by another function parameter, it is evaluated as a
string. In this situation, it is evaluated by the function to determine if the
value matches the String To Match parameter value. If it

matches, the subsequent parameter is evaluated by the function. If not,
the function evaluates the next parameter. Multiple String N pa-

rameters can be provided with the requirement that they are paired with
corresponding Return N parameters. Only one Otherwise pa-

rameter may be provided.

Return N Optional parameter(s) with a context-dependent data type, contains the
value returned if String To Match matches the corresponding

String N parameter.

Agentry Language Reference

194 SAP Mobile Platform

Supported Return Types:

• Boolean
• Integral Number
• Decimal Number
• String
• Property

@EQBOOL

The EQBOOL function takes two or more parameters, each of which is evaluated as a Boolean
value and returning true if all parameters are either true or all are false. If all parameters have
the same Boolean value, the function will return true. Otherwise, it will return false. The
function will end evaluation and return false upon the first parameter found to be different than
others passed to it.

Parameters:

@EQBOOL (Boolean 1
[, ..., Boolean N])

Boolean 1 Boolean required parameter, evaluated for comparison to all other
parameters to the function.

Boolean N Optional additional Boolean parameter(s), evaluated for comparison
to Boolean 1.

Supported Return Types
Boolean

@EQDEC

The EQDEC function takes two or more parameters, each evaluated as a decimal value,
compares them for equality, returning true if all are equal or false if any are found to be
different. The function will end evaluation of all parameters at the point where the first
different value is found. If only a single parameter is provided, the function returns true.

Parameters

@EQDEC (Decimal 1
[, ..., Decimal N])

Decimal 1 Required decimal number parameter, evaluated by the function for
comparison to all other parameters.

Agentry Language Reference

Agentry Language Reference 195

@EQDEC (Decimal 1
[, ..., Decimal N])

Decimal N Optional decimal number parameter(s), each evaluated by the function
for comparison to Decimal 1.

Supported Return Types
Boolean

@EQNUM

The EQNUM function takes two or more parameters, each evaluated as an integral number,
compares them for equality, and returns true if all values are equal, or false if one or more are
different. This function will end evaluation of all subsequent parameters after the first
parameter is found to be different. If only a single parameter is provided, this function will
return true.

Parameters

@EQNUM(Integer1 [, ...,
IntegerN])

Integer 1 Required integral number parameter, evaluated by the function
for comparison to all other function parameters.

Integer N Optional integral number parameter(s), evaluated by the function
for comparison to Integer 1.

Supported Return Types
Boolean

@EQSTR

The EQSTR function takes one or more parameters, each evaluated as a case-sensitive string,
and compares them for equality, returning true if all values are equal, or false if one or more
values are different. The function will end evaluation of all subsequent parameters when the
first different value is found. The function will return true if only a single parameter is
provided.

Parameters

@EQSTR(String1 [, ...,
StringN])

String 1 Required string parameter, evaluated by the function for comparison
to all other parameters to the function.

Agentry Language Reference

196 SAP Mobile Platform

@EQSTR(String1 [, ...,
StringN])

String N Optional string parameter(s), each evaluated by the function for com-
parison to String 1.

Supported Return Types
Boolean

@GT

The GT function takes two or more integral number parameters, comparing the second
through the last parameters to the first, returning true if the first parameter is greater than all
subsequent parameters. If any parameter is found to be greater than or equal to the first, the
function will not evaluate any subsequent parameters and will return false.

Parameters

@GT (Integer
1, [, ..., Integer
N])

Integer 1 Required integral number parameter, contains the value to which all other param-
eters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer1. If Integer1 is less than or equal to this parameter, the

function returns false and will not evaluate any subsequent parameters. If In-
teger 1 is greater than this parameter, the function will continue to evaluate

any additional parameters, or return true of no other parameters are provided.

Supported Return Types
Boolean

@GTDEC

The GTDEC function takes two or more decimal number parameters, comparing the second
through the last parameters to the first, returning true if the first parameter is greater than
subsequent parameters. If any parameter is found to be greater than or equal to the first, the
function will return false. It will not evaluate any subsequent parameters.

Agentry Language Reference

Agentry Language Reference 197

Parameters

@GTDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter, contains the value to which all other pa-
rameters will be compared.

Decimal N Optional decimal number parameter(s), each containing a value to be compared
against Decimal 1. If Decimal 1 is less than or equal to this parameter,

the function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is greater than this parameter, the function will continue to eval-

uate any additional parameters, or return true if no other parameters are provided.

Supported Return Types
Boolean

@GTEQ

The GTEQ function takes two or more integral number parameters, comparing the second
through the last parameter to the first parameter, and returning true if the first parameter is
greater than or equal to all subsequent parameters. If any other parameter is found to be greater
than the first, the function will return false. It will not evaluate any subsequent parameters. If
only a single parameter is provided the function will always return true.

Parameters

@GTEQ
(Integer 1 [, ...,
Integer N])

Integer 1 Required integral number parameter, contains the value to which all other pa-
rameters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer 1. If Integer 1 is less than this parameter, the function

returns false and will not evaluate any subsequent parameters. If Integer 1 is

greater than or equal to this parameter, the function will continue to evaluate any
additional parameters, or return true of no other parameters are provided.

Supported Return Types
Boolean

Agentry Language Reference

198 SAP Mobile Platform

@GTEQDEC

The GTEQDEC function takes two or more decimal number parameters, comparing the
second through the last parameters to the first, returning true if the first parameter is greater
than or equal to all subsequent parameters. If any other parameter is found to be greater than
the first, the function will return false. It will not evaluate any subsequent parameters. If only a
single parameter is provided, this function will always return true.

Parameters

@GTEQDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter, contains the value to which all other
parameters will be compared.

Decimal N Optional decimal number parameter(s), each containing a value to be com-
pared against Decimal 1. If Decimal 1 is less than this parameter, the

function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is greater than or equal to this parameter, the function will

continue to evaluate any additional parameters, or return true if no other
parameters are provided.

Supported Return Types
Boolean

@IF

The IF function provides the if-then-else/else if logic to rules. The function can
take a variable number of parameters, and will behave differently based on the parameters.
First, it can take a single parameter whose value is evaluated as a Boolean. If this parameter is
true, the IF function will return true; otherwise it will return false. Note that this form of the
function has limited use, as the condition being checked can be passed directly to what would
otherwise be the caller of the IF function, without actually making the IF function call.

Second, the function can take a multiple number of parameters to provide the if-then-
else/else if logic. The first parameter is a Condition parameter, and is evaluated as a
Boolean. When true is returned, its corresponding Then parameter is evaluated and the
resulting value is returned.

If a Condition parameter returns false, its corresponding Then parameter is not evaluated.
The next Condition parameter is evaluated. A final optional parameter can be provided as
the Else parameter. This parameter is evaluated when all Condition parameters have
evaluated to false. The value resulting from evaluation of the Else parameter is then returned
by the IF function.

Agentry Language Reference

Agentry Language Reference 199

All Then parameters and the Else parameter are evaluated in the context of the IF function
call. The expected data type for these parameters is then the data type of that context.

Parameters

@IF (Condition
1 [,Then 1] [, ...
Else If Condition
N, Then N] [,
Else])

Condition 1 Required Boolean parameter, contains the value evaluated by the function to
determine a return. When true, Then 1 is returned if specified. When false,

either the next Else If Condition N parameter is evaluated if speci-

fied. Else is evaluated if no Else If Condition exists. The context

null-equivalent is returned if neither an Else If Condition or Else
parameter is provided. If Condition 1 is the only parameter, its Boolean

value will be returned.

Then 1 Optional parameter, evaluated in the context of the function call. This parameter
is evaluated when Condition 1 is true. The value returned by the evalua-

tion of Then 1 is then returned by the IF function.

Else / Else If Con-
dition N

Optional parameter(s), evaluated when Condition 1 or the preceding

Else If Condition parameter returns false. The data type for this

parameter is dependent on whether it is the last parameter to the function or is
followed by another parameter. If it is the last parameter, it is evaluated in the
context of the function call. Its is the Else parameter to the function and will be

evaluated when all preceding Condition parameters have returned false. If

this parameter is not the last for the function, it is evaluated as a Boolean and is
treated as an Else IF Condition N parameter. If it evaluates to true the

corresponding Then N parameter will be evaluated by the function.

Then N Optional parameter, evaluated in the context of the function call. This parameter
is evaluated when its corresponding Else If Condition N parameter

returns true. The value returned by the evaluation of Then N is then returned

by the IF function.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

Agentry Language Reference

200 SAP Mobile Platform

• Property

@LT

The LT function takes two or more integral number parameters, comparing the second through
last parameters with the first and returning true if the first parameter is less than all subsequent
parameters. If any subsequent parameter is found to be equal to or less than the first parameter
the function will return false. It will not evaluate any subsequent parameters. If only a single
parameter is provided this function will return true.

Parameters

@LT (Integer 1
[, ..., Integer
N])

Integer 1 Required integral number parameter, contains the value to which all other param-
eters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer 1. If Integer 1 is greater than or equal to this parameter,

the function returns false and will not evaluate any subsequent parameters. If
Integer 1 is less than this parameter, the function will continue to evaluate

any additional parameters, or return true of no other parameters are provided.

Supported Return Types
Boolean

@LTDEC

The LTDEC function takes two or more decimal number parameters, comparing the second
through last parameters with the first and returning true if the first parameter is less than all
subsequent parameters. If any subsequent parameter is found to be equal to or less than the first
parameter the function will return false. It will not evaluate any subsequent parameters. If only
one parameter is provided to this function it will return true.

Parameters

@LTDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter, contains the value to which all other pa-
rameters will be compared.

Agentry Language Reference

Agentry Language Reference 201

@LTDEC
(Decimal 1 [, ...,
Decimal N])

Decimal N Optional decimal number parameter(s), each containing a value to be compared
against Decimal 1. If Decimal 1 is greater than or equal to this param-

eter, the function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is less than this parameter, the function will continue to evaluate

any additional parameters, or return true if no other parameters are provided.

Supported Return Types
Boolean

@LTEQ

The LTEQ function takes two or more integral number parameters, comparing the second
through last parameter with the first parameter and returning true if the first parameter is less
than or equal to all subsequent parameters. If any subsequent parameter is found to be less than
the first parameter, the function will return false. It will not evaluate any subsequent
parameters. If only a single parameter is provided, the function will return true.

Parameters

@LT (Integer 1
[, ..., Integer
N])

Integer 1 Required integral number parameter; contains the value to which all other param-
eters will be compared.

Integer N Optional integral number parameter(s), each containing a value to be compared
against Integer 1. If Integer 1 is greater than this parameter, the func-

tion returns false and will not evaluate any subsequent parameters. If Integer
1 is less than or equal to this parameter, the function will continue to evaluate any

additional parameters, or return true if no other parameters are provided.

Supported Return Types
Boolean

@LTEQDEC

The LTEQDEC function takes two or more decimal number parameters, comparing the
second through last parameter with the first parameter and returning true if the first parameter
is less than or equal to all subsequent parameters. If any subsequent parameter is found to be
less than the first parameter, the function will return false and it will not evaluate any
subsequent parameters. If only one parameter is provided, the function will return true.

Agentry Language Reference

202 SAP Mobile Platform

Parameters

@LTEQDEC
(Decimal 1 [, ...,
Decimal N])

Decimal 1 Required decimal number parameter; contains the value to which all other
parameters will be compared.

Decimal N Optional decimal number parameter(s), each containing a value to be com-
pared against Decimal 1. If Decimal 1 is greater than this parameter,

the function returns false and will not evaluate any subsequent parameters. If
Decimal 1 is less than or equal to this parameter, the function will con-

tinue to evaluate any additional parameters, or return true if no other param-
eters are provided.

Supported Return Types
Boolean

@NAND

The NAND function takes one or more Boolean parameters and evaluates each until the first
true value is found or until all parameters have been evaluated. If a true parameter value is
found, the function returns false. It will return true if all parameters evaluate to false. The
function will end evaluation when the first true value is found.

Parameters

@NAND
(Expression 1 [, ...,
Expression N])

Expression 1 Required Boolean parameter, evaluated by the function for its Boolean
value. If false, the function will return true. If true, the function will continue
to evaluate the next parameter.

Expression N Optional Boolean parameter, evaluated by the function for its Boolean value.
If false, the function will return true. If true, the function will continue to
evaluate the next parameter, or if no more parameters are provided, the
function will return false.

Supported Return Types
Boolean

Agentry Language Reference

Agentry Language Reference 203

@NOR

The NOR function takes one or more parameters and returns true if all parameters are false, or
false if any parameter is found to be true. This function supports the Boolean return type. Each
parameter is evaluated as a Boolean.

Parameters

@NOR(Expression1 [, ...,
ExpressionN])

Expression 1 Required Boolean parameter; if true the function will return false. If
false, the function will continue evaluating the next parameter, or
return true if no additional parameters are provided.

Expression N Optional Boolean parameter(s), each evaluated for their Boolean
value. The function will return false and end evaluation with the first
true parameter found. If all parameters are true, the function will
return false.

Supported Return Types
Boolean

@NOT

The NOT function will evaluate all of the parameters as Booleans and return false if all
parameters are true, or true if one or more parameters are false. This function supports the
Boolean return type.

Most calls to this function provide only a single Boolean parameter, the value for which is
inverted and returned.

Parameters

@NOT
(Expression 1
[, ..., Expression
N])

Expression 1 Required Boolean parameter; if the value is true, the function will return false
and not evaluate any subsequent parameters. If the value is false and if there
are no subsequent parameters, the function will return true. If additional pa-
rameters are present, they will be evaluated only when Expression 1 is

false.

Agentry Language Reference

204 SAP Mobile Platform

@NOT
(Expression 1
[, ..., Expression
N])

Expression N Optional Boolean parameter(s), evaluated by the function in the order provi-
ded. The function will return false for the first parameter found to be true. If all
parameters evaluate to true, the function will return false.

Supported Return Types
Boolean

@OR

The OR function takes two or more Boolean parameters and will return true if any one or more
of its parameters evaluates to true; otherwise it returns false. This function can be called in a
Boolean context.

Parameters

@OR (Expression 1
[, ..., Expression N])

Expression 1 Required Boolean parameter; contains the first value evaluated by the func-
tion for true or false. If this parameter evaluates to true, the function will end
evaluation and return true to the caller.

Expression N Optional Boolean parameter(s); contains the next value evaluated by the
function. Additional parameters are evaluated until a true parameter is
found. The function will end evaluation and return true for the first true
parameter found.

Supported Return Types
Boolean

@XOR

The XOR function provides the exclusive or logic and can take one or more parameters, each
of which is evaluated as a Boolean, and returning true when one and only one of its parameters
is true. If all of the parameters evaluate to false, or if two or more parameters evaluate to true,
this function will return false. This function will end evaluation of all parameters and return
false when the second true value is found.

Agentry Language Reference

Agentry Language Reference 205

Parameters

@XOR
(Expression 1 [, ...,
Expression N])

Expression 1 Required Boolean parameter; evaluated by the function in relation to all other
parameters looking for an exclusive true value among the parameter list.

Expression N Optional Boolean parameter(s); evaluated by the function in relation to all
other parameters looking for an exclusive true value among the parameter
list. If both this and any preceding parameter are true, the function will end
evaluation and return false. No additional parameters will be evaluated.

Supported Return Types
Boolean

Mathematical Functions for Rules

The Mathematical category of rule function terms available within the rule definition provide
the mathematical operations. These include addition, subtraction, multiplication, division,
and modulus, as well as several other math-related operations. Additional operations include
returning the minimum and maximum values from a set of values, limiting a value to a given
range, square root operations, rounding, and other similar functions.

@ABS

The ABS function returns the absolute value of the given numerical parameter. The function
takes a single parameter, which is evaluated as either an integral or decimal value matching the
context of the function call.

Parameters

@ABS
(Number)

Number Required number parameter, evaluated as either an integral or decimal number
depending on the context of the function call. The absolute value of this parameter
is returned.

Supported Return Types

• Decimal Number
• Integral Number

Agentry Language Reference

206 SAP Mobile Platform

@DIFF

The DIFF function takes two or more numeric parameters evaluated in the context of the
function call. The second parameter through the last are subtracted from the first parameter.
The function then returns the result. This function supports an integral or decimal number
return type.

Parameters

@DIFF(Number 1
[, ..., Number N])

Number 1 Required parameter, in a numeric context, contains the value from which
all subsequent parameters will be subtracted. Evaluated as an integral or
decimal number, matching the context of the function call.

Number N Optional parameter(s), in a numeric context, contains the value(s) from
which all subsequent parameters will be subtracted. Evaluated as integral
or decimal number(s), matching the context of the function call.

Supported Return Types

• Integral Number
• Decimal Number

@DISTANCE

The DISTANCE function takes four decimal parameters assumed to be latitude and longitude
values for two map positions, and returns the resulting distance in meters as a decimal value.

When working with GPS location values, this function should not be used. See the System
functions GPS_LOCATION, LATITUDE, LONGITUDE, DISTANCE_MILES,
DISTANCE_KILOMETERS, LOCATION, and IS_VALID_LOCATION.

Parameters

@DISTANCE (x1,
y1, x2, y2)

x1 Required decimal number parameter; contains the x coordinate of the first
position.

y1 Required decimal number parameter; contains the y coordinate of the first
position.

x2 Required decimal number parameter; contains the x coordinate of the second
position.

Agentry Language Reference

Agentry Language Reference 207

@DISTANCE (x1,
y1, x2, y2)

y2 Required decimal number parameter; contains the y coordinate of the second
position.

Supported Return Types
Decimal Number

@DIV

The DIV function takes two parameters, for which the data type is dependent on the context of
the function. It divides the first parameter by the second and returns the quotient as either an
integral number or decimal number, depending on the function’s context.

Parameters

@DIV
(Dividend,
Divisor)

Dividend Required parameter containing the dividend value or the value to be divided.
Evaluated as either an integral or decimal number, depending on the function’s
context.

Divisor Required parameter containing the divisor value or the value to divide into
Dividend. Evaluated as either an integral or decimal number, depending on

the function’s context.

Supported Return Types

• Integral Number
• Decimal Number

@FORMAT_DECIMAL

The FORMAT_DECIMAL function converts the given decimal number parameter into a
string. It takes up to five additional optional parameters that are used in formatting the
converted string value. The first parameter is the value to be converted and is required. This
parameter is evaluated as a decimal, though the value itself may be either an integral or
decimal number data type. This function should be used for any read-only detail screen field
displaying a decimal value.

Agentry Language Reference

208 SAP Mobile Platform

Parameters

@FORMAT_DECIMAL
(Decimal [, Precision, Use
Thousands Separator,
Use Lead Zero, Decimal
Point, Thousands
Separator])

Decimal Required decimal number parameter; contains the value to be for-
matted to a string by the function. If this parameter is a decimal
number property, the definition of that property’s rounding attributes
will affect the final value, specifically when rounding to a specified
precision.

Precision Optional integral number parameter; contains the number of digits
after the decimal to keep when converting Decimal. The last kept

digit will be rounded. If Decimal is a decimal number property,

the property’s rounding attributes will determine the behavior of
rounding for the value returned. If Decimal is a decimal property,

the precision defined for the property will take effect before the
function applies any additional precision to the resulting string re-
turned. If this value is not specified, the precision will be determined
automatically by the function.

Use Thousands Separator Optional Boolean parameter with a default value of false. When true,
the final string value returned will contain a comma to denote thou-
sands, millions, etc. When false, no comma will be present in the
resulting string returned by the function.

Use Lead Zero Optional Boolean parameter with a default value of false. When true,
the final string value returned will contain a leading 0 in the ones
position for decimals that contain only fractional values; e.g. when
false or not specified .23; when true 0.23.

Decimal Point Optional string parameter with a default value of a decimal point (.).
This value may be set to any single character to be used in place of a
decimal point. Many locales use a comma to denote the fractional
portion of a decimal value.

Agentry Language Reference

Agentry Language Reference 209

@FORMAT_DECIMAL
(Decimal [, Precision, Use
Thousands Separator,
Use Lead Zero, Decimal
Point, Thousands
Separator])

Thousands Separator Optional string parameter with a default value of comma (,). This
value can be set to any single character to be used in place of a comma
to separate thousands and hundreds, millions and hundred thousands,
etc. This parameter is only evaluated by the function when Use
Thousands Separator is true. Many locales use a period (.)

as the separator character.

Supported Return Types
String

@MAX

The MAX function takes one or more parameters containing numerical values and compares
each to the other, returning the value of the parameter with the greatest value. This function
can be called in a decimal or integral number context and will evaluate its parameters
according to that context.

Parameters

@MAX (Number
1 [, ..., Number
N])

Number 1 Required parameter evaluated as the data type of the context in which the
function is called. Contains the first value to be compared against all other
parameters by the function.

Number N Optional parameter(s) evaluated as the data type of the context in which the
function is called. Each contains the value(s) to be compared against all other
parameters to the function.

Supported Return Types
• Integral Number
• Decimal Number

@MIN

The MIN function takes two or more parameters containing numerical values and compares
each to the other, returning the value of the parameter with the least value. This function can be

Agentry Language Reference

210 SAP Mobile Platform

called in a decimal or integral number context and will evaluate its parameters according to
that context.

Parameters

@MIN(Number 1 [, ...,
Number N])

Number 1 Required parameter evaluated as the data type of the context in which the
function is called. Contains the first value to be compared against all other
parameters to the function.

Number N Optional parameter(s) evaluated as the data type of the context in which
the function is called. Each contains the value(s) to be compared against
all other parameters to the function.

Supported Return Types

• Integral Number
• Decimal Number

@MOD

The MOD function performs a modulus operation on its two parameters, dividing the first by
the second and returning the remainder. The parameters are evaluated as either decimal or
integral numbers, matching the context of the function.

Parameters

@MOD
(Dividend,
Divisor)

Dividend Required parameter evaluated as either an integral or decimal number matching
the context of the function call. Contains the dividend value, or the value to be
divided by Divisor.

Divisor Required parameter evaluated as either an integral or decimal number matching
the context of the function call. Contains the divisor value, or the value to be
divided into Dividend.

Supported Return Types

• Integral Number
• Decimal Number

Agentry Language Reference

Agentry Language Reference 211

@PARSE_FORMATTED_DECIMAL

The PARSE_FORMATTED_DECIMAL function converts the given string into a decimal. It
takes up to two optional parameters that are used for deciphering the format of the number
stored in the string.The first parameter is the value to be converted and is required. This
parameter is evaluated as a string, and a decimal is created from it using the optional
parameters or the client’s locale. This string must be a valid representation of a decimal.

Parameters

@PARSE_FORMATTED_DECIMAL
(String [, Decimal Point, Thousands
Separator])

String Required string parameter, contains the value to be
parsed interpreted as a string and parsed into a dec-
imal by the function.

Decimal Point Optional string parameter with a default value of the
client’s locale decimal separator. This value may be
set to any single character to be considered as a dec-
imal separator.

Thousands Separator Optional string parameter with a default value of the
client’s locale thousands separator. This value may
be set to any single character to be considered as
separating thousand and hundreds, millions and
hundred thousands, etc.

Supported Return Types
Decimal

@PERCENT

The PERCENT function takes one decimal number parameter, divides that parameter by 100,
and returns the result. This function ignores any significant digit rules during the division
process.

Parameters

@PERCENT (Dividend)

Dividend Required decimal number parameter; contains the value to be divided
by 100.

Agentry Language Reference

212 SAP Mobile Platform

Supported Return Types
Decimal Number

@PRECISION

The PRECISION function takes a single decimal number parameter and returns its precision.
This is the number of digits after the decimal. The function supports string, integral number
and decimal number return types for this precision value. The parameter to it is always
evaluated as a decimal number.

Parameters

@PRECISION
(Decimal)

Decimal Required decimal number parameter; contains the value whose precision
is to be returned by the function, i.e. the number of digits after the decimal.

Supported Return Types

• Integral Number
• Decimal Number
• String

@PROD

The PROD function takes two or more numeric parameters, multiplies the values, and returns
the product. The parameters to the function are evaluated as either decimal or integral
numbers, matching the context of the function call.

Parameters

@PROD
(Number 1 [, ...,
Number N])

Number 1 Required parameter; evaluated as either an integral or decimal number matching
the context of the function call. Contains the value to be multiplied with all other
function parameters.

Number N Optional parameter(s); evaluated as either integral or decimal number(s) match-
ing the context of the function call. Contains the value(s) to be multiplied with all
other function parameters.

Agentry Language Reference

Agentry Language Reference 213

Supported Return Types

• Integral Number
• Decimal Number

@RANGE_LIMIT

The RANGE_LIMIT function constrains a given numeric parameter to within a range of
values, returning a value that is no greater than or less than a given set of upper and lower
limits. The function takes three parameters: the value to be constrained; a lower limit; and an
upper limit. If the value to be constrained is greater than the lower limit and less than the upper
limit, the function will return the value. If this value is less than the lower limit, the value of the
lower limit will be returned. If the constrained value is greater then the upper limit, the upper
limit value will be returned. Each of the three parameters are evaluated as either decimal or
integral numbers, matching the context of the function call.

Parameters

@RANGE_LIMIT
(Constrain, Limit 1,
Limit 2)

Constrain Required parameter; evaluated as either an integral or decimal number
matching the context of the function call. Contains the value to be con-
strained by the function. This value will be returned if it is between the
values of the Limit 1 and Limit 2 parameters.

Limit 1 Required parameter; evaluated as either an integral or decimal number
matching the context of the function call. Contains the first limiting value in
the range to which Constrain will be limited. This may be either the

minimum or maximum value to which the return value is to be constrained.

Limit 2 Required parameter; evaluated as either an integral or decimal number
matching the context of the function call. Contains the second limiting value
in the range to which Constrain will be limited. This may be either the

minimum or maximum value to which the return value is to be constrained.

Supported Return Types

• Integral Number
• Decimal Number

@ROUND

The ROUND function will round a numeric value to the specified precision. The first
parameter to the function is the numeric value to be rounded. The second parameter is always
evaluated as an integral number, and specifies the number of digits before or after the decimal

Agentry Language Reference

214 SAP Mobile Platform

place to which the number should be rounded. This function may be called in an integral or
decimal context.

Parameters

@ROUND
(Number To
Round,
Precision)

Number To
Round

Required parameter; evaluated as either an integral or decimal number matching
the context of the function call. Contains the value to be rounded by the function.

Precision Required integral number parameter; contains the value specifying the precision
to which Number To Round should be rounded. Positive numbers indicate

a precision after the decimal place. Negative numbers indicate position before the
decimal. This parameter can be only negative numbers when the function is
called in an integral number context.

Supported Return Types

• Integral Number
• Decimal Number

@SIGN

The SIGN function takes a single decimal number parameter and returns -1, 0, or 1 if the
parameter is negative, zero, or positive in value, respectively. The function may be called in an
integral or decimal number context. The parameter is always evaluated as a decimal number.

Parameters

@SIGN
(Number)

Number Required number parameter; evaluated as either a decimal or integral number
based on context. Contains the value whose sign is to be determined by the
function.

Supported Return Types

• Integral Number
• Decimal Number

@SIGNIFICANT_DIGITS

The SIGNIFICANT_DIGITS function takes a single parameter evaluated as a decimal
number, and returns the number of significant digits it contains.

Agentry Language Reference

Agentry Language Reference 215

Parameters

@SIGNIFICANT_DIGITS
(Decimal)

Decimal Required decimal number parameter; contains the value
whose number of significant digits is to be calculated by the
function.

Supported Return Types

• Integral Number
• Decimal Number
• String

@SQRT

The SQRT function returns the square root of a decimal number to the specified precision. The
number for which the square root is found is evaluated as a decimal number, though whole
integral values can be provided. The precision of the result is specified by an integral number.

Parameters

@SQRT
(Decimal,
Precision)

Decimal Required decimal number parameter; contains the value for which the square root
will be found.

Precision Required integral number parameter; contains the value specifying the precision
to which the square root value will be calculated. The function will round the
result to this precision. If a property is specified for the Decimal argument, the

definition of that property’s rounding behavior will be applied. A Precision
value of 0 indicates no digits after the decimal, and a negative value indicates
digits before the decimal.

Supported Return Types
Decimal Number

@SUM

The SUM function takes one or more numeric parameters, adds the values of each, and returns
the result. This function may be called in an integral number, decimal number, or string
context. The data type of each parameter in the numeric contexts will match that context. In a

Agentry Language Reference

216 SAP Mobile Platform

string context, the function will treat its parameters as decimal numbers, though integral
numbers may be provided.

Parameters

@SUM
(Number 1 [, ...,
Number N])

Number 1 Required parameter; evaluated as either an integral or decimal number, depend-
ing on the context of the function call. Contains the first value to be summed with
all other parameters to the function.

Number N Optional parameter(s); evaluated as either an integral or decimal number, de-
pending on the context of the function call. Contains the additional value(s) to be
summed with all other parameters to the function.

Supported Return Types

• Integral Number
• Decimal Number
• String

@TOTAL

The TOTAL function will add the values of a given object property together for all instances of
the object in a specified collection property. Optional criteria may be specified to include only
specific objects within the collection being processed.

This function takes three parameters. The first is the object collection property, and the second
is the object property whose value is to be summed in each object instance. An optional third
parameter can be provided to include only certain object instances within the collection in this
operation. This function supports the integral number and decimal number return types.

The object property values are totalled by the function based on the function’s context, not the
data type of the object property definition. This is important to note when the context is in an
integral number, and the properties to be totaled are decimals. In this situation, the fractional
portion of the properties will be truncated from the values prior to being added together.

Agentry Language Reference

Agentry Language Reference 217

Parameters

@TOTAL (Object
Collection, [Child
Property [,
Include Criteria]])

Object Collection Required object collection property parameter; contains the object instances
whose property values will be totaled by the function.

Child Property Optional property parameter; specifies the object property to be totaled in each
object instance in Object Collection. These property values will be

evaluated as the data type of the function’s context, which may be either
integral number or decimal number.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in the context
of each object instance in Object Collection. The function will

process each object instance for which this term returns true, and exclude those
for which it returns false. If this parameter is not provided, all object instances
will be processed by the function.

Supported Return Types

• Integral Number
• Decimal Number

@TRUNC

The TRUNC function will truncate the given numeric value to the specified position either
before or after the decimal. The first parameter to the function is the value to be truncated and
will be evaluated as either a decimal or integral number, matching the context of the function
call. The second parameter is evaluated as an integral number and specifies the precision, or
number of digits to which the value should be truncated. A positive precision value counts the
number of digits to the right of the decimal, while a negative precision counts them to the left
of the decimal. Note that this function differs from the ROUND function in that no rounding
occurs. The number is truncated to the specified precision with no rounding behavior.

Agentry Language Reference

218 SAP Mobile Platform

Parameters

@TRUNC
(Number [,
Precision])

Number Required parameter; evaluated as either an integral or decimal number matching
the context of the function call. Contains the value to be truncated by the func-
tion.

Precision Optional integral number parameter; contains the value specifying the precision
of the resulting truncation. Positive values indicate the number of places to the
right of the decimal, while negative values indicate the number of places to the
left.

Supported Return Types

• Integral Number
• Decimal Number

Property Functions for Rules

The Property category of rule function terms available within the rule definition provide
functions that are specific to working with properties, and in most cases are intended for use
with properties of a given type. While they may take any property as a parameter, the resulting
behavior of the function may not be desired if the selected property is not of the type for which
the function is intended.

Many of the functions within this category are intended for use with collection properties.
Most of these are named to reflect this, beginning with the word COLLECTION, e.g.
@COLLECTION_FIND. Exceptions to this are COUNT and SIZE, which both return the
total number of objects in a collection property, optionally counting only those that meet some
criteria.

Another sub-set of the functions within this category are intended for use with properties of
type external data. External data properties are defined to reference files stored on the client
device from within the mobile application. The functions within this category that are
intended for this property type each begin with the value FILE in their names, e.g.
@FILE_PATH.

Other functions within this category include those that work with the user interface, returning
values or names from the screens and fields of the currently displayed screen or screen set on
the client. Each of these functions begins with the value SCREEN or SCREENSET in their
names, e.g. @SCREENFIELDVALUE.

Agentry Language Reference

Agentry Language Reference 219

@COLLECTION_FIND

The COLLECTION_FIND function searches a given collection for the first member for
which the given second parameter returns true. This second parameter is evaluated once for
each member of the collection in a Boolean context. When a member of the search collection
is found, that member is returned to the caller of the function. If no member of the collection
results in the search criteria returning true, an empty property of the type within the search
collection is returned.

Parameters

@COLLECTION_FIND
(Collection Property, Search
Criteria)

Collection Property Required property parameter; the property referenced for this
parameter is assumed to be a collection and contains the members
to be searched by the function using the specified Search
Criteria parameter.

Search Criteria Required Boolean parameter; this term is evaluated once for, and
in the context of each member of Collection Property.

The member of Collection Property returned by the

function will be the first one for which Search Criteria
returns true.

Supported Return Types
Property

@COLLECTION_FIND_BY_DEC

The COLLECTION_FIND_BY_DEC function searches a collection property for the first
member to match a specified decimal value. For object collection properties, the property
within each object of the collection to compare to the search value is also specified. This
function will return the first member within the specified collection property found to match
the provided search decimal value. If no member of the collection matches the search value, an
empty instance of the member type is returned to the function caller.

Agentry Language Reference

220 SAP Mobile Platform

Parameters

@COLLECTION_FIND_BY_DEC
(Collection Property, Search Decimal
[, Search Property])

Collection Property Required property parameter; this parameter is as-
sumed to be a collection property. References the col-
lection the function will search.

Search Decimal Required decimal number parameter; contains the val-
ue to search for within Collection Proper-
ty.

Search Property Optional property parameter; when Collection
Property contains object instances Search-
Property, specifies the property within that ob-

ject type to compare against Search Decimal.

The value of the property specified for this parameter is
converted from the data type of the property to a dec-
imal number for comparison to Search Deci-
mal.

Supported Return Types
Property

@COLLECTION_FIND_BY_NUM

The COLLECTION_FIND_BY_NUM function searches a collection property for the first
member to match a specified integral value. For object collection properties, the property
within each object of the collection to compare to the search value is also specified. This
function will return the first member within the specified collection property found to match
the provided search integral value. If no member of the collection matches the search value, an
empty instance of the member type is returned to the function caller.

Parameters

@COLLECTION_FIND_BY_NUM
(Collection Property, Search Integral
[, Search Property])

Collection Property Required property parameter; this parameter is as-
sumed to be a collection property. References the col-
lection the function will search.

Agentry Language Reference

Agentry Language Reference 221

@COLLECTION_FIND_BY_NUM
(Collection Property, Search Integral
[, Search Property])

Search Integral Required integral number parameter; contains the val-
ue to search for within Collection Proper-
ty.

Search Property Optional property parameter; when Collec-
tionProperty contains object instances

Search Property, specifies the property

within that object type to compare against Search
Integral. The value of the property specified for

this parameter is converted from the data type of the
property to an integral number for comparison to
Search Integral.

Supported Return Types
Property

@COLLECTION_FIND_BY_STR

The COLLECTION_FIND_BY_STR function searches a collection property for the first
member to match a specified string value. For object collection properties, the property within
each object of the collection to compare to the search value is also specified. This function will
return the first member within the specified collection property found to match the provided
search string value. If no member of the collection matches the search value, an empty
instance of the member type is returned to the function caller.

Parameters

@COLLECTION_FIND_BY_STR
(Collection Property, Search String [,
Search Property])

Collection Property Required property parameter; this parameter is as-
sumed to be a collection property. References the col-
lection the function will search.

Search String Required string parameter; contains the value to search
for within Collection Property.

Agentry Language Reference

222 SAP Mobile Platform

@COLLECTION_FIND_BY_STR
(Collection Property, Search String [,
Search Property])

Search Property Optional property parameter; when Collection
Property contains object instances Search
Property, specifies the property within that object

type to compare against Search String. The

value of the property specified for this parameter is
converted from the data type of the property to a string
for comparison to Search String.

Supported Return Types
Property

@COLLECTION_MAX

The COLLECTION_MAX function searches an object collection for the object instance
whose designated property contains the largest value of all members of the collection and then
returns that maximum value. The function takes parameters for the object collection to be
searched, the property within the object type of the collection whose value is to be compared
between object instances, and optionally a rule term containing the criteria specifying which
objects to search and which to exclude.

The optional Boolean parameter to the function is evaluated once for each object instance
contained in the specified collection. This term is evaluated in the context of each object
instance. The function will then compare only those objects for which this rule term returns
true, with those for which it returns false being excluded from the comparison.

The data type of the property to be compared should be one for which a value comparison
makes sense. While a minimum or maximum value is readily apparent in a primitive data type
such as an integer, such a comparison makes little sense for a signature or external data
property type. For property data types like the latter, the return value is undefined. The data
type of the property to be compared in each function should be considered in relation to the
data type of the function’s context. Though the function supports the integral number, decimal
number, and string return types, the conversion from the property’s data type to the return type
should be “type safe.” Specifically, if the designated property to compare in each object is a
string, the function should not be called in an integral or decimal number context.

Agentry Language Reference

Agentry Language Reference 223

Parameters

@COLLECTION_MAX
(Object Collection, Child
Property [, Include
Criteria])

Object Collection Required object collection property parameter; specifies the col-
lection to be processed by the function.

Child Property Required property parameter; specifies the property whose value
will be compared in each object instance in Object Col-
lection. The data type of this property specifies the type of

comparison made between the values for each object instance.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in
the context of each object instance in Object Collection.

The function will compare the Child Property value of

each object instance for which Include Criteria returns

true, and excludes from this processing each object for which false
is returned. If this parameter is omitted, all object instances in the
collection will be processed.

Supported Return Types

• Integral Number
• Decimal Number
• String

@COLLECTION_MIN

The COLLECTION_MIN function searches an object collection for the object instance
whose designated property contains the smallest value of all members of the collection and
then returns that minimum value. The function takes parameters for the object collection to be
searched, the property within the object type of the collection whose value is to be compared
between object instances, and optionally a rule term containing the criteria specifying which
objects to search and which to exclude.

The optional Boolean parameter to the function is evaluated once for each object instance
contained in the specified collection. This term is evaluated in the context of each object
instance. The function will then compare only those objects for which this rule term returns
true, with those for which it returns false being excluded from the comparison.

The data type of the property to be compared should be one for which a value comparison
makes sense. While a minimum or maximum value is readily apparent in a primitive data type

Agentry Language Reference

224 SAP Mobile Platform

such as an integer, such a comparison makes little sense for a signature or external data
property type. For such property data types as the latter, the return value is undefined.

The data type of the property to be compared in each function should be considered in relation
to the data type of the function’s context. Though the function supports the integral number,
decimal number, and string return types, the conversion from the property’s data type to the
return type should be “type safe.” Specifically, if the designated property to compare in each
object is a string, the function should not be called in an integral or decimal number context.

Parameters

@COLLECTION_MIN
(Object Collection, Child
Property [, Include
Criteria])

Object Collection Required object collection property parameter; specifies the col-
lection to be processed by the function.

Child Property Required property parameter; specifies the property whose value
will be compared in each object instance in Object Collec-
tion. The data type of this property specifies the type of com-

parison made between the values of each object.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in
the context of each object instance in Object Collection.

The function will compare the Child Property value of

each object instance for which Include Criteria returns

true and exclude from this processing each object for which false is
returned. If this parameter is omitted, all object instances in the
collection will be processed.

Supported Return Types

• Integral Number
• Decimal Number
• String

@COUNT

The COUNT function returns the number of object instances in a given collection property
and, optionally, can count only those where some condition is true, returning this count value
or a Boolean indication of whether any objects within the collection were counted. The
function takes two parameters. The first parameter is required and is the object collection
property to be counted. The second parameter is an optional Boolean parameter that is
evaluated once for each object in the collection. It is used to include only certain members of

Agentry Language Reference

Agentry Language Reference 225

the collection in those counted. Specifically, each object for which the second parameter
evaluates to true will be counted, and those for which it evaluates to false will not be counted.

Parameters

@COUNT (Object
Collection [, Include
Criteria])

Object Collection Required property parameter; contains the object collection to be counted
by the function.

Include Criteria Optional Boolean parameter; this term is evaluated once for, and in the
context of each object instance in Object Collection. The func-

tion will count each object instance for which Include Criteria
returns true and exclude from the count each object for which false is
returned.

Supported Return Types

• Boolean
• Integral Number
• String

@CURRENTVALUE

The CURRENTVALUE function takes a variable number of property parameters. Each is
evaluated in the context of the parameter that precedes it until either an invalid property is
found or the last parameter is evaluated. The value of this property, or of a field on the current
detail screen that targets the property, is returned.

The function can take a single property parameter, evaluated in the context of the function call.
Either this property value is returned by the function, or the value of a detail screen field
targeting that property on the current screen is returned. When multiple parameters are
specified, it is assumed these parameters are either objects or object collections. Each
subsequent parameter should be a child member of the parameter that precedes it in the
function call. Otherwise, the parameter will be treated as an invalid property.

Agentry Language Reference

226 SAP Mobile Platform

Parameters

@CURRENTVALUE
(Property 1 [, ..., Property
N])

Property 1 Required property parameter; references the first property evaluated
in the context of the function call. This parameter should reference a
property that is a child member of the definition setting the context of
the function call.

Property N Optional property parameter(s); references the next property evalu-
ated by the function in the context of the property that immediately
precedes it in the function’s parameter list. This should be a child
member of that parameter.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

@FILE_CHANGED

The FILE_CHANGED function is provided to work with the external data property type. It
evaluates the file referenced by such a property and returns true if the file has been modified
since it was downloaded to the client device or attached locally. Though the data type of this
function’s single parameter is string, the function expects an external data property and will
return false for any other value provided.

Parameters

@FILE_CHANGED
(File Name)

File Name Required string parameter; specifies the file to be checked by the function
for modifications. Though the data type of this parameter is string, the
intended usage of this function is that this parameter is an external data
property. Specifying any other string value for this parameter will result
in the function always returning false.

Supported Return Types
Boolean

Agentry Language Reference

Agentry Language Reference 227

@FILE_EXTENSION

The FILE_EXTENSION function takes a single parameter, normally an external data
property, and returns the file extension referenced by that property as a string. This function is
intended for use with external data properties as a part of the attached document’s
functionality. If the external data property provided as a parameter does not currently
reference a file, the function will return an empty string. The return value from this function is
undefined when the parameter provided is not an external data property.

Parameters

@FILE_EXTENSION
(File Name)

File Name Required string parameter; specifies the file whose file extension is to be
returned. While the data type of this parameter is a string, the intended
parameter is a property of data type external data. The file extension of
the file referenced by such a property is returned by this function. If the
property does not reference a file, the function returns an empty string.

Supported Return Types
String

@FILE_NAME

The FILE_NAME function takes a single parameter, normally an external data property, and
returns the name and extension of the file referenced by that property. This function is intended
for use with external data properties as a part of the attached document’s functionality. If the
external data property provided as a parameter does not currently reference a file, the function
will return an empty string. The return value from this function is undefined when the
parameter provided is not an external data property

Parameters

@FILE_NAME
(File Name)

File Name Required string parameter; specifies the file whose name and extension is to be
returned. While the data type of this parameter is a string, the intended pa-
rameter is a property of data type external data. The name and file extension of
the file referenced by such a property is returned by this function. If the prop-
erty does not reference a file, the function returns an empty string.

Supported Return Types
String

Agentry Language Reference

228 SAP Mobile Platform

@FILE_PATH

The FILE_PATH function takes a single parameter, normally an external data property, and
returns the full path of the location where the file referenced by that property is stored. This
function is intended for use with external data properties as a part of the attached document’s
functionality. If the external data property provided as a parameter does not currently
reference a file, the function will return an empty string. The return value from this function is
undefined when the parameter provided is not an external data property.

Parameters

@FILE_PATH
(File Name)

File Name Required string parameter; specifies the file whose full path is to be returned.
While the data type of this parameter is a string, the intended parameter is a
property of data type external data. The full path to the location of the file
referenced by such a property is returned by this function. If the property does
not reference a file, the function returns an empty string.

Supported Return Types
String

@FILE_PATH_AND_NAME

The FILE_PATH_AND_NAME function takes a single parameter, normally an external data
property, and returns the full path and name of the file referenced by that property. This
function is intended for use with external data properties as a part of the attached document’s
functionality. If the external data property provided as a parameter does not currently
reference a file, the function will return an empty string. The return value from this function is
undefined when the parameter provided is not an external data property.

Parameters

@FILE_PATH_AND_NAME
(File Name)

File Name Required string parameter; specifies the file whose full path and
name is to be returned. While the data type of this parameter is a
string, the intended parameter is a property of data type external
data. The full path and name of the file referenced by such a
property is returned by this function. If the property does not
reference a file, the function returns an empty string.

Supported Return Types
String

Agentry Language Reference

Agentry Language Reference 229

@FILE_SIZE

The FILE_SIZE function takes a single parameter, normally an external data property, and
returns the size in bytes of the file referenced by that property. This function is intended for use
with external data properties as a part of the attached document’s functionality. If the external
data property provided as a parameter does not currently reference a file, the function will
return an empty string. The return value from this function is undefined when the parameter
provided is not an external data property.

Parameters

@FILE_SIZE
(File Name)

File Name Required string parameter; specifies the file whose size is to be returned. While
the data type of this parameter is a string, the intended parameter is a property of
data type external data. The size of the file referenced by such a property is
returned by this function. If the property does not reference a file, the function
returns 0.

Supported Return Types
Integral Number

@IS_SPECIAL_VALUE

The IS_SPECIAL_VALUE function returns a Boolean value indicating whether or not a
specified property is currently set to its special value. The function returns true when the
property value is equal to its defined special value. It returns false when it is not equal to the
defined special value, if no special value is defined for the property, or if the property type does
not include special value attributes.

The function can take one or more parameters to allow for the navigation through the object
data structure of a module, beginning with a child of the object setting the context for the
function call, and drilling down into this structure to the descendent object and, finally, a
property of that object.

Agentry Language Reference

230 SAP Mobile Platform

Parameters

@IS_SPECIAL_VALUE
(Property 1 [, ..., Property
N])

Property 1 Required property parameter; if the only parameter to the function,
this property’s value will be compared to its special value attribute
settings. If additional parameters are provided, the function will
evaluate the next parameter in the context of this one, assuming it is
a child member of this property.

Property N Optional property parameter(s); with each specifying an object
further down in the data hierarchy of the module. Each subsequent
Property N provided must be a child to the parameter that

immediately precedes it in the function call. The last parameter
provided is compared to its special value attribute settings.

Supported Return Types
Boolean

@IS_VALID_DECIMAL_NUMBER

The IS_VALID_DECIMAL_NUMBER function takes a single parameter and returns true if
the value is a valid decimal. If the value returned when evaluating this parameter as a decimal
number is NaN (Not a Number), the function will return false.

Parameters

@IS_VALID_DECIMAL_NUMBER
(Decimal)

Decimal Required decimal number parameter; contains the
value to be evaluated as a valid decimal number.

Supported Return Types
Boolean

@LASTSCANVALUE

The LASTSCANVALUE returns the last value scanned by the client device and processed by
the mobile application. If called prior to a value being scanned in or on a device without
scanning capabilities, the function will return an empty string. The last scanned value will be
returned regardless of where or when the function is called. Exiting and restarting the mobile
application will remove the scanned value, and the function will return null until a new value is
scanned.

Agentry Language Reference

Agentry Language Reference 231

Parameters

@LASTSCANVALUE()

This function takes no parameters.

Supported Return Types
String

@MEMBER

The MEMBER function is used to search an object collection and to return the value of a
property within that collection that matches the given search value. The first match found
within the collection will be returned. The function takes two parameters; the first is an object
collection, and the second is a property with a value that is to be located. The object instance
with the same property name, data type, and value within the object collection is then found
and the value of the object’s key property is returned. If no match is found within the
collection, the function returns the null equivalent for the context’s data type.

Parameters

@MEMBER (Collection
Property, Search
Property)

Collection Property Required property parameter; references the object collection to be
searched by the function.

Search Property Required property parameter; references the property definition for
which an exact match within the Collection Property object

instances is to be searched.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String
• Property

@NEEDS_XMIT

The NEEDS_XMIT function takes one or more property parameters, expects each to be an
object, and returns true if the last parameter is an object and that object or one of its descendent
objects in the module data structure has a pending transaction. If multiple parameters are
provided to the function, the first parameter is evaluated in the context of the function call.

Agentry Language Reference

232 SAP Mobile Platform

Each subsequent parameter is evaluated in the context of the parameter that precedes it. If any
parameter evaluates to any definition instance other than an object, the evaluation ends and the
function returns false.

In most current implementations of this function, a single parameter is provided that is a target
path to an object instance selected using the target browser. If a pending transaction targets this
object or any of its descendent objects, this function will return true. Otherwise it returns
false.

Parameters

@NEEDS_XMIT
(Property 1 [, ...,
Property N])

Property 1 Required property parameter; evaluated by the function to determine if it is
an object instance first, and if a pending transaction exists that targets this
object or any of its descendent object instances second. In current imple-
mentations and uses for this function, this is the only parameter provided in
most cases.

Property N Optional property parameters; each is evaluated in the context of the pa-
rameter before it in the function’s parameter list. These parameters are
expected to evaluate to an object instance. The last parameter in this list is
evaluated by the function for pending transactions targeting it or any of its
descendent object instances.

Supported Return Types
Boolean

@SCREENFIELDVALUE

The SCREENFIELDVALUE function returns the current value of a field on the current detail
screen. The name of the field whose value is desired is the only parameter to this function. This
name value is the internal name that uniquely identifies the field definition within the parent
detail screen.

Parameters

@SCREENFIELDVALUE
(Field Name)

Field Name Required string parameter; contains the name of the detail
screen field definition whose current value is to be returned.
This is the internal name of the field definition.

Agentry Language Reference

Agentry Language Reference 233

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

@SCREENFIELDNAME

The SCREENFIELDNAME function is supported only in update rules and returns the name
of the current detail screen field being updated by the rule within which the function is called.
If this function is called in a rule not used in an update rule, its return value is undefined. The
function takes no parameters.

Parameters

@SCREENFIELDNAME()

This function takes no parameters.

Supported Return Types
String

@SCREENNAME

The SCREENNAME function returns the name of the screen definition with the focus at the
time of its evaluation. This function takes no parameters.

Parameters

@SCREENNAME ()

This function takes no parameters.

Supported Return Types
String

@SCREENSETNAME

The SCREENSETNAME function returns the name of the current screen set displayed to the
user. The value returned is the internal definition name of the screen set that uniquely identifies
the screen set definition within the module. This function takes no parameters and supports the
string return type. The current screen set is the parent definition to the screen with the current
focus.

Agentry Language Reference

234 SAP Mobile Platform

Parameters

@SCREENSETNAME ()

This function takes no parameters.

Supported Return Types
String

@SIZE

The SIZE function returns the number of object instances in a given collection property and,
optionally, can count only those where some condition is true, returning this count value or a
Boolean indication of whether any objects within the collection were counted. The function
takes two parameters. The first parameter is required and is the object collection property to be
counted. The second parameter is an optional Boolean parameter that is evaluated once for
each object in the collection. It is used to include only certain members of the collection in
those counted. Specifically, each object for which the second parameter evaluates to true will
be counted, and those for which it evaluates to false will not be.

Parameters

@SIZE (Object
Collection [, Include
Criteria])

Object Collection Required property parameter; contains the object collection to be counted
by the function.

Include Criteria Optional Boolean parameter; this term is evaluated once for and in the
context of each object instance in Object Collection. The func-

tion will count each object instance for which Include Criteria
returns true and exclude from the count each object for which false is
returned.

Supported Return Types

• Boolean
• Integral Number
• String

@TRANSACTIONPROPERTYNAME

The TRANSACTIONPROPERTYNAME function returns the name of the transaction
property for which the rule is being evaluated. This function supports the string return type.
The value returned is the internal definition name of the transaction property. This function is

Agentry Language Reference

Agentry Language Reference 235

only supported when part of a rule being evaluated is an initial value rule for a transaction
property. The return from this function in any other context is undefined.

Parameters

@TRANSACTIONPROPERTYNAME ()

This function takes no parameters.

Supported Return Types
String

@TYPE

The TYPE function returns the definition type of the last parameter it evaluates. This function
takes one or more parameters, each evaluated as a property and each evaluated in the context of
the parameter before it in the function’s parameter list. The function supports the integral
number, Boolean, and string return types.

In a Boolean context, the function will return true if the last parameter evaluated exists in the
current context, or false if it does not exist. In a string context, this function returns the name of
the definition type, e.g. object, transaction, etc. In an integral number context, this function
returns the internal identifier for that definition type.

In current implementations this function has limited usage and may be deprecated in a future
release.

Parameters

@TYPE
(Property 1
[, ..., Property
N])

Property 1 Required property parameter; this is the first parameter evaluated by the function in
the context of the function call. This parameter should be a child member of the
definition setting the function’s context. If it is not, the function will return false or
null depending on the data type of the context. If this is the only parameter, and it
exists, the return will be either true or the identifier for the definition type, depending
on context.

Agentry Language Reference

236 SAP Mobile Platform

@TYPE
(Property 1
[, ..., Property
N])

Property N Optional property parameter(s); each evaluated in the context of the parameter
before it and assumed to be a child member of that previous property. Each addi-
tional Property N parameter will set the context for the next in the list. The last

Property N parameter will be evaluated for its definition type, and the function

will then return true or the identifier for this type if it exists, or else false or null if it
does not exist.

Supported Return Types

• Boolean
• Integral Number
• String

@UI

This function has been deprecated and will not be supported in future releases. It should be
replaced in all existing rule definitions with SCREENFIELDVALUE. The UI function takes a
single parameter that is the field index for the currently displayed screen and returns the value
of that field. The field index is a 0-based index. The parameter must be between 0 and the total
number of field definitions on the current screen minus 1.

The value of the specified field is evaluated in the context of the function call. The UI function
supports the Boolean, integral number, decimal number, string, and property return types.

Parameters

@UI (Field
Index)

Field Index Required integral number parameter; specifies the field on the current detail screen by
its index whose current value is to be returned. This is a 0-based index, with the first
field at index 0 and the last field at the index position equal to the total number of fields
on the screen minus 1. Index numbering occurs from left to right and top to bottom.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

Agentry Language Reference

Agentry Language Reference 237

• Property

String Functions for Rules

The String category of rule function terms available within the rule definition provide the
string parsing, concatenation, conversion, and other related behaviors for manipulating string
values. These functions include those that return or remove sub-strings from source strings,
convert strings to all upper or lowercase, trim whitespace, or return formatting characters,
including new lines and tabs.

@CONCATENATE

The CONCATENATE function’s behavior has changed with the release of Agentry 5.1. The
function now takes two or more string parameters and concatenates them together, returning
the resulting string. Previously this function took two strings and an integral number, with this
third (and now deprecated) parameter limiting the length of the string returned by the function.
This same behavior can now be provided by returning the result from CONCATENATE to the
LEFT string function.

Parameters

@CONCATENATE(String 1, [, ...,
String N])

String 1 Required string parameter; contains the string value to which
the remaining parameter(s) will be appended.

String N Optional string parameter(s); each containing a string value
to be appended to the resulting string returned by the func-
tion.

Supported Return Types
String

@FIND

The FIND function searches a source string for a provided sub-string and, depending on the
context of the function call, returns one of the sub-string, the position of its first character
within the source string, or an indicator as to whether or not it was located. This search can
optionally be case-insensitive and may begin at the beginning of the source string or at some
character position within the source string.

Note that this function no longer works with object collection properties. This functionality is
now provided by the new rule function COLLECTION_FIND. Upgrades of projects from
previous platform versions will be modified with the replacement of FIND with
COLLECTION_FIND in any rule definition. This will happen as a part of the standard

Agentry Language Reference

238 SAP Mobile Platform

upgrade process built into the Agentry Editor and should require no additional actions on the
part of the developer.

When FIND is called in a string context, the function will search a source string for a sub-
string, returning that sub-string when found or an empty string if not found.

When FIND is called in an integral number context, the function will search a source string for
a sub-string, returning the position of the first character of the sub-string within the source
string when found, or -1 if not found. The first character of the string is at position 0.

When FIND is called in a Boolean context, the function will search a source string for a sub-
string, returning true when found and false when not found.

Parameters

@FIND (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the string value to be searched by the
function.

Search String Required string parameter; contains the string value to search for within
Source String. If Search String contains more characters than

Source String, no sub-string will be found.

Case Sensitive Optional Boolean parameter; when specified, determines whether or not the
search should consider or ignore case. When this parameter is true or not
present, the search will be case-sensitive. When this parameter is false, case
will be ignored.

Start Position Optional integral number parameter; when specified, contains the character
position within Source String to begin the search for Search
String. The first character in Source String is at position 0. If this

parameter is not provided, the search will always begin with the first character
of Source String.

Supported Return Types
• Boolean
• Integral Number
• String

@LEFT

The LEFT function returns a sub-string from a specified source string, with the length of the
sub-string specified and beginning with the left-most character in the string. This function

Agentry Language Reference

Agentry Language Reference 239

takes two parameters: a source string and the number of characters to extract from the source.
If this length is equal to or greater than the length of the source string, the entire string is
returned. If the length is 0 or less, an empty string is returned.

Parameters

@LEFT
(Source
String,
Length)

Source String Required string parameter; contains the source string from which a sub-string will
be extracted.

Length Optional integral number parameter; contains the maximum number of characters
to extract from Source String. If this value is equal to or longer than

Source String, the entire string is returned. If Length is 0 or less, an empty

string will be returned.

Supported Return Types
String

@LENGTH

The LENGTH function determines the length of the given string and based on context, returns
either the number of characters in the string, or an indicator of whether or not the string is
empty. In an integral context, the number of characters is returned as an integer. In a string
context, the number of characters is returned as a string. In a Boolean context, true is returned
if the source contains at least one character, and false is returned when the string is empty.

Parameters

@LENGTH (Source
String)

Source String Required string parameter; contains the source string whose length
will be determined.

Supported Return Types

• Boolean
• Integral Number
• String

Agentry Language Reference

240 SAP Mobile Platform

@LOWERCASE

The LOWERCASE function converts all alphabetical characters in the source string to lower
case and returns the result. Any non-alphabetical characters are unchanged.

Parameters

@LOWERCASE (Source
String)

Source String Required string parameter; contains the string value to be con-
verted to lowercase.

Supported Return Types
String

@MID

The MID function parses a source string to return a sub-string that begins at a specified
position and contains at most the specified number of characters. The first parameter to the
function is the source string from which the sub-string is extracted. The second and third
parameters are optional and specify the start and end position within the source string from
which the sub-string is to be extracted. The first character in the source string is at position 0.
The default starting position is 0 if not provided. If the number of characters to return is not
provided, the default is the remaining length of the source string after the start position.

Parameters

@MID (Source
String [, Start
Position [, Max
Length]])

Source String Required string parameter; contains the source string from which the sub-string
will be extracted.

Start Position Optional integral number parameter; contains the zero-based position of the first
character within Source String for the sub-string to be extracted. If this

parameter is not provided, the default start position is 0 and the entire Source
String value will be returned.

Max Length Optional integral number parameter; contains the maximum number of charac-
ters to return from Source String after Start Position. If this

parameter is not provided, all characters after Start Position will be

returned as the sub-string.

Agentry Language Reference

Agentry Language Reference 241

Supported Return Types
String

@NEWLINE

The NEWLINE function returns the command characters <CR> <LF>, (0x0D 0x0A), which
result in a Windows new line. The return value of this function can be concatenated with other
strings for formatting purposes.

Parameters

@NEWLINE()

This function takes no parameters.

Supported Return Types
String

@REMOVE

The REMOVE function searches a given source string, removes all instances of a provided
search string, and returns the result. As optional behaviors, parameters can be provided to
specify whether or not the search is case-sensitive, and to specify the starting position within
the source string to begin the search.

Parameters

@REMOVE (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the source string to be searched by the
function.

Search String Required string parameter; contains the sub-string to be removed from
Source String.

Case Sensitive Optional Boolean parameter; when provided, indicates whether or not the
search of Source String for Search String should be case-

sensitive. If this value is true or not specified, the search is case-sensitive. If
set to false, case is ignored.

Agentry Language Reference

242 SAP Mobile Platform

@REMOVE (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Start Position Optional integral number parameter; when provided, specifies the zero-
based position within SourceString to begin the search. The default

is to begin at position 0.

Supported Return Types
String

@REPLACE

The REPLACE function searches a given source string for a provided search string and
replaces each instance of the search string with a replacement string. By default, this search is
case-sensitive and includes the entire source string. Both of these behaviors can be overridden
based on optional parameters to the function.

Parameters

@REPLACE (Source
String, Search
String, Replace
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the source string to be searched by the
function.

Search String Required string parameter; contains the string value to be searched for
within Source String.

Replace String Required string parameter; contains the string value to replace Search
String within Source String.

Case Sensitive Optional Boolean parameter; when specified, indicates whether the search
should be case-sensitive. When true or if not provided, the search is case-
sensitive. When false, case is ignored.

Agentry Language Reference

Agentry Language Reference 243

@REPLACE (Source
String, Search
String, Replace
String [, Case
Sensitive [, Start
Position]])

Start Position Optional integral number parameter; when specified, indicates the zero-
based position within Source String to begin the search. The de-

fault is to search the entire Source String. If Start Position
is less than 0 or is greater than the number of characters in Source
String, an empty string will be returned.

Supported Return Types
String

@RFIND

The RFIND function searches a string for a sub-string of characters beginning with the right-
most character in a string and based on the function’s context, returns the sub-string when
found, the position of the first character of the sub-string within the source string, or an
indictor of whether the sub-string was found. This search can optionally be case-insensitive
and may begin at the right-most character of the source string, or somewhere within the source
string by specifying the first position, counting from the left, to begin searching.

When RFIND is called in a string context, the function will search a source string for a sub-
string, returning that sub-string when found, or an empty string if not found.

When RFIND is called in an integral number context, the function will search a source string
for a sub-string, returning the position of the first character of the sub-string within the source
string when found, or -1 if not found. The left-most character of the source string is at position
0.

When RFIND is called in a Boolean context, the function will search a source string for a
sub-string, returning true when found, or false if not found.

Parameters

@RFIND (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Source String Required string parameter; contains the string value to be searched by the
function.

Agentry Language Reference

244 SAP Mobile Platform

@RFIND (Source
String, Search
String [, Case
Sensitive [, Start
Position]])

Search String Required string parameter; contains the string value to search for within
Source String.

Case Sensitive Optional Boolean parameter; when provided, specifies whether or not the
search of Source String for the Search String value should be

case-sensitive. When this value is true or not provided, the search is case-sen-
sitive. If this value is false, case is ignored.

Start Position Optional integral number parameter; when provided, specifies the zero-based
character position, counting from the left, within Source String to begin

the search. If this value is not provided, the search begins at the right-most
character within Source String. If this value is 0 or negative, an empty

string is returned. If this value is equal to or greater than the total number of
characters within Source String, the entire string is searched.

Supported Return Types

• Boolean
• Integral Number
• String

@RIGHT

The RIGHT function returns a sub-string of specified length from a given source string,
beginning at the right-most character of the source string and counting back towards the
beginning. The function takes two parameters. The first is the source string from which the
sub-string is extracted. The second is the number of characters in the sub-string. If the
specified number of characters is greater than the length of the source string, the entire source
string is returned. If the specified number of characters specified is 0 or less, an empty string is
returned.

Parameters

@RIGHT
(Source,
MaxLength)

Source String Required string parameter; contains the string value from which the sub-string
will be extracted.

Agentry Language Reference

Agentry Language Reference 245

@RIGHT
(Source,
MaxLength)

Max Length Required integral number parameter; contains the maximum number of char-
acters to return from Source String. If this value is greater than the

number of characters in Source String, Source String is returned

in its entirety. If Max Length is 0 or negative, an empty string will be

returned.

Supported Return Types
String

@TAB

The TAB function takes no parameters and returns a tab <HT> character (0x09). This function
is most often used to insert a tab into a text value for the purposes of formatting.

Parameters

@TAB()

This function takes no parameters.

Supported Return Types
String

@TRIM

The TRIM function removes any leading or trailing whitespace characters from a given source
string. The following are considered whitespace characters and will be removed from the
beginning and end of the given source string:

• Horizontal tab
• Vertical tabs
• Space
• Newline
• Carriage return
• Formfeed

Agentry Language Reference

246 SAP Mobile Platform

Parameters

@TRIM (Source
String)

Source String Required string parameter; contains the value from which all leading and
trailing whitespace will be removed.

Supported Return Types
String

@UPPERCASE

The UPPERCASE function converts all alphabetical characters in a given source string to
upper case and returns the result. Any non-alphabetical characters are returned unchanged.

Parameters

@UPPERCASE (Source
String)

Source String Required string parameter; contains the string value to be converted
to upper case by the function.

Supported Return Types
String

System Functions for Rules

The System function category of rule functions available in the rule definition provide
functionality related mostly to accessing values from the mobile application as a whole, those
retrieved by interacting with the client device or specific hardware components of the device,
or by interacting directly with the client device’s operating system.

These functions include those that return date and time values, interact with a client device’s
GPS system, return on-line state information about the mobile application, and other similar
items.

@DATE

The DATE function returns either the current system date of the client device, or the date value
specified as a parameter to the function. The function can also take an optional format
parameter when called in a string context. The function supports the integral number, decimal
number, and string return types.

When called in an integral or decimal number context, the DATE function will return the
number of days before (negative number) or after (positive number) the date January 1, 2001.

Agentry Language Reference

Agentry Language Reference 247

This is the Agentry epoch date. When called in a string context the function will return the date
value in the default format of the client device’s locale.

The function’s first parameter, if provided, is a string and contains the date value to be returned
by the function. The second parameter is also optional and is evaluated as a string. It can
contain one or more of the following date format tokens, which will be used to then format the
date value returned by the function. Note that this format parameter is ignored when the
function is called in any context other than string:

Table 1. Rule Date Format Tokens - All date format tokens are case sensitive

Date Token Description

d Day of month as digits with no leading zero for single-digit days.

dd Day of month with leading zero for single-digit days.

ddd Day of week as three letter abbreviation. The function uses the LOCALE_SAB-
BREVDAYNAME value associated with the device’s specified locale.

dddd Day of week as its full name. The function uses the LOCALE_SDAYNAME
value associated with the device’s specified locale

M Month as digits with no leading zero for single-digit months.

MM Month as digits with leading zero for single-digit months.

MMM Month as three letter abbreviation. The function uses the LOCALE_SAB-
BREVMONTHNAME value associated with the device’s specified locale.

MMMM Month as its full name. The function uses the LOCAL_SMONTHNAME value
associated with device’s specified locale.

y Year as last two digits with no leading zero for years less than 10.

yy Year as last two digits with leading zero for years less than 10.

yyyy Full four digit year value.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: d={MM/dd/yyyy} the resulting string will contain the

slash characters separating each date element: 11/17/1967

Agentry Language Reference

248 SAP Mobile Platform

Parameters

@DATE
([Date String
[, Format
Tokens]])

Date String Optional string parameter; contains the date value to be returned by the function. To
format the current system date, this parameter may be set to a second call to the
DATE function. A data definition such as a property or global of type Date or Date
and Time may be used for this parameter. The time portion of the value will be
truncated. A string may be used, provided the date is in the format MM/dd/
yyyy. A numeric value may be passed for this parameter, in which case it will be

treated as the number of days before or after the Agentry epoch date.

Format Tokens Optional string parameter; contains the date format tokens that will format the
function’s return value when called in a string context. When the function is called
in any other context, this parameter is ignored. A DateString must be speci-

fied before FormatTokens can be provided.

Supported Return Types

• Integral Number
• Decimal Number
• String

@DATE_AND_TIME

The DATE_AND_TIME function returns either the current system date and time of the client
device, or the date and time value specified as an optional parameter to the function. The
function can also take an optional format parameter when called in a string context. The
function supports the integral number, decimal number, and string return types.

When called in an integral or decimal number context, the function will return the number of
seconds before (negative value) or after (positive value) the date and time of January 1, 2001 -
12:00:01 AM. This is the Agentry epoch date and time. When called in a string context, the
function will return a date and time value in the default format for the client device’s locale.

The function’s first parameter, if provided, is a string and contains the date and time value to be
returned by the function.

The second parameter is also optional and is evaluated as a string. It can contain one or more of
the date and time format tokens. The syntax for this parameter is as follows:

d={date format tokens} t={time format tokens}

Agentry Language Reference

Agentry Language Reference 249

The tokens within the curly braces will be used to format the date and time value returned by
the function:

Table 2. Rule Date Format Tokens - All date format tokens are case sensitive

Date Token Description

d Day of month as digits with no leading zero for single-digit days.

dd Day of month with leading zero for single-digit days.

ddd Day of week as three letter abbreviation. The function uses the LOCALE_SAB-
BREVDAYNAME value associated with the device’s specified locale.

dddd Day of week as its full name. The function uses the LOCALE_SDAYNAME
value associated with the device’s specified locale

M Month as digits with no leading zero for single-digit months.

MM Month as digits with leading zero for single-digit months.

MMM Month as three letter abbreviation. The function uses the LOCALE_SAB-
BREVMONTHNAME value associated with the device’s specified locale.

MMMM Month as its full name. The function uses the LOCAL_SMONTHNAME value
associated with device’s specified locale.

y Year as last two digits with no leading zero for years less than 10.

yy Year as last two digits with leading zero for years less than 10.

yyyy Full four digit year value.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: d={MM/dd/yyyy} the resulting string will contain the

slash characters separating each date element: 11/17/1967

Table 3. Rule Time Format Tokens - All time format tokens are case sensitive

Time Token Description

h Hour of day in 12 hour clock format with no leading zero for single digit hours.

hh Hour of day in 12 hour clock format with leading zero for single digit hours.

H Hour of day in 24 hour clock format with no leading zero for single digit hours.

HH Hour of day in 24 hour clock format with leading zero for single digit hours.

m Minute of the hour with no leading zero for single digit minutes.

mm Minute of the hour with leading zero for single digit minutes.

Agentry Language Reference

250 SAP Mobile Platform

Time Token Description

s Seconds of the minute with no leading zero for single digit minutes.

ss Seconds of the minute with leading zero for single digit minutes.

t One character time marker string, such as A or P.

tt Two character time marker string, such as AM or PM.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: t={hh:mm:ss} the resulting string will contain the

colon characters separating each time element: 10:12:32

Parameters

@DATE_AND_TIME
([Date Time String [,
Format Tokens]])

Date Time String Optional string parameter; contains the date and time value to be re-
turned by the function. To format the current system date and time, this
parameter may be set to a second call to the DATE_AND_TIME func-
tion. A data definition such as a property or global of type Date, Date and
Time, or Time may be used for this parameter. A string may be used,
provided the date and time is in the format hh:mm:ss MM/dd/
yyyy. A numeric value may be passed for this parameter, in which case

it will be treated as the number of seconds before or after the Agentry
epoch date and time.

Format Tokens Optional string parameter; contains the date and time format tokens that
will format the function’s return value when called in a string context.
When the function is called in any other context, this parameter is
ignored. A Date Time String must be specified before For-
mat Tokens can be provided.

Supported Return Types

• Integral Number
• Decimal Number
• String

@DISTANCE_MILES

The DISTANCE_MILES function takes two GPS location parameters and returns the total
distance between them in miles as a decimal number. The distance returned is always 0 or a

Agentry Language Reference

Agentry Language Reference 251

positive number. The function may return an invalid decimal value (NaN) if either of the two
GPS location parameters to the function are invalid location values.

This function is intended for use on devices equipped with a GPS unit, though it will return a
distance in miles for any two valid GPS location values.

Parameters

@DISTANCE_MILES (GPS
Location 1, GPS Location 2)

GPS Location 1 Required location parameter; contains one of the two GPS
location values between which the distance will be calculated
by the function.

GPS Location 2 Required location parameter; contains one of the two GPS
location values between which the distance will be calculated
by the function.

Supported Return Types
Decimal Number

@DISTANCE_KILOMETERS

The DISTANCE_KILOMETERS function takes two GPS location parameters and returns the
total distance between them in kilometers as a decimal number. The distance returned is
always 0 or a positive number. The function may return an invalid decimal value (NaN) if
either of the two GPS location parameters to the function are invalid.

This function is intended for use on devices equipped with a GPS unit, though it will return a
distance in kilometers for any two valid GPS location values.

Parameters

@DISTANCE_KILOMETERS (GPS
Location1, GPS Location2)

GPS Location 1 Required location parameter; contains one of the two
GPS location values between which the distance will be
calculated by the function.

GPS Location 2 Required location parameter; contains one of the two
GPS location values between which the distance will be
calculated by the function.

Supported Return Types
Decimal Number

Agentry Language Reference

252 SAP Mobile Platform

@GPS_LOCATION

The GPS_LOCATION function returns the GPS location of the device’s current position,
optionally based on a maximum age for the GPS data. This function can take a single optional
parameter of type integral number treated as the maximum number of seconds for the GPS
data. This function will return an invalid location value if the client device is not equipped with
a GPS unit or if the GPS unit is not accessible to the client application.

If the maximum age of the GPS data available to the function exceeds the maximum age
parameter provided to the function, the function will query the GPS unit for a current location.
The function will set all components of the location data type, including the location value
itself, as well as the number of satellites and precision as reported by the GPS unit.

Parameters

@GPS_LOCATION
([Max Age])

Max Age Optional integral number parameter; specifies the maximum age in
seconds of the GPS data for which a location should be returned. If this
parameter is not provided, the function will return the most recent
location.

Supported Return Types
Location

@IS_VALID_LOCATION

The IS_VALID_LOCATION function takes a single GPS location parameter and returns true
or false based on whether or not the value of the parameter is a valid location value. If this
parameter is a GPS location property type, the definition of that property’s precision attributes
will be used as a part of determining the parameters validity. Empty location values are always
invalid.

Parameters

@IS_VALID_LOCATION
(Location)

Location Required location parameter; contains the GPS location value to be
checked for validity. If the value of this parameter is valid, the
function will return true. If this parameter is a location property
type, the property’s precision attributes will be used to determine if
the value is valid.

Agentry Language Reference

Agentry Language Reference 253

Supported Return Types
Boolean

@JAVASCRIPT

The JAVASCRIPT function is provided to allow JavaScript logic to be embedded within a rule
definition. Included in the JAVASCRIPT function’s behavior is the ability to pass values to the
script being processed from the rule definition. The value returned by the JavaScript logic will
be the value returned by the function. This function takes one required parameter, and as many
additional parameters as needed to pass in additional values. The supported return types of the
JAVASCRIPT function are Boolean, integral number, decimal number, or string.

The first parameter to the JAVASCRIPT function is the JavaScript logic to be processed. This
parameter may be any string value from any source within the application. In most cases, it is
recommended that the rule term JavaScript Text is used, which is an available item within the
rule editor. The main purpose for this term is that it provides a large text box control to display
multiple lines of text, making it easier to write and edit JavaScript logic.

Additional parameters to the JAVASCRIPT parameter are referenced within the JavaScript
logic through the zero-based array argv[]. This array is available in all JavaScript logic
processed by the JAVASCRIPT rule function. The second parameter to JAVASCRIPT is stored
in the argv[0] element, the third is in argv[1], and so on.

The data types of the additional parameters are strings. The parameters will be converted to
this data type and will be passed to the JavaScript as such. These values can then be converted
to a different data type where necessary within the JavaScript logic.

The JavaScript engine used to process the script logic is SpiderMonkey. Note that the Data
Object Model (DOM) and the XMLHttpRequest object are not implemented as a part of
this JavaScript support.

The usage of JavaScript within rule definitions is intended to be supplemental functionality. It
is not recommended that all rules be written exclusively with JavaScript, as the processing of
such script files is less efficient than the processing of rule definitions. The main intent is to
allow a developer to implement certain pieces of logic using JavaScript wherever it is deemed
appropriate to do so.

Agentry Language Reference

254 SAP Mobile Platform

Parameters

@JAVASCRIPT
(JavaScript [, ...,
ArgV String N])

JavaScript Required string parameter; contains the JavaScript logic to be processed by
the JavaScript engine. In most cases, this logic will be contained in the special
rule term JavaScript text, though any data term that may be safely converted
to a string and that contains valid JavaScript may be used.

ArgV String N Optional string parameter(s); contains value(s) passed to the JavaScript and
available in the argv[] array. The value of the second JAVASCRIPT

parameter, i.e. ArgV String 1, is available within the array element

argv[0], the next optional JAVASCRIPT parameter’s value is stored in

argv[1], and so on. The members of this array are strings and should be

converted within the JavaScript logic where necessary.

Supported Return Types

• Boolean
• Integral Number
• Decimal Number
• String

@LATITUDE

The LATITUDE function returns the latitude of a provided GPS location in degrees. The
function takes a single location parameter from which the latitude portion of the coordinates is
returned. This function will return an invalid decimal value (NaN) if the GPS location
parameter is invalid.

This function is primarily intended for use on client devices equipped with GPS units, though
it will return a latitude for any valid GPS location value provided. It does not interact with the
GPS unit directly.

Parameters

@LATITUDE (GPS
Location)

GPS Location Required location parameter; specifies the GPS location from which the
latitude will be calculated. If this is not a valid GPS location value, the
function will return an invalid decimal value (NaN).

Agentry Language Reference

Agentry Language Reference 255

Supported Return Types
Decimal Number

@LOCATION

The LOCATION function takes two decimal number parameters, treated as degrees of latitude
and longitude, and returns the GPS location for those two values. The function may return an
invalid GPS location if either the latitude or longitude parameters are invalid values.

Longitude values must be in the range -179 and 180, inclusive. Latitude values must be in the
range of -90 and 90, inclusive. The returned location value includes the GPS location, a
satellite count of 50, and a precision of 1.0.

This function is intended for use on devices equipped with a GPS unit, though it will return a
GPS location for a given valid set of longitude and latitude values.

Parameters

@LOCATION
(Latitude,
Longitude)

Latitude Required decimal number parameter; provides the latitude in degrees of the
location to be returned as a GPS location by the function. Valid latitude values
are in degrees with a range of -90 to 90, inclusive.

Longitude Required decimal number parameter; provides the longitude in degrees of the
location to be returned as a GPS location by the function. Valid longitude
values are in degrees in the range -179 to 180, inclusive.

Supported Return Types
Location

@LONGITUDE

The LONGITUDE function returns the longitude for a given GPS location. The function takes
a single location parameter from which the longitude portion of the coordinates is returned.
This function will return an invalid decimal value (NaN) if the GPS location parameter is
invalid.

This function is primarily intended for use with devices equipped with a GPS unit, though it
will return a longitude value for any valid GPS location value provided. It does not interact
with the GPS unit directly.

Agentry Language Reference

256 SAP Mobile Platform

Parameters

@LONGITUDE (GPS
Location)

GPS Location Required location parameter; contains the GPS location from which
the longitude in degrees is calculated by the function.

Supported Return Types
Location

@MODULE_ENABLED

The MODULE_ENABLED function returns a Boolean value indicating whether or not the
module specified by name is enabled or disabled. The function will return true if the module is
enabled. It will return false if the module is disabled or is not present. The function takes a
single string parameter containing the name of the module definition to be checked.

Parameters

@MODULE_ENABLED (Module
Name)

Module Name Required string parameter; contains the definition name of
the module to be checked by the function.

Supported Return Types
Boolean

@OFFLINE

The OFFLINE function returns a value indicating whether or not the client application is in an
off-line state. The function supports the Boolean and integral number return types. In a
Boolean context, this function will return true of the client application is in an off-line state,
and false if it is in an on-line state. In an integral number context, the function will return a
non-zero value of the client application is in an off-line state, and zero if in an on-line state.

Parameters

@OFFLINE ()

This function takes no parameters.

Agentry Language Reference

Agentry Language Reference 257

Supported Return Types

• Boolean
• Integral Number

@TIME

The TIME function returns either the current system time of the client device, or the time value
specified as an optional parameter to the function. The function can also take an optional
format parameter when called in a string context. The function supports the integral number,
decimal number, and string return types.

When called in an integral or decimal number context, the function will return the number of
seconds before (negative value) or after (positive value) the time 12:00:00 AM. This is the
Agentry epoch time. When called in a string context, the function will return a time value in the
default format for the client device’s locale.

The function’s first parameter, if provided, is a string and contains the time value to be
returned by the function.

The second parameter is also optional and is evaluated as a string. It can contain one or more of
the time format tokens. The syntax for this parameter is as follows:

t={time format tokens}

The tokens within the curly braces will be used to format the time value returned by the
function:

Table 4. Rule Time Format Tokens - All time format tokens are case sensitive

Time Token Description

h Hour of day in 12 hour clock format with no leading zero for single digit hours.

hh Hour of day in 12 hour clock format with leading zero for single digit hours.

H Hour of day in 24 hour clock format with no leading zero for single digit hours.

HH Hour of day in 24 hour clock format with leading zero for single digit hours.

m Minute of the hour with no leading zero for single digit minutes.

mm Minute of the hour with leading zero for single digit minutes.

s Seconds of the minute with no leading zero for single digit minutes.

ss Seconds of the minute with leading zero for single digit minutes.

t One character time marker string, such as A or P.

Agentry Language Reference

258 SAP Mobile Platform

Time Token Description

tt Two character time marker string, such as AM or PM.

non-token charac-
ters

Any non-token character within the format string is passed through as is; e.g in
the following string: t={hh:mm:ss} the resulting string will contain the

colon characters separating each time element: 10:12:32

Parameters

@TIME
([Time String
[, Format
Tokens]])

Time String Optional string parameter; contains the time value to be returned by the function. To
format the current system time, this parameter may be set to a second call to the
TIME function. A data definition such as a property or global of type Time or Date
and Time may be used for this parameter. The date portion of a Date and Time value
will be truncated. A string may be used provided the time is in the format
hh:mm:ss. A numeric value may be passed for this parameter, in which case it

will be treated as the number of seconds before or after the Agentry epoch time.

Format To-
kens

Optional string parameter; contains the time format tokens that will format the
function’s return value when called in a string context. When the function is called
in any other context, this parameter is ignored. The Time String parameter

must be specified before Format Tokens can be provided.

Supported Return Types

• Integral Number
• Decimal Number
• String

@TIME_TICKS

The TIME_TICKS function returns the number of milliseconds since the client device booted,
excluding any time the device was in sleep or hibernation modes, or any similar modes of
operation. The function supports the integral number, decimal number, and string return types.

The difference between the return values of two separate calls to this function can be used to
calculate duration values for various purposes.

Agentry Language Reference

Agentry Language Reference 259

Parameters

@TIME_TICKS ()

This function takes no parameters.

Supported Return Types
• Integral Number
• Decimal Number
• String

@USERID

The USERID function returns the user ID value entered to log into the client application. This
value is returned as a string.

Parameters

@USERID ()

This function takes no parameters.

Supported Return Types
String

Table Functions for Rules

The Table functions category of rule functions available within the rule definition provide
access to the complex tables and data tables of an application. This category consists of three
functions. The first two return a record from a complex table or data table based on some
search criteria. The third returns the total number of records within a complex table.

@COMPLEXTABLE

The COMPLEXTABLE function searches the specified complex table for a single record and
returns a single field from that record. The parameters to this function include, at a minimum,
the name of the complex table to be searched and the value to search for within the records. If
only these two values are provided, the function will search the complex table using the table’s
primary index, returning the field upon which the primary index has been defined from the
record found.

As optional parameters to the function, the index to search upon and the field to return from the
matching record can be specified by passing in the definition names of each. While optional,
these parameters are provided in most use cases.

An additional variation on the parameters passed to the function is in the situation when a
search index is specified, and that index is a child to another index within the table. In this

Agentry Language Reference

260 SAP Mobile Platform

scenario, additional search values must also be provided to the function. The requirement is
for each index, starting with the one specified up to the top-level index (one that has no parent
index) in the structure, there must also be a corresponding search value provided to the
function.

As an example, assume a complex table with three indexes defined: A, B, and C. Index C is a
child index to B, and B in turn is a child index to A, which is a top-level index in the table.
When searching this table with the COMPLEXTABLE function, if index C is specified as the
search index, search values for indexes A, B, and C must be provided. During the search, the
function will begin by finding records that match on index A, then within that set those records
that match index B, and finally within that sub-set the first record that matches index C.

Parameters

@COMPLEXTABLE
(Table Name, Search
Value, [Parent Search
Value N,] [Search Index,
Return Field])

Table Name Required string parameter; contains the name of the complex table to
be searched by the function.

Search Value Required string parameter; contains the value used to search the
complex table records.

Parent Search Value N String parameter(s); required and specified only when Search
Index is a child index. One Parent Search Value must

then be specified for each index above the Search Index in the

index hierarchy.

Search Index Optional string parameter; provides the name of the index within the
complex table used by the function to locate the desired record based
on the Search Value and possibly Parent Search
Values. If this parameter is not provided, the primary index of the

complex table is used by the function.

Return Field Optional string parameter; provides the name of the complex table
field whose value is returned from the record found by the function.
If this parameter is not specified, the field for which the primary
index of the complex table is defined is the default field value re-
turned.

Supported Return Types

• Boolean

Agentry Language Reference

Agentry Language Reference 261

• Integral Number
• Decimal Number
• String

@TABLE

The TABLE function searches a data table for a record with the specified key value and returns
the value field for the matching record. The search performed by this function is a record by
record search, attempting to match the provided search value with the key field of each record.
Data tables contain no indexes or guaranteed record order, and therefore the search is
performed in a first to last manner. Data tables with large numbers of records will take longer
to search, both by the TABLE function as well as any other methods. The value field returned
is converted to the data type of the function’s context, which may be integral number, Boolean,
or string.

Parameters

@TABLE (Table
Name, Search String)

Table Name Required string parameter; contains the name of the data table the function
will search.

Search String Required string parameter; contains the key value the function will use to
search the data table records.

Supported Return Types

• Boolean
• Integral Number
• String

@TABLE_COUNT

The TABLE_COUNT function takes a single string parameter that is assumed to be the name
of a data table within the application. The function counts the number of records in the named
table and returns the result. This function supports the integral number return type.

Agentry Language Reference

262 SAP Mobile Platform

Parameters

@TABLE_COUNT
(Table Name)

Table Name Required string parameter; contains the name of the data table whose
total number of records is to be returned. If this parameter contains a
name that does not match any defined data tables, the function will
return zero.

Supported Return Types
Integral Number

Syclo Data Markup Language

When synchronizing data between the mobile application and the back end system, it is
necessary to have access to the mobile application’s data values. This access is provided in
Agentry using the Syclo Data Markup Language, or SDML. The SDML is a markup language
consisting of tags that provide access to the data values of the mobile application.
Additionally, the SDML includes a full set of functions, or function tags, that can be used to
perform logical operations in relation to this values or to drive the overall logic the Agentry
Server will execute against the back end system.

The SDML tags used during synchronization are a part of the text within the scripts for step
definitions defined for SQL Database, HTTP-XML, and File system connection types. Also,
the synchronization components of data tables and complex tables for each of these system
connection types can contain SDML. In addition to SQL Step definitions, other .sql script
files run by the Server may also contain SDML tags. Steps defined for Java Virtual Machine
system connections also include the ability to access SDML tags, but these tags may not be
contained directly in the source code of the Java Steplet files used by these steps.

The Agentry Server will pre-process the script files of steps containing SDML markup. This
processing is referred to as tag expansion. Each tag within the script is expanded, with the
value it represents replacing the tag at the exact position of that tag within the file. Function
tags are expanded with the results of their expansion being placed in the exact position of the
function call within the file. Once the tag expansion has completed, the resulting text is
submitted to the back end system for processing.

The two categories of tags within the SDML are data tags and function tags. Data tags
represent data values available to the script file based on when it is executed. This information
must be known when writing the script in which the SDML will be contained. For step
definitions the values in scope are dictated by the step usage definition running them.
For .sql scripts run by the server, but not a part of the step definition, the values in scope will

Agentry Language Reference

Agentry Language Reference 263

vary depending on how that script is used. Certain values are globally available, such as the
user ID as entered by the user to log into the Agentry Client.

Function tags are globally available, with certain exceptions. Function tags provide the
logical, mathematical, string manipulation, and other similar functionality to the SDML.
Function tags can take values passed in as arguments, parameters, or expressions. These
values are processed by the function during tag expansion, with the resulting value of the
function call being placed within the script.

Following is a basic example of a simple SQL statement containing SDML data tags:

SELECT
 A.FIELD1,
 B.FIELD2,
 C.FIELD3,
FROM
 TABLEA A,
 TABLEB B,
 TABLEC C
WHERE
 A.NAME = ‘<<user.agentryID>>’ AND
 A.ACCTNUM = ‘<<object.acctnum>>’ AND
 B.ACCTNUM = A.ACCTNUM AND
 C.ACCTNUM = B.ACCTNUM

In this example, the value <<user.agentryID>> is replaced with the user ID as entered
when the user logged into the Agentry Client. The data tag<<object.acctnum>> will be
replaced with the value of the acctnum property of the object currently being processed.

SDML Data Tags Overview

Data tags provide the access to the production data of the application within the
synchronization components of the mobile application. This includes access to property
values, global definition values, query constants, and client and server information system
information. Each of these items just listed are referred to as the data tag’s data source.

In addition to the tag’s data source, all data tags also have a certain data type. The data source
and the data type of a tag combine to give the data tag its overall behavior. This behavior
includes how the value is expanded during data tag expansion, as well as the parameters that
the tag will support. By and large, the data tags created for properties are the tags that have the
most complex behavior.

Data tags that provide access to data other than from properties or globals are strings. Those
data tags that are based on a property definition are one of several data types, based on the
property data type.

Data Tag Data Types
Within the SDML, all data tags have a data type. This data type affects how the data tag is
processed during tag expansion. Do not confuse the data tag’s type with the data type for that

Agentry Language Reference

264 SAP Mobile Platform

same value in the back end system. When the Agentry Server has completed tag expansion the
resulting values within the script are plain text. At this point, the methodology for denoting the
value’s data type will depend on the type of back end system in use.

As an example, for a database system connection, data tags with a data type of date and time
will be expanded with the date and time conversion function for that database as a part of the
text, as in:

<<object.statusDate>>

If this data tag is a date and time and used in a script for an Oracle database, it would expand
to:

to_date(‘01/12/2004 14:23:45’, ‘mm/dd/yyyy hh24:mi:ss’)

As you can see, the date and time value has been wrapped in the to_date function call for
Oracle, which converts string values into dates and times.

The data types for data tags are as follows. Note that all data types other than string are
applicable only to tags for global and property values:

• String
• Integral Number
• Decimal Number
• Boolean
• Date
• Time
• Date and Time
• Signature

The Scope of Data Tags
The data tags within the SDML may or may not be valid in one area verses another. The scope
of a data tag will vary from one to the next. Certain tags are only valid in steps used by a fetch.
Others are only available in steps used by transactions. Still others are available globally. It is
important to note that for scripts within step definitions, the scope for a data tag is determined
by the type of step definition and also the step usage definition referencing the step to be
processed at run time. For example, the data tags that are in scope for a step used by an object
read step will be different from the tags that are in scope for a step used by a transaction’s
server update step. The terms used to describe a data tag’s scope are:

• Global: A data tag with Global scope is valid in all scripts processed by the Agentry
Server. NOTE: Do not confuse the term Global used here to denote a tag’s scope with the
definition type global. Values for a global definition do have a global scope. However,
there are other data tags that also are globally available to the application’s
synchronization components.

Agentry Language Reference

Agentry Language Reference 265

• Definition-Type: A data tag with the Definition-Type scope is one that is in scope only for
a certain type of definition, such as a Transaction or Object. The Type portion of this scope
specifies the definition type for which the data tag is applicable.

• Definition: A data tag with the Definition scope is one that is only in scope for instances of
a specific definition. For example, the data tags in scope for an Object named Customer
will be different than those for an Object named Order. Data tags that have a Definition
scope are those that provide access to the properties of an object.

<<user>> Data Tag Container

The user data tag is a container tag for several user-realted values. Each of these values is
represented by a member tag within the user containter. Of these members, two contain
members of their own. All members of the user data tag container are available in all scripts
processed by the Agentry Server.

Table 5. <<user>> Data Tag Members

Tag Name Description

<<user.name>> Returns the name of the client user. By default this will be the ID entered
by the user to log into the client. This value may be overridden.

<<user.deviceID>> Returns the device ID for the client device upon which the Agentry Client
is running. This value is set by the original equipment manufacturer.

<<user.agentryID>> Returns the user ID entered to log into the Agentry Client. This value
cannot be overriden during synchronization.

<<user.client>> A data tag container within <<user>>. Member data tags provide infor-
mation about the client application and client device as provided by the
Agentry Client during synchronization.

<<user.info>> A data tag container within <<user>>. Member data tags are variable and
set during synchronization based on the logic of the mobile application.

<<user.client>> Data Tag Container

The <<user.client>> data tag container is a member of the <<user>> container.
Members of <<user.client>> provide information about the client device’s hardware
and software, and information about the Agentry Client application.

Many of the member data tags of <<user.client>> are valid only on client devices
running a Windows operating system. Such members names begin with the text Win_ and will
return empty strings for any other client device type. This members providing information
about the Agentry Client software or the host system are invalid for web browser clients.

Agentry Language Reference

266 SAP Mobile Platform

Table 6. <<user.client>> Member Data Tags

Tag Name Description

<<user.client.time>> Returns the date and time of the client device
when the transmission between the Agentry
Client and Server began.

<<user.client.Language>> Returns the two character abbreviation for
the client device’s configured locale.

<<user.client.Win_MajorVersion>> Returns the major version number of the
Windows operating system installed on the
client device.

<<user.client.LocaleID>> Returns the local ID for the configured lo-
cale of the client device.

<<user.client.Win_ServicePack>> Returns the service pack installed on the
Windows operating system on the client de-
vice.

<<user.client.timeDifference>> Returns the difference in time’s between the
client device and the Agentry Server’s host
system. This value is represented in number
of seconds where negative values indicate
the client is behind the server.

<<user.client.Win_MinorVersion>> Returns the minor version number of the
Windows operating system installed on the
client device.

<<user.client.FirstLogin>> Returns the text value true or false based on
whether the current transmit is the result of
the user’s initial login to the Agentry Client.
This value is representative of the fist time a
user transmits from a given client device.

<<user.client.Platform>> Returns the platform type of the client de-
vice.

<<user.client.timeZone>> Returns the time zone to which the client
device has been set.

<<user.client.timeZoneBias>> Returns the difference in seconds between
the client’s time zone and Greenwich Mean
Time (GMT).

Agentry Language Reference

Agentry Language Reference 267

Tag Name Description

<<user.client.screenHeight>> Returns the height of the client device’s
screen in pixels.

<<user.client.screenWidth>> Returns the width of the client device’s
screen in pixels.

<<user.client.PreviousUser>> Returns the text true or false based on
whether the current synchronization pro-
cessing is a part of a previous user transmit
resulting from a user change on the Agentry
Client.

<<user.client.Win_ComputerName>> Returns the network name of the client de-
vice.

<<user.client.Win_PlatformID>> Returns the platform ID of the client device.
The specific value is dependent on the sys-
tem and OEM settings.

<<user.client.Country>> Returns the abbreviated country name for
the client device, as indicated by the de-
vice’s locale settings.

<<user.client.Win_OS>> Returns the type of Windows operating sys-
tem (e.g. Mobile, XP, etc.) of the client de-
vice.

<<user.client.clientTime>> Returns the current time of the client device
when the transmission began.

<<user.client.ClientVersion>> Returns the Agentry Client executable’s
Agentry version number, such as 6.0.0.0.

<<user.client.Win_UserName>> Returns the Windows account login under
which the client device is currently running.
This tag is only valid on Windows devices
where an account name is entered. It will
return an empty string for all other device
types.

<<user.client.Win_BuildNumber>> Returns the build number of the Windows
operating system installed on the client de-
vice.

<<user.client.clientTimeZone>> Returns the time zone configured on the cli-
ent device.

Agentry Language Reference

268 SAP Mobile Platform

Tag Name Description

<<user.client.WinCE_Platform>> Returns the platform type of the client de-
vice. This value is valid only for client de-
vices running a mobile version of the Win-
dows operating system.

<<user.client.TestEnvironment-
Version>>

Returns the version number of the Agentry
Test Environment. This value is valid only
when the client is the ATE. Returns an emp-
ty string for all other clients.

<<user.client.Win_ProcessorLe-
velCode>>

Returns the processor level code of the client
device’s processor. This value is dependent
on the original equipment manufacturer.

<<user.client.Win_ProcessorRevi-
sion>>

Returns the processor revision of the client
devices processor. This value is dependent
on the original equipment manufacturer.

<<user.client.clientTimeZoneDif-
ference>>

Returns the difference in seconds between
the client’s time zone and Greenwich Mean
Time (GMT).

<<user.client.Win_ProcessorArch-
titecture>>

Returns the processor architecture of the
client device’s processor. This value is de-
pendent on the original equipment manu-
facturer.

<<user.client.Win_ProcessorArch-
itectureID>>

Returns the processor architecture ID of the
client device’s processor. This value is de-
pendent on the original equipment manu-
facturer.

<<user.client.Win_Processor-
Count>>

Returns the number of processors on the
client device.

<<user.client.isDaylightSav-
ings>>

Returns the text true or false based on
whether or not the client device is currently
in daylight savings time.

<<user.client.xmitConfigGroup>> Returns the defined group of the transmit
configuration definition selected by the user
for the current transmission.

Agentry Language Reference

Agentry Language Reference 269

Tag Name Description

<<user.client.xmitConfigName>> Returns the name of the transmit configura-
tion definition selected by the user for the
current transmission. This is the internal
definition name.

<<user.info>> Data Tag Container

The <<user.info>> data tag container is a special data tag provided to allow for user-
specific data to be captured at the beginning of the synchronization process and made
available globally to all other synchronization processing. The members of this container tag
are determined based on values returned from the back end system. The methodology for this
depends on the type of system connection for the back end system.

Members within the <<user.info>> container are named when retrieved. Those values
are then referenced using the syntax:

<<user.info.tagName>>

The members within this container tag are retrieved using either SQL queries run from the
SqlBE.ini section [UserInfo]; or they are set via an HTTP-XML system connection’s
response mappings. Specifically, the response mappings within the validate user requests for
this system connection type.

When creating these tags via a SQL Database system connection, the column in the return set
of the query retrieving these values will be the name for the data tag. When creating these tags
using the HTTP-XML system connection, a part of the response mapping definition is the
attribute containing the tag’s name.

For both system connection types, the tags available in the <<user.info>> container are set
immediately following user validation and are available to all synchronization processing that
takes place after this point.

When a tag is added to this container in one system connection it will be available to
synchronization components for all other system connections.

<<server>> Data Tag Container

The <<server>> data tag container includes members that return values and information about
the Agentry Server instance for the current transmission. Each of these tags will return values
specific to the current Server instance for the current transmission.

Agentry Language Reference

270 SAP Mobile Platform

Table 7. <<server>. Member Data Tags

Tag Name Description

<<server.ad-
min.name>>

Returns the value configured in the agentry.ini server con-

figuration file section [Server]. The configuration option ad-
ministratorName contains the value returned by this tag.

<<server.ad-
min.phone>>

Returns the value configured in the agentry.ini server con-

figuration file section [Server]. The configuration option ad-
ministratorPhone contains the value returned by this tag.

<<server.ad-
min.email>>

Returns the value configured in the agentry.ini server con-

figuration file section [Server]. The configuration option ad-
ministratorEmail contains the value returned by this tag.

<<server.system-
Name>>

Returns the value configured in the agentry.ini server configuration
file section [Server]. The configuration option systemName con-

tains the value returned by this tag. If this configuration option is not
set or is not present, the default return from this tag is Agentry Server.

<<server.serial-
Number>>

Returns the serial number entered when the Agentry Server was in-
stalled. This value will be unique for all Server instances in a multi-
server production implementation.

Data Tags for Application Globals

The values of any application global definition can be returned using SDML data tags. The
syntax for a global data tag is as follows:

<<groupName.globalName [length=n]>>

The groupName is the defined group for the global definition. The global name is internal
definition name of the global. These tags will return the current value of the global definition.
If the global value has been overridden the override value will be returned. References to
global data tags in synchronization components processed by the Agentry Server prior to the
global override processing will return the global’s defined value.

All global data tags are strings, regardless of the data type of the global definition. Global data
tags accept a single named parameter specifying the length of the string to return from the
global. When a length is specified the data tag will return no more characters than specified in
the length parameter, counting from the left. Any characters beyond the specified length will
be truncated from the returned value.

Agentry Language Reference

Agentry Language Reference 271

Query Constants Files and Data Tags

Installed with the Agentry Server are two query constants files provided for use with SQL
Database system connections: Oracle_sd.ini and SqlServer_sd.ini. Each is
intended for use with the database type for which they are named. The contents of these files
include a single configuration section, [Database], within which are a set of configuration
options listed as key and value pairs. Within each file exist the same keys. The values for these
items are different in each file.

The purpose of these values is to provide support for applications which may synchronize with
the same back end system, but which may be driven by different database types. These files
support query reuse between these systems by providing expressions matching a given
vendors variation in support of the ANSI SQL and database-type specific functions. The
contents of these files are listed next, with the value for each key listed for both files:

Table 8. Query Constant Files Keys and Values

key Oracle_sd.ini Value SqlServ-
er_sd.ini Value

name Oracle SqlServer

getSystemTime sysdate getdate()

timeStampFormat to_date('%m/%d/%Y %H:%M:
%S', 'mm/dd/yyyy HH24:MI:SS')

'%m/%d/%Y %H:
%M:%S'

dateFormat to_date('%m/%d/%Y', 'mm/dd/
yyyy')

%m/%d/%Y'

timeFormat to_date('%H:%M:%S',
'HH24:MI:SS')

'%H:%M:%S'

tempdate to_date('01/02/1901 12:00:00',
'mm/dd/yyyy HH24:MI:SS')

convert(DATETIME,
'01/02/1901
12:00:00')

substring substr substring

stringcat || +

charFunction chr char

nullFunction nvl isNull

singleRow from dual null

unicodePrefix N N

Agentry Language Reference

272 SAP Mobile Platform

key Oracle_sd.ini Value SqlServ-
er_sd.ini Value

terminalErrorCodes 00028;01001;01012;03113;0311
4;

12203;12500;12505;12535;1257
1

0;1;2;4;5;11;53

retryWithChangeErrorCo-
des

null null

retryWithoutChangeEr-
rorCodes

00060 00060

fatalWithMessageErrorC-
odes

null null

fatalWithoutMessageEr-
rorCodes

null null

Each of these values is specific to a database type. The key for each value is available using
SDML data tags using the syntax:

<<database.keyName>>

These data tags will return the value as specified in the query constant file in use for the SQL
Database system connection. The file used by a system connection is set in the [SQL-n]
section of the agentry.ini file by setting the configuration option
queryConstantFiles.

This file is processed by the Server at startup and data tags are created and made available to all
SQL scripts processed by the Agentry Server.

Other values may be added to this file within other sections. The syntax for referencing these
values is:

<<sectionName.keyName>>

Following is a description of each of these data tags intended purpose:

Tag Name Description

<<database.name>> Returns the name of the database type for
which the file was created. This value should
not be altered in the source file

Agentry Language Reference

Agentry Language Reference 273

Tag Name Description

<<database.getSystemTime>> Returns the database-specific system date
and time function.

<<database.timeStampFormat>> Returns the database-specific date and time
tokens used to format date and time values.
This setting is used by the Agentry Server
when expanding date and time data tags and
should not be altered in the source file. This
may be passed to the format parameter for
date and time values within data tags.

<<database.dateFormat>> Returns the database-specific date tokens
used to format date and time values. This
setting is used by the Agentry Server when
expanding date data tags and should not be
altered in the source file. This may be passed
to the format parameter for date and time
values within data tags.

<<database.timeFormat>> Returns the database-specific time tokens
used to format date and time values. This
setting is used by the Agentry Server when
expanding time data tags and should not be
altered in the source file. This may be passed
to the format parameter for date and time
values within data tags.

<<database.tempdate>> Returns the date and time of January 2, 1901,
12:00:01 am in the database-specific format
for dates and times. This value can be used in
synchronization when last update or other
date and time values for data definitions con-
tain invalid date and times. If a different date
and time is necessary it can be altered in the
query constants file.

<<database.substring>> Returns the database-specific function for
extracting a substring from a source string.

<<database.stringcat>> Returns the database-specific character for
concatenating string values.

<<database.charFunction>> Returns the database-specific function for
converting values to the character or VAR-
CHAR data type.

Agentry Language Reference

274 SAP Mobile Platform

Tag Name Description

<<database.nullFunction>> Returns the database-specific function used
to test values for null and optionally replace
those values with a default.

<<database.singleRow>> Returns the required FROM portion of a
query to select values from nothing.

<<database.unicodePrefix>> Returns the prefix to append to values to in-
dicate they are encoded in unicode.

Password Data Tags

The following two data tags are available only in SQL Scripts run from the
[ChangePassword] section of the SqlBE.ini configuration file of the Agentry Server.
They contain the old and new passwords for a user when that user is performing a password
change from the Agentry Client.

Tag Name Description

newPassword Returns the new password entered by the user when changing the password
on the Agentry Client.

oldPassword Returns the previous password being change by the user when changing the
password on the Agentry Client.

Complex Table Data Tags

The synchronization components for complex tables have specific data tags available
providing information about the definition and its current data. These include whether or not
the table is in a rebuild state, the last update date and time indicating when the table was last
synchronized on the client, and the name of the table. These tags are in addition to those that
are globally available.

Tag Description

<<name>> Returns the internal name of the complex table definition as entered in the
application project.

Agentry Language Reference

Agentry Language Reference 275

Tag Description

<<rebuild>> Returns true or false, indicating whether or not the table is in a rebuild state. This
is intended for use in synchronization to determine if the synchronization should
retrieve only modifications to the table’s data, or if all records for the table
should be retrieved. Returns true when a change to the complex table definition
has been published to the Agentry Server; if the synchronization logic includes
the data tag <<user.agentryID>> and the value of that tag changes from the
previous transmit; or if the tables force reload logic indicates the table should be
in a rebuild state.

<<lastUp-
date>>

Returns the date and time provided by the client when the complex table was last
synchronized. By default this value is provided by the Agentry Server based on a
query of the back end system. However, synchronization of the complex table
should include retrieving this value with the table’s data. The latest date and time
retrieved during that process will be used as the complex table’s last update
value. This tag supports the use of the named parameter format to format the

time and date using date and time tokens.

Data Table Data Tags

The synchronization components for data tables have specific data tags available providing
information about the definition and its current data. These include the last update date and
time indicating when the table was last synchronized on the client, and the name of the table.
These tags are in addition to those that are globally available.

Tag Description

<<name>> Returns the internal name of the data table definition as entered in the application
project.

<<lastUp-
date>>

Returns the date and time provided by the client when the data table was last
synchronized. By default this value is provided by the Agentry Server based on a
query of the back end system. However, synchronization of the data table should
include retrieving this value with the table’s data. The latest date and time re-
trieved during that process will be used as the data table’s last update value. This
tag supports the use of the named parameter format to format the time and date

using date and time tokens.

Property Data Tags Overview

The data tags for property values within the application have unique, additional behaviors to
the other data tags within Agentry. There are common items to all property data tags, including
access to raw values and indicator of the property value in relation to its defined special value.
There are also behaviors for data tags specific to the data type of the property the tag
represents. Another aspect unique to property data tags is their scope. The property values

Agentry Language Reference

276 SAP Mobile Platform

available within the SDML will vary depending on which synchronization definition is
referencing the tag.

The first item to be aware of with property data tags is that they are only available in step
definitions. The specific properties in scope for a step will depend on which step usage
definition is running the step during synchronization. No property data tags are available to
any other synchronization component beyond the step definitions of a module.

Property Data Tag Parameters
Data tags for properties, regardless of data type, support two parameters specific to properties.
These are the .isSpecial and .raw parameters. The syntax for these parameters is as
follows:

<<object.propertyName.isSpecial>>
<<object.propertyName.raw>>

The .isSpecial parameter returns a true or false value indicating whether or not the
current property value is equal to the property’s defined special value. True indicates it is equal
to the special value. False will be returned when the property value is anything other than the
special value or if the property does not have a special value.

The .raw parameter is available to all property data tags regardless of data type, though its
exact behavior will be data type-specific. The purpose of the .raw parameter is to return the
value of the property without any formatting of the data. By default many of the property data
tags will return the value in a formatted manner befitting the data type of the property. As an
example, string properties are automatically dequoted during expansion. If the .raw
parameter is used, the value will not be dequoted during expansion. Other data types have
different behaviors related to the formatting and therefore the value returned by .raw will be
different for each data type.

Data Tags for Fetch Client Exchange and Server Exchange Steps
Steps run by fetch definitions will have access to all properties defined for the fetch. Object
key properties for the object instances in the collection targeted by the fetch may also be
available depending on how the step usage definition’s Run attribute setting.

The following lists describe the data tags in scope for each of the fetch step usage definition
Run attribute settings.

Agentry Language Reference

Agentry Language Reference 277

Table 9. Run Attribute: Run One Time

Tag Description

<<collectionName>> This tag returns the collection targeted by the
fetch. This tag may be passed to the <<fore-
ach...>> function tag to iterate over the object
instances within the collection. For each object
instance, the tags available include the key prop-
erty of the object type, and the last update (<<las-
tUpdate>>) value of each object.

Either:

• <<fetch.propertyName>>
• <<fetchName.propertyName>>

Any properties defined within the fetch definition
are available using the syntax shown.

<<fetch.messageNumber>> This data tag returns the fetch’s message number
as recorded in the messages.log file gen-

erated by the Agentry Server. This is typically
used for debugging and similar purposes.

Table 10. Run Attribute: Run Once per Object

Tag Description

<<object.keyPropertyName>> This tag returns the key property of the object
instance currently being processed by the step.

<<lastUpdate>> This tag returns the last update value of the object
instance currently being processed by the step.

<<fetch.messageNumber>> This data tag returns the fetch’s message number
as recorded in the messages.log file gen-

erated by the Agentry Server. This is typically
used for debugging and similar purposes.

Data Tags for Transaction Step Usage Definitions
All step usage definitions within transactions include the same data tags within their scope.
Following is a list of these data tags:

Tag Description

<<timestamp>> Returns the date and time when the transaction was ap-
plied on the Agentry Client. This value is obtained from
the client device.

Agentry Language Reference

278 SAP Mobile Platform

Tag Description

<<transaction.property-
Name>>

Returns the value of the transaction property, proper-
tyName. All properties within a transaction are availa-

ble via data tags.

<<objectName.keyProper-
tyName>>

Returns the key property of the object targeted by the
transaction. The object name must be used in this syntax,
as the generic object designation is not valid in this

context.

<<transaction.message-
Number>>

Returns the value of the transaction’s message number as
recorded in the messages.log file generated by the

Agentry Server. Typically used for debugging and similar
purposes.

Property Data Tags for Push Step Usage Definitions
Steps run as push retrieval and push removal steps are either once per poll period or once per
user per poll period. For either run setting, these steps do not have access to object properties
and therefore have no available property data tags.

For a given poll, push read steps can be run once, once per user, once per object, or once per
collection object. When run once per object, the steps will be able to use property data tags to
access the key property of any object for the target collection created by the push retrieval steps
or previous push read steps. When run once per collection object, the data tag for that child
object type’s key property will be available to the step. The child objects in the collection must
have been defined before the step that needs to reference the key property.

Push response and error steps are both always run once per object. Therefore these steps have
access to the key property of the object for which they are run.

Property Data Tags for Service Event Step Usage Definitions
The step usage definitions for service events include read steps, data state steps, update steps,
and error handling steps.

Service event read steps can be defined to run once or to run once per object. When defined to
run once, the read step will have access to the collection created by the service event’s
synchronization components.

When defined to run once per object, the read steps the property data tags for the object type
will be available. These will expand to the property value of the object instance currently be
processed by the error handling step. For all of these values the syntax of the SDML property
data tag is <<object.propertyName>>.

Data state steps and update steps within service events are always run once per object and will
have access to all property values of the object instance being processed.

Agentry Language Reference

Agentry Language Reference 279

Error handling steps can be defined to run one time or run once per object. When defined to run
one time, the error handling steps will have access to the object collection being synchronized
by the service event. When defined to run once per object, the property data tags for the object
type will be available. These will expand to the property value of the object instance currently
be processed by the error handling step. For all of these values, the syntax of the SDML
property data tag is <<object.propertyName>>.

Property Data Tags for Object Read Steps
Object read steps are run as a part of downstream synchronization that may occur for various
synchronization processes, including fetch, push, service event, and transaction processing.
Also, the read step itself may be defined to run one time or run once per object. Both of these
aspects of an object read step can impact the property data tags available to the step.

When the object read step is run after a fetch, any fetch properties will be in scope for the
object read step. These must be referenced as <<fetch.propertyName>>.

For all four situations, the read step will be run either in the context of a target collection, for a
specific object instance, or for an instance of an object in a collection property of the object
definition that contains the read step, based on the run attribute.

When defined to run one time the object read step will have access to the collection targeted by
the fetch, push, or service event run immediately before the object read steps. If run one time
the object read steps will have access to the key property and last update values for the object
currently being processed. If defined to run once per collection object, the properties of the
object collection property available to the read step include the key property of the child
object, as well as the key property of the step’s parent object. In this case, both objects must be
referenced by their definition names, as in: <<customer.customerID>>,
<<order.orderID>>.

Data Tags and Property Data Types

The data tags to access property values are different from other data tags. The basics of there
use are the same as all data tags. However, data tags for properties include additional
parameters to access the property values and those parameters depend upon the data type of
the property they are referencing.

Boolean
A Boolean property will result in a Boolean data tag. Like their property counterparts,
Boolean data tags are either true or false. When passed as an argument to a function tag, there
are special syntactical rules that apply to Boolean data tags.

When data tag expansion occurs, a Boolean data tag will result in either the text “true” or
“false.” Because of this fact, when a Boolean data tag is used as a parameter to a function tag, it
should not be enclosed in markers (<< and >>). When a Boolean is not enclosed in these
markers, the value of either true or false is passed to the function, rather than the text values of
“true” or “false”. This is important since, if the text values are passed to a function that is

Agentry Language Reference

280 SAP Mobile Platform

expecting a Boolean value, it will always consider the value passed in to be true. Remember
that true is a value and false is the absence of a value. The text “false” is a value and, thus, will
be treated as true in the context of a Boolean parameter.

When a Boolean data tag is passed as an argument to a function, it is likely that the Boolean
value of true or false is desired, not the text. In this case, you omit the markers around the tag.
This will result in the Boolean value of the tag being passed as an argument to the function. So,
in the following examples:

<<if <<object.BooleanProp>> ... >>

<<if object.BooleanProp ... >>

The first will result in the Boolean data tag being expanded to result in:

<<if “false” ... >>

This will result in the text value of “false” being passed to the function.

The second line will result in the Boolean value of true or false being passed to the
<<if...>>, rather then the text “true” or “false.” Note that referencing a Boolean without
the markers is only valid when the Boolean tag is passed as an argument to a function.

Strings
There are four property data types that will result in a string data tag. These property data types
include:

• String
• Complex Table Selection
• Data Table Selection
• External Data (provides access to the file name and location, not the file data)

The value of the item the data tag provides access to will be placed in the script at expansion
time. There is, however, a minor modification to the value that will occur for scripts used in
SQL system connections. Any single quotes within the string will be escaped for the database,
that is, a second single quote will be placed before the existing quote. This is the standard
escape character in most database systems and is necessary as the single quote is used to
denote the beginning and end of a string in a SQL statement. So, when expanded, if a string
data tag contains the value:

The customer’s car has front end damage.

the value in the script when data tag expansion occurs will be:

The customer’’s car has front end damage.

Agentry Language Reference

Agentry Language Reference 281

Note the two single quotes in place of the previously single quote (used as an apostrophe here)
within the word “customer’s”. As explained in the chapter on function tags, the
<<dequote...>> function also provides this ability. However, for string data tags with a
property as its data source, this behavior is automatic.

Another optional behavior in string property data tags is the ability to truncate the value, if
needed. This is accomplished through the optional named parameter, length=. The syntax for
this is as follows:

<<parent.stringDataTag length=n>>

Denoting this data tag in this manner, the value of the string will be truncated to the length of n.
This truncation occurs before any quotes are escaped, so that the extra quotes added in that
process are not affected by the truncation. As stated, length is an optional parameter and, if not
provided, the entire value of the string will be placed in the script file during data tag
expansion.

Another optional parameter to a property string data tag is raw. This parameter will return the
value of the string without escaping the quotes it may contain. The syntax for this is:

<<object.stringDataTag.raw>>

Integral and Decimal Numbers
Integral data tags result from properties of the types Integral Number and Identifier. Decimal
data tags result from properties of type Decimal Number. During data tag expansion, the value
of these tags are placed in the script without modification. In this respect these two data types
are treated the same. It is when these values are passed as arguments to functions where the
difference between the two types becomes important.

Integral Number data tags will contain whole number values. These data tags can be used with
the math function tags that accept integral numbers. Many of the function tags that can accept
the use of numerical values have a type parameter. When using this type of data tag, the value
to the type parameter of the function is Int.

Decimal Number data tags will contain numerical values that have a fractional portion, such as
2.4 or 3.00. These data tags can be used with math function tags that accept decimal numbers.
Many of the function tags that accept the use of numerical data, math tags as well as others, can
accept a type parameter. When using this type of data tag, the value for the type parameter is
Float.

Date
Date data tags contain a calendar date value. During data tag expansion of a SQL script, date
tags are expanded in such a way that the resulting text is enclosed in the conversion function of
the target database system that converts string values to date values. So, if a date data tag,
StatusDate, contains the value 01/25/2006, then the data tag

<<transaction.StatusDate>>

Agentry Language Reference

282 SAP Mobile Platform

in an Oracle database will be expanded to the value

to_date(‘01/25/2006’, ‘MM/DD/YYYY’)

It is possible to get just the date value as a string by using the raw parameter, which is available
to all date data tags. Continuing with the previous example, the data tag

<<transaction.StatusDate.raw>>

will be expanded to the value

01/25/2006

This can be useful if the date value is to be within some sort of string value within the database,
such as a description. In this case, you do not want to convert the value to a database date
format, but rather use it as a string.

Time
Time data tags contain a time of day value, in a 24 hour format. When data tag expansion
occurs in a SQL script, the resulting value is enclosed in the conversion function for the target
database system that is used to convert string values into times. So, if a data tag named
EndTime contains the value 13:10:43, then the data tag

<<transaction.EndTime>>

in an Oracle database will be expanded to

to_date(‘13:10:43’, ‘HH24:MI:SS’)

It is possible to access the value as a string, without the conversion function, by using the
parameter raw, which is available to all Time data tags. Using the previous example data tag

<<transaction.EndTime.raw>>

will expand to the value

13:10:43

This is used whenever you wish to access just the time string, without converting it to the
database time format.

Date And Time
Date and Time data tags are, in essence, a combination of the Time data type and the Date data
type. This data tag type contains the calendar date and time of day in a single value. When data
tag expansion occurs in a SQL script, the resulting value is enclosed in the conversion function
for the target database system that is used to convert string values into dates and times. If a data

Agentry Language Reference

Agentry Language Reference 283

tag named InspectionDateTime contains the value 02/13/2005 13:20:35, then the data
tag:

<<transaction.InspectionDateTime>>

in an Oracle database will be expanded to

to_date(‘02/13/2005 13:20:35’, ‘MM/DD/YYYY HH24:MI:SS’)

As with other data types, it is possible to access the string value without wrapping it in a
conversion function, by using the parameter raw, which is available in all Date and Time data
tags. Using the previous example data tag

<<transaction.InspectionDateTime.raw>>

will expand to

02/13/2005 13:20:35

This is used whenever just the date and time value is desired, without wishing to convert it
before being processed by the enterprise system.

Formatting Dates and Times
These three data types that deal with dates and times support the use of the named parameter
format=. This parameter accepts one or more of several date and time tokens. These tokens are
combined to provide a picture of how the data should be placed in the file. When a date, time,
or date and time data tag contains the format parameter, the default format is overridden,
including the conversion function within which the values are normally contained.

Following is a list of the tokens supported by these data tag types. In each of the examples the
date and time is 02/07/2001 10:09:03 AM. The Example column contains the value for the
token listed. The Short Form contains the example of the value that results by preceding the
token with a hyphen, as in: %-m
Token Description Example Short

Form

%a The three letter abbreviation of the day. Wed We

%A The name of the day. Wednesday Wed

%b The three-letter abbreviation of the month. Feb n/a

%B The name of the month. February Feb

%d The date of the month. 07 7

%j The Julian date, with a leading 0. 038 38

%m The two digit month (01-12) 02 2

Agentry Language Reference

284 SAP Mobile Platform

Token Description Example Short
Form

%w The numerical day of the week (0-6 Sunday = 0) 3 n/a

%y The two-digit year 01 1

%Y The four-digit year. 2001 n/a

%R or %r The raw format of the value 36543,37 n/a

%H The hour of the day, 24 hour format. 10 n/a

%h or %I The hour of the day, 12 hour format 10 n/a

%M The minutes of the hour. 09 9

%p AM or PM indicator. A a

%S Seconds of the minute. 03 3

%Z The time zone when the time was recorded. Central
Standard
Time

n/a

non-to-
ken char-
acters

Any non-format token character, or any character not
preceded by the % sign passed to the named parameter
format will be returned unchanged at the position at which
it was placed in the parameter value.

n/a n/a

Signature
Signature data tags result from Signature property types. This data tag type is used with the
signature capture functionality available in Agentry. This functionality allows for an
application to capture and store a signature the user enters on the screen. The image is stored as
a bitmap, and is also available in the raw pixels.

This data tag type supports the following parameters. The value returned for all of these
parameters is a string, with the exception of bmp, row.n, and raw.

• type - Will return either “image” or “none” during expansion. Image indicates that there
is an image and the transaction was performed on a client device that supports this
functionality. None indicates that the device does not support the signature capture
functionality.

• bmp - This parameter returns the signature, if it exists, in a bitmap format. This returns a
string of hexadecimal values that may be used as an argument to another utility program
that processes the data, e.g. stores it in a database.

• height - This parameter returns the height, in pixels, of the signature image.

• width - This parameter returns the width, in pixels, of the signature image.

Agentry Language Reference

Agentry Language Reference 285

• row.n - This parameter returns the row of pixels, specified by n
• signed - Returns either true or false. True is returned when a signature has been captured

on the client, or, for devices that do not support this functionality, if the check box control
that replaces it has been checked. These values are returned as text values of “true” or
“false.”

• raw - Returns the pixels that make up the image.

The syntax for these parameters is:

<<transaction.signatureProp.parameter>>

Of these parameters, only type and signed are always available. The others will return a
data tag not found error if a signature was not captured on the client, i.e. signed returns false.
Therefore, the return value of signed should be checked before attempting to access the
other parameters.

Image
Image data tags result from Image property types. This data tag type is used with the image
capture functionality available in Agentry. This functionality allows the application to interact
with a device’s built in still camera, when present. A captured image is stored on the device as
a file and referenced by the image property.

During synchronization this file data is sent to the server for processing as a part of the
transaction data. To access this image data there are two options. The first is to use a file
document management step. In this case, it is likely not necessary to reference the data tags for
the image property, though they can be when necessary. For other step types access to the
image data requires the use of SDML data tags. Data tags for the image property include two
parameters in the format <<transaction.imageProperty.parameter>>.

The following list describes these parameters and their purpose:
• data - This parameter returns the image data in ASCII-encoded hexadecimal values.
• type - This parameter returns the image type as stored on the client device. The possible

return values of this parameter are jpeg, bitmap, and unknown when the file type is
not determined.

<<agent>> Data Tag Container

The <<agent>> data tag container includes only a single member, .version. The data tag
<<agent.version>> returns the full version of the Agentry Server.

This is the only member of this data tag member in the <<agentry>> data tag container.
Additional members may be added in a future release.

SDML Function Tags Overview

SDML Function tags provide value processing and evaluation to the SDML. Function tags are
represented in print with the syntax <<funcName...>>. Within the SDML there are

Agentry Language Reference

286 SAP Mobile Platform

numerous functions that provide processing for logic operations, string operations, and
mathematical operations.

Function tags within the SDML will often return a value. That return value is placed at the
point where the function tag exists within the script file in which it is contained. The use of
function tags can provide a significant source of operational power, allowing for different sets
of logic to be processed by a script at runtime, depending on conditions.

The following sections list each of the function tags available, including descriptions of their
purpose and behavior, as well as usage syntax and similar information.

<<if>>

The <<if...>> function provides the if-then-else logic to the SDML. This is the most
common decision making mechanism within any language. The <<if>> function receives a
single argument, which it evaluates as being either true or false. If the argument is true, its first
expression, trueExpression, is returned. Otherwise, the falseExpression value is
returned. This expression must be preceded by the keyword else. falseExpression is
optional and if it is not present, the else keyword cannot appear either.

This function can be used to return something as basic as a single word, or as complex as an
entire SQL statement. The contents of either expression can contain SDML text as well. In the
case where there is no else portion, and the boolArg is false, the return value of the
<<if...>> function is an empty string.

Arguments

<<if boolArg
“trueExpression” [else
“falseExpression”]>>

boolArg The value to be evaluated as either true or false. May be a Boolean
data tag or the Boolean return value of function call. If this argument
is a Boolean data tag, the tag should be entered by name, excluding
the tag markers (<< and >>) to return the Boolean value of that

property, rather than the text value.

Expressions

• trueExpression – Required expression containing the value to be returned by the function
when boolArg is true. This expression must be enclosed in double quotes.

• falseExpression – Optional expression containing the value to be returned by the function
when boolArg is false. This expression must be preceded by the keyword else and the
expression itself must be enclosed in double quotes.

Agentry Language Reference

Agentry Language Reference 287

Parameters

• N/A

<<case>>

The <<case...>> function provides the switch-case logic to the SDML. It takes a
required switch argument and at least one case-expression argument pair. It may take as many
additional case-expression pairs as are needed, plus an optional default argument.

During expansion, this function tag compares the value of the switch argument to each
provided case argument in turn. It will return the expression argument for the first case
argument to which the switch argument matches.

As an optional argument, a default value may be provided that will be returned by the function
when the switch argument does not match any provided case argument. The syntax for the
default return value is default=returnValue, where default is a keyword. For this
reason, neither the value of the switch argument, nor any of the case arguments may be the
value default.

Arguments

<<case switch
case1=exprssion1
[caseN=expressionN]
[default=defaultExpression]>>

switch The value the function will switch on, comparing to the value
of each case argument until a match is found.

case1 The first case argument to the function. This is a required
argument and must be immediately followed by an equal
sign (=) with no whitespace between the case argument and
the sign. The expression1 argument immediately follows the
equal sign, also with no whitespace allowed.

expression1 The first expression argument to the function. This is a

required argument and contains the value the function will
return when switch matches case1. case1 and expression1
are separated by an equal sign with no whitespace allowed
between then, as in: case1=expression1. Any

SDML text in expression1 will be expanded after it

has been returned by the function.

Agentry Language Reference

288 SAP Mobile Platform

<<case switch
case1=exprssion1
[caseN=expressionN]
[default=defaultExpression]>>

caseN Additional optional case arguments to the function. If

case1 does not match switch, the function will com-

pare each subsequent case argument in order until a match is
found. Each caseN argument must be followed by and

equal sign and then a corresponding expressionN val-

ue. No whitespace can exist between each case-expression
pair.

expressionN Additional optional expression arguments to the func-

tion. Each case argument must be followed by a correspond-
ing expressionN value. Each case-expression argument pair
must be separated by an equal sign with no white space
allowed between then, as in: caseN=expressionN.

Any SDML text in expressionN will be expanded after

it has been returned by the function.

default=defaultExpression This optional argument specifies the expression returned by
the function should the switch not match any of the

case values. The syntax for this argument requires the text

default= followed by the default expression the func-

tion should return.

Parameters
None

<<skip>>

The <<skip...>> function will force the Agentry Server to skip the step definition in
which the function call is contained. This function takes an optional comment argument, the
contents of which will be the log message generated by the Server for the log file of the step
type’s system connection. This function is only valid when called within the script component
of a module-level step definition.

This function can be used during testing to skip over a script that you do not wish to run, or in
certain production situations where you may not wish a script to run under certain conditions.
The primary intent of this function is the result of the requirements of the contents of a SQL
step’s script. This script cannot be empty, nor can it contain only SDML logic with no valid
SQL statement to be processed. Depending on conditional processing, such as queries
returned by the <<if...>> function, it is possible for a script to return a valid SQL
statement in one condition, but not in another. In this situation, the <<skip>> function

Agentry Language Reference

Agentry Language Reference 289

should be the expression returned when no SQL statement should be run. Note that this
function is not limited to SQL step definitions, though this is its primary intended use.

Arguments

<<skip
[“comment”]>>

comment This is an optional argument. It contains any text value that will be used as
a log message generated by the Server for the log file of the step type’s
system connection.

Parameters
None

<<stop>>

The <<stop...>> function will stop the Agentry Server’s interactions with the the back
end system. Any subsequent steps within the same group of the same parent definition will not
be processed. The function takes an optional comment argument, the contents of which will be
written as a log message by the server to the log file for the parent step’s back end log category.

As an example of the function’s behavior, if the second of four client exchange steps within a
fetch contains a <<stop>> function, that step and those that come after it will not be run.
This function will result in a commit being performed, committing any changes made
previously by the processing of the previous steps within the same parent.

Arguments

<<stop
[“comment”]>>

comment This optional argument contains text which will be written as a log mes-
sage by the server to the log file for the parent step’s back end log cate-
gory.

Parameters
None

<<abort>>

The <<abort...>> function within a step will result in that step’s processing being halted.
Any subsequent steps within the same parent definition will also not be processed. Any
changes made by the previous steps in the group will be rolled back. This function takes an
optional comment argument, the contents of which will be written as a log message by the
Agentry Server to the log category of the step’s system connection.

Agentry Language Reference

290 SAP Mobile Platform

As an example of this function’s behavior, if the third of five steps in a fetch’s server exchange
steps is aborted, steps four and five will not be run either. Changes made by the first two steps
will be rolled back.

Note that the <<abort>> and <<rollback>> functions perform the exact same behavior.

Arguments

<<abort
[“comment”]>>

comment This optional argument contains text which will be written as a log mes-
sage by the Agentry Server to the log category of the step’s system con-
nection.

Parameters
None.

<<rollback>>

The <<rollback...>> function within a step will result in that step’s processing being
halted. Any subsequent steps within the same parent definition will also not be processed. Any
changes made by the previous steps in the group will be rolled back. This function takes an
optional comment argument, the contents of which will be written as a log message by the
Agentry Server to the log category of the step’s system connection.

As an example of this function’s behavior, if the third of five steps in a fetch’s server exchange
steps is rolled back, steps four and five will not be run either. Changes made by the first two
steps will be rolled back.

Note that the <<abort>> and <<rollback>> functions perform the exact same behavior.

Arguments

<<rollback
[“comment”]>>

comment This optional argument contains text which will be written as a log mes-
sage by the Agentry Server to the log category of the step’s system con-
nection.

Parameters
None.

Agentry Language Reference

Agentry Language Reference 291

<<and>>

Description
The <<and...>> function performs a logical conjunction of two or more Boolean values. If
all arguments to the function are true, the function will return true. Otherwise, the
<<and...>> function will return false.

This function is almost always used as an argument to another function, normally the
<<if...>> function. The reason for this is that the value returned is a Boolean value within
the SDML and will simply return the text values of “true” or “false,” if not an argument to
another function.

Arguments

<<and boolArg1
boolArg2
[boolArg3...boolArg

boolArg1-N The boolean values checked for true or false by the function. May be
either a Boolean data tag, or a function that returns a Boolean value.
The function must have at least two arguments, and up to as many as
needed. Each is checked in the order listed, until a false value is found.

Parameters
None

<<or>>

Description
The <<or...>> function performs the logical disjunction of two or more Boolean values.
Each argument is compared in the order listed until a true value is found, at which point the
function returns true. If all arguments contain a false value, then the function will return false.

This function is almost always used as an argument to another function, normally the
<<if...>> function. The reason for this is that the value returned is a Boolean value within
the SDML and will simply return the text value of either “true” or “false” if not passed as an
argument to a function.

Agentry Language Reference

292 SAP Mobile Platform

Arguments

<<or boolArg1 boolArg2
[boolArg3...boolArgN]>>

boolArg1-N The boolean values checked for true or false by the function.
May be either a Boolean data tag, or a function that returns a
Boolean value. The function must have at least two arguments,
and up to as many as needed. Each is checked in the order listed,
until a true value is found.

Parameters
None

<<not>>

The <<not...>> function inverts the Boolean value of boolArg and returns this inverted
value. If boolArg is true, the function will return false, and vice versa.

This function is almost always used as an argument to another function, normally the
<<if...>> function. The reason for this is that the value returned is a Boolean value within
the SDML and will simply return the text value of either “true” or “false” if not passed to
another function.

Syntax
<<not boolArg>>

Return Value
Boolean

Arguments

<<not boolArg>>

boolArg A boolean value that is inverted by the function. May be a Boolean data tag or a
function that returns a Boolean value.

Parameters
None

<<eq>>

The <<eq...>> function compares arg1 and arg2, based on the value of the “type”
parameter if present, and returns true if the two values are found to be equal. Otherwise, this
function returns false. If the type parameter is not specified, the default comparison is String.

Agentry Language Reference

Agentry Language Reference 293

When a type is specified any values not of that type are converted prior to the comparison. So,
if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1, and
the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated.

Arguments

<<eq arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are Integral Numbers.
• Float - The arguments are Decimal Numbers (short for “floating point number”)
• String - The arguments are String values.

<<ne>>

Description
The <<ne...>> function compares arg1 and arg2, based on the value of the “type” parameter if
present, and returns false if the two values are found to be equal. Otherwise, this function
returns true. If the type parameter is not specified, the default comparison is as Strings.

When a type is specified any values not of that type are converted prior to the comparison. So,
if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1, and
the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated.

Syntax
<<ne arg1 arg2 [type=Int|Float|String]>>

Agentry Language Reference

294 SAP Mobile Platform

Arguments

<<ne arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

<<gt>>

The <<gt...>> function compares arg1 and arg2, based on the value of the “type”
parameter if present. It returns true if arg1 is greater than arg2. If arg1 is less than or equal
to arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings. When comparing values of different data types, it is strongly recommended that you
do specify the type.

When a type is specified any values not of that type are converted prior to the comparison. So,
if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1, and
the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Arguments

<<gt arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Agentry Language Reference

Agentry Language Reference 295

<<gt arg1 arg2
[type=Int|Float|
String]>>

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

<<lt>>

Description
The <<lt...>> function compares arg1 and arg2, based on the value of the “type”
parameter if present. It returns true if arg1 is less than arg2. If arg1 is greater than or equal
to arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings.

When a type is specified any values not of that type are converted prior to the comparison.
So, if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1,
and the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Arguments

<<lt arg1 arg2
[type=Int|Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are

Agentry Language Reference

296 SAP Mobile Platform

• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

Expressions
None

<<ge>>

The <<ge...>> function compares arg1 and arg2, based on the value of the type
parameter if present. It returns true if arg1 is greater than or equal to arg2. If arg1 is less
than arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings.

When a type is specified any values not of that type are converted prior to the comparison.
So, if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1,
and the type is Int, these two values would be considered equal, as the decimal value would be
converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Arguments

<<ge arg1 arg2
[type=Int|Float|
String]>>

arg1 - The first value of the two compared by the function. May be a hard coded
value, data tag, or a function.

arg2 - The second value of the two compared by the function. May be a hard coded
value, data tag, or a function.

Parameters
• type - This optional named parameter specifies how the function will compare the values

of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

<<le>>

Description
The <<le...>> function compares arg1 and arg2, based on the value of the type
parameter if present. It returns true if arg1 is less than or equal to arg2. If arg1 is greater

Agentry Language Reference

Agentry Language Reference 297

than arg2, it returns false. If the type parameter is not specified, the default comparison is as
Strings.

When a type is specified any values not of that type are converted prior to the comparison.
So, if an integral data tag contains a value of 10 and a decimal number contains a value of 10.1,
and the type is Int, these two values would be considered equal, as the decimal value would
be converted to an integer, and the decimal portion is truncated. String comparisons are made
based on alphabetical order.

Arguments

<<le arg1 arg2
[type=Int|
Float|
String]>>

arg1 The first value of the two compared by the function. May be a hard coded value,
data tag, or a function. The data type of the value must be Integral Number,
Decimal Number, or String.

arg2 The second value of the two compared by the function. May be a hard coded value,
data tag, or a function. The data type of the value must be Integral Number,
Decimal Number, or String.

Parameters

• type - This optional named parameter specifies how the function will compare the values
of the two arguments. The acceptable values for this parameter are
• Int - The arguments are to be compared as Integral Numbers.
• Float - The arguments are to be compared as Decimal Numbers (short for “floating

point number”)
• String - The arguments are to be compared as Strings

<<empty>>

The <<empty...>> function allows you to check whether or not an object collection has
any objects or if it is empty. If the collection contains no objects, this function will return true.
If the collection contains at least one object this function will return false. This function is only
valid when an object collection property is in scope for the step definition in which it is used.

Agentry Language Reference

298 SAP Mobile Platform

Arguments

<<empty objectCollectionArg>>

objectCollectionArg This argument is a data tag representing an object collection.
This collection must be defined. It is evaluated by the func-
tion for members.

Parameters
None

<<notEmpty>>

The <<notEmpty...>> function allows you to check whether or not an object collection
has any objects or if it is empty. If the collection contains no objects, this function will return
false. If the collection contains at least one object this function will return true. This function is
only valid when an object collection property is in scope for the step definition in which it is
used.

Arguments

<<notEmpty
objectCollectionArg>>

objectCollectionArg This argument is a data tag representing an object collection.
This collection must be defined. It is evaluated by the func-
tion for members.

Parameters
None

<<size>>

The <<size...>> function returns the number ofobject instances in an object collection.
This value is always 0 or higher.

Arguments

<<size objectCollectionArg>>

objectCollectionArg This is the object collection whose members are to be counted.

Parameters
None

Agentry Language Reference

Agentry Language Reference 299

<<exists>>

The <<exists...>> function determines whether or not the specified object collection
exists. If the collection specified by the objectCollectionArg argument exists, this
function will return true. Otherwise it returns false.

A common use for this function outside of development testing is to verify the data tag
returned by a call to the function <<sql...>> exists and contains data.

This function may also useful during testing or debugging of an application. It can be useful in
applications that are deployed with various configurations from one installation to the next.
The usage of this function can be helpful in determining if a specific configuration contains all
of the definitions necessary.

Arguments

<<exists
objectCollectionArg>>

objectCollectionArg This argument is the data tag representing the object collection
that whose existence is to be checked. This argument must be a
data tag that contains the name of an object collection whose
existence is to be confirmed.

Parameters
None

<<foreach>>

The <<foreach...>> function allows for iteration over an object collection property.
This function takes as its single argument the name of an object collection. The expression
can contain text and SDML that will be returned once for each member of the named
collection. If the collection is empty, nothing is returned.

This function allows you to iterate over a collection of objects. The expression specified will
be returned once for each member and normally contains SQL and SDML that is to be
processed for a single object. The <<foreach...>> function is commonly used for
INSERT statements, which can only insert a single record at a time. It is often seen in SQL
steps used to update a client exchange table during fetch processing.

The expression to the function can also contain an additional data tag, <<my>>. This tag
represents the current member of the collection being processed by the function. To use the
<<my>> data tag, the same syntax is used as in other areas where property data tags are used.

There is also the optional <<key>> tag available within a <<foreach>> expression, which
provides the name of the current key being iterated over. This is normally only used in
conjunction with SQL Flunkies, explained later in this chapter.

Agentry Language Reference

300 SAP Mobile Platform

Arguments

<<foreach
objectCollectionArg
expression>>

objectCollectionArg The name of a collection that the function is to iterate over.

expression The text to be returned once for each member of the collection.
The expression can contain plain text and SDML. It will be
submitted for expansion once for each collection member.

Parameters
None

<<upper>>

The <<upper...>> function converts a given string to all uppercase characters. The value
returned is the string passed in with all characters converted to upper case. Any non-
alphabetical characters, such as numbers, symbols, or punctuation (%, $, etc.) are returned
unchanged.

Arguments

<<upper
stringArg>>

stringArg This argument is a string value to be converted by the function. It can be either
a hard coded value, a data tag, or a string return value from a function.

Parameters
None

<<lower>>

The <<lower...>> function converts a given string to all lower case characters. The value
returned is the string passed in with all characters converted to lower case. Any non-
alphabetical characters, such as numbers, symbols, or punctuation (“%”, “$”, etc.) are
returned unchanged.

Agentry Language Reference

Agentry Language Reference 301

Arguments

<<lower
stringArg>>

stringArg This argument is a string value to be converted by the function. May be a hard
coded value, a data tag, or a string return value from a function.

Parameters
None

<<length>>

This function returns the length of a string value. All printable characters within the string are
counted. This includes white space characters, where tabs are counted as a single character,
and symbols, such as $ or %. Non-printable characters are also counted, such as newline and
carriage returns. Remember in Windows systems that the end of a line in a multi-line string
value contains two command characters, \n and \r, which will be counted by the <<length...>>
function as one character each.

Arguments

<<length
stringArg>>

stringArg The string value evaluated by the function. May be a hard coded value, a
string data tag, or the return value of another function.

Parameters
None

<<join>>

Description
The <<join...>> function concatenates two or more string values together, with each
separated by the value of the optional named parameter, join. If the join parameter is not
specified, the values are concatenated together without any character separating them.

Agentry Language Reference

302 SAP Mobile Platform

Arguments

<<join stringArg1 stringArg2
[stringArg3...stringArgN]
join=joinString>>

stringArg1/stringArg2 The required arguments to the function, which are the strings
that will be joined. May be a hard coded value, an string data
tag, or the return value of a function.

stringArg3-N The optional additional strings to be joined. May be a hard
coded value, string data tag, or the return value of another
function.

Parameters

• joinString – The value of this optional named parameter contains the character or string
used to join the arguments together.

<<dequote>>

The <<dequote...>> function, by default, removes any double-quote characters from a
given string. It contains three optional named parameters, however, that significantly alter and
enhance this functionality. First, by including the quote parameter, you can specify a different
character to be removed form the given string or strings.

Second, the replace parameter can specify the character you wish to replace the quote
character with. Finally, the join parameter allows you to specify the character used to join
multiple string arguments to the function together.

Arguments

<<dequote stringArg1
[stringArgN]
[quote=quoteChar]
[replace=repChar]
[join=joinString]>>

stringArg1 This argument contains the string to be “dequoted.” May be a hard
coded value, a data tag, or the return value of another function call.

stringArgN Additional, optional argument(s) to be dequoted, and joined to-
gether with the previous arguments.

Agentry Language Reference

Agentry Language Reference 303

Parameters

• quote – The value to this named parameter is the character to be removed from the given
string or strings. If not provided, the default value is double quotes. If the value to this
parameter contains more than one character, the first will be used and the rest ignored.

• replace – The value to this named parameter is the single character to replace the “quote”
character with in the string. If the value to this parameter contains more than one character,
the first will be used and the rest ignored.

• join – The value to the named parameter is the character or string used to join together the
arguments to the function. If not provided, each string is separated by a single white space.

<<trunc>>

The <<trunc...>> function will truncate the given stringArg to the number of characters
of the value given to the required length parameter. By default, the characters are counted from
the left most position up to and including the character at the position specified by the length
parameter. This includes any white space characters, and also includes the end of line
characters of line feed an carriage return, which each count as one.

If the from parameter is given and its value is “left”, the counting begins at the right-most
character of the string, truncating the left characters beyond the given length.

If the stringArg is shorter or equal to the length specified, the entire string is returned.

Arguments

<<trunc stringArg
length=lengthParam
[from=left|right]>>

stringArg This argument contains the string to be truncated by the func-
tion. May be a hard coded value, a data tag, or another function.

Parameters

• length – This required named parameter specifies the length to which the stringArg value
should be truncated.

• from – This optional named parameter specifies the portion of the stringArg value to be
truncated. The values are left or right; any other value will be ignored and the default value
of right will be used.

<<wordTrunc>>

The <<wordTrunc...>> function is similar to the <<trunc...>> function in that it
will truncate a string to a given length. The length parameter specifies the maximum length of
the string and must be provided to the function. The difference between this function and

Agentry Language Reference

304 SAP Mobile Platform

<<trunc...>> is that <<wordTrunc...>> will always end its truncation on a white
space. That is, the truncation of the string will be at the end of a whole word.

The string returned by the function will be, at most, the size of the length specified. However, if
the specified length ends in the middle of the word, the last white space character before this
point will be where the string returned ends.

The start parameter specifies the starting point of the function. If this parameter is given, the
function will count from the beginning of the string up to the start character. Then, the function
will count from this point up to the length value of characters.

If the string contains no white space, then length number of characters will be returned. If the
string is shorter or equal to the length, the entire string will be returned.

Syntax
<<wordTrunc stringArg length=lengthParam [start=startParam]>>

Arguments
• stringArg – The string value to be truncated by the function. May be a hard coded value, a

string data tag, or the return value of another function, provided it returns a string.

Parameters
• length – This required named parameter specifies the maximum length of the string

returned by the function.
• start – This optional named parameter specifies the starting position from which the

function will begin counting. Any characters before this position will be truncated, as will
any characters beyond the value of the length parameter. If this parameter is not present,
the starting position will always be the first character of the string, as specified by the from
parameter.

<<cgi>>

The <<cgi...>> function can operate with either a single unnamed argument, or with many
arguments in name-and-value pairs. If a single stringArg is given, it expands to a string that has
all characters converted to CGI scoped values. If one or more name and value pair arguments
are given, they are formatted to a string that is the named pairs, joined by ampersands (&), with
the values CGI escaped.

The CGI function escapes strings following the CGI conventions certain characters are
replaced with a % followed by two hexadecimal digits that are the ASCII value for the
character.

The stringArg will have any characters it contains escaped according to CGI conventions. The
name-and-value pairs will be formatted into named parameters and values, with the values
also escaped according to CGI standards. The order of the named parameters is not preserved
when this function is expanded. Also, the CGI function escapes spaces with %20's rather than
with +'s. Both are allowed by the CGI convention.

Agentry Language Reference

Agentry Language Reference 305

Arguments

<<cgi stringArg>> --OR-- <<cgi
named1=value
[named2=value...namedN=value]>>

stringArg A text string that will be escaped according to CGI
conventions. This may be a hard coded value, a data
tag, or the return value of a function.

named1-n A named parameter to be returned with a value that
will be formatted according to CGI conventions.
May be a hard coded value, a data tag, or the return
value of a function.

value A value to the corresponding named parameters that
will be formatted according to CGI conventions.
May be a hard coded value, a data tag, or the return
value of a function.

Parameters
None

<<sum>>

The <<sum...>> function provides the operation of the plus sign (+) operator in other
languages. This function will sum the arguments and return the result. There must be at least
two arguments provided to the function, and there can be as many more arguments as needed.

The data type of these values can be Strings, provided the string contains only numbers, sign,
and a single decimal. The values of string data types will be converted before being passed to
the function.

Arguments

<<sum numArg1 numArg2
[numArg3...numArgN]>>

numArg1-2 The required arguments, numerical, that are summed together.
Maybe a hard coded value, data tag, or the return value of another
function. If the value is hard coded and contains a negative or
postivie sign, the entire value must be enclosed in double quotes,
as in “-12.34”.

Agentry Language Reference

306 SAP Mobile Platform

<<sum numArg1 numArg2
[numArg3...numArgN]>>

numArg3-N The optional numeric aguments to be summed together with all
other arguments. May be a hard coded value, data tag, or the return
value of antoher function. If the value is hard coded and contains a
negative or postiive sign, the entire value must be enclosed in
double quotes, as in “-10.23”.

Parameters
None

<<diff>>

The <<diff...>> function provides the operation of the minus sign (-) operator in other
languages. This function subtracts the second argument from the first and returns the
difference. This function takes two and only two arguments.

String data tags or string return values may be passed to the function, provided those values
contain only numeric, sign, and a single decimal character.

Arguments

<<diff
numArg1
numArg2>>

numArg1 The first numerical value from which numArg2 is subtracted. May be a hard

coded value, data tag, or the return value of another function. If the value is hard
coded and contains a negative or positive sign, the entire value must be enclosed in
double quotes, as in “-12.34”.

numArg2 The second numerical value that will be subtracted from numArg1. May be a

hard coded value, data tag, or the return value of another function. If the value is
hard coded and contains a negative or positive sign, the entire value must be
enclosed in double quotes, as in “-10.23”.

Parameters
None

<<prod>>

The <<prod...>> function provides the operation provided by the multiplication
operator, either x, or more commonly *, in other languages. This function multiples the first
argument by the second and returns the product.

Agentry Language Reference

Agentry Language Reference 307

A String data tag may be passed as an argument to the function, provided it contains only
numerical characters, sign, and a single decimal character.

Arguments

<<prod
numArg1
numArg2>>

numArg1 This required argument contains the value that will be multiplied by numArg2.

May be a hard coded value, data tag, or the return value of antoher function. If the
value is hard coded and contains a negative or postivie sign, the entire value must
be enclosed in double quotes, as in “-12.34”.

numArg2 This required argument contains the value to multiplied by numArg1. May be a

hard coded value, data tag, or the return value of antoher function. If the value is
hard coded and contains a negative or postiive sign, the entire value must be
enclosed in double quotes, as in “-10.23”.

Parameters
None

<<div>>

The <<div...>> function provides the same operation as is provided by the division sign (/)
operator in other languages. This function divides the second argument into the first and
returns the results.

A string data tag may be passed as an argument to the function, provided it contains only
numerical characters, sign, and a single decimal character.

Arguments

<<div
dividendArg
divisorArg>>

dividendArg This required argument contains the number to be divided by the divisor-
Arg. May be a hard coded value, data tag, or the return value of a antoher

function. If the value is hard coded and contains a negative or postivie sign, the
entire value must be enclosed in double quotes, as in “-12.34”.

Agentry Language Reference

308 SAP Mobile Platform

<<div
dividendArg
divisorArg>>

divisorArg This required argument contains the number to be divided into the divi-
dendArg. May be a hard coded value, data tag, or the return value of another

function. This value must not be 0. If the value is hard coded and contains a
negative or postiive sign, the entire value must be enclosed in double quotes, as
in “-10.23”.

Parameters
None

<<remainder>>

The <<remainder...>> function provides the modulus operation of the modulus sign
operator, usually %, in other languages. This function divides the first argument by the second
and returns the remainder of the division.

String data tags can be passed as arguments to the function, provided the value contains only
numeric characters, sign, and a single decimal character.

Arguments

<<remainder
dividendArg
divisorArg>>

dividendArg The value to be divided by the divisorArg. May be a hard coded value, data tag,
or the return value of another function. If the value is hard coded, and it contains
a positive or negative sign, the entire value must be enclosed in quotes, as in
“-12.34”.

divisorArg The value to be divided into the dividendArg. May be a hard coded value,

data tag, or the return value of another function. If the value is hard coded, and it
contains a positive or negative sign, the entire value must be enclosed in double
quotes, as in “-10.23”. The value of this argument must not be 0.

Parameters
None

<<local>>

The <<local...>> function allows you to create data tags within the script. The data tags
created are always string values. Their scope is limited to the step within which they are
created, and the other steps within the same parent definition that follow it. So, if an object

Agentry Language Reference

Agentry Language Reference 309

contains 4 read steps, and the second contains a <<local...>> function call, the data tag or
tags created will be available in the second step as well as the third and fourth. It will not be
available in the first.

If the value for a tagName argument is a hard coded value, or contains a mixture of text and
SDML, the value must be enclosed in quotes.

To reference a local data tag, the syntax is <<local.tagName>>, where tagName is the
name given in the function call. Local data tags support the named parameter length=,
which will truncate the string to the given value. String values are not dequoted; time and date
values are not wrapped in any type of conversion function.

Arguments

<<local tagName1=value
[tagName2=value...tagNameN=value]>>

tagName1 This required argument is the name that will be
given to the data tag created. Its corresponding
value will be the value the tag contains.

tagName2-N These optional arguments are the same as tag-
Name1 and allow for the creation of multiple
data tags with the same function call.

Parameters

• length – This optional named parameter takes a non-negative whole number and specifies
the maximum number of characters to assign to the local data tag created by the function.

<<sql>>

The <<sql...>> function allows you to create data tags based on the data returned by a
SQL statement, specifically a SELECT statement. All records returned by the statement are
stored in the newly created data tag, commonly referred to as a SQL flunky. Each field of each
record returned by the SELECT statement can be accessed in the flunky.

The flunky created is named the same as the argument you provide. This SQL flunky has a
scope limited to the script within which it is contained.

The <<sql...>> function is normally used to retrieve a small number of records, usually
consisting of one or two selected fields, to retrieve data using a simple SELECT statement,
where otherwise it may be necessary to create a more complex statement within the script. The
statement used in the function call should never be used to perform the main processing of the
script, nor to return large numbers of records. Rather, it should be used to aid in this main
processing. Furthermore, the statement should never contain UPDATE or INSERT
statements. Additionally, if the SELECT statement is returning more than 10 records at a time,

Agentry Language Reference

310 SAP Mobile Platform

the design of your script should be reevaluated and adjusted so that this is not the case. The
main reason for this is performance.

While the <<sql...>> function will not cause any delays or hitches in processing if used
correctly, using it to return large amounts of data will slow down the processing of the Agentry
Server considerably. Each record returned by the function must be processed by the Agentry
Server and stored in memory until the script has completed processing. This can tie up a
significant amount of the system resources in the event of a large number of records being
returned.

As stated, the SQL flunky created by the <<sql...>> function call is only in scope within
the script in which it is called. If the value is needed in other Steps within the same parent
definition, the desired values can be assigned to a local flunky, via use of the <<local...>>
function described previously.

The syntax to reference the SQL flunky created by this function is as follows

<<sql.nameArg[.recordIndex][.fieldName]>>

All SQL flunkies are referenced beginning with sql. The nameArg is the name of the
argument as you provided when calling the <<sql...>> function. The recordIndex is a
numerical value indicating which record within the data set you wish to access. The records
are referenced in the order in which they were returned by the database system, and are
indexed starting with 0. The field name is the name of the column, or its alias, that contains the
data you wish to retrieve. So, to access a field named COST in the first record of a SQL flunky
named prodCost, the tag would be <<sql.prodCost.0.COST>>

Arguments

<<sql
nameArg=“SQLStatement”>>

nameArg The name of the SQL flunky to be created as a result of
processing the argument value, SQLStatement. The

SQLStatement must always be enclosed in double

quotes and should contain a SELECT statement.

Parameters
None

<<include>>

The <<include...>> function allows you to include the contents of another file within the
file calling the function. This content will be included at the point where the function call is
placed. The included file should always be a plain text file.

Agentry Language Reference

Agentry Language Reference 311

This function is only used in specific cases and there are certain caveats that accompany its
usage. These caveats are related to the fact that the file referenced does not need to be
associated with any definition within the Agentry Editor. Because of this fact, the included file
may not be controlled or monitored by the Editor. This means that, during a publish, this file
will not be copied or transferred in any way to the Agentry Server. Therefore, changes made to
this file will not be updated to the Server during a publish, meaning the file must be moved
separately if changes are made to it.

Related to this, if the included file does not exist in a location that is accessible to both the
Editor and Server, it must be copied to two separate locations, one for each of these
components.

Arguments

<<include fileName>>

fileName The name of the file whose contents are to be included in the file calling
the function.

Parameters
None

Agentry Test Script Overview

The Agentry Test Script is an XML schema supported by the Agentry Test Environment that
can be used to automate testing the Client behavior of a mobile application built on Agentry.
The Agentry Test Environment includes a script recorder that allows for the recording of test
scripts, and can then play back those test scripts.

The test script language includes the ability to interact with all controls present on the client
application’s interface, including field selection, data entry, button clicks, and navigation.
Additionally, this language also supports the ability to check the current values of labels,
fields, and other items displayed on the client application’s interface for expected values.

In addition to direct client interaction, the test script also includes the ability to query database
systems for expected values. This can be used after transmit to verify the proper functioning of
transactions related to the back end processing that is defined within those transactions.

Elements within the test script XML schema are logically grouped into the following
categories:

• Script Elements: Elements for the script itself, including the top-level <script> element
and elements related to logging and script execution.

• Button Elements: Elements that allow for interaction with button definitions, including
selection (or “clicking”), checking the state of the button, and label values.

Agentry Language Reference

312 SAP Mobile Platform

• Field Elements: Elements that allow for interaction with detail screen fields. Note that
certain field edit types are supported by elements in other groups.

• List Elements: Elements for working with list controls of various types. This includes list
controls on list screens, as well as the various list types that can be defined for detail screen
fields.

• Tree Elements: Elements for working with tree controls. This includes tree controls
presented by detail screen fields.

• Scanner Elements: Elements for simulating scanner behaviors, including passing values
in as barcode scanner values.

• SQL Elements: Elements for creating connections to and running queries against
database back end systems. Values can be returned by these queries and checked against
expected values.

• Tab Elements: Elements for working with the tab controls presented by screen sets for
each child screen definition.

• Window Elements: Elements for closing windows on the client. Rarely used, as
navigational actions defined to close screen sets should be used wherever present.

• Client Elements: Elements for affecting the client process, including restarting and other
behaviors.

• Client Host Elements: Elements to interact directly with the client device, which may in
turn affect the test client, such as entering key strokes or executing commands on the client
device.

Common Test Script Element Attributes
The following attributes are common to the bulk of the elements within the Agentry Test Script
XML schema. They relate primarily to time outs for the execution of a given element, and the
amount of time to pause between the execution of one element and the next. Setting these
attributes in the <script> element of the test script will set defaults for the entire script
execution that can then be overridden by individual child elements if needed.

Name Description Data Type Default
Value

Re-
quired

timeout The amount of time to wait for the element
to finish processing before returning an er-
ror. This value can be set in the <script>
element for the entire script and/or at each
processing element within the test script.
Child elements with this attribute will over-
ride the value set in parent elements. The
value is specified in milliseconds.

Positive In-
teger

N/A No

Agentry Language Reference

Agentry Language Reference 313

Name Description Data Type Default
Value

Re-
quired

sleep The amount of time to pause after the ele-
ment is executed. This value can be set in the
<script> element for the entire test script
and/or at each processing element within the
test script. Child elements with this attribute
will override the value set in parent ele-
ments. The value is specified in millisec-
onds.

Positive In-
teger

N/A No

Agentry Test Script: Script Elements Overview

The script elements within the Agentry Test Script language include the top-level <script>
element that is the root to all test scripts, as well as elements for logging messages and pausing
the execution of the script.

When a new test script is created by the Script Recorder in the ATE, it automatically creates the
<script> element and required attributes. The other elements <script-log> and
<script-pause> are manually added when needed.

Included in the <script> element is the attribute specifying the name space for the Agentry
Test Script language, which is xmlns:ags="urn:script.Agentry.Syclo". If a
script is created manually this should be an attribute included in the <script> element.

<script>

The <script> element is the root element for any Agentry Test Script. All elements are
contained within the <script> element, either directly or as descendents. Two of its
attributes, timeout and sleep, will affect how each element it contains is processed. The
timeout attribute sets the duration of time to wait for an element to be processed. Setting the
timeout in the <script> element will set a timeout for all elements. Other elements may
individually override this duration with their own timeout attributes. The sleep attribute
will set the amount of time to wait for before processing an element within the test script.
Setting this attribute for the <script> element will affect all elements, waiting to process
each for the configured time. Other elements may individually override this duration with
their own sleep attributes.

Structure
Contained By:

• None - Root element for Agentry Test Script files.

Agentry Language Reference

314 SAP Mobile Platform

Table 11. Attributes

Name Description Data
Type

Default Value Re-
quired

xmlns This attribute defines the
base namespace.

String urn:script:Agen-
try:Syclo

Yes

xmlns:ags This attribute defines the
ags namespace, making

it the default namespace.

String urn:script:Agen-
try.Syclo

Yes

xmlns:meta This attribute defines the
meta namespace used

for comments.

String urn:meta:Editor.Agen-
try.Syclo

Yes

show-exe-
cute

This attribute enables or
disables displaying log
messages from the test
script on standard output.
When set to true log mes-
sages are written to stand-
ard output.

Boo-
lean

False No

common
script attrib-
utes

This element includes the
following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<script-log>

The <script-log> element will write a log statement to the log file
AgentryScriptOutput.log. The contents of this element are the message written to
the log file. The log message level must also be specified in the level attribute to the element,
which indicates the severity of the log message.

Structure
Contains:

• Text - The log message to be written to the AgentryScriptOutput.log log file.

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 315

Table 12. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

level This attribute can contain either a numeric or string
value indicating the severity of the log message. The
following list includes both the numeric and string
values, only one or the other of which should be used
for this attribute:

• 1 - critical

• 2 - high

• 3 - mediumHigh

• 4 - medium

• 5 - mediumLow

• 6 - low

• 7 - veryLow

String N/A Yes

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<script-pause>

The <script-pause> element will pause playback of the test script, displaying a popup
dialog within the Agentry Test Environment. The playback will not resume until this popup
message is acknowledged.

Structure
Contains:

• None

Contained By:

• <script>
Attributes: None

Agentry Test Script: Button Elements Overview

The button-related elements available in the Agentry Test Script structure can be used to
simulate a user pushing a button on a screen as a part of a sequence of interactions.
Additionally, these elements can be used to test the state of the button, such as enabled or

Agentry Language Reference

316 SAP Mobile Platform

disabled, its label value, and so forth, and to wait for the button to be enabled for attempting to
push it.

Common Button Element Attributes
The following attributes are available to all button elements within the Agentry Test Script
language:

Name Description Data
Type

Default
Value

Re-
quired

id The identifier of the button, typically set by the
script recorder in the ATE and not modified man-
ually. If specified, the name and label cannot

be present.

String N/A No

name The resource name of the button the element af-
fects or monitors. If specified, the id and label
attributes cannot be present.

String N/A No

label The label text of the button definition the element
affects or monitors. If specified, the id and

name attributes cannot be present.

String N/A No

<button-expect>

The <button-expect> element is used to verify the state of a button definition within a
screen. This includes the button’s label text, enabled state, checked state, whether or not it is a
popup button, and whether or not it is visible. The type of button definition checked by this
element will dictate the supported states and other expected values for the button definition.

If any of the configured expected state information is not matched by the button, a script error
is thrown.

Structure
Contains:

• Text - The expected label for the button definition as displayed on the screen.

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 317

Table 13. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

enabled This attribute specifies the expected enabled state of
the button. The value t is true, meaning the button is

expected to be enabled. The value f is false, meaning

the button is expected to be disabled.

string t No

checked This attribute specifies the expected checked state of
the button, which is either checked or unchecked. The
value t is true, meaning the button is expected to

checked. The value f is false, meaning the button is

expected to not be checked.

string t No

popup This attribute specifies whether the button is expected
to be an Action Button with a defined action of popup
menu. The value t is true, meaning the button is ex-

pected to be a popup menu. The value f is false,

meaning the button is not expected to be a popup
menu.

string f No

visible This attribute specifies whether the button is expected
to be visible or not. The value t is true, meaning the

button is expected to be visible. The value f is false,

meaning the button is not expected to be visible.

string t No

common
button attrib-
utes

For <button-expect> these attributes specify

the expected related items for each attribute.

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<button-push>

The <button-push> element is used to push, or click, a button on the current screen. The
button can be pushed in combination with the Shift, Ctrl, and/or Alt keys when in a
<script> context as optional attributes to the element. If the button is disabled when this
element is processed a script error is thrown.

In a <field-popup> context the element will push a button on the popup dialog displayed.
The contents of the <button-push> element contain the label of the button to be pushed. In
this context none of the attributes are supported.

Agentry Language Reference

318 SAP Mobile Platform

Structure
Contains:

• In a <script> context any text contents ignored.

• In a <field-popup> context this element contains text that specifies the button to push
in the popup screen. Valid contents include:
• 0-9
• +/-
• . (decimal)
• “Back,” “Clear,” or “Close”

Contained By:

• <script>
• <field-popup>

Table 14. Attributes - <script> context only

Name Description Data
Type

De-
fault
Value

Re-
quired

shift This attribute specifies whether the Shift key

should be held down in combination with the button
push. The value t is true and the shift key will be

held down. The value f is false.

string f No

ctrl This attribute specifies whether the Ctrl key should

be held down in combination with the button push.
The value t is true and the Ctrl key will be held

down. The value f is false.

string f No

alt This attribute specifies whether the Alt key should

be held down in combination with the button push.
The value t is true and the Alt key will be held

down. The value f is false.

string f No

check This attribute specifies whether the control should be
checked or unchecked. The value t is true and will
result in the control being checked. The value f is
false. This attribute is valid only for check box con-
trols on built-in client screens.

string t No

Agentry Language Reference

Agentry Language Reference 319

Name Description Data
Type

De-
fault
Value

Re-
quired

common
button attrib-
utes

For <button-push> these attributes specify the

button to be pushed.

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<button-wait>

The <button-wait> element will force the test script to wait for the specified button’s
state to change either from enabled to disabled, or from disabled to enabled, depending on the
element’s configuration. The script will wait until either the specified state change occurs or
until the timeout value for the <script> or the <button-wait> element is reached. If the
button‘s state does not changed before the timeout has elapsed a script error will be thrown.

Structure
Contains:

• None

Contained By:

• <script>

Table 15. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

enabled This attribute specifies whether to wait for the button
to be enabled or disabled. The value t is true and the

element will wait until the button is enabled. The val-
ue f is false and the element will wait until the button

is disabled.

string t No

common
button attrib-
utes

These attributes when set for the <button-
wait> element specify the button to be monitored

for a state changed.

Agentry Language Reference

320 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry Test Script: Field Elements Overview

The elements related to detail screen fields within the Agentry Test Script are provided to
allow for interaction with the detail screen fields of the application. This includes field
selection, entering values, testing for expected values, pushing or selecting fields with an edit
type of button, and interacting with date, time, and duration related field types.

Common Field Element Attributes
The following lit includes the common attributes for most field-related XML elements within
the Agentry Test Script. These attributes are used by the elements in different ways depending
on the purpose and behavior of the element.

Name Description Data
Type

Default Val-
ue

Re-
quired

id The identifier of the field definition, typically
set by the script recorder in the ATE and not
modified manually. If the id attribute is

specified, the name and label attributes

cannot be present.

String N/A No

name The resource name of the field the element
affects or monitors. If the name attribute is

specified, the id and label attributes can-

not be present.

String N/A No

label The label text of the field definition the ele-
ment affects or monitors. If the label at-

tribute is specified, the name and id attrib-

utes cannot be present.

String N/A No

<field-button-push>

The <field-button-push> element will push the button control for a detail screen,
provided that field’s edit type includes a button control. Following is a list of the field edit
types for which this element will push a button:

• Barcode Scan (when defined to include a scan button)

Agentry Language Reference

Agentry Language Reference 321

• Button
• List Tile View - Add, Edit, and Filter Buttons
• Complex Table Search
• Complex Table Drop Down
• Complex Table List
• Complex Table Tree
• Data Table Selection (displays drop down list or popup list view based on field’s

definition)
• External Data

Structure
Contains:

• None

Contained By:

• <script>

Table 16. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

buttonLabel This attribute contains the label text of the field’s
button that is to be pushed. Many field’s button con-
trols do not contain text, or the text changes based on
theme. It is recommended that the label attribute

be used to specify the label of the field containing the
button control to be pushed.

string none No

buttonCon-
trol

This attribute specifies the control ID of the button
control that is to be pushed. This is normally set by the
Script Recorder within the ATE under specific cir-
cumstances and is normally not set when manually
editing a test script.

string none No

common
button attrib-
utes

The following common button attributes are a part of
this element:

• name

• label

• id

N/A N/A N/A

Agentry Language Reference

322 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<field-expect>

The <field-expect> element allows for the validation of a detail screen field’s value and state.
State information includes hidden or visible, and enabled or disabled. The contents of the field
that can be validated include its current value, for duration fields the current value of each
portion of the duration value (hours, minutes, seconds), for list fields the total number of rows
in a list, or the current value of a row or rows within a list. When validating the value of a field,
the validation attribute should be set indicating the type of validation. To validate multiple
facets of a field, such as current value and enabled or disabled, multiple <field-expect>
elements are required to validate each facet. To validate the value of multiple rows within a list,
the <field-expect> element must contain on <row> element for each row to be
validated. Note that only drop down lists may be validated by this element. For list view or list
tile view fields, the <list-expect> element must be used. If the field does not match the
expected criteria as specified by the <field-expect> element, a script error is thrown.

Structure
Contains:

• Text - The value that the field is expected to contain, or the value of the state being checked
by the element.

• <row>
Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 323

Table 17. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

type This attribute specifies what is being checked for
within the field by this element. Valid values in-
clude:

• string - The field’s string value

• bool - The field’s Boolean value.

• long - The field’s integral number value.

• decimal - The field’s decimal number value.

• validateValue - The field’s value.

• enabled - The field’s enabled or disabled state.

• visible - The field’s visible or hidden state.

• list - The field is a drop down list.

• format - The label for a button field.

string string No

special This attribute specifies that the field’s value should
or should not be equal to its defined special value.
The value t is true and the field is expected to be

set to its special value. The value f is false.

string f No

part This attribute is valid only when checking a dura-
tion field. It specifies the portion of the duration
value to be checked. Valid values for this attribute
include:

• hours - The hours portion of the duration.

• decimalHours - The hours portion of the du-
ration as a decimal.

• minutes - The minutes portion of the duration.

• seconds - The seconds portion of the duration.

string none Re-
quired
for dura-
tion field
edit
types.
Other-
wise ig-
nored.

Agentry Language Reference

324 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

row The row index to be checked by the element when
the field is a drop down list. This index is 0-based,
meaning the first row in the list is at position 0.
This attribute is only valid when the edit type of the
field is Complex Table Drop Down, Data Table
Selection, or List Selection. If the <field-
expect> contains one or more <row> ele-

ments, the first row checked is indicated by this
attribute. Additional <row> elements are expec-

ted to be contained in the list in the order in which
their corresponding <row> elements are con-

tained in the <field-expect>.

non-nega-
tive inte-
ger

none Re-
quired
for drop
down
list
fields.
Other-
wise ig-
nored.

count This attribute specifies the expected number of
rows in the list.

non-nega-
tive inte-
ger

none No

common
field attrib-
utes

This element contains the following common field
attributes:

• name
• id
• label

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most ele-
ments within the Agentry Test Script.

N/A N/A N/A

<field-label-select>

The <field-label-select> element allows for selecting, or “clicking”, the label of a
field when that field label is defined as a hyperlink. The field’s label to be selected is specified
using one of the name or label attributes. If the field’s label is not a hyperlink, or if it cannot
be selected for some other reason (e.g. the action it executes is disabled) a script error will be
thrown.

Structure
Contains:

• None

Contained By:

Agentry Language Reference

Agentry Language Reference 325

• <script>

Table 18. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
field attrib-
utes

This element includes the following common field
element attributes:

• name

• label

• id

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<field-popup>

The <field-popup> element will open the numeric popup screen that allows for the entry
of numeric values into a detail screen field. This element is valid for fields with an edit type of
Decimal Number, Integral Number, or Duration. This element can contain the <edit-
select> and <button-push> elements to select values in the popup screen and to push
the buttons on the popup to enter values, respectively. If this element is used for field with an
edit type other than those it supports a script error will be thrown.

Structure
Contains:

• <edit-select>
• <button-push>
Contained By:

• <script>

Agentry Language Reference

326 SAP Mobile Platform

Table 19. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

part This attribute specifies the portion of a duration field
for which the popup screen will be displayed. This
attribute is ignored for other field edit types. Valid
values for this attribute include:

• hours

• minutes

• seconds

string none Required
for Dura-
tion
fields.
Other-
wise ig-
nored.

common
field attrib-
utes

This element includes the following common field
attributes:

• name

• label

• id

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<edit-select>

The <edit-select> element selects the numeric values in a field by position. This
element is contained by the <field-popup>, which specifies the field and, for duration
fields, the part of the field in which the selection is made. The <edit-select> element
selects the characters based on position within the field as specified by its start and end
attributes. The first character is at position 0. All characters from the specified start up to
and including the end character are selected.

Structure
Contains:

• None

Contained By:

• <field-popup>

Agentry Language Reference

Agentry Language Reference 327

Table 20. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

start The first character within the field to select. Char-
acters are specified using a 0-based index, mean-
ing the first character is at position 0 within the
field.

non-nega-
tive integer

0 Yes

end The last character within the field to select. Char-
acters are specified using a 0-based index, mean-
ing the first character is at position 0 within the
field.

non-nega-
tive integer

0 Yes

<field-set>

The <field-set> element sets the value of a detail screen field. The contents of the field
specify the value to be set. The attributes name or label are used to specify which field to set.
Other attributes can be used to set the value of the field to its defined special value, to check or
uncheck a check box field, to select or deselect a radio button field, or to set just a portion of a
date, time, date and time, or duration field. This element is used to set the value of most fields,
regardless of field type. Other elements exist to allow for setting field values but should only be
employed in less common situations. For most testing purposes the <field-set> element
is sufficient. It is the element inserted into a test script generated by the Test Script Recorder
within the Agentry Test Environment.

Structure
Contains:

• Text - The value to which the field will be set.

Contained By:

• <script>

Table 21. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

special This attribute specifies whether the field should be set
to its defined special value. The value t is true and the

field will be set to its defined special value. The value
f is false.

Boo-
lean

f No

Agentry Language Reference

328 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

part This attribute specifies the portion of the field to set.
This attribute is only valid for fields with an edit type
of Date, Time, Date and Time, or Duration. Valid
values for this attribute include:

• year

• month

• day

• hours

• minutes

• seconds

string none Re-
quired
for date,
time,
and du-
ration
fields.
Other-
wise ig-
nored.

checked This attribute specifies whether or not to check or
select a field with an edit type of Button that is either a
check box or radio button. The value t is true and will

check or select the box or radio button. The f is false

and will uncheck or deselect the button field.

Boo-
lean

f Re-
quired
for But-
ton
fields of
type ra-
dio or
check
box.
Other-
wise ig-
nored.

common
field attrib-
utes

This element includes the following common field
attributes:

• name

• label

• id

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry Test Script: List Elements Overview

The list-related elements of the Agentry Test Script allow for interaction with the various list
controls of the Agentry Client. These include list screens, and the various list field edit types
that can be defined for detail screens. The list-related elements support the selection of items

Agentry Language Reference

Agentry Language Reference 329

in a list, double-clicking items, checking for the expected values of list items and column
headers, expected values of list headers and detail panes.

Common List Element Attributes
The following attributes are found in most of the list-related elements of the Agentry Test
Script. The purpose and use of these attributes depends on the nature of the element for which
they are set.

Nam
e

Description Data
Type

Default
Value

Re-
quired

id The identifier of the list definition, typically set by
the script recorder in the ATE and not modified
manually. If the id attribute is specified, the

name and label attributes cannot be present.

String N/A No

name The resource name of the list the element affects
or monitors. If the name attribute is specified, the

id and label attributes cannot be present.

String N/A No

label The label text of the list (if applicable) the element
affects or monitors. If the label attribute is

specified, the name and id attributes cannot be

present.

String N/A No

row The row within the list to be affected by the ele-
ment. This may be the row number, with the first
row in the list at position zero (0), or one of the
values:

• selected - currently select row

• first - first row in the list

• last - last row in the list

• next - the next row after the currently selected
one

• previous - the previous row after the currently
selected one

String N/A No

<list-double-click>

The <list-double-click> element allows for an item to be double-clicked within a list.
The item to be double-clicked may be the currently selected item, or this element can specify
the item. To specify an item the row number can be used or text can be specified to select the
item. If a screen contains multiple lists the field can be found by specifying the name or label
for the the field definition. This element can be used with list screens to double-click an item in

Agentry Language Reference

330 SAP Mobile Platform

the list control on the screen, or with detail screens containing a field with an edit type of List
View.

Structure
Contains:

• None

Contained By:

• <script>

Table 22. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common list
attributes

This element includes the following common list at-
tributes:

• name

• id

• label

• row

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<list-expect>

The <list-expect> element verifies the contents of a list control on a list screen. It can
also verify a detail screen field with an edit type of List View. This element can verify the
contents of the list, including the number of rows display, the number of selected rows, the
values displayed in each column for each row, the presence of a value in a column in any row,
the contents of the list’s header label and detail pane, and the contents of the column header on
each column within the list. When used on a detail screen containing multiple lists, the specific
list to verify can be found using the field’s name or label. If the list does not meet the expected
criteria a script error is thrown. The expected values and state of the list and its items can be
specified using the elements attributes as well as the elements it can contain.

Structure
Contains:

• Text - The value to use to locate the desired row to verify within the list. Text content and
element content are mutually exclusive for the <list-expect> element.

Agentry Language Reference

Agentry Language Reference 331

• <row>
• <column>
• <header>
• <columnheader>
• <detail>
Contained By:

• <script>
Table 23. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute specifies the column to be verified
by the <list-expect> element. This may be either
the column’s header label or a numeric value in-
dicating the columns position from left to right,
with the left-most column at position 1.

string None No

count This attribute specifies the total number of rows
the list should contain. This may any numeric in-
teger no less than zero.

non-nega-
tive inte-
ger

None No

selected-
count

This attribute specifies the total number of rows
currently selected in the list. This may any numeric
integer no less than zero.

non-nega-
tive inte-
ger

None No

common list
attributes

This element includes the following common list
attributes:

• name

• id

• label

• row

• column

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most ele-
ments within the Agentry Test Script.

N/A N/A N/A

<list-select>

The <list-select> element will select an item in a list. This element can be used to select
items in the list control of a list screen, in detail screen fields with an edit type of List View, or
when the edit type of a detail screen field is List Tile View. This element may also be used to

Agentry Language Reference

332 SAP Mobile Platform

deselect an already selected item in the list. List items can be selected based on row position or
column value. The contents of the <list-select> element will be the value to search for
in a specified column when select by column value. Of the row cannot be found or selected in
the list a script error is thrown.

Structure
Contains:

• Text - The value of a column by which the item will be found and selected.

Contained By:

• <script>

Table 24. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute specifies the column by which the item
will be found. This may be either the columns header
label text or a numeric value specifying the column’s
position from left to right, with the left-most column
at position 1. This attribute is set to “none” for List
Tile View detail screen fields.

String None Re-
quired
when
the row
attribute
is set to a
value of
“text.”

select This attribute specifies whether to select or deselect
the row. The value t is true and will result in the row

being selected. The value f is false and the row will be

deselected.

String t No

common list
attributes

This element includes the following common list at-
tributes:

• name

• id

• label

• row

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry Language Reference

Agentry Language Reference 333

<list-sort-by>

The <list-sort-by> element will sort a list by a specified column. This element can sort the
items of a list control on a list screen, or the items in detail screen field with an edit type of list
view. The column to sort the list on is specified in the elements column attribute. If the
specified column cannot be found or if the list cannot be sorted on the column a script error is
thrown.

Structure
Contains:

• None

Contained By:

• <script>

Table 25. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute specifies the column upon which the list
should be sorted. This may be either the column
header label text or the position of the column from
left to right, with the left-most column at position 1.

string None Yes

common list
attributes

This element includes the following common list at-
tributes:

• name

• id

• label

N/A N/A N/A

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<detail>

The <detail> element can be contained in a <list-expect> element. When present the
<detail> element must then contain a <text> element. The contents of the <text>
element is then the text expected to be found in the detail pane of a list screen or a detail screen
field with an edit type of List View. If the contents of the detail pane do not match the contents
of the <text> element a script error is thrown.

Agentry Language Reference

334 SAP Mobile Platform

Structure
Contains:

• <text> - This element contains the text expected to be found in the detail pane of the list.

Contained By:

• <list-expect>
Attributes: None

<header>

The <header> element can be contained in a <list-expect> element and, when present
must contain a <text> element. The contents of the <text> element is then the text
expected to be found in the lists header label. This element is valid only when the <list-
expect> element containing it is for a list screen or a detail screen field with an edit type of
List View. If the header pane does not match the contents of the <text> element a script error
is thrown.

Structure
Contains:

• <text> - This element contains the expected text in the lists header label.

Contained By:

• <list-expect>
Attributes: None

<columnheader>

The <columnheader> element verifies the label displayed on a column header in a list.
This element is contained in a <list-expect> element and, when present must contain a
<text> element. The contents of the <text> element is the text expected to be in the label
of the column header. This element can be used to verify header labels for columns in the list
control of a list screen or the columns in a detail screen field with an edit type of List View. If
the header of the specified column does not match the contents of the <text> element the or
if the specified column cannot be found a script error is thrown. The column to verify is
specified using the <columnheader> attribute column.

Structure
Contains:

• <text>
Contained By:

Agentry Language Reference

Agentry Language Reference 335

• <list-expect>

Table 26. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

column This attribute can specify the column header to be
verified as a part of the parent <list-expect> element
processing. The contents of this attribute is either the
column header label or the column index, with the
left-most column at position 1.

string none No

<row>

The <row> element verifies the contents and state of a row in a list control. This element can
be contained by the <field-expect> and <list-expect> elements. Multiple <row>
elements may be contained by the same parent element to verify multiple rows in the same list.
The <row> element can specify the row to be verified, or this may be specified by the parent
element’s row attribute. The contents of the row can include the text value indicating the
expected contents of the row.

The <row> element may also contain one or more <column> elements. Each <column>
element will verify the expected contents and/or state of the column it identifies within the row
identified by the <row> element.

Structure
Contains:

• <column>
Contained By:

• <field-expect> - Only contained by this element when verifying the contents of a
field with an edit type that displays a list control on the detail screen.

• <list-expect>
• Text - The expected contents of the row.

Agentry Language Reference

336 SAP Mobile Platform

Table 27. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

row This attribute contains the row position within the list.
The top-most row is at position 1. Note that the same
list may have a different row at the same numeric
position based on sorting of the list.

posi-
tive in-
teger

None No

selected This attribute specifies the expected selected state of
the row. This is a Boolean value. The value t is true and
the row is expected to be selected. The value f is false
and the row is expected to not be selected.

Boo-
lean

none No

<menu-expect>

The <menu-expect> element verifies the contents and state of a menu. This element must
contain at least one <menu> element specifying the menu to be verified. The <menu>
element itself will likely contain other elements regarding the items within the menu.

Structure
Contains:

• <menu>
Contained By:

• <script>

Table 28. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

Agentry Language Reference

Agentry Language Reference 337

<menu-select>

The <menu-select> element is used to select a menu item. This element must contain a
single <menu> element, which in turn must contain a single <item> element. These
elements specify the menu and item to be selected by the <menu-select> element.

Structure
Contains:

• <menu>
Contained By:

• <script>

Table 29. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<menu>

The <menu> element is contained by <menu-select> and <menu-expect>. The
<menu> element identifies the menu to be acted on by the containing element. When
contained by a <menu-expect> this element specifies what type of verification is to be
performed. The <menu> element will contain one or more <item> elements identifying the
menu item to be selected or verified. The <menu> element may also contain one or more
<separator> elements when contained by a <menu-expect> element. The
<separator> element will indicate the expected position of a menu separator.

Structure
Contains:

• Text - The name of the menu to be acted on by this element.
• <item>
• <separator>
Contained By:

Agentry Language Reference

338 SAP Mobile Platform

• <menu-select>
• <menu-expect>

Table 30. Attributes

Name Description Data
Type

De-
fault
Value

Required

type This attribute is only used when the <menu>
element is contained by a <menu-expect>
element. The type attribute specifies what is to
be verified within the named menu. Valid op-
tions for this attribute include:

• exact - The <item> and <separa-
tor> elements contained by the <menu>
element must match exactly with the con-
tents of the menu.

• sub-set - The <item> and <separa-
tor> elements contained by the <menu>
element must exist within the menu, but
others may also be present.

• no separators - The <item> elements con-

tained by the <menu> element must exist

within the menu. Any separators within the
menu are ignored and the <menu> element

should contain no <separator> ele-

ments.

string exact No - valid only
when <menu> is

contained by a
<menu-ex-
pect>

<item>

The <item> element is contained by the <menu> element, which in turn can be contained by
a <menu-expect> or <menu-select> element. When the ancestor element is a
<menu-expect> the <item> element specifies the expected state and value of the menu
item identified by the <menu> element. When the ancestor is a <menu-select> the
<item> element specifies the menu item to be selected. For both use cases the contents of the
<item> element is the name of the menu item.

When the ancestor of the <item> element is a <menu-expect> the <item> element
includes attributes to specify the expected state and other information about the named menu
item. These include the enabled/disabled state and whether or not the menu item is checked
(selected). These attributes are ignored when the ancestor element is a <menu-select>.

Agentry Language Reference

Agentry Language Reference 339

In a <menu-expect> context, if the expected state of the menu item does not match the
attributes of the <item> attribute a script error is thrown. In a <menu-select> context if
the menu item cannot be selected a script error is thrown

Structure
Contains:

• Text - The name of the menu item to be acted on.

Contained By:

• <menu-select>
• <menu-expect>

Table 31. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

checked This attribute is only valid when the ancestor element
is a <menu-expect> This is a Boolean attribute. The
value t is true and indicates the menu item is expected
to be checked. The value f is false and indicates the
menu item is not expected to be checked.

Boo-
lean

None No

enabled This attribute is only valid when the ancestor element
is a <menu-expect>. This is a Boolean attribute. The
value t is true and indicates the menu item is expected
to be enabled. The value f is false and indicates the
menu item is expected to be disabled.

Agentry Test Script: Tree Elements Overview

The tree-related elements of the Agentry Test Script are used to work with tree controls
presented on the Agentry client. This includes any detail screen fields that present a tree
control. The tree-related elements should be used in place of the field-related elements for
fields that present a tree control.

The elements in this group can be used to select nodes within a tree control, expand and
collapse nodes, double-click nodes, a check for expected values of a node within the tree
control.

Common Tree Element Attributes
The following list contains attributes found in most of the tree-related elements of the Agentry
Test Script. The elements use these attributes differently depending on the purpose and
behavior of the element.

Agentry Language Reference

340 SAP Mobile Platform

Name Description Data
Type

Default
Value

Re-
quired

name The resource name of the tree control. If name is

specified, label cannot be present.

String N/A No

label The label of the tree control. If the label is

specified, name cannot be present.

String N/A No

node The node within the tree control to be affected by
the element. The value of the attribute is the dis-
play value of the node in the tree control.

String N/A No

sibling The sibling node to the currently selected node in
the control. This attribute is set to the expected
value of the node in the tree control.

String N/A No

child The child node to the currently selected node in
tree control. The value of this attribute is set to the
expected value of the child node in the tree con-
trol.

String N/A No

<tree-select>

The <tree-select> element will select the specified node in a tree control. The node
selected can be specified by its relationship to the currently selected node in the tree control,
optionally in combination with that node’s currently displayed text value.

Structure
Contains:

• Text - The text displayed for the tree node.

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 341

Table 32. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• name

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-expect>

The <tree-expect> is used to verify the expected state and values of a tree control node.
This element will contain one or more <node> elements. The <tree-expect> node
specifies the node to be verified. Information the tree-expect node will verify includes the
existence of the specified node and the total count of child nodes it contains. The <node>
elements contained in a <tree-expect> then specify the expected child nodes of that
node. The <tree-expect> node specifies the type of verification to perform for the
specified node in the tree control. This options are to verify the child nodes match those
<node> elements within <tree-expect> exactly, or to verify the child nodes include
those <node> elements within the <tree-expect>. In the case of the latter verification,
other child nodes may exist in the tree control. The first verification is referred to as an “exact”
verification type. The latter is a “sub-set” verification. If the selected tree control node does not
match the parameters of the <tree-expect> element, a script error is thrown.

Structure
Contains:

• Text - The expected contents of the specified node in the tree control.
• <node>
Contained By:

• <script>

Agentry Language Reference

342 SAP Mobile Platform

Table 33. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

count This attribute can specify the expected number of
child nodes for the specified node being verified. If
this attribute is not provided, the count of child
nodes is not performed or checked.

non-nega-
tive inte-
ger

N/A No

type This attribute specifies the type of verification to
perform. Valid values for this attribute are:

• exact - All child nodes for the tree control node
must exactly match all <node> elements

contained in the <tree-expect> ele-

ment.

• sub-set - For each <node> element con-

tained in the <tree-expect> element

there must be a matching child node in the tree
control Additional child nodes may also exist.

string sub-set No

common tree
control at-
tributes

This element includes the following common tree
control attribute:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common
script attributes:

• timeout

• sleep

N/A N/A N/A

<node>

The <node> element is contained by the <tree-expect> element. Multiple <node>
elements may exist within the same <tree-expect>, with each representing an expected
child node in the tree control. The contents of the <node> element is the text expected to be
displayed for the node. If a <node> element does not match a corresponding node in the tree
control, the containing <tree-expect> node will throw a script error. The order of the
<node> elements must match the order of the expected nodes within the tree control.

Agentry Language Reference

Agentry Language Reference 343

Structure
Contains:

• Text - The expected value displayed for the child node in the tree control.

Contained By:

• <tree-expect>
Attributes: None

<tree-expand>

The <tree-expand> element will expand the currently selected node in a tree control.
Optionally, a node can be specified, in which case the specified node will be selected and
expanded by the element. If the node is already expanded this element will have no affect. If
the specified node cannot be selected a script error is thrown.

Structure
Contains:

• Text - The currently displayed text of the tree control node to expand.

Contained By:

• <script>

Table 34. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

Agentry Language Reference

344 SAP Mobile Platform

<tree-collapse>

The <tree-collapse> element will collapse a currently expanded node in a tree control.
Optionally, the element can specify the node to be collapsed, in which case the node will first
be selected and then collapsed. If a node in the tree control is not specified, the currently
selected node will be collapsed. If the node is currently collapsed, this element will have no
affect. If the specified tree control node cannot be selected a script error will be thrown. Note
that if a node in the tree control exists but is currently hidden because its parent or ancestor
node is not expanded, the <tree-collapse> node will not be able to select the node.

Structure
Contains:

• Text - The currently displayed value of the node to be collapsed.

Contained By:

• <script>
Table 35. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-toggle>

The <tree-toggle> element will toggle the specified node in a tree control; i.e., the
specified node will be expanded if currently collapsed, or collapsed if currently expanded. If
the specified node cannot be found in the tree control a script error will be thrown.

Structure
Contains:

Agentry Language Reference

Agentry Language Reference 345

• Text - The displayed text of the tree control node to be toggled

Contained By:

• <script>

Table 36. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-double-click>

The <tree-double-click> element will double-click a node in the tree control. Optionally the
node to double-click can be specified. Otherwise the currently selected node will be double-
clicked. The node to double-click must currently be visible in the tree control. If the specified
node cannot be selected a script error will be thrown.

Structure
Contains:

• Text - The currently displayed text for the tree control node to be double-clicked.

Contained By:

• <script>

Agentry Language Reference

346 SAP Mobile Platform

Table 37. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tree-count-visible>

The <tree-count-visible> element will verify the number of currently visible nodes
in a tree control. This count is based on the nodes a user can currently see on the client’s screen,
not the total number of nodes in the tree control. If the specified number of nodes is not
currently visible in the tree control a script error is thrown.

Structure
Contains:

• Text - A non-negative value specifying the number of nodes expected to be currently
visible in the tree control.

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 347

Table 38. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common tree
control at-
tributes

This element includes the following common tree
control attributes:

• label

• node

• sibling

• child

N/A N/A N/A

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

Agentry Test Script: Scanner Elements Overview

The scanner-related elements within the Agentry Test Script are used to test barcode scanner
functionality. Included in this group of elements are those to start a barcode scan, set the scan
value, and enable and disable the scanner simulator within the ATE.

It is important to note that these elements work directly through the barcode Scanner simulator
within the Agentry Test Environment. The <scan-enable> element should be called to
enable this simulator prior to calling the <scan-start> element, which passes the barcode
value into the simulator, which in turn passes the value to the test client.

Alternately, if barcode scanner functionality is to be use, the barcode scanner can be enabled
within the ATE prior to executing the test script. This will negate the need to enable it from
within the script, which also requires the test client to be restarted.

<scan-data>

The <scan-data> element contains the default scan data to be passed by the Agentry Test
Environment’s scan simulator to the test client. This element does not perform the actual scan
and does not directly pass the data to the test client. Rather, this element contains the data to be
passed to the test client when a scan is called for. The element <scan-start> will perform
the actual scan and can contain a value to pass to the test client. If <scan-start> does not
contain a value, and if it is preceded by a <scan-data> element, the value in <scan-
data> will be the one passed to the test client.

Agentry Language Reference

348 SAP Mobile Platform

Structure
Contains:

• Text - The default value to pass to the test client from the ATE’s scan simulator.

Contained By:

• <script>

Table 39. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<scan-enable>

The <scan-enable> element will enable or disable the scan simulator in the Agentry Test
Environment. When this element is processed it should be followed by a <restart-
client> element in the test script, as enabling or disabling the scan simulator requires the
test client to be restarted. The contents of this element can be the text values true or false,
where true will enable the scan simulator and false will disable it.

Structure
Contains:

• Text - The true or false value to enable or disable the scan simulator in the Agentry
Test Environment.

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 349

Table 40. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<scan-start>

The <scan-start> element will pass the value it contains to the test client through the
Agentry Test Environment’s scan simulator. Alternately, the value passed to the test client can
be contained in a separate <scan-data> element. To pass this default value the proper
syntax for the <scan-start> element is:

</ags:scan-start> -- OR -- </scan-start>

The use of an open and close marker for this element, such as: <scan-start></scan-
start> will result in an error during test script playback.

Structure
Contains:

• Text - Option text value to be passed to the test client through the Agentry Test
Environment’s scan simulator.

Contained By:

• <script>

Table 41. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

• frame

N/A N/A N/A

Agentry Language Reference

350 SAP Mobile Platform

Agentry Test Script: SQL Elements Overview

The SQL elements within the Agentry Test Script are provided to allow for the interrogation of
the back end system processing built into the mobile application from within the test script.
These elements do not affect the test client in any way. Rather, they are added to a test script to
connect to and run queries against a database. Values returned by these queries can then be
checked for expected values to validate the proper back end processing of the mobile
application.

The primary use case for these elements is to check the proper processing of the mobile
application’s transactions. Typically these statements would be added to the script after a
transmit is performed within the script that includes sending transactions to the Agentry
Server for processing.

However, the SQL elements can be added at any point within the script where it is desirable to
check the data in the back end as it relates to the mobile applications synchronization
processing. Updates or changes made to exchange information and similar data can certainly
be verified using these elements if desired.

The SQL elements are not added to the test script by the script recorder, but rather should be
manually added to the script once it has been created.

Note that these elements are intended only for connecting directly to a database server.
However, they can be used in testing an application with other types of system connections,
provided there is direct access available to the database that may be behind the Java or Web
Service interface.

<dsn-create-sql>

The <dsn-create-sql> element will create a System Data Source Name in ODBC
representing a connection to a SQL Server database. This is a permanent DSN added to the
host system and is not needed if an existing System DSN is already present. This element
includes attributes specifying the DSN name, the database instance, SQL Server host, and
authentication method (SQL or Windows). Any other parameters for a DSN are set to their
defaults as configured on the host system. When using this element within a script, it is
recommended that a corresponding <dsn-remove-sql> element exists to remove the
same DSN created to allow for the same test script to be played multiple times on the same host
system. If the DSN cannot be created a script error is thrown.

Structure
Contains:

• None

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 351

Table 42. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

dsn This attribute specifies the name given to the DSN.
This value can contain no whitespace and must adhere
to all requirements of a DSN name as specified in
ODBC.

string None Yes

server This attribute specifies the host system upon which
the SQL Server service is running.

string None Yes

database This attribute specifies the database instance to which
the DSN should connect.

string None Yes

authentica-
tion

This attribute specifies the authentication method to
be used to create a connection the SQL Server service
and database. This may be one of:

• SQL - The SQL Server authentication method.
Connections made using this DSN will require
the user login and password of a user account
configured in the SQL Server service with per-
missions to access the database instance.

• WINDOWS - The integrated Windows authenti-
cation method. The test script that uses the DSN
created must be run as a Windows user known to
the SQL Server system and with permissions to
access the target database.

string None Yes

description This attribute can contain a text value that will be
added to the System DSN as a description.

string None No

overwrite This attribute specifies whether or not to overwrite an
existing System DSN with the same name as the one
this element will created. This is a Boolean value,
with true indicating the existing DSN should be over-
written and false indicating it should not.

Boo-
lean

False No

Agentry Language Reference

352 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

ignoreErrors This attribute specifies whether or not any errors re-
turned when creating the System DSN should be ig-
nored. This is a Boolean value, with true indicating
errors should be ignored and false indicating they
should not be ignored. If this attribute is false or not
specified, any error returned when attempting to cre-
ate the System DSN will result in a script error being
thrown.

Boo-
lean

False No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<dsn-remove-sql>

The <dsn-remove-sql> element is used to remove an ODBC System Data Source Name
for a SQL Server database. The name of the DSN to be removed is specified in the dsn
attribute to the element. Note that this element will permanently remove the DSN and will not
be possible to recover it once this element has been processed.

Structure
Contains:

• None

Contained By:

• <script>

Table 43. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

dsn The name of the ODBC System Data Source Name to
be removed. The DSN named here must be for a SQL
Server connection.

string None Yes

Agentry Language Reference

Agentry Language Reference 353

Name Description Data
Type

De-
fault
Value

Re-
quired

ignoreErrors This attribute specifies whether or not any errors re-
turned with the attempt to delete the DSN should be
ignored. This is a Boolean value with true indicating
errors should be ignored. If this attribute is false or not
specified, errors will not be ignored and, if any are
returned, a script error will be thrown.

Boo-
lean

False No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<sql-command>

The <sql-command> element will execute a SQL command against a database system.
This element must be contained by a <sql-connect> element that creates a connection to
the database system against which the SQL command will be executed. The <sql-
command> element can contain the SQL statement to be executed, or it may reference a text
file containing the command or commands to be executed. Results from executing the
commands against a database can be logged based on the settings of the containing <sql-
connect> element. The <sql-command> element can contain a <sql-expect>
element that can verify the return set of any SELECT statement run by the <sql-command>
element. Based on the <sql-command> element’s ignoreErrors attribute setting,
errors in executing the SQL command can be ignored or not. If errors are not ignored (default
behavior) a script error will be thrown in the event an error occurs in executing the SQL
statement. The <sql-command> element must either reference a file in its commandFile
attribute containing the SQL command(s) to execute, or the text contents of the element itself
must include a single SQL command.

Structure
Contains:

• Text - The SQL command to be executed against the database. Should not be present if a
file is referenced in the commandFile attribute.

• <sql-expect>
Contained By:

• <sql-connect>

Agentry Language Reference

354 SAP Mobile Platform

Table 44. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

command-
File

This attribute can contain the full path and file name,
including file extension, of a plain text file containing
the SQL command(s) to be executed against the da-
tabase. This attribute should not be specified if the
contents of the <sql-command> element include

the SQL command to be executed.

string none No

ignoreErrors This attribute specifies whether or not errors returned
when attempting to execute the SQL command
should be ignored. This is a Boolean value. When true
errors will be ignored. When false errors will not be
ignored and a script error will be thrown when an error
occurs.

Boo-
lean

False No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<sql-connect>

The <sql-connect> element will open a connection to a database server using the
specified connection protocols and user credentials. The contents of this element include the
<sql-command> element, which contains the SQL command to execute against the
database with which the <sql-connect> element opens a connection. This connection
will be closed after the processing of the <sql-connect> element and its contents has
completed. In order for this element open a connection the host system upon which the test
script is being played must have the proper configuration in place for the connection. For
example the ODBC System DSN for a SQL Server database, or the TNS Name for an Oracle
database connection. The attributes of this element specify whether or not to save the results of
execution of any SQL commands to a log file.

Structure
Contains:

• <sql-command>
Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 355

Table 45. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

dbConnection-
Name

The name of the connection configuration
component for the target database; e.g. DSN,
TNS Name, etc.

String None Yes

dbConnectionType The type of connection to make. This must
match the connection configuration compo-
nent type named in dbConnectionName. Valid
values for this attribute include:

• DB2

• Informix

• Interbase

• MsSQL

• ODBC (recommended setting for SQL
Server connections)

• Oracle

• Postgre

• SQLBase

• SQLServer

• Sysbase

String None Yes

dbConnectionU-
serID

The user ID to connect to the database system. String None Yes

dbConnection-
Password

The password for the user ID. String None Yes

commandFile The full path and file name, including exten-
sions, of a plain text file containing the SQL
command(s) to execute once connected. This
attribute is optional and should if used when
one or more <sql-command> elements

are contained in the <sql-connect> el-

ement, will be executed before those com-
mands.

String None No

Agentry Language Reference

356 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

saveQuery This attribute specifies whether or not to log
the SQL command executed against the data-
base. This is a Boolean value, with true indi-
cating the query should be saved. This attribute
is ignored if saveFile is not present.

Boo-
lean

False No

saveResult This attribute specifies whether or not to log
the result of executing the SQL command(s)
contained within the <sql-connect> el-

ement or any <sql-command> elements it

contains. This is a Boolean value, with true
indicating the results should be saved. Note
that results are the responses of the database
system, not the data returned by a query. This
attribute is ignored if saveFile is not

present.

Boo-
lean

False No

saveFile This attribute can contain the full path and file
name to which log messages from any SQL
commands will be written. If this attribute is
not set saveQuery and saveResult
are ignored.

String False No

ignoreErrors This attribute specifies whether or not any er-
rors generated by the <sql-connec-
tion> element’s operations should be ignor-

ed. This is a Boolean value, with true indicating
errors should be ignored. If not set or set to
false (default) any errors resulting from at-
tempting to connect to the database, or in exe-
cuting a SQL command, will result in a script
error being thrown. Any <sql-command>
elements contained in the <sql-con-
nect> element can override this setting.

Boo-
lean

False No

common script at-
tributes

This element includes the following common
script attributes:

• timeout

• sleep

N/A N/A N/A

Agentry Language Reference

Agentry Language Reference 357

<sql-expect>

The <sql-expect> element is used to verify the return set from a SELECT statement
executed from within a <sql-command> element. The <sql-expect> is contained
within the <sql-command> that executed the command. It can then specify the expected
number of records in the return set. The <sql-expect> in can also contain one or more
<sql-row> elements, each of which will contain one or more <sql-column> elements.
The <sql-row> and <sql-column> elements will verify the expected contents of the
return set of the SELECT statement. The <sql-expect> element can also specify if the
order of the return set should match the order of the <sql-row> elements it contains, or
merely verify the existence of the same records, regardless of order. If the return set does not
match the expected return a script error is thrown.

Structure
Contains:

• <sql-row>
Contained By:

• <sql-command>

Table 46. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

count This attribute can specify the expected number of
records, or row, in the return set. If this attribute is
not specified, the number of rows is not factored
into the validation of the return set.

non-nega-
tive inte-
ger

none No

strictOrder This attribute specifies whether or not the order of
the rows in the return set is expected to match the
order of <sql-row> elements contained in the

<sql-expect> This is a Boolean attribute,

with true specifying the order must match, and
false specifying it does not. If false is specified, the
rows in the return set can be in any order related to
the order of <sql-row> elements. However, all

<sql-row> elements must have corresponding

<records>.

Agentry Language Reference

358 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common
script attributes:

• timeout

• sleep

N/A N/A N/A

<sql-row>

The <sql-row> element is contained in a <sql-expect> element. The <sql-row>
element is generally a container for one or more <sql-column> elements, which specify
the expected data in a given row. The <sql-row> element itself does not include any specific
expected values. The order of the <sql-row> elements may impact the verification of the
expected return set depending on the settings of the <sql-expect> element in which it is
contained.

Structure
Contains:

• <sql-column>
Contained By:

• <sql-expect>
Attributes: None

<sql-column>

The <sql-column> element is contained in a <sql-row> element and specifies the
expected data returned in that column. The <sql-column> element can specify the name of
the column whose data is to be verified. Alternately, the <sql-row> element can contain
<sql-column> elements with no name specification, in which case the data in the columns
of the record must be in the same order as the <sql-column> elements within the <sql-
row>. If the data specified in the <sql-columnm> elements contents does no match the
data in the column within the row of the return set a script error is thrown.

Structure
Contains:

• Text - The expected value of the column within the row.

Contained By:

Agentry Language Reference

Agentry Language Reference 359

• <sql-row>

Table 47. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

name This attribute can specify the name of the column
within the record of the return set whose data is to be
verified by the <sql-column> element. If this

attribute is omitted, the <sql-column> elements

must match the order of the columns in the rows of the
return set or a script error is thrown. Note the either all
<sql-column> elements within the same

<sql-row> must specify the name attribute, or

none of them can.

String None No

Agentry Test Script: Tab Elements Overview

The tab-related elements in the Agentry Test Script language are provided to allow for the
selection of tabs within a screen set on the Client, and to test for expected values within the
labels of those tabs.

In later versions of Agentry, screens within a screen set can be presented without tabs and
instead using a popup menu to allow users to select a different screen within the screen set. The
tab elements will work with this interface option as well.

<tab-expect>

The <tab-expect> element can be used to verify the label of a tab. The contents of the
element specify the label expected to be displayed for the tab. The tab may be specified based
on the screen definition’s name, the screen’s position index, a position relative to the currently
selected tab’s position, or by specifying the first or last tab from left to right. If the tab’s label
does not match the text contents of the <tab-expect> element a script error is thrown. If
the tab, name, and label attributes are all omitted from this element, the currently selected tab’s
label is verified.

Structure
Contains:

• Text - The expected label for the tab.

Contained By:

• <script>

Agentry Language Reference

360 SAP Mobile Platform

Table 48. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

tab This attribute can be set to specify the tab to select
based on its position relative to the currently selected
tab, the first or last tab, or by specifying a positive
integer matching the screen’s position index within
the screen set. Valid values for this attribute include:

• first - The first (or left-most) tab displayed.

• last - The last (or right-most) tab displayed.

• next - The next tab to the right of the currently
selected tab.

• previous - The previous tab to the right of the
currently selected tab.

• A positive integer matching the screen definitions
position within the screen set.

String None No

name This attribute can be set to the screen definitions name
to specify the tab whose label is to be verified.

String None No

label This attribute can be set to specify the label for the tab
whose label is to be verified. While supported for the
<tab-expect> element, it makes little sense to

use this attribute.

String None No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<tab-select>

The <tab-select> element will select a tab on the client, in essence selecting the screen
within a multi-screen screen set. The tab may be selected based on the tab’s label (screen
caption), the screen definition’s name, the screen’s position index, a position relative to the
currently selected tab’s position, or by specifying the first or last tab from left to right.

Structure
Contains:
• None

Contained By:

Agentry Language Reference

Agentry Language Reference 361

• <script>

Table 49. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

tab This attribute can be set to specify the tab to select
based on its position relative to the currently selected
tab, the first or last tab, or by specifying a positive
integer matching the screen’s position index within
the screen set. Valid values for this attribute include:

• first - The first (or left-most) tab displayed.

• last - The last (or right-most) tab displayed.

• next - The next tab to the right of the currently
selected tab.

• previous - The previous tab to the right of the
currently selected tab.

• A positive integer matching the screen definitions
position within the screen set.

String None No

name This attribute can be set to the screen definition’s
name to specify the tab to be selected.

String None No

label This attribute can be set to the label of the tab, which is
the screen definitions caption attribute value, to be
selected.

String None No

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

Agentry Test Script: Window Elements Overview

The window-related elements within the Agentry Test Script are provided to allow for
interaction with the windows presented by the mobile client application. This is, in essence,
the same as interacting with the screen set itself.

The elements provided include those to close the window to either return to the previous
window or to return to the window presenting the main screen set of the module, to check for
expected values in the title bar of the currently displayed screen, and also those to support
entering a signature value in a detail screen displaying a property of type Signature.

Agentry Language Reference

362 SAP Mobile Platform

Note that the elements to close the current window should only be used if there is no
navigational action available within the application to perform this operation. If such an action
is present, it should be used just as if a user were executing that action.

<window-close>

The <window-close> element will close the current or specified window on the Client.
Note that if an action button or some other control exists to close a window on the client that
control should be used. If the specified window cannot be found a script error is thrown.

Structure
Contains:

• Text - The caption of the window to be closed.

Contained By:

• <script>

Table 50. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<window-close-main>

The <window-close-main> will close the test client running within the ATE. This will
be the equivalent of selecting the File | Exit menu item in the client’s menu bar.

Structure
Contains:

• None

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 363

Table 51. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• timeout

• sleep

N/A N/A N/A

<window-expect>

The <window-expect> element will verify the caption of the currently displayed screen
on the client. If the screen caption does not match the expected value a script error is thrown.

Structure
Contains:

• Text - The expected caption of the screen/window displayed on the client.

Contained By:

• <script>

Table 52. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• window

• timeout

• sleep

N/A N/A N/A

<window-sign>

The <window-sign> element is provided to enter a signature in a signature capture field.
This element will enter either a default signature, which is an X character, or may enter a more
sophisticated image in the signature capture field. To specify the signature to enter other than
the default signature, the <window-sign> element must contain two or more <point>
elements, each of which specifies a point to draw a line in the signature capture field.

Agentry Language Reference

364 SAP Mobile Platform

Structure
Contains:

• <point>
Contained By:

• <script>

Table 53. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common script
attributes:

• window

• control - for this element always set to
IDC_SIGNATURE_CAPTURE.

• timeout

• sleep

N/A N/A N/A

<point>

The <point> element specifies a point within a signature capture control. The exact position
is specified via two pixel coordinates, x and y. Two <point> elements contained within the
same <window-signature> element will be connected. Subsequent <point> elements will
continue to be connected, that is, the first and second <point> will be connected via a single
line, then the second and third <point> elements will be connected, and so forth. If either the
x or y coordinate of a point are outside the boundaries defined for the signature capture field a
script error is thrown.

Structure
Contains:

• None

Contained By:

• <window-sign>

Agentry Language Reference

Agentry Language Reference 365

Table 54. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

x The x, or horizontal coordinate for the point,
specified in pixels, with the left-most pixel at po-
sition 0.

non-nega-
tive inte-
ger

none Yes

y The y, or vertical coordinate for the point, specified
in pixels with the bottom-most pixel at position 0.

non-nega-
tive inte-
ger

none Yes

Agentry Test Script: Client Elements Overview

The client-related elements of the Agentry Test Script are used to affect or interact with the
client process itself. These elements can restart the client and retrieve and set registry key
values.

Typically these elements are added manually to a test script, as the script recorded in the ATE
does not support recording these values.

Those elements related to the registry should be used with caution and only by those with an
understanding of the registry keys and values for the Agentry Test Environment and Client. If
present, the script must be run by a user with permission to change Windows registry keys on
the host system for the ATE.

<client-restart>

The <client-restart> element will restart the client process running within the
Agentry Test Environment. As optional behavior for this element, using the <registry>,
<key>, and <value> elements, one or more registry keys may be added, deleted, or
modified during this restart. Note that this element will restart the test client running within the
ATE. It will not restart the ATE itself.

Structure
Contains:

• <registry>
Contained By:

• <script>

Agentry Language Reference

366 SAP Mobile Platform

Table 55. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

<registry>

The <registry> element can be used with the <restart-client> element to create or modify
registry keys and values. This element requires the use of a <key> child element to specify the
registry key to be affected.

Structure
Contains:

• <key>
Contained By:

• <restart-client>
Attributes:

• None

<key>

The <key> element specifies a registry key to be modified or created. Nested registry keys
require nested <key> elements within the test script. If a specified key does not exist will be
created. The reset attribute allows for the specified key to be deleted and recreated. If the
<key> element contains a <value> element, the contents of the <value> will specify the
value to which the named key should be set.

Structure
Contains:

• <key>
• <value>
Contained By:

• <registry>
• <key>

Agentry Language Reference

Agentry Language Reference 367

Table 56. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

name This attribute specifies the name of the registry key to
be affected by the <key> element. May also contain

one of:

• HKLM - HKEY_LOCAL_MACHINE

• HKCU - HKEY_CURRENT_USER

string none Yes

reset This attributes specifies whether the named key
should be reset. The value t is treated as true and will

result in the key being deleted and recreated. The
value f is false.

string f No

<value>

The <value> element specifies the value to be set for the named registry key. The <value>
element must be contained by a <key> element. The <value> element names the registry
key that is to be modified within the one named by the containing <key> element. The
<value> element can specify that the named key’s value is to be added, modified, or deleted.
When adding or modifying the value of a key, the <value> element also specifies the data
type of the registry key value.

Structure
Contains:

• Text - contains the value to be set for the key. Ignored when the reset attribute is set to
true.

Contained By:

• <key>

Table 57. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

name The name of the registry key to be affected by the
<value> element.

String None Yes

Agentry Language Reference

368 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

type Specifies the data type of the value expected for the
registry key. Must be one of:

• binary
• dword
• string

String None Yes - ig-
nored if
reset is
true.

reset Specifies whether or not the specified key should
be deleted. The value t is true and will delete the

value of named registry key. The value f is false.

String f No

common
script attrib-
utes

A set of related attributes common to most ele-
ments within the Agentry Test Script.

N/A N/A N/A

Agentry Test Script: Client Host Elements overview

The client host-related elements provided in the Agentry Test Script are used to perform
actions on the client host itself, outside the test client. This includes the ability to execute
commands on the host system and to specify key’s to be pressed on the client device.

While the test script runs only on the Agentry Test Environment, which can only be installed to
a desktop, the interactions between the test client and host system can be scripted to mimic the
behaviors of the target device type.

<command-line>

The <command-line> element allows for the execution of a command on the client device
during test script playback. This element can specify how long to wait for the command to
return and its expected exit code. The contents of the element are the commands to execute.
Alternately a command may be specified using the cmd attribute of the element. These
commands can be written to a temporary file that itself will then be executed by the
<command-line> element. The default file extension for this file is .bat, though this can
be overridden. If the specified command cannot be executed a script error is thrown.

Structure
Contains:

• Text - The command(s) to be executed by the element.

Contained By:

Agentry Language Reference

Agentry Language Reference 369

• <script>

Table 58. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

cmd This attribute specifies the command to be execu-
ted by the element, or to pass parameters to a tem-
porary file created by the element that will be exe-
cuted. The first value in this parameter should be
the token %1 when used to pass parameters to a

temporary script file. This should then be followed
by the parameters, each separated by whitespace.
The contents of the element should then be the
command with the tokens %1 through %n for each

parameter specified in the cmd attribute.

string None No

ext This attribute specifies the file extension for the
temporary file to contain the commands executed
by the element. The default file extension
is .bat. The value of this attribute can optionally

include a leading period (.).

string .bat No

waitFor This attribute specifies the duration of time in mil-
liseconds to wait for the command to complete
execution. The value -1 indicates to wait indefi-

nitely. The value 0 indicates to execute the com-

mand and not wait for it to complete. The script
will continue playback regardless of the result of
executing the command. If the command does not
exit before the specified duration elapses a script
error is thrown.

integer 0 No

expectedEx-
it

This attribute specifies the expected exit code to be
returned by the processes executed by the com-
mand. This can be any non-negative integral num-
ber. This attribute is ignored if waitFor is set to 0.

If this attribute is not specified, the exit code of the
command will not be checked. If the exit code
differs from the value specified a script error is
thrown.

non-nega-
tive inte-
ger.

None No

Agentry Language Reference

370 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

common
script attrib-
utes

This element includes the following common
script attributes:

• timeout

• sleep

• frame

N/A N/A N/A

<key-press>

The <key-press> element will enter a single keystroke, mimicking that keystroke on a
standard keyboard. This element includes the option of including key the combinations using
the Alt, Ctrl, and/or Shift keys. Only a single character or keystroke can be set using the
<key-press> element.

Structure
Contains:

• None

Contained By:

• <script>

Agentry Language Reference

Agentry Language Reference 371

Table 59. Attributes

Name Description Data
Type

De-
fault
Value

Re-
quired

key This attribute specifies the key stroke to enter. This
may be one of the following values:

• Any single printable character

• “backspace” - The backspace key.

• “tab” - The Tab key.

• “enter” - The Enter/Return key.

• “return” - The Enter/Return key.

• “pause” - The Pause key.

• “esc” - The Escape (Esc) key.

• “space” - The spacebar.

• “page up” - The Page Up key.

• “page down” - The Page Down key.

• “end” - The End key.

• “home” - The Home key.

• “left” - The left arrow key.

• “right” - The right arrow key.

• “up” - The up arrow key.

• “down” - The down arrow key.

• “print screen” - The Print Screen key.

• “insert” - The Insert key.

• “delete” The Delete key.

• “Fn” - n is any numeric value from 1 to 24. That
function key is then pressed.

charac-
ter

None Yes

shift This attribute specifies whether to depress the
Shift key in combination with the key attribute.

The value t is true and will depress the Shift key.

The value f is false.

Boo-
lean

f No

ctrl This attribute specifies whether to depress the Ctrl
key in combination with the key attribute. The value t
is true and will depress the Ctrl key. The value f is

false.

Boo-
lean

f No

Agentry Language Reference

372 SAP Mobile Platform

Name Description Data
Type

De-
fault
Value

Re-
quired

alt This attribute specifies whether to depress the Alt
key in combination with the key attribute. The value t
is true and will depress the Alt key. The value f is

false.

Boo-
lean

f No

common
script attrib-
utes

A set of related attributes common to most elements
within the Agentry Test Script.

N/A N/A N/A

Agentry Java API
The Agentry Java API is provided for Agentry applications that make use of a Java system
connection for data synchronization. This API exposes the mobile application data to the Java
logic, system and user information, and other key data needed during synchronization.

com.syclo.agentry package

utility package

java_logging package

AgentryHandler class
This is an implementation of the Java Logging API's Handler class that will route log
messages to the Agentry Server Java System Connection's log file.

Syntax
public class AgentryHandler extends Handler

Members
All members of AgentryHandler, including inherited members. Variables

Modifier and Type Variable Description

protected Formatter _defaultFormatter on page 376 This is the default formatter
used by this handler.

Constructors

Agentry Language Reference

Agentry Language Reference 373

Modifier and Type Constructor Description

public AgentryHandler() on page 375 Constructs a new AgentryHan-
dler object.

Methods

Modifier and Type Method Description

public void close() on page 376 Agentry log files cannot be
closed from Java; this method
does nothing.

public void flush() on page 376 The Agentry server always
flushes its log files; this method
does not do anything explicit.

protected LogLevel mapLogLevel(Level) on page
376

Maps a Java log level to an
Agentry log level, as described
in the class documentation.

public void publish(LogRecord) on page
376

Publishes a log record to the
Agentry server.

Usage
It is also capable of routing messages to an Agentry user log file, if it receives objects of class
UserLogRecord instead of objects of the base class LogRecord. UserLogRecord objects
can be easily generated by using the UserLogger class.

Both the Java Logging API and the Agentry Server support the concept of log levels. The
logging level of the Agentry Server is configured in the AgentryLogging.ini file, and
the Agentry Server supports six levels, 0 through 5, with level 0 messages always being
logged. For each system connection, there is a level setting in the configuration file, and all
messages at or below that setting will be logged.

The levels in the Java Logging API map to the log levels in Agentry as follows:

Java Logging API Agentry Purpose

Level#SEVERE Level 0 Severe errors, always logged

Level#WARNING Level 1 Warnings or recoverable errors

Level#INFO Level 2 "Now doing this" type messages

Agentry Language Reference

374 SAP Mobile Platform

Java Logging API Agentry Purpose

Level#CONFIG Level 2 Configuration settings and rela-
ted messages. Note that this will
map to the same Agentry level
as Level.INFO messages.

Level#FINE Level 3 Details of why a decision is be-
ing made. This is the level that
the Server.debug and User.de-
bug methods will log at.

Level#FINER Level 4 Values being set from files, user
input, etc; details of calcula-
tions.

Level#FINEST Level 5 Really low level details. This is
the level that the AJAPI classes
and the Agentry Server will log
at, so if you enable this you may
get a lot of log messages. Be-
cause of this, using this level in
end-user code is discouraged.

Configuration:

By default each AgentryHandler is initialized using the following LogManager
configuration properties:

• com.syclo.agentry.utility.java_logging.AgentryHandler.leve
l

• Specifies the default level (defaults to Level#ALL).
• com.syclo.agentry.utility.java_logging.AgentryHandler.filt

er
• Specifies the name of a Filter class (defaults to no filter).
• com.syclo.agentry.utility.java_logging.AgentryHandler.form

atter
• Specifies the name of a Formatter class to use (defaults to an internal formatter that

produces just the text of the message by itself; Agentry will add a timestamp to the
message when it logs it).

AgentryHandler() constructor
Constructs a new AgentryHandler object.

Syntax
public AgentryHandler ()

Agentry Language Reference

Agentry Language Reference 375

close() method
Agentry log files cannot be closed from Java; this method does nothing.

Syntax
public void close ()

flush() method
The Agentry server always flushes its log files; this method does not do anything explicit.

Syntax
public void flush ()

mapLogLevel(Level) method
Maps a Java log level to an Agentry log level, as described in the class documentation.

Syntax
protected LogLevel mapLogLevel (Level javaLevel)

Parameters

• javaLevel – the Java log level

Returns
An LogLevel constant

Usage
If you have custom log levels, you can subclass this class and override this method to map your
custom log levels to Agentry's levels. Otherwise, this method will make a best-guess attempt
at mapping custom log levels, based on which of Java's levels the custom levels fall between
(for example, if your custom level's integer value is greater than Level.INFO but less than
Level.WARNING, it will be treated as equivalent to Level.INFO).

publish(LogRecord) method
Publishes a log record to the Agentry server.

Syntax
public void publish (LogRecord record)

_defaultFormatter variable
This is the default formatter used by this handler.

Syntax
protected Formatter _defaultFormatter

Agentry Language Reference

376 SAP Mobile Platform

Usage
It just does localization and parameter substitution, and otherwise returns the message without
any other adornment.

AgentryJavaLoggingConfigurator class
This class is used by the Java System Connection to set up a default configuration for the Java
Logging API.

Syntax
public class AgentryJavaLoggingConfigurator

Members
All members of AgentryJavaLoggingConfigurator, including inherited members. Nested
classes

Modifier and Type Class Description

class ReallySimpleFormatter on page
377

This is a basic formatter class
that is used for the AgentryJa-
vaCompiler log file handler (to
mimic the format that com.syc-
lo.agentry.utility.Logger was
using).

Constructors

Modifier and Type Constructor Description

public AgentryJavaLoggingConfigu-
rator() on page 378

Configure the Java Logging API
via the properties file at com/
syclo/agentry/internal/log-
ging.properties.

Usage
The default configuration will set up a single root logger using the AgentryHandler handler,
which will result in all log messages being routed to the Java System Connection's log file on
the Agentry Server.

AgentryJavaLoggingConfigurator.ReallySimpleFormatter class
This is a basic formatter class that is used for the AgentryJavaCompiler log file handler (to
mimic the format that com.syclo.agentry.utility.Logger was using).

Syntax
class ReallySimpleFormatter extends Formatter

Agentry Language Reference

Agentry Language Reference 377

Members
All members of ReallySimpleFormatter, including inherited members. Methods

Modifier and Type Method Description

public String format(LogRecord) on page
378

Usage
It just prefixes the log message with a timestamp.

format(LogRecord) method

Syntax
public String format (LogRecord record)

AgentryJavaLoggingConfigurator() constructor
Configure the Java Logging API via the properties file at com/syclo/agentry/internal/
logging.properties.

Syntax
public AgentryJavaLoggingConfigurator () throws IOException

Exceptions

• IOException – if the logging properties file cannot be loaded.

Usage
In addition, add special file handlers for the various classes in
com.syclo.agentry.internal, to mimic what those classes used to do with the
deprecated com.syclo.agentry.utility.Logger class.

UserLogRecord class
This class is used to create a log record that, if received by an instance of AgentryHandler, will
be routed to a user-specific log file on the Agentry server.

Syntax
public class UserLogRecord extends LogRecord

Members
All members of UserLogRecord, including inherited members. Constructors

Agentry Language Reference

378 SAP Mobile Platform

Modifier and Type Constructor Description

public UserLogRecord(User, Level,
String) on page 381

Constructs a new UserLogRe-
cord object.

public UserLogRecord(User, LogRe-
cord) on page 381

Constructs a new UserLogRe-
cord object that copies all of its
information from an existing
LogRecord object.

Methods

Modifier and Type Method Description

public boolean equals(Object) on page 381

public Level getLevel() on page 381

public String getLoggerName() on page 381

public String getMessage() on page 382

public long getMillis() on page 382

public Object[] getParameters() on page 382

public ResourceBundle getResourceBundle() on page
382

public String getResourceBundleName() on
page 382

public long getSequenceNumber() on page
382

public String getSourceClassName() on page
382

public String getSourceMethodName() on
page 382

public int getThreadID() on page 383

public Throwable getThrown() on page 383

public User getUser() on page 383 Returns the user that this log re-
cord pertains to.

public int hashCode() on page 383

public void setLevel(Level) on page 383

Agentry Language Reference

Agentry Language Reference 379

Modifier and Type Method Description

public void setLoggerName(String) on
page 383

public void setMessage(String) on page
383

public void setMillis(long) on page 384

public void setParameters(Object[]) on
page 384

public void setResourceBundle(Resource-
Bundle) on page 384

public void setResourceBundle-
Name(String) on page 384

public void setSequenceNumber(long) on
page 384

public void setSourceClassName(String)
on page 384

public void setSourceMethodName(String)
on page 384

public void setThreadID(int) on page 384

public void setThrown(Throwable) on page
385

public String toString() on page 385

Usage
You can create instances of this class directly and hand them off to Logger objects to log
user-specific messages, but it is far more convenient to use the UserLogger class, which is a
subclass of Logger that handles converting LogRecord objects to UserLogRecord
objects for you.

Note that it is perfectly acceptable for one of these objects to find its way to any other type of
Handler object; other handlers will log these objects the same way they would log any other
LogRecord object.

Agentry Language Reference

380 SAP Mobile Platform

UserLogRecord(User, Level, String) constructor
Constructs a new UserLogRecord object.

Syntax
public UserLogRecord (User user , Level level , String msg)

Parameters

• user – The user to log the message for
• level – The message level
• msg – The log message

UserLogRecord(User, LogRecord) constructor
Constructs a new UserLogRecord object that copies all of its information from an existing
LogRecord object.

Syntax
public UserLogRecord (User user , LogRecord record)

Parameters

• user – The user to log the message for
• record – The LogRecord object containing the original log message information.

Usage
This will copy all of the information from the existing log record, including message
parameters.

equals(Object) method

Syntax
public boolean equals (Object obj)

getLevel() method

Syntax
public Level getLevel ()

getLoggerName() method

Syntax
public String getLoggerName ()

Agentry Language Reference

Agentry Language Reference 381

getMessage() method

Syntax
public String getMessage ()

getMillis() method

Syntax
public long getMillis ()

getParameters() method

Syntax
public Object[] getParameters ()

getResourceBundle() method

Syntax
public ResourceBundle getResourceBundle ()

getResourceBundleName() method

Syntax
public String getResourceBundleName ()

getSequenceNumber() method

Syntax
public long getSequenceNumber ()

getSourceClassName() method

Syntax
public String getSourceClassName ()

getSourceMethodName() method

Syntax
public String getSourceMethodName ()

Agentry Language Reference

382 SAP Mobile Platform

getThreadID() method

Syntax
public int getThreadID ()

getThrown() method

Syntax
public Throwable getThrown ()

getUser() method
Returns the user that this log record pertains to.

Syntax
public User getUser ()

Returns
the User object.

hashCode() method

Syntax
public int hashCode ()

setLevel(Level) method

Syntax
public void setLevel (Level level)

setLoggerName(String) method

Syntax
public void setLoggerName (String name)

setMessage(String) method

Syntax
public void setMessage (String message)

Agentry Language Reference

Agentry Language Reference 383

setMillis(long) method

Syntax
public void setMillis (long millis)

setParameters(Object[]) method

Syntax
public void setParameters (Object[] parameters)

setResourceBundle(ResourceBundle) method

Syntax
public void setResourceBundle (ResourceBundle bundle)

setResourceBundleName(String) method

Syntax
public void setResourceBundleName (String name)

setSequenceNumber(long) method

Syntax
public void setSequenceNumber (long seq)

setSourceClassName(String) method

Syntax
public void setSourceClassName (String sourceClassName)

setSourceMethodName(String) method

Syntax
public void setSourceMethodName (String sourceMethodName)

setThreadID(int) method

Syntax
public void setThreadID (int threadID)

Agentry Language Reference

384 SAP Mobile Platform

setThrown(Throwable) method

Syntax
public void setThrown (Throwable thrown)

toString() method

Syntax
public String toString ()

UserLogger class
This class is used in combination with AgentryHandler to route messages to the user-specific
log files on the Agentry Server.

Syntax
public class UserLogger extends Logger

Members
All members of UserLogger, including inherited members. Methods

Modifier and Type Method Description

public User getUser() on page 386 Returns the user that this logger
is logging for.

public static UserLogger getUserLogger(String, User) on
page 386

Returns an instance of UserLog-
ger that uses the named Logger
instance to log messages to the
Agentry server for the given
user.

public static UserLogger getUserLogger(String, String,
User) on page 386

Returns an instance of UserLog-
ger that uses the named Logger
instance to log messages to the
Agentry server for the given
user.

public void log(LogRecord) on page 387

Usage
It acts as a child logger of an existing Logger object. When its log methods are called, it
creates log records of the class UserLogRecord instead of LogRecord, and then passes those
log records to its parent logger. If these log records eventually find their way to an
AgentryHandler instance, that instance will know to route the messages to user-specific
logs on the Agentry server, if those logs are enabled via the AgentryLogging.ini file.

Agentry Language Reference

Agentry Language Reference 385

getUser() method
Returns the user that this logger is logging for.

Syntax
public User getUser ()

Returns
the User object.

getUserLogger(String, User) method
Returns an instance of UserLogger that uses the named Logger instance to log messages to the
Agentry server for the given user.

Syntax
public static UserLogger getUserLogger (String name , User
user)

Parameters

• name – The logger name. Note that the same Logger object may be used by multiple
UserLogger objects to log messages for multiple users.

• user – The user to log messages for.

Returns
A new UserLogger object, or null if Logger.getLogger(String) would have
returned null for the same logger name.

getUserLogger(String, String, User) method
Returns an instance of UserLogger that uses the named Logger instance to log messages to the
Agentry server for the given user.

Syntax
public static UserLogger getUserLogger (String name , String
resourceBundleName , User user)

Parameters

• name – The logger name. Note that the same Logger object may be used by multiple
UserLogger objects to log messages for multiple users.

• resourceBundleName – The name of a resource bundle to use for localizing messages for
this logger. May be null if no localization is necessary.

• user – The user to log messages for.

Agentry Language Reference

386 SAP Mobile Platform

Returns
A new UserLogger object, or null if Logger.getLogger(String) would have
returned null for the same logger name.

log(LogRecord) method

Syntax
public void log (LogRecord record)

log4j package

AgentryAppender class
AgentryAppender is a Log4j Appender that will route log messages to the Agentry Server Java
System Connection's log file.

Syntax
public class AgentryAppender extends AppenderSkeleton

Members
All members of AgentryAppender, including inherited members. Variables

Modifier and Type Variable Description

public static final String AGEN-
TRY_USER_MDC_KEY on
page 390

MDC key for adding an Agentry
User object to the Log4j MDC.

Constructors

Modifier and Type Constructor Description

public AgentryAppender() on page
389

Constructs a new AgentryAp-
pender object.

Methods

Modifier and Type Method Description

protected void append(LoggingEvent) on page
389

public void close() on page 389

protected LogLevel mapLogLevel(Level) on page
389

Maps a Log4j log level to an
Agentry log level, as described
in the class documentation.

Agentry Language Reference

Agentry Language Reference 387

Modifier and Type Method Description

public boolean requiresLayout() on page 389

Usage
It is also capable of routing messages to an Agentry user log file, if the key named by
AGENTRY_USER_MDC_KEY is set to an Agentry User object in Log4j's MDC.

Both Log4j and the Agentry Server support the concept of log levels. The logging level of the
Agentry Server is configured in the AgentryLogging.ini file, and the Agentry Server
supports six levels, 0 through 5, with level 0 messages always being logged. For each system
connection, there is a level setting in the configuration file, and all messages at or below that
setting will be logged.

The levels in Log4j map to the log levels in Agentry as follows:

Log4j Agentry Purpose

Level.FATAL, Lev-
el.ERROR

Level 0 Severe errors, always logged

Level.WARN Level 1 Warnings or recoverable errors

Level.INFO Level 2 "Now doing this" type messages

Level.DEBUG Level 3 Details of why a decision is be-
ing made.

Level.TRACE Level 4 Values being set from files, user
input, etc; details of calculations

Note that there is currently no Log4j level that corresponds to log level 5 in Agentry. That log
level is generally used by very low-level logging in the Agentry Server itself, so its use in
end-user applications would be discouraged anyways.

AgentryAppender supports the basic settings used by other Log4j appenders, including
layouts. It is not required to have a layout configured for the appender; if no layout is
configured, then messages will be sent directly to Agentry with no special formatting.

NOTE: If you want to use this class you must have Log4j on your Agentry server's class path,
as configured in Agentry.ini. Log4j is not distributed with the Agentry Server. It can be
obtained from the Apache Log4j web site. This appender is intended for use with Log4j 1.2.x;
it may work with later versions, but there is no guarantee.

Agentry Language Reference

388 SAP Mobile Platform

http://logging.apache.org/log4j/1.2

AgentryAppender() constructor
Constructs a new AgentryAppender object.

Syntax
public AgentryAppender ()

append(LoggingEvent) method

Syntax
protected void append (LoggingEvent event)

close() method

Syntax
public void close ()

mapLogLevel(Level) method
Maps a Log4j log level to an Agentry log level, as described in the class documentation.

Syntax
protected LogLevel mapLogLevel (Level log4jLevel)

Parameters

• log4jLevel – the Java log level

Returns
An LogLevel constant

Usage
If you have custom log levels, you can subclass this class and override this method to map your
custom log levels to Agentry's levels. Otherwise, this method will make a best-guess attempt
at mapping custom log levels, based on which of Java's levels the custom levels fall between
(for example, if your custom level's integer value is greater than Level.INFO but less than
Level.WARNING, it will be treated as equivalent to Level.INFO).

requiresLayout() method

Syntax
public boolean requiresLayout ()

Agentry Language Reference

Agentry Language Reference 389

AGENTRY_USER_MDC_KEY variable
MDC key for adding an Agentry User object to the Log4j MDC.

Syntax
public static final String AGENTRY_USER_MDC_KEY

Usage
If a user is set in the MDC when a message is logged, then that message will be routed to the
user's log file in the Agentry Server, instead of to the Java System Connection's log file.

DataTableMapIterator< K, V > class
This is a helper class that makes it easy to return Map objects from the iterator method of a
DataTable.

Syntax
public class DataTableMapIterator< K, V > extends
java::util::Iterator< DataTableObject >

Members
All members of DataTableMapIterator< K, V >, including inherited members. Methods

Modifier and Type Method Description

public DataTableMapIterator(Map<
K, V >) on page 390

Constructs a new DataTableMa-
pIterator object.

public boolean hasNext() on page 391

public DataTableObject next() on page 391 Returns a new DataTableObject
that contains the key and value
of the next entry in the map.

public void remove() on page 391

Usage
It iterates over the contents of the map and returns each map entry as a DataTableObject.

DataTableMapIterator(Map< K, V >) method
Constructs a new DataTableMapIterator object.

Syntax
public DataTableMapIterator (Map< K, V > map)

Agentry Language Reference

390 SAP Mobile Platform

Parameters

• map – The Map to iterate over.

hasNext() method

Syntax
public boolean hasNext ()

next() method
Returns a new DataTableObject that contains the key and value of the next entry in the map.

Syntax
public DataTableObject next ()

remove() method

Syntax
public void remove ()

Logger class
Deprecated. Use java.util.logging or log4j. This class implements basic log file functionality,
if you wish to log to another file other than Agentry's server or user log files.

Syntax
public class Logger

Members
All members of Logger, including inherited members. Constructors

Modifier and Type Constructor Description

public Logger(String, boolean) on
page 392

Create a new log file.

Methods

Modifier and Type Method Description

public void appendDebug(String) on page
392

Append a message to the active
debug buffer.

public void beginDebug(String) on page
393

Opens up a multiline debug buf-
fer and adds the given message
to it.

Agentry Language Reference

Agentry Language Reference 391

Modifier and Type Method Description

public synchronized void debug(String) on page 393 Write a message to the log file.

public synchronized void debug(String, Map< String,
String >, String) on page 393

Write the contents of a Map ob-
ject to the log file.

public void endDebug(String) on page 393 Close the debug buffer and write
it to the log file.

public boolean isDebugMode() on page 394 Returns whether a debug buffer
has been opened by beginDebug
and is still open.

Usage
If you need more powerful logging than what this class provides, you should look at the
logging functionality that was added in JDK 1.4, or use Apache log4j or something like it.

Logger(String, boolean) constructor
Create a new log file.

Syntax
public Logger (String fileName , boolean overwrite) throws
IOException

Parameters

• fileName – The log file name
• overwrite – true means to overwrite any existing file, false means append to any

existing file.

Exceptions

• IOException – if an error occurs.

appendDebug(String) method
Append a message to the active debug buffer.

Syntax
public void appendDebug (String message)

Parameters

• message – The message

Agentry Language Reference

392 SAP Mobile Platform

beginDebug(String) method
Opens up a multiline debug buffer and adds the given message to it.

Syntax
public void beginDebug (String message)

Parameters

• message – The debugging message

Usage
Additional messages can be added by calling appendDebug. The contents of the buffer will not
be written to the log file until endDebug is called.

debug(String) method
Write a message to the log file.

Syntax
public synchronized void debug (String message)

Parameters

• message – The message

debug(String, Map< String, String >, String) method
Write the contents of a Map object to the log file.

Syntax
public synchronized void debug (String header , Map< String,
String > messages , String footer)

Parameters

• header – The header message
• messages – The map to dump
• footer – The footer message

endDebug(String) method
Close the debug buffer and write it to the log file.

Syntax
public void endDebug (String message)

Agentry Language Reference

Agentry Language Reference 393

Parameters

• message – The final debug message

isDebugMode() method
Returns whether a debug buffer has been opened by beginDebug and is still open.

Syntax
public boolean isDebugMode ()

Returns
true if a debug buffer is active.

AgentryException class
Base class for checked exceptions that can be thrown from various methods in the AJAPI.

Syntax
public class AgentryException extends Exception

Derived classes

• BusinessLogicException on page 397
• FatalTransactionException on page 420
• FatalTransactionExceptionStop on page 423
• LoginException on page 432
• RetryTransactionException on page 461
• RetryTransactionWithChangeException on page 463
• StepletAbortException on page 512
• StepletStopException on page 513

Members
All members of AgentryException, including inherited members. Constructors

Modifier and Type Constructor Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

Agentry Language Reference

394 SAP Mobile Platform

Modifier and Type Constructor Description

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Methods

Modifier and Type Method Description

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
Throwing this base class from a method will generally result in an error being logged in the
server event log, and the client getting a "Server error - please contact your administrator (13)"
message.

AgentryException(String) constructor
Constructs a new AgentryException object.

Syntax
public AgentryException (String message)

Parameters

• message – The error message.

AgentryException(String, Throwable) constructor
Constructs a new AgentryException object.

Syntax
public AgentryException (String message , Throwable cause)

Agentry Language Reference

Agentry Language Reference 395

Parameters

• message – The error message.
• cause – The causing exception.

AgentryException(String, String, String, Throwable) constructor
Constructs a new AgentryException object, for methods that support throwing exceptions that
may appear in the client.

Syntax
public AgentryException (String title , String text , String okLabel ,
Throwable cause)

Parameters

• title – The window title.
• text – The window text. This will also be used as the message text of the exception when it

is logged (it will be returned when getMessage() is called).
• okLabel – The window button label.
• cause – The causing exception

Usage
For now this is pretty much supported only by steplets that are being used as part of Agentry
transactions.

AgentryException(String, String, String) constructor
Constructs a new AgentryException object, for methods that support throwing exceptions that
may appear in the client.

Syntax
public AgentryException (String title , String text , String
okLabel)

Parameters

• title – The window title.
• text – The window text. This will also be used as the message text of the exception when it

is logged (it will be returned when getMessage() is called).
• okLabel – The window button label.

Usage
For now this is pretty much supported only by steplets that are being used as part of Agentry
transactions.

Agentry Language Reference

396 SAP Mobile Platform

getNotificationText() method
Returns the notification window text.

Syntax
public final String getNotificationText ()

Returns
the text

getNotificationTitle() method
Returns the notification window title.

Syntax
public final String getNotificationTitle ()

Returns
the title

getOkButtonLabel() method
Returns the notification window button label.

Syntax
public final String getOkButtonLabel ()

Returns
the label

BusinessLogicException class
This exception represents an error condition that should be reported to the client.

Syntax
public class BusinessLogicException extends AgentryException

Members
All members of BusinessLogicException, including inherited members. Constructors

Modifier and Type Constructor Description

public BusinessLogicExcep-
tion(String) on page 398

Construct a new exception.

public BusinessLogicExcep-
tion(String, Throwable) on page
399

Constructs a new BusinessLo-
gicException object.

Agentry Language Reference

Agentry Language Reference 397

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
It can be thrown from any of the various client-related session methods, such as the methods
on Steplet, DataTable , and ComplexTable. The error message in this exception will
be displayed in the client's transmit window; in addition, if the
printBusinessLogicStackTrace configuration option is enabled in the
agentry.ini file for the Java system connection, then a full stack trace for the exception
will also be displayed in the client's transmit window.

BusinessLogicException(String) constructor
Construct a new exception.

Syntax
public BusinessLogicException (String message)

Parameters

• message – The error message

Agentry Language Reference

398 SAP Mobile Platform

BusinessLogicException(String, Throwable) constructor
Constructs a new BusinessLogicException object.

Syntax
public BusinessLogicException (String message , Throwable
cause)

Parameters

• message – The error message
• cause – The causing exception

ComplexTableSession class
The ComplexTableSession class encapsulates the processing involved in a complex table
synchronization within an Agentry-based application.

Syntax
public class ComplexTableSession extends Session

Members
All members of ComplexTableSession, including inherited members. Constructors

Modifier and Type Constructor Description

public ComplexTableSession(String,
Server, SessionData, User) on
page 400

Construct a new session.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page 504 Returns the session data for this
session.

Agentry Language Reference

Agentry Language Reference 399

Modifier and Type Member Description

public User getUser() on page 504 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page 504 This is called if the session is
aborted (e.g., by an exception).

Usage
This class contains the session data for the complex table synchronization, as well the User
object for the user performing the synchronization, and a reference to the Server singleton
object.

ComplexTableSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public ComplexTableSession (String tableName , Server server ,
SessionData sessionData , User user)

Parameters

• tableName – The complex table name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this transmit.
• user – The client user performing the transmit.

Usage
This constructor is called by the Server.createComplexTableSession method. Subclasses
should implement a constructor with the same signature as this one.

Agentry Language Reference

400 SAP Mobile Platform

ComplexTable< CTOBJ > class
The ComplexTable class encapsulates the data retrieval for a complex table within an
Agentry-based application.

Syntax
public abstract class ComplexTable< CTOBJ > extends
AgentryJavaBackEndManagedObject

Members
All members of ComplexTable< CTOBJ >, including inherited members. Variables

Modifier and Type Variable Description

protected SycloCalendar _clientLastDataUpdateTime on
page 411

Storage for the client's last up-
date time that was passed into
the constructor.

protected boolean _rebuilding on page 412 This member will be set by the
Agentry Server to whatever the
willRebuildTable() method re-
turns.

protected ComplexTableSes-
sion

_session on page 412 Storage for the session that was
passed into the constructor.

Methods

Modifier and Type Method Description

public void build() on page 404 This method is called by the
Agentry Server after it calls
willRebuildTable(), but before
it calls dataIterator() or deleteIt-
erator().

final boolean checkForReload() on page 404 This method is called by the
Agentry Server to indicate
whether a reload should be
done.

public ComplexTable(ComplexTable-
Session, GregorianCalendar) on
page 405

Constructs a new ComplexTa-
ble object.

Agentry Language Reference

Agentry Language Reference 401

Modifier and Type Method Description

public abstract Iterator<
CTOBJ >

dataIterator() on page 405 This method should return ei-
ther a partial or complete list of
the records for the complex ta-
ble, depending on the result of
calling willRebuildTable().

public Iterator< CTOBJ > deleteIterator() on page 406 This method should return a list
of the records that have been
deleted from the complex table
since the client's last update
time, which can be retrieved via
getClientLastDataUpdate-
Time()).

public SycloCalendar getClientLastDataUpdate-
Time() on page 407

Returns the time when the client
last retrieved data for this com-
plex table.

public GregorianCalendar getNewDataUpdateTime() on
page 407

Returns the new "last data up-
date time", as set by a prior call
to setNewDataUpdateTime.

public ComplexTableSession getSession() on page 407 Return the session for this com-
plex table transmission.

public final void initialize() on page 407 Deprecated. Subclass overrides
of this method should be re-
named to build(). This method
has been renamed to build().

public boolean isRebuilding() on page 408 This method returns the previ-
ously cached result of the Agen-
try Server's call to the willRe-
buildTable() method.

final int lastUpdateDate() on page 408 Returns the day-of-month com-
ponent of the complex table da-
ta's last update time.

final int lastUpdateHours() on page
408

Returns the hour component of
the complex table data's last up-
date time.

final int lastUpdateMinutes() on page
408

Returns the minute component
of the complex table data's last
update time.

Agentry Language Reference

402 SAP Mobile Platform

Modifier and Type Method Description

final int lastUpdateMonth() on page
409

Returns the month component
of the complex table data's last
update time.

final int lastUpdateSeconds() on page
409

Returns the seconds component
of the complex table data's last
update time.

final int lastUpdateYear() on page 409 Returns the year component of
the complex table data's last up-
date time.

public final boolean reload() on page 410 Deprecated. Subclass overrides
of this method should be re-
named to willRebuildTable().
This method has been renamed
to willRebuildTable().

public void setNewDataUpdateTime(Gre-
gorianCalendar) on page 410

This method sets the new "last
data update time" for the com-
plex table.

public boolean willRebuildTable() on page
411

This method is called by the
Agentry server to determine
whether the server should re-
build the client's complex table
from scratch.

Usage
When implementing a complex table using a Java Interface system connection, this class will
always be extended.

Complex tables in Agentry support both full and incremental updates. It is up to an
implementing subclass to determine which mechanism to use, based on whether the
underlying data source supports time-stamped data. If it does, an implementation can return a
"last update" timestamp along with the complex table data. The next time a client requests an
update of the table, it will pass back that timestamp, and this class can then return only the data
changes (additions, updates, and deletions) that have occurred since that time.

Data objects are returned from this class to the Agentry server via iterators. The data objects
themselves are structured in the same manner as the data objects for a Steplet, in that their data
is stored in public member fields that are accessed directly by Agentry, and are mapped to
corresponding fields in the Complex Table when the table is defined in the Agentry Editor.

Agentry Language Reference

Agentry Language Reference 403

The synchronization process for a complex table involves determining first which records
have been deleted from the complex table and retrieving those records' unique identifiers.
Then, the records that have been added or updated since the last client update are retrieved.
The Agentry Server will call the methods of this class in the following sequence:

1. Constructor - passes in the client's last update date
2. willRebuildTable() - tells Agentry whether to expect a full or incremental update
3. build() - can be used to gather records
4. dataIterator() - returns new or updated records
5. lastUpdate* methods - returns the new data timestamp (set via a call to

setNewDataUpdateTime)
6. deleteIterator() - returns keys for deleted records; may not be called if

willRebuildTable() returned true

7. lastUpdate* methods (again - should return the same value as the previous call); may
not be called if willRebuildTable() returned true

Note that for each client transmit, a new instance of this class is created by the Agentry server.

build() method
This method is called by the Agentry Server after it calls willRebuildTable(), but before it calls
dataIterator() or deleteIterator().

Syntax
public void build () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

Usage
It can be used to build up the data sets for the complex table, if it is more convenient to query
both the updates and the deletes in a single place rather than querying them separately in the
iterator methods.

checkForReload() method
This method is called by the Agentry Server to indicate whether a reload should be done.

Syntax
final boolean checkForReload () throws AgentryException

Returns
true if the table should be reloaded

Agentry Language Reference

404 SAP Mobile Platform

Exceptions

• AgentryException class – if an error occurs

Usage
It calls willRebuildTable() and saves the result into the _rebuilding member variable.

ComplexTable(ComplexTableSession, GregorianCalendar) method
Constructs a new ComplexTable object.

Syntax
public ComplexTable (ComplexTableSession session ,
GregorianCalendar clientLastDataUpdate)

Parameters

• session – A ComplexTableSession object that provides the access to the session data
pertinent to the complex table application component.

• clientLastDataUpdate – This argument contains the date and time of the client's last data
update.

Usage
Subclasses need to implement the same constructor and pass the parameters back to this
constructor via super().

This constructor will set the return value of the default implementation of the
willRebuildTable() method to true if the clientLastDataUpdate parameter contains
the invalid date/time value, or to false if not.

dataIterator() method
This method should return either a partial or complete list of the records for the complex table,
depending on the result of calling willRebuildTable().

Syntax
public abstract Iterator< CTOBJ > dataIterator () throws
AgentryException

Returns
an Iterator object that will iterate over the records of the complex table.

Exceptions

• AgentryException class – if an error occurs.

Agentry Language Reference

Agentry Language Reference 405

Usage
It returns these records in the form of a Iterator object that iterates over a list of objects.
Subclasses should override this method to return the desired data.

If willRebuildTable() returns false (indicating that the client will receive an incremental
update), then this method should only return those records that have been added to the
complex table since the client's last update time (which can be retrieved via
getClientLastDataUpdateTime()). If willRebuildTable() returns true (indicating that the
client should rebuild its complex table from scratch), then this method should return the
complete set of complex table records.

deleteIterator() method
This method should return a list of the records that have been deleted from the complex table
since the client's last update time, which can be retrieved via
getClientLastDataUpdateTime()).

Syntax
public Iterator< CTOBJ > deleteIterator () throws
AgentryException

Returns
a Iterator object that will iterate over the records that have been deleted from the complex table
since the client's last update.

Exceptions

• AgentryException class – if an error occurs.

Usage
It returns these records in the form of a Iterator object that iterates over a list of objects that
identify the deleted records via their unique keys. Subclasses should override this method to
return the desired data. Note that the objects returned do not need to be fully populated, they
only need to contain their unique identifiers (which are configured in the Agentry application).

The actual behavior of this method is dependent on the result of the willRebuildTable()
method. If that method returns false, then this method should return a list of deleted records.
If that method returns true, then this method should return an empty iterator. The default
behavior of this method is to return an empty iterator, so if your willRebuildTable()
implementation will always return true, then you don't need to override this method.

Note that in some versions of Agentry, this method may not be called at all if
willRebuildTable() returns true, since there should be no deleted objects in that case.

Agentry Language Reference

406 SAP Mobile Platform

getClientLastDataUpdateTime() method
Returns the time when the client last retrieved data for this complex table.

Syntax
public SycloCalendar getClientLastDataUpdateTime ()

Returns
the client's last data update time.

getNewDataUpdateTime() method
Returns the new "last data update time", as set by a prior call to setNewDataUpdateTime.

Syntax
public GregorianCalendar getNewDataUpdateTime ()

Returns
The new update time, or null if setNewDataUpdateTime() hasn't been called yet.

getSession() method
Return the session for this complex table transmission.

Syntax
public ComplexTableSession getSession ()

Returns
the session

initialize() method [deprecated]
Deprecated. Subclass overrides of this method should be renamed to build(). This method has
been renamed to build().

Syntax
public final void initialize () throws AgentryException

Exceptions

• AgentryException class – not thrown
• UnsupportedOperationException – to report that the method is no longer used.

Usage
Override that method instead of this one. This method is only here to cause compilation errors
in legacy code, and may be removed in a future release.

Agentry Language Reference

Agentry Language Reference 407

isRebuilding() method
This method returns the previously cached result of the Agentry Server's call to the
willRebuildTable() method.

Syntax
public boolean isRebuilding ()

Returns
the value of the _rebuilding member variable.

lastUpdateDate() method
Returns the day-of-month component of the complex table data's last update time.

Syntax
final int lastUpdateDate ()

Returns
The day-of-month component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateHours() method
Returns the hour component of the complex table data's last update time.

Syntax
final int lastUpdateHours ()

Returns
The hour component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateMinutes() method
Returns the minute component of the complex table data's last update time.

Syntax
final int lastUpdateMinutes ()

Returns
The minute component of the complex table data's last update time.

Agentry Language Reference

408 SAP Mobile Platform

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateMonth() method
Returns the month component of the complex table data's last update time.

Syntax
final int lastUpdateMonth ()

Returns
The month component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateSeconds() method
Returns the seconds component of the complex table data's last update time.

Syntax
final int lastUpdateSeconds ()

Returns
The seconds component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

lastUpdateYear() method
Returns the year component of the complex table data's last update time.

Syntax
final int lastUpdateYear ()

Returns
The year component of the complex table data's last update time.

Usage
This method is called by the Agentry Server to retrieve the last update time.

Agentry Language Reference

Agentry Language Reference 409

reload() method [deprecated]
Deprecated. Subclass overrides of this method should be renamed to willRebuildTable(). This
method has been renamed to willRebuildTable().

Syntax
public final boolean reload () throws AgentryException

Returns
Nothing. Always throws UnsupportedOperationException.

Exceptions

• AgentryException class – not thrown
• UnsupportedOperationException – to report that the method is no longer used.

Usage
Override that method instead of this one. This method is only here to cause compilation errors
in legacy code, and may be removed in a future release.

setNewDataUpdateTime(GregorianCalendar) method
This method sets the new "last data update time" for the complex table.

Syntax
public void setNewDataUpdateTime (GregorianCalendar
dataUpdateTime)

Parameters

• dataUpdateTime – The last update time of the complex table's data.

Exceptions

• IllegalArgumentException – if dataUpdateTime is null, or is set to the Agentry
"invalid" date/time value.

Usage
By default, the last update time will be "now"; however, if your underlying data source has a
concept of a last update time, you can pass that on to the Agentry Server by calling this method
from the constructor, build(), or dataIterator() to set it.

Note that calling this method does not affect the return value of
getClientLastDataUpdateTime(); the two values are maintained separately.

Agentry Language Reference

410 SAP Mobile Platform

willRebuildTable() method
This method is called by the Agentry server to determine whether the server should rebuild the
client's complex table from scratch.

Syntax
public boolean willRebuildTable () throws AgentryException

Returns
true if the client's table should be rebuilt from scratch, or false if the client's existing table
should be updated.

Exceptions

• AgentryException class – if an error occurs.

Usage
If you return true from this method, then a subsequent call to dataIterator() should return the
full set of complex table records and deleteIterator() should return nothing; if you return
false from this method then dataIterator() and deleteIterator() should return incremental
changes.

Note that if the client's last data update date was invalid, then the Agentry Server will assume
that the table needs to be reloaded and will not call this method at all.

When the Agentry server calls this method, it will store the result of the call into the
_rebuilding field. That field will also be initialized by the constructor to true if
_clientLastDataUpdateTime is invalid or false if it is not, so that the field will contain the
correct value even if the Agentry server does not call this method.

The default implementation of this method returns the value of _rebuilding as set by the
constructor.

_clientLastDataUpdateTime variable
Storage for the client's last update time that was passed into the constructor.

Syntax
protected SycloCalendar _clientLastDataUpdateTime

Usage
This is a SycloCalendar instead of a GregorianCalendar because it is possible for it to contain
Agentry's "invalid" timestamp.

Agentry Language Reference

Agentry Language Reference 411

_rebuilding variable
This member will be set by the Agentry Server to whatever the willRebuildTable() method
returns.

Syntax
protected boolean _rebuilding

Usage
It can be read via the isRebuilding() method.

_session variable
Storage for the session that was passed into the constructor.

Syntax
protected ComplexTableSession _session

DataTableObject class
This class represents a single row in an Agentry data table, which consists of a key/value pair.

Syntax
public class DataTableObject extends Object

Members
All members of DataTableObject, including inherited members. Variables

Modifier and Type Variable Description

public String code on page 414 The code/key for the row.

public String value on page 414 The value for the row.

Constructors

Modifier and Type Constructor Description

public DataTableObject(String,
String) on page 413

Constructs a new DataTableOb-
ject object.

Methods

Modifier and Type Method Description

public String code() on page 413 Deprecated. Use getKey(). Re-
turn the code/key for this row.

public boolean equals(Object) on page 413

Agentry Language Reference

412 SAP Mobile Platform

Modifier and Type Method Description

public String getKey() on page 413 Return the code/key for this
row.

public String getValue() on page 414 Return the value for this row.

public int hashCode() on page 414

public String value() on page 414 Deprecated. Use getValue().
Return the value for this row.

DataTableObject(String, String) constructor
Constructs a new DataTableObject object.

Syntax
public DataTableObject (String code1 , String value1)

Parameters

• code1 – The code/key for the row
• value1 – The value for the row

code() method [deprecated]
Deprecated. Use getKey(). Return the code/key for this row.

Syntax
public String code ()

Returns
the code

equals(Object) method

Syntax
public boolean equals (Object obj)

getKey() method
Return the code/key for this row.

Syntax
public String getKey ()

Returns
the code

Agentry Language Reference

Agentry Language Reference 413

getValue() method
Return the value for this row.

Syntax
public String getValue ()

Returns
the value

hashCode() method

Syntax
public int hashCode ()

value() method [deprecated]
Deprecated. Use getValue(). Return the value for this row.

Syntax
public String value ()

Returns
the value

code variable
The code/key for the row.

Syntax
public String code

value variable
The value for the row.

Syntax
public String value

DataTableSession class
The DataTableSession class encapsulates the processing involved in a data table retrieval
within an Agentry-based application.

Syntax
public class DataTableSession extends Session

Agentry Language Reference

414 SAP Mobile Platform

Members
All members of DataTableSession, including inherited members. Constructors

Modifier and Type Constructor Description

public DataTableSession(String, Serv-
er, SessionData, User) on page
416

Construct a new session.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page 504 Returns the session data for this
session.

public User getUser() on page 504 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page 504 This is called if the session is
aborted (e.g., by an exception).

Agentry Language Reference

Agentry Language Reference 415

Usage
This class contains the session data for the data table retrieval, as well the User object for the
user performing the retrieval, and a reference to the Server singleton object.

DataTableSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public DataTableSession (String tableName , Server server ,
SessionData sessionData , User user)

Parameters

• tableName – The data table name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this transmit.
• user – The client user performing the transmit.

Usage
This constructor is called by the Server.createDataTableSession method. Subclasses should
implement a constructor with the same signature as this one.

DataTable< DTOBJ extends DataTableObject > class
The DataTable class in the AJAPI encapsulates the synchronization of a data table.

Syntax
public abstract class DataTable< DTOBJ extends
DataTableObject > extends AgentryJavaBackEndManagedObject

Members
All members of DataTable< DTOBJ extends DataTableObject >, including inherited
members. Variables

Modifier and Type Variable Description

protected SycloCalendar _clientLastDataUpdateTime on
page 420

Client's last data update date.

protected DataTableSession _session on page 420 Storage for the session that was
passed into the constructor.

Methods

Agentry Language Reference

416 SAP Mobile Platform

Modifier and Type Method Description

public DataTable(DataTableSession,
GregorianCalendar) on page
418

Constructs a new DataTable.

public SycloCalendar getClientLastDataUpdate-
Time() on page 418

Returns the client's last data up-
date date and time.

public DataTableSession getSession() on page 418 Returns the session data for this
data table transmission.

public void initialize() on page 419 This method is called after this
object is constructed.

public abstract boolean isOutOfDate() on page 419 Returns whether the client's da-
ta is out of date, based on the last
update date passed in via the
constructor.

public abstract Iterator<
DTOBJ >

iterator() on page 419 Builds an Iterator object that
will iterate through the DataTa-
bleObject objects that contain
the rows for the data table.

Usage
When a data table is created in the Agentry Editor, a subclass is automatically defined that
extends this class. The designer must implement this subclass in order to retrieve the data for
the data table. Such an implementation should retrieve the data table's data from some source,
construct a list or set of DataTableObject objects, and then return an iterator object that iterates
over that list.

The DataTable class provides two main pieces of functionality. First, it determines if the
data table needs to be reloaded and, second, it provides the factory method to construct a
Iterator object to process the returned data.

The Agentry server will call the methods of this class in the following sequence:

1. Constructor
2. initialize()
3. isOutOfDate()
4. iterator() (only if isOutOfDate() returned true)

Note that for each client transmit, a new instance of this class is created by the Agentry server.

Agentry Language Reference

Agentry Language Reference 417

DataTable(DataTableSession, GregorianCalendar) method
Constructs a new DataTable.

Syntax
public DataTable (DataTableSession session , GregorianCalendar
clientLastDataUpdate)

Parameters

• session – An object of type DataTableSession that provides access to pertinent session
data for the data table.

• clientLastDataUpdate – This argument contains the date and time that the data table was
last updated on the client application. This value can be accessed through the protected
member _clientLastDataUpdateTime.

Usage
This method is called by the Agentry Server (indirectly via whatever subclasses you define)
whenever a data table request is received from the client application. Extensions of this class
should take the same arguments as this class, and pass those arguments on to this parent
constructor.

getClientLastDataUpdateTime() method
Returns the client's last data update date and time.

Syntax
public SycloCalendar getClientLastDataUpdateTime ()

Returns
the date and time of the client's last update. This might be the Agentry "Invalid Date" time,
which indicates that the client did not have any copy of the data table at all; note that it is
generally safe to not check for the "invalid date" value, since it is a time far in the past (circa
1900) and therefore should fail any check against a recent date and time.

getSession() method
Returns the session data for this data table transmission.

Syntax
public DataTableSession getSession ()

Returns
the session data

Agentry Language Reference

418 SAP Mobile Platform

initialize() method
This method is called after this object is constructed.

Syntax
public void initialize () throws AgentryException

Exceptions

• AgentryException class – if an error occurs

Usage
Initialization can be performed here if it might result in an exception.

isOutOfDate() method
Returns whether the client's data is out of date, based on the last update date passed in via the
constructor.

Syntax
public abstract boolean isOutOfDate () throws AgentryException

Returns
true if the client's data is out of date, or false if not.

Exceptions

• AgentryException class – if an error occurs

Usage
If this returns true, then the Agentry Server will call iterator() to retrieve the latest data for
the data table and send it to the client.

iterator() method
Builds an Iterator object that will iterate through the DataTableObject objects that contain the
rows for the data table.

Syntax
public abstract Iterator< DTOBJ > iterator () throws
AgentryException

Returns
an Iterator object.

Agentry Language Reference

Agentry Language Reference 419

Exceptions

• AgentryException class – if an error occurs.

Usage
This is called by the Agentry Server to retrieve the actual data for the data table, when the
isOutOfDate() method returns true. Note that once the data has been sent to the client, the
server will change the last update date and time on the client to "now".

_clientLastDataUpdateTime variable
Client's last data update date.

Syntax
protected SycloCalendar _clientLastDataUpdateTime

_session variable
Storage for the session that was passed into the constructor.

Syntax
protected DataTableSession _session

FatalTransactionException class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
in a way that cannot be corrected or recovered from.

Syntax
public class FatalTransactionException extends
AgentryException

Members
All members of FatalTransactionException, including inherited members. Constructors

Modifier and Type Constructor Description

public FatalTransactionExcep-
tion(String) on page 422

Constructs a new FatalTransac-
tionException object.

public FatalTransactionExcep-
tion(String, Throwable) on page
422

Constructs a new FatalTransac-
tionException object.

public FatalTransactionExcep-
tion(String, String, String) on
page 422

Constructs a new FatalTransac-
tionException object that will
cause an error notification win-
dow to appear on the client.

Agentry Language Reference

420 SAP Mobile Platform

Modifier and Type Constructor Description

public FatalTransactionExcep-
tion(String, String, String,
Throwable) on page 423

Constructs a new FatalTransac-
tionException object that will
cause an error notification win-
dow to appear on the client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
It will remove the transaction from the client and save it to the failed transactions queue on the
Agentry Server. It will optionally display an error notification window to the client user.

This exception combines and replaces the functionality of the
SycloFatalExceptionWithMessage and
SycloFatalExceptionWithoutMessage exceptions from version 4 of the AJAPI.

Agentry Language Reference

Agentry Language Reference 421

FatalTransactionException(String) constructor
Constructs a new FatalTransactionException object.

Syntax
public FatalTransactionException (String message)

Parameters

• message – The error message, which will be logged

Usage
No error notification window will be displayed on the client.

This constructor creates an exception that results in a "Fatal without message" transaction
error.

FatalTransactionException(String, Throwable) constructor
Constructs a new FatalTransactionException object.

Syntax
public FatalTransactionException (String message , Throwable
cause)

Parameters

• message – The error message, which will be logged
• cause – The underlying exception

Usage
No error notification window will be displayed on the client.

This constructor creates an exception that results in a "Fatal without message" transaction
error.

FatalTransactionException(String, String, String) constructor
Constructs a new FatalTransactionException object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionException (String title , String text ,
String okLabel)

Parameters

• title – The window title for the error displayed on the client.

Agentry Language Reference

422 SAP Mobile Platform

• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.

Usage
This constructor creates an exception that results in a "Fatal with message" transaction error.

FatalTransactionException(String, String, String, Throwable) constructor
Constructs a new FatalTransactionException object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionException (String title , String text ,
String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

Usage
This constructor creates an exception that results in a "Fatal with message" transaction error.

FatalTransactionExceptionStop class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
in a way that cannot be corrected or recovered from.

Syntax
public class FatalTransactionExceptionStop extends
AgentryException

Members
All members of FatalTransactionExceptionStop, including inherited members. Constructors

Modifier and Type Constructor Description

public FatalTransactionException-
Stop(String, String, String) on
page 424

Constructs a new FatalTransac-
tionExceptionStop object that
will cause an error notification
window to appear on the client.

Agentry Language Reference

Agentry Language Reference 423

Modifier and Type Constructor Description

public FatalTransactionException-
Stop(String, String, String,
Throwable) on page 425

Constructs a new FatalTransac-
tionExceptionStop object that
will cause an error notification
window to appear on the client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
It will remove the transaction from the client and save it to the failed transactions queue on the
Agentry Server. It will display an error notification window to the client user. The tranmit will
always be stopped (the user will not be given the choice to stop)

FatalTransactionExceptionStop(String, String, String) constructor
Constructs a new FatalTransactionExceptionStop object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionExceptionStop (String title , String text ,
String okLabel)

Agentry Language Reference

424 SAP Mobile Platform

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.

Usage
This constructor creates an exception that results in a "Fatal with message, always stop"
transaction error.

FatalTransactionExceptionStop(String, String, String, Throwable) constructor
Constructs a new FatalTransactionExceptionStop object that will cause an error notification
window to appear on the client.

Syntax
public FatalTransactionExceptionStop (String title , String text ,
String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

Usage
This constructor creates an exception that results in a "Fatal with message, always stop"
transaction error.

FetchSession class
The FetchSession class encapsulates the processing involved in a fetch.

Syntax
public class FetchSession extends Session

Members
All members of FetchSession, including inherited members. Constructors

Modifier and Type Constructor Description

public FetchSession(String, Server,
SessionData, User) on page
428

Construct a new session.

Methods

Agentry Language Reference

Agentry Language Reference 425

Modifier and Type Method Description

public void beginClientExchange() on page
428

This method is called by the
server prior to the "Client Ex-
change Steps" within the fetch
are executed.

public void beginFetchObjectRead() on
page 428

This method is called by the
server prior to the execution of
the "Object Read Steps" for the
fetch.

public void beginFetchRemoval() on page
429

This method is called by the
server prior to the "Removal
Steps" within the fetch are exe-
cuted.

public void beginServerExchange() on
page 429

This method is called by the
server prior to the "Server Ex-
change Steps" within the fetch
are executed.

public void endClientExchange() on page
429

This method is called after the
"Client Exchange Steps" for the
fetch have been successfully
completed.

public void endFetchObjectRead() on page
429

This method is called after the
"Object Read Steps" for the
fetch have been successfully
completed.

public void endFetchRemoval() on page
430

This method is called after the
"Removal Steps" for the fetch
have been successfully comple-
ted.

public void endServerExchange() on page
430

This method is called after the
"Server Exchange Steps" for the
fetch have been successfully
completed.

Inherited members from Session

Agentry Language Reference

426 SAP Mobile Platform

Modifier and Type Member Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page 504 Returns the session data for this
session.

public User getUser() on page 504 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page 504 This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a fetch is the component of the application that defines how data is synchronized with
the back end system. It is made up of steps (which are implemented by the Steplet class in the
Java system connection), each of which perform a specific task related to the synchronization
process. These steps are organized into groups within the fetch for specific areas of the data
synchronization. These areas include the "Object Read", "Client Exchange", "Server
Exchange", and "Removal" steps.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJAPI perform no additional specific
actions. A designer can extend this class if special processing is required before or after each

Agentry Language Reference

Agentry Language Reference 427

of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createFetchSession() method must be overridden to return the
designer implemented subclass of the FetchSession class.

FetchSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public FetchSession (String fetchName , Server server ,
SessionData sessionData , User user)

Parameters

• fetchName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Usage
This constructor is called by the Server.createFetchSession method. Subclasses should
implement a constructor with the same signature as this one.

beginClientExchange() method
This method is called by the server prior to the "Client Exchange Steps" within the fetch are
executed.

Syntax
public void beginClientExchange ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginFetchObjectRead() method
This method is called by the server prior to the execution of the "Object Read Steps" for the
fetch.

Syntax
public void beginFetchObjectRead ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry Language Reference

428 SAP Mobile Platform

beginFetchRemoval() method
This method is called by the server prior to the "Removal Steps" within the fetch are executed.

Syntax
public void beginFetchRemoval ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginServerExchange() method
This method is called by the server prior to the "Server Exchange Steps" within the fetch are
executed.

Syntax
public void beginServerExchange ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endClientExchange() method
This method is called after the "Client Exchange Steps" for the fetch have been successfully
completed.

Syntax
public void endClientExchange ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endFetchObjectRead() method
This method is called after the "Object Read Steps" for the fetch have been successfully
completed.

Syntax
public void endFetchObjectRead ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

Agentry Language Reference

Agentry Language Reference 429

endFetchRemoval() method
This method is called after the "Removal Steps" for the fetch have been successfully
completed.

Syntax
public void endFetchRemoval ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endServerExchange() method
This method is called after the "Server Exchange Steps" for the fetch have been successfully
completed.

Syntax
public void endServerExchange ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

LoginBlockedException class
This exception is thrown from the login methods of the Server class to indicate that the user has
been blocked from accessing this system connection.

Syntax
public class LoginBlockedException extends LoginException

Members
All members of LoginBlockedException, including inherited members. Constructors

Modifier and Type Constructor Description

public LoginBlockedException() on
page 432

Constructs a new LoginBlocke-
dException object.

public LoginBlockedExcep-
tion(String) on page 432

Constructs a new LoginBlocke-
dException object.

public LoginBlockedExcep-
tion(String, Throwable) on page
432

Constructs a new LoginBlocke-
dException object.

Inherited members from LoginException

Agentry Language Reference

430 SAP Mobile Platform

Modifier and Type Member Description

public LoginException() on page 434 Constructs a new login excep-
tion.

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
It indicates that no further logins should be attempted until the problem is corrected. It can be
used, for example, to indicate that the user does not have sufficient privileges to access a
remote system, or that the user's account has been locked out due to too many incorrect
passwords.

Agentry Language Reference

Agentry Language Reference 431

LoginBlockedException() constructor
Constructs a new LoginBlockedException object.

Syntax
public LoginBlockedException ()

Usage
The client will report a default error message.

LoginBlockedException(String) constructor
Constructs a new LoginBlockedException object.

Syntax
public LoginBlockedException (String message)

Parameters

• message – The error message, which will be displayed on the client.

LoginBlockedException(String, Throwable) constructor
Constructs a new LoginBlockedException object.

Syntax
public LoginBlockedException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

LoginException class
This is the base class for all login/authentication exceptions.

Syntax
public class LoginException extends AgentryException

Derived classes

• LoginBlockedException on page 430
• LoginSkippedException on page 435
• PasswordExpiredCannotChangeException on page 437
• PasswordExpiredException on page 439

Agentry Language Reference

432 SAP Mobile Platform

• PasswordInvalidException on page 442
• PasswordWarningCannotChangeException on page 444
• PasswordWarningException on page 446

Members
All members of LoginException, including inherited members. Constructors

Modifier and Type Constructor Description

public LoginException() on page 434 Constructs a new login excep-
tion.

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

Agentry Language Reference

Agentry Language Reference 433

Modifier and Type Member Description

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
Subclasses of this exception are thrown from the login methods of the Server class.

If given message text, this class will place the message text into the notificationText
field of AgentryException as well as using it for the exception's message. This is done to make
it easier for the Java Back End to retrieve the unadulterated message text, since the C++
exception wrapper classes sometimes augment the exception's message text.

LoginException() constructor
Constructs a new login exception.

Syntax
public LoginException ()

Usage
The client will report a default error message.

LoginException(String) constructor
Constructs a new login exception with the given error message, which will be passed to the
Agentry client.

Syntax
public LoginException (String message)

Parameters

• message – The error message.

LoginException(String, Throwable) constructor
Constructs a new login exception with the given error message, which will be passed to the
Agentry client.

Syntax
public LoginException (String message , Throwable cause)

Parameters

• message – The error message.
• cause – The underlying exception that triggered this exception.

Agentry Language Reference

434 SAP Mobile Platform

LoginSkippedException class
This exception can be thrown from the login methods of the Server class to indicate that the
system connection is not authenticating the user at all, and that some other system connection
must be relied upon to perform the authentication.

Syntax
public class LoginSkippedException extends LoginException

Members
All members of LoginSkippedException, including inherited members. Constructors

Modifier and Type Constructor Description

public LoginSkippedException() on
page 436

Constructs a new LoginSkippe-
dException object.

public LoginSkippedExcep-
tion(String) on page 436

Constructs a new LoginSkippe-
dException object.

public LoginSkippedExcep-
tion(String, Throwable) on page
437

Constructs a new LoginSkippe-
dException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 434 Constructs a new login excep-
tion.

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

Agentry Language Reference

Agentry Language Reference 435

Modifier and Type Member Description

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
It is functionally equivalent to setting the enableAuthentication setting for the Java
System connection (in the Agentry.ini file) to false, except that it can be thrown on a
per-user basis.

LoginSkippedException() constructor
Constructs a new LoginSkippedException object.

Syntax
public LoginSkippedException ()

Usage
The client will report a default error message.

LoginSkippedException(String) constructor
Constructs a new LoginSkippedException object.

Syntax
public LoginSkippedException (String message)

Agentry Language Reference

436 SAP Mobile Platform

Parameters

• message – The error message, which will be displayed on the client.

LoginSkippedException(String, Throwable) constructor
Constructs a new LoginSkippedException object.

Syntax
public LoginSkippedException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordExpiredCannotChangeException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password has expired, and that this system connection does not support changing it.

Syntax
public class PasswordExpiredCannotChangeException extends
LoginException

Members
All members of PasswordExpiredCannotChangeException, including inherited members.
Constructors

Modifier and Type Constructor Description

public PasswordExpiredCannotChan-
geException() on page 439

Constructs a new PasswordEx-
piredCannotChangeException
object.

public PasswordExpiredCannotChan-
geException(String) on page
439

Constructs a new LoginBlocke-
dException object.

public PasswordExpiredCannotChan-
geException(String, Throwa-
ble) on page 439

Constructs a new LoginBlocke-
dException object.

Inherited members from LoginException

Agentry Language Reference

Agentry Language Reference 437

Modifier and Type Member Description

public LoginException() on page 434 Constructs a new login excep-
tion.

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
The user will not be allowed to proceed with their transmission until they change their
password via some other means (such as via another system).

Agentry Language Reference

438 SAP Mobile Platform

This exception should be used instead of PasswordExpiredException if the various password-
changing methods of User have not been implemented.

PasswordExpiredCannotChangeException() constructor
Constructs a new PasswordExpiredCannotChangeException object.

Syntax
public PasswordExpiredCannotChangeException ()

Usage
The client will report a default error message.

PasswordExpiredCannotChangeException(String) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredCannotChangeException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordExpiredCannotChangeException(String, Throwable) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredCannotChangeException (String message ,
Throwable cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordExpiredException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password has expired and must be changed before the client's transmission will be
allowed to proceed.

Syntax
public class PasswordExpiredException extends LoginException

Members
All members of PasswordExpiredException, including inherited members. Constructors

Agentry Language Reference

Agentry Language Reference 439

Modifier and Type Constructor Description

public PasswordExpiredException()
on page 441

Constructs a new PasswordEx-
piredException object.

public PasswordExpiredExcep-
tion(String) on page 441

Constructs a new LoginBlocke-
dException object.

public PasswordExpiredExcep-
tion(String, Throwable) on page
441

Constructs a new LoginBlocke-
dException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 434 Constructs a new login excep-
tion.

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Agentry Language Reference

440 SAP Mobile Platform

Modifier and Type Member Description

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
The user will be prompted to enter a new password; if they do, the various password-changing
methods of the User class will be invoked.

PasswordExpiredException() constructor
Constructs a new PasswordExpiredException object.

Syntax
public PasswordExpiredException ()

Usage
The client will report a default error message.

PasswordExpiredException(String) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordExpiredException(String, Throwable) constructor
Constructs a new LoginBlockedException object.

Syntax
public PasswordExpiredException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

Agentry Language Reference

Agentry Language Reference 441

PasswordInvalidException class
This exception can be thrown from the various login methods of the Server class to indicate
that the user's password was wrong.

Syntax
public class PasswordInvalidException extends LoginException

Members
All members of PasswordInvalidException, including inherited members. Constructors

Modifier and Type Constructor Description

public PasswordInvalidException() on
page 443

Constructs a new PasswordIn-
validException object.

public PasswordInvalidExcep-
tion(String) on page 443

Constructs a new PasswordIn-
validException object.

public PasswordInvalidExcep-
tion(String, Throwable) on page
444

Constructs a new PasswordIn-
validException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 434 Constructs a new login excep-
tion.

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

Agentry Language Reference

442 SAP Mobile Platform

Modifier and Type Member Description

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
It can also be used to indicate other transitory authentication failures (such as the remote
system being unreachable).

PasswordInvalidException() constructor
Constructs a new PasswordInvalidException object.

Syntax
public PasswordInvalidException ()

Usage
The client will report a default error message.

PasswordInvalidException(String) constructor
Constructs a new PasswordInvalidException object.

Syntax
public PasswordInvalidException (String message)

Parameters

• message – The error message, which will be displayed on the client.

Agentry Language Reference

Agentry Language Reference 443

PasswordInvalidException(String, Throwable) constructor
Constructs a new PasswordInvalidException object.

Syntax
public PasswordInvalidException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordWarningCannotChangeException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password is going to expire soon, and that this system connection does not support
changing it.

Syntax
public class PasswordWarningCannotChangeException extends
LoginException

Members
All members of PasswordWarningCannotChangeException, including inherited members.
Constructors

Modifier and Type Constructor Description

public PasswordWarningCannotChan-
geException() on page 446

Constructs a new PasswordWar-
ningCannotChangeException
object.

public PasswordWarningCannotChan-
geException(String) on page
446

Constructs a new PasswordWar-
ningCannotChangeException
object.

public PasswordWarningCannotChan-
geException(String, Throwa-
ble) on page 446

Constructs a new PasswordWar-
ningCannotChangeException
object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 434 Constructs a new login excep-
tion.

Agentry Language Reference

444 SAP Mobile Platform

Modifier and Type Member Description

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
The user will not be allowed to proceed with their transmission until they change their
password via some other means (such as via another system).

This exception should be used instead of PasswordWarningException if the various password-
changing methods of User have not been implemented.

Agentry Language Reference

Agentry Language Reference 445

PasswordWarningCannotChangeException() constructor
Constructs a new PasswordWarningCannotChangeException object.

Syntax
public PasswordWarningCannotChangeException ()

Usage
The client will report a default error message.

PasswordWarningCannotChangeException(String) constructor
Constructs a new PasswordWarningCannotChangeException object.

Syntax
public PasswordWarningCannotChangeException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordWarningCannotChangeException(String, Throwable) constructor
Constructs a new PasswordWarningCannotChangeException object.

Syntax
public PasswordWarningCannotChangeException (String message ,
Throwable cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

PasswordWarningException class
This exception can be thrown from the login methods of the Server class to indicate that the
user's password is going to expire soon.

Syntax
public class PasswordWarningException extends LoginException

Members
All members of PasswordWarningException, including inherited members. Constructors

Agentry Language Reference

446 SAP Mobile Platform

Modifier and Type Constructor Description

public PasswordWarningException()
on page 448

Constructs a new PasswordWar-
ningException object.

public PasswordWarningExcep-
tion(String) on page 448

Constructs a new PasswordWar-
ningException object.

public PasswordWarningExcep-
tion(String, Throwable) on page
448

Constructs a new PasswordWar-
ningException object.

Inherited members from LoginException

Modifier and Type Member Description

public LoginException() on page 434 Constructs a new login excep-
tion.

public LoginException(String) on
page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

public LoginException(String, Throw-
able) on page 434

Constructs a new login excep-
tion with the given error mes-
sage, which will be passed to the
Agentry client.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Agentry Language Reference

Agentry Language Reference 447

Modifier and Type Member Description

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
The user will be given the opportunity to change their password in response to this exception;
if they do, the various password-changing methods of the User class will be invoked.

PasswordWarningException() constructor
Constructs a new PasswordWarningException object.

Syntax
public PasswordWarningException ()

Usage
The client will report a default error message.

PasswordWarningException(String) constructor
Constructs a new PasswordWarningException object.

Syntax
public PasswordWarningException (String message)

Parameters

• message – The error message, which will be displayed on the client.

PasswordWarningException(String, Throwable) constructor
Constructs a new PasswordWarningException object.

Syntax
public PasswordWarningException (String message , Throwable
cause)

Parameters

• message – The error message, which will be displayed on the client.
• cause – The exception that triggered this exception.

Agentry Language Reference

448 SAP Mobile Platform

PushSession class
The PushSession class encapsulates the user-independent part of the processing involved in a
push within an Agentry-based application.

Syntax
public class PushSession extends Session

Members
All members of PushSession, including inherited members. Constructors

Modifier and Type Constructor Description

public PushSession(String, Server,
SessionData) on page 452

Construct a new session.

Methods

Modifier and Type Method Description

public final void beginPushError() on page 452 Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

public void beginPushReadStep() on page
453

This method is called by the
server prior to the execution of
the "Object Read" steps for the
push.

public void beginPushRemoval() on page
453

This method is called by the
server prior to the execution of
the "Removal" steps for the
push.

Agentry Language Reference

Agentry Language Reference 449

Modifier and Type Method Description

public final void beginPushResponse() on page
453

Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

public void beginPushRetrieval() on page
454

This method is called by the
server prior to the execution of
the "Retrieval" steps for the
push.

public final void endPushError() on page 454 Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

public void endPushReadStep() on page
454

This method is called by the
server after the "Object Read"
Steps for the push have been
successfully executed.

public void endPushRemoval() on page
455

This method is called by the
server after the "Removal" steps
for the push have been success-
fully executed.

public final void endPushResponse() on page
455

Deprecated. As of Agentry
5.2.8, code for this method
should be moved into a subclass
of PushUserSession. This meth-
od is no longer supported; it is
here as a final declaration in or-
der to force subclasses to be
converted over to using PushU-
serSession.

Agentry Language Reference

450 SAP Mobile Platform

Modifier and Type Method Description

public void endPushRetrieval() on page
455

This method is called by the
server after the "Retrieval" steps
for the push have been success-
fully executed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page 504 Returns the session data for this
session.

public User getUser() on page 504 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page 504 This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a push is an application component that defines the transfer of data between the client
and the server. Unlike fetches, the transfer within a push is initiated by the server, rather than

Agentry Language Reference

Agentry Language Reference 451

the client. A push is made up of steps, grouped in varying categories. The steps in each of these
groups are run separately. The groups are "Retrieval", "Removal", "Object Read", "Response"
and "Error"; this class handles the "Retrieval", "Removal", and "Object Read" step groups, as
those are independent of users. The remaining groups, "Response" and "Error", are user-
dependent and are handled by the PushUserSession class.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJAPI perform no additional specific
actions. A designer can extend this class if special processing is required before or after each
of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createPushSession method must be overridden to return the new
subclass.

PushSession(String, Server, SessionData) constructor
Construct a new session.

Syntax
public PushSession (String pushName , Server server , SessionData
sessionData)

Parameters

• pushName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.

Usage
This constructor is called by the Server.createPushSession method. Subclasses should
implement a constructor with the same signature as this one.

beginPushError() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void beginPushError ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

Agentry Language Reference

452 SAP Mobile Platform

beginPushReadStep() method
This method is called by the server prior to the execution of the "Object Read" steps for the
push.

Syntax
public void beginPushReadStep () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the object read steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginPushRemoval() method
This method is called by the server prior to the execution of the "Removal" steps for the push.

Syntax
public void beginPushRemoval () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the removal steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginPushResponse() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void beginPushResponse ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

Agentry Language Reference

Agentry Language Reference 453

beginPushRetrieval() method
This method is called by the server prior to the execution of the "Retrieval" steps for the push.

Syntax
public void beginPushRetrieval () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the retrieval steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endPushError() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void endPushError ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

endPushReadStep() method
This method is called by the server after the "Object Read" Steps for the push have been
successfully executed.

Syntax
public void endPushReadStep ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry Language Reference

454 SAP Mobile Platform

endPushRemoval() method
This method is called by the server after the "Removal" steps for the push have been
successfully executed.

Syntax
public void endPushRemoval ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endPushResponse() method [deprecated]
Deprecated. As of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession. This method is no longer supported; it is here as a final declaration in order
to force subclasses to be converted over to using PushUserSession.

Syntax
public final void endPushResponse ()

Usage
DeprecatedAs of Agentry 5.2.8, code for this method should be moved into a subclass of
PushUserSession.

endPushRetrieval() method
This method is called by the server after the "Retrieval" steps for the push have been
successfully executed.

Syntax
public void endPushRetrieval ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

PushUserSession class
The PushSession class encapsulates the user-independent part of the processing involved in a
push within an Agentry-based application.

Syntax
public class PushUserSession extends Session

Members
All members of PushUserSession, including inherited members. Constructors

Agentry Language Reference

Agentry Language Reference 455

Modifier and Type Constructor Description

public PushUserSession(String, Serv-
er, SessionData, User) on page
458

Construct a new session.

Methods

Modifier and Type Method Description

public void beginDisablePush() on page
459

This method is called by the
server prior to disabling a user
push on any of the system con-
nections.

public void beginEnablePush() on page
459

This method is called by the
server prior to enabling a user
push on any of the system con-
nections.

public void beginPushError() on page 459 This method is called by the
server prior to the execution of
the "Error Steps" for the push.

public void beginPushResponse() on page
460

This method is called by the
server prior to the execution of
the "Response Steps" for the
push.

public void disablePush() on page 460 This method is called when a
user requests that a push be dis-
abled on their behalf.

public void enablePush() on page 460 This method is called when a
user requests that a push be en-
abled on their behalf.

public void endDisablePush() on page 460 This method is called after a
user push has been disabled on
all of the system connections.

public void endEnablePush() on page 461 This method is called after a
user push has been enabled on
all of the system connections.

Agentry Language Reference

456 SAP Mobile Platform

Modifier and Type Method Description

public void endPushError() on page 461 This method is called by the
server after the "Error Steps" for
the push have been successfully
executed.

public void endPushResponse() on page
461

This method is called by the
server after the "Response
Steps" for the push have been
successfully executed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page 504 Returns the session data for this
session.

public User getUser() on page 504 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

Agentry Language Reference

Agentry Language Reference 457

Modifier and Type Member Description

public void sessionAborted() on page 504 This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a push is an application component that defines the transfer of data between the client
and the server. Unlike fetches, the transfer within a push is initiated by the server, rather than
the client. A push is made up of steps, grouped in varying categories. The steps in each of these
groups are run separately. The groups are "Retrieval", "Removal", "Object Read", "Response"
and "Error"; this class handles the "Response" and "Error" groups, which are user-dependent.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJ-API perform no additional specific
actions. A designer can extend this class if special processing is required before or after each
of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createPushUserSession method must be overridden to return the new
subclass.

This class also provides methods for notifying the Agentry server when it should enable or
disable push events for a particular user.

PushUserSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public PushUserSession (String pushName , Server server ,
SessionData sessionData , User user)

Parameters

• pushName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Usage
This constructor is called by the Server.createPushUserSession method. Subclasses should
implement a constructor with the same signature as this one.

Agentry Language Reference

458 SAP Mobile Platform

beginDisablePush() method
This method is called by the server prior to disabling a user push on any of the system
connections.

Syntax
public void beginDisablePush () throws AgentryException

Exceptions

• AgentryException class – to block disabling of the user push.

Usage
It can be used to start a remote transaction.

beginEnablePush() method
This method is called by the server prior to enabling a user push on any of the system
connections.

Syntax
public void beginEnablePush () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

Usage
It can be used to start a remote transaction.

beginPushError() method
This method is called by the server prior to the execution of the "Error Steps" for the push.

Syntax
public void beginPushError () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the response steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry Language Reference

Agentry Language Reference 459

beginPushResponse() method
This method is called by the server prior to the execution of the "Response Steps" for the
push.

Syntax
public void beginPushResponse () throws AgentryException

Exceptions

• AgentryException class – if the push should be aborted for some reason. Throwing an
exception from this method will prevent the response steps from being executed on other
system connections as well, and will cause sessionAborted to be invoked.

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

disablePush() method
This method is called when a user requests that a push be disabled on their behalf.

Syntax
public void disablePush () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

enablePush() method
This method is called when a user requests that a push be enabled on their behalf.

Syntax
public void enablePush () throws AgentryException

Exceptions

• AgentryException class – if an error occurs.

endDisablePush() method
This method is called after a user push has been disabled on all of the system connections.

Syntax
public void endDisablePush ()

Usage
It can be used to commit a remote transaction. It cannot fail.

Agentry Language Reference

460 SAP Mobile Platform

endEnablePush() method
This method is called after a user push has been enabled on all of the system connections.

Syntax
public void endEnablePush ()

Usage
It can be used to commit a remote transaction. It cannot fail.

endPushError() method
This method is called by the server after the "Error Steps" for the push have been successfully
executed.

Syntax
public void endPushError ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endPushResponse() method
This method is called by the server after the "Response Steps" for the push have been
successfully executed.

Syntax
public void endPushResponse ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

RetryTransactionException class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
temporarily, and that it should be retried by the client.

Syntax
public class RetryTransactionException extends
AgentryException

Members
All members of RetryTransactionException, including inherited members. Constructors

Agentry Language Reference

Agentry Language Reference 461

Modifier and Type Constructor Description

public RetryTransactionExcep-
tion(String, String, String) on
page 463

Constructs a new RetryTransac-
tionException object.

public RetryTransactionExcep-
tion(String, String, String,
Throwable) on page 463

Constructs a new RetryTransac-
tionException object.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
The client will resend the transaction immediately, and if it fails a second time then the
transaction will be marked as fatal.

This exception is equivalent to the "Retry Without Change" transaction error fatality.

Agentry Language Reference

462 SAP Mobile Platform

RetryTransactionException(String, String, String) constructor
Constructs a new RetryTransactionException object.

Syntax
public RetryTransactionException (String title , String
notification , String okButtonLabel)

Parameters

• title – The window title for the notification displayed on the client.
• notification – The window text for the notification displayed on the client.
• okButtonLabel – The label for the acknowledgment button in the client's notification

window.

RetryTransactionException(String, String, String, Throwable) constructor
Constructs a new RetryTransactionException object.

Syntax
public RetryTransactionException (String title , String text ,
String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

RetryTransactionWithChangeException class
This exception can be thrown from a transactional Steplet to indicate that the transaction failed
in a correctable manner, and that it should be retried by the client after prompting the user to
make changes to the transaction.

Syntax
public class RetryTransactionWithChangeException extends
AgentryException

Members
All members of RetryTransactionWithChangeException, including inherited members.
Constructors

Agentry Language Reference

Agentry Language Reference 463

Modifier and Type Constructor Description

public RetryTransactionWithChan-
geException(String, String,
String) on page 465

Constructs a new RetryTransac-
tionWithChangeException ob-
ject.

public RetryTransactionWithChan-
geException(String, String,
String, Throwable) on page
465

Constructs a new RetryTransac-
tionWithChangeException ob-
ject.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
This exception is equivalent to the "Retry With Change" transaction error fatality.

Agentry Language Reference

464 SAP Mobile Platform

RetryTransactionWithChangeException(String, String, String) constructor
Constructs a new RetryTransactionWithChangeException object.

Syntax
public RetryTransactionWithChangeException (String title ,
String text , String okLabel)

Parameters

• title – The window title for the notification displayed on the client.
• text – The text for the notification window displayed on the client, which should describe

to the user what changes they need to make in order for the transaction to succeed.
• okLabel – The label for the acknowledgment button in the client's notification window.

RetryTransactionWithChangeException(String, String, String, Throwable)
constructor
Constructs a new RetryTransactionWithChangeException object.

Syntax
public RetryTransactionWithChangeException (String title ,
String text , String okLabel , Throwable cause)

Parameters

• title – The window title for the error displayed on the client.
• text – The window text for the error displayed on the client.
• okLabel – The label for the acknowledgment button in the client's error window.
• cause – The causing exception

Server class
The Server Java class is intended to encapsulate the Java system connection within the
Agentry Server.

Syntax
public class Server extends AgentryJavaBackEndManagedObject

Members
All members of Server, including inherited members. Constructors

Modifier and Type Constructor Description

public Server() on page 476 Constructs a new Server object.

Methods

Agentry Language Reference

Agentry Language Reference 465

Modifier and Type Method Description

public ComplexTableSession createComplexTableSes-
sion(String, SessionData, User)
on page 476

Factory method that creates a
new ComplexTableSession ob-
ject.

public DataTableSession createDataTableSession(String,
SessionData, User) on page
477

Factory method that creates a
new DataTableSession object.

public final FetchSession createFetchSession(String,
Server, SessionData, User) on
page 478

Deprecated. Use createFetch-
Session(String, SessionData,
User) (i.e. remove the Server ar-
gument). This method is no lon-
ger supported; override create-
FetchSession(String, Session-
Data, User) instead.

public FetchSession createFetchSession(String, Ses-
sionData, User) on page 478

Factory method that creates a
new FetchSession object.

public final FetchSession createPushSession(String,
Server, SessionData) on page
479

Deprecated. Use createPush-
Session(String, SessionData)
(i.e. remove the Server argu-
ment). This method is no longer
supported; override createPush-
Session(String, SessionData)
instead.

public PushSession createPushSession(String, Ses-
sionData) on page 479

Factory method that creates a
new PushSession object for a
push session that is not tied to a
specific user.

public final FetchSession createPushUserSession(String,
Server, SessionData, User) on
page 480

Deprecated. Use createPushU-
serSession(String, SessionData,
User) (i.e. remove the Server ar-
gument). This method is no lon-
ger supported; override create-
PushUserSession(String, Ses-
sionData, User) instead.

public PushUserSession createPushUserSession(String,
SessionData, User) on page
480

Factory method that creates a
new PushUserSession object for
a push session.

Agentry Language Reference

466 SAP Mobile Platform

Modifier and Type Method Description

public final ServiceEventSes-
sion

createServiceEventSes-
sion(String, Server, SessionDa-
ta) on page 481

Deprecated. Use createServi-
ceEventSession(String, Ses-
sionData) (i.e. remove the Serv-
er argument). This method is no
longer supported; override cre-
ateServiceEventSession(String,
SessionData) instead.

public ServiceEventSession createServiceEventSes-
sion(String, SessionData) on
page 482

Factory method that creates a
new ServiceEventSession ob-
ject.

public final FetchSession createTransactionSes-
sion(String, Server, SessionDa-
ta, User) on page 482

Deprecated. Use createTransac-
tionSession(String, SessionDa-
ta, User) (i.e. remove the Server
argument). This method is no
longer supported; override cre-
ateTransactionSession(String,
SessionData, User) instead.

public TransactionSession createTransactionSes-
sion(String, SessionData, User)
on page 483

Factory method that creates a
new TransactionSession object.

public final User createUser(String, int) on page
483

Deprecated. Use createUs-
er(String) instead. This method
is no longer supported; override
createUser(String) instead.

public User createUser(String) on page
484

Factory method that creates a
new User object.

public final void debug(String) on page 484 Writes a debug message to the
Agentry Server's Java System
Connection log file.

public final String decryptPassword(String) on
page 485

Decodes a password that has
been encoded via Agentry's
quickPW utility.

public File findConfigurationFile(String)
on page 485

Locates a configuration file in
the Agentry application's de-
ployment returns a.

Agentry Language Reference

Agentry Language Reference 467

Modifier and Type Method Description

public static final String getImplementationVersion() on
page 485

Retrieves the implementation
version of the AJAPI release
that this Server class is from.

public static Server getInstance() on page 486 Return the singleton instance of
this class.

public static final String getSpecificationVersion() on
page 486

Retrieves the specification ver-
sion of the AJAPI that this Serv-
er implements.

public String getTimeZone() on page 486 This is called by the Agentry
server to find out what time zone
is being used by whatever re-
mote server this implementa-
tion is communicating with.

public LoginEnumeration login(String, String, Session-
Data) on page 487

Deprecated. Override log-
in(User, String, SessionData)
instead. This method is called
when a user initially connects to
the Agentry Server from a client
application and that server's sys-
tem connection's enableAu-
thentication option is set to true
in the Agentry.ini file.

public void login(User, String, SessionDa-
ta) on page 487

This method authenticates a cli-
ent user against the Java System
Connection.

Agentry Language Reference

468 SAP Mobile Platform

Modifier and Type Method Description

public LoginEnumeration loginBlocked(String, String-
Buffer) on page 488

Deprecated. Override logi-
nBlocked(User, String, String-
Buffer, SessionData) instead.
This method is called by the
Agentry Server when authenti-
cation of a client user is blocked,
either because this class re-
turned a blocked login from the
login(String, String, Session-
Data) or loginPreviousUs-
er(String, String, SessionData)
methods, or because another
system connection blocked the
login.

public void loginBlocked(User, StringBuff-
er, SessionData) on page 489

Deprecated. Override logi-
nBlocked(User, String, String-
Buffer, SessionData) instead.
This method is called by the
Agentry Server when authenti-
cation of a client user is blocked,
either because this class threw
LoginBlockedException from
the login, loginPreviousUser, or
loginFailed methods, or be-
cause another system connec-
tion blocked the login.

public void loginBlocked(User, String,
StringBuffer, SessionData) on
page 489

This method is called by the
Agentry Server when authenti-
cation of a client user is blocked,
either because this class threw
LoginBlockedException from
the login, loginPreviousUser, or
loginFailed methods, or be-
cause another system connec-
tion blocked the login.

Agentry Language Reference

Agentry Language Reference 469

Modifier and Type Method Description

public LoginEnumeration loginFailed(String, StringBuff-
er) on page 490

Deprecated. Override logi-
nFailed(User, String, LoginFai-
lureReason, StringBuffer, Ses-
sionData) instead. This method
is called by the Agentry Server
when authentication of a client
user fails, either because this
class returned a failed login
from the login or loginPreviou-
sUser methods, or because an-
other system connection failed
the login.

public void loginFailed(User, String, Logi-
nFailureReason, StringBuffer,
SessionData) on page 491

This method is called by the
Agentry Server when authenti-
cation of a client user fails, ei-
ther because this class threw
PasswordInvalidException
from the login or loginPreviou-
sUser methods, or because an-
other system connection repor-
ted a login failure.

public LoginEnumeration loginPreviousUser(String,
String, SessionData) on page
492

Deprecated. Override loginPre-
viousUser(User, String, Ses-
sionData) instead. This method
is called when a user has previ-
ously logged into Agentry suc-
cessfully, and is now logging in
again due to having been dis-
connected.

public void loginPreviousUser(User,
String, SessionData) on page
492

This method is called when a
user has previously logged into
Agentry successfully, and is
now logging in again due to
having been disconnected.

final void setDebugEnabled(boolean) on
page 493

Deprecated. This is only here
because the Agentry server will
call it. Setter method called by
the Agentry server to enable/
disable debugging.

Agentry Language Reference

470 SAP Mobile Platform

Modifier and Type Method Description

public void shutdown() on page 493 This method is called by the
Agentry Server when the Java
system connection is being shut
down.

public void startup() on page 493 This method is called by the
Agentry Server when the Java
system connection starts up and
creates an instance of this class;
it is called immediately after the
class is constructed.

Usage
The bulk of the methods within this class are factory methods for various other object types. If
the designer overrides one of the classes constructed by these factory methods, a subclass of
the Server class must also be created. This implementation must override the appropriate
factory methods to construct objects of the appropriate type.

In addition to these factory methods, there are also methods related to login and logout, server
startup and shutdown, and debugging. By default, these methods perform no application-
related processing; they merely print a message to the debug log indicating that these events
have or are about to occur. If additional processing is required for an application, these
methods should be overridden in a subclass of the Server class.

When an Agentry Server with a Java System Connection is started, the server will construct a
singleton instance of the Server class or a subclass of it, as specified by the serverClass
setting in the Java system connection section of the Agentry.ini file. This Server object
will persist until the Agentry Server is shutdown. If the designer has implemented an
extension of the Server class, this new class must be named in the serverClass option in
the Agentry.ini file in the section containing the configuration options for the Java
Interface system connection.

Note, the constructor is public even though this class is a singleton. This is mainly for legacy
reasons: the Agentry.ini file names a subclass of this class instead of naming a factory
class, and we kept it that way rather than changing it to take a factory class name to maintain
compatibility with AJAPI version 4 (since the server supports both versions of the AJAPI).

As such, in this version of the AJAPI, this class is not a strict singleton, although it should be
treated as such. Applications should not try to create another instance of it, although it is
acceptable (since it is hard to avoid) to do so in unit tests.

Eventually, this class will likely become a true singleton and the Agentry server will adopt the
factory pattern to instantiate it, so you may wish to do so now in unit tests using a factory
similar to:

Agentry Language Reference

Agentry Language Reference 471

public class ServerFactory
{
 private static class LazyHolder
 {
 private static final Server _instance = new Server();
 }

 public static Server getServerInstance()
 {
 return LazyHolder._instance;
 }
}

(Note, this example follows the "Initialization on Demand Holder" pattern; see this article on
Wikipedia for information on how/why it works.)

Server.LoginEnumeration enum
Deprecated. These constants are only used by the deprecated login methods. New code should
be fixed to use the new exception-based login methods. Return values for the login method.

Members
All members of LoginEnumeration, including inherited members. Variables

Modifier and Type Variable Description

public Login_Invalid on page 473 Indicates that the login and
password are not valid for any
user profile on the system or that
the login attempt failed for some
reason other than the user being
blocked, or the user having an
expired password.

public Login_InvalidBlocked on page
474

Indicates that the user has been
blocked from accessing the re-
mote system.

public Login_Pass on page 474 Indicates that the user was not
validated by the system connec-
tion.

public Login_Valid on page 474 Indicates that the user ID and
password are valid and that the
user should be allowed to pro-
ceed with their transmission to
the Agentry Server.

Agentry Language Reference

472 SAP Mobile Platform

http://en.wikipedia.org/wiki/Initialization_on_demand_holder_idiom
http://en.wikipedia.org/wiki/Initialization_on_demand_holder_idiom

Modifier and Type Variable Description

public Login_ValidPasswordExpired
on page 474

Indicates that the user ID is valid
but that the password has ex-
pired.

public Login_ValidPasswordExpired-
NoChange on page 474

Indicates that the user ID is val-
id, but that the password has ex-
pired.

public Login_ValidPasswordWarning
on page 475

Indicates that user ID and pass-
word values are valid, but that
the password will be expiring in
the near future.

public Login_ValidPasswordWarning-
NoChange on page 475

Indicates that the user ID and
password values are valid, but
that the password will be expir-
ing in the near future.

Methods

Modifier and Type Method Description

public void throwException() on page 473 Throws an exception that corre-
sponds to this enum value.

throwException() method
Throws an exception that corresponds to this enum value.

Syntax
public void throwException () throws LoginException

Exceptions

• LoginException class – the exception that corresponds to this enum.

Login_Invalid variable
Indicates that the login and password are not valid for any user profile on the system or that the
login attempt failed for some reason other than the user being blocked, or the user having an
expired password.

Syntax
public Login_Invalid

Agentry Language Reference

Agentry Language Reference 473

Login_InvalidBlocked variable
Indicates that the user has been blocked from accessing the remote system.

Syntax
public Login_InvalidBlocked

Login_Pass variable
Indicates that the user was not validated by the system connection.

Syntax
public Login_Pass

Usage
Another system connection must validate the user before the user will be allowed to access the
Agentry Server from the client application. Returning this value has the same effect as setting
enableAuthentication to false in the Java section of Agentry.ini, except that it
can be used on a per-user basis.

Login_Valid variable
Indicates that the user ID and password are valid and that the user should be allowed to proceed
with their transmission to the Agentry Server.

Syntax
public Login_Valid

Login_ValidPasswordExpired variable
Indicates that the user ID is valid but that the password has expired.

Syntax
public Login_ValidPasswordExpired

Usage
The user will be prompted to change their password on the client application before being
allowed to proceed with the transmission.

Login_ValidPasswordExpiredNoChange variable
Indicates that the user ID is valid, but that the password has expired.

Syntax
public Login_ValidPasswordExpiredNoChange

Agentry Language Reference

474 SAP Mobile Platform

Usage
The user will not be allowed to change the password from within the Agentry-based
application and will not be allowed to proceed with their transmission until the password has
been updated.

Login_ValidPasswordWarning variable
Indicates that user ID and password values are valid, but that the password will be expiring in
the near future.

Syntax
public Login_ValidPasswordWarning

Usage
The user will be prompted to change his or her password on the client application, but can
bypass the change and still be allowed to proceed with the transmission to the Agentry Server.

Login_ValidPasswordWarningNoChange variable
Indicates that the user ID and password values are valid, but that the password will be expiring
in the near future.

Syntax
public Login_ValidPasswordWarningNoChange

Usage
The user will be notified that their password is near its expiration, but will not be allowed to
modify the password value from within the Agentry-based application.

Server.LoginFailureReason enum
These are used in loginFailed to indicate the reason why a login failed.

Members
All members of LoginFailureReason, including inherited members. Variables

Modifier and Type Variable Description

public NoBackEndsAuthenticated on
page 476

Indicates that the login failed
because no back-ends were con-
figured to authenticate.

public PasswordExpiredCannotCh-
ange on page 476

Indicates that the login failed
because a password was expired
and Agentry cannot change it.

Agentry Language Reference

Agentry Language Reference 475

Modifier and Type Variable Description

public PasswordInvalid on page 476 Indicates that the login failed
due to an invalid password.

NoBackEndsAuthenticated variable
Indicates that the login failed because no back-ends were configured to authenticate.

Syntax
public NoBackEndsAuthenticated

PasswordExpiredCannotChange variable
Indicates that the login failed because a password was expired and Agentry cannot change it.

Syntax
public PasswordExpiredCannotChange

PasswordInvalid variable
Indicates that the login failed due to an invalid password.

Syntax
public PasswordInvalid

Server() constructor
Constructs a new Server object.

Syntax
public Server ()

Usage
This constructor is called by the Agentry server when the Java Interface system connection is
started.

See the main class documentation for notes on why this constructor is public even though this
class is a singleton.

createComplexTableSession(String, SessionData, User) method
Factory method that creates a new ComplexTableSession object.

Syntax
public ComplexTableSession createComplexTableSession (String
tableName , SessionData sessionData , User user)

Agentry Language Reference

476 SAP Mobile Platform

Parameters

• tableName – The name of the complex table being processed, as configured by the
designer in the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is retrieving the complex table.

Returns
A new ComplexTableSession object.

Usage
This method is called by the Agentry Server whenever a complex table synchronization is to
be processed. If the ComplexTableSession class is extended, then this method must be
overridden to return the new subclass.

createDataTableSession(String, SessionData, User) method
Factory method that creates a new DataTableSession object.

Syntax
public DataTableSession createDataTableSession (String
tableName , SessionData sessionData , User user)

Parameters

• tableName – The name of the data table being processed, as configured by the designer in
the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is retrieving the complex table.

Returns
A new DataTableSession object.

Usage
This method is called by the Agentry Server whenever a data table retrieval is to be processed.
If the DataTableSession class is extended, then this method must be overridden to return the
new subclass.

Agentry Language Reference

Agentry Language Reference 477

createFetchSession(String, Server, SessionData, User) method [deprecated]
Deprecated. Use createFetchSession(String, SessionData, User) (i.e. remove the Server
argument). This method is no longer supported; override createFetchSession(String,
SessionData, User) instead.

Syntax
public final FetchSession createFetchSession (String name ,
Server server , SessionData data , User user)

Parameters

• name – not used
• server – not used
• data – not used
• user – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createFetchSession(String, SessionData, User) method
Factory method that creates a new FetchSession object.

Syntax
public FetchSession createFetchSession (String fetchName ,
SessionData sessionData , User user)

Parameters

• fetchName – The name of the fetch being processed, as configured by the designer in the
Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is performing the fetch.

Returns
A new FetchSession object.

Agentry Language Reference

478 SAP Mobile Platform

Usage
It is called by the Agentry Server whenever a fetch is requested by the client application. If the
FetchSession class is extended, then this method must be overridden to return the new
subclass.

createPushSession(String, Server, SessionData) method [deprecated]
Deprecated. Use createPushSession(String, SessionData) (i.e. remove the Server argument).
This method is no longer supported; override createPushSession(String, SessionData)
instead.

Syntax
public final FetchSession createPushSession (String name ,
Server server , SessionData data)

Parameters

• name – not used
• server – not used
• data – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createPushSession(String, SessionData) method
Factory method that creates a new PushSession object for a push session that is not tied to a
specific user.

Syntax
public PushSession createPushSession (String pushName ,
SessionData sessionData)

Parameters

• pushName – The name of the push being processed, as configured by the designer in the
Agentry Editor.

Agentry Language Reference

Agentry Language Reference 479

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

Returns
A new PushSession object.

Usage
It is called by the Agentry Server whenever a push is being processed by the server. If the
PushSession class is extended, then this method must be overridden to return the new subclass.

createPushUserSession(String, Server, SessionData, User) method [deprecated]
Deprecated. Use createPushUserSession(String, SessionData, User) (i.e. remove the Server
argument). This method is no longer supported; override createPushUserSession(String,
SessionData, User) instead.

Syntax
public final FetchSession createPushUserSession (String name ,
Server server , SessionData data , User user)

Parameters

• name – not used
• server – not used
• data – not used
• user – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createPushUserSession(String, SessionData, User) method
Factory method that creates a new PushUserSession object for a push session.

Syntax
public PushUserSession createPushUserSession (String pushName ,
SessionData sessionData , User user)

Agentry Language Reference

480 SAP Mobile Platform

Parameters

• pushName – The name of the push being processed, as configured by the designer in the
Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is performing the push.

Returns
A new PushUserSession object.

Usage
It is called by the Agentry Server whenever the user-specific steps of a push are being
processed by the server. If the PushUserSession class is extended, then this method must be
overridden to return the new subclass.

createServiceEventSession(String, Server, SessionData) method [deprecated]
Deprecated. Use createServiceEventSession(String, SessionData) (i.e. remove the Server
argument). This method is no longer supported; override createServiceEventSession(String,
SessionData) instead.

Syntax
public final ServiceEventSession createServiceEventSession
(String serviceName , Server server , SessionData sessionData)

Parameters

• serviceName – not used
• server – not used
• sessionData – not used

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

Agentry Language Reference

Agentry Language Reference 481

createServiceEventSession(String, SessionData) method
Factory method that creates a new ServiceEventSession object.

Syntax
public ServiceEventSession createServiceEventSession (String
serviceName , SessionData sessionData)

Parameters

• serviceName – The name of the service event being processed, as configured by the
designer in the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

Returns
A new ServiceEventSession object.

Usage
This method is called by the Agentry Server whenever a service event is to be processed. If the
ServiceEventSession class is extended, then this method must be overridden to return the new
subclass.

createTransactionSession(String, Server, SessionData, User) method [deprecated]
Deprecated. Use createTransactionSession(String, SessionData, User) (i.e. remove the Server
argument). This method is no longer supported; override createTransactionSession(String,
SessionData, User) instead.

Syntax
public final FetchSession createTransactionSession (String
name , Server server , SessionData data , User user)

Parameters

• name – not used
• server – not used
• data – not used
• user – not used

Returns
nothing, throws UnsupportedOperationException.

Agentry Language Reference

482 SAP Mobile Platform

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createTransactionSession(String, SessionData, User) method
Factory method that creates a new TransactionSession object.

Syntax
public TransactionSession createTransactionSession (String
transactionName , SessionData sessionData , User user)

Parameters

• transactionName – The name of the transaction being processed, as configured by the
designer in the Agentry Editor.

• sessionData – Provides access to current session data, such as Agentry Server Data
Markup Language (SDML) values.

• user – Represents the client user that is performing the transaction.

Returns
A new TransactionSession object.

Usage
This method is called by the Agentry Server whenever a transaction is to be processed. If the
TransactionSession class is extended, then this method must be overridden to return the new
subclass.

createUser(String, int) method [deprecated]
Deprecated. Use createUser(String) instead. This method is no longer supported; override
createUser(String) instead.

Syntax
public final User createUser (String name , int x)

Parameters

• name – not used
• x – not used

Returns
nothing, throws UnsupportedOperationException.

Agentry Language Reference

Agentry Language Reference 483

Exceptions

• UnsupportedOperationException – to indicate that it is no longer supported.

Usage
This method is only here to cause compilation errors in legacy code, and may be removed in a
future release.

createUser(String) method
Factory method that creates a new User object.

Syntax
public User createUser (String name)

Parameters

• name – The user name value from the Agentry client application.

Returns
A new User object.

Usage
This method is called by the Agentry Server to create objects that represent client users. If a
new subclass of User is created for an application, then this method must be extended to
construct the new subclass.

debug(String) method
Writes a debug message to the Agentry Server's Java System Connection log file.

Syntax
public final void debug (String serverMessage)

Parameters

• serverMessage – The message to log

Usage
This message will only appear in the log file if debug logging is turned on for the Java system
connection.

This method is a convenience method that calls into the Java Logging API to do the actual
logging, and assumes that Agentry's default Java Logging configuration is in place (which will
route log messages back to the Agentry server). It will log to a logger named
"com.syclo.agentry.Server", at the FINE level (which translates to log detail level 3 in
Agentry).

Agentry Language Reference

484 SAP Mobile Platform

When invoked outside of Agentry (e.g. in unit tests), this will log to the console, as that is
Java's normal default logging configuration.

decryptPassword(String) method
Decodes a password that has been encoded via Agentry's quickPW utility.

Syntax
public final String decryptPassword (String password)

Parameters
• password – The encoded password.

Returns
The decoded password.

findConfigurationFile(String) method
Locates a configuration file in the Agentry application's deployment returns a.

Syntax
public File findConfigurationFile (String filename)

Parameters
• filename – the name of the configuration file

Returns
aFile object referencing the file in the correct directory

Usage
File object that can be used to access the file. If the file does not exist, this method will return an
object that can be used to create the file in an appropriate location.

getImplementationVersion() method
Retrieves the implementation version of the AJAPI release that this Server class is from.

Syntax
public static final String getImplementationVersion ()

Returns
The implementation version, which is the same as the full version (including build number) of
the Agentry Server that this class's JAR file came with. This will return the empty string if you
are running out of raw class files and not a released AJAPI JAR.

Usage
This is the same as the version of the Agentry Server that the AJAPI JAR file came with.

Agentry Language Reference

Agentry Language Reference 485

This information is retrieved from the AJAPI JAR manifest file via the Package class.

Note that this does not necessarily reflect the version of the API that this JAR implements; for
example, if this JAR implements version 4 of the AJAPI, but it comes with version 5.0.0.3 of
the Agentry server, this will return 5.0.0.3, not 4! If you want to know the AJAPI version that is
implemented, call getSpecificationVersion() instead.

getInstance() method
Return the singleton instance of this class.

Syntax
public static Server getInstance ()

Returns
the running instance of this class

Usage
Note that this method will not create the server; you have to call the constructor once to do that
(see the constructor docs for the reasons why).

getSpecificationVersion() method
Retrieves the specification version of the AJAPI that this Server implements.

Syntax
public static final String getSpecificationVersion ()

Returns
The AJAPI version that this AJAPI package implements. This will return the empty string if
you are running out of raw class files and not a released AJAPI JAR.

Usage
This will tell you what version of the AJAPI you are using, but not what version of Agentry it
came with; if you want to know the latter, call getImplementationVersion() instead.

getTimeZone() method
This is called by the Agentry server to find out what time zone is being used by whatever
remote server this implementation is communicating with.

Syntax
public String getTimeZone ()

Returns
The timezone name.

Agentry Language Reference

486 SAP Mobile Platform

Usage
This will override the timeZoneName setting in the Agentry.ini file.

If this method returns a name that the Agentry server doesn't recognize (and odds are it won't,
especially on Windows), then it needs to be mapped in the [TimeZoneAliases] section
of the Agentry.ini file. If this method returns an empty string (the default
implementation), then the timeZoneName setting in the Agentry.ini file will be used.

login(String, String, SessionData) method [deprecated]
Deprecated. Override login(User, String, SessionData) instead. This method is called when a
user initially connects to the Agentry Server from a client application and that server's system
connection's enableAuthentication option is set to true in the Agentry.ini file.

Syntax
public LoginEnumeration login (String userId , String password ,
SessionData sessionData)

Parameters

• userId – The user ID from the client application for the current user.
• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Returns
One of the constants from Server.LoginEnumeration.

Usage
The return value of this function indicates whether or not the user ID and password are valid.
By default, this method returns the enumerated value Login_Pass, which means that this
system connection is not responsible for authenticating the user. Override this method to
implement logic to perform full validation of the user against a remote system.

login(User, String, SessionData) method
This method authenticates a client user against the Java System Connection.

Syntax
public void login (User user , String password , SessionData
sessionData) throws LoginException

Parameters

• user – The User object that identifies the client user. The user name can be read from this
object.

Agentry Language Reference

Agentry Language Reference 487

• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Exceptions

• LoginException class – if the login fails for any reason, or if the login succeeds but an
exceptional condition exists (such as an expired or soon-to-be expired password).

Usage
This method is called when a user initially connects to the Agentry Server from a client
application and the enableAuthentication option is set to true in the Java section of
the Agentry.ini file. Override this method to implement logic to perform full validation
of the user against a remote system.

This method should return normally if the authentication of the user succeeds. If login fails for
any reason, the appropriate LoginException subclass should be thrown. An exception should
also be thrown for other conditions such as expired or soon-to-be-expiring passwords. By
default, this method throws LoginSkippedException, which means that this system
connection is not responsible for authenticating the user (it is equivalent to setting
enableAuthentication to false in Agentry.ini, except that it can be thrown on a
per-user basis).

If you throw PasswordInvalidException or LoginBlockedException, then either loginFailed
or loginBlocked, respectively, will be called. From those methods you can return a more
detailed error message indicating why the login failed.

loginBlocked(String, StringBuffer) method [deprecated]
Deprecated. Override loginBlocked(User, String, StringBuffer, SessionData) instead. This
method is called by the Agentry Server when authentication of a client user is blocked, either
because this class returned a blocked login from the login(String, String, SessionData) or
loginPreviousUser(String, String, SessionData) methods, or because another system
connection blocked the login.

Syntax
public LoginEnumeration loginBlocked (String userId ,
StringBuffer error)

Parameters

• userId – The user ID for the user whose login attempt has failed.
• error – A StringBuffer that contains the error message that was returned by the system

connection that blocked the login. This message will ultimately be logged on the server
and displayed on the client. The error message can be changed by modifying the contents
of this buffer.

Agentry Language Reference

488 SAP Mobile Platform

Returns
Always returns Server.LoginEnumeration#Login_InvalidBlocked

Usage
It should clean up any user-related resources; it can also return additional information about
why the login failed.

loginBlocked(User, StringBuffer, SessionData) method [deprecated]
Deprecated. Override loginBlocked(User, String, StringBuffer, SessionData) instead. This
method is called by the Agentry Server when authentication of a client user is blocked, either
because this class threw LoginBlockedException from the login, loginPreviousUser, or
loginFailed methods, or because another system connection blocked the login.

Syntax
public void loginBlocked (User user , StringBuffer error ,
SessionData sessionData)

Parameters

• user – The User object for the user whose login attempt was blocked.
• error – A StringBuffer that contains the error message that was returned by the system

connection that blocked the login. This message will ultimately be logged on the server
and displayed on the client. The error message can be changed by modifying the contents
of this buffer.

• sessionData – The session data. In addition to its usual contents, this data will contain
additional information about which system connection blocked the login. This
information will be available as the values for the SDML keys failed.backend.id
(the system connection number) and failed.backend.name (the system connection
name, as configured in Agentry.ini).

Usage
It should clean up any user-related resources.

loginBlocked(User, String, StringBuffer, SessionData) method
This method is called by the Agentry Server when authentication of a client user is blocked,
either because this class threw LoginBlockedException from the login, loginPreviousUser, or
loginFailed methods, or because another system connection blocked the login.

Syntax
public void loginBlocked (User user , String userId , StringBuffer
error , SessionData sessionData)

Agentry Language Reference

Agentry Language Reference 489

Parameters

• user – The User object for the user whose login attempt has blocked. This can be null, if
the login was blocked by another system connection before the createUser and login
methods of this system connection were called.

• userId – The user name of the user that was logging in. This parameter might be useful if
user is null, but you still need to take some sort of action for the user for some reason. If
user is not null, then this parameter will be equal to the user name contained in
user.

• error – A StringBuffer that contains the error message that was returned by the system
connection that blocked the login. This message will ultimately be logged on the server
and displayed on the client. The error message can be changed by modifying the contents
of this buffer.

• sessionData – The session data. In addition to its usual contents, this data will contain
additional information about which system connection blocked the login. This
information will be available as the values for the SDML keys failed.backend.id
(the system connection number) and failed.backend.name (the system connection
name, as configured in Agentry.ini).

Usage
It should clean up any user-related resources.

loginFailed(String, StringBuffer) method [deprecated]
Deprecated. Override loginFailed(User, String, LoginFailureReason, StringBuffer,
SessionData) instead. This method is called by the Agentry Server when authentication of a
client user fails, either because this class returned a failed login from the login or
loginPreviousUser methods, or because another system connection failed the login.

Syntax
public LoginEnumeration loginFailed (String userId ,
StringBuffer error)

Parameters

• userId – The user ID for the user whose login attempt has failed.
• error – A StringBuffer that will be written to the user's debug log by the Agentry server

when this method returns. It should be used to log useful error information within the user's
debug log about why the login failed; it will always be logged regardless of the Agentry
server's debug settings.

Returns
Login_Invalid or Login_InvalidBlocked. If the latter is returned, then loginBlocked(String,
StringBuffer) will be invoked as well.

Agentry Language Reference

490 SAP Mobile Platform

Usage
It should clean up any user-related resources; it can also return additional information about
why the login failed.

loginFailed(User, String, LoginFailureReason, StringBuffer, SessionData) method
This method is called by the Agentry Server when authentication of a client user fails, either
because this class threw PasswordInvalidException from the login or loginPreviousUser
methods, or because another system connection reported a login failure.

Syntax
public void loginFailed (User user , String userId ,
LoginFailureReason reason , StringBuffer error , SessionData
sessionData) throws LoginBlockedException

Parameters

• user – The User object for the user whose login attempt has failed. This can be null, if
the login was failed by another system connection before the createUser and login
methods of this system connection were called.

• userId – The user name of the user that was logging in. This parameter might be useful if
user is null, but you still need to take some sort of action for the user for some reason. If
user is not null, then this parameter will be equal to the user name contained in
user.

• reason – The reason for the login failure.
• error – A StringBuffer that contains the error message that was returned by the system

connection that failed the login. This message will ultimately be logged on the server and
displayed on the client. The error message can be changed by modifying the contents of
this buffer.

• sessionData – The session data. In addition to its usual contents, this data will contain
additional information about which system connection failed the login, if the failure
reason was not NoBackEndsAuthenticated. This information will be available as the
values for the SDML keys failed.backend.id (the system connection number) and
failed.backend.name (the system connection name, as configured in
Agentry.ini).

Exceptions

• LoginBlockedException class – if the login failure should be treated as a blocked login
instead. This will trigger a subsequent call to loginBlocked in this system connection, as
well as the equivalent in other system connections.

Usage
It should clean up any user-related resources.

Agentry Language Reference

Agentry Language Reference 491

loginPreviousUser(String, String, SessionData) method [deprecated]
Deprecated. Override loginPreviousUser(User, String, SessionData) instead. This method is
called when a user has previously logged into Agentry successfully, and is now logging in
again due to having been disconnected.

Syntax
public LoginEnumeration loginPreviousUser (String userId ,
String password , SessionData sessionData)

Parameters

• userId – The user ID from the client application for the current user.
• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Returns
One of the constants from Server.LoginEnumeration.

Usage
This method is only called if both the enableAuthentication and
enablePreviousUserAuthentication options are true in the Agentry.ini
file for the Java system connection. It should function in the same manner as login(String,
String, SessionData).

The default implementation of this method returns Login_Pass.

loginPreviousUser(User, String, SessionData) method
This method is called when a user has previously logged into Agentry successfully, and is now
logging in again due to having been disconnected.

Syntax
public void loginPreviousUser (User user , String password ,
SessionData sessionData) throws LoginException

Parameters

• user – The User object that identifies the client user. The user name can be read from this
object.

• password – The password for the current user, as entered on the client application.
• sessionData – Provides access to current session data, such as Agentry Server Data

Markup Language (SDML) values.

Agentry Language Reference

492 SAP Mobile Platform

Exceptions

• LoginException class – if the login fails for any reason, or if the login succeeds but an
exceptional condition exists (such as an expired or soon-to-be expired password).

Usage
This method is only called if both the enableAuthentication and
enablePreviousUserAuthentication options are true in the Agentry.ini
file for the Java system connection. It should function in the same manner as login(User,
String, SessionData).

The default implementation of this method throws LoginSkippedException.

setDebugEnabled(boolean) method [deprecated]
Deprecated. This is only here because the Agentry server will call it. Setter method called by
the Agentry server to enable/disable debugging.

Syntax
final void setDebugEnabled (boolean debug)

Parameters

• debug – true if debugging is enabled, false if not.

Usage
Subclasses must never call this.

shutdown() method
This method is called by the Agentry Server when the Java system connection is being shut
down.

Syntax
public void shutdown ()

Usage
It should perform any cleanup that needs to be done.

startup() method
This method is called by the Agentry Server when the Java system connection starts up and
creates an instance of this class; it is called immediately after the class is constructed.

Syntax
public void startup ()

Agentry Language Reference

Agentry Language Reference 493

Usage
It exists as a complement to the shutdown method. Current versions of Agentry ignore the
value returned by this method, so there's really nothing you can do here that you couldn't just
do in the constructor.

ServiceEvent class
This class implements a Java Callback Service Event in Agentry.

Syntax
public class ServiceEvent extends
AgentryJavaBackEndManagedObject

Members
All members of ServiceEvent, including inherited members. Variables

Modifier and Type Variable Description

protected Server _server on page 496 The active Server implementa-
tion in the Agentry Java system
connection.

protected SessionData _sessionData on page 496 Session data for this service
event session.

Constructors

Modifier and Type Constructor Description

public ServiceEvent(Server, Session-
Data, CallbackInterface) on
page 495

Constructs a new ServiceEvent
object.

Methods

Modifier and Type Method Description

public final void dataReceived(Object) on page
495

This method should be called
once you have obtained an ob-
ject's data from the remote sys-
tem.

Usage
In a Java Callback Service Event, a remote enterprise system initiates a call into this class, then
retrieves data for a single Agentry object and passes that data back to the Agentry server. (The
Agentry object can be a collection, if you need to handle multiple objects of the same type at
once.) The general process works like this:

Agentry Language Reference

494 SAP Mobile Platform

1. The enterprise system somehow triggers a call to a method in your custom subclass of
ServiceEvent.

2. Your custom method acquires data from the enterprise system for a single Agentry object
and stores it into a custom Java object. This object is implemented the same way as objects
returned by ComplexTable or Steplet - it must contain public fields that can be mapped
back to fields in an Agentry object.

3. Your custom method then calls the dataReceived method with the new object, which
communicates that object back to Agentry.

4. Agentry processes the object, maps it to the Agentry object, and fires the various steps
defined for the Service Event in the application for handling the object, which in turn will
cause the various methods of ServiceEventSession to be invoked.

How the enterprise system actually triggers a call into this class is up to you. Possible methods
might include remote RMI calls into the Agentry JVM, receiving JMS messages, or whatever
else you can come up with.

ServiceEvent(Server, SessionData, CallbackInterface) constructor
Constructs a new ServiceEvent object.

Syntax
public ServiceEvent (Server server , SessionData sessionData ,
CallbackInterface cbi)

Parameters

• server – The active Server object, which will be stored into _server.

• sessionData – The session data for this service event, which will be stored into
_sessionData.

• cbi – The native callback object provided by Agentry; do not use this object directly, it will
be handled by the dataReceived method of this class.

Usage
Subclasses should provide a constructor with the same arguments, and pass them untouched to
this constructor. This constructor will store its arguments into the corresponding member
variables of this class, which can then be accessed directly by subclasses.

dataReceived(Object) method
This method should be called once you have obtained an object's data from the remote system.

Syntax
public final void dataReceived (Object data) throws
AgentryException

Agentry Language Reference

Agentry Language Reference 495

Parameters

• data – The object to send back to Agentry.

Exceptions

• AgentryException class – if an error occurs.

Usage
It will pass that object back to the Agentry server, which will then copy the object's data to the
corresponding object in the Agentry application using the mappings configured in the Agentry
Editor for this service event.

_server variable
The active Server implementation in the Agentry Java system connection.

Syntax
protected Server _server

_sessionData variable
Session data for this service event session.

Syntax
protected SessionData _sessionData

ServiceEventSession class
The ServiceEventSession class encapsulates the processing involved in a service event.

Syntax
public class ServiceEventSession extends Session

Members
All members of ServiceEventSession, including inherited members. Constructors

Modifier and Type Constructor Description

public ServiceEventSession(String,
Server, SessionData) on page
499

Construct a new session.

Methods

Agentry Language Reference

496 SAP Mobile Platform

Modifier and Type Method Description

public void beginDataAndUpdateSteps()
on page 499

This method is called by the
server prior to the execution of
the "Data State Steps" and "Up-
date Steps" (which are grouped
together) for the service event.

public void beginReadSteps() on page 499 This method is called by the
server prior to the execution of
the "Read Steps" for the service
event.

public void beginServiceEventError() on
page 500

This method is called by the
server prior to the execution of
the "Error Steps" for the service
event.

public void endDataAndUpdateSteps() on
page 500

This method is called after the
"Data State Steps" and "Update
Steps" (which are grouped to-
gether) for the service event
have been successfully comple-
ted.

public void endReadSteps() on page 500 This method is called after the
"Read Steps" for the service
event have been successfully
completed.

public void endServiceEventError() on
page 500

This method is called after the
"Error Steps" for the service
event have been successfully
completed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

Agentry Language Reference

Agentry Language Reference 497

Modifier and Type Member Description

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page 504 Returns the session data for this
session.

public User getUser() on page 504 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page 504 This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, a service event is the component of the application that defines how data is
synchronized between the Agentry Server and another external server application. It is made
up of steps (which are implemented by the Steplet class in the Java system connection), each of
which perform a specific task related to the synchronization process. These steps are
organized into groups within the service event for specific areas of the data synchronization.
These areas include the "Read", "Data State", "Update", and "Error Handling" steps.

This class contains methods to perform actions before and after each of these groups of steps.
The default implementation of these methods in the AJAPI perform no additional specific
actions. A designer can extend this class if special processing is required before or after each
of these groups of steps are processed. If this class is extended, the Server class must also be
extended and its createServiceEventSession method must be overridden to return
the designer implemented subclass of the ServiceEventSession class.

Agentry Language Reference

498 SAP Mobile Platform

ServiceEventSession(String, Server, SessionData) constructor
Construct a new session.

Syntax
public ServiceEventSession (String serviceEventName , Server
server , SessionData sessionData)

Parameters

• serviceEventName – The fetch name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.

• sessionData – Session data for this fetch.

Usage
This constructor is called by the Server.createServiceEventSession method. Subclasses
should implement a constructor with the same signature.

beginDataAndUpdateSteps() method
This method is called by the server prior to the execution of the "Data State Steps" and "Update
Steps" (which are grouped together) for the service event.

Syntax
public void beginDataAndUpdateSteps ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

beginReadSteps() method
This method is called by the server prior to the execution of the "Read Steps" for the service
event.

Syntax
public void beginReadSteps ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

Agentry Language Reference

Agentry Language Reference 499

beginServiceEventError() method
This method is called by the server prior to the execution of the "Error Steps" for the service
event.

Syntax
public void beginServiceEventError ()

Usage
Any processing that should take place prior to the execution of these steps should be
implemented in this method.

endDataAndUpdateSteps() method
This method is called after the "Data State Steps" and "Update Steps" (which are grouped
together) for the service event have been successfully completed.

Syntax
public void endDataAndUpdateSteps ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endReadSteps() method
This method is called after the "Read Steps" for the service event have been successfully
completed.

Syntax
public void endReadSteps ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

endServiceEventError() method
This method is called after the "Error Steps" for the service event have been successfully
completed.

Syntax
public void endServiceEventError ()

Usage
Any processing that should take place after the execution of these steps should be
implemented in this method.

Agentry Language Reference

500 SAP Mobile Platform

Session class
This is the base class for the various session types in Agentry.

Syntax
public class Session extends AgentryJavaBackEndManagedObject

Derived classes

• ComplexTableSession on page 399
• DataTableSession on page 414
• FetchSession on page 425
• PushSession on page 449
• PushUserSession on page 455
• ServiceEventSession on page 496
• TransactionSession on page 519

Members
All members of Session, including inherited members. Constructors

Modifier and Type Constructor Description

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

Methods

Modifier and Type Method Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

Agentry Language Reference

Agentry Language Reference 501

Modifier and Type Method Description

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

public SessionData getSessionData() on page
504

Returns the session data for this
session.

public User getUser() on page 504 Returns the user for this session,
if any.

public void sessionAborted() on page
504

This is called if the session is
aborted (e.g., by an exception).

Usage
A session generally refers to the carrying out of a particular action, fetch, push, transaction,
etc. in an Agentry application. It contains information about the server and user executing the
session, and also holds a SessionData object that provides access back into the Agentry server
to retrieve application-specific data.

Session(String, Server, SessionData, User) constructor
Construct a new session, and save each of the arguments so that they can be retrieved later via
the getName(), getServer(), getSessionData(), and getUser() methods.

Syntax
protected Session (String name , Server server , SessionData
sessionData , User user)

Parameters

• name – The session name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.
• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Session(String, Server, SessionData) constructor
Construct a new session, and save each of the arguments so that they can be retrieved later via
the getName(), getServer(), and getSessionData() methods.

Syntax
protected Session (String name , Server server , SessionData
sessionData)

Agentry Language Reference

502 SAP Mobile Platform

Parameters

• name – The session name, as configured in the Agentry application.
• server – The Server object that the Java System connection was configured to use.
• sessionData – Session data for this fetch.

debug(String) method
Write the given message to a debug log, if debugging is enabled.

Syntax
public final void debug (String message)

Parameters

• message – The message to log

Usage
If this is a user-specific session then the message will be written to the user log, otherwise it
will be written to the server log.

This method is simply a convenience method that calls User.debug() if the session has a
user, or Server.debug() if it doesn't.

getName() method
Returns the name of the session, as configured in the Agentry application.

Syntax
public String getName ()

Returns
The session name.

getServer() method
Returns the Server singleton object that the Java system connection is currently using.

Syntax
public Server getServer ()

Returns
The server instance

Usage
This will be an instance of the class named in the serverClass option of the Java system
connection in the agentry.ini file.

Agentry Language Reference

Agentry Language Reference 503

getSessionData() method
Returns the session data for this session.

Syntax
public SessionData getSessionData ()

Returns
The session data.

getUser() method
Returns the user for this session, if any.

Syntax
public User getUser ()

Returns
an object of whatever class is being returned by the active implementation of the Server
class, or null if this session is not user-specific.

sessionAborted() method
This is called if the session is aborted (e.g., by an exception).

Syntax
public void sessionAborted ()

Steplet class
The Steplet class within the AJAPI encapsulates the data synchronization for a step
application component.

Syntax
public abstract class Steplet extends
AgentryJavaBackEndManagedObject

Members
All members of Steplet, including inherited members. Variables

Modifier and Type Variable Description

protected Session _session on page 511 Session data, set by the con-
structor.

Constructors

Agentry Language Reference

504 SAP Mobile Platform

Modifier and Type Constructor Description

public Steplet(FetchSession) on page
507

Constructs a new Steplet that
will be used as part of a fetch.

public Steplet(PushSession) on page
507

Constructs a new Steplet that
will be used as part of a push.

public Steplet(PushUserSession) on
page 507

Constructs a new Steplet that
will be used as part of a push.

public Steplet(TransactionSession) on
page 507

Constructs a new Steplet that
will be used as part of a trans-
action.

public Steplet(ServiceEventSession)
on page 508

Constructs a new Steplet that
will be used as part of a service
event.

Methods

Modifier and Type Method Description

public abstract boolean doSteplet() on page 508 Perform the necessary actions
of this steplet.

public String getNotificationText() on page
509

This method is called for Trans-
action Error-Handling Steplets.

public String getNotificationTitle() on page
509

This method is called for Trans-
action Error-Handling Steplets.

public String getOkButtonLabel() on page
509

This method is called for Trans-
action Error-Handling Steplets.

public Object getReturnData() on page 510 The Agentry server will call this
method to obtain the data pro-
duced by the doSteplet method.

public Session getSession() on page 510 Returns the Session object for
this steplet.

Agentry Language Reference

Agentry Language Reference 505

Modifier and Type Method Description

public String notificationText() on page
511

Deprecated. Override getNoti-
ficationText() instead. The de-
fault implementation of this
method will call that method.
This method may be made final
or removed in a future release.
Use getNotificationText() in-
stead.

public String notificationTitle() on page
511

Deprecated. Override getNoti-
ficationTitle() instead. The de-
fault implementation of this
method will call that method.
This method may be made final
or removed in a future release.
Use getNotificationTitle() in-
stead.

public String okButtonLabel() on page 511 Deprecated. Override getOk-
ButtonLabel() instead. The de-
fault implementation of this
method will call that method.
This method may be made final
or removed in a future release.
Use getOkButtonLabel() in-
stead.

Usage
The Agentry Editor provides a template subclass of this class for each step in the application
that uses a Java system connection; these subclasses must override the methods in this class to
implement their behavior. A basic steplet needs to implement doSteplet() and
getReturnData(). Steplets that will be used in Agentry transaction error-handling steps can
also override the notificationTitle(), notificationText(), and okButtonLabel() methods to
control the contents of a failed transaction's error notification windows.

A typical steplet implementation will implement doSteplet() to retrieve a set of data from a
remote system, package that data into an object or array of objects, and save the data in a
member field. The implementation of the getReturnData() method will then return that data as
either a single object or an array of objects. These objects will will in turn contain publicly-
visible fields that are mapped within the Agentry application (via the Agentry Editor) to the
fields of corresponding Agentry objects. The Agentry server will read data directly from the
fields of these objects; the server will not use getter/setter methods to read them.

Agentry Language Reference

506 SAP Mobile Platform

A steplet can throw StepletStopException to stop processing of itself but allow processing of
subsequence steplets in a session to continue, or it can throw StepletAbortException to stop
processing of itself and any subsequent steplets in the session. It can also throw a
BusinessLogicException exception to report an error message to the client's transmit window.
Steplets that are used in transaction steps can also throw RetryTransactionException,
RetryTransactionWithChangeException, or FatalTransactionException to abort the
transaction in various ways.

Steplet(FetchSession) constructor
Constructs a new Steplet that will be used as part of a fetch.

Syntax
public Steplet (FetchSession session)

Parameters

• session – Fetch session information, stored into the _session member variable.

Steplet(PushSession) constructor
Constructs a new Steplet that will be used as part of a push.

Syntax
public Steplet (PushSession session)

Parameters

• session – Push session information, stored into the _session member variable

Steplet(PushUserSession) constructor
Constructs a new Steplet that will be used as part of a push.

Syntax
public Steplet (PushUserSession session)

Parameters

• session – Push user session information, stored into the _session member variable

Steplet(TransactionSession) constructor
Constructs a new Steplet that will be used as part of a transaction.

Syntax
public Steplet (TransactionSession session)

Agentry Language Reference

Agentry Language Reference 507

Parameters

• session – Transaction session information, stored into the _session member variable

Steplet(ServiceEventSession) constructor
Constructs a new Steplet that will be used as part of a service event.

Syntax
public Steplet (ServiceEventSession session)

Parameters

• session – Service event session information, stored into the _session member variable

doSteplet() method
Perform the necessary actions of this steplet.

Syntax
public abstract boolean doSteplet () throws AgentryException

Returns
For fetch, push, transaction update step, and service event read, data, and update steplets:
true if the steplet produced data that the Agentry server should read from the
_returnData field, or false if no data was produced. For transaction data state and error
handling steplets, and service event error handling steplets: the meaning of the return value is
configured in the Agentry Editor.

Exceptions

• AgentryException class – if an error occurs.

Usage
A steplet can obtain various parameters from Agentry via the session information stored in the
_session member variable. Steplet objects that retrieve data that will be read by the
Agentry server should store that data in a public field named _returnData, which the
Agentry Server will read via reflection if this method returns true.

A steplet can throw StepletStopException to stop processing of itself but allow processing of
subsequence steplets in a session to continue, or it can throw StepletAbortException to stop
processing of itself and any subsequent steplets in the session. It can also throw a
BusinessLogicException exception to report an error message to the client's transmit window.
Steplets used in transactions can also throw any of the transaction-related exceptions
(FatalTransactionException, RetryTransactionWithChangeException, and
RetryTransactionException).

Agentry Language Reference

508 SAP Mobile Platform

getNotificationText() method
This method is called for Transaction Error-Handling Steplets.

Syntax
public String getNotificationText ()

Returns
the notification window text, or an empty string to use the text from the original exception that
caused this error-handling steplet to be invoked.

Usage
It is intended to provide the error-handling steplet with a chance to override the notification
window text from the original transaction failure exception. This method overrides the
window text for the notification window; if it returns an empty string, then the text from the
original exception will be used.

getNotificationTitle() method
This method is called for Transaction Error-Handling Steplets.

Syntax
public String getNotificationTitle ()

Returns
the notification window title, or an empty string to use the title from the original exception that
caused this error-handling steplet to be invoked.

Usage
It is intended to provide the error-handling steplet with a chance to override the notification
window text from the original transaction failure exception. This method overrides the
window title for the notification window; if it returns an empty string, then the title from the
original exception will be used.

getOkButtonLabel() method
This method is called for Transaction Error-Handling Steplets.

Syntax
public String getOkButtonLabel ()

Returns
the button label, or an empty string to use the label from the original exception that caused this
error-handling steplet to be invoked.

Agentry Language Reference

Agentry Language Reference 509

Usage
It is intended to provide the error-handling steplet with a chance to override the notification
window text from the original transaction failure exception. This method overrides the button
label for the notification window; if it returns an empty string, then the button label from the
original exception will be used.

getReturnData() method
The Agentry server will call this method to obtain the data produced by the doSteplet method.

Syntax
public Object getReturnData ()

Returns
A data object or an array of data objects

Usage
It will only be called if doSteplet returned true and the steplet is being used by a data or fetch
step in the Agentry application.

The objects returned by this method will be mapped to Agentry objects according to the field
mappings defined in the Agentry application. This method should return either a single such
object, or an array of them.

The implementation of this method typically should be very simple, in that it should just return
some data that was built up in doSteplet. All of the "heavy lifting" should be done in that
method.

Migration tip: If you are migrating an application from AJAPI version 4 (which returned
steplet data via a special field named _returnData), just override this method to return the
value of your steplet's _returnData field. If you do not override this method, the Agentry
server will attempt to read that field anyways (for backwards compatibility), but this behavior
is considered deprecated and should not be relied on in future versions of Agentry. It's also
faster to have this method return the field, since otherwise the Agentry server will need to use
reflection to read it.

getSession() method
Returns the Session object for this steplet.

Syntax
public Session getSession ()

Returns
the session.

Agentry Language Reference

510 SAP Mobile Platform

notificationText() method [deprecated]
Deprecated. Override getNotificationText() instead. The default implementation of this
method will call that method. This method may be made final or removed in a future release.
Use getNotificationText() instead.

Syntax
public String notificationText ()

Returns
the text

notificationTitle() method [deprecated]
Deprecated. Override getNotificationTitle() instead. The default implementation of this
method will call that method. This method may be made final or removed in a future release.
Use getNotificationTitle() instead.

Syntax
public String notificationTitle ()

Returns
the title

okButtonLabel() method [deprecated]
Deprecated. Override getOkButtonLabel() instead. The default implementation of this
method will call that method. This method may be made final or removed in a future release.
Use getOkButtonLabel() instead.

Syntax
public String okButtonLabel ()

Returns
the label

_session variable
Session data, set by the constructor.

Syntax
protected Session _session

Agentry Language Reference

Agentry Language Reference 511

StepletAbortException class
This exception can be thrown from a Steplet object to abort processing of that steplet and any
subsequent steplets in the session.

Syntax
public class StepletAbortException extends AgentryException

Members
All members of StepletAbortException, including inherited members. Constructors

Modifier and Type Constructor Description

public StepletAbortException(String)
on page 513

Constructs a new StepletAbor-
tException object.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
The Agentry Server will roll back any transactional work that has been done so far for the step,
and will not execute any subsequent steps. It will trigger the sessionAborted method of
the appropriate session object.

Agentry Language Reference

512 SAP Mobile Platform

StepletAbortException(String) constructor
Constructs a new StepletAbortException object.

Syntax
public StepletAbortException (String message)

Parameters

• message – The error message to log to the server's event log.

StepletStopException class
This exception can be thrown from a Steplet object to stop the processing of the currently
executing step and signal to the Agentry Server that any transaction-based work completed
thus far should be committed.

Syntax
public class StepletStopException extends AgentryException

Members
All members of StepletStopException, including inherited members. Constructors

Modifier and Type Constructor Description

public StepletStopException(String)
on page 514

Constructs a new StepletSto-
pException object.

Inherited members from AgentryException

Modifier and Type Member Description

public AgentryException(String) on
page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
Throwable) on page 395

Constructs a new AgentryEx-
ception object.

public AgentryException(String,
String, String, Throwable) on
page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

public AgentryException(String,
String, String) on page 396

Constructs a new AgentryEx-
ception object, for methods that
support throwing exceptions
that may appear in the client.

Agentry Language Reference

Agentry Language Reference 513

Modifier and Type Member Description

public final String getNotificationText() on page
397

Returns the notification window
text.

public final String getNotificationTitle() on page
397

Returns the notification window
title.

public final String getOkButtonLabel() on page
397

Returns the notification window
button label.

Usage
The Agentry Server will then continue processing any remaining steps.

StepletStopException(String) constructor
Constructs a new StepletStopException object.

Syntax
public StepletStopException (String message)

Parameters

• message – The error message to log

SycloCalendar class
This class extends GregorianCalendar with methods for detecting Agentry's "invalid date"
value.

Syntax
public class SycloCalendar extends GregorianCalendar

Members
All members of SycloCalendar, including inherited members. Constructors

Modifier and Type Constructor Description

public SycloCalendar(GregorianCa-
lendar) on page 515

Constructs a new SycloCalen-
dar object using the data from an
existing GregorianCalendar ob-
ject and the default locale.

public SycloCalendar(GregorianCa-
lendar, Locale) on page 516

Constructs a new SycloCalen-
dar object using the data from an
existing GregorianCalendar ob-
ject and the given locale.

Agentry Language Reference

514 SAP Mobile Platform

Modifier and Type Constructor Description

public SycloCalendar() on page 516 Constructs a new SycloCalen-
dar object.

public SycloCalendar(int, int, int, int,
int, int) on page 516

Constructs a new SycloCalen-
dar object.

public SycloCalendar(int, int, int, int,
int) on page 517

Constructs a new SycloCalen-
dar object.

public SycloCalendar(int, int, int) on
page 517

Constructs a new SycloCalen-
dar object.

public SycloCalendar(Locale) on page
517

Constructs a new SycloCalen-
dar object.

public SycloCalendar(TimeZone, Lo-
cale) on page 517

Constructs a new SycloCalen-
dar object.

public SycloCalendar(TimeZone) on
page 518

Constructs a new SycloCalen-
dar object.

Methods

Modifier and Type Method Description

public static GregorianCalendar getInvalidTimeAndDate() on
page 518

Returns the Agentry invalid date
value.

public boolean isInvalidTimeAndDate() on
page 518

Checks to see if this object con-
tains Agentry's "invalid date"
value.

public static boolean isInvalidTimeAndDate(Gregor-
ianCalendar) on page 518

Returns whether the given date
matches Agentry's "invalid
date" value.

SycloCalendar(GregorianCalendar) constructor
Constructs a new SycloCalendar object using the data from an existing GregorianCalendar
object and the default locale.

Syntax
public SycloCalendar (GregorianCalendar cal)

Parameters

• cal – The existing object

Agentry Language Reference

Agentry Language Reference 515

Usage
If you need a non-default locale, use SycloCalendar(GregorianCalendar, Locale); this
constructor cannot read the locale from the given calendar object because GregorianCalendar
does not provide a method for doing that.

SycloCalendar(GregorianCalendar, Locale) constructor
Constructs a new SycloCalendar object using the data from an existing GregorianCalendar
object and the given locale.

Syntax
public SycloCalendar (GregorianCalendar cal , Locale locale)

Parameters

• cal – The existing object
• locale – The locale

SycloCalendar() constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar ()

SycloCalendar(int, int, int, int, int, int) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (int year , int month , int dayOfMonth , int
hourOfDay , int minute , int second)

Parameters

• year – The year
• month – The month
• dayOfMonth – The day of the month
• hourOfDay – The hours
• minute – The minutes
• second – The seconds

Agentry Language Reference

516 SAP Mobile Platform

SycloCalendar(int, int, int, int, int) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (int year , int month , int dayOfMonth , int
hourOfDay , int minute)

Parameters

• year – The year
• month – The month
• dayOfMonth – The day of the month
• hourOfDay – The hours
• minute – The minutes

SycloCalendar(int, int, int) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (int year , int month , int dayOfMonth)

Parameters

• year – The year
• month – The month
• dayOfMonth – The day of the month

SycloCalendar(Locale) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (Locale locale)

Parameters

• locale – The locale

SycloCalendar(TimeZone, Locale) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (TimeZone zone , Locale locale)

Agentry Language Reference

Agentry Language Reference 517

Parameters

• zone – The time zone
• locale – The locale

SycloCalendar(TimeZone) constructor
Constructs a new SycloCalendar object.

Syntax
public SycloCalendar (TimeZone zone)

Parameters

• zone – The time zone

getInvalidTimeAndDate() method
Returns the Agentry invalid date value.

Syntax
public static GregorianCalendar getInvalidTimeAndDate ()

Returns
the invalid date.

isInvalidTimeAndDate() method
Checks to see if this object contains Agentry's "invalid date" value.

Syntax
public boolean isInvalidTimeAndDate ()

Returns
true if the date is invalid, or false if not.

isInvalidTimeAndDate(GregorianCalendar) method
Returns whether the given date matches Agentry's "invalid date" value.

Syntax
public static boolean isInvalidTimeAndDate (GregorianCalendar
testDate)

Parameters

• testDate – the date to check

Agentry Language Reference

518 SAP Mobile Platform

Returns
true if the date is invalid, or false if not.

TransactionSession class
The TransactionSession class encapsulates the processing related to transactions.

Syntax
public class TransactionSession extends Session

Members
All members of TransactionSession, including inherited members. Constructors

Modifier and Type Constructor Description

public TransactionSession(String,
Server, SessionData, User) on
page 520

Construct a new session.

Methods

Modifier and Type Method Description

public void beginTransaction() on page
521

This method is called by the
Agentry Server prior to execut-
ing the steps for the transaction.

public void endTransaction() on page
521

This method is called after the
steps for the transaction have
been successfully processed.

Inherited members from Session

Modifier and Type Member Description

public final void debug(String) on page 503 Write the given message to a
debug log, if debugging is ena-
bled.

public String getName() on page 503 Returns the name of the session,
as configured in the Agentry ap-
plication.

public Server getServer() on page 503 Returns the Server singleton ob-
ject that the Java system con-
nection is currently using.

Agentry Language Reference

Agentry Language Reference 519

Modifier and Type Member Description

public SessionData getSessionData() on page 504 Returns the session data for this
session.

public User getUser() on page 504 Returns the user for this session,
if any.

protected Session(String, Server, Session-
Data, User) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
getSessionData(), and getUs-
er() methods.

protected Session(String, Server, Session-
Data) on page 502

Construct a new session, and
save each of the arguments so
that they can be retrieved later
via the getName(), getServer(),
and getSessionData() methods.

public void sessionAborted() on page 504 This is called if the session is
aborted (e.g., by an exception).

Usage
In brief, transactions are the application component that defines data modifications made by
the user on the client application. These changes are then transmitted to the Agentry Server for
processing. The processing for a transaction is defined by its steps. This class contains
methods that allow the implementation of processing that may be required before or after the
transaction steps are processed.

A designer can extend this class if special processing is required before or after a transaction is
processed. If this class is extended, the Server class must also be extended and its
createTransactionSession method must be overridden to return the designer
implemented subclass of the TransactionSession class.

TransactionSession(String, Server, SessionData, User) constructor
Construct a new session.

Syntax
public TransactionSession (String transactionName , Server server ,
SessionData sessionData , User user)

Parameters

• transactionName – The fetch name, as configured in the Agentry application.

Agentry Language Reference

520 SAP Mobile Platform

• server – The Server object that the Java System connection was configured to use.
• sessionData – Session data for this fetch.
• user – The client user performing the fetch.

Usage
This constructor is called by the Server.createTransactionSession method. Subclasses should
implement a constructor with the same signature.

beginTransaction() method
This method is called by the Agentry Server prior to executing the steps for the transaction.

Syntax
public void beginTransaction ()

Usage
Any processing that should take place at this point should be implemented in this method.

endTransaction() method
This method is called after the steps for the transaction have been successfully processed.

Syntax
public void endTransaction ()

Usage
Any processing that should take place at this point should be implemented in this method.

User class
This class represents an Agentry client user.

Syntax
public class User extends AgentryJavaBackEndManagedObject

Members
All members of User, including inherited members. Variables

Modifier and Type Variable Description

protected String _name on page 531 User name.

Constructors

Modifier and Type Constructor Description

public User(String) on page 525 This is the constructor method
for objects of type User.

Methods

Agentry Language Reference

Agentry Language Reference 521

Modifier and Type Method Description

public final GregorianCalendar backendTimeAndDate() on
page 525

Deprecated. This method has
been renamed to getSystem-
ConnectionTime(). This meth-
od has been renamed to getSys-
temConnectionTime().

public void beginChangePassword() on
page 526

This is the first method called
when a user is attempting to
change their password.

public ChangePasswordResult changePassword(String, String)
on page 526

This method is called when a
user is attempting to change
their password.

public void changePasswordFailed(String-
Buffer) on page 527

This method is called when the
changePassword(String, String)
method returns any value other
than ChangePassword_Success
or ChangePassword_NotHan-
dled.

public void changePasswordSessionAbor-
ted() on page 527

This method is called if the
password change operation is
aborted for any reason.

public final void debug(String) on page 527 Writes a debugging message to
the user's log file on the Agentry
server.

public void endChangePassword() on page
528

This method is called when the
user's password has been suc-
cessfully changed.

public String getName() on page 528 Returns the user's name.

public GregorianCalendar getSystemConnectionTime()
on page 528

This is called by the Agentry
server to find out what time the
Java system connection thinks it
is right now.

public final void getTimeZone(StringBuffer) on
page 529

Deprecated. This method has
been moved to Server#getTime-
Zone(). This method is no lon-
ger supported.

Agentry Language Reference

522 SAP Mobile Platform

Modifier and Type Method Description

public void loggedIn() on page 529 This method is called after a
user has been successfully log-
ged in.

public void loggedOut() on page 529 This method is called after the
transmission has been comple-
ted and after the user is logged
out of the system.

public void reLoggedIn() on page 530 This method is called when a
user logs into the Agentry Serv-
er and the server still has a pre-
vious login session for that user.

public void revalidate(String) on page
530

This method authenticates a cli-
ent user against the Java System
Connection.

public void timedOut() on page 531 This method is called in the
event a user session times out.

public void update(GregorianCalendar) on
page 531

This method is called periodi-
cally (once every second or so)
by the Agentry Server.

Usage
This class is created by the Server#createUser(String) factory method. It contains methods for
notifying the application of successful login, logout, and other events. It also contains methods
which can be overridden to allow Agentry to change a user's password on a remote system.

Applications can extend this class to implement their own behavior; however, if you do so you
must also override the Server#createUser(String) factory method to return the new subclass.
You must then change the serverClass setting in the Agentry.ini configuration file to
tell the Agentry Java system connection to use your new Server subclass.

User.ChangePasswordResult enum
Outcomes for password changes, returned by the User#changePassword(String, String)
method and its ilk.

Members
All members of ChangePasswordResult, including inherited members. Variables

Agentry Language Reference

Agentry Language Reference 523

Modifier and Type Variable Description

public ChangePassword_Blocked on
page 524

The user has been blocked; the
password has not been changed.

public ChangePassword_Failure on
page 524

The attempt to change the user's
password has failed.

public ChangePassword_NotHandled
on page 525

The user's password change is
not handled by this System Con-
nection.

public ChangePassword_Success on
page 525

The user's password has been
successfully changed.

Methods

Modifier and Type Method Description

public int getValue() on page 524 Called by Agentry to retrieve
the integer value for the enum.

getValue() method
Called by Agentry to retrieve the integer value for the enum.

Syntax
public int getValue ()

Returns
the value

ChangePassword_Blocked variable
The user has been blocked; the password has not been changed.

Syntax
public ChangePassword_Blocked

ChangePassword_Failure variable
The attempt to change the user's password has failed.

Syntax
public ChangePassword_Failure

Agentry Language Reference

524 SAP Mobile Platform

ChangePassword_NotHandled variable
The user's password change is not handled by this System Connection.

Syntax
public ChangePassword_NotHandled

Usage
(Normally used in environments where multiple back-end systems are in place).

ChangePassword_Success variable
The user's password has been successfully changed.

Syntax
public ChangePassword_Success

User(String) constructor
This is the constructor method for objects of type User.

Syntax
public User (String name)

Parameters

• name – The user ID as entered on the client application. This value is accessible by calling
the name() member method.

Usage
The API class Server will call this method prior to attempting to log the user into the system
and/or perform the data synchronization with the Java interface.

backendTimeAndDate() method [deprecated]
Deprecated. This method has been renamed to getSystemConnectionTime(). This method has
been renamed to getSystemConnectionTime().

Syntax
public final GregorianCalendar backendTimeAndDate () throws
AgentryException

Returns
nothing, throws UnsupportedOperationException.

Exceptions

• AgentryException class – not thrown

Agentry Language Reference

Agentry Language Reference 525

• UnsupportedOperationException – to indicate that the method is no longer supported
and should not be called.

Usage
Override that method instead.

beginChangePassword() method
This is the first method called when a user is attempting to change their password.

Syntax
public void beginChangePassword ()

Usage
It is intended to allow the designer to implement any functionality or processing that may be
necessary prior to changing the user's password. Typically this method will start a password
change transaction with a remote server. The actual password change functionality should not
be a part of this processing.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

changePassword(String, String) method
This method is called when a user is attempting to change their password.

Syntax
public ChangePasswordResult changePassword (String oldPassword ,
String newPassword)

Parameters

• oldPassword – The current password for the user.
• newPassword – The value that user's password should be changed to.

Returns
one of the constants from User.ChangePasswordResult

Usage
This method can be overridden to implement password changing against a remote system. The
return value indicates the success or failure, and the reason for the failure, of the change
password attempt.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

Agentry Language Reference

526 SAP Mobile Platform

changePasswordFailed(StringBuffer) method
This method is called when the changePassword(String, String) method returns any value
other than ChangePassword_Success or ChangePassword_NotHandled.

Syntax
public void changePasswordFailed (StringBuffer errorString)

Parameters

• errorString – This is a string value that can be set to a text value. This value will be written
out to the user's debug log. It should indicate the reason why the password change failed.

Usage
This method can be overridden to perform any necessary processing in the event a password
change fails.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

changePasswordSessionAborted() method
This method is called if the password change operation is aborted for any reason.

Syntax
public void changePasswordSessionAborted ()

Usage
It should roll back anything that was started by the beginChangePassword() method.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

debug(String) method
Writes a debugging message to the user's log file on the Agentry server.

Syntax
public final void debug (String userMessage)

Parameters

• userMessage – The message to log

Usage
This will only work if per-user logging is turned on in AgentryLogging.ini.

This method is a convenience method that calls into the Java Logging API to do the actual
logging, and assumes that Agentry's default Java Logging configuration is in place (which will

Agentry Language Reference

Agentry Language Reference 527

route log messages back to the Agentry server). It will log to a logger named
"com.syclo.agentry.Server", at the FINE level (which translates to log detail level 3 in
Agentry).

When invoked outside of Agentry (e.g. in unit tests), this will log to the console, as that is
Java's normal default logging configuration.

endChangePassword() method
This method is called when the user's password has been successfully changed.

Syntax
public void endChangePassword ()

Usage
Designers can override this method to perform any additional processing that may be required
after the user's password has been modified. This method will still be called even if
changePasswordFailed() is called before it.

This method will only be called if authentication is enabled for the Agentry Java system
connection.

getName() method
Returns the user's name.

Syntax
public String getName ()

Returns
the user name

getSystemConnectionTime() method
This is called by the Agentry server to find out what time the Java system connection thinks it
is right now.

Syntax
public GregorianCalendar getSystemConnectionTime () throws
AgentryException

Returns
The current date and time from the remote system's perspective.

Exceptions

• AgentryException class – if the current date and time cannot be determined.

Agentry Language Reference

528 SAP Mobile Platform

Usage
Implementations that are communicating with remote servers should override this method to
return the time on the remote server, if possible, in order to help Agentry calculate the
difference between the time on the client and the time on the remote system. If you override the
Server#getTimeZone method or set the Java system connection's time zone explicitly in
Agentry.ini, then you should override this method to return the current time in the same
time zone that that method is reporting.

getTimeZone(StringBuffer) method [deprecated]
Deprecated. This method has been moved to Server#getTimeZone(). This method is no longer
supported.

Syntax
public final void getTimeZone (StringBuffer tz)

Parameters
• tz – not used

Exceptions
• UnsupportedOperationException – to indicate that the method is no longer supported

and should not be called.

Usage
Override Server#getTimeZone() instead, as the time zone affects the entire Java system
connection and not a specific user.

loggedIn() method
This method is called after a user has been successfully logged in.

Syntax
public void loggedIn ()

Usage
The default version of this method writes a message to the user's debug log, if debugging is
active, and returns. This method can be overridden if additional processing is required after a
user has successfully logged in and before the transmission is processed.

loggedOut() method
This method is called after the transmission has been completed and after the user is logged out
of the system.

Syntax
public void loggedOut ()

Agentry Language Reference

Agentry Language Reference 529

Usage
This is the last method called prior to the destruction of a User object. The default version of
this method performs only the single task of logging a message to the user's debug log, if
debugging is enabled. This method can be overridden to disconnect a user from a remote
system or perform other cleanup.

reLoggedIn() method
This method is called when a user logs into the Agentry Server and the server still has a
previous login session for that user.

Syntax
public void reLoggedIn ()

Usage
This can occur if a user loses network connectivity in the middle of a transmission. This
method can be overridden to perform any special processing that may be needed in this
situation.

revalidate(String) method
This method authenticates a client user against the Java System Connection.

Syntax
public void revalidate (String password) throws LoginException

Parameters

• password – The password for the current user, as entered on the client application.

Exceptions

• LoginException class – if the login fails for any reason, or if the login succeeds but an
exceptional condition exists (such as an expired or soon-to-be expired password).

Usage
This method is called when a user reconnects to the Agentry Server from a client application
and the enableAuthentication option is set to true in the Java section of the
Agentry.ini file. Override this method to implement logic to perform full validation of
the user against a remote system.

This method should return normally if the authentication of the user succeeds. If
authentication fails for any reason, the appropriate LoginException subclass should be
thrown. An exception should also be thrown for other conditions such as expired or soon-to-
be-expiring passwords. By default, this method throws PasswordInvalidException, which
means that the password is not valid for the user.

Agentry Language Reference

530 SAP Mobile Platform

timedOut() method
This method is called in the event a user session times out.

Syntax
public void timedOut ()

Usage
A time out occurs when a transmission is idle for longer than the configured maximum time
limit. This method can be overridden to perform any tasks that may be needed in this event.

In the event of a timeout, the user will also be logged out of the Agentry Server, which will
trigger calls to the loggedOut() method as well.

update(GregorianCalendar) method
This method is called periodically (once every second or so) by the Agentry Server.

Syntax
public void update (GregorianCalendar update)

Parameters

• update – The time when the timer tick occurred, should be "now" more or less.

Usage
This method can be overridden if some sort of routine maintenance is required, such as
sending a keep-alive to a remote server.

_name variable
User name.

Syntax
protected String _name

Usage
Can be obtained via the getName() method.

SessionData interface
The SessionData interface is used throughout the AJAPI classes.

Syntax
public interface SessionData

Members
All members of SessionData, including inherited members. Constructors

Agentry Language Reference

Agentry Language Reference 531

Modifier and Type Constructor Description

public SessionData sessionData(String) on page
533

Returns a new SessionData ob-
ject, configured with the given
SDML name prefix, that has ac-
cess to the same session data as
this object.

Methods

Modifier and Type Method Description

public String eval(String) on page 534 Evaluates the given string as an
Agentry SDML expression and
returns the result.

public boolean getBoolean(String) on page
534

Returns the specified property
as a Boolean value.

public byte[] getBytes(String) on page 534 Returns the specified property
as an array of bytes.

public double getDouble(String) on page
535

Returns the specified property
as a double-precision floating
point decimal value.

public float getFloat(String) on page 535 Returns the specified property
as a floating point decimal val-
ue.

public int getInteger(String) on page
535

Returns the specified property
as an integer value.

public long getLong(String) on page 535 Returns the specified property
as a long integer value.

public String getString(String) on page
536

Returns the specified property
as a string.

public GregorianCalendar getTimeAndDate(String) on
page 536

Returns the specified property
as a date contained in a Gregor-
ianCalendar object.

public String getTimeAndDate(String,
String) on page 536

Returns the specified property
as a date string using the given
format, specified as an Agentry
date format string (not a Java
date format string!).

Agentry Language Reference

532 SAP Mobile Platform

Usage
It can also be used within the designer-implemented extensions of those classes. This class
encapsulates the Server Data Markup Language (SDML) functionality available in Agentry.
Through a SessionData object, the designer can access the data specific to the current
session.

This class contains several getter methods to return specified pieces of data. Each of these
methods returns the data as a different data type, such as a string or integer. All of these
methods take a single argument of type String that specifies the data to return. A an
example, to retrieve the data for a string property within a transaction named "Description",
the following line of code would be used:
String desc = _sessionData.getString("Description");

When calling these methods, it is important to make sure that the appropriate method is called
for the desired data type. No errors will be reported for mismatched data types. For example, if
a property within a transaction is of type integer, and the value is retrieved by calling getString,
the value will be returned as a String value. In some cases this may be desirable behavior, but in
others it can cause undesirable results.

The primary implementation of this interface is a private class that can only be instantiated by
the Agentry Server, since it calls back into the running Agentry server to obtain its data. For
unit-testing purposes, you can also create a new subclass or mock implementation of this
interface; one example of such a testing version is TestSessionData.

sessionData(String) constructor
Returns a new SessionData object, configured with the given SDML name prefix, that has
access to the same session data as this object.

Syntax
public SessionData sessionData (String sessionData)

Parameters

• sessionData – The new SDML name prefix.

Returns
A new SessionData object that prefixes all property references with the prefix given by
sessionData.

Usage
This can be used to create a session data object that is effectively restricted to only accessing
data that starts with the given prefix.

Agentry Language Reference

Agentry Language Reference 533

eval(String) method
Evaluates the given string as an Agentry SDML expression and returns the result.

Syntax
public String eval (String sdmlString)

Parameters

• sdmlString – The SDML string to evaluate (without the enclosing angle brackets).

Returns
The result as a string.

getBoolean(String) method
Returns the specified property as a Boolean value.

Syntax
public boolean getBoolean (String property)

Parameters

• property – The property name

Returns
The property value as a Boolean.

getBytes(String) method
Returns the specified property as an array of bytes.

Syntax
public byte[] getBytes (String property) throws AgentryException

Parameters

• property – The property name

Returns
The property value as an array of bytes

Exceptions

• AgentryException class – if the property cannot be interpreted as bytes

Agentry Language Reference

534 SAP Mobile Platform

getDouble(String) method
Returns the specified property as a double-precision floating point decimal value.

Syntax
public double getDouble (String property)

Parameters

• property – The property name

Returns
The property value as a double.

getFloat(String) method
Returns the specified property as a floating point decimal value.

Syntax
public float getFloat (String property)

Parameters

• property – The property name

Returns
The property value as a float.

getInteger(String) method
Returns the specified property as an integer value.

Syntax
public int getInteger (String property)

Parameters

• property – The property name

Returns
The property value as an integer.

getLong(String) method
Returns the specified property as a long integer value.

Syntax
public long getLong (String property)

Agentry Language Reference

Agentry Language Reference 535

Parameters

• property – The property name

Returns
The property value as a long integer.

getString(String) method
Returns the specified property as a string.

Syntax
public String getString (String property)

Parameters

• property – The property name

Returns
The property value as a string.

getTimeAndDate(String) method
Returns the specified property as a date contained in a GregorianCalendar object.

Syntax
public GregorianCalendar getTimeAndDate (String property) throws
AgentryException

Parameters

• property – The property name

Returns
The property value as a date. If the property was empty, then this will return the current date.

Exceptions

• AgentryException class – if the value cannot be parsed as a date.

getTimeAndDate(String, String) method
Returns the specified property as a date string using the given format, specified as an Agentry
date format string (not a Java date format string!).

Syntax
public String getTimeAndDate (String property , String format)

Agentry Language Reference

536 SAP Mobile Platform

Parameters

• property – The property name
• format – The date format to use. Note that this is an Agentry Server date format, not the

format used by e.g., SimpleDateFormat!

Returns
The property value as a formatted string.

Usage
If you prefer to use Java date format strings, then just call getTimeAndDate(String) to get a
Calendar object and feed it to a SimpleDateFormat object.

Agentry Language Reference

Agentry Language Reference 537

Agentry Language Reference

538 SAP Mobile Platform

Index
_clientLastDataUpdateTime variable

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 411

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 420

_defaultFormatter variable
AgentryHandler class [Agentry Java System

Connection API API] 376
_name variable

User class [Agentry Java System Connection
API API] 531

_rebuilding variable
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 412
_server variable

ServiceEvent class [Agentry Java System
Connection API API] 496

_session variable
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 412
DataTable< DTOBJ extends DataTableObject

> class [Agentry Java System
Connection API API] 420

Steplet class [Agentry Java System Connection
API API] 511

_sessionData variable
ServiceEvent class [Agentry Java System

Connection API API] 496

A
Agentry Java System Connection API API

AgentryAppender class 387
AgentryException class 394
AgentryHandler class 373
AgentryJavaLoggingConfigurator class 377
AgentryJavaLoggingConfigurator.ReallySimp

leFormatter class 377
BusinessLogicException class 397
com.syclo.agentry package 373
ComplexTable< CTOBJ > class 401
ComplexTableSession class 399
DataTable< DTOBJ extends DataTableObject

> class 416

DataTableMapIterator< K, V > class 390
DataTableObject class 412
DataTableSession class 414
FatalTransactionException class 420
FatalTransactionExceptionStop class 423
FetchSession class 425
java_logging package 373
log4j package 387
Logger class 391
LoginBlockedException class 430
LoginException class 432
LoginSkippedException class 435
PasswordExpiredCannotChangeException

class 437
PasswordExpiredException class 439
PasswordInvalidException class 442
PasswordWarningCannotChangeException

class 444
PasswordWarningException class 446
PushSession class 449
PushUserSession class 455
RetryTransactionException class 461
RetryTransactionWithChangeException class

463
Server class 465
Server.LoginEnumeration enum 472
Server.LoginFailureReason enum 475
ServiceEvent class 494
ServiceEventSession class 496
Session class 501
SessionData interface 531
Steplet class 504
StepletAbortException class 512
StepletStopException class 513
SycloCalendar class 514
TransactionSession class 519
User class 521
User.ChangePasswordResult enum 523
UserLogger class 385
UserLogRecord class 378
utility package 373

AGENTRY_USER_MDC_KEY variable
AgentryAppender class [Agentry Java System

Connection API API] 390

Index

Agentry Language Reference 539

AgentryAppender class [Agentry Java System
Connection API API]

AGENTRY_USER_MDC_KEY variable 390
AgentryAppender() constructor 389
append(LoggingEvent) method 389
close() method 389
description 387
mapLogLevel(Level) method 389
requiresLayout() method 389

AgentryAppender() constructor
AgentryAppender class [Agentry Java System

Connection API API] 389
AgentryException class [Agentry Java System

Connection API API]
AgentryException(String, String, String,

Throwable) constructor 396
AgentryException(String, String, String)

constructor 396
AgentryException(String, Throwable)

constructor 395
AgentryException(String) constructor 395
description 394
getNotificationText() method 397
getNotificationTitle() method 397
getOkButtonLabel() method 397

AgentryException(String, String, String,
Throwable) constructor

AgentryException class [Agentry Java System
Connection API API] 396

AgentryException(String, String, String)
constructor

AgentryException class [Agentry Java System
Connection API API] 396

AgentryException(String, Throwable) constructor
AgentryException class [Agentry Java System

Connection API API] 395
AgentryException(String) constructor

AgentryException class [Agentry Java System
Connection API API] 395

AgentryHandler class [Agentry Java System
Connection API API]

_defaultFormatter variable 376
AgentryHandler() constructor 375
close() method 376
description 373
flush() method 376
mapLogLevel(Level) method 376
publish(LogRecord) method 376

AgentryHandler() constructor
AgentryHandler class [Agentry Java System

Connection API API] 375
AgentryJavaLoggingConfigurator class [Agentry

Java System Connection API API]
AgentryJavaLoggingConfigurator()

constructor 378
description 377

AgentryJavaLoggingConfigurator.ReallySimpleFo
rmatter class [Agentry Java System
Connection API API]

description 377
format(LogRecord) method 378

AgentryJavaLoggingConfigurator() constructor
AgentryJavaLoggingConfigurator class

[Agentry Java System Connection
API API] 378

append(LoggingEvent) method
AgentryAppender class [Agentry Java System

Connection API API] 389
appendDebug(String) method

Logger class [deprecated] [Agentry Java
System Connection API API] 392

B
backendTimeAndDate() method [deprecated]

User class [Agentry Java System Connection
API API] 525

beginChangePassword() method
User class [Agentry Java System Connection

API API] 526
beginClientExchange() method

FetchSession class [Agentry Java System
Connection API API] 428

beginDataAndUpdateSteps() method
ServiceEventSession class [Agentry Java

System Connection API API] 499
beginDebug(String) method

Logger class [deprecated] [Agentry Java
System Connection API API] 393

beginDisablePush() method
PushUserSession class [Agentry Java System

Connection API API] 459
beginEnablePush() method

PushUserSession class [Agentry Java System
Connection API API] 459

beginFetchObjectRead() method
FetchSession class [Agentry Java System

Connection API API] 428

Index

540 SAP Mobile Platform

beginFetchRemoval() method
FetchSession class [Agentry Java System

Connection API API] 429
beginPushError() method

PushUserSession class [Agentry Java System
Connection API API] 459

beginPushError() method [deprecated]
PushSession class [Agentry Java System

Connection API API] 452
beginPushReadStep() method

PushSession class [Agentry Java System
Connection API API] 453

beginPushRemoval() method
PushSession class [Agentry Java System

Connection API API] 453
beginPushResponse() method

PushUserSession class [Agentry Java System
Connection API API] 460

beginPushResponse() method [deprecated]
PushSession class [Agentry Java System

Connection API API] 453
beginPushRetrieval() method

PushSession class [Agentry Java System
Connection API API] 454

beginReadSteps() method
ServiceEventSession class [Agentry Java

System Connection API API] 499
beginServerExchange() method

FetchSession class [Agentry Java System
Connection API API] 429

beginServiceEventError() method
ServiceEventSession class [Agentry Java

System Connection API API] 500
beginTransaction() method

TransactionSession class [Agentry Java
System Connection API API] 521

build() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 404
BusinessLogicException class [Agentry Java

System Connection API API]
BusinessLogicException(String, Throwable)

constructor 399
BusinessLogicException(String) constructor

398
description 397

BusinessLogicException(String, Throwable)
constructor

BusinessLogicException class [Agentry Java
System Connection API API] 399

BusinessLogicException(String) constructor
BusinessLogicException class [Agentry Java

System Connection API API] 398

C

ChangePassword_Blocked variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
524

ChangePassword_Failure variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
524

ChangePassword_NotHandled variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
525

ChangePassword_Success variable
User.ChangePasswordResult enum [Agentry

Java System Connection API API]
525

changePassword(String, String) method
User class [Agentry Java System Connection

API API] 526
changePasswordFailed(StringBuffer) method

User class [Agentry Java System Connection
API API] 527

changePasswordSessionAborted() method
User class [Agentry Java System Connection

API API] 527
checkForReload() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 404

close() method
AgentryAppender class [Agentry Java System

Connection API API] 389
AgentryHandler class [Agentry Java System

Connection API API] 376
code variable

DataTableObject class [Agentry Java System
Connection API API] 414

code() method [deprecated]
DataTableObject class [Agentry Java System

Connection API API] 413

Index

Agentry Language Reference 541

com.syclo.agentry package [Agentry Java System
Connection API API]

description 373
ComplexTable(ComplexTableSession,

GregorianCalendar) method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 405
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API]
_clientLastDataUpdateTime variable 411
_rebuilding variable 412
_session variable 412
build() method 404
checkForReload() method 404
ComplexTable(ComplexTableSession,

GregorianCalendar) method 405
dataIterator() method 405
deleteIterator() method 406
description 401
getClientLastDataUpdateTime() method 407
getNewDataUpdateTime() method 407
getSession() method 407
initialize() method [deprecated] 407
isRebuilding() method 408
lastUpdateDate() method 408
lastUpdateHours() method 408
lastUpdateMinutes() method 408
lastUpdateMonth() method 409
lastUpdateSeconds() method 409
lastUpdateYear() method 409
reload() method [deprecated] 410
setNewDataUpdateTime(GregorianCalendar)

method 410
willRebuildTable() method 411

ComplexTableSession class [Agentry Java System
Connection API API]

ComplexTableSession(String, Server,
SessionData, User) constructor 400

description 399
ComplexTableSession(String, Server, SessionData,

User) constructor
ComplexTableSession class [Agentry Java

System Connection API API] 400
createComplexTableSession(String, SessionData,

User) method
Server class [Agentry Java System Connection

API API] 476

createDataTableSession(String, SessionData, User)
method

Server class [Agentry Java System Connection
API API] 477

createFetchSession(String, Server, SessionData,
User) method [deprecated]

Server class [Agentry Java System Connection
API API] 478

createFetchSession(String, SessionData, User)
method

Server class [Agentry Java System Connection
API API] 478

createPushSession(String, Server, SessionData)
method [deprecated]

Server class [Agentry Java System Connection
API API] 479

createPushSession(String, SessionData) method
Server class [Agentry Java System Connection

API API] 479
createPushUserSession(String, Server,

SessionData, User) method [deprecated]
Server class [Agentry Java System Connection

API API] 480
createPushUserSession(String, SessionData, User)

method
Server class [Agentry Java System Connection

API API] 480
createServiceEventSession(String, Server,

SessionData) method [deprecated]
Server class [Agentry Java System Connection

API API] 481
createServiceEventSession(String, SessionData)

method
Server class [Agentry Java System Connection

API API] 482
createTransactionSession(String, Server,

SessionData, User) method [deprecated]
Server class [Agentry Java System Connection

API API] 482
createTransactionSession(String, SessionData,

User) method
Server class [Agentry Java System Connection

API API] 483
createUser(String, int) method [deprecated]

Server class [Agentry Java System Connection
API API] 483

createUser(String) method
Server class [Agentry Java System Connection

API API] 484

Index

542 SAP Mobile Platform

D
dataIterator() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 405

dataReceived(Object) method
ServiceEvent class [Agentry Java System

Connection API API] 495
DataTable(DataTableSession, GregorianCalendar)

method
DataTable< DTOBJ extends DataTableObject

> class [Agentry Java System
Connection API API] 418

DataTable< DTOBJ extends DataTableObject >
class [Agentry Java System Connection
API API]

_clientLastDataUpdateTime variable 420
_session variable 420
DataTable(DataTableSession,

GregorianCalendar) method 418
description 416
getClientLastDataUpdateTime() method 418
getSession() method 418
initialize() method 419
isOutOfDate() method 419
iterator() method 419

DataTableMapIterator(Map< K, V >) method
DataTableMapIterator< K, V > class [Agentry

Java System Connection API API]
390

DataTableMapIterator< K, V > class [Agentry Java
System Connection API API]

DataTableMapIterator(Map< K, V >) method
390

description 390
hasNext() method 391
next() method 391
remove() method 391

DataTableObject class [Agentry Java System
Connection API API]

code variable 414
code() method [deprecated] 413
DataTableObject(String, String) constructor

413
description 412
equals(Object) method 413
getKey() method 413
getValue() method 414
hashCode() method 414
value variable 414

value() method [deprecated] 414
DataTableObject(String, String) constructor

DataTableObject class [Agentry Java System
Connection API API] 413

DataTableSession class [Agentry Java System
Connection API API]

DataTableSession(String, Server, SessionData,
User) constructor 416

description 414
DataTableSession(String, Server, SessionData,

User) constructor
DataTableSession class [Agentry Java System

Connection API API] 416
debug(String, Map< String, String >, String)

method
Logger class [deprecated] [Agentry Java

System Connection API API] 393
debug(String) method

Logger class [deprecated] [Agentry Java
System Connection API API] 393

Server class [Agentry Java System Connection
API API] 484

Session class [Agentry Java System
Connection API API] 503

User class [Agentry Java System Connection
API API] 527

decryptPassword(String) method
Server class [Agentry Java System Connection

API API] 485
deleteIterator() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 406

disablePush() method
PushUserSession class [Agentry Java System

Connection API API] 460
doSteplet() method

Steplet class [Agentry Java System Connection
API API] 508

E
enablePush() method

PushUserSession class [Agentry Java System
Connection API API] 460

endChangePassword() method
User class [Agentry Java System Connection

API API] 528
endClientExchange() method

FetchSession class [Agentry Java System
Connection API API] 429

Index

Agentry Language Reference 543

endDataAndUpdateSteps() method
ServiceEventSession class [Agentry Java

System Connection API API] 500
endDebug(String) method

Logger class [deprecated] [Agentry Java
System Connection API API] 393

endDisablePush() method
PushUserSession class [Agentry Java System

Connection API API] 460
endEnablePush() method

PushUserSession class [Agentry Java System
Connection API API] 461

endFetchObjectRead() method
FetchSession class [Agentry Java System

Connection API API] 429
endFetchRemoval() method

FetchSession class [Agentry Java System
Connection API API] 430

endPushError() method
PushUserSession class [Agentry Java System

Connection API API] 461
endPushError() method [deprecated]

PushSession class [Agentry Java System
Connection API API] 454

endPushReadStep() method
PushSession class [Agentry Java System

Connection API API] 454
endPushRemoval() method

PushSession class [Agentry Java System
Connection API API] 455

endPushResponse() method
PushUserSession class [Agentry Java System

Connection API API] 461
endPushResponse() method [deprecated]

PushSession class [Agentry Java System
Connection API API] 455

endPushRetrieval() method
PushSession class [Agentry Java System

Connection API API] 455
endReadSteps() method

ServiceEventSession class [Agentry Java
System Connection API API] 500

endServerExchange() method
FetchSession class [Agentry Java System

Connection API API] 430
endServiceEventError() method

ServiceEventSession class [Agentry Java
System Connection API API] 500

endTransaction() method
TransactionSession class [Agentry Java

System Connection API API] 521
equals(Object) method

DataTableObject class [Agentry Java System
Connection API API] 413

UserLogRecord class [Agentry Java System
Connection API API] 381

eval(String) method
SessionData interface [Agentry Java System

Connection API API] 534

F

FatalTransactionException class [Agentry Java
System Connection API API]

description 420
FatalTransactionException(String, String,

String, Throwable) constructor 423
FatalTransactionException(String, String,

String) constructor 422
FatalTransactionException(String,

Throwable) constructor 422
FatalTransactionException(String)

constructor 422
FatalTransactionException(String, String, String,

Throwable) constructor
FatalTransactionException class [Agentry Java

System Connection API API] 423
FatalTransactionException(String, String, String)

constructor
FatalTransactionException class [Agentry Java

System Connection API API] 422
FatalTransactionException(String, Throwable)

constructor
FatalTransactionException class [Agentry Java

System Connection API API] 422
FatalTransactionException(String) constructor

FatalTransactionException class [Agentry Java
System Connection API API] 422

FatalTransactionExceptionStop class [Agentry Java
System Connection API API]

description 423
FatalTransactionExceptionStop(String, String,

String, Throwable) constructor 425
FatalTransactionExceptionStop(String, String,

String) constructor 424

Index

544 SAP Mobile Platform

FatalTransactionExceptionStop(String, String,
String, Throwable) constructor

FatalTransactionExceptionStop class [Agentry
Java System Connection API API]
425

FatalTransactionExceptionStop(String, String,
String) constructor

FatalTransactionExceptionStop class [Agentry
Java System Connection API API]
424

FetchSession class [Agentry Java System
Connection API API]

beginClientExchange() method 428
beginFetchObjectRead() method 428
beginFetchRemoval() method 429
beginServerExchange() method 429
description 425
endClientExchange() method 429
endFetchObjectRead() method 429
endFetchRemoval() method 430
endServerExchange() method 430
FetchSession(String, Server, SessionData,

User) constructor 428
FetchSession(String, Server, SessionData, User)

constructor
FetchSession class [Agentry Java System

Connection API API] 428
findConfigurationFile(String) method

Server class [Agentry Java System Connection
API API] 485

flush() method
AgentryHandler class [Agentry Java System

Connection API API] 376
format(LogRecord) method

AgentryJavaLoggingConfigurator.ReallySimp
leFormatter class [Agentry Java
System Connection API API] 378

G

getBoolean(String) method
SessionData interface [Agentry Java System

Connection API API] 534
getBytes(String) method

SessionData interface [Agentry Java System
Connection API API] 534

getClientLastDataUpdateTime() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 407

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 418

getDouble(String) method
SessionData interface [Agentry Java System

Connection API API] 535
getFloat(String) method

SessionData interface [Agentry Java System
Connection API API] 535

getImplementationVersion() method
Server class [Agentry Java System Connection

API API] 485
getInstance() method

Server class [Agentry Java System Connection
API API] 486

getInteger(String) method
SessionData interface [Agentry Java System

Connection API API] 535
getInvalidTimeAndDate() method

SycloCalendar class [Agentry Java System
Connection API API] 518

getKey() method
DataTableObject class [Agentry Java System

Connection API API] 413
getLevel() method

UserLogRecord class [Agentry Java System
Connection API API] 381

getLoggerName() method
UserLogRecord class [Agentry Java System

Connection API API] 381
getLong(String) method

SessionData interface [Agentry Java System
Connection API API] 535

getMessage() method
UserLogRecord class [Agentry Java System

Connection API API] 382
getMillis() method

UserLogRecord class [Agentry Java System
Connection API API] 382

getName() method
Session class [Agentry Java System

Connection API API] 503
User class [Agentry Java System Connection

API API] 528
getNewDataUpdateTime() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 407

Index

Agentry Language Reference 545

getNotificationText() method
AgentryException class [Agentry Java System

Connection API API] 397
Steplet class [Agentry Java System Connection

API API] 509
getNotificationTitle() method

AgentryException class [Agentry Java System
Connection API API] 397

Steplet class [Agentry Java System Connection
API API] 509

getOkButtonLabel() method
AgentryException class [Agentry Java System

Connection API API] 397
Steplet class [Agentry Java System Connection

API API] 509
getParameters() method

UserLogRecord class [Agentry Java System
Connection API API] 382

getResourceBundle() method
UserLogRecord class [Agentry Java System

Connection API API] 382
getResourceBundleName() method

UserLogRecord class [Agentry Java System
Connection API API] 382

getReturnData() method
Steplet class [Agentry Java System Connection

API API] 510
getSequenceNumber() method

UserLogRecord class [Agentry Java System
Connection API API] 382

getServer() method
Session class [Agentry Java System

Connection API API] 503
getSession() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 407

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 418

Steplet class [Agentry Java System Connection
API API] 510

getSessionData() method
Session class [Agentry Java System

Connection API API] 504
getSourceClassName() method

UserLogRecord class [Agentry Java System
Connection API API] 382

getSourceMethodName() method
UserLogRecord class [Agentry Java System

Connection API API] 382
getSpecificationVersion() method

Server class [Agentry Java System Connection
API API] 486

getString(String) method
SessionData interface [Agentry Java System

Connection API API] 536
getSystemConnectionTime() method

User class [Agentry Java System Connection
API API] 528

getThreadID() method
UserLogRecord class [Agentry Java System

Connection API API] 383
getThrown() method

UserLogRecord class [Agentry Java System
Connection API API] 383

getTimeAndDate(String, String) method
SessionData interface [Agentry Java System

Connection API API] 536
getTimeAndDate(String) method

SessionData interface [Agentry Java System
Connection API API] 536

getTimeZone() method
Server class [Agentry Java System Connection

API API] 486
getTimeZone(StringBuffer) method [deprecated]

User class [Agentry Java System Connection
API API] 529

getUser() method
Session class [Agentry Java System

Connection API API] 504
UserLogger class [Agentry Java System

Connection API API] 386
UserLogRecord class [Agentry Java System

Connection API API] 383
getUserLogger(String, String, User) method

UserLogger class [Agentry Java System
Connection API API] 386

getUserLogger(String, User) method
UserLogger class [Agentry Java System

Connection API API] 386
getValue() method

DataTableObject class [Agentry Java System
Connection API API] 414

User.ChangePasswordResult enum [Agentry
Java System Connection API API]
524

Index

546 SAP Mobile Platform

H
hashCode() method

DataTableObject class [Agentry Java System
Connection API API] 414

UserLogRecord class [Agentry Java System
Connection API API] 383

hasNext() method
DataTableMapIterator< K, V > class [Agentry

Java System Connection API API]
391

I
initialize() method

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 419

initialize() method [deprecated]
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 407
isDebugMode() method

Logger class [deprecated] [Agentry Java
System Connection API API] 394

isInvalidTimeAndDate() method
SycloCalendar class [Agentry Java System

Connection API API] 518
isInvalidTimeAndDate(GregorianCalendar)

method
SycloCalendar class [Agentry Java System

Connection API API] 518
isOutOfDate() method

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 419

isRebuilding() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 408
iterator() method

DataTable< DTOBJ extends DataTableObject
> class [Agentry Java System
Connection API API] 419

J
java_logging package [Agentry Java System

Connection API API]
description 373

L
lastUpdateDate() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 408

lastUpdateHours() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 408
lastUpdateMinutes() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 408

lastUpdateMonth() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 409
lastUpdateSeconds() method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 409

lastUpdateYear() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 409
log(LogRecord) method

UserLogger class [Agentry Java System
Connection API API] 387

log4j package [Agentry Java System Connection
API API]

description 387
loggedIn() method

User class [Agentry Java System Connection
API API] 529

loggedOut() method
User class [Agentry Java System Connection

API API] 529
Logger class [Agentry Java System Connection API

API]
description 391

Logger class [deprecated] [Agentry Java System
Connection API API]

appendDebug(String) method 392
beginDebug(String) method 393
debug(String, Map< String, String >, String)

method 393
debug(String) method 393
endDebug(String) method 393
isDebugMode() method 394
Logger(String, boolean) constructor 392

Logger(String, boolean) constructor
Logger class [deprecated] [Agentry Java

System Connection API API] 392
Login_Invalid variable

Server.LoginEnumeration enum [deprecated]
[Agentry Java System Connection
API API] 473

Index

Agentry Language Reference 547

Login_InvalidBlocked variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 474

Login_Pass variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 474

Login_Valid variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 474

Login_ValidPasswordExpired variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 474

Login_ValidPasswordExpiredNoChange variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 474

Login_ValidPasswordWarning variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 475

Login_ValidPasswordWarningNoChange variable
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection
API API] 475

login(String, String, SessionData) method
[deprecated]

Server class [Agentry Java System Connection
API API] 487

login(User, String, SessionData) method
Server class [Agentry Java System Connection

API API] 487
loginBlocked(String, StringBuffer) method

[deprecated]
Server class [Agentry Java System Connection

API API] 488
loginBlocked(User, String, StringBuffer,

SessionData) method
Server class [Agentry Java System Connection

API API] 489
loginBlocked(User, StringBuffer, SessionData)

method [deprecated]
Server class [Agentry Java System Connection

API API] 489

LoginBlockedException class [Agentry Java
System Connection API API]

description 430
LoginBlockedException() constructor 432
LoginBlockedException(String, Throwable)

constructor 432
LoginBlockedException(String) constructor

432
LoginBlockedException() constructor

LoginBlockedException class [Agentry Java
System Connection API API] 432

LoginBlockedException(String, Throwable)
constructor

LoginBlockedException class [Agentry Java
System Connection API API] 432

LoginBlockedException(String) constructor
LoginBlockedException class [Agentry Java

System Connection API API] 432
LoginException class [Agentry Java System

Connection API API]
description 432
LoginException() constructor 434
LoginException(String, Throwable)

constructor 434
LoginException(String) constructor 434

LoginException() constructor
LoginException class [Agentry Java System

Connection API API] 434
LoginException(String, Throwable) constructor

LoginException class [Agentry Java System
Connection API API] 434

LoginException(String) constructor
LoginException class [Agentry Java System

Connection API API] 434
loginFailed(String, StringBuffer) method

[deprecated]
Server class [Agentry Java System Connection

API API] 490
loginFailed(User, String, LoginFailureReason,

StringBuffer, SessionData) method
Server class [Agentry Java System Connection

API API] 491
loginPreviousUser(String, String, SessionData)

method [deprecated]
Server class [Agentry Java System Connection

API API] 492

Index

548 SAP Mobile Platform

loginPreviousUser(User, String, SessionData)
method

Server class [Agentry Java System Connection
API API] 492

LoginSkippedException class [Agentry Java
System Connection API API]

description 435
LoginSkippedException() constructor 436
LoginSkippedException(String, Throwable)

constructor 437
LoginSkippedException(String) constructor

436
LoginSkippedException() constructor

LoginSkippedException class [Agentry Java
System Connection API API] 436

LoginSkippedException(String, Throwable)
constructor

LoginSkippedException class [Agentry Java
System Connection API API] 437

LoginSkippedException(String) constructor
LoginSkippedException class [Agentry Java

System Connection API API] 436

M
mapLogLevel(Level) method

AgentryAppender class [Agentry Java System
Connection API API] 389

AgentryHandler class [Agentry Java System
Connection API API] 376

N
next() method

DataTableMapIterator< K, V > class [Agentry
Java System Connection API API]
391

NoBackEndsAuthenticated variable
Server.LoginFailureReason enum [Agentry

Java System Connection API API]
476

notificationText() method [deprecated]
Steplet class [Agentry Java System Connection

API API] 511
notificationTitle() method [deprecated]

Steplet class [Agentry Java System Connection
API API] 511

O
okButtonLabel() method [deprecated]

Steplet class [Agentry Java System Connection
API API] 511

P

PasswordExpiredCannotChange variable
Server.LoginFailureReason enum [Agentry

Java System Connection API API]
476

PasswordExpiredCannotChangeException class
[Agentry Java System Connection API
API]

description 437
PasswordExpiredCannotChangeException()

constructor 439
PasswordExpiredCannotChangeException(Str

ing, Throwable) constructor 439
PasswordExpiredCannotChangeException(Str

ing) constructor 439
PasswordExpiredCannotChangeException()

constructor
PasswordExpiredCannotChangeException

class [Agentry Java System
Connection API API] 439

PasswordExpiredCannotChangeException(String,
Throwable) constructor

PasswordExpiredCannotChangeException
class [Agentry Java System
Connection API API] 439

PasswordExpiredCannotChangeException(String)
constructor

PasswordExpiredCannotChangeException
class [Agentry Java System
Connection API API] 439

PasswordExpiredException class [Agentry Java
System Connection API API]

description 439
PasswordExpiredException() constructor 441
PasswordExpiredException(String,

Throwable) constructor 441
PasswordExpiredException(String)

constructor 441
PasswordExpiredException() constructor

PasswordExpiredException class [Agentry
Java System Connection API API]
441

PasswordExpiredException(String, Throwable)
constructor

PasswordExpiredException class [Agentry
Java System Connection API API]
441

Index

Agentry Language Reference 549

PasswordExpiredException(String) constructor
PasswordExpiredException class [Agentry

Java System Connection API API]
441

PasswordInvalid variable
Server.LoginFailureReason enum [Agentry

Java System Connection API API]
476

PasswordInvalidException class [Agentry Java
System Connection API API]

description 442
PasswordInvalidException() constructor 443
PasswordInvalidException(String, Throwable)

constructor 444
PasswordInvalidException(String) constructor

443
PasswordInvalidException() constructor

PasswordInvalidException class [Agentry Java
System Connection API API] 443

PasswordInvalidException(String, Throwable)
constructor

PasswordInvalidException class [Agentry Java
System Connection API API] 444

PasswordInvalidException(String) constructor
PasswordInvalidException class [Agentry Java

System Connection API API] 443
PasswordWarningCannotChangeException class

[Agentry Java System Connection API
API]

description 444
PasswordWarningCannotChangeException()

constructor 446
PasswordWarningCannotChangeException(St

ring, Throwable) constructor 446
PasswordWarningCannotChangeException(St

ring) constructor 446
PasswordWarningCannotChangeException()

constructor
PasswordWarningCannotChangeException

class [Agentry Java System
Connection API API] 446

PasswordWarningCannotChangeException(String,
Throwable) constructor

PasswordWarningCannotChangeException
class [Agentry Java System
Connection API API] 446

PasswordWarningCannotChangeException(String)
constructor

PasswordWarningCannotChangeException
class [Agentry Java System
Connection API API] 446

PasswordWarningException class [Agentry Java
System Connection API API]

description 446
PasswordWarningException() constructor 448
PasswordWarningException(String,

Throwable) constructor 448
PasswordWarningException(String)

constructor 448
PasswordWarningException() constructor

PasswordWarningException class [Agentry
Java System Connection API API]
448

PasswordWarningException(String, Throwable)
constructor

PasswordWarningException class [Agentry
Java System Connection API API]
448

PasswordWarningException(String) constructor
PasswordWarningException class [Agentry

Java System Connection API API]
448

publish(LogRecord) method
AgentryHandler class [Agentry Java System

Connection API API] 376
PushSession class [Agentry Java System

Connection API API]
beginPushError() method [deprecated] 452
beginPushReadStep() method 453
beginPushRemoval() method 453
beginPushResponse() method [deprecated]

453
beginPushRetrieval() method 454
description 449
endPushError() method [deprecated] 454
endPushReadStep() method 454
endPushRemoval() method 455
endPushResponse() method [deprecated] 455
endPushRetrieval() method 455
PushSession(String, Server, SessionData)

constructor 452
PushSession(String, Server, SessionData)

constructor
PushSession class [Agentry Java System

Connection API API] 452

Index

550 SAP Mobile Platform

PushUserSession class [Agentry Java System
Connection API API]

beginDisablePush() method 459
beginEnablePush() method 459
beginPushError() method 459
beginPushResponse() method 460
description 455
disablePush() method 460
enablePush() method 460
endDisablePush() method 460
endEnablePush() method 461
endPushError() method 461
endPushResponse() method 461
PushUserSession(String, Server, SessionData,

User) constructor 458
PushUserSession(String, Server, SessionData,

User) constructor
PushUserSession class [Agentry Java System

Connection API API] 458

R

reload() method [deprecated]
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 410
reLoggedIn() method

User class [Agentry Java System Connection
API API] 530

remove() method
DataTableMapIterator< K, V > class [Agentry

Java System Connection API API]
391

requiresLayout() method
AgentryAppender class [Agentry Java System

Connection API API] 389
RetryTransactionException class [Agentry Java

System Connection API API]
description 461
RetryTransactionException(String, String,

String, Throwable) constructor 463
RetryTransactionException(String, String,

String) constructor 463
RetryTransactionException(String, String, String,

Throwable) constructor
RetryTransactionException class [Agentry

Java System Connection API API]
463

RetryTransactionException(String, String, String)
constructor

RetryTransactionException class [Agentry
Java System Connection API API]
463

RetryTransactionWithChangeException class
[Agentry Java System Connection API
API]

description 463
RetryTransactionWithChangeException(Strin

g, String, String, Throwable)
constructor 465

RetryTransactionWithChangeException(Strin
g, String, String) constructor 465

RetryTransactionWithChangeException(String,
String, String, Throwable) constructor

RetryTransactionWithChangeException class
[Agentry Java System Connection
API API] 465

RetryTransactionWithChangeException(String,
String, String) constructor

RetryTransactionWithChangeException class
[Agentry Java System Connection
API API] 465

revalidate(String) method
User class [Agentry Java System Connection

API API] 530

S

Server class [Agentry Java System Connection API
API]

createComplexTableSession(String,
SessionData, User) method 476

createDataTableSession(String, SessionData,
User) method 477

createFetchSession(String, Server,
SessionData, User) method
[deprecated] 478

createFetchSession(String, SessionData, User)
method 478

createPushSession(String, Server,
SessionData) method [deprecated]
479

createPushSession(String, SessionData)
method 479

createPushUserSession(String, Server,
SessionData, User) method
[deprecated] 480

Index

Agentry Language Reference 551

createPushUserSession(String, SessionData,
User) method 480

createServiceEventSession(String, Server,
SessionData) method [deprecated]
481

createServiceEventSession(String,
SessionData) method 482

createTransactionSession(String, Server,
SessionData, User) method
[deprecated] 482

createTransactionSession(String,
SessionData, User) method 483

createUser(String, int) method [deprecated]
483

createUser(String) method 484
debug(String) method 484
decryptPassword(String) method 485
description 465
findConfigurationFile(String) method 485
getImplementationVersion() method 485
getInstance() method 486
getSpecificationVersion() method 486
getTimeZone() method 486
login(String, String, SessionData) method

[deprecated] 487
login(User, String, SessionData) method 487
loginBlocked(String, StringBuffer) method

[deprecated] 488
loginBlocked(User, String, StringBuffer,

SessionData) method 489
loginBlocked(User, StringBuffer,

SessionData) method [deprecated]
489

loginFailed(String, StringBuffer) method
[deprecated] 490

loginFailed(User, String, LoginFailureReason,
StringBuffer, SessionData) method
491

loginPreviousUser(String, String,
SessionData) method [deprecated]
492

loginPreviousUser(User, String, SessionData)
method 492

Server() constructor 476
setDebugEnabled(boolean) method

[deprecated] 493
shutdown() method 493
startup() method 493

Server.LoginEnumeration enum [Agentry Java
System Connection API API]

description 472
Server.LoginEnumeration enum [deprecated]

[Agentry Java System Connection API
API]

Login_Invalid variable 473
Login_InvalidBlocked variable 474
Login_Pass variable 474
Login_Valid variable 474
Login_ValidPasswordExpired variable 474
Login_ValidPasswordExpiredNoChange

variable 474
Login_ValidPasswordWarning variable 475
Login_ValidPasswordWarningNoChange

variable 475
throwException() method 473

Server.LoginFailureReason enum [Agentry Java
System Connection API API]

description 475
NoBackEndsAuthenticated variable 476
PasswordExpiredCannotChange variable 476
PasswordInvalid variable 476

Server() constructor
Server class [Agentry Java System Connection

API API] 476
ServiceEvent class [Agentry Java System

Connection API API]
_server variable 496
_sessionData variable 496
dataReceived(Object) method 495
description 494
ServiceEvent(Server, SessionData,

CallbackInterface) constructor 495
ServiceEvent(Server, SessionData,

CallbackInterface) constructor
ServiceEvent class [Agentry Java System

Connection API API] 495
ServiceEventSession class [Agentry Java System

Connection API API]
beginDataAndUpdateSteps() method 499
beginReadSteps() method 499
beginServiceEventError() method 500
description 496
endDataAndUpdateSteps() method 500
endReadSteps() method 500
endServiceEventError() method 500
ServiceEventSession(String, Server,

SessionData) constructor 499

Index

552 SAP Mobile Platform

ServiceEventSession(String, Server, SessionData)
constructor

ServiceEventSession class [Agentry Java
System Connection API API] 499

Session class [Agentry Java System Connection API
API]

debug(String) method 503
description 501
getName() method 503
getServer() method 503
getSessionData() method 504
getUser() method 504
Session(String, Server, SessionData, User)

constructor 502
Session(String, Server, SessionData)

constructor 502
sessionAborted() method 504

Session(String, Server, SessionData, User)
constructor

Session class [Agentry Java System
Connection API API] 502

Session(String, Server, SessionData) constructor
Session class [Agentry Java System

Connection API API] 502
sessionAborted() method

Session class [Agentry Java System
Connection API API] 504

SessionData interface [Agentry Java System
Connection API API]

description 531
eval(String) method 534
getBoolean(String) method 534
getBytes(String) method 534
getDouble(String) method 535
getFloat(String) method 535
getInteger(String) method 535
getLong(String) method 535
getString(String) method 536
getTimeAndDate(String, String) method 536
getTimeAndDate(String) method 536
sessionData(String) constructor 533

sessionData(String) constructor
SessionData interface [Agentry Java System

Connection API API] 533
setDebugEnabled(boolean) method [deprecated]

Server class [Agentry Java System Connection
API API] 493

setLevel(Level) method
UserLogRecord class [Agentry Java System

Connection API API] 383
setLoggerName(String) method

UserLogRecord class [Agentry Java System
Connection API API] 383

setMessage(String) method
UserLogRecord class [Agentry Java System

Connection API API] 383
setMillis(long) method

UserLogRecord class [Agentry Java System
Connection API API] 384

setNewDataUpdateTime(GregorianCalendar)
method

ComplexTable< CTOBJ > class [Agentry Java
System Connection API API] 410

setParameters(Object[]) method
UserLogRecord class [Agentry Java System

Connection API API] 384
setResourceBundle(ResourceBundle) method

UserLogRecord class [Agentry Java System
Connection API API] 384

setResourceBundleName(String) method
UserLogRecord class [Agentry Java System

Connection API API] 384
setSequenceNumber(long) method

UserLogRecord class [Agentry Java System
Connection API API] 384

setSourceClassName(String) method
UserLogRecord class [Agentry Java System

Connection API API] 384
setSourceMethodName(String) method

UserLogRecord class [Agentry Java System
Connection API API] 384

setThreadID(int) method
UserLogRecord class [Agentry Java System

Connection API API] 384
setThrown(Throwable) method

UserLogRecord class [Agentry Java System
Connection API API] 385

shutdown() method
Server class [Agentry Java System Connection

API API] 493
startup() method

Server class [Agentry Java System Connection
API API] 493

Steplet class [Agentry Java System Connection API
API]

_session variable 511

Index

Agentry Language Reference 553

description 504
doSteplet() method 508
getNotificationText() method 509
getNotificationTitle() method 509
getOkButtonLabel() method 509
getReturnData() method 510
getSession() method 510
notificationText() method [deprecated] 511
notificationTitle() method [deprecated] 511
okButtonLabel() method [deprecated] 511
Steplet(FetchSession) constructor 507
Steplet(PushSession) constructor 507
Steplet(PushUserSession) constructor 507
Steplet(ServiceEventSession) constructor 508
Steplet(TransactionSession) constructor 507

Steplet(FetchSession) constructor
Steplet class [Agentry Java System Connection

API API] 507
Steplet(PushSession) constructor

Steplet class [Agentry Java System Connection
API API] 507

Steplet(PushUserSession) constructor
Steplet class [Agentry Java System Connection

API API] 507
Steplet(ServiceEventSession) constructor

Steplet class [Agentry Java System Connection
API API] 508

Steplet(TransactionSession) constructor
Steplet class [Agentry Java System Connection

API API] 507
StepletAbortException class [Agentry Java System

Connection API API]
description 512
StepletAbortException(String) constructor

513
StepletAbortException(String) constructor

StepletAbortException class [Agentry Java
System Connection API API] 513

StepletStopException class [Agentry Java System
Connection API API]

description 513
StepletStopException(String) constructor 514

StepletStopException(String) constructor
StepletStopException class [Agentry Java

System Connection API API] 514
SycloCalendar class [Agentry Java System

Connection API API]
description 514
getInvalidTimeAndDate() method 518

isInvalidTimeAndDate() method 518
isInvalidTimeAndDate(GregorianCalendar)

method 518
SycloCalendar() constructor 516
SycloCalendar(GregorianCalendar, Locale)

constructor 516
SycloCalendar(GregorianCalendar)

constructor 515
SycloCalendar(int, int, int, int, int, int)

constructor 516
SycloCalendar(int, int, int, int, int) constructor

517
SycloCalendar(int, int, int) constructor 517
SycloCalendar(Locale) constructor 517
SycloCalendar(TimeZone, Locale) constructor

517
SycloCalendar(TimeZone) constructor 518

SycloCalendar() constructor
SycloCalendar class [Agentry Java System

Connection API API] 516
SycloCalendar(GregorianCalendar, Locale)

constructor
SycloCalendar class [Agentry Java System

Connection API API] 516
SycloCalendar(GregorianCalendar) constructor

SycloCalendar class [Agentry Java System
Connection API API] 515

SycloCalendar(int, int, int, int, int, int) constructor
SycloCalendar class [Agentry Java System

Connection API API] 516
SycloCalendar(int, int, int, int, int) constructor

SycloCalendar class [Agentry Java System
Connection API API] 517

SycloCalendar(int, int, int) constructor
SycloCalendar class [Agentry Java System

Connection API API] 517
SycloCalendar(Locale) constructor

SycloCalendar class [Agentry Java System
Connection API API] 517

SycloCalendar(TimeZone, Locale) constructor
SycloCalendar class [Agentry Java System

Connection API API] 517
SycloCalendar(TimeZone) constructor

SycloCalendar class [Agentry Java System
Connection API API] 518

Index

554 SAP Mobile Platform

T
throwException() method

Server.LoginEnumeration enum [deprecated]
[Agentry Java System Connection
API API] 473

timedOut() method
User class [Agentry Java System Connection

API API] 531
toString() method

UserLogRecord class [Agentry Java System
Connection API API] 385

TransactionSession class [Agentry Java System
Connection API API]

beginTransaction() method 521
description 519
endTransaction() method 521
TransactionSession(String, Server,

SessionData, User) constructor 520
TransactionSession(String, Server, SessionData,

User) constructor
TransactionSession class [Agentry Java

System Connection API API] 520

U
update(GregorianCalendar) method

User class [Agentry Java System Connection
API API] 531

User class [Agentry Java System Connection API
API]

_name variable 531
backendTimeAndDate() method [deprecated]

525
beginChangePassword() method 526
changePassword(String, String) method 526
changePasswordFailed(StringBuffer) method

527
changePasswordSessionAborted() method

527
debug(String) method 527
description 521
endChangePassword() method 528
getName() method 528
getSystemConnectionTime() method 528
getTimeZone(StringBuffer) method

[deprecated] 529
loggedIn() method 529
loggedOut() method 529
reLoggedIn() method 530

revalidate(String) method 530
timedOut() method 531
update(GregorianCalendar) method 531
User(String) constructor 525

User.ChangePasswordResult enum [Agentry Java
System Connection API API]

ChangePassword_Blocked variable 524
ChangePassword_Failure variable 524
ChangePassword_NotHandled variable 525
ChangePassword_Success variable 525
description 523
getValue() method 524

User(String) constructor
User class [Agentry Java System Connection

API API] 525
UserLogger class [Agentry Java System Connection

API API]
description 385
getUser() method 386
getUserLogger(String, String, User) method

386
getUserLogger(String, User) method 386
log(LogRecord) method 387

UserLogRecord class [Agentry Java System
Connection API API]

description 378
equals(Object) method 381
getLevel() method 381
getLoggerName() method 381
getMessage() method 382
getMillis() method 382
getParameters() method 382
getResourceBundle() method 382
getResourceBundleName() method 382
getSequenceNumber() method 382
getSourceClassName() method 382
getSourceMethodName() method 382
getThreadID() method 383
getThrown() method 383
getUser() method 383
hashCode() method 383
setLevel(Level) method 383
setLoggerName(String) method 383
setMessage(String) method 383
setMillis(long) method 384
setParameters(Object[]) method 384
setResourceBundle(ResourceBundle) method

384
setResourceBundleName(String) method 384

Index

Agentry Language Reference 555

setSequenceNumber(long) method 384
setSourceClassName(String) method 384
setSourceMethodName(String) method 384
setThreadID(int) method 384
setThrown(Throwable) method 385
toString() method 385
UserLogRecord(User, Level, String)

constructor 381
UserLogRecord(User, LogRecord) constructor

381
UserLogRecord(User, Level, String) constructor

UserLogRecord class [Agentry Java System
Connection API API] 381

UserLogRecord(User, LogRecord) constructor
UserLogRecord class [Agentry Java System

Connection API API] 381
utility package [Agentry Java System Connection

API API]
description 373

V

value variable
DataTableObject class [Agentry Java System

Connection API API] 414
value() method [deprecated]

DataTableObject class [Agentry Java System
Connection API API] 414

W

willRebuildTable() method
ComplexTable< CTOBJ > class [Agentry Java

System Connection API API] 411

Index

556 SAP Mobile Platform

	Agentry Language Reference
	Contents
	Agentry Language Reference
	Application Level Definitions Overview
	Application Definition
	Module
	Data Table
	SQL Data Table Synchronization Components
	HTTP-XML Data Table Synchronization Components
	HTTP Request Argument
	HTTP Request Response Mapping
	Java Virtual Machine Data Table Synchronization Components

	Complex Table
	Complex Table Fields
	Complex Table Indexes
	SQL Complex Table Synchronization Components
	Java Complex Table Synchronization Components
	HTTP-XML Complex Table Synchronization Components
	HTTP Request Argument
	HTTP Request Response Mapping

	Transmit Configuration
	System Connection
	Validate User Request
	Validate User Request Argument
	Validate User Request Response Mapping

	Global
	Style
	Image

	Module-Level Data Definitions Overview
	Object
	Object Read Step
	Object Property
	Transaction
	Transaction Authentication
	Transaction Type: Add
	Transaction Type: Edit
	Transaction Type: Delete
	Transaction Type: Complex Table Change
	Transaction Type: Data Table Change

	Transaction Validation Rule
	Transaction Validation Rule Properties

	Transaction Server Data State Steps
	Transaction Server Update Step
	Transaction Error Handling Steps
	Fetch
	Fetch Validation Rule
	Fetch Validation Rule Properties

	Fetch Client Exchange Step
	Fetch Server Exchange Step
	Fetch Removal Step
	Transaction and Fetch Properties
	Property Data Types
	Boolean Property Type
	Collection Property Type
	Complex Table Selection Property Type
	Data Table Selection Property Type
	Date Property Type
	Date And Time Property Type
	Decimal Number Property Type
	Duration Property Type
	External Data Property Type
	Identifier Property Type
	Image
	Integral Number Property Type
	Location Property Type
	Object Property Type
	Signature Property Type
	String Property Type
	Time Property Type

	Push
	Push Retrieval Step
	Push Removal Step
	Push Read Step
	Push Response Step
	Push Error Handling Step
	Service Event
	Service Event Type: Poll With Step
	Service Event Type: Java Callback
	Service Event Type: HTTP-XML Message Received
	HTTP-XML Service Event Message Mapping

	Service Event Type: File System Monitor
	File System Monitor Service Event Document Mapping

	Step
	Step Type: SQL Query
	Step Type: Java Steplet
	Step Type: XML via HTTP
	XML via HTTP Step Request Argument
	XML via HTTP Step Response Mapping

	Step Type: File Command Line Step
	Step Type: File Document Management Step
	Document Mapping

	Module-Level User Interface Definitions Overview
	User Interface Definition Types
	Screen Set
	Platform
	List Screen
	List Screen Column
	Detail Screen
	Button
	Detail Screen Fields
	Detail Screen Field Edit Types
	Field Edit Type - Property Data Type Cross Reference

	Field Definitions With Edit Type-Specific Attributes
	Barcode Scan
	Button Field Edit Type
	Calendar View
	Complex Table Drop Down
	Complex Table List
	Complex Table Search
	Complex Table Tree
	Data Table Selection
	Embedded Image Field
	Image Cell

	External Field - ActiveX Control
	HTML
	Domain and URL Parameter

	Image Capture
	List Tile View
	Tile Filter

	List Selection
	List View
	List View Column

	Password Validation
	Tile Edit
	Tile Display

	Detail Screen Fields With Implicit Edit Types
	Signature

	Action
	Action Step
	Action Step Type: Apply
	Action Step Type: Exit Application
	Action Step Type: External Field Command
	Action Step Type: List Selection
	Action Step Type: Message
	Action Step Type: Navigation
	Action Step Type: Open URL
	Action Step Type: Print Report
	Action Step Type: Save Tile Transactions
	Action Step Type: SubAction
	Action Step Type: Transaction
	Action Step Type: Transmit
	Action Step Type: Windows Command

	Report
	Report Column

	Rule Function Terms Overview
	Conversion Functions for Rules
	@FROM_DECIMAL_NUMBER
	@FROM_INTEGRAL_NUMBER
	@FROM_STRING
	@FROM_SIG_DECIMAL_NUMBER
	@FROM_PROPERTY

	Logical Functions for Rules
	@AND
	@CASE
	@CASE_INT
	@CASE_STRING
	@EQBOOL
	@EQDEC
	@EQNUM
	@EQSTR
	@GT
	@GTDEC
	@GTEQ
	@GTEQDEC
	@IF
	@LT
	@LTDEC
	@LTEQ
	@LTEQDEC
	@NAND
	@NOR
	@NOT
	@OR
	@XOR

	Mathematical Functions for Rules
	@ABS
	@DIFF
	@DISTANCE
	@DIV
	@FORMAT_DECIMAL
	@MAX
	@MIN
	@MOD
	@PARSE_FORMATTED_DECIMAL
	@PERCENT
	@PRECISION
	@PROD
	@RANGE_LIMIT
	@ROUND
	@SIGN
	@SIGNIFICANT_DIGITS
	@SQRT
	@SUM
	@TOTAL
	@TRUNC

	Property Functions for Rules
	@COLLECTION_FIND
	@COLLECTION_FIND_BY_DEC
	@COLLECTION_FIND_BY_NUM
	@COLLECTION_FIND_BY_STR
	@COLLECTION_MAX
	@COLLECTION_MIN
	@COUNT
	@CURRENTVALUE
	@FILE_CHANGED
	@FILE_EXTENSION
	@FILE_NAME
	@FILE_PATH
	@FILE_PATH_AND_NAME
	@FILE_SIZE
	@IS_SPECIAL_VALUE
	@IS_VALID_DECIMAL_NUMBER
	@LASTSCANVALUE
	@MEMBER
	@NEEDS_XMIT
	@SCREENFIELDVALUE
	@SCREENFIELDNAME
	@SCREENNAME
	@SCREENSETNAME
	@SIZE
	@TRANSACTIONPROPERTYNAME
	@TYPE
	@UI

	String Functions for Rules
	@CONCATENATE
	@FIND
	@LEFT
	@LENGTH
	@LOWERCASE
	@MID
	@NEWLINE
	@REMOVE
	@REPLACE
	@RFIND
	@RIGHT
	@TAB
	@TRIM
	@UPPERCASE

	System Functions for Rules
	@DATE
	@DATE_AND_TIME
	@DISTANCE_MILES
	@DISTANCE_KILOMETERS
	@GPS_LOCATION
	@IS_VALID_LOCATION
	@JAVASCRIPT
	@LATITUDE
	@LOCATION
	@LONGITUDE
	@MODULE_ENABLED
	@OFFLINE
	@TIME
	@TIME_TICKS
	@USERID

	Table Functions for Rules
	@COMPLEXTABLE
	@TABLE
	@TABLE_COUNT

	Syclo Data Markup Language
	SDML Data Tags Overview
	<<user>> Data Tag Container
	<<user.client>> Data Tag Container
	<<user.info>> Data Tag Container
	<<server>> Data Tag Container
	Data Tags for Application Globals
	Query Constants Files and Data Tags
	Password Data Tags
	Complex Table Data Tags
	Data Table Data Tags
	Property Data Tags Overview
	Data Tags and Property Data Types
	<<agent>> Data Tag Container
	SDML Function Tags Overview
	<<if>>
	<<case>>
	<<skip>>
	<<stop>>
	<<abort>>
	<<rollback>>
	<<and>>
	<<or>>
	<<not>>
	<<eq>>
	<<ne>>
	<<gt>>
	<<lt>>
	<<ge>>
	<<le>>
	<<empty>>
	<<notEmpty>>
	<<size>>
	<<exists>>
	<<foreach>>
	<<upper>>
	<<lower>>
	<<length>>
	<<join>>
	<<dequote>>
	<<trunc>>
	<<wordTrunc>>
	<<cgi>>
	<<sum>>
	<<diff>>
	<<prod>>
	<<div>>
	<<remainder>>
	<<local>>
	<<sql>>
	<<include>>

	Agentry Test Script Overview
	Agentry Test Script: Script Elements Overview
	<script>
	<script-log>
	<script-pause>

	Agentry Test Script: Button Elements Overview
	<button-expect>
	<button-push>
	<button-wait>

	Agentry Test Script: Field Elements Overview
	<field-button-push>
	<field-expect>
	<field-label-select>
	<field-popup>
	<edit-select>
	<field-set>

	Agentry Test Script: List Elements Overview
	<list-double-click>
	<list-expect>
	<list-select>
	<list-sort-by>
	<detail>
	<header>
	<columnheader>
	<row>
	<menu-expect>
	<menu-select>
	<menu>
	<item>

	Agentry Test Script: Tree Elements Overview
	<tree-select>
	<tree-expect>
	<node>
	<tree-expand>
	<tree-collapse>
	<tree-toggle>
	<tree-double-click>
	<tree-count-visible>

	Agentry Test Script: Scanner Elements Overview
	<scan-data>
	<scan-enable>
	<scan-start>

	Agentry Test Script: SQL Elements Overview
	<dsn-create-sql>
	<dsn-remove-sql>
	<sql-command>
	<sql-connect>
	<sql-expect>
	<sql-row>
	<sql-column>

	Agentry Test Script: Tab Elements Overview
	<tab-expect>
	<tab-select>

	Agentry Test Script: Window Elements Overview
	<window-close>
	<window-close-main>
	<window-expect>
	<window-sign>
	<point>

	Agentry Test Script: Client Elements Overview
	<client-restart>
	<registry>
	<key>
	<value>

	Agentry Test Script: Client Host Elements overview
	<command-line>
	<key-press>

	Agentry Java API
	com.syclo.agentry package
	utility package
	java_logging package
	AgentryHandler class
	AgentryHandler() constructor
	close() method
	flush() method
	mapLogLevel(Level) method
	publish(LogRecord) method
	_defaultFormatter variable

	AgentryJavaLoggingConfigurator class
	AgentryJavaLoggingConfigurator.ReallySimpleFormatter class
	format(LogRecord) method

	AgentryJavaLoggingConfigurator() constructor

	UserLogRecord class
	UserLogRecord(User, Level, String) constructor
	UserLogRecord(User, LogRecord) constructor
	equals(Object) method
	getLevel() method
	getLoggerName() method
	getMessage() method
	getMillis() method
	getParameters() method
	getResourceBundle() method
	getResourceBundleName() method
	getSequenceNumber() method
	getSourceClassName() method
	getSourceMethodName() method
	getThreadID() method
	getThrown() method
	getUser() method
	hashCode() method
	setLevel(Level) method
	setLoggerName(String) method
	setMessage(String) method
	setMillis(long) method
	setParameters(Object[]) method
	setResourceBundle(ResourceBundle) method
	setResourceBundleName(String) method
	setSequenceNumber(long) method
	setSourceClassName(String) method
	setSourceMethodName(String) method
	setThreadID(int) method
	setThrown(Throwable) method
	toString() method

	UserLogger class
	getUser() method
	getUserLogger(String, User) method
	getUserLogger(String, String, User) method
	log(LogRecord) method

	log4j package
	AgentryAppender class
	AgentryAppender() constructor
	append(LoggingEvent) method
	close() method
	mapLogLevel(Level) method
	requiresLayout() method
	AGENTRY_USER_MDC_KEY variable

	DataTableMapIterator< K, V > class
	DataTableMapIterator(Map< K, V >) method
	hasNext() method
	next() method
	remove() method

	Logger class
	Logger(String, boolean) constructor
	appendDebug(String) method
	beginDebug(String) method
	debug(String) method
	debug(String, Map< String, String >, String) method
	endDebug(String) method
	isDebugMode() method

	AgentryException class
	AgentryException(String) constructor
	AgentryException(String, Throwable) constructor
	AgentryException(String, String, String, Throwable) constructor
	AgentryException(String, String, String) constructor
	getNotificationText() method
	getNotificationTitle() method
	getOkButtonLabel() method

	BusinessLogicException class
	BusinessLogicException(String) constructor
	BusinessLogicException(String, Throwable) constructor

	ComplexTableSession class
	ComplexTableSession(String, Server, SessionData, User) constructor

	ComplexTable< CTOBJ > class
	build() method
	checkForReload() method
	ComplexTable(ComplexTableSession, GregorianCalendar) method
	dataIterator() method
	deleteIterator() method
	getClientLastDataUpdateTime() method
	getNewDataUpdateTime() method
	getSession() method
	initialize() method [deprecated]
	isRebuilding() method
	lastUpdateDate() method
	lastUpdateHours() method
	lastUpdateMinutes() method
	lastUpdateMonth() method
	lastUpdateSeconds() method
	lastUpdateYear() method
	reload() method [deprecated]
	setNewDataUpdateTime(GregorianCalendar) method
	willRebuildTable() method
	_clientLastDataUpdateTime variable
	_rebuilding variable
	_session variable

	DataTableObject class
	DataTableObject(String, String) constructor
	code() method [deprecated]
	equals(Object) method
	getKey() method
	getValue() method
	hashCode() method
	value() method [deprecated]
	code variable
	value variable

	DataTableSession class
	DataTableSession(String, Server, SessionData, User) constructor

	DataTable< DTOBJ extends DataTableObject > class
	DataTable(DataTableSession, GregorianCalendar) method
	getClientLastDataUpdateTime() method
	getSession() method
	initialize() method
	isOutOfDate() method
	iterator() method
	_clientLastDataUpdateTime variable
	_session variable

	FatalTransactionException class
	FatalTransactionException(String) constructor
	FatalTransactionException(String, Throwable) constructor
	FatalTransactionException(String, String, String) constructor
	FatalTransactionException(String, String, String, Throwable) constructor

	FatalTransactionExceptionStop class
	FatalTransactionExceptionStop(String, String, String) constructor
	FatalTransactionExceptionStop(String, String, String, Throwable) constructor

	FetchSession class
	FetchSession(String, Server, SessionData, User) constructor
	beginClientExchange() method
	beginFetchObjectRead() method
	beginFetchRemoval() method
	beginServerExchange() method
	endClientExchange() method
	endFetchObjectRead() method
	endFetchRemoval() method
	endServerExchange() method

	LoginBlockedException class
	LoginBlockedException() constructor
	LoginBlockedException(String) constructor
	LoginBlockedException(String, Throwable) constructor

	LoginException class
	LoginException() constructor
	LoginException(String) constructor
	LoginException(String, Throwable) constructor

	LoginSkippedException class
	LoginSkippedException() constructor
	LoginSkippedException(String) constructor
	LoginSkippedException(String, Throwable) constructor

	PasswordExpiredCannotChangeException class
	PasswordExpiredCannotChangeException() constructor
	PasswordExpiredCannotChangeException(String) constructor
	PasswordExpiredCannotChangeException(String, Throwable) constructor

	PasswordExpiredException class
	PasswordExpiredException() constructor
	PasswordExpiredException(String) constructor
	PasswordExpiredException(String, Throwable) constructor

	PasswordInvalidException class
	PasswordInvalidException() constructor
	PasswordInvalidException(String) constructor
	PasswordInvalidException(String, Throwable) constructor

	PasswordWarningCannotChangeException class
	PasswordWarningCannotChangeException() constructor
	PasswordWarningCannotChangeException(String) constructor
	PasswordWarningCannotChangeException(String, Throwable) constructor

	PasswordWarningException class
	PasswordWarningException() constructor
	PasswordWarningException(String) constructor
	PasswordWarningException(String, Throwable) constructor

	PushSession class
	PushSession(String, Server, SessionData) constructor
	beginPushError() method [deprecated]
	beginPushReadStep() method
	beginPushRemoval() method
	beginPushResponse() method [deprecated]
	beginPushRetrieval() method
	endPushError() method [deprecated]
	endPushReadStep() method
	endPushRemoval() method
	endPushResponse() method [deprecated]
	endPushRetrieval() method

	PushUserSession class
	PushUserSession(String, Server, SessionData, User) constructor
	beginDisablePush() method
	beginEnablePush() method
	beginPushError() method
	beginPushResponse() method
	disablePush() method
	enablePush() method
	endDisablePush() method
	endEnablePush() method
	endPushError() method
	endPushResponse() method

	RetryTransactionException class
	RetryTransactionException(String, String, String) constructor
	RetryTransactionException(String, String, String, Throwable) constructor

	RetryTransactionWithChangeException class
	RetryTransactionWithChangeException(String, String, String) constructor
	RetryTransactionWithChangeException(String, String, String, Throwable) constructor

	Server class
	Server.LoginEnumeration enum
	throwException() method
	Login_Invalid variable
	Login_InvalidBlocked variable
	Login_Pass variable
	Login_Valid variable
	Login_ValidPasswordExpired variable
	Login_ValidPasswordExpiredNoChange variable
	Login_ValidPasswordWarning variable
	Login_ValidPasswordWarningNoChange variable

	Server.LoginFailureReason enum
	NoBackEndsAuthenticated variable
	PasswordExpiredCannotChange variable
	PasswordInvalid variable

	Server() constructor
	createComplexTableSession(String, SessionData, User) method
	createDataTableSession(String, SessionData, User) method
	createFetchSession(String, Server, SessionData, User) method [deprecated]
	createFetchSession(String, SessionData, User) method
	createPushSession(String, Server, SessionData) method [deprecated]
	createPushSession(String, SessionData) method
	createPushUserSession(String, Server, SessionData, User) method [deprecated]
	createPushUserSession(String, SessionData, User) method
	createServiceEventSession(String, Server, SessionData) method [deprecated]
	createServiceEventSession(String, SessionData) method
	createTransactionSession(String, Server, SessionData, User) method [deprecated]
	createTransactionSession(String, SessionData, User) method
	createUser(String, int) method [deprecated]
	createUser(String) method
	debug(String) method
	decryptPassword(String) method
	findConfigurationFile(String) method
	getImplementationVersion() method
	getInstance() method
	getSpecificationVersion() method
	getTimeZone() method
	login(String, String, SessionData) method [deprecated]
	login(User, String, SessionData) method
	loginBlocked(String, StringBuffer) method [deprecated]
	loginBlocked(User, StringBuffer, SessionData) method [deprecated]
	loginBlocked(User, String, StringBuffer, SessionData) method
	loginFailed(String, StringBuffer) method [deprecated]
	loginFailed(User, String, LoginFailureReason, StringBuffer, SessionData) method
	loginPreviousUser(String, String, SessionData) method [deprecated]
	loginPreviousUser(User, String, SessionData) method
	setDebugEnabled(boolean) method [deprecated]
	shutdown() method
	startup() method

	ServiceEvent class
	ServiceEvent(Server, SessionData, CallbackInterface) constructor
	dataReceived(Object) method
	_server variable
	_sessionData variable

	ServiceEventSession class
	ServiceEventSession(String, Server, SessionData) constructor
	beginDataAndUpdateSteps() method
	beginReadSteps() method
	beginServiceEventError() method
	endDataAndUpdateSteps() method
	endReadSteps() method
	endServiceEventError() method

	Session class
	Session(String, Server, SessionData, User) constructor
	Session(String, Server, SessionData) constructor
	debug(String) method
	getName() method
	getServer() method
	getSessionData() method
	getUser() method
	sessionAborted() method

	Steplet class
	Steplet(FetchSession) constructor
	Steplet(PushSession) constructor
	Steplet(PushUserSession) constructor
	Steplet(TransactionSession) constructor
	Steplet(ServiceEventSession) constructor
	doSteplet() method
	getNotificationText() method
	getNotificationTitle() method
	getOkButtonLabel() method
	getReturnData() method
	getSession() method
	notificationText() method [deprecated]
	notificationTitle() method [deprecated]
	okButtonLabel() method [deprecated]
	_session variable

	StepletAbortException class
	StepletAbortException(String) constructor

	StepletStopException class
	StepletStopException(String) constructor

	SycloCalendar class
	SycloCalendar(GregorianCalendar) constructor
	SycloCalendar(GregorianCalendar, Locale) constructor
	SycloCalendar() constructor
	SycloCalendar(int, int, int, int, int, int) constructor
	SycloCalendar(int, int, int, int, int) constructor
	SycloCalendar(int, int, int) constructor
	SycloCalendar(Locale) constructor
	SycloCalendar(TimeZone, Locale) constructor
	SycloCalendar(TimeZone) constructor
	getInvalidTimeAndDate() method
	isInvalidTimeAndDate() method
	isInvalidTimeAndDate(GregorianCalendar) method

	TransactionSession class
	TransactionSession(String, Server, SessionData, User) constructor
	beginTransaction() method
	endTransaction() method

	User class
	User.ChangePasswordResult enum
	getValue() method
	ChangePassword_Blocked variable
	ChangePassword_Failure variable
	ChangePassword_NotHandled variable
	ChangePassword_Success variable

	User(String) constructor
	backendTimeAndDate() method [deprecated]
	beginChangePassword() method
	changePassword(String, String) method
	changePasswordFailed(StringBuffer) method
	changePasswordSessionAborted() method
	debug(String) method
	endChangePassword() method
	getName() method
	getSystemConnectionTime() method
	getTimeZone(StringBuffer) method [deprecated]
	loggedIn() method
	loggedOut() method
	reLoggedIn() method
	revalidate(String) method
	timedOut() method
	update(GregorianCalendar) method
	_name variable

	SessionData interface
	sessionData(String) constructor
	eval(String) method
	getBoolean(String) method
	getBytes(String) method
	getDouble(String) method
	getFloat(String) method
	getInteger(String) method
	getLong(String) method
	getString(String) method
	getTimeAndDate(String) method
	getTimeAndDate(String, String) method

	Index

