
Administration: Spatial Data

SAP Sybase IQ 16.0 SP04

DOCUMENT ID: DC01964-01-1604-01
LAST REVISED: May 2014
Copyright © 2014 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Restrictions and Limitations ..1
Spatial data ...3

Spatial reference systems (SRS) and Spatial
reference identifiers (SRID) ..4

Units of measure ...6
Installing additional predefined units of measure

...7
SAP Sybase IQ support for spatial data7

Supported spatial data types and their hierarchy
...7

Compliance with spatial standards11
Special notes on support and compliance11
Supported import and export formats for spatial

data ...12
Support for ESRI shapefiles17
Recommended reading on spatial topics18

Creating a spatial column (SQL)18
Indexes on spatial columns ...19
Spatial data type syntax ..19
How to create geometries ...22
Viewing spatial data as images (Interactive SQL)23
Viewing spatial data as images (Spatial Viewer)24
Loading spatial data from a Well Known Text (WKT)

file ...24
Create or Manage a Spatial Reference System25
Create or Manage a Spatial Unit of Measure26

Advanced spatial topics ..27
How flat-Earth and round-Earth representations work

..27
How snap-to-grid and tolerance impact spatial

calculations ...28

Administration: Spatial Data iii

How interpolation impacts spatial calculations32
How polygon ring orientation works33
How geometry interiors, exteriors, and boundaries

work ..34
How spatial comparisons work35
How spatial relationships work36
How spatial dimensions work39

Tutorial: Experimenting with the spatial features41
Lesson 1: Install additional units of measure and

spatial reference systems ...41
Lesson 2: Download the ESRI shapefile data42
Lesson 3: Load the ESRI shapefile data43
Lesson 4: Query spatial data ..45
Lesson 5: Output spatial data to SVG47
Lesson 6: Project spatial data50

Accessing and manipulating spatial data53
ST_CircularString type ...53

ST_CircularString(ST_Point , ST_Point ,
ST_Point , ST_Point) constructor58

ST_CircularString() constructor59
ST_CircularString(LONG BINARY[, INT])

constructor ...60
ST_CircularString(LONG VARCHAR[, INT])

constructor ...60
ST_NumPoints() method61
ST_PointN(INT) method62

ST_CompoundCurve type ..63
ST_CompoundCurve(ST_Curve , ST_Curve)

constructor ...68
ST_CompoundCurve() constructor68
ST_CompoundCurve(LONG BINARY[, INT])

constructor ...69
ST_CompoundCurve(LONG VARCHAR[, INT])

constructor ...70
ST_CurveN(INT) method70

Contents

iv SAP Sybase IQ

ST_NumCurves() method71
ST_Curve type ..71

ST_CurveToLine() method76
ST_EndPoint() method .. 77
ST_IsClosed() method ...78
ST_IsRing() method ...78
ST_Length(VARCHAR(128)) method79
ST_StartPoint() method80

ST_CurvePolygon type ...81
ST_CurvePolygon(ST_Curve , ST_Curve)

constructor ...86
ST_CurvePolygon(ST_MultiCurve ,

VARCHAR(128)) constructor87
ST_CurvePolygon() constructor 87
ST_CurvePolygon(LONG BINARY[, INT])

constructor ...88
ST_CurvePolygon(LONG VARCHAR[, INT])

constructor ...89
ST_CurvePolyToPoly() method89
ST_ExteriorRing(ST_Curve) method90
ST_InteriorRingN(INT) method91
ST_NumInteriorRing() method91

ST_GeomCollection type ..92
ST_GeomCollection(ST_Geometry ,

ST_Geometry) constructor97
ST_GeomCollection() constructor 98
ST_GeomCollection(LONG BINARY[, INT])

constructor ...98
ST_GeomCollection(LONG VARCHAR[, INT])

constructor ...99
ST_GeomCollectionAggr(ST_Geometry)

method .. 99
ST_GeometryN(INT) method100
ST_NumGeometries() method101

ST_Geometry type ...101

Contents

Administration: Spatial Data v

ST_Affine(DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE) method ...106

ST_AsBinary(VARCHAR(128)) method107
ST_AsBitmap(INT, INT, ST_Point , ST_Point ,

VARCHAR(128)) method108
ST_AsGeoJSON(VARCHAR(128)) method109
ST_AsGML(VARCHAR(128)) method109
ST_AsKML(VARCHAR(128)) method110
ST_AsSVG(VARCHAR(128)) method112
ST_AsSVGAggr(ST_Geometry ,

VARCHAR(128)) method113
ST_AsText(VARCHAR(128)) method114
ST_AsWKB(VARCHAR(128)) method115
ST_AsWKT(VARCHAR(128)) method116
ST_AsXML(VARCHAR(128)) method117
ST_Boundary() method118
ST_Buffer(DOUBLE, VARCHAR(128)) method .118
ST_Contains(ST_Geometry) method119
ST_ContainsFilter(ST_Geometry) method120
ST_ConvexHull() method120
ST_ConvexHullAggr(ST_Geometry) method ...121
ST_CoordDim() method121
ST_CoveredBy(ST_Geometry) method122
ST_CoveredByFilter(ST_Geometry) method ...123
ST_Covers(ST_Geometry) method123
ST_CoversFilter(ST_Geometry) method124
ST_Crosses(ST_Geometry) method125
ST_Debug(VARCHAR(128)) method125
ST_Difference(ST_Geometry) method126
ST_Dimension() method127
ST_Disjoint(ST_Geometry) method127
ST_Distance(ST_Geometry , VARCHAR(128))

method ..128

Contents

vi SAP Sybase IQ

ST_Distance_Spheroid(ST_Geometry ,
VARCHAR(128)) method129

ST_Envelope() method130
ST_EnvelopeAggr(ST_Geometry) method130
ST_Equals(ST_Geometry) method131
ST_EqualsFilter(ST_Geometry) method131
ST_GeometryType() method132
ST_GeometryTypeFromBaseType(VARCHAR(

128)) method ...132
ST_GeomFromBinary(LONG BINARY, INT)

method ..133
ST_GeomFromShape(LONG BINARY[, INT])

method ..134
ST_GeomFromText(LONG VARCHAR, INT)

method ..134
ST_GeomFromWKB(LONG BINARY, INT)

method ..135
ST_GeomFromWKT(LONG VARCHAR, INT)

method ..136
ST_Intersection(ST_Geometry) method136
ST_IntersectionAggr(ST_Geometry) method ..137
ST_Intersects(ST_Geometry) method137
ST_IntersectsFilter(ST_Geometry) method138
ST_IntersectsRect(ST_Point , ST_Point)

method ..139
ST_Is3D() method ...140
ST_IsEmpty() method ..140
ST_IsMeasured() method 140
ST_IsSimple() method 141
ST_IsValid() method ..141
ST_LatNorth() method142
ST_LatSouth() method142
ST_Length_Spheroid(VARCHAR(128)) method

...143
ST_LinearHash() method143

Contents

Administration: Spatial Data vii

ST_LinearUnHash(BINARY(32)[, INT]) method
...144

ST_LoadConfigurationData(VARCHAR(128))
method ..144

ST_LocateAlong(DOUBLE) method145
ST_LocateBetween(DOUBLE, DOUBLE)

method ..145
ST_LongEast() method146
ST_LongWest() method146
ST_MMax() method ...147
ST_MMin() method ..147
ST_OrderingEquals(ST_Geometry) method .. .148
ST_Overlaps(ST_Geometry) method148
ST_Relate(ST_Geometry) method149
ST_Reverse() method ..150
ST_Segmentize(DOUBLE) method150
ST_Simplify(DOUBLE) method151
ST_SnapToGrid(ST_Point , DOUBLE,

DOUBLE, DOUBLE, DOUBLE) method151
ST_SRID(INT) method152
ST_SRIDFromBaseType(VARCHAR(128))

method ..153
ST_SymDifference(ST_Geometry) method153
ST_ToCircular() method154
ST_ToCompound() method155
ST_ToCurve() method155
ST_ToCurvePoly() method156
ST_ToGeomColl() method156
ST_ToLineString() method157
ST_ToMultiCurve() method158
ST_ToMultiLine() method158
ST_ToMultiPoint() method159
ST_ToMultiPolygon() method160
ST_ToMultiSurface() method161
ST_ToPoint() method ...161

Contents

viii SAP Sybase IQ

ST_ToPolygon() method162
ST_ToSurface() method163
ST_Touches(ST_Geometry) method163
ST_Transform(INT) method164
ST_Union(ST_Geometry) method164
ST_UnionAggr(ST_Geometry) method165
ST_Within(ST_Geometry) method166
ST_WithinDistance(ST_Geometry , DOUBLE,

VARCHAR(128)) method167
ST_WithinDistanceFilter(ST_Geometry ,

DOUBLE, VARCHAR(128)) method168
ST_WithinFilter(ST_Geometry) method170
ST_XMax() method ..170
ST_XMin() method ...170
ST_YMax() method ..171
ST_YMin() method ...171
ST_ZMax() method ..172
ST_ZMin() method ...172

ST_LineString type ...173
ST_LineString(ST_Point , ST_Point , ST_Point)

constructor ...178
ST_LineString() constructor179
ST_LineString(LONG BINARY[, INT])

constructor ...179
ST_LineString(LONG VARCHAR[, INT])

constructor ...180
ST_LineStringAggr(ST_Point) method180
ST_NumPoints() method181
ST_PointN(INT) method182

ST_MultiCurve type ..183
ST_MultiCurve(ST_Curve , ST_Curve)

constructor ...188
ST_MultiCurve() constructor189
ST_MultiCurve(LONG BINARY[, INT])

constructor ...189

Contents

Administration: Spatial Data ix

ST_MultiCurve(LONG VARCHAR[, INT])
constructor ...190

ST_IsClosed() method190
ST_Length(VARCHAR(128)) method191
ST_MultiCurveAggr(ST_Curve) method192

ST_MultiLineString type ...192
ST_MultiLineString(ST_LineString ,

ST_LineString) constructor198
ST_MultiLineString() constructor199
ST_MultiLineString(LONG BINARY[, INT])

constructor ...199
ST_MultiLineString(LONG VARCHAR[, INT])

constructor ...200
ST_MultiLineStringAggr(ST_LineString)

method ..200
ST_MultiPoint type ..201

ST_MultiPoint(ST_Point , ST_Point)
constructor ...206

ST_MultiPoint() constructor207
ST_MultiPoint(LONG BINARY[, INT])

constructor ...207
ST_MultiPoint(LONG VARCHAR[, INT])

constructor ...208
ST_MultiPointAggr(ST_Point) method209

ST_MultiPolygon type ...209
ST_MultiPolygon(ST_MultiLineString ,

VARCHAR(128)) constructor215
ST_MultiPolygon(ST_Polygon , ST_Polygon)

constructor ...216
ST_MultiPolygon() constructor217
ST_MultiPolygon(LONG BINARY[, INT])

constructor ...217
ST_MultiPolygon(LONG VARCHAR[, INT])

constructor ...218
ST_MultiPolygonAggr(ST_Polygon) method . . .218

Contents

x SAP Sybase IQ

ST_MultiSurface type ...219
ST_MultiSurface(ST_MultiCurve ,

VARCHAR(128)) constructor225
ST_MultiSurface(ST_Surface , ST_Surface)

constructor ...225
ST_MultiSurface() constructor226
ST_MultiSurface(LONG BINARY[, INT])

constructor ...226
ST_MultiSurface(LONG VARCHAR[, INT])

constructor ...227
ST_Area(VARCHAR(128)) method228
ST_Centroid() method228
ST_MultiSurfaceAggr(ST_Surface) method229
ST_Perimeter(VARCHAR(128)) method230
ST_PointOnSurface() method230

ST_Point type ...231
ST_Point() constructor236
ST_Point(DOUBLE, DOUBLE, DOUBLE,

DOUBLE[, INT]) constructor236
ST_Point(DOUBLE, DOUBLE, DOUBLE[, INT])

constructor ...237
ST_Point(DOUBLE, DOUBLE[, INT])

constructor ...238
ST_Point(LONG BINARY[, INT]) constructor238
ST_Point(LONG VARCHAR[, INT]) constructor .239
ST_Lat(DOUBLE) method239
ST_Long(DOUBLE) method240
ST_M(DOUBLE) method240
ST_X(DOUBLE) method241
ST_Y(DOUBLE) method241
ST_Z(DOUBLE) method242

ST_Polygon type ...242
ST_Polygon(ST_LineString , ST_LineString)

constructor ...248

Contents

Administration: Spatial Data xi

ST_Polygon(ST_MultiLineString ,
VARCHAR(128)) constructor248

ST_Polygon(ST_Point , ST_Point) constructor
...249

ST_Polygon() constructor250
ST_Polygon(LONG BINARY[, INT]) constructor

...250
ST_Polygon(LONG VARCHAR[, INT])

constructor ...251
ST_ExteriorRing(ST_Curve) method251
ST_InteriorRingN(INT) method252

ST_SpatialRefSys type ...253
ST_CompareWKT(LONG VARCHAR, LONG

VARCHAR) method253
ST_FormatTransformDefinition(LONG

VARCHAR) method254
ST_FormatWKT(LONG VARCHAR) method255
ST_GetUnProjectedTransformDefinition(LONG

VARCHAR) method256
ST_ParseWKT(VARCHAR(128), LONG

VARCHAR) method256
ST_TransformGeom(ST_Geometry , LONG

VARCHAR, LONG VARCHAR) method258
ST_World(INT) method259

ST_Surface type ...260
ST_Area(VARCHAR(128)) method264
ST_Centroid() method265
ST_IsWorld() method ...266
ST_Perimeter(VARCHAR(128)) method266
ST_PointOnSurface() method267

Appendix – SQL Statements ...269
CREATE SPATIAL REFERENCE SYSTEM Statement

.. 269
CREATE SPATIAL UNIT OF MEASURE Statement ...276
DROP SPATIAL UNIT OF MEASURE Statement278

Contents

xii SAP Sybase IQ

DROP SPATIAL REFERENCE SYSTEM Statement ..279
ALTER SPATIAL REFERENCE SYSTEM Statement

..280
ALTER TABLE Statement ...286

Index ..303

Contents

Administration: Spatial Data xiii

Contents

xiv SAP Sybase IQ

Restrictions and Limitations

Before working with spatial data, spatial references systems, and spatial units of measure in
SAP® Sybase® IQ, familiarize yourself with 3D method restrictions and implications for
performance and referential integrity.

2006 ISO Standard
3D methods are not supported, although you can store Z and M dimensions. The 2006 ISO
Standard supports 2D spatial methods (X and Y dimensions) only.

Spatial Data Must be Stored in IQ Catalog Store Tables
Spatial data, spatial references systems, and spatial units of measure can be used only in the
catalog store. The IQ main store cannot interpret spatial data, or store spatial data. You can
query spatial data in the catalog store and join with an IQ main store table, but the join must be
on a non-spatial column.

For example, suppose you want to associate an ST_Point with each of your customers, stored
in an IQ main store table. Because IQ main store tables cannot store ST_Points, you must
create a separate IQ catalog store table to hold points:

IQ main store table Customer(CustID, CustName, …)

IQ catalog store table CustPoints(CustID, Point)

Consider a scenario where you have an ST_Polygon P, and you want a query to find all
customers within P. Assume P is a connection variable that has been populated either from a
constant or by a previous query of an IQ catalog store table.

Select C.*
From Customer C, CustPoints CP
Where C.CustID = CP.CustID
And CP.Point.ST_Within(P) = 1

Since this query streams the Customer table from the IQ main store to the IQ catalog store,
performance is impacted. CIS functional compensation performance considerations apply.

Referential integrity constraints are not maintained across the IQ main store / IQ catalog store
bridge. Ensure that row inserts/deletes in one table are reflected in the joined table. Every
CustPoints row, for example, must correspond to a Customer row. If you delete Customer
rows, you must delete the corresponding CustPoints rows.

Restrictions and Limitations

Administration: Spatial Data 1

Restrictions and Limitations

2 SAP Sybase IQ

Spatial data

Spatial data is data that describes the position, shape, and orientation of objects in a defined
space. Spatial data in SAP Sybase IQ is represented as 2D geometries in the form of points,
curves (line strings and strings of circular arcs), and polygons. For example, the following
image shows the state of Massachusetts, representing the union of polygons representing zip
code regions.

Two common operations performed on spatial data are calculating the distance between
geometries, and determining the union or intersection of multiple objects. These calculations
are performed using predicates such as intersects, contains, and crosses.

The spatial data documentation assumes you already have some familiarity with spatial
reference systems and with the spatial data you intend to work with.

Note: Spatial data support for 32-bit Windows and 32-bit Linux requires a CPU that supports
SSE2 instructions. This support is available with Intel Pentium 4 or later (released in 2001)
and AMD Opteron or later (released in 2003).

Example of how spatial data might be used

Spatial data support in SAP Sybase IQ lets application developers associate spatial
information with their data. For example, a table representing companies could store the
location of the company as a point, or store the delivery area for the company as a polygon.
This could be represented in SQL as:
CREATE TABLE Locations(
 ID INT,
 ManagerName CHAR(16),
 StoreName CHAR(16),
 Address ST_Point,
 DeliveryArea ST_Polygon)

Spatial data

Administration: Spatial Data 3

The spatial data type ST_Point in the example represents a single point, and ST_Polygon
represents an arbitrary polygon. With this schema, the application could show all company
locations on a map, or find out if a company delivers to a particular address using a query
similar to the following:
CREATE VARIABLE @pt ST_Point;
SET @pt = ST_Geometry::ST_GeomFromText('POINT(1 1)');

SELECT * FROM Locations
WHERE DeliveryArea.ST_Contains(@pt) = 1

SAP Sybase IQ provides storage and data management features for spatial data, allowing you
to store information such as geographic locations, routing information, and shape data.

These information pieces are stored as points and various forms of polygons and lines in
columns defined with a corresponding spatial data type (such as ST_Point and ST_Polygon).
You use methods and constructors to access and manipulate the spatial data. SAP Sybase IQ
also provides a set of SQL spatial functions designed for compatibility with other products.

Spatial reference systems (SRS) and Spatial reference
identifiers (SRID)

In the context of spatial databases, the defined space in which geometries are described is
called a spatial reference system (SRS). A spatial reference system defines, at minimum:

• Units of measure of the underlying coordinate system (degrees, meters, and so on)
• Maximum and minimum coordinates (also referred to as the bounds)
• Default linear unit of measure
• Whether the data is planar or spheroid data
• Projection information for transforming the data to other SRSs

Every spatial reference system has an identifier called a Spatial Reference Identifier
(SRID). When SAP Sybase IQ performs operations like finding out if a geometry touches
another geometry, it uses the SRID to look up the spatial reference system definition so that it
can perform the calculations properly for that spatial reference system. In an SAP Sybase IQ
database, each SRID must be unique.

By default, SAP Sybase IQ adds the following spatial reference systems to a new database:

• Default - SRID 0 – This is the default spatial reference system used when constructing a
geometry and the SRID is not specified in the SQL and is not present in the value being
loaded.

Default is a Cartesian spatial reference system that works with data on a flat, two
dimensional plane. Any point on the plane can be defined using a single pair of x, y
coordinates where x and y have the bounds -1,000,000 to 1,000,000. Distances are
measured using perpendicular coordinate axis. This spatial reference system is assigned
SRID of 0.

Spatial data

4 SAP Sybase IQ

Cartesian is a planar type of spatial reference system.
• WGS 84 - SRID 4326 – The WGS 84 standard provides a spheroidal reference surface for

the Earth. It is the spatial reference system used by the Global Positioning System (GPS).
The coordinate origin of WGS 84 is the Earth's center, and is considered accurate up to ±1
meter. WGS stands for World Geodetic System.

WGS 84 Coordinates are in degrees, where the first coordinate is longitude with bounds
-180 to 180, and the second coordinate is latitude with bounds -90 to 90.

The default unit of measure for WGS 84 is METRE, and it is a round-Earth type of spatial
reference system.

• WGS 84 (planar) - SRID 1000004326 – WGS 84 (planar) is similar to WGS 84 except
that it uses equirectangular projection, which distorts length, area and other computations.
For example, at the equator in both SRID 4326 and 1000004326, 1 degree longitude is
approximately 111 km. At 80 degrees north, 1 degree of longitude is approximately 19 km
in SRID 4326, but SRID 1000004326 treats 1 degree of longitude as approximately 111
km at all latitudes. The amount of distortion of lengths in the SRID 1000004326 is
considerable—off by a factor of 10 or more—the distortion factor varies depending on the
location of the geometries relative to the equator. Consequently, SRID 1000004326 should
not be used for distance and area calculations. It should only be used for relationship
predicates such as ST_Contains, ST_Touches, ST_Covers, and so on.

The default unit of measure for WGS 84 (planar) is DEGREE, and it is a flat-Earth type of
spatial reference system.

• sa_planar_unbounded - SRID 2,147,483,646 – For internal use only.
• sa_octahedral_gnomonic - SRID 2,147,483,647 – For internal use only.

Since you can define a spatial reference system however you want and can assign any SRID
number, the spatial reference system definition (projection, coordinate system, and so on)
must accompany the data as it moves between databases or is converted to other SRSs. For
example, when you unload spatial data to WKT, the definition for the spatial reference system
is included at the beginning of the file.

Installing additional spatial reference systems using the sa_install_feature system
procedure
SAP Sybase IQ also provides thousands of predefined SRSs for use. However, these SRSs are
not installed in the database by default when you create a new database. You use the
sa_install_feature system procedure to add them.

You can find descriptions of these additional spatial reference systems at spatialreference.org
and www.epsg-registry.org/.

Spatial data

Administration: Spatial Data 5

http://spatialreference.org
http://www.epsg-registry.org/

Determining the list of spatial reference systems currently in the database
Spatial reference system information is stored in the ISYSSPATIALREFERENCESYSTEM
system table. The SRIDs for the SRSs are used as primary key values in this table. The
database server uses SRID values to look up the configuration information for a spatial
reference system so that it can interpret the otherwise abstract spatial coordinates as real
positions on the Earth.

You can find the list of spatial reference systems by querying the
ST_SPATIAL_REFERENCE_SYSTEMS consolidated view. Each row in this view defines a
spatial reference system.

Compatibility with popular mapping applications
Some popular web mapping and visualization applications such as Google Earth, Bing Maps,
and ArcGIS Online, use a spatial reference system with a Mercator projection that is based on
a spherical model of the Earth. This spherical model ignores the flattening at the Earth's poles
and can lead to errors of up to 800m in position and up to 0.7 percent in scale, but it also allows
applications to perform projections more efficiently.

In the past, commercial applications assigned SRID 900913 to this spatial reference system.
However, EPSG has since released this projection as SRID 3857. For compatibility with
applications requiring 900913, you can do the following:

1. Use the sa_install_feature system procedure to install all of the spatial reference systems
provided by SAP Sybase IQ (including SRID 3857).

2. Perform dbunload -n to get the 3857 SRID definition (the dbunload utility is not
provided with SAP Sybase IQ).

Units of measure
Geographic features can be measured in degrees of latitude, radians, or other angular units of
measure. Every spatial reference system must explicitly state the name of the unit in which
geographic coordinates are measured, and must include the conversion from the specified unit
to a radian.

If you are using a projected coordinate system, the individual coordinate values represent a
linear distance along the surface of the Earth to a point. Coordinate values can be measured by
the meter, foot, mile, or yard. The projected coordinate system must explicitly state the linear
unit of measure in which the coordinate values are expressed.

The following units of measure are automatically installed in any new SAP Sybase IQ
database:

• meter – A linear unit of measure. Also known as International metre. SI standard unit.
Defined by ISO 1000.

Spatial data

6 SAP Sybase IQ

• metre – A linear unit of measure. An alias for meter. SI standard unit. Defined by ISO
1000.

• radian – An angular unit of measure. SI standard unit. Defined by ISO 1000:1992.
• degree – An angular unit of measure (pi()/180.0 radians).
• planar degree – A linear unit of measure. Defined as 60 nautical miles. A linear unit of

measure used for geographic spatial reference systems with PLANAR line interpretation.

Installing additional predefined units of measure
The sa_install_feature system procedure adds additional predefined units of measure not
installed by default in a new database.

Prerequisites

None.

Task
Execute the following statement to install all of the predefined units of measure:
CALL sa_install_feature('st_geometry_predefined_uom');

All additional units of measure are installed.

Next

You can create a spatial reference system that uses the unit of measure.

You can find descriptions of these additional units of measure at www.epsg-registry.org/. On
the web page, type the name of the unit of measure in the Name field, pick Unit of
Measure (UOM) from the Type field, and then click Search.

SAP Sybase IQ support for spatial data
The following sections describe the SAP Sybase IQ support for spatial data.

Supported spatial data types and their hierarchy
SAP Sybase IQ follows the SQL Multimedia (SQL/MM) standard for storing and accessing
geospatial data. A key component of this standard is the use of the ST_Geometry type
hierarchy to define how geospatial data is created. Within the hierarchy, the prefix ST is used
for all data types (also referred to as classes or types).

When a column is identified as a specific type, the values of the type and its subtypes can be
stored in the column. For example, a column identified as ST_GeomCollection can also store
the ST_MultiPoint, ST_MultiSurface, ST_MultiCurve, ST_MultiPolygon, and
ST_MultiLineString values.

Spatial data

Administration: Spatial Data 7

http://www.epsg-registry.org/

The following diagram illustrates the hierarchy of the ST_Geometry data types and their
subtypes:

The types on the left are supertypes (or base types) for the subtypes (or derived types) on the
right.

Descriptions of supported spatial data types
SAP Sybase IQ supports the following spatial data types:

• Points – A point defines a single location in space. A point geometry does not have length
or area. A point always has an X and Y coordinate.

ST_Dimension returns 0 for non-empty points.

In GIS data, points are typically used to represent locations such as addresses, or
geographic features such as a mountain.

• Linestrings – A linestring is geometry with a length, but without any area. ST_Dimension
returns 1 for non-empty linestrings. Linestrings can be characterized by whether they are
simple or not simple, closed or not closed. Simple means a linestring that does not cross
itself. Closed means a linestring that starts and ends at the same point. For example, a ring
is an example of simple, closed linestring.

In GIS data, linestrings are typically used to represent rivers, roads, or delivery routes.
• Polygons – A polygon defines a region of space. A polygon is constructed from one

exterior bounding ring that defines the outside of the region and zero or more interior rings
which define holes in the region. A polygon has an associated area but no length.

ST_Dimension returns 2 for non-empty polygons.

Spatial data

8 SAP Sybase IQ

In GIS data, polygons are typically used to represent territories (counties, towns, states,
and so on), lakes, and large geographic features such as parks.

• Circularstrings – A circularstring is a connected sequence of circular arc segments; much
like a linestring with circular arcs between points.

• Compound curves – A compound curve is a connected sequence of circularstrings or
linestrings.

• Curve polygons – A curve polygon is a more general polygon that may have circular arc
boundary segments.

• Geometries – The term geometry means the overarching type for objects such as points,
linestrings, and polygons. The geometry type is the supertype for all supported spatial data
types.

• Geometry collections – A geometry collection is a collection of one or more geometries
(such as points, lines, polygons, and so on).

• Multipoints – A multipoint is a collection of individual points.

In GIS data, multipoints are typically used to represent a set of locations.
• Multipolygons – A multipolygon is a collection of zero or more polygons.

In GIS data, multipolygons are often used to represent territories made up of multiple
regions (for example a state with islands), or geographic features such as a system of
lakes.

• Multilinestring – A multilinestring is a collection of linestrings.

In GIS data, multilinestrings are often used to represent geographic features like rivers or a
highway network.

• Multisurfaces – A multisurface is a collection of curve polygons.

Object-oriented properties of spatial data types
• A subtype (or derived type) is more specific than its supertype (or base type). For example,

ST_LineString is a more specific type of ST_Curve.
• A subtype inherits all methods from all supertypes. For example, ST_Polygon values can

call methods from the ST_Geometry, ST_Surface and ST_CurvePolygon supertypes.
• A value of a subtype can be automatically converted to any of its supertypes. For example,

an ST_Point value can be used where a ST_Geometry parameter is required, as in
point1.ST_Distance(point2).

• A column or variable can store a values of any subtype. For example, a column of type
ST_Geometry(SRID=4326) can store spatial values of any type.

• A column, variable, or expression with a declared type can be treated as, or cast to a
subtype. For example, you can use the TREAT expression to change a ST_Polygon value
in a ST_Geometry column named geom to have declared type ST_Surface so you can call
the ST_Area method on it with TREAT(geom AS ST_Surface).ST_Area().

Supported spatial predicates
A predicate is a conditional expression that, combined with the logical operators AND and
OR, makes up the set of conditions in a WHERE, HAVING, or ON clause, or in an IF or CASE

Spatial data

Administration: Spatial Data 9

expression, or in a CHECK constraint. In SQL, a predicate may evaluate to TRUE, FALSE. In
many contexts, a predicate that evaluates to UNKNOWN is interpreted as FALSE.

Spatial predicates are implemented as member functions that return 0 or 1. To test a spatial
predicate, your query should compare the result of the function to 1 or 0 using the = or <>
operator. For example:
SELECT * FROM SpatialShapes WHERE geometry.ST_IsEmpty() = 0;

You use predicates when querying spatial data to answer such questions as: how close together
are two or more geometries? Do they intersect or overlap? Is one geometry contained within
another? If you are a delivery company, for example, you may use predicates to determine if a
customer is within a specific delivery area.

Intuitiveness of spatial predicates

Sometimes the outcome of a predicate is not intuitive, so you should test special cases to make
sure you are getting the results you want. For example, in order for a geometry to contain
another geometry (a.ST_Contains(b)=1), or for a geometry to be within another
geometry (b.ST_Within(a)=1), the interior of a and the interior of b must intersect, and
no part of b can intersect the exterior of a. However, there are some cases where you would
expect a geometry to be considered contained or within another geometry, but it is not.

For example, the following return 0 (a is red) for a.ST_Contains(b) and
b.ST_Within(a):

Case one and two are obvious; the purple geometries are not completely within the red
squares. Case three and four, however, are not as obvious. In both of these cases, the purple
geometries are only on the boundary of the red squares. ST_Contains does not consider the
purple geometries to be within the red squares, even though they appear to be within them.

ST_Covers and ST_CoveredBy are similar predicates to ST_Contains and ST_Within. The
difference is that ST_Covers and ST_CoveredBy do not require the interiors of the two
geometries to intersect. Also, ST_Covers and ST_CoveredBy often have more intuitive
results than ST_Contains and ST_Within.

If your predicate tests return a different result for cases than desired, consider using the
ST_Relate method to specify the exact relationship you are testing for.

Spatial data

10 SAP Sybase IQ

Compliance with spatial standards
SAP Sybase IQ spatial complies with the following standards:

• International Organization for Standardization (ISO) – SAP Sybase IQ geometries
conform to the ISO standards for defining spatial user-types, routines, schemas, and for
processing spatial data. SAP Sybase IQ conforms to the specific recommendations made
by the International Standard ISO/IEC 13249-3:2006. See http://www.iso.org/iso/
catalogue_detail.htm?csnumber=38651.

• Open Geospatial Consortium (OGC) Geometry Model – SAP Sybase IQ geometries
conform to the OGC OpenGIS Implementation Specification for Geographic information
- Simple feature access - Part 2: SQL option version 1.2.0 (OGC 06-104r3). See http://
www.opengeospatial.org/standards/sfs.

SAP Sybase IQ uses the standards recommended by the OGC to ensure that spatial
information can be shared between different vendors and applications.

To ensure compatibility with SAP Sybase IQ spatial geometries, it is recommended that
you adhere to the standards specified by the OGC.

• SQL Multimedia (SQL/MM) – SAP Sybase IQ follows the SQL/MM standard, and uses
the prefix ST_ for all method and function names.

SQL/MM is an international standard that defines how to store, retrieve, and process
spatial data using SQL. Spatial data type hierarchies such as ST_Geometry are one of the
methods used to retrieve spatial data. The ST_Geometry hierarchy includes a number of
subtypes such as ST_Point, ST_Curve, and ST_Polygon. With the SQL/MM standard,
every spatial value included in a query must be defined in the same spatial reference
system.

Special notes on support and compliance
This section describes any special notes about SAP Sybase IQ support of spatial data
including unsupported features and notable behavioral differences with other database
products.

• Geographies and geometries – Some vendors distinguish spatial objects by whether they
are geographies (pertaining to objects on a round-Earth) or geometries (objects on a plane
or a flat-Earth). In SAP Sybase IQ, all spatial objects are considered to be geometries, and
the object's SRID indicates whether it is being operated on in a round-Earth or flat-Earth
(planar) spatial reference system.

• Unsupported methods –

ST_Buffer method
ST_LocateAlong method
ST_LocateBetween method
ST_Segmentize method

Spatial data

Administration: Spatial Data 11

http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

ST_Simplify method
ST_Distance_Spheroid method
ST_Length_Spheroid method

Supported import and export formats for spatial data
The following table lists the data and file formats supported by SAP Sybase IQ for importing
and exporting spatial data:

Data format Import Export Description

Well Known Text
(WKT)

Yes Yes Geographic data ex-
pressed in ASCII text.
This format is main-
tained by the Open Ge-
ospatial Consortium
(OGC) as part of the
Simple Features de-
fined for the OpenGIS
Implementation Speci-
fication for Geographic
Information. See
www.opengeospa-
tial.org/standards/sfa.

Here is an example of
how a point might be
represented in WKT:

'POINT(1 1)'

Spatial data

12 SAP Sybase IQ

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa

Data format Import Export Description

Well Known Binary
(WKB)

Yes Yes Geographic data ex-
pressed as binary
streams. This format is
maintained by the
OGC as part of the
Simple Features de-
fined for the OpenGIS
Implementation Speci-
fication for Geographic
Information. See
www.opengeospa-
tial.org/standards/sfa.

Here is an example of
how a point might be
represented in WKB:

'01010000000000
00000000F03F000
000000000F03F'

Extended Well Known
Text (EWKT)

Yes Yes WKT format, but with
SRID information em-
bedded. This format is
maintained as part of
PostGIS, the spatial da-
tabase extension for
PostgreSQL. See post-
gis.refractions.net/.

Here is an example of
how a point might be
represented in EWKT:

'srid=101;POINT
(1 1)'

Spatial data

Administration: Spatial Data 13

http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
http://postgis.refractions.net/
http://postgis.refractions.net/

Data format Import Export Description

Extended Well Known
Binary (EWKB)

Yes Yes WKB format, but with
SRID information em-
bedded. This format is
maintained as part of
PostGIS, the spatial da-
tabase extension for
PostgreSQL. See post-
gis.refractions.net/.

Here is an example of
how a point might be
represented in EWKB:

'01010000020040
000000000000000
0F03F0000000000
00F03F'

Geographic Markup
Language (GML)

No Yes XML grammar used to
represent geographic
spatial data. This stand-
ard is maintained by the
Open Geospatial Con-
sortium (OGC), and is
intended for the ex-
change of geographic
data over the internet.
See www.opengeospa-
tial.org/standards/gml.

Here is an example of
how a point might be
represented in GML:

<gml:Point>
<gml:coordi-
nates>1,1</
gml:coordi-
nates> </
gml:Point>

Spatial data

14 SAP Sybase IQ

http://postgis.refractions.net/
http://postgis.refractions.net/
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml

Data format Import Export Description

KML No Yes Formerly Google Key-
hole Markup Lan-
guage, this XML gram-
mar is used to represent
geographic data in-
cluding visualization
and navigation aids and
the ability to annotate
maps and images. Goo-
gle proposed this
standard to the OGC.
The OGC accepted it as
an open standard which
it now calls KML. See
www.opengeospa-
tial.org/standards/kml.

Here is an example of
how a point might be
represented in KML:

<Point> <coor-
dinates>1,0</
coordinates> </
Point>

ESRI shapefiles Yes No A popular geospatial
vector data format for
representing spatial ob-
jects in the form of
shapefiles (several files
that are used together to
define the shape).

Spatial data

Administration: Spatial Data 15

http://www.opengeospatial.org/standards/kml
http://www.opengeospatial.org/standards/kml

Data format Import Export Description

GeoJSON No Yes Text format that uses
name/value pairs, or-
dered lists of values,
and conventions simi-
lar to those used in
common programming
languages such as C, C
++, C#, Java, Java-
Script, Perl, and Py-
thon.

GeoJSON is a subset of
the JSON standard and
is used to encode geo-
graphic information.
SAP Sybase IQ sup-
ports the GeoJSON
standard and provides
the ST_AsGeoJSON
method for converting
SQL output to the Ge-
oJSON format.

Here is an example of
how a point might be
represented in Geo-
JSON:

{"x" : 1, "y" :
1, "spatialRe-
ference" :
{"wkid" :
4326}}
For more information
about the GeoJSON
specification, see geo-
json.org/geojson-
spec.html.

Spatial data

16 SAP Sybase IQ

http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html
http://geojson.org/geojson-spec.html

Data format Import Export Description

Scalable Vector Graph-
ic (SVG) files

No Yes XML-based format
used to represent two-
dimensional geome-
tries. The SVG format
is maintained by the
World Wide Web Con-
sortium (W3C). See
www.w3.org/Graph-
ics/SVG/.

Here is an example of
how a point might be
represented in SVG:

<rect width="1"
height="1"
fill="deep-
skyblue"
stroke="black"
stroke-
width="1" x="1"
y="-1"/>

Support for ESRI shapefiles
SAP Sybase IQ supports the Environmental System Research Institute, Inc. (ESRI) shapefile
format. ESRI shapefiles are used to store geometry data and attribute information for the
spatial features in a data set.

An ESRI shapefile includes at least three different files: .shp, .shx, and .dbf. The suffix
for the main file is .shp, the suffix for the index file is .shx, and the suffix for the attribute
columns is .dbf. All files share the same base name and are frequently combined in a single
compressed file. SAP Sybase IQ can read all ESRI shapefiles with all shape types except
MultiPatch. This includes shape types that include Z and M data.

The data in an ESRI shapefile usually contains multiple rows and columns. For example, the
spatial tutorial loads a shapefile that contains zip code regions for Massachusetts. The
shapefile contains one row for each zip code region, including the polygon information for the
region. It also contains additional attributes (columns) for each zip code region, including the
zip code name (for example, the string '02633') and other attributes.

The simplest ways to load a shapefile into a table are with the Interactive SQL Import
Wizard, or the st_geometry_load_shapefile system procedure. Both of these tools create a
table with appropriate columns and load the data from the shapefile.

Spatial data

Administration: Spatial Data 17

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

You can also load shapefiles using the LOAD TABLE and INPUT statements, but you must
already have created the table with the appropriate columns before performing the load
operation.

To find the columns needed when loading data using the LOAD TABLE or INPUT statements,
you can use the sa_describe_shapefile system procedure.

For more information about ESRI shapefiles, see http://www.esri.com/library/whitepapers/
pdfs/shapefile.pdf.

Recommended reading on spatial topics

For a good primer on the different approaches that are used to map and measure the earth's
surface (geodesy), and the major concepts surrounding coordinate (or spatial) reference
systems, go to www.epsg.org/guides/index.html and select Geodetic Awareness.
OGC OpenGIS Implementation Specification for Geographic information - Simple
feature access: www.opengeospatial.org/standards/sfs
International Standard ISO/IEC 13249-3:2006: www.iso.org/iso/catalogue_detail.htm?
csnumber=38651
Scalable Vector Graphics (SVG) 1.1 Specification: www.w3.org/Graphics/SVG/
Geographic Markup Language (GML) specification: www.opengeospatial.org/standards/
gml
KML specification: www.opengeospatial.org/standards/kml
JavaScript Object Notation (JSON): json.org
GeoJSON specification: geojson.org/geojson-spec.html

Creating a spatial column (SQL)
You can add spatial data to any table by adding a column that supports spatial data.

Prerequisites

• The table must be in a catalog store table created using the IN SYSTEM clause.
• You must be the owner of the table, or have ALTER privilege on the table, or have the

ALTER ANY TABLE or ALTER ANY OBJECT system privilege.
• Table must be in the catalog store table created with the "IN SYSTEM" clause.

Task

1. Connect to the database.

2. Execute an ALTER TABLE statement.

A spatial column is added to the existing table.

Spatial data

18 SAP Sybase IQ

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.epsg.org/guides/index.html
http://www.opengeospatial.org/standards/sfs
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.iso.org/iso/catalogue_detail.htm?csnumber=38651
http://www.w3.org/Graphics/SVG/
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/kml
http://json.org
http://geojson.org/geojson-spec.html

Next

You can place SRID constraints on the column to place restrictions on the values that can be
stored in a spatial column.

Indexes on spatial columns
When creating a spatial index, use the CREATE INDEX statement or Create Index Wizard
as you would when creating an index for any other data type. However, when creating indexes
on spatial data, it is recommended that you do not include more than one spatial column in the
index, and that you position the spatial column last in the index definition.

Also, to include a spatial column in an index, the column must have a SRID constraint.

Indexes on spatial data can reduce the cost of evaluating relationships between geometries.
For example, suppose that you are considering changing the boundaries of your sales regions
and want to determine the impact on existing customers. To determine which customers are
located within a proposed sales region, you could use the ST_Within method to compare a
point representing each customer address to a polygon representing the sales region. Without
any index, the database server must test every address point in the Customer table against the
sales region polygon to determine if it should be returned in the result, which could be
expensive if the Customer table is large, and inefficient if the sales region is small. An index
including the address point of each customer may help to return results faster. If a predicate
can be added to the query relating the sales region to the states which it overlaps, results might
be obtained even faster using an index that includes both the state code and the address point.

Spatial queries may benefit from a clustered index, but other uses of the table need to be
considered before deciding to use a clustered index. You should consider, and test, the types of
queries that are likely to be performed to see whether performance improves with clustered
indexes.

While you can create text indexes on a spatial column, they offer no advantage over regular
indexes; regular indexes are recommended instead.

Note: Spatial columns cannot be included in a primary key, unique index, or unique
constraint.

Spatial data type syntax
The SQL/MM standard defines spatial data support in terms of user-defined extended types
(UDTs) built on the ANSI/SQL CREATE TYPE statement. Although SAP Sybase IQ does

Spatial data

Administration: Spatial Data 19

not support user-defined types, the SAP Sybase IQ spatial data support has been implemented
as though they are supported.

Instantiating instances of a UDT
You can instantiate a value of a user-defined type by calling a constructor as follows:

NEW type-name(argument-list)
For example, a query could contain the following to instantiate two ST_Point values:
SELECT NEW ST_Point(), NEW ST_Point(3,4)

SAP Sybase IQ matches argument-list against defined constructors using the normal overload
resolution rules. An error is returned in the following situations:

• If NEW is used with a type that is not a user-defined type
• If the user-defined type is not instantiable (for example, ST_Geometry is not an

instantiable type).
• If there is no overload that matches the supplied argument types

Using instance methods
User defined types can have instance methods defined. Instance methods are invoked on a
value of the type as follows:

value-expression.method-name(argument-list)
For example, the following fictitious example selects the X coordinate of the
Massdata.CenterPoint column:
SELECT CenterPoint.ST_X() FROM Massdata;

If there was a user ID called CenterPoint, the database server would consider
CenterPoint.ST_X() to be ambiguous. This is because the statement could mean "call
the user-defined function ST_X owned by user CenterPoint" (the incorrect intention of the
statement), or it could mean "call the ST_X method on the Massdata.CenterPoint column"
(the correct meaning). The database server resolves the ambiguity by first performing a case-
insensitive search for a user named CenterPoint. If one is found, the database server proceeds
as though a user-defined function called ST_X and owned by user CenterPoint is being called.
If no user is found, the database server treats the construct as a method call and calls the ST_X
method on the Massdata.CenterPoint column.

An instance method invocation gives an error in the following cases:

• If the declared type of the value-expression is not a user-defined type
• If the named method is not defined in the declared type of value-expression or one of its

supertypes
• If argument-list does not match one of the defined overloads for the named method.

Using static methods
In addition to instance methods, the ANSI/SQL standard allows user-defined types to have
static methods associated with them. These are invoked using the following syntax:

Spatial data

20 SAP Sybase IQ

type-name::method-name(argument-list)
For example, the following instantiates an ST_Point by parsing text:
SELECT ST_Geometry::ST_GeomFromText('POINT(5 6)')

A static method invocation gives an error in the following cases:

• If the declared type of value-expression is not a user-defined type
• If the named method is not defined in the declared type of value expression or one of its

supertypes
• If argument-list does not match one of the defined overloads for the named method

Using static aggregate methods (SAP Sybase IQ extension)
As an extension to ANSI/SQL, SAP Sybase IQ supports static methods that implement user-
defined aggregates. For example:
SELECT ST_Geometry::ST_AsSVGAggr(T.geo) FROM table T

All of the overloads for a static method must be aggregate or none of them may be aggregate.

A static aggregate method invocation gives an error in the following cases:

• If a static method invocation would give an error
• If a built-in aggregate function would give an error
• If a WINDOW clause is specified

Using type predicates
The ANSI/SQL standard defines type predicates that allow a statement to examine the
concrete type (also called object type in other languages) of a value. The syntax is as follows:

value IS [NOT] OF ([ONLY] type-name,...)
If value is NULL, the predicate returns UNKNOWN. Otherwise, the concrete type of value is
compared to each of the elements in the type-name list. If ONLY is specified, there is a match
if the concrete type is exactly the specified type. Otherwise, there is a match if the concrete
type is the specified type or any derived type (subtype).

If the concrete type of value matches one of the elements in the list, TRUE is returned,
otherwise FALSE.

The following example returns all rows where the Shape column value has the concrete type
ST_Curve or one if its subtypes (ST_LineString, ST_CircularString, or
ST_CompoundCurve):
SELECT * FROM SpatialShapes WHERE Shape IS OF (ST_Curve);

Using the TREAT expression for subtypes
The ANSI/SQL standard defines a subtype treatment expression that allows the declared type
of an expression to be efficiently changed from a supertype to a subtype. This can be used
when you know the concrete type (also called object type in other languages) of the expression
is the specified subtype or a subtype of the specified subtype. This is more efficient that using

Spatial data

Administration: Spatial Data 21

the CAST function since the CAST function makes a copy of the value, while TREAT does not
make a copy. The syntax is as follows:

TREAT(value-expression AS target-subtype)
If no error condition is raised, the result is the value-expression with declared type of target-
subtype.

The subtype treatment expression gives an error in the following cases:

• If value-expression is not a user-defined type
• If target-subtype is not a subtype of the declared type of value-expression
• If the dynamic type of value-expression is not a subtype of target-subtype

The following example effectively changes the declared type of the ST_Geometry Shape
column to the ST_Curve subtype so that the ST_Curve type's ST_Length method can be
called:
SELECT ShapeID, TREAT(Shape AS ST_Curve).ST_Length() FROM
SpatialShapes WHERE Shape IS OF (ST_Curve);

How to create geometries
There are several methods for creating geometries in a database:

• Load from Well Known Text (WKT) or Well Known Binary (WKB) formats – You
can load or insert data in WKT or WKB formats. These formats are defined by the OGC,
and all spatial database vendors support them. SAP Sybase IQ performs automatic
conversion from these formats to geometry types.

• Load from ESRI shapefiles – You can load data from ESRI shapefiles into a new or
existing table. There are a number of ways to do this.

• Use a SELECT...FROM OPENSTRING statement – You can execute a SELECT...
FROM OPENSTRING statement on a file containing the spatial data. For example:
INSERT INTO world_cities(country, city, point)
 SELECT country, city, NEW ST_Point(longitude, latitude, 4326)
 FROM OPENSTRING(FILE 'capitalcities.csv')
 WITH(
 country CHAR(100),
 city CHAR(100),
 latitude DOUBLE,
 longitude DOUBLE)

• Create coordinate points by combining latitude and longitude values – You can
combine latitude and longitude data to create a coordinate of spatial data type ST_Point.
For example, if you had a table that already has latitude and longitude columns, you can
create an ST_Point column that holds the values as a point using a statement similar to the
following:

Spatial data

22 SAP Sybase IQ

ALTER TABLE my_table
 ADD point AS ST_Point(SRID=4326)
 COMPUTE(NEW ST_Point(longitude, latitude, 4326));

• Create geometries using constructors and static methods – You can create geometries
using constructors and static methods.

Viewing spatial data as images (Interactive SQL)
In Interactive SQL, you can view a geometry as an image using the Spatial Preview tab to
understand what the data in the database represents.

Prerequisites

You must have SELECT privilege on the table you are selecting from, or the SELECT ANY
TABLE system privilege.

Task

Each instance of Interactive SQL is associated with a different connection to a database. When
you open an instance of the Spatial Viewer from within Interactive SQL, that instance of
Spatial Viewer remains associated with that instance of Interactive SQL, and shares the
connection to the database.

When you execute a query in the Spatial Viewer, if you attempt to execute a query in the
associated instance of Interactive SQL, you get an error. Likewise, if you have multiple
instances of the Spatial Viewer open that were created by the same instance of Interactive
SQL, only one of those instances can execute a query at a time; the other instances must wait
for the query to finish.

Note: By default, Interactive SQL truncates values in the Results pane to 256 characters. If
Interactive SQL returns an error indicating that the full column value could not be read,
increase the truncation value. To do this, click Tools » Options and click SAP Sybase IQ in
the left pane. On the Results tab, change Truncation Length to a high value, such as 5000.
Click OK to save your changes, execute query again, and then double-click the row again.

1. Connect to your database in Interactive SQL.

2. Execute a query to select spatial data from a table. For example:
SELECT * FROM owner.spatial-table;

3. Double-click any value in the Shapes column in the Results pane to open the value in the
Value window.

The value is displayed as text on the Text tab of the Value window.

4. Click the Spatial Preview tab to see the geometry as a Scalable Vector Graphic (SVG).

The geometry is displayed as a Scalable Vector Graphic (SVG).

Spatial data

Administration: Spatial Data 23

Next

The spatial data can be viewed as geometry by using the Previous Row and Next Row buttons
to view other rows in the result set.

Viewing spatial data as images (Spatial Viewer)
You can view multiple geometries as an image to understand what the data in the database
represents using the Spatial Viewer.

Prerequisites

You must have SELECT privilege on the table you are selecting from, or the SELECT ANY
TABLE system privilege.

Task

The order of rows in a result matter to how the image appears in the Spatial Viewer because
the image is drawn in the order in which the rows are processed, with the most recent
appearing on the top. Shapes that occur later in a result set can obscure ones that occur earlier
in the result set.

1. Connect to your database in Interactive SQL, click Tools » Spatial Viewer.

2. In the Spatial Viewer, execute a query similar to the following in the SQL pane and then
click Execute:
SELECT * FROM GROUPO.SpatialShapes;

3. Use the Draw Outlined Polygons tool to remove the coloring from the polygons in a
drawing to reveal the outline of all shapes. This tool is located beneath the image, near the
controls for saving, zooming, and panning.

All of the geometries in the result set are displayed in the Results area as one image.

Loading spatial data from a Well Known Text (WKT) file
You can add spatial data to a table by using a Well Known Text file (WKT) that contains text
that can be used to load spatial data into a database and be represented as geometry.

Prerequisites

The privileges required to load data depend on the -gl server option. If the -gl option is set to
ALL, one of the following must be true:

you are the owner of the table

Spatial data

24 SAP Sybase IQ

you have LOAD privilege on the table
you have the LOAD ANY TABLE system privilege
you have the ALTER ANY TABLE system privilege

If the -gl option is set to DBA, you must the LOAD ANY TABLE or ALTER ANY TABLE
system privilege.

If the -gl option is set to NONE, LOAD TABLE is not permitted.

When loading from a file on a client computer:

• READ CLIENT FILE privilege is also required.
• Read privileges are required on the directory being read from.
• The allow_read_client_file database option must be enabled.
• The read_client_file secure feature must be enabled.

Task

1. Create a file that contains spatial data in WKT format that you can load into the database.

The file can be in any format supported by the LOAD TABLE statement.

2. In Interactive SQL, connect to your database.

3. Create a table and load the data from the file into using a statement similar to the following:
DROP TABLE IF EXISTS SA_WKT;
CREATE TABLE SA_WKT (
 description CHAR(24),
 sample_geometry ST_Geometry(SRID=1000004326)
);

LOAD TABLE SA_WKT FROM 'C:\\Documents and Settings\\All Users\
\Documents\\SAP Sybase IQ 16\\Samples\\wktgeometries.csv'
DELIMITED BY ',';

The data is loaded into the table.

The spatial data is successfully loaded from the WKT file.

Next

You can view the data in Interactive SQL using the Spatial Viewer.

Create or Manage a Spatial Reference System
Use Interactive SQL or SAP Control Center to create and manage SAP Sybase IQ spatial
reference units of measure.

The unit of measure that you want to associate with the SRS must already exist.

Spatial data

Administration: Spatial Data 25

With SAP Control Center, you can create a spatial reference system (SRS) that uses an
existing one as a template and then edit the settings. Therefore you should choose a spatial
reference system that is similar to the one you want to create.

To create a spatial reference system requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• CREATE ANY OBJECT system privilege.

To modify a spatial reference system requires one of:

• You are the owner of the spatial reference system.
• ALTER privilege on the spatial reference system
• MANAGE ANY SPATIAL OBJECT system privilege
• ALTER ANY OBJECT system privilege.

To delete a spatial reference system requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• DROP ANY OBJECT system privilege.
• You own the spatial references system.

Create or Manage a Spatial Unit of Measure
Several units of measure are installed with the software. If the installed units of measure are
not appropriate for your data, you can create your own.

Use Interactive SQL or SAP Control Center to create and manage SAP Sybase IQ spatial units
of measure.

To create a spatial unit of measure requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• CREATE ANY OBJECT system privilege.

To delete a spatial unit of measure requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• DROP ANY OBJECT system privilege.
• You own the spatial unit of measure.

Spatial data

26 SAP Sybase IQ

Advanced spatial topics

This section contains advanced spatial topics.

How flat-Earth and round-Earth representations work
SAP Sybase IQ supports both flat-Earth and round-Earth representations. Flat-Earth
reference systems project all or a portion of the surface of the Earth to a flat, two dimensional
plane (planar), and use a simple 2D Euclidean geometry. Lines between points are straight
(except for circularstrings), and geometries cannot wrap over the edge (cross the dateline).

Round-Earth spatial reference systems use an ellipsoid to represent the Earth. Points are
mapped to the ellipsoid for computations, all lines follow the shortest path and arc toward the
pole, and geometries can cross the date line.

Both flat-Earth and round-Earth representations have their limitations. There is not a single
ideal map projection that best represents all features of the Earth, and depending on the
location of an object on the Earth, distortions may affect its area, shape, distance, or direction.

Limitations of round-Earth spatial reference systems
When working with a round-Earth spatial reference system such as WGS 84, many operations
are not available. For example, computing distance is restricted to points or collections of
points.

Some predicates and set operations are also not available.

Circularstrings are not allowed in round-Earth spatial reference systems.

Computations in round-Earth spatial reference systems are more expensive than the
corresponding computation in a flat-Earth spatial reference system.

Limitations of flat-Earth spatial reference systems
A flat-Earth spatial reference system is a planar spatial reference system that has a projection
defined for it. Projection resolves distortion issues that occur when using a flat-Earth spatial
reference system to operate on round-Earth data. For example of the distortion that occurs if
projection is not used, the next two images show the same group of zip code regions in
Massachusetts. The first image shows the data in a SRID 3586, which is a projected planar
spatial reference system specifically for Massachusetts data. The second image shows the data
in a planar spatial reference system without projection (SRID 1000004326). The distortion
manifests itself in the second image as larger-than-actual distances, lengths, and areas that
cause the image to appear horizontally stretched.

Advanced spatial topics

Administration: Spatial Data 27

While more calculations are possible in flat-Earth spatial reference systems, calculations are
only accurate for areas of bounded size, due to the effect of projection.

You can project round-Earth data to a flat-Earth spatial reference system to perform distance
computations with reasonable accuracy provided you are working within distances of a few
hundred kilometers. To project the data to a planar projected spatial reference system, you use
the ST_Transform method.

How snap-to-grid and tolerance impact spatial calculations

Snap-to-grid is the action of positioning the points in a geometry so they align with
intersection points on a grid. When aligning a point with the grid, the X and Y values may be
shifted by a small amount - similar to rounding. In the context of spatial data, a grid is a
framework of lines that is laid down over a two-dimensional representation of a spatial
reference system. SAP Sybase IQ uses a square grid.

As a simplistic example of snap-to-grid, if the grid size is 0.2, then the line from
Point(14.2321, 28.3262) to Point(15.3721, 27.1128) would be snapped to the line from
Point(14.2, 28.4) to Point(15.4, 27.2). Grid size is typically much smaller than this simplistic
example, however, so the loss of precision is much less.

By default, SAP Sybase IQ automatically sets the grid size so that 12 significant digits can be
stored for every point within the X and Y bounds of a spatial reference system. For example, if

Advanced spatial topics

28 SAP Sybase IQ

the range of X values is from -180 to 180, and the range of Y values is from -90 to 90, the
database server sets the grid size to 1e-9 (0.000000001). That is, the distance between both
horizontal and vertical grid lines is 1e-9. The intersection points of the grid line represents all
the points that can be represented in the spatial reference system. When a geometry is created
or loaded, each point's X and Y coordinates are snapped to the nearest points on the grid.

Tolerance defines the distance within which two points or parts of geometries are considered
equal. This can be thought of as all geometries being represented by points and lines drawn by
a marker with a thick tip, where the thickness is equal to the tolerance. Any parts that touch
when drawn by this thick marker are considered equal within tolerance. If two points are
exactly equal to tolerance apart, they are considered not equal within tolerance.

As a simplistic example of tolerance, if the tolerance is 0.5, then Point(14.2, 28.4) and
Point(14.4, 28.2) are considered equal. This is because the distance between the two points
(in the same units as X and Y) is about 0.283, which is less than the tolerance. Tolerance is
typically much smaller than this simplistic example, however.

Tolerance can cause extremely small geometries to become invalid. Lines which have length
less than tolerance are invalid (because the points are equivalent), and similarly polygons
where all points are equal within tolerance are considered invalid.

Snap-to-grid and tolerance are set on the spatial reference system and are always specified in
same units as the X and Y (or Longitude and Latitude) coordinates. Snap-to-grid and tolerance
work together to overcome issues with inexact arithmetic and imprecise data. However, you
should be aware of how their behavior can impact the results of spatial operations.

Note: For planar spatial reference systems, setting grid size to 0 is never recommended as it
can result in incorrect results from spatial operations. For round-Earth spatial reference
systems, grid size and tolerance must be set to 0. SAP Sybase IQ uses fixed grid size and
tolerance on an internal projection when performing round-Earth operations.

The following examples illustrate the impact of grid size and tolerance settings on spatial
calculations.

Example 1: Snap-to-grid impacts intersection results

Two triangles (shown in black) are loaded into a spatial reference system where tolerance is set
to grid size, and the grid in the diagram is based on the grid size. The red triangles represent the
black triangles after the triangle vertexes are snapped to the grid. Notice how the original
triangles (black) are well within tolerance of each other, whereas the snapped versions in red
do not. ST_Intersects returns 0 for these two geometries. If tolerance was larger than the grid
size, ST_Intersects would return 1 for these two geometries.

Advanced spatial topics

Administration: Spatial Data 29

Example 2: Tolerance impacts intersection results

In the following example, two lines lie in a spatial reference system where tolerance is set to 0.
The intersection point of the two lines is snapped to the nearest vertex in the grid. Since
tolerance is set to 0, a test to determine if the intersection point of the two lines intersects the
diagonal line returns false.

In other words, the following expression returns 0 when tolerance is 0:
vertical_line.ST_Intersection(diagonal_line).ST_Intersects(diagon
al_line)

Setting the tolerance to grid size (the default), however, causes the intersection point to be
inside the thick diagonal line. So a test of whether the intersection point intersects the diagonal
line within tolerance would pass:

Advanced spatial topics

30 SAP Sybase IQ

Example 3: Tolerance and transitivity

In spatial calculations when tolerance is in use, transitivity does not necessary hold. For
example, suppose you have the following three lines in a spatial reference system where the
tolerance is equal to the grid size:

The ST_Equals method considers the black and red lines to be equivalent within tolerance,
and the red and blue lines to be equivalent within tolerance but black line and the blue line are
not equivalent within tolerance. ST_Equals is not transitive.

ST_OrderingEquals considers each of these lines to be different, and ST_OrderingEquals is
transitive.

Example 4: Impact of grid and tolerance settings on imprecise data

Suppose you have data in a projected planar spatial reference system which is mostly accurate
to within 10 centimeters, and always accurate to within 10 meters. You have three choices:

1. Use the default grid size and tolerance that SAP Sybase IQ selects, which is normally
greater than the precision of your data. Although this provides maximum precision,
predicates such as ST_Intersects, ST_Touches, and ST_Equals may give results that are
different than expected for some geometries, depending on the accuracy of the geometry

Advanced spatial topics

Administration: Spatial Data 31

values. For example, two adjacent polygons that share a border with each other may not
return true for ST_Intersects if the leftmost polygon has border data a few meters to the left
of the rightmost polygon.

2. Set the grid size to be small enough to represent the most accuracy in any of your data (10
centimeters, in this case) and at least four times smaller than the tolerance, and set
tolerance to represent the distance to which your data is always accurate to (10 meters, in
this case). This strategy means your data is stored without losing any precision, and that
predicates will give the expected result even though the data is only accurate within 10
meters.

3. Set grid size and tolerance to the precision of your data (10 meters, in this case). This way
your data is snapped to within the precision of your data, but for data that is more accurate
than 10 meters the additional accuracy is lost.
In many cases predicates will give the expected results but in some cases they will not. For
example, if two points are within 10 centimeters of each other but near the midway point of
the grid intersections, one point will snap one way and the other point will snap the other
way, resulting in the points being about 10 meters apart. For this reason, setting grid size
and tolerance to match the precision of your data is not recommended in this case.

How interpolation impacts spatial calculations
Interpolation is the process of using known points in a geometry to approximate unknown
points. Several spatial methods and predicates use interpolation when the calculations involve
circular arcs. Interpolation turns a circular arc into a sequence of straight lines. For example, a
circularstring representing a quarter arc might be interpolated as a linestring with 11 control
points.

Interpolation example

1. In Interactive SQL, connect to the sample database execute the following statement to
create a variable called arc in which you will store a circularstring:
CREATE VARIABLE arc ST_CircularString;

2. Execute the following statement to create a circularstring and store it in the arc variable:
SET arc = NEW ST_CircularString('CircularString(-1 0, -0.707107
0.707107, 0 1)');

3. Execute the following statement to temporarily set the relative tolerance to 1% using the
st_geometry_interpolation option.
SET TEMPORARY OPTION st_geometry_interpolation = 'relative-
tolerance-percent=1';

Setting relative tolerance to 1% is optional, but makes the effects of interpolation more
visible for the purposes of this example.

4. Open the Spatial Viewer (in Interactive SQL, click Tools » Spatial Viewer) and execute
the following query to view the circularstring:
SELECT arc
 UNION ALL SELECT arc.ST_CurveToLine()

Advanced spatial topics

32 SAP Sybase IQ

 UNION ALL SELECT arc.ST_CurveToLine().ST_PointN(row_num)
 FROM RowGenerator WHERE row_num <=
arc.ST_CurveToLine().ST_NumPoints();

Notice how the arc is broken into a sequence of linestring. Since relative tolerance was set
to 1%, each line segment shows up as a line that bows in from the true arc. The maximum
distance between the interpolated line string and the true arc is 1% of the radius of the
arc.

How polygon ring orientation works

Internally, SAP Sybase IQ interprets polygons by looking at the orientation of the constituent
rings. As one travels a ring in the order of the defined points, the inside of the polygon is on the
left side of the ring. The same rules are applied in PLANAR and ROUND EARTH spatial
reference systems. In most cases, outer rings are in counter-clockwise orientation and interior
rings are in the opposite (clockwise) orientation. The exception is for rings that contain the
north or south pole in ROUND EARTH.

Advanced spatial topics

Administration: Spatial Data 33

By default, polygons are automatically reoriented if they are created with a different ring
orientation than the SAP Sybase IQ internal ring orientation. Use the POLYGON FORMAT
clause of the CREATE SPATIAL REFERENCE SYSTEM statement to specify the
orientation of polygon rings of the input data. This should only be done if all input data for the
spatial reference system uses the same ring orientation. The polygon format can also be
specified on some polygon and multisurface constructors.

For example, if you create a polygon and specify the points in a clockwise order
Polygon((0 0, 5 10, 10 0, 0 0), (4 2, 4 4, 6 4, 6 2, 4 2)), the
database server automatically rearranges the points to be in counter-clockwise rotation, as
follows: Polygon((0 0, 10 0, 5 10, 0 0), (4 2, 4 4, 6 4, 6 2, 4
2)).

If the inner ring was specified before the outer ring, the outer ring would appear as the first
ring

In order for polygon reorientation to work in round-Earth spatial reference systems, polygons
are limited to 160° in diameter.

How geometry interiors, exteriors, and boundaries work
The interior of a geometry is all points that are part of the geometry except the boundary.

The exterior of a geometry is all points that are not part of the geometry. This can include the
space inside an interior ring, for example in the case of a polygon with a hole. Similarly, the
space both inside and outside a linestring ring is considered the exterior.

The boundary of a geometry is what is returned by the ST_Boundary method.

Knowing the boundary of a geometry helps when comparing to another geometry to
determine how the two geometries are related. However, while all geometries have an interior
and an exterior, not all geometries have a boundary, nor are their boundaries always intuitive.

Here are some cases of geometries where the boundary may not be intuitive:

Advanced spatial topics

34 SAP Sybase IQ

• Point – A point (such as A) has no boundary.
• Lines and curves – The boundary for lines and curves (B, C, D, E, F) are their endpoints.

Geometries B, C, and E have two end points for a boundary. Geometry D has four end
points for a boundary, and geometry F has four.

• Polygon – The boundary for a polygon (such as G) is its outer ring and any inner rings.
• Rings – A ring—a curve where the start point is the same as the end point and there are no

self-intersections (such as H)—has no boundary.

How spatial comparisons work
There are two methods you can use to test whether a geometry is equal to another geometry:
ST_Equals, and ST_OrderingEquals. These methods perform the comparison differently, and
return a different result.

• ST_Equals – The order in which points are specified does not matter, and point
comparison takes tolerance into account. Geometries are considered equal if they occupy
the same space, within tolerance. For example, if two linestrings occupy the same space,
yet one is defined with more points, they are still considered equal.

• ST_OrderingEquals – With ST_OrderingEquals, the two geometries must contain the
same hierarchy of objects with the exact same points in the same order to be considered
equal under ST_OrderingEquals. That is, the two geometries need to be exactly the same.

To illustrate the difference in results when comparisons are made using ST_Equals versus
ST_OrderingEquals, consider the following lines. ST_Equals considers them all equal
(assuming line C is within tolerance). However, ST_OrderingEquals does not consider any of
them equal.

How SAP Sybase IQ performs comparisons of geometries
The database server uses ST_OrderingEquals to perform operations such as GROUP BY and
DISTINCT.

For example, when processing the following query the server considers two rows to be equal if
the two shape expressions have ST_OrderingEquals() = 1:

Advanced spatial topics

Administration: Spatial Data 35

SELECT DISTINCT Shape FROM GROUPO.SpatialShapes;

SQL statements can compare two geometries using the equal to operator (=), or not equal to
operator (<> or !=), including search conditions with a subquery and the ANY or ALL
keyword. Geometries can also be used in an IN search condition. For example, geom1 IN
(geom-expr1, geom-expr2, geom-expr3). For all of these search conditions,
equality is evaluated using the ST_OrderingEquals semantics.

You cannot use other comparison operators to determine if one geometry is less than or greater
than another (for example, geom1 < geom2 is not accepted). This means you cannot
include geometry expressions in an ORDER BY clause. However, you can test for
membership in a set.

How spatial relationships work
For best performance, use methods like ST_Within, or ST_Touches to test single, specific
relationships between geometries. However, if you have more than one relationship to test,
ST_Relate can be a better method, since you can test for several relationships at once.
ST_Relate is also good when you want to test for a different interpretation of a predicate.

The most common use of ST_Relate is as a predicate, where you specify the exact
relationship(s) to test for. However, you can also use ST_Relate to determine all possible
relationships between two geometries.

Predicate use of ST_Relate
ST_Relate assesses how geometries are related by performing intersection tests of their
interiors, boundaries, and exteriors. The relationship between the geometries is then described
in a 9-character string in DE-9IM (Dimensionally Extended 9 Intersection Model) format,
where each character of the string represents the dimension of the result of an intersection
test.

When you use ST_Relate as a predicate, you pass a DE-9IM string reflecting intersection
results to test for. If the geometries satisfy the conditions in the DE-9IM string you specified,
then ST_Relate returns a 1. If the conditions are not satisfied, then 0 is returned. If either or
both of the geometries is NULL, then NULL is returned.

The 9-character DE-9IM string is a flattened representation of a pair-wise matrix of the
intersection tests between interiors, boundaries, and exteriors. The next table shows the 9
intersection tests in the order they are performed: left to right, top to bottom:

g2 interior g2 boundary g2 exterior

g1 interior Interior(g1)
∩ Interi-
or(g2)

Interior(g1)
∩ Boun-
dary(g2)

Interior(g1)
∩ Exteri-
or(g2)

Advanced spatial topics

36 SAP Sybase IQ

g1 boundary Boundary(g1)
∩ Interi-
or(g2)

Boundary(g1)
∩ Boun-
dary(g2)

Boundary(g1)
∩ Exteri-
or(g2)

g1 exterior Exterior(g1)
∩ Interi-
or(g2)

Exterior(g1)
∩ Boun-
dary(g2)

Exterior(g1)
∩ Exteri-
or(g2)

When you specify the DE-9IM string, you can specify *, 0, 1, 2, T, or F for any of the 9
characters. These values refer to the number of dimensions of the geometry created by the
intersection.

When you specify: The intersection test result must re-
turn:

T one of: 0, 1, 2 (an intersection of any dimension)

F -1

* -1, 0, 1, 2 (any value)

0 0

1 1

2 2

Suppose you want to test whether a geometry is within another geometry using ST_Relate and
a custom DE-9IM string for the within predicate:
SELECT new ST_Polygon('Polygon((2 3, 8 3, 4 8, 2
3))').ST_Relate(new ST_Polygon('Polygon((-3 3, 3 3, 3 6, -3 6, -3
3))'), 'T*F**F***');

This is equivalent to asking ST_Relate to look for the following conditions when performing
the intersection tests:

g2 interior g2 boundary g2 exterior

g1 interior one of: 0, 1, 2 one of: 0, 1, 2, -1 -1

g1 boundary one of: 0, 1, 2, -1 one of: 0, 1, 2, -1 -1

g1 exterior one of: 0, 1, 2, -1 one of: 0, 1, 2, -1 one of: 0, 1, 2, -1

When you execute the query, however, ST_Relate returns 0 indicating that the first geometry is
not within the second geometry.

To view the two geometries and compare their appearance to what is being tested, execute the
following statement in the Interactive SQL Spatial Viewer (Tools » Spatial Viewer):

Advanced spatial topics

Administration: Spatial Data 37

SELECT NEW ST_Polygon('Polygon((2 3, 8 3, 4 8, 2 3))')
UNION ALL
SELECT NEW ST_Polygon('Polygon((-3 3, 3 3, 3 6, -3 6, -3 3))');

Non-predicate use of ST_Relate
The non-predicate use of ST_Relate returns the full relationship between two geometries.

For example, suppose you have the same two geometries used in the previous example and you
want to know how they are related. You would execute the following statement in Interactive
SQL to return the DE-9IM string defining their relationship.
SELECT new ST_Polygon('Polygon((2 3, 8 3, 4 8, 2
3))').ST_Relate(new ST_Polygon('Polygon((-3 3, 3 3, 3 6, -3 6, -3
3))'));

ST_Relate returns the DE-9IM string, 212111212.

The matrix view of this value shows that there are many points of intersection:

g2 interior g2 boundary g2 exterior

g1 interior 2 1 2

Advanced spatial topics

38 SAP Sybase IQ

g1 boundary 1 1 1

g1 exterior 2 1 2

How spatial dimensions work
As well as having distinct properties of its own, each of the geometry subtypes inherits
properties from the ST_Geometry supertype. A geometry subtype has one of the following
dimensional values:

• -1 – A value of -1 indicates that the geometry is empty (it does not contain any points).
• 0 – A value of 0 indicates the geometry has no length or area. The subtypes ST_Point and

ST_MultiPoint have dimensional values of 0. A point represents a geometric feature that
can be represented by a single pair of coordinates, and a cluster of unconnected points
represents a multipoint feature.

• 1 – A value of 1 indicates the geometry has length but no area. The set of subtypes that have
a dimension of 1 are subtypes of ST_Curve (ST_LineString, ST_CircularString, and
ST_CompoundCurve), or collection types containing these types, but no surfaces. In GIS
data, these geometries of dimension 1 are used to define linear features such as streams,
branching river systems, and road segments.

• 2 – A value of 2 indicates the geometry has area. The set of subtypes that have a dimension
of 2 are subtypes of ST_Surface (ST_Polygon and ST_CurvePolygon), or collection types
containing these types. Polygons and multipolygons represent geometric features with
perimeters that enclose a defined area such as lakes or parks.

The dimension of a geometry is not related to the number of coordinate dimensions of each
point in a geometry.

A single ST_GeomCollection can contain geometries of different dimensions, and the highest
dimension geometry is returned

Advanced spatial topics

Administration: Spatial Data 39

Advanced spatial topics

40 SAP Sybase IQ

Tutorial: Experimenting with the spatial
features

This tutorial allows you to experiment with some of the spatial features in SAP Sybase IQ. To
do so, you will first load an ESRI shapefile into your sample database (iqdemo.db) to give you
some valid spatial data to experiment with.

The tutorial is broken into the following parts:

Lesson 1: Install additional units of measure and spatial reference systems
Lesson 2: Download the ESRI shapefile data
Lesson 3: Load the ESRI shapefile data
Lesson 4: Query spatial data
Lesson 5: Output spatial data to SVG
Lesson 6: Project spatial data

Privileges
To perform this tutorial, you must have the following privileges:

MANAGE ANY SPATIAL OBJECT system privilege
CREATE TABLE system privilege
WRITE FILE system privilege
SELECT privilege on the GROUPO.SpatialContacts table

Lesson 1: Install additional units of measure and spatial
reference systems

This lesson shows you how to use the sa_install_feature system procedure to install many
predefined units of measure and spatial reference systems you will need later in this tutorial.

Prerequisites

This lesson assumes you have the roles and privileges listed in the Privileges section at the start
of this tutorial: Tutorial: Experimenting with the spatial features.

Task

1. Using Interactive SQL, start and connect to the sample database (iqdemo.db).

The sample database is located in "%ALLUSERPROFILE%"\SybaseIQ\demo.

Tutorial: Experimenting with the spatial features

Administration: Spatial Data 41

2. Execute the following statement in Interactive SQL:
CALL sa_install_feature('st_geometry_predefined_srs');

When the statement finishes, the additional units of measure and spatial reference systems
have been installed.

3. To determine the units of measure installed in your database, execute the following query
in Interactive SQL:
SELECT * FROM ST_UNITS_OF_MEASURE;

4. To determine the spatial reference systems installed in your database, execute the
following query in Interactive SQL:
SELECT * FROM ST_SPATIAL_REFERENCE_SYSTEMS;

The list of installed spatial reference systems is returned.

Lesson 2: Download the ESRI shapefile data

Prerequisites

This lesson assumes you have completed all preceding lessons. See Lesson 1: Install
additional units of measure and spatial reference systems.

This lesson assumes you have the roles and privileges listed in the Privileges section at the start
of this tutorial: Tutorial: Experimenting with the spatial features.

Task

1. Create a local directory called c:\temp\massdata.

2. Go to the following URL: http://www2.census.gov/cgi-bin/shapefiles2009/national-files

3. On the right side of the page, in the State- and County-based Shapefiles dropdown, click
Massachusetts, and then click Submit.

4. On the left side of the page, click 5-Digit ZIP Code Tabulation Area (2002), and then
click Download Selected Files.

5. When prompted, save the zip file, multiple_tiger_files.zip, to c:\temp
\massdata, and extract its contents. This creates a subdirectory called
25_MASSACHUSETTS containing another zip file called
tl_2009_25_zcta5.zip.

6. Extract the contents of tl_2009_25_zcta5.zip to C:\temp\massdata.

This lesson unpacks five files, including an ESRI shapefile (.shp) that you can use to load the
spatial data into the database.

Tutorial: Experimenting with the spatial features

42 SAP Sybase IQ

http://www2.census.gov/cgi-bin/shapefiles2009/national-files

Lesson 3: Load the ESRI shapefile data
This lesson shows you how to determine the columns in the ESRI shapefile and use that
information to create a table that you will load the data into.

Prerequisites

This lesson assumes you have completed all preceding lessons. See Lesson 1: Install
additional units of measure and spatial reference systems.

This lesson assumes you have the roles and privileges listed in the Privileges section at the start
of this tutorial: Tutorial: Experimenting with the spatial features.

Task

If you have difficulty running any of the steps due to privilege problems, ask your
administrator what value the -gl database option is set to, and then read the privilege section of
the st_geometry_load_shapefile system procedure to determine the corresponding privileges
you need.

1. Since spatial data is associated with a specific spatial reference system, when you load data
into the database, you must load it into the same spatial reference system, or at least one
with an equivalent definition. To find out the spatial reference system information for the
ESRI shapefile, open the project file, c:\temp\massdata
\tl_2009_25_zcta5.prj, in a text editor. This file contains the spatial reference
system information you need.
GEOGCS["GCS_North_American_1983", DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]

The string GCS_North_American_1983 is the name of the spatial reference system
associated with the data.

2. A quick query of the ST_SPATIAL_REFERENCE_SYSTEMS view, SELECT * FROM
ST_SPATIAL_REFERENCE_SYSTEMS WHERE
srs_name='GCS_North_American_1983';, reveals that this name is not present
in the list of predefined SRSs. However, you can query for a spatial reference system with
the same definition and use it instead:
SELECT *
FROM ST_SPATIAL_REFERENCE_SYSTEMS
WHERE definition LIKE '%1983%'
AND definition LIKE 'GEOGCS%';

The query returns a single spatial reference system, NAD83 with SRID 4269 that has the
same definition. This is the SRID you will assign to the data you load from the shapefile.

Tutorial: Experimenting with the spatial features

Administration: Spatial Data 43

3. In Interactive SQL, execute the following statement to create a table called Massdata, load
the shapefile into the table, and assign SRID 4269 to the data. he load may take a minute.
CALL st_geometry_load_shapefile ('c:\\temp\\massdata\
\tl_2009_25_zcta5.shp',
4269,
'Massdata');

Note: The Import Wizard also supports loading data from shapefiles.

4. In Interactive SQL, query the table to view the data that was in the shapefile:
SELECT * FROM Massdata;

Each row in the results represents data for a zip code region.

The geometry column holds the shape information of the zip code region as either a
polygon (one area) or multipolygon (two or more noncontiguous areas).

5. The ZCTA5CE column holds zip codes. To make it easier to refer to this column later in the
tutorial, execute the following ALTER TABLE statement n Interactive SQL to change the
column name to ZIP:

ALTER TABLE Massdata
RENAME ZCTA5CE TO ZIP;

6. The two columns, INTPTLON and INTPTLAT, represent the X and Y coordinates for the
center points of the zip code regions. Execute the following ALTER TABLE statement in
Interactive SQL to create a column called CenterPoint of type ST_Point, and to turn each X
and Y set into a value in CenterPoint.
ALTER TABLE Massdata
ADD CenterPoint AS ST_Point(SRID=4269)
COMPUTE(new ST_Point(CAST(INTPTLON AS DOUBLE), CAST(INTPTLAT
AS DOUBLE), 4269));

Now, each ST_Point value in Massdata.CenterPoint represents the center point of the zip
code region stored in Massdata.geometry.

7. To view an individual geometry (a zip code region) as a shape, double-click any value
except the first one in Massdata.geometry and then click the Spatial Preview tab of the
Value Of Column window.

If you receive an error saying the value is to large, or suggesting you include a primary key
in the results, it is because the value has been truncated for display purposes in Interactive
SQL. To fix this, you can either modify the query to include the primary key column in the
results, or adjust the Truncation Length setting for Interactive SQL. Changing the setting
is recommended if you don't want to have to include the primary key each time you query
for geometries with the intent to view them in Interactive SQL.

To change the Truncation Length setting for Interactive SQL, click Tools » Options »
SAP Sybase IQ, set Truncation Length to a high number such as 100000.

8. To view the entire data set as one shape, click Tools » Spatial Viewer to open the SAP
Sybase IQ Spatial Viewer and execute the following query in Interactive SQL:

Tutorial: Experimenting with the spatial features

44 SAP Sybase IQ

SELECT geometry FROM Massdata
UNION ALL SELECT CenterPoint FROM Massdata;

The ESRI shapefile data is loaded.

Lesson 4: Query spatial data
This lesson shows you how to use some of the spatial methods to query the data in a
meaningful context. You will also learn how to calculate distances, which requires you to add
units of measurement to your database.

Prerequisites

This lesson assumes you have completed all preceding lessons. See Lesson 1: Install
additional units of measure and spatial reference systems.

This lesson assumes you have the roles and privileges listed in the Privileges section at the start
of this tutorial: Tutorial: Experimenting with the spatial features.

Tutorial: Experimenting with the spatial features

Administration: Spatial Data 45

Task

The queries are performed on one or both of the SpatialContacts and Massdata tables. The
SpatialContacts, which was already present in your database, holds names and contact
information for people—many of whom live in Massachusetts.
1. In Interactive SQL, create a variable named @Mass_01775 to hold the associated

geometry for the zip code region 01775.
CREATE VARIABLE @Mass_01775 ST_Geometry;
SELECT geometry INTO @Mass_01775
FROM Massdata
WHERE ZIP = '01775';

2. Suppose you want to find all contacts in SpatialContacts in the zip code area 01775 and
surrounding zip code areas. For this, you can use the ST_Intersects method, which returns
geometries that intersects with, or are the same as, the specified geometry. You would
execute the following statement in Interactive SQL:
SELECT c.Surname, c.GivenName, c.Street, c.City, c.PostalCode,
z.geometry
FROM Massdata z, GROUPO.SpatialContacts c
WHERE
c.PostalCode = z.ZIP
AND z.geometry.ST_Intersects(@Mass_01775) = 1;

3. All rows in Massdata.geometry are associated with the same spatial reference system
(SRID 4269) because you assigned SRID 4269 when you created the geometry column
and loaded data into it.

However, it is also possible to create an undeclared ST_Geometry column (that is,
without assigning a SRID to it). This may be necessary if you intend store spatial values
that have different SRSs associated to them in a single column. When operations are
performed on these values, the spatial reference system associated with each value is used.

One danger of having an undeclared column, is that the database server does not prevent
you from changing a spatial reference system that is associated with data in an undeclared
column.

If the column has a declared SRID, however, the database server does not allow you to
modify the spatial reference system associated with the data. You must first unload and
then truncate the data in the declared column, change the spatial reference system, and
then reload the data.

You can use the ST_SRID method to determine the SRID associated with values in a
column, regardless of whether it is declared or not. For example, the following statement
shows the SRID assigned to each row in the Massdata.geometry column:
SELECT geometry.ST_SRID()
FROM Massdata;

4. You can use the ST_CoveredBy method to check that a geometry is completely contained
within another geometry. For example, Massdata.CenterPoint (ST_Point type) contains
the latitude/longitude coordinates of the center of the zip code area, while
Massdata.geometry contains the polygon reflecting the zip code area. You can do a quick

Tutorial: Experimenting with the spatial features

46 SAP Sybase IQ

check to make sure that no CenterPoint value has been set outside its zip code area by
executing the following query in Interactive SQL:
SELECT * FROM Massdata
WHERE NOT(CenterPoint.ST_CoveredBy(geometry) = 1);

No rows are returned, indicating that all CenterPoint values are contained within their
associated geometries in Massdata.geometry. This check does not validate that they are the
true center, of course. You would need to project the data to a flat-Earth spatial reference
system and check the CenterPoint values using the ST_Centroid method. You will learn
about projection later in this tutorial.

5. You can use the ST_Distance method to measure the distance between the center point of
the zip code areas. For example, suppose you want the list of zip code within 100 miles of
zip code area 01775. You could execute the following query in Interactive SQL:
SELECT c.PostalCode, c.City,
 z.CenterPoint.ST_Distance((SELECT CenterPoint
 FROM Massdata WHERE ZIP = '01775'),
 'Statute mile') dist,
 z.CenterPoint
FROM Massdata z, GROUPO.SpatialContacts c
WHERE c.PostalCode = z.ZIP
 AND dist <= 100
ORDER BY dist;

6. If knowing the exact distance is not important, you could construct the query using the
ST_WithinDistance method instead, which can offer better performance for certain
datasets (in particular, for large geometries):
SELECT c.PostalCode, c.City, z.CenterPoint
FROM Massdata z, GROUPO.SpatialContacts c
WHERE c.PostalCode = z.ZIP
 AND z.CenterPoint.ST_WithinDistance((SELECT CenterPoint
 FROM Massdata WHERE ZIP = '01775'),
 100, 'Statute mile') = 1
ORDER BY c.PostalCode;

The queries are executed on the spatial data.

Lesson 5: Output spatial data to SVG
In this lesson, you create an SVG document to view a multipolygon expressed in WKT. You
can export geometries to SVG format for viewing in Interactive SQL or in an SVG-compatible
application.

Prerequisites

This lesson assumes you have completed all preceding lessons. See Lesson 1: Install
additional units of measure and spatial reference systems.

This lesson assumes you have the roles and privileges listed in the Privileges section at the start
of this tutorial: Tutorial: Experimenting with the spatial features.

Tutorial: Experimenting with the spatial features

Administration: Spatial Data 47

Task
1. In Interactive SQL, execute the following statement to create a variable with an example

geometry:
CREATE OR REPLACE VARIABLE @svg_geom
ST_Polygon = (NEW ST_Polygon('Polygon ((1 1, 5 1, 5 5, 1 5, 1 1),
(2 2, 2 3, 3 3, 3 2, 2 2))'));

2. In Interactive SQL, execute the following SELECT statement to call the ST_AsSVG
method:
SELECT @svg_geom.ST_AsSVG() AS svg;

The result set has a single row that is an SVG image. You can view the image using the
SVG Preview feature in Interactive SQL. To do this, double-click the result row, and select
the SVG Preview tab. You should see a square geometry inside of another square
geometry.

Note: By default, Interactive SQL truncates values in the Results pane to 256 characters. If
Interactive SQL returns an error indicating that the full column value could not be read,
increase the truncation value. To do this, click Tools » Options and click SAP Sybase IQ
in the left pane. On the Results tab, change Truncation Length to a high value, such as
5000. Click OK to save your changes, execute query again, and then double-click the row
again.

3. The previous step described how to preview an SVG image within Interactive SQL.
However, it may be more useful to write the resulting SVG to a file so that it can be read by
an external application. You could use the xp_write_file system procedure or the
WRITE_CLIENT_FILE function [String] to write to a file relative to either the database
server or the client computer. In this example, you will use the OUTPUT statement
[Interactive SQL].

In Interactive SQL, execute the following SELECT statement to call the ST_AsSVG
method and output the geometry to a file named myPolygon.svg:

SELECT @svg_geom.ST_AsSVG();
OUTPUT TO 'c:\\temp\\massdata\\myPolygon.svg'
QUOTE ''
ESCAPES OFF
FORMAT TEXT

You must include the QUOTE '' and ESCAPES OFF clauses, otherwise line return
characters and single quotes are inserted in the XML to preserve whitespace, causing the
output to be an invalid SVG file.

4. Open the SVG in a web browser or application that supports viewing SVG images.
Alternatively, you can open the SVG in a text editor to view the XML for the geometry.

5. The ST_AsSVG method generates an SVG image from a single geometry. In some cases,
you want to generate an SVG image including all of the shapes in a group. The
ST_AsSVGAggr method is an aggregate function that combines multiple geometries into
a single SVG image. First, using Interactive SQL, create a variable to hold the SVG image
and generate it using the ST_AsSVGAggr method.

Tutorial: Experimenting with the spatial features

48 SAP Sybase IQ

CREATE OR REPLACE VARIABLE @svg XML;
SELECT ST_Geometry::ST_AsSVGAggr(geometry,
'attribute=fill="black"')
INTO @svg
FROM Massdata;

The @svg variable now holds an SVG image representing all of the zip code regions in the
Massdata table. The 'attribute=fill="black"' specifies the fill color that is
used for the generated image. If not specified, the database server chooses a random fill
color. Now that you have a variable containing the SVG image you are interested in, you
can write it to a file for viewing by other applications. Execute the following statement in
Interactive SQL to write the SVG image to a file relative to the database server.
CALL xp_write_file('c:\\temp\\Massdata.svg', @svg);

The WRITE_CLIENT_FILE function could also be used to write a file relative to the
client application, but additional steps may be required to ensure appropriate privileges are
enabled. If you open the SVG image in an application that supports SVG data, you should
see an image like the following:

The image is not uniformly black; there are small gaps between the borders of adjacent zip
code regions. These are actually white lines between the geometries and is characteristic of
the way the SVG is rendered. There are not really any gaps in the data. Larger white lines
are rivers and lakes.

The geometry has been viewed as an SVG.

Tutorial: Experimenting with the spatial features

Administration: Spatial Data 49

Lesson 6: Project spatial data
This lesson shows you how to project data into a spatial reference system that uses the flat-
Earth model so that you can calculate area and distance measurements.

Prerequisites

This lesson assumes you have completed all preceding lessons. See Lesson 1: Install
additional units of measure and spatial reference systems.

This lesson assumes you have the roles and privileges listed in the Privileges section at the start
of this tutorial: Tutorial: Experimenting with the spatial features.

Task

The spatial values in Massdata were assigned SRID 4269 (NAD83 spatial reference system)
when you loaded the data into the database from the ESRI shapefile. SRID 4269 is a round-
Earth spatial reference system. However, calculations such as the area of geometries and some
spatial predicates are not supported in the round-Earth model. If your data is currently
associated with a round-Earth spatial reference system, you can create a new spatial column
that projects the values into a flat-Earth spatial reference system, and then perform your
calculations on that column.

1. To measure the area of polygons representing the zip code areas, you must project the data
in Massdata.geometry to a flat-Earth spatial reference system.

To select an appropriate SRID to project the data in Massdata.geometry into, use
Interactive SQL to query the ST_SPATIAL_REFERENCE_SYSTEMS consolidated
view for a SRID containing the word Massachusetts, as follows:
SELECT * FROM ST_SPATIAL_REFERENCE_SYSTEMS WHERE srs_name LIKE
'%massachusetts%';

This returns several SRIDs suitable for use with the Massachusetts data. For the purpose of
this tutorial, 3586 will be used.

2. You must now create a column, Massdata.proj_geometry, into which you will project the
geometries into 3586 using the ST_Transform method. To do so, execute the following
statement in Interactive SQL:
ALTER TABLE Massdata
ADD proj_geometry
 AS ST_Geometry(SRID=3586)
 COMPUTE(geometry.ST_Transform(3586));

3. You can compute the area using the Massdata.proj_geometry. For example, execute the
following statement in Interactive SQL:
SELECT zip, proj_geometry.ST_ToMultiPolygon().ST_Area('Statute
Mile') AS area

Tutorial: Experimenting with the spatial features

50 SAP Sybase IQ

FROM Massdata
ORDER BY area DESC;

Note: ST_Area is not supported on round-Earth spatial reference systems and
ST_Distance is supported but only between point geometries.

4. To see the impact that projecting to another spatial reference system has on calculations of
distance, you can use the following query to compute the distance between the center
points of the zip codes using the round-Earth model (more precise) or the projected flat-
Earth model. Both models agree fairly well for this data because the projection selected is
suitable for the data set.
SELECT M1.zip, M2.zip,
 M1.CenterPoint.ST_Distance(M2.CenterPoint, 'Statute
Mile') dist_round_earth,

M1.CenterPoint.ST_Transform(3586).ST_Distance(M2.CenterPoint.S
T_Transform(3586),
 'Statute Mile') dist_flat_earth
FROM Massdata M1, Massdata M2
WHERE M1.ZIP = '01775'
ORDER BY dist_round_earth DESC;

5. Suppose you want to find neighboring zip code areas that border the zip code area 01775.
To do this, you would use the ST_Touches method. The ST_Touches method compares
geometries to see if one geometry touches another geometry without overlapping in any
way. The results for ST_Touches do not include the row for zip code 01775 (unlike the
ST_Intersects method).
CREATE OR REPLACE VARIABLE @Mass_01775 ST_Geometry;
SELECT geometry INTO @Mass_01775
FROM Massdata
WHERE ZIP = '01775';

SELECT record_number, proj_geometry
FROM Massdata
WHERE
proj_geometry.ST_Touches(@Mass_01775.ST_Transform(3586)) = 1;

6. You can use the ST_UnionAggr method to return a geometry that represents the union of a
group of zip code areas. For example, suppose you want a geometry reflecting the union of
the zip code areas neighboring, but not including, 01775.

In Interactive SQL, click Tools » Spatial Viewer and execute the following query:
SELECT ST_Geometry::ST_UnionAggr(proj_geometry)
FROM Massdata
WHERE
proj_geometry.ST_Touches(@Mass_01775.ST_Transform(3586)) = 1;

Double-click the result to view it.

If you receive an error saying the full column could not be read from the database, increase
the Truncation Length setting for Interactive SQL. To do this, in Interactive SQL click

Tutorial: Experimenting with the spatial features

Administration: Spatial Data 51

Tools » Options » SAP Sybase IQ, and set Truncation Length to a higher number.
Execute your query again and view the geometry.

You have finished the tutorial.

Tutorial: Experimenting with the spatial features

52 SAP Sybase IQ

Accessing and manipulating spatial data

This section describes the types, methods, and constructors you can use to access, manipulate,
and analyze spatial data. The spatial data types can be considered like data types or classes.
Each spatial data type has associated methods and constructors you use to access the data.

ST_CircularString type
The ST_CircularString type is a subtype of ST_Curve that uses circular line segments
between control points.

Syntax
ST_CircularString type

Members
All members of the ST_CircularString type, including all inherited members.

Members of ST_CircularString:

• ST_CircularString(ST_Point , ST_Point , ST_Point , ST_Point) – Constructs a
circularstring value from a list of points in a specified spatial reference system.

• ST_CircularString() – Constructs a circularstring representing the empty set.
• ST_CircularString(LONG BINARY[, INT]) – Constructs a circularstring from Well

Known Binary (WKB).
• ST_CircularString(LONG VARCHAR[, INT]) – Constructs a circularstring from a

text representation.
• ST_NumPoints() – Returns the number of points defining the circularstring.
• ST_PointN(INT) – Returns the nth point in the circularstring.

Members of ST_Curve:

• ST_CurveToLine() – Returns the ST_LineString interpolation of an ST_Curve value.
• ST_EndPoint() – Returns an ST_Point value that is the end point of the ST_Curve value.
• ST_IsClosed() – Test if the ST_Curve value is closed. A curve is closed if the start and end

points are coincident.
• ST_IsRing() – Tests if the ST_Curve value is a ring. A curve is a ring if it is closed and

simple (no self intersections).
• ST_Length(VARCHAR(128)) – Returns the length measurement of the ST_Curve

value. The result is measured in the units specified by the unit-name parameter.
• ST_StartPoint() – Returns an ST_Point value that is the start point of the ST_Curve

value.

Members of ST_Geometry:

Accessing and manipulating spatial data

Administration: Spatial Data 53

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.

Accessing and manipulating spatial data

54 SAP Sybase IQ

• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another
geometry value.

• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover
another.

• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry
value.

• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for
the object.

• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point
set difference of two geometries.

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

Accessing and manipulating spatial data

Administration: Spatial Data 55

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For

Accessing and manipulating spatial data

56 SAP Sybase IQ

example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.

Accessing and manipulating spatial data

Administration: Spatial Data 57

• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An
inexpensive of whether two geometries might be within a specified distance of each other.

• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within
another.

• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Remarks
The ST_CircularString type is a subtype of ST_Curve that uses circular line segments
between control points. The first three points define a segment as follows. The first point is the
start point of the segment. The second point is any point on the segment other than the start and
end point. The third point is the end point of the segment. Subsequent segments are defined by
two points only (intermediate and end point). The start point is taken to be the end point of the
preceding segment.A circularstring can be a complete circle with three points if the start and
end points are coincident. In this case, the intermediate point is the midpoint of the segment.If
the start, intermediate and end points are collinear, the segment is a straight line segment
between the start and end point.A circularstring with exactly three points is a circular arc. A
circular ring is a circularstring that is both closed and simple.Circularstrings are not allowed in
round-Earth spatial reference systems. For example, attempting to create one for SRID 4326
returns an error.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 7.3

ST_CircularString(ST_Point , ST_Point , ST_Point , ST_Point)
constructor

Constructs a circularstring value from a list of points in a specified spatial reference system.

Syntax
NEW ST_CircularString(ST_Point pt1, ST_Point pt2, ST_Point pt3, ST_Point
pti)

Parameters

• pt1 – The first point of a segment.
• pt2 – Any point on the segment between the first and last point.
• pt3 – The last point of a segment.

Accessing and manipulating spatial data

58 SAP Sybase IQ

• pti – Additional points defining further segments, each starting with the previous end
point, passing through the first additional point and ending with the second additional
point.

Returns
ST_CircularString Returns a circularstring constructed from the specified points.

Examples

• Example 1 – The following returns an error: at least three points must be specified.
SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW
ST_Point(1, 1))

The following example returns the result CircularString (0 0, 1 1, 2 0).

SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW
ST_Point(1, 1), NEW ST_Point(2,0))

The following returns an error: the first segment takes three points, and subsequent
segments take two points.
SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW
ST_Point(1, 1), NEW ST_Point(2,0), NEW ST_Point(1,-1))

The following example returns the result CircularString (0 0, 1 1, 2 0, 1
-1, 0 0).

SELECT NEW ST_CircularString(NEW ST_Point(0, 0), NEW
ST_Point(1, 1), NEW ST_Point(2,0), NEW ST_Point(1,-1), NEW
ST_Point(0, 0))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_CircularString() constructor
Constructs a circularstring representing the empty set.

Syntax
NEW ST_CircularString()

Returns
ST_CircularString Returns an ST_CircularString value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_CircularString().ST_IsEmpty()

Accessing and manipulating spatial data

Administration: Spatial Data 59

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_CircularString(LONG BINARY[, INT]) constructor
Constructs a circularstring from Well Known Binary (WKB).

Syntax
NEW ST_CircularString(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a circularstring. The input can be in
any supported binary input format, including Well Known Binary (WKB) or Extended
Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_CircularString Returns an ST_CircularString value constructed from the source
string.

Examples

• Example 1 – The following returns CircularString (5 10, 10 12, 15 10).
SELECT NEW
ST_CircularString(0x010800000003000000000000000000144000000000000
02440000000000000244000000000000028400000000000002e40000000000000
2440)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.3.2

ST_CircularString(LONG VARCHAR[, INT]) constructor
Constructs a circularstring from a text representation.

Syntax
NEW ST_CircularString(LONG VARCHAR text_representation[, INT
srid])

Accessing and manipulating spatial data

60 SAP Sybase IQ

Parameters

• text_representation – A string containing the text representation of a circularstring. The
input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_CircularString Returns an ST_CircularString value constructed from the source
string.

Examples

• Example 1 – The following returns CircularString (5 10, 10 12, 15 10).
SELECT NEW ST_CircularString('CircularString (5 10, 10 12, 15
10)')

The following example shows a circularstring with two semi-circle segments.
SELECT NEW ST_CircularString('CircularString (0 4, 2.5 6.5, 5 4,
7.5 1.5, 10 4)') CS

Example of a circularstring with two semi-circle segments

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.3.2

ST_NumPoints() method
Returns the number of points defining the circularstring.

Syntax
circularstring-expression.ST_NumPoints()

Returns
INT Returns NULL if the circularstring value is empty, otherwise the number of points in the
value.

Examples

• Example 1 – The following example returns the result 5.

SELECT TREAT(Shape AS ST_CircularString).ST_NumPoints()
FROM SpatialShapes WHERE ShapeID = 18

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.3.4

Accessing and manipulating spatial data

Administration: Spatial Data 61

ST_PointN(INT) method
Returns the nth point in the circularstring.

Syntax
circularstring-expression.ST_PointN(INT n)

Parameters

• n – The position of the element to return, from 1 to circularstring-
expression.ST_NumPoints().

Returns
ST_Point If the value of circular-expression is the empty set, returns NULL. If the specified
position n is less than 1 or greater than the number of points, returns NULL. Otherwise, returns
the ST_Point value at position n.

Examples

• Example 1 – The following example returns the result Point (2 0).

SELECT TREAT(Shape AS ST_CircularString).ST_PointN(3)
FROM SpatialShapes WHERE ShapeID = 18

The following example returns one row for each point in geom.
BEGIN
DECLARE geom ST_CircularString;
SET geom = NEW ST_CircularString('CircularString(0 0, 1 1, 2
0)');
SELECT row_num, geom.ST_PointN(row_num)
FROM sa_rowgenerator(1, geom.ST_NumPoints())
ORDER BY row_num;
END

The example returns the following result set:

row_num geom.ST_PointN(row_num)

1 Point (0 0)
2 Point (1 1)
3 Point (2 0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.3.5

Accessing and manipulating spatial data

62 SAP Sybase IQ

ST_CompoundCurve type
A compound curve is a sequence of ST_Curve values such that adjacent curves are joined at
their endpoints. The contributing curves are limited to ST_LineString and ST_CircularString.
The start point of each curve after the first is coincident with the end point of the previous
curve.

Syntax
ST_CompoundCurve type

Members
All members of the ST_CompoundCurve type, including all inherited members.

Members of ST_CompoundCurve:

• ST_CompoundCurve(ST_Curve , ST_Curve) – Constructs a compound curve from a
list of curves.

• ST_CompoundCurve() – Constructs a compound curve representing the empty set.
• ST_CompoundCurve(LONG BINARY[, INT]) – Constructs a compound curve from

Well Known Binary (WKB).
• ST_CompoundCurve(LONG VARCHAR[, INT]) – Constructs a compound curve

from a text representation.
• ST_CurveN(INT) – Returns the nth curve in the compound curve.
• ST_NumCurves() – Returns the number of curves defining the compound curve.

Members of ST_Curve:

• ST_CurveToLine() – Returns the ST_LineString interpolation of an ST_Curve value.
• ST_EndPoint() – Returns an ST_Point value that is the end point of the ST_Curve value.
• ST_IsClosed() – Test if the ST_Curve value is closed. A curve is closed if the start and end

points are coincident.
• ST_IsRing() – Tests if the ST_Curve value is a ring. A curve is a ring if it is closed and

simple (no self intersections).
• ST_Length(VARCHAR(128)) – Returns the length measurement of the ST_Curve

value. The result is measured in the units specified by the unit-name parameter.
• ST_StartPoint() – Returns an ST_Point value that is the start point of the ST_Curve

value.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

Accessing and manipulating spatial data

Administration: Spatial Data 63

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.

Accessing and manipulating spatial data

64 SAP Sybase IQ

• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover
another.

• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry
value.

• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for
the object.

• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point
set difference of two geometries.

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

Accessing and manipulating spatial data

Administration: Spatial Data 65

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.

Accessing and manipulating spatial data

66 SAP Sybase IQ

• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a
specified distance.

• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum
introduced error is less than a specified tolerance.

• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a
copy of the geometry with all points snapped to the specified grid.

• ST_SRID(INT) – Changes the spatial reference system associated with the geometry
without modifying any of the values.

• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.

Accessing and manipulating spatial data

Administration: Spatial Data 67

• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within
another.

• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 7.4

ST_CompoundCurve(ST_Curve , ST_Curve) constructor
Constructs a compound curve from a list of curves.

Syntax
NEW ST_CompoundCurve(ST_Curve curve1, ST_Curve curvei)

Parameters

• curve1 – The first curve to include in the compound curve.
• curvei – Additional curves to include in the compound curve.

Returns
ST_CompoundCurve Returns a compound curve containing the supplied curves.

Examples

• Example 1 – The following returns CompoundCurve ((0 0, 5 10), CircularString (5 10, 10
12, 15 10)).
SELECT NEW ST_CompoundCurve(NEW ST_LineString('LineString(0 0, 5
10)'),NEW ST_CircularString('CircularString (5 10, 10 12, 15
10)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_CompoundCurve() constructor
Constructs a compound curve representing the empty set.

Syntax
NEW ST_CompoundCurve()

Accessing and manipulating spatial data

68 SAP Sybase IQ

Returns
ST_CompoundCurve Returns an ST_CompoundCurve value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_CompoundCurve().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_CompoundCurve(LONG BINARY[, INT]) constructor
Constructs a compound curve from Well Known Binary (WKB).

Syntax
NEW ST_CompoundCurve(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a compound curve. The input can
be in any supported binary input format, including Well Known Binary (WKB) or
Extended Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_CompoundCurve Returns an ST_CompoundCurve value constructed from the source
string.

Examples

• Example 1 – The following returns CompoundCurve ((0 0, 5 10)).
SELECT NEW
ST_CompoundCurve(0x0109000000010000000102000000020000000000000000
000000000000000000000000000000000014400000000000002440)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.4.2

Accessing and manipulating spatial data

Administration: Spatial Data 69

ST_CompoundCurve(LONG VARCHAR[, INT]) constructor
Constructs a compound curve from a text representation.

Syntax
NEW ST_CompoundCurve(LONG VARCHAR text_representation[, INT
srid])

Parameters

• text_representation – A string containing the text representation of a compound curve.
The input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_CompoundCurve Returns an ST_CompoundCurve value constructed from the source
string.

Examples

• Example 1 – The following returns CompoundCurve ((0 0, 5 10), CircularString (5 10, 10
12, 15 10)).
SELECT NEW ST_CompoundCurve('CompoundCurve ((0 0, 5 10),
CircularString (5 10, 10 12, 15 10))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.4.2

ST_CurveN(INT) method
Returns the nth curve in the compound curve.

Syntax
compoundcurve-expression.ST_CurveN(INT n)

Parameters

• n – The position of the element to return, from 1 to compoundcurve-
expression.ST_NumCurves().

Returns
ST_Curve Returns the nth curve in the compound curve.

Accessing and manipulating spatial data

70 SAP Sybase IQ

Examples

• Example 1 – The following example returns the result CircularString (0 0, 1
1, 2 0).

SELECT TREAT(Shape AS ST_CompoundCurve).ST_CurveN(1)
FROM SpatialShapes WHERE ShapeID = 17

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.4.5

ST_NumCurves() method
Returns the number of curves defining the compound curve.

Syntax
compoundcurve-expression.ST_NumCurves()

Returns
INT Returns the number of curves contained in this compound curve.

Examples

• Example 1 – The following example returns the result 2.

SELECT TREAT(Shape AS ST_CompoundCurve).ST_NumCurves()
FROM SpatialShapes WHERE ShapeID = 17

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.4.4

ST_Curve type
The ST_Curve type is a supertype for types representing lines using a sequence of points.

Syntax
ST_Curve type

Members
All members of the ST_Curve type, including all inherited members.

Members of ST_Curve:

• ST_CurveToLine() – Returns the ST_LineString interpolation of an ST_Curve value.
• ST_EndPoint() – Returns an ST_Point value that is the end point of the ST_Curve value.

Accessing and manipulating spatial data

Administration: Spatial Data 71

• ST_IsClosed() – Test if the ST_Curve value is closed. A curve is closed if the start and end
points are coincident.

• ST_IsRing() – Tests if the ST_Curve value is a ring. A curve is a ring if it is closed and
simple (no self intersections).

• ST_Length(VARCHAR(128)) – Returns the length measurement of the ST_Curve
value. The result is measured in the units specified by the unit-name parameter.

• ST_StartPoint() – Returns an ST_Point value that is the start point of the ST_Curve
value.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

Accessing and manipulating spatial data

72 SAP Sybase IQ

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.
• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have

dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.

Accessing and manipulating spatial data

Administration: Spatial Data 73

• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary
string representation.

• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI
shape record and creates a geometry value of the appropriate type.

• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a
character string representation.

• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or
EWKB representation of a geometry and creates a geometry value of the appropriate type.

• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT
or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.

Accessing and manipulating spatial data

74 SAP Sybase IQ

• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.

Accessing and manipulating spatial data

Administration: Spatial Data 75

• ST_Transform(INT) – Creates a copy of the geometry value transformed into the
specified spatial reference system.

• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set
union of two geometries.

• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a
group

• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within
another geometry value.

• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two
geometries are within a specified distance of each other.

• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An
inexpensive of whether two geometries might be within a specified distance of each other.

• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within
another.

• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Remarks
The ST_Curve type is a supertype for types representing lines using a sequence of points.
Subtypes specify whether the control points are joined using straight segments
(ST_LineString), circular segments (ST_CircularString) or a combination
(ST_CompoundCurve).The ST_Curve type is not instantiable.An ST_Curve value is simple if
it does not intersect itself (except possibly at the end points). If an ST_Curve value does
intersect at its endpoints, it is closed. An ST_Curve value that is both simple and closed is
called a ring.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 7.1

ST_CurveToLine() method
Returns the ST_LineString interpolation of an ST_Curve value.

Syntax
curve-expression.ST_CurveToLine()

Returns
ST_LineString Returns the ST_LineString interpolation of curve-expression.

Accessing and manipulating spatial data

76 SAP Sybase IQ

Examples

• Example 1 – The following example returns the result LineString (0 7, 0 4, 4
4) (a copy of the original linestring).

SELECT TREAT(Shape AS ST_Curve).ST_CurveToLine()
FROM SpatialShapes WHERE ShapeID = 5

The following example returns the result LineString (0 0, 5 10) (the compound
curve converted to an equivalent linestring).
SELECT NEW ST_CompoundCurve('CompoundCurve((0 0, 5
10))').ST_CurveToLine()

The following returns an interpolated linestring which approximates the original
circularstring.
SELECT TREAT(Shape AS ST_Curve).ST_CurveToLine()
FROM SpatialShapes WHERE ShapeID = 19

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.1.7

ST_EndPoint() method
Returns an ST_Point value that is the end point of the ST_Curve value.

Syntax
curve-expression.ST_EndPoint()

Returns
ST_Point If the curve is an empty set, returns NULL. Otherwise, returns the end point of the
curve.

Examples

• Example 1 – The following example returns the result Point (5 10).

SELECT NEW ST_LineString('LineString(0 0, 5 5, 5
10)').ST_EndPoint()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.1.4

Accessing and manipulating spatial data

Administration: Spatial Data 77

ST_IsClosed() method
Test if the ST_Curve value is closed. A curve is closed if the start and end points are
coincident.

Syntax
curve-expression.ST_IsClosed()

Returns
BIT Returns 1 if the curve is closed (and non empty). Otherwise, returns 0.

Examples

• Example 1 – The following returns all rows in SpatialShapes containing closed curves.
The IF expression is required to ensure the TREAT function is not executed if the Shape is
not a subtype of ST_Curve. Without the IF expression the server may reorder the
conditions in the WHERE clause, leading to an error.
SELECT * FROM SpatialShapes
WHERE IF Shape IS OF (ST_Curve)
AND TREAT(Shape AS ST_Curve).ST_IsClosed() = 1 THEN 1 ENDIF = 1

The following returns all rows in curve_table that have closed geometries. This example
assumes the geometry column has type ST_Curve, ST_LineString, ST_CircularString or
ST_CompoundCurve.
SELECT * FROM curve_table WHERE geometry.ST_IsClosed() = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.1.5

ST_IsRing() method
Tests if the ST_Curve value is a ring. A curve is a ring if it is closed and simple (no self
intersections).

Syntax
curve-expression.ST_IsRing()

Returns
BIT Returns 1 if the curve is a ring (and non empty). Otherwise, returns 0.

Examples

• Example 1 – The following returns all rows in SpatialShapes containing rings. The IF
expression is required to ensure the TREAT function is not executed if the Shape is not a

Accessing and manipulating spatial data

78 SAP Sybase IQ

subtype of ST_Curve. Without the IF expression the server may reorder the conditions in
the WHERE clause, leading to an error.
SELECT * FROM SpatialShapes
WHERE IF Shape IS OF (ST_Curve)
AND TREAT(Shape AS ST_Curve).ST_IsRing() = 1 THEN 1 ENDIF = 1

The following returns all rows in curve_table that have geometries that are rings. This
example assumes the geometry column has type ST_Curve, ST_LineString,
ST_CircularString or ST_CompoundCurve.
SELECT * FROM curve_table WHERE geometry.ST_IsRing() = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.1.6

ST_Length(VARCHAR(128)) method
Returns the length measurement of the ST_Curve value. The result is measured in the units
specified by the unit-name parameter.

Syntax
curve-expression.ST_Length(VARCHAR(128) unit_name)

Parameters

• unit_name – The units in which the length should be computed. Defaults to the unit of the
spatial reference system. The unit name must match the UNIT_NAME column of a row in
the ST_UNITS_OF_MEASURE view where UNIT_TYPE is 'LINEAR'.

Returns
DOUBLE If the curve is an empty set, returns NULL. Otherwise, returns the length of the curve
in the specified units.

Examples

• Example 1 – The following example returns the result 2.

SELECT NEW ST_LineString('LineString(1 0, 1 1, 2
1)').ST_Length()

The following example creates a circularstring representing a half-circle and uses
ST_Length to find the length of the geometry, returning the value PI.
SELECT NEW ST_CircularString('CircularString(0 0, 1 1, 2
0)').ST_Length()

The following example creates a linestring representing a path from Halifax, NS to
Waterloo, ON, Canada and uses ST_Length to find the length of the path in metres,
returning the result 1361967.76789.

Accessing and manipulating spatial data

Administration: Spatial Data 79

SELECT NEW ST_LineString('LineString(-63.573566 44.646244,
-80.522372 43.465187)', 4326)
.ST_Length()

The following returns the lengths of the curves in the SpatialShapes table. The lengths are
returned in Cartesian units.
SELECT ShapeID, TREAT(Shape AS ST_Curve).ST_Length()
FROM SpatialShapes WHERE Shape IS OF (ST_Curve)

The following example creates a linestring and an example unit of measure
(example_unit_halfmetre). The ST_Length method finds the length of the geometry in this
unit of measure, returning the value 4.0.
BEGIN
DECLARE @curve ST_Curve;
CREATE SPATIAL UNIT OF MEASURE IF NOT EXISTS
"example_unit_halfmetre" TYPE LINEAR CONVERT USING .5;
SET @curve = NEW ST_LineString('LineString(1 0, 1 1, 2 1)') ;
SELECT @curve.ST_Length('example_unit_halfmetre');
END

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.1.2

ST_StartPoint() method
Returns an ST_Point value that is the start point of the ST_Curve value.

Syntax
curve-expression.ST_StartPoint()

Returns
ST_Point If the curve is an empty set, returns NULL. Otherwise, returns the start point of
the curve.

Examples

• Example 1 – The following example returns the result Point (0 0).

SELECT NEW ST_LineString('LineString(0 0, 5 5, 5
10)').ST_StartPoint()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.1.3

Accessing and manipulating spatial data

80 SAP Sybase IQ

ST_CurvePolygon type
An ST_CurvePolygon represents a planar surface defined by one exterior ring and zero or
more interior rings

Syntax
ST_CurvePolygon type

Members
All members of the ST_CurvePolygon type, including all inherited members.

Members of ST_CurvePolygon:

• ST_CurvePolygon(ST_Curve , ST_Curve) – Creates a curve polygon from a curve
representing the exterior ring and a list of curves representing interior rings, all in a
specified spatial reference system.

• ST_CurvePolygon(ST_MultiCurve , VARCHAR(128)) – Creates a curve polygon
from a multi curve containing an exterior ring and an optional list of interior rings.

• ST_CurvePolygon() – Constructs a curve polygon representing the empty set.
• ST_CurvePolygon(LONG BINARY[, INT]) – Constructs a curve polygon from Well

Known Binary (WKB).
• ST_CurvePolygon(LONG VARCHAR[, INT]) – Constructs a curve polygon from a

text representation.
• ST_CurvePolyToPoly() – Returns the interpolation of the curve polygon as a polygon.
• ST_ExteriorRing(ST_Curve) – Changes the exterior ring of the curve polygon.
• ST_InteriorRingN(INT) – Returns the nth interior ring in the curve polygon.
• ST_NumInteriorRing() – Returns the number of interior rings in the curve polygon.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

Accessing and manipulating spatial data

Administration: Spatial Data 81

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.

Accessing and manipulating spatial data

82 SAP Sybase IQ

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.

Accessing and manipulating spatial data

Administration: Spatial Data 83

• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.

Accessing and manipulating spatial data

84 SAP Sybase IQ

• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the
point set symmetric difference of two geometries.

• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Members of ST_Surface:

Accessing and manipulating spatial data

Administration: Spatial Data 85

• ST_Area(VARCHAR(128)) – Calculates the area of a surface in the specified units.
• ST_Centroid() – Returns the ST_Point value that is the mathematical centroid of the

surface value.
• ST_IsWorld() – Test if the ST_Surface covers the entire space.
• ST_Perimeter(VARCHAR(128)) – Calculates the perimeter of a surface in the specified

units.
• ST_PointOnSurface() – Returns an ST_Point value that is guaranteed to spatially

intersect the ST_Surface value.

Remarks
An ST_CurvePolygon represents a planar surface defined by one exterior ring and zero or
more interior rings that represent holes in the surface. The exterior and interior rings of an
ST_CurvePolygon can be any ST_Curve value. For example, a circle is an ST_CurvePolygon
with an ST_CircularString exterior ring representing the boundary. No two rings in an
ST_CurvePolygon can intersect except possibly at a single point. Further, an
ST_CurvePolygon cannot have cut lines, spikes, or punctures.The interior of every
ST_CurvePolygon is a connected point set.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 8.2

ST_CurvePolygon(ST_Curve , ST_Curve) constructor
Creates a curve polygon from a curve representing the exterior ring and a list of curves
representing interior rings, all in a specified spatial reference system.

Syntax
NEW ST_CurvePolygon(ST_Curve exterior_ring, ST_Curve
interior_ringi)

Parameters

• exterior_ring – The exterior ring of the curve polygon
• interior_ringi – Interior rings of the curve polygon

Returns
ST_CurvePolygon Returns a polygon from the specified exterior ring and interior rings.

Examples

• Example 1 – The following returns CurvePolygon ((-5 -1, 5 -1, 0 9, -5 -1), CircularString
(-2 2, -2 4, 2 4, 2 2, -2 2)) (a triangle with a circular hole).
SELECT NEW ST_CurvePolygon(
NEW ST_LineString ('LineString (-5 -1, 5 -1, 0 9, -5 -1)'),

Accessing and manipulating spatial data

86 SAP Sybase IQ

NEW ST_CircularString ('CircularString (-2 2, -2 4, 2 4, 2 2, -2
2)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.2.2

ST_CurvePolygon(ST_MultiCurve , VARCHAR(128)) constructor
Creates a curve polygon from a multi curve containing an exterior ring and an optional list of
interior rings.

Syntax
NEW ST_CurvePolygon(ST_MultiCurve multi_curve, VARCHAR(128)
polygon_format)

Parameters

• multi_curve – A multicurve value containing an exterior ring and (optionally) a set of
interior rings.

• polygon_format – A string with the polygon format to use when interpreting the provided
curves. Valid formats are 'CounterClockwise', 'Clockwise', and 'EvenOdd'

Returns
ST_CurvePolygon Returns a curve polygon created from the rings in a multilinestrings.

Examples

• Example 1 – The following returns the result CurvePolygon (CircularString
(-2 0, 1 -3, 4 0, 1 3, -2 0), (0 0, 1 1, 2 0, 0 0)) (a circular
curve polygon with a triangular hole).
SELECT NEW ST_CurvePolygon(NEW ST_MultiCurve(
'MultiCurve(CircularString(-2 0, 4 0, -2 0),(0 0, 2 0, 1 1, 0
0))'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_CurvePolygon() constructor
Constructs a curve polygon representing the empty set.

Syntax
NEW ST_CurvePolygon()

Accessing and manipulating spatial data

Administration: Spatial Data 87

Returns
ST_CurvePolygon Returns an ST_CurvePolygon value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_CurvePolygon().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_CurvePolygon(LONG BINARY[, INT]) constructor
Constructs a curve polygon from Well Known Binary (WKB).

Syntax
NEW ST_CurvePolygon(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a curve polygon. The input can be
in any supported binary input format, including Well Known Binary (WKB) or Extended
Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_CurvePolygon Returns an ST_CurvePolygon value constructed from the source
string.

Examples

• Example 1 – The following returns CurvePolygon (CircularString (0 0, 10 0, 10 10, 0 10,
0 0)).
SELECT NEW
ST_CurvePolygon(0x010a0000000100000001080000000500000000000000000
00000000000000000000000000000000024400000000000000000000000000000
24400000000000002440000000000000000000000000000024400000000000000
0000000000000000000)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.2.2

Accessing and manipulating spatial data

88 SAP Sybase IQ

ST_CurvePolygon(LONG VARCHAR[, INT]) constructor
Constructs a curve polygon from a text representation.

Syntax
NEW ST_CurvePolygon(LONG VARCHAR text_representation[, INT
srid])

Parameters

• text_representation – A string containing the text representation of a curve polygon. The
input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_CurvePolygon Returns an ST_CurvePolygon value constructed from the source
string.

Examples

• Example 1 – The following returns CurvePolygon (CompoundCurve (CircularString (-5
-5, 0 -5, 5 -5), (5 -5, 0 5, -5 -5))).
SELECT NEW ST_CurvePolygon('CurvePolygon (CompoundCurve
(CircularString (-5 -5, 0 -5, 5 -5), (5 -5, 0 5, -5 -5)))')

The following example shows a curvepolygon with a circle as an outer ring and a triangle
inner ring.
SELECT NEW ST_CurvePolygon('CurvePolygon (CircularString (2 0, 5
3, 2 0), (3 1, 4 2, 5 1, 3 1))') cpoly

Example of a curvepolygon with a circle for an exterior ring and a triangular interior ring

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.2.2

ST_CurvePolyToPoly() method
Returns the interpolation of the curve polygon as a polygon.

Syntax
curvepolygon-expression.ST_CurvePolyToPoly()

Returns
ST_Polygon Returns the interpolation of the curvepolygon-expression as a polygon.

Accessing and manipulating spatial data

Administration: Spatial Data 89

Examples

• Example 1 – The following example returns the result Polygon ((0 0, 2 0, 1 2,
0 0)) (a copy of the original polygon).

SELECT TREAT(Shape AS ST_Polygon).ST_CurvePolyToPoly()
FROM SpatialShapes WHERE ShapeID = 16

The following example returns the result Polygon ((0 0, 5 0, 5 10, 0 0))
(the curve polygon converted to an equivalent polygon).
SELECT NEW ST_CurvePolygon('CurvePolygon(CompoundCurve((0 0, 5
10, 5 0, 0 0)))')
.ST_CurvePolyToPoly()

The following returns an interpolated polygon which approximates the original curve
polygon.
SELECT TREAT(Shape AS ST_CurvePolygon).ST_CurvePolyToPoly()
FROM SpatialShapes WHERE ShapeId = 24

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.2.7

ST_ExteriorRing(ST_Curve) method
Changes the exterior ring of the curve polygon.

Syntax
curvepolygon-expression.ST_ExteriorRing(ST_Curve exterior_ring)

Parameters

• exterior_ring – The new exterior ring value.

Returns
ST_CurvePolygon Returns a copy of the curve polygon value with the exterior ring
modified to be the specified value.

Examples

• Example 1 – The following example returns the result CurvePolygon
(CircularString (2 0, 6 1, 5 5, 1 4, 2 0), (3 1, 4 2, 5 1, 3
1)).

SELECT NEW ST_CurvePolygon('CurvePolygon (CircularString (2 0, 5
3, 2 0), (3 1, 4 2, 5 1, 3 1))')
.ST_ExteriorRing(NEW ST_CircularString('CircularString (2 0, 5
5, 2 0)'))

Accessing and manipulating spatial data

90 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.2.3

ST_InteriorRingN(INT) method
Returns the nth interior ring in the curve polygon.

Syntax
curvepolygon-expression.ST_InteriorRingN(INT n)

Parameters

• n – The position of the element to return, from 1 to curvepolygon-
expression.ST_NumInteriorRing().

Returns
ST_Curve Returns the nth interior ring in the curve polygon.

Examples

• Example 1 – The following example returns the result LineString (3 1, 4 2, 5
1, 3 1).

SELECT NEW ST_CurvePolygon('CurvePolygon (CircularString (2 0, 5
3, 2 0), (3 1, 4 2, 5 1, 3 1))')
.ST_InteriorRingN(1)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.2.6

ST_NumInteriorRing() method
Returns the number of interior rings in the curve polygon.

Syntax
curvepolygon-expression.ST_NumInteriorRing()

Returns
INT Returns the number of interior rings in the curve polygon.

Examples

• Example 1 – The following example returns the result 1.

Accessing and manipulating spatial data

Administration: Spatial Data 91

SELECT NEW ST_CurvePolygon('CurvePolygon (CircularString (2 0, 5
3, 2 0), (3 1, 4 2, 5 1, 3 1))')
.ST_NumInteriorRing()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.2.5

ST_GeomCollection type
An ST_GeomCollection is a collection of zero or more ST_Geometry values.

Syntax
ST_GeomCollection type

Members
All members of the ST_GeomCollection type, including all inherited members.

Members of ST_GeomCollection:

• ST_GeomCollection(ST_Geometry , ST_Geometry) – Constructs a geometry
collection from a list of geometry values.

• ST_GeomCollection() – Constructs a geometry collection representing the empty set.
• ST_GeomCollection(LONG BINARY[, INT]) – Constructs a geometry collection from

Well Known Binary (WKB).
• ST_GeomCollection(LONG VARCHAR[, INT]) – Constructs a geometry collection

from a text representation.
• ST_GeomCollectionAggr(ST_Geometry) – Returns a geometry collection containing

all of the geometries in a group.
• ST_GeometryN(INT) – Returns the nth geometry in the geometry collection.
• ST_NumGeometries() – Returns the number of geometries contained in the geometry

collection.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

Accessing and manipulating spatial data

92 SAP Sybase IQ

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.

Accessing and manipulating spatial data

Administration: Spatial Data 93

• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point
set difference of two geometries.

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.

Accessing and manipulating spatial data

94 SAP Sybase IQ

• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.

Accessing and manipulating spatial data

Administration: Spatial Data 95

• ST_SRID(INT) – Changes the spatial reference system associated with the geometry
without modifying any of the values.

• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.

Accessing and manipulating spatial data

96 SAP Sybase IQ

• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Remarks
An ST_GeomCollection is a collection of zero or more ST_Geometry values. All of the values
are in the same spatial reference system as the collection value. The ST_GeomCollection type
can contain a heterogeneous collection of objects (for example, points, lines, and polygons).
Sub-types of ST_GeomCollection can be used to restrict the collection to certain geometry
types.The dimension of the geometry collection value is the largest dimension of its
constituents.A geometry collection is simple if all of the constituents are simple and no two
constituent geometries intersect except possibly at their boundaries.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 9.1

ST_GeomCollection(ST_Geometry , ST_Geometry) constructor
Constructs a geometry collection from a list of geometry values.

Syntax
NEW ST_GeomCollection(ST_Geometry geo1, ST_Geometry geoi)

Parameters

• geo1 – The first geometry value of the geometry collection.
• geoi – Additional geometry values of the geometry collection.

Returns
ST_GeomCollection A geometry collection containing the provided geometry values.

Examples

• Example 1 – The following returns a geometry collection containing the single point
'Point (1 2)'
SELECT NEW ST_GeomCollection(NEW ST_Point(1.0, 2.0))

The following returns a geometry collection containing two points 'Point (1 2)' and 'Point
(3 4)'
SELECT NEW ST_GeomCollection(NEW ST_Point(1.0, 2.0), NEW
ST_Point(3.0, 4.0))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

Administration: Spatial Data 97

ST_GeomCollection() constructor
Constructs a geometry collection representing the empty set.

Syntax
NEW ST_GeomCollection()

Returns
ST_GeomCollection Returns an ST_GeomCollection value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_GeomCollection().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_GeomCollection(LONG BINARY[, INT]) constructor
Constructs a geometry collection from Well Known Binary (WKB).

Syntax
NEW ST_GeomCollection(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a geometry collection. The input
can be in any supported binary input format, including Well Known Binary (WKB) or
Extended Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_GeomCollection Returns an ST_GeomCollection value constructed from the source
string.

Examples

• Example 1 – The following returns GeometryCollection (Point (10 20)).
SELECT NEW
ST_GeomCollection(0x010700000001000000010100000000000000000024400
000000000003440)

Accessing and manipulating spatial data

98 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.1.2

ST_GeomCollection(LONG VARCHAR[, INT]) constructor
Constructs a geometry collection from a text representation.

Syntax
NEW ST_GeomCollection(LONG VARCHAR text_representation[, INT
srid])

Parameters

• text_representation – A string containing the text representation of a geometry
collection. The input can be in any supported text input format, including Well Known
Text (WKT) or Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_GeomCollection Returns an ST_GeomCollection value constructed from the source
string.

Examples

• Example 1 – The following returns GeometryCollection (CircularString (5 10, 10 12, 15
10), Polygon ((10 -5, 15 5, 5 5, 10 -5))).
SELECT NEW ST_GeomCollection('GeometryCollection (CircularString
(5 10, 10 12, 15 10), Polygon ((10 -5, 15 5, 5 5, 10 -5)))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.1.2

ST_GeomCollectionAggr(ST_Geometry) method
Returns a geometry collection containing all of the geometries in a group.

Syntax
ST_GeomCollection::ST_GeomCollectionAggr(ST_Geometry
geometry_column)

Accessing and manipulating spatial data

Administration: Spatial Data 99

Parameters

• geometry_column – The geometry values to generate the collection. Typically this is a
column.

Returns
ST_GeomCollection Returns a geometry collection that contains all of the geometries in
a group.

Examples

• Example 1 – The following example returns a single value which combines all geometries
from the SpatialShapes table into a single collection.
SELECT ST_GeomCollection::ST_GeomCollectionAggr(Shape) FROM
SpatialShapes
WHERE Shape.ST_Is3D() = 0

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeometryN(INT) method
Returns the nth geometry in the geometry collection.

Syntax
geomcollection-expression.ST_GeometryN(INT n)

Parameters

• n – The position of the element to return, from 1 to geomcollection-
expression.ST_NumGeometries().

Returns
ST_Geometry Returns the nth geometry in the geometry collection.

Examples

• Example 1 – The following example returns the result Polygon ((10 -5, 15 5,
5 5, 10 -5)).

SELECT NEW ST_GeomCollection('GeometryCollection (CircularString
(5 10, 10 12, 15 10), Polygon ((10 -5, 15 5, 5 5, 10 -5)))')
.ST_GeometryN(2)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.1.5

Accessing and manipulating spatial data

100 SAP Sybase IQ

ST_NumGeometries() method
Returns the number of geometries contained in the geometry collection.

Syntax
geomcollection-expression.ST_NumGeometries()

Returns
INT Returns the number of geometries stored in this collection.

Examples

• Example 1 – The following example returns the result 3.

SELECT NEW ST_MultiPoint('MultiPoint ((10 10), (12 12), (14 10))')
.ST_NumGeometries()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.1.4

ST_Geometry type
The ST_Geometry type is the maximal supertype of the geometry type hierarchy.

Syntax
ST_Geometry type

Members
All members of the ST_Geometry type, including all inherited members.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

Accessing and manipulating spatial data

Administration: Spatial Data 101

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.

Accessing and manipulating spatial data

102 SAP Sybase IQ

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.

Accessing and manipulating spatial data

Administration: Spatial Data 103

• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.

Accessing and manipulating spatial data

104 SAP Sybase IQ

• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the
point set symmetric difference of two geometries.

• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Remarks
The ST_Geometry type is the maximal supertype of the geometry type hierarchy. The
ST_Geometry type supports methods that can be applied to any spatial value. The

Accessing and manipulating spatial data

Administration: Spatial Data 105

ST_Geometry type cannot be instantiated; instead, a subtype should be instantiated. When
working with original formats (WKT or WKB), you can use methods such as
ST_GeomFromText/ST_GeomFromWKB to instantiate the appropriate concrete type
representing the value in the original format.All of the values in an ST_Geometry value are in
the same spatial reference system. The ST_SRID method can be used to retrieve or change the
spatial reference system associated with the value.Columns of type ST_Geometry or any of its
subtypes cannot be included in a primary key, unique index, or unique constraint.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 5.1

ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE) method

Returns a new geometry that is the result of applying the specified 3-D affine transformation.

Syntax
geometry-expression.ST_Affine(DOUBLE a00, DOUBLE a01, DOUBLE a02,
DOUBLE a10, DOUBLE a11, DOUBLE a12, DOUBLE a20, DOUBLE a21, DOUBLE
a22, DOUBLE xoff, DOUBLE yoff, DOUBLE zoff)

Parameters

• a00 – The affine matrix element in row 0, column 0
• a01 – The affine matrix element in row 0, column 1
• a02 – The affine matrix element in row 0, column 2
• a10 – The affine matrix element in row 1, column 0
• a11 – The affine matrix element in row 1, column 1
• a12 – The affine matrix element in row 1, column 2
• a20 – The affine matrix element in row 2, column 0
• a21 – The affine matrix element in row 2, column 1
• a22 – The affine matrix element in row 2, column 2
• xoff – The x offset for translation
• yoff – The y offset for translation
• zoff – The z offset for translation

Returns
ST_Geometry Returns a new geometry that is the result of the specified transformation.

Accessing and manipulating spatial data

106 SAP Sybase IQ

Examples

• Example 1 – The following returns the result LineString (5 6, 5 3, 9 3). The
X values are translated by 5 and the Y values are translated by -1.
SELECT Shape.ST_Affine(1,0,0, 0,1,0, 0,0,1, 5,-1,0)
FROM SpatialShapes WHERE ShapeID = 5

The following returns the result LineString (.698833 6.965029, .399334
3.980017, 4.379351 3.580683). The Shape is rotated around the Z axis by 0.1
radians (about 5.7 degrees).
SELECT Shape.ST_Affine(cos(0.1),sin(0.1),0, -sin(0.1),cos(0.1),
0, 0,0,1, 0,0,0)
FROM SpatialShapes WHERE ShapeID = 5

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_AsBinary(VARCHAR(128)) method
Returns the WKB representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsBinary(VARCHAR(128) format)

Parameters

• format – A string defining the output binary format to use when converting the geometry-
expression to a binary representation. If not specified, the value of the
st_geometry_asbinary_format option is used to choose the binary representation. See
st_geometry_asbinary_format option.

Returns
LONG BINARY Returns the WKB representation of the geometry-expression.

Examples

• Example 1 – If the st_geometry_asbinary_format option has its default value of 'WKB',
the following returns the result
0x01b90b0000000000000000f03f000000000000004000000000000008
400000000000001040.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsBinary()

If the st_geometry_asbinary_format option has its default value of 'WKB', the following
returns the result
0x01b90b0000000000000000f03f000000000000004000000000000008

Accessing and manipulating spatial data

Administration: Spatial Data 107

400000000000001040. The server implicitly invokes the ST_AsBinary method when
converting geometries to BINARY.
SELECT CAST(NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326) AS LONG
BINARY)

The following returns the result
0x0101000000000000000000f03f0000000000000040. The Z and M values
are omitted because version 1.1 of the OGC specification for WKB does not support these.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsBinary('WKB(Version=1.1;endian=little)')

The following returns the result
0x01010000e0e6100000000000000000f03f0000000000000040000000
00000008400000000000001040. The extended WKB contains the SRID.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsBinary('EWKB(endian=little)')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.37

ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) method
Returns a LONG VARBIT that is a bitmap representing a geometry value.

Syntax
geometry-expression.ST_AsBitmap(INT x_pixels, INT y_pixels, ST_Point
pt_ll, ST_Point pt_ur, VARCHAR(128) format)

Parameters

• x_pixels – The number of horizontal pixels to use
• y_pixels – The number of vertical pixels to use
• pt_ll – The lower left point of the bitmap
• pt_ur – The upper right point of the bitmap
• format – A string defining the parameters to use when converting the geometry-

expression to a bitmap.

Returns
LONG VARBIT Returns a LONG VARBIT encoding a bitmap of the geometry.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

108 SAP Sybase IQ

ST_AsGeoJSON(VARCHAR(128)) method
Returns a string representing a geometry in JSON format.

Syntax
geometry-expression.ST_AsGeoJSON(VARCHAR(128) format)

Parameters

• format – A string defining parameters controlling how the GeoJSON result is generated.
If not specified, the default is 'GeoJSON'.

Returns
LONG VARCHAR Returns the GeoJSON representation of the geometry-expression.

Examples

• Example 1 – The following example returns the result {"type":"Point",
"coordinates":[1,2]}.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsGeoJSON()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_AsGML(VARCHAR(128)) method
Returns the GML representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsGML(VARCHAR(128) format)

Parameters

• format – A string defining the parameters to use when converting the geometry-
expression to a GML representation. If not specified, the default is 'GML'.

Returns
LONG VARCHAR Returns the GML representation of the geometry-expression.

Examples

• Example 1 – The following example returns the result <Point srsName="EPSG:
4326"><pos>1 2 3 4</pos></Point>.

Accessing and manipulating spatial data

Administration: Spatial Data 109

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsGML()

The following example returns the result <Point srsName="EPSG:
4326"><coordinates>1,2</coordinates></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=2)')

The following returns the result <gml:Point srsName="EPSG:
4326"><gml:coordinates>1,2</gml:coordinates></gml:Point>.
The Namespace=global parameter provides a dedicated ("gml") prefix for the given
element and its sub elements. This is useful when the query is used within an aggregate
operation, such that, some top level element defines the namespace for the "gml" prefix.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=2;Namespace=global)')

The following returns the result <Point srsName="EPSG:
4326"><coordinates>1,2</coordinates></Point>. No namespace
information is included in the output.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=2;Namespace=none)')

The following returns the result <Point srsName="http://
www.opengis.net/gml/srs/epsg.xml#4326"><coordinates>1,2</
coordinates></Point>. The long format of the srsName attribute is used.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=2;Namespace=none;SRSNameFormat=long)
')

The following returns the result <Point srsName="urn:x-
ogc:def:crs:EPSG:4326"><pos>1 2 3 4</pos></Point>. The long
format of the srsName attribute is used and the format differs in version 3 from the version
2 format.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsGML('GML(Version=3;Namespace=none;SRSNameFormat=long)
')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.39

ST_AsKML(VARCHAR(128)) method
Returns the KML representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsKML(VARCHAR(128) format)

Accessing and manipulating spatial data

110 SAP Sybase IQ

Parameters

• format – A string defining the parameters to use when converting the geometry-
expression to a KML representation. If not specified, the default is 'KML'.

Returns
LONG VARCHAR Returns the KML representation of the geometry-expression.

Examples

• Example 1 – The following example returns the result
<Point><coordinates>1,2,3,4</coordinates></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsKML()

The following example returns the result <Point><coordinates>1,2,3,4</
coordinates></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('KML(Version=2)')

The following returns the result <kml:Point><kml:coordinates>1,2,3,4</
kml:coordinates></kml:Point>. The Namespace=global parameter provides a
dedicated ("kml") prefix for the given element and its sub elements. This is useful when the
query is used within an aggregate operation, such that, some top level element defines the
namespace for the "kml" prefix.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('KML(Version=2;Namespace=global)')

The following returns the result <Point><coordinates>1,2,3,4</
coordinates></Point>. No namespace information is included in the output.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('KML(Version=2;Namespace=none)')

The following returns the result <Point xmlns="http://www.opengis.net/
kml/2.2"><coordinates>1,2,3,4</coordinates></Point>. The
default xml namespace is used.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('KML(Version=2;Namespace=default)')

The following returns the result <Point><altitudeMode>absolute</
altitudeMode><coordinates>1,2,3,4</coordinates></Point>. An
AltitudeMode sub element is included in the output.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsKML('SubElement=<altitudeMode>absolute</
altitudeMode>')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.39

Accessing and manipulating spatial data

Administration: Spatial Data 111

ST_AsSVG(VARCHAR(128)) method
Returns an SVG figure representing a geometry value.

Syntax
geometry-expression.ST_AsSVG(VARCHAR(128) format)

Parameters

• format – A string defining the parameters to use when converting the geometry-
expression to a SVG representation. If not specified, the default is 'SVG'.

Returns
LONG VARCHAR Returns a complete or partial SVG document which renders the geometry-
expression.

Examples

• Example 1 – The following returns a complete SVG document with polygons filled with
random colors.
SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
.ST_AsSVG()

The following returns a complete SVG document with outlined polygons and limits
coordinates to 3 digits after the decimal place.
SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
.ST_AsSVG('RandomFill=No;DecimalDigits=3')

The following returns a complete SVG documents with polygons filled with blue and
coordinates with maximum precision.
SELECT Shape.ST_AsSVG('Attribute=fill="blue";DecimalDigits=-1')
FROM SpatialShapes

The following returns a complete SVG document from SVG path data with relative
coordinates limited to 5 digits after the decimal place.
SELECT '<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg viewBox="-180 -90 360 180" xmlns="http://www.w3.org/2000/
svg"
version="1.1">
<path fill="lightblue" stroke="black" stroke-width="0.1%" d="' ||
NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
.ST_AsSVG('PathDataOnly=Yes') ||
'"/></svg>'

The following returns SVG path data using absolute coordinates limited to 7 digits after
the decimal place.

Accessing and manipulating spatial data

112 SAP Sybase IQ

SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
.ST_AsSVG('PathDataOnly=Yes;Relative=No;DecimalDigits=7')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) method
Returns a complete or partial SVG document which renders the geometries in a group.

Syntax
ST_Geometry::ST_AsSVGAggr(ST_Geometry geometry_column,
VARCHAR(128) format)

Parameters

• geometry_column – The geometry value to contribute to the SVG figure. Typically this is
a column.

• format – A string defining the parameters to use when converting each geometry value to
a SVG representation. If not specified, the default is 'SVG'.

Returns
LONG VARCHAR Returns a complete or partial SVG document which renders the geometries
in a group.

Examples

• Example 1 – The following returns a complete SVG document with polygons filled with
random colors.
SELECT ST_Geometry::ST_AsSVGAggr(Shape) FROM SpatialShapes

The following returns a complete SVG document from SVG path data with relative
coordinates limited to 5 digits after the decimal place.
SELECT '<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg viewBox="-10 -10 20 12" xmlns="http://www.w3.org/2000/svg"
version="1.1">
<path fill="lightblue" stroke="black" stroke-width="0.1%" d="' ||
ST_Geometry::ST_AsSVGAggr(Shape, 'PathDataOnly=Yes') ||
'"/></svg>'
FROM SpatialShapes

The following statements create a web service that returns a complete SVG document that
renders all geometries in the SpatialShapes table. If the database server is started with the
-xs http option, you can use a browser that supports SVG to display the SVG. To do this,
browse to the address http://localhost/demo/svg_shapes This works assuming that the

Accessing and manipulating spatial data

Administration: Spatial Data 113

browser and the database server are on the same computer, and that the database is named
demo).
CREATE SERVICE svg_shapes TYPE 'RAW' USER DBA AUTHORIZATION OFF
AS CALL svg_shapes();CREATE PROCEDURE svg_shapes()
RESULT(svg LONG VARCHAR)
BEGIN
CALL sa_set_http_header('Content-type', 'image/svg+xml');
SELECT ST_Geometry::ST_AsSVGAggr(Shape) FROM SpatialShapes;
END;

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_AsText(VARCHAR(128)) method
Returns the text representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsText(VARCHAR(128) format)

Parameters

• format – A string defining the output text format to use when converting the geometry-
expression to a text representation. If not specified, the st_geometry_astext_format option
is used to choose the text representation. Seest_geometry_astext_format option.

Returns
LONG VARCHAR Returns the text representation of the geometry-expression.

Examples

• Example 1 – Assuming that the st_geometry_astext_format option has the value 'WKT',
the following returns the result Point ZM (1 2 3 4).See st_geometry_astext_format
option.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText()

Assuming that the st_geometry_astext_format option has the value 'WKT', the following
returns the result Point ZM (1 2 3 4). The ST_AsText method is implicitly invoked
when converting geometries to VARCHAR or NVARCHAR types.See
st_geometry_astext_format option.
SELECT CAST(NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326) as long
varchar)

The following returns the result Point (1 2). The Z and M values are not output
because they are not supported in version 1.1.0 of the OGC specification for WKT.

Accessing and manipulating spatial data

114 SAP Sybase IQ

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsText('WKT(Version=1.1)')

The following returns the result SRID=4326;Point ZM (1 2 3 4). The SRID is
included in the result as a prefix.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText('EWKT')

The following example returns the result <Point srsName="EPSG:
4326"><pos>1 2 3 4</pos></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsText('GML')

The following returns '{"type":"Point", "coordinates":[1,2]} '.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsText('GeoJSON')

The following returns a complete SVG document with polygons filled with random colors.
SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
.ST_AsText('SVG')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.35

ST_AsWKB(VARCHAR(128)) method
Returns the WKB representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsWKB(VARCHAR(128) format)

Parameters

• format – A string defining the WKB format to use when converting the geometry-
expression to binary. If not specified, the default is 'WKB'.

Returns
LONG BINARY Returns the WKB representation of the geometry-expression.

Examples

• Example 1 – The following example returns the result
0x01b90b0000000000000000f03f000000000000004000000000000008
400000000000001040.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsWKB('endian=little')

Accessing and manipulating spatial data

Administration: Spatial Data 115

The following returns the result
0x0101000000000000000000f03f0000000000000040. The Z and M values
are omitted because version 1.1 of the OGC specification for WKB does not support these.
SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsWKB('WKB(Version=1.1;endian=little)')

The following returns the result
0x01010000e0e6100000000000000000f03f0000000000000040000000
00000008400000000000001040.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsWKB('EWKB(endian=little)')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_AsWKT(VARCHAR(128)) method
Returns the WKT representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsWKT(VARCHAR(128) format)

Parameters

• format – A string defining the output text format to use when converting the geometry-
expression to WKT. If not specified, the format string defaults to 'WKT'.

Returns
LONG VARCHAR Returns the WKT representation of the geometry-expression.

Examples

• Example 1 – The following example returns the result SRID=0;Polygon ((3 3, 8
3, 4 8, 3 3)).

SELECT Shape.ST_AsWKT('EWKT') FROM SpatialShapes WHERE ShapeID =
22

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

116 SAP Sybase IQ

ST_AsXML(VARCHAR(128)) method
Returns the XML representation of an ST_Geometry value.

Syntax
geometry-expression.ST_AsXML(VARCHAR(128) format)

Parameters

• format – A string defining the output text format to use when converting the geometry-
expression to an XML representation. If not specified, the st_geometry_asxml_format
option is used to choose the XML representation. Seest_geometry_asxml_format option.

Returns
LONG VARCHAR Returns the XML representation of the geometry-expression.

Examples

• Example 1 – If the st_geometry_asxml_format option has its default value of 'GML', then
the following returns the result <Point srsName="EPSG:4326"><pos>1 2 3
4</pos></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326).ST_AsXML()

If the st_geometry_asxml_format option has its default value of 'GML', then the following
returns the result <Point srsName="EPSG:4326"><pos>1 2 3 4</pos></
Point>.

SELECT CAST(NEW ST_Point(1.0, 2.0, 3.0, 4.0, 4326) AS XML)

The following example returns the result <Point srsName="EPSG:
4326"><coordinates>1,2</coordinates></Point>.

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0,
4326).ST_AsXML('GML(Version=2)')

The following returns a complete SVG document with polygons filled with random colors.
SELECT NEW ST_Polygon('Polygon((0 0, 0 20, 60 10, 0 0))')
.ST_AsXML('SVG')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

Administration: Spatial Data 117

ST_Boundary() method
Returns the boundary of the geometry value.

Syntax
geometry-expression.ST_Boundary()

Returns
ST_Geometry Returns a geometry value representing the boundary of the geometry-
expression.

Examples

• Example 1 – The following example construct a geometry collection containing a
polygon and a linestring and returns the boundary for the collection. The returned
boundary is a collection containing the exterior ring of the polygon and the two end points
of the linestring. It is equivalent to the following collection:'GeometryCollection
(LineString (0 0, 3 0, 3 3, 0 3, 0 0), MultiPoint ((0 7), (4
4)))'
SELECT NEW ST_GeomCollection('GeometryCollection (Polygon ((0 0, 3
0, 3 3, 0 3, 0 0)), LineString (0 7, 0 4, 4 4))').ST_Boundary()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.14

ST_Buffer(DOUBLE, VARCHAR(128)) method
Returns the ST_Geometry value that represents all points whose distance from any point of an
ST_Geometry value is less than or equal to a specified distance in the given units.

Syntax
geometry-expression.ST_Buffer(DOUBLE distance, VARCHAR(128)
unit_name)

Parameters

• distance – The distance the buffer should be from the geometry value.
• unit_name – The units in which the distance parameter should be interpreted. Defaults to

the unit of the spatial reference system. The unit name must match the UNIT_NAME
column of a row in the ST_UNITS_OF_MEASURE view where UNIT_TYPE is
'LINEAR'.

Accessing and manipulating spatial data

118 SAP Sybase IQ

Returns
ST_Geometry Returns the ST_Geometry value representing all points within the specified
distance of the geometry-expression.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.17

ST_Contains(ST_Geometry) method
Tests if a geometry value spatially contains another geometry value.

Syntax
geometry-expression.ST_Contains(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression contains geo2, otherwise 0.

Examples

• Example 1 – The following example tests if a polygon contains a point. The polygon
completely contains the point, and the interior of the point (the point itself) intersects the
interior of the polygon, so the example returns 1.
SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
.ST_Contains(NEW ST_Point(1, 1))

The following example tests if a polygon contains a line. The polygon completely contains
the line, but the interior of the line and the interior of the polygon do not intersect (the line
only intersects the polygon on the polygon's boundary, and the boundary is not part of the
interior), so the example returns 0. If ST_Covers was used in place of ST_Contains,
ST_Covers would return 1.
SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
.ST_Contains(NEW ST_LineString('LineString(0 0, 1 0)'))

The following example lists the ShapeIDs where the given polygon contains each Shape
geometry. This example returns the result 16,17,19. Note that ShapeID 1 is not listed
because the polygon intersects that row's Shape point at the polygon's boundary.
SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE NEW ST_Polygon(NEW ST_Point(0, 0),
NEW ST_Point(8, 2)).ST_Contains(Shape) = 1

Accessing and manipulating spatial data

Administration: Spatial Data 119

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.31

ST_ContainsFilter(ST_Geometry) method
An inexpensive test if a geometry might contain another.

Syntax
geometry-expression.ST_ContainsFilter(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression might contain geo2, otherwise 0.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_ConvexHull() method
Returns the convex hull of the geometry value.

Syntax
geometry-expression.ST_ConvexHull()

Returns
ST_Geometry If the geometry value is NULL or an empty value, then NULL is returned.
Otherwise, the convex hull of the geometry value is returned.

Examples

• Example 1 – The following example shows the convex hull computed from 10 points. The
resulting hull is the result Polygon ((1 1, 7 2, 9 3, 6 9, 4 9, 1 5, 1
1)). Convex hull of a set of points

SELECT NEW ST_MultiPoint('MultiPoint((1 1), (2 2), (5 3), (7 2),
(9 3), (8 4), (6 6), (6 9), (4 9), (1 5))').ST_ConvexHull()

The following example returns the single point (0,0). The convex hull of a single point is a
point.
SELECT NEW ST_Point(0,0).ST_ConvexHull()

The following example returns the result LineString (0 0, 3 3). The convex hull
of a single straight line is a linestring with a single segment.

Accessing and manipulating spatial data

120 SAP Sybase IQ

SELECT NEW ST_LineString('LineString(0 0,1 1,2 2,3
3)').ST_ConvexHull()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.16

ST_ConvexHullAggr(ST_Geometry) method
Returns the convex hull for all of the geometries in a group

Syntax
ST_Geometry::ST_ConvexHullAggr(ST_Geometry geometry_column)

Parameters

• geometry_column – The geometry values to generate the convex hull. Typically this is a
column.

Returns
ST_Geometry Returns the convex hull for all the geometries in a group.

Examples

• Example 1 – The following example returns the result Polygon ((3 0, 7 2, 3 6,
0 7, -3 6, -3 3, 0 0, 3 0)).

SELECT ST_Geometry::ST_ConvexHullAggr(Shape)
FROM SpatialShapes WHERE ShapeID <= 16

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_CoordDim() method
Returns the number of coordinate dimensions stored with each point of the ST_Geometry
value.

Syntax
geometry-expression.ST_CoordDim()

Returns
SMALLINT Returns a value between 2 and 4 indicating the number of coordinate dimensions
stored with each point of the ST_Geometry value.

Accessing and manipulating spatial data

Administration: Spatial Data 121

Examples

• Example 1 – The following example returns the result 2.

SELECT NEW ST_Point(1.0, 1.0).ST_CoordDim()

The following example returns the result 3.

SELECT NEW ST_Point(1.0, 1.0, 1.0, 0).ST_CoordDim()

The following example returns the result 3.

SELECT NEW ST_Point('Point M (1 1 1)').ST_CoordDim()

The following example returns the result 4.

SELECT NEW ST_Point('Point ZM (1 1 1 1)').ST_CoordDim()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.3

ST_CoveredBy(ST_Geometry) method
Tests if a geometry value is spatially covered by another geometry value.

Syntax
geometry-expression.ST_CoveredBy(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression covers geo2, otherwise 0.

Examples

• Example 1 – The following example tests if a point is covered by a polygon. The point is
completely covered by the polygon so the example returns 1.
SELECT NEW ST_Point(1, 1)
.ST_CoveredBy(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0
0))'))

The following example tests if a line is covered by a polygon. The line is completely
covered by the polygon so the example returns 1. If ST_Within was used in place of
ST_CoveredBy, ST_Within would return 0.
SELECT NEW ST_LineString('LineString(0 0, 1 0)')
.ST_CoveredBy(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0
0))'))

Accessing and manipulating spatial data

122 SAP Sybase IQ

The following example lists the ShapeIDs where the given point is within the Shape
geometry. This example returns the result 3,5,6. Note that ShapeID 6 is listed even
though the point intersects that row's Shape polygon only at the polygon's boundary.
SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE NEW ST_Point(1, 4).ST_CoveredBy(Shape) = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_CoveredByFilter(ST_Geometry) method
An inexpensive test if a geometry might be covered by another.

Syntax
geometry-expression.ST_CoveredByFilter(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression might be covered by geo2, otherwise 0.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Covers(ST_Geometry) method
Tests if a geometry value spatially covers another geometry value.

Syntax
geometry-expression.ST_Covers(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression covers geo2, otherwise 0.

Accessing and manipulating spatial data

Administration: Spatial Data 123

Examples

• Example 1 – The following example tests if a polygon covers a point. The polygon
completely covers the point so the example returns 1.
SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
.ST_Covers(NEW ST_Point(1, 1))

The following example tests if a polygon covers a line. The polygon completely covers the
line so the example returns 1. If ST_Contains was used in place of ST_Covers,
ST_Contains would return 0.
SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))')
.ST_Covers(NEW ST_LineString('LineString(0 0, 1 0)'))

The following example lists the ShapeIDs where the given polygon covers each Shape
geometry. This example returns the result 1,16,17,19,26. Note that ShapeID 1 is
listed even though the polygon intersects that row's Shape point only at the polygon's
boundary.
SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE NEW ST_Polygon(NEW ST_Point(0, 0),
NEW ST_Point(8, 2)).ST_Covers(Shape) = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_CoversFilter(ST_Geometry) method
An inexpensive test if a geometry might cover another.

Syntax
geometry-expression.ST_CoversFilter(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression might cover geo2, otherwise 0.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

124 SAP Sybase IQ

ST_Crosses(ST_Geometry) method
Tests if a geometry value crosses another geometry value.

Syntax
geometry-expression.ST_Crosses(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression crosses geo2, otherwise 0. Returns NULL if
geometry-expression is a surface or multisurface, or if geo2 is a point or multipoint.

Examples

• Example 1 – The following example returns the result 1.

SELECT NEW ST_LineString('LineString(0 0, 2 2)')
.ST_Crosses(NEW ST_LineString('LineString(0 2, 2 0)'))

The following examples returns the result 0 because the interiors of the two lines do not
intersect (the only intersection is at the first linestring boundary).
SELECT NEW ST_LineString('LineString(0 1, 2 1)')
.ST_Crosses(NEW ST_LineString('LineString(0 0, 2 0)'))

The following example returns NULL because the first geometry is a surface.
SELECT NEW ST_Polygon('Polygon((0 0, 0 1, 1 0, 0 0))')
.ST_Crosses(NEW ST_LineString('LineString(0 0, 2 0)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.29

ST_Debug(VARCHAR(128)) method
Returns a LONG BINARY that is debug information for the object.

Syntax
geometry-expression.ST_Debug(VARCHAR(128) format)

Parameters

• format – The type of debug information and parameters as key=value pairs.

Accessing and manipulating spatial data

Administration: Spatial Data 125

Returns
LONG BINARY Returns a LONG BINARY encoding debug information about the geometry.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Difference(ST_Geometry) method
Returns the geometry value that represents the point set difference of two geometries.

Syntax
geometry-expression.ST_Difference(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be subtracted from the geometry-expression.

Returns
ST_Geometry Returns the geometry value that represents the point set difference of two
geometries.

Examples

• Example 1 – The following example shows the difference (C) of a square (A) with a circle
(B) removed and the difference (D) of a circle (B) with a square (A) removed.
SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1
2.25, -1 -0.25))') AS A
, NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2
1, 1 0, 0 1))') AS B
, A.ST_Difference(B) AS C
, B.ST_Difference(A) AS D

The following picture shows the difference C=A-B and D=B-A as the shaded portion of
the picture. Each difference is a single surface that contains all of the points that are in the
geometry on the left hand side of the difference and not in the geometry on the right hand
side. Union of a square and a circle

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.20

Accessing and manipulating spatial data

126 SAP Sybase IQ

ST_Dimension() method
Returns the dimension of the ST_Geometry value. Points have dimension 0, lines have
dimension 1, and surfaces have dimension 2. Any empty geometry has dimension -1.

Syntax
geometry-expression.ST_Dimension()

Returns
SMALLINT Returns the dimension of the geometry-expression as a SMALLINT between -1
and 2.

Examples

• Example 1 – The following example returns the result 0.

SELECT NEW ST_Point(1.0,1.0).ST_Dimension()

The following example returns the result 1.

SELECT NEW ST_LineString('LineString(0 0, 1 1)').ST_Dimension()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.2

ST_Disjoint(ST_Geometry) method
Test if a geometry value is spatially disjoint from another value.

Syntax
geometry-expression.ST_Disjoint(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression is spatially disjoint from geo2, otherwise 0.

Examples

• Example 1 – The following example returns a result with one row for each shape that has
no points in common with the specified triangle.
SELECT ShapeID, "Description"
FROM SpatialShapes
WHERE NEW ST_Polygon('Polygon((0 0, 5 0, 0 5, 0

Accessing and manipulating spatial data

Administration: Spatial Data 127

0))').ST_Disjoint(Shape) = 1
ORDER BY ShapeID

The example returns the following result set:

ShapeID Description

1 Point
22 Triangle

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.26

ST_Distance(ST_Geometry , VARCHAR(128)) method
Returns the smallest distance between the geometry-expression and the specified geometry
value.

Syntax
geometry-expression.ST_Distance(ST_Geometry geo2, VARCHAR(128)
unit_name)

Parameters

• geo2 – The other geometry value whose distance is to be measured from the geometry-
expression.

• unit_name – The units in which the distance should be computed. Defaults to the unit of
the spatial reference system. The unit name must match the UNIT_NAME column of a
row in the ST_UNITS_OF_MEASURE view where UNIT_TYPE is 'LINEAR'.

Returns
DOUBLE Returns the smallest distance between the geometry-expression and geo2 in the
specified linear units of measure. If either geometry-expression or geo2 is empty, then NULL
is returned.

Examples

• Example 1 – The following example returns an ordered result set with one row for each
shape and the corresponding distance from the point (2,3).
SELECT ShapeID, ROUND(Shape.ST_Distance(NEW ST_Point(2, 3)),
2) AS dist
FROM SpatialShapes
WHERE ShapeID < 17
ORDER BY dist

The example returns the following result set:

Accessing and manipulating spatial data

128 SAP Sybase IQ

ShapeID dist

2 0.0
3 0.0
5 1.0
6 1.21
16 1.41
1 5.1

The following example creates points representing Halifax, NS and Waterloo, ON,
Canada and uses ST_Distance to find the distance between the two points in miles,
returning the result 846. This example assumes that the 'st_geometry_predefined_uom'
feature has been installed by the sa_install_feature system procedure.
Seesa_install_feature system procedure.
SELECT ROUND(NEW ST_Point(-63.573566, 44.646244, 4326)
.ST_Distance(NEW ST_Point(-80.522372, 43.465187, 4326)
, 'Statute mile'), 0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.23

ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) method
Calculates the linear distance between geometries on the surface of the Earth.

Syntax
geometry-expression.ST_Distance_Spheroid(ST_Geometry geo2,
VARCHAR(128) unit_name)

Parameters

• geo2 – The other geometry value whose distance is to be measured from the geometry-
expression.

• unit_name – The linear unit of measure. Defaults to the unit of the spatial reference
system.

Returns
DOUBLE Returns the linear distance between geometries on the surface of the Earth calculated
in the specified linear units.

Accessing and manipulating spatial data

Administration: Spatial Data 129

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Envelope() method
Returns the bounding rectangle for the geometry value.

Syntax
geometry-expression.ST_Envelope()

Returns
ST_Polygon Returns a polygon that is the bounding rectangle for the geometry-expression.

Examples

• Example 1 – The following example returns the result Polygon ((0 0, 1 0, 1 4,
0 4, 0 0)).

SELECT Shape.ST_Envelope()
FROM SpatialShapes WHERE ShapeID = 6

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.15

ST_EnvelopeAggr(ST_Geometry) method
Returns the bounding rectangle for all of the geometries in a group

Syntax
ST_Geometry::ST_EnvelopeAggr(ST_Geometry geometry_column)

Parameters

• geometry_column – The geometry values to generate the bounding rectangle. Typically
this is a column.

Returns
ST_Polygon Returns a polygon that is the bounding rectangle for all the geometries in a
group.

Examples

• Example 1 – The following example returns the result Polygon ((-3 -1, 8 -1,
8 8, -3 8, -3 -1)).

Accessing and manipulating spatial data

130 SAP Sybase IQ

SELECT ST_Geometry::ST_EnvelopeAggr(Shape) FROM SpatialShapes

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Equals(ST_Geometry) method
Tests if an ST_Geometry value is spatially equal to another ST_Geometry value.

Syntax
geometry-expression.ST_Equals(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the two geometry values are spatially equal, otherwise 0.

Examples

• Example 1 – The following example returns the result 16. The Shape corresponding to
ShapeID the result 16 contains the same points but in a different order as the specified
polygon.
SELECT ShapeID FROM SpatialShapes
WHERE Shape.ST_Equals(NEW ST_Polygon('Polygon ((2 0, 1 2, 0 0, 2
0))')) = 1

The following example returns the result 1, indicating that the two linestrings are equal
even though they contain a different number of points specified in a different order, and the
intermediate point is not exactly on the line. The intermediate point is about 3.33e-7 away
from the line with only two points, but that distance less than the tolerance 1e-6 for the
"Default" spatial reference system (SRID 0).
SELECT NEW ST_LineString('LineString(0 0, 0.333333 1, 1 3)')
.ST_Equals(NEW ST_LineString('LineString(1 3, 0 0)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.24

ST_EqualsFilter(ST_Geometry) method
An inexpensive test if a geometry is equal to another.

Syntax
geometry-expression.ST_EqualsFilter(ST_Geometry geo2)

Accessing and manipulating spatial data

Administration: Spatial Data 131

Parameters

• geo2 – The other geometry value that is to be compared to geometry-expression.

Returns
BIT Returns 1 if the bounding box for geometry-expression is equal, within tolerance, to the
bounding box for geo2, otherwise 0.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeometryType() method
Returns the name of the type of the ST_Geometry value.

Syntax
geometry-expression.ST_GeometryType()

Returns
VARCHAR_0123128321_ Returns the data type of the geometry value as a text string. This
method can be used to determine the dynamic type of a value.

Examples

• Example 1 – The following returns the result 2,3,6,16,22,24,25, which is the list
of ShapeIDs whose corresponding Shape is one of the specified types.
SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE Shape.ST_GeometryType() IN('ST_Polygon',
'ST_CurvePolygon')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.4

ST_GeometryTypeFromBaseType(VARCHAR(128)) method
Parses a string defining the type string.

Syntax
ST_Geometry::ST_GeometryTypeFromBaseType(VARCHAR(128)
base_type_str)

Accessing and manipulating spatial data

132 SAP Sybase IQ

Parameters

• base_type_str – A string containing the base type string

Returns
VARCHAR_0123128321_ Returns the geometry type from a base type string (which may
include a SRID definition). If the type string is not a valid geometry type string, an error is
returned.

Examples

• Example 1 – The following example returns the result ST_Geometry.

SELECT ST_Geometry::ST_GeometryTypeFromBaseType('ST_Geometry')

The following example returns the result ST_Point.

SELECT
ST_Geometry::ST_GeometryTypeFromBaseType('ST_Point(SRID=4326)')

The following example finds the geometry type (ST_Point) accepted by a stored procedure
parameter.
CREATE PROCEDURE myprocedure(parm1 ST_Point(SRID=0))
BEGIN
-- ...
END;SELECT parm_name nm, base_type_str,
ST_Geometry::ST_GeometryTypeFromBaseType(base_type_str) geom_type
FROM sysprocedure KEY JOIN sysprocparm
WHERE proc_name='myprocedure' and parm_name='parm1'

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeomFromBinary(LONG BINARY, INT) method
Constructs a geometry from a binary string representation.

Syntax
ST_Geometry::ST_GeomFromBinary(LONG BINARY binary_string, INT
srid)

Parameters

• binary_string – A string containing the binary representation of a geometry. The input
can be in any supported binary format, including WKB or EWKB.

• srid – The SRID of the result. If not specified and the input string does not provide a SRID,
the default is 0.

Accessing and manipulating spatial data

Administration: Spatial Data 133

Returns
ST_Geometry Returns a geometry value of the appropriate type based on the source string.

Examples

• Example 1 – The following example returns the result Point (10 20).

SELECT
ST_Geometry::ST_GeomFromBinary(0x0101000000000000000000244000000
00000003440)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeomFromShape(LONG BINARY[, INT]) method
Parses a string containing an ESRI shape record and creates a geometry value of the
appropriate type.

Syntax
ST_Geometry::ST_GeomFromShape(LONG BINARY shape[, INT srid])

Parameters

• shape – A string containing a geometry in the ESRI shape format.
• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Geometry Returns a geometry value of the appropriate type based on the source string.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GeomFromText(LONG VARCHAR, INT) method
Constructs a geometry from a character string representation.

Syntax
ST_Geometry::ST_GeomFromText(LONG VARCHAR character_string, INT
srid)

Accessing and manipulating spatial data

134 SAP Sybase IQ

Parameters

• character_string – A string containing the text representation of a geometry. The input
can be in any supported text input format, including Well Known Text (WKT) or Extended
Well Known Text (EWKT).

• srid – The SRID of the result. If not specified and the input string does not contain a SRID,
the default is 0.

Returns
ST_Geometry Returns a geometry value of the appropriate type based on the source string.

Examples

• Example 1 – The following example returns the result LineString (1 2, 5 7).

SELECT ST_Geometry::ST_GeomFromText('LineString(1 2, 5 7)',
4326)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.40

ST_GeomFromWKB(LONG BINARY, INT) method
Parse a string containing a WKB or EWKB representation of a geometry and creates a
geometry value of the appropriate type.

Syntax
ST_Geometry::ST_GeomFromWKB(LONG BINARY wkb, INT srid)

Parameters

• wkb – A string containing the WKB or EWKB representation of a geometry value.
• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Geometry Returns a geometry value of the appropriate type based on the source string.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.41

Accessing and manipulating spatial data

Administration: Spatial Data 135

ST_GeomFromWKT(LONG VARCHAR, INT) method
Parses a string containing the WKT or EWKT representation of a geometry and create a
geometry value of the appropriate type.

Syntax
ST_Geometry::ST_GeomFromWKT(LONG VARCHAR wkt, INT srid)

Parameters

• wkt – A string containing the WKT or EWKT representation of a geometry value.
• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Geometry Returns a geometry value of the appropriate type based on the source string.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Intersection(ST_Geometry) method
Returns the geometry value that represents the point set intersection of two geometries.

Syntax
geometry-expression.ST_Intersection(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be intersected with the geometry-expression.

Returns
ST_Geometry Returns the geometry value that represents the point set intersection of two
geometries.

Examples

• Example 1 – The following example shows the intersection (C) of a square (A) and a
circle (B).
SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1
2.25, -1 -0.25))') AS A
, NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2
1, 1 0, 0 1))') AS B
, A.ST_Intersection(B) AS C

Accessing and manipulating spatial data

136 SAP Sybase IQ

The intersection is shaded in the following picture. It is a single surface that includes all of
the points that are in the square and also in the circle. Union of a square and a circle

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.18

ST_IntersectionAggr(ST_Geometry) method
Returns the spatial intersection of all of the geometries in a group

Syntax
ST_Geometry::ST_IntersectionAggr(ST_Geometry geometry_column)

Parameters

• geometry_column – The geometry values to generate the spatial intersection. Typically
this is a column.

Returns
ST_Geometry Returns a geometry that is the spatial intersection for all the geometries in a
group.

Examples

• Example 1 – The following example returns the result Polygon ((0 0, 1 2, .5
2, .75 3, .555555 3, 0 1.75, .5 1.75, 0 0)).

SELECT ST_Geometry::ST_IntersectionAggr(Shape)
FROM SpatialShapes WHERE ShapeID IN (2, 6)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Intersects(ST_Geometry) method
Test if a geometry value spatially intersects another value.

Syntax
geometry-expression.ST_Intersects(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Accessing and manipulating spatial data

Administration: Spatial Data 137

Returns
BIT Returns 1 if the geometry-expression spatially intersects with geo2, otherwise 0.

Examples

• Example 1 – The following example returns a result with one row for each shape that
intersects the specified line.
SELECT ShapeID, "Description"
FROM SpatialShapes
WHERE NEW ST_LineString('LineString(2 2, 4
4)').ST_Intersects(Shape) = 1
ORDER BY ShapeID

The example returns the following result set:

ShapeID Description

2 Square
3 Rectangle
5 L shape line
18 CircularString
22 Triangle

To visualize how the geometries in the SpatialShapes table intersect the line in the above
example, execute the following query in the Interactive SQL Spatial Viewer.
SELECT Shape
FROM SpatialShapes
WHERE NEW ST_LineString('LineString(2 2, 4
4)').ST_Intersects(Shape) = 1
UNION ALL SELECT NEW ST_LineString('LineString(2 2, 4 4)')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.27

ST_IntersectsFilter(ST_Geometry) method
An inexpensive test if the two geometries might intersect.

Syntax
geometry-expression.ST_IntersectsFilter(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Accessing and manipulating spatial data

138 SAP Sybase IQ

Returns
BIT Returns 1 if the geometry-expression might intersect with geo2, otherwise 0.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_IntersectsRect(ST_Point , ST_Point) method
Test if a geometry intersects a rectangle.

Syntax
geometry-expression.ST_IntersectsRect(ST_Point pmin, ST_Point pmax)

Parameters

• pmin – The minimum point value that is to be compared to the geometry-expression.
• pmax – The maximum point value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression intersects with the specified rectangle, otherwise
0.

Examples

• Example 1 – The following example lists the ShapeIDs where the rectangle specified by
the envelope of the two points intersects the corresponding Shape geometry. This example
returns the result 3,5,6,18.

SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE Shape.ST_IntersectsRect(NEW ST_Point(0, 4), NEW
ST_Point(2, 5)) = 1

The following example tests if a linestring intersects a rectangle. The provided linestring
does not intersect the rectangle identified by the two points (even though the envelope of
the linestring does intersect the envelope of the two points).
SELECT NEW ST_LineString('LineString(0 0, 10 0, 10 10)')
.ST_IntersectsRect(NEW ST_Point(4, 4) , NEW ST_Point(6, 6))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

Administration: Spatial Data 139

ST_Is3D() method
Determines if the geometry value has Z coordinate values.

Syntax
geometry-expression.ST_Is3D()

Returns
BIT Returns 1 if the geometry value has Z coordinate values, otherwise 0.

Examples

• Example 1 – The following example returns the result 1.

SELECT ShapeID FROM SpatialShapes WHERE Shape.ST_Is3D() = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.10

ST_IsEmpty() method
Determines whether the geometry value represents an empty set.

Syntax
geometry-expression.ST_IsEmpty()

Returns
BIT Returns 1 if the geometry value is empty, otherwise 0.

Examples

• Example 1 – The following example returns the result 1.

SELECT NEW ST_LineString().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.7

ST_IsMeasured() method
Determines if the geometry value has associated measure values.

Syntax
geometry-expression.ST_IsMeasured()

Accessing and manipulating spatial data

140 SAP Sybase IQ

Returns
BIT Returns 1 if the geometry value has measure values, otherwise 0.

Examples

• Example 1 – The following example returns the result 1.

SELECT ST_Geometry::ST_GeomFromText('LineString M(1 2 4, 5 7
3)').ST_IsMeasured()

The following example returns the result 0.

SELECT count(*) FROM SpatialShapes WHERE Shape.ST_IsMeasured() = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.11

ST_IsSimple() method
Determines whether the geometry value is simple (containing no self intersections or other
irregularities).

Syntax
geometry-expression.ST_IsSimple()

Returns
BIT Returns 1 if the geometry value is simple, otherwise 0.

Examples

• Example 1 – The following returns the result 29 because the corresponding multi
linestring contains two lines which cross.
SELECT ShapeID FROM SpatialShapes WHERE Shape.ST_IsSimple() = 0

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.8

ST_IsValid() method
Determines whether the geometry is a valid spatial object.

Syntax
geometry-expression.ST_IsValid()

Returns
BIT Returns 1 if the geometry value is valid, otherwise 0.

Accessing and manipulating spatial data

Administration: Spatial Data 141

Examples

• Example 1 – The following returns the result 0 because the polygon contains a bow tie
(the ring has a self-intersection).
SELECT ST_Geometry::ST_GeomFromText('Polygon((0 0, 4 0, 4 5, 0
-1, 0 0))')
.ST_IsValid()

The following returns the result 0 because the polygons within the geometry self-intersect
at a surface. Note that self-intersections of a geometry collection at finite number of points
is considered valid.
SELECT ST_Geometry::ST_GeomFromText(
'MultiPolygon(((0 0, 2 0, 1 2, 0 0)),((0 2, 1 0, 2 2, 0 2)))')
.ST_IsValid()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.9

ST_LatNorth() method
Retrieves the northernmost latitude of a geometry.

Syntax
geometry-expression.ST_LatNorth()

Returns
DOUBLE Returns the northernmost latitude of the geometry-expression.

Examples

• Example 1 – The following example returns the result 49.74.

SELECT ROUND(NEW ST_LineString('LineString(-122 49, -96 49)',
4326)
.ST_LatNorth(), 2)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LatSouth() method
Retrieves the southernmost latitude of a geometry.

Syntax
geometry-expression.ST_LatSouth()

Accessing and manipulating spatial data

142 SAP Sybase IQ

Returns
DOUBLE Returns the southernmost latitude of the geometry-expression.

Examples

• Example 1 – The following example returns the result 49.

SELECT ROUND(NEW ST_LineString('LineString(-122 49, -96 49)',
4326)
.ST_LatSouth(), 2)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Length_Spheroid(VARCHAR(128)) method
Calculates the linear length of a curve/multicurve on the surface of the Earth.

Syntax
geometry-expression.ST_Length_Spheroid(VARCHAR(128) unit_name)

Parameters

• unit_name – The linear unit of measure. Defaults to the unit of the spatial reference
system.

Returns
DOUBLE Returns the linear length of the curve/multicurve on the surface of the Earth
calculated in the specified linear units.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LinearHash() method
Returns a binary string that is a linear hash of the geometry.

Syntax
geometry-expression.ST_LinearHash()

Returns
BINARY_012332321_ Returns a binary string that is a linear hash of the geometry.

Accessing and manipulating spatial data

Administration: Spatial Data 143

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LinearUnHash(BINARY(32)[, INT]) method
Returns a geometry representing the index hash.

Syntax
ST_Geometry::ST_LinearUnHash(BINARY(32) index_hash[, INT srid])

Parameters

• index_hash – The index hash string.
• srid – The SRID of the index hash. If not specified, the default is 0.

Returns
ST_Geometry Returns a representative geometry for the given linear hash.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LoadConfigurationData(VARCHAR(128)) method
Returns binary configuration data. For internal use only.

Syntax
ST_Geometry::ST_LoadConfigurationData(VARCHAR(128)
configuration_name)

Parameters

• configuration_name – The name of the configuration data item to load.

Returns
LONG BINARY Returns binary configuration data. For internal use only.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

144 SAP Sybase IQ

ST_LocateAlong(DOUBLE) method
Returns the subset of the geometry value that is associated with the given measure value.

Syntax
geometry-expression.ST_LocateAlong(DOUBLE measure)

Parameters

• measure – The measure value to look for in the geometry value.

Returns
ST_Geometry Returns a geometry value representing all parts of the geometry value that
have the given measure value.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.12

ST_LocateBetween(DOUBLE, DOUBLE) method
Returns the subset of the geometry value that is between the specified start measure and end
measure.

Syntax
geometry-expression.ST_LocateBetween(DOUBLE start_measure,
DOUBLE end_measure)

Parameters

• start_measure – The minimum measure value to look for in the geometry value.
• end_measure – The maximum measure value to look for in the geometry value.

Returns
ST_Geometry Returns a geometry value representing all parts of the geometry value that
have a measure value between the specified start and end.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.13

Accessing and manipulating spatial data

Administration: Spatial Data 145

ST_LongEast() method
Retrieves the longitude of the eastern boundary of a geometry.

Syntax
geometry-expression.ST_LongEast()

Returns
DOUBLE Retrieves the longitude of the eastern boundary of the geometry-expression.

Examples

• Example 1 – The following example returns the result -157.8.

SELECT NEW ST_LineString('LineString(-157.8 21.3, 144.5 13)',
4326)
.ST_LongEast()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LongWest() method
Retrieves the longitude of the western boundary of a geometry.

Syntax
geometry-expression.ST_LongWest()

Returns
DOUBLE Retrieves the longitude of the western boundary of the geometry-expression.

Examples

• Example 1 – The following example returns the result 144.5.

SELECT NEW ST_LineString('LineString(-157.8 21.3, 144.5 13)',
4326)
.ST_LongWest()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

146 SAP Sybase IQ

ST_MMax() method
Retrieves the maximum M coordinate value of a geometry.

Syntax
geometry-expression.ST_MMax()

Returns
DOUBLE Returns the maximum M coordinate value of the geometry-expression.

Examples

• Example 1 – The following example returns the result 8.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_MMax()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MMin() method
Retrieves the minimum M coordinate value of a geometry.

Syntax
geometry-expression.ST_MMin()

Returns
DOUBLE Returns the minimum M coordinate value of the geometry-expression.

Examples

• Example 1 – The following example returns the result 4.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_MMin()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

Administration: Spatial Data 147

ST_OrderingEquals(ST_Geometry) method
Tests if a geometry is identical to another geometry.

Syntax
geometry-expression.ST_OrderingEquals(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the two geometry values are exactly equal, otherwise 0.

Examples

• Example 1 – The following example returns the result 16. The Shape corresponding to
ShapeID the result 16 contains the exact same points in the exact same order as the
specified polygon.
SELECT ShapeID FROM SpatialShapes
WHERE Shape.ST_OrderingEquals(NEW ST_Polygon('Polygon ((0 0, 2
0, 1 2, 0 0))')) = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.43

ST_Overlaps(ST_Geometry) method
Tests if a geometry value overlaps another geometry value.

Syntax
geometry-expression.ST_Overlaps(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression overlaps geo2, otherwise 0. Returns NULL if
geometry-expression and geo2 have different dimensions.

Accessing and manipulating spatial data

148 SAP Sybase IQ

Examples

• Example 1 – The following returns the result 1 since the intersection of the two linestrings
is also a linestring, and neither geometry is a subset of the other.
SELECT NEW ST_LineString('LineString(0 0, 5 0)')
.ST_Overlaps(NEW ST_LineString('LineString(2 0, 3 0, 3 3)'))

The following returns the result NULL since the linestring and point have different
dimension.
SELECT NEW ST_LineString('LineString(0 0, 5 0)')
.ST_Overlaps(NEW ST_Point(1, 0))

The following returns the result 0 since the point is a subset of the multipoint.

SELECT NEW ST_MultiPoint('MultiPoint((2 3), (1 0))')
.ST_Overlaps(NEW ST_Point(1, 0))

The following returns the result 24,25,28,31, which is the list of ShapeIDs that
overlap the specified polygon.
SELECT LIST(ShapeID ORDER BY ShapeID) FROM SpatialShapes
WHERE Shape.ST_Overlaps(NEW ST_Polygon('Polygon((-1 0, 0 0, 0
1, -1 1, -1 0))')
) = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.32

ST_Relate(ST_Geometry) method
Determines how a geometry value is spatially related to another geometry value by returning
an intersection matrix. The ST_Relate method returns a 9-character string from the
Dimensionally Extended 9 Intersection Model (DE-9IM) to describe the pair-wise
relationship between two spatial data items. For example, the ST_Relate method determines if
an intersection occurs between the geometries, and the geometry of the resulting intersection,
if it exists.

Syntax
geometry-expression.ST_Relate(ST_Geometry geo2)

Parameters

• geo2 – The second geometry value that is to be compared to the geometry-expression.

Returns
CHAR_01239321_ Returns A 9-character string representing a matrix in the dimensionally-
extended 9 intersection model. Each character in the 9-character string represents the type of
intersection at one of the nine possible intersections between the interior, boundary, and
exterior of the two geometries.

Accessing and manipulating spatial data

Administration: Spatial Data 149

Examples

• Example 1 – The following example returns the result 1F2001102.

SELECT NEW ST_Polygon('Polygon((0 0, 2 0, 0 2, 0 0))')
.ST_Relate(NEW ST_LineString('LineString(0 1, 5 1)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Reverse() method
Returns the geometry with the element order reversed.

Syntax
geometry-expression.ST_Reverse()

Returns
ST_Geometry Returns the geometry with the element order reversed.

Examples

• Example 1 – The following example returns the result LineString (3 4, 1 2). It
shows how the order of points in a linestring is reversed by ST_Reverse.
SELECT NEW ST_LineString(NEW ST_Point(1,2), NEW
ST_Point(3,4)).ST_Reverse()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Segmentize(DOUBLE) method
Add points so that no line segment is longer than a specified distance.

Syntax
geometry-expression.ST_Segmentize(DOUBLE max_linesg)

Parameters

• max_linesg – The maximum length of a line segment in the result.

Returns
ST_Geometry Returns a geometry with no individual line segment longer than the specified
distance.

Accessing and manipulating spatial data

150 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Simplify(DOUBLE) method
Remove points from curves so long as the maximum introduced error is less than a specified
tolerance.

Syntax
geometry-expression.ST_Simplify(DOUBLE tolerance)

Parameters

• tolerance – The maximum tolerance to use while simplifying.

Returns
ST_Geometry Returns a simplified geometry with some points removed.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE)
method

Returns a copy of the geometry with all points snapped to the specified grid.

Syntax
geometry-expression.ST_SnapToGrid(ST_Point origin, DOUBLE
cell_size_x, DOUBLE cell_size_y, DOUBLE cell_size_z, DOUBLE
cell_size_m)

Parameters

• origin – The origin of the grid.
• cell_size_x – The cell size for the grid in the X dimension.
• cell_size_y – The cell size for the grid in the Y dimension.
• cell_size_z – The cell size for the grid in the Z dimension.
• cell_size_m – The cell size for the grid in the M dimension.

Returns
ST_Geometry Returns the geometry with all points snapped to the grid.

Accessing and manipulating spatial data

Administration: Spatial Data 151

Examples

• Example 1 – The following example returns the result LineString (1.010101
20.20202, 1.015625 20.203125, 1.01 20.2).

SELECT NEW ST_LineString(
NEW ST_Point(1.010101, 20.202020),
TREAT(NEW ST_Point(1.010101, 20.202020).ST_SnapToGrid(NEW
ST_Point(0.0, 0.0), POWER(2, -6), POWER(2, -7), 0.0, 0.0) AS
ST_Point),
TREAT(NEW ST_Point(1.010101, 20.202020).ST_SnapToGrid(NEW
ST_Point(1.01, 20.2), POWER(2, -6), POWER(2, -7), 0.0, 0.0)
AS ST_Point))

The first point of the linestring is the point ST_Point(1.010101, 20.202020), snapped to
the grid defined for SRID 0. The second point of the linestring is the same point snapped to
a grid defined with its origin at point (0.0 0.0), where cell size x is POWER(2, -6) and cell
size y is POWER(2, -7). The third point of the linestring is the same point snapped to a grid
defined with its origin at point (1.01, 20.2), where cell size x is POWER(2, -6) and cell
size y is POWER(2, -7).

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_SRID(INT) method
Changes the spatial reference system associated with the geometry without modifying any of
the values.

Syntax
geometry-expression.ST_SRID(INT srid)

Parameters

• srid – The SRID to use for the result.

Returns
ST_Geometry Returns a copy of the geometry value with the specified spatial reference
system.

Examples

• Example 1 – The following example returns the result SRID=1000004326;Point
(-118 34).

SELECT NEW ST_Point(-118, 34,
4326).ST_SRID(1000004326).ST_AsText('EWKT')

Accessing and manipulating spatial data

152 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.5

ST_SRIDFromBaseType(VARCHAR(128)) method
Parses a string defining the type string.

Syntax
ST_Geometry::ST_SRIDFromBaseType(VARCHAR(128) base_type_str)

Parameters

• base_type_str – A string containing the base type string

Returns
INT Returns the SRID from a type string. If no SRID is specified by the string, returns NULL.
If the type string is not a valid geometry type string, an error is returned.

Examples

• Example 1 – The following example returns the result NULL.

SELECT ST_Geometry::ST_SRIDFromBaseType('ST_Geometry')

The following example returns the result 4326.

SELECT ST_Geometry::ST_SRIDFromBaseType('ST_Geometry(SRID=4326)')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_SymDifference(ST_Geometry) method
Returns the geometry value that represents the point set symmetric difference of two
geometries.

Syntax
geometry-expression.ST_SymDifference(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be subtracted from the geometry-expression to
find the symmetric difference.

Accessing and manipulating spatial data

Administration: Spatial Data 153

Returns
ST_Geometry Returns the geometry value that represents the point set symmetric
difference of two geometries.

Examples

• Example 1 – The following example shows the symmetric difference (C) of a square (A)
and a circle (B).
SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1
2.25, -1 -0.25))') AS A
, NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2
1, 1 0, 0 1))') AS B
, A.ST_SymDifference(B) AS C

The following picture shows the result of the symmetric difference as the shaded portion of
the picture. The symmetric difference is a multisurface that includes two surfaces: one
surface contains all of the points from the square that are not in the circle, and the other
surface contains all of the points of the circle that are not in the square. Union of a square
and a circle

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.21

ST_ToCircular() method
Convert the geometry to a circularstring

Syntax
geometry-expression.ST_ToCircular()

Returns
ST_CircularString If the geometry-expression is of type ST_CircularString, return the
geometry-expression. If the geometry-expression is of type ST_CompoundCurve with a
single element which is of type ST_CircularString, return that element. If the geometry-
expression is a geometry collection with a single element of type ST_CircularString, return
that element. If the geometry-expression is the empty set, return an empty set of type
ST_CircularString. Otherwise, raise an exception condition.

Examples

• Example 1 – The following example returns the result CircularString (0 0, 1
1, 2 0).

SELECT NEW ST_CompoundCurve('CompoundCurve(CircularString(0 0, 1
1, 2 0))').ST_ToCircular()

Accessing and manipulating spatial data

154 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToCompound() method
Converts the geometry to a compound curve.

Syntax
geometry-expression.ST_ToCompound()

Returns
ST_CompoundCurve If the geometry-expression is of type ST_CompoundCurve, return
the geometry-expression. If the geometry-expression is of type ST_LineString or
ST_CircularString, return a compound curve containing one element, the geometry-
expression. If the geometry-expression is a geometry collection with a single element of type
ST_Curve, return that element cast as ST_CompoundCurve. If the geometry-expression is the
empty set, return an empty set of type ST_CompoundCurve. Otherwise, raise an exception
condition.

Examples

• Example 1 – The following example returns the result CompoundCurve ((0 0, 2
1)).

SELECT NEW ST_LineString('LineString(0 0, 2
1)').ST_ToCompound()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToCurve() method
Converts the geometry to a curve.

Syntax
geometry-expression.ST_ToCurve()

Returns
ST_Curve If the geometry-expression is of type ST_Curve, return the geometry-expression.
If the geometry-expression is a geometry collection with a single element of type ST_Curve,
return that element. If the geometry-expression is the empty set, return an empty set of type
ST_LineString. Otherwise, raise an exception condition.

Accessing and manipulating spatial data

Administration: Spatial Data 155

Examples

• Example 1 – The following example returns the result LineString (0 0, 1 1, 2
0).

SELECT NEW ST_GeomCollection('GeometryCollection(LineString(0 0,
1 1, 2 0))').ST_ToCurve()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_ToCurvePoly() method
Converts the geometry to a curve polygon.

Syntax
geometry-expression.ST_ToCurvePoly()

Returns
ST_CurvePolygon If the geometry-expression is of type ST_CurvePolygon, return the
geometry-expression. If the geometry-expression is a geometry collection with a single
element of type ST_CurvePolygon, return that element. If the geometry-expression is the
empty set, return an empty set of type ST_CurvePolygon. Otherwise, raise an exception
condition.

Examples

• Example 1 – The following example returns the result Polygon ((0 0, 2 0, 1 2,
0 0)).

SELECT NEW ST_MultiPolygon('MultiPolygon(((0 0, 2 0, 1 2, 0
0)))').ST_ToCurvePoly()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToGeomColl() method
Converts the geometry to a geometry collection.

Syntax
geometry-expression.ST_ToGeomColl()

Returns
ST_GeomCollection If the geometry-expression is of type ST_GeomCollection, returns
the geometry-expression. If the geometry-expression is of type ST_Point, ST_Curve, or

Accessing and manipulating spatial data

156 SAP Sybase IQ

ST_Surface, then return a geometry collection containing one element, the geometry-
expression. If the geometry-expression is the empty set, returns an empty set of type
ST_GeomCollection. Otherwise, raises an exception condition.

Examples

• Example 1 – The following example returns the result GeometryCollection
(Point (0 1)).

SELECT NEW ST_Point(0, 1).ST_ToGeomColl()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToLineString() method
Converts the geometry to a linestring.

Syntax
geometry-expression.ST_ToLineString()

Returns
ST_LineString If the geometry-expression is of type ST_LineString, return the
geometry-expression. If the geometry-expression is of type ST_CircularString or
ST_CompoundCurve, return geometry-expression.ST_CurveToLine(). If the geometry-
expression is a geometry collection with a single element of type ST_Curve, return that
element cast as ST_LineString. If the geometry-expression is the empty set, return an empty
set of type ST_LineString. Otherwise, raise an exception condition.

Examples

• Example 1 – The following returns an error because the Shape column is of type
ST_Geometry and ST_Geometry does not support the ST_Length method.
SELECT Shape.ST_Length()
FROM SpatialShapes WHERE ShapeID = 5

The following uses ST_ToLineString to change the type of the Shape column expression
to ST_LineString. ST_Length returns the result 7.

SELECT Shape.ST_ToLineString().ST_Length()
FROM SpatialShapes WHERE ShapeID = 5

In this case, the value of the Shape column is known be of type ST_LineString, so TREAT
can be used to efficiently change the type of the expression. ST_Length returns the result
7.

Accessing and manipulating spatial data

Administration: Spatial Data 157

SELECT TREAT(Shape AS ST_LineString).ST_Length()
FROM SpatialShapes WHERE ShapeID = 5

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToMultiCurve() method
Converts the geometry to a multicurve value.

Syntax
geometry-expression.ST_ToMultiCurve()

Returns
ST_MultiCurve If the geometry-expression is of type ST_MultiCurve, returns the
geometry-expression. If the geometry-expression is a geometry collection containing only
curves, returns a multicurve object containing the elements of the geometry-expression. If the
geometry-expression is of type ST_Curve then return a multicurve value containing one
element, the geometry-expression. If the geometry-expression is the empty set, returns an
empty set of type ST_MultiCurve. Otherwise, raises an exception condition.

Examples

• Example 1 – The following example returns the result MultiCurve ((0 7, 0 4,
4 4)).

SELECT Shape.ST_ToMultiCurve()
FROM SpatialShapes WHERE ShapeID = 5

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToMultiLine() method
Converts the geometry to a multilinestring value.

Syntax
geometry-expression.ST_ToMultiLine()

Returns
ST_MultiLineString If the geometry-expression is of type ST_MultiLineString,
returns the geometry-expression. If the geometry-expression is a geometry collection
containing only lines, returns a multilinestring object containing the elements of the
geometry-expression. If the geometry-expression is of type ST_LineString then return a
multilinestring value containing one element, the geometry-expression. If the geometry-

Accessing and manipulating spatial data

158 SAP Sybase IQ

expression is the empty set, returns an empty set of type ST_MultiCurve. Otherwise, raises an
exception condition.

Examples

• Example 1 – The following returns an error because the Shape column is of type
ST_Geometry and ST_Geometry does not support the ST_Length method.
SELECT Shape.ST_Length()
FROM SpatialShapes WHERE ShapeID = 29

The following uses ST_ToMultiLine to change the type of the Shape column expression to
ST_MultiLineString. This example would also work with ShapeID 5, where the Shape
value is of type ST_LineString. ST_Length returns the result 4.236068.

SELECT Shape.ST_ToMultiLine().ST_Length()
FROM SpatialShapes WHERE ShapeID = 29

In this case, the value of the Shape column is known be of type ST_MultiLineString, so
TREAT can be used to efficiently change the type of the expression. This example would
notwork with ShapeID 5, where the Shape value is of type ST_LineString. ST_Length
returns the result 4.236068.

SELECT TREAT(Shape AS ST_MultiLineString).ST_Length()
FROM SpatialShapes WHERE ShapeID = 29

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToMultiPoint() method
Converts the geometry to a multi-point value.

Syntax
geometry-expression.ST_ToMultiPoint()

Returns
ST_MultiPoint If the geometry-expression is of type ST_MultiPoint, returns the
geometry-expression. If the geometry-expression is a geometry collection containing only
points, returns a multipoint object containing the elements of the geometry-expression. If the
geometry-expression is of type ST_Point then return a multi-point value containing one
element, the geometry-expression. If the geometry-expression is the empty set, returns an
empty set of type ST_MultiPoint. Otherwise, raises an exception condition.

Examples

• Example 1 – The following example returns the result MultiPoint EMPTY.

Accessing and manipulating spatial data

Administration: Spatial Data 159

SELECT NEW ST_GeomCollection().ST_ToMultiPoint()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToMultiPolygon() method
Converts the geometry to a multi-polygon value.

Syntax
geometry-expression.ST_ToMultiPolygon()

Returns
ST_MultiPolygon If the geometry-expression is of type ST_MultiPolygon, returns the
geometry-expression. If the geometry-expression is a geometry collection containing only
polygons, returns a multi-polygon object containing the elements of the geometry-expression.
If the geometry-expression is of type ST_Polygon then return a multi-polygon value
containing one element, the geometry-expression. If the geometry-expression is the empty
set, returns an empty set of type ST_MultiSurface. Otherwise, raises an exception condition.

Examples

• Example 1 – The following example returns the result MultiPolygon EMPTY.

SELECT NEW ST_GeomCollection().ST_ToMultiPolygon()

The following returns an error because the Shape column is of type ST_Geometry and
ST_Geometry does not support the ST_Area method.
SELECT Shape.ST_Area()
FROM SpatialShapes WHERE ShapeID = 27

The following uses ST_ToMultiPolygon to change the type of the Shape column
expression to ST_MultiPolygon. This example would also work with ShapeID 22, where
the Shape value is of type ST_LineString. ST_Area returns the result 8.

SELECT Shape.ST_ToMultiPolygon().ST_Area()
FROM SpatialShapes WHERE ShapeID = 27

In this case, the value of the Shape column is known be of type ST_MultiPolygon, so
TREAT can be used to efficiently change the type of the expression. This example would
notwork with ShapeID 22, where the Shape value is of type ST_Polygon. ST_Area returns
the result 8.

SELECT TREAT(Shape AS ST_MultiPolygon).ST_Area()
FROM SpatialShapes WHERE ShapeID = 27

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

Accessing and manipulating spatial data

160 SAP Sybase IQ

ST_ToMultiSurface() method
Converts the geometry to a multi-surface value.

Syntax
geometry-expression.ST_ToMultiSurface()

Returns
ST_MultiSurface If the geometry-expression is of type ST_MultiSurface, returns the
geometry-expression. If the geometry-expression is a geometry collection containing only
surfaces, returns a multi-surface object containing the elements of the geometry-expression. If
the geometry-expression is of type ST_Surface then return a multi-surface value containing
one element, the geometry-expression. If the geometry-expression is the empty set, returns an
empty set of type ST_MultiSurface. Otherwise, raises an exception condition.

Examples

• Example 1 – The following example returns the result MultiSurface EMPTY.

SELECT NEW ST_GeomCollection().ST_ToMultiSurface()

The following example returns the result MultiSurface (((3 3, 8 3, 4 8, 3
3))).

SELECT Shape.ST_ToMultiSurface()
FROM SpatialShapes WHERE ShapeID = 22

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToPoint() method
Converts the geometry to a point.

Syntax
geometry-expression.ST_ToPoint()

Returns
ST_Point If the geometry-expression is of type ST_Point, return the geometry-expression.
If the geometry-expression is a geometry collection with a single element of type ST_Point,
return that element. If the geometry-expression is the empty set, return an empty set of type
ST_Point. Otherwise, raise an exception condition.

Accessing and manipulating spatial data

Administration: Spatial Data 161

Examples

• Example 1 – The following example returns the result Point (1 2).

SELECT NEW ST_GeomCollection(NEW ST_Point(1,2)).ST_ToPoint()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToPolygon() method
Converts the geometry to a polygon.

Syntax
geometry-expression.ST_ToPolygon()

Returns
ST_Polygon If the geometry-expression is of type ST_Polygon, returns the geometry-
expression. If the geometry-expression is of type ST_CurvePolygon, returns geometry-
expression.ST_CurvePolyToPoly(). If the geometry-expression is a geometry collection with
a single element of type ST_CurvePolygon, returns that element. If the geometry-expression
is the empty set, returns an empty set of type ST_Polygon. Otherwise, raises an exception
condition.

Examples

• Example 1 – The following example returns the result Polygon EMPTY.

SELECT NEW ST_GeomCollection().ST_ToPolygon()

The following returns an error because the Shape column is of type ST_Geometry and
ST_Geometry does not support the ST_Area method.
SELECT Shape.ST_Area()
FROM SpatialShapes WHERE ShapeID = 22

The following uses ST_ToPolygon to change the type of the Shape column expression to
ST_Polygon. ST_Area returns the result 12.5.

SELECT Shape.ST_ToPolygon().ST_Area()
FROM SpatialShapes WHERE ShapeID = 22

In this case, the value of the Shape column is known be of type ST_Polygon, so TREAT
can be used to efficiently change the type of the expression. ST_Area returns the result
12.5.

SELECT TREAT(Shape AS ST_Polygon).ST_Area()
FROM SpatialShapes WHERE ShapeID = 22

Accessing and manipulating spatial data

162 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.33

ST_ToSurface() method
Converts the geometry to a surface.

Syntax
geometry-expression.ST_ToSurface()

Returns
ST_Surface If the geometry-expression is of type ST_Surface, return the geometry-
expression. If the geometry-expression is a geometry collection with a single element of type
ST_Surface, return that element. If the geometry-expression is the empty set, return an empty
set of type ST_Polygon. Otherwise, raise an exception condition.

Examples

• Example 1 – The following example returns the result Polygon EMPTY.

SELECT NEW ST_GeomCollection().ST_ToSurface()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Touches(ST_Geometry) method
Tests if a geometry value spatially touches another geometry value.

Syntax
geometry-expression.ST_Touches(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression touches geo2, otherwise 0. Returns NULL if both
geometry-expression and geo2 have dimension 0.

Examples

• Example 1 – The following example returns NULL because both inputs are points and
have no boundary.
SELECT NEW ST_Point(1,1).ST_Touches(NEW ST_Point(1,1))

Accessing and manipulating spatial data

Administration: Spatial Data 163

The following example lists the ShapeIDs of the geometries that touch the "Lighting Bolt"
shape, which has ShapeID 6. This example returns the result 5,16,26. Each of the three
touching geometries intersect the Lighting Bolt only at its boundary.
SELECT List(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE Shape.ST_Touches((SELECT Shape FROM SpatialShapes WHERE
ShapeID = 6)) = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.28

ST_Transform(INT) method
Creates a copy of the geometry value transformed into the specified spatial reference system.

Syntax
geometry-expression.ST_Transform(INT srid)

Parameters

• srid – The SRID of the result.

Returns
ST_Geometry Returns a copy of the geometry value transformed into the specified spatial
reference system.

Examples

• Example 1 – The following example returns the result Point (184755.86861
-444218.175691). It transforms a point in Los Angeles which is specified in
longitude and latitude to the projected planar SRID 3310 ("NAD83 / California Albers").
This example assumes that the 'st_geometry_predefined_srs' feature has been installed by
the sa_install_feature system procedure. See sa_install_feature system procedure.
SELECT NEW ST_Point(-118, 34, 4326).ST_Transform(3310)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.6

ST_Union(ST_Geometry) method
Returns the geometry value that represents the point set union of two geometries.

Syntax
geometry-expression.ST_Union(ST_Geometry geo2)

Accessing and manipulating spatial data

164 SAP Sybase IQ

Parameters

• geo2 – The other geometry value that is to be unioned with the geometry-expression.

Returns
ST_Geometry Returns the geometry value that represents the point set union of two
geometries.

Examples

• Example 1 – The following example shows the union (C) of a square (A) and a circle
(B).
SELECT NEW ST_Polygon('Polygon((-1 -0.25, 1 -0.25, 1 2.25, -1
2.25, -1 -0.25))') AS A
, NEW ST_CurvePolygon('CurvePolygon(CircularString(0 1, 1 2, 2
1, 1 0, 0 1))') AS B
, A.ST_Union(B) AS C

The union is shaded in the following picture. The union is a single surface that includes all
of the points that are in A or in B. Union of a square and a circle

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.19

ST_UnionAggr(ST_Geometry) method
Returns the spatial union of all of the geometries in a group

Syntax
ST_Geometry::ST_UnionAggr(ST_Geometry geometry_column)

Parameters

• geometry_column – The geometry values to generate the spatial union. Typically this is a
column.

Returns
ST_Geometry Returns a geometry that is the spatial union for all the geometries in a group.

Examples

• Example 1 – The following example returns the result Polygon ((.555555 3, 0
3, 0 1.75, 0 0, 3 0, 3 3, .75 3, 1 4, .555555 3)).

SELECT ST_Geometry::ST_UnionAggr(Shape)
FROM SpatialShapes WHERE ShapeID IN (2, 6)

Accessing and manipulating spatial data

Administration: Spatial Data 165

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Within(ST_Geometry) method
Tests if a geometry value is spatially contained within another geometry value.

Syntax
geometry-expression.ST_Within(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression is within geo2, otherwise 0.

Examples

• Example 1 – The following example tests if a point is within a polygon. The point is
completely within the polygon, and the interior of the point (the point itself) intersects the
interior of the polygon, so the example returns 1.
SELECT NEW ST_Point(1, 1)
.ST_Within(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))'))

The following example tests if a line is within a polygon. The line is completely within the
polygon, but the interior of the line and the interior of the polygon do not intersect (the line
only intersects the polygon on the polygon's boundary, and the boundary is not part of the
interior), so the example returns 0. If ST_CoveredBy was used in place of ST_Within,
ST_CoveredBy would return 1.
SELECT NEW ST_LineString('LineString(0 0, 1 0)')
.ST_Within(NEW ST_Polygon('Polygon((0 0, 2 0, 1 2, 0 0))'))

The following example lists the ShapeIDs where the given point is within the Shape
geometry. This example returns the result 3,5. Note that ShapeID 6 is not listed because
the point intersects that row's Shape polygon at the polygon's boundary.
SELECT LIST(ShapeID ORDER BY ShapeID)
FROM SpatialShapes
WHERE NEW ST_Point(1, 4).ST_Within(Shape) = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 5.1.30

Accessing and manipulating spatial data

166 SAP Sybase IQ

ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128))
method

Test if two geometries are within a specified distance of each other.

Syntax
geometry-expression.ST_WithinDistance(ST_Geometry geo2, DOUBLE
distance, VARCHAR(128) unit_name)

Parameters

• geo2 – The other geometry value whose distance is to be measured from the geometry-
expression.

• distance – The distance the two geometries should be within.
• unit_name – The units in which the distance parameter should be interpreted. Defaults to

the unit of the spatial reference system. The unit name must match the UNIT_NAME
column of a row in the ST_UNITS_OF_MEASURE view where UNIT_TYPE is
'LINEAR'.

Returns
BIT Returns 1 if geometry-expression and geo2 are within the specified distance of each
other, otherwise 0.

Examples

• Example 1 – The following example returns an ordered result set with one row for each
shape that is within distance 1.4 of the point (2,3).
SELECT ShapeID, ROUND(Shape.ST_Distance(NEW ST_Point(2, 3)),
2) AS dist
FROM SpatialShapes
WHERE ShapeID < 17
AND Shape.ST_WithinDistance(NEW ST_Point(2, 3), 1.4) = 1
ORDER BY dist

The example returns the following result set:

ShapeID dist

2 0.0
3 0.0
5 1.0
6 1.21

The following example creates points representing Halifax, NS and Waterloo, ON,
Canada and uses ST_WithinDistance to demonstrate that the distance between the two

Accessing and manipulating spatial data

Administration: Spatial Data 167

points is within 850 miles, but not within 840 miles. This example assumes that the
'st_geometry_predefined_uom' feature has been installed by the sa_install_feature system
procedure. Seesa_install_feature system procedure.
SELECT NEW ST_Point(-63.573566, 44.646244, 4326)
.ST_WithinDistance(NEW ST_Point(-80.522372, 43.465187, 4326)
, 850, 'Statute mile') within850,
NEW ST_Point(-63.573566, 44.646244, 4326)
.ST_WithinDistance(NEW ST_Point(-80.522372, 43.465187, 4326)
, 840, 'Statute mile') within840

The example returns the following result set:

within850 within840

1 0

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128))
method

An inexpensive of whether two geometries might be within a specified distance of each other.

Syntax
geometry-expression.ST_WithinDistanceFilter(ST_Geometry geo2,
DOUBLE distance, VARCHAR(128) unit_name)

Parameters

• geo2 – The other geometry value whose distance is to be measured from the geometry-
expression.

• distance – The distance the two geometries should be within.
• unit_name – The units in which the distance parameter should be interpreted. The default

is the unit of the spatial reference system. The unit name must match the UNIT_NAME
column of a row in the ST_UNITS_OF_MEASURE view where UNIT_TYPE is
'LINEAR'.

Returns
BIT Returns 1 if geometry-expression and geo2 might be within the specified distance of each
other, otherwise 0.

Accessing and manipulating spatial data

168 SAP Sybase IQ

Examples

• Example 1 – The following example returns an ordered result set with one row for each
shape that might be within distance 1.4 of the point (2,3). The result contains a shape that is
not actually within the specified distance.
SELECT ShapeID, ROUND(Shape.ST_Distance(NEW ST_Point(2, 3)),
2) AS dist
FROM SpatialShapes
WHERE ShapeID < 17
AND Shape.ST_WithinDistanceFilter(NEW ST_Point(2, 3), 1.4) = 1
ORDER BY dist

The example returns the following result set:

ShapeID dist

2 0.0
3 0.0
5 1.0
6 1.21
16 1.41

The following example creates points representing Halifax, NS and Waterloo, ON,
Canada, and uses ST_WithinDistanceFilter to demonstrate that the distance between the
two points might be within 850 miles, but definitely is not within 750 miles. This example
assumes that the st_geometry_predefined_uom feature has been installed by the
sa_install_feature system procedure. Seesa_install_feature system procedure.
SELECT NEW ST_Point(-63.573566, 44.646244, 4326)
.ST_WithinDistanceFilter(NEW ST_Point(-80.522372, 43.465187,
4326)
, 850, 'Statute mile') within850,
NEW ST_Point(-63.573566, 44.646244, 4326)
.ST_WithinDistanceFilter(NEW ST_Point(-80.522372, 43.465187,
4326)
, 750, 'Statute mile') within750

The example returns the following result set:

within850 within750

1 0

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

Administration: Spatial Data 169

ST_WithinFilter(ST_Geometry) method
An inexpensive test if a geometry might be within another.

Syntax
geometry-expression.ST_WithinFilter(ST_Geometry geo2)

Parameters

• geo2 – The other geometry value that is to be compared to the geometry-expression.

Returns
BIT Returns 1 if the geometry-expression might be within geo2, otherwise 0.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_XMax() method
Retrieves the maximum X coordinate value of a geometry.

Syntax
geometry-expression.ST_XMax()

Returns
DOUBLE Returns the maximum X coordinate value of the geometry-expression.

Examples

• Example 1 – The following example returns the result 5.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_XMax()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_XMin() method
Retrieves the minimum X coordinate value of a geometry.

Syntax
geometry-expression.ST_XMin()

Accessing and manipulating spatial data

170 SAP Sybase IQ

Returns
DOUBLE Returns the minimum X coordinate value of the geometry-expression.

Examples

• Example 1 – The following example returns the result 1.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_XMin()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_YMax() method
Retrieves the maximum Y coordinate value of a geometry.

Syntax
geometry-expression.ST_YMax()

Returns
DOUBLE Returns the maximum Y coordinate value of the geometry-expression.

Examples

• Example 1 – The following example returns the result 6.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_YMax()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_YMin() method
Retrieves the minimum Y coordinate value of a geometry.

Syntax
geometry-expression.ST_YMin()

Returns
DOUBLE Returns the minimum Y coordinate value of the geometry-expression.

Accessing and manipulating spatial data

Administration: Spatial Data 171

Examples

• Example 1 – The following example returns the result 2.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_YMin()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_ZMax() method
Retrieves the maximum Z coordinate value of a geometry.

Syntax
geometry-expression.ST_ZMax()

Returns
DOUBLE Returns the maximum Z coordinate value of the geometry-expression.

Examples

• Example 1 – The following example returns the result 7.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_ZMax()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_ZMin() method
Retrieves the minimum Z coordinate value of a geometry.

Syntax
geometry-expression.ST_ZMin()

Returns
DOUBLE Returns the minimum Z coordinate value of the geometry-expression.

Examples

• Example 1 – The following example returns the result 3.

SELECT NEW ST_LineString('LineString ZM(1 2 3 4, 5 6 7
8)').ST_ZMin()

Accessing and manipulating spatial data

172 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LineString type
The ST_LineString type is a subtype of ST_Curve that uses straight line segments between
control points.

Syntax
ST_LineString type

Members
All members of the ST_LineString type, including all inherited members.

Members of ST_LineString:

• ST_LineString(ST_Point , ST_Point , ST_Point) – Constructs a linestring value from a
list of points in a specified spatial reference system.

• ST_LineString() – Constructs a linestring representing the empty set.
• ST_LineString(LONG BINARY[, INT]) – Constructs a linestring from Well Known

Binary (WKB).
• ST_LineString(LONG VARCHAR[, INT]) – Constructs a linestring from a text

representation.
• ST_LineStringAggr(ST_Point) – Returns a linestring built from the ordered points in a

group.
• ST_NumPoints() – Returns the number of points defining the linestring.
• ST_PointN(INT) – Returns the nth point in the linestring.

Members of ST_Curve:

• ST_CurveToLine() – Returns the ST_LineString interpolation of an ST_Curve value.
• ST_EndPoint() – Returns an ST_Point value that is the end point of the ST_Curve value.
• ST_IsClosed() – Test if the ST_Curve value is closed. A curve is closed if the start and end

points are coincident.
• ST_IsRing() – Tests if the ST_Curve value is a ring. A curve is a ring if it is closed and

simple (no self intersections).
• ST_Length(VARCHAR(128)) – Returns the length measurement of the ST_Curve

value. The result is measured in the units specified by the unit-name parameter.
• ST_StartPoint() – Returns an ST_Point value that is the start point of the ST_Curve

value.

Members of ST_Geometry:

Accessing and manipulating spatial data

Administration: Spatial Data 173

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.

Accessing and manipulating spatial data

174 SAP Sybase IQ

• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another
geometry value.

• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover
another.

• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry
value.

• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for
the object.

• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point
set difference of two geometries.

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

Accessing and manipulating spatial data

Administration: Spatial Data 175

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For

Accessing and manipulating spatial data

176 SAP Sybase IQ

example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.

Accessing and manipulating spatial data

Administration: Spatial Data 177

• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An
inexpensive of whether two geometries might be within a specified distance of each other.

• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within
another.

• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Remarks
The ST_LineString type is a subtype of ST_Curve that uses straight line segments between
control points. Each consecutive pair of points is joined with a straight line segment.A line is
an ST_LineString value with exactly two points. A linear ring is an ST_LineString value
which is closed and simple.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 7.2

ST_LineString(ST_Point , ST_Point , ST_Point) constructor
Constructs a linestring value from a list of points in a specified spatial reference system.

Syntax
NEW ST_LineString(ST_Point pt1, ST_Point pt2, ST_Point pti)

Parameters

• pt1 – The first point of the linestring.
• pt2 – The second point of the linestring.
• pti – Additional points of the linestring.

Returns
ST_LineString Returns a linestring constructed from the specified points.

Examples

• Example 1 – The following example returns the result LineString (0 0, 1 1).

SELECT NEW ST_LineString(NEW ST_Point(0, 0), NEW ST_Point(1,
1))

The following example returns the result LineString (0 0, 1 1, 2 0).

Accessing and manipulating spatial data

178 SAP Sybase IQ

SELECT NEW ST_LineString(NEW ST_Point(0, 0), NEW ST_Point(1,
1), NEW ST_Point(2,0))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_LineString() constructor
Constructs a linestring representing the empty set.

Syntax
NEW ST_LineString()

Returns
ST_LineString Returns an ST_LineString value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_LineString().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_LineString(LONG BINARY[, INT]) constructor
Constructs a linestring from Well Known Binary (WKB).

Syntax
NEW ST_LineString(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a linestring. The input can be in any
supported binary input format, including Well Known Binary (WKB) or Extended Well
Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_LineString Returns an ST_LineString value constructed from the source string.

Accessing and manipulating spatial data

Administration: Spatial Data 179

Examples

• Example 1 – The following returns LineString (0 0, 5 10).
SELECT NEW
ST_LineString(0x0102000000020000000000000000000000000000000000000
000000000000014400000000000002440)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.2.2

ST_LineString(LONG VARCHAR[, INT]) constructor
Constructs a linestring from a text representation.

Syntax
NEW ST_LineString(LONG VARCHAR text_representation[, INT srid])

Parameters

• text_representation – A string containing the text representation of a linestring. The
input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_LineString Returns an ST_LineString value constructed from the source string.

Examples

• Example 1 – The following returns LineString (0 0, 5 10).
SELECT NEW ST_LineString('LineString (0 0, 5 10)')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.2.2

ST_LineStringAggr(ST_Point) method
Returns a linestring built from the ordered points in a group.

Syntax
ST_LineString::ST_LineStringAggr(ST_Point point)

Accessing and manipulating spatial data

180 SAP Sybase IQ

Parameters

• point – The points to generate the linestring. Typically this is a column.

Returns
ST_LineString Returns a linestring built from the points in a group.

Examples

• Example 1 – The following example returns the result LineString (0 0, 2 0, 1
1).

BEGIN
DECLARE LOCAL TEMPORARY TABLE t_points(pk INT PRIMARY KEY,
p ST_Point);
INSERT INTO t_points VALUES(1, 'Point(0 0)');
INSERT INTO t_points VALUES(2, 'Point(2 0)');
INSERT INTO t_points VALUES(3, 'Point(1 1)');SELECT
ST_LineString::ST_LineStringAggr(p ORDER BY pk)
FROM t_points;
END

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_NumPoints() method
Returns the number of points defining the linestring.

Syntax
linestring-expression.ST_NumPoints()

Returns
INT Returns NULL if the linestring value is empty, otherwise the number of points in the
value.

Examples

• Example 1 – The following example returns the result 3.

SELECT TREAT(Shape AS ST_LineString).ST_NumPoints()
FROM SpatialShapes WHERE ShapeID = 5

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.2.4

Accessing and manipulating spatial data

Administration: Spatial Data 181

ST_PointN(INT) method
Returns the nth point in the linestring.

Syntax
linestring-expression.ST_PointN(INT n)

Parameters

• n – The position of the element to return, from 1 to linestring-
expression.ST_NumPoints().

Returns
ST_Point If the value of linestring-expression is the empty set, returns NULL. If the
specified position n is less than 1 or greater than the number of points, returns NULL.
Otherwise, returns the ST_Point value at position n.

Examples

• Example 1 – The following example returns the result Point (0 4).

SELECT TREAT(Shape AS ST_LineString).ST_PointN(2)
FROM SpatialShapes WHERE ShapeID = 5

The following example returns one row for each point in geom.
BEGIN
DECLARE geom ST_LineString;
SET geom = NEW ST_LineString('LineString(0 0, 1 0)');
SELECT row_num, geom.ST_PointN(row_num)
FROM sa_rowgenerator(1, geom.ST_NumPoints())
ORDER BY row_num;
END

The example returns the following result set:

row_num geom.ST_PointN(row_num)

1 Point (0 0)
2 Point (1 0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 7.2.5

Accessing and manipulating spatial data

182 SAP Sybase IQ

ST_MultiCurve type
An ST_MultiCurve is a collection of zero or more ST_Curve values, and all of the curves are
within the spatial reference system.

Syntax
ST_MultiCurve type

Members
All members of the ST_MultiCurve type, including all inherited members.

Members of ST_MultiCurve:

• ST_MultiCurve(ST_Curve , ST_Curve) – Constructs a multi-curve from a list of curve
values.

• ST_MultiCurve() – Constructs a multi curve representing the empty set.
• ST_MultiCurve(LONG BINARY[, INT]) – Constructs a multi curve from Well Known

Binary (WKB).
• ST_MultiCurve(LONG VARCHAR[, INT]) – Constructs a multi curve from a text

representation.
• ST_IsClosed() – Tests if the ST_MultiCurve value is closed. A curve is closed if the start

and end points are coincident. A multicurve is closed if it is non-empty and has an empty
boundary.

• ST_Length(VARCHAR(128)) – Returns the length measurement of the ST_MultiCurve
value. The result is measured in the units specified by the parameter.

• ST_MultiCurveAggr(ST_Curve) – Returns a multicurve containing all of the curves in
a group.

Members of ST_GeomCollection:

• ST_GeomCollection(ST_Geometry , ST_Geometry) – Constructs a geometry
collection from a list of geometry values.

• ST_GeomCollection() – Constructs a geometry collection representing the empty set.
• ST_GeomCollection(LONG BINARY[, INT]) – Constructs a geometry collection from

Well Known Binary (WKB).
• ST_GeomCollection(LONG VARCHAR[, INT]) – Constructs a geometry collection

from a text representation.
• ST_GeomCollectionAggr(ST_Geometry) – Returns a geometry collection containing

all of the geometries in a group.
• ST_GeometryN(INT) – Returns the nth geometry in the geometry collection.
• ST_NumGeometries() – Returns the number of geometries contained in the geometry

collection.

Members of ST_Geometry:

Accessing and manipulating spatial data

Administration: Spatial Data 183

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.

Accessing and manipulating spatial data

184 SAP Sybase IQ

• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another
geometry value.

• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover
another.

• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry
value.

• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for
the object.

• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point
set difference of two geometries.

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

Accessing and manipulating spatial data

Administration: Spatial Data 185

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For

Accessing and manipulating spatial data

186 SAP Sybase IQ

example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.

Accessing and manipulating spatial data

Administration: Spatial Data 187

• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An
inexpensive of whether two geometries might be within a specified distance of each other.

• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within
another.

• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 9.3

ST_MultiCurve(ST_Curve , ST_Curve) constructor
Constructs a multi-curve from a list of curve values.

Syntax
NEW ST_MultiCurve(ST_Curve curve1, ST_Curve curvei)

Parameters

• curve1 – The first curve value of the multi-curve.
• curvei – Additional curve values of the multi-curve.

Returns
ST_MultiCurve A multi-curve containing the provided curve values.

Examples

• Example 1 – The following example returns the result MultiCurve ((0 0, 1
1)).

SELECT NEW ST_MultiCurve(NEW ST_LineString('LineString (0 0, 1
1)'))

The following example returns the result MultiCurve ((0 0, 1 1),
CircularString (0 0, 1 1, 2 0)).

SELECT NEW ST_MultiCurve(
NEW ST_LineString('LineString (0 0, 1 1)'),
NEW ST_CircularString('CircularString(0 0, 1 1, 2 0)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

188 SAP Sybase IQ

ST_MultiCurve() constructor
Constructs a multi curve representing the empty set.

Syntax
NEW ST_MultiCurve()

Returns
ST_MultiCurve Returns an ST_MultiCurve value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_MultiCurve().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_MultiCurve(LONG BINARY[, INT]) constructor
Constructs a multi curve from Well Known Binary (WKB).

Syntax
NEW ST_MultiCurve(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a multi curve. The input can be in
any supported binary input format, including Well Known Binary (WKB) or Extended
Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiCurve Returns an ST_MultiCurve value constructed from the source string.

Examples

• Example 1 – The following returns MultiCurve (CircularString (5 10, 10 12, 15 10)).
SELECT NEW
ST_MultiCurve(0x010b000000010000000108000000030000000000000000001
4400000000000002440000000000000244000000000000028400000000000002e
400000000000002440)

Accessing and manipulating spatial data

Administration: Spatial Data 189

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.3.2

ST_MultiCurve(LONG VARCHAR[, INT]) constructor
Constructs a multi curve from a text representation.

Syntax
NEW ST_MultiCurve(LONG VARCHAR text_representation[, INT srid])

Parameters

• text_representation – A string containing the text representation of a multi curve. The
input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiCurve Returns an ST_MultiCurve value constructed from the source string.

Examples

• Example 1 – The following returns MultiCurve ((10 10, 12 12), CircularString (5 10, 10
12, 15 10)).
SELECT NEW ST_MultiCurve('MultiCurve ((10 10, 12 12),
CircularString (5 10, 10 12, 15 10))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.3.2

ST_IsClosed() method
Tests if the ST_MultiCurve value is closed. A curve is closed if the start and end points are
coincident. A multicurve is closed if it is non-empty and has an empty boundary.

Syntax
multicurve-expression.ST_IsClosed()

Returns
BIT Returns 1 if the multicurve is closed, otherwise 0.

Accessing and manipulating spatial data

190 SAP Sybase IQ

Examples

• Example 1 – The following returns the result 0 because the boundary of the multicurve
has two points.
SELECT NEW ST_MultiCurve('MultiCurve((0 0, 1 1))').ST_IsClosed()

The following returns all rows in multicurve_table that have closed geometries. This
example assumes the geometry column has type ST_MultiCurve or ST_MultiLineString.
SELECT * FROM multicurve_table WHERE geometry.ST_IsClosed() = 1

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.3.3

ST_Length(VARCHAR(128)) method
Returns the length measurement of the ST_MultiCurve value. The result is measured in the
units specified by the parameter.

Syntax
multicurve-expression.ST_Length(VARCHAR(128) unit_name)

Parameters

• unit_name – The units in which the length should be computed. Defaults to the unit of the
spatial reference system. The unit name must match the UNIT_NAME column of a row in
the ST_UNITS_OF_MEASURE view where UNIT_TYPE is 'LINEAR'.

Returns
DOUBLE Returns the length measurement of the ST_MultiCurve value.

Examples

• Example 1 – The following example creates a multicurve and uses ST_Length to find the
length of the geometry, returning the value PI+1.
SELECT NEW ST_MultiCurve(
NEW ST_LineString('LineString (0 0, 1 0)'),
NEW ST_CircularString('CircularString(0 0, 1 1, 2 0)'))
.ST_Length()

The following example returns the name and length of all roads longer than 100 miles. This
example assumes the road table exists, that the geometry column has type ST_MultiCurve
or ST_MultiLineString, and the sa_install_feature system procedure has been used to load
the st_geometry_predefined_uom.
SELECT name, geometry.ST_Length('Statute Mile') len
FROM roads WHERE len > 100

Accessing and manipulating spatial data

Administration: Spatial Data 191

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.3.4

ST_MultiCurveAggr(ST_Curve) method
Returns a multicurve containing all of the curves in a group.

Syntax
ST_MultiCurve::ST_MultiCurveAggr(ST_Curve geometry_column)

Parameters

• geometry_column – The geometry values to generate the collection. Typically this is a
column.

Returns
ST_MultiCurve Returns a multicurve that contains all of the geometries in a group.

Examples

• Example 1 – The following example returns a single value which combines all geometries
of type ST_Curve from the SpatialShapes table into a single collection of type
ST_MultiCurve. If the Shape column was of type ST_Curve then the TREAT function and
WHERE clause would not be necessary.
SELECT ST_MultiCurve::ST_MultiCurveAggr(TREAT(Shape AS
ST_Curve))
FROM SpatialShapes WHERE Shape IS OF(ST_Curve)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiLineString type
An ST_MultiLineString is a collection of zero or more ST_LineString values, and all of the
linestrings are within the spatial reference system.

Syntax
ST_MultiLineString type

Members
All members of the ST_MultiLineString type, including all inherited members.

Members of ST_MultiLineString:

Accessing and manipulating spatial data

192 SAP Sybase IQ

• ST_MultiLineString(ST_LineString , ST_LineString) – Constructs a multi-linestring
from a list of linestring values.

• ST_MultiLineString() – Constructs a multi linestring representing the empty set.
• ST_MultiLineString(LONG BINARY[, INT]) – Constructs a multi linestring from

Well Known Binary (WKB).
• ST_MultiLineString(LONG VARCHAR[, INT]) – Constructs a multi linestring from a

text representation.
• ST_MultiLineStringAggr(ST_LineString) – Returns a multilinestring containing all

of the linestrings in a group.

Members of ST_GeomCollection:

• ST_GeomCollection(ST_Geometry , ST_Geometry) – Constructs a geometry
collection from a list of geometry values.

• ST_GeomCollection() – Constructs a geometry collection representing the empty set.
• ST_GeomCollection(LONG BINARY[, INT]) – Constructs a geometry collection from

Well Known Binary (WKB).
• ST_GeomCollection(LONG VARCHAR[, INT]) – Constructs a geometry collection

from a text representation.
• ST_GeomCollectionAggr(ST_Geometry) – Returns a geometry collection containing

all of the geometries in a group.
• ST_GeometryN(INT) – Returns the nth geometry in the geometry collection.
• ST_NumGeometries() – Returns the number of geometries contained in the geometry

collection.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.

Accessing and manipulating spatial data

Administration: Spatial Data 193

• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry
value.

• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry
value.

• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry
value.

• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry
value.

• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.
• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have

dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

Accessing and manipulating spatial data

194 SAP Sybase IQ

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.

Accessing and manipulating spatial data

Administration: Spatial Data 195

• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.

Accessing and manipulating spatial data

196 SAP Sybase IQ

• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Members of ST_MultiCurve:

• ST_MultiCurve(ST_Curve , ST_Curve) – Constructs a multi-curve from a list of curve
values.

• ST_MultiCurve() – Constructs a multi curve representing the empty set.
• ST_MultiCurve(LONG BINARY[, INT]) – Constructs a multi curve from Well Known

Binary (WKB).

Accessing and manipulating spatial data

Administration: Spatial Data 197

• ST_MultiCurve(LONG VARCHAR[, INT]) – Constructs a multi curve from a text
representation.

• ST_IsClosed() – Tests if the ST_MultiCurve value is closed. A curve is closed if the start
and end points are coincident. A multicurve is closed if it is non-empty and has an empty
boundary.

• ST_Length(VARCHAR(128)) – Returns the length measurement of the ST_MultiCurve
value. The result is measured in the units specified by the parameter.

• ST_MultiCurveAggr(ST_Curve) – Returns a multicurve containing all of the curves in
a group.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 9.4

ST_MultiLineString(ST_LineString , ST_LineString) constructor
Constructs a multi-linestring from a list of linestring values.

Syntax
NEW ST_MultiLineString(ST_LineString linestring1, ST_LineString
linestringi)

Parameters

• linestring1 – The first linestring value of the multi-linestring.
• linestringi – Additional linestring values of the multi-linestring.

Returns
ST_MultiLineString A multi-linestring containing the provided linestring values.

Examples

• Example 1 – The following returns a multilinestring containing a single linestring and is
equivalent to the following WKT:'MultiLineString ((0 0, 1 1))'
SELECT NEW ST_MultiLineString(NEW ST_LineString('LineString (0 0,
1 1)'))

The following returns a multilinestring containing two linestrings equivalent to the
following WKT:'MultiLineString ((0 0, 1 1), (0 0, 1 1, 2 0))'.

SELECT NEW ST_MultiLineString(
NEW ST_LineString('LineString (0 0, 1 1)'),
NEW ST_LineString('LineString (0 0, 1 1, 2 0)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

198 SAP Sybase IQ

ST_MultiLineString() constructor
Constructs a multi linestring representing the empty set.

Syntax
NEW ST_MultiLineString()

Returns
ST_MultiLineString Returns an ST_MultiLineString value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_MultiLineString().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_MultiLineString(LONG BINARY[, INT]) constructor
Constructs a multi linestring from Well Known Binary (WKB).

Syntax
NEW ST_MultiLineString(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a multi linestring. The input can be
in any supported binary input format, including Well Known Binary (WKB) or Extended
Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiLineString Returns an ST_MultiLineString value constructed from the
source string.

Examples

• Example 1 – The following returns MultiLineString ((10 10, 12 12)).
SELECT NEW
ST_MultiLineString(0x01050000000100000001020000000200000000000000
00002440000000000000244000000000000028400000000000002840)

Accessing and manipulating spatial data

Administration: Spatial Data 199

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.4.2

ST_MultiLineString(LONG VARCHAR[, INT]) constructor
Constructs a multi linestring from a text representation.

Syntax
NEW ST_MultiLineString(LONG VARCHAR text_representation[, INT
srid])

Parameters

• text_representation – A string containing the text representation of a multi linestring.
The input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiLineString Returns an ST_MultiLineString value constructed from the
source string.

Examples

• Example 1 – The following returns MultiLineString ((10 10, 12 12), (14 10, 16 12)).
SELECT NEW ST_MultiLineString('MultiLineString ((10 10, 12 12),
(14 10, 16 12))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.4.2

ST_MultiLineStringAggr(ST_LineString) method
Returns a multilinestring containing all of the linestrings in a group.

Syntax
ST_MultiLineString::ST_MultiLineStringAggr(ST_LineString
geometry_column)

Parameters

• geometry_column – The geometry values to generate the collection. Typically this is a
column.

Accessing and manipulating spatial data

200 SAP Sybase IQ

Returns
ST_MultiLineString Returns a multilinestring that contains all of the geometries in a
group.

Examples

• Example 1 – The following example returns a single value which combines all geometries
of type ST_LineString from the SpatialShapes table into a single collection of type
ST_MultiLineString. If the Shape column was of type ST_LineString then the TREAT
function and WHERE clause would not be necessary.
SELECT ST_MultiLineString::ST_MultiLineStringAggr(TREAT(Shape
AS ST_LineString))
FROM SpatialShapes WHERE Shape IS OF(ST_LineString)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiPoint type
An ST_MultiPoint is a collection of zero or more ST_Point values, and all of the points are
within the spatial reference system.

Syntax
ST_MultiPoint type

Members
All members of the ST_MultiPoint type, including all inherited members.

Members of ST_MultiPoint:

• ST_MultiPoint(ST_Point , ST_Point) – Constructs a multi-point from a list of point
values.

• ST_MultiPoint() – Constructs a multi point representing the empty set.
• ST_MultiPoint(LONG BINARY[, INT]) – Constructs a multi point from Well Known

Binary (WKB).
• ST_MultiPoint(LONG VARCHAR[, INT]) – Constructs a multi point from a text

representation.
• ST_MultiPointAggr(ST_Point) – Returns a multipoint containing all of the points in a

group.

Members of ST_GeomCollection:

• ST_GeomCollection(ST_Geometry , ST_Geometry) – Constructs a geometry
collection from a list of geometry values.

Accessing and manipulating spatial data

Administration: Spatial Data 201

• ST_GeomCollection() – Constructs a geometry collection representing the empty set.
• ST_GeomCollection(LONG BINARY[, INT]) – Constructs a geometry collection from

Well Known Binary (WKB).
• ST_GeomCollection(LONG VARCHAR[, INT]) – Constructs a geometry collection

from a text representation.
• ST_GeomCollectionAggr(ST_Geometry) – Returns a geometry collection containing

all of the geometries in a group.
• ST_GeometryN(INT) – Returns the nth geometry in the geometry collection.
• ST_NumGeometries() – Returns the number of geometries contained in the geometry

collection.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

Accessing and manipulating spatial data

202 SAP Sybase IQ

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.
• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have

dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.

Accessing and manipulating spatial data

Administration: Spatial Data 203

• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the
type string.

• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary
string representation.

• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI
shape record and creates a geometry value of the appropriate type.

• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a
character string representation.

• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or
EWKB representation of a geometry and creates a geometry value of the appropriate type.

• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT
or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.

Accessing and manipulating spatial data

204 SAP Sybase IQ

• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.

Accessing and manipulating spatial data

Administration: Spatial Data 205

• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another
geometry value.

• ST_Transform(INT) – Creates a copy of the geometry value transformed into the
specified spatial reference system.

• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set
union of two geometries.

• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a
group

• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within
another geometry value.

• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two
geometries are within a specified distance of each other.

• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An
inexpensive of whether two geometries might be within a specified distance of each other.

• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within
another.

• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 9.2

ST_MultiPoint(ST_Point , ST_Point) constructor
Constructs a multi-point from a list of point values.

Syntax
NEW ST_MultiPoint(ST_Point point1, ST_Point pointi)

Parameters

• point1 – The first point value of the multi-point.
• pointi – Additional point values of the multi-point.

Returns
ST_MultiPoint A multi-point containing the provided point values.

Accessing and manipulating spatial data

206 SAP Sybase IQ

Examples

• Example 1 – The following returns a multi-point containing the single point 'Point (1
2)'.

SELECT NEW ST_MultiPoint(NEW ST_Point(1.0, 2.0))

The following returns a multi-point containing two points'Point (1 2)' and'Point
(3 4)'.

SELECT NEW ST_MultiPoint(NEW ST_Point(1.0, 2.0), NEW
ST_Point(3.0, 4.0))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiPoint() constructor
Constructs a multi point representing the empty set.

Syntax
NEW ST_MultiPoint()

Returns
ST_MultiPoint Returns an ST_MultiPoint value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_MultiPoint().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_MultiPoint(LONG BINARY[, INT]) constructor
Constructs a multi point from Well Known Binary (WKB).

Syntax
NEW ST_MultiPoint(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a multi point. The input can be in
any supported binary input format, including Well Known Binary (WKB) or Extended
Well Known Binary (EWKB).

Accessing and manipulating spatial data

Administration: Spatial Data 207

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiPoint Returns an ST_MultiPoint value constructed from the source string.

Examples

• Example 1 – The following returns MultiPoint ((10 10), (12 12), (14 10)).
SELECT NEW
ST_MultiPoint(0x0104000000030000000101000000000000000000244000000
00000002440010100000000000000000028400000000000002840010100000000
00000000002c400000000000002440)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.2.2

ST_MultiPoint(LONG VARCHAR[, INT]) constructor
Constructs a multi point from a text representation.

Syntax
NEW ST_MultiPoint(LONG VARCHAR text_representation[, INT srid])

Parameters

• text_representation – A string containing the text representation of a multi point. The
input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiPoint Returns an ST_MultiPoint value constructed from the source string.

Examples

• Example 1 – The following returns MultiPoint ((10 10), (12 12), (14 10)).
SELECT NEW ST_MultiPoint('MultiPoint ((10 10), (12 12), (14 10))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.2.2

Accessing and manipulating spatial data

208 SAP Sybase IQ

ST_MultiPointAggr(ST_Point) method
Returns a multipoint containing all of the points in a group.

Syntax
ST_MultiPoint::ST_MultiPointAggr(ST_Point geometry_column)

Parameters

• geometry_column – The geometry values to generate the collection. Typically this is a
column.

Returns
ST_MultiPoint Returns a multipoint that contains all of the geometries in a group.

Examples

• Example 1 – The following example returns a single value which combines all geometries
of type ST_Point from the SpatialShapes table into a single collection of type
ST_MultiPoint. If the Shape column was of type ST_Point then the TREAT function and
WHERE clause would not be necessary.
SELECT ST_MultiPoint::ST_MultiPointAggr(TREAT(Shape AS
ST_Point))
FROM SpatialShapes WHERE Shape IS OF(ST_Point)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiPolygon type
An ST_MultiPolygon is a collection of zero or more ST_Polygon values, and all of the
polygons are within the spatial reference system.

Syntax
ST_MultiPolygon type

Members
All members of the ST_MultiPolygon type, including all inherited members.

Members of ST_MultiPolygon:

Accessing and manipulating spatial data

Administration: Spatial Data 209

• ST_MultiPolygon(ST_MultiLineString , VARCHAR(128)) – Creates a multi-
polygon from a multilinestring containing exterior rings and an optional list of interior
rings.

• ST_MultiPolygon(ST_Polygon , ST_Polygon) – Constructs a multi-polygon from a list
of polygon values.

• ST_MultiPolygon() – Constructs a multi polygon representing the empty set.
• ST_MultiPolygon(LONG BINARY[, INT]) – Constructs a multi polygon from Well

Known Binary (WKB).
• ST_MultiPolygon(LONG VARCHAR[, INT]) – Constructs a multi polygon from a text

representation.
• ST_MultiPolygonAggr(ST_Polygon) – Returns a multipolygon containing all of the

polygons in a group.

Members of ST_GeomCollection:

• ST_GeomCollection(ST_Geometry , ST_Geometry) – Constructs a geometry
collection from a list of geometry values.

• ST_GeomCollection() – Constructs a geometry collection representing the empty set.
• ST_GeomCollection(LONG BINARY[, INT]) – Constructs a geometry collection from

Well Known Binary (WKB).
• ST_GeomCollection(LONG VARCHAR[, INT]) – Constructs a geometry collection

from a text representation.
• ST_GeomCollectionAggr(ST_Geometry) – Returns a geometry collection containing

all of the geometries in a group.
• ST_GeometryN(INT) – Returns the nth geometry in the geometry collection.
• ST_NumGeometries() – Returns the number of geometries contained in the geometry

collection.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

Accessing and manipulating spatial data

210 SAP Sybase IQ

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.
• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have

dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

Accessing and manipulating spatial data

Administration: Spatial Data 211

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).

Accessing and manipulating spatial data

212 SAP Sybase IQ

• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring

Accessing and manipulating spatial data

Administration: Spatial Data 213

• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Members of ST_MultiSurface:

• ST_MultiSurface(ST_MultiCurve , VARCHAR(128)) – Creates a multi-surface from
a multicurve containing exterior rings and an optional list of interior rings.

Accessing and manipulating spatial data

214 SAP Sybase IQ

• ST_MultiSurface(ST_Surface , ST_Surface) – Constructs a multi-surface from a list
of surface values.

• ST_MultiSurface() – Constructs a multi surface representing the empty set.
• ST_MultiSurface(LONG BINARY[, INT]) – Constructs a multi surface from Well

Known Binary (WKB).
• ST_MultiSurface(LONG VARCHAR[, INT]) – Constructs a multi surface from a text

representation.
• ST_Area(VARCHAR(128)) – Computes the area of the multi-surface in the specified

units.
• ST_Centroid() – Computes the ST_Point that is the mathematical centroid of the multi-

surface.
• ST_MultiSurfaceAggr(ST_Surface) – Returns a multisurface containing all of the

surfaces in a group.
• ST_Perimeter(VARCHAR(128)) – Computes the perimeter of the multi-surface in the

specified units.
• ST_PointOnSurface() – Returns a point that is guaranteed to be on a surface in the multi-

surface

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 9.6

ST_MultiPolygon(ST_MultiLineString , VARCHAR(128)) constructor
Creates a multi-polygon from a multilinestring containing exterior rings and an optional list of
interior rings.

Syntax
NEW ST_MultiPolygon(ST_MultiLineString multi_linestring,
VARCHAR(128) polygon_format)

Parameters

• multi_linestring – A multilinestring value containing exterior rings and (optionally) a set
of interior rings.

• polygon_format – A string with the polygon format to use when interpreting the provided
linestrings. Valid formats are 'CounterClockwise', 'Clockwise', and 'EvenOdd'

Returns
ST_MultiPolygon Returns a multi-polygon from the specified multilinestring.

Accessing and manipulating spatial data

Administration: Spatial Data 215

Examples

• Example 1 – The following returns MultiPolygon (((-4 -4, 4 -4, 4 4, -4 4, -4 -4), (-2 1, -3 3,
-1 3, -2 1)), ((6 -4, 14 -4, 14 4, 6 4, 6 -4), (8 1, 7 3, 9 3, 8 1))) (two square polygons each with
a triangular hole).
SELECT NEW ST_MultiPolygon(
NEW ST_MultiLineString ('MultiLineString ((-4 -4, 4 -4, 4 4, -4 4,
-4 -4), (-2 1, -3 3, -1 3, -2 1), (6 -4, 14 -4, 14 4, 6 4, 6 -4), (8
1, 7 3, 9 3, 8 1))'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiPolygon(ST_Polygon , ST_Polygon) constructor
Constructs a multi-polygon from a list of polygon values.

Syntax
NEW ST_MultiPolygon(ST_Polygon polygon1, ST_Polygon polygoni)

Parameters

• polygon1 – The first polygon value of the multi-polygon.
• polygoni – Additional polygon values of the multi-polygon.

Returns
ST_MultiPolygon A multi-polygon containing the provided polygon values.

Examples

• Example 1 – The following example returns the result MultiPolygon (((0 0, 1
0, 1 1, 0 1, 0 0))).

SELECT NEW ST_MultiPolygon(NEW ST_Polygon('Polygon ((0 0, 0 1, 1
1, 1 0, 0 0))'))

The following example returns the result MultiPolygon (((0 0, 1 0, 1 1, 0
1, 0 0)), ((5 5, 10 5, 10 10, 5 10, 5 5))).

SELECT NEW ST_MultiPolygon(
NEW ST_Polygon('Polygon ((0 0, 0 1, 1 1, 1 0, 0 0))'),
NEW ST_Polygon('Polygon ((5 5, 5 10, 10 10, 10 5, 5 5))'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

216 SAP Sybase IQ

ST_MultiPolygon() constructor
Constructs a multi polygon representing the empty set.

Syntax
NEW ST_MultiPolygon()

Returns
ST_MultiPolygon Returns an ST_MultiPolygon value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_MultiPolygon().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_MultiPolygon(LONG BINARY[, INT]) constructor
Constructs a multi polygon from Well Known Binary (WKB).

Syntax
NEW ST_MultiPolygon(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a multi polygon. The input can be
in any supported binary input format, including Well Known Binary (WKB) or Extended
Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiPolygon Returns an ST_MultiPolygon value constructed from the source
string.

Examples

• Example 1 – The following returns MultiPolygon (((10 -5, 15 5, 5 5, 10 -5))).
SELECT NEW
ST_MultiPolygon(0x01060000000100000001030000000100000004000000000
000000000244000000000000014c00000000000002e4000000000000014400000
0000000014400000000000001440000000000000244000000000000014c0)

Accessing and manipulating spatial data

Administration: Spatial Data 217

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.6.2

ST_MultiPolygon(LONG VARCHAR[, INT]) constructor
Constructs a multi polygon from a text representation.

Syntax
NEW ST_MultiPolygon(LONG VARCHAR text_representation[, INT
srid])

Parameters

• text_representation – A string containing the text representation of a multi polygon. The
input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiPolygon Returns an ST_MultiPolygon value constructed from the source
string.

Examples

• Example 1 – The following returns MultiPolygon (((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2, -2 0, 2 0,
2 -2, -2 -2)), ((10 -5, 15 5, 5 5, 10 -5))).
SELECT NEW ST_MultiPolygon('MultiPolygon (((-5 -5, 5 -5, 0 5, -5
-5), (-2 -2, -2 0, 2 0, 2 -2, -2 -2)), ((10 -5, 15 5, 5 5, 10
-5)))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.6.2

ST_MultiPolygonAggr(ST_Polygon) method
Returns a multipolygon containing all of the polygons in a group.

Syntax
ST_MultiPolygon::ST_MultiPolygonAggr(ST_Polygon geometry_column)

Parameters

• geometry_column – The geometry values to generate the collection. Typically this is a
column.

Accessing and manipulating spatial data

218 SAP Sybase IQ

Returns
ST_MultiPolygon Returns a multipolygon that contains all of the geometries in a group.

Examples

• Example 1 – The following example returns a single value which combines all geometries
of type ST_Polygon from the SpatialShapes table into a single collection of type
ST_MultiPolygon. If the Shape column was of type ST_Polygon then the TREAT function
and WHERE clause would not be necessary.
SELECT ST_MultiPolygon::ST_MultiPolygonAggr(TREAT(Shape AS
ST_Polygon))
FROM SpatialShapes WHERE Shape IS OF(ST_Polygon)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiSurface type
An ST_MultiSurface is a collection of zero or more ST_Surface values, and all of the surfaces
are within the spatial reference system.

Syntax
ST_MultiSurface type

Members
All members of the ST_MultiSurface type, including all inherited members.

Members of ST_MultiSurface:

• ST_MultiSurface(ST_MultiCurve , VARCHAR(128)) – Creates a multi-surface from
a multicurve containing exterior rings and an optional list of interior rings.

• ST_MultiSurface(ST_Surface , ST_Surface) – Constructs a multi-surface from a list
of surface values.

• ST_MultiSurface() – Constructs a multi surface representing the empty set.
• ST_MultiSurface(LONG BINARY[, INT]) – Constructs a multi surface from Well

Known Binary (WKB).
• ST_MultiSurface(LONG VARCHAR[, INT]) – Constructs a multi surface from a text

representation.
• ST_Area(VARCHAR(128)) – Computes the area of the multi-surface in the specified

units.
• ST_Centroid() – Computes the ST_Point that is the mathematical centroid of the multi-

surface.

Accessing and manipulating spatial data

Administration: Spatial Data 219

• ST_MultiSurfaceAggr(ST_Surface) – Returns a multisurface containing all of the
surfaces in a group.

• ST_Perimeter(VARCHAR(128)) – Computes the perimeter of the multi-surface in the
specified units.

• ST_PointOnSurface() – Returns a point that is guaranteed to be on a surface in the multi-
surface

Members of ST_GeomCollection:

• ST_GeomCollection(ST_Geometry , ST_Geometry) – Constructs a geometry
collection from a list of geometry values.

• ST_GeomCollection() – Constructs a geometry collection representing the empty set.
• ST_GeomCollection(LONG BINARY[, INT]) – Constructs a geometry collection from

Well Known Binary (WKB).
• ST_GeomCollection(LONG VARCHAR[, INT]) – Constructs a geometry collection

from a text representation.
• ST_GeomCollectionAggr(ST_Geometry) – Returns a geometry collection containing

all of the geometries in a group.
• ST_GeometryN(INT) – Returns the nth geometry in the geometry collection.
• ST_NumGeometries() – Returns the number of geometries contained in the geometry

collection.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.

Accessing and manipulating spatial data

220 SAP Sybase IQ

• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry
value.

• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry
value.

• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry
value.

• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.
• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have

dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

Accessing and manipulating spatial data

Administration: Spatial Data 221

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.

Accessing and manipulating spatial data

222 SAP Sybase IQ

• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/
multicurve on the surface of the Earth.

• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.

Accessing and manipulating spatial data

Administration: Spatial Data 223

• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 9.5

Accessing and manipulating spatial data

224 SAP Sybase IQ

ST_MultiSurface(ST_MultiCurve , VARCHAR(128)) constructor
Creates a multi-surface from a multicurve containing exterior rings and an optional list of
interior rings.

Syntax
NEW ST_MultiSurface(ST_MultiCurve multi_curve, VARCHAR(128)
polygon_format)

Parameters

• multi_curve – A multicurve value containing exterior rings and (optionally) a set of
interior rings.

• polygon_format – A string with the polygon format to use when interpreting the provided
curves. Valid formats are 'CounterClockwise', 'Clockwise', and 'EvenOdd'

Returns
ST_MultiSurface Returns a multi-surface from the specified multilinestring.

Examples

• Example 1 – The following returns MultiSurface (CurvePolygon ((-4 -4, 4 -4, 4 4, -4 4, -4
-4), (-2 1, -3 3, -1 3, -2 1)), CurvePolygon ((6 -4, 14 -4, 14 4, 6 4, 6 -4), CircularString (9 -1,
9 1, 11 1, 11 -1, 9 -1))).
SELECT NEW ST_MultiSurface(NEW ST_MultiCurve ('MultiCurve ((-4 -4,
4 -4, 4 4, -4 4, -4 -4), (-2 1, -3 3, -1 3, -2 1), (6 -4, 14 -4, 14
4, 6 4, 6 -4), CircularString (9 -1, 9 1, 11 1, 11 -1, 9 -1))'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiSurface(ST_Surface , ST_Surface) constructor
Constructs a multi-surface from a list of surface values.

Syntax
NEW ST_MultiSurface(ST_Surface surface1, ST_Surface surfacei)

Parameters

• surface1 – The first surface value of the multi-surface.
• surfacei – Additional surface values of the multi-surface.

Accessing and manipulating spatial data

Administration: Spatial Data 225

Returns
ST_MultiSurface A multi-surface containing the provided surface values.

Examples

• Example 1 – The following example returns the result MultiSurface (((0 0, 1
0, 1 1, 0 1, 0 0))).

SELECT NEW ST_MultiSurface(NEW ST_Polygon('Polygon ((0 0, 0 1, 1
1, 1 0, 0 0))'))

The following example returns the result MultiSurface (((0 0, 1 0, 1 1, 0
1, 0 0)), ((5 5, 10 5, 10 10, 5 10, 5 5))).

SELECT NEW ST_MultiSurface(
NEW ST_Polygon('Polygon ((0 0, 0 1, 1 1, 1 0, 0 0))'),
NEW ST_Polygon('Polygon ((5 5, 5 10, 10 10, 10 5, 5 5))'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_MultiSurface() constructor
Constructs a multi surface representing the empty set.

Syntax
NEW ST_MultiSurface()

Returns
ST_MultiSurface Returns an ST_MultiSurface value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_MultiSurface().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_MultiSurface(LONG BINARY[, INT]) constructor
Constructs a multi surface from Well Known Binary (WKB).

Syntax
NEW ST_MultiSurface(LONG BINARY wkb[, INT srid])

Accessing and manipulating spatial data

226 SAP Sybase IQ

Parameters

• wkb – A string containing the binary representation of a multi surface. The input can be in
any supported binary input format, including Well Known Binary (WKB) or Extended
Well Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiSurface Returns an ST_MultiSurface value constructed from the source string.

Examples

• Example 1 – The following returns MultiSurface (CurvePolygon (CircularString (0 0, 10
0, 10 10, 0 10, 0 0))).
SELECT NEW
ST_MultiSurface(0x010c00000001000000010a0000000100000001080000000
50024400000000000
00000000000000000024400000000000002440000000000000000000000000000
0244000000000000000000000000000000000)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.5.2

ST_MultiSurface(LONG VARCHAR[, INT]) constructor
Constructs a multi surface from a text representation.

Syntax
NEW ST_MultiSurface(LONG VARCHAR text_representation[, INT
srid])

Parameters

• text_representation – A string containing the text representation of a multi surface. The
input can be in any supported text input format, including Well Known Text (WKT) or
Extended Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_MultiSurface Returns an ST_MultiSurface value constructed from the source string.

Examples

• Example 1 – The following returns MultiSurface (((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2, -2 0, 2 0, 2
-2, -2 -2)), ((10 -5, 15 5, 5 5, 10 -5))).

Accessing and manipulating spatial data

Administration: Spatial Data 227

SELECT NEW ST_MultiSurface('MultiSurface (((-5 -5, 5 -5, 0 5, -5
-5), (-2 -2, -2 0, 2 0, 2 -2, -2 -2)), ((10 -5, 15 5, 5 5, 10
-5)))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.5.2

ST_Area(VARCHAR(128)) method
Computes the area of the multi-surface in the specified units.

Syntax
multisurface-expression.ST_Area(VARCHAR(128) unit_name)

Parameters

• unit_name – The units in which the area should be computed. Defaults to the unit of the
spatial reference system. The unit name must match the UNIT_NAME column of a row in
the ST_UNITS_OF_MEASURE view where UNIT_TYPE is 'LINEAR'.

Returns
DOUBLE Returns the area of the multi-surface.

Examples

• Example 1 – The following example returns the result 8.

SELECT TREAT(Shape AS ST_MultiSurface).ST_Area()
FROM SpatialShapes WHERE ShapeID = 27

The following returns the area of the multipoly_geometry column in square miles from the
fictional region table.
SELECT name, multipoly_geometry.ST_Area('Statute Mile')
FROM region

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.5.3

ST_Centroid() method
Computes the ST_Point that is the mathematical centroid of the multi-surface.

Syntax
multisurface-expression.ST_Centroid()

Accessing and manipulating spatial data

228 SAP Sybase IQ

Returns
ST_Point If the multi-surface is the empty set, returns NULL. Otherwise, returns the
mathematical centroid of the surface.

Examples

• Example 1 – The following example returns the result Point (1.865682 .
664892).

SELECT TREAT(Shape AS ST_MultiSurface).ST_Centroid()
FROM SpatialShapes WHERE ShapeID = 28

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.5.5

ST_MultiSurfaceAggr(ST_Surface) method
Returns a multisurface containing all of the surfaces in a group.

Syntax
ST_MultiSurface::ST_MultiSurfaceAggr(ST_Surface geometry_column)

Parameters

• geometry_column – The geometry values to generate the collection. Typically this is a
column.

Returns
ST_MultiSurface Returns a multisurface that contains all of the geometries in a group.

Examples

• Example 1 – The following example returns a single value which combines all geometries
of type ST_Surface from the SpatialShapes table into a single collection of type
ST_MultiSurface. If the Shape column was of type ST_Surface then the TREAT function
and WHERE clause would not be necessary.
SELECT ST_MultiSurface::ST_MultiSurfaceAggr(TREAT(Shape AS
ST_Surface))
FROM SpatialShapes WHERE Shape IS OF(ST_Surface)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

Administration: Spatial Data 229

ST_Perimeter(VARCHAR(128)) method
Computes the perimeter of the multi-surface in the specified units.

Syntax
multisurface-expression.ST_Perimeter(VARCHAR(128) unit_name)

Parameters

• unit_name – The units in which the perimeter should be computed. Defaults to the unit of
the spatial reference system. The unit name must match the UNIT_NAME column of a
row in the ST_UNITS_OF_MEASURE view where UNIT_TYPE is 'LINEAR'.

Returns
DOUBLE Returns the perimeter of the multi-surface.

Examples

• Example 1 – The following example creates a multi-surface containing two polygons and
uses ST_Perimeter to find the length of the perimeter, returning the result 44.

SELECT NEW ST_MultiSurface(NEW ST_Polygon('Polygon((0 0, 1 0, 1
1,0 1, 0 0))')
, NEW ST_Polygon('Polygon((10 10, 20 10, 20 20,10 20, 10 10))'))
.ST_Perimeter()

The following example creates a multi-surface containing two polygons and an example
unit of measure (example_unit_halfmetre). The ST_Perimeter method finds the length of
the perimeter, returning the value 88.0.
CREATE SPATIAL UNIT OF MEASURE IF NOT EXISTS
"example_unit_halfmetre" TYPE LINEAR CONVERT USING .5;
SELECT NEW ST_MultiSurface(NEW ST_Polygon('Polygon((0 0, 1 0, 1
1,0 1, 0 0))')
, NEW ST_Polygon('Polygon((10 10, 20 10, 20 20,10 20, 10 10))'))
.ST_Perimeter('example_unit_halfmetre');

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.5.4

ST_PointOnSurface() method
Returns a point that is guaranteed to be on a surface in the multi-surface

Syntax
multisurface-expression.ST_PointOnSurface()

Accessing and manipulating spatial data

230 SAP Sybase IQ

Returns
ST_Point If the multi-surface is the empty set, returns NULL. Otherwise, returns an
ST_Point value guaranteed to spatially intersect the ST_MultiSurface value.

Examples

• Example 1 – The following returns a point that intersects the multi surface.
SELECT TREAT(Shape AS ST_MultiSurface).ST_PointOnSurface()
FROM SpatialShapes WHERE ShapeID = 27

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 9.5.6

ST_Point type
The ST_Point type is a 0-dimensional geometry and represents a single location.

Syntax
ST_Point type

Members
All members of the ST_Point type, including all inherited members.

Members of ST_Point:

• ST_Point() – Constructs a point representing the empty set.
• ST_Point(DOUBLE, DOUBLE, DOUBLE, DOUBLE[, INT]) – Constructs a 3D,

measured point from X,Y,Z coordinates and a measure value
• ST_Point(DOUBLE, DOUBLE, DOUBLE[, INT]) – Constructs a 3D point from X,Y,Z

coordinates.
• ST_Point(DOUBLE, DOUBLE[, INT]) – Constructs a 2D point from X,Y coordinates.
• ST_Point(LONG BINARY[, INT]) – Constructs a point from Well Known Binary

(WKB).
• ST_Point(LONG VARCHAR[, INT]) – Constructs a point from a text representation.
• ST_Lat(DOUBLE) – Returns a copy of the point with the latitude coordinate set to the

specified latitude value.
• ST_Long(DOUBLE) – Returns a copy of the point with the longitude coordinate set to

the specified longitude value.
• ST_M(DOUBLE) – Returns a copy of the point with the measure value set to the

specified mcoord value.
• ST_X(DOUBLE) – Returns a copy of the point with the X coordinate set to the specified

xcoord value.

Accessing and manipulating spatial data

Administration: Spatial Data 231

• ST_Y(DOUBLE) – Returns a copy of the point with the Y coordinate set to the specified
ycoord value.

• ST_Z(DOUBLE) – Returns a copy of the point with the Z coordinate set to the specified
zcoord value.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.
• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry

value.
• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry

value.
• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry

value.
• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group

Accessing and manipulating spatial data

232 SAP Sybase IQ

• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point
of the ST_Geometry value.

• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by
another geometry value.

• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be
covered by another.

• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another
geometry value.

• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover
another.

• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry
value.

• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for
the object.

• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point
set difference of two geometries.

• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have
dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.

Accessing and manipulating spatial data

Administration: Spatial Data 233

• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or
EWKB representation of a geometry and creates a geometry value of the appropriate type.

• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT
or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.

Accessing and manipulating spatial data

234 SAP Sybase IQ

• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to
another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group

Accessing and manipulating spatial data

Administration: Spatial Data 235

• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within
another geometry value.

• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two
geometries are within a specified distance of each other.

• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An
inexpensive of whether two geometries might be within a specified distance of each other.

• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within
another.

• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 6.1

ST_Point() constructor
Constructs a point representing the empty set.

Syntax
NEW ST_Point()

Returns
ST_Point Returns an ST_Point value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_Point().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_Point(DOUBLE, DOUBLE, DOUBLE, DOUBLE[, INT]) constructor
Constructs a 3D, measured point from X,Y,Z coordinates and a measure value

Syntax
NEW ST_Point(DOUBLE x, DOUBLE y, DOUBLE z, DOUBLE m[, INT srid])

Accessing and manipulating spatial data

236 SAP Sybase IQ

Parameters

• x – The X coordinate value.
• y – The Y coordinate value.
• z – The Z coordinate value.
• m – The measure value.
• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Point Returns a 3D, measured point with the specified X,Y,Z coordinates and a measure
value

Examples

• Example 1 – The following returns Point ZM (10 20 100 1224).
SELECT NEW ST_Point(10.0,20.0,100.0,1224.0,0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

ST_Point(DOUBLE, DOUBLE, DOUBLE[, INT]) constructor
Constructs a 3D point from X,Y,Z coordinates.

Syntax
NEW ST_Point(DOUBLE x, DOUBLE y, DOUBLE z[, INT srid])

Parameters

• x – The X coordinate value.
• y – The Y coordinate value.
• z – The Z coordinate value.
• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Point Returns a 3D point with the specified X,Y,Z coordinates.

Examples

• Example 1 – The following returns Point Z (10 20 100).
SELECT NEW ST_Point(10.0,20.0,100.0,0)

Accessing and manipulating spatial data

Administration: Spatial Data 237

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

ST_Point(DOUBLE, DOUBLE[, INT]) constructor
Constructs a 2D point from X,Y coordinates.

Syntax
NEW ST_Point(DOUBLE x, DOUBLE y[, INT srid])

Parameters

• x – The X coordinate value.
• y – The Y coordinate value.
• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Point Returns a 2D point with the specified X,Y coordinates.

Examples

• Example 1 – The following returns Point (10 20).
SELECT NEW ST_Point(10.0,20.0,0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

ST_Point(LONG BINARY[, INT]) constructor
Constructs a point from Well Known Binary (WKB).

Syntax
NEW ST_Point(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a point. The input can be in any
supported binary input format, including Well Known Binary (WKB) or Extended Well
Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Point Returns an ST_Point value constructed from the source string.

Accessing and manipulating spatial data

238 SAP Sybase IQ

Examples

• Example 1 – The following returns Point (10 20).
SELECT NEW ST_Point(0x010100000000000000000024400000000000003440)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

ST_Point(LONG VARCHAR[, INT]) constructor
Constructs a point from a text representation.

Syntax
NEW ST_Point(LONG VARCHAR text_representation[, INT srid])

Parameters

• text_representation – A string containing the text representation of a point. The input can
be in any supported text input format, including Well Known Text (WKT) or Extended
Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Point Returns an ST_Point value constructed from the source string.

Examples

• Example 1 – The following returns Point (10 20).
SELECT NEW ST_Point('Point (10 20)')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.2

ST_Lat(DOUBLE) method
Returns a copy of the point with the latitude coordinate set to the specified latitude value.

Syntax
point-expression.ST_Lat(DOUBLE latitude_val)

Parameters

• latitude_val – The new latitude value.

Accessing and manipulating spatial data

Administration: Spatial Data 239

Returns
ST_Point Returns a copy of the point with the latitude set to the specified value.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Long(DOUBLE) method
Returns a copy of the point with the longitude coordinate set to the specified longitude value.

Syntax
point-expression.ST_Long(DOUBLE longitude_val)

Parameters

• longitude_val – The new longitude value.

Returns
ST_Point Returns a copy of the point with the longitude set to the specified value.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_M(DOUBLE) method
Returns a copy of the point with the measure value set to the specified mcoord value.

Syntax
point-expression.ST_M(DOUBLE mcoord)

Parameters

• mcoord – The new measure value.

Returns
ST_Point Returns a copy of the point with the measure value set to the specified mcoord
value.

Examples

• Example 1 – The following example returns the result Point ZM (1 2 3 5).

SELECT NEW ST_Point(1.0, 2.0, 3.0, 4.0).ST_M(5.0)

Accessing and manipulating spatial data

240 SAP Sybase IQ

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.6

ST_X(DOUBLE) method
Returns a copy of the point with the X coordinate set to the specified xcoord value.

Syntax
point-expression.ST_X(DOUBLE xcoord)

Parameters

• xcoord – The new X coordinate value.

Returns
ST_Point Returns a copy of the point with the X coordinate set to the specified xcoord
value.

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.3

ST_Y(DOUBLE) method
Returns a copy of the point with the Y coordinate set to the specified ycoord value.

Syntax
point-expression.ST_Y(DOUBLE ycoord)

Parameters

• ycoord – The new Y coordinate value.

Returns
ST_Point Returns a copy of the point with the Y coordinate set to the specified ycoord
value.

Examples

• Example 1 – The following example returns the result Point (1 3).

SELECT NEW ST_Point(1, 2).ST_Y(3)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.4

Accessing and manipulating spatial data

Administration: Spatial Data 241

ST_Z(DOUBLE) method
Returns a copy of the point with the Z coordinate set to the specified zcoord value.

Syntax
point-expression.ST_Z(DOUBLE zcoord)

Parameters

• zcoord – The new Z coordinate value.

Returns
ST_Point Returns a copy of the point with the Z coordinate set to the specified zcoord
value.

Examples

• Example 1 – The following example returns the result Point Z (1 2 5).

SELECT NEW ST_Point(1.0, 2.0, 3.0).ST_Z(5.0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 6.1.5

ST_Polygon type
An ST_Polygon is an ST_CurvePolygon that is formed with interior and exterior rings that are
linear rings.

Syntax
ST_Polygon type

Members
All members of the ST_Polygon type, including all inherited members.

Members of ST_Polygon:

• ST_Polygon(ST_LineString , ST_LineString) – Creates a polygon from a linestring
representing the exterior ring and an optional list of linestrings representing interior rings.

• ST_Polygon(ST_MultiLineString , VARCHAR(128)) – Creates a polygon from a
multilinestring containing an exterior ring and an optional list of interior rings.

• ST_Polygon(ST_Point , ST_Point) – Creates an axis-aligned rectangle from two points
representing the lower-left and upper-right corners.

Accessing and manipulating spatial data

242 SAP Sybase IQ

• ST_Polygon() – Constructs a polygon representing the empty set.
• ST_Polygon(LONG BINARY[, INT]) – Constructs a polygon from Well Known Binary

(WKB).
• ST_Polygon(LONG VARCHAR[, INT]) – Constructs a polygon from a text

representation.
• ST_ExteriorRing(ST_Curve) – Changes the exterior ring of the polygon.
• ST_InteriorRingN(INT) – Returns the nth interior ring in the polygon.

Members of ST_CurvePolygon:

• ST_CurvePolygon(ST_Curve , ST_Curve) – Creates a curve polygon from a curve
representing the exterior ring and a list of curves representing interior rings, all in a
specified spatial reference system.

• ST_CurvePolygon(ST_MultiCurve , VARCHAR(128)) – Creates a curve polygon
from a multi curve containing an exterior ring and an optional list of interior rings.

• ST_CurvePolygon() – Constructs a curve polygon representing the empty set.
• ST_CurvePolygon(LONG BINARY[, INT]) – Constructs a curve polygon from Well

Known Binary (WKB).
• ST_CurvePolygon(LONG VARCHAR[, INT]) – Constructs a curve polygon from a

text representation.
• ST_CurvePolyToPoly() – Returns the interpolation of the curve polygon as a polygon.
• ST_ExteriorRing(ST_Curve) – Changes the exterior ring of the curve polygon.
• ST_InteriorRingN(INT) – Returns the nth interior ring in the curve polygon.
• ST_NumInteriorRing() – Returns the number of interior rings in the curve polygon.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.

Accessing and manipulating spatial data

Administration: Spatial Data 243

• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry
value.

• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry
value.

• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry
value.

• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry
value.

• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.
• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have

dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

Accessing and manipulating spatial data

244 SAP Sybase IQ

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.

Accessing and manipulating spatial data

Administration: Spatial Data 245

• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.
• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/

multicurve on the surface of the Earth.
• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.

Accessing and manipulating spatial data

246 SAP Sybase IQ

• ST_ToCurvePoly() – Converts the geometry to a curve polygon.
• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Members of ST_Surface:

• ST_Area(VARCHAR(128)) – Calculates the area of a surface in the specified units.
• ST_Centroid() – Returns the ST_Point value that is the mathematical centroid of the

surface value.
• ST_IsWorld() – Test if the ST_Surface covers the entire space.

Accessing and manipulating spatial data

Administration: Spatial Data 247

• ST_Perimeter(VARCHAR(128)) – Calculates the perimeter of a surface in the specified
units.

• ST_PointOnSurface() – Returns an ST_Point value that is guaranteed to spatially
intersect the ST_Surface value.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 8.3

ST_Polygon(ST_LineString , ST_LineString) constructor
Creates a polygon from a linestring representing the exterior ring and an optional list of
linestrings representing interior rings.

Syntax
NEW ST_Polygon(ST_LineString exterior_ring, ST_LineString
interior_ringi)

Parameters

• exterior_ring – The exterior ring of the polygon
• interior_ringi – Interior rings of the polygon

Returns
ST_Polygon Returns a polygon created from the specified rings.

Examples

• Example 1 – The following returns Polygon ((-5 -1, 5 -1, 0 9, -5 -1), (-2 0, 0 4, 2 0, -2 0)) (a
triangle with a triangular hole).
SELECT NEW ST_Polygon(
NEW ST_LineString ('LineString (-5 -1, 5 -1, 0 9, -5 -1)'),
NEW ST_LineString ('LineString (-2 0, 0 4, 2 0, -2 0)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

ST_Polygon(ST_MultiLineString , VARCHAR(128)) constructor
Creates a polygon from a multilinestring containing an exterior ring and an optional list of
interior rings.

Syntax
NEW ST_Polygon(ST_MultiLineString multi_linestring, VARCHAR(128)
polygon_format)

Accessing and manipulating spatial data

248 SAP Sybase IQ

Parameters

• multi_linestring – A multilinestring value containing an exterior ring and (optionally) a
set of interior rings.

• polygon_format – A string with the polygon format to use when interpreting the provided
linestrings. Valid formats are 'CounterClockwise', 'Clockwise', and 'EvenOdd'

Returns
ST_Polygon Returns a polygon created from the rings in a multilinestrings.

Examples

• Example 1 – The following returns Polygon ((-5 -1, 5 -1, 0 9, -5 -1), (-2 0, 0 4, 2 0, -2 0)) (a
triangle with a triangular hole).
SELECT NEW ST_Polygon(
NEW ST_MultiLineString ('MultiLineString ((-5 -1, 5 -1, 0 9, -5
-1), (-2 0, 0 4, 2 0, -2 0))'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

ST_Polygon(ST_Point , ST_Point) constructor
Creates an axis-aligned rectangle from two points representing the lower-left and upper-right
corners.

Syntax
NEW ST_Polygon(ST_Point pmin, ST_Point pmax)

Parameters

• pmin – A point that is the lower-left corner of the rectangle.
• pmax – A point that is the upper-right corner of the rectangle.

Returns
ST_Polygon Returns an axis-aligned rectangle.

Examples

• Example 1 – The following returns Polygon ((0 0, 4 0, 4 10, 0 10, 0 0)).
SELECT NEW ST_Polygon(NEW ST_Point(0.0, 0.0), NEW ST_Point(4.0,
10.0))

Accessing and manipulating spatial data

Administration: Spatial Data 249

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_Polygon() constructor
Constructs a polygon representing the empty set.

Syntax
NEW ST_Polygon()

Returns
ST_Polygon Returns an ST_Polygon value representing the empty set.

Examples

• Example 1 – The following returns 1, indicating the value is empty.
SELECT NEW ST_Polygon().ST_IsEmpty()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Standard feature

ST_Polygon(LONG BINARY[, INT]) constructor
Constructs a polygon from Well Known Binary (WKB).

Syntax
NEW ST_Polygon(LONG BINARY wkb[, INT srid])

Parameters

• wkb – A string containing the binary representation of a polygon. The input can be in any
supported binary input format, including Well Known Binary (WKB) or Extended Well
Known Binary (EWKB).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Polygon Returns an ST_Polygon value constructed from the source string.

Examples

• Example 1 – The following returns Polygon ((10 -5, 15 5, 5 5, 10 -5)).
SELECT NEW
ST_Polygon(0x0103000000010000000400000000000000000024400000000000

Accessing and manipulating spatial data

250 SAP Sybase IQ

0014c00000000000002e400000000000001440000000000000144000000000000
01440000000000000244000000000000014c0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

ST_Polygon(LONG VARCHAR[, INT]) constructor
Constructs a polygon from a text representation.

Syntax
NEW ST_Polygon(LONG VARCHAR text_representation[, INT srid])

Parameters

• text_representation – A string containing the text representation of a polygon. The input
can be in any supported text input format, including Well Known Text (WKT) or Extended
Well Known Text (EWKT).

• srid – The SRID of the result. If not specified, the default is 0.

Returns
ST_Polygon Returns an ST_Polygon value constructed from the source string.

Examples

• Example 1 – The following returns Polygon ((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2, -2 0, 2 0, 2 -2, -2
-2)).
SELECT NEW ST_Polygon('Polygon ((-5 -5, 5 -5, 0 5, -5 -5), (-2 -2,
-2 0, 2 0, 2 -2, -2 -2))')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.3.2

ST_ExteriorRing(ST_Curve) method
Changes the exterior ring of the polygon.

Syntax
polygon-expression.ST_ExteriorRing(ST_Curve curve)

Parameters

• curve – The new exterior ring of the polygon. This must be a linear ring value.

Accessing and manipulating spatial data

Administration: Spatial Data 251

Returns
ST_Polygon Returns a copy of the polygon with specified exterior ring.

Examples

• Example 1 – The following example returns the result Polygon ((0 1, 10 1, 5
10, 0 1), (3 3, 3 5, 7 5, 7 3, 3 3)).

SELECT NEW ST_Polygon('Polygon ((0 0, 10 0, 5 10, 0 0), (3 3, 3 5,
7 5, 7 3, 3 3))')
.ST_ExteriorRing(NEW ST_LineString('LineString(0 1, 10 1, 5 10,
0 1)'))

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.3.3

ST_InteriorRingN(INT) method
Returns the nth interior ring in the polygon.

Syntax
polygon-expression.ST_InteriorRingN(INT n)

Parameters

• n – The position of the element to return, from 1 to polygon-
expression.ST_NumInteriorRing().

Returns
ST_LineString Returns the nth interior ring in the polygon.

Examples

• Example 1 – The following example returns the result LineString (3 3, 3 5, 7
5, 7 3, 3 3).

SELECT NEW ST_Polygon('Polygon ((0 0, 10 0, 5 10, 0 0), (3 3, 3 5,
7 5, 7 3, 3 3))')
.ST_InteriorRingN(1)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.3.5

Accessing and manipulating spatial data

252 SAP Sybase IQ

ST_SpatialRefSys type
The ST_SpatialRefSys type defines routines for working with spatial reference systems.

Syntax
ST_SpatialRefSys type

Members
All members of the ST_SpatialRefSys type, including all inherited members.

Members of ST_SpatialRefSys:

• ST_CompareWKT(LONG VARCHAR, LONG VARCHAR) – Compares two spatial
reference system definitions.

• ST_FormatTransformDefinition(LONG VARCHAR) – Returns a formatted copy of
the transform definition.

• ST_FormatWKT(LONG VARCHAR) – Returns a formatted copy of the Well Known
Text (WKT) definition.

• ST_GetUnProjectedTransformDefinition(LONG VARCHAR) – Returns the
transform definition of the spatial reference system that is the source of the projection.

• ST_ParseWKT(VARCHAR(128), LONG VARCHAR) – Retrieves a named element
from the Well Known Text (WKT) definition of a spatial reference system.

• ST_TransformGeom(ST_Geometry , LONG VARCHAR, LONG VARCHAR) –
Returns the geometry transformed using the given transform definition.

• ST_World(INT) – Returns a geometry that represents all of the points in the spatial
reference system.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 13.1

ST_CompareWKT(LONG VARCHAR, LONG VARCHAR) method
Compares two spatial reference system definitions.

Syntax
ST_SpatialRefSys::ST_CompareWKT(LONG VARCHAR
transform_definition_1, LONG VARCHAR transform_definition_2)

Parameters

• transform_definition_1 – The first spatial reference system definition text
• transform_definition_2 – The second spatial reference system definition text

Accessing and manipulating spatial data

Administration: Spatial Data 253

Returns
BIT Returns 1 if the two spatial reference systems are logically equivalent, otherwise 0.

Examples

• Example 1 – The following example shows that two spatial reference systems are
considered equal even though they have different names:
SELECT ST_SpatialRefSys::ST_CompareWKT(
'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG",
"6326"]],PRIMEM["Greenwich",
0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4
326"]]'
, 'GEOGCS["WGS 84 alternate name",DATUM["WGS_1984",SPHEROID["WGS
84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG",
"6326"]],PRIMEM["Greenwich",
0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4
326"]]'
) Considered_Equal

The following example shows two spatial reference systems that are considered non-equal
because they are defined by different authorities:
SELECT ST_SpatialRefSys::ST_CompareWKT(
'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG",
"6326"]],PRIMEM["Greenwich",
0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4
326"]]'
, 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG",
"6326"]],PRIMEM["Greenwich",
0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["AnotherA
uthority","4326"]]'
) Considered_NotEqual

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_FormatTransformDefinition(LONG VARCHAR) method
Returns a formatted copy of the transform definition.

Syntax
ST_SpatialRefSys::ST_FormatTransformDefinition(LONG VARCHAR
transform_definition)

Accessing and manipulating spatial data

254 SAP Sybase IQ

Parameters

• transform_definition – The spatial reference system transform definition text

Returns
LONG VARCHAR Returns a text string defining the transform definition

Examples

• Example 1 – The following example returns the result +proj=longlat
+ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0 +no_defs.

SELECT
ST_SpatialRefSys::ST_FormatTransformDefinition('+proj=longlat
+ellps=WGS84 +datum=WGS84 +no_defs')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_FormatWKT(LONG VARCHAR) method
Returns a formatted copy of the Well Known Text (WKT) definition.

Syntax
ST_SpatialRefSys::ST_FormatWKT(LONG VARCHAR definition)

Parameters

• definition – The spatial reference system definition text

Returns
LONG VARCHAR Returns a text string defining the spatial reference system in WKT.

Examples

• Example 1 – The following example returns the result GEOGCS["WGS 84",
DATUM["WGS_1984", SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],
AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",
0,AUTHORITY["EPSG","8901"]], UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4326"]].

SELECT ST_SpatialRefSys::ST_FormatWKT('GEOGCS["WGS
84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG",
"6326"]],PRIMEM["Greenwich",

Accessing and manipulating spatial data

Administration: Spatial Data 255

0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4
326"]]')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_GetUnProjectedTransformDefinition(LONG VARCHAR) method
Returns the transform definition of the spatial reference system that is the source of the
projection.

Syntax
ST_SpatialRefSys::ST_GetUnProjectedTransformDefinition(LONG
VARCHAR transform_definition)

Parameters

• transform_definition – The spatial reference system transform definition text

Returns
LONG VARCHAR Returns a text string defining the transform definition of the unprojected
spatial reference system.

Examples

• Example 1 – The following example returns the result +proj=latlong
+a=6371000 +b=6371000 +no_defs.

SELECT
ST_SpatialRefSys::ST_GetUnProjectedTransformDefinition('+proj=ro
bin +lon_0=0 +x_0=0 +y_0=0 +a=6371000 +b=6371000 +units=m
no_defs')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_ParseWKT(VARCHAR(128), LONG VARCHAR) method
Retrieves a named element from the Well Known Text (WKT) definition of a spatial reference
system.

Syntax
ST_SpatialRefSys::ST_ParseWKT(VARCHAR(128) element, LONG VARCHAR
srs_text)

Accessing and manipulating spatial data

256 SAP Sybase IQ

Parameters

• element – The element to retrieve from the WKT. The following named elements may be
retrieved:

• srs_name
The name of the spatial reference system

• srs_type
The coordinate system type.

• organization
The name of the organization that defined the spatial reference system.

• organization_id
The integer identifier assigned by the organization that defined the spatial reference
system.

• linear_unit_of_measure
The name of the linear unit of measure.

• linear_unit_of_measure_factor
The conversion factor for the linear unit of measure.

• angular_unit_of_measure
The name of the angular unit of measure.

• angular_unit_of_measure_factor
The conversion factor for the angular unit of measure.

• srs_text – The spatial reference system definition text

Returns
LONG VARCHAR Retrieves a named element from the WKT definition of a spatial reference
system.

Examples

• Example 1 – The following example returns a result with one row for each of the named
elements.
with V(element,srs_text) as (
SELECT row_value as element, 'GEOGCS["WGS
84",DATUM["WGS_1984",SPHEROID["WGS 84",
6378137,298.257223563,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG",
"6326"]],PRIMEM["Greenwich",
0,AUTHORITY["EPSG","8901"]],UNIT["degree",
0.01745329251994328,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4
326"]]' as srs_text
FROM
sa_split_list('srs_name,srs_type,organization,organization_id,lin
ear_unit_of_measure,linear_unit_of_measure_factor,angular_unit_of
_measure,angular_unit_of_measure_factor') D
)
SELECT element, ST_SpatialRefSys::ST_ParseWKT(element,

Accessing and manipulating spatial data

Administration: Spatial Data 257

srs_text) parsed
FROM V

The example returns the following result set:

element parsed

srs_name WGS 84
srs_type GEOGRAPHIC
organization EPSG
organization_id 4326
linear_unit_of_measure NULL
linear_unit_of_measure_fac-
tor

NULL

angular_unit_of_measure degree
angular_unit_of_meas-
ure_factor

.017453292519943282

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_TransformGeom(ST_Geometry , LONG VARCHAR, LONG
VARCHAR) method

Returns the geometry transformed using the given transform definition.

Syntax
ST_SpatialRefSys::ST_TransformGeom(ST_Geometry geom, LONG VARCHAR
target_transform_definition, LONG VARCHAR
source_transform_definition)

Parameters

• geom – The geometry to be transformed
• target_transform_definition – The target spatial reference system transform definition

text
• source_transform_definition – The source spatial reference system transform definition

text. If not specified, the transform definition from the spatial reference system of the
geom parameter is used.

Accessing and manipulating spatial data

258 SAP Sybase IQ

Returns
ST_Geometry Returns the input geometry transformed using the given transform
definition.

Examples

• Example 1 – The following example returns the result Point (-5387692.968586
4763459.253243).

SELECT ST_SpatialRefSys::ST_TransformGeom(NEW
ST_Point(-63.57,44.65,4326), '+proj=robin +lon_0=0 +x_0=0 +y_0=0
+a=6371000 +b=6371000 +units=m
no_defs').ST_AsText('DecimalDigits=6')

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

ST_World(INT) method
Returns a geometry that represents all of the points in the spatial reference system.

Syntax
ST_SpatialRefSys::ST_World(INT srid)

Parameters

• srid – The SRID to use for the result.

Returns
ST_Surface Returns a geometry that represents all of the points in the spatial reference
system identified by the srid parameter.

Examples

• Example 1 – The following example returns the result Polygon ((-1000000
-1000000, 1000000 -1000000, 1000000 1000000, -1000000
1000000, -1000000 -1000000)).

SELECT ST_SpatialRefSys::ST_World(0)

Standards

SQL/MM (ISO/IEC 13249-3: 2006) Vendor extension

Accessing and manipulating spatial data

Administration: Spatial Data 259

ST_Surface type
The ST_Surface type is a supertype for 2-dimensional geometry types. The ST_Surface type
is not instantiable.

Syntax
ST_Surface type

Members
All members of the ST_Surface type, including all inherited members.

Members of ST_Surface:

• ST_Area(VARCHAR(128)) – Calculates the area of a surface in the specified units.
• ST_Centroid() – Returns the ST_Point value that is the mathematical centroid of the

surface value.
• ST_IsWorld() – Test if the ST_Surface covers the entire space.
• ST_Perimeter(VARCHAR(128)) – Calculates the perimeter of a surface in the specified

units.
• ST_PointOnSurface() – Returns an ST_Point value that is guaranteed to spatially

intersect the ST_Surface value.

Members of ST_Geometry:

• ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a new
geometry that is the result of applying the specified 3-D affine transformation.

• ST_AsBinary(VARCHAR(128)) – Returns the WKB representation of an
ST_Geometry value.

• ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) – Returns a LONG
VARBIT that is a bitmap representing a geometry value.

• ST_AsGeoJSON(VARCHAR(128)) – Returns a string representing a geometry in JSON
format.

• ST_AsGML(VARCHAR(128)) – Returns the GML representation of an ST_Geometry
value.

• ST_AsKML(VARCHAR(128)) – Returns the KML representation of an ST_Geometry
value.

• ST_AsSVG(VARCHAR(128)) – Returns an SVG figure representing a geometry value.
• ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) – Returns a complete or partial

SVG document which renders the geometries in a group.
• ST_AsText(VARCHAR(128)) – Returns the text representation of an ST_Geometry

value.

Accessing and manipulating spatial data

260 SAP Sybase IQ

• ST_AsWKB(VARCHAR(128)) – Returns the WKB representation of an ST_Geometry
value.

• ST_AsWKT(VARCHAR(128)) – Returns the WKT representation of an ST_Geometry
value.

• ST_AsXML(VARCHAR(128)) – Returns the XML representation of an ST_Geometry
value.

• ST_Boundary() – Returns the boundary of the geometry value.
• ST_Buffer(DOUBLE, VARCHAR(128)) – Returns the ST_Geometry value that

represents all points whose distance from any point of an ST_Geometry value is less than
or equal to a specified distance in the given units.

• ST_Contains(ST_Geometry) – Tests if a geometry value spatially contains another
geometry value.

• ST_ContainsFilter(ST_Geometry) – An inexpensive test if a geometry might contain
another.

• ST_ConvexHull() – Returns the convex hull of the geometry value.
• ST_ConvexHullAggr(ST_Geometry) – Returns the convex hull for all of the

geometries in a group
• ST_CoordDim() – Returns the number of coordinate dimensions stored with each point

of the ST_Geometry value.
• ST_CoveredBy(ST_Geometry) – Tests if a geometry value is spatially covered by

another geometry value.
• ST_CoveredByFilter(ST_Geometry) – An inexpensive test if a geometry might be

covered by another.
• ST_Covers(ST_Geometry) – Tests if a geometry value spatially covers another

geometry value.
• ST_CoversFilter(ST_Geometry) – An inexpensive test if a geometry might cover

another.
• ST_Crosses(ST_Geometry) – Tests if a geometry value crosses another geometry

value.
• ST_Debug(VARCHAR(128)) – Returns a LONG BINARY that is debug information for

the object.
• ST_Difference(ST_Geometry) – Returns the geometry value that represents the point

set difference of two geometries.
• ST_Dimension() – Returns the dimension of the ST_Geometry value. Points have

dimension 0, lines have dimension 1, and surfaces have dimension 2. Any empty geometry
has dimension -1.

• ST_Disjoint(ST_Geometry) – Test if a geometry value is spatially disjoint from another
value.

• ST_Distance(ST_Geometry , VARCHAR(128)) – Returns the smallest distance
between the geometry-expression and the specified geometry value.

Accessing and manipulating spatial data

Administration: Spatial Data 261

• ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) – Calculates the linear
distance between geometries on the surface of the Earth.

• ST_Envelope() – Returns the bounding rectangle for the geometry value.
• ST_EnvelopeAggr(ST_Geometry) – Returns the bounding rectangle for all of the

geometries in a group
• ST_Equals(ST_Geometry) – Tests if an ST_Geometry value is spatially equal to

another ST_Geometry value.
• ST_EqualsFilter(ST_Geometry) – An inexpensive test if a geometry is equal to

another.
• ST_GeometryType() – Returns the name of the type of the ST_Geometry value.
• ST_GeometryTypeFromBaseType(VARCHAR(128)) – Parses a string defining the

type string.
• ST_GeomFromBinary(LONG BINARY, INT) – Constructs a geometry from a binary

string representation.
• ST_GeomFromShape(LONG BINARY[, INT]) – Parses a string containing an ESRI

shape record and creates a geometry value of the appropriate type.
• ST_GeomFromText(LONG VARCHAR, INT) – Constructs a geometry from a

character string representation.
• ST_GeomFromWKB(LONG BINARY, INT) – Parse a string containing a WKB or

EWKB representation of a geometry and creates a geometry value of the appropriate type.
• ST_GeomFromWKT(LONG VARCHAR, INT) – Parses a string containing the WKT

or EWKT representation of a geometry and create a geometry value of the appropriate
type.

• ST_Intersection(ST_Geometry) – Returns the geometry value that represents the point
set intersection of two geometries.

• ST_IntersectionAggr(ST_Geometry) – Returns the spatial intersection of all of the
geometries in a group

• ST_Intersects(ST_Geometry) – Test if a geometry value spatially intersects another
value.

• ST_IntersectsFilter(ST_Geometry) – An inexpensive test if the two geometries might
intersect.

• ST_IntersectsRect(ST_Point , ST_Point) – Test if a geometry intersects a rectangle.
• ST_Is3D() – Determines if the geometry value has Z coordinate values.
• ST_IsEmpty() – Determines whether the geometry value represents an empty set.
• ST_IsMeasured() – Determines if the geometry value has associated measure values.
• ST_IsSimple() – Determines whether the geometry value is simple (containing no self

intersections or other irregularities).
• ST_IsValid() – Determines whether the geometry is a valid spatial object.
• ST_LatNorth() – Retrieves the northernmost latitude of a geometry.
• ST_LatSouth() – Retrieves the southernmost latitude of a geometry.

Accessing and manipulating spatial data

262 SAP Sybase IQ

• ST_Length_Spheroid(VARCHAR(128)) – Calculates the linear length of a curve/
multicurve on the surface of the Earth.

• ST_LinearHash() – Returns a binary string that is a linear hash of the geometry.
• ST_LinearUnHash(BINARY(32)[, INT]) – Returns a geometry representing the index

hash.
• ST_LoadConfigurationData(VARCHAR(128)) – Returns binary configuration data.

For internal use only.
• ST_LocateAlong(DOUBLE) – Returns the subset of the geometry value that is

associated with the given measure value.
• ST_LocateBetween(DOUBLE, DOUBLE) – Returns the subset of the geometry value

that is between the specified start measure and end measure.
• ST_LongEast() – Retrieves the longitude of the eastern boundary of a geometry.
• ST_LongWest() – Retrieves the longitude of the western boundary of a geometry.
• ST_MMax() – Retrieves the maximum M coordinate value of a geometry.
• ST_MMin() – Retrieves the minimum M coordinate value of a geometry.
• ST_OrderingEquals(ST_Geometry) – Tests if a geometry is identical to another

geometry.
• ST_Overlaps(ST_Geometry) – Tests if a geometry value overlaps another geometry

value.
• ST_Relate(ST_Geometry) – Determines how a geometry value is spatially related to

another geometry value by returning an intersection matrix. The ST_Relate method
returns a 9-character string from the Dimensionally Extended 9 Intersection Model
(DE-9IM) to describe the pair-wise relationship between two spatial data items. For
example, the ST_Relate method determines if an intersection occurs between the
geometries, and the geometry of the resulting intersection, if it exists.

• ST_Reverse() – Returns the geometry with the element order reversed.
• ST_Segmentize(DOUBLE) – Add points so that no line segment is longer than a

specified distance.
• ST_Simplify(DOUBLE) – Remove points from curves so long as the maximum

introduced error is less than a specified tolerance.
• ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) – Returns a

copy of the geometry with all points snapped to the specified grid.
• ST_SRID(INT) – Changes the spatial reference system associated with the geometry

without modifying any of the values.
• ST_SRIDFromBaseType(VARCHAR(128)) – Parses a string defining the type string.
• ST_SymDifference(ST_Geometry) – Returns the geometry value that represents the

point set symmetric difference of two geometries.
• ST_ToCircular() – Convert the geometry to a circularstring
• ST_ToCompound() – Converts the geometry to a compound curve.
• ST_ToCurve() – Converts the geometry to a curve.
• ST_ToCurvePoly() – Converts the geometry to a curve polygon.

Accessing and manipulating spatial data

Administration: Spatial Data 263

• ST_ToGeomColl() – Converts the geometry to a geometry collection.
• ST_ToLineString() – Converts the geometry to a linestring.
• ST_ToMultiCurve() – Converts the geometry to a multicurve value.
• ST_ToMultiLine() – Converts the geometry to a multilinestring value.
• ST_ToMultiPoint() – Converts the geometry to a multi-point value.
• ST_ToMultiPolygon() – Converts the geometry to a multi-polygon value.
• ST_ToMultiSurface() – Converts the geometry to a multi-surface value.
• ST_ToPoint() – Converts the geometry to a point.
• ST_ToPolygon() – Converts the geometry to a polygon.
• ST_ToSurface() – Converts the geometry to a surface.
• ST_Touches(ST_Geometry) – Tests if a geometry value spatially touches another

geometry value.
• ST_Transform(INT) – Creates a copy of the geometry value transformed into the

specified spatial reference system.
• ST_Union(ST_Geometry) – Returns the geometry value that represents the point set

union of two geometries.
• ST_UnionAggr(ST_Geometry) – Returns the spatial union of all of the geometries in a

group
• ST_Within(ST_Geometry) – Tests if a geometry value is spatially contained within

another geometry value.
• ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) – Test if two

geometries are within a specified distance of each other.
• ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) – An

inexpensive of whether two geometries might be within a specified distance of each other.
• ST_WithinFilter(ST_Geometry) – An inexpensive test if a geometry might be within

another.
• ST_XMax() – Retrieves the maximum X coordinate value of a geometry.
• ST_XMin() – Retrieves the minimum X coordinate value of a geometry.
• ST_YMax() – Retrieves the maximum Y coordinate value of a geometry.
• ST_YMin() – Retrieves the minimum Y coordinate value of a geometry.
• ST_ZMax() – Retrieves the maximum Z coordinate value of a geometry.
• ST_ZMin() – Retrieves the minimum Z coordinate value of a geometry.

Standards and compatibility
SQL/MM (ISO/IEC 13249-3: 2006) 8.1

ST_Area(VARCHAR(128)) method
Calculates the area of a surface in the specified units.

Syntax
surface-expression.ST_Area(VARCHAR(128) unit_name)

Accessing and manipulating spatial data

264 SAP Sybase IQ

Parameters

• unit_name – The units in which the length should be computed. Defaults to the unit of the
spatial reference system. The unit name must match the UNIT_NAME column of a row in
the ST_UNITS_OF_MEASURE view where UNIT_TYPE is 'LINEAR'.

Returns
DOUBLE Returns the area of the surface.

Examples

• Example 1 – The following example returns the result 12.5.

SELECT TREAT(Shape AS ST_Polygon).ST_Area()
FROM SpatialShapes WHERE ShapeID = 22

The following returns the area of the poly_geometry column in square miles from the
fictional region table.
SELECT name, poly_geometry.ST_Area('Statute Mile')
FROM region

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.1.2

ST_Centroid() method
Returns the ST_Point value that is the mathematical centroid of the surface value.

Syntax
surface-expression.ST_Centroid()

Returns
ST_Point If the surface is the empty set, returns NULL. Otherwise, returns the
mathematical centroid of the surface.

Examples

• Example 1 – The following example returns the result Point (5 4.666667).

SELECT TREAT(Shape as ST_Surface).ST_Centroid()
FROM SpatialShapes WHERE ShapeID = 22

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.1.4

Accessing and manipulating spatial data

Administration: Spatial Data 265

ST_IsWorld() method
Test if the ST_Surface covers the entire space.

Syntax
surface-expression.ST_IsWorld()

Returns
BIT Returns 1 if the surface covers the entire space, otherwise 0.

Examples

• Example 1 – The following example returns the result 1.

SELECT NEW ST_Polygon(NEW ST_Point(-180, -90, 1000004326),
NEW ST_Point(180, 90, 1000004326)).ST_IsWorld()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.1.6

ST_Perimeter(VARCHAR(128)) method
Calculates the perimeter of a surface in the specified units.

Syntax
surface-expression.ST_Perimeter(VARCHAR(128) unit_name)

Parameters

• unit_name – The units in which the length should be computed. Defaults to the unit of the
spatial reference system. The unit name must match the UNIT_NAME column of a row in
the ST_UNITS_OF_MEASURE view where UNIT_TYPE is 'LINEAR'.

Returns
DOUBLE Returns the perimeter of the surface in the specified unit of measure.

Examples

• Example 1 – The following example returns the result 18.

SELECT TREAT(Shape as ST_Surface).ST_Perimeter()
FROM SpatialShapes WHERE ShapeID = 3

The following returns the perimeter of the poly_geometry column in miles from the
fictional region table.

Accessing and manipulating spatial data

266 SAP Sybase IQ

SELECT name, poly_geometry.ST_Perimeter('Statute Mile')
FROM region

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.1.3

ST_PointOnSurface() method
Returns an ST_Point value that is guaranteed to spatially intersect the ST_Surface value.

Syntax
surface-expression.ST_PointOnSurface()

Returns
ST_Point If the surface is the empty set, returns NULL. Otherwise, returns an ST_Point
value guaranteed to spatially intersect the ST_Surface value.

Examples

• Example 1 – The following returns a point that intersects the polygon.
SELECT NEW ST_Polygon('Polygon((1 0, 0 10, 1 1, 2 10, 1 0))')
.ST_PointOnSurface()

Standards

SQL/MM (ISO/IEC 13249-3: 2006) 8.1.5

Accessing and manipulating spatial data

Administration: Spatial Data 267

Accessing and manipulating spatial data

268 SAP Sybase IQ

Appendix – SQL Statements

Reference material for SQL statements mentioned in this document.

CREATE SPATIAL REFERENCE SYSTEM Statement
Creates or replaces a spatial reference system.

Quick Links:

Go to Parameters on page 270

Go to Examples on page 275

Go to Usage on page 275

Go to Standards on page 276

Go to Permissions on page 276

Syntax
{ CREATE [OR REPLACE] SPATIAL REFERENCE SYSTEM
 | CREATE SPATIAL REFERENCE SYSTEM IF NOT EXISTS }
 srs-name
 [srs-attribute] [srs-attribute ...]

srs-attribute - (back to Syntax)
 SRID srs-id
 | DEFINITION { definition-string | NULL }
 | ORGANIZATION { organization-name IDENTIFIED BY organization-srs-id
| NULL }
 | TRANSFORM DEFINITION { transform-definition-string | NULL }
 | LINEAR UNIT OF MEASURE linear-unit-name
 | ANGULAR UNIT OF MEASURE { angular-unit-name | NULL }
 | TYPE { ROUND EARTH | PLANAR }
 | COORDINATE coordinate-name { UNBOUNDED | BETWEEN low-number
AND high-number }
 | ELLIPSOID SEMI MAJOR AXIS semi-major-axis-length { SEMI MINOR AXIS
semi-minor-axis-length
 | INVERSE FLATTENING inverse-flattening-ratio }
 | TOLERANCE { tolerance-distance | DEFAULT }
 | SNAP TO GRID { grid-size | DEFAULT }
 | AXIS ORDER axis-order
 | POLYGON FORMAT polygon-format
 | STORAGE FORMAT storage-format

grid-size - (back to srs-attribute)
 DOUBLE : usually between 0 and 1

axis-order - (back to srs-attribute)

Appendix – SQL Statements

Administration: Spatial Data 269

 { 'x/y/z/m' | 'long/lat/z/m' | 'lat/long/z/m' }

polygon-format - (back to srs-attribute)
 { 'CounterClockWise' | 'Clockwise' | 'EvenOdd' }

storage-format - (back to srs-attribute)
 { 'Internal' | 'Original' | 'Mixed' }

Parameters

(back to top) on page 269

• OR REPLACE – Specifying OR REPLACE creates the spatial reference system if it does
not already exist in the database, and replaces it if it does exist. An error is returned if you
attempt to replace a spatial reference system while it is in use. An error is also returned if
you attempt to replace a spatial reference system that already xists in the database without
specifying the OR REPLACE clause.

• IF NOT EXISTS – Specifying CREATE SPATIAL REFERENCE IF NOT EXISTS
checks to see if a spatial reference system by that name already exists. If it does not exist,
the database server creates the spatial reference system. If it does exist, no further action is
performed and no error is returned.

• IDENTIFIED BY – the SRID (srs-id) for the spatial reference system. If the spatial
reference system is defined by an organization with an organization-srs-id, then srs-id
should be set to that value.

If the IDENTIFIED BY clause is not specified, then the SRID defaults to the organization-
srs-id defined by either the ORGANIZATION clause or the DEFINITION clause. If
neither clause defines an organization-srs-id that could be used as a default SRID, an error
is returned.

When the spatial reference system is based on a well known coordinate system, but has a
different geodesic interpretation, set the srs-id value to be 1000000000 (one billion) plus
the well known value. For example, the SRID for a planar interpretation of the geodetic
spatial reference system WGS 84 (ID 4326) would be 1000004326.

With the exception of SRID 0, spatial reference systems provided by SAP Sybase IQ that
are not based on well known systems are given a SRID of 2000000000 (two billion) and
above. The range of SRID values from 2000000000 to 2147483647 is reserved by SAP
Sybase IQ and you should not create SRIDs in this range.

To reduce the possibility of choosing a SRID that is reserved by a defining authority such
as OGC or by other vendors, you should not choose a SRID in the range 0 - 32767 (reserved
by EPSG), or in the range 2147483547 - 2147483647.

Also, since the SRID is stored as a signed 32-bit integer, the number cannot exceed 231-1
or 2147483647.

Appendix – SQL Statements

270 SAP Sybase IQ

• DEFINITION – set, or override, default coordinate system settings. If any attribute is set
in a clause other than the DEFINITION clause, it takes the value specified in the other
clause regardless of what is specified in the DEFINITION clause.

definition-string is a string in the Spatial Reference System Well Known Text syntax as
defined by SQL/MM and OGC. For example, the following query returns the definition for
WGS 84.
SELECT ST_SpatialRefSys::ST_FormatWKT(definition)
 FROM ST_SPATIAL_REFERENCE_SYSTEMS
 WHERE srs_id=4326;

In Interactive SQL, if you double-click the value returned, an easier to read version of the
value appears.

When the DEFINITION clause is specified, definition-string is parsed and used to choose
default values for attributes. For example, definition-string may contain an AUTHORITY
element that defines the organization-name and organization-srs-id.

Parameter values in definition-string are overridden by values explicitly set using the SQL
statement clauses. For example, if the ORGANIZATION clause is specified, it overrides
the value for ORGANIZATION in definition-string.

• ORGANIZATION – information about the organization that created the spatial reference
system that the spatial reference system is based on.

• TRANSFORM DEFINITION – a description of the transform to use for the spatial
reference system. Currently, only the PROJ.4 transform is supported. The transform
definition is used by the ST_Transform method when transforming data between spatial
reference systems. Some transforms may still be possible even if there is no transform-
definition-string defined.

• LINEAR UNIT OF MEASURE – the linear unit of measure for the spatial reference
system. The value you specify must match a linear unit of measure defined in the
ST_UNITS_OF_MEASURE system view.

If this clause is not specified, and is not defined in the DEFINITION clause, the default is
METRE. To add predefined units of measure to the database, use the sa_install_feature
system procedure.

To add custom units of measure to the database, use the CREATE SPATIAL UNIT OF
MEASURE statement.

Note: While both METRE and METER are accepted spellings, METRE is preferred as it
conforms to the SQL/MM standard.

• ANGULAR UNIT OF MEASURE – the angular unit of measure for the spatial reference
system. The value you specify must match an angular unit of measure defined in the
ST_UNITS_OF_MEASURE system table.

Appendix – SQL Statements

Administration: Spatial Data 271

If this clause is not specified, and is not defined in the DEFINITION clause, the default is
DEGREE for geographic spatial reference systems and NULL for non-geographic spatial
reference systems.

The angular unit of measure must be non-NULL for geographic spatial reference systems
and it must be NULL for non-geographic spatial reference systems.

The angular unit of measure must be non-NULL for geographic spatial reference systems
and it must be NULL for non-geographic spatial reference systems. To add predefined
units of measure to the database, use the sa_install_feature system procedure.

To add custom units of measure to the database, use the CREATE SPATIAL UNIT OF
MEASURE statement.

• TYPE – control how the SRS interprets lines between points. For geographic spatial
reference systems, the TYPE clause can specify either ROUND EARTH (the default) or
PLANAR. The ROUND EARTH model interprets lines between points as great elliptic
arcs. Given two points on the surface of the Earth, a plane is selected that intersects the two
points and the center of the Earth. This plane intersects the Earth, and the line between the
two points is the shortest distance along this intersection.

For two points that lie directly opposite each other, there is not a single unique plane that
intersects the two points and the center of the Earth. Line segments connecting these anti-
podal points are not valid and give an error in the ROUND EARTH model.

The ROUND EARTH model treats the Earth as a spheroid and selects lines that follow the
curvature of the Earth. In some cases, it may be necessary to use a planar model where a
line between two points is interpreted as a straight line in the equirectangular projection
where x=long, y=lat.

In the following example, the blue line shows the line interpretation used in the ROUND
EARTH model and the red line shows the corresponding PLANAR model.

Appendix – SQL Statements

272 SAP Sybase IQ

The PLANAR model may be used to match the interpretation used by other products. The
PLANAR model may also be useful because there are some limitations for methods that
are not supported in the ROUND EARTH model (such as ST_Area, ST_ConvexHull) and
some are partially supported (ST_Distance only supported between point geometries).
Geometries based on circularstrings are not supported in ROUND EARTH spatial
reference systems.

For non-geographic SRSs, the type must be PLANAR (and that is the default if the TYPE
clause is not specified and either the DEFINITION clause is not specified or it uses a non-
geographic definition).

• COORDINATE – the bounds on the spatial reference system's dimensions. coordinate-
name is the name of the coordinate system used by the spatial reference system. For non-
geographic coordinate systems, coordinate-name can be x, y, or m. For geographic
coordinate systems, coordinate-name can be LATITUDE, LONGITUDE, z, or m.

Specify UNBOUNDED to place no bounds on the dimensions. Use the BETWEEN clause
to set low and high bounds.

The X and Y coordinates must have associated bounds. For geographic spatial reference
systems, the longitude coordinate is bounded between -180 and 180 degrees and the
latitude coordinate is bounded between -90 and 90 degrees by default the unless
COORDINATE clause overrides these settings. For non-geographic spatial reference
systems, the CREATE statement must specify bounds for both X and Y coordinates.

LATITUDE and LONGITUDE are used for geographic coordinate systems. The bounds
for LATITUDE and LONGITUDE default to the entire Earth, if not specified.

• ELLIPSOID – the values to use for representing the Earth as an ellipsoid for spatial
reference systems of type ROUND EARTH. If the DEFINITION clause is present, it can
specify ellipsoid definition. If the ELLIPSOID clause is specified, it overrides this default
ellipsoid.

The Earth is not a perfect sphere because the rotation of the Earth causes a flattening so that
the distance from the center of the Earth to the North or South pole is less than the distance
from the center to the equator. For this reason, the Earth is modeled as an ellipsoid with
different values for the semi-major axis (distance from center to equator) and semi-minor
axis (distance from center to the pole). It is most common to define an ellipsoid using the
semi-major axis and the inverse flattening, but it can instead be specified using the semi-
minor axis (for example, this approach must be used when a perfect sphere is used to
approximate the Earth). The semi-major and semi-minor axes are defined in the linear
units of the spatial reference system, and the inverse flattening (1/f) is a ratio:
1/f = (semi-major-axis) / (semi-major-axis - semi-minor-axis)

product-name uses the ellipsoid definition when computing distance in geographic spatial
reference systems.

• SNAP TO GRID – flat-Earth (planar) spatial reference systems, use the SNAP TO GRID
clause to define the size of the grid SAP Sybase IQ uses when performing calculations. By

Appendix – SQL Statements

Administration: Spatial Data 273

default, SAP Sybase IQ selects a grid size so that 12 significant digits can be stored at all
points in the space bounds for X and Y. For example, if a spatial reference system bounds X
between -180 and 180 and Y between -90 and 90, then a grid size of 0.000000001 (1E-9) is
selected.

• TOLERANCE – flat-Earth (planar) spatial reference systems, use the TOLERANCE
clause to specify the precision to use when comparing points. If the distance between two
points is less than tolerance-distance, the two points are considered equal. Setting
tolerance-distance allows you to control the tolerance for imprecision in the input data or
limited internal precision. By default, tolerance-distance is set to be equal to grid-size.

When set to 0, two points must be exactly equal to be considered equal.

For round-Earth spatial reference systems, TOLERANCE must be set to 0.

• POLYGON FORMAT – internally, SAP Sybase IQ interprets polygons by looking at the
orientation of the constituent rings. As one travels a ring in the order of the defined points,
the inside of the polygon is on the left side of the ring. The same rules are applied in
PLANAR and ROUND EARTH spatial reference systems.

The interpretation used by SAP Sybase IQ is a common but not universal interpretation.
Some products use the exact opposite orientation, and some products do not rely on ring
orientation to interpret polygons. The POLYGON FORMAT clause can be used to select a
polygon interpretation that matches the input data, as needed. The following values are
supported:

• CounterClockwise – input follows SAP Sybase IQ's internal interpretation: the inside
of the polygon is on the left side while following ring orientation.

• Clockwise – input follows the opposite of SAP Sybase IQ's approach: the inside of the
polygon is on the right side while following ring orientation.

• EvenOdd – (default) The orientation of rings is ignored and the inside of the polygon
is instead determined by looking at the nesting of the rings, with the exterior ring being
the largest ring and interior rings being smaller rings inside this ring. A ray is traced
from a point within the rings and radiating outward crossing all rings. If the number the
ring being crossed is an even number, it is an outer ring. If it is odd, it is an inner ring.

• STORAGE FORMAT – control what is stored when spatial data is loaded into the
database. Possible values are:

• Internal – SAP Sybase IQ stores only the normalized representation. Specify this
when the original input characteristics do not need to be reproduced. This is the default
for planar spatial reference systems (TYPE PLANAR).

• Original – SAP Sybase IQ stores only the original representation. The original input
characteristics can be reproduced, but all operations on the stored values must repeat
normalization steps, possibly slowing down operations on the data.

• Mixed – SAP Sybase IQ stores the internal version and, if it is different from the
original version, SAP Sybase SQL Anywhere® stores the original version as well. By
storing both versions, the original representation characteristics can be reproduced and

Appendix – SQL Statements

274 SAP Sybase IQ

operations on stored values do not need to repeat normalization steps. However,
storage requirements may increase significantly because potentially two
representations are being stored for each geometry. Mixed is the default format for
round-Earth spatial reference systems (TYPE ROUND EARTH).

Examples

(back to top) on page 269

• Example 1 – creates a spatial reference system named mySpatialRS:

CREATE SPATIAL REFERENCE SYSTEM "mySpatialRS"
IDENTIFIED BY 1000026980
LINEAR UNIT OF MEASURE "metre"
TYPE PLANAR
COORDINATE X BETWEEN 171266.736269555 AND 831044.757769222
COORDINATE Y BETWEEN 524881.608973277 AND 691571.125115319
DEFINITION 'PROJCS["NAD83 / Kentucky South",
GEOGCS["NAD83",
DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",
6378137,298.257222101,AUTHORITY["EPSG","7019"]],
AUTHORITY["EPSG","6269"]],
PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
UNIT["degree",0.01745329251994328,AUTHORITY["EPSG","9122"]],
AUTHORITY["EPSG","4269"]],
UNIT["metre",1,AUTHORITY["EPSG","9001"]],
PROJECTION["Lambert_Conformal_Conic_2SP"],
PARAMETER["standard_parallel_1",37.93333333333333],
PARAMETER["standard_parallel_2",36.73333333333333],
PARAMETER["latitude_of_origin",36.33333333333334],
PARAMETER["central_meridian",-85.75],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",500000],
AUTHORITY["EPSG","26980"],
AXIS["X",EAST],
AXIS["Y",NORTH]]'
TRANSFORM DEFINITION '+proj=lcc
+lat_1=37.93333333333333+lat_2=36.73333333333333+lat_0=36.3333333
3333334+lon_0=-85.75+x_0=500000+y_0=500000+ellps=GRS80+datum=NAD8
3+units=m+no_defs';

Usage

(back to top) on page 269

For a geographic spatial reference system, you can specify both a LINEAR and an
ANGULAR unit of measure; otherwise for non-geographic, you specify only a LINEAR unit
of measure. The LINEAR unit of measure is used for computing distance between points and
areas. The ANGULAR unit of measure tells how the angular latitude/longitude are interpreted
and is NULL for projected coordinate systems, non-NULL for geographic coordinate
systems.

All derived geometries returned by operations are normalized.

Appendix – SQL Statements

Administration: Spatial Data 275

When working with data that is being synchronized with a non-SQL Anywhere database,
STORAGE FORMAT should be set to either 'Original' or 'Mixed' so that the original
characteristics of the data can be preserved.

Standards

(back to top) on page 269

ANSI SQL–Compliance level: Transact-SQL® extension.

Permissions

(back to top) on page 269

Requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• CREATE ANY OBJECT system privilege.

CREATE SPATIAL UNIT OF MEASURE Statement
Creates or replaces a spatial unit of measurement.

Quick Links:

Go to Parameters on page 276

Go to Examples on page 277

Go to Usage on page 277

Go to Standards on page 277

Go to Permissions on page 278

Syntax
CREATE [OR REPLACE] SPATIAL UNIT OF MEASURE identifier
 TYPE { LINEAR | ANGULAR }
 [CONVERT USING number]

Parameters

(back to top) on page 276

• OR REPLACE – including the OR REPLACE creates a new spatial unit of measure, or
replaces an existing spatial unit of measure with the same name. This clause preserves
existing privileges. An error is returned if you attempt to replace a spatial unit that is
already in use.

Appendix – SQL Statements

276 SAP Sybase IQ

• TYPE – defines whether the unit of measure is used for angles (ANGULAR) or distances
(LINEAR).

• CONVERT USING – the conversion factor for the spatial unit relative to the base unit.
For linear units, the base unit is METRE. For angular units, the base unit is RADIAN.

Examples

(back to top) on page 276

• Example 1 – creates a spatial unit of measure named Test:

CREATE SPATIAL UNIT OF MEASURE Test
TYPE LINEAR
CONVERT USING 15;

Usage

(back to top) on page 276

The CONVERT USING clause is used to define how to convert a measurement in the defined
unit of measure to the base unit of measure (radians or meters). The measurement is multiplied
by the supplied conversion factor to get a value in the base unit of measure. For example, a
measurement of 512 millimeters would be multiplied by a conversion factor of 0.001 to get a
measurement of 0.512 metres.

Spatial reference systems always include a linear unit of measure to be used when calculating
distances (ST_Distance or ST_Length), or area. For example, if the linear unit of measure for a
spatial reference system is miles, then the area unit used is square miles. In some cases, spatial
methods accept an optional parameter that specifies the linear unit of measure to use. For
example, if the linear unit of measure for a spatial reference system is in miles, you could
retrieve the distance between two geometries in meters by using the optional parameter
'metre'.

For projected coordinate systems, the X and Y coordinates are specified in the linear unit of the
spatial reference system. For geographic coordinate systems, the latitude and longitude are
specified in the angular units of measure associated with the spatial reference system. In many
cases, this angular unit of measure is degrees but any valid angular unit of measure can be
used.

You can use the sa_install_feature system procedure to add predefined units of measure to
your database.

Standards

(back to top) on page 276

ANSI SQL–Compliance level: Transact-SQL extension.

Appendix – SQL Statements

Administration: Spatial Data 277

Permissions

(back to top) on page 276

Requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• CREATE ANY OBJECT system privilege.

DROP SPATIAL UNIT OF MEASURE Statement
Drops a spatial unit of measurement.

Quick Links:

Go to Parameters on page 278

Go to Examples on page 278

Go to Standards on page 278

Go to Permissions on page 279

Syntax

DROP SPATIAL UNIT OF MEASURE [IF EXISTS] identifier

Parameters

(back to top) on page 278

• IF EXISTS – prevents an error from being returned when the DROP SPATIAL UNIT OF
MEASURE statement attempts to remove a spatial unit of measure that does not exist.

Examples

(back to top) on page 278

• Example – the following example drops a fictitious spatial unit of measure named
Test:

DROP SPATIAL UNIT OF MEASURE Test;

Standards

(back to top) on page 278

ANSI SQL–Compliance level: Transact-SQL extension.

Appendix – SQL Statements

278 SAP Sybase IQ

Permissions

(back to top) on page 278

Requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• DROP ANY OBJECT system privilege.
• You own the spatial unit of measure.

DROP SPATIAL REFERENCE SYSTEM Statement
Drops a spatial reference system.

Quick Links:

Go to Parameters on page 279

Go to Standards on page 279

Go to Permissions on page 279

Syntax

DROP SPATIAL REFERENCE SYSTEM [IF EXISTS] name

Parameters

(back to top) on page 279

• IF EXISTS – prevents an error from being returned when the DROP SPATIAL
REFERENCE SYSTEM statement attempts to remove a spatial reference system that does
not exist.

Standards

(back to top) on page 279

ANSI SQL–Compliance level: Transact-SQL extension.

Permissions

(back to top) on page 279

Requires one of:

• MANAGE ANY SPATIAL OBJECT system privilege.
• DROP ANY OBJECT system privilege.
• You own the spatial references system.

Appendix – SQL Statements

Administration: Spatial Data 279

ALTER SPATIAL REFERENCE SYSTEM Statement
Changes the settings of an existing spatial reference system.

Quick Links:

Go to Parameters on page 281

Go to Examples on page 285

Go to Usage on page 285

Go to Standards on page 285

Go to Permissions on page 286

Syntax
ALTER SPATIAL REFERENCE SYSTEM
 srs-name
 [srs-attribute [srs-attribute ...]]

srs-attribute - (back to Syntax)
 SRID srs-id
 | DEFINITION { definition-string | NULL }
 | ORGANIZATION { organization-name IDENTIFIED BY organization-srs-id
| NULL }
 | TRANSFORM DEFINITION { transform-definition-string | NULL }
 | LINEAR UNIT OF MEASURE linear-unit-name
 | ANGULAR UNIT OF MEASURE { angular-unit-name | NULL }
 | TYPE { ROUND EARTH | PLANAR }
 | COORDINATE coordinate-name { UNBOUNDED | BETWEEN low-number
AND high-number }
 | ELLIPSOID SEMI MAJOR AXIS semi-major-axis-length { SEMI MINOR AXIS
semi-minor-axis-length
 | INVERSE FLATTENING inverse-flattening-ratio }
 | TOLERANCE { tolerance-distance | DEFAULT }
 | SNAP TO GRID { grid-size | DEFAULT }
 | AXIS ORDER axis-order
 | POLYGON FORMAT polygon-format
 | STORAGE FORMAT storage-format

grid-size - (back to srs-attribute)
 DOUBLE : usually between 0 and 1

axis-order - (back to srs-attribute)
 { 'x/y/z/m' | 'long/lat/z/m' | 'lat/long/z/m' }

polygon-format - (back to srs-attribute)
 { 'CounterClockWise' | 'Clockwise' | 'EvenOdd' }

storage-format - (back to srs-attribute)
 { 'Internal' | 'Original' | 'Mixed' }

Appendix – SQL Statements

280 SAP Sybase IQ

Parameters

(back to top) on page 280

• IDENTIFIED BY – the SRID number for the spatial reference system.

• DEFINITION – set, or override, default coordinate system settings. If any attribute is set
in a clause other than the DEFINITION clause, it takes the value specified in the other
clause regardless of what is specified in the DEFINITION clause.

definition-string is a string in the Spatial Reference System Well Known Text syntax as
defined by SQL/MM and OGC. For example, the following query returns the definition for
WGS 84.
SELECT ST_SpatialRefSys::ST_FormatWKT(definition)
 FROM ST_SPATIAL_REFERENCE_SYSTEMS
 WHERE srs_id=4326;

In Interactive SQL, if you double-click the value returned, an easier to read version of the
value appears.

When the DEFINITION clause is specified, definition-string is parsed and used to choose
default values for attributes. For example, definition-string may contain an AUTHORITY
element that defines the organization-name and organization-srs-id.

Parameter values in definition-string are overridden by values explicitly set using the SQL
statement clauses. For example, if the ORGANIZATION clause is specified, it overrides
the value for ORGANIZATION in definition-string.

• ORGANIZATION – information about the organization that created the spatial reference
system that the spatial reference system is based on.

• TRANSFORM DEFINITION – a description of the transform to use for the spatial
reference system. Currently, only the PROJ.4 transform is supported. The transform
definition is used by the ST_Transform method when transforming data between spatial
reference systems. Some transforms may still be possible even if there is no transform-
definition-string defined.

• LINEAR UNIT OF MEASURE – the linear unit of measure for the spatial reference
system. The value you specify must match a linear unit of measure defined in the
ST_UNITS_OF_MEASURE system view.

If this clause is not specified, and is not defined in the DEFINITION clause, the default is
METRE. To add predefined units of measure to the database, use the sa_install_feature
system procedure.

To add custom units of measure to the database, use the CREATE SPATIAL UNIT OF
MEASURE statement.

Note: While both METRE and METER are accepted spellings, METRE is preferred as it
conforms to the SQL/MM standard.

Appendix – SQL Statements

Administration: Spatial Data 281

• ANGULAR UNIT OF MEASURE – the angular unit of measure for the spatial reference
system. The value you specify must match an angular unit of measure defined in the
ST_UNITS_OF_MEASURE system table.

If this clause is not specified, and is not defined in the DEFINITION clause, the default is
DEGREE for geographic spatial reference systems and NULL for non-geographic spatial
reference systems.

The angular unit of measure must be non-NULL for geographic spatial reference systems
and it must be NULL for non-geographic spatial reference systems.

The angular unit of measure must be non-NULL for geographic spatial reference systems
and it must be NULL for non-geographic spatial reference systems. To add predefined
units of measure to the database, use the sa_install_feature system procedure.

To add custom units of measure to the database, use the CREATE SPATIAL UNIT OF
MEASURE statement.

• TYPE – control how the SRS interprets lines between points. For geographic spatial
reference systems, the TYPE clause can specify either ROUND EARTH (the default) or
PLANAR. The ROUND EARTH model interprets lines between points as great elliptic
arcs. Given two points on the surface of the Earth, a plane is selected that intersects the two
points and the center of the Earth. This plane intersects the Earth, and the line between the
two points is the shortest distance along this intersection.

For two points that lie directly opposite each other, there is not a single unique plane that
intersects the two points and the center of the Earth. Line segments connecting these anti-
podal points are not valid and give an error in the ROUND EARTH model.

The ROUND EARTH model treats the Earth as a spheroid and selects lines that follow the
curvature of the Earth. In some cases, it may be necessary to use a planar model where a
line between two points is interpreted as a straight line in the equirectangular projection
where x=long, y=lat.

In the following example, the blue line shows the line interpretation used in the ROUND
EARTH model and the red line shows the corresponding PLANAR model.

Appendix – SQL Statements

282 SAP Sybase IQ

The PLANAR model may be used to match the interpretation used by other products. The
PLANAR model may also be useful because there are some limitations for methods that
are not supported in the ROUND EARTH model (such as ST_Area, ST_ConvexHull) and
some are partially supported (ST_Distance only supported between point geometries).
Geometries based on circularstrings are not supported in ROUND EARTH spatial
reference systems.

For non-geographic SRSs, the type must be PLANAR (and that is the default if the TYPE
clause is not specified and either the DEFINITION clause is not specified or it uses a non-
geographic definition).

• COORDINATE – the bounds on the spatial reference system's dimensions. coordinate-
name is the name of the coordinate system used by the spatial reference system. For non-
geographic coordinate systems, coordinate-name can be x, y, or m. For geographic
coordinate systems, coordinate-name can be LATITUDE, LONGITUDE, z, or m.

Specify UNBOUNDED to place no bounds on the dimensions. Use the BETWEEN clause
to set low and high bounds.

The X and Y coordinates must have associated bounds. For geographic spatial reference
systems, the longitude coordinate is bounded between -180 and 180 degrees and the
latitude coordinate is bounded between -90 and 90 degrees by default the unless
COORDINATE clause overrides these settings. For non-geographic spatial reference
systems, the CREATE statement must specify bounds for both X and Y coordinates.

LATITUDE and LONGITUDE are used for geographic coordinate systems. The bounds
for LATITUDE and LONGITUDE default to the entire Earth, if not specified.

• ELLIPSOID – the values to use for representing the Earth as an ellipsoid for spatial
reference systems of type ROUND EARTH. If the DEFINITION clause is present, it can
specify ellipsoid definition. If the ELLIPSOID clause is specified, it overrides this default
ellipsoid.

Appendix – SQL Statements

Administration: Spatial Data 283

The Earth is not a perfect sphere because the rotation of the Earth causes a flattening so that
the distance from the center of the Earth to the North or South pole is less than the distance
from the center to the equator. For this reason, the Earth is modeled as an ellipsoid with
different values for the semi-major axis (distance from center to equator) and semi-minor
axis (distance from center to the pole). It is most common to define an ellipsoid using the
semi-major axis and the inverse flattening, but it can instead be specified using the semi-
minor axis (for example, this approach must be used when a perfect sphere is used to
approximate the Earth). The semi-major and semi-minor axes are defined in the linear
units of the spatial reference system, and the inverse flattening (1/f) is a ratio:
1/f = (semi-major-axis) / (semi-major-axis - semi-minor-axis)

product-name uses the ellipsoid definition when computing distance in geographic spatial
reference systems.

• SNAP TO GRID – flat-Earth (planar) spatial reference systems, use the SNAP TO GRID
clause to define the size of the grid SAP Sybase IQ uses when performing calculations. By
default, SAP Sybase IQ selects a grid size so that 12 significant digits can be stored at all
points in the space bounds for X and Y. For example, if a spatial reference system bounds X
between -180 and 180 and Y between -90 and 90, then a grid size of 0.000000001 (1E-9) is
selected.

• TOLERANCE – flat-Earth (planar) spatial reference systems, use the TOLERANCE
clause to specify the precision to use when comparing points. If the distance between two
points is less than tolerance-distance, the two points are considered equal. Setting
tolerance-distance allows you to control the tolerance for imprecision in the input data or
limited internal precision. By default, tolerance-distance is set to be equal to grid-size.

When set to 0, two points must be exactly equal to be considered equal.

For round-Earth spatial reference systems, TOLERANCE must be set to 0.

• POLYGON FORMAT – internally, SAP Sybase IQ interprets polygons by looking at the
orientation of the constituent rings. As one travels a ring in the order of the defined points,
the inside of the polygon is on the left side of the ring. The same rules are applied in
PLANAR and ROUND EARTH spatial reference systems.

The interpretation used by SAP Sybase IQ is a common but not universal interpretation.
Some products use the exact opposite orientation, and some products do not rely on ring
orientation to interpret polygons. The POLYGON FORMAT clause can be used to select a
polygon interpretation that matches the input data, as needed. The following values are
supported:

• CounterClockwise – input follows SAP Sybase IQ's internal interpretation: the inside
of the polygon is on the left side while following ring orientation.

• Clockwise – input follows the opposite of SAP Sybase IQ's approach: the inside of the
polygon is on the right side while following ring orientation.

• EvenOdd – (default) The orientation of rings is ignored and the inside of the polygon
is instead determined by looking at the nesting of the rings, with the exterior ring being

Appendix – SQL Statements

284 SAP Sybase IQ

the largest ring and interior rings being smaller rings inside this ring. A ray is traced
from a point within the rings and radiating outward crossing all rings. If the number the
ring being crossed is an even number, it is an outer ring. If it is odd, it is an inner ring.

• STORAGE FORMAT – control what is stored when spatial data is loaded into the
database. Possible values are:

• Internal – SAP Sybase IQ stores only the normalized representation. Specify this
when the original input characteristics do not need to be reproduced. This is the default
for planar spatial reference systems (TYPE PLANAR).

• Original – SAP Sybase IQ stores only the original representation. The original input
characteristics can be reproduced, but all operations on the stored values must repeat
normalization steps, possibly slowing down operations on the data.

• Mixed – SAP Sybase IQ stores the internal version and, if it is different from the
original version, SAP Sybase SQL Anywhere® stores the original version as well. By
storing both versions, the original representation characteristics can be reproduced and
operations on stored values do not need to repeat normalization steps. However,
storage requirements may increase significantly because potentially two
representations are being stored for each geometry. Mixed is the default format for
round-Earth spatial reference systems (TYPE ROUND EARTH).

Examples

(back to top) on page 280

• Example – changes the polygon format of a fictitious spatial reference system named
mySpatialRef to EvenOdd:

ALTER SPATIAL REFERENCE SYSTEM mySpatialRef
POLYGON FORMAT 'EvenOdd';

Usage

(back to top) on page 280

You cannot alter a spatial reference system if there is existing data that references it. For
example, if you have a column declared as ST_Point(SRID=8743), you cannot alter the spatial
reference system with SRID 8743. This is because many spatial reference system attributes,
such as storage format, impact the storage format of the data. If you have data that references
the SRID, create a new spatial reference system and transform the data to the new SRID.

Standards

(back to top) on page 280

ANSI SQL – Compliance level: Transact-SQL extension.

Appendix – SQL Statements

Administration: Spatial Data 285

Permissions

(back to top) on page 280

Requires one of:

• You are the owner of the spatial reference system.
• ALTER privilege on the spatial reference system.
• MANAGE ANY SPATIAL OBJECT system privilege.
• ALTER ANY OBJECT system privilege.

ALTER TABLE Statement
Modifies a table definition.

Quick Links:

Go to Parameters on page 289

Go to Examples on page 296

Go to Usage on page 298

Go to Standards on page 299

Go to Permissions on page 299

Syntax

Syntax 1 - Alter Owner
ALTER TABLE table_name ALTER OWNER TO new_owner
 [{ PRESERVE | DROP } PERMISSIONS]
 [{ PRESERVE | DROP } FOREIGN KEYS]

Syntax 2
ALTER TABLE [owner.]table-name
 |{ ENABLE | DISABLE } RLV STORE
 { alter-clause, ... }

alter-clause - (back to Syntax 2)
 ADD create-clause
 | ALTER column-name column-alteration
 | ALTER [CONSTRAINT constraint-name] CHECK (condition)
 | DROP drop-object
 | RENAME rename-object
 | move-clause
 | SPLIT PARTITION range-partition-name
 INTO (range-partition-decl, range-partition-decl)
 | MERGE PARTITION partition-name-1 INTO partition-name-2
 | UNPARTITION
 | PARTITION BY
 range-partitioning-scheme
 | hash-partitioning-scheme

Appendix – SQL Statements

286 SAP Sybase IQ

 | composite-partitioning-schemecomposite-partitioning-scheme

create-clause - (back to alter-clause)
 column-name column-definition [column-constraint]
 | table-constraint
 | [PARTITION BY] range-partitioning-scheme

column definition - (back to create-clause)
 column-name data-type [NOT NULL | NULL]
 [IN dbspace-name]
 [DEFAULT default-value | IDENTITY]

column-constraint - (back to create-clause)
 [CONSTRAINT constraint-name]
 { UNIQUE
 | PRIMARY KEY
 | REFERENCES table-name [(column-name)] [actions]
 | CHECK (condition)
 | IQ UNIQUE (integer)
 }

table-constraint - (back to create-clause)
 [CONSTRAINT constraint-name]
 { UNIQUE (column-name [, …])
 | PRIMARY KEY (column-name [, …])
 | foreign-key-constraint
 | CHECK (condition)
 }

foreign-key-constraint - (back to table-constraint)
 FOREIGN KEY [role-name] [(column-name [, …])]
 ... REFERENCES table-name [(column-name [, …])]
 ... [actions]

actions - (back to foreign-key-constraint)
 [ON { UPDATE | DELETE } { RESTRICT }]

column-alteration - (back to alter-clause)
 { column-data-type | alterable-column-attribute } [alterable-column-attribute …]

 | ADD [constraint-name] CHECK (condition)
 | DROP { DEFAULT | CHECK | CONSTRAINT constraint-name }

alterable-column-attribute - (back to column-alteration)
 [NOT] NULL
 | DEFAULT default-value
 | [CONSTRAINT constraint-name] CHECK { NULL |(condition)
 }

default-value - (back to alterable-column-attribute)
 CURRENT { DATABASE |DATE |REMOTE USER |TIME |TIMESTAMP | USER |
PUBLISHER)
 | string
 | global variable
 | [-] number
 | (constant-expression)

Appendix – SQL Statements

Administration: Spatial Data 287

 | built-in-function (constant-expression)
 | AUTOINCREMENT
 | NULL
 | TIMESTAMP
 | LAST USER
 | USER

drop-object - (back to alter-clause)
 { column-name
 | CHECK constraint-name
 | CONSTRAINT
 | UNIQUE (index-columns-list)
 | PRIMARY KEY
 | FOREIGN KEY fkey-name
 | [PARTITION] range-partition-name
 }

rename-object - (back to alter-clause)
 new-table-name
 | column-name TO new-column-name
 | CONSTRAINT constraint-name TO new-constraint-name
 | [PARTITION] range-partition-name TO new-range-partition-name

move-clause - (back to alter-clause)
 { ALTER column-name
 MOVE
 { PARTITION (range-partition-name TO new-dbspace-name)
 | TO new-dbspace-name }
 }
 | MOVE PARTITION range-partition-name TO new-dbspace-name
 | MOVE TO new-dbspace-name
 | MOVE TABLE METADATA TO new-dbspace-name
 }

range-partitioning-scheme - (back to alter-clause)
 RANGE(partition-key)
 (range-partition-decl [,range-partition-decl ...])

partition-key - (back to range-partitioning-scheme)
 column-name

range-partition-decl - (back to alter-clause) or (back to range-
partitioning-scheme)
 range-partition-name VALUES <= ({constant | MAX }) [IN dbspace-
name]

hash-partitioning-scheme - (back to alter-clause) or (back to composite-
partitioning-scheme)
 HASH (partition-key, …])

composite-partitioning-scheme - (back to alter-clause)
 hash-partitioning-scheme SUBPARTITION range-partitioning-scheme

Appendix – SQL Statements

288 SAP Sybase IQ

Parameters

(back to top) on page 286

• { ENABLE | DISABLE } RLV STORE – registers this table with the RLV store for real-
time in-memory updates. Not supported for IQ temporary tables or in multiplex
environments. This value overrides the value of the database option
BASE_TABLES_IN_RLV.

• ADD column-definition [column-constraint] – add a new column to the table.

The table must be empty to specify NOT NULL. The table might contain data when you
add an IDENTITY or DEFAULT AUTOINCREMENT column. If the column has a default
IDENTITY value, all rows of the new column are populated with sequential values. You
can also add FOREIGN constraint as a column constraint for a single column key. The
value of the IDENTITY/DEFAULT AUTOINCREMENT column uniquely identifies every
row in a table.

The IDENTITY/DEFAULT AUTOINCREMENT column stores sequential numbers that
are automatically generated during inserts and updates. DEFAULT AUTOINCREMENT
columns are also known as IDENTITY columns. When using IDENTITY/DEFAULT
AUTOINCREMENT, the column must be one of the integer data types, or an exact numeric
type, with scale 0. See CREATE TABLE Statement for more about column constraints and
IDENTITY/DEFAULT AUTOINCREMENT columns.

IQ UNIQUE constraint – Defines the expected cardinality of a column and determines
whether the column loads as Flat FP or NBit FP. An IQ UNIQUE(n) value explicitly set to
0 loads the column as Flat FP. Columns without an IQ UNIQUE constraint implicitly load
as NBit up to the limits defined by the FP_NBIT_AUTOSIZE_LIMIT,
FP_NBIT_LOOKUP_MB, and FP_NBIT_ROLLOVER_MAX_MB options.

Using IQ UNIQUE with an n value less than the FP_NBIT_AUTOSIZE_LIMIT is not
necessary. Auto-size functionality automatically sizes all low or medium cardinality
columns as NBit. Use IQ UNIQUE in cases where you want to load the column as Flat FP
or when you want to load a column as NBit when the number of distinct values exceeds the
FP_NBIT_AUTOSIZE_LIMIT.

Note:

• Consider memory usage when specifying high IQ UNIQUE values. If machine
resources are limited, avoid loads with FP_NBIT_ENFORCE_LIMITS='OFF'
(default).
Prior to SAP Sybase IQ 16.0, an IQ UNIQUE n value > 16777216 would rollover to
Flat FP. In 16.0, larger IQ UNIQUE values are supported for tokenization, but may
require significant memory resource requirements depending on cardinality and
column width.

• BIT, BLOB,and CLOB data types do not support NBit dictionary compression. If
FP_NBIT_IQ15_COMPATIBILITY=’OFF’, a non-zero IQ UNIQUE column

Appendix – SQL Statements

Administration: Spatial Data 289

specification in a CREATE TABLE or ALTER TABLE statement that includes these
data types returns an error.

• ALTER column-name column-alteration – change the column definition:

• SET DEFAULT default-value – Change the default value of an existing column in a
table. You can also use the MODIFY clause for this task, but ALTER is ISO/ANSI
SQL compliant, and MODIFY is not. Modifying a default value does not change any
existing values in the table.

• DROP DEFAULT – Remove the default value of an existing column in a table. You can
also use the MODIFY clause for this task, but ALTER is ISO/ANSI SQL compliant,
and MODIFY is not. Dropping a default does not change any existing values in the
table.

• ADD – Add a named constraint or a CHECK condition to the column. The new
constraint or condition applies only to operations on the table after its definition. The
existing values in the table are not validated to confirm that they satisfy the new
constraint or condition.

• CONSTRAINT column-constraint-name – The optional column constraint name lets
you modify or drop individual constraints at a later time, rather than having to modify
the entire column constraint.

• [CONSTRAINT constraint-name] CHECK (condition) – Use this clause to add a
CHECK constraint on the column.

• SET COMPUTE (expression) – Change the expression associated with a computed
column. The values in the column are recalculated when the statement is executed, and
the statement fails if the new expression is invalid.

• DROP COMPUTE – Change a column from being a computed column to being a non-
computed column. This statement does not change any existing values in the table.

• ADD table-constraint – add a constraint to the table.

You can also add a foreign key constraint as a table constraint for a single-column or
multicolumn key. If PRIMARY KEY is specified, the table must not already have a
primary key created by the CREATE TABLE statement or another ALTER TABLE
statement. See CREATE TABLE Statement for a full explanation of table constraints.

Note: You cannot MODIFY a table or column constraint. To change a constraint,
DELETE the old constraint and ADD the new constraint.

• DROP drop-object – drops a table object:

• DROP column-name – Drop the column from the table. If the column is contained in
any multicolumn index, uniqueness constraint, foreign key, or primary key, then the
index, constraint, or key must be deleted before the column can be deleted. This does
not delete CHECK constraints that refer to the column. An IDENTITY/DEFAULT

Appendix – SQL Statements

290 SAP Sybase IQ

AUTOINCREMENT column can only be deleted if IDENTITY_INSERT is turned off
and the table is not a local temporary table.

• DROP CHECK – Drop all check constraints for the table. This includes both table check
constraints and column check constraints.

• DROP CONSTRAINT constraint-name – Drop the named constraint for the table or
specified column.

• DROP UNIQUE (column-name, ...) – Drop the unique constraints on the specified
column(s). Any foreign keys referencing the unique constraint (rather than the primary
key) are also deleted. Reports an error if there are associated foreign-key constraints.
Use ALTER TABLE to delete all foreign keys that reference the primary key before
you delete the primary key constraint.

• DROP PRIMARY KEY – Drop the primary key. All foreign keys referencing the primary
key for this table are also deleted. Reports an error if there are associated foreign key
constraints. If the primary key is unenforced, DELETE returns an error if associated
unenforced foreign key constraints exist.

• DROP FOREIGN KEY role-name – Drop the foreign key constraint for this table with
the given role name. Retains the implicitly created non-unique HG index for the
foreign key constraint. Users can explicitly remove the HG index with the DROP
INDEX statement.

• DROP [PARTITION] – Drop the specified partition. The rows in partition P1 are
deleted and the partition definition is dropped. You cannot drop the last partition
because dropping the last partition would transform a partitioned table to a non-
partitioned table. (To merge a partitioned table, use an UNPARTITION clause
instead.) For example:
 CREATE TABLE foo (c1 INT, c2 INT)
 PARTITION BY RANGE (c1)
 (P1 VALUES <= (100) IN dbsp1,
 P2 VALUES <= (200) IN dbsp2,
 P3 VALUES <= (MAX) IN dbsp3
) IN dbsp4);
 LOAD TABLE ….
 ALTER TABLE DROP PARTITION P1;

• RENAME rename-object – renames an object in the table:

• RENAME new-table-name – Change the name of the table to the new-table-name. Any
applications using the old table name must be modified. Also, any foreign keys that
were automatically assigned the same name as the old table name do not change
names.

• RENAME column-name TO new-column-name – Change the name of the column to
new-column-name. Any applications using the old column name must be modified.

• RENAME [PARTITION] – Rename an existing partition.
• RENAME constraint-name TO new-constraint-name – Change the name of the

constraint to new-constraint-name. Any applications using the old constraint name
must be modified.

Appendix – SQL Statements

Administration: Spatial Data 291

• MOVE clause – moves a table object. A table object can only reside in one dbspace. Any
type of ALTER MOVE blocks any modification to the table for the entire duration of the
move.

Note: You cannot move objects to a cache dbspace.

• MOVE TO – Move all table objects including columns, indexes, unique constraints,
primary key, foreign keys, and metadata resided in the same dbspace as the table is
mapped to the new dbspace. The ALTER Column MOVE TO clause cannot be
requested on a partitioned table.
A BIT data type column cannot be explicitly placed in a dbspace. The following is not
supported for BIT data types:
ALTER TABLE t2 alter c1_bit MOVE TO iq_main;

• MOVE TABLE METADATA – Move the metadata of the table to a new dbspace. For a
partitioned table, MOVE TABLE METADATA also moves metadata that is shared
among partitions.

• MOVE PARTITION – Move the specified partition to the new dbspace.

• PARTITION BY – divides large tables into smaller, more manageable storage objects.
Partitions share the same logical attributes of the parent table, but can be placed in separate
dbspaces and managed individually. SAP Sybase IQ supports several table partitioning
schemes:

• hash-partitions
• range-partitions
• composite-partitions

A partition-key is the column or columns that contain the table partitioning keys. Partition
keys can contain NULL and DEFAULT values, but cannot contain:

• LOB (BLOB or CLOB) columns
• BINARY, or VARBINARY columns
• CHAR or VARCHAR columns whose length is over 255 bytes
• BIT columns
• FLOAT/DOUBLE/REAL columns

• PARTITION BY RANGE – partitions rows by a range of values in the partitioning
column. Range partitioning is restricted to a single partition key column and a maximum
of 1024 partitions. In a range-partitioning-scheme, the partition-key is the column that
contains the table partitioning keys:

range-partition-decl:
 partition-name VALUES <= ({constant-expr | MAX } [,
{ constant-expr | MAX }]...)
 [IN dbspace-name]

Appendix – SQL Statements

292 SAP Sybase IQ

The partition-name is the name of a new partition on which table rows are stored. Partition
names must be unique within the set of partitions on a table. The partition-name is
required.

• VALUE – specifies the inclusive upper bound for each partition (in ascending order).
The user must specify the partitioning criteria for each range partition to guarantee that
each row is distributed to only one partition. NULLs are allowed for the partition
column and rows with NULL as partition key value belong to the first table partition.
However, NULL cannot be the bound value.

There is no lower bound (MIN value) for the first partition. Rows of NULL cells in the
first column of the partition key will go to the first partition. For the last partition, you
can either specify an inclusive upper bound or MAX. If the upper bound value for the
last partition is not MAX, loading or inserting any row with partition key value larger
than the upper bound value of the last partition generates an error.

• Max – denotes the infinite upper bound and can only be specified for the last partition.
• IN – specifies the dbspace in the partition-decl on which rows of the partition should

reside.

These restrictions affect partitions keys and bound values for range partitioned tables:

• You can only range partition a non-partitioned table if all existing rows belong to the
first partition.

• Partition bounds must be constants, not constant expressions.
• Partition bounds must be in ascending order according to the order in which the

partitions were created. That is, the upper bound for the second partition must be higher
than for the first partition, and so on.
In addition, partition bound values must be compatible with the corresponding
partition-key column data type. For example, VARCHAR is compatible with CHAR.

• If a bound value has a different data type than that of its corresponding partition key
column, SAP Sybase IQ converts the bound value to the data type of the partition key
column, with these exceptions:

• Explicit conversions are not allowed. This example attempts an explicit conversion
from INT to VARCHAR and generates an error:
CREATE TABLE Employees(emp_name VARCHAR(20))
PARTITION BY RANGE(emp_name)
(p1 VALUES <=(CAST (1 AS VARCHAR(20))),
p2 VALUES <= (CAST (10 AS VARCHAR(20)))

• Implicit conversions that result in data loss are not allowed. In this example, the
partition bounds are not compatible with the partition key type. Rounding assumptions
may lead to data loss and an error is generated:
CREATE TABLE emp_id (id INT) PARTITION BY RANGE(id) (p1 VALUES
<= (10.5), p2 VALUES <= (100.5))

• In this example, the partition bounds and the partition key data type are compatible.
The bound values are directly converted to float values. No rounding is required, and
conversion is supported:

Appendix – SQL Statements

Administration: Spatial Data 293

CREATE TABLE id_emp (id FLOAT)
PARTITION BY RANGE(id) (p1 VALUES <= (10),
p2 VALUES <= (100))

• Conversions from non-binary data types to binary data types are not allowed. For
example, this conversion is not allowed and returns an error:
CREATE TABLE newemp (name BINARY)
PARTITION BY RANGE(name)
(p1 VALUES <= ("Maarten"),
p2 VALUES <= ("Zymmerman")

• NULL cannot be used as a boundary in a range-partitioned table.
• The row will be in the first partition if the cell value of the 1st column of the partition

key evaluated to be NULL. SAP Sybase IQ supports only single column partition keys,
so any NULL in the partition key distributes the row to the first partition.

• PARTITION BY HASH – maps data to partitions based on partition-key values
processed by an internal hashing function. Hash partition keys are restricted to a maximum
of eight columns with a combined declared column width of 5300 bytes or less. For hash
partitions, the table creator determines only the partition key columns; the number and
location of the partitions are determined internally.

In a hash-partitioning declaration, the partition-key is a column or group of columns,
whose composite value determines the partition where each row of data is stored:
hash-partitioning-scheme:
 HASH (partition-key [, partition-key, …])

• Restrictions –

• You can only hash partition a base table. Attempting to partitioning a global
temporary table or a local temporary table raises an error.

• You can only hash partition a non-partitioned table that is empty.
• You cannot add, drop, merge, or split a hash partition.
• You cannot add or drop a column from a hash partition key.

• PARTITION BY HASH RANGE – subpartitions a hash-partitioned table by range. In a
hash-range-partitioning-scheme declaration, a SUBPARTITION BY RANGE clause adds
a new range subpartition to an existing hash-range partitioned table:
hash-range-partitioning-scheme:
PARTITION BY HASH (partition-key [, partition-key, …])
 [SUBPARTITION BY RANGE (range-partition-decl [, range-
partition-decl ...])]

The hash partition specifies how the data is logically distributed and colocated; the range
subpartition specifies how the data is physically placed. The new range subpartition is
logically partitioned by hash with the same hash partition keys as the existing hash-range
partitioned table. The range subpartition key is restricted to one column.

• Restrictions –

Appendix – SQL Statements

294 SAP Sybase IQ

• You can only hash partition a base table. Attempting to partitioning a global
temporary table or a local temporary table raises an error.

• You can only subpartition a hash-partitioned table by range if the the table is empty.
• You cannot add, drop, merge, or split a hash partition.
• You cannot add or drop a column from a hash partition key.

Note: Range-partitions and composite partitioning schemes, like hash-range
partitions, require the separately licensed VLDB Management option.

• MERGE PARTITION – merge partition-name-1 into partition-name-2. Two partitions can
be merged if they are adjacent partitions and the data resides on the same dbspace. You can
only merge a partition with a lower partition value into the adjacent partition with a higher
partition value. Note that the server does not check CREATE privilege on the dbspace into
which the partition is merged. For an example of how to create adjacent partitions, see
CREATE TABLE Statement examples.

• RENAME PARTITION – rename an existing PARTITION.

• UNPARTITION – remove partitions from a partitioned table. Each column is placed in a
single dbspace. Note that the server does not check CREATE privilege on the dbspace to
which data of all partitions is moved. ALTER TABLE UNPARTITION blocks all database
activities.

• ALTER OWNER – change the owner of a table. The ALTER OWNER clause may not be used
in conjunction with any other [alter-clause] clauses of the ALTER TABLE statement.

• [PRESERVE | DROP] PERMISSIONS – If you do not want the new owner to have the
same privileges as the old owner, use the DROP privileges clause (default) to drop all
explicitly-granted privileges that allow a user access to the table. Implicitly-granted
privileges given to the owner of the table are given to the new owner and dropped from
the old owner.

• [PRESERVE | DROP] FOREIGN KEYS – If you want to prevent the new owner from
accessing data in referenced tables, use the DROP FOREIGN KEYS clause (default) to
drop all foreign keys within the table, as well as all foreign keys referring to the table.
Use of the PRESERVE FOREIGN KEYS clause with the DROP PERMISSIONS
clause fails unless all referencing tables are owned by the new owner.

The ALTER TABLE ALTER OWNER statement fails if:

• Another table with the same name as the original table exists and is owned by the new
user.

• The PRESERVE FOREIGN KEYS and PRESERVE PERMISSIONS clauses are both
specified and there is a foreign key owned by a user other than the new table owner
referencing the table that relies on implicitly-granted privileges (such as those given to
the owner of a table). To avoid this failure, explicitly grant SELECT privileges to the
referring table's original owner, or drop the foreign keys.

Appendix – SQL Statements

Administration: Spatial Data 295

• The PRESERVE FOREIGN KEYS clause is specified, but the PRESERVE
PERMISSIONS clause is NOT, and there is a foreign key owned by a user other than
the new table owner referencing the table. To avoid this failure, drop the foreign keys.

• The PRESERVE FOREIGN KEYS clause is specified and the table contains a foreign
key that relies on implicitly-granted privileges (such as those given to the owner of a
table). To avoid this failure, explicitly GRANT SELECT privileges to the new owner
on the referenced table, or drop the foreign keys.

• The table contains a column with a default value that refers to a sequence, and the
USAGE privilege of the sequence generator relies on implicitly-granted privileges
(such as those given to the owner of a sequence). To avoid this failure, explicitly grant
USAGE privilege on the sequence generator to the new owner of the table.

• Enabled materialized views that depend on the original table exist.

Examples

(back to top) on page 286

• Example 1 – adds a new column to the Employees table showing which office they work
in:

ALTER TABLE Employees
ADD office CHAR(20)

• Example 2 – drops the office column from the Employees table:

ALTER TABLE Employees
DROP office

• Example 3 – Adds a column to the Customers table assigning each customer a sales
contact:

ALTER TABLE Customers
ADD SalesContact INTEGER
REFERENCES Employees (EmployeeID)

• Example 4 – adds a new column CustomerNum to the Customers table and assigns a
default value of 88:

ALTER TABLE Customers
ADD CustomerNum INTEGER DEFAULT 88

• Example 5 – moves FP indexes for c2, c4, and c5, from dbspace Dsp3 to Dsp6. FP
index for c1 remains in Dsp1. FP index for c3 remains in Dsp2. The primary key for c5
remains in Dsp4. DATE index c4_date remains in Dsp5.

CREATE TABLE foo (
 c1 INT IN Dsp1,
 c2 VARCHAR(20),
 c3 CLOB IN Dsp2,
 c4 DATE,
 c5 BIGINT,
 PRIMARY KEY (c5) IN Dsp4) IN Dsp3);

Appendix – SQL Statements

296 SAP Sybase IQ

 CREATE DATE INDEX c4_date ON foo(c4) IN Dsp5;
 ALTER TABLE foo
 MOVE TO Dsp6;

• Example 6 – moves only FP index c1 from dbspace Dsp1 to Dsp7:

ALTER TABLE foo ALTER c1 MOVE TO Dsp7
• Example 7 – uses many ALTER TABLE clauses to move, split, rename, and merge

partitions.

Create a partitioned table:

CREATE TABLE bar (
 c1 INT,
 c2 DATE,
 c3 VARCHAR(10))
 PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2005-12-31') IN dbsp1,
 p2 VALUES <= ('2006-12-31') IN dbsp2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);
INSERT INTO bar VALUES(3, '2007-01-01', 'banana nut');
INSERT INTO BAR VALUES(4, '2007-09-09', 'grape jam');
INSERT INTO BAR VALUES(5, '2008-05-05', 'apple cake');

Move partition p2 to dbsp5:

ALTER TABLE bar MOVE PARTITION p2 TO DBSP5;

Split partition p4 into 2 partitions:

ALTER TABLE bar SPLIT PARTITION p4 INTO
 (P41 VALUES <= ('2008-06-30') IN dbsp4,
 P42 VALUES <= ('2008-12-31') IN dbsp4);

This SPLIT PARTITION reports an error, as it requires data movement. Not all existing rows
are in the same partition after split.

ALTER TABLE bar SPLIT PARTITION p3 INTO
 (P31 VALUES <= ('2007-06-30') IN dbsp3,
 P32 VALUES <= ('2007-12-31') IN dbsp3);

This error is reported:

No data move is allowed, cannot split partition p3.

This SPLIT PARTITION reports an error, because it changes the partition boundary value:

ALTER TABLE bar SPLIT PARTITION p2 INTO
 (p21 VALUES <= ('2006-06-30') IN dbsp2,
 P22 VALUES <= ('2006-12-01') IN dbsp2);

This error is reported:

Boundary value for the partition p2 cannot be changed.

Merge partition p3 into p2. An error is reported as a merge from a higher boundary value
partition into a lower boundary value partition is not allowed.

Appendix – SQL Statements

Administration: Spatial Data 297

ALTER TABLE bar MERGE PARTITION p3 into p2;

This error is reported:

Partition 'p2' is not adjacent to or before partition 'p3'.

Merge partition p2 into p3:

ALTER TABLE bar MERGE PARTITION p2 INTO P3;

Rename partition p1 to p1_new:

ALTER TABLE bar RENAME PARTITION p1 TO p1_new;

Unpartition table bar:

ALTER TABLE bar UNPARTITION;

Partition table bar. This command reports an error, because all rows must be in the first
partition.

ALTER TABLE bar PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2005-12-31') IN dbsp1,
 P2 VALUES <= ('2006-12-31') IN DBSP2,
 P3 VALUES <= ('2007-12-31') IN dbsp3,
 P4 VALUES <= ('2008-12-31') IN dbsp4);

This error is reported:

All rows must be in the first partition.

Partition table bar:

ALTER TABLE bar PARTITION BY RANGE(c2)
 (p1 VALUES <= ('2008-12-31') IN dbsp1,
 P2 VALUES <= ('2009-12-31') IN dbsp2,
 P3 VALUES <= ('2010-12-31') IN dbsp3,
 P4 VALUES <= ('2011-12-31') IN dbsp4);

• Example 8 – changes a table tab1 so that it is no longer registered for in-memory real-
time updates in the RLV store.

ALTER TABLE tab1 DISABLE RLV STORE

Usage

(back to top) on page 286

The ALTER TABLE statement changes table attributes (column definitions and constraints)
in a table that was previously created. The syntax allows a list of alter clauses; however, only
one table constraint or column constraint can be added, modified, or deleted in each ALTER
TABLE statement. ALTER TABLE is prevented whenever the statement affects a table that is
currently being used by another connection. ALTER TABLE can be time consuming, and the
server does not process requests referencing the same table while the statement is being
processed.

Appendix – SQL Statements

298 SAP Sybase IQ

Note: You cannot alter local temporary tables, but you can alter global temporary tables when
they are in use by only one connection.

SAP Sybase IQ enforces REFERENCES and CHECK constraints. Table and/or column check
constraints added in an ALTER TABLE statement are evaluated, only if they are defined on
one of the new columns added, as part of that alter table operation. For details about CHECK
constraints, see CREATE TABLE Statement.

If SELECT * is used in a view definition and you alter a table referenced by the SELECT * ,
then you must run ALTER VIEW <viewname> RECOMPILE to ensure that the view definition
is correct and to prevent unexpected results when querying the view.

Side effects:

• Automatic commit. The ALTER and DROP options close all cursors for the current
connection. The Interactive SQL data window is also cleared.

• A checkpoint is carried out at the beginning of the ALTER TABLE operation.
• Once you alter a column or table, any stored procedures, views or other items that refer to

the altered column no longer work.

Standards

(back to top) on page 286

• SQL–Vendor extension to ISO/ANSI SQL grammar.
• SAP Sybase Database product–Some clauses are supported by SAP Adaptive Server®

Enterprise.

Permissions

(back to top) on page 286

Syntax 1

Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table
• You own the table

Syntax 2

The system privileges required for syntax 1 varies depending upon the clause used.

Appendix – SQL Statements

Administration: Spatial Data 299

Clause Privilege Required

Add Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the underlying table
• You own the underlying table

UNIQUE, PRIMARY KEY, FOREIGN KEY, or IQ UNIQUE column constraint –
Requires above along with REFERENCES privilege on the underlying table.

FOREIGN KEY table constraint requires above along with one of:

• CREATE ANY INDEX system privilege
• CREATE ANY OBJECT system privilege
• REFERENCES privilege on the base table

PARTITION BY RANGE requires above along with one of:

• CREATE ANY OBJECT system privilege
• CREATE privilege on the dbspaces where the partitions are being created

Alter Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table
• You own the table.

To alter a primary key or unique constraint, also requires REFERENCES privilege
on the table.

Drop Drop a column with no constraints – Requires one of:

• ALTER ANY OBJECT system privilege
• ALTER ANY TABLE system privilege
• ALTER privilege on the underlying table
• You own the underlying table

Drop a column or table with a constraint requires above along with REFERENCES
privilege if using ALTER privilege.

Drop a partition on table owned by self – None required.

Drop a partition on table owned by other users – Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table

Appendix – SQL Statements

300 SAP Sybase IQ

Clause Privilege Required

RENAME Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table
• You own the table

Move Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• system privilege
• ALTER privilege on the underlying table
• You own the underlying table

Also requires one of the following:

• CREATE ANY OBJECT system privilege
• CREATE privilege on the dbspace to which the partition is being moved

Split Partition Partition on table owned by self – None required.

Partition on table owned by other users – Requires one of:

• SELECT ANY TABLE system privilege
• SELECT privilege on table

Also requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table

Merge Parti-
tion, Unparti-
tion

Table owned by self – None required.

Table owned by other users – Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table

Appendix – SQL Statements

Administration: Spatial Data 301

Clause Privilege Required

Partition By Requires one of:

• CREATE ANY OBJECT system privilege
• CREATE privilege on the dbspaces where the partitions are being created

Also requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege
• ALTER privilege on the table
• You own the table

or disable RLV
store

Requires one of:

• ALTER ANY TABLE system privilege
• ALTER ANY OBJECT system privilege

Appendix – SQL Statements

302 SAP Sybase IQ

Index
A

ALTER TABLE statement
syntax 286

ALTER VIEW statement
RECOMPILE 286

C

columns
altering 286

D

dropping partitions 286

P

partitions
dropping 286

R

REFERENCES clause 286

S

SELECT * 286
Spatial API ST_CircularString type 53
Spatial API ST_CompoundCurve type 63
Spatial API ST_Curve type 71
Spatial API ST_CurvePolygon type 81
Spatial API ST_GeomCollection type 92
Spatial API ST_Geometry type 101
Spatial API ST_LineString type 173
Spatial API ST_MultiCurve type 183
Spatial API ST_MultiLineString type 192
Spatial API ST_MultiPoint type 201
Spatial API ST_MultiPolygon type 209
Spatial API ST_MultiSurface type 219
Spatial API ST_Point type 231
Spatial API ST_Polygon type 242
Spatial API ST_SpatialRefSys type 253
Spatial API ST_Surface type 260

spatial reference system
alter 25
create 25
drop 25

spatial unit of measure
create 26
drop 26

ST_Affine(DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE)
methodST_Geometry type [Spatial API]
106

ST_Area(VARCHAR(128))
methodST_MultiSurface type [Spatial
API] 228

ST_Area(VARCHAR(128)) methodST_Surface
type [Spatial API] 264

ST_AsBinary(VARCHAR(128))
methodST_Geometry type [Spatial API]
107

ST_AsBitmap(INT, INT, ST_Point , ST_Point ,
VARCHAR(128)) methodST_Geometry
type [Spatial API] 108

ST_AsGeoJSON(VARCHAR(128))
methodST_Geometry type [Spatial API]
109

ST_AsGML(VARCHAR(128))
methodST_Geometry type [Spatial API]
109

ST_AsKML(VARCHAR(128))
methodST_Geometry type [Spatial API]
110

ST_AsSVG(VARCHAR(128))
methodST_Geometry type [Spatial API]
112

ST_AsSVGAggr(ST_Geometry ,
VARCHAR(128)) methodST_Geometry
type [Spatial API] 113

ST_AsText(VARCHAR(128))
methodST_Geometry type [Spatial API]
114

ST_AsWKB(VARCHAR(128))
methodST_Geometry type [Spatial API]
115

Index

Administration: Spatial Data 303

ST_AsWKT(VARCHAR(128))
methodST_Geometry type [Spatial API]
116

ST_AsXML(VARCHAR(128))
methodST_Geometry type [Spatial API]
117

ST_Boundary() methodST_Geometry type [Spatial
API] 118

ST_Buffer(DOUBLE, VARCHAR(128))
methodST_Geometry type [Spatial API]
118

ST_Centroid() methodST_MultiSurface type
[Spatial API] 228

ST_Centroid() methodST_Surface type [Spatial
API] 265

ST_CircularString type [Spatial API] description
53

ST_CircularString type [Spatial API]
ST_CircularString(ST_Point , ST_Point ,
ST_Point , ST_Point) constructor 58

ST_CircularString type [Spatial API]
ST_CircularString() constructor 59

ST_CircularString type [Spatial API]
ST_CircularString(LONG BINARY[,
INT]) constructor 60

ST_CircularString type [Spatial API]
ST_CircularString(LONG VARCHAR[,
INT]) constructor 60

ST_CircularString type [Spatial API]
ST_NumPoints() method 61

ST_CircularString type [Spatial API]
ST_PointN(INT) method 62

ST_CircularString(ST_Point , ST_Point ,
ST_Point , ST_Point)
constructorST_CircularString type
[Spatial API] 58

ST_CircularString() constructorST_CircularString
type [Spatial API] 59

ST_CircularString(LONG BINARY[, INT])
constructorST_CircularString type
[Spatial API] 60

ST_CircularString(LONG VARCHAR[, INT])
constructorST_CircularString type
[Spatial API] 60

ST_CompareWKT(LONG VARCHAR, LONG
VARCHAR) methodST_SpatialRefSys
type [Spatial API] 253

ST_CompoundCurve type [Spatial API] description
63

ST_CompoundCurve type [Spatial API]
ST_CompoundCurve(ST_Curve ,
ST_Curve) constructor 68

ST_CompoundCurve type [Spatial API]
ST_CompoundCurve() constructor 68

ST_CompoundCurve type [Spatial API]
ST_CompoundCurve(LONG BINARY[,
INT]) constructor 69

ST_CompoundCurve type [Spatial API]
ST_CompoundCurve(LONG
VARCHAR[, INT]) constructor 70

ST_CompoundCurve type [Spatial API]
ST_CurveN(INT) method 70

ST_CompoundCurve type [Spatial API]
ST_NumCurves() method 71

ST_CompoundCurve(ST_Curve , ST_Curve)
constructorST_CompoundCurve type
[Spatial API] 68

ST_CompoundCurve()
constructorST_CompoundCurve type
[Spatial API] 68

ST_CompoundCurve(LONG BINARY[, INT])
constructorST_CompoundCurve type
[Spatial API] 69

ST_CompoundCurve(LONG VARCHAR[, INT])
constructorST_CompoundCurve type
[Spatial API] 70

ST_Contains(ST_Geometry)
methodST_Geometry type [Spatial API]
119

ST_ContainsFilter(ST_Geometry)
methodST_Geometry type [Spatial API]
120

ST_ConvexHull() methodST_Geometry type
[Spatial API] 120

ST_ConvexHullAggr(ST_Geometry)
methodST_Geometry type [Spatial API]
121

ST_CoordDim() methodST_Geometry type
[Spatial API] 121

ST_CoveredBy(ST_Geometry)
methodST_Geometry type [Spatial API]
122

ST_CoveredByFilter(ST_Geometry)
methodST_Geometry type [Spatial API]
123

ST_Covers(ST_Geometry) methodST_Geometry
type [Spatial API] 123

Index

304 SAP Sybase IQ

ST_CoversFilter(ST_Geometry)
methodST_Geometry type [Spatial API]
124

ST_Crosses(ST_Geometry) methodST_Geometry
type [Spatial API] 125

ST_Curve type [Spatial API] description 71
ST_Curve type [Spatial API] ST_CurveToLine()

method 76
ST_Curve type [Spatial API] ST_EndPoint()

method 77
ST_Curve type [Spatial API] ST_IsClosed() method

78
ST_Curve type [Spatial API] ST_IsRing() method

78
ST_Curve type [Spatial API]

ST_Length(VARCHAR(128)) method
79

ST_Curve type [Spatial API] ST_StartPoint()
method 80

ST_CurveN(INT) methodST_CompoundCurve
type [Spatial API] 70

ST_CurvePolygon type [Spatial API] description
81

ST_CurvePolygon type [Spatial API]
ST_CurvePolygon(ST_Curve ,
ST_Curve) constructor 86

ST_CurvePolygon type [Spatial API]
ST_CurvePolygon(ST_MultiCurve ,
VARCHAR(128)) constructor 87

ST_CurvePolygon type [Spatial API]
ST_CurvePolygon() constructor 87

ST_CurvePolygon type [Spatial API]
ST_CurvePolygon(LONG BINARY[,
INT]) constructor 88

ST_CurvePolygon type [Spatial API]
ST_CurvePolygon(LONG VARCHAR[,
INT]) constructor 89

ST_CurvePolygon type [Spatial API]
ST_CurvePolyToPoly() method 89

ST_CurvePolygon type [Spatial API]
ST_ExteriorRing(ST_Curve) method
90

ST_CurvePolygon type [Spatial API]
ST_InteriorRingN(INT) method 91

ST_CurvePolygon type [Spatial API]
ST_NumInteriorRing() method 91

ST_CurvePolygon(ST_Curve , ST_Curve)
constructorST_CurvePolygon type
[Spatial API] 86

ST_CurvePolygon(ST_MultiCurve ,
VARCHAR(128))
constructorST_CurvePolygon type
[Spatial API] 87

ST_CurvePolygon() constructorST_CurvePolygon
type [Spatial API] 87

ST_CurvePolygon(LONG BINARY[, INT])
constructorST_CurvePolygon type
[Spatial API] 88

ST_CurvePolygon(LONG VARCHAR[, INT])
constructorST_CurvePolygon type
[Spatial API] 89

ST_CurvePolyToPoly() methodST_CurvePolygon
type [Spatial API] 89

ST_CurveToLine() methodST_Curve type [Spatial
API] 76

ST_Debug(VARCHAR(128))
methodST_Geometry type [Spatial API]
125

ST_Difference(ST_Geometry)
methodST_Geometry type [Spatial API]
126

ST_Dimension() methodST_Geometry type
[Spatial API] 127

ST_Disjoint(ST_Geometry) methodST_Geometry
type [Spatial API] 127

ST_Distance_Spheroid(ST_Geometry ,
VARCHAR(128)) methodST_Geometry
type [Spatial API] 129

ST_Distance(ST_Geometry , VARCHAR(128))
methodST_Geometry type [Spatial API]
128

ST_EndPoint() methodST_Curve type [Spatial
API] 77

ST_Envelope() methodST_Geometry type [Spatial
API] 130

ST_EnvelopeAggr(ST_Geometry)
methodST_Geometry type [Spatial API]
130

ST_Equals(ST_Geometry) methodST_Geometry
type [Spatial API] 131

ST_EqualsFilter(ST_Geometry)
methodST_Geometry type [Spatial API]
131

ST_ExteriorRing(ST_Curve)
methodST_CurvePolygon type [Spatial
API] 90

ST_ExteriorRing(ST_Curve) methodST_Polygon
type [Spatial API] 251

Index

Administration: Spatial Data 305

ST_FormatTransformDefinition(LONG
VARCHAR) methodST_SpatialRefSys
type [Spatial API] 254

ST_FormatWKT(LONG VARCHAR)
methodST_SpatialRefSys type [Spatial
API] 255

ST_GeomCollection type [Spatial API] description
92

ST_GeomCollection type [Spatial API]
ST_GeomCollection(ST_Geometry ,
ST_Geometry) constructor 97

ST_GeomCollection type [Spatial API]
ST_GeomCollection() constructor 98

ST_GeomCollection type [Spatial API]
ST_GeomCollection(LONG BINARY[,
INT]) constructor 98

ST_GeomCollection type [Spatial API]
ST_GeomCollection(LONG
VARCHAR[, INT]) constructor 99

ST_GeomCollection type [Spatial API]
ST_GeomCollectionAggr(ST_Geometr
y) method 99

ST_GeomCollection type [Spatial API]
ST_GeometryN(INT) method 100

ST_GeomCollection type [Spatial API]
ST_NumGeometries() method 101

ST_GeomCollection(ST_Geometry ,
ST_Geometry)
constructorST_GeomCollection type
[Spatial API] 97

ST_GeomCollection()
constructorST_GeomCollection type
[Spatial API] 98

ST_GeomCollection(LONG BINARY[, INT])
constructorST_GeomCollection type
[Spatial API] 98

ST_GeomCollection(LONG VARCHAR[, INT])
constructorST_GeomCollection type
[Spatial API] 99

ST_GeomCollectionAggr(ST_Geometry)
methodST_GeomCollection type [Spatial
API] 99

ST_Geometry type [Spatial API] description 101
ST_Geometry type [Spatial API]

ST_Affine(DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE,
DOUBLE, DOUBLE, DOUBLE,
DOUBLE) method 106

ST_Geometry type [Spatial API]
ST_AsBinary(VARCHAR(128)) method
107

ST_Geometry type [Spatial API]
ST_AsBitmap(INT, INT, ST_Point ,
ST_Point , VARCHAR(128)) method
108

ST_Geometry type [Spatial API]
ST_AsGeoJSON(VARCHAR(128))
method 109

ST_Geometry type [Spatial API]
ST_AsGML(VARCHAR(128)) method
109

ST_Geometry type [Spatial API]
ST_AsKML(VARCHAR(128)) method
110

ST_Geometry type [Spatial API]
ST_AsSVG(VARCHAR(128)) method
112

ST_Geometry type [Spatial API]
ST_AsSVGAggr(ST_Geometry ,
VARCHAR(128)) method 113

ST_Geometry type [Spatial API]
ST_AsText(VARCHAR(128)) method
114

ST_Geometry type [Spatial API]
ST_AsWKB(VARCHAR(128)) method
115

ST_Geometry type [Spatial API]
ST_AsWKT(VARCHAR(128)) method
116

ST_Geometry type [Spatial API]
ST_AsXML(VARCHAR(128)) method
117

ST_Geometry type [Spatial API] ST_Boundary()
method 118

ST_Geometry type [Spatial API]
ST_Buffer(DOUBLE, VARCHAR(128))
method 118

ST_Geometry type [Spatial API]
ST_Contains(ST_Geometry) method
119

ST_Geometry type [Spatial API]
ST_ContainsFilter(ST_Geometry)
method 120

ST_Geometry type [Spatial API] ST_ConvexHull()
method 120

Index

306 SAP Sybase IQ

ST_Geometry type [Spatial API]
ST_ConvexHullAggr(ST_Geometry)
method 121

ST_Geometry type [Spatial API] ST_CoordDim()
method 121

ST_Geometry type [Spatial API]
ST_CoveredBy(ST_Geometry) method
122

ST_Geometry type [Spatial API]
ST_CoveredByFilter(ST_Geometry)
method 123

ST_Geometry type [Spatial API]
ST_Covers(ST_Geometry) method 123

ST_Geometry type [Spatial API]
ST_CoversFilter(ST_Geometry) method
124

ST_Geometry type [Spatial API]
ST_Crosses(ST_Geometry) method
125

ST_Geometry type [Spatial API]
ST_Debug(VARCHAR(128)) method
125

ST_Geometry type [Spatial API]
ST_Difference(ST_Geometry) method
126

ST_Geometry type [Spatial API] ST_Dimension()
method 127

ST_Geometry type [Spatial API]
ST_Disjoint(ST_Geometry) method
127

ST_Geometry type [Spatial API]
ST_Distance_Spheroid(ST_Geometry ,
VARCHAR(128)) method 129

ST_Geometry type [Spatial API]
ST_Distance(ST_Geometry ,
VARCHAR(128)) method 128

ST_Geometry type [Spatial API] ST_Envelope()
method 130

ST_Geometry type [Spatial API]
ST_EnvelopeAggr(ST_Geometry)
method 130

ST_Geometry type [Spatial API]
ST_Equals(ST_Geometry) method 131

ST_Geometry type [Spatial API]
ST_EqualsFilter(ST_Geometry) method
131

ST_Geometry type [Spatial API]
ST_GeometryType() method 132

ST_Geometry type [Spatial API]
ST_GeometryTypeFromBaseType(VAR
CHAR(128)) method 132

ST_Geometry type [Spatial API]
ST_GeomFromBinary(LONG BINARY,
INT) method 133

ST_Geometry type [Spatial API]
ST_GeomFromShape(LONG BINARY[,
INT]) method 134

ST_Geometry type [Spatial API]
ST_GeomFromText(LONG VARCHAR,
INT) method 134

ST_Geometry type [Spatial API]
ST_GeomFromWKB(LONG BINARY,
INT) method 135

ST_Geometry type [Spatial API]
ST_GeomFromWKT(LONG
VARCHAR, INT) method 136

ST_Geometry type [Spatial API]
ST_Intersection(ST_Geometry) method
136

ST_Geometry type [Spatial API]
ST_IntersectionAggr(ST_Geometry)
method 137

ST_Geometry type [Spatial API]
ST_Intersects(ST_Geometry) method
137

ST_Geometry type [Spatial API]
ST_IntersectsFilter(ST_Geometry)
method 138

ST_Geometry type [Spatial API]
ST_IntersectsRect(ST_Point , ST_Point)
method 139

ST_Geometry type [Spatial API] ST_Is3D() method
140

ST_Geometry type [Spatial API] ST_IsEmpty()
method 140

ST_Geometry type [Spatial API] ST_IsMeasured()
method 140

ST_Geometry type [Spatial API] ST_IsSimple()
method 141

ST_Geometry type [Spatial API] ST_IsValid()
method 141

ST_Geometry type [Spatial API] ST_LatNorth()
method 142

ST_Geometry type [Spatial API] ST_LatSouth()
method 142

Index

Administration: Spatial Data 307

ST_Geometry type [Spatial API]
ST_Length_Spheroid(VARCHAR(128))
method 143

ST_Geometry type [Spatial API] ST_LinearHash()
method 143

ST_Geometry type [Spatial API]
ST_LinearUnHash(BINARY(32)[, INT])
method 144

ST_Geometry type [Spatial API]
ST_LoadConfigurationData(VARCHAR
(128)) method 144

ST_Geometry type [Spatial API]
ST_LocateAlong(DOUBLE) method
145

ST_Geometry type [Spatial API]
ST_LocateBetween(DOUBLE,
DOUBLE) method 145

ST_Geometry type [Spatial API] ST_LongEast()
method 146

ST_Geometry type [Spatial API] ST_LongWest()
method 146

ST_Geometry type [Spatial API] ST_MMax()
method 147

ST_Geometry type [Spatial API] ST_MMin()
method 147

ST_Geometry type [Spatial API]
ST_OrderingEquals(ST_Geometry)
method 148

ST_Geometry type [Spatial API]
ST_Overlaps(ST_Geometry) method
148

ST_Geometry type [Spatial API]
ST_Relate(ST_Geometry) method 149

ST_Geometry type [Spatial API] ST_Reverse()
method 150

ST_Geometry type [Spatial API]
ST_Segmentize(DOUBLE) method 150

ST_Geometry type [Spatial API]
ST_Simplify(DOUBLE) method 151

ST_Geometry type [Spatial API]
ST_SnapToGrid(ST_Point , DOUBLE,
DOUBLE, DOUBLE, DOUBLE) method
151

ST_Geometry type [Spatial API] ST_SRID(INT)
method 152

ST_Geometry type [Spatial API]
ST_SRIDFromBaseType(VARCHAR(12
8)) method 153

ST_Geometry type [Spatial API]
ST_SymDifference(ST_Geometry)
method 153

ST_Geometry type [Spatial API] ST_ToCircular()
method 154

ST_Geometry type [Spatial API]
ST_ToCompound() method 155

ST_Geometry type [Spatial API] ST_ToCurve()
method 155

ST_Geometry type [Spatial API]
ST_ToCurvePoly() method 156

ST_Geometry type [Spatial API]
ST_ToGeomColl() method 156

ST_Geometry type [Spatial API]
ST_ToLineString() method 157

ST_Geometry type [Spatial API]
ST_ToMultiCurve() method 158

ST_Geometry type [Spatial API] ST_ToMultiLine()
method 158

ST_Geometry type [Spatial API]
ST_ToMultiPoint() method 159

ST_Geometry type [Spatial API]
ST_ToMultiPolygon() method 160

ST_Geometry type [Spatial API]
ST_ToMultiSurface() method 161

ST_Geometry type [Spatial API] ST_ToPoint()
method 161

ST_Geometry type [Spatial API] ST_ToPolygon()
method 162

ST_Geometry type [Spatial API] ST_ToSurface()
method 163

ST_Geometry type [Spatial API]
ST_Touches(ST_Geometry) method
163

ST_Geometry type [Spatial API]
ST_Transform(INT) method 164

ST_Geometry type [Spatial API]
ST_Union(ST_Geometry) method 164

ST_Geometry type [Spatial API]
ST_UnionAggr(ST_Geometry) method
165

ST_Geometry type [Spatial API]
ST_Within(ST_Geometry) method 166

ST_Geometry type [Spatial API]
ST_WithinDistance(ST_Geometry ,
DOUBLE, VARCHAR(128)) method
167

ST_Geometry type [Spatial API]
ST_WithinDistanceFilter(ST_Geometry

Index

308 SAP Sybase IQ

, DOUBLE, VARCHAR(128)) method
168

ST_Geometry type [Spatial API]
ST_WithinFilter(ST_Geometry) method
170

ST_Geometry type [Spatial API] ST_XMax()
method 170

ST_Geometry type [Spatial API] ST_XMin()
method 170

ST_Geometry type [Spatial API] ST_YMax()
method 171

ST_Geometry type [Spatial API] ST_YMin()
method 171

ST_Geometry type [Spatial API] ST_ZMax()
method 172

ST_Geometry type [Spatial API] ST_ZMin()
method 172

ST_GeometryN(INT) methodST_GeomCollection
type [Spatial API] 100

ST_GeometryType() methodST_Geometry type
[Spatial API] 132

ST_GeometryTypeFromBaseType(VARCHAR(12
8)) methodST_Geometry type [Spatial
API] 132

ST_GeomFromBinary(LONG BINARY, INT)
methodST_Geometry type [Spatial API]
133

ST_GeomFromShape(LONG BINARY[, INT])
methodST_Geometry type [Spatial API]
134

ST_GeomFromText(LONG VARCHAR, INT)
methodST_Geometry type [Spatial API]
134

ST_GeomFromWKB(LONG BINARY, INT)
methodST_Geometry type [Spatial API]
135

ST_GeomFromWKT(LONG VARCHAR, INT)
methodST_Geometry type [Spatial API]
136

ST_GetUnProjectedTransformDefinition(LONG
VARCHAR) methodST_SpatialRefSys
type [Spatial API] 256

ST_InteriorRingN(INT) methodST_CurvePolygon
type [Spatial API] 91

ST_InteriorRingN(INT) methodST_Polygon type
[Spatial API] 252

ST_Intersection(ST_Geometry)
methodST_Geometry type [Spatial API]
136

ST_IntersectionAggr(ST_Geometry)
methodST_Geometry type [Spatial API]
137

ST_Intersects(ST_Geometry)
methodST_Geometry type [Spatial API]
137

ST_IntersectsFilter(ST_Geometry)
methodST_Geometry type [Spatial API]
138

ST_IntersectsRect(ST_Point , ST_Point)
methodST_Geometry type [Spatial API]
139

ST_Is3D() methodST_Geometry type [Spatial API]
140

ST_IsClosed() methodST_Curve type [Spatial API]
78

ST_IsClosed() methodST_MultiCurve type [Spatial
API] 190

ST_IsEmpty() methodST_Geometry type [Spatial
API] 140

ST_IsMeasured() methodST_Geometry type
[Spatial API] 140

ST_IsRing() methodST_Curve type [Spatial API]
78

ST_IsSimple() methodST_Geometry type [Spatial
API] 141

ST_IsValid() methodST_Geometry type [Spatial
API] 141

ST_IsWorld() methodST_Surface type [Spatial
API] 266

ST_Lat(DOUBLE) methodST_Point type [Spatial
API] 239

ST_LatNorth() methodST_Geometry type [Spatial
API] 142

ST_LatSouth() methodST_Geometry type [Spatial
API] 142

ST_Length_Spheroid(VARCHAR(128))
methodST_Geometry type [Spatial API]
143

ST_Length(VARCHAR(128)) methodST_Curve
type [Spatial API] 79

ST_Length(VARCHAR(128))
methodST_MultiCurve type [Spatial
API] 191

ST_LinearHash() methodST_Geometry type
[Spatial API] 143

ST_LinearUnHash(BINARY(32)[, INT])
methodST_Geometry type [Spatial API]
144

Index

Administration: Spatial Data 309

ST_LineString type [Spatial API] description 173
ST_LineString type [Spatial API]

ST_LineString(ST_Point , ST_Point ,
ST_Point) constructor 178

ST_LineString type [Spatial API] ST_LineString()
constructor 179

ST_LineString type [Spatial API]
ST_LineString(LONG BINARY[, INT])
constructor 179

ST_LineString type [Spatial API]
ST_LineString(LONG VARCHAR[,
INT]) constructor 180

ST_LineString type [Spatial API]
ST_LineStringAggr(ST_Point) method
180

ST_LineString type [Spatial API] ST_NumPoints()
method 181

ST_LineString type [Spatial API] ST_PointN(INT)
method 182

ST_LineString(ST_Point , ST_Point , ST_Point)
constructorST_LineString type [Spatial
API] 178

ST_LineString() constructorST_LineString type
[Spatial API] 179

ST_LineString(LONG BINARY[, INT])
constructorST_LineString type [Spatial
API] 179

ST_LineString(LONG VARCHAR[, INT])
constructorST_LineString type [Spatial
API] 180

ST_LineStringAggr(ST_Point)
methodST_LineString type [Spatial API]
180

ST_LoadConfigurationData(VARCHAR(128))
methodST_Geometry type [Spatial API]
144

ST_LocateAlong(DOUBLE) methodST_Geometry
type [Spatial API] 145

ST_LocateBetween(DOUBLE, DOUBLE)
methodST_Geometry type [Spatial API]
145

ST_Long(DOUBLE) methodST_Point type
[Spatial API] 240

ST_LongEast() methodST_Geometry type [Spatial
API] 146

ST_LongWest() methodST_Geometry type [Spatial
API] 146

ST_M(DOUBLE) methodST_Point type [Spatial
API] 240

ST_MMax() methodST_Geometry type [Spatial
API] 147

ST_MMin() methodST_Geometry type [Spatial
API] 147

ST_MultiCurve type [Spatial API] description 183
ST_MultiCurve type [Spatial API] ST_IsClosed()

method 190
ST_MultiCurve type [Spatial API]

ST_Length(VARCHAR(128)) method
191

ST_MultiCurve type [Spatial API]
ST_MultiCurve(ST_Curve , ST_Curve)
constructor 188

ST_MultiCurve type [Spatial API]
ST_MultiCurve() constructor 189

ST_MultiCurve type [Spatial API]
ST_MultiCurve(LONG BINARY[, INT])
constructor 189

ST_MultiCurve type [Spatial API]
ST_MultiCurve(LONG VARCHAR[,
INT]) constructor 190

ST_MultiCurve type [Spatial API]
ST_MultiCurveAggr(ST_Curve)
method 192

ST_MultiCurve(ST_Curve , ST_Curve)
constructorST_MultiCurve type [Spatial
API] 188

ST_MultiCurve() constructorST_MultiCurve type
[Spatial API] 189

ST_MultiCurve(LONG BINARY[, INT])
constructorST_MultiCurve type [Spatial
API] 189

ST_MultiCurve(LONG VARCHAR[, INT])
constructorST_MultiCurve type [Spatial
API] 190

ST_MultiCurveAggr(ST_Curve)
methodST_MultiCurve type [Spatial
API] 192

ST_MultiLineString type [Spatial API] description
192

ST_MultiLineString type [Spatial API]
ST_MultiLineString(ST_LineString ,
ST_LineString) constructor 198

ST_MultiLineString type [Spatial API]
ST_MultiLineString() constructor 199

ST_MultiLineString type [Spatial API]
ST_MultiLineString(LONG BINARY[,
INT]) constructor 199

Index

310 SAP Sybase IQ

ST_MultiLineString type [Spatial API]
ST_MultiLineString(LONG
VARCHAR[, INT]) constructor 200

ST_MultiLineString type [Spatial API]
ST_MultiLineStringAggr(ST_LineStrin
g) method 200

ST_MultiLineString(ST_LineString ,
ST_LineString)
constructorST_MultiLineString type
[Spatial API] 198

ST_MultiLineString()
constructorST_MultiLineString type
[Spatial API] 199

ST_MultiLineString(LONG BINARY[, INT])
constructorST_MultiLineString type
[Spatial API] 199

ST_MultiLineString(LONG VARCHAR[, INT])
constructorST_MultiLineString type
[Spatial API] 200

ST_MultiLineStringAggr(ST_LineString)
methodST_MultiLineString type [Spatial
API] 200

ST_MultiPoint type [Spatial API] description 201
ST_MultiPoint type [Spatial API]

ST_MultiPoint(ST_Point , ST_Point)
constructor 206

ST_MultiPoint type [Spatial API] ST_MultiPoint()
constructor 207

ST_MultiPoint type [Spatial API]
ST_MultiPoint(LONG BINARY[, INT])
constructor 207

ST_MultiPoint type [Spatial API]
ST_MultiPoint(LONG VARCHAR[,
INT]) constructor 208

ST_MultiPoint type [Spatial API]
ST_MultiPointAggr(ST_Point) method
209

ST_MultiPoint(ST_Point , ST_Point)
constructorST_MultiPoint type [Spatial
API] 206

ST_MultiPoint() constructorST_MultiPoint type
[Spatial API] 207

ST_MultiPoint(LONG BINARY[, INT])
constructorST_MultiPoint type [Spatial
API] 207

ST_MultiPoint(LONG VARCHAR[, INT])
constructorST_MultiPoint type [Spatial
API] 208

ST_MultiPointAggr(ST_Point)
methodST_MultiPoint type [Spatial API]
209

ST_MultiPolygon type [Spatial API] description
209

ST_MultiPolygon type [Spatial API]
ST_MultiPolygon(ST_MultiLineString ,
VARCHAR(128)) constructor 215

ST_MultiPolygon type [Spatial API]
ST_MultiPolygon(ST_Polygon ,
ST_Polygon) constructor 216

ST_MultiPolygon type [Spatial API]
ST_MultiPolygon() constructor 217

ST_MultiPolygon type [Spatial API]
ST_MultiPolygon(LONG BINARY[,
INT]) constructor 217

ST_MultiPolygon type [Spatial API]
ST_MultiPolygon(LONG VARCHAR[,
INT]) constructor 218

ST_MultiPolygon type [Spatial API]
ST_MultiPolygonAggr(ST_Polygon)
method 218

ST_MultiPolygon(ST_MultiLineString ,
VARCHAR(128))
constructorST_MultiPolygon type
[Spatial API] 215

ST_MultiPolygon(ST_Polygon , ST_Polygon)
constructorST_MultiPolygon type
[Spatial API] 216

ST_MultiPolygon() constructorST_MultiPolygon
type [Spatial API] 217

ST_MultiPolygon(LONG BINARY[, INT])
constructorST_MultiPolygon type
[Spatial API] 217

ST_MultiPolygon(LONG VARCHAR[, INT])
constructorST_MultiPolygon type
[Spatial API] 218

ST_MultiPolygonAggr(ST_Polygon)
methodST_MultiPolygon type [Spatial
API] 218

ST_MultiSurface type [Spatial API] description
219

ST_MultiSurface type [Spatial API]
ST_Area(VARCHAR(128)) method 228

ST_MultiSurface type [Spatial API] ST_Centroid()
method 228

ST_MultiSurface type [Spatial API]
ST_MultiSurface(ST_MultiCurve ,
VARCHAR(128)) constructor 225

Index

Administration: Spatial Data 311

ST_MultiSurface type [Spatial API]
ST_MultiSurface(ST_Surface ,
ST_Surface) constructor 225

ST_MultiSurface type [Spatial API]
ST_MultiSurface() constructor 226

ST_MultiSurface type [Spatial API]
ST_MultiSurface(LONG BINARY[,
INT]) constructor 226

ST_MultiSurface type [Spatial API]
ST_MultiSurface(LONG VARCHAR[,
INT]) constructor 227

ST_MultiSurface type [Spatial API]
ST_MultiSurfaceAggr(ST_Surface)
method 229

ST_MultiSurface type [Spatial API]
ST_Perimeter(VARCHAR(128)) method
230

ST_MultiSurface type [Spatial API]
ST_PointOnSurface() method 230

ST_MultiSurface(ST_MultiCurve ,
VARCHAR(128))
constructorST_MultiSurface type
[Spatial API] 225

ST_MultiSurface(ST_Surface , ST_Surface)
constructorST_MultiSurface type
[Spatial API] 225

ST_MultiSurface() constructorST_MultiSurface
type [Spatial API] 226

ST_MultiSurface(LONG BINARY[, INT])
constructorST_MultiSurface type
[Spatial API] 226

ST_MultiSurface(LONG VARCHAR[, INT])
constructorST_MultiSurface type
[Spatial API] 227

ST_MultiSurfaceAggr(ST_Surface)
methodST_MultiSurface type [Spatial
API] 229

ST_NumCurves() methodST_CompoundCurve
type [Spatial API] 71

ST_NumGeometries() methodST_GeomCollection
type [Spatial API] 101

ST_NumInteriorRing() methodST_CurvePolygon
type [Spatial API] 91

ST_NumPoints() methodST_CircularString type
[Spatial API] 61

ST_NumPoints() methodST_LineString type
[Spatial API] 181

ST_OrderingEquals(ST_Geometry)
methodST_Geometry type [Spatial API]
148

ST_Overlaps(ST_Geometry)
methodST_Geometry type [Spatial API]
148

ST_ParseWKT(VARCHAR(128), LONG
VARCHAR) methodST_SpatialRefSys
type [Spatial API] 256

ST_Perimeter(VARCHAR(128))
methodST_MultiSurface type [Spatial
API] 230

ST_Perimeter(VARCHAR(128))
methodST_Surface type [Spatial API]
266

ST_Point type [Spatial API] description 231
ST_Point type [Spatial API] ST_Lat(DOUBLE)

method 239
ST_Point type [Spatial API] ST_Long(DOUBLE)

method 240
ST_Point type [Spatial API] ST_M(DOUBLE)

method 240
ST_Point type [Spatial API] ST_Point() constructor

236
ST_Point type [Spatial API] ST_Point(DOUBLE,

DOUBLE, DOUBLE, DOUBLE[, INT])
constructor 236

ST_Point type [Spatial API] ST_Point(DOUBLE,
DOUBLE, DOUBLE[, INT]) constructor
237

ST_Point type [Spatial API] ST_Point(DOUBLE,
DOUBLE[, INT]) constructor 238

ST_Point type [Spatial API] ST_Point(LONG
BINARY[, INT]) constructor 238

ST_Point type [Spatial API] ST_Point(LONG
VARCHAR[, INT]) constructor 239

ST_Point type [Spatial API] ST_X(DOUBLE)
method 241

ST_Point type [Spatial API] ST_Y(DOUBLE)
method 241

ST_Point type [Spatial API] ST_Z(DOUBLE)
method 242

ST_Point() constructorST_Point type [Spatial API]
236

ST_Point(DOUBLE, DOUBLE, DOUBLE,
DOUBLE[, INT]) constructorST_Point
type [Spatial API] 236

Index

312 SAP Sybase IQ

ST_Point(DOUBLE, DOUBLE, DOUBLE[, INT])
constructorST_Point type [Spatial API]
237

ST_Point(DOUBLE, DOUBLE[, INT])
constructorST_Point type [Spatial API]
238

ST_Point(LONG BINARY[, INT])
constructorST_Point type [Spatial API]
238

ST_Point(LONG VARCHAR[, INT])
constructorST_Point type [Spatial API]
239

ST_PointN(INT) methodST_CircularString type
[Spatial API] 62

ST_PointN(INT) methodST_LineString type
[Spatial API] 182

ST_PointOnSurface() methodST_MultiSurface
type [Spatial API] 230

ST_PointOnSurface() methodST_Surface type
[Spatial API] 267

ST_Polygon type [Spatial API] description 242
ST_Polygon type [Spatial API]

ST_ExteriorRing(ST_Curve) method
251

ST_Polygon type [Spatial API]
ST_InteriorRingN(INT) method 252

ST_Polygon type [Spatial API]
ST_Polygon(ST_LineString ,
ST_LineString) constructor 248

ST_Polygon type [Spatial API]
ST_Polygon(ST_MultiLineString ,
VARCHAR(128)) constructor 248

ST_Polygon type [Spatial API]
ST_Polygon(ST_Point , ST_Point)
constructor 249

ST_Polygon type [Spatial API] ST_Polygon()
constructor 250

ST_Polygon type [Spatial API]
ST_Polygon(LONG BINARY[, INT])
constructor 250

ST_Polygon type [Spatial API]
ST_Polygon(LONG VARCHAR[, INT])
constructor 251

ST_Polygon(ST_LineString , ST_LineString)
constructorST_Polygon type [Spatial
API] 248

ST_Polygon(ST_MultiLineString ,
VARCHAR(128))

constructorST_Polygon type [Spatial
API] 248

ST_Polygon(ST_Point , ST_Point)
constructorST_Polygon type [Spatial
API] 249

ST_Polygon() constructorST_Polygon type [Spatial
API] 250

ST_Polygon(LONG BINARY[, INT])
constructorST_Polygon type [Spatial
API] 250

ST_Polygon(LONG VARCHAR[, INT])
constructorST_Polygon type [Spatial
API] 251

ST_Relate(ST_Geometry) methodST_Geometry
type [Spatial API] 149

ST_Reverse() methodST_Geometry type [Spatial
API] 150

ST_Segmentize(DOUBLE) methodST_Geometry
type [Spatial API] 150

ST_Simplify(DOUBLE) methodST_Geometry
type [Spatial API] 151

ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE,
DOUBLE, DOUBLE)
methodST_Geometry type [Spatial API]
151

ST_SpatialRefSys type [Spatial API] description
253

ST_SpatialRefSys type [Spatial API]
ST_CompareWKT(LONG VARCHAR,
LONG VARCHAR) method 253

ST_SpatialRefSys type [Spatial API]
ST_FormatTransformDefinition(LONG
VARCHAR) method 254

ST_SpatialRefSys type [Spatial API]
ST_FormatWKT(LONG VARCHAR)
method 255

ST_SpatialRefSys type [Spatial API]
ST_GetUnProjectedTransformDefinition
(LONG VARCHAR) method 256

ST_SpatialRefSys type [Spatial API]
ST_ParseWKT(VARCHAR(128),
LONG VARCHAR) method 256

ST_SpatialRefSys type [Spatial API]
ST_TransformGeom(ST_Geometry ,
LONG VARCHAR, LONG VARCHAR)
method 258

ST_SpatialRefSys type [Spatial API]
ST_World(INT) method 259

Index

Administration: Spatial Data 313

ST_SRID(INT) methodST_Geometry type [Spatial
API] 152

ST_SRIDFromBaseType(VARCHAR(128))
methodST_Geometry type [Spatial API]
153

ST_StartPoint() methodST_Curve type [Spatial
API] 80

ST_Surface type [Spatial API] description 260
ST_Surface type [Spatial API]

ST_Area(VARCHAR(128)) method 264
ST_Surface type [Spatial API] ST_Centroid()

method 265
ST_Surface type [Spatial API] ST_IsWorld()

method 266
ST_Surface type [Spatial API]

ST_Perimeter(VARCHAR(128)) method
266

ST_Surface type [Spatial API]
ST_PointOnSurface() method 267

ST_SymDifference(ST_Geometry)
methodST_Geometry type [Spatial API]
153

ST_ToCircular() methodST_Geometry type
[Spatial API] 154

ST_ToCompound() methodST_Geometry type
[Spatial API] 155

ST_ToCurve() methodST_Geometry type [Spatial
API] 155

ST_ToCurvePoly() methodST_Geometry type
[Spatial API] 156

ST_ToGeomColl() methodST_Geometry type
[Spatial API] 156

ST_ToLineString() methodST_Geometry type
[Spatial API] 157

ST_ToMultiCurve() methodST_Geometry type
[Spatial API] 158

ST_ToMultiLine() methodST_Geometry type
[Spatial API] 158

ST_ToMultiPoint() methodST_Geometry type
[Spatial API] 159

ST_ToMultiPolygon() methodST_Geometry type
[Spatial API] 160

ST_ToMultiSurface() methodST_Geometry type
[Spatial API] 161

ST_ToPoint() methodST_Geometry type [Spatial
API] 161

ST_ToPolygon() methodST_Geometry type
[Spatial API] 162

ST_ToSurface() methodST_Geometry type [Spatial
API] 163

ST_Touches(ST_Geometry) methodST_Geometry
type [Spatial API] 163

ST_Transform(INT) methodST_Geometry type
[Spatial API] 164

ST_TransformGeom(ST_Geometry , LONG
VARCHAR, LONG VARCHAR)
methodST_SpatialRefSys type [Spatial
API] 258

ST_Union(ST_Geometry) methodST_Geometry
type [Spatial API] 164

ST_UnionAggr(ST_Geometry)
methodST_Geometry type [Spatial API]
165

ST_Within(ST_Geometry) methodST_Geometry
type [Spatial API] 166

ST_WithinDistance(ST_Geometry , DOUBLE,
VARCHAR(128)) methodST_Geometry
type [Spatial API] 167

ST_WithinDistanceFilter(ST_Geometry ,
DOUBLE, VARCHAR(128))
methodST_Geometry type [Spatial API]
168

ST_WithinFilter(ST_Geometry)
methodST_Geometry type [Spatial API]
170

ST_World(INT) methodST_SpatialRefSys type
[Spatial API] 259

ST_X(DOUBLE) methodST_Point type [Spatial
API] 241

ST_XMax() methodST_Geometry type [Spatial
API] 170

ST_XMin() methodST_Geometry type [Spatial
API] 170

ST_Y(DOUBLE) methodST_Point type [Spatial
API] 241

ST_YMax() methodST_Geometry type [Spatial
API] 171

ST_YMin() methodST_Geometry type [Spatial
API] 171

ST_Z(DOUBLE) methodST_Point type [Spatial
API] 242

ST_ZMax() methodST_Geometry type [Spatial
API] 172

ST_ZMin() methodST_Geometry type [Spatial
API] 172

Index

314 SAP Sybase IQ

T

tables
altering 286
altering definition 286

V

views
altered tables in 286

Index

Administration: Spatial Data 315

Index

316 SAP Sybase IQ

	Administration: Spatial Data
	Contents
	Restrictions and Limitations
	Spatial data
	Spatial reference systems (SRS) and Spatial reference identifiers (SRID)
	Units of measure
	Installing additional predefined units of measure

	SAP Sybase IQ support for spatial data
	Supported spatial data types and their hierarchy
	Supported spatial predicates
	Intuitiveness of spatial predicates

	Compliance with spatial standards
	Special notes on support and compliance
	Supported import and export formats for spatial data
	Support for ESRI shapefiles
	Recommended reading on spatial topics

	Creating a spatial column (SQL)
	Indexes on spatial columns
	Spatial data type syntax
	How to create geometries
	Viewing spatial data as images (Interactive SQL)
	Viewing spatial data as images (Spatial Viewer)
	Loading spatial data from a Well Known Text (WKT) file
	Create or Manage a Spatial Reference System
	Create or Manage a Spatial Unit of Measure

	Advanced spatial topics
	How flat-Earth and round-Earth representations work
	How snap-to-grid and tolerance impact spatial calculations
	How interpolation impacts spatial calculations
	How polygon ring orientation works
	How geometry interiors, exteriors, and boundaries work
	How spatial comparisons work
	How spatial relationships work
	How spatial dimensions work

	Tutorial: Experimenting with the spatial features
	Lesson 1: Install additional units of measure and spatial reference systems
	Lesson 2: Download the ESRI shapefile data
	Lesson 3: Load the ESRI shapefile data
	Lesson 4: Query spatial data
	Lesson 5: Output spatial data to SVG
	Lesson 6: Project spatial data

	Accessing and manipulating spatial data
	ST_CircularString type
	ST_CircularString(ST_Point , ST_Point , ST_Point , ST_Point) constructor
	ST_CircularString() constructor
	ST_CircularString(LONG BINARY[, INT]) constructor
	ST_CircularString(LONG VARCHAR[, INT]) constructor
	ST_NumPoints() method
	ST_PointN(INT) method

	ST_CompoundCurve type
	ST_CompoundCurve(ST_Curve , ST_Curve) constructor
	ST_CompoundCurve() constructor
	ST_CompoundCurve(LONG BINARY[, INT]) constructor
	ST_CompoundCurve(LONG VARCHAR[, INT]) constructor
	ST_CurveN(INT) method
	ST_NumCurves() method

	ST_Curve type
	ST_CurveToLine() method
	ST_EndPoint() method
	ST_IsClosed() method
	ST_IsRing() method
	ST_Length(VARCHAR(128)) method
	ST_StartPoint() method

	ST_CurvePolygon type
	ST_CurvePolygon(ST_Curve , ST_Curve) constructor
	ST_CurvePolygon(ST_MultiCurve , VARCHAR(128)) constructor
	ST_CurvePolygon() constructor
	ST_CurvePolygon(LONG BINARY[, INT]) constructor
	ST_CurvePolygon(LONG VARCHAR[, INT]) constructor
	ST_CurvePolyToPoly() method
	ST_ExteriorRing(ST_Curve) method
	ST_InteriorRingN(INT) method
	ST_NumInteriorRing() method

	ST_GeomCollection type
	ST_GeomCollection(ST_Geometry , ST_Geometry) constructor
	ST_GeomCollection() constructor
	ST_GeomCollection(LONG BINARY[, INT]) constructor
	ST_GeomCollection(LONG VARCHAR[, INT]) constructor
	ST_GeomCollectionAggr(ST_Geometry) method
	ST_GeometryN(INT) method
	ST_NumGeometries() method

	ST_Geometry type
	ST_Affine(DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE, DOUBLE) method
	ST_AsBinary(VARCHAR(128)) method
	ST_AsBitmap(INT, INT, ST_Point , ST_Point , VARCHAR(128)) method
	ST_AsGeoJSON(VARCHAR(128)) method
	ST_AsGML(VARCHAR(128)) method
	ST_AsKML(VARCHAR(128)) method
	ST_AsSVG(VARCHAR(128)) method
	ST_AsSVGAggr(ST_Geometry , VARCHAR(128)) method
	ST_AsText(VARCHAR(128)) method
	ST_AsWKB(VARCHAR(128)) method
	ST_AsWKT(VARCHAR(128)) method
	ST_AsXML(VARCHAR(128)) method
	ST_Boundary() method
	ST_Buffer(DOUBLE, VARCHAR(128)) method
	ST_Contains(ST_Geometry) method
	ST_ContainsFilter(ST_Geometry) method
	ST_ConvexHull() method
	ST_ConvexHullAggr(ST_Geometry) method
	ST_CoordDim() method
	ST_CoveredBy(ST_Geometry) method
	ST_CoveredByFilter(ST_Geometry) method
	ST_Covers(ST_Geometry) method
	ST_CoversFilter(ST_Geometry) method
	ST_Crosses(ST_Geometry) method
	ST_Debug(VARCHAR(128)) method
	ST_Difference(ST_Geometry) method
	ST_Dimension() method
	ST_Disjoint(ST_Geometry) method
	ST_Distance(ST_Geometry , VARCHAR(128)) method
	ST_Distance_Spheroid(ST_Geometry , VARCHAR(128)) method
	ST_Envelope() method
	ST_EnvelopeAggr(ST_Geometry) method
	ST_Equals(ST_Geometry) method
	ST_EqualsFilter(ST_Geometry) method
	ST_GeometryType() method
	ST_GeometryTypeFromBaseType(VARCHAR(128)) method
	ST_GeomFromBinary(LONG BINARY, INT) method
	ST_GeomFromShape(LONG BINARY[, INT]) method
	ST_GeomFromText(LONG VARCHAR, INT) method
	ST_GeomFromWKB(LONG BINARY, INT) method
	ST_GeomFromWKT(LONG VARCHAR, INT) method
	ST_Intersection(ST_Geometry) method
	ST_IntersectionAggr(ST_Geometry) method
	ST_Intersects(ST_Geometry) method
	ST_IntersectsFilter(ST_Geometry) method
	ST_IntersectsRect(ST_Point , ST_Point) method
	ST_Is3D() method
	ST_IsEmpty() method
	ST_IsMeasured() method
	ST_IsSimple() method
	ST_IsValid() method
	ST_LatNorth() method
	ST_LatSouth() method
	ST_Length_Spheroid(VARCHAR(128)) method
	ST_LinearHash() method
	ST_LinearUnHash(BINARY(32)[, INT]) method
	ST_LoadConfigurationData(VARCHAR(128)) method
	ST_LocateAlong(DOUBLE) method
	ST_LocateBetween(DOUBLE, DOUBLE) method
	ST_LongEast() method
	ST_LongWest() method
	ST_MMax() method
	ST_MMin() method
	ST_OrderingEquals(ST_Geometry) method
	ST_Overlaps(ST_Geometry) method
	ST_Relate(ST_Geometry) method
	ST_Reverse() method
	ST_Segmentize(DOUBLE) method
	ST_Simplify(DOUBLE) method
	ST_SnapToGrid(ST_Point , DOUBLE, DOUBLE, DOUBLE, DOUBLE) method
	ST_SRID(INT) method
	ST_SRIDFromBaseType(VARCHAR(128)) method
	ST_SymDifference(ST_Geometry) method
	ST_ToCircular() method
	ST_ToCompound() method
	ST_ToCurve() method
	ST_ToCurvePoly() method
	ST_ToGeomColl() method
	ST_ToLineString() method
	ST_ToMultiCurve() method
	ST_ToMultiLine() method
	ST_ToMultiPoint() method
	ST_ToMultiPolygon() method
	ST_ToMultiSurface() method
	ST_ToPoint() method
	ST_ToPolygon() method
	ST_ToSurface() method
	ST_Touches(ST_Geometry) method
	ST_Transform(INT) method
	ST_Union(ST_Geometry) method
	ST_UnionAggr(ST_Geometry) method
	ST_Within(ST_Geometry) method
	ST_WithinDistance(ST_Geometry , DOUBLE, VARCHAR(128)) method
	ST_WithinDistanceFilter(ST_Geometry , DOUBLE, VARCHAR(128)) method
	ST_WithinFilter(ST_Geometry) method
	ST_XMax() method
	ST_XMin() method
	ST_YMax() method
	ST_YMin() method
	ST_ZMax() method
	ST_ZMin() method

	ST_LineString type
	ST_LineString(ST_Point , ST_Point , ST_Point) constructor
	ST_LineString() constructor
	ST_LineString(LONG BINARY[, INT]) constructor
	ST_LineString(LONG VARCHAR[, INT]) constructor
	ST_LineStringAggr(ST_Point) method
	ST_NumPoints() method
	ST_PointN(INT) method

	ST_MultiCurve type
	ST_MultiCurve(ST_Curve , ST_Curve) constructor
	ST_MultiCurve() constructor
	ST_MultiCurve(LONG BINARY[, INT]) constructor
	ST_MultiCurve(LONG VARCHAR[, INT]) constructor
	ST_IsClosed() method
	ST_Length(VARCHAR(128)) method
	ST_MultiCurveAggr(ST_Curve) method

	ST_MultiLineString type
	ST_MultiLineString(ST_LineString , ST_LineString) constructor
	ST_MultiLineString() constructor
	ST_MultiLineString(LONG BINARY[, INT]) constructor
	ST_MultiLineString(LONG VARCHAR[, INT]) constructor
	ST_MultiLineStringAggr(ST_LineString) method

	ST_MultiPoint type
	ST_MultiPoint(ST_Point , ST_Point) constructor
	ST_MultiPoint() constructor
	ST_MultiPoint(LONG BINARY[, INT]) constructor
	ST_MultiPoint(LONG VARCHAR[, INT]) constructor
	ST_MultiPointAggr(ST_Point) method

	ST_MultiPolygon type
	ST_MultiPolygon(ST_MultiLineString , VARCHAR(128)) constructor
	ST_MultiPolygon(ST_Polygon , ST_Polygon) constructor
	ST_MultiPolygon() constructor
	ST_MultiPolygon(LONG BINARY[, INT]) constructor
	ST_MultiPolygon(LONG VARCHAR[, INT]) constructor
	ST_MultiPolygonAggr(ST_Polygon) method

	ST_MultiSurface type
	ST_MultiSurface(ST_MultiCurve , VARCHAR(128)) constructor
	ST_MultiSurface(ST_Surface , ST_Surface) constructor
	ST_MultiSurface() constructor
	ST_MultiSurface(LONG BINARY[, INT]) constructor
	ST_MultiSurface(LONG VARCHAR[, INT]) constructor
	ST_Area(VARCHAR(128)) method
	ST_Centroid() method
	ST_MultiSurfaceAggr(ST_Surface) method
	ST_Perimeter(VARCHAR(128)) method
	ST_PointOnSurface() method

	ST_Point type
	ST_Point() constructor
	ST_Point(DOUBLE, DOUBLE, DOUBLE, DOUBLE[, INT]) constructor
	ST_Point(DOUBLE, DOUBLE, DOUBLE[, INT]) constructor
	ST_Point(DOUBLE, DOUBLE[, INT]) constructor
	ST_Point(LONG BINARY[, INT]) constructor
	ST_Point(LONG VARCHAR[, INT]) constructor
	ST_Lat(DOUBLE) method
	ST_Long(DOUBLE) method
	ST_M(DOUBLE) method
	ST_X(DOUBLE) method
	ST_Y(DOUBLE) method
	ST_Z(DOUBLE) method

	ST_Polygon type
	ST_Polygon(ST_LineString , ST_LineString) constructor
	ST_Polygon(ST_MultiLineString , VARCHAR(128)) constructor
	ST_Polygon(ST_Point , ST_Point) constructor
	ST_Polygon() constructor
	ST_Polygon(LONG BINARY[, INT]) constructor
	ST_Polygon(LONG VARCHAR[, INT]) constructor
	ST_ExteriorRing(ST_Curve) method
	ST_InteriorRingN(INT) method

	ST_SpatialRefSys type
	ST_CompareWKT(LONG VARCHAR, LONG VARCHAR) method
	ST_FormatTransformDefinition(LONG VARCHAR) method
	ST_FormatWKT(LONG VARCHAR) method
	ST_GetUnProjectedTransformDefinition(LONG VARCHAR) method
	ST_ParseWKT(VARCHAR(128), LONG VARCHAR) method
	ST_TransformGeom(ST_Geometry , LONG VARCHAR, LONG VARCHAR) method
	ST_World(INT) method

	ST_Surface type
	ST_Area(VARCHAR(128)) method
	ST_Centroid() method
	ST_IsWorld() method
	ST_Perimeter(VARCHAR(128)) method
	ST_PointOnSurface() method

	Appendix – SQL Statements
	CREATE SPATIAL REFERENCE SYSTEM Statement
	CREATE SPATIAL UNIT OF MEASURE Statement
	DROP SPATIAL UNIT OF MEASURE Statement
	DROP SPATIAL REFERENCE SYSTEM Statement
	ALTER SPATIAL REFERENCE SYSTEM Statement
	ALTER TABLE Statement

	Index

