
Configuration and Users Guide

RepConnector™ 15.0.2

DOCUMENT ID: DC01988-01-1502-01
LAST REVISED: August 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

RepConnector ..1
RepConnector Architecture ..1
RepConnector Process Flow ..2

Guaranteed Delivery ..3
Status and Error Reporting3

Configuring RepConnector (Overview)3
Configuring Replication Server for RepConnector5

Updating the Interfaces File ..5
Adding a RepConnector Entry to the Interfaces File6
Creating the Connection to RepConnector in

Replication Server ..7
Creating the Replication Definition in Replication

Server ...9
Creating a Function Replication Definition10
Creating and Verifying the Subscription in Replication

Server ...11
Resuming the Connection to RepConnector13

Get Started with RepConnector Manager15
Starting RepConnector Manager15
Displaying the RepConnector Manager View15
Managing Connection Profiles16

Creating a New Profile ...16
Renaming a Profile ..17
Editing the Profile Properties17
Deleting a Profile ...17
Setting Up the RepConnector Server

Administrator Login ...17
Logging In to the RepConnector Server18
Refreshing the Profile ..18
Logging Out of the Profile and the

RepConnector Runtime18

Configuration and Users Guide iii

Configuring RepConnector ...19
Configuring RepConnector Connections19
Configuring the RepConnector for Messaging

Systems ..19
Configuring RepConnector for SonicMQ JMS

Messaging Systems ..20
Configuring RepConnector for TIBCO21
Configuring RepConnector for IBM WebSphere

MQ ..23
Configuring RepConnector for Your Database25

Configuring for an Oracle Database25
Configuring an Application Server for a Custom

Sender Processor or Formatter26
Configuring the RepConnector for Replication Server

Routing ...26
Configuring RepConnector to Send Carriage Return

and Tab ...27
Creating and Configuring a New Connection27

Configuring Replication Information for
REPLICATION Inbound Types31

Configuring JMS Information32
Configuring TIBCO Information34
Configuring IBM MQ Information35
Configuring Custom Plug-in Information36
Configuring Database Connection Information37

Managing a RepConnector Connection37
Starting a Connection ..38
Stopping a Connection ..38
Refreshing a Connection38
Renaming a Connection38
Deleting a Connection ..39
Copying a Connection (Save As)39
Validating a Connection39
Viewing or Modifying Properties for an Existing

Connection ..39

Contents

iv RepConnector

Viewing Connection Log Information40
Viewing the Runtime Log Information40
Refreshing the Connection View 40

ratool Utility ..41
ratool ..41
-copy ...44
-delete ...44
-getLogInfo ..45
-getProperty ..46
-import .. 46
-list ..47
-ping ..47
-refresh ... 49
-refreshAll ... 49
-rename .. 50
-start ... 50
-startAll ... 51
-status ...51
-stop ..52
-stopAll ..53

Message Generator for TIBCO AECM Customization55
Configuring Properties for RepConnector 55

Connection Configuration55
Property File with the Active Enterprise

Connection/Customization (ae.props)56
Base Class APIs ...57

Customizing TIBCO AECM Message Generator
...57

APIs for a Customized, Wire-Format Message
Generator ..58

APIs That Retrieve Information from the Source
Event ... 59

Configuration and Default Wire-Formatted
Message Generator Usage59

Contents

Configuration and Users Guide v

Configuration and Customized Wire-Formatted
Message Generator Usage60

Customizing the Sender and Formatter Processors65
Customizing the Sender Processor65
RepraClient Interface ..66
RepraCustomClient Interface68
RepraCustomProps Interface72
Customizing the Formatter Processor73

RepTransactionFormatter Interface73
Creating New Custom Sender and Custom Formatter

Classes ...74
DBEventParserFactory Utility75

DBEventParser APIs ..75
package com.sybase.connector.repra.util;

setSource(Object obj) throws Exception75
int size() ...75
String getDSName() throws Exception75
String setDBName() throws Exception75
String getEventId() throws Exception76
String getOperation(int elemAt)76
String getSchemaName(int elemAt) throws

Exception ...76
String getStatement() throws Exception76
String setStatement(int elemAt) throws

Exception ...77
String getOwner(int elemAt) throws Exception77
Vector getData(int elemAt) throws Exception77
Vector getKeys(int elemAt) throws Exception78
String getFieldName(Hashtable field) throws

Exception ...78
int getFieldType(Hashtable field) throws

Exception ...78
Object getFieldValue(Hashtable field) throws

Exception ...80

Contents

vi RepConnector

String toXMLText(String dtdURL) throws
Exception ...82

RaXMLBuilder Utility ...82
RaXMLBuilder() ...83
createTranDocument() throws Exception83
createEventDocument() throws Exception83
addOperation() throws Exception83
addValue() throws Exception84
addInValue() throws Exception84
addOutValue() throws Exception84
addWhere() throws Exception85
write() throws Exception85
xmlDocByteArray() throws Exception85
xmlDocString() throws Exception85
cancelOperation() throws Exception86
getErrorEventId() throws Exception86
getErrorStatusCode() throws Exception86
getErrorMessage() throws Exception86
String getOwner(int elementAt) throws

Exception ...86
Configuring the RaXMLBuilder87

Using the RaXML Utility87
Running a Sample Implementation89
Handling Error Messages90
Compiling and Running the Sample91
Managing Ownership Information91

Configuration Worksheets ..93
Troubleshooting ...99

Profile Login or ratool Failure ..99
Verifying Application Server Environment99
Verifying Machine Name and Port Number100
Verifying User Name and Password100
Setting the Logging Level to DEBUG for the

RepConnector Runtime Component100

Contents

Configuration and Users Guide vii

Setting the Logging Level to DEBUG for Each
RepConnector Connection101

Connection Failure ..101
Verifying Connection Information103

Troubleshooting the Replication System105
Troubleshooting Adaptive Server Enterprise

(Primary Database)105
Adaptive Server Commands106
Troubleshooting Replication Server106
Replication Server Commands106
Using admin who for Your Connection107
Restarting Components and Connections107
Purging Replication Server Queues108
Freeing Transaction Log Space108
Verifying Sent Messages to RepConnector108

Index ..111

Contents

viii RepConnector

RepConnector

RepConnector™ delivers database events and metadata from Replication Server® to the
configured destination. It provides a nonpolling, nontrigger-based solution to database
integration, building on the Replication Server noninvasive system to push database
transactions into a traditional integration environment.

With RepConnector, you need not poll a database for changes, or to add triggers for event
notification. Configuring RepConnector requires the configuration of other servers and
software in your RepConnector environment.

RepConnector provides adapters for sending messages to TIBCO, IBM MQ, SonicMQ, or
Sybase® certified Java Message Service (JMS) 1.1 compliant messaging systems. It can also
send messages to virtually any user or application.

RepConnector:

• Follows transactional behavior
• Manages connections using:

• RepConnector Manager – a GUI in the Eclipse framework
• ratool – a command line utility

• Can group database events into a single transaction
• Supports text and image datatypes

• Parses replication events and generates XML documents
• Transforms incoming database events into XML messages, and routes them into

configured message queues
• Can transform incoming database events into an appropriate application-specific format
• Can route incoming database events to any destination
• Detects message events and routes them to database tables
• Supports these application servers:

• JBoss AS 6.1.0.Final “Neo”
• JBoss AS 7.1.1.Final “Brontes”
• Oracle WebLogic Server 12c (12.1.1)

RepConnector Architecture
RepConnector is based on the JCA (Java Connector Architecture) 1.5 specification of Java EE
6. It runs in a Java EE-compliant application server environment.

The architecture consists of three modules:

RepConnector

Configuration and Users Guide 1

• Event Capture – listens for events from Replication Server or from the messaging system.
Event Capture provides a TCP socket that listens for Replication Server events, and acts as
a client for the messaging system, listening on the message bus for messaging events.

• Event Transformation – transforms an event before it is routed to its destination. In real-
time messaging, RepConnector transforms the event to XML. You can also customize the
module to add a customized transformer plug-in. When you send a message to the
database, RepConnector transforms the event to a SQL statement.

• Event Sender – by default, routes the event to a messaging system or to a database. You can
customize the Event Sender to send events to virtually any endpoint.

For real-time messaging, RepConnector uses Replication Server technology to detect
business events as they occur in the database. Upon receiving events from Replication Server,
RepConnector transforms those events to XML-formatted messages, then sends the XML
messages to the configured messaging systems. RepConnector guarantees that the message
routing is transactional.

In the reverse direction, RepConnector detects events from any of the supported messaging
systems, transforms those events to SQL statements, and sends them to the configured
database. These incoming events are either SQL commands or an XML representation of SQL
commands.

Figure 1: RepConnector Architecture

RepConnector Process Flow
You can use RepConnector to route database events from Replication Server to messaging
systems, or to route events from messaging systems to database tables.

Routing Database Events from Replication Server to Messaging Systems

1. When an event occurs in a database, Replication Server detects the event and pushes it to
Event Capture module, which is listening for such events.

2. When the Replication Server event arrives from the Event Capture module, the Event
Transformation module transforms the event into XML.

RepConnector

2 RepConnector

To transform messages into an application-specific format, develop your own
transformation module to replace the default XML transformation.

3. After the message is transformed to XML, the Message Sender Module sends the XML
message to the configured message system.
You can develop your own sender class to route the message to other destinations.

Routing Events from Messaging Systems to Database Tables

1. The Event Capture module listens for messages arriving in the configured messaging
system.

2. The Event Capture module receives messages and triggers the Event Transformation
module.

3. The Event Transformation module analyzes messages and, if necessary, transforms them
to SQL format.

4. The Message Sender module applies any transformed SQL statements to the database.

See also
• Customizing the Sender and Formatter Processors on page 65

Guaranteed Delivery
When routing replication events to messaging systems, RepConnector works with
Replication Server to guarantee delivery.

RepConnector receives a message from Replication Server, and writes the message
transaction ID to a file, ensuring that no transaction is lost in the event of a software failure.
RepConnector then attempts to deliver the message. RepConnector sends an acknowledgment
when the message is successfully delivered to the specified messaging system. This process
guarantees that no transactions are skipped, and that deliveries are sequential.

Status and Error Reporting
When routing messaging events to database tables, RepConnector reports status and errors
through a status queue. Client applications can monitor the status queue and retrieve any status
or error messages that occur throughout the process.

Configuring RepConnector (Overview)
Configure each RepConnector component before creating RepConnector connections.
RepConnector components include Sybase products as well as third-party products.

1. Set up Replication Server to send replicated events to RepConnector. See Configuring
Replication Server for RepConnector on page 5.

RepConnector

Configuration and Users Guide 3

2. Configure your database server and messaging system in the RepConnector environment.
See Configuring RepConnector on page 19.

3. Create and configure your RepConnector connection. See Get Started with RepConnector
Manager on page 15 and Configuring RepConnector on page 19.

4. Manage runtime control. See Managing a RepConnector Connection on page 37 for
information about how your configuration of the RepConnector environment can
influence your runtime control and management of RepConnector connections.

RepConnector

4 RepConnector

Configuring Replication Server for
RepConnector

Establish the RepConnector connection in Replication Server before configuring
RepConnector.

Prerequisites

1. Configure a Replication Server environment.
2. Add the primary database to the replication system (including updating the interfaces file

that contains the connection information for the database server).
3. Mark the primary tables and procedures for replication.

If you have not completed these tasks, see the Replication Server Configuration Guide before
you proceed.

Task

1. In the Replication Server interfaces file, add an entry for RepConnector.

2. Verify that Replication Server is running.

3. In Replication Server:

• Create a database connection to communicate with RepConnector.
• Create a replication definition to identify the data to be replicated.
• Create a subscription to identify the location to which the data will be replicated.

4. Resume the database connection.

As you work through the Replication Server configuration sections, use the configuration
worksheet to record the values used to configure the RepConnector connection to Replication
Server.

See also
• Configuration Worksheets on page 93

Updating the Interfaces File
Add a RepConnector connection entry to the Replication Server interfaces file for each
RepConnector connection. The interfaces file contains network information that Replication
Server requires to connect to RepConnector.

Either record this information on the worksheet provided as you go through the procedure, or
complete the worksheet first, then use it in the procedure.

Configuring Replication Server for RepConnector

Configuration and Users Guide 5

• Server name – the name of the data server. This name should be unique and case-sensitive.
Record this value on line 3.a of the worksheet.
This is also the RepConnector connection DSI name, which you will need later when you
configure the RepConnector connection.

Note: Sybase recommends that you use a name that clearly identifies this connection as
allowing Replication Server to communicate with RepConnector, and that distinguishes it
from a traditional connection between any data server and the corresponding database.

• Protocol – the network protocol for the DSI connection. Record this value on line 3.b of the
worksheet.
You can use either the Transmission Control Protocol (TCP) or the NLWNSCK protocol
on Windows, and either TCP or the Transport Layer Interface (TLI) TCP protocol on
UNIX.

• Host name – the machine name where the RepConnector connection will be running. This
value should be recorded on line 3.c of the worksheet.

• Port Number – the port where the RepConnector connection will be listening. This must be
an unused port number on the host machine. Record the value on line 3.d of the worksheet.

Adding a RepConnector Entry to the Interfaces File
Create a new entry for the RepConnector connection in the interfaces file, on the machine on
which Replication Server is running.

1. Use dsedit, a utility that is part of the Replication Server installation, located in the
OCS-15_0\bin subdirectory on Windows, and OCS-15_0/bin on UNIX.

Note: You can manually add information to the interfaces file, but Sybase recommends
that you use dsedit.

See the Adaptive Server Utility Guide for more information about the dsedit utility and
editing interfaces files.

2. Open the file to verify that your entry is correct. The Replication Server interfaces file is
located in %SYBASE%\ini\sql.ini on Windows and $SYBASE/interfaces on
UNIX, where %SYBASE% and $SYBASE are the locations of the Replication Server
installation.

A sample entry for the interfaces file:
• On Windows:

[server_name]
master=protocol, machine_name, port_number
query=protocol, machine_name, port_number

• On UNIX:

Configuring Replication Server for RepConnector

6 RepConnector

server_name
master protocol machine_name port_number
query protocol machine_name port_number

where:
• server_name is the DSI name as recorded on your worksheet in 3.a.
• protocol is the network protocol for the DSI connection as recorded on your worksheet

in 3.b.
• port_number is the port recorded on your worksheet in 3.d.

Examples

This is an interface entry for the RepConnector connection:

• On Windows:
[RepConnector]
master=TCP, localhost, 7000
query=TCP, localhost, 7000

• On UNIX:
RepConnector
master tcp ether localhost 7000
query tcp ether localhost 7000

Note: If you are creating more than one RepConnector connection, each entry to the interfaces
file must have a unique name and port number.

Creating the Connection to RepConnector in Replication
Server

Create a new RepConnector connection in the Replication Server, which defines the
information that Replication Server uses to connect to the RepConnector server, to replicate
data.

Prerequisites

Gather this information:

• The location of the isql utility, which is in the Replication Server installation directory in
OCS-15\bin on Windows or OCS-15/bin on UNIX.

• The DSI name for the RepConnector connection (from line 3.a on your worksheet; it is
also the same name added to the interfaces file).

• A user name to connect to the RepConnector connection (from line 3.e on your
worksheet).

• A password for this user name (from line 3.f on your worksheet).

Configuring Replication Server for RepConnector

Configuration and Users Guide 7

Task

1. Using isql, log in to the Replication Server:

isql -U <username> -P <pwd> -S <server_name>

where:
• username is the user ID with sa permission in the Replication Server.
• pwd is the password for the user ID.
• server_name is the name of the Replication Server.

2. Create the connection and define the user ID and password for the RepConnector
connection:

 create connection to <dataserver>.<database>
 set error class to rs_sqlserver_error_class
 set function string class to
rs_sqlserver_function_class
 set username <dsi_username>
 set password <dsi_password>
 set batch to 'off'
 set dsi_xact_group_size to '-1'
 set dynamic_sql to 'off'
 set dsi_bulk_copy to 'off'
 set dsi_row_count_validation to 'off'
 with dsi_suspended

where:
• dataserver is the RepConnector connection DSI name. This is the same name you

added to the Replication Server interfaces file. Use the name recorded in 3.a on your
worksheet.

• database is the name of the database to which you are replicating. Record this value in
3.j on the worksheet.

Note: When you create this connection in Replication Server, you must designate it
with the dataserver.database data pair value. However, the database name in
Replication Server is only a placeholder, and RepConnector does not use that name.
Therefore, use a name that clearly designates the replicate or destination (in this case
RepConnector), to manage the RepConnector connection in an environment where
you are also managing traditional Replication Server connections, that have
destinations that are actually databases. For example, designate the connection as
RepConnector.RepCondb.

• dsi_username is the user ID that is used to connect to the RepConnector connection.
Use the value recorded in 3.e on your worksheet.

• dsi_password is the password for the user ID. Use the value recorded in 3.f on your
worksheet.

• set batch to 'off' is required by RepConnector. This instructs Replication Server not to
batch the commands to send to RepConnector.

Configuring Replication Server for RepConnector

8 RepConnector

• set dsi_xact_group_size to '-1' is required by RepConnector. This instructs
Replication Server not to group the transactions as a single transaction before sending
them to RepConnector.

• set dynamic_sql to 'off' is required by RepConnector. This instructs Replication
Server not to use dynamic SQL.

• set dsi_bulk_copy to 'off' is required by RepConnector. This instructs Replication
Server not to use the bulk-copy-in feature.

• set dsi_row_count_validation to 'off' is required by RepConnector. This instructs
Replication Server to disable row-count validation.

Note: RepConnector does not support the batching of commands in Replication Server. If you
have already created the connection, and have not set the batch and dsi_xact_group_size
parameters as indicated above, use the configure connection and alter connection
commands to set them. See the Replication Server Reference Manual.

For example:
create connection to RepConnector.RepCondb
set error class to rs_sqlserver_error_class
set function string class to
rs_sqlserver_function_class
set username sa
set password null
set batch to 'off'
set dsi_xact_group_size to '-1'
set dynamic_sql to 'off'
set dsi_bulk_copy to 'off'
set dsi_row_count_validation to 'off'
with dsi_suspended

Creating the Replication Definition in Replication Server
Create the table replication definition in the Replication Server. A replication definition
describes the data that can be replicated for a table or stored procedure defined in the primary
database. RepConnector supports replication of DML commands and stored procedures.

Prerequisites
Mark primary tables or stored procedures for replication. You must know the Adaptive
Server® name and database name in which the primary table resides.

Task

1. Record this information on your worksheet:

• Primary data server name (in 3.k)
• Primary database name (in 3.j)
• Table names and column field names

Configuring Replication Server for RepConnector

Configuration and Users Guide 9

2. Create the table replication definition:

create replication definition
 <replication_definition_name>
with primary at
 <dataserver>.<database>
with all tables named '<table_name>'
(<column_name> <column_datatype>,
 …)
primary key (<column name>,..))
searchable columns (<column_name>,..)

where:
• replication_definition_name is the name for the replication definition.
• dataserver is the name of the server containing the primary data (3.k).
• database is the name of the database containing the primary data (3.j).
• table_name is the name of the primary table containing the data.
• column_name is the column name from the primary table.
• column_datatype is the datatype for the column name.
• primary key is a primary key, or a set of primary keys, defined in the table.

For example:

create replication definition authors_rep
with primary at primary_ase.pubs2
with all tables name 'authors' (
 au_id varchar(11),
 au_lname varchar(40),
 au_fname varchar(20),
 phone char(12),
 address varchar(40),
 city varchar(20),
 state char(2),
 country varchar(12),
 postalcode char(10))
primary key (au_id)
searchable columns(au_id)

For more information about create replication definition, see the Replication Server
Administration Guide and the Replication Server Reference Manual.

Creating a Function Replication Definition
Create a function replication definition.

1. Record this information on your worksheet:

• Primary data server name (line 3.k)
• Primary database name (line 3.j)
• Procedure and parameter names

Configuring Replication Server for RepConnector

10 RepConnector

2. Create the function replication definition:
create function replication definition
<replication_definition_name>
with primary at <dataserver>.<database>
deliver as '<procedure_name>' (
 <@param_name> <datatype>,
 …)
searchable parameters (<@param_name>,..>)

where:
• replication_definition_name is the name of the function replication definition.
• dataserver is the name of the server containing the primary data.
• database is the name of the database containing the primary data.
• procedure_name is the name of the stored procedure in the primary dataserver.
• param_name is the parameter name from the function.

For example:
create function replication definition ins_authors with primary at
primary_ase.pubs2(
 @au_id varchar(11),
 @au_lname varchar(40),
 @au_fname varchar(20),
 @phone char(12),
 @address varchar(40),
 @city varchar(20),
 @state char(2),
 @country varchar(12),
 @postalcode char(10))
)
searchable parameters(@au_id)

For more information about create function replication definition, see the Replication
Server Administration Guide and the Replication Server Reference Manual.

Creating and Verifying the Subscription in Replication
Server

Create a subscription and verify that it is valid both at the primary table and at the
RepConnector connection in the Replication Server.

A subscription instructs Replication Server to copy data from the primary table to the specified
RepConnector connection. The subscription describes the replicated information that
RepConnector can accept.

1. Create the subscription using the RepConnector connection name as the parameter value
for the with replicate at command.

2. Record this information on your worksheet:

Configuring Replication Server for RepConnector

Configuration and Users Guide 11

• Name of the RepConnector connection (3.a)
• Name of the replication definition

3. Create the database subscription:

create subscription <subscription_name>
for <replication_definition_name>
with replicate at <dataserver>.<database>
without materialization

where:
• subscription_name is the name of your subscription.
• replication_definition_name is the name of the replication definition.
• dataserver is the name of the database connection you created to connect to

RepConnector.
• database is the name of the database to which you are replicating.

RepConnector does not actually use the database name; It is only a placeholder, used to
meet Replication Server syntax requirements.
Because a RepConnector connection is the destination instead of an actual database,
Sybase recommends that you use a unique name that represents the RepConnector
connection.

For example:

create subscription authors_sub
for authors_rep
with replicate at RepConnector.RepCondb
without materialization

4. Verify that the subscription is valid both at the primary database and the replicate database:

check subscription <subscription_name>
for <replication_definition_name>
with replicate at <dataserver>.<database>

where:
• subscription_name is the name of the subscription.
• replication_definition_name is the name of the table or function replication definition

for which the subscription is created.
• dataserver is the name of the RepConnector connection (line 3a).
• database is the name of the database to which you are replicating.

RepConnector does not actually use the database name; It is only a placeholder, used to
meet Replication Server syntax requirements.

For example:
check subscription authors_sub
for authors_rep
with replicate at RepConnector.RepCondb

Configuring Replication Server for RepConnector

12 RepConnector

Resuming the Connection to RepConnector
To ensure that Replication Server replicates commands to RepConnector, resume the
connection from Replication Server to RepConnector.
Enter:

resume connection to <dataserver>.<database>

where:
• dataserver is the name of the connection.
• database is the name of the database to which you are replicating. This is the same value

you used when you created the connection to RepConnector in the Replication Server.

For example:
resume connection to RepConnector.RepCondb

A connection has now been established between RepConnector and Replication Server.

Note: The connection does not show an active status until the RepConnector connection has
successfully started.

Configuring Replication Server for RepConnector

Configuration and Users Guide 13

Configuring Replication Server for RepConnector

14 RepConnector

Get Started with RepConnector Manager

RepConnector Manager is a plug-in to the Eclipse framework that you can use to manage the
activities of the RepConnector runtime components.

You can run RepConnector Manager on the local machine where the runtime component is
installed, or on any remote machine that can access the machine on which the runtime
component is installed. To access a remote machine, verify that the HTTP connection to the
application server on which the RepConnector runtime component is deployed and running,
and is available throughout the network.

See the Eclipse documentation for more information about how to use the Eclipse framework.

Starting RepConnector Manager
Run the RepConnectorManager.bat file on Windows or
RepConnectorManager.sh file on UNIX to start the RepConnector Manager.

1. From a command prompt, navigate to the RepConnector Manager installation directory.

2. To start RepConnector Manager, enter:

• On Windows:
RepConnectorManager.bat

• On UNIX:
RepConnectorManager.sh

3. Select a workspace and click OK.

To define the specified workspace as the default workspace, select Use this as the default
and do not ask again.

The Sybase RepConnector Manager Welcome window appears; if it does not, select Help
> Welcome.

Displaying the RepConnector Manager View
Display the RepConnector Manager view.

1. To display the RepConnector Manager view, perform one of these actions:

• On the Welcome window, click the RepConnector Manager icon, or,
• From the Eclipse menu bar:

a. Select Windows > Show View > Other.

Get Started with RepConnector Manager

Configuration and Users Guide 15

b. In the Show View dialog box, select Sybase > RepConnector Manager.

2. Resize or relocate the RepConnector tree view within the Eclipse workbench, if needed.

Managing Connection Profiles
Use connection profiles to manage the RepConnector connections defined for an installed
RepConnector instance running on an application server.

A RepConnector profile contains the connection property information needed to connect to a
RepConnector runtime instance. You can configure as many RepConnector profiles as
necessary to manage all the RepConnector installations from a single RepConnector Manager.

The RepConnector Manager installation includes two sample default profiles you can use to
connect to your RepConnector runtime:

• JBoss:8080 for JBoss Application Server
• weblogic:7001 for WebLogic Server

Creating a New Profile
Create a new RepConnector profile.

1. From the RepConnector Manager view, right-click the Sybase RepConnector folder, and
select New Connection Profile.

2. Enter profile details:

• Profile Name – the name must be unique within this instance of RepConnector
Manager. The name of the profile can contain alphanumeric characters, colons,
periods, hyphens, and underscores. It cannot contain white spaces.

• Host – the HTTP host name of the machine where the target RepConnector runtime is
running. The default value is localhost.

• Port – the HTTP port number where the target RepConnector runtime is listening. The
default is 8080 for JBoss and 7001 for WebLogic.

• User – the RepConnector administrator user ID to connect to the RepConnector server.
The default is repraadmin.

3. Select OK to create a new profile.

For example, enter:
Profile Name: JBoss:8080
Host: myhost
Port: 8080
User: repraadmin

See also
• Setting Up the RepConnector Server Administrator Login on page 17

Get Started with RepConnector Manager

16 RepConnector

Renaming a Profile
Rename a RepConnector profile.

1. Right-click the profile to rename, and select Rename Profile.

2. Enter a new profile name that is unique within the same RepConnector Manager instance.

3. Select OK.

Editing the Profile Properties
Modify RepConnector profile properties.

1. Right-click the profile to modify, and select Edit Profile Properties.

2. Modify the fields and select OK.

Deleting a Profile
Delete a RepConnector profile.

1. Right-click the profile and select Delete Profile.

2. Select OK.

Note: This deletes a profile only from the RepConnector Manager tree view only; it does not
make changes to the runtime configuration.

Setting Up the RepConnector Server Administrator Login
Configure the administrator login for a RepConnector Server.

Each RepConnector instance has one administrator login, which is, by default, “repraadmin”
with no password. To secure access to the RepConnector runtime, Sybase recommends that
you change this login and password.

• The login name and the password must be alphanumeric.
• The length of the password must be must be equal to or less than 30 characters.

1. From the command prompt, navigate to:

On Windows:

<AppServer_install_dir>\repra\bin

On UNIX:
<AppServer_install_dir>/repra/bin

2. To change the user name and password:

On Windows, enter:

setlogin.bat <old_user_name> <old_password> \
<new_user_name> <new_user_password>

Get Started with RepConnector Manager

Configuration and Users Guide 17

On UNIX, enter:
setlogin.sh <old_user_name> <old_password> \
<new_user_name> <new_user_password>

Note: Having no password is represented by empty quotation marks. To create a password,
enter:
setlogin.sh repraadmin ““\ repraadmin thepassword

Logging In to the RepConnector Server
Log in to the RepConnector Server.

1. Start the RepConnector Server.

2. Right-click the connection profile and select Login.
You see a window that lists all of the RepConnector profile properties and an empty
password field.

3. Enter the password and click Login.

Note: For security reasons, you must reenter the password each time you log in.

Once you have successfully logged in, you can see all the connections that are configured
with the RepConnector runtime component. RepConnector provides one default
connection named “sample_repConnector.”

Refreshing the Profile
Refresh the tree view under the profile folder to show the current status of the runtime.
Right-click the profile and select Refresh View.

Logging Out of the Profile and the RepConnector Runtime
Log out of the RepConnector profile to disconnect a profile.

1. Right-click the logged-in profile and select Logout.

2. Select OK.

Get Started with RepConnector Manager

18 RepConnector

Configuring RepConnector

Configure your environment before you configure the RepConnector connection.

Configuring RepConnector Connections
Configure a RepConnector connection to listen for events from a database and route the events
to a messaging system, or to listen for events from a messaging system and route the events to a
database.

Prerequisites

• Start the application server and set up the messaging system.
• Start RepConnector Manager, create a connection profile, and connect to a RepConnector

runtime instance.

Task
Configure a RepConnector connection to listen from events from:

• A database, then route the events to a messaging sytem – select REPLICATION as the
inbound type and one of the messaging systems (JMS, TIBCO, IBMMQ) as the outbound
type.
The inbound type is the source from which the RepConnector Connection receives data.
The outbound type is the destination to which the RepConnector connection routes the
data.

• A database, then route the events to a user-defined sender processor (a file, for example) –
select REPLICATION as the inbound type and CUSTOM as the outbound type.

• A messaging system, then route the events to a database – select one of the messaging
systems (JMS, TIBCO, IBMMQ) as the inbound type and DATABASE as the outbound
type.

See also
• Get Started with RepConnector Manager on page 15

Configuring the RepConnector for Messaging Systems
Before validating RepConnector connection, you must configure your RepConnector
environment, and restart your application server. This enables you to ping the messaging
system to verify that it is configured correctly.

If you do not configure your RepConnector environment before configuring the
RepConnector connection, RepConnector Manager allows you to create the connection even

Configuring RepConnector

Configuration and Users Guide 19

if the ping fails. However, you must still verify the connection once you have created the
RepConnector environment.

Note: You can skip this task if you are using JBoss HornetQ JMS or WebLogic JMS.

To set the environment for the messaging system, modify the %REPRA_HOME%\bin
\repra_env.bat file on Windows, and $REPRA_HOME/bin/repra_env.sh file
on UNIX , where %REPRA_HOME% or $REPRA_HOME is the RepConnector installation
directory.

Configuring RepConnector for SonicMQ JMS Messaging Systems
Set up the RepConnector environment to enable RepConnector to communicate with
SonicMQ JMS.

Prerequisites
Verify that the path to the SonicMQ library files are defined correctly in the RepConnector
environment batch or script files.

Task

1. Verify that the line in the repra_env.bat file on Windows or the repra_env.sh file
on UNIX that defines the SONICMQ_HOME environment variable is not commented out,
and that it points to the installation location for SonicMQ. For example:

• On Windows:
set SONICMQ_HOME=C:\SonicSoftware\SonicMQ

• On UNIX:
SONICMQ_HOME= /work/SonicSoftware/SonicMQ

2. Verify that the lines that define the directory structure for the SonicMQ library file,
sonic_Client.jar, are not commented out and that they are correct for your
environment.

On Windows:

CLASSPATH=%CLASSPATH%;%SONICMQ_HOME%\lib\sonic_Client.jar
BOOTCLASSPATH=%BOOTCLASSPATH%;%SONICMQ_HOME%\lib\sonic_Client.jar

On UNIX:
REPRA_CLASSPATH=$SONICMQ_HOME/lib/sonic_Client.jar
CLASSPATH=$CLASSPATH:$REPRA_CLASSPATH
BOOTCLASSPATH=$BOOTCLASSPATH:$REPRA_CLASSPATH

3. Restart your application server.

Configuring RepConnector

20 RepConnector

Configuring RepConnector for TIBCO
Set up the RepConnector environment so that RepConnector can communicate with TIBCO
RV, TIBCO RVCM, TIBCO AECM, and TIBCO Enterprise for JMS.

Configuring TIBCO RV, RVCM
Set up the RepConnector environment to communicate with TIBCO RV and RVCM.

1. Verify that the line in the repra_env.bat file on Windows or the repra_env.sh file
on UNIX that defines the TIBCO_HOME environment variable is not commented out, and
that it points to the installation location for TIBCO Rendezvous. For example:

On Windows:

TIBCO_HOME=c:\tibco71

On UNIX:

TIBCO_HOME=/work/tibco71
2. Verify that the lines that define the directory structure for the TIBCO Rendezvous library

file, tibrvj.jar, are not commented out, and that they are correct for your
environment. For example:

On Windows:

REPRA_CLASSPATH=%TIBCO_HOME%\lib\tibrvj.jar
set CLASSPATH=%CLASSPATH%;%REPRA_CLASSPATH%
BOOTCLASSPATH=%BOOTCLASSPATH%;%REPRA_CLASSPATH%

On UNIX:
REPRA_CLASSPATH=$TIBCO_HOME/lib/tibrvj.jar:$REPRA_CLASSPATH
CLASSPATH=$CLASSPATH:$REPRA_CLASSPATH
BOOTCLASSPATH=$BOOTCLASSPATH:$REPRA_CLASSPATH

3. Restart your application server.

Configuring TIBCO AECM
Set up the RepConnector environment to communicate with TIBCO AECM.

1. Verify that the lines in the repra_env.bat file on Windows or the repra_env.sh
file on UNIX that define the TIBCO_HOME environment variable are not commented
out, and that they point to the installation location for TIBCO Active Enterprise. For
example:

On Windows:

TIBCO_HOME=c:\tibco71

On UNIX:
TIBCO_HOME=/work/tibco71

Configuring RepConnector

Configuration and Users Guide 21

2. Verify that the lines that define the directory structure for the TIBCO Active Enterprise
Certified Messaging library files, Maverik4.jar and TIBRepoClient4.jar, are
not commented out and that they are correct for your environment.

On Windows:
REPRA_CLASSPATH=%TIBCO_HOME%\Adapter\SDK\java\Maverick4.
jar:
REPRA_CLASSPATH=%REPRA_CLASSPATH%:%TIBCO_HOME%\Adapter\
SDK\java\TIBRepoClient4.jar
CLASSPATH=%CLASSPATH%:%REPRA_CLASSPATH%;
BOOTCLASSPATH=%BOOTCLASSPATH%:%REPRA_CLASSPATH%

On UNIX:
REPRA_CLASSPATH=$TIBCO_HOME/Adapter/SDK/java/Maverick4.
jar:$REPRA_CLASSPATH
REPRA_CLASSPATH=$REPRA_CLASSPATH:$TIBCO_HOME/Adapter/SDK/
java/TIBRepoClient4.jar
CLASSPATH=$CLASSPATH:$REPRA_CLASSPATH
BOOTCLASSPATH=$BOOTCLASSPATH:$REPRA_CLASSPATH

3. Restart your application server.

Configuring TIBCO Enterprise for JMS
Set up the RepConnector environment to communicate with TIBCO Enterprise for JMS.

1. Verify that the lines in the repra_env.bat file on Windows or the repra_env.sh
file on UNIX that define the TIBCO_HOME environment variable are not commented
out, and that they point to the installation location for the TIBCO Enterprise for JMS
environment. For example:

On Windows:

TIBCO_HOME=c:\tibco71

On UNIX:
TIBCO_HOME=/work/tibco71

2. Verify that the lines that define the directory structure for the TIBCO Enterprise for JMS
library files (tibrvjms.jar, tibjms.jar, jms.jar) are not commented out and
that they are correctly defined for your environment.

On Windows:

REPRA_CLASSPATH=%REPRA_CLASSPATH%;%TIBCO_HOME%\JMS\
Clients\java\jms.jar
REPRA_CLASSPATH=%REPRA_CLASSPATH%;%TIBCO_HOME%\JMS\
Clients\java\tibrvjms.jar:
$REPRA_CLASSPATH
REPRA_CLASSPATH=%REPRA_CLASSPATH%;%TIBCO_HOME%\JMS\
Clients\java\tibjms.jar:
CLASSPATH=%CLASSPATH%:%REPRA_CLASSPATH%
BOOTCLASSPATH=%BOOTCLASSPATH%:%REPRA_CLASSPATH%

On UNIX:

Configuring RepConnector

22 RepConnector

REPRA_CLASSPATH=$TIBCO_HOME/jms/clients/java/jms.jar
REPRA_CLASSPATH=$TIBCO_HOME/jms/clients/java/tibrvjms.jar:
$REPRA_CLASSPATH
REPRA_CLASSPATH=$TIBCO_HOME/jms/clients/java/tibjms.jar:
$REPRA_CLASSPATH
CLASSPATH=$CLASSPATH:$REPRA_CLASSPATH
BOOTCLASSPATH=$BOOTCLASSPATH:$REPRA_CLASSPATH

3. Restart your application server.

Configuring RepConnector for IBM WebSphere MQ
Set up the RepConnector environment so that RepConnector can communicate with IBM
WebSphere MQ.

1. Verify that the lines in the repra_env.bat file on Windows or the repra_env.sh
file on UNIX that define the IBMMQ_HOME environment variable are not commented
out and that they point to the installation location for the IBM WebSphere MQ
environment. For example:

On Windows:

IBMMQ_HOME=c:\Program Files\IBM\WebSphere MQ

On UNIX:
IBMMQ_HOME=/opt/mqm

2. Verify that the lines that define the directory structure for the IBM WebSphere MQ library
files, mq.jar and mqbind.jar, are not commented out and that they are defined
correctly for your environment.

On Windows:

REPRA_CLASSPATH=%IBMMQ_HOME%\java\lib\com.ibm.mq.jar;
REPRA_CLASSPATH=%IBMMQ_HOME%\java\lib\com.ibm.mqbind.jar:
%REPRA_CLASSPATH%
CLASSPATH=%CLASSPATH%:%REPRA_CLASSPATH%
BOOTCLASSPATH=%BOOTCLASSPATH%:%REPRA_CLASSPATH%

On UNIX:
REPRA_CLASSPATH=$IBMMQ_HOME/java/lib/com.ibm.mq.jar
REPRA_CLASSPATH=$IBMMQ_HOME/java/lib/com.ibm.mqbind.jar:
$REPRA_CLASSPATH
CLASSPATH=$CLASSPATH:$REPRA_CLASSPATH
BOOTCLASSPATH=$BOOTCLASSPATH:$REPRA_CLASSPATH

3. If you are connecting to the remote MQ daemon, verify that the MQ Server environment
variable is defined correctly in the repra_env.bat file on Windows, or the
repra_env.sh file on UNIX. If the environment variable is not defined correctly,
modify it as necessary.

On Windows:

At the command line, where CHANNEL1 is the name you have defined for the channel for
the server connection, enter:

Configuring RepConnector

Configuration and Users Guide 23

set MQSERVER=CHANNEL1/TCP/'mymachine(1414)'

On UNIX:

At the command line, where CHANNEL1 is the name you have defined for the channel for
the server connection, enter:
MQSERVER=CHANNEL1/TCP/'mymachine1(1414)'
export MQSERVER

4. Restart your application server.

Configuring MQ JMS
Configure the RepConnector environment for MQ JMS.

1. Verify that the lines in the repra_env.bat file on Windows or the repra_env.sh
file on UNIX that define the IBMMQ_HOME environment variable are not commented
out and that they point to the installation location for the IBM MQ JMS. For example:

On Windows:

IBMMQ_HOME=c:\Program Files\IBM\WebSphere MQ

On UNIX:
IBMMQ_HOME=/opt/mqm

2. Verify that the lines that define the directory structure for the IBM WebSphere MQ JMS
library files, mq.jar and mqbind.jar, are not commented out and that they are
defined correctly for your environment.

On Windows:

REPRA_CLASSPATH=%IBMMQ_HOME%\Java\lib\com.ibm.mq.jar;
REPRA_CLASSPATH=%IBMMQ_HOME%\Java\lib\com.ibm.mqbind.jar:
%REPRA_CLASSPATH%
REPRA_CLASSPATH=%IBMMQ_HOME%\Java\lib\com.ibm.mqjms.jar:
%REPRA_CLASSPATH%
REPRA_CLASSPATH=%IBMMQ_HOME%\Java\lib:%REPRA_CLASSPATH%
CLASSPATH=%CLASSPATH%:%REPRA_CLASSPATH%
BOOTCLASSPATH=%BOOTCLASSPATH%:%REPRA_CLASSPATH%

On UNIX:
REPRA_CLASSPATH=$IBMMQ_HOME/java/lib/com.ibm.mq.jar
REPRA_CLASSPATH=$IBMMQ_HOME/java/lib/com.ibm.mqbind.jar:
$REPRA_CLASSPATH
REPRA_CLASSPATH=$IBMMQ_HOME/java/lib/com.ibm.mqjms.jar:
$REPRA_CLASSPATH
REPRA_CLASSPATH=$IBMMQ_HOME/java/lib:$REPRA_CLASSPATH
CLASSPATH=$CLASSPATH:$REPRA_CLASSPATH
BOOTCLASSPATH=$BOOTCLASSPATH:$REPRA_CLASSPATH

3. If you are connecting to the remote MQ daemon, verify that the MQ Server environment
variable is defined correctly in the repra_env.bat file on Windows, or the
repra_env.sh file on UNIX. If the environment variable is not defined correctly,
modify it as necessary.

Configuring RepConnector

24 RepConnector

On Windows:

At the command line, where CHANNEL1 is the name you have defined for the channel for
the server connection, enter:
set MQSERVER=CHANNEL1/TCP/'remotemachine1(1414)'

On UNIX:

At the command line, where CHANNEL1 is the name you have defined for the channel for
the server connection, enter:
MQSERVER=CHANNEL1/TCP/'remotemachine1(1414)'
export MQSERVER

4. Restart your application server.

Configuring RepConnector for Your Database
Set up the RepConnector environment so that RepConnector can communicate with the
database to send SQL events that it receives from the messaging system. If you are using an
Adaptive Server database, no additional steps are required for RepConnector to communicate
with the database.

Configuring for an Oracle Database
Configure RepConnector for an Oracle database.

1. Verify that the lines in the repra_env.bat file on Windows or repra_env.sh file
on UNIX that define the CLASSPATH/BOOTCLASSPATH environment variable, are not
commented out, and that they point to the installation location for your database
environment.

On Windows:

CLASSPATH=d:\oracle\ora92\jdbc\ojdbc14.jar;%CLASSPATH%
BOOTCLASSPATH=d:\oracle\ora92\jdbc\ojdbc14.jar;%CLASSPATH%

On UNIX:
CLASSPATH= /work/oracle/ora92/jdbc14.jar;$CLASSPATH
BOOTCLASSPATH= /work/oracle/ora92/jdbc14.jar;$BOOTCLASSPATH

2. Restart your application server.

Configuring RepConnector

Configuration and Users Guide 25

Configuring an Application Server for a Custom Sender
Processor or Formatter

Set up the RepConnector environment so that RepConnector can load customized classes for
message transformation or message destination routing.

1. Verify that the CLASSPATH variable setting in the repra_env.bat file on Windows,
or the repra_env.sh file on UNIX, includes the full path of the jar file containing the
customized sender processor or message formatter classes.

• On Windows:
<AppServer_install_dir>\repra\sample\client\sample.jar;
%CLASSPATH%

• On UNIX:
<AppServer_install_dir>/repra/sample/client/sample.jar:
$CLASSPATH

2. Restart your application server.

See also
• Customizing the Sender and Formatter Processors on page 65

Configuring the RepConnector for Replication Server
Routing

Customize the RepConnector environment to be used with Replication Server routing.
Replication Server routing is used when there is more than one Replication Server between the
primary database and RepConnector.

1. From the command prompt, navigate to:

On Windows:
 <AppServer_install_dir>\repra\bin

On UNIX:
 <AppServer_install_dir>/repra/bin

2. In the repra.properties file, add:

REMOTE_REPSERVER_OPTION=true
3. If the application server is running, restart it for the new property to take effect.

Configuring RepConnector

26 RepConnector

Configuring RepConnector to Send Carriage Return and
Tab

Configure RepConnector to send actual character output to the destination. When there is a
carriage return (\n) or tab (\t) in a source text column, RepConnector generates the literal
representation "\n" or "\t" in the output stream.

1. From the command prompt, navigate to:

On Windows:
 <AppServer_install_dir>\repra\bin

On UNIX:
 <AppServer_install_dir>/repra/bin

2. In the repra.properties file, add:

REAL_CHARACTER_OPTION=true
3. If the application server is running, restart it for the new property to take effect.

Creating and Configuring a New Connection
Add and configure a new RepConnector connection.

Although this task includes all the steps required to add a new connection, some steps are
described only in summary. Subsequent tasks give the details of these steps and are referred to
from this procedure.

1. Right-click the connection profile, then select Add a New Connection.

2. On the Create a New Connection page:

a) Enter a unique connection name. Do not use dashes or spaces.
b) Select the inbound type, which is the origin or source of the data.

The inbound type you select determines what outbound types are available.

Select one of these inbound sources:
• REPLICATION – if this connection will accept inbound data from Replication

Server. When you select REPLICATION as the inbound type, you can select JMS,
TIBCO, IBMMQ, or CUSTOM as the outbound type.

• JMS – if this connection will accept inbound data from a JMS message queue.
When you select JMS as the inbound type, you can select only DATABASE as the
outbound type.

Configuring RepConnector

Configuration and Users Guide 27

• TIBCO – if this connection will accept inbound data from a TIBCO message
queue. When you select TIBCO as the nbound type, you can select only
DATABASE as the outbound type.

• IBM MQ – if this connection is to accept inbound data from an IBM WebSphere
MQ message queue. When you select IBM MQ as the inbound type, you can select
only DATABASE as the outbound type.

c) Select the outbound type, which is the target or destination for the data:

• JMS – if this connection is to push outbound data to a JMS message queue. This
option is available when you select REPLICATION as the inbound type.

• TIBCO – if this connection is to push outbound data to a TIBCO message queue.
This option is available when you select REPLICATION as the inbound type.

• IBM MQ – if this connection will push outbound data to an IBM WebSphere MQ
message queue. This option is available when you select REPLICATION as the
inbound type.

• CUSTOM – if this connection will push outbound data to a target other than the
specific message queues listed in the outbound types field. This option is available
when you select REPLICATION as the inbound type.

• DATABASE – if this connection will push outbound data to a database. This option
is available when you select a message queue (JMS, TIBCO, or IBMMQ) as the
inbound type.

3. Click Next.

4. On the General Connection Information page:

a) Verify or modify the Uniform Resource Locator (URL) in the “DBEventStream XSD
URL” field.

This is the URL for exposing the XML Schema Definition (XSD) over the network.

The default URL is:

http://<host_name>:<port_number>/RepraWebApp/dtds/
dbeventstream.xsd
where:
• <host_name> is the host name of the target server’s http listener. The default

name is “localhost.”
• <port_number> is the port number of the target. The default port number is 8000.

If the default information is incorrect, change localhost to the host name of the
target server’s HTTP listener and 8000 to the port number on which the target server’s
HTTP listener is listening.

For example, if the host name is “mymachine”, listening at port 8090, the URL is:

http://mymachine:8090/RepraWebApp/dtds/dbeventstream.xsd
b) Select the logging level to use for this connection. Log Level defines the level, or type,

of logging in the RepConnector log file, repra.log. The level you choose depends

Configuring RepConnector

28 RepConnector

on whether you want to see only error messages or detailed messages in the log. The
log file resides in the <AppServer>\repra\logs directory on Windows and the
<AppServer>/repra/logs directory on UNIX. The default logging level is
INFO.

Choose:
• FATAL – to see information about severe error events that could lead the

application to abort.
• ERROR – to see general errors related to events that could allow the RepConnector

environment to continue running, as well as fatal errors.
• INFO – to see informational messages that highlight application progress at a high

level, as well as fatal errors and general errors.
• WARNING – to see warnings about potentially harmful situations, as well as fatal

errors, general errors, and informational messages.
• DEBUG – to see details about general events that can help during debugging, as

well as fatal errors, general errors, informational messages, and warnings.
c) Choose Autostart Connection, to start the connection automatically whenever the

application server starts. By default, this option is not selected.

In a production environment, you may want to start the connection automatically when
the application server starts to do the minimal amount of intervention when restarting
servers.

If you are developing and testing your RepConnector connections, you might not want
to start the connection automatically when your application server restarts. Once you
establish a successful connection, you may want to change the connection properties to
automatically start the connection.

Note: When you start a RepConnector connection, Replication Server attempts to
connect to it. When you stop a RepConnector connection, and suspend the connection
at Replication Server, Replication Server continues to attempt to connect to it, even
though the connection is stopped.

d) Choose Custom Plug-in Class to use a user-defined message formatter with
RepConnector rather than the RepConnector default XML formatter.

See Customizing the Sender and Formatter Processors on page 65.
e) Choose the encrypted data option if the data from the messaging system is encrypted

by Adaptive Server 15.0 encryption.

5. Click Next.

The page you see next depends on the inbound type you selected. If you selected:
• REPLICATION – the Replication Server Inbound Information page appears.
• JMS – the JMS Information wizard page appears.
• TIBCO – the TIBCO Messaging Information wizard page appears.
• IBM MQ – the MQ Messaging Information wizard page appears.

Configuring RepConnector

Configuration and Users Guide 29

6. Select Ping to verify that you have entered the information correctly.

A Pinging Connection Status provides status on whether you have configured the
information correctly.

Note: You must update the repra_env.bat file on Windows or the repra_env.sh
file on UNIX to include the messaging system’s libraries in the environment and restart
your application server before you can use ping.

Click OK to exit the status window.

7. Click Next.

The page you see next depends on the outbound type you selected. If you selected:
• JMS – message queue or topic, the JMS Information page appears.
• TIBCO RV or RVCM message queue or topic – the TIBCO Messaging Information

page appears.
• TIBCO AECM message queue – the TIBCO Messaging Information page appears.
• IBM MQ queues – the MQ Messaging Information page appears.
• CUSTOM – and selected Custom Plug-in Class in the General Connection

Information wizard page, the Plug-in wizard page appears.
• DATABASE – the Database Connection Information page appears.

8. Click Next.

The Summary page displays the values you entered for the new connection. These values
are saved in a properties file called connection_name.props. This file resides in the
repra/conf directory in your application server installation directory structure.

9. Verify the connection configuration information and select Finish to create the new
connection.

To change connection configuration information, select Back to return to the specific
configuration page you want to modify. When you finish making changes, return to this
Summary page and select Finish.

See also
• Get Started with RepConnector Manager on page 15

• Customizing the Sender and Formatter Processors on page 65

• Configuring Replication Information for REPLICATION Inbound Types on page 31

• Configuring JMS Information on page 32

• Configuring TIBCO Information on page 34

• Configuring IBM MQ Information on page 35

• Configuring the RepConnector for Messaging Systems on page 19

• Configuring Custom Plug-in Information on page 36

• Configuring Database Connection Information on page 37

Configuring RepConnector

30 RepConnector

Configuring Replication Information for REPLICATION Inbound Types
If you inbound type is REPLICATION, enter the Replication Server inbound information and
the Replication Server System Database (RSSD) information.

Entering Replication Server Inbound Information
Define the Data Server Interface (DSI) and the port number that the RepConnector connection
will listen on, along with the user ID and password. You can find the required values on the
configuration worksheets.

1. On the Replication Server inbound information page, enter the name of the Data Server
Interface (DSI) in the DSI Name field. This is the same as the name of the connection you
created for RepConnector at Replication Server (3.a).

2. Enter a unique port number for the machine in the DSI Port field. This is the same port
number you used when you added an interface entry for RepConnector in the Replication
Server interfaces file (3.d)

3. Enter the user name and password for the RepConnector connection. This user name and
password must be the same as the user name and password you used when you created the
DSI connection for RepConnector at Replication Server (3.e and 3.f).

4. Click Next.

The Replication Server System Database wizard page appears.

See also
• Configuration Worksheets on page 93
• Creating and Configuring a New Connection on page 27

Entering Replication Server System Database Information
Define the information that RepConnector uses to connect to the Replication Server System
Database (RSSD) to gather metadata information for processing events from Replication
Server.

1. On the Replication Server System Database Information page, enter the JDBC™ URL
string that connects to the RSSD:
jdbc:sybase:Tds:<RSSD host machine name>:
 <RSSD port number>/<RSSD database name>

where:
• jdbc:sybase:Tds is the URL prefix.
• <RSSD host machine name> is the name of the host machine on which the RSSD is

running.
• <RSSD port number> is the port number on which the RSSD is listening.
• < RSSD database name> is the RSSD database name.

For example:

Configuring RepConnector

Configuration and Users Guide 31

jdbc:sybase:Tds:mymachine:4501/SAMPLE_RS_RSSD
2. Enter the user name and password to connect to the RSSD.

3. Select your message grouping preference.

• Individual – each command in a transaction sent as separate XML message or event.
• Group – all the commands in a transaction grouped into a single XML message or

event.

Note: If you use RepConnector to replicate tables containing large text or image type
fields, Sybase recommends that you do not use the Group option. Your system may run out
of memory after accumulating only several messages.

See also
• Creating and Configuring a New Connection on page 27

Configuring JMS Information
Define the JMS information using the Create Connection wizard if you are connecting to a
JMS message queue or topic.

1. Choose the destination type:

Destination Type Description

Queue Point-to-point messaging

Topic Publish-and-subscribe messaging.

2. Enter the JMS provider URL, which is the host name and port number that is used to
connect to the JMS Server.

JMS Provider JMS Provider URL Where

JBoss HornetQ JMS jnp://
<host_name>:<port_n
umber>
For example:

 jnp://localhost:
1099

• host_name – is the name of the
machine on which the server is
running.

• port_number – is the port num-
ber at which the server is listen-
ing.

WebLogic Server JMS
(protocol type must be
“t3”, which is the Web-
Logic multitier JDBC
driver)

t3://
<host_name>:<port_n
umber>
For example:

t3://localhost:7001

Configuring RepConnector

32 RepConnector

JMS Provider JMS Provider URL Where

TIBCO JMS or SonicMQ
JMS

tcp://<host
name>:<port number>
For example:

tcp://localhost:
7222

3. Enter or select the class name of the specific JMS provider’s initial naming context factory.

JMS Provider Class Name

JBoss HornetQ JMS For JBoss 6:

org.jnp.interfaces.NamingContextFactory
For JBoss 7:

org.jboss.as.naming.InitialContextFactory

WebLogic Server
JMS

weblogic.jndi.WLInitialContextFactory

TIBCO JMS com.tibco.tibjms.naming.
 TibjmsInitialContextFactory

SonicMQ JMS If the destination type is a queue:

progress.message.jclient.QueueConnectionFactory
If the destination type is a topic:

progress.message.jclient.TopicConnectionFactory

4. Enter or select the object that is administered by the connection factory.

JMS Provider Connection Factory Name

JBoss HornetQ JMS java:/ConnectionFactory

WebLogic Server
JMS

weblogic.jms.ConnectionFactory

TIBCO JMS If the destination type is a queue:

com.tibco.tibjms.TibjmsQueueConnectionFactory
If the destination type is a topic:

com.tibco.tibjms.TibjmsTopicConnectionFactory
Make sure that this connection-factory-administered object name exists
in your TIBCO JMS Server, or change the value here to match the object
you created in TIBCO JMS Server.

Configuring RepConnector

Configuration and Users Guide 33

JMS Provider Connection Factory Name

SonicMQ JMS If the destination type is a queue:

progress.message.jclient.QueueConnectionFactory
If the destination type is a topic:

progress.message.jclient.TopicConnectionFactory

5. Enter the name of the destination; for example, if the destination is a JMS queue, enter:
JMS_Queue

6. Enter the user name and password for the queue or topic, for example, enter jagadmin
with no password.

7. If the destination type is a topic, enter the name of one or more durable subscribers in the
Topic Subscribers field, separated by commas, with no spaces in between.

Durable subscribers are subscribers who are interested in receiving messages from the
selected published topic. For example, enter:
JMSTSub1,JMSTSub2,JMSSub1

8. If you are routing events from messaging to database, enter name of the destination in the
Status Destination field.

The status destination queue or topic you define is used for a client application to listen for
an error message (if any) that may result in the event sent to the database.

See also
• Creating and Configuring a New Connection on page 27

Configuring TIBCO Information
If you are using a TIBCO messaging system, define the TIBCO information using the Create
Connection wizard.

1. In the TIBCO Message Type field, choose:

• RV – to configure a TIBCO Rendezvous-reliable message.
• RVCM – to configure a TIBCO Rendezvous Certified Messaging (RVCM) message.
• AECM – to configure a TIBCO Rendezvous Active Enterprise Wired Format

messaging message. Skip to step 3.

2. If you selected RV or RVCM:

a. In Service Name, enter the name of the RV and RVCM transport. The service name can
be either a string value or a port number. By default, the value is 7500.

b. In Network, enter the name of the host name or IP address where the TIBCO
Rendezvous daemon is running. For example, enter job1-srvr.

c. In Daemon, enter the TIBCO Rendezvous daemon value:
protocol:hostname:port

For example, enter tcp:my_machine:7500.

Configuring RepConnector

34 RepConnector

The default value is tcp:7500, which defaults to “localhost” on port 7500.
If your TIBCO Rendezvous daemon is running on a machine other than the one on
which RepConnector is running, you must specify the host name; for example:
tcp:mymachine:7500

d. Enter the name of the subject or destination at which the client application is listening.
For example, enter sample.subject.

You can specify more than one subject name, separated by commas.
To preregister listeners, enter the main subject, followed by a comma, followed by the
name and subject pairs of the listeners you are preregistering, separated by a colon:
SAMPLE.REPC15.EVENT,cmNameA:cmSubA,cmNameB:cmSubB

In this example, SAMPLE.REPC15.EVENT is the subject to publish to and
cmNameA:cmSubA,cmNameB:cmSubB are the name and subject pairs you are
preregistering.

e. If you are using an RVCM message type, enter the certified messaging names in the
CM Names field. For example, enter SAMPLE.CM1.

You can specify more than one subject name, separated by commas.
f. If you are using an RVCM message type, enter, in the CM Duration field, the number of

seconds that TIBCO message system should store unread messages in the
cmledger.

The default value is 0, unread messages are never removed from the cmledger file.

For example, enter 600 to have the messaging system keep unread messages for 10
minutes.

3. If you selected AECM as the TIBCO message type:

• Enter the name of the AE configuration file you are using. Or, click Browse to search
for this file.

• If you want RepConnector to use your customized message generator, enter the class
name for your customized message generator in the AE Message Generator field. For
example, enter sample.MyMsgGenerator

4. If you are routing events from a messaging system to a database, enter the status
destination. The status destination queue or topic is where the client application listens for
any error messages that may result in the event being sent to the database.

See also
• Creating and Configuring a New Connection on page 27

Configuring IBM MQ Information
Define IBM MQ information.

1. Choose an MQ message type:

• MQ for IBM MQ Messaging System

Configuring RepConnector

Configuration and Users Guide 35

• MQJMS for IBM MQ JMS Messaging System

2. Choose:

• Local Server, if you are running the MQ server daemon (IBM MQ server) on your local
machine.

• Local Client, if you are running the MQ client daemon (IBM MQ client) on your local
machine.

Select the encoding type for the message:
• Default – to use standard character encoding.
• UTF – to use the UTF character encoding.

3. Enter the host name where the MQ Server daemon is running. For example, enter
mqbiz2-pc.

4. Enter the channel name for the IBM MQ server connection.

If you have selected MQ JMS as the MQ message type, enter the port number in the
channel field. For example, enter 1414.

5. In the Queue Manager/Factory field, enter the name of the IBM MQ queue manager. For
example, enter MQBiz2QM.

6. In the Queue Name field, enter the name of the IBM MQ destination. For example, enter
MQBiz2Queue.

7. Enter the user name and password to connect to IBM MQ Server.

Note: Verify that this user name and password combination has permission to connect to
the queue manager defined in the Queue Manager/Factory field and to the destination
name defined in Queue Name field.

8. If you are routing events from a messaging system to a database, enter the error queue
name in the Status Destination field.

The status destination queue is used by client applications to catch error messages, which
may stop applications from sending events to the database.

See also
• Creating and Configuring a New Connection on page 27

Configuring Custom Plug-in Information
If you are using a custom message formatter or custom message sender processor, define the
plug-in class information using the Create Connection wizard.

1. Select Customized Plug-in Class in the General Connection Information wizard to load a
custom formatter, and enter the class name for your custom message formatter in the
Message Formatter Plug-in Class field. For example, enter:

sample.MyMessageFormatter

Configuring RepConnector

36 RepConnector

If you have a property file associated with this custom message formatter, enter it, along
with the full path name in the Message Formatter Properties File field. For example, enter:

\classes\myclasses\MyMessageFormatter.prop
2. Select CUSTOM as your outbound type to load a custom sender, and enter the class name

for your custom sender in the Sender Processor Plug-in Class field. For example, enter:

sample.FileSender

If you have a property file associated with this custom sender, enter it along with the full
path name in the Sender Processer Properties File field. For example, enter:
\classes\myclasses\MyCustomFileSender.prop

See also
• Creating and Configuring a New Connection on page 27

Configuring Database Connection Information
If your outbound connection is to a database, define the database connection information
using the Create Connection wizard.

1. Enter the JDBC URL information to connect to the database.

For example, to connect to Adaptive Server, enter:
jdbc:sybase:Tds:testmachine:5000

where “testmachine” is the name of the machine where the data server is running and 5000
is the port number where the data server is listening.

2. Enter the name of the JDBC driver class to connect to the database.

For example, the JDBC driver to connect to Adaptive Server is:
com.sybase.jdbc3.jdbc.SybDriver

3. Enter the user name and password to connect to the database.

See also
• Configuring RepConnector for Your Database on page 25
• Creating and Configuring a New Connection on page 27

Managing a RepConnector Connection
Manage a RepConnector connection using the RepConnector Manager or the command line
utility, ratool. Make sure that you have already connected to the RepConnector instance.

See also
• Get Started with RepConnector Manager on page 15
• ratool Utility on page 41

Configuring RepConnector

Configuration and Users Guide 37

Starting a Connection
Strart a RepConnector connection.

1. Right-click the connection and select Start Connection.

2. Once the status indicates that the connection has successfully started, click OK.

Stopping a Connection
Stop a RepConnector connection.

1. Right-click the connection and select Stop Connection.

2. Click:

Yes To stop the connection.

No To cancel the operation.

3. When the status window indicates that the connection has successfully stopped, click
OK.

Refreshing a Connection
Refresh a RepConnector connection.

1. Right-click the connection and select Refresh Connection.

2. When the connection has finished refreshing, click OK.

Renaming a Connection
Rename a RepConnector connection.

Prerequisites

Stop the connection.

Task

1. Right-click the connection and select Rename Connection.

2. Enter the new connection name.

3. Click OK.

Configuring RepConnector

38 RepConnector

Deleting a Connection
Delete a RepConnector connection.

Prerequisites

Stop the connection.

Task

1. Right-click the connection and select Delete Connection.

2. Click OK. Confirm the deletion, or click Cancel to cancel the delete operation.

Copying a Connection (Save As)
Create a new RepConnector connection by copying the connection properties of an existing
connection.

1. Right-click the connection and select Save As.

2. Enter the new connection name.

3. Click OK.

Validating a Connection
Validate both the inbound and outbound configuration properties.

1. Right-click the connection and select Validate Connection.

2. Click OK.

Viewing or Modifying Properties for an Existing Connection
View or modify connection properties of an existing connection. If the connection is already
running, select Refresh Connection to reload the connection properties.

1. Right-click the connection and select Properties.

The left pane of the Properties window contains a tree structure with four categories of
connection property information. Select:

• General Properties – to view general information about the connection.
• Inbound Type Properties – to view inbound configuration information.
• Outbound Type Properties – to view outbound configuration information.
• User-Defined Plug-in Properties – if this connection contains a customized plug-in.

2. Modify the values in the right pane.

3. (Optional) Click Restore Defaults to restore the previous values.

Configuring RepConnector

Configuration and Users Guide 39

4. Click Apply to save the values.

5. Click OK to save the values to the connection property repository.

Viewing Connection Log Information
View RepConnector connection log information.

1. Right-click the connection and select View Log.

2. When you have finished viewing the log information, close the window.

To view any updates to the connection log since you last opened the View Connection Log
window, exit the current view log window, then right-click the connection and select View
Log.

Viewing the Runtime Log Information
View the RepConnector runtime log information.

1. Right-click the connection profile and select View Log.

2. When you have finished viewing the runtime log information, close the window.

To view any updates to the runtime log since you last opened the view log window, exit the
current View Runtime Log window, then right-click the profile and select View Log.

Refreshing the Connection View
Refresh the RepConnector connection view. If you have added a new connection from another
RepConnector Manager or through the command line tool, select Refresh to see newly added
connections for the RepConnector runtime instance.

1. Right-click the connection profile.

2. Select Refresh View.

Configuring RepConnector

40 RepConnector

ratool Utility

Sybase recommends that you use RepConnector Manager to administer and configure
connections. However, if you are performing batch processing, ratool, a command line utility,
can be a useful alternative.

You can use ratool to start, stop, refresh, add, delete, and validate a connection; list all
connections, and display status for the connection.

ratool is located in RepConnector_install_dir/repra/bin on Windows and
RepConnector_install_dir\repra\bin on UNIX. To use ratool, either add
repra/bin on Windows or repra\bin on UNIX to your path, or access it directly from
this directory.

ratool
If you are performing batch processing, ratool is an alternative to using RepConnector
Manager to administer and configure connections.

Note: Command options are case-sensitive.

Syntax
 ratool [-host hostname] [-port portnumber] [-user <username>]
 [-password <password>] [-help] [-loglevel <loglevel_type>]
 [<Command_option>]

Options Definitions

-host <hostname> Identifies the name of the host on which the RepConnector runtime is
running. The default is “localhost”.

-port <portnumber> The port number on which the RepConnector runtime instance is
listening. The default value is 8000.

-user <username> The RepConnector administrator login user ID. The default is re-
praadmin.

-password<password> The password for the RepConnector administrator login. By default,
there is no administrator password.

-help Displays information about all ratool commands.

ratool Utility

Configuration and Users Guide 41

Options Definitions

help <command_option> Displays the help information for a specific ratool command_op-
tion.

Do not include “-” before the help command flag when you display
help information for a command option.

-logfile <file_name> Sends the logging information for ratool to a specified file.

-loglevel <logle-
vel_type>

Determines the level of logging information to show. Valid values
are:

• FATAL

• ERROR

• WARNING

• INFO

• DEBUG

Command_options

-copy <conn_name>
<new_conn_name>

Copies a connection name to a new connection name.

-delete <conn_name> Deletes a connection.

-getLogInfo <con-
nName> [-file <log-
File>]

Displays the logging information for a specified connection. If you
specify -file, -getLogInfo writes the logging information to a file
specified by logFile.

-getProperty <con-
nName> [-file <prop-
file>]

Displays the logging information for a specified connection. If you
specify -file, -getProperty writes the logging information to a file
specified by logFile.

-import <conn_name>
<conn_prop_file> [-over-

ride]

Adds a new connection. If you specify -override, -import updates the
connection property information for an existing connection.

-list Lists all known connections.

ratool Utility

42 RepConnector

Options Definitions

-ping <conn_name>
<pingType>

Verifies the connection is configured correctly. Valid values are:

• ALL

• IBMMQ

• TIBCO

• JMS

• DATABASE

REPLICATION

• INBOUND

• OUTBOUND

-refresh <conn_name> Refreshes a specific connection.

-refreshAll Refreshes all connections.

-rename <conn_name>
<new_conn_name>

Renames a connection.

-start <conn_name> Starts a specific connection.

-startAll Starts all connections

-status <conn_name> Lists connection status. If no connection name is specified, this com-
mand option gives the status of all known connections.

Valid values are:

• STARTING

• RUNNING

• STOP

-stop <conn_name> Stops a specific connection.

-stopAll Stops all running connections.

-validate
<conn_prop_file>| |
<conn_name>

Validates a new connection profile or an existing connection.

ratool Utility

Configuration and Users Guide 43

-copy
Copies the connection name.

Syntax
ratool -copy <src_connection_name> <dest_connection_name>

Parameters

• src_connection_name – the connection to copy.
• dest_connection_name – the connection you are creating from the source connection.

Examples

• Example 1 – copies the connection named RepToJMS to a new connection named
RepToJMS2:

ratool -copy RepToJMS NewRepToJMS

Usage

If the destination connection already exists, you see:
RaCommand[ERROR]: Copy connection failed. Error
Message: com.sybase.connector.repra.RaException:
java.lang.Exception: The destination connection already
exists.

-delete
Deletes a specified connection.

Syntax
ratool -delete <connection_name>

Parameters

• connection_name – the connection you want to delete.

Examples

• Example 1 – deletes a connection RepToJMS:

ratool -delete RepToJMS

ratool Utility

44 RepConnector

Usage

If the connection is running, this option returns:
RaCommand[Error]: Delete Connection failed. Error
Message: com.sybase.repra.util.RaException:
java.lang.Exception: The connection cannot be deleted
since it is currently in a STARTING or RUNNING state.

-getLogInfo
Retrieves connection log information for a specified connection.

Syntax
ratool -getLogInfo <connection_name> [-file <log_file>]

Parameters

• connection_name – the connection for which you want log information.
• log_file – the log file to which you are sending the connection log information.

Examples

• Example 1 – Gets the connection log information for connection RepToJMS:

ratool -getLogInfo RepToJMS
• Example 2 – Gets the connection log information for connection RepToJMS and sends it

to RepToJMS.log:

ratool -getLogInfo RepToJMS -file RepToJMS.log
• Example 3 – Gets the connection log information for connection RepToJMS and sends it

to the default log file (defaultRepToJMS.log):

ratool -getLogInfo RepToJMS -file

Usage

By default, log information is sent to a standard output screen. If you specify -file, log
information is sent to the specified file. If you specify -flag without a file name, log
information is sent to a default file, default<connection_name>.log.

ratool Utility

Configuration and Users Guide 45

-getProperty
Retrieves connection property information for a connection.

Syntax
ratool -getProperty <connection_name> [-file <props_file>]

Parameters

• connection_name – the connection for which you want log information.
• props_file – the file to which you are sending the connection property information.

Examples

• Example 1 – Gets the connection property information for connection RepToJMS:

ratool -getProperty RepToJMS
• Example 2 – Gets the connection property information for connection RepToJMS and

sends it to RepToJMS.props:

ratool -getProperty RepToJMS -file RepToJMS.props
• Example 3 – Gets the connection property information for connection RepToJMS and

sends it to the default connection file (defaultRepToJMS.props):

ratool -getProperty RepToJMS -file

Usage

The information is returned in a name/value pair. By default, the information is sent to
standard output (stdout). If you specify -file, the connection property information is
sent to the specified file name. If you specify -flag without a corresponding file name, the log
information is sent to a default file, default<connection_name>.props.

-import
Imports connection properties from an existing file to create a new connection or update an
existing connection.

Syntax
ratool -import <connection_name> <connection_prop_filename> [-
override]

ratool Utility

46 RepConnector

Parameters

• connection_name – the connection to import.
• connection_prop_filename – the file that contains the properties to import.
• -override – overrides the existing connection information. If you do not specify -

override and there is an existing connection, you see:

RaCommand[ERROR] Import connection failed. Error
message: com.sybase.connector.repra.RaException:
java.lang.Exception: The existing connection cannot be
overriden

Examples

• Example 1 – Adds a new connection using the properties in RepToJMS.props:

ratool -import RepToJMS d:\repraconf\RepToJMS.props
• Example 2 – Updates an existing connection using the properties in

RepToJMS.props:

ratool -import RepToJMS d:\repraconf\RepToJMS.props -override

Usage

See the sample configuration property files in the RepConnector sample/conf directory
for information about property names and values.

-list
Lists all known connections.

Syntax
ratool -list

Examples

• Example 1 – lists all connections:

ratool -list

-ping
Verifies that the connection is configured successfully by pinging the connection.

Syntax
ratool -ping <connection_name> <ping_type>

ratool Utility

Configuration and Users Guide 47

Parameters

• connection_name – the connection for which you are verifying the configuration
information.

• ping_type – the type of connection you are pinging to verify configuration information.
Valid values for ping_type are:

• ALL – inbound and outbound routes.
• IBMMQ – IBM WebSphere MQ messaging system.
• TIBCO – TIBCO messaging system.
• JMS – JMS messaging system.
• DATABASE – server in which the database resides.
• REPLICATION – Replication Server System Database (RSSD).
• INBOUND – inbound source configuration (for example, server or messaging

system).
• OUTBOUND – outbound destination configuration (for example, server or messaging

system).

Examples

• Example 1 – verifies both the inbound and outbound configuration for the connection
RepToJMS by pinging both inbound and outbound routes:

ratool -ping RepToJMS
ratool -ping RepToJMS ALL

• Example 2 – verifies the inbound configuration for connection RepToJMS by pinging the
inbound device (for example, server or messaging system):

ratool -ping RepToJMS INBOUND
• Example 3 – verifies the outbound configuration for connection to RepToJMS by pinging

the outbound destination device (for example, server or messaging system):

ratool -ping RepToJMS OUTBOUND
• Example 4 – verifies the replication configuration for a connection to RepToJMS by

pinging Replication Server:

ratool -ping RepToJMS REPLICATION
• Example 5 – verifies the JMS configuration for connection to RepToJMS by pinging the

JMS messaging system:

ratool -ping RepToJMS JMS

Usage

If you do not specify ping_type, the value defaults to ALL.

ratool Utility

48 RepConnector

-refresh
Refreshes a specified connection.

Syntax
ratool -refresh <connection_name>

Parameters

• connection_name – the connection to refresh.

Examples

• Example 1 – refreshes the connection RepToJMS:

ratool -refresh RepToJMS

Usage

This option reloads the connection properties if they have changed, and restarts the
connection. refresh applies only to running connections. If the connection is not running, you
see a warning message.

-refreshAll
Refreshes all running connections.

Syntax
ratool -refreshAll

Examples

• Example 1 – refreshes all the running connections.

ratool -refreshAll

Usage

This option reloads the connection properties if they have changed, and restarts the
connection. refreshAll applies only to running connections.

ratool Utility

Configuration and Users Guide 49

-rename
Renames a connection.

Syntax
ratool -rename <old_connection_name> <new_connection_name>

Parameters

• old_connection_name – the connection to rename.
• new_connection_name – the new name for the connection.

Examples

• Example 1 – To rename connection RepToJMS to RepToJMS2:

ratool -rename RepToJMS NewRepToJMS

Usage

If you attempt to rename a connection that is running, or the new connection name already
exists, you see an error message.

-start
Starts a specified connection.

Syntax
ratool -start <connection_name>

Parameters

• connection_name – the connection to start.

Examples

• Example 1 – Starts a connection called RepToJMS:

ratool -start RepToJMS

Usage

If the connection is already running, ratool returns a warning message.

ratool Utility

50 RepConnector

-startAll
Starts all the connections.

Syntax
ratool -startAll

Examples

• Example 1 – starts all known connections.

ratool -startAll

-status
Gets the status of a specific connection.

Syntax
ratool -status [<connection_name>]

Parameters

• connection_name – the connection you want to status for.

Examples

• Example 1 – gets the status of RepToJMS:

ratool -status RepToJMS
• Example 2 – gets the status of all configured RepConnector connections for a

RepConnector running on “localhost”, listening on port 8000, and connecting as user
“repraadmin” with no password:

ratool -status
• Example 3 – displays debug logging information while running ratool:

ratool -loglevel DEBUG -status

By default, if you do not specify -logfile, logging information is sent to standard output.

• Example 4 – sends debug logging information to a log file while running ratool:

ratool -loglevel DEBUG -logfile ratool.log -status

ratool Utility

Configuration and Users Guide 51

• Example 5 – if you have configured your application server to listen on a different port, for
example, 8888, this command shows the status of all configured RepConnector
connections:

ratool -port 8888 -status
• Example 6 – if you have changed the default user name “repraadmin” with no password to

the new user “newuser” with password “newpassword” for connecting to RepConnector
running on “machine1” and port 8888, this command gets the status of the RepConnector
connection:

ratool -host machine1 -port 8888 -user newuser -password
newpassword
-status

• Example 7 – to connect to RepConnector that is running on remote “machine1” listening
on default port 8000, connecting as the default user or password, issue one of these
commands:

ratool -host machine1 -status
ratool -host machine1 -port 8000 -status
ratool -host machine1 -port 8000 -user repraadmin -status

• Example 8 – if you are connecting to RepConnector running on WebLogic Servers default
7001 port, you can use:

ratool -port 7001 -user repraadmin -status

Usage

If you do not specify a connection name, the status of all connections displays. Status values
for the connection are:

• RUNNING – the connection is running.
• STOP – the connection is not running.

-stop
Stops a specified connection.

Syntax
ratool -stop <connection_name>

Parameters

• connection_name – the connection to stop.

ratool Utility

52 RepConnector

Examples

• Example 1 – stops connection RepToJMS:
ratool -stop RepToJMS

Usage

If the connection is already stopped, this option returns a warning message.

-stopAll
Stops all running connections.

Syntax
ratool -stopAll

Examples

• Example 1 – stops all known connections:

ratool -stopAll

Usage

If no connections are running, this option returns a warning message.

ratool Utility

Configuration and Users Guide 53

ratool Utility

54 RepConnector

Message Generator for TIBCO AECM
Customization

RepConnector supports the TIBCO Active Enterprise wire format feature, which lets you to
customize and generate a TIBCO Active Enterprise message. The TIBCO adapter then uses
the customized message generator to send the message to the TIBCO RV bus.

Learn the basic implementation of the base class, the structure of a customized class to extend
the base class, and the APIs defined in the base class that retrieve the metadata and data from
the message source. RepConnector loads the TIBCO AECM client, which loads the SDK
repository information. The user exit is where you can create your own Java implementation to
customize a wire-formatted message.

Configuring Properties for RepConnector
Configure RepConnector connection properties to use the TIBCO AECM feature along with
the message generator customization class, and the Active Enterprise properties required to
connect to the TIBCO SDK repository and to generate the customized wire-format message.

Connection Configuration
You can use the TIBCO Active Enterprise feature and the customized message generator with
configuration parameters for TIBCO Active Enterprise.

Table 1. Parameters for TIBCO Active Enterprise

Property Name Description

Inbound Type The inbound type must be set to REPLICATION:

Inbound Type=REPLICATION

Outbound Type The type of sender the client processor uses for sending messages. In this case,
TIBCO:

Outbound Type=TIBCO

TIBCO Message

Type

The transport message type for TIBCO must be AECM.

Message Generator for TIBCO AECM Customization

Configuration and Users Guide 55

Property Name Description

AE Configuration

File

Active Enterprise configuration properties. Enter the full path name to where
the property file is located. This property file contains connection information
to the SDK repository, as well as the properties required for customizing the
message. For example:

AppConfig=C:/Sybase/appserver/repra/conf/ae.props

AE Message Gener-

ator

The Customized Message Generator class name, and Active Enterprise-spe-
cific property. For example:

MsgGenerator=sample.MyMsgGenerator

Property File with the Active Enterprise Connection/Customization
(ae.props)

Use the required connection properties to connect to the SDK repository. You can customize
additional properties for your message generator, such as the schema class name. Use the full
path of this file as the value of the AE Configuration file property of the connection.

Table 2. Properties for Connection to SDK

Property Name Description

application_name The application name of your SDK adapter. For example:

application_name=simpleSDK_adapter

application_version The application version of your SDK adapter. For example:

application_version=1.0

application_info The application description of your SDK adapter. For example:

application_info=fileadapterinfo

config_URL The location of your application inside the SDK repository. For example:

config_URL=/tibco/private/adapter/sdkTest_Adapt-
ers/simpleSDK_adapter

remote_repository The location (full path) to the SDK repository. For example:

remote_repository=d:/Sybase/appserver/repra/conf/
sampleSDK.dat

data_publish_name The name of the publisher that this application is using. For example:

data_publish_name=myPub

Message Generator for TIBCO AECM Customization

56 RepConnector

Property Name Description

pub_subject The subject name that the publisher is going to publish on. For example:

pub_subject=repraTest.subject1

pre_registered_sub-

scribers

The list of subscribers to preregister, separated by a comma. For example:

pre_registered_subscribers=myCmListener,myCmLis-
tener2

command_args (Must be entered as a single line) The command line argument to initialize
the SDK application. For example:

command_args=-system:repourl ../repra/conf/
sampleSDK.dat-system:configurl/tibco/private/
adapter/sdkTest_Adapters/simpleSDK_adapter

Base Class APIs
You can use base class APIs to build a custom TIBCO AECM message generator.

By default, the message generator base class converts a RepEvent object to a well-formed
M-tree object in a simple format. The class places the XML text stream into the data field of
the Active Enterprise message and adds it to the M-tree node.

Customizing TIBCO AECM Message Generator
Generate a customized message generator to create a well-formed M-tree object of a certain
wire format. To do this, extend the base class MsgGenerator and implement your own
createMInstance method.

The parameter to createMInstance() is a RepEvent object. The following APIs defined in the
base class allow you to retrieve specific information for your customization. Extend this base
class to customize your message generator.

There are public methods to help you retrieve the data object information, Active Enterprise
customized user properties, and the MClassRegistry.

These are the required methods for the customized message generator:

public class MsgGenerator implements WireFormatGenerator
{
 /** This method returns a well-formed MTree of a certain
 * WireFormat. You will need to extend this method
 * to customized your MsgGenerator.
 */
 public MTree createMInstance(Object repEvent) throws Exception

 /* Other APIs provided for retrieving information from
 * the RepEvent Object provided in the next section.

Message Generator for TIBCO AECM Customization

Configuration and Users Guide 57

 */
...
}

The extending class must have a public constructor with no input argument. For example:

import com.sybase.connector.repra.tibrv.MsgGenerator;
import com.sybase.connector.repra.util.*;
public class MyMsgGenerator extends MsgGenerator
{
...
// This is the default constructor
public MyMsgGenerator()
{
}
...
}

To customize the message format, use the extending class implementation of the
createMInstance() method. For example:

public MTree createMInstance(Object repmsg)
throws Exception
{
 MTree mTree = new MTree("msg");
 ...
 // do something to build the message MTree
 return mTree;
}

APIs for a Customized, Wire-Format Message Generator
The APIs (embedded in the base class MsgGenerator) that you can use to build a custom
TIBCO AECM Message Generator retrieve information from the RepEvent object.

MClassRegistry getClassRegistry()
Returns the current MClassRegistry object.

String getOwner(int elementAt) throws Exception
Retrieves the owner name of the replication event, when extending the base message generator
com.sybase.connector.repra.tibrv.MsgGenerator.

Example:
 System.out.println("Owner of the table : "+getOwner(0));

String getProperty(String key)
Returns a string value with the given key from the properties file defined as the AE
Configuration file of the connection configuration. Returns a null value if the key is not found.

Message Generator for TIBCO AECM Customization

58 RepConnector

String getProperty(String key, String defValue)
Returns a String value with the given key from the properties file defined AE Configuration
file of the connection configuration. Returns the defValue if the key is not found.

setProperties(Properties props)
Sets the current properties with the input Properties object.

Properties getProperties()
Returns the current properties.

M-Tree createMInstance(Object repmsg) throws Exception
Builds the M-tree for the TIBAECM client and returns it. The MPublisher sends out this M-
Tree object to MSubscribers.

APIs That Retrieve Information from the Source Event
The base class MsgGenerator also provides additional APIs to retrieve the metadata and
replication data from the replication events.

See also
• DBEventParserFactory Utility on page 75

Configuration and Default Wire-Formatted Message Generator Usage
Configure connections and use the default wire-formatted message generator.

An example of configuring connections:
Inbound Type = REPLICATION
Outbound Type = TIBCO
TIBCO Message Type = AECM
AE Configuration File = d:\sybase\appserver\conf\ae.props
AE Message Generator =

An example of SDK application configuration with d:\sybase\appserver\repra
\conf\ae.props:

application_name=simpleSDK_adapte
application_version=1.0
application_info=fileadapterinfo
config_URL=
/tibco/private/adapter/sdkTest_Adapters/simple
SDK_adapter
remote_repository=
 Sybase/appserver/repra/conf/sampleSDK.dat
data_publish_name=myPub
pub_subject=repraTest.subject1
pre_registered_subscribers=myCmListener,myCmListener2

Example output:

Message Generator for TIBCO AECM Customization

Configuration and Users Guide 59

By default, the message format is an XML text-stream representation of the RepEvent. In a
Tibrv Listener, the format is:
message = {
^pfmt^ = 10
^ver^ = 30
^type^ =1
^encoding^ =1
^tracking^={^id^="5rRX7g5jVWROok8EujzzwB3Uzzw"}
^data^={
 data={RepEvent="<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE dbStream SYSTEM
 'http://yjeongw2k:8000/repra/dtds/dbeventstream.dtd'>
 <dbStream environment="repraJMS2.repdb">
 <tran
eventId="102:000000000000c8d500007fe7003900007fe70036000093bd00bf1c
0c0000000000010001">
 <insert schema="REP4">
 <values>
 <cell name="repId" type="INT">2</cell>
 <cell name="repName" type="VARCHAR">name 2</cell>
 <cell name="repCode" type="VARCHAR">code 2</cell>
 </values>
 </insert>
 </tran>
 </dbStream>"}
}
}

This message has been formatted for readability.

Configuration and Customized Wire-Formatted Message Generator
Usage

The summarized overview of the different components from the back-end server, Adaptive
Server® Enterprise, and Replication Server, as well as the information in configuring the
RepConnector to deliver a TIBCO AE message to a TIBCO message bus are described.

Note: This discussion assumes knowledge of the back-end server and the SDK design.

There is a table called REP4 in a database called repdb that resides in Adaptive Server
Enterprise. This table contains two columns called repName and repCode.

Example
Inbound Type=REPLICATION
Outbound Type=TIBCO
TIBCO Message Type=AECM
AEConfiguration=d:\sybase\appserver\repra\conf\ae.props
AE Message Generator =MyMsgGenerator

Message Generator for TIBCO AECM Customization

60 RepConnector

SDK Application Configuration Sample
The SDK application configuration file contains information that is required to connect to the
SDK repository, and user-defined parameters that can be used by the customized message
generator.

Here is an example of the contents of the SDK application configuration file:
application_name=simpleSDK_adapter
application_version=1.0
application_info=fileadapterinfo
config_URL=/tibco/private/adapter/sdkTest_Adapters/
simpleSDK_adapter
remote_repository=F:/appserver/repra/conf/sampleSDK.dat
data_publish_name=myPub
pub_subject=repraTest.subject1
pre_registered_subscribers=myCmListener,myCmListener2
command_args=-system:repourl ../repra/conf/sampleSDK.dat -
system:configurl /tibco
/private/adapter/sdkTest_Adapters/simpleSDK_adapter
context_schema_class=SybContext
native_schema_class=SybNATIVEMSG
commonmsg_schema_class=SybCommonMSG_UDS
ContextKeys=repName,repCode

The example defines three schema class names and the context keys that map to the definition
in the customized SDK repository design.

Code Sample
See the %REPRA_HOME%\sample\client\MyMsgGenerator.java file on
Windows or $REPRA_HOME/sample/client/MyMsgGenerator.java file on
UNIX for an example for the customized AE message generator class.

Compiling the Customized Message Generator
Compile the generated customized message generator.

1. Change to the location of your message generator:

• On Windows:
cd C:\work\custom

• On UNIX:
cd /work/custom

2. Use the Java compiler to define the -classpath parameter with the required libraries to
compile the customized class. For example:

• On Windows:
md customclasses <enter>
c:\jdk7\bin\javac -classpath .; <AppServer_install_dir>\repra
\lib\repraconn.jar

Message Generator for TIBCO AECM Customization

Configuration and Users Guide 61

-d customclasses com\mycompany\MyMsgGenerator.java
• On UNIX:

mkdir customclasses<enter>
/usr/jdk7/bin/javac -classpath
.:<AppServer_install_dir>/repra/lib/repraconn.jar
<enter>
-d customclasses
com/mycompany/MyMsgGenerator.java

3. If the compilation command finishes without any error messages, go to the
customclasses directory, and verify that MyMsgGenerator.class exists in com
\mycompany on Windows, or com/mycompany on UNIX.

4. If MyMsgGenerator.class is not in com\mycompany, or if the compilation
finished with errors, review the design.

Building the Runtime Environment for the Customized Message Generator
Sybase recommends that you build a jar file for customization. Otherwise, you can use the
directory path to set up your environment.

1. Change to the customclasses directory.

• On Windows:
cd C:\work\custom\customclasses

• On UNIX:
cd /work/custom/customclasses

2. Build the jar file:

• On Windows:
C:\jdk141\bin\jar -cf mycustom.jar com

• On UNIX:
/usr/jdk141/bin/jar -cf mycustom.jar com

3. Add the path to mycustom.jar to your environment.

a. Shut down the application server if it is running.
b. Modify <RepConnector_home_dir>\bin\repra_env.bat (Windows) or

<RepConnector_home_dir>/bin/repra_env.sh (UNIX) to add the full
path of mycustom.jar or the customclasses directory to the end of the
CLASSPATH definition.
• On Windows, either:

• set CLASSPATH=C:\work\custom\customclasses;%CLASSPATH%

or:
• set CLASSPATH=C:\work\custom\customclasses\mycustom.jar;

%CLASSPATH%
• On UNIX, either:

Message Generator for TIBCO AECM Customization

62 RepConnector

• CLASSPATH=/work/custom/customclasses:$CLASSPATH

or:
• CLASSPATH=/work/custom/customclasses/mycustom.jar;

$CLASSPATH
c. Start the application server to activate the environment changes.

Example Output for TIBRV Listener and Active Enterprise Wire Format
An example output for TIBRV listener and Active Enterprise wire-formatted message
generator.

The example messages have been formatted for readability.

message={
^pfmt^=10
^ver^=30
^type^=1
^encoding^=1
^tracking^={^id^="UX78vPDLVW/dR-lS9GzzwA0kzzw"}
^data^={
 SybCONTEXT={^class^="Context"
 repName="name 2"
 repCode="code 2"}
 SybNATIVEMSG=[588 opaque bytes]
 SybCOMMONMSG=[36 opaque bytes]
}
}

For an Active Enterprise wire-formatted message generator, the output is:

Data Received:
{, M_TREE {
 {^tracking^, M_TREE {
 {^id^, M_STRING, "UX78vPDLVW/dR-lS9GzzwA0kzzw"}
 }}
 {CONTEXT, M_TREE {
 {^class^, M_STRING, "Context"}
 {repName, M_STRING, "name 2"}
 {repCode, M_STRING, "code 2"}
 }}
 SybNATIVEMSGdbeventy?!<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE dbStream SYSTEM
 'http://yjeongw2k:8000/repra/dtds/dbeventstream.dtd'>
 <dbStream environment="repraJMS2.repdb">
 <tran
 eventId="102:000000000000c8d500007fe7002a00007fe700280
00093bd00bd716e0000000000010001">
 <insert schema="REP4">
 <values>
 <cell name="repId" type="INT">2</cell>
 <cell name="repName" type="VARCHAR">name 2</cell>
 <cell name="repCode" type="VARCHAR">code 2</cell>
 </values>
 </insert>
 </tran>

Message Generator for TIBCO AECM Customization

Configuration and Users Guide 63

 </dbStream>
 }
 {SybCOMMONMSG, M_BINARY, $ +Ue^class^?SybCommonMSG_UDS }
 }}

Message Generator for TIBCO AECM Customization

64 RepConnector

Customizing the Sender and Formatter
Processors

Customize the sender processor and the formatter processor for routing the incoming
replication events to meet your application needs.

1. Develop your own Java class, implementing APIs that are provided by RepConnector.

2. Define the class in your connection configuration.

3. Modify the server environment.

Note: When you configure the RepConnector connection, you must indicate that you will be
using a customized sender processor.

See also
• Configuring RepConnector on page 19

Customizing the Sender Processor
Use the API provided with RepConnector to create custom senders that can route replication
events to anywhere that is accessible to Java, such as e-mail applications, files, or printers.

RepConnector has built-in senders that can post replication events to Sybase-certified JMS,
TIBCO, and IBM MQ messaging systems. To create a customized sender processor that runs
within the RepConnector environment:

1. Create a class that implements either
com.sybase.connector.repra.RepraClient, or
com.sybase.connector.repra.RepraCustomClient.
RepraCustomClient allows the RepConnector Manager to set and load a property
page, but RepraClient does not.

2. Compile the class and archive it to a .jar file.

3. Use RepConnector Manager to add a RepConnector connection that routes events to the
custom sender processor:

• Select REPLICATION for the inbound type, and CUSTOM for the outbound type.
• On the Plug-in Class Information page of the wizard, enter the name of the custom

class as the Sender Processor Plug-in Class. If RepraCustomClient is
implemented, enter the path to and the name of the property page as Sender Processor
Properties File.

Customizing the Sender and Formatter Processors

Configuration and Users Guide 65

4. Modify the application server environment to load the customized sender processor. See
Configuring an Application Server for a Custom Sender Processor or Formatter.

5. Shut down and restart the application server.

See also
• Configuring RepConnector on page 19

RepraClient Interface
A RepraClient interface example.

package com.sybase.connector.repra;

public interface RepraClient
{
 /**
 *configures the sender properties and connects the sender/
receiver of the
 *target messaging system.
 */
 public void configureClient() throws Exception;

 /**
 *send out the rep messages to the connection.
 *@param String repmsg the text stream of the XML document
containing
 *the metadata and replication event.
 */
 public boolean sendEvent (Object repmsg) throws Exception;

 /**
 *return true if the connection is healthy.
 */
 public boolean isReady();

 /**
 *close the client connection.
 */
 public void close();

 /**
 *sets the default logger
 */
 public void setLogger (RaLogger log);
}

Sample Implementation for RepraClient Interface
package com.mycompany;

import com.sybase.connector.repra.RepraClient;
import com.sybase.connector.repra.logging.RaLogger;

Customizing the Sender and Formatter Processors

66 RepConnector

import java.io.*;

public class SampleClient implements RepraClient
{
 BufferedWriter _fout;
 String _filename = "myCustomOut.dat"

 // This method creates an instance of the BufferedWriter object
 public void configureClient() throws Exception
 {
 _fout = new BufferedWriter(new FileWriter(_filename, true));
 }

 // You can do whatever you want in this method.
 // This sample appends the String value of the message to the
file.
 public boolean sendEvent(Object repmsg) throws Exception
 {
 _fout.write(repmsg.toString(), 0,
repmsg.toString().length());

 _fout.newLine();
 _fout.flush();

 return true;
 }

 //It returns true if the client channel is ready.
 //Otherwise, it returns false.
 public boolean isReady()
 {
 if (_fout != null)
 {
 return true;
 }
 return false;
 }

 // This method closes the client channel.
 public void close()
 {
 if (isReady())
 {
 try
 {
 _fout.close();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }
 }

 // This method sets the default logger. In this sample, it
 // does nothing.

Customizing the Sender and Formatter Processors

Configuration and Users Guide 67

 public void setLogger(RaLogger log)
 {
 }
}

RepraCustomClient Interface
A RepraCustomClient Interface example.

package com.sybase.connector.repra;

/**
 Configures the custom sender and custom property page
*/
public interface RepraCustomClient extends RepraClient,
RepraCustomProps
{
}

Sample Implementation of the RepraCustomClient Interface
import java.io.FileInputStream;
import java.util.Date;
import java.util.Properties;import javax.mail.Message;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;import
com.sybase.connector.repra.RepraCustomClient;
import com.sybase.connector.repra.logging.RaLogger;/*
 * SampleClient2
 *
 * Description: This is a sample of a customer sender
 * processor client that will load a custom property
 * page and then route the event to an email address
 *
 */
public class SampleClient2 implements RepraCustomClient
{
 private Transport _transport = null;
 private MimeMessage _msg = null;
 private RaLogger _log = null;
 protected static String _host;
 protected String _from;
 protected String _to;
 protected String _cc;
 protected String _subject,
 protected String _username;

Customizing the Sender and Formatter Processors

68 RepConnector

 protected String _password; private String _propFile; /**
 * sets the property file
 */ public void setConfigProps(String custPropsFile)
{
 _propFile = custPropsFile;
}
 /**
 * gets the property file
 */
 public String getConfigProps()
 {
 return _propFile;
 }
 /**
 * sets the default logger
 */
 public void setLogger (RaLogger log)
 {
 if (_log == null)
 {
 _log = log;
 }
 }
 /**
 * gets the email information from the properties
 * @throws Exception
 */
 private void getHostInformation() throws Exception
 {
 String thePropFile = getConfigProps();
 FileInputStream in = newFileInputStream(thePropFile);
 _log.info ("SampleClient2.INFO", "** IN
getHostInformation, loading prop file");

Customizing the Sender and Formatter Processors

Configuration and Users Guide 69

 Properties prop = new Properties();
 prop.load(in);
 _host = prop.getProperty("MAIL_HOST","");
 _from = prop.getProperty("MAIL_FROM","");
 _to = prop.getProperty("MAIL_TO","");
 _cc = prop.getProperty("MAIL_CC","");
 _subject = prop.getProperty("MAIL_SUBJECT","");
 _username = prop.getProperty("MAIL_USERNAME","");
 _password = prop.getProperty("MAIL_PASSWORD","");
 _log.info ("SampleClient2.INFO", "** HOST - " + _host + ",
MAIL_TO - " +_to);
 }
 public void configureClient() throws Exception
 {
 try
 {
 _log.info ("SampleClient2.INFO", "** Starting
ConfigureClient");
 Properties prop =System.getProperties();
 Session ses =
Session.getDefaultInstance(prop,null);
 getHostInformation();
 _msg = new MimeMessage(ses);
 _msg.setFrom(new InternetAddress(_from));
 _msg.addRecipient(Message.RecipientType.TO, new
InternetAddress(_to));
 _msg.addRecipient(Message.RecipientType.CC, new
InternetAddress(_cc));
 _msg.setSubject(_subject);
 _msg.setSentDate(new Date());
 _msg.saveChanges();
 _transport = ses.getTransport("smtp");
 _transport.connect(_host, _username, _password);

Customizing the Sender and Formatter Processors

70 RepConnector

 log.info ("SampleClient2.INFO", "** Ending
ConfigureClient");
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }

 /**
 * sends out the repmsg as an email
 */
 public boolean sendEvent(Object repmsg) throws Exception

 {
 try
 {
 _log.info ("SampleClient2.INFO", "** Starting
 SendEvent, repmsg is " + repmsg.toString());
 _msg.setText(repmsg.toString());
 _transport.sendMessage(_msg,
 _msg.getAllRecipients());
 return true;
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }

 /**
 * returns true if the connection is healthy
 */
 public boolean isReady()
 {

Customizing the Sender and Formatter Processors

Configuration and Users Guide 71

 return _transport.isConnected();
 }
 /**
 * closes the client connection
 */
 public void close()
 {
 try
 {
 _transport.close();
 }
 catch (Exception ex)
 {
 // do nothing
 }
 }
}

RepraCustomProps Interface
A RepraCustomProps Interface example.

package com.sybase.connector.repra;
/** configures getter and setter for custom property pages*/
public interface RepraCustomProps
{
 /**
 * Set the Customize Properties File
 *
 * @param custPropsFile path to the customize property file
 */
 public void setConfigProps(String custPropsFile);

 /**
 * Get the Customize Properties File
 *
 * @return The path to the customize property file
 */
 public String getConfigProps();
}

Customizing the Sender and Formatter Processors

72 RepConnector

Customizing the Formatter Processor
Use the Jave API provided with RepConnector to create custom formatters that translate
replication events into other formats. RepConnector translates these replication events into
XML before delivering them.

1. Create a class that implements either
com.sybase.connector.repra.rep.RepTransactionFormatter or
com.sybase.connector.repra.rep.RepraCustomTransactionForma
tter.

RepraCustomTransactionFormatter allows the RepConnector Manager to set
and load a property page, while RepTransactionFormatter does not.

2. Compile the class and archive it to a .jar file.

3. Use RepConnector Manager to add or modify a RepConnector connection where the
inbound type is “REPLICATION.”

• On the General Information page, select Customized Plug-in Class.
• On the Plug-in Class Information page of the wizard, enter the name of the custom

class in the Message Formatter Plug-in Class field. If
RepraCustomTransactionFormatter is implemented, enter the path to the
property page and its name in the Message Formatter Properties File field.

4. Modify the application server environment to load the customized message formatter.

5. Shut down and restart the application server.

See also
• Configuring an Application Server for a Custom Sender Processor or Formatter on page
26

RepTransactionFormatter Interface
A RepTransactionFormatter Interface example.

package com.sybase.connector.repra.rep;

import com.sybase.connector.repra.logging.RaLogger

public interface RepTransactionFormatter
{
 /**
 returns an Object formatted by this formatter implementation.
 rse - the internal Object containing a replication event.
 */
 publicObject format(RepEvent rse) throws RepraException;

 /**
 returns an Object formatted by this formatter implementation.

Customizing the Sender and Formatter Processors

Configuration and Users Guide 73

 rse - The internal Object containing a replication event.
 */
 public Object formatTransaction(RepEvent[] events)
 throws RepraException;

 /**
 Return true if RepEvent metadata is required for formatting.
 If it returns true, the RepEvent will contain the data type of
 each field. Otherwise, the data type will be ignored for this
 RepEvent.
 */
 public boolean requiresMetaData();

 /**
 Return true if RepEvent is required to be parsed to be a standard
 RepEvent that the RepEventParser can handle. If it returns false,
 the RepEvent will contain a text stream of the RepEvent only for
the
 messaging client to parse it.
 */
 public boolean requiresParse();

 /**
 sets the default logger
 */
 public void setLogger(RaLogger log);
}

Sample Implementation of the RepTransactionFormatter Interface
Use the MessageFormatter.java file in the <AppServer location>\repra
\sample\client directory on Windows, or <AppServer location>/repra/
sample/client directory on UNIX, as a sample of the customized message formatter. The
sample uses the DBEventParser utility to retrieve data and metadata from the replication
event.

See also
• DBEventParserFactory Utility on page 75

Creating New Custom Sender and Custom Formatter
Classes

Create a user-defined property page by implementing two interfaces: RepraCustomClient and
RepraCustomTransactionFormatter.

Both interfaces add the same two methods to RepraClient and RepTransactionFormatter:
public void setConfigProps(String custPropsFile):
public String getConfigProps();

setConfigProps sets the user-defined property page, while getConfigProps gets the user-
defined property page.

Customizing the Sender and Formatter Processors

74 RepConnector

There are two samples, CustomMessageFormatter.java, and
MailClientCustom.java, in the RepConnector installation’s sample/client
directory. MailClientCustom uses a custom configuration file named sender.props,
which is also in the sample directory.

DBEventParserFactory Utility
RepConnector provides a utility called DBEventParserFactory that you can use to extract
both metadata and actual data from a single or grouped replication event.

Use the utility with the customized formatter to extract and format data before sending it to the
destination. It can also be used by an end-user application that has received the XML
representation of the event.

To obtain a parser instance, use:

DBEventParser=dbe=DBEventParserFactory.get EventParser (xmldoc or
repevent)

DBEventParser APIs
Your customized formatter can use retrieved information to generate a new message in a
customized format to send to the sender processor.

package com.sybase.connector.repra.util; setSource(Object obj)
throws Exception

Sets the source event. Must be set prior to calling other methods that retrieve information. The
obj that is passed to setSource is a repevent[] object or a string representation of the
XML event.

Syntax
setDatabaseType (int dbType)
 DBEventParser.DBTYPE_ORACLE
 DBType_SYBASE

int size()
Returns the number of operations in the transaction.

String getDSName() throws Exception
Returns the number of operations in the transaction.

String setDBName() throws Exception
Returns the database name defined for the connection.

Customizing the Sender and Formatter Processors

Configuration and Users Guide 75

String getEventId() throws Exception
Returns the unique event ID of this transaction.

String getOperation(int elemAt)
Returns the operation (insert, delete, update, or exec) at the position of elemAt. If there is
only one element, use 0.

Example
int msgSize = size();
for (int ido = 0; ido < msgSize; ido++)
{
 // prints out the operation name of the (ido)th
 // operation
 System.out.println("MyMsgGenerator-Operation : " +
 dbe.getOperation(ido));
}

String getSchemaName(int elemAt) throws Exception
Returns the table name or the procedure name of the operation at the position of elemAt.

Example
int msgSize = size();
for (int ido = 0; ido < msgSize; ido++)
{
 // prints out the table name of the (ido)th operation
 System.out.println("MyMsgGenerator-TableName : " +
 dbe.getSchemaName(ido));}

String getStatement() throws Exception
Returns the SQL statement of the entire transaction. If the transaction contains only one
operation, this API returns only one statement. If there are multiple operations in the
transaction, this API returns multiple statements separated by the newline character (“\n”).

Example
int msgSize = size();
if (msgSize > 0)
{
System.out.println (dbe.getStatement());
}

Sample output:
insert into REP4 values (1, "code 1", "name 1")
insert into REP4 values (2, "code 2", "name 2")
update REP4 set repCode = "code 1111" where repId=1

Customizing the Sender and Formatter Processors

76 RepConnector

String setStatement(int elemAt) throws Exception
Returns a single SQL statement belonging to the operation at the position of elemAt.

Example
int msgSize = size();
for (int ido = 0; ido < msgSize; ido++)
{
 // prints out the statement of the (ido)th operation
 System.out.println("MyMsgGenerator-Statement : " +
 dbe.getStatement(ido));
}

String getOwner(int elemAt) throws Exception
Returns the owner of the table or procedure used in this operation.

Example
dbe.getOwner(0);

Vector getData(int elemAt) throws Exception
Returns a vector containing hash tables which represent the names, types, and values of the
fields belonging to the operation at the position of elemAt. This method is meaningful only for
insert, update, and stored procedure operations.

The hash table includes this information:

DBEventParser.FIELD_NAME=(String) <field name>
DBEventParser.FIELD_TYPE=(Integer) <field type>
DBEventParser.FIELD_VALUE=(Object) <field value>

where:

DBEventParser.FIELD_NAME = "FieldName",
DBEventParser.FIELD_TYPE = "FieldType",
DBEventParser.FIELD_VALUE = "FieldValue".

Example
// Gets the fields of the first operation
Vector dataVector = dbe.getData(0);
Hashtable dataField = null;
if (dataVector != null)
{
 System.out.println("MyMsgGenerator-DataSize : " +
 dataVector.size());
 for (int ido = 0; ido < dataVector.size(); ido++)
 {
 // returns a Hashtable containg the name, type, and
 // value of the (ido)th field
 dataField = (Hashtable) dataVector.elementAt(jdo);

Customizing the Sender and Formatter Processors

Configuration and Users Guide 77

 // Do something to retrieve the name, type and
 // value of the field

 }
}

Vector getKeys(int elemAt) throws Exception
Returns a vector containing hash tables that represent the names, types, and values of the key
field belonging to the operation at the position of elemAt. This method is meaningful only for
update and delete operations.

The hash table includes this information:

DBEventParser.FIELD_NAME=(String) <field name>
DBEventParser.FIELD_TYPE=(Integer) <field type>
DBEventParser.FIELD_VALUE=(Object) <field value>

where:
DBEventParser.FIELD_NAME = "FieldName",
DBEventParser.FIELD_TYPE = "FieldType",
DBEventParser.FIELD_VALUE = "FieldValue".

Example
// Gets the fields of the first operation
Vector keyVector = dbe.getKeys(0);
Hashtable keyField = null;
if (keyVector != null)
{
 System.out.println("MyMsgGenerator-KeySize : " +
 keyVector.size());
 for (int ido = 0; ido < keyVector.size(); ido++)
 {
 // returns a Hashtable containg the name, type,
 // and value of the (ido)th key field
 keyField = (Hashtable) keyVector.elementAt(jdo);
 // Do something to retrieve the name, type and
 // value of the key field
 }
}

String getFieldName(Hashtable field) throws Exception
Returns the field name of this column as a string value of DBEventParser.

int getFieldType(Hashtable field) throws Exception
Returns the field type of this column as an int value of DBEventParser.

JDBC Datatype Constant Constant Value (int)

DBEventParser.CHAR 0

Customizing the Sender and Formatter Processors

78 RepConnector

JDBC Datatype Constant Constant Value (int)

DBEventParser.UNICHAR 25

DBEventParser.UNIVARCHAR 110

DBEventParser.BINARY 1

DBEventParser.TEXT 4

DBEventParser.UNITEXT 29

DBEventParser.IMAGE 5

DBEventParser.TINYINT 6

DBEventParser.SMALLINT 7

DBEventParser.INT 8

DBEventParser.BIGINT 30

DBEventParser.USMALLINT 31

DBEventParser.UINT 32

DBEventParser.UBIGINT 33

DBEventParser.REAL 9

DBEventParser.FLOAT 10

DBEventParser.BIT 11

DBEventParser.DATETIME 12

DBEventParser.SMALLDATETIME 13

DBEventParser.MONEY 14

DBEventParser.SMALLMONEY 15

DBEventParser.NUMERIC 16

DBEventParser.DECIMAL 17

DBEventParser.VARCHAR 18

DBEventParser.VARBINARY 19

DBEventParser.DATE 27

Customizing the Sender and Formatter Processors

Configuration and Users Guide 79

JDBC Datatype Constant Constant Value (int)

DBEventParser.TIME 28

Object getFieldValue(Hashtable field) throws Exception
Returns the field value of this column as an object.

The subtype of the object is determined by these mappings:

Java Object JDBC Datatype

Boolean DBEventParser.BIT
ByteArrayInputStream DBEventParser.BINARY

DBEventParser.SMALLBINARY
DBEventParser.IMAGE

Double DBEventParser.REAL
Float DBEventParser.FLOAT
Integer DBEventParser.TINYINT

DBEventParser.SMALLINT
DBEventParser.INT
DBEventParser.USMALLINT
DBEventParser.UINT

java.math.BigDecimal DBEventParser.UBIGINT
Long DBEventParser.BIGINT

Customizing the Sender and Formatter Processors

80 RepConnector

Java Object JDBC Datatype

String DBEventParser.CHAR
DBEventParser.VARCHAR
DBEventParser.UNICHAR
DBEventParser.UNIVARCHAR
DBEventParser.UNITEXT
DBEventParser.DATETIME
DBEventParser.SMALLDATETIME
DBEventParser.MONEY
DBEventParser.SMALLMONEY
DBEventParser.NUMERIC
DBEventParser.DECIMAL
DBEventParser.TEXT
DBEventParser.DATE
DBEventParser.TIME

Example
This example shows getFieldName, getFieldType, and getFieldValue.
int msgSize = size();
// This iteration visits all of the operations
for (int ido = 0; ido < msgSize; ido++)
{
 System.out.println("MyMsgGenerator-Statement:" +
 getStatement(ido));
 System.out.println("MyMsgGenerator-Operation:" +
 getOperation(ido));
 System.out.println("MyMsgGenerator-TableName:" +
 getSchemaName(ido));
 Vector dataVector = getData(ido);
 Hashtable dataField = null;
 if (dataVector != null)
 {
 System.out.println("MyMsgGenerator-DataSize: " +
 dataVector.size());
 // This iteration visits the fields of the
 // operation
 for (int jdo = 0; jdo < dataVector.size(); jdo++)
 {
 dataField = (Hashtable) dataVector.elementAt(jdo);
 if (dataField == null)

Customizing the Sender and Formatter Processors

Configuration and Users Guide 81

 {
 break;
 }
 System.out.println("MyMsgGenerator-FieldName:"+
 getFieldName(dataField));
 System.out.println("MyMsgGenerator-FieldType:"+
 getFieldType(dataField));
 System.out.println("MyMsgGenerator-FieldValue:" +
 getFieldValue(dataField).toString);
 }
 }
 }

String toXMLText(String dtdURL) throws Exception
Returns an XML text-type (a string) containing the events of the transaction.

Example
System.out.println(toXMLText
 (http://yjeongw2k:8000/RepraWebApp/dtds
 /dbeventStream.xsd));

Sample output:

 <!DOCTYPE dbStream SYSTEM
 'http://yjeongw2k:8000/RepraWebApp/dtds/dbeventstream.xsd'>
 <dbStream environment="repraJMS2.repdb">
 <tran eventId=
"102:0000000000000ab200003e10004b00003e1000490000937300dda250000000
00000
10001">
 <update schema="REP4">
 <values>
 <cell name="repId" type="INT">2</cell>
 <cell name="repName" type="VARCHAR">name 11</cell>
 <cell name="repCode" type="VARCHAR">code 11</cell>
 </values>
 <oldValues>
 <cell name="repId" type="INT">11</cell>
 </oldValues>
 </update>
 </tran>
 </dbStream>

RaXMLBuilder Utility
The RaXMLBuilder utility generates an XML message format that contains the database
events that a user application sends to RepConnector, to be routed to the database.

Customizing the Sender and Formatter Processors

82 RepConnector

RaXMLBuilder()
The default constructor.

Syntax
Package: com.sybase.connector.repra.utility
Constructor RaXMLBuilder()

createTranDocument() throws Exception
Creates a document with the <tran> element, to contain multiple database operations in a
transaction. Returns a String, the Element of the current event.

Syntax
org.dom4j.Element createTranDocument
 (java.lang.String uri,java.lang.String dbname,
 java.lang.String eventId)

Parameters

• uri – the URI of dbevenstream.xsd.
• dbname – the database on which the operation executes.
• eventId – the event ID of the current transaction. The uniqueness of eventId is the

responsibility of the sending client.

createEventDocument() throws Exception
Creates a document with the element to contain a single database operation. Returns a String,
the Element of the current event.

Syntax
org.dom4j.Element createEventDocument
 (java.lang.String uri, java.lang.String dbname,
 java.lang.String eventId)

Parameters

• uri – the URI of dbeventstream.xsd.

• dbname – the database on which the operation is executed.
• eventId – the event ID of the current transaction. The uniqueness of eventID is the

responsibility of the sending client.

addOperation() throws Exception
Adds the database operation to the current event, either the <tran> element or the
<dbEvent> element. If the event type exists and already contains an operation,

Customizing the Sender and Formatter Processors

Configuration and Users Guide 83

addOperation()throws Exception returns null. Otherwise, it returns a String, the Element
of the current operation.

Syntax
org.dom4j.Element addOperation(java.lang.String operName,
java.lang.String schemaName)

Parameters

• operName – the SQL operation, such as insert, update, delete, or exec.
• schemaName – the target table.

addValue() throws Exception
Adds field data to the operation.

Syntax
void addValue (org.dom4j.Element operElem,java.lang.String
fieldName,
 java.lang.String fieldType, java.lang.String fieldValue)

Parameters

• operElem – Element.

• fieldName – String.

• fieldType – String. The JDBC-SQL datatype.

• fieldValue – String. The entire value must be passed as String.

addInValue() throws Exception
Adds the data of the input field to the operation for a stored procedure.

Syntax
void addInValue(org.dom4j.Elem operElem,
 java.lang.String fieldName,
 java.lang.String fieldType,
 java.lang.String fieldValue)

addOutValue() throws Exception
Adds the data of the output field to the operation for a stored procedure.

Syntax
void addOutValue(org.dom4j.Elem operElem,
 java.lang.String fieldName,
 java.lang.String fieldType,
 java.lang.String fieldValue)

Customizing the Sender and Formatter Processors

84 RepConnector

addWhere() throws Exception
Adds a where clause to the operation, using AND as the default condition and = as the default
operator.

Syntax
void addWhere(org.dom4j.Elem operElem,
 java.lang.String fieldName,
 java.lang.String fieldType,
 java.lang.String fieldValue)
void addWhere(org.dom4j.Elem operElem,
 java.lang.String fieldName,
 java.lang.String fieldType,
 java.lang.String fieldValue,
 java.lang.String condition,
 java.lang.String operator)

Parameters

• condition – AND or OR.
• operator – a SQL operator.

write() throws Exception
Prints XML text to the specified file.

Syntax
void write(java.lang.String filename)

Parameters
filename – the target file.

xmlDocByteArray() throws Exception
Returns a ByteArrayOutputStream containing the XML data.

Syntax
java.io.ByteArrayOutputStream xmlDocByteArray()

xmlDocString() throws Exception
Returns a String containing XML data.

Syntax
java.lang.String xmlDocString()

Customizing the Sender and Formatter Processors

Configuration and Users Guide 85

cancelOperation() throws Exception
Drops the operation element from the root event.

Syntax
void cancelOperation(org.dom4j.Element elem)

Parameters
elem – the operation element to be cancelled.

getErrorEventId() throws Exception
Returns the event ID of the message that caused the error message.

Syntax
static java.lang.String getErrorEventId(java.lang.String xmlText)

Parameters
xmlText – the String value of the error document.

getErrorStatusCode() throws Exception
Returns the error code from the error document.

Syntax
static java.lang.String getErrorStatusCode(java.lang.String xmlText)

getErrorMessage() throws Exception
Returns the error message from the error document.

Syntax
static java.lang.String getErrorMessage(java.lang.String xmlText)

String getOwner(int elementAt) throws Exception
Retrieves the owner name of the replication event.

Example
 System.out.println("Owner of the
table:"+_parser.getOwner(0));

Customizing the Sender and Formatter Processors

86 RepConnector

Configuring the RaXMLBuilder
To configure the RaXMLBuilder, include the repraconn.jar file in your CLASSPATH
environment variable setting.

For Windows, enter:

SET CLASSPATH=%REPRA_HOME%\lib\repraconn.jar;%CLASSPATH%
For UNIX, enter:

• For bsh:
CLASSPATH =$REPRA_HOME/lib/repraconn.jar:$CLASSPATH export
CLASSPATH

• For csh:
setenv CLASSPATH $REPRA_HOME/lib/repraconn.jar:$CLASSPATH

Using the RaXML Utility
Use the RaXML utility in your code.

1. Import the essential modules:

import org.dom4j.Element;
import com.sybase.connector.repra.util.*;

2. Create an instance of RaXMLBuilder:

RaXMLBuilder raXML = new RaXMLBuilder();
3. Get the event body, which requires three parameters:

• The URI of the xsd. file

• The name of the database
• The event ID of the current event, which can be any string value

If you want the transaction (<tran>) type to contain multiple database operations,
enter:
foo.createTranDocument("file://dbeventstream.
 xsd","pubs2"","00001001");

If you want the event (<dbevent>) type to contain a single database operation, enter:
foo.createEventDocument("file://dbeventstream.
 xsd","pubs2"","00001001");

4. Add an operation, which requires:

• The command
• The name of the schema

For example:

Customizing the Sender and Formatter Processors

Configuration and Users Guide 87

Element oper1=foo.addOperation("update","authors"):
5. Add data to the operation, which requires:

• The operation element
• fieldName
• fieldType
• fieldValue, the string value of the field

For example:
foo.addValue(operl,"au_id","CHAR","0001");
foo.addValue(oper1,"au_num","INT","1");

The field types, as SQL datatypes, are:

• TEXT, DATETIME, SMALLDATETIME, MONEY, SMALLMONEY,

• NUMERIC, DECIMAL, VARCHAR, CHAR, DATE, TIME
• BINARY, IMAGE, VARBINARY
• TINYINT, SMALLINT, INT
• REAL
• FLOAT
• BIT
• UNICHAR, UNIVARCHAR
• UNITEXT
• BIGINT, USMALLINT, UINT, UBIGINT

6. Add a where clause to the operation, which requires:

• The operation element
• fieldName
• fieldType
• fieldValue
• SQL condition: either AND or OR

• SQL operator: =, <,>, NOT, and so forth

For example:
foo.addWhere
 (oper1,"au_id","CHAR","0002","AND","=");

7. Create an XML file:

foo.write(fileName);
8. Get the String value of the event from the current XML document:

String dataStr=foo.xmlDocString();

Your application must send the dataStr object to the RepConnector connection.

Customizing the Sender and Formatter Processors

88 RepConnector

Running a Sample Implementation
Compile and run the sample, and include the repraconn.jar file in your CLASSPATH.

Prerequisites
Include the repraconn.jar file in your CLASSPATH.

Task

A sample implementation, UseXMLBuilder.java, is in the RepConnector installation
sample/client directory. To run the sample:

• On Windows, enter:
java- classpath.:%REPRA_HOME%\lib\repraconn.jar:
%REPRA_HOME% \lib\dom4j-full.jar
UseXMLBuildertext.xml

• On UNIX, enter:
java- classpath.:$REPRA_HOME/lib/repraconn.jar:$REPRA_
HOME/lib/dom4j-full,jar UseXMLBuildertest.xml

The result:

Output of multiple update db events in a single transaction:
 <?xml version="1.0" encoding="UTF-8"?>
 dbStream xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="file://dbeventstream.xsd"
 environment="pubs2">
 <tran eventId="00001001">
 <update schema="authors">
 <values>
 <cell name="au_id" type="CHAR">0001</cell>
 <cell name="address" type="VARCHAR">1 Sybase</cell>
 <values>
 <oldValues>
 <cell name="au_id" type="CHAR" operator="=">0002</cell>
 <cell name="address" type="VARCHAR" condition="AND"
 operator="=">3 Sybase</cell>
 </oldValues>
 </update>
 <delete schema="authors">
 <values>
 <cell name="au_id" type="CHAR">0001</cell>
 <cell name="address" type="VARCHAR">1 Sybase</cell>
 </values>
 </oldValues>
 <cell name="au_id" type="CHAR" operator="=">0002</cell>
 <cell name="address" type="VARCHAR" condition="AND"
 operator="=">3 Sybase</cell>
 </oldValues>
 </delete>
 </update>

Customizing the Sender and Formatter Processors

Configuration and Users Guide 89

 </tran>
 </dbStream>

Output of multiple dbevents in a transaction:
<?xml version="1.0" encoding="UTF-8"?>

 dbStream xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="file://dbeventstream.xsd"
 environment="pubs3">
 <tran eventId="00001002">
 <update schema="stores">
 <values>
 <cell name="au_id" type="CHAR">0002</cell>
 <cell name="address" type="VARCHAR">1 Sybase</cell>
 <values>
 </oldValues>
 </update>
 <exec schema="storesProcedure1">
 <inValues>
 <cell name="au_id" type="CHAR">0002</cell>
 </inValues>
 <outValues>
 <cell name="au_id" type="CHAR">0002</cell>
 </outValues
 </exec>
 </dbEvent>
</dbStream>

Output of a stored procedure:
<?xml version="1.0" encoding="UTF-8"?>
 dbStream xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="file://dbeventstream.xsd"
 environment="pubs3">
 <dbEventId="00001003">
 <update schema="storesProcedure1">
<inValues>
 <cell name="au_id" type="CHAR">0002</cell>
 </inValues>
 <outValues>
 <cell name="au_id" type="CHAR">0002</cell>
 </outValues
 </exec>
 </dbEvent>
</dbStream>

Handling Error Messages
RepConnector sends any errors it encounters while processing an event to your Configure
Status message queue. When you receive an error message from the queue, parse the error
message for the eventId, errorCode, and the message itself.

For example:

Customizing the Sender and Formatter Processors

90 RepConnector

System.out.println("Error EventId:"+
 RaXMLBuilder.getErrorEventId(err));
System.out.println("Error StatusCode:"+
 RaXMLBuilder.getErrorStatusCode(err));
System.out.println("Error Message:"+
 RaXMLBuilder.getErrorMessage(err));

Compiling and Running the Sample
To build and send XML data to the TIBJMS queue, use the files for compiling and running the
sample JMS client.

• On Windows, enter:
%REPRA_HOME%\sample\client\tibjms
%REPRA_HOME%\sample\client\tibjmssetup.bat
%REPRA_HOME%\sample\client\runTIBJMSQSender.bat

• On UNIX, enter:
$REPRA_HOME/sample/client/tibjmsClientSender.java
$REPRA_HOME/sample/client/tibjmssetup.sh
$REPRA_HOME/sample/client/runTIBJMSQSender.bat

Managing Ownership Information
Use the XML utility schema to manage ownership information about tables that have the same
name, but different owners.

To use a copy of the dbeventstream.dtd or dbeventstream.xsd to parse XML
data generated by RepConnector after you install this API, you must upgrade the file in
%REPRA_HOME%\dtds.

For example:
<your application server installation directory>\repra directory>

If you configure a replication definition for ownership of the table, RepConnector includes the
owner name of the table or stored procedure in the output XML data.

Output XML data without ownership information:
 <?xml version="1.0" encoding="UTF-8"?>
 <dbStream xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance
 xsi:noNamespaceSchemaLocation="http://localhost:8000/
RepraWebApp/dtds
 /dbeventstream.xsd" environment="RepConn.repdb">
 <tran
eventId="102:0000000000028cfc000007d8000f000007d8000c0000955700c078
9e000
 000000001001">
 <delete schema=RepTable3">
 <oldValues>
 <cell name="repId" type="INT">1</cell>
 </oldValues>
 </delete>

Customizing the Sender and Formatter Processors

Configuration and Users Guide 91

 </tran>
 </dbStream>

Output XML data with ownership information:

 <?xml version="1.0" encoding="UTF-8"?>
 <dbStream xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance
 xsi:noNamespaceSchemaLocation="http://localhost:8000/
RepraWebApp/dtds
 /dbeventstream.xsd" environment="RepConn.repdb" owner="dbo">
 <tran
eventId="102:0000000000028cfc000007d8000f000007d8000c0000955700c078
9e000
 000000001001">
 <delete schema=RepTable3">
 <oldValues>
 <cell name="repId" type="INT">1</cell>
 </oldValues>
 </delete>
 </tran>
 </dbStream>

Customizing the Sender and Formatter Processors

92 RepConnector

Configuration Worksheets

You can use the worksheets to record all the configuration information for your RepConnector
environment, Replication Server information, database information, application server
information, messaging system information, and RepConnector information.

Fill out the worksheets as you configure each component in the system. Make a copy for each
RepConnector connection profile and/or messaging system you have.

Table 3. Replication Server Information

Current Value Example Maps to RepCon-
nector Manager
Wizard

DSI info

1) Used by Replication Server to identify where RepConnector connection will run; this is the information
added to the Replication Server interfaces file.

2) Used when the create connection command is executed at Replication Server to add the connection,
including setting the user name and password.

3) Used in subscription for RepConnector at Replication Server.

DSI Name 3.a RepConnector Replication Server In-
bound Information page
of New Connection wiz-
ard

Protocol 3.b TCP

DSI Host Name 3.c localhost

DSI Port 3.d 7000

DSI User Name 3.e sa

DSI Password 3.f

Replication Server System Database Information

1) Used by Replication Server.

2) Used by RepConnector.

RSSD Name 3.g RepServer_RSSD Replication Server Sys-
tem Database Informa-
tion window of New
Connection wizard.

RSSD Host Name 3.h localhost

RSSD Port Number 3.i 5000

Replicated Database Information Needed by Replication Server

Configuration Worksheets

Configuration and Users Guide 93

Current Value Example Maps to RepCon-
nector Manager
Wizard

1) Used in create table for replication at database.

2) Used in create replication definition for RepConnector at Replication Server.

Primary DB to be Repli-
cated

3.j pubs2 Not needed in the New
Connection wizard

Host Name of Database
Server

3.k primary_ase

Port Number where DB
is Listening

3.l 5000

User Name 3.m sa

Password 3.n

Table 4. JMS System Information

Current Value Example Maps to RepCon-
nector Manager
Wizard

Destination Type queue Outbound or inbound
messaging – JMS infor-
mationJMS Provider URL jnp://localhost:1099

Initial Naming Context
Factory

org.jnp.interfaces.Na-
mingContextFactory

Connection Factory java:/ConnectionFactory

Destination Name queue/sampleQueue

User Name guest

Password

Topic Subscribers

Status Destination

Configuration Worksheets

94 RepConnector

Table 5. TIBCO RBV Messaging System Information

Current Value Example Maps to RepCon-
nector Manager
wizard

Message Type RCVM Outbound or inbound
messaging – TIBCO
messaging informationMQ Daemon 7500

Encoding Type localhost

Host Name tcp\:7500

Channel sample.Subject

Queue Manager/Factory

Queue Name SAMPLE.CM1

User Name 0

Password

Status Definition

Table 6. IBM WebSphereMQ Messaging System Information

Current Value Example Maps to RepCon-
nector Manager
wizard

Message Type MQ Outbound or inbound
messaging – MQ mes-
saging informationMQ Daemon

Encoding Type utf

Host Name localhost

Channel Channel1

Queue Manager/Factory MyManager

Queue Name SAMPLEQ

Username mquser

Password mqpass

Status Definition

Configuration Worksheets

Configuration and Users Guide 95

Table 7. Database System Information

Current Value Example Maps To

JDBC Connection URL jdbc:sybase:Tds:local-
host: 5000

Outbound type proper-
ties for an outbound type
of database

Driver Class com.sybase.jdbc2.jdbc.
SybDriver

User Name sa

Password

Table 8. Customization Information

Current Val-
ue

Example Maps To

Message Formatter Plug-in
Class

sample.MyMessageFormatter Customization

Message Formatter Proper-
ties

sample.MyMessageFormat-
ter.prop

Sender Processor Plug-in
Class

sample.FileClient

Sender Processor Properties sample.FileClient.prop

Table 9. RepConnector Profile Properties

Current Value Example Maps To

Profile Name JBoss:8080 RepConnector Manager,
Connection Profiles

Host Name localhost

Port Number 8080

User Name repraadmin

Password

Table 10. RepConnector Connection: General Properties

Current Val-
ue

Example Maps To

Inbound Type Replication RepConnector Manager,
General Properties

Outbound Type JMS

Configuration Worksheets

96 RepConnector

Current Val-
ue

Example Maps To

DBEventStream XSD
URL

http://localhost:8080/RepraWe-
bApp/dtds/dbeventstream.xsd

Log Level INFO

Auto Start Connection FALSE

Customized Plug-in
Class

FALSE

Table 11. Inbound RepConnector Connection: DSI Properties

Current Value Example Maps To

DSI Name RepConnector RepConnector Manager,
Inbound Properties

DSI Port 7000

User Name sa

Password

Table 12. Inbound RepConnector Connection: RSSD Properties

Current Value Example Maps To

RSSD URL jdbc:sybase:Tds:local-
host:5000/REP_RSSD

RepConnector Manager, In-
bound Properties

User Name sa

Password

Grouping FALSE

Configuration Worksheets

Configuration and Users Guide 97

Configuration Worksheets

98 RepConnector

Troubleshooting

Troubleshoot login, connection, and replication system problems.

Profile Login or ratool Failure
If you cannot log in to the RepConnector connection profile, check the application server
environment, machine name and port number, and user name and password. You can also
configure the RepConnector for debugging.

Verifying Application Server Environment
Verify that the application server is running, and has successfully called repra_env.bat
on Windows, or repra_env.sh on UNIX.

1. Add an echo statement to repra_env.bat or repra_env.sh.

• On Windows:
echo SERVER_TYPE : %SERVER_TYPE%

• On UNIX:
echo SERVER_TYPE : $SERVER_TYPE

2. For WebLogic servers, verify that repra_env.bat or repra_env.sh is called
correctly.

repra_env must be called from the WebLogic startWebLogic command
(startWebLogic.cmd on Windows, startWebLogic.sh on UNIX), in the domain/bin
directory.

UNIX Example

/path/to/WebLogic_Domain/mydomain/bin/startWebLogic.sh

:

Before adding the repra_env call, startWebLogic.sh looks like this:

Call setDomainEnv here
DOMAIN_HOME="/path/to/WebLogic_Domain/mydomain"
.${DOMAIN_HOME}/bin/setDomainEnv.sh$*
SAVE_JAVA)OPTIONS="${JAVA_OPTIONS}"
SAVE_CLASSPATH="${CLASSPATH}"

After adding repra.env call, you see startWebLogic.sh like this:

Call setDomainEnv here.
DOMAIN_HOME="/path/to/WebLogic_Domain/mydomain"

Troubleshooting

Configuration and Users Guide 99

.${DOMAIN_HOME}/bin/setDomainEnv.sh$*
if [-f/WebLogic_installation_directory/repra/bin/repra_env.sh]
then
./WebLogic_installation_directory/repra/bin/repra_env.sh
fi

SAVE_JAVA_OPTIONS="${JAVA_OPTIONS}"
SAVE_CLASSPATH="${CLASSPATH}"

Verifying Machine Name and Port Number
Use the log files to troubleshoot or verify the machine name and port number for your
application servers.

For JBoss:

<jboss_home_dir>\server\<server_name>\log\server.log
For WebLogic Server:

• On Windows – %WL_HOME%\user_projects\domains\DomainName
\servers\DomainNameServer\logs\DomainNameServer.log, where
%WL_HOME% points to the application server installation directory.

• On UNIX – $WL_HOME/user_projects/domains/DomainName/servers/
DomainNameServer/logs/DomainNameServer.log, where $WL_HOME
points to the application server installation directory.

Verifying User Name and Password
If you change the default, run setlogin.bat on Windows or setlogin.sh on UNIX,
before you attempt to log in to RepConnector Manager. The default user name for
RepConnector Manager is “repraadmin” with a blank password.

See also
• Get Started with RepConnector Manager on page 15

Setting the Logging Level to DEBUG for the RepConnector Runtime
Component

Configure RepConnector to collect logging information you can use for debugging runtime
component.

1. From the command prompt, navigate to:

• On Windows:
cd <AppServer_install_dir>\repra\bin

• On UNIX:
cd <AppServer_install_dir>/repra/bin

Troubleshooting

100 RepConnector

2. In the repra.properties file, change the log level and runtime log level to DEBUG.

LogLevel=DEBUG
RuntimeLogLevel=DEBUG

3. Shut down and restart the application server.

Setting the Logging Level to DEBUG for Each RepConnector
Connection

Configure RepConnector to collect logging information you can use for debugging
connection.

1. Use RepConnector Manager to log in to RepConnector runtime component.

2. Modify the connection properties to change the logging level (LogLevel) for the
connection to DEBUG. Save the new connection properties.

3. Start or refresh the connection.

Note: Setting the log level to DEBUG creates many debugging messages in the repra.log
file. Use this information to troubleshoot failures, but also be aware that it may cause
performance degradation.

Connection Failure
When a connection fails, look at the logs to troubleshoot connection and validation errors. To
ensure that the log captures events, turn on debug mode.

This is a sample from a log in detail mode.

[RS_to_JMS]: 2013-01-15 02:07:53,243 [INFO] [REP.RepAdapterImpl]:
Starting Connection RS_to_JMS.
[RS_to_JMS]: 2013-01-15 02:07:53,245 [INFO] [JMS.JMSQueueClient]:
Starting the JMS Queue Client.

[RS_to_JMS]: 2013-01-15 02:07:53,250 [INFO] [JMS.JMSQueueClient]:
JMS Client is configured successfully to be able to send event(s) to
queue:
Queue1 for provider jnp://localhost:1099.

[RS_to_JMS]: 2013-01-15 02:07:53,250 [DEBUG] [REP.RepAdapterImpl]:
Successfully established client connection.

[RS_to_JMS]: 2013-01-15 02:07:53,252 [DEBUG]
[REP.RepMetaConnection]:
Executing query: >>>> select dbname from rs_databases where dsname =
'TEST_DSI_NAME'

[RS_to_JMS]: 2013-01-15 02:07:53,252 [DEBUG]
[REP.RepMetaConnection]: Got the new instance of SybDriver

[RS_to_JMS]: 2013-01-15 02:07:53,470 [DEBUG]

Troubleshooting

Configuration and Users Guide 101

[REP.RepMetaConnection]: Got a RSSD connection to URL:
jdbc:sybase:Tds:replinuxb20:9545/REP_RS_ERSSD?SQLINITSTR=set
quoted_identifier off Login: REP_RSSD_prim

[RS_to_JMS]: 2013-01-15 02:07:53,472 [DEBUG]
[REP.RepMetaConnection]: Executing query: >>>>
select distinct rs_objects.objname, rs_subscriptions.subid,
rs_objects.objid, rs_objects.phys_tablename,
rs_objects.deliver_as_name,
rs_objects.dbid, rs_objects.phys_objowner from rs_repdbs,
rs_subscriptions, rs_objects where
((dsname = 'TEST_DSI_NAME' and dbname = 'fakename') and
rs_repdbs.dbid = rs_subscriptions.dbid and rs_subscriptions.type
< 8 and rs_subscriptions.objid = rs_objects.objid) union select
distinct rs_objects.objname, rs_subscriptions.subid,
rs_objects.objid, rs_objects.phys_tablename,
rs_objects.deliver_as_name, rs_objects.dbid,
rs_objects.phys_objowner from rs_repdbs,
rs_articles, rs_subscriptions, rs_objects where ((dsname =
'TEST_DSI_NAME' and dbname = 'fakename') and rs_repdbs.dbid =
rs_subscriptions.dbid
and rs_subscriptions.type > 8 and rs_articles.articleid =
rs_subscriptions.objid and rs_objects.objid = rs_articles.objid)

[RS_to_JMS]: 2013-01-15 02:07:53,479 [DEBUG]
[REP.RepMetaConnection]: Executing query: >>>> select * from
rs_columns
where objid = 0x0100006500000065 order by colnum

[RS_to_JMS]: 2013-01-15 02:07:53,480 [DEBUG] [REP.DataServer]: A new
RepListener was added to the RepEventStream.

[RS_to_JMS]: 2013-01-15 02:07:53,480 [DEBUG] [REP.RepEventStream]:
Added a Listener without RequiredGroup option

[RS_to_JMS]: 2013-01-15 02:07:53,480 [DEBUG] [REP.RepEventStream]:
RepAdapterListener requires parsing and meta-data formatting.

[RS_to_JMS]: 2013-01-15 02:07:53,480 [DEBUG] [REP.DataServer]: A new
listener is added to the stream object.

[RS_to_JMS]: 2013-01-15 02:07:53,481 [DEBUG] [REP.ReplicateDB]:
Created the dsi (.ser) file : /replinuxb20-1/users/repconnector/
jboss-as-7.1.1.Final/repra/sers/DSI_TEST_DSI_NAME_fakename.ser

[RS_to_JMS]: 2013-01-15 02:07:53,481 [DEBUG]
[REP.RepMetaConnection]: Executing query: >>>> select dsname,
dbname from rs_databases where dsname = 'TEST_DSI_NAME' and dbname =
'fakename'

[RS_to_JMS]: 2013-01-15 02:07:53,482 [DEBUG] [REP.DataServer]: Put
the DB connection to the Hashtable of ReplicationDBs.

[RS_to_JMS]: 2013-01-15 02:07:53,482 [DEBUG]
[REP.RepMetaConnection]: Executing query: >>>> select distinct
rs_objects.objname, rs_subscriptions.subid, rs_objects.objid,

Troubleshooting

102 RepConnector

rs_objects.phys_tablename, rs_objects.deliver_as_name,
rs_objects.dbid, rs_objects.phys_objowner from rs_repdbs,
rs_subscriptions, rs_objects where
((dsname = 'TEST_DSI_NAME' and dbname = 'TEST_DB') and rs_repdbs.dbid
= rs_subscriptions.dbid and rs_subscriptions.type
< 8 and rs_subscriptions.objid = rs_objects.objid) union select
distinct rs_objects.objname, rs_subscriptions.subid,
rs_objects.objid,
 rs_objects.phys_tablename, rs_objects.deliver_as_name,
rs_objects.dbid, rs_objects.phys_objowner from rs_repdbs,
rs_articles,
rs_subscriptions, rs_objects where ((dsname = 'TEST_DSI_NAME' and
dbname = 'TEST_DB') and rs_repdbs.dbid = rs_subscriptions.dbid
and rs_subscriptions.type > 8 and rs_articles.articleid =
rs_subscriptions.objid and rs_objects.objid = rs_articles.objid)

[RS_to_JMS]: 2013-01-15 02:07:53,488 [DEBUG]
[REP.RepMetaConnection]: Executing query: >>>> select * from
rs_columns
where objid = 0x0100006500000066 order by colnum[RS_to_JMS]:
2013-01-15 02:07:53,491 [DEBUG] [REP.RepMetaConnection]:
Executing query: >>>> select * from rs_columns where objid =
0x0100006500000067 order by colnum

[RS_to_JMS]: 2013-01-15 02:07:53,492 [DEBUG] [REP.DataServer]: A new
RepListener was added to the RepEventStream.

[RS_to_JMS]: 2013-01-15 02:07:53,492 [DEBUG] [REP.RepEventStream]:
Added a Listener without RequiredGroup option

[RS_to_JMS]: 2013-01-15 02:07:53,492 [DEBUG] [REP.RepEventStream]:
RepAdapterListener requires parsing and meta-data formatting.

[RS_to_JMS]: 2013-01-15 02:07:53,492 [DEBUG] [REP.DataServer]: A new
listener is added to the stream object.

[RS_to_JMS]: 2013-01-15 02:07:53,492 [DEBUG] [REP.ReplicateDB]:
Created the dsi (.ser) file :
/replinuxb20-1/users/repconnector/jboss-as-7.1.1.Final/repra/sers/
DSI_TEST_D

See also
• Setting the Logging Level to DEBUG for the RepConnector Runtime Component on page
100

• Setting the Logging Level to DEBUG for Each RepConnector Connection on page 101

Verifying Connection Information
Set the URL of the schema file, dbeventstream.xsd, to the application server’s HTTP
host name and port number of the application server, at the location of RepraWebApp.

For example:
http://localhost:8000/RepraWebApp/dtds/dbeventstream.xsd

Troubleshooting

Configuration and Users Guide 103

This URL is placed in the XML message when it is generated, and states where the xsd can be
found.

Verifying Replication Server Inbound Information
Verify that inbound information fields are set correctly.

• DSI Name – must be exactly the same name as added to Replication Server sql.ini file
on Windows or to the interfaces file on UNIX, and the connection name used when
creating the connection in Replication Server.

• Port – can be any available port; however, should be the same port identified in the
sql.ini file on Windows or the interfaces file on UNIX.

• User Name or password – the same name identified when you created the connection in
Replication Server.

See also
• Configuration Worksheets on page 93

Verifying Replication Server System Database Information
Verify Replication Server system database information.
Check for:

• RSSD URL, which should be in this format: jdbc:Sybase:Tds:
<ServerName>:port for the location of the Replication Server

• User Name and password used in Replication Server for connectivity
Use the ping feature in RepConnector Manager to validate user name and password.

Inbound or Outbound Messaging Systems Verification
Common verification error messages and a solution for each.

Problem
Repra.log example entry: java.lang.ClassNotFoundException.

Workaround
Check the RepConnector environment file:

• On Windows: <AppServer_install_dir>\repra\bin\repra_env.bat
• On UNIX: <AppServer_install_dir>/repra/bin/repra_env.sh
Note: On UNIX, directory names are case-sensitive.

Problem
Failed to get the JMS queue: test.sample for provider.

Workaround
Verify that the JMS Server is running and that the queue or topic has been correctly identified.

Troubleshooting

104 RepConnector

Problem
ping fails for IBM MQ when all information is correct.

Workaround
Stop any queue managers that are running and restart the queue manager you are identifying.

Use the ping feature in the RepConnector Manager to validate the status of inbound or
outbound messaging systems.

Verifying Database Connection Information
Verify database connection information.

1. Check for:

• JDBC connection URL, which should be in this format:
jdbc:Sybase:Tds:<ServerName>:port

• User name and password

2. Use the ping feature in RepConnector Manager to validate the status of the database
connection information.

Troubleshooting the Replication System
Use the troubleshooting techniques for Adaptive Server Enterprise and Replication Server to
fix the replication system problems.

Troubleshooting Adaptive Server Enterprise (Primary Database)
Use error.log to display a detailed problem description.

1. Access the error.log file:

• On Windows, the error log file is %SYBASE_ASE%\install\error.log, where
%SYBASE_ASE points to the Adaptive Server installation directory.

• On UNIX, the error log file is $SYBASE_ASE/install/error.log, where
$SYBASE_ASE points to the Adaptive Server installation directory.

2. To investigate the configuration of the primary database, use isql to log in to the primary
database:

isql -S <Server_name> -U <username> -P <password>

For example, enter:
isql -S primary_db -U sa -P sa_pass

Troubleshooting

Configuration and Users Guide 105

Adaptive Server Commands
Use Adaptive Server commands to troubleshoot the primary database.

Command Action

sp_start_rep_agent <dbname> Start RepAgent

sp_stop_rep_agent <dbname> Stop RepAgent

sp_setreplicate <tablename>, “true” Set table for replication

sp_setreplicate Give status of replicated tables

sp_setrepproc <proc_name>,function Set the specified procedure for replication

Troubleshooting Replication Server
Use the Replication Server log file for a detailed problem description.

1. Access the log file:

• On Windows, the log file is %SYBASE%\REP-15_2\install\
<RepServerName>.log, where %SYBASE_REP% points to the Replication
Server installation directory.

• On UNIX, the log file is $SYBASE/REP-15_2/install/
<RepServerName>.log, where $SYBASE_REP points to the Replication Server
installation directory.

2. To see information about the connections configured with Replication Server, use isql to
log in to Replication Server:

isql -S <RepServerName> -U <username> -P <password>

For example, enter:
isql -S SAMPLE_RS -U sa _P sa_pass

Replication Server Commands
Use Replication Server commands to troubleshoot Replication Server problems.

Command Action

admin who Show status of connections

admin who_is_down Show status of connections that are not
running

admin who_is_up Show status of connections that are
running

resume connection to <connection_name> Resume connection

Troubleshooting

106 RepConnector

Command Action

suspend connection to <connection_name> Suspend connection

create connection to <connectionname> Create connection

create replication definition <replication_defini-
tion_name>

Create replication definition for table

create function replication definition <replication_defini-
tion_name>

Create replication definition for proce-
dure

create subscription <subscription_name for <replica-
tion_definition_name> with replicate at <Repconnec-
tion_Name>.<database_name>without materialization

Create subscription

trace “on”, DSI, DSI_BUF_DUMP Set trace for Data Server Interface
(DSI)

trace “on”, SQT,SQT_TRACE_COMMANDS Set trace for Stable Queue Transaction
(SQT)

Using admin who for Your Connection
admin who shows the current status of connections.

This example shows that connection RC25XPEAS.EAS422 is running and waiting for the
next event.
admin who
go

Name State Information
------------------------- --------------------
DSI EXEC Awaiting Command 118(1)RC25XPEAS.EAS422
DSI Awaiting Command 118 RC25XPEAS.EAS422
SQM Awaiting Message 118: RC25XPEAS.EAS422

Changing Connection Grouping Mode
If you change the connection from individual to group messages on the Inbound Message
Grouping Preference tab, suspend and resume the connection in Replication Server before the
change takes effect in RepConnector.

Restarting Components and Connections
When you are troubleshooting, you may want to restart all of the Replication Server and
RepConnector components: Replication Server, Application Server, and the RepConnector
connection.

Suspend and resume all connections. Restarting the components may address the problem that
is preventing a successful connection.

Troubleshooting

Configuration and Users Guide 107

Purging Replication Server Queues
Purge the queue when messages get delayed in Replication Server. See the Replication Server
Reference Manual commands for purging Replication Server queues.

Freeing Transaction Log Space
Create space in the database transaction log, as RepConnector and Replication Server may not
work properly until space is freed. See the Adaptive Server Enterprise Reference
Manual:Commands.

Verifying Sent Messages to RepConnector
Verify that Replication Server has sent a message to RepConnector.

1. Enter:
admin who,sqm

2. Check the output:

• First Seg.Block
• The physical address of the beginning of the queue
• Last Seg.Block
• The physical address of the end of the queue
• Next Read
• How far the Replication Server has read between the First Seg.Block and Last

Seg.Block.
The Next Read is usually one more than the Last Seg.Block if the Replication Server
has read all of the information in that queue. The difference between the First
Seg.Block and the Last Seg.Block is the amount of information in the queue in MB.
Purging the queue sets the First Seg.Block and the Last Seg.Block to zero.

3. Determine the database ID and the queue type:
1> admin who,sqm
2> go

4. Put Replication Server into single-user mode:
1> sysadmin hibernate_on
2> go

5. If hibernate does not work, shut down Replication Server and restart it using the -M
command (single-user).

6. Purge the queue:
1> sysadmin sqm_purge_queue,106,0
2> go
1> admin who,sqm
2> go

In this example, the database ID is 106, and the outbound queue is always 0.

Troubleshooting

108 RepConnector

7. Turn hibernate off:
1> sysadmin hibernate_off
2> go

Troubleshooting

Configuration and Users Guide 109

Troubleshooting

110 RepConnector

Index
-copy option 44
-delete

option 44
-getLogInfo option 45
-getProperty option 46
-import option 46
-list option 47
-ping option 47
-refresh option 49
-refreshAll option 49
-rename option 50
-start option 50
-startAll option 51
-status option 51
-stop option 52
-stopAll option 53

A
Adaptive Server Enterprise

troubleshooting 105
addInValue function 84
addOperation function 83
addOutValue function 84
addValue function 84
addWhere function 85
admin who, using 107
alter connection command 9
API

DBEventParser 75
RaXMLBuilder 82

application server
verifying environment 99

application server support
WebLogic 12.1.1 1

architecture
Java Connector Architecture (JCA) 2

C
cancelOperation function 86
check subscription command 12
classes

creating new 74
developing 65

command options
ratool 41

commands
alter connection 9
check subscription 12
configure connection 9
create connection 8
create function replication definition 10
create subscription 12
DML 9
resume connection to 13
set dsi_xact_group_size 9

compiling
RaXMLBuilder 91

components, restarting 107
configure connection command 9
configuring

for IBM WebSphere MQ, procedure 23
for MQ JMS, procedure 24
for Oracle database, procedure 25
RaXMLBuilder 87
RepConnector environment 19
RepConnector for JMS Messaging Systems

20
RepConnector for SonicMQ JMS 20
RepConnector for TIBCO AECM, procedures

21
RepConnector for TIBCO Enterprise,

procedures 22
RepConnector for TIBCO RV, RVCM,

procedures 21
RepConnector for TIBCO, procedures 21
Replication Server 5
Replication Server to replicate to

RepConnector 5
connection

information, verifying 103
resuming 13
when fails 101

connection grouping mode, changing 107
connection name

DSI 7
connection profiles

managing 17

Index

Configuration and Users Guide 111

connections
copying using ratool 44
deleting using ratool 44
displaying log information using ratool 45
displaying status using ratool 51
pinging using ratool 47
renaming using ratool 50
restarting using ratool 107
stopping using ratool 52

copying
connections 44

create connection command 8
create function replication definition command 10
create subscription command 12
createEventDocument function 83
createTranDocument function 83
creating

connection to RepConnector 8
function replication definition 10
replication definition 9
replication subscription 9
subscriptions 12

custom formatter
creating new classes 74

custom sender
creating new classes 74

customized formatter processor, creating 73
customizing sender and formatter processors 65

D
database connection,verifying 105
database name variable 8
database tables

routing events from messaging systems to 3
database_name 12
dataserver 8
DBEventParser API 75
DBEventParserFactory utility 75
deleting

connections 44
RepConnector profiles 17

descriptions
creating a function replication definition 10
ratool 41

displaying
RepConnector profile 16

DML commands
RepConnector support 9

dsedit utility
using to add a RepConnector entry 6

DSI
connection name 7

dsiPassword 8
dsiUsername 8

E

editing
RepConnector profile properties 17

environment
verifying application server environment 99

error messages
RaXMLBuilder 90

Event Capture module 2
transforming messages to SQL format 3

Event Transfer module 2
Event Transformation module 3
examples

create connection to RepConnector 9
creating a subscription 12
RepraClient interface 66
set dsi_xact_group_size 9

F

features
RepConnector 1

formatter processor
customizing 65, 73

function
addInValue 84
addOperation 83
addOutValue 84
addValue 84
addWhere 85
cancelOperation 86
createEventDocument 83
createTranDocument 83
getData 77
getDSIName 75
getErrorEventId 86
getErrorMessage 86
getErrorStatusCode 86
getEventId 76
getFieldName 78
getFieldType 78
getFieldValue 80
getKeys 78
getOperation 76

Index

112 RepConnector

getOwner 86
getSchemaName 76
getStatement 76
RaXMLBuilder 83
setData 77
setDBame 75
setSource 75
size 75
toXMLText 82
write 85
xmlDocByteArray 85
xmlDocByteString 85

function replication definition
creating 10

G
getData function 77
getDSIName function 75
getErrorEventId function 86
getErrorMessage function 86
getErrorStatusCode function 86
getEventId function 76
getFieldName function 78
getFieldType function 78
getFieldValue function 80
getKeys function 78
getOperation function 76
getOwner function 86
getSchemaName function 76
getStatement function 76
guaranteeing delivery 3

I
IBM

MQ JMS, configuring environment 24
WebSphere, configuring environment,

procedure 23
interface

RepTransactionFormatter 73
interfaces file 5

description 5
information needed to update 5
updating 5
using dsedit utility 6

isql utility
location 7

J
Java classes, developing for customizing 65

JMS
Messaging Systems, configuring

RepConnector for 20

L

log information for connections
display using ratool 45

login
when fails 99

M

machine
name, verifying logs 100
port number, verifying logs 100

managing connection profiles 17
Message Sender module 2, 3
Message Transformation engine 2
messages

sent, verifying 108
messaging systems

routing events to database tables 3
messenger systems, routing events to 3
MSM (Message Sender module) 3

O

Oracle, configuring environment for 25
ownership information, RaXMLBuilder 91

P

parameters
with replicate at 11

password, verifying 100
pinging a connection using

ratool 47
procedure, for customizing sender processor 65
profiles

RepConnector 16

Q

queue
Replication Server, purging 108

Index

Configuration and Users Guide 113

R
ratool 48

command line utility 2
description 41
getting log information of connections 45
options 41
ping connections 47
renaming connections 50
status of connections 51
stopping connections 52
syntax 41
utility 41, 48

ratool command options
-copy 42
-delete 42
-getLogInfo 42
-getProperty 42
-help 41, 42
-host 41
-import 42
-list 42
-logfile 42
-loglevel 42
-password 41
-ping 43
-port 41
-refresh 43
-refreshAll 43
-rename 43
-start 43
-startAll 43
-status 43
-stop 43
-stopAll 43
-user 41
-validate 43

RaXMLBuilder
compiling and running 91
configuring 87
function 83
handling error messages 90
ownership information 91
sample implementation 89
utility, API 82

renaming connections
using ratool 50

RepConnector
architecture 2
command line tool 41

configuring environment 19
configuring for JMS messaging systems 20
configuring for SonicMQ JMS 20
configuring for TIBCO AECM, procedure 21
configuring for TIBCO Enterprise, procedure

22
configuring for TIBCO RV, RVCM, procedure

21
configuring for TIBCO, procedure 21
connection Name 12
features 1
profiles, editing properties 17
profiles,deleting 17
resuming connection 13
resuming connections to Replication Server

13
RepConnector Manager

view, displaying 16
RepConnector_connection_name 13
replication definition

creating 9
Replication Server

configuring 5
creating connection to RepConnector 8
creating replication definition 9
creating replication subscription 9
inbound or outbound, verifying messaging

systems information 104
install worksheet 93
purging queue 108
system database information 104
tasks for creating a replication definition in 9
troubleshooting 106

replication system 105
replication system, troubleshooting 105
replication_definition_name 10, 12
RepraClient interface

example 66
sample implementation 66

RepTransaction Formatter
interface 73

restarting, components and connections 107
resume connection to command 13
resuming connections

to RepConnector in Replication Server 13
routing events

from messaging systems to database tables 3
routing replication events to messenger systems 3

Index

114 RepConnector

S
sample implementation

RaXMLBuilder 89
RepraClient interface 66

sender processor, steps for customizing 65
sent messages, verifying 108
server support

WebLogic 12c 1
set dsi_xact_group_size 9
setData function 77
setDBName function 75
setSource function 75
size function 75
SonicMQ

JMS, configuring RepConnector for 20
space, transaction log, freeing 108
SQL format

Event Capture module 3
SQL to Event Transformation module 3
starting RepConnector Manager 15
status of connections

display using ratool 51
stopping connections

using ratool 52
subscription

creating 11
verifying 11

subscription_name 12
subscriptions

creating 12
support

DML commands 9

T
tasks

configuring Replication Server to replicate to
RepConnector 5

creating a function replication definition 10
TIBCO

AECM, configuring RepConnector for,
procedures 21

configuring RepConnector for, procedures 21
Enterprise, configuring RepConnector for,

procedures 22
RV, RVCM, configuring RepConnector for,

procedures 21

toXMLText function 82
transaction log space, freeing 108
transforming events

into XML 2
transforming messages

from XML to SQL format 3
troubleshooting 105

Adaptive Server Enterprise 105
Replication Server 106
replication system 105

U

updating
interfaces file 5

user name, verifying 100
utilities

dsedit 6
isql location 7
ratool 2, 48

V

verifying
subscription 11

W

WebLogic 12.1.1 Application Server 1
worksheets

configuration 93
database system information 93
IBM WebSphere MQ 93
JMS System 93
Replication Server Installation 93
TIBCO RBV 93

write function 85

X

XML
transforming events into 2

XML to Message Sender module (MSM) 3
xmlDocByteArray function 85
xmlDocString function 85

Index

Configuration and Users Guide 115

Index

116 RepConnector

	Configuration and Users Guide
	Contents
	RepConnector
	RepConnector Architecture
	RepConnector Process Flow
	Guaranteed Delivery
	Status and Error Reporting

	Configuring RepConnector (Overview)

	Configuring Replication Server for RepConnector
	Updating the Interfaces File
	Adding a RepConnector Entry to the Interfaces File
	Creating the Connection to RepConnector in Replication Server
	Creating the Replication Definition in Replication Server
	Creating a Function Replication Definition
	Creating and Verifying the Subscription in Replication Server
	Resuming the Connection to RepConnector

	Get Started with RepConnector Manager
	Starting RepConnector Manager
	Displaying the RepConnector Manager View
	Managing Connection Profiles
	Creating a New Profile
	Renaming a Profile
	Editing the Profile Properties
	Deleting a Profile
	Setting Up the RepConnector Server Administrator Login
	Logging In to the RepConnector Server
	Refreshing the Profile
	Logging Out of the Profile and the RepConnector Runtime

	Configuring RepConnector
	Configuring RepConnector Connections
	Configuring the RepConnector for Messaging Systems
	Configuring RepConnector for SonicMQ JMS Messaging Systems
	Configuring RepConnector for TIBCO
	Configuring TIBCO RV, RVCM
	Configuring TIBCO AECM
	Configuring TIBCO Enterprise for JMS

	Configuring RepConnector for IBM WebSphere MQ
	Configuring MQ JMS

	Configuring RepConnector for Your Database
	Configuring for an Oracle Database

	Configuring an Application Server for a Custom Sender Processor or Formatter
	Configuring the RepConnector for Replication Server Routing
	Configuring RepConnector to Send Carriage Return and Tab
	Creating and Configuring a New Connection
	Configuring Replication Information for REPLICATION Inbound Types
	Entering Replication Server Inbound Information
	Entering Replication Server System Database Information

	Configuring JMS Information
	Configuring TIBCO Information
	Configuring IBM MQ Information
	Configuring Custom Plug-in Information
	Configuring Database Connection Information

	Managing a RepConnector Connection
	Starting a Connection
	Stopping a Connection
	Refreshing a Connection
	Renaming a Connection
	Deleting a Connection
	Copying a Connection (Save As)
	Validating a Connection
	Viewing or Modifying Properties for an Existing Connection
	Viewing Connection Log Information
	Viewing the Runtime Log Information
	Refreshing the Connection View

	ratool Utility
	ratool
	-copy
	-delete
	-getLogInfo
	-getProperty
	-import
	-list
	-ping
	-refresh
	-refreshAll
	-rename
	-start
	-startAll
	-status
	-stop
	-stopAll

	Message Generator for TIBCO AECM Customization
	Configuring Properties for RepConnector
	Connection Configuration
	Property File with the Active Enterprise Connection/Customization (ae.props)

	Base Class APIs
	Customizing TIBCO AECM Message Generator
	APIs for a Customized, Wire-Format Message Generator
	APIs That Retrieve Information from the Source Event
	Configuration and Default Wire-Formatted Message Generator Usage
	Configuration and Customized Wire-Formatted Message Generator Usage
	Compiling the Customized Message Generator
	Building the Runtime Environment for the Customized Message Generator
	Example Output for TIBRV Listener and Active Enterprise Wire Format

	Customizing the Sender and Formatter Processors
	Customizing the Sender Processor
	RepraClient Interface
	RepraCustomClient Interface
	RepraCustomProps Interface
	Customizing the Formatter Processor
	RepTransactionFormatter Interface

	Creating New Custom Sender and Custom Formatter Classes
	DBEventParserFactory Utility
	DBEventParser APIs
	package com.sybase.connector.repra.util; setSource(Object obj) throws Exception
	int size()
	String getDSName() throws Exception
	String setDBName() throws Exception
	String getEventId() throws Exception
	String getOperation(int elemAt)
	String getSchemaName(int elemAt) throws Exception
	String getStatement() throws Exception
	String setStatement(int elemAt) throws Exception
	String getOwner(int elemAt) throws Exception
	Vector getData(int elemAt) throws Exception
	Vector getKeys(int elemAt) throws Exception
	String getFieldName(Hashtable field) throws Exception
	int getFieldType(Hashtable field) throws Exception
	Object getFieldValue(Hashtable field) throws Exception
	String toXMLText(String dtdURL) throws Exception

	RaXMLBuilder Utility
	RaXMLBuilder()
	createTranDocument() throws Exception
	createEventDocument() throws Exception
	addOperation() throws Exception
	addValue() throws Exception
	addInValue() throws Exception
	addOutValue() throws Exception
	addWhere() throws Exception
	write() throws Exception
	xmlDocByteArray() throws Exception
	xmlDocString() throws Exception
	cancelOperation() throws Exception
	getErrorEventId() throws Exception
	getErrorStatusCode() throws Exception
	getErrorMessage() throws Exception
	String getOwner(int elementAt) throws Exception

	Configuring the RaXMLBuilder
	Using the RaXML Utility
	Running a Sample Implementation
	Handling Error Messages
	Compiling and Running the Sample
	Managing Ownership Information

	Configuration Worksheets
	Troubleshooting
	Profile Login or ratool Failure
	Verifying Application Server Environment
	Verifying Machine Name and Port Number
	Verifying User Name and Password
	Setting the Logging Level to DEBUG for the RepConnector Runtime Component
	Setting the Logging Level to DEBUG for Each RepConnector Connection

	Connection Failure
	Verifying Connection Information
	Verifying Replication Server Inbound Information
	Verifying Replication Server System Database Information
	Inbound or Outbound Messaging Systems Verification
	Verifying Database Connection Information

	Troubleshooting the Replication System
	Troubleshooting Adaptive Server Enterprise (Primary Database)
	Adaptive Server Commands
	Troubleshooting Replication Server
	Replication Server Commands
	Using admin who for Your Connection
	Restarting Components and Connections
	Purging Replication Server Queues
	Freeing Transaction Log Space
	Verifying Sent Messages to RepConnector

	Index

