
Developer Guide: BlackBerry Object API
Applications

SAP Mobile Platform 2.3 SP04

DOCUMENT ID: DC01924-01-0234-01
LAST REVISED: March 2014
Copyright © 2014 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Getting Started with BlackBerry Development1
Object API Applications ..1
Best Uses for Object API Applications2

Cache Synchronization ..2
Client Runtime Architecture3

Documentation Roadmap for SAP Mobile Platform4
Development Task Flow for Object API Applications5

Installing the BlackBerry Development Environment6
Installing the BlackBerry Java Plug-in for Eclipse

...7
Downloading the BlackBerry JDE8
Installing X.509 Certificates on BlackBerry

Devices and Simulators8
Generating Java Object API Code9

Generating Java Object API Code Using SAP
Mobile WorkSpace ..9

Generating Object API Code Using the Code
Generation Utility ...13

Generated Code Location and Contents14
Validating Generated Code14

Creating a Project ...15
Downloading the Latest Afaria Libraries16
Mobile Business Object Required Files16
Differences Between the BlackBerry Java Plug-

in and BlackBerry JDE16
Creating a Project in the BlackBerry JDE16
Creating a Project in the BlackBerry Java Plug-in

for Eclipse ..17
Adding Required .jar and .cod Files17
Adding a Device Application Entry Point18
Configuring SAP Mobile Server to Use HTTPS ...18

Developer Guide: BlackBerry Object API Applications iii

Developing the Application Using the Object API19
Initializing an Application ..19

Initially Starting an Application19
Subsequently Starting an Application36

Accessing MBO Data ..37
Object Queries ...37
Dynamic Queries ...38
MBOs with Complex Types39
Relationships ...39

Manipulating Data ...40
Creating, Updating, and Deleting MBO Records

...41
Other Operations ...42
Using submitPending and

submitPendingOperations42
Shutting Down the Application44

Closing Connections ..44
Tracking KPI ..44
Uninstalling the Application ...45

Deleting the Database and Unregistering the
Application ...45

Recovering From SAP Mobile Server Failures46
Testing Applications ..59

Testing an Application Using a Simulator59
Client-Side Debugging ..59

Debugging the BlackBerry Device Application61
Server-Side Debugging ..62
Improve Synchronization Performance by Reducing

the Log Record Size ...63
Determining the Log Record Size63
Reducing the Log Record Size66

Localizing Applications ...69
Adding a Resource File to the Application69
Adding Resource Keys and Values70
Adding Localization Code ...70

Contents

iv SAP Mobile Platform

Packaging Applications ..73
Signing ..73

Client Object API Usage ..75
Client Object API Reference ...75
Application APIs ..75

Application ...75
ConnectionProperties ..88
ApplicationSettings ..97
ConnectionPropertyType100

Connection APIs ...106
ConnectionProfile ..106
Set Database File Property109

Synchronization Profile ...110
Connect the Data Synchronization Channel

Through a Relay Server111
Asynchronous Operation Replay112

Authentication APIs ..112
Logging In ..112
Sample Code: Setting Up Login Credentials112
Sample Code: Mutual Authentication113
Single Sign-On With X.509 Certificate Related

Object API ...114
Personalization APIs ...115

Type of Personalization Keys116
Getting and Setting Personalization Key Values

...116
Synchronization APIs ..117

Managing Synchronization Parameters117
Performing Mobile Business Object

Synchronization ...118
Push Synchronization Applications118
Retrieving Information about Synchronization

Groups ...120
Log Record APIs ...120

LogRecord API ..120

Contents

Developer Guide: BlackBerry Object API Applications v

Logger APIs ...122
Change Log API ...123

getEntityType ...123
getOperationType ..123
getRootEntityType ..124
getRootSurrogateKey ..124
getSurrogateKey ..125
Methods in the Generated Database Class125
Code Samples ...127

Security APIs ..128
Connect Using a Certificate128
Encrypt the Database ..128
DataVault ...129

Callback and Listener APIs ...146
CallbackHandler API ..146
ApplicationCallback API153

Query APIs ...155
Retrieving Data from Mobile Business Objects . 155
Retrieving Relationship Data164

Index APIs ..165
Create an Index ...165
Drop an Index ..166
Retrieve and List Indexes166

Persistence APIs ...166
Operations APIs ...166
Object State APIs ..171
Mobile and Local Business Objects177
Generated Package Database APIs178
Large Attribute APIs ...179

MetaData and Object Manager API188
MetaData and Object Manager API189
ObjectManager ..189
DatabaseMetaData ..189
ClassMetaData ..190
EntityMetaData ..190

Contents

vi SAP Mobile Platform

AttributeMetaData ..190
Exceptions ..190

Exception Handling ..190
Exception Classes ...193
Error Codes ...194

Index ..197

Contents

Developer Guide: BlackBerry Object API Applications vii

Contents

viii SAP Mobile Platform

Getting Started with BlackBerry Development

Use advanced SAP® Mobile Platform features to create applications for BlackBerry devices.
The audience is advanced developers who may be new to SAP Mobile Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object API documentation.

Companion guides include:

• SAP Mobile WorkSpace - Mobile Business Object Development
• Supported Hardware and Software
• Tutorial: BlackBerry Application Development, where you create the SMP101 sample

project referenced in this guide.
Complete the tutorials to gain a better understanding of SAP Mobile Platform components
and the development process.

• Troubleshooting.
• A complete Client Object API reference is available in SMP_HOME

\MobileSDK23\ObjectAPI\apidoc\rim
• Fundamentals contains high-level mobile computing concepts, and a description of how

SAP Mobile Platform implements the concepts in your enterprise.
• Developer Guide: Migrating to SAP Mobile SDK contains information for developers

who are migrating device applications to a newer software version, and changes to MBOs,
projects, and the SAP Mobile Server.

Object API Applications
Object API applications are customized, full-featured mobile applications that use mobile
data model packages, either using mobile business objects (MBOs) or Data Orchestration
Engine, to facilitate connection with a variety of enterprise systems and leverage
synchronization to support offline capabilities.

The Object API application model enables developers to write custom code — C#, Java, or
Objective-C, depending on the target device platform — to create device applications.

Development of Object API applications provides the most flexibility in terms of leveraging
platform specific services, but each application must be provisioned individually after being
compiled, even for minor changes or updates.

Development involves both server-side and client-side components. SAP Mobile Server
brokers data synchronization and transaction processing between the server and the client
components.

Getting Started with BlackBerry Development

Developer Guide: BlackBerry Object API Applications 1

• Server-side components address the interaction between the enterprise information
system (EIS) data source and the data cache. EIS data subsets and business logic are
encapsulated in artifacts, called mobile business object packages, that are deployed to the
SAP Mobile Server.

• Client-side components are built into the mobile application and address the interaction
between the data cache and the mobile device data store. This can include synchronizing
data with the server, offline data access capabilities, and data change notification.

These applications:

• Allow users to connect to data from a variety of EIS systems, including SAP® systems.
• Build in more complex data handling and logic.
• Leverage data synchronization to optimize and balance device response time and need for

real-time data.
• Ensure secure and reliable transport of data.

Best Uses for Object API Applications
Synchronization applications provide operation replay between the mobile device, the
middleware, and the back-end system. Custom native applications are designed and built to
suit specific business scenarios from the ground up, or start with a bespoke application and be
adapted with a large degree of customization.

Cache Synchronization
Cache synchronization allows mapping mobile data to SAP Remote Function Calls (RFCs)
using Java Connector (JCO) and to other non-SAP data sources such as databases and Web
services. When SAP Mobile Platform is used in a stand-alone manner for data
synchronization (without Data Orchestration Engine), it utilizes an efficient bulk transfer and
data insertion technology between the middleware cache and the device database.

In an SAP Mobile Platform standalone deployment, the mobile application is designed such
that the developer specifies how to load data from the back end into the cache and then filters
and downloads cache data using device-supplied parameters. The mobile content model and
the mapping to the back end are directly integrated.

This style of coupling between device and back-end queries implies that the back end must be
able to respond to requests from the middleware based on user-supplied parameters and serve
up mobile data appropriately. Normally, some mobile-specific adaptation is required within
SAP Business Application Programming Interfaces (BAPI). Because of the direct nature of
application parameter mapping and RBS protocol efficiencies, SAP Mobile Platform cache
synchronization deployment is ideal:

• With large payloads to devices (may be due to mostly disconnected scenarios)
• Where ad hoc data downloads might be expected

Getting Started with BlackBerry Development

2 SAP Mobile Platform

• For SAP® or non-SAP back ends

Large payloads, for example, can occur in task worker (service) applications that must access
large product catalogs, or where service occurs in remote locations and workers might
synchronize once a day. While SAP Mobile Platform synchronization does benefit from
middleware caching, direct coupling requires the back end to support an adaptation where
mobile user data can be determined.

Client Runtime Architecture
The goal of synchronization is to keep views (that is, the state) of data consistent among
multiple tiers. The assumption is that if data changes on one tier (for example, the enterprise
system of record), all other tiers interested in that data (mobile devices, intermediate staging
areas/caches and so on) are eventually synchronized to have the same data/state on that
system.

The SAP Mobile Server synchronizes data between the device and the back-end by
maintaining records of device synchronization activity in its cache database along with any
cached data that may have been retrieved from the back-end or pushed from the device. The
SAP Mobile Server employs several components in the synchronization chain.

Mobile Channel Interfaces
Two main channel interfaces provide notifications and data transport to and from remote
devices.

• The messaging channel serves as the abstraction to all device-side notifications
(BlackBerry Enterprise Service, Apple Push Notification Service, and others) so that
when changes to back-end data occur, devices can be notified of changes relevant for their
application and configuration.
The messaging channel sends these types of communications:
• Application registration - the messaging channel is used for application registration

before establishing a connection to the SAP Mobile Server.
• Change notifications - when the SAP Mobile Server detects changes in the back-end

EIS, the SAP Mobile Server can send a notification to the device. By default, sending
change notifications is disabled, but you can enable sending change notifications per
synchronization group.
To capture change notifications, you can register an onSynchronize callback. The
synchronization context in the callback has a status you can retrieve.

• Operation replay records - when synchronizing, these records are sent to the SAP
Mobile Server and the messaging channel sends a notification of replayFinished.
The application must call another synchronize method to retrieve the result.

• SAP Data Orchestration Engine (DOE) application synchronization - the messaging
channel is used for synchronization for DOE applications.

• The synchronization channel sends data to keep the SAP Mobile Server and client
synchronized. The synchronization is bi-directional.

Getting Started with BlackBerry Development

Developer Guide: BlackBerry Object API Applications 3

Mobile Middleware Services
Mobile middleware services (MMS) arbitrate and manage communications between device
requests from the mobile channel interfaces in the form that is suitable for transformation to a
common MBO service request and a canonical form of enterprise data supplied by the data
services.

Data Services
Data services is the conduit to enterprise data and operations within the firewall or hosted in
the cloud. Data services and mobile middleware services together manage the cache database
(CDB) where data is cached as it is synchronized with client devices.

Once a mobile application model is designed, it can be deployed to the SAP Mobile Server
where it operates as part of a specialized container-managed package interfacing with the
mobile middleware services and data services components. Cache data and messages persist
in the databases in the data tier. Changes made on the device are passed to the mobile
middleware services component as an operation replay and replayed against the data services
interfaces with the EIS. Data that changes on the EIS as a result of device changes, or those
originating elsewhere, are replicated to the device database.

Documentation Roadmap for SAP Mobile Platform
SAP® Mobile Platform documents are available for administrative and mobile development
user roles. Some administrative documents are also used in the development and test
environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.

Check the Product Documentation Web site regularly for updates: http://sybooks.sybase.com/
sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories, then
navigate to the most current version.

Getting Started with BlackBerry Development

4 SAP Mobile Platform

http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories

Development Task Flow for Object API
Applications

Describes the overall development task flow for Object API applications, and provides
information and procedures for setting up the development environment, and developing
device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated UI interaction, validation, business
logic, and performance.

The Object API provides the core application services described in the diagram.

The Authentication APIs provide security by authenticating the client to the SAP Mobile
Server.

The Synchronization APIs allow you to synchronize mobile business objects (MBOs) based
on synchronization parameters, for individual MBOs, or as a group, based on the group's
synchronization policy.

The Application and Connection APIs allow clients to register with and connect to the SAP
Mobile Server. The Callback Handler and Listener APIs, and the Target Change Notification
APIs provide notifications to the client on operation success or failure, or changes in data.

1. Installing the BlackBerry Development Environment

Development Task Flow for Object API Applications

Developer Guide: BlackBerry Object API Applications 5

Download and install either the BlackBerry JDE or the BlackBerry Java plug-in for
Eclipse (eJDE).

2. Generating Java Object API Code

Generate object API code containing mobile business object (MBO) references, which
allows you to use APIs to develop device applications for BlackBerry devices. You can
generate code either in SAP Mobile WorkSpace, or by using a command line utility for
generating code.

3. Creating a Project

Build a device application project.Use these procedures if you are developing a device
application using the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse.

4. Developing the Application Using the Object API

Use the Object API to develop the application. An application consists of building blocks
which the developer uses to start the application, perform functions needed for the
application, and shutdown and uninstall the application.

5. Testing Applications

Test native applications on a device or simulator.

6. Localizing Applications

Localize a BlackBerry application by creating a resource header file, a resource content
file for the global locale, and a resource content file for any specific locales that you
require.

7. Packaging Applications

Package applications according to your security or application distribution requirements.

Installing the BlackBerry Development Environment
Download and install either the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse
(eJDE).

For information on transitioning from the BlackBerry JDE to the eJDE, view the video at the
Research In Motion Developer Video Library Web site: http://supportforums.blackberry.com/
t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

1. Installing the BlackBerry Java Plug-in for Eclipse

Install the supported version of BlackBerry Java Plug-in in the SAP Mobile WorkSpace
Eclipse environment.

2. Downloading the BlackBerry JDE

To generate and distribute BlackBerry device applications, download the BlackBerry JDE
and its prerequisites from the BlackBerry Web site.

3. Installing X.509 Certificates on BlackBerry Devices and Simulators

Development Task Flow for Object API Applications

6 SAP Mobile Platform

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Install the .p12 certificate on the BlackBerry device or simulator and select it during
authentication. A certificate provides an additional level of secure access to an application,
and may be required by an organization's security policy.

See also
• Generating Java Object API Code on page 9

Installing the BlackBerry Java Plug-in for Eclipse
Install the supported version of BlackBerry Java Plug-in in the SAP Mobile WorkSpace
Eclipse environment.

See RIM BlackBerry Versions for Object API in Supported Hardware and Software at http://
sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories.
Select the appropriate version of the SAP Mobile Platform document set.

The BlackBerry Java Plug-in for Eclipse enables you to finish developing the BlackBerry
application using smartphone-specific development, debugging, and simulation tools.

1. Confirm that your system meets the requirements at https://developer.blackberry.com/
java/download/eclipse/.

2. Start SAP Mobile WorkSpace, then select Help > Install New Software.

3. In the Available Software window, click Add.

4. In the Add Repository dialog, enter BlackBerry Plugin for the name and http://
www.blackberry.com/developers/jar/win/java for the location. Click
OK.

5. In the Available Software dialog, select BlackBerry Java Plug-in (core) and the
appropriate version of the BlackBerry Java SDK, for example, 7.1.0.10, then click
Next.

6. Review the items to be installed, then click Next again.

7. Accept the license agreements, then click Finish.

Note: If you get a security warning about the authenticity or validity of the software, click
OK.

8. When the installation completes, restart SAP Mobile WorkSpace.

9. Click Finish.

Development Task Flow for Object API Applications

Developer Guide: BlackBerry Object API Applications 7

http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
https://developer.blackberry.com/java/download/eclipse/
https://developer.blackberry.com/java/download/eclipse/

Downloading the BlackBerry JDE
To generate and distribute BlackBerry device applications, download the BlackBerry JDE and
its prerequisites from the BlackBerry Web site.

Prerequisites

• The BlackBerry MDS software requires the 32-bit JDK to be installed, even for 64-bit
operating systems.

• A registered BlackBerry developer account to download the JDE.

Task
Go to the BlackBerry Web site to download and install the BlackBerry JDE.
The MDS-CS simulator is installed with the BlackBerry JDE.

Installing X.509 Certificates on BlackBerry Devices and Simulators
Install the .p12 certificate on the BlackBerry device or simulator and select it during
authentication. A certificate provides an additional level of secure access to an application,
and may be required by an organization's security policy.

1. Install the certificate on a device:

a) Connect to the device with a USB cable.
b) Browse to the SD Card folder on the computer to which the device is connected.
c) Navigate to and select the certificate. Enter the password.
d) Import the certificate.

You can also use the BlackBerry Desktop Manager to intstall the certificate on the device,
but you may need to perform a custom installation to access the Synchronize Certificates
option.

2. Install the certificate on a simulator:

a) From the simulator, select Simulate > Change SD Card.
b) Add/or select the directory that contains the certificate.
c) Open the media application on the device, and select Menu > Application > Files >

MyFile > MediaCard.
d) Navigate to and select the certificate. Enter the password.
e) Check the certificate and select Menu > Import Certificate. Click Import

Certificate then enter the data vault password.

Development Task Flow for Object API Applications

8 SAP Mobile Platform

Generating Java Object API Code
Generate object API code containing mobile business object (MBO) references, which allows
you to use APIs to develop device applications for BlackBerry devices. You can generate code
either in SAP Mobile WorkSpace, or by using a command line utility for generating code.

Generated code can be used to leverage SAP Mobile Platform capabilities and services, and
access MBO-related data: calling the mobile business object operations, object queries, and so
on. This code can then be imported into an integrated development environment (IDE) of your
choice to create the device application (define the user interface, application logic, and so on.

See also
• Installing the BlackBerry Development Environment on page 6

• Creating a Project on page 15

Generating Java Object API Code Using SAP Mobile WorkSpace
Use SAP Mobile WorkSpace to generate object API code containing mobile business object
(MBO) references.

Prerequisites

Develop the MBOs that will be referenced in the device applications you are developing. A
mobile application project must contain at least one non-online MBO. You must have an active
connection to the datasources to which the MBOs are bound.

Task
SAP Mobile Platform provides the Code Generation wizard for generating object API code.
Code generation creates the business logic, attributes, and operations for your mobile business
object.

1. Launch the Code Generation wizard.

From Action

Mobile Application
Diagram

Right-click within the Mobile Application Diagram and select
Generate Code.

WorkSpace
Navigator

Right-click the Mobile Application project folder that contains
the mobile objects for which you are generating API code, and
select Generate Code.

2. (Optional; this page of the code generation wizard is seen only if you are using the
Advanced developer profile). Enter the information for these options, then click Next:

Development Task Flow for Object API Applications

Developer Guide: BlackBerry Object API Applications 9

Option Description

Code generation
configuration

A table lists all existing named configurations plus the most recently used
configuration. You can select any of these, click Next, and proceed. Ad-
ditionally, you can:
• Create new configuration – click Add and enter the Name and optional

Description of the new configuration and click OK to save the con-
figuration for future sessions. You can also select Copy from to copy
an existing configuration which can then be modified.

• Most recent configuration – if you click Next the first time you gen-
erate code without creating a configuration, the configuration is saved
and displays as the chosen configuration the next time you invoke the
code generation wizard. If the most recent configuration used is a
named configuration, it is saved as the first item in the configuration
table, and also "Most recent configuration", even though it is still listed
as the original named configuration.

3. Click Next.

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

SAP Mobile WorkSpace automatically computes the default page size after you choose
the MBOs based on total attribute size. If an MBO's accumulated attribute size is larger
than the page size setting, a warning displays.

5. Enter the information for these configuration options:

Option Description

Language Select Java.

Platform Select the platform (target device) for which
the device client code is intended.
• Java

• Java ME for BlackBerry

Note: When generating code into a plain Java
project with language 'Java' and platform 'Java
Me for BlackBerry', compilation errors are
generated because of code references to RIM
API's. To avoid errors, generate code into a
BlackBerry project.

SAP Mobile Server Specify a default SAP Mobile Server connec-
tion profile to which the generated code con-
nects at runtime.

Development Task Flow for Object API Applications

10 SAP Mobile Platform

Option Description

Server domain Choose the domain to which the generated code
will connect. If you specified an SAP Mobile
Server to which you previously connected suc-
cessfully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an SAP
Mobile Server is selected.

Page size (Optional) Select the page size for the gener-
ated client code. If the page size is not set, the
default page size is 4KB at runtime. The default
is a proposed page size based on the selected
MBO's attributes. The maximum page size is
16KB To optimize performance, set the page
size to 4K and the cache size to 128K.

The page size should be larger than the sum of
all attribute lengths for any MBO that is inclu-
ded with all the MBOs selected, and must be
valid for the database. If the page size is
changed, but does not meet these guidelines,
object queries that use string or binary attrib-
utes with a WHERE clause may fail. See MBO
Attributes in Mobile Data Models: Using Mo-
bile Business Objects for more information.

A binary length greater than 32767 is converted
to a binary large object (BLOB), and is not in-
cluded in the sum; a string greater than 8191 is
converted to a character large object (CLOB),
and is also not included). If an MBO attribute's
length sum is greater than the page size, some
attributes automatically convert to BLOB or
CLOB, and therefore cannot be put into a
WHERE clause.

Note: This field is only enabled when an SAP
Mobile Server is selected.

Development Task Flow for Object API Applications

Developer Guide: BlackBerry Object API Applications 11

Option Description

Package, Namespace, or Name Prefix • Package – enter a package name for Java.
The package name must follow Java nam-
ing conventions for packages. For example,
no leading or trailing spaces and no special
characters such as §&/, except that the first
letter may be upper-case.

Note: Do not use "java" in package names.
The Java package name along with the class
name makes the fully qualified class name
that must be unique into one RIM JVM. If
there is a class with the same fully qualified
name, the application may fail on real de-
vice

Destination Specify the destination of the generated device
client files. Enter (or Browse) to either a
Project path (Mobile Application project) lo-
cation or File system path location. Select
Clean up destination before code generation
to clean up the destination folder before gener-
ating the device client files.

Note: If you select Java as the language, enter a
project path, specify a mobile application
project folder, and select Generated
Code as the destination. JAR files are auto-
matically added to the destination for the plat-
form that supports compiling of the generated
client code.

Third-party jar file Enter or browse to the location of the third party
jar file. For example, net_rim_api.jar
for BlackBerry, or android.jar for An-
droid.

If you select Java as the language, and if the
BlackBerry or Android third-party JAR file has
not been added, the warning The depend-
ent third-party class
'net.rim.device.api.sys-
tem.ApplicationDescriptor'
cannot be found or The depend-
ent third-party class 'an-
droid.content.Context' can-
not be found displays.

Development Task Flow for Object API Applications

12 SAP Mobile Platform

6. Select Generate metadata classes to generate metadata for the attributes and operations
of each generated client object.

The Including object manager classes option is only available if you select Generate
metadata classes.

7. Select Including object manager classes to generate both the metadata for the attributes
and operations of each generated client object and an object manager for the generated
metadata.

The Including object manager classes option is enabled only for BlackBerry and C# if
you select Generate metadata classes. The object manager allows you to retrieve the
metadata of packages, MBOs, attributes, operations, and parameters during runtime using
the name instead of the object instance.

8. Click Finish.

9. Examine the generated code location and contents.

10. Validate the generated code.

Generating Object API Code Using the Code Generation Utility
Use the Code Generation Utility to generate object API code containing mobile business
object (MBO) references. This method of generating code allows you to automate the process
of code generation, for example through the use of scripts.

Prerequisites

• Use SAP Mobile WorkSpace to develop and package your mobile business objects. See
SAP Mobile WorkSpace - Mobile Business Object Development > Develop > Developing
a Mobile Business Object.

• Deploy the package to the SAP Mobile Server, creating files required for code generation
from the command line. See SAP Mobile WorkSpace - Mobile Business Object
Development > Develop > Packaging and Deploying Mobile Business Objects
>Automated Deployment of SAP Mobile WorkSpace Projects.

Task

1. Locate <domain name>_package.jar in your mobile project folder. For the
SMP101 example, the project is deployed to the default domain, and the deploy jar file is in
the following location: SMP101\Deployment\.pkg.profile
\My_SAP_Mobile_Server\default_package.jar.

2. Make sure that the JAR file contains this file:

• deployment_unit.xml
3. Use a utility to extract the deployment_unit.xml file to another location.

4. From SMP_HOME\MobileSDK23\ObjectAPI\Utils\bin, run the
codegen.bat utility, specifying the following parameters:

Development Task Flow for Object API Applications

Developer Guide: BlackBerry Object API Applications 13

codegen.bat -java -client -rim -ulj deployment_unit.xml [-output
<output_dir>] [-doc]

• The -output parameter allows you to specify an output directory. If you omit this
parameter, the output goes into the SMP_HOME\MobileSDK23\ObjectAPI
\Utils\genfiles directory, assuming codegen.bat is run from the
SMP_HOME\MobileSDK23\ObjectAPI\Utils\genfiles directory.

• The -doc parameter specifies that documentation is generated for the generated code.

Ignore these warnings:
log4j:WARN No appenders could be found for logger ...
log4j:WARN Please initialize the log4j system properly.

Generated Code Location and Contents
If you generated code in SAP Mobile WorkSpace, generated object API code is stored by
default in the "Destination" location you specified during code generation. If you generated
code with the Code Generation Utility, generated object API code is stored in the SMP_HOME
\MobileSDK23\ObjectAPI\Utils\genfiles folder after you generate code.

The contents of the folder is determined by the options you selected in the Generate Code
wizard in SAP Mobile WorkSpace, or specified in the Code Generation Utility. The contents
include generated class (.java) files that contain:

• MBO – class which handles persistence and operation replay of your MBOs.
• DatabaseClass – package level class that handles subscription, login, synchronization, and

other operations for the package.
• Synchronization parameters – any synchronization parameters for the MBOs.
• Personalization parameters – personalization parameters used by the package.
• Metadata – Metadata class that allow you to query meta data including MBOs, their

attributes, and operations, in a persistent table at runtime.

Validating Generated Code
Validation rules are enforced when generating client code. Define prefix names in the Mobile
Business Object Preferences page of the Code Generation wizard to correct validation errors.

SAP Mobile WorkSpace validates and enforces identifier rules and checks for keyword
conflicts in generated code, for example, by displaying error messages in the Properties view
or in the wizard. Other than the known name conversion rules (converting '.' to '_', removing
white space from names, and so on), there is no other language-specific name conversion. For
example, cust_id is not changed to custId.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

Development Task Flow for Object API Applications

14 SAP Mobile Platform

2. Expand SAP AG > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are autogenerated, for example, when you drag and drop a datasource onto the
Mobile Application Diagram.

Creating a Project
Build a device application project.Use these procedures if you are developing a device
application using the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse.

1. Downloading the Latest Afaria Libraries

Afaria® provides provisioning of configuration data and certificates for your SAP Mobile
Platform client application. Afaria libraries are packaged with SAP Mobile Platform, but
may not be the latest software available. To ensure you have the latest Afaria libraries,
download Afaria software.

2. Mobile Business Object Required Files

Develop a device application directly from mobile business object (MBO) generated code.

3. Differences Between the BlackBerry Java Plug-in and BlackBerry JDE

To develop a device application using the BlackBerry Java plug-in for Eclipse, use the
same procedure as developing with the BlackBerry JDE, but note the differences.

4. Creating a Project in the BlackBerry JDE

Create the BlackBerry project and add the generated mobile business object (MBO) Java
files to the BlackBerry JDE.

5. Creating a Project in the BlackBerry Java Plug-in for Eclipse

Create a new BlackBerry project in the BlackBerry Java Plug-in for Eclipse.

6. Adding Required .jar and .cod Files

The client API library JAR files and dependencies are installed in the SAP Mobile
Platform installation directory. JAR files are used for compilation and COD files for
runtime. Make sure COD files are deployed to the simulator/device along with the device
application.

7. Adding a Device Application Entry Point

Add a main file to the BlackBerry device application.

8. Configuring SAP Mobile Server to Use HTTPS

Enable SSL encryption by configuring the synchronization HTTPS port.

See also
• Generating Java Object API Code on page 9

Development Task Flow for Object API Applications

Developer Guide: BlackBerry Object API Applications 15

• Developing the Application Using the Object API on page 19

Downloading the Latest Afaria Libraries
Afaria® provides provisioning of configuration data and certificates for your SAP Mobile
Platform client application. Afaria libraries are packaged with SAP Mobile Platform, but may
not be the latest software available. To ensure you have the latest Afaria libraries, download
Afaria software.

1. Navigate to the Mobile Enterprise Technical Support website at http://
frontline.sybase.com/support/downloads.aspx.

2. If not registered, register for an account.
3. Log into your account.
4. Select Software Updates and download the latest Static Link Libraries.
5. Extract the contents of the downloaded zip file.

Mobile Business Object Required Files
Develop a device application directly from mobile business object (MBO) generated code.

The main characteristics are:

• Mobile business objects – contain only MBO business logic. You must:
• Include libraries and JAR files in the BlackBerry project that support the BlackBerry

Client Object API.
• Add the Java files from the MBO Generated Code folder to the BlackBerry project.

Differences Between the BlackBerry Java Plug-in and BlackBerry JDE
To develop a device application using the BlackBerry Java plug-in for Eclipse, use the same
procedure as developing with the BlackBerry JDE, but note the differences.

• Libraries cannot be located inside BlackBerry projects developed using the BlackBerry
Java plug-in for Eclipse, due to a RIM limitation. The libraries must be outside the projects
and referred to with an absolute path.

Creating a Project in the BlackBerry JDE
Create the BlackBerry project and add the generated mobile business object (MBO) Java files
to the BlackBerry JDE.

1. Launch the BlackBerry JDE and create a new workspace.

2. Create a BlackBerry project and name it SMPClient.

3. Right-click the project and select Properties.

Development Task Flow for Object API Applications

16 SAP Mobile Platform

http://frontline.sybase.com/support/downloads.aspx
http://frontline.sybase.com/support/downloads.aspx

4. In the properties dialog, select the Application tab, specify Application for Project
type and select Always make project active in the General tab of the properties for the
project.

5. Select the Build tab, and click Add next to “Imported jar files.” Add files as described in
Developer Guide: BlackBerry Object API Applications > Development Task Flow for
Object API Applications > Creating a Project > Adding Required .jar and .cod Files.

6. Click OK.

7. Copy the MBO generated Java code from the generated location to the project location.

• MBO generated code – references the Client object API and contains the Java files that
implements the business logic of your project. Navigate to the src subdirectory where
you generated the Java code from your SAP Mobile WorkSpace mobile application.
This location is dependent on the workspace that you used.
For example, if your workspace is in the C:\myBBapplications directory and the
name of the mobile application project is test, navigate to C:
\myBBapplications\test\Generated Code\src\test and copy all of
the .java files to your project.

Creating a Project in the BlackBerry Java Plug-in for Eclipse
Create a new BlackBerry project in the BlackBerry Java Plug-in for Eclipse.

1. Start the BlackBerry Java Plug-in for Eclipse.

2. From the toolbar, select New > BlackBerry Project.

3. In the New BlackBerry Project wizard, use these values and click Next.

• Name – enter SMPClient
• Use a project specific JRE – select BlackBerry JRE 6.0.0

Adding Required .jar and .cod Files
The client API library JAR files and dependencies are installed in the SAP Mobile Platform
installation directory. JAR files are used for compilation and COD files for runtime. Make sure
COD files are deployed to the simulator/device along with the device application.

Add the following SAP Mobile Platform .jar file references to the BlackBerry project's Java
build path.

• Object API libraries - sup_client2.jar – from SMP_HOME
\MobileSDK23\ObjectAPI\BB for the Blackberry client.

• Client database (UltraLite®J) libraries – UltraLiteJ12.jar from SMP_HOME
\MobileSDK23\ObjectAPI\BB for the BlackBerry client.

Copy required .cod files to the BlackBerry simulator directory:

Development Task Flow for Object API Applications

Developer Guide: BlackBerry Object API Applications 17

• Client database (UltraLite®J) libraries – UltraLiteJ12.cod from SMP_HOME
\MobileSDK23\ObjectAPI\BB for the BlackBerry client.

Adding a Device Application Entry Point
Add a main file to the BlackBerry device application.

1. From the BlackBerry Application project that contains your generated MBO code, for
example supClient, add a new file by right-clicking the project and selecting Create
new file in project.

2. Name the file, for example, BBMain. Click OK.

This file is the main entry point to the device application.

3. Import the common BlackBerry device application development packages as well as the
package that contains your MBOs (for example, com.custom.MBO.*).

You can now create the code to connect to SAP Mobile Server, access and synchronize
your MBOs, and perform other functions.

Configuring SAP Mobile Server to Use HTTPS
Enable SSL encryption by configuring the synchronization HTTPS port.

1. In the left navigation pane of SAP Control Center for SAP Mobile Platform, expand the
Servers node and click the server name.

2. Click Server Configuration.

3. In the right administration pane, on the Replication tab, click Synchronization
Listener.

4. Select Secure synchronization port as the protocol used for synchronization
and configure the certificate properties, then in the optional properties section, specify the
myserver_identity.crt certificate file using the fully qualified path to the file,
along with the password you entered during certificate creation.

Note: In a clustered environment, this fully qualified path must work for all nodes in the
cluster. You can do this via a a shared disk, or distribute this file manually to all nodes.

See Configuring Replication Subscription Properties in the SAP Control Center for SAP
Mobile Platform.

Development Task Flow for Object API Applications

18 SAP Mobile Platform

Developing the Application Using the Object
API

Use the Object API to develop the application. An application consists of building blocks
which the developer uses to start the application, perform functions needed for the application,
and shutdown and uninstall the application.

See also
• Creating a Project on page 15

• Testing Applications on page 59

Initializing an Application
Initialize the application when it starts the first time and subsequently.

• Initially Starting an Application

Starting an application the first time.

• Subsequently Starting an Application

Subsequent start-ups are different from the first start-up.

Initially Starting an Application
Starting an application the first time.

1. Setting Up Application Properties

The Application instance contains the information and authentication credentials needed
to register and connect to the SAP Mobile Server.

2. Registering an Application

Each device must register with the server before establishing a connection.

3. Setting Up the Connection Profile

The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLite®J
runtime tuning values.

4. Setting Up Connectivity

Store connection information to the SAP Mobile Server data synchronization channel.

5. Creating and Deleting a Device's Local Database

There are methods in the generated package database class that allow programmers to
delete or create a device's local database. A device local database is automatically created

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 19

when needed by the Object API. The application can also create the database
programatically by calling the createDatabase method. The device's local database should
be deleted when uninstalling the application.

6. Logging In
Use online authentication with the server.

7. Turn Off API Logger
In production environments, turn off the API logger to improve performance.

8. Setting Up Callbacks
When your application starts, it can register database and MBO callback listeners, as well
as synchronization listeners.

9. Connecting to the Device Database
Establish a connection to the database on the device.

10. Synchronizing Applications
Synchronize package data between the device and the server.

11. Specifying Personalization Parameters
Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The
PersonalizationParameters class is within the generated code for your project.

12. Specifying Synchronization Parameters
Use synchronization parameters within the mobile application to download filtered MBO
data.

See also
• Application APIs on page 75
• Connection APIs on page 106

Setting Up Application Properties
The Application instance contains the information and authentication credentials needed to
register and connect to the SAP Mobile Server.

The following code illustrates how to set up the minimum required fields:
// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the application ID deployed to the SAP
Mobile Server
app.setApplicationIdentifier("SUP101");

// ConnectionProperties has the infomation needed to register
// and connect to SAP Mobile Server
ConnectionProperties connProps = app.getConnectionProperties();
connProps.setServerName("server.mycompany.com");
// if you are using Relay Server, then use the correct port number

Developing the Application Using the Object API

20 SAP Mobile Platform

for the Relay Server.
// if connecting using http without a relay server, use the messaging
administration port, by default 5001.
// if connecting using https without a relay server, then use a new
port for https, for example 9001.
connProps.setPortNumber(5001);

// if connecting using https without a relay server, set the network
protocol
connProps.setNetworkProtocol("https");

// Set FarmId and UrlSuffix when connecting through the Relay
Server.

// Provide user credentials
LoginCredentials loginCred = new LoginCredentials("supAdmin",
"supPwd");
connProps.setLoginCredentials(loginCred);

// Initialize generated package database class with this Application
instance
SMP101DB.setApplication(app);

If you are using a Relay Server, specify the connection as follows:
// specify Relay Server Host
connProps.setServerName("relayserver.mycompany.com");
// specify Relay Server Port (port 80 by default)
connProps.setPortNumber(80);
// specify the Relay Server MBS Farm, for example MBS_Farm
connProps.setFarmId("MBS_FARM");

Optionally, you can specify the Relay Server URL suffix.

Using a Reverse Proxy for Object API Applications
The Object API application communicates with SAP Mobile Server through two ports:

1. Application registration (default 5001)
2. Application synchronization (default 2480)

The SAP Mobile Server administrator configures two ports with each port serving one SAP
Mobile Server port, so that:

• The root context of http://reverseProxy:5001 maps to http://server-name:5001
• The root context of http://reverseProxy:2480 maps to http://server-name:2480

Set Object API application connection properties just as you would to directly connect to SAP
Mobile Server.

The SAP Mobile Server administrator configures two contexts for one SAP Mobile Server
port, so that:

• The "/smp/message" context of http://reverseProxy:8080 maps to http://server-name:
5001

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 21

• The "/smp/mobilink" context of http://reverseProxy:8080 maps to http://server-name:
2480

Set the URL suffix for the Object API application to "/smp/message" for registering
applications and "/smp/mobilink" for synchronization, just as you would if connecting to SAP
Mobile Server through a Relay Server which is not installed at the default location. The
difference is that you do not include a FarmId for the reverse proxy.

Note: When using an Apache server as a reverse proxy without SAP Hosted Relay Server to
proxy Object API Applications against SAP Mobile Server, if a custom URL suffix is used,
clients should specify a custom URL suffix including a trailing forward slash "/". For example,
"/myApp/" instead of "/myApp". If not, the client may report connection failures.

See also
• Registering an Application on page 23

• Application APIs on page 75

Communicating with SAP Mobile Server Through a Reverse Proxy
Connect to SAP Mobile Server through a Reverse Proxy using Relay Server or the Apache
Web server.

The Object API application can communicate with SAP Mobile Server:

• Directly
• Through Relay Server by specifying:

• Just the FarmID
• Just the URL suffix
• Both the FarmID and URL suffix

• Through a Reverse Proxy by specifying only the URL suffix - you can configure the
reverse proxy in such a way that the device communicates to http://server:port/
customcontext/tm or /tm2 when communicating with SAP Mobile Server. "FarmID" has
no meaning when using a Reverse Proxy. In this case, use only the URL suffix and leave
"FarmID" empty.

Note: You can also use the custom context with the Relay Server when using Apache.

Connecting to SAP Mobile Server Through a Reverse Proxy Using Relay
Server:
// Register:
 Application.getInstance().getConnectionProperties().setUrlSuffix
 ("/ias_relay_server/client/rs_client.dll/$messaging-farmId$")
 // (e.g. /ias_relay_server/client/rs_client.dll/mega-vm008.msg)

//Synchronize:

TestDB.getSynchronizationProfile().getStreamParams().setUrl_Suffix
 ("/ias_relay_server/client/rs_client.dll/$replication-farmId

Developing the Application Using the Object API

22 SAP Mobile Platform

$")
 // (e.g. /ias_relay_server/client/rs_client.dll/mega-vm008.rep)

Connecting to SAP Mobile Server Through a Reverse Proxy Using Apache Web
Server as Proxy Server:
Add to the httpd.conf file:
content: Listen 80 <VirtualHost *:80>
ServerName proxy-server
<Location /app1/>
ProxyPass http://sup-server:5001/ ProxyPassReverse
http://sup-server:5001/
</Location>
<Location /app2/>
ProxyPass http://sup-server:2480/
ProxyPassReverse http://sup-server:2480/
</Location>
</VirtualHost>

// Register:
Application.getInstance().getConnectionProperties().setUrlSuffix("/
app1");

//Synchronize:
TestDB.getSynchronizationProfile().getStreamParams().setUrl_Suffix(
"/app2");

Registering an Application
Each device must register with the server before establishing a connection.

To register the device with the server during the initial application startup, use the
registerApplication method in the com.sybase.mobile.Application
class. You do not need to use the registerApplication method for subsequent
application start-ups. The registerApplication method automatically starts the
connection to complete the registration process.

Call the generated database's setApplication method before starting the connection or
registering the device.

The following code shows how to register the application and device.
// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the
// application ID deployed to the SAP Mobile Server
app.setApplicationIdentifier("SMP101");
ApplicationCallback appCallback = new ApplicationCallback();
app.setApplicationCallback(appCallback);

// set connection properties, login credentials, etc
...

SMP101DB.setApplication(app);

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 23

if (app.getRegistrationStatus() != RegistrationStatus.REGISTERED)
{
 // If the application has not been registered to the server,
 // register now
 app.registerApplication(<timeout_value>);
}
else
{
 // start the connection to server
 app.startConnection(<timeout_value>);
}

See also
• Setting Up Application Properties on page 20

• Application APIs on page 75

Setting Up the Connection Profile
The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLite®J
runtime tuning values.

Set up the connection profile before the first database access, and check if the database exists
by calling the databaseExists method in the generated package database class. Any
settings you establish after the connection has already been established will not go into effect.

The generated database class automatically contains all the default settings for the connection
profile. You may add other settings if necessary. For example, you can set the database to be
stored in an SD card or set the encryption key of the database.

Use the com.sybase.persistence.ConnectionProfile class to set up the
locally generated database. Retrieve the connection profile object using the SAP Mobile
Platform database's getConnectionProfile method.

// Initialize the device database connection profile (if needed)
ConnectionProfile connProfile = SMP101DB.getConnectionProfile();

// Store the database in an SD card
connProfile.setProperty("databaseFile", "file:///SDCard/BlackBerry/
documents/SMP1011_0.ulj");

// encrypt the database
connProfile.setEncryptionKey("encryption key must be 16 characters
or longer");
// You can also automatically generate a encryption key and store it
inside a data vault.

// use 100K for cache size
connProfile.setCacheSize(102400);

An application can have multiple threads writing to the database during synchronization by
enabling the connection profile property, allowConcurrentWrite. Setting the property

Developing the Application Using the Object API

24 SAP Mobile Platform

to "true" allows multiple threads to perform create, read, update, or delete operations at the
same time in a package database. For example:
SMP101DB.getConnectionProfile().setProperty("allowConcurrentWrite",
"true");

Note: Multiple threads are allowed to write to the database at the same time. However, there
will be errors when multiple threads write to the same row of one MBO. Avoid writing to the
same MBO row in your application.

See also
• ConnectionProfile on page 106

Setting Up Connectivity
Store connection information to the SAP Mobile Server data synchronization channel.

See also
• Creating and Deleting a Device's Local Database on page 26

Setting Up the Synchronization Profile
You can set SAP Mobile Server synchronization channel information by calling the
synchronization profile's setter method. By default, this information includes the server host,
port, domain name, certificate and public key that are pushed by the message channel during
the registration process.

Settings are automatically provisioned from the SAP Mobile Server. The values of the settings
are inherited from the application connection template used for the registration of the
application connection (automatic or manual). You must make use of the connection and
security settings that are automatically used by the Object API.

Typically, the application uses the settings as sent from the SAP Mobile Server to connect to
the SAP Mobile Server for synchronization so that the administrator can set those at the
application deployment time based on their deployment topology (for example, using Relay
Server, using e2ee security, or a certificate used for the intermediary, such as a Relay Server
Web server). See the Applications and Application Connection Templates topics in System
Administration.

On the Blackberry platform, you must install the HTTPS certificate into the Blackberry
certificate store. The HTTPS certificate cannot be specified through the API.

Set up a secured connection using the ConnectionProfile object.

1. Retrieve the synchronization profile object using the SAP Mobile Platform database's
getSynchronizationionProfile method.

ConnectionProfile cp = SMP101DB.getSynchronizationProfile();
2. Set the connection fields in the ConnectionProfile object.

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 25

cp.setServerName("SAP_Mobile_Platform_Host");
cp.setPortNumber(2481);
cp.setNetworkProtocol("https");

See also
• Synchronization Profile on page 110

Creating and Deleting a Device's Local Database
There are methods in the generated package database class that allow programmers to delete
or create a device's local database. A device local database is automatically created when
needed by the Object API. The application can also create the database programatically by
calling the createDatabase method. The device's local database should be deleted when
uninstalling the application.

1. Connect to the generated database by calling the generated database instance's
openConnection method.

SMP101DB.openConnection();

If the database does not already exist, the openConnection method creates it.

2. Optionally, you can include code in your application to check if an instance of the
generated database exists by calling the generated database instance's
databaseExists method.

If an instance of the generated database does not exist, call the generated database
instance's createDatabase method.

if (!SMP101DB.databaseExists())
 {
 SMP101DB.createDatabase();
 }

3. When the local database is no longer needed, delete it by calling the generated database
instance's deleteDatabase method.

SMP101DB.deleteDatabase();

See also
• Setting Up Connectivity on page 25

Logging In
Use online authentication with the server.

Authenticate the user for data synchronization by calling the generated database API
onlineLogin method.

Use the SynchronizationProfile to store the username and password.

ConnectionProfile syncProfile =
SMP101DB.getSynchronizationProfile();
syncProfile.setUserName("user");

Developing the Application Using the Object API

26 SAP Mobile Platform

syncProfile.setPassword("password");
SMP101DB.onlineLogin();

See also
• Turn Off API Logger on page 27

Check Network Connection Before Login
Test the wireless connection before an online login attempt is made. If the wireless connection
option has been switched off, the onlineLogin call takes a long time to fail due to network
unavailability even if the username and password are correct.

Use the asynchronous beginOnlineLogin and use a CallbackHandler with
onLoginSuccess and onLoginFailure methods to check the outcome. Avoid using
offlineLogin if credentials (username/password) are saved in a DataVault.

Turn Off API Logger
In production environments, turn off the API logger to improve performance.

SMP101DB.getLogger().setLogLevel(LogLevel.OFF);

See also
• Logging In on page 26

Setting Up Callbacks
When your application starts, it can register database and MBO callback listeners, as well as
synchronization listeners.

Callback handler and listener interfaces are provided so your application can monitor changes
and notifications from SAP Mobile Platform:

• The com.sybase.mobile.ApplicationCallback class is used for monitoring
changes to application settings, messaging connection status, and application registration
status.

• The com.sybase.persistence.CallbackHandler interface is used to
monitor notifications and changes related to the database. To register callback handlers at
the package level, use the registerCallbackHandler method in the generated
database class. To register for a particular MBO, use the
registerCallbackHandler method in the generated MBO class.

• The com.sybase.persistence.SyncStatusListener class is used for
debugging and performance measures when monitoring stages of a synchronization
session, and can be used in the user interface to indicate synchronization progress.

See also
• Connecting to the Device Database on page 33

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 27

Setting Up Callback Handlers
Use the callback handlers for event notifications.

Use the com.sybase.persistence.CallbackHandler API for event notifications
including login for synchronization and replay. If you do not register your own
implementation of the com.sybase.persistence.CallbackHandler interface,
the generated code will register a new default callback handler.

1. The generated database class contains a method called
registerCallbackHandler. Use this method to install your implementation of
CallbackHandler.
For example:
SMP101DB.registerCallbackHandler(new MyCallbackHandler());

2. Each generated MBO class also has the same method to register your implementation of
the CallbackHandler for that particular type. For example, if Customer is a
generated MBO class, you can use the following code:
Customer.registerCallbackHandler(new
MyCustomerMBOCallbackHandler());

Create a Custom Callback Handler
If an application requires a callback (for example, to allow the client framework to provide
notification of synchronization results), create a custom callback handler.

import com.sybase.persistence.DefaultCallbackHandler;
...

public class Test
{
 public static void main(String[] args)
 {
 SMP101DB.registerCallbackHandler(new MyCallbackHandler());
 ObjectList sgs = new ObjectList(2);
 sgs.add(SMP101DB.getSynchronizationGroup("sg1"));
 sgs.add(SMP101DB.getSynchronizationGroup("sg2"));
 SMP101DB.beginSynchronize(sgs, "my test synchronization
context");
 }
}

class MyCallbackHandler extends DefaultCallbackHandler
{
 //The onSynchronize method overrides the
 //onSynchronize method from DefaultCallbackHandler.
 public int onSynchronize(ObjectList groups,
SynchronizationContext context)
 {
 if (context == null)
 {
 return SynchronizationAction.CANCEL;
 }

Developing the Application Using the Object API

28 SAP Mobile Platform

 if (!("my test synchronization context".equals((String)
(context.getUserContext()))))
 {
 return super.onSynchronize(groups, context);
 }

 switch (context.getStatus())
 {
 case SynchronizationStatus.STARTING:
 if (waitForMoreChanges())
 {
 return SynchronizationAction.CANCEL;
 }
 else
 {
 return SynchronizationAction.CONTINUE;
 }
 default:
 return SynchronizationAction.CONTINUE;
 }
 }

}

Asynchronous Operation Replay
Upload operation replay records asynchronously.

When an application calls submitPending on an MBO on which a create, update, or delete
operation is performed, an operation replay record is created on the device local database.

When synchronize is called, the operation replay records are uploaded to the server. The
method returns without waiting for the backend to replay those records. The synchronize
method downloads all the latest data changes and the results of the previously uploaded
operation replay records that the backend has finished replaying in the background. If you
choose to disable asynchronous operation replay, each synchronize call will wait for the
backend to finish replaying all the current uploaded operation replay records.

When SAP Mobile Platform does an update operation replay, if the primary key or foreign
key of the MBO is generated by the EIS and the MBO's content coming from the device has no
primary key or foreign key, the SAP Mobile Server loads the primary key or foreign key from
the CDB to merge the incoming values with the CDB content so that a full row (graph) can be
communicated to the EIS.
oneMBO mbo = new oneMBO();
mbo.setXX(xx);
....
mbo.create();
mbo.submitPending();
mbo.setXX(yy);
....
mbo.update();

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 29

mbo.submitPending();
DBClass.synchronize()

This feature is enabled by default. You can enable or disable the feature by setting the
asyncReplay property in the synchronization profile. The following code shows how to
disable asynchronous replay:
SMP101DB.getSynchronizationProfile().setAsyncReplay(false);

When the application is connected
(by Application.startConnection() or Application.registerApplica
tion), it may receive background notifications and trigger a synchronize or other database
operation. If you try to delete the database, you may receive database exceptions.

Before deleting the database, stop the application connection
(Application.stopConnection()).

You can specify an upload-only synchronization where the client sends its changes to the
server, but does not download other changes from the server. This type of synchronization
conserves device resources when receiving changes from the server.
public static void
beginSynchronize(com.sybase.collections.ObjectList sgs,Object
context, boolean uploadOnly)

When asynchronous replay is enabled and the replay is finished, the onSynchronize callback
method is invoked with a SynchronizationStatus value of
SynchronizationStatus.ASYNC_REPLAY_COMPLETED. Use this callback
method to invoke a synchronize call to pull in the results, as shown in the following callback
handler.
public class MyCallbackHandler extends DefaultCallbackHandler
{
 public int onSynchronize(ObjectList groups, SynchronizationContext
context)
 {
 switch(context.getStatus())
 {
 case SynchronizationStatus.ASYNC_REPLAY_UPLOADED:
 LogMessage("AsyncReplay uploaded");
 break;
 case SynchronizationStatus.ASYNC_REPLAY_COMPLETED:
 // operation replay finished, return
SynchronizationAction.CONTINUE
 // will start a background synchronization to pull in the
results.
 LogMessage("AsyncReplay Done");
 break;
 default:
 break;
 }

 return SynchronizationAction.CONTINUE;

Developing the Application Using the Object API

30 SAP Mobile Platform

 }
}

Synchronize Status Listener
Retrieve the synchronization status.

Synchronize Status Listener is mainly for debugging and performance measuring purposes to
monitor stages of a synchronize session. It could also be used in UI for synchronization
progress status. Below is a sample Synchronize Status Listener.
import com.sybase.persistence.ObjectSyncStatusData;
import com.sybase.persistence.SyncStatusListener;
import com.sybase.persistence.SyncStatusState;

public class MySyncStatusListener implements SyncStatusListener
{
 long start;

 public MySyncStatusListener()
 {
 start = System.currentTimeMillis();
 }

 public boolean objectSyncStatus(ObjectSyncStatusData statusData)
 {
 long now = System.currentTimeMillis();
 long interval = now - start;
 start = now;
 String infoMessage;

 int syncState = statusData.getSyncStatusState();

 switch (syncState)
 {
 case SyncStatusState.SYNC_STARTING:
 infoMessage = "START [" + interval + "]";
 break;
 case SyncStatusState.APPLICATION_SYNC_SENDING_HEADER:
 infoMessage = "SENDING HEADERS [" + interval + "]";
 break;
 case SyncStatusState.APPLICATION_SYNC_SENDING_SCHEMA:
 infoMessage = "SENDING SCHEMA [" + interval + "]";
 break;
 case SyncStatusState.APPLICATION_DATA_UPLOADING:
 infoMessage = "DATA UPLOADING [" + interval + "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case
SyncStatusState.APPLICATION_SYNC_RECEIVING_UPLOAD_ACK:
 infoMessage = "RECEIVING UPLOAD ACK [" + interval +
"]";

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 31

 break;
 case SyncStatusState.APPLICATION_DATA_UPLOADING_DONE:
 infoMessage = "UPLOAD DONE [" + interval + "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case SyncStatusState.APPLICATION_DATA_DOWNLOADING:
 infoMessage = "DATA DOWNLOADING[" + interval + "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case SyncStatusState.APPLICATION_SYNC_DISCONNECTING:
 infoMessage = "DISCONNECTING [" + interval + "]";
 break;
 case
SyncStatusState.APPLICATION_SYNC_CHECKING_LAST_UPLOAD:
 infoMessage = "CHECKING LAST UPLOAD [" + interval +
"]";
 break;
 case
SyncStatusState.APPLICATION_SYNC_COMMITTING_DOWNLOAD:
 infoMessage = "COMMITTING DOWNLOAD [" + interval + "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case SyncStatusState.APPLICATION_SYNC_CANCELLED:
 infoMessage = "SYNC CANCELED [" + interval + "]";
 break;
 case SyncStatusState.APPLICATION_DATA_DOWNLOADING_DONE:
 infoMessage = "DATA DOWNLOADING DONE [" + interval +
"]";
 break;
 case SyncStatusState.SYNC_DONE:

 infoMessage = "DONE [" + interval + "]";
 break;
 default:
 infoMessage = "STATE" syncState "[" + interval + "]";
 break;
 }
 LogMessage(infoMessage);
 return false;
 }
}

Developing the Application Using the Object API

32 SAP Mobile Platform

The application can pass an instance of an implementation of SyncStatusListener to
the synchronize API of the generated package database class to monitor the synchronization
status.
SMP101DB.synchronize(new MySyncStatusListener())

Connecting to the Device Database
Establish a connection to the database on the device.

After completing the device registration, call the generated database's openConnection
method to connect to the UltraLiteJ database on the device. If no device database exists, the
openConnection method creates one.

See also
• Setting Up Callbacks on page 27

Synchronizing Applications
Synchronize package data between the device and the server.

The generated database provides you with synchronization methods that apply to either all
synchronization groups in the package or a specified list of groups.

Note: Whenever upgrading the device operating system, you must first synchronize your
application in order to retain the data saved since the last successful synchronization.

See also
• Specifying Personalization Parameters on page 35

• Synchronization APIs on page 117

• Specifying Synchronization Parameters on page 35

Configuring Data Synchronization Using SSL Encryption
Enable SSL encryption by configuring the synchronization HTTPS port.

1. In the left navigation pane of SAP Control Center for SAP Mobile Platform, expand the
Servers node and click the server name.

2. Click Server Configuration.

3. In the right administration pane, click the Replication tab.

4. Select Secure synchronization port 2481 as the protocol used for synchronization, and
configure the certificate properties. In the optional properties section, specify the security
certificate file, the public security certificate file using the fully qualified path to the file,
along with the password you entered during certificate creation.

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 33

Nonblocking Synchronization
An example that illustrates the basic code requirements for connecting to SAP Mobile Server,
updating mobile business object (MBO) data, and synchronizing the device application from a
device application based on the Client Object API.

Subscribe to the package using synchronization APIs in the generated database class, specify
the groups to be synchronized, and invoke the asynchronous synchronization method
(beginSynchronize).

1. Make a blocking synchronize call to SAP Mobile Server to pull in all MBO data:
SMP101DB.synchronize();

2. List all customer MBO instances from the local database using an object query, such as
findAll, which is a predefined object query.

ObjectList customers = Customer.findAll();
int n = customers.count();
for (int i = 0; i < n; ++i)
{
 Customer c = (Customer)customers.elementAt(i);
 //Work on customer information
}

3. Find and update a particular MBO instance, and save it to the local database.
Customer cust = Customer.findByPrimaryKey(100);
cust.setAddress("1 Sybase Dr.");
cust.setPhone("9252360000");
cust.save();//or cust.update();

4. Submit the pending changes. The changes are ready for upload, but have not yet been
uploaded to the SAP Mobile Server.
cust.submitPending();

5. Use non-blocking synchronize call to upload the pending changes to the SAP Mobile
Server. The previous replay results and new changes are downloaded to the client device in
the download phase of the synchronization session.
ObjectList sgs = new ObjectList();
sgs.add(SMP101DB.getSynchronizationGroup("default")); // Customer
MBO is in "default" sync group
SMP101DB.beginSynchronize(sgs, "mycontext");

Enabling Change Notifications
A synchronization group can enable or disable its change notifications.

By default, change notifications are disabled for synchronization groups. To enable change
notifications, you must synchronize, then call the SynchronizationGroup object's
setEnableSIS method.

com.sybase.persistence.SynchronizationGroup sg =
SMP101DB.getSynchronizationGroup("PushEnabled");

if (!sg.getEnableSIS())
{

Developing the Application Using the Object API

34 SAP Mobile Platform

 sg.setEnableSIS(true);
 sg.setInterval(2);
 sg.save();
 SMP101DB.synchronize("PushEnabled");
}

Specifying Personalization Parameters
Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The
PersonalizationParameters class is within the generated code for your project.

1. To instantiate a PersonalizationParameters object, call the generated database
instance's getPersonalizationParameters method:

PersonalizationParameters pp =
SMP101DB.getPersonalizationParameters();

2. Assign values to the PersonalizationParameters object:

pp.setPKCity("New York");
3. Save the PersonalizationParameters value to the local database:

pp.save();

Note: If you define a default value for a personalization key that value will not take effect,
unless you call pp.save().

4. Synchronize the PersonalizationParameters value to the SAP Mobile Server:

SMP101DB.synchronize();

See also
• Synchronizing Applications on page 33

• Personalization APIs on page 115

Specifying Synchronization Parameters
Use synchronization parameters within the mobile application to download filtered MBO
data.

Note: The getSynchronizationParameters method has been deprecated.

Assign the synchronization parameters of an MBO before a synchronization session. The next
synchronize sends the updated synchronization parameters to the server.

1. List all the synchronization parameters.
com.sybase.collections.ObjectList r =
Customer.getSubscriptions();

2. Add synchronization parameters. This call adds and saves the synchronization
parameters:

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 35

CustomerSubscription sp = new CustomerSubscription();
sp.setName("example");
Customer.addSubscription(sp);

3. Synchronize to download the data:
SMP101DB.synchronize();

See also
• Synchronizing Applications on page 33

• Synchronization APIs on page 117

Subsequently Starting an Application
Subsequent start-ups are different from the first start-up.

Starting an application on subsequent occasions:

1. Use the getRegistrationStatus API in the Application class to determine if
the application has already been registered. If it has been registered, then only perform the
following steps:
a. Get the application instance.
b. Set the applicationIdentifier. The applicationIdentifier must be

the same as the one used for initial registration.
c. Initialize the generated package database class with this application instance.

Note: Once the application is registered, changes to any of the application connection
properties do not take effect. To modify the connection properties, unregister the
application, change the connection properties and then register again. Unregistering the
application also removes the user from the server.

2. Set up the connection profile properties if needed for database location and tuning
parameters.

3. Set up the synchronization profile properties if needed for SSL or a relay server.
4. Start the application connection to the server using the existing connection parameters and

registration information.
5. Open the database connection.

You can open the database connection in parallel with starting the application connection to
the server.
// Calls non-blocking startConnection
// This call will return immediately.
application.startConnection();

// Open the device database connection while establishing
// the messaging channel connection in the background
SMP101DB.openConnection();

// Once the device database connection has been opened, check
// whether the messaging channel is connected using the

Developing the Application Using the Object API

36 SAP Mobile Platform

// ApplicationCallback interface or the
Application.getConnectionStatus() API

See also
• Application APIs on page 75

Accessing MBO Data
Use MBO object queries to retrieve lists of MBO instances, or use dynamic queries that return
results sets or object lists.

See also
• Query APIs on page 155

• Object Queries on page 37

• Dynamic Queries on page 38

• MBOs with Complex Types on page 39

• Relationships on page 39

Object Queries
Use the generated static methods in the MBO classes to retrieve MBO instances.

1. To find all instances of an MBO, invoke the static findAll method contained in that
MBO. For example, an MBO named Customer contains a method such as
com.sybase.collections.ObjectList findAll().

2. To find a particular instance of an MBO using the primary key, invoke
MBO.findByPrimaryKey(...). For example, if a Customer has the primary key
"id" as int, the Customer MBO would contain the public static Customer
findByPrimaryKey(int id) method, which performs the equivalent of Select
x.* from Customer x where x.id = :id.

If the return type is a list, additional methods are generated for you to further process the result,
for example, to use paging. For example, consider this method, which returns a list of MBOs
containing the specified city name: com.sybase.collections.ObjectList
findByCity(String city, int skip, int take);. The skip parameter
specifies the number of rows to skip, and the take parameter specifies the maximum number
of rows to return.

See also
• Accessing MBO Data on page 37

• Query APIs on page 155

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 37

Dynamic Queries
Build queries based on user input.

Use the com.sybase.persistence.Query class to retrieve a list of MBOs.

1. Specify the where condition used in the dynamic query.
Query query = new Query();

AttributeTest aTest = new AttributeTest();

aTest.setAttribute("state");
aTest.setTestValue("NY");
aTest.setTestType(AttributeTest.EQUAL);
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("lname");
sort.add("fname");
query.setSortCriteria(sort);

2. Use the findWithQuery method in the MBO to dynamically retrieve a list of MBOs
acccording to the specified attributes.
ObjectList customers = Customer.findAll();
int n = customers.count();
for (int i = 0; i < n; ++i)
{
 Customer c = (Customer)customers.elementAt(i);
 System.out.println("Customer " + i + ": "
 + c.getLname() + ", " + c.getFname());
}

3. Use the generated database’s executeQuery method to query multiple MBOs through
the use of joins.
Query query = new Query();

query.select("c.fname,c.lname,s.order_date,s.id");
query.from("Customer", "c");
query.join("Sales_order", "s", "s.cust_id", "c.id");

AttributeTest ts = new AttributeTest();
ts.setAttribute("lname");
ts.setTestValue("Smith");
ts.setOperator(AttributeTest.EQUAL);
query.setTestCriteria(ts);
QueryResultSet qrs = SMP101DB.executeQuery(query);

while(qrs.next())
{
 System.out.println("order: " +
 qrs.getInt(4) + // 4 is s.id
 qrs.getString(1) + // 1 is c.fname
 ", " + qrs.getString(2) + // 2 is c.lname

Developing the Application Using the Object API

38 SAP Mobile Platform

 " " + qrs.getDate(3)); // 3 is s.order_date
}

See also
• Accessing MBO Data on page 37

• Query APIs on page 155

MBOs with Complex Types
Mobile business objects are mapped to classes containing data and methods that support
synchronization and data manipulation. You can develop complex types that support
interactions with backend datasources such as SAP® and Web services. When you define an
MBO with complex types, SAP Mobile Platform generates one class for each complex type.

Using a complex type to create an MBO instance.

1. Suppose you have an MBO named SimpleCaseList and want to use a complex data
type called AuthenticationInfo to its Create method's parameter. Begin by
creating the complex datatype:
AuthenticationInfo authen = new AuthenticationInfo();
authen.setUserName("Demo");

2. Instantiate the MBO object:
SimpleCaseList newCase = new SimpleCaseList();
newCase.setCase_Type("Incident");
newCase.setCategory("Networking");
newCase.setCreate_Time(new
java.sql.Timestamp(System.currentTimeMillis()));

3. Call the create method of the SimpleCaseList MBO with the complex type parameter as
well as other parameters, and call submitPending() to submit the create operation
to the operation replay record. Subsequent synchronizations upload the operation replay
record to the SAP Mobile Server and get replayed.
newCase.create(authen, "Other", "Other", "Demo", "false",
"worklog");
newCase.submitPending();

See also
• Accessing MBO Data on page 37

• Query APIs on page 155

Relationships
The Object API supports one-to-one, one-to-many, and many-to-one relationships.

Navigate between MBOs using relationships.

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 39

1. Suppose you have one MBO named Customer and another MBO named
SalesOrder. This code illustrates how to navigate from the Customer object to its
child SalesOrder objects:

Customer cust = Customer.findById(101);
com.sybase.collections.ObjectList orders =
customer.getSalesOrders();

2. To filter the returned child MBO's list data, use the Query class:

Query query = new Query();
AttributeTest at = new AttributeTest("sales_rep", new
Integer(129), AttributeTest.EQUAL);
query.where(at);
orders = cust.getSalesOrdersFilterBy(query);

3. For composite relationship, you can call the parent's SubmitPending method to submit
the entire object tree of the parent and its children. Submitting the child MBO also submits
the parent and the entire object tree. (If you have only one child instance, it would not make
any difference. To be efficient and get one transaction for all child operations, it is
recommended to submit the parent MBO once, instead of submitting every child).

If the primary key for a parent is assigned by the EIS, you can use a multilevel insert
cascade operation to create the parent and child objects in a single operation without
synchronizing multiple times. The returned primary key for the parent's create
operation populates the children prior to their own creation.

The following example illustrates how to submit the parent MBO which also submits the
child's operation:
Customer cust = Customer.findById(101);
Sales_order order = new Sales_order();
order.setId(1001);
order.setCustomer(cust);
order.setOrder_date(new Date());
order.setFin_code_id("r1");
order.setRegion("Eastern");
order.setSales_rep(101);
order.save(); // or order.create();
cust.save();
cust.submitPending();

See also
• Accessing MBO Data on page 37
• Query APIs on page 155

Manipulating Data
Create, update, and delete instances of generated MBO classes.

You can create a new instance of a generated MBO class, fill in the attributes, and call the
create method for that MBO instance.

Developing the Application Using the Object API

40 SAP Mobile Platform

You can modify an object loaded from the database by calling the update method for that
MBO instance.

You can load an MBO from the database and call the delete method for that instance.

See also
• Persistence APIs on page 166

Creating, Updating, and Deleting MBO Records
Perform create, update, and delete operations on the MBO instances that you have created.

You can call the create, update, and delete methods for MBO instances.

Note: For MBOs with custom create or update operations with parameters, you should use the
custom operations, rather than the default create and update operations. See MBOs with
Complex Types.

1. Suppose you have an MBO named Customer. To create an instance within the database,
invoke its create method, which causes the object to enter a pending state. Then call the
MBO instance's submitPending method. Finally, synchronize with the generated
database:
Customer newcustomer = new Customer();
//Set the required fields for the customer
// …

newcustomer.create();
newcustomer.submitPending();
SMP101DB.synchronize();

2. To update an existing MBO instance, retrieve the object instance through a query, update
its attributes, and invoke its update method, which causes the object to enter a pending
state. Then call the MBO instance's submitPending method. Finally, synchronize with
the generated database:
Customer customer = Customer.findByPrimary(myCustomerId) //find
by primary key
customer.setCity("Dublin"); //update any field to a new value
customer.update();
customer.submitPending();
SMP101DB.synchronize();

3. To delete an existing MBO instance, retrieve the object instance through a query and
invoke its delete method, which causes the object to enter a pending state. Then call the
MBO instance's submitPending method. Finally, synchronize with the generated
database:
Customer customer = Customer.FindByPrimary(myCustomerId) //find
by primary key
customer.delete();
customer.submitPending();
SMP101DB.synchronize();

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 41

For an object tree with MBOs in a composite (cascading) relationship, submitPending
submits changes found in the entire hierarchy. If each MBO in the hierarchy has its own
CUD operations, the submitted object tree replays in this order:
• Create and Update: a preorder traversal, for example, parent -> left child -> right child.

That is, create the parent before the children.
• Delete: a postorder traversal, for example, left child ->right child->parent.
Left and right in this context means from the first child in the children list to the last child.
For a tree with multiple operation types, for example, root (update) and two children (one
create and one update) and each child has two children, the order of the operation is: root
(update), child one(create), children of child one(create), children of child two (delete),
child two (delete).

See also
• Operations APIs on page 166

Other Operations
Use operations other than create, update, or delete.

In this example, a customized operator is used to perform a sum operation.

1. Suppose you have an MBO that has an operator that generates a customized sum. Begin by
creating an object instance and assigning values to its attributes, specifying the "Add"
operation:
SMP101AddOperation op = new SMP101AddOperation(); //Convention is
<MBO Name>+<Operation Name>+"Operation"

op.setOperand1(12);
op.setOperand2(23);
op.setOperator("Add");
op.save();

2. Call the MBO instance's submitPending method and synchronize with the generated
database:
op.submitPending();
SMP101DB.synchronize();

See also
• Operations APIs on page 166

Using submitPending and submitPendingOperations
You can submit a single pending MBO, all pending MBOs of a single type, or all pending
MBOs in a package. Once those pending changes are submitted, the MBOs enter a replay
pending state. The next synchronization will submit those changes to the EIS.

Note: submitPendingOperations APIs are expensive. SAP recommends using the
submitPending API with the MBO instance whenever possible.

Developing the Application Using the Object API

42 SAP Mobile Platform

Database Classes
Submit pending operations for all entities in the package or synchronization group, cancel all
pending operations that have not been submitted to the server, and check if there are pending
oprations for all entities in the package.

1. To submit pending operations for all pending entities in the package, invoke the generated
database's submitPendingOperations method.

Note: submitPendingOperations APIs are expensive. SAP recommends using the
submitPending API with the MBO instance whenever possible.

2. To submit pending operations for all pending entities in the specified synchronization
group, invoke the generated database's submitPendingOperations (string
synchronizationGroup) method.

3. To cancel all pending operations that have not been submitted to the server, invoke the
generated database's cancelPendingOperations method.

Generated MBOs
Submit pending operations for all entities for a given MBO type or a single instance, and
cancel all pending operations that have not been submitted to the server for the MBO type or a
single entity.

1. To submit pending operations for all pending entities for a given MBO type, invoke the
MBO class' static submitPendingOperations method.

Note: submitPendingOperations APIs are expensive. SAP recommends using the
submitPending API with the MBO instance whenever possible.

2. To submit pending operations for a single MBO instance, invoke the MBO object's
submitPending method.

3. To cancel all pending operations that have not been submitted to the server for the MBO
type, invoke the MBO class' static cancelPendingOperations method.

4. To cancel all pending operations for a single MBO instance, invoke the MBO object's
cancelPending method.

5. For a single MBO, you must call the refresh() method of the MBO instance before
you use this instance again.
customer.create();
customer.submitPending();
// must call refresh() here
customer.refresh();
customer.update();
customer.submitPending();

6. For related MBOs, you must call the refresh() method of the MBO instance before
you use this instance again, even if the MBO's child or parent has called
submitPending.

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 43

Shutting Down the Application
Shut down an application and clean up connections.

Closing Connections
Clean up connections from the generated database instance prior to application shutdown.

1. To release an opened application connection, stop the messaging channel by invoking the
application instance's stopConnection method.

// wait the timeout value for the connection to stop
// if it is not stopped within the timeout value an exception will
be thrown
app.stopConnection(<timeout_value>);

2. Use the closeConnection method to close all database connections for this package
and release all resources allocated for those connections. This is recommended to be part
of the application shutdown process.

Tracking KPI
Access performance libraries for tracing or collecting key performance indicators (KPIs).

User interactions are measured in intervals of these types: HttpRequest, PersistenceRead,
PersistenceWrite, SubmitPending, CancelPending, and Transaction. All intervals measure
Wallclock Time, CPU Time, and Memory Max.

Specific interval types measure some additional KPIs:

• HttpRequest
• Roundtrips
• Total Bytes
• Sent Bytes
• Received Bytes
• Total Packets
• Sent Packets
• Received Packets

• PersistenceRead
• PersistenceReads

• PersistenceWrite
• PersistenceWrites

After the interaction is stopped, a summary log in csv format and a detailed log in txt format is
written to the device.The summary log contains sums of each of the KPI types. For example,

Developing the Application Using the Object API

44 SAP Mobile Platform

total Wallclock Time, total CPU Time, total number of roundTrips, total number of
PersistenceRead, total CPU Time of PersistenceWrite, and so on. The detailed log also
contains a summary line, as well as KPI values for each interval.

The administrator can invoke a Get Trace request through SAP Control Center to send the
performance log to the server domain log.

To start collecting performance metrics, call the startInteraction method:

public void startInteraction(String interactionName)

To stop collecting performance metrics and output a summary to the reporting target, call the
stopInteraction method:

public void stopInteraction();

Example of application interactions for collecting KPI:
// get the instance
PerformanceAgentService pa =
PerformanceAgentServiceImpl.getInstance();
pa.startInteraction("Interaction 1");
 // application interaction
 // ...
 // ...
pa.stopInteraction();

 pa.startInteraction("Interaction 2");
 // application interaction
 // ...
 // ...
 pa.stopInteraction();

The following limitations apply:

• On BlackBerry devices, CPU Time is not measured.
• On BlackBerry devices, the summary log does not contain sub-totals (such as total time of

PersistenceWrite).

Uninstalling the Application
Uninstall the application and clean up all package- and MBO-level data.

Deleting the Database and Unregistering the Application
Delete the package database, and unregister the application.

1. Unregister the application by invoking the Application instance's
unregisterApplication method.

app.unregisterApplication(<time out value>);
2. To delete the package database, call the generated database's deleteDatabase

method.

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 45

SMP101DB.deleteDatabase();

Recovering From SAP Mobile Server Failures
Add application code to check for and recover from SAP Mobile Server failures.

It is highly recommended that you add a catch call to all synchronize methods
(synchronize(), begingSynchronize(), and so on) within your applications to
allow the application to recover if SAP Mobile Server fails and needs to be restored from an
older database. If not, you may have to reinstall the application manually for all users so they
can resynchronize with SAP Mobile Server.

See Restoring from an Older Backup Database File (Data Loss) in the System Administration
Guide for information about SAP Mobile Server recovery.

As a best practice, and not included in these examples, application developers should include
code that informs mobile application users about:

• What is going to happen (for example, reregistering, recreating the local database, and so
on). And,

• The reason for the action (for example, lost registration, server is restored, and so on).

And prompt them for confirmation before executing the code.

When the SAP Mobile Server is restored to a previous state, it may be inconsistent with the
state of the client. For example:

• The client synchronizes with the server after the database is backed up. In this case the
client cannot synchronize successfully with the server after the database is restored.

• The client registers with the server after the database is backed up. In this case the client
registration is lost when the database was restored.

The following sample code illustrates how the client can recover from these errors.

1. After SAP Mobile Server is restored, client application connection information may be
lost if the registration was created after the database was backed up. This client application
calls startConnection to connect to the server, the
onConnectionStatusChanged callback returns error code 580 with a message that
authentication failed. The user can reregister the application with the
ApplicationCallback implementation after encountering this error code. If the
server is restored to a point-in-time when the client application has registered, the
application runs as normal without receiving this error code. These examples illustrate
both automatic and manual registration recovery.

a) Automatic registration recovery:
public void startApplication()
{
 Application app = Application.getInstance();

Developing the Application Using the Object API

46 SAP Mobile Platform

 Application.getInstance().setApplicationCallback(new
MyApplicationCallback());
 try
 {
 ConnectionProperties connProperties =
app.getConnectionProperties();
 connProperties.setServerName (“mega-vm008”);
 connProperties.setPortNumber (5001);
 connProperties.setLoginCredentials(new
com.sybase.persistence.LoginCredentials(“test@admin”,
“test123”));
 if (app.getRegistrationStatus() ==
RegistrationStatus.UNREGISTERED)
 {
 app.registerApplication(100); // or call
app.registerApplication();
 }
 else
 {
 app.startConnection(100); // or call
app.startConnection();
 }
 }
 catch (ApplicationRuntimeException ex)
 {
 System.out.println(ex);
 }
 catch (ApplicationTimeoutException ex)
 {
 System.out.println(ex);
 }
 while(app.getConnectionStatus() !=
ConnectionSatus.CONNECTED || app.getRegistrationStatus() !=
 RegistrationStatus.REGISTED)
 {
 try
 {
 Thread.sleep(100);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }
}
public class MyApplicationCallback extends
com.sybase.mobile.DefaultApplicationCallback
{
 boolean callFlag = false;
 //override this method to check if need to reregister
 public void onConnectionStatusChanged(int
connectionStatus, int errorCode, String errorMessage)
 {
 if (errorCode == 580 && !callFlag)
 {
 //this callback will be invoked multiple times when

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 47

this error occures, but we just call once reregister, so set the
 //callFlag to be true.
 callFlag = true;
 Thread registerThread = new Thread(“reregister”)
 {
 public void run()
 {
 //do not unregister application, because the
application connection info has been deleted from server side.
We can
 //call register application directly.

Application.getInstance().registerApplication();
 }
 }.start();
 }
 }

}
b) Manual registration recovery. If error code 580 is encountered, the administrator must

first manually register the application in SAP Control Center, or else the reregistered
application fails the first time. Manual registration requires setting of the activation
code:
public void startApplication()
{
 Application app = Application.getInstance();
 Application.getInstance().setApplicationCallback (new
MyApplicationCallback());

 try
 {
 ConnectionProperties connProperties =
app.getConnectionProperties();
 connProperties.setServerName(“mega-vm008”);
 connProperties.setPortNumber (5001);
 connProperties.setActivationCode (“100”);
 connProperties.setLoginCredentials (new
com.sybase.persistence.LoginCredentials(“test@admin”, null));
 if (app.getRegistrationStatus() ==
RegistrationStatus.UNREGISTERED)
 {
 app.registerApplication(100); // or call
app.registerApplication();
 }
 else
 {
 app.startConnection(100); // or call
app.startConnection();
 }
 }
 catch (ApplicationRuntimeException ex)
 {
 System.out.println(ex);
 }

Developing the Application Using the Object API

48 SAP Mobile Platform

 catch (ApplicationTimeoutException ex)
 {
 System.out.println(ex);
 }
 while(app.getConnectionStatus() !=
ConnectionSatus.CONNECTED || app.getRegistrationStatus() !=
 RegistrationStatus.REGISTED)
 {
 try
 {
 Thread.sleep(100);
 }
 catch (Exception ex)
 {
 System.out.println(ex);
 }
 }

}
public class MyApplicationCallback extends
com.sybase.mobile.DefaultApplicationCallback
{
 boolean callFlag = false;
 //override this method to check if need to reregister
 public void onConnectionStatusChanged(int
connectionStatus, int errorCode, String errorMessage)
 {
 if (errorCode == 580 && !callFlag)
 {
 //this callback will be invoked multiple times when
this error occures, but we just call once reregister, so set the
 //callFlag to be true.
 callFlag = true;
 Thread registerThread = new Thread(“reregister”)
 {
 public void run()
 {
 //do not unregister application, because the
application connection info has been deleted from server side.
We can
 //call register application directly.

Application.getInstance().registerApplication();
 }
 }.start();
 }
 }
}

2. Client Application RBS synchronization recovery.

If the server is restored to a point-in-time of an application's previous synchronization, the
client synchronization gets
com.sybase.persistence.SynchronizeException with an error code of
SQLE_SERVER_SYNCHRONIZATION_ERROR. This error code indicates the need to

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 49

recover the client database. If the server is restored to a point-in-time of the application's
last synchronization or the application has never synchronized, the client application can
synchronize as normal without the exception. For example:
• Time1: application registered and has not synchronized.
• Time2: application synchronized for the first time.
• Time3: application synchronized for the second time.
• Time4: application synchronized for the last time.
If the server is restored to time1 or time4, the client can synchronize successfully. If the
server is restored to time2 or time3, client synchronization fails with
com.sybase.persistence.SynchronizeException. You have three
methods to recover the client database and synchronize successfully again:
a. Before synchronization recovery, the application needs to complete application

registration recovery if necessary.
b. Once the client application starts, the application checks if the last recovery failed in

the middle by checking the saved flag. If the last recovery failed, the application needs
to resume the recovery first.

c. Mark the recovery state. For example, the application can save the recovery state to a
file. In recovery method two, the old client database is copied and used as a recovery
state flag.

a) Recreate database without copying old data (all data lost)

This is the simplest recovery method, but the old data, such as synchronization
parameters, SIS, and Local MBOs are not copied to the new database. The application
user needs to reenter them in the application's GUI.
try
{
 End2end_rdbDB.synchronize();
}
catch (Exception ex)
{
 //if meet this error, the server has been restored, we need
to recover client database
 if (ex instanceof
com.sybase.persistence.SynchronizeException)
 {
 if (((com.sybase.persistence.SynchronizeException)
ex).getErrorCode() ==

com.sybase.persistence.SynchronizeException.SQLE_SERVER_SYNCHR
ONIZATION_ERROR)
 {
 recoverClientDatabase();
 }
 }
}

private void recoverClientDatabase()
{
 setRecoveringInPlaceFlag(); //Like save a flag into

Developing the Application Using the Object API

50 SAP Mobile Platform

FileSystem
 End2end_rdbDB.closeDBConnection();
 End2end_rdbDB.deleteDatabase();
 cleanRecoveringInPlaceFlag();
}

b) Recreate database and copying old database (local transaction lost)

Copies old database data to a new database; this example includes personalization
keys, subscription information, SIS info, local BO. Unsubmitted transactions like an
MBO’s pending state are lost. This sample code checks if a copy of the database is
available to determine if a recovery was interrupted.
if(isRecoverFailed())
{
 recoverClientDatabase();
}
else
{
 try
 {
 End2end_rdbDB.synchronize();
 }
 catch (Exception ex)
 {
 //if meet this error, the server has been restored, we
need to recover client database
 if (ex instanceof
com.sybase.persistence.SynchronizeException)
 {
 if (((com.sybase.persistence.SynchronizeException)
ex).getErrorCode() ==
 com.sybase.persistence.SynchronizeException.
SQLE_SERVER_SYNCHRONIZATION_ERROR)
 {
 recoverClientDatabase();
 }
 }
 }
}

private void isRecoverFailed()
{
 String dbFile = End2end_rdbDB.getDbPath();
 String recoverDbFile = dbFile + ".recover.ulj";
 if ((FileConnection)Connector.open(recoverDbFile).exists())
 {
 //todo
 //implement to copy recoverDbFile content to recover
dbFile
 return true;
 }
 return false;
}

private void recoverClientDatabase()
{

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 51

 String dbFile = End2end_rdbDB.getDbPath();
 String recoverDbFile = dbFile + ".recover.ulj";
 //todo
 //implement to copy dbFile content to recover recoverDbFile

 //retrieve all the subscriptions from client database
 GenericList<CustomerWithParamSubscription>
_customerWithParamSubscriptions =
 CustomerWithParam.getSubscriptions();
 GenericList<SISSubscription> _sisSubs =
SISSubscription.findAll();
 GenericList<String> syncedPublication = new
GenericList<String>();

 // check all the synchronization group, if is synchronized,
add to new sync group to synchronize
 if (End2end_rdbDB.isSynchronized("synchronizationGroup"))
 {
 syncedPublication.add("synchronizationGroup ");
 }
 //retrieve all local BO from client database
 GenericList< LocalMbo > localBoList = LocalBo.findAll();
 End2end_rdbDB.closeDBConnection();
 //subscribe with new database file
 End2end_rdbDB.deleteDatabase();
 End2end_rdbDB.subscribe();

 //merge old local BO data to new database
 for(int i = 0; i < localBoList.size(); i++)
 {
 LocalBo localBo = new LocalBo ();
 localBo.copyAll(localBoList.get(i));
 localBo.create();
 }

 //add all the subscriptions from old database to new
database
 for (int i = 0; i <
_customerWithParamSubscriptions.size(); i++)
 {

CustomerWithParam.addSubscription(_customerWithParamSubscripti
ons.get(i));
 }
 for (int i = 0; i < _sisSubs.size(); i++)
 {
 SISSubscription sub = _ sisSubs.get(i);
 ISynchronizationGroup sg =
End2end_rdbDB.getSynchronizationGroup(sub.getSyncGroup());
 sg.setEnableSIS (sub.getEnable());
 sg.save();
 }
 //do sync
 String syncgroups = "";
 for(int i = 0; i < syncedPublication.size(); i++)
 {

Developing the Application Using the Object API

52 SAP Mobile Platform

 syncgroups += syncedPublication.get(i)+ ",";
 }
 syncgroups = syncgroups.substring(0, syncgroups.length()
-1);
 End2end_rdbDB.synchronize(syncgroups);

 //finally delete the backup recover database file
 (FileConnection)Connector.open(recoverDbFile).delete();
}

c) Resending local transaction

This is a complete recovery method. Both methods above lose the local transaction. To
prevent the lose of the local transaction when encountering the
SQL_SERVER_SYNCHRONIZATION_ERROR exception, the SAP Mobile Server
administrator must remove the client remote id information. The administrator can
locate the remote id from the server's mlsrv_err.log and call the
ml_delete_remote_id procedure in the CDB to remove the remote id. The user
can then continue to synchronize using the old database to upload all pending
operations. But once uploaded, the user\application must recreate the database using
either of the two methods described above, and must not reuse the old database
anymore. The mlsrv_err.log logs remote id errors similar to this:

 I. 2013-04-14 14:13:39. <3> The sync sequence ID in the
consolidated database:
 95bd47691098419cbf8539e8151bcf00; the remote previous
sequence ID:
 95bd47691098419cbf8539e8151bcf97, and the current
sequence ID:
 401be536e6e7417fb01b196276ec11c2E. 2013-04-14 14:13:39.
<3> [-10400] Invalid sync sequence ID for remote ID
 'ed2ae448-a597-4f17-ad72-c6c61a6075a5'

3. Client application RBS beginSynchronize recovery

beginSynchronize is an async pattern, requiring the user to override the
com.sybase.persistence. DefaultApplicationCallbackHandler
class onSynchronize method to check the
SQL_SERVER_SYNCHRONIZATION_ERROR error using the same three methods as
described above to recover the client database. This sample code uses the second method
and implements the AsyncCallbackHandler:

if(isRecoverFailed())
{
 recoverClientDatabase();
}
else
{
 GenericList<String> syncList = new GenericList<String>();
 syncList.add(“default”);
 synchronize(syncList);
}

private void isRecoverFailed()
{

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 53

 String dbFile = End2end_rdbDB.getDbPath();
 String recoverDbFile = dbFile + ".recover.ulj";
 if
((FileConnection)Connector.open(recoverDbFile).exists())
 {
 //todo
 //implement to copy recoverDbFile content to recover dbFile
 return true;
 }
 return false;
}

private void synchronize(GenericList<String> syncGroup)
{
 AsyncCallbackHandler callback = new AsyncCallbackHandler();
 GenericList<ISynchronizationGroup> sgs = new
 GenericList<ISynchronizationGroup>();
 for(int i=0; i< syncGroup.size(); i++)
 {

sgs.add(End2end_rdbDB .getSynchronizationGroup(syncGroup.get(i)))
;
 }
 callback.userContext = System.nanoTime() + "";
 End2end_rdbDB.registerCallbackHandler(callback);
 End2end_rdbDB.beginSynchronize(sgs, callback.userContext);

 int waitCount = 0;
 while (!callback.asyncDone())
 {
 if (waitCount++ > maxWaitTime)
 {
 throw new Exception("Asyn relay test failed because no
response returned from
 server after waiting for 60 seconds.");
 }
 try
 {
 Thread.sleep(1000);
 }
 catch (Exception e)
 {
 }
 }

 try
 {
 Thread.sleep(4000);
 }
 catch (Exception e)
 {
 }

 if (callback.errorMessage != null)
 {
 throw new Exception(callback.errorMessage);

Developing the Application Using the Object API

54 SAP Mobile Platform

 }
 callback.userContext = null;
}

private void recoverClientDatabase()
{
 String dbFile = End2end_rdbDB. getDbPath();
 String recoverDbFile = dbFile + ".recover.ulj";
 //todo
 //implement to copy dbFile content to recover recoverDbFile
 //retrieve all the subscriptions from client database
 GenericList<CustomerWithParamSubscription>
_customerWithParamSubscriptions =
 CustomerWithParam.getSubscriptions();
 GenericList<SISSubscription> _sisSubs =
SISSubscription.findAll();
 GenericList<String> syncedPublication = new
GenericList<String>();

 // check all the synchronization group, if is synchronized, add
to new sync group to synchronize
 if (End2end_rdbDB.isSynchronized("synchronizationGroup"))
 {
 syncedPublication.add("synchronizationGroup ");
 }
 //retrieve all local BO from client database
 GenericList< LocalMbo > localBoList = LocalBo.findAll();
 End2end_rdbDB.closeDBConnection();
 //subscribe with new database file
 End2end_rdbDB.deleteDatabase();
 GenericList<String> syncList = new GenericList<String>();
 syncList.add(“default”);
 synchronize(syncList);

 //merge old local BO data to new database
 for(int i = 0; i < localBoList.size(); i++)
 {
 LocalBo localBo = new LocalBo ();
 localBo.copyAll(localBoList.get(i));
 localBo.create();
 }

 //add all the subscriptions from old database to new database
 for (int i = 0; i < _customerWithParamSubscriptions.size();
i++)
 {

CustomerWithParam.addSubscription(_customerWithParamSubscriptions
.get(i));
 }
 for (int i = 0; i < _sisSubs.size(); i++)
 {
 SISSubscription sub = _ sisSubs.get(i);
 ISynchronizationGroup sg =
End2end_rdbDB.getSynchronizationGroup(sub.getSyncGroup());
 sg.setEnableSIS (sub.getEnable());

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 55

 sg.save();
 }

 //do sync
 synchronize(syncedPublication);
 //finally delete the backup recover database file
 (FileConnection)Connector.open(recoverDbFile).delete();
}

class AsyncCallbackHandler extends DefaultCallbackHandler
{
 private volatile boolean asyncCompleted = false;
 private volatile boolean asyncUploaded = false;
 public volatile String userContext = null;
 public volatile String errorMessage = null;

 public boolean asyncDone()
 {
 return asyncCompleted;
 }

 public SynchronizationAction
onSynchronize(GenericList<ISynchronizationGroup> groups,

SynchronizationContext context)
 {
 Exception ex = context.getException();
 if (ex instanceof
com.sybase.persistence.SynchronizeException)
 {
 if (((com.sybase.persistence.SynchronizeException)
ex).getErrorCode() ==

com.sybase.persistence.SynchronizeException.SQLE_SERVER_SYNCHRONI
ZATION_ERROR)
 {
 recoverClientDatabase();
 }
 }

 if (context.getStatus() ==
SynchronizationStatus.ASYNC_REPLAY_UPLOADED)
 {
 if (!End2end_rdbDB.isReplayQueueEmpty())
 {
 throw new Exception("need sync is not correct!");
 }
 asyncUploaded = true;
 }
 if (context.getStatus() ==
SynchronizationStatus.ASYNC_REPLAY_COMPLETED)
 {
 if (userContext != null && !
userContext.equals(context.getUserContext())) //Not for this
round
 {

Developing the Application Using the Object API

56 SAP Mobile Platform

 return SynchronizationAction.CANCEL;
 }

 userContext = null;
 End2end_rdbDB.synchronize("so");
 if (!asyncUploaded)
 {
 errorMessage = "ASYNC_REPLAY_COMPLETED is received
without ASYNC_REPLAY_UPLOADED";
 }
 asyncCompleted = true;
 return SynchronizationAction.CANCEL;
 }
 return SynchronizationAction.CONTINUE;
 }
}

Developing the Application Using the Object API

Developer Guide: BlackBerry Object API Applications 57

Developing the Application Using the Object API

58 SAP Mobile Platform

Testing Applications

Test native applications on a device or simulator.

For additional information about testing applications, see these topics in the Mobile
Application Life Cycle collection:

• Recommended Test Methodologies
• Best Practices for Testing Applications on a Physical Device

See also
• Developing the Application Using the Object API on page 19

• Localizing Applications on page 69

Testing an Application Using a Simulator
Run and test the application on a simulator and verify that the application automatically
registers to the SAP Mobile Server using the default application connection template.

1. In the Eclipse Package Explorer, right-click the project and select Run As > BlackBerry
Simulator.
If this is the first time running the simulator, cancel the setup screen.

2. On the main window, click All to access the applications screen, then scroll until you see
the application.

3. Click the application to launch it.

4. In SAP Control Center, verify that the application connection was created in Applications
> Application Connections.
When the application has successfully registered, the application connection displays a
value of zero in the Pending Items column. The Pending Items column is used only for
messaging applications.

5. Test the functionality of the application. Use debug tools as necessary, setting breakpoints
at appropriate places in the application.

Client-Side Debugging
Identify and resolve client-side issues while debugging the application.

Problems on the device client side that may cause client application problems:

Testing Applications

Developer Guide: BlackBerry Object API Applications 59

• SAP Mobile Server connection failed - use your device browser to check the connectivity
of your device to the server.

• Data does not appear on the client device - check if your synchronization and
personalization parameters are set correctly. If you are using queries, check if your query
conditions are correctly constructed and if the device data match your query conditions.

• Physical device problems, such as low memory - implement
ApplicationCallback.onDeviceConditionChanged to be notified if
device storage gets too low, or recovers from an error.

To find out more information on the device client side:

• If you have implemented debugging in your generated or custom code (which SAP
recommends), turn on debugging and review the debugging information. See the API
Reference information about using the Logger class to add logs to the client log record
and synchronize them to the server (viewable in SAP Control Center).

• Check the log record on the device. Use the <PkgName>DB.getLogRecords
(com.sybase.persistence.Query) or Entity.getLogRecords() methods.
This is the log format
level,code,eisCode,message,component,entityKey,operation,requestI
d,timestamp

This log format generates output similar to:
level code eisCode message component entityKey operation requestId
timestamp
 5,500,'','java.lang.SecurityException:Authorization failed:
Domain = default Package = end2end.rdb:1.0 mboName =
simpleCustomer action =
delete','simpleCustomer','100001','delete','100014','2010-05-11
14:45:59.710'

• level – the log level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.

• code – SAP Mobile Server administration codes.

• Synchronization codes:
• 200 – success.
• 500 – failure.

• eisCode – maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).

• message – the message content.

• component – MBO name.

• entityKey – MBO surrogate key, used to identify and track MBO instances and
data.

• operation – operation name.

Testing Applications

60 SAP Mobile Platform

• requestId – operation replay request ID or messaging-based synchronization
message request ID.

• timestamp – message logged time, or operation execution time.

• If you have implemented ApplicationCallback.onConnectionStatusChanged
for synchronization in the CallbackHandler, the connection status between the SAP
Mobile Server and the device is reported on the device. See the CallbackHandler API
reference information. The device connection status, device connection type, and
connection error message are reported on the device:
• 1 – current device connection status.
• 2 – current device connection type.
• 3 – connection error message.

• Check the Storm event log:
1. On the Home screen, press Hold.
2. Click the upper-left corner and upper-right corner twice.
3. Review the event log.

• Check the BlackBerry event log:
1. On the device, press ALT+lglg; or, for touch-screen devices, hold the ESC key, tap (no

click) top-left, top-right, top-left, then top-right.
2. Review the event log, and see the RIM BlackBerry documentation for information

about debugging and optimizing.http://na.blackberry.com/eng/developers/resources/
A50_How_to_Debug_and_Optimize_V2.pdf

• For other issues, you can turn on SQLTrace trace on the device side to trace Client Object
API activity. To enable SQLTrace using the ConnectionProfile's enableTrace API:
// To enable SQL trace with values also displayed
SMP101DB.getConnectionProfile().enableTrace(true, true);

Debugging the BlackBerry Device Application
Debug your device application by setting breakpoints and stepping through code.

1. From the BlackBerry JDE, select Debug > Go to build and execute the application, and
launch the simulator.

You can view build results in the JDE output window.

2. Add breakpoints to the code:

a) Place your cursor in the code where you want to add a breakpoint and select Debug >
Breakpoint > Set Breakpoint at Cursor.

b) You can also set breakpoints for a given event from the same menu, for example, On
startup, When an exception is thrown, Before garbage collection, and so on.

3. Run the application from the simulator. The application stops based upon the breakpoint
you set.

4. Once stopped, you can step through the code using any of the step icons (step over, step
into, step out, and so on) located in the JDE toolbar:

Testing Applications

Developer Guide: BlackBerry Object API Applications 61

http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf
http://na.blackberry.com/eng/developers/resources/A50_How_to_Debug_and_Optimize_V2.pdf

For more information about the various views available for debugging, including
determining memory usage, code coverage, and so on, refer to the BlackBerry JDE
documentation. To view a video on how to debug your BlackBerry device application in
the BlackBerry JDE, go to the Research In Motion Developer Video Library Web site at:
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Server-Side Debugging
Identify and resolve server-side issues while debugging the application.

Problems on the SAP Mobile Server side may cause device client problems:

• The domain or package does not exist. If you create a new domain, with a default status of
disabled, it is unavailable until enabled.

• Authentication failed for the application user credentials.
• The operation role check failed for the synchronizing user.
• Back-end authentication failed.
• An operation failed on the remote, replication database back end, for example, a table or

foreign key does not exist.
• An operation failed on the Web Service, REST, or SAP® back end.

To find out more information on the SAP Mobile Server side:

• Check the SAP Mobile Server log files.
• For message-based synchronization mode, you can set the log level to DEBUG to obtain

detailed information in the log files:
1. Set the log level using SAP Control Center. See SAP Control Center for SAP Mobile

Platform > Administer > SAP Mobile Server > Server Log > SAP Mobile Server
Runtime Logging > Configuring SAP Mobile Server Log Settings.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

• Obtain DEBUG information for a specific device:
• In the SCC administration console:

1. Set the DEBUG level to a higher value for a specified device:
a. In SCC, select Application Connections, then select Properties... > Device

Advanced.
b. Set the Debug Trace Level value.

2. Set the TRACE file size to be greater than 50KB.
3. View the trace file through SCC.

Testing Applications

62 SAP Mobile Platform

http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

• Check the SMP_HOME\Servers\UnwiredServer\logs\ClientTrace
directory to see the mobile device client log files for information about a specific
device.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

• Check the MMS server log files. See SAP Control Center for SAP Mobile Platform for
more information.

Improve Synchronization Performance by Reducing the Log
Record Size

Improve synchronization performance and free SAP Mobile Server resources by deleting log
records from SAP Mobile Server and the client when no longer needed.

A large log record table can negatively impact client synchronization performance. Each
package contains a single log record table that consists of:

• SAP Mobile Server operation replay logs – downloaded to the device when the
application synchronizes. SAP Mobile Server generates a log record if the operation
replay fails, or succeeds but results in a warning.

• Client logs generated by the application – uploaded from the device to SAP Mobile
Server for audit and logging purposes.

If the application and SAP Mobile Server do not delete these log records, the log record table
continues to grow.

Unrestricted growth of the log record table eventually affects synchronization performance.
You can view client log records from SAP Control Center; however, this displays only active
log records (that is, those that have not been logically deleted). A logically deleted log record
is marked for deletion but retained until the application downloads the delete record and
deletes the copy from the device. Once SAP Mobile Server confirms that the application has
downloaded the delete, the inactive log record can be physically removed from SAP Mobile
Server.

Determining the Log Record Size
Use Sybase Central™ to query the database of a given SAP Mobile Server to determine the
size of the log record.

Prerequisites
SAP Mobile Platform services must be running and at least one Mobile Application project
deployed to SAP Mobile Server.

Testing Applications

Developer Guide: BlackBerry Object API Applications 63

Task

1. Launch Sybase Central (scjview.exe) to manage SQL Anywhere® and UltraLite®

databases.

The default installation location of the Sybase Central executable is SMP_HOME
\Servers\SQLAnywhere16\BIN32\scjview.exe.

2. From Sybase Central connect to the database server by selecting Connections > Connect
with SQL Anywhere 16.

3. Provide connection details and click Connect.

For example, select Connect to a running database on this computer and enter:
• User ID and Password – dba and sql respectively

• Server name – hostName_primary
• Database name – default

4. Double-click the Tables folder and search for the log record table. The log record name is
typically packageName_logr… where packageName is the name of the deployed
package.

Testing Applications

64 SAP Mobile Platform

5. Right-click the log record table and select Properties.

6. In the Properties dialog, select the Miscellaneous tab, then click Calculate.

Testing Applications

Developer Guide: BlackBerry Object API Applications 65

The number returned includes logically deleted rows.The returned number of rows
depends on the number of application users of the package, and the retention window
setting. As a general guideline, the number of rows should be fewer than 10,000.

Reducing the Log Record Size
Use SAP Control Center to delete log record entries by setting a date range window.

The SAP Mobile Server does not remove any logically deleted rows until it receives
confirmation that the device hosting the application has synchronized after the record is
logically deleted from SAP Mobile Server.

Testing Applications

66 SAP Mobile Platform

1. Clean up the client log data:

a) Expand Domains > default > Packages.
b) Select packageName then select the Client Log tab.
c) Select Clean, then enter starting and ending dates.

The LOGICAL_DEL flag is set to true for records within the range.

Note: Allow time for clients to synchronize. Logically deleted records are retained
until the client synchronizes and downloads the delete records that clean up the client
database. The length of time to wait for synchronization to complete depends on the
clients’ activities.

d) Click OK to clean the client log data.

2. Clean the logically deleted records from SAP Mobile Server:

a) Select the General tab.
b) Select Error Cleanup.

This starts a cleanup task that asynchronously removes all logically deleted records
from clients that have performed a synchronization after the time specified in the Clean
operation.

For example, if the Clean operation is performed at 1:00am on Feb 27, all clients that
synchronize after that time have their records physically removed. As a result, it takes
time to reduce the size of the log record table.

Note: Clean up the client log data (step one) during periods of low client activity: when
a single transaction processing a large log record table is active, client synchronization
is blocked, degrading client responses and performance. As a best practice, once the
log record table has been cleaned to a reasonable size, schedule the clean/error cleanup
tasks on a daily basis.

Testing Applications

Developer Guide: BlackBerry Object API Applications 67

Testing Applications

68 SAP Mobile Platform

Localizing Applications

Localize a BlackBerry application by creating a resource header file, a resource content file
for the global locale, and a resource content file for any specific locales that you require.

See also
• Testing Applications on page 59

• Packaging Applications on page 73

Adding a Resource File to the Application
Add a resource file to define the descriptive keys for each localized string.

1. Open the BlackBerry application using the Java Perspective in Eclipse.

2. Focus on the res folder, and right-click and select New > Package.

3. In the New Java Package dialog, in the Name field, enter the same package name as the
src package name, for example, "com.sybase.sup.samples.objectapi."

4. Add the resource file under res > <package-name>.

• Focus on res > <package-name> and right-click and select New > Other.

5. In the New dialog, select BlackBerry > BlackBerry Resource File and click Next.

6. In the New BlackBerry Resource File dialog, under the res package, enter the a file name
for the rrh (resource header file) in the File name field. Name it by the project name.

When you create a new resource header file, the BlackBerry® Java® Plug-in for Eclipse™

creates the associated .rrc resource content file. For example, entering
SMP101Sample.rrh creates SMP101Sample.rrh and SMP101Sample.rrc
files.

You can create additional resource content files as required for specific locales. These files
must have the same name as the resource header file, followed by an underscore (_) and the
language code, and then, optionally, by a single underscore (_) and a country code.
Language and country codes are specified in ISO-639 and ISO-3166, respectively.

Localizing Applications

Developer Guide: BlackBerry Object API Applications 69

Adding Resource Keys and Values
Localize a BlackBerry application by adding a resource files to the application, and adding
localization code to the application source file.

1. Focus on the rrh (resource header) file and double-click it to open the Resource
Editor.

2. Add resource keys to the resource header file by selecting Add Key from the Root tab.
The resource keys are added in the Root tab, indicating that these resource keys have been
added to the resource header file. The keys are also automatically created in each of the
resource content files.

3. Enter resource values in each of the resource content files.

Adding Localization Code
Add localization code into the application file. The following example is from the SMP101
project.

1. Open the CustomerSampleScreen.java file in the SMP101Sample project. Add
the following code:
//import resource bundle interface. SMP101SampleResource is the
resource bundle interface created automatically
import com.sybase.sup.samples.objectapi.SMP101SampleResource;

2. Add the following code to the concrete screen code:
implements SMP101SampleResource

private static ResourceBundle _resources =
ResourceBundle.getBundle(BUNDLE_ID, BUNDLE_NAME);

3. Call the resource bundles string to display user interface text, and change the string to call
the resource bundles to display. Add the following code:
InfoScreen(CustomerSampleScreen sampleScreen, Customer customer)
{
 _sampleScreen = sampleScreen;
 _customer = customer;

 // Set up and display UI elements. Use resource bundle string to
display.
 setTitle(_resources.getString(UPDATE_TITLE));
 _fnameField = new
BasicEditField(_resources.getString(FIELD_FNAME),
customer.getFname(),
BasicEditField.DEFAULT_MAXCHARS,Field.FOCUSABLE);
 _lnameField = new
BasicEditField(_resources.getString(FIELD_LNAME),
customer.getLname(),

Localizing Applications

70 SAP Mobile Platform

BasicEditField.DEFAULT_MAXCHARS,Field.FOCUSABLE);
 _companyField = new
BasicEditField(_resources.getString(FIELD_COMPANY),
customer.getCompany_name(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _addressField = new
BasicEditField(_resources.getString(FIELD_ADDRESS),
customer.getAddress(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _stateField = new
BasicEditField(_resources.getString(FIELD_STATE),
customer.getState(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _cityField = new
BasicEditField(_resources.getString(FIELD_CITY),
customer.getCity(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _phoneField = new
BasicEditField(_resources.getString(FIELD_PHONE),
customer.getPhone(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);
 _zipField = new BasicEditField(_resources.getString(FIELD_ZIP),
customer.getZip(), BasicEditField.DEFAULT_MAXCHARS,
Field.FOCUSABLE);

Localizing Applications

Developer Guide: BlackBerry Object API Applications 71

Localizing Applications

72 SAP Mobile Platform

Packaging Applications

Package applications according to your security or application distribution requirements.

You can package all libraries into one package. This packaging method provide more security
since packaging the entire application as one unit reduces the risk of tampering of individual
libraries.

You may package and install modules separately only if your application distribution strategy
requires sharing libraries between SAP Mobile Platform applications.

See also
• Localizing Applications on page 69

Signing
Code signing is required for applications to run on physical devices.

In general, if your application or library uses an API it must be signed. The BlackBerry
messaging library is provided as a single unsigned .jar file (an unsigned “library” –
essentially a zip of bytecode .class files), which allows you to compile applications as a
single .cod file (application) for the end user, simplifying deployment and eliminating
shared files (which can be a problem during installation or uninstallation). Since you access
privileged APIs, it is necessary to sign the .cod into which the .jar library is compiled.

Implement code signing from the BlackBerry JDE:

1. Download and install the Signing Authority Tool from the BlackBerry Web site: https://
swdownloads.blackberry.com/Downloads/entry.do?
code=D82118376DF344B0010F53909B961DB3.

2. Use the BlackBerry Signature Tool to request a code signature from the BlackBerry
Signing Authority Tool.

3. Use the BlackBerry Signing Authority Tool to sign the .cod files.

Packaging Applications

Developer Guide: BlackBerry Object API Applications 73

https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3

Packaging Applications

74 SAP Mobile Platform

Client Object API Usage

The SAP Mobile Platform Client Object API consists of generated business object classes that
represent mobile business objects (MBOs) that are designed and built in the SAP Mobile
WorkSpace development environment. Device applications use the Client Object API to
retrieve data and invoke mobile business object operations.

Refer to these sections for more information on using the APIs described in Developer Guide:
BlackBerry Object API Applications > Developing the Application Using the Object API.

Client Object API Reference
Use the SAP Mobile Platform Client Object API Javadocs as a Client Object API reference.

Review the reference details in the Client Object API documentation, located in SMP_HOME
\MobileSDK23\ObjectAPI\apidoc.

There is a subdirectory for rim.

From the index.html file, the top-left navigation pane lists all packages installed with SAP
Mobile Platform. The applicable documentation is available with each package. Click this
link and navigate through the Javadoc.

Note: Due to an UltraLite limitation, the first client object API call must be on the main thread
in the application.

Application APIs
The Application class, in the com.sybase.mobile Java package, manages mobile
application registrations, connections and context.

See also
• Initially Starting an Application on page 19

• Setting Up Application Properties on page 20

• Registering an Application on page 23

• Subsequently Starting an Application on page 36

Application
Methods or properties in the Application class.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 75

getInstance
Retrieves the Application instance for the current mobile application.

Syntax
public static Application getInstance()

Returns

getInstance returns a singleton Application object.

Examples

• Get the Application Instance

Application app = Application.getInstance();

setApplicationIdentifier
Sets the identifier for the current application.

Set the application identifer before calling startConnection or
registerApplication.

Syntax
public void setApplicationIdentifier(java.lang.String value,
java.lang.String signerId)

Parameters

• value – The identifier for the current application.
• signerId – The signer ID for the current application.

Examples

• Set the Application Identifier – To encrypt the messages of the Object API, your
BlackBerry application must be signed. The second parameter, signerId, is the name of
the key file (for example: signerId is “suptest” if the key file is suptest.key).

Note: The application identifier is case-sensitive.

// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the application ID deployed to the
SAP Mobile Server

Client Object API Usage

76 SAP Mobile Platform

//The signerId is the name of the sign key file
app.setApplicationIdentifier("SMP101", “suptest”);

getRegistrationStatus
Retrieves the current status of the mobile application registration.

Syntax
public int getRegistrationStatus()

Returns

getRegistrationStatus returns one of the values defined in the
RegistrationStatus class.

public class RegistrationStatus {

public static final int REGISTERED = 203;
public static final int REGISTERING = 202;
public static final int REGISTRATION_ERROR = 201;
public static final int UNREGISTERED = 205;
public static final int UNREGISTERING = 204;
}

Examples

• Get the Registration Status – Registers the application if it is not already registered.

if (app.getRegistrationStatus() != RegistrationStatus.REGISTERED)
{
 // If the application has not been registered to the server,
 // register now
 app.registerApplication();
}
else
{
 // start the connection to server
 app.startConnection();
}

registerApplication
Creates the registration for this application and starts the connection. This method is
equivalent to calling registerApplication(0).

Syntax
public void registerApplication()

Parameters

None.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 77

Examples

• Register an Application – Start registering the application and return at once.
app.registerApplication();

Usage

You must set up the ConnectionProperties and ApplicationIdentifier
before you can invoke registerApplication.

The maximum length of the Application ID is 64 characters. The total length of the
Application Connection ID cannot exceeds 128 characters. The Application Connection ID
format is deviceId__applicationId. The applicationId separator is two
underscores.
Application app = Application.getInstance();
// set Application ID - need to match as the server side Application
ID
app.setApplicationIdentifier("SMP101");
app.setApplicationCallback(new MyApplicationCallbackHandler());
ConnectionProperties props = app.getConnectionProperties();
props.setServerName("server.mycompany.com");
props.setPortNumber(5001);
LoginCredentials loginCred = new LoginCredentials("supAdmin",
"supPwd");
props.setLoginCredentials(loginCred);

SMP101DB.setApplication(app);

if (app.getRegistrationStatus() != RegistrationStatus.REGISTERED)
{
 app.registerApplication();
}

registerApplication (int timeout)
Creates the registration for this application and starts the connection. An
ApplicationTimeoutException is thrown if the method does not succeed within the
number of seconds specified by the timeout.

If a callback handler is registered and network connectivity is available, the sequence of
callbacks as a result of calling registerApplication is:

onRegistrationStatusChanged(RegistrationStatus.REGISTERING, 0, "")
onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, "")
onConnectionStatusChanged(ConnectionStatus.CONNECTED, 0, "")
onRegistrationStatusChanged(RegistrationStatus.REGISTERED, 0, "")

When the connectionStatus of CONNECTED has been reached and the application's
applicationSettings have been received from the server, the application is now in a suitable
state for database subscriptions and/or synchronization. If a callback handler is registered and
network connectivity is unavailable, the sequence of callbacks as a result of calling
registerApplication is:

Client Object API Usage

78 SAP Mobile Platform

onRegistrationStatusChanged(RegistrationStatus.REGISTERING, 0, "")
onRegistrationStatusChanged(RegistrationStatus.REGISTRATION_ERROR,
code, message)

In such a case, the registration process has permanently failed and will not continue in the
background. If a callback handler is registered and network connectivity is available for the
start of registration but becomes unavailable before the connection is established, the
sequence of callbacks as a result of calling registerApplication is:
onRegistrationStatusChanged(RegistrationStatus.REGISTERING, 0, "")
onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, "")
onConnectionStatusChanged(ConnectionStatus.CONNECTION_ERROR, code,
message)

In such a case, the registration process has temporarily failed and will continue in the
background when network connectivity is restored.

As a best practice, if a timeout exception occurs in registerApplication or startConnection, the
application should wait for the appropriate callback, and optionally add a user message to the
application, "please wait" for example, instead of closing the application. This prevents a build
up of start up requests by needlessly restarting the application which can adversely affect
performance.

Wait for the application callback, such as onConnectionStatusChanged() if
ApplicationTimeoutException is encountered when calling registerApplication
(int timeout), instead of closing the application. This allows the application code to catch
ApplicationTimeoutException and does not throw an exception.

try
{ Application.GetInstance().RegsiterApplication(100); }
catch(ApplicationTimeoutException ex)
{
while (Application.GetInstance().ConnectionStatus ==
ConnectionStatus.CONNECTING)
{ Thread.Sleep(100); }
}

Syntax
public void registerApplication(int timeout)

Parameters

• timeout – Number of seconds to wait until the registration is created. If the the timeout is
greater than zero and the registration is not created within the timeout period, an
ApplicationTimeoutException is thrown (the operation might still be
completing in a background thread). If the timeout value is less than or equal to 0, then this
method returns immediately without waiting for the registration to finish (a non-blocking
call). If the timeout value is less than or equal to 0, then this method returns immediately
without waiting for the registration to finish (a non-blocking call).

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 79

Examples

• Register an Application – Registers the application with a one minute waiting period.
app.registerApplication(60);

Usage

You must set up the ConnectionProperties and ApplicationIdentifier
before you can invoke registerApplication.

The maximum length of the Application ID is 64 characters. The total length of the
Application Connection ID cannot exceeds 128 characters. The Application Connection ID
format is deviceId__applicationId. The applicationId separator is two
underscores.
Application app = Application.getInstance();
// set Application ID - need to match as the server side Application
ID
app.setApplicationIdentifier("SMP101");
app.setApplicationCallback(new MyApplicationCallbackHandler());
ConnectionProperties props = app.getConnectionProperties();
props.setServerName("server.mycompany.com");
props.setPortNumber(5001);
LoginCredentials loginCred = new LoginCredentials("supAdmin",
"supPwd");
props.setLoginCredentials(loginCred);

SMP101DB.setApplication(app);

if (app.getRegistrationStatus() != RegistrationStatus.REGISTERED)
{
 app.registerApplication();
}

setApplicationCallback
Sets the callback for the current application. It is optional, but recommended, to register a
callback so the application can respond to changes in connection status, registration status,
and application settings.

Syntax
public void setApplicationCallback(ApplicationCallback value)

Parameters

• value – The mobile application callback handler.

Client Object API Usage

80 SAP Mobile Platform

Examples

• Set the Application Callback

// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the
// application ID deployed to the SAP Mobile Server
app.setApplicationIdentifier("SMP101");
ApplicationCallback appCallback = new MyApplicationCallback();
app.setApplicationCallback(appCallback);

getApplicationCallback
Get the current callback handler.

Syntax
public ApplicationCallback getApplicationCallback();

Examples

• Get the current ApplicationCallback handler

ApplicationCallback currentCallback =
application.getApplicationCallback();

startConnection
Starts the connection for this application. This method is equivalent to calling
startConnection(0), but is a non-blocking call which returns immediately. Use
getConnectionStatus or the ApplicationCallback to retrieve the connection
status.

Syntax
public void startConnection()

Returns

None.

Examples

• Start the Application

startConnection()

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 81

Usage

If you delete an application from SAP Control Center, when the client application calls
startConnection(), the following callback is triggered inside the
ApplicationCallback handler:

void onConnectionStatusChanged(int connectionStatus, int errorCode,
String errorMessage);
errorCode = 580
errorMessage = "Error: 580 Message: 'TM
Error:InvalidAuthenticationParameters'"

To continue using the application, call unregisterApplication() to clean up the
client state, and re-register using registerApplication(). You lose the previous
subscription on the server side. Delete the client database and perform another initial
synchronization.

startConnection (int timeout)
Starts the connection for this application. If the connection was previously started, then this
operation has no effect. You must set the appropriate connectionProperties before
calling this operation. An ApplicationTimeoutException is thrown if the method
does not succeed within the number of seconds specified by the timeout.

If connection properties are improperly set, a ConnectionPropertyException is
thrown. You can set the applicationCallback before calling this operation to receive
asynchronous notification of connection status changes. If a callback handler is registered and
network connectivity is available, the sequence of callbacks as a result of calling
startConnection is:

onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, "")
 onConnectionStatusChanged(ConnectionStatus.CONNECTED, 0, "")

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling startConnection is:

onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, null)
 onConnectionStatusChanged(ConnectionStatus.CONNECTION_ERROR, code,
message)

After a connection is successfully established, it can transition at any later time to
CONNECTION_ERROR status or NOTIFICATION_WAIT status and subsequently back to
CONNECTING and CONNECTED when connectivity resumes.

Note: The application must have already been registered for the connection to be established.
See registerApplication for details.

Syntax
public void startConnection(int timeout)

Client Object API Usage

82 SAP Mobile Platform

Parameters

• timeout – The number of seconds to wait until the connection is started. If the timeout is
greater than zero and the connection is not started within the timeout period, an
ApplicationTimeoutException is thrown (the operation may still be completing
in a background thread). If the timeout value is less than or equal to 0, then this method
returns immediately without waiting for the registration to finish (a non-blocking call).

Returns

None.

Examples

• Start the Application

startConnection(timeout)

getConnectionStatus
Return current status of the mobile application connection.

Syntax
public int getConnectionStatus()

Returns

connectionStatus returns one of the ConnectionStatus class values.

ConnectionStatus has the following possible values:

• ConnectionStatus.CONNECTED – The connection has been successfully started.
• ConnectionStatus.CONNECTING – The connection is currently being started.
• ConnectionStatus.CONNECTION_ERROR – The connection could not be started, or

was previously started and subsequently an error occurred. Use
onConnectionStatusChanged to capture the associated errorCode and
errorMessage.

• ConnectionStatus.DISCONNECTED – The connection been sucessfully stopped, or
there was no previous connection.

• ConnectionStatus.DISCONNECTING – The connection is currently being stopped.
• ConnectionStatus.NOTIFICATION_WAIT – The connection has been suspended and

is awaiting a notification from the server. This is a normal situation for those platforms
which can keep connections closed when there is no activity, since the server can reawaken
the connection as needed with a notification.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 83

Examples

• Get the Application Connection Status

getConnectionStatus()

getConnectionProperties
Retrieves the connection parameters from the application's connection properties instance.
You must set connection properties before calling startConnection,
registerApplication or unregisterApplication.

Syntax
public ConnectionProperties getConnectionProperties()

Parameters
None.

Returns

Returns the connection properties instance.

getApplicationSettings
Return application settings that have been received from the SAP Mobile Server after
application registration and connection.

Syntax
public ApplicationSettings getApplicationSettings()

Returns
Application settings that have been received from the SAP Mobile Server.

Examples

• Get the application settings

ApplicationSettings applicationSettings =
Application.getInstance().getApplicationSettings();

beginDownloadCustomizationBundle (java.io.OutputStream out)
Start downloading the default resource bundle associated with the application, and save it into
an output stream.

The resource bundle is saved into the output stream that you provide. An application can only
have one default resource bundle.

Client Object API Usage

84 SAP Mobile Platform

Syntax
public void beginDownloadCustomizationBundle (java.io.OutputStream
out)

Parameters

• out – An output stream that you provide.

Returns

None.

Examples

• Download default resource bundle

ByteArrayOutputStream out = new ByteArrayOutputStream();
Application.getInstance().beginDownloadCustomizationBundle(out);

beginDownloadCustomizationBundle (String customizationBundleID
java.io.OutputStream out)
Start downloading the specified resource bundle named into the output stream.

The resource bundle is saved into the output stream that you provide.

Syntax
public void beginDownloadCustomizationBundle (String
customizationBundleID java.io.OutputStream out)

Parameters

• customizationBundleID – The resource bundle name.
• out – An output stream of bytes that you provide.

Returns

None.

Examples

• Download specified resource bundle

ByteArrayOutputStream out = new ByteArrayOutputStream();
Application.getInstance().beginDownloadCustomizationBundle("Examp
le:2.0", out);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 85

stopConnection
Stops the connection for this application. This method is equivalent to calling
stopConnection(0).

Syntax
public void stopConnection()

Returns

None.

Examples

• Stop the Connection for the Application

stopConnection();

stopConnection (int timeout)
Stop the connection for this application. An ApplicationTimeoutException is
thrown if the method does not succeed within the number of seconds specified by the timeout.

If no connection was previously stopped, then this operation has no effect. You can set the
applicationCallback before calling this operation to receive asynchronous
notification of connection status changes.

If a callback handler is registered, the sequence of callbacks as a result of calling
stopConnection is:

• onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, "")
• onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, "")

Syntax
public void stopConnection(int timeout)

Parameters

• timeout – The number of seconds to wait until the connection is stopped. If the timeout
value is less than or equal to 0, then this method returns immediately without waiting for
the registration to finish (a non-blocking call).

Returns

None.

Client Object API Usage

86 SAP Mobile Platform

Examples

• Stop the Application

stopConnection(60)

unregisterApplication
Delete the registration for this application, and stop the connection. If no registration was
previously created, or a previous registration was already deleted, then this operation has no
effect. This method is equivalent to calling unregisterApplication(0), but is a non-
blocking call which returns immediately. You can set the applicationCallback before calling
this operation to receive asynchronous notification of registration status changes.

Make sure the synchronization process has ended before calling this method.

Syntax
unregisterApplication()

Parameters
None.

Examples

• Unregister an Application – Unregisters the application.
app.unregisterApplication();

unregisterApplication(int timeout)
Delete the registration for this application, and stop the connection. If no registration was
previously created, or a previous registration was already deleted, then this operation has no
effect. You can set the applicationCallback before calling this operation to receive
asynchronous notification of registration status changes.

If a callback handler is registered and network connectivity is available, the sequence of
callbacks as a result of calling unregisterApplication should be:

• onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, "")
• onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, "")
• onRegistrationStatusChanged(RegistrationStatus.UNREGISTERING, 0, "")
• onRegistrationStatusChanged(RegistrationStatus.UNREGISTERED, 0, "")

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling unregisterApplication should be:

• onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, "")
• onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, "")
• onRegistrationStatusChanged(RegistrationStatus.UNREGISTERING, 0, "")

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 87

• onRegistrationStatusChanged(RegistrationStatus.REGISTRATION_ERROR, code,
message)

Syntax
unregisterApplication(int timeout)

Parameters

• timeout – Number of seconds to wait until the application is unregistered. If the timeout
value is less than or equal to 0, then this method returns immediately without waiting for
the registration to finish (a non-blocking call).

Examples

• Unregister an Application – Unregisters the application with a one minute waiting
period.
app.unregisterApplication(60);

ConnectionProperties
A class that supports the configuration of properties to enable application registrations and
connections.

getActivationCode
Retrieves the activation code.

Syntax
public String getActivationCode()

Parameters
None.

Returns

Returns the activation code.

setActivationCode
Sets the activation code. If you register an application manually, you must set an activation
code.

Syntax
public void setActivationCode(String value)

Client Object API Usage

88 SAP Mobile Platform

Parameters

• value – The activation code.

Returns

None.

getNetworkProtocol
Retrieves the network protocol for the server connection URL, which is also known as the
URL scheme.

Syntax
public String getNetworkProtocol()

Parameters
None.

Returns

Returns the network protocol for the server connection URL.

setNetworkProtocol
Sets the network protocol for the server connection URL, which is also known as the URL
scheme. Defaults to HTTP.

Syntax
public void setNetworkProtocol(String value)

Parameters

• value – The network protocol for the server connection URL, which is also known as the
URL scheme.

Returns

None.

getLoginCertificate
Retrieves the login certificate.

Syntax
public LoginCertificate getLoginCertificate()

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 89

Parameters
None.

Returns

Returns the login certificate.

setLoginCertificate
Sets the login certificate to enable authentication by a digital certificate.

Syntax
public void setLoginCertificate(LoginCertificate value)

Parameters

• value – The login certificate.

Returns

None.

getLoginCredentials
Retrieves the login credentials.

Syntax
public LoginCredentials getLoginCredentials()

Parameters
None.

Returns

Returns the login credentials.

setLoginCredentials
Sets the login credentials to enable authentication by username and password.

Syntax
public void setLoginCredentials(LoginCredentials value)

Client Object API Usage

90 SAP Mobile Platform

Parameters

• value – The login credentials.

Returns

None.

getPortNumber
Retrieves the port number for the server connection URL.

Syntax
public int getPortNumber()

Parameters
None.

Returns

Returns the port number.

setPortNumber
Sets the port number for the server connection URL.

Syntax
public void setPortNumber(int value)

Parameters

• value – The port number for the server connection URL.

Returns

None.

getServerName
Retrieves the server name for the server connection URL.

Syntax
public String getServerName()

Parameters
None.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 91

Returns

Returns the server name.

setServerName
Sets the server name for the server connection URL.

Syntax
public void setServerName(String value)

Parameters

• value – The server name for the server connection URL.

Returns

None.

getSecurityConfiguration
Retrieves the security configuration for the connection profile.

Syntax
public String getSecurityConfiguration()

Parameters
None.

Returns

Returns the security configuration.

setSecurityConfiguration
Sets the security configuration for the connection profile. If not specified, the server selects the
correct security configuration by matching an application connection template with the
applicationIdentifier. If you have two application connection templates with the
same application ID but different security configurations, you must set the security
configuration. Otherwise, a 'template not found' exception will be thrown.

Syntax
public void setSecurityConfiguration(String value)

Client Object API Usage

92 SAP Mobile Platform

Parameters

• value – The security configuration for the connection profile.

Returns

None.

getUrlSuffix
Retrieves the URL suffix for the server connection URL.

If the URL Suffix is left blank, then the client will attempt to discover the correct URL using
default Relay Server URLs. If a valid urlSuffix is discovered, the value will be saved and
used exclusively.

Note: If an incorrect URL is configured, it must be cleared or corrected before the client is able
to connect.

Syntax
public String getUrlSuffix()

Parameters
None.

Returns

Returns the URL suffix.

setUrlSuffix
Sets the URL suffix for the server connection URL. This optional property is only used when
connecting through a proxy server or Relay Server.

Note: If you provide an incorrect URL suffix, the server uses the default URL suffix when
registering.

Syntax
public void setUrlSuffix(String value)

Parameters

• value – The URL suffix for the server connection URL.

Returns

None.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 93

Usage
The suffix "/%cid%/tm" is appended if the URL does not already end in "/tm". If the URL
ends in "/", then only "%cid%/tm" is appended.

You can optionally code a Content-ID (CID) into the URL.

For example, if the CID is "XYZ" then any of these URL suffixes:

• /ias_relay_server/client/rs_client.dll
• /ias_relay_server/client/rs_client.dll/
• /ias_relay_server/client/rs_client.dll/%cid%/tm
• /ias_relay_server/client/rs_client.dll/XYZ/tm

result in the following URL suffix:

• /ias_relay_server/client/rs_client.dll/XYX/tm

getFarmId
Retrieves the Farm ID for the server connection URL. This optional property is used in the
URL discovery process when connecting through a proxy server or Relay Server. The
farmId is substituted into the default URL templates for Relay Server on into a configured
urlSuffix. The farmId is used only until a connection is successfully made and the
permanent urlSuffix is stored.

Syntax
public String getFarmId()

Parameters
None.

Returns

Returns the Farm ID.

setFarmId
Sets the Farm ID for the server connection URL (the default is 0). This optional property is
only used when connecting through a proxy server or Relay Server.

Syntax
public void setFarmId(String value)

Parameters

• value – The Farm ID for the server connection URL.

Client Object API Usage

94 SAP Mobile Platform

Returns

None.

getHttpHeaders
Retrieves any custom headers for HTTP network communications with a proxy server or
Relay Server.

Syntax
public StringProperties getHttpHeaders()

Parameters
None.

Returns

Returns the HTTP headers.

setHttpHeaders
Sets the HTTP headers for network communications through a proxy server or Relay Server.

Syntax
public void setHttpHeaders(StringProperties oHeaders)

Parameters

• oHeaders – Optional headers for HTTP network communication with a proxy server or
Relay Server.

Returns

None.

getHttpCookies
Retrieves any custom HTTP cookies for network communications with a proxy server or
Relay Server.

Syntax
public StringProperties getHttpCookies()

Parameters
None.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 95

Returns

Returns the HTTP cookies.

setHttpCookies
Sets the HTTP cookies for network communications through a proxy server or Relay Server.

Syntax
public void setHttpCookies(StringProperties oCookies)

Parameters

• oCookies – Optional cookies for HTTP network communication with a proxy server or
Relay Server.

Returns

None.

getHttpCredentials
Retrieves the credentials for HTTP basic authentication with a proxy server or Relay Server.

Syntax
public LoginCredentials getHttpCredentials()

Parameters
None.

Returns

Returns credentials for HTTP basic authentication with a proxy server or Relay Server.

setHttpCredentials
Sets the HTTP credentials for basic authentication through a proxy server or Relay Server.

Syntax
public void setHttpCredentials(LoginCredentials httpCredentials)

Parameters

• httpCredentials – credentials for HTTP basic authentication with proxy/relay server.

Client Object API Usage

96 SAP Mobile Platform

Returns

None.

ApplicationSettings
Methods or properties in the ApplicationSettings class.

isApplicationSettingsAvailable
Checks whether the application settings are available from the SAP Mobile Server.

Syntax
public boolean isApplicationSettingsAvailable()

Parameters
None.

Returns
Returns true if the application settings are available.

Examples

• Check if application settings are available

boolean isSettingsAvailable =
Application.getInstance().getApplicationSettings().isApplicationS
ettingsAvailable();

getStringProperty
Retrieves a string property from the applicationSettings.

Syntax
public String getStringProperty(ConnectionPropertyType type)

Parameters

• type – Type of ConnectionPropertyType.

Returns

Returns a string property value.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 97

Examples

• Get string property

String user_name =
appSettings.getStringProperty(ConnectionPropertyType.UserName);

getIntegerProperty
Retrieves an integer property from the applicationSettings.

Syntax
 public Integer getIntegerProperty(ConnectionPropertyType type)

Parameters

• type – Type of ConnectionPropertyType.

Returns
Returns an integer property value.

Examples

• Get integer property

java.lang.Integer min_length =
appSettings.getIntegerProperty(ConnectionPropertyType.PwdPolicy_L
ength);

getBooleanProperty
Retrieves a boolean property from the applicationSettings.

Syntax
public Boolean getBooleanProperty(ConnectionPropertyType type)

Parameters

• type – Type of ConnectionPropertyType.

Returns
Returns a boolean property value.

Client Object API Usage

98 SAP Mobile Platform

Examples

• Get boolean property

java.lang.Boolean pwdpolicy_enabled =
appSettings.getBooleanProperty(ConnectionPropertyType.PwdPolicy_E
nabled);

getCustom1
A custom application setting for use by the application code.

Syntax
public String getCustom1()

Parameters
None.

Returns

Returns a custom application setting.

getCustom2
A custom application setting for use by the application code.

Syntax
public String getCustom2()

Parameters
None.

Returns

Returns a custom application setting.

getCustom3
A custom application setting for use by the application code.

Syntax
public String getCustom3()

Parameters
None.

Returns

Returns a custom application setting.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 99

getCustom4
A custom application setting for use by the application code.

Syntax
public String getCustom4()

Parameters
None.

Returns

Returns a custom application setting.

getDomainName

Syntax
public String getDomainName()

Parameters
None.

Returns

Returns the domain name.

getConnectionId

Syntax
public String getConnectionId()

Parameters
None.

Returns

Returns a Connection ID for this application setting.

ConnectionPropertyType
Methods or properties in the ConnectionPropertyType class.

See the generated API reference provided with the Mobile SDK for a complete list of methods
in the ConnectionPropertyType class.

Client Object API Usage

100 SAP Mobile Platform

PwdPolicy_Enabled
Indicates whether the password policy is enabled.

Syntax
ConnectionPropertyType PwdPolicy_Enabled

Parameters
None.

Returns

A boolean true or false indicating whether or not the password policy is enabled.

Examples

• PwdPolicy_Enabled

java.lang.Boolean pwdpolicy_enabled =
appSettings.getBooleanProperty(ConnectionPropertyType.PwdPolicy_E
nabled);

PwdPolicy_Default_Password_Allowed
 Indicates whether the client application is allowed to use the default password for the data
vault.

Syntax
ConnectionPropertyType PwdPolicy_Default_Password_Allowed

Parameters
None.

Returns

None.

Examples

• PwdPolicy_Default_Password_Allowed

java.lang.Boolean default_password_allowed =
appSettings.getBooleanProperty(ConnectionPropertyType.PwdPolicy_D
efault_Password_Allowed);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 101

PwdPolicy_Length
Defines the minimum length for a password.

Syntax
ConnectionPropertyType PwdPolicy_Length

Parameters
None.

Returns

Returns an integer value for the minimum length for a password.

Examples

• PwdPolicy_Length

java.lang.Integer min_length =
appSettings.getIntegerProperty(ConnectionPropertyType.PwdPolicy_L
ength);

PwdPolicy_Has_Digits
Indicates if the password must contain digits.

Syntax
ConnectionPropertyType PwdPolicy_Has_Digits

Parameters
None.

Returns

Returns true if the password must contain digits.

Examples

• PwdPolicy_Has_Digits

java.lang.Boolean has_digits =
appSettings.getBooleanProperty(ConnectionPropertyType.PwdPolicy_H
as_Digits);

Client Object API Usage

102 SAP Mobile Platform

PwdPolicy_Has_Upper
Indicates if the password must contain at least one upper case character.

Syntax
ConnectionPropertyType PwdPolicy_Has_Upper

Parameters
None.

Returns

Returns true if the password must contain at least one upper case character.

Examples

• PwdPolicy_Has_Upper

java.lang.Boolean has_upper =
appSettings.getBooleanProperty(ConnectionPropertyType.PwdPolicy_H
as_Upper);

PwdPolicy_Has_Lower
Indicates if the password must contain at least one lower case character.

Syntax
ConnectionPropertyType PwdPolicy_Has_Lower

Parameters
None.

Returns

Returns true if the password contains at least one lower case character.

Examples

• PwdPolicy_Has_Lower

java.lang.Boolean has_lower =
appSettings.getBooleanProperty(ConnectionPropertyType.PwdPolicy_H
as_Lower);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 103

PwdPolicy_Has_Special
Indicates if the password must contain at least one special character. A special character is a
character in the set "~!@#$%^&*()-+".

Syntax
ConnectionPropertyType PwdPolicy_Has_Special

Parameters
None.

Returns

Returns true if the password must contain at least one special character.

Examples

• PwdPolicy_Has_Special

java.lang.Boolean has_special =
appSettings.getBooleanProperty(ConnectionPropertyType.PwdPolicy_H
as_Special);

PwdPolicy_Expires_In_N_Days
Specifies the number of days in which the password expires from the date of setting the
password.

Syntax
ConnectionPropertyType PwdPolicy_Expires_In_N_Days

Parameters
None.

Returns

Returns an integer value for the number of days in which the password expires.

Examples

• PwdPolicy_Expires_In_N_Days

java.lang.Integer expires_in_n_days =
appSettings.getIntegerProperty(ConnectionPropertyType.PwdPolicy_E
xpires_In_N_Days);

Client Object API Usage

104 SAP Mobile Platform

PwdPolicy_Min_Unique_Chars
Specifies the minimum number of unique characters in the password.

Syntax
ConnectionPropertyType PwdPolicy_Min_Unique_Chars

Parameters
None.

Returns

An integer specifying the minimum number of unique characters in the password.

Examples

• PwdPolicy_Min_Unique_Characters

java.lang.Integer min_unique_characters =
appSettings.getIntegerProperty(ConnectionPropertyType.PwdPolicy_M
in_Unique_Chars);

PwdPolicy_Lock_Timeout
Specifies the timeout value (in seconds) after which the vault is locked from the unlock time. A
value of 0 indicates no timeout.

Syntax
ConnectionPropertyType PwdPolicy_Lock_Timeout

Parameters
None.

Returns

An integer specifying the timeout value.

Examples

• PwdPolicy_Lock_Timeout

java.lang.Integer lock_timeout =
appSettings.getIntegerProperty(ConnectionPropertyType.PwdPolicy_L
ock_Timeout);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 105

PwdPolicy_Retry_Limit
Specifies the number of failed unlock attempts after which the data vault is deleted. A value of
0 indicates no retry limit.

Syntax
ConnectionPropertyType PwdPolicy_Retry_Limit

Parameters
None.

Returns

An integer specifying the number of failed unlock attempts after which the data vault is
deleted.

Examples

• PwdPolicy_Retry_Limit

java.lang.Integer retry_limit =
appSettings.getIntegerProperty(ConnectionPropertyType.PwdPolicy_R
etry_Limit);

Connection APIs
The Connection APIs contain methods for managing local database information, establishing
a connection with the SAP Mobile Server, and authenticating.

See also
• Initially Starting an Application on page 19

ConnectionProfile
The ConnectionProfile class manages local database information. Set its properties,
including the encryption key, during application initialization, and before creating or
accessing the local client database.

By default, the database class name is generated as "packageName"+"DB".
ConnectionProfile profile = SMP101DB.getConnectionProfile();
profile.setPageSize(4*1024);
profile.setEncryptionKey("Your key of more than 16 characters");

Note: If you set the page size to a negative value, the framework uses a default value of 4K as
the page size.

Client Object API Usage

106 SAP Mobile Platform

You can also generate an encryption key by calling the generated database's
generateEncryptionKey method, and then store the key inside a DataVault object.
The generateEncryptionKey method automatically sets the encryption key in the
connection profile.

You can use the cacheSize API to control the size of the memory cache used by the
database.
public void setCacheSize(int cacheSize)

See also
• Setting Up the Connection Profile on page 24

Managing Device Database Connections
Use the openConnection() and closeConnection() methods generated in the
package database class to manage device database connections.

Note: Any database operation triggers the establishment of the database connection. You do
not need to explicitly call the openConnection API.

The openConnection() method checks that the package database exists, creates it if it
does not, and establishes a connection to the database. This method is useful when first starting
the application: since it takes a few seconds to open the database when creating the first
connection, if the application starts up with a login screen and a background thread that
performs the openConnection() method, after logging in, the connection is most likely
already established and is immediately available to the user.

All ConnectionProfile properties should be set before the first access to database,
otherwise they will not take effect.

The closeConnection() method closes all database connections for this package and
releases all resources allocated for those connections. This is recommended to be part of the
application shutdown process.

Improving Device Application Performance with One Writer Thread and
Multiple Database Access Threads
The maxDbConnections property improves device application performance by allowing
multiple threads to access data concurrently from the same local database.

Connection management allows you to have at most one writer thread concurrent with
multiple reader threads. There can be other reader threads at the same time that the writer
thread is writing to the database. The total number of threads are controlled by the
maxDbConnections property.

In a typical device application such as SAP Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry appears, and
loads the details for that entry.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 107

Prior to the implementation of maxDbConnections, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) operation waited for any previous operation to finish before the next was
allowed to proceed. In the list view to detail view example, when the background thread is
loading the entire list, and a user selects the details of one entry for display, the loading of
details for that entry must wait until the entire list is loaded, which can be a long while,
depending on the size of the list.

You can specify the number of total threads using maxDbConnections. The
ConnectionProfile class in the persistence package includes the
maxDbConnections property, which you set before performing any operation in the
application. The default value (maximum number of concurrent read threads) is 2

ConnectionProfile connectionProfile =
SMP101DB.getConnectionProfile();

To allow 6 concurrent threads, set the maxDbConnections property to 6 in
ConnectionProfile before accessing the package database at the beginning of the
application.
connectionProfile.setMaxDbConnections(6);

UltraLiteJ Database Performance Tuning Properties
Set properties to tune the performance of the UltraLiteJ database on the device based on the
MBO model and the size of the data.

• Page Size – The page size you choose can affect the performance or size of the database.
UltraLiteJ, as in other databases, operates in units of page size. Larger page size may reuslt
in higher inefficiency if space utilization of the page is low. In general, one page should be
able to hold one row of data of the largest MBO type.

Note: The default page size is set at code generation time. The page size cannot be changed
after the database is created. If a database is already created, the page size at the time of the
database creation will be in effect.

// set 4K page size
 SMP101DB.getConnectionProfile().setPageSize(4096);

• Cache Size – UltraLiteJ has a page cache with a default size of 20k or a minimum of 8
pages. If your page size is 4k, you will have a 32k page cache. Having a larger cache keeps
more pages in memory at the expense of using up memory. It is recommended to
experiment with different settings for your application to obtain the best performance.
// set 100K cache size
 SMP101DB.getConnectionProfile().setCacheSize(102400);

• Row Score Maximum and Row Score Flush Size – Row score is a measure of the
references used to maintain recently used rows in memory. Each row in memory is
assigned a score based on the number and types of columns they have, which approximates
the maximum number of references they could use. Most columns score as 1; varchar
binary, long binary and UUID score as 2; long varchar score as 4.

Client Object API Usage

108 SAP Mobile Platform

When the maximum score threshold is reached, the flush size is used to determine how
many old rows to remove.

It is recommended that the flush size (measured as a row score) be kept reasonable (less
than 1000) to prevent large interruptions.

The default setting is 12000 for Row Score Maximum and 1000 for Row Score Flush
Size.
SMP101DB.getConnectionProfile().setProperty("rowScoreMaximum",
"20000");

SMP101DB.getConnectionProfile().setProperty("rowScoreFlushSize",
"800");

Set Database File Property
You can use setProperty to specify the database file path on the device. If the path you
specified starts with "file:///SDCard/" then the database is stored in the SD media card. If the
path starts with "file:///store/" then the database is stored in the internal flash. Otherwise, the
database is stored in the BlackBerry Object Store.

ConnectionProfile cp = SMP101DB.getConnectionProfile();
cp.setProperty("databaseFile", "SMP101.ulj");
cp.save();

Examples
To store the database on the SD card:
cp.setProperty("databaseFile", "file:///SDCard/mydb.ulj");

Note: For the database file path and name, the forward slash (/) is required as the path
delimiter, for example file:///SDCard/dbfiles/smpprj.ulj. .

Usage

• Be sure to call this API before the database is created.
• The database is UltraLiteJ; use a database file name like mydb.ulj.

• If the device client user changes the file name, he or she must make sure the input file name
is a valid name and path on the client side.

Note: SAP recommends using industrial grade SD cards using Single Level Cell (SLC)
technology. SD cards that use SLC technology are generally more reliable and faster than
MLC cards, although they may be more limited in size and more expensive per unit of storage.
Not all SD cards perform equally, and it is advised that customers evaluate the benchmarks
available from different suppliers.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 109

Synchronization Profile
The Synchronization Profile contains information for establishing a connection with the SAP
Mobile Server's data synchronization channel where the server package has been deployed.
The com.sybase.persistence.ConnectionProfile class manages that
information. By default, this information includes the server host, port, domain name,
certificate and public key that are pushed by the message channel during the registration
process.

Settings are automatically provisioned from the SAP Mobile Server. The values of the settings
are inherited from the application connection template used for the registration of the
application connection (automatic or manual). You must make use of the connection and
security settings that are automatically used by the Object API.

Typically, the application uses the settings as sent from the SAP Mobile Server to connect to
the SAP Mobile Server for synchronization so that the administrator can set those at the
application deployment time based on their deployment topology (for example, using Relay
Server, using e2ee security, or a certificate used for the intermediary, such as a Relay Server
Web server). See the Applications and Application Connection Templates topics in System
Administration.
SynchronizationProfile sp = SMP101DB.getSynchronizationProfile();
sp.setDomainName("default");
sp.setServerName("smp.example.com");
sp.setPortNumber(2480);
sp.setNetworkProtocol("http");
sp.getStreamParams().setTrusted_Certificates("rsa_public_cert.crt"
);

You can allow clients to compress traffic as they communicate with the SAP Mobile Server by
including "compression=zlib" into the stream parameters:
DatabaseClass.getSynchronizationProfile().getStreamParams().setZlib
Compression(true);

Compression is disabled by default.

When a Blackberry application connects to the SAP Mobile Server through the BlackBerry
BES TLS Proxy server, you must include an additional parameter, ";EndToEndRequired", as
part of the url_suffix in the network stream of the synchronization profile.

DatabaseClass.getSynchronizationProfile().setNetworkStreamParams("t
rusted_certificates=;url_suffix=\\;EndToEndRequired");

A Blackberry application can get or set the size, in bytes, of the output buffer used to store data
before it is sent to the SAP Mobile Server during synchronization. The default value is 4096
and valid values range between 512 and 32768. When calling the
setOutputBufferSize method, a ConnectionPropertyException is thrown if
the value of the size parameter is not in the range between 512 and 32768.

Client Object API Usage

110 SAP Mobile Platform

ConnectionProfile profile =
DatabaseClass.getSynchronizationProfile();
NetworkStreamParams params = profile.getStreamParams();
params.setOutputBufferSize(1024);

You can allow clients to compress traffic as they communicate with the SAP Mobile Server by
including "compression=zlib" into the stream parameters:
SMP101DB.getSynchronizationProfile().getStreamParams().setZlibCompr
ession(true);

By default, compression is disabled.

See also
• Setting Up the Synchronization Profile on page 25

Connect the Data Synchronization Channel Through a Relay Server
To enable your client application to connect through a Relay Server, you can enter the related
configuration in the application connection template through SAP Control Center, and/or
setup the configuration properties in the synchronization profile using the object API.

Edit SMP101DB by modifying the values of the Relay Server properties for your Relay Server
environment.

To update properties for a Relay Server installed on Apache:
getSynchronizationProfile().setServerName("examplexp-vm1");
getSynchronizationProfile().setPortNumber(80);
getSynchronizationProfile().setNetworkProtocol("http");
NetworkStreamParams streamParams =
getSynchronizationProfile().getStreamParams();
streamParams.setUrl_Suffix("/cli/iarelayserver/<FarmName>");
getSynchronizationProfile().setDomainName("default");

To update properties for a Relay Server installed on Internet Information Services (IIS) on
Microsoft Windows:
getSynchronizationProfile().setServerName("examplexp-vm1");
getSynchronizationProfile().setPortNumber(80);
getSynchronizationProfile().setNetworkProtocol("http");
NetworkStreamParams streamParams =
getSynchronizationProfile().getStreamParams();
streamParams.setUrl_Suffix("/ias_relay_server/client/rs_client.dll/
<FarmName>");
getSynchronizationProfile().setDomainName("default");

For more information on relay server configuration, see System Administration and SAP
Control Center for SAP Mobile Platform.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 111

Asynchronous Operation Replay
When an application calls submitPending on an MBO on which a create, update, or delete
operation is performed, an operation replay record is created on the device local database.

When synchronize is called, the operation replay records are uploaded to the server. The
method returns without waiting for the backend to replay those records. The synchronize
method downloads all the latest data changes and the results of the previously uploaded
operation replay records that the backend has finished replaying. If you choose to disable
asynchronous operation replay, each synchronize call will wait for the backend to finish
replaying all the current uploaded operation replay records.

By default, synchronization will not wait for the operations to be replayed on the backend.
When the replay is finished, the onSynchronize callback method will be called with this status
code in the SynchronizeContext:
SynchronizationStatus.ASYNC_REPLAY_COMPLETED

The application can set the following property in the synchronization profile to use the
previous Synchronous Operation Replay behavior.
SMP101DB.getSynchronizationProfile().setAsyncReplay(false);

Note: Synchronous operation replay against MBOs using an EIS managed cache group policy
are automatically treated as asynchronous replay by the SAP Mobile Platform Runtime.

Authentication APIs
You can log in to the SAP Mobile Server with your user name and credentials and use the X.
509 certificate you installed in the task flow for single sign-on.

Logging In
The generated package database class provides a default synchronization connection profile
according to the SAP Mobile Server connection profile and server domain selected during
code generation. You can log in to the SAP Mobile Server with your user name and
credentials.

The package database class provides methods for logging in to the SAP Mobile Server:

• onlineLogin() – authenticates credentials against the SAP Mobile Server.

Sample Code: Setting Up Login Credentials
Illustrates importing the certificate and setting up login credentials, as well as other APIs
related to certificate handling:

/// SMP101DB is a generated database class

Client Object API Usage

112 SAP Mobile Platform

///First install certificates on your simulator, for example
"SAP101.p12"

//Getting certificate from certificate store
CertificateStore myStore =
CertificateStore.getDefault();
String filter1 = "SAP";
StringList labels = myStore.certificateLabels(filter1, null);
String aLabel = labels.item(0);
LoginCertificate lc = myStore.getSignedCertificate(aLabel,
"password");

// Save the login certificate to your synchronization profile
SMP101DB.getSynchronizationProfile().setCertificate(lc);

// Save the login certificate to your data vault
// The vault must be unlocked before saving
// SybaseDataProvider.apk package must be installed on Android device
String vaultName = "myVault";
DataVault vault = null;
if(!DataVault.vaultExists(vaultName))
{
 vault = DataVault.createVault(vaultName, "password", "salt");
}
else
{
 vault = DataVault.getVault(vaultName);
}
vault.unlock("password", "salt");
lc.save("myLabel", vault);

//Loading and deleting certificate
LoginCertificate newLc = LoginCertificate.load("myLabel", vault);
LoginCertificate.delete("myLabel", vault);

Sample Code: Mutual Authentication
Illustrates client configuration to support mutual authentication, as well as other APIs related
to certificate handling:

//Step 1: Get the login certificate from a certificate store

CertificateStore myStore = CertificateStore.getDefault();
StringList labels = myStore.certificateLabels(certSubject,
certIssuer);
LoginCertificate lc = myStore.getSignedCertificate(labels.item(0),
"changeit");

Application app = Application.getInstance();

app.setApplicationIdentifier("customer.service");
ConnectionProperties pro = app.getConnectionProperties();
pro.setLoginCertificate(lc);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 113

//Step 2: Register the application

pro.setServerName("10.0.0.2");
pro.setNetworkProtocol("HTTPS");
pro.setFarmId("0");
pro.setUrlSuffix("");
pro.setSecurityConfiguration("cert");

if (Application.getInstance().getRegistrationStatus() ==
RegistrationStatus.UNREGISTERED)
{
 Application.getInstance().registerApplication(100);
}

......

//Step 3: Get ready to synchronize

DsTestDB.getSynchronizationProfile().setNetworkProtocol("HTTPS");
DsTestDB.getSynchronizationProfile().setPortNumber(2482);
DsTestDB.getSynchronizationProfile().setServerName("sever host");
DsTestDB.getSynchronizationProfile().setCertificate(lc);

//Step 4: Synchronize

.......
DsTestDB.synchronize();

Single Sign-On With X.509 Certificate Related Object API
Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

• CertificateStore class - wraps platform-specific key/certificate store class, or file
directory

• LoginCertificate class - wraps platform-specific X.509 distinguished name and
signed certificate

• ConnectionProfile class - includes the certificate attribute used for SAP Mobile
Server synchronization.

Refer to the API Reference for implementation details.

Importing a Certificate into the Data Vault
Obtain a certificate reference and store it in a password-protected data vault to use for X.509
certificate authentication.

The difference between importing a certificate from a system store or a file directory is
determined by how you obtain the CertificateStore object. In either case, only a label
and password are required to import a certificate blob, which is a digitally signed copy of the
public X.509 certificate.

Client Object API Usage

114 SAP Mobile Platform

// Obtain a reference to the certificate store
CertificateStore certStore = CertificateStore.getDefault();

// Obtain a list of certificates
StringList labels = certStore.certificateLabels();

// Import a certificate blob from store (into memory)
String label = ...; // ask user to select a label
String password = ...; // ask the user for a password
LoginCertificate cert = certStore.getSignedCertificate(label,
password);

// Lookup or create data vault
String vaultPassword = ...; // ask user or from O/S protected storage
String vaultName = "..."; // e.g. "SAP.CRM.CertificateVault"
String vaultSalt = "..."; // e.g. a hard-coded random GUID
DataVault vault;
try
{
 vault = DataVault.getVault(vaultName);
 vault.unlock(vaultPassword, vaultSalt);
}
catch (DataVaultException ex)
{
 vault = DataVault.createVault(vaultName, vaultPassword,
vaultSalt);
}

// Save certificate into data vault
cert.save("myCert", vault);

Selecting a Certificate for SAP Mobile Server Connections
Select the X.509 certificate from the data vault for SAP Mobile Server authentication.

LoginCertificate cert = LoginCertificate.load("myCert", vault);
ConnectionProfile syncProfile =
SMP101DB.getSynchronizationProfile();
syncProfile.setCertificate(cert);

Connecting to SAP Mobile Server with a Certificate
Once the certificate property is set, use the onlineLogin() API with no parameters. Do
not use the onlineLogin() API with username and password.

SMP101DB.onlineLogin();

Personalization APIs
Personalization keys allow the application to define certain input parameter values that are
personalized for each mobile user. Personalization parameters provide default values for

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 115

synchronization parameters when the synchronization key of the object is mapped to the
personalization key while developing a mobile business object. The Personalization APIs
allow you to manage personalization keys, and get and set personalization key values.

See also
• Specifying Personalization Parameters on page 35

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the SAP Mobile Server. Session personalization keys are not persisted and are lost
when the device application terminates.

A personalization parameter can be a primitive or complex type.

A personalization key is metadata that enables users to store their search preferences on the
client, the server, or by session. The preferences narrow the focus of data retrieved by the
mobile device (also known as the filtering of data between the client and the SAP Mobile
Server). Often personalization keys are used to hold backend system credentials, so that they
can be propagated to the EIS. To use a personalization key for filtering, it must be mapped to a
synchronization parameter. The developer can also define personalization keys for the
application, and can use built-in personalization keys available in the SAP Mobile Server. Two
built-in (session) personalization keys — username and password — can be used to perform
single sign-on from the device application to the SAP Mobile Server, authentication and
authorization on the SAP Mobile Server, as well as connecting to the back-end EIS using the
same set of credentials. The password is never saved on the server.

Getting and Setting Personalization Key Values
The PersonalizationParameters class is generated automatically for managing
personalization keys. When a personalization parameter value is changed, the call to save
automatically propagates the change to the server.

An operation can have a parameter that is one of the SAP Mobile Platform list types (such as
IntList, StringList, or ObjectList). This code shows how to set a personalization
key, and pass an array of values and an array of objects:
PersonalizationParameters pp =
SMP101DB.getPersonalizationParameters();
pp.setMyIntPK(10002);
pp.save();
IntList il = new IntList(2);
il.add(10001);
il.add(10002);
pp.setMyIntListPK(il);
pp.save();

MyDataList dl = new MyDataList();

Client Object API Usage

116 SAP Mobile Platform

//MyData is a structure type defined in tooling
MyData md = new MyData();
md.setIntMember(...);
md.setStringMember2(...);
dl.add(md);
pp.setMyDataList(dl);
pp.save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Synchronization APIs
You can synchronize mobile business objects (MBOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Note: The loginToSync API is now deprecated. Call synchronize or
beginSynchronize before saving synchronization parameters. After saving the
synchronization parameters, call synchronize or beginSynchronize again to
retrieve the new values filtered by those parameters.

See also
• Synchronizing Applications on page 33

• Specifying Synchronization Parameters on page 35

Managing Synchronization Parameters
Synchronization parameters let an application change the parameters that retrieve data from
an MBO during a synchronization session.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.

To add a synchronization parameter:
CustomerSubscription sp = new CustomerSubscription();
sp.setName("example");
Customer.addSubscription(sp);

To list all synchronization parameters:
com.sybase.collections.ObjectList r = Customer.getSubscriptions();

To remove a synchronization parameter:
com.sybase.collections.ObjectList r = Customer.getSubscriptions();
CustomerSubscription sub = (CustomerSubscription)r.item(0);
Customer.removeSubscription(sub);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 117

Performing Mobile Business Object Synchronization
A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

This code synchronizes an MBO package using a specified connection:
SMP101DB.synchronize (string synchronizationGroup)

The package database class includes two synchronization methods. You can synchronize a
specified group of MBOs using the synchronization group name:
SMP101DB.synchronize("my-sync-group");

Or, you can synchronize all synchronization groups:
SMP101DB.synchronize();

There is a default synchronization group within every package. The default synchronization
group includes all MBOs except those already included by other synchronization groups. To
synchronize a default synchronization group call:
SMP101DB.beginSynchronize("default"); or
SMP101DB.synchronize("default");
If there is no other synchronization group, call SMP101DB.beginSynchronize(); or
SMP101DB.synchronize();
To synchronize a synchronization group asynchronously:
ObjectList syncGroups = new ObjectList();
syncGroups.add(SMP101DB.getSynchronizationGroup("my-sync-group"));
SMP101DB.beginSynchronize(syncGroups, "");

When an application uses a create, update, or delete operation in an MBO and calls the
submitPending metod, an OperationReplay object is created for that change. The
application must invoke either the synchronize or beginSynchronize method to
upload the OperationReplay object to the server to replay the change on the backend data
source. The isReplayQueueEmpty API is used to check if there are unsent operation
replay objects and decide whether a synchronize call is needed.
if (!SMP101DB.isReplayQueueEmpty())
{
// There are OperationReplay not uploaded to server
ObjectList sgs = new ObjectList();
sgs.add(SMP101DB.getSynchronizationGroup("system"));
SMP101DB.beginSynchronize(sgs, "upload OperationReplay objects");
}

Push Synchronization Applications
BlackBerry devices support sending push requests through HTTP. SAP Mobile Platform
supports push configuration and notification handling APIs for BlackBerry HTTP push.

Client Object API Usage

118 SAP Mobile Platform

Clients receive device notifications when a data change is detected for any of the MBOs in the
synchronization group to which they are subscribed.

SAP Mobile Platform uses a messaging channel to send change notifications from the server
to the client device. By default, change notification is disabled. You can enable the change
notification of a synchronization group: If you see that setInterval is set to 0, then change
detection is disabled, and notifications will not be delivered. Enable change detection and
notification delivery by setting an appropriate value. For recommendations, see Configuring
Synchronization Groups in SAP Control Center for SAP Mobile Platform.

SynchronizationGroup sg =
SMP101DB.getSynchronizationGroup("TCNEnabled");

if (!sg.getEnableSIS())
{
 sg.setEnableSIS(true);
 sg.setInterval(2); // 2 minutes
 sg.save();
 SMP101DB.synchronize("TCNEnabled");
}

When the server detects changes in an MBO affecting a client device, and the synchronization
group of the MBO has change detection enabled, the server will send a notification to client
device through messaging channel. By default, a background synchronization downloads the
changes for that synchronization group. The application can implement the onSynchronize
callback method to monitor this condition, and either allow or disallow background
synchronization.
public int onSynchronize(ObjectList groups, SynchronizationContext
context)
{
 int status = context.getStatus();
 if (status == SynchronizationStatus.STARTING_ON_NOTIFICATION)
 {
 // There is changes on the synchronization group
 if (busy)
 {
 return SynchronizationAction.CANCEL;
 }
 else
 {
 return SynchronizationAction.CONTINUE;
 }
 }

 // return CONTINUE for all other status
 return SynchronizationAction.CONTINUE;
}

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 119

Retrieving Information about Synchronization Groups
The package database class provides methods for querying the synchronized state and the last
synchronization time of a certain synchronization group.

/// Determines if the synchronization group was synchronized
public static boolean isSynchronized(java.lang.String
synchronizationGroup)

/// Retrieves the last synchronization time of the synchronization
group
public static java.util.Date
getLastSynchronizationTime(java.lang.String synchronizationGroup)

Log Record APIs
The Log Record APIs allow you to customize aspects of logging.

• Writing and retrieving log records (successful operations are not logged).
• Configuring log levels for messages reported to the console.
• Enabling the printing of server message headers and message contents, database

exceptions, and LogRecord objects written for each import.

• Viewing detailed trace information on database calls.

Log records are automatically created when an operation replay fails in the SAP Mobile
Server. If an operation replay succeeds, there is no LogRecord created by default (note that
an SAP default result checker may write a log record even when the SAP operation succeeds).
To get the confirmation when an operation replay succeeds, register a CallbackHandler and
implement the CallbackHandler.onReplaySuccess method.

See Developer Guide: BlackBerry Object API Applications > Client Object API Usage >
Callback and Listener APIs.

LogRecord API
LogRecord stores two types of logs.

• Operation logs on the SAP Mobile Server. These logs can be downloaded to the device.
• Client logs. These logs can be uploaded to the SAP Mobile Server.

This code executes an update operation and examines the log records for the Customer MBO:
int id = 101;
Customer result = Customer.findById(id);
result.setFname("newFname");
result.save();
result.submitPending();
SMP101DB.synchronize();
result = Customer.findById(id);
ObjectList logs = result.getLogRecords();

Client Object API Usage

120 SAP Mobile Platform

for (int i = 0; i < logs.count(); i)
{
 com.sybase.persistence.LogRecord logRecord =
 (com.sybase.persistence.LogRecord)logs.elementAt(i);
 // working with logRecord
}

The code in the log record is an HTTP status code. See Developer Guide: BlackBerry Object
API Applications >Client Object API Usage >Exceptions > Handling Exceptions > HTTP
Error Codes.

There is no logRecord generated for a successful operation replay. The SAP Mobile Server
only creates a logRecord when an operation fails or completes with warnings.

This sample code shows how to find the corresponding MBO with the LogRecord and to
delete the log record when a record is processed.
private void processLogRecords()
 {
 Query query = new Query();
 ObjectList logRecords = SMP101DB.getLogRecords(query);
 for(int i = 0; i < logRecords.size(); ++i)
 {
 LogRecord log = (LogRecord)logRecords.elementAt(i);
 // log warning message
 Log.warning("log " + log.getComponent() + ":" +
log.getEntityKey()
 + " code:" + log.getCode()
 + " msg:" + log.getMessage());

 if (log.getComponent().equals("Customer"))
 {
 long surrogateKey = Long.parseLong(log.getEntityKey());
 Customer c = Customer.find(surrogateKey);
 if (c.isPending())
 {
 c.cancelPending();
 }

 log.delete();
 log.submitPending();
 }
 }

 SMP101DB.beginSynchronize(null, null);
 }

A LogRecord is not generated for a successful operation replay. SAP Mobile Server only
creates one when an operation fails or completes with warnings. The client is responsible for
removing operation replay log records. SAP Mobile Server typically allows a period of time
for the client to download and act on the operation replay log record. Therefore, the client
should proactively remove these log records when they are consumed. Failure to do so may
result in accumulation of operation replay log records until SAP Mobile Server removes them.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 121

This sample code illustrates how to find the corresponding MBO with the LogRecord and
delete the log record when it is processed.
private void processLogs()
{
 Query query = new Query();
 GenericList<LogRecord> logRecords =
SMP101DB.getLogRecords(query);
 for(LogRecord log : logRecords)
 {
 // log warning message
 Log.warning("log " + log.getComponent()
 + ":" + log.getEntityKey()
 + " code:" + log.getCode() + " msg:" + log.getMessage());

 if (log.getComponent().equals("Customer"))
 {
 long surrogateKey = Long.parseLong(log.getEntityKey());
 Customer c = Customer.find(surrogateKey);
 if (c.isPending())
 {
 c.cancelPending();
 }

 // delete the LogRecord after it is processed
 log.delete();
 log.submitPending();
 }
 }

SAP Mobile Server is responsible for deleting client log records uploaded by the application.
These application logs are used for audit and/or support services. Determine and set the
retention policy from SAP Control Center after consulting with the application's developers. If
there are multiple applications using the same package, retain them based on the maximum
required time for each application. Client log records are removed that are outside the
retention window, and deleted records removed from the client database the next time the
application synchronizes. See Improve Synchronization Performance by Reducing the Log
Record Size in Troubleshooting for details about reducing the Log Record size.

Logger APIs
Use the Logger API to set the log level and create log records on the client.

Each package has a Logger. To obtain the package logger, use the getLogger method in
the generated database class. The Logger is an abstraction over the LogRecord API to write
records of various log levels into the LogRecord MBO on the client database.
Logger logger = SMP101DB.getLogger();

// set log level to debug
logger.setLogLevel(LogLevel.DEBUG);

// create a log record with ERROR level and the error message.
logger.error("Some error message");

Client Object API Usage

122 SAP Mobile Platform

// Prepare all outstanding client generated log records for upload
SMP101DB.submitLogRecords();

Change Log API
The change log allows a client to retrieve entity changes from the back end. If a client
application already has a list view constructed, it simply needs to add, modify, or delete entries
in the list according to the change logs.

A single ChangeLog is generated for each changed entity. If the changed entity is a child of a
composite relationship, there is also a ChangeLog for its parent root entity.

getEntityType
Returns the entity type.

Syntax
public int getEntityType()

Parameters
None.

Returns
Returns the entity type. The entity type values are defined in the generated java class
EntityType.java for the package.

Examples

• Get the Entity Type

getEntityType()

getOperationType
Returns the operation type of the MBO.

Syntax
public char getOperationType()

Parameters
None.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 123

Returns
The operation type of the MBO. Possible values are 'U' for update and insert, and 'D' for
delete.

Examples

• Get the Operation Type

getOperationType()

getRootEntityType
Returns the name of the root parent entity type.

Syntax
public int getRootEntityType()

Parameters
None.

Returns
Returns the root entity type which is the root of the object graph. The entity type values are
defined in the generated java class EntityType.java for the package.

Examples

• Get the Root Entity Type

getRootEntityType()

getRootSurrogateKey
Returns the surrogate key of the root parent entity.

Syntax
public long getRootSurrogateKey()

Parameters
None.

Returns
The surrogateKey of the root entity.

Client Object API Usage

124 SAP Mobile Platform

Examples

• Get the Root Surrogate Key

getRootSurrogateKey()

getSurrogateKey
Returns the surrogate key of the entity.

Syntax
public long getSurrogateKey()

Parameters
None.

Returns
The surrogate key of the affected entity. Note that the change log contains all affected entities,
including children of the object graph.

Examples

• Get the Surrogate Key

getSurrogateKey()

Methods in the Generated Database Class
You can use generated methods in the package database class to manage change logs.

enableChangeLog
By default, Change Log is disabled. To enable the change log, invoke the
enableChangeLog API in the generated database class. The next synchronization will
have change logs sent to the client.

Syntax
enableChangeLog();

Returns

None.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 125

Examples

• Enable Change Log

SMP101DB.enableChangeLog();

getChangeLogs
Retrieve a list of change logs.

Syntax
ObjectList getChangeLogs(com.sybase.persistence.Query query);

Returns

Returns an ObjectList of type ChangeLog.

Examples

• Get Change Logs

ObjectList SMP101DB.getChangeLogs(query);

deleteChangeLogs
You are recommended to delete all change logs after the application has completed processing
them. Use the deleteChangeLogs API in the generated database class to delete all change
logs on the device.

Syntax
deleteChangeLogs();

Returns

None.

Examples

• Delete Change Logs

SMP101DB.deleteChangeLogs();

Usage

Ensure that when calling deleteChangeLogs, there are no change logs created from a
background synchronization that are not part of the original change log list returned by a
specific query:
ObjectList changes = getChangeLogs(myQuery);

Client Object API Usage

126 SAP Mobile Platform

You should only call deleteChangeLogs in the onSynchronize() callback where
there are no multiple synchronizations occurring simultaneously.

disableChangeLog
Creating change logs consumes some processing time, which can impact application
performance. The application may can disable the change log using the disableChangeLog
API.

Syntax
disableChangeLog();

Returns

None.

Examples

• Disable Change Log

SMP101DB.disableChangeLog();

Code Samples
Enable the change log and list all changes, or only the change logs for a particular entity,
Customer.

SMP101DB.enableChangeLog();
SMP101DB.synchronize();

// Retrieve all change logs
ObjectList logs = SMP101DB.getChangeLogs(new Query());
System.out.println("There are " + logs.count() + " change logs");
for (int i = 0; i < logs.count(); ++i)
{
 ChangeLog log = (ChangeLog)logs.elementAt(i);
 System.out.println(log.getEntityType()
 + "(" + log.getSurrogateKey()
 + "): " + log.getOperationType());
}

// Retrieve only the change logs for Customer:
Query query = new Query();
AttributeTest at = new AttributeTest("entityType",
 new java.lang.Integer(SMP101.EntityType.Customer),
 AttributeTest.EQUAL);

query.setTestCriteria(at);
logs = SMP101DB.getChangeLogs(query);
System.out.println("There are " + logs.size() + " change logs for
Customer");
for (int i = 0; i < logs.count(); ++i)
{

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 127

 ChangeLog log = (ChangeLog)logs.elementAt(i);
 System.out.println(log.getEntityType()
 + "(" + log.getSurrogateKey()
 + "): " + log.getOperationType());
}

Security APIs
The security APIs allow you to customize some aspects of connection and database security.

Connect Using a Certificate
You can set certificate information in ConnectionProfile.

CertificateStore myStore = CertificateStore.getDefault();
StringList labels = myStore.certificateLabels();
String filter1 = "John";
labels = myStore.certificateLabels(filter1, null);
String aLabel = labels.item(0);
LoginCertificate lc = myStore.getSignedCertificate(aLabel,
"password");
ConnectionProfile profile = SUP101DB.getSynchronizationProfile();
profile.setCertificate(lc);

Install the certificate to BlackBerry:

• Simulator: copy the certificate to the simulator directory.
• Physical device: use the Desktop Manager Certificate Synchronization tool to import an

HTTPS public certificate from the PC to the device. Then perform a synchronization with
the SAP Mobile Server by HTTPS.

Encrypt the Database
You can set the encryption key of a local database. Set the key during application initialization,
and before creating or accessing the client database.

The length of the encyption key cannot be fewer than 16 characters.
ConnectionProfile profile = SMP101DB.getConnectionProfile();
profile.setEncryptionKey("Your key of length 16 or more
characters");

You can use the generateEncryptionKey() method to encrypt the local database with
a random encryption key.
SMP101DB.generateEncryptionKey();
// store the encryption key at somewhere for reuse later
ConnectionProfile profile = SMP101DB.getConnectionProfile();
String key = profile.getEncryptionKey();
...
SMP101DB.createDatabase();

Client Object API Usage

128 SAP Mobile Platform

DataVault
The DataVault class provides encrypted storage of occasionally used, small pieces of data.
All exceptions thrown by DataVault methods are of type DataVaultException.

If you have installed the BlackBerry CommonClientLib.cod package, you can use
the DataVault class for on-device persistent storage of certificates, database encryption
keys, passwords, and other sensitive items. Use this class to:

• Create a vault
• Set a vault's properties
• Store objects in a vault
• Retrieve objects from a vault
• Change the password used to access a vault

The contents of the data vault are strongly encrypted using AES-128. The DataVault class
allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrary length and can include any characters. The password and salt
together generate the AES key. If the user enters the same password when unlocking, the
contents are decrypted. If the user enters an incorrect password, exceptions occur. If the user
enters an incorrect password a configurable number of times, the vault is deleted and any data
stored within it becomes unrecoverable. The vault can also relock itself after a configurable
amount of time.

Typical usage of the DataVault is to implement an application login screen. Upon
application start, the user is prompted for a password, which unlocks the vault. If the unlock
attempt is successful, the user is allowed into the rest of the application. User credentials for
synchronization can also be extracted from the vault so the user need not reenter passwords.

createVault
Creates a new secure store (a vault).

A unique name is assigned, and after creation, the vault is referenced and accessed by that
name. This method also assigns a password and salt value to the vault. If a vault with the same
name already exists, this method throws an exception. A newly created vault is in the unlocked
state.

Syntax
public static DataVault createVault(
 String name,
 String password,
 String salt
)

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 129

Parameters

• name – an arbitrary name for a DataVault instance on this device. This name is
effectively the primary key for looking up DataVault instances on the device, so it
cannot use the same name as any existing instance. If it does, this method throws an
exception with error code INVALID_ARG. The name also cannot be empty or null.

• password – the initial encryption password for this DataVault. This is the password
needed for unlocking the vault. If null is passed, a default password is computed and used.

• salt – the encryption salt value for this DataVault. This value, combined with the password,
creates the actual encryption key that protects the data in the vault. If null is passed, a
default salt is computed and used.

Returns

Returns the newly created instance of the DataVault with the provided ID. The returned
DataVault is in the unlocked state with default configuration values. To change the default
configuration values, you can immediately call the "set" methods for the values you want to
change.

If a vault already exists with the same name, a DataVaultException is thrown with the
reason ALREADY_EXISTS.

Examples

• Create a data vault – creates a new data vault called myVault.

DataVault vault = null;
if (!DataVault.vaultExists("myVault"))
{
 vault = DataVault.createVault("myVault", "password", "salt");
}
else
{
 vault = DataVault.getVault("myVault");
}

vaultExists
Tests whether the specified vault exists, returns true if it does and false if the datavault is
locked, does not exist, or is inaccessible for any other reason.

Syntax
public static boolean vaultExists(String name)

Parameters

• name – the vault name.

Client Object API Usage

130 SAP Mobile Platform

Returns

Returns true if the vault exists; otherwise returns false.

Examples

• Check if a data vault exists – checks if a data vault called myVault exists, and if so,
deletes it.
if (DataVault.vaultExists("myVault"))
{
 DataVault.deleteVault("myVault");
}

getVault
Retrieves a vault.

Syntax
public static DataVault getVault(String name)

Parameters

• name – the vault name.

Returns

getVault returns a DataVault instance.

If the vault does not exist, a DataVaultException is thrown.

deleteVault
Deletes the specified vault from on-device storage.

If the vault does not exist, this method throws an exception. The vault need not be in the
unlocked state, and can be deleted even if the password is unknown.

Syntax
public static void deleteVault(String name)

Parameters

• name – the vault name.

Examples

• Delete a data vault – deletes a data vault called myVault.

if (DataVault.vaultExists("myVault"))
{

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 131

 DataVault.deleteVault("myVault");
}

getDataNames
Retrieves information about the data names stored in the vault.

The application can pass the data names to getValue or getString to retrieve the data
values.

Syntax
public abstract DataVault.DVDataName[] getDataNames()

Parameters
None.

Returns

Returns a DVPasswordPolicy object, as an array of DVDataName structure objects.

Examples

• Get data names

// Call getDataNames to retrieve all stored element names from our
data vault.
DataVault.DVDataName[] dataNameArray = oDataVault.getDataNames();
for (int i = 0; i < dataNameArray.length; i++)
{
 if (dataNameArray[i].iType == DataVault.DV_DATA_TYPE_STRING)
 {
 String thisStringValue =
oDataVault.getString(dataNameArray[i].sName);
 }
 else
 {
 byte[] thisBinaryValue =
oDataVault.getValue(dataNameArray[i].sName);
 }
}

setPasswordPolicy
Stores the password policy and applies it when changePassword is called, or when
validating the password in the unlock method.

If the application has not set a password policy using this method, the data vault does not
validate the password in the createVault or changePassword methods. An exception
is thrown if there is any invalid (negative) value in the passwordPolicy object.

Client Object API Usage

132 SAP Mobile Platform

Syntax
public abstract void setPasswordPolicy(DataVault.DVPasswordPolicy
oPasswordPolicy)

Parameters

• oPasswordPolicy – the password policy constraints.

Examples

• Set a password policy

// SetPasswordPolicy() locks the vault to ensure the old password
// conforms to the new password policy settings.
oDataVault.setPasswordPolicy(oPasswordPolicy);

Password Policy Structure
A structure defines the policy used to generate the password.

Table 1. Password Policy Structure

Name Type Description

defaultPasswordAllowed Boolean Indicates if client application is
allowed to use default password
for the data Vault. If this is set to
TRUE and if client application
uses default password then min-
Length, hasDigits, hasUpper,
hasLower and hasSpecial pa-
rameters in the policy are ignor-
ed.

minimumLength Integer The minimum length of the
password.

hasDigits Boolean Indicates if the password must
contain digits.

hasUpper Boolean Indicates if the password must
contain uppercase characters.

hasLower Boolean Indicates if the password must
contain lowercase characters.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 133

Name Type Description

hasSpecial Boolean Indicates if the password must
contain special characters. The
set of special characters is: “~!
@#$%^&*()-+”.

expirationDays Integer Specifies password expiry days
from the date of setting the pass-
word. 0 indicates no expiry.

minUniqueChars Integer The minimum number of
unique characters in the pass-
word. For example, if length is 5
and minUniqueChars is 4 then
“aaate” or “ababa” would be in-
valid passwords. Instead,
“aaord” would be a valid pass-
word.

lockTimeout Integer The timeout value (in seconds)
after which the vault will be
locked from the unlock time. 0
indicates no timeout. This value
overrides the value set by set-
LockTimeout method.

retryLimit Integer The number of failed unlock at-
tempts after which data vault is
deleted. 0 indicates no retry lim-
it. This value overrides the value
set by the setRetryLimit
method.

Settings for Password Policy
The client applications use these settings to fill the PasswordPolicy structure. The default
values are used by the data vault when no policy is configured. The defaults are also used in
SAP Control Center in the default template. The SAP Mobile Platform administrator can
modify these settings through SAP Control Center. The application must set the password
policy for the data vault with the administrative (or alternative) settings.

Note: Setting the password policy locks the vault. The password policy is enforced when
unlock is called (because the password is not saved, calling unlock is the only time that the
policy can be evaluated).

Client Object API Usage

134 SAP Mobile Platform

• PROP_DEF_PWDPOLICY_ENABLED – Boolean property with a default value of
false. Indicates if a password policy is enabled by the administrator.

• PROP_DEF_PWDPOLICY_DEFAULT_PASSWORD_ALLOWED – Boolean
property with a default value of false. Indicates if the client application is allowed to use the
default password for the data vault.

• PROP_DEF_PWDPOLICY_MIN_LENGTH – Integer property with a default value of
0. Defines the minimum length for the password.

• PROP_DEF_PWDPOLICY_HAS_DIGITS – Boolean property with a default value of
false. Indicates if the password must contain digits.

• PROP_DEF_PWDPOLICY_HAS_UPPER – Boolean property with a default value of
false. Indicates if the password must contain at least one uppercase character.

• PROP_DEF_PWDPOLICY_HAS_LOWER – Boolean property with a default value of
false. Indicates if the password must contain at least one lowercase character.

• PROP_DEF_PWDPOLICY_HAS_SPECIAL – Boolean property with a default value
of false. Indicates if the password must contain at least one special character. A special
character is a character in this set “~!@#$%^&*()-+”.

• PROP_DEF_PWDPOLICY_EXPIRATION_DAYS – Integer property with a default
value of 0. Specifies the number of days in which password will expire from the date of
setting the password. Password expiration is checked only when the vault is unlocked.

• PROP_DEF_PWDPOLICY_MIN_UNIQUE_CHARS – Integer property with a
default value of 0. Specifies minimum number of unique characters in the password. For
example, if minimum length is 5 and minUniqueChars is 4 then “aaate” or “ababa” would
be invalid passwords. Instead, “aaord” would be a valid password.

• PROP_DEF_PWDPOLICY_LOCK_TIMEOUT – Integer property with a default
value of 0. Specifies timeout value (in seconds) after which the vault is locked from the
unlock time. 0 indicates no timeout.

• PROP_DEF_PWDPOLICY_RETRY_LIMIT – Integer property with a default value
of 0. Specifies the number of failed unlock attempts after which data vault is deleted. 0
indicates no retry limit.

Password Errors
Password policy violations cause exceptions to be thrown.

Table 2. Password Errors

Name Value Description

PASSWORD_REQUIRED 50 Indicates that a blank or null
password was used when the
password policy does not allow
default password.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 135

Name Value Description

PASSWORD_UN-
DER_MIN_LENGTH

51 Indicates that the password
length is less than the required
minimum.

PASSWORD_RE-
QUIRES_DIGIT

52 Indicates that the password does
not contain digits.

PASSWORD_RE-
QUIRES_UPPER

53 Indicates that the password does
not contain upper case charac-
ters.

PASSWORD_RE-
QUIRES_LOWER

54 Indicates that the password does
not contain lower case charac-
ters.

PASSWORD_RE-
QUIRES_SPECIAL

55 Indicates that the password does
not contain one of these special
characters: ~!@#$%^&*()-+.

PASSWORD_UN-
DER_MIN_UNIQUE

56 Indicates that the password con-
tains fewer than the minimum
required number of unique char-
acters.

PASSWORD_EXPIRED 57 Indicates that the password has
been in use longer than the num-
ber of configured expiration
days.

getPasswordPolicy
Retrieves the password policy set by setPasswordPolicy.

Use this method once the DataVault is unlocked.

Syntax
public abstract DataVault.DVPasswordPolicy getPasswordPolicy()

Parameters
None.

Returns

Returns a passwordPolicy structure that contains the policy set by
setPasswordPolicy.

Returns a DVPasswordPolicy object with the default values if no password policy is set.

Client Object API Usage

136 SAP Mobile Platform

Examples

• Get the current password policy

// Call getPasswordPolicy() to return the current password policy
settings.
 DataVault.DVPasswordPolicy oCurrentPolicy =
oDataVault.getPasswordPolicy();

isDefaultPasswordUsed
Checks whether the default password is used by the vault.

Use this method once the DataVault is unlocked.

Syntax
public boolean isDefaultPasswordUsed()

Returns

Returns Indicates

true Both the default password and the default salt are used to encrypt the
vault.

false Either the default password or the default salt are not used to encrypt the
vault.

Examples

• Check if default password used

 // Call isDefaultPasswordused() to see if we are using an
automatically
// generated password (which we are).
boolean isDefaultPasswordUsed =
oDataVault.isDefaultPasswordUsed();

This code example lacks exception handling. For a code example that includes exception
handling, see Developer Guide: BlackBerry Object API Applications> Client Object API
Usage > Security APIs > DataVault > Code Sample.

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, lock has no effect.

Syntax
public void lock()

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 137

Examples

• Locks the data vault – prevents changing the vaults properties or stored content.
vault.lock();

isLocked
Checks whether the vault is locked.

Syntax
public boolean isLocked()

Returns

Returns Indicates

true The vault is locked.

false The vault is unlocked.

unlock
Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
attempts exceeds the retry limit, the vault is deleted.

The password is validated against the password policy if it has been set using
setPasswordPolicy. If the password is not compatible with the password policy, an
IncompatiblePassword exception is thrown. In that case, call changePassword to
set a new password that is compatible with the password policy.

Syntax
public void unlock(String password, String salt)

Parameters

• password – the encryption password for this DataVault. If null is passed, a default
password is computed and used.

• salt – the encryption salt value for this DataVault. This value, combined with the password,
creates the actual encryption key that protects the data in the vault. This value may be an
application-specific constant. If null is passed, a default salt is computed and used.

Returns

If an incorrect password or salt is used, a DataVaultException is thrown with the reason
INVALID_PASSWORD.

Client Object API Usage

138 SAP Mobile Platform

Examples

• Unlocks the data vault – once the vault is unlocked, you can change its properties and
stored content.
if (vault.isLocked())
{
 vault.unlock("password", "salt");
}

setString
Stores a string object in the vault.

An exception is thrown if the vault is locked when this method is called.

Syntax
public void setString(
 String name,
 String value
)

Parameters

• name – the name associated with the string object to be stored.
• value – the string object to store in the vault.

Examples

• Set a string value – creates a test string, unlocks the vault, and sets a string value
associated with the name "testString" in the vault. The finally clause in the
try/catch block ensures that the vault ends in a secure state even if an exception
occurs.
string teststring = "ABCDEFabcdef";
try
{
 vault.unlock("password", "salt");
 vault.setString("testString", teststring);
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

getString
Retrieves a string value from the vault.

An exception is thrown if the vault is locked when this method is called.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 139

Syntax
public String getString(String name)

Parameters

• name – the name associated with the string object to be retrieved.

Returns

Returns a string data value, associated with the specified name, from the vault.

Examples

• Get a string value – unlocks the vault and retrieves a string value associated with the name
"testString" in the vault. The finally clause in the try/catch block ensures
that the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 string retrievedstring = vault.getString("testString");
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

setValue
Stores a binary object in the vault.

An exception is thrown if the vault is locked when this method is called.

Syntax
public void setValue(
 string name,
 byte[] value
)

Parameters

• name – the name associated with the binary object to be stored.
• value – the binary object to store in the vault.

Client Object API Usage

140 SAP Mobile Platform

Examples

• Set a binary value – unlocks the vault and stores a binary value associated with the name
"testValue" in the vault. The finally clause in the try/catch block ensures that
the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 vault.setValue("testValue", new byte[] { 1, 2, 3, 4, 5});
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

getValue
Retrieves a binary object from the vault.

An exception is thrown if the vault is locked when this method is called.

Syntax
public byte[] getValue(string name)

Parameters

• name – the name associated with the binary object to be retrieved.

Returns

Returns a binary data value, associated with the specified name, from the vault.

Examples

• Get a binary value – unlocks the vault and retrieves a binary value associated with the
name "testValue" in the vault. The finally clause in the try/catch block
ensures that the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 byte[] retrievedvalue = vault.getValue("testValue");
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 141

}
finally
{
 vault.lock();
}

deleteValue
Deletes the specified value.

Syntax
public static void deleteValue(String name)

Parameters

• name – the name of the value to be deleted.

Examples

• Delete a value – deletes a value called myValue.

DataVault.deleteValue("myValue");

changePassword (two parameters)
Changes the password for the vault. Use this method when the vault is unlocked.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Syntax
public void changePassword(
 String newPassword,
 String newSalt
)

Parameters

• newPassword – the new password.
• newSalt – the new encryption salt value.

Examples

• Change the password for a data vault – changes the password to "newPassword".
The finally clause in the try/catch block ensures that the vault ends in a secure
state even if an exception occurs.
try
{
 vault.unlock("password", "salt");
 vault.changePassword("newPassword", "newSalt");

Client Object API Usage

142 SAP Mobile Platform

}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

changePassword (four parameters)
Changes the password for the vault. Use this method when the vault is locked

This overloaded method ensures the new password is compatible with the password policy,
uses the current password to unlock the vault, and changes the password of the vault to a new
password. If the current password is not valid an InvalidPassword exception is thrown.
If the new password is not compatible with the password policy set in
setPasswordPolicy then an IncompatiblePassword exception is thrown.

Syntax
public abstract void changePassword(string sCurrentPassword,
 string sCurrentSalt,
 string sNewPassword,
 string sNewSalt)

Parameters

• currentPassword – the current encryption password for this data vault. If a null value is
passed, a default password is computed and used.

• currentSalt – the current encryption salt value for this data vault. If a null value is passed, a
default password is computed and used.

• newPassword – the new encryption password for this data vault. If a null value is passed, a
default password is computed and used.

• newSalt – the new encryption salt value for this data vault. This value, combined with the
password, creates the actual encryption key that protects the data in the vault. This value
may be an application-specific constant. If a null value is passed, a default password is
computed and used.

Examples

• Change the password for a data vault

// Call changePassword with four parameters, even if the vault is
locked.
// Pass null for oldSalt and oldPassword if the defaults were
used.
oDataVault.changePassword(null, null, "password!1A",
"saltD#ddg#k05%gnd[!1A");

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 143

Code Sample
Create a data vault for encrypted storage of application data.

public void testFunctionality()
{
 try
 {
 DataVault oDataVault = null;

 // If this dataVault already exists, then get it by calling
getVault()
 // Else create this new dataVault by calling createVault()
 if (DataVault.vaultExists("DataVaultExample"))
 oDataVault = DataVault.getVault("DataVaultExample");
 else
 oDataVault = DataVault.createVault("DataVaultExample",
"password!1A", "saltD#ddg#k05%gnd[!1A");

 // Call setLockTimeout(). This allows you to set the timeout of
the vault in seconds
 oDataVault.setLockTimeout(1500);
 int iTimeout = oDataVault.getLockTimeout();

 // Call setRetryLimit(). This allows you to set the number of
retries before the vault is destroyed
 oDataVault.setRetryLimit(10);
 int iRetryLimit = oDataVault.getRetryLimit();

 // Call setPasswordPolicy(). The passwordPolicy also includes
the retryLimit and LockTimeout that we set above.
 DataVault.DVPasswordPolicy oPasswordPolicy = new
DataVault.DVPasswordPolicy();
 oPasswordPolicy.bDefaultPasswordAllowed = true;
 oPasswordPolicy.iMinLength = 4;
 oPasswordPolicy.bHasDigits = true;
 oPasswordPolicy.bHasUpper = true;
 oPasswordPolicy.bHasLower = true;
 oPasswordPolicy.bHasSpecial = true;
 oPasswordPolicy.iExpirationDays = 20;
 oPasswordPolicy.iMinUniqueChars = 3;
 oPasswordPolicy.iLockTimeout = 1600;
 oPasswordPolicy.iRetryLimit = 20;

 // SetPasswordPolicy() will always lock the vault to ensure the
old password
 // conforms to the new password policy settings.
 oDataVault.setPasswordPolicy(oPasswordPolicy);

 // We are now locked and need to unlock before we can access the
vault.
 oDataVault.unlock("password!1A", "saltD#ddg#k05%gnd[!1A");

 // Call getPasswordPolicy() to return the current password
policy settings.

Client Object API Usage

144 SAP Mobile Platform

 DataVault.DVPasswordPolicy oCurrentPolicy =
oDataVault.getPasswordPolicy();

 // Call setString() by giving it a name:value pair to encrypt
and persist
 // a string data type within your dataVault.
 oDataVault.setString("stringName", "stringValue");

 // Call getString to retrieve the string we just stored in our
data vault!
 String storedStringValue =
oDataVault.getString("stringName");

 // Call setValue() by giving it a name:value pair to encrypt and
persist
 // a binary data type within your dataVault.
 byte[] binaryValue = { 1, 2, 3, 4, 5, 6, 7 };
 oDataVault.setValue("binaryName", binaryValue);

 // Call getValue to retrieve the binary we just stored in our
data vault!
 byte[] storedBinaryValue = oDataVault.getValue("binaryName");

 // Call getDataNames to retrieve all stored element names from
our data vault.
 DataVault.DVDataName[] dataNameArray =
oDataVault.getDataNames();
 for (int i = 0; i < dataNameArray.length; i++)
 {
 if (dataNameArray[i].iType ==
DataVault.DV_DATA_TYPE_STRING)
 {
 String thisStringValue =
oDataVault.getString(dataNameArray[i].sName);
 }
 else
 {
 byte[] thisBinaryValue =
oDataVault.getValue(dataNameArray[i].sName);
 }
 }

 // Call changePassword with 2 parameters. Vault must be
unlocked.
 // If you pass null parameters as your new password or your new
salt,
 // it will generate a default password or default salt,
respectively.
 oDataVault.changePassword(null, null);

 // Call isDefaultPasswordused() to see if we are using an
automatically
 // generated password (which we are).
 boolean isDefaultPasswordUsed =
oDataVault.isDefaultPasswordUsed();

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 145

 // Lock the vault.
 oDataVault.lock();

 // Call changePassword with 4 parameters even if the vault is
locked.
 // Here, we pass null for oldSalt and oldPassword because
defaults were used.
 oDataVault.changePassword(null, null, "password!1A",
"saltD#ddg#k05%gnd[!1A");

 // Call isDefaultPasswordused() and we will see that the default
password is NOT used anymore.
 isDefaultPasswordUsed = oDataVault.isDefaultPasswordUsed();
 }
 catch(Exception exception)
 {

 }
 finally
 {
 // Because this is a test example, we will delete our vault at
the end.
 // This means we will forever lose all data we persisted in our
data vault.
 if (DataVault.vaultExists("DataVaultExample"))
 DataVault.deleteVault("DataVaultExample");
 }
}

Callback and Listener APIs
The callback and listener APIs allow you to optionally register a callback handler and listen
for device events, application connection events, and package synchronize and replay events.

CallbackHandler API
The CallbackHandler interface is invoked when any database event occurs. A default callback
handler is provided, which basically does nothing. You should implement a custom
CallbackHandler to register important events. The callback is invoked on the thread that
is processing the event. To receive callbacks for database changes, you must register a
CallBackHandler with the generated database class, the entity class, or both. You can
create a handler by extending the DefaultCallbackHandler class or by implementing
the com.sybase.persistence.CallbackHandler interface.

In your handler, override the particular callback that you are interested in (for example, void
onReplayFailure(java.lang.Object entity)). The callback is executed in
the thread that is performing the action (for example, replay). When you receive the callback,
the particular activity is already complete.

Client Object API Usage

146 SAP Mobile Platform

Table 3. Callbacks in the CallbackHandler Interface

Callback Description

void onImport(java.lang.Ob-
ject entity)

This method is invoked when an import message
is successfully applied to the local database.
However, it is not committed. One message from
server may have multiple import entities and they
would be committed in one transaction for the
whole message.

Note:

1. Stale data may be read from the database at
this time before commit of the whole mes-
sage. Developers are encouraged to wait until
the next onTransactionCommit()
is invoked, then to read from the database to
obtain the updated data.

2. Both CallbackHandlers registered for the
MBO class of the entity and Package DB will
be invoked.

Parameters:

• entity – the Mobile Business Object that was
just imported.

void onLoginFailure() This method will be invoked when login failed for
a beginOnlineLogin call.

Note: Only the CallbackHandler regis-

tered for package DB will be invoked.

void onLoginSuccess() This method is invoked when login succeeds for a
beginOnlineLogin call.

Note: Only the CallbackHandler registered for
package DB is invoked.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 147

Callback Description

void onReplayFai-
lure(java.lang.Object entity)

This method is invoked when a replay request
fails.

Note: CallbackHandlers registered for both the
MBO class of the entity and the Package DB are
invoked.

Parameters:

• entity – the Mobile Business Object to replay.

void onReplaySuc-
cess(java.lang.Object entity)

This method is invoked when a replay request
succeeds. onReplaySuccess is an MBO

object instance that contains the data prior to the
synchronization. You can use the Change Log
API to find records that occur after the synchro-
nization.

Note: CallbackHandlers registered for both the
MBO class of the entity and the Package DB are
invoked.

Parameters:

• entity – the Mobile Business Object to replay.

void onSearchFai-
lure(java.lang.Object entity)

This method is invoked when a back-end search
fails.

Note: CallbackHandlers registered for both the
MBO class of the entity and the Package DB are
invoked.

Parameters:

• entity – the back-end search object.

void onSearchSuc-
cess(java.lang.Object entity)

This method is invoked when a back end search
succeeds.

Note: CallbackHandlers registered for both the
MBO class of the entity and the Package DB are
invoked.

Parameters:

• entity – the back-end search object.

Client Object API Usage

148 SAP Mobile Platform

Callback Description

void onSubscribeFailure() This method is invoked when subscribe fails.

Note: CallbackHandlers registered for both the
MBO class of the entity and the Package DB are
invoked.

void onSubscribeSuccess() This method is invoked when subscribe succeeds.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

int onSynchronize(ObjectList
groups, SynchronizationCon-
text context)

This method is invoked at different stages of the
synchronization. This method is called by the da-
tabase class synchronize or begin-
Synchronize methods when the client ini-

tiates a synchronization, and is called again when
the server responds to the client that synchroni-
zation has finished, or that synchronization failed.
The status of the synchronization context, con-
text.Status, specifies the stage of the syn-

chronization.

Parameters:

• groups – a list of synchronization groups.

• context – the synchronization context.

Returns: Either SynchronizationAc-
tion.CONTINUE or Synchroniza-
tion.CANCEL. If Synchronizatio-
nAction.CANCEL is returned, the syn-

chronize is cancelled if the status of the synchro-
nization context is one of the following.

• SynchronizationSta-
tus.STARTING

• SynchronizationSta-
tus.ASYNC_REPLAY_COMPLETED

• SynchronizationSta-
tus.STARTING_ON_NOTIFICA-
TION

The return value has no effect if the status is not in
the above list.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 149

Callback Description

void onSuspendSubscription-
Failure()

This method is invoked when suspend subscrip-
tion fails.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onSuspendSubscription-
Success()

This method is invoked when suspend subscrip-
tion succeeds.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onResumeSubscriptionFai-
lure()

This method is invoked when resume subscrip-
tion fails.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onResumeSubscriptionSuc-
cess()

This method is invoked when resume subscrip-
tion succeeds.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onUnsubscribeFailure() This method is invoked when unsubscribe fails.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onUnsubscribeSuccess() This method is invoked when unsubscribe suc-
ceeds.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

Client Object API Usage

150 SAP Mobile Platform

Callback Description

void onMessageExcep-
tion(java.lang.Exception ex)

This method is invoked when an exception occurs
in the processing of a message.

Note: In DefaultCallbackHandlers, onMessa-
geException re-throws the Exception so

that the messaging layer can retry the message.
The application developer has the option to im-
plement a custom CallbackHandler that does not
re-throw the exception, based on exception types
or other conditions, so that the message is not
retried.

Parameters:

• ex – the exception thrown when processing a
message.

void onSendMessageException() Notifies the application that an unrecoverable ex-
ception occurred while sending a message to the
synchronization server.

void onTransactionCommit() This method is invoked after a message is pro-
cessed and committed.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onTransactionRollback() This method is invoked after a message is rolled
back. It only happens when an Exception was
thrown when processing the message, or from a
custom Callback method.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onRecoverSuccess() This method is invoked when recover succeeds.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

void onRecoverFailure() This method is invoked when recover fails.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 151

Callback Description

void onSubscriptionEnd() This method is invoked when a subscription is re-
registered or unsubscribed. This method deletes
all MBO data on the device.

Note: Only the CallbackHandler registered for
the Package DB is invoked.

onBulkDownloadFailure() Invoked to notify the application that a bulk
download subscription was submitted to the syn-
chronization server and the download phase did
not complete successfully.

onBulkDownloadProgress() Invoked to notify the application that a subscribe
operation operation was submitted to the syn-
chronization server and progress is being repor-
ted about the downloading of the initial data to the
application.

onBulkDownloadSuccess() Invoked to notify the application that a bulk
download subscription was submitted to the syn-
chronization server and the download phase com-
pleted successfully.

onInitialDataAvailable() Invoked to notify the application that a subscribe
operation operation was submitted to the syn-
chronization server and, some time after on-
SubscribeSuccess was invoked, that the

server has sent all initial data to the application.

onPingFailure() Invoked to notify the application of a failure to
login to a synchronization server.

onPingSuccess() Invoked to notify the application of a successful
login to a synchronization server.

onPrepareToCommit() Other callbacks in this interface (onImport,

onReplay*, onSearch*) are invoked in-

side a database transaction.

This code shows how to create and register a handler to receive callbacks:
public class MyCallbackHandler extends DefaultCallbackHandler
{
 // implementation
}

CallbackHandler handler = new MyCallbackHandler();

Client Object API Usage

152 SAP Mobile Platform

<PkgName>DB.registerCallbackHandler(handler);

ApplicationCallback API
This callback interface is invoked by events of interest to a mobile application.

You must register an ApplicationCallback implementation to your
com.sybase.mobile.Application instance to receive these callbacks.

Note: These callbacks are not triggered by changes or errors in MobiLink™ synchronization,
which uses a different communication path than the one used for registration.

Table 4. Callbacks in the ApplicationCallback Interface

Callback Description

void onApplicationSetting-
sChanged(StringList nameList)

Invoked when one or more application settings
have been changed by the server administration.

void onConnectionStatu-
sChanged(int connectionSta-
tus, int errorCode, String
errorMessage)

Invoked when the connection status changes. The
possible connection status values are defined in
the ConnectionStatus class.

Note: Some of the connection status codes are not
returned on certain client platforms due to plat-
form operating system limitations.

void onDeviceCondition-
Changed(int condition)

Invoked when a condition is detected on the mo-
bile device that may be of interest to the applica-
tion or the application user. The possible device
condition values are defined in the Device-
Condition class.

void onRegistrationStatu-
sChanged(int registrationSta-
tus, int errorCode, String
errorMessage)

Invoked when the registration status changes. The
possible registration status values are defined in
the RegistrationStatus class.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 153

Callback Description

void onHttpCommunicationEr-
ror(int errorCode, String er-
rorMessage, StringProperties
httpHeaders);

Invoked when an HTTP communication server/
MobiLink rejects HTTP/MobiLink communica-
tion with an error code.

• errorCode – Error code returned by the
HTTP server or MobiLink. For example:
code 401 for authentication failure, code 403
for authorization failure, and code 63 for Mo-
biLink synchronization communication er-
ror.

• errorMessage – Error message returned by
the HTTP server or MobiLink.

• httpHeaders – Response headers returned
by the HTTP server or MobiLink.

void onCustomizationBundle-
DownloadComplete(String cus-
tomizationBundleID, int er-
rorCode, String errorMes-
sage);

Invoked when the download of a resource bundle
is complete.

• errorCode – If download succeeds, returns
0. If download fails, returns an error code.

• errorMessage – If download succeeds, re-
turns "". If download fails, returns an error
message.

• RESOURCE_BUNDLE_NOTFOUND
= 14881

• DOWNLOAD_RESOURCE_BUN-
DLE_STREAM_IS_NULL = 14882

• DOWNLOAD_RESOURCE_BUN-
DLE_FAILURE = 14883

• customizationBundleID – The name of the
resource bundle. If null, the default applica-
tion resource bundle is downloaded.

Client Object API Usage

154 SAP Mobile Platform

Callback Description

int onPushNotification
(Hashtable notification);

Invoked if a push notification arrives. You can add
logic here to handle the notification. This call-
back is not called when a notification arrives
when the application is not online.

• returns – an integer to indicate if the notifi-
cation has been handled. The return value is
for future use. You are recommended to re-
turn NOTIFICATION_CONTINUE.

• 0: NOTIFICATION_CONTINUE if the
notification was not handled by the call-
back method.

• 1: NOTIFICATION_CANCEL if the no-
tification has already been handled by the
callback method.

Query APIs
The Query API allows you to retrieve data from mobile business objects, to page data, and to
retrieve a query result by filtering. You can also use the Query API to filter children MBOs of a
parent MBO in a one to many relationship.

See also
• Accessing MBO Data on page 37
• Object Queries on page 37
• Dynamic Queries on page 38
• MBOs with Complex Types on page 39
• Relationships on page 39

Retrieving Data from Mobile Business Objects
You can retrieve data from mobile business objects through a variety of queries, including
object queries, arbitrary find, and through filtering query result sets.

Object Queries
To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
SAP Mobile WorkSpace. Object Query methods carry query names, parameters, and return

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 155

types defined in SAP Mobile WorkSpace. Object Query methods return either an object, or a
collection of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:
public static com.sybase.collections.ObjectList findAll()

com.sybase.collections.ObjectList customers = Customer.findAll();

This method retrieves all customers in a certain page:
public static com.sybase.collections.ObjectList findAll(int skip,
int take)

com.sybase.collections.ObjectList customers = Customer.findAll(10,
5);

Suppose the modeler defined the following Object Query for the Customer MBO in SAP
Mobile WorkSpace:

• name – findByFirstName
• parameter – String firstName
• query definition – SELECT x.* FROM Customer x WHERE x.fname = :firstName
• return type – Sybase.Collections.GenericList

The preceding Object Query results in this generated method:
public static com.sybase.collections.ObjectList
findByFirstName(String firstName)

com.sybase.collections.ObjectList customers =
Customer.findByFirstName("fname")

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 5. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

Client Object API Usage

156 SAP Mobile Platform

Class Description

QueryResultSet Provides for querying a result set for the dynamic
query API.

SelectItem Defines the entry of a select query. For example,
"select x.attr1 from MBO x", where "X.attr1" rep-
resents one SelectItem.

Column Used in a subquery to reference the outer query's
attribute.

In addition queries support select, where, and join statements.

Arbitrary Find
The arbitrary find method lets custom device applications dynamically build queries based on
user input. The Query.DISTINCT property lets you exclude duplicate entries from the
result set.

The arbitrary find method also lets the user specify a desired ordering of the results and object
state criteria. A Query class is included in the client object API. The Query class is the single
object passed to the arbitrary search methods and consists of search conditions, object/row
state filter conditions, and data ordering information.

Define these conditions by setting properties in a query:

• TestCriteria – criteria used to filter returned data.
• SortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.
• Take – an integer specifying the maximum number of rows to return. Used for paging.

Set the Query.Distinct property to true to exclude duplicate entries from the result set.
The default value is false for entity types, and its usage is optional for all other types.

Query query1 = new Query();
query1.setDistinct(true);

TestCriteria can be an AttributeTest or a CompositeTest.

TestCriteria
You can construct a query SQL statement to query data from a local database. You can create a
TestCriteria object (in this example, AttributeTest) to filter results. You can also
query across multiple tables (MBOs) when using the executeQuery API.

Query query2 = new Query();
query2.select("c.fname,c.lname,s.order_date,s.region");
query2.from("Customer", "c");
//
// Convenience method for adding a join to the query
// Detailed construction of the join criteria

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 157

query2.join("Sales_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("fname");
ts.setValue("Beth");
query2.where(ts);
QueryResultSet qrs = SMP101DB.executeQuery(query2);

AttributeTest
An AttributeTest defines a filter condition using an MBO attribute, and supports
multiple conditions.

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL
• LIKE
• NOT_LIKE
• LESS_THAN
• LESS_EQUAL
• GREATER_THAN
• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH
• NOT_START_WITH
• NOT_END_WITH
• NOT_CONTAIN
• IN
• NOT_IN
• EXISTS
• NOT_EXISTS

For example, the Java code shown below is equivalent to this SQL query:
SELECT * from A where id in [1,2,3]
Query query = new Query();
AttributeTest test = new AttributeTest();
test.setAttribute("id");
com.sybase.collections.ObjectList v = new
com.sybase.collections.ObjectList();
v.add("1");
v.add("2");
v.add("3");
test.setValue(v);
test.setOperator(AttributeTest.IN);
query.where(test);

Client Object API Usage

158 SAP Mobile Platform

When using EXISTS and NOT_EXISTS, the attribute name is not required in the
AttributeTest. The query can reference an attribute value via its alias in the outer scope.
The Java code shown below is equivalent to this SQL query:
SELECT a.id from AllType a where exists (select b.id from AllType b
where b.id = a.id)
Query query = new Query();
query.select("a.id");
query.from("AllType", "a");
AttributeTest test = new AttributeTest();

Query existQuery = new Query();
existQuery.select("b.id");
existQuery.from("AllType", "b");
Column cl = new Column();
cl.setAlias("a");
cl.setAttribute("id");
AttributeTest test1 = new AttributeTest();
test1.setAttribute ("b.id");
test1.setValue(cl);
test1.setOperator(AttributeTest.EQUAL);
existQuery.where(test1);
test.setValue(existQuery);
test.setOperator(AttributeTest.EXISTS);
query.where(test);
QueryResultSet qs = SMP101DB.executeQuery(query);

SortCriteria
SortCriteria defines a SortOrder, which contains an attribute name and an order type
(ASCENDING or DESCENDING).

For example,
Query query = new Query();

query.select("c.lname, c.fname");
query.from("Customer", "c");

AttributeTest aTest = new AttributeTest();
aTest.setAttribute("state");
aTest.setTestValue("CA");
aTest.setTestType(AttributeTest.EQUAL);
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("lname", SortOrderType.ASCENDING);
sort.add("fname", SortOrderType.ASCENDING);
query.setSortCriteria(sort);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 159

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.
Consider using the Query object to limit the result set:
Query props = new Query();
props.setSkip(10);
props.setTake(5);

com.sybase.collections.ObjectList customers =
Customer.findWithQuery(props);

Aggregate Functions
You can use aggregate functions in dynamic queries.

When using the Query.select(String) method, you can use any of these aggregate
functions:

Aggregate Function Supported Datatypes

COUNT integer

MAX string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

MIN string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

SUM byte, short, int, long, integer, decimal, float, dou-
ble

AVG byte, short, int, long, integer, decimal, float, dou-
ble

If you use an unsupported type, a PersistenceException is thrown.

Query query1 = new Query();
query1.select("MAX(c.id), MIN(c.name) as minName");

Grouping Results
Apply grouping criteria to your results.

To group your results according to specific attributes, use the Query.groupBy(String
groupByItem) method. For example, to group your results by ID and name, use:

String groupByItem = ("c.id, c.name");
Query query1 = new Query();

//other code for query1

query1.groupBy(groupByItem);

Client Object API Usage

160 SAP Mobile Platform

Filtering Results
Specify test criteria for group queries.

You can specify how your results are filtered by using the
Query.having(com.sybase.persistence.TestCriteria) method for
queries using groupBy. For example, limit your AllType MBO's results to c.id attribute
values that are greater than or equal to 0 using:
Query query2 = new Query();
query2.select("c.id, SUM(c.id)");
query2.from("AllType", "c");
AttributeTest ts = new AttributeTest();
ts.setAttribute("c.id");
ts.setValue("0");
ts.setOperator(AttributeTest.GREATER_EQUAL);
query2.where(ts);
query2.groupBy("c.id");

AttributeTest ts2 = new AttributeTest();
ts2.setAttribute("c.id");
ts2.setValue("0");
ts2.setOperator(AttributeTest.GREATER_EQUAL);
query2.having(ts2);

Concatenating Queries
Concatenate two queries having the same selected items.

The Query class methods for concatenating queries are:

• union(Query)
• unionAll(Query)
• except(Query)
• intersect(Query)
This example obtains the results from one query except for those results appearing in a second
query:
Query query1 = new Query();
... ... //other code for query1

Query query2 = new Query();
... ... //other code for query 2

Query query3 = query1.except(query2);
SMP101DB.executeQuery(query3);

Subqueries
Execute subqueries using clauses, selected items, and attribute test values.

You can execute subqueries using the Query.from(Query query, String alias)
method. For example, the Java code shown below is equivalent to this SQL query:
SELECT a.id FROM (SELECT b.id FROM AllType b) AS a WHERE a.id = 1

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 161

Use this Java code:
Query query1 = new Query();
query1.select("b.id");
query1.from("AllType", "b");
Query query2 = new Query();
query2.select("a.id");
query2.from(query1, "a");
AttributeTest ts = new AttributeTest();
ts.setAttribute("a.id");
ts.setValue(1);
query2.where(ts);
com.sybase.persistence.QueryResultSet qs =
SMP101DB.executeQuery(query2);

You can use a subquery as the selected item of a query. Use the SelectItem to set selected
items directly. For example, the Java code shown below is equivalent to this SQL query:
SELECT (SELECT count(1) FROM AllType c WHERE c.id >= d.id) AS cn, id
FROM AllType d

Use this Java code:

Query selQuery = new Query();
selQuery.select("count(1)");
selQuery.from("AllType", "c");
AttributeTest ttt = new AttributeTest();
ttt.setAttribute("c.id");
ttt.setOperator(AttributeTest.GREATER_EQUAL);
Column cl = new Column();
cl.setAlias("d");
cl.setAttribute("id");
ttt.setValue(cl);
selQuery.where(ttt);

com.sybase.collections.GenericList<com.sybase.persistence.SelectIte
m> selectItems = new
com.sybase.collections.GenericList<com.sybase.persistence.SelectIte
m>();
SelectItem item = new SelectItem();
item.setQuery(selQuery);
item.setAlias("cn");
selectItems.add(item);
item = new SelectItem();
item.setAttribute("id");
item.setAlias("d");
selectItems.add(item);
Query subQuery2 = new Query();
subQuery2.setSelectItems(selectItems);
subQuery2.from("AllType", "d");
com.sybase.persistence.QueryResultSet qs =
SMP101DB.executeQuery(subQuery2);

Client Object API Usage

162 SAP Mobile Platform

CompositeTest
A CompositeTest combines multiple TestCriteria using the logical operators AND,
OR, and NOT to create a compound filter.

Complex Example
This example shows the usage of CompositeTest, SortCriteria, and Query to
locate all customer objects based on particular criteria.

• FirstName = John AND LastName = Doe AND (State = CA OR State = NY)
• Customer is New OR Updated
• Ordered by LastName ASC, FirstName ASC, Credit DESC
• Skip the first 10 and take 5

Query props = new Query();
//define the attribute based conditions
//Users can pass in a string if they know the attribute name. R1
column name = attribute name.
CompositeTest innerCompTest = new CompositeTest();
innerCompTest.setOperator(CompositeTest.OR);
innerCompTest.add(new AttributeTest("state", "CA",
AttributeTest.EQUAL));
innerCompTest.add(new AttributeTest("state", "NY",
AttributeTest.EQUAL));
CompositeTest outerCompTest = new CompositeTest();
outerCompTest.setOperator(CompositeTest.OR);
outerCompTest.add(new AttributeTest("fname", "Jane",
AttributeTest.EQUAL));
outerCompTest.add(new AttributeTest("lname", "Doe",
AttributeTest.EQUAL));
outerCompTest.add(innerCompTest);
//define the ordering
SortCriteria sort = new SortCriteria();

sort.add("fname", SortOrder.ASCENDING);
sort.add("lname", SortOrder.ASCENDING);
//set the Query object
props.setTestCriteria(outerCompTest);
props.setSortCriteria(sort);
props.setSkip(10);
props.setTake(5);
com.sybase.collections.GenericList<Customer> customers2 =
Customer.FindWithQuery(props);

Note: "Order By" is not supported for a long varchar field.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 163

QueryResultSet
The QueryResultSet class provides for querying a result set from the dynamic query API.
QueryResultSet is returned as a result of executing a query.

The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a Query, filling in the criteria for the query, and filtering the
query results:
com.sybase.persistence.Query query = new
com.sybase.persistence.Query();
query.select("c.fname,c.lname,s.order_date,s.region");
query.from("Customer ", "c");
query.join("SalesOrder ", "s", " s.cust_id ", "c.id");
AttributeTest at = new AttributeTest();
at.setAttribute("lname");
at.setTestValue("Devlin");
query.setTestCriteria(at);
QueryResultSet qrs = SMP101DB.executeQuery(query);
while(qrs.next())
{
 System.out.print(qrs.getString(1));
 System.out.print(",");
 System.out.println(qrs.getStringByName("c.fname"));

 System.out.print(qrs.getString(2));
 System.out.print(",");
 System.out.println(qrs.getStringByName("c.lname"));

 System.out.print(qrs.getString(3));
 System.out.print(",");
 System.out.println(qrs.getStringByName("s.order_date"));

 System.out.print(qrs.getString(4));
 System.out.print(",");
 System.out.println(qrs.getStringByName("s.region"));
}

Note: The getRowCount() method is not supported on BlackBerry clients.

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO. A
bidirectional relationship also allows the child MBO to access the associated parent MBO.

Assume there are two MBOs defined in SAP Mobile Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.

Client Object API Usage

164 SAP Mobile Platform

Customer customer = Customer.findById (101);
com.sybase.collections.ObjectList orders =
customer.getSalesOrders();

You can also use the Query class to filter the return MBO list data.

Query props = new Query();
// set query parameters
......
com.sybase.collections.ObjectList orders =
customer.getSalesOrdersFilterBy(props);

Index APIs
You can dynamically create, find, and drop an index for an MBO table on the device database,
which increases performance compared to modifying the data model in SAP Mobile
WorkSpace to perform these tasks.

APIs in the generated DBClass allow you to create, find, and drop an index for an MBO table.

Note: Call DBClass.closeDBConnetion() before calling
DBClass.createIndex(EntityMetaData entity, IndexMetaData
index) or DBClass.dropIndex(EntityMetaData entity, String
name).

Create an Index
Use createIndex to create an index for an MBO table located on the device database.

/**
@param entity the EntityMetaData for the table
@param index the IndexMetaData
*/
public static void createIndex(EntityMetaData entity, IndexMetaData
index)

Index Example
com.sybase.reflection.IndexMetaData index = new
com.sybase.reflection.IndexMetaData();
index.setName("sampleIndex");
index.setUnique(true);
index.getAttributes().add(SampleMBO.getMetaData().getAttribute("sam
ple_id"));
SampleDB.closeDBConnetion();
SampleDB.createIndex(SampleMBO.getMetaData(), index);
[Public comment]

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 165

Drop an Index
Use dropIndex to drop an index from an MBO table located on the device database.

/**

@param entity the EntityMetaData for the table
@param name the name of the index
*/

public static void dropIndex(EntityMetaData entity, String name)

SampleDB.closeDBConnetion();
SampleDB.dropIndex(SampleMBO.getMetaData(), "sampleIndex");

Retrieve and List Indexes
Use getIndexes to retrieve and list all indexes for a given MBO table located on the device
database.

/**
@param entity the EntityMetaData for the table
@return the list of indexes
*/
public static com.sybase.collections.ObjectList
getIndexes(EntityMetaData entity)
com.sybase.collections.ObjectList list =
SampleDB.getIndexes(SampleMBO.getMetaData());

Persistence APIs
The persistence APIs include operations and object state APIs.

See also
• Manipulating Data on page 40

Operations APIs
Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create non-static
instances of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the client object API, and are not exposed. Any parameters
not mapped to the object’s attributes are left as parameters in the generated object API. The
code examples for create, update, and delete operations are based on the fill from attribute
being set. Different MBO settings affect the operation methods.

Client Object API Usage

166 SAP Mobile Platform

Note: If the SAP Mobile Platform object model defines one instance of a create operation and
one instance of an update operation, and all operation parameters are mapped to the object’s
attributes, then a Save method can be automatically generated which, when called internally,
determines whether to insert or update data to the local client-side database. In other
situations, where there are multiple instances of create or update operations, methods such as
Save cannot be automatically generated.

See also
• Creating, Updating, and Deleting MBO Records on page 41

• Other Operations on page 42

Create Operation
The create operation allows the client to create a new record in the local database. To
execute a create operation on an MBO, create a new MBO instance, and set the MBO
attributes, then call the save() or create() operation. To propagate the changes to the
server, call submitPending.

Customer cust = new Customer();
cust.setFname ("supAdmin");
cust.setCompany_name("SAP");
cust.setPhone("777-8888");
cust.create();// or cust.save();
cust.submitPending();
SMP101DB.synchronize();
// or SMP101DB.synchronize (String synchronizationGroup)

Update Operation
The update operation updates a record in the local database on the device. To execute update
operations on an MBO, get an instance of the MBO, set the MBO attributes, then call either the
save() or update() operation. To propagate the changes to the server, call
submitPending.

Note: Calling update on an orphaned instance (a row that no longer exists) causes a
PersistenceException.

Customer cust = Customer.findById(101);
cust.setFname("supAdmin");
cust.setCompany_name("SAP");
cust.setPhone("777-8888");
cust.save(); // or cust.update();
cust.submitPending();
SMP101DB.synchronize();
// or SMP101DB.synchronize (String synchronizationGroup)

To update multiple MBOs in a relationship, call submitPending() on the parent MBO, or
call submitPending() on the changed child MBO:

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 167

Delete Operation
The delete operation allows the client to delete a new record in the local database. To
execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the delete operation. To propagate the changes to the server, call
submitPending.

Customer cust = Customer.findById(101);
cust.delete();

For MBOs in a relationship, perform a delete as follows:
Customer cust = Customer.findById(101);
 com.sybase.collections.ObjectList orders =
cust.getSalesOrders();
 SalesOrder order = (SalesOrder)orders.getByIndex(0);
 order.delete();
 cust.submitPending();
SMP101DB.synchronize();
// or SMP101DB.synchronize (String synchronizationGroup)

Save Operation
The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the update operation. If a record does not exist, the save operation
creates a new record. If save is called on the parent MBO in an existing composite object, the
save operation will also be called on all the child objects in the composite object.

//Update an existing customer
Customer cust = Customer.findById(101);
cust.save();

//Insert a new customer
Customer cust = new Customer();
cust.save();

Other Operation
Operations other than create, update, or delete operations are called "other"
operations. An Other operation class is generated for each operation in the MBO that is not a
create, update, or delete operation.

Suppose the Customer MBO has an Other operation "other", with parameters "P1" (string),
"P2" (int), and "P3" (date). This results in a CustomerOtherOperation class being
generated, with "P1", "P2", and "P3" as its attributes.

To invoke the Other operation, create an instance of CustomerOtherOperation, and set
the correct operation parameters for its attributes. For example:
CustomerOtherOperation other = new CustomerOtherOperation();
other.setP1("somevalue");
other.setP2(2);
other.setP3(new Date());
other.save();

Client Object API Usage

168 SAP Mobile Platform

other.submitPending();
SMP101DB.synchronize(); // or SMP101DB.synchronize (String
synchronizationGroup)

Pending Operation
You can manage the pending state.

• submitPending – submits the operation so that it can be replayed on the SAP Mobile
Server. A request is sent to the SAP Mobile Server during a synchronization.

• cancelPending – cancels the previous create, update, or delete operations on the
MBO. It cannot cancel submitted operations.

cancelPending cancels pending changes for a particular instance or instances (via
cancelPendingObjects from the database class). However, if submitPending
has already been invoked, only the pending state and original state (for update) are
removed. The operation replay record generated by the submitPending remains. This
means that the operation replay record is uploaded to SAP Mobile Server upon
synchronization. If the EIS honors the operation replay, the changes are propagated back
to the device during the download. The Object API framework forgoes operation replay
completion processing when it finds that there are no pending/original states for the
instance. Hence, cancelPending is not the inverse operation of submitPending.

• submitPendingOperations – submits all the pending records for the entity to the SAP
Mobile Server. This method internally invokes the submitPending method on each of
the pending records.

• cancelPendingOperations – cancels all the pending records for the entity. This method
internally invokes the cancelPending method on each of the pending records.

Note: Use the submitPendingOperations and cancelPendingOperations
methods only when there are multiple pending entities on the same MBO type. Otherwise,
use the MBO instance’s submitPending or cancelPending methods, which are
more efficient if the MBO instance is already available in memory.

Customer customer = Customer.findById(101);
if (errorHappened) {
 customer.cancelPending();
}
else {
 customer.submitPending();
}

You can group multiple operations into a single transaction for improved performance:
// load the customer MBO with customer ID 100
Customer customer = Customer.findByPrimaryKey(100);

// Change phone number of that customer
customer.setPhone("8005551212");

// use one transaction to do save and submitPending
com.sybase.persistence.LocalTransaction tx =

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 169

SMP101DB.beginTransaction();
try
{
 customer.save();
 customer.submitPending();
 tx.commit();
}
catch (Exception e)
{
 tx.rollback();
}

Complex Attribute Types
Some back-end datasources require complex types to be passed in as input parameters. The
input parameters can be any of the allowed attribute types, including primitive lists, objects,
and object lists. The MBO examples have attributes that are primitive types (such as int,
long, or string), and make use of the basic database operations (create, update, and
delete).

Passing Structures to Operations
An SAP Mobile WorkSpace project includes an example MBO that is bound to a Web service
datasource that includes a create operation that takes a structure as an operation parameter.
MBOs differ depending on the datasource, configuration, and so on, but the principles are
similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including one named _HEADER_ that is a structure datatype named
AuthenticationInfo, defined as:

AuthenticationInfo
 userName: String
 password: String
 authentication: String
 locale: String
 timeZone: String

Structures are implemented as classes, so the parameter _HEADER_ is an instance of the
AuthenticationInfo class. The generated code for the create operation is:

public void create(complex.AuthenticationInfo
HEADER,java.lang.String escalated,java.lang.String
hotlist,java.lang.String orig_Submitter,java.lang.String
pending,java.lang.String workLog)

This example demonstrates how to initialize the AuthenticationInfo class instance
and pass it, along with the other operation parameters, to the create operation:

AuthenticationInfo authen = new AuthenticationInfo();
authen.setUserName("Demo");
authen.setPassword("");
authen.setAuthentication("");
authen.setLocale("EN_US");

Client Object API Usage

170 SAP Mobile Platform

authen.setTimeZone("GMT");

SimpleCaseList newCase = new SimpleCaseList();
newCase.setCase_Type("Incident");
newCase.setCategory("Networking");
newCase.setDepartment("Marketing");
newCase.setDescription("A new help desk case.");
newCase.setItem("Configuration");
newCase.setOffice("#3 Sybase Drive");
newCase.setSubmitted_By("Demo");
newCase.setPhone_Number("#0861023242526");
newCase.setPriority("High");
newCase.setRegion("USA");
newCase.setRequest_Urgency("High");
newCase.setRequester_Login_Name("Demo");
newCase.setRequester_Name("Demo");
newCase.setSite("25 Bay St, Mountain View, CA");
newCase.setSource("Requester");
newCase.setStatus("Assigned");
newCase.setSummary("MarkHellous was here Fix it.");
newCase.setType("Access to Files/Drives");
newCase.setCreate_Time(new
java.sql.Timestamp(System.currentTimeMillis()));

newCase.create(authen, "Other", "Other", "Demo", "false",
"worklog");
newCase.submitPending();

Object State APIs
The object state APIs provide methods for returning information about the state of an entity in
an application.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database.

All entities that support pending state have the following attributes:

Name Type Description

isNew boolean Returns true if this entity is new, but has not yet been
created in the client database.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 171

Name Type Description

isCreated boolean Returns true if this entity has been newly created in the
client database, and one of the following is true:

• The entity has not yet been submitted to the server
with a replay request.

• The entity has been submitted to the server, but the
server has not finished processing the request.

• The server rejected the replay request (replay-
Failure message received).

isDirty boolean Returns true if this entity has been changed in memory,
but the change has not yet been saved to the client
database.

isDeleted boolean Returns true if this entity was loaded from the database
and subsequently deleted.

isPending boolean Checks if the object's pending flag is turned on or not,
that is, has pending change or not. Returns true if there
is a pending change, returns false if there is no pending
change.

isUpdated boolean Returns true if this entity has been updated or changed
in the database, and one of the following is true:

• The entity has not yet been submitted to the server
with a replay request.

• The entity has been submitted to the server, but the
server has not finished processing the request.

• The server rejected the replay request (replay-
Failure message received).

pending boolean Returns true for any row that represents a pending
create, update, or delete operation, or a row

that has cascading children with a pending operation.

pendingChange char If pending is true, this attribute's value is 'C' (create),
'U' (update), 'D' (delete), or 'P' (to indicate that this
MBO is a parent in a cascading relationship for one or
more pending child objects, but this MBO itself has no
pending create, update or delete operations). If pend-
ing is false, this attribute's value is 'N'.

Client Object API Usage

172 SAP Mobile Platform

Name Type Description

replayCounter long Returns a long value that is updated each time a row

is created or modified by the client. This value is a
unique value obtained from KeyGenera-
tor.generateID method. Note that the value

increases every time it is retrieved.

replayPending long Returns a long value. When a pending row is sub-

mitted to the server, the value of replayCounter
is copied to replayPending. This allows the cli-

ent code to detect if a row has been changed since it was
submitted to the server (that is, if the value of re-
playCounter is greater than replayPend-
ing).

replayFailure long Returns a long value. When the server responds with

a replayFailure message for a row that was

submitted to the server, the value of replay-
Counter is copied to replayFailure, and

replayPending is set to 0.

Entity State Example
Shows how the values of the entities that support pending state change at different stages
during the MBO update process. The values that change between different states appear in
bold.

Note these entity behaviors:

• The isDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

• The replayCounter value that gets sent to the SAP Mobile Server is the value in the
database before you call submitPending. After a successful replay, that value is
imported from the SAP Mobile Server.

• The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 173

Description Flags/Values

After reading from the database, before any changes
are made.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

One or more attributes are changed, but changes not
saved.

isNew=false

isCreated=false

isDirty=true

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Client Object API Usage

174 SAP Mobile Platform

Description Flags/Values

After entity.save()[entity save]
or entity.update()[entity up-
date] is called.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424979

replayPending=0

replayFailure=0

After entity.submitPending()[en-
tity submitPending] is called to submit

the MBO to the server.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=33424981

replayFailure=0

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 175

Description Flags/Values

Possible result: the SAP Mobile Server accepts the
update, sends an import and a replayResult
for the entity, and then refreshes the entity from the
database.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Possible result: The SAP Mobile Server rejects the
update, sends a replayFailure for the entity,

and refreshes the entity from the database

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=0

replayFailure=33424981

Mobile Business Object States
A mobile business object can be in one of three states.

• Original state – the state before any CUD operation.
• Downloaded state – the state downloaded from the SAP Mobile Server.
• Current state – the state after any CUD operation.

The mobile business object class provides properties for querying the original state and the
downloaded state:
public Customer getOriginalState();
public Customer getDownloadState();
Customer cust = Customer.findById(101); // state 1
cust.setFname("firstName");
cust.setCompany_name("SAP");

Client Object API Usage

176 SAP Mobile Platform

cust.setPhone("777-8888");
cust.save(); // state 2
Customer org = cust.getOriginalState(); // state 1
//suppose there is new download for Customer 101 here
Customer download = cust.getDownloadState(); // state 3
cust.cancelPending(); // state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

For example:
Customer cust = Customer.findById(101);
cust.setFname("newName");
cust.refresh();// newName is discarded

Mobile and Local Business Objects
A business object can be either local or mobile. A local business object is a client only object,
and is represented by the LocalBusinessObject interface. A mobile business object can
be synchronized with the SAP Mobile Server, and is represented by the
MobileBusinessObject interface.

Both LocalBusinessObject and MobileBusinessObject extend
BusinessObject. MobileBusinessObject provides the following additional
methods:

• cancelPending
• getLogRecords
• isCreated
• isPending
• isUpdated
• submitPending
getLogRecords returns operation logs as LogRecord instances. See the LogRecord
API.

submitPending submits a pending record to the SAP Mobile Server. A pending record is
one that has been updated in the client database, but not sent to the SAP Mobile Server.

cancelPending cancels a pending record.

Common Mobile Business Object Methods
A set of common methods are available with each mobile business object.

• save – save a record to the local database. In the case of an existing record, save calls
update. In the case of a new record, save calls create.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 177

• refresh – client refreshes the entity from the local database.

• cancelPending – cancels a pending record.
• submitPending – submits a pending record to the server.
• getPendingChange – if pending is true, returns 'C' (create), 'U' (update), 'D' (delete), 'P' (to

indicate that this row is a parent in a cascading relationship for one or more pending child
objects, but this row itself has no pending create, update or delete operations). If pending is
false, returns 'N'.

• getReplayCounter – updated each time a row is created or modified by the client. This
value is derived from the time in seconds since an epoch, so it always increases each time
the row is changed.

• getReplayPending – when a pending row is submitted to the server, the value of
replayCounter is copied to replayPending. This allows client code to detect if a
row has been changed since it was submitted to the server --the test to look for :
replayCounter > replayPending. On receiving a successful response
(replayResult) from the server, this is reset to 0.

• getReplayFailure – when the server responds with a replayFailure message for a
row that was submitted to the server, the replayCounter value is copied to
replayFailure, and replayPending is set to 0.

Local Business Object
Defined in SAP Mobile WorkSpace, local business objects are not bound to EIS data sources,
so cannot be synchronized. Instead, they are objects that are used as a local data store on
device. Local business objects do not call submitPending, or perform a replay or import
from the SAP Mobile Server.

An example of a local business object:
LoginStatus status= new LoginStatus ();
 status.setId(123);
 status.setSuccess(true);
 status.create();

 long savedId = 123;
 LoginStatus status = LoginStatus.find(savedId);
 status.setSuccess(false);
 status.update();

 long savedId = 123;
 LoginStatus status = LoginStatus.find(savedId);
 status.delete();

Generated Package Database APIs
The generated package database APIs include methods that exist in each generated package
database.

Client Object API Usage

178 SAP Mobile Platform

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void createDatabase()
public static void deleteDatabase()
public static boolean databaseExists()

Typically, createDatabase does not need to be called since it is called internally when
necessary. An application may use deleteDatabase when uninstalling the application.

Use the transaction API to group several transactions together for better performance.
public static com.sybase.persistence.LocalTransaction
beginTransaction()
Customer customer = Customer.findByPrimaryKey(101);
 // Use one transaction to save and submit pending
 LocalTransaction tx = SMP101DB.beginTransaction();
 // modify customer information
 customer.save();
 customer.submitPending();
 tx.commit();

Large Attribute APIs
Use large string and binary attributes.

You can import large messages containing binary objects (BLOBs) to the client, send new or
changed large objects to the server, and efficiently handle large attributes on the client.

The large attribute APIs allow clients to import large messages from the server or send a replay
message without using excessive memory and possibly throwing exceptions. Clients can also
access or modify a large attribute without reading the entire attribute into memory. In addition,
clients can execute queries without having large attribute valuies automatically filled in the
returned MBO lists or result sets.

BigBinary
An object that allows access to a persistent binary value that may be too large to fit in available
memory. A streaming API is provided to allow the value to be accessed in chunks.

close
Closes the value stream.

Closes the value stream. Any buffered writes are automatically flushed. Throws a
StreamNotOpenException if the stream is not open.

Syntax
public void close()

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 179

Examples

• Close the value stream – Writes a binary book cover image and closes the image file. In
the following example, book is the instance of an MBO and cover is a BigBinary
attribute
Book book = Book.findByPrimaryKey(bookID);
com.sybase.persistence.BigBinary image = book.getCover();
image.openForWrite(0);
// ...
image.close();

copyFromFile
Overwrites this BigBinary object with data from the specified file.

Any previous contents of the file will be discarded. Throws an
ObjectNotSavedException if this BigBinary object is an attribute of an entity that
has not yet been created in the database. Throws a StreamNotClosedException if the
object is not closed.

Syntax
public void copyFromFile(java.lang.String filepath)

Parameters

• filepath – The file containing the data to be copied.

copyToFile
Overwrites the specified file with the contents of this BigBinary object.

Any previous contents of the file are discarded. Throws an ObjectNotSavedException
if this BigBinary object is an attribute of an entity that has not yet been created in the
database. Throws a StreamNotClosedException if the object is not closed.

Syntax
public void copyToFile(java.lang.String filepath)

Parameters

• filepath – The file to be overwritten.

flush
Flushes any buffered writes.

Flushes any buffered writes to the database. Throws a StreamNotOpenException if the
stream is not open.

Client Object API Usage

180 SAP Mobile Platform

Syntax
public void flush()

openForRead
Opens the value stream for reading.

Has no effect if the stream was already open for reading. If the stream was already open for
writing, it is flushed before being reopened for reading. Throws an
ObjectNotSavedException if this BigBinary object is an attribute of an entity that
has not yet been created in the database. Throws an ObjectNotFoundException if this
object is null.

Syntax
public void openForRead()

Examples

• Open for reading – Opens a binary book image for reading.
Book book = Book.findByPrimaryKey(bookID);
com.sybase.persistence.BigBinary image = book.getCover();
image.openForRead();

openForWrite
Opens the value stream for writing.

Any previous contents of the value will be discarded. Throws an
ObjectNotSavedException if this BigBinary object is an attribute of an entity that
has not yet been created in the database.

Syntax
public void openForWrite(long newLength)

Parameters

• newLength – The new value length in bytes. Some platforms may allow this parameter to
be specified as 0, with the actual length to be determined later, depending on the amount of
data written to the stream. Other platforms require the total amount of data written to the
stream to match the specified value.

Examples

• Open for writing – Opens a binary book image for writing.
Book book = Book.findByPrimaryKey(bookID);
com.sybase.persistence.BigBinary image = book.getCover();
image.openForWrite(0);

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 181

read
Reads a chunk of data from the stream.

Reads and returns the specified number of bytes, or fewer if the end of stream is reached.
Throws a StreamNotOpenException if the stream is not open for reading.

Syntax
public byte[] read(long length)

Parameters

• length – The maximum number of bytes to be read into the chunk.

Returns

read returns a chunk of binary data read from the stream, or a null value if the end of the
stream has been reached.

Examples

• Read – Reads in a binary book image.
Book book = Book.findByPrimaryKey(bookID);
com.sybase.persistence.BigBinary image = book.getCover();
int bufferLength = 1024;
image.openForRead();
byte[] binary = image.read(bufferLength);
while (binary != null)
{
 binary = image.read(bufferLength);
}
image.close();

readByte
Reads a single byte from the stream.

Throws a StreamNotOpenException if the stream is not open for reading.

Syntax
public int readByte()

Returns

readByte returns a byte of data read from the stream, or -1 if the end of the stream has been
reached.

Client Object API Usage

182 SAP Mobile Platform

seek
Changes the stream position.

Throws a StreamNotOpenException if the stream is not open for reading.

Syntax
public void seek(long newPosition)

Parameters

• newPosition – The new stream position in bytes. Zero represents the beginning of the
value stream.

write
Writes a chunk of data to the stream.

Writes data to the stream, beginning at the current position. The stream may be buffered, so
use flush or close to be certain that any buffered changes have been applied. Throws a
StreamNotOpenException if the stream is not open for writing. Throws a
WriteAppendOnlyException if the platform only supports appending to the end of a
value and the current stream position precedes the end of the value. Throws a
WriteOverLengthException if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Syntax
public void write(byte[] data)

Parameters

• data – The data chunk to be written to the stream.

Examples

• Write data – Opens a binary book image for writing.
Book book = Book.findByPrimaryKey(bookID);
com.sybase.persistence.BigBinary image = book.getCover();
image.openForWrite(0);
byte[] binary = new byte[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
image.write(binary);

writeByte
Writes a single byte to the stream.

Writes a byte of data to the stream, beginning at the current position. The stream may be
buffered, so use flush or close to be certain that any buffered changes have been applied.
Throws a StreamNotOpenException if the stream is not open for writing. Throws a

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 183

WriteAppendOnlyException if the platform only supports appending to the end of a
value and the current stream position precedes the end of the value. Throws a
WriteOverLengthException if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Syntax
public void writeByte(byte data)

Parameters

• data – The byte value to be written to the stream.

BigString
An object that allows access to a persistent string value that might be too large to fit in available
memory. A streaming API is provided to allow the value to be accessed in chunks.

close
Closes the value stream.

Closes the value stream. Any buffered writes are automatically flushed. Throws a
StreamNotOpenException if the stream is not open.

Syntax
public void close()

Examples

• Close the value stream – Writes to the biography file, and closes the file.
Author author = Author.findByPrimaryKey(authorID);
BigString text = author.getBiography();
text.openForWrite(0);
text.write("something");
text.close();

copyFromFile
Overwrites this BigString object with data from the specified file.

Any previous contents of the value will be discarded. Throws an
ObjectNotSavedException if this BigString object is an attribute of an entity that
has not yet been created in the database. Throws a StreamNotClosedException if the
object is not closed.

Syntax
public void copyFromFile(java.lang.String filepath)

Client Object API Usage

184 SAP Mobile Platform

Parameters

• filepath – The file containing the data to be copied.

copyToFile
Overwrites the specified file with the contents of this BigString object.

Any previous contents of the file are discarded. Throws an ObjectNotSavedException
if this BigString object is an attribute of an entity that has not yet been created in the
database. Throws a StreamNotClosedException if the object is not closed.

Syntax
public void copyToFile(java.lang.String filepath)

Parameters

• filepath – The file to be overwritten.

flush
Flushes any buffered writes.

Flushes any buffered writes to the database. Throws a StreamNotOpenException if the
stream is not open.

Syntax
public void flush()

openForRead
Opens the value stream for reading.

Has no effect if the stream was already open for reading. If the stream was already open for
writing, it is flushed before being reopened for reading. Throws an
ObjectNotSavedException if this BigString object is an attribute of an entity that
has not yet been created in the database.

Syntax
public void openForRead()

Examples

• Open for reading – Opens the biography file for reading.
Author author = Author.findByPrimaryKey(authorID);
BigString text = author.getBiography();
text.openForRead();

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 185

openForWrite
Opens the value stream for writing.

Any previous contents of the value will be discarded. Throws an
ObjectNotSavedException if this BigString object is an attribute of an entity that
has not yet been created in the database.

Syntax
public void openForWrite(long newLength)

Parameters

• newLength – The new value length in bytes. Some platforms may allow this parameter to
be specified as 0, with the actual length to be determined later, depending on the amount of
data written to the stream. Other platforms require the total amount of data written to the
stream to match the specified value.

Examples

• Open for writing – Opens the biography file for writing.
Author author = Author.findByPrimaryKey(authorID);
BigString text = author.getBiography();
text.openForWrite(0);

read
Reads a chunk of data from the stream.

Reads and returns the specified number of characters, or fewer if the end of stream is reached.
Throws a StreamNotOpenException if the stream is not open for reading.

Syntax
public byte[] read(long length)

Parameters

• length – The maximum number of characters to be read into the chunk.

Returns

read returns a chunk of string data read from the stream, or a null value if the end of the
stream has been reached.

Client Object API Usage

186 SAP Mobile Platform

Examples

• Read – Reads in the biography file.
Author author = Author.findByPrimaryKey(authorID);
BigString text = author.getBiography();
text.openForRead();
int bufferLength = 1024;

string something = text.read(bufferLength); //null if EOF
while (something != null)
{
 something = text.read(bufferLength);
}
text.close();

readChar
Reads a single character from the stream.

Throws a StreamNotOpenException if the stream is not open for reading.

Syntax
public int readChar()

Returns

readChar returns a single character read from the stream, or -1 if the end of the stream has
been reached.

seek
Changes the stream position.

Throws a StreamNotOpenException if the stream is not open for reading.

Syntax
public void seek(long newPosition)

Parameters

• newPosition – The new stream position in characters. Zero represents the beginning of the
value stream.

write
Writes a chunk of data to the stream.

Writes data to the stream, beginning at the current position. The stream may be buffered, so
use flush or close to be certain that any buffered changes have been applied. Throws a
StreamNotOpenException if the stream is not open for writing. Throws a
WriteAppendOnlyException if the platform only supports appending to the end of a

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 187

value and the current stream position precedes the end of the value. Throws a
WriteOverLengthException if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Syntax
public void write(java.lang.String data)

Parameters

• data – The data chunk to be written to the stream.

Examples

• Write data – Writes to the biography file, and closes the file.
Author author = Author.findByPrimaryKey(authorID);
BigString text = author.getBiography();
text.openForWrite(0);
text.write("something");
text.close();

writeChar
Writes a single character to the stream.

Writes a character of data to the stream, beginning at the current position. The stream may be
buffered, so use flush or close to be certain that any buffered changes have been applied.
Throws a StreamNotOpenException if the stream is not open for writing. Throws a
WriteAppendOnlyException if the platform only supports appending to the end of a
value and the current stream position precedes the end of the value. Throws a
WriteOverLengthException if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Syntax
public void writeChar(char data)

Parameters

• data – The character value to be written to the stream.

MetaData and Object Manager API
You can access metadata for database, classes, entities, attributes, operations, and parameters
using the MetaData and Object Manager API.

Client Object API Usage

188 SAP Mobile Platform

MetaData and Object Manager API
Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData and Object Manager API.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations, and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the –md code generation option. You can use the –rm
option to generate the object manager class. You can also generate metadata classes by
selecting the option Generate metadata classes or Generate metadata and object manager
classes option in the code generation wizard in the mobile application project.

ObjectManager
The ObjectManager class allows an application to call the Object API in a reflection style.
The Object Manager is useful for platforms without native reflection support (such as J2ME).

Customer object = Customer.findById(123);
ObjectManager rm = new SMP101DB_RM();
ClassMetaData customer =
SMP101DB.getMetaData().getClass("Customer");
AttributeMetaData lname = customer.getAttribute("lname");
OperationMetaData save = customer.getOperation("save");
Object myMBO = rm.newObject(customer);
rm.setValue(myMBO, lname, "Steve");
rm.invoke(object, save, new ObjectList());

DatabaseMetaData
The DatabaseMetaData class holds package-level metadata. You can use it to retrieve
data such as synchronization groups, the default database file, and MBO metadata.

Any entity for which "allow dynamic queries" is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.
DatabaseMetaData dmd = SMP101DB.getMetaData();
com.sybase.collections.StringList syncGroups =
dmd.getSynchronizationGroups();
for(int i=0; i<syncGroups.size(); i++)
{
String syncGroup = syncGroups.item(i);
System.out.println(syncGroup);
}

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 189

ClassMetaData
The ClassMetaData class holds metadata for the MBO, including attributes and
operations.

AttributeMetaData lname = customerMetaData.getAttribute("lname");
OperationMetaData save = customerMetaData.getOperation("save");
...

EntityMetaData
The EntityMetaData class holds metadata for the MBO, including attributes and
operations.

EntityMetaData customerMetaData = Customer.getMetaData();
 AttributeMetaData lname =
customerMetaData.getAttribute("lname");
 OperationMetaData save = customerMetaData.getOperation("save");

AttributeMetaData
The AttributeMetaData class holds metadata for an attribute such as attribute name,
column name, type, and maxlength.

System.out.println(lname.getName());
System.out.println(lname.getColumn());
System.out.println(lname.getMaxLength());

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution. These sections do not contain error codes contained in the exception classes. See
the Developer Guide: Device Client Error Reference for detailed information about SAP
Mobile Platform error codes.

Exception Handling
An exception represents an unexpected condition hindering a method from completion. In
some cases, the exception is transient and you can retry it at a later time. In most cases, you
must resolve the underlying cause of the exception to allow the API to complete successfully.
In rare cases, the exception encountered corrupts the application state and may require you to
terminate and restart the application.

To use the localization features in exception handling:

• Register an exception message service implementation through the
ServiceRegistry.

Client Object API Usage

190 SAP Mobile Platform

Base Exceptions
A base exception class is defined as the super class for all external exceptions. Specific
exceptions always inherit from the base exception. To enable you, the Object API developer,
to write a standard exception handler, all external exceptions have an error code and a single
error message. Furthermore, the exception may contain another exception as the cause. See
the Developer Guide: Device Client Error Reference for detailed information.

You can use the getLocalizedMessage (String localeName) method to
retrieve an error message for a specified locale.

See the Object API Applications section of the Developer Guide: Device Client Error
Reference for information about possible error codes and the corresponding error messages.

Exception Message Service
You can implement an exception message service for resolving localized messages using error
codes. The exception class uses the exception message service to load resource bundles and
look up error messages based on an error code. You can use a default message provider,
ExceptionMessageServiceImpl, or create a custom provider by implementing your
own ExceptionMessageService.

To resolve localized messages, implement the ExceptionMessageService interface.

public class CustomExceptionMessageService implements
ExceptionMessageService
{
 public String getMessage(int errorCode)
 {
 String msg = null;

 msg = "getMessage(" + errorCode + ")";

 return msg;
 }

 public String getMessage(int errorCode, String localeName)
 {
 String msg = null;

 msg = "getMessage(" + errorCode + "," + localeName + ")";

 return msg;
 }
}

A default implementation, ExceptionMessageServiceImpl allows the default
English resource to look up an error message using an error code. You can follow these steps to
add other localized resources for the BlackBerry platform without implementing a custom
message service.
1. Get the default resource package files (included in the resources folder in the Mobile

SDK for the BlackBerry platform):

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 191

• com/sybase/mobile/ErrorMessage.rrh
• com/sybase/mobile/ErrorMessage_en.rrc

2. Localize them to other language files, for example:
• com/sybase/mobile/ErrorMessage.rrh
• com/sybase/mobile/ErrorMessage_de.rrc

3. Add the new resource files into the src folder of the application.
4. Register the default implementation "ExceptionMessageServiceImpl" in the application

code:

ServiceRegistry.getInstance().registerService(ExceptionMessageSer
vice.class,
ExceptionMessageServiceImpl.getInstance());

5. The application uses the localized error message automatically.
6. You can unregister the exception message service to cancel the use of the localized error

message:
ServiceRegistry.getInstance().unregisterService(ExceptionMessageS
ervice.class);

Service Registry
You can register objects that implement the ExceptionMessageService interface
using the ServiceRegister interface's registerService and
unregisterService methods.

ServiceRegistry.getInstance().registerService(com.sybase.mobile.fra
mework.ExceptionMessageService.class, new
CustomExceptionMessageService());
...
ServiceRegistry.getInstance().unregisterService(com.sybase.mobile.f
ramework.ExceptionMessageService.class);

Example Code for Handling Exceptions
An example of registering your interface.
// Register ExceptionMessageServiceImpl
ServiceRegistry.getInstance().registerService(com.sybase.mobile.fra
mework.ExceptionMessageService.class,
ExceptionMessageServiceImpl.getInstance());
try
{
 // throw com.sybase.persistence.ObjectNotFoundException
}
catch (ObjectNotFoundException e)
{
 if (e.ErrorCode == ObjectNotFoundException.VALUE_IS_NULL)
 {
 String msg = e.getMessage();
 msg = e.getLocalizedMessage("fr");
 msg = e.getLocalizedMessage("de");
 msg = e.getLocalizedMessage("es");
 }
}

Client Object API Usage

192 SAP Mobile Platform

finally
{
 // Unregister ExceptionMessageServiceImpl

ServiceRegistry.getInstance().unregisterService(com.sybase.mobile.f
ramework.ExceptionMessageService.class);
}

// Register CustomExceptionMessageService
ServiceRegistry.getInstance().registerService(com.sybase.mobile.fra
mework.ExceptionMessageService.class, new
CustomExceptionMessageService());
try
{
 // throw com.sybase.persistence.ObjectNotFoundException
}
catch (ObjectNotFoundException e)
{
 if (e.ErrorCode == ObjectNotFoundException.VALUE_IS_NULL)
 {
 String msg = e.getMessage();
 msg = e.getLocalizedMessage("fr");
 msg = e.getLocalizedMessage("de");
 msg = e.getLocalizedMessage("es");
 }
}
finally
{

ServiceRegistry.getInstance().unregisterService(com.sybase.mobile.f
ramework.ExceptionMessageService.class);
}

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the SAP
Mobile Server throws an exception.

A server-side exception results in a stack trace in the server log, and a log record
(LogRecordImpl) imported to the client with information on the problem.

Client-Side Exceptions
Device applications are responsible for catching and handling exceptions thrown by the client
object API.

Note: See Callback Handlers.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

• ApplicationRuntimeException – thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 193

• ConnectionPropertyException – thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error in a
connection property value or application identifier

• ApplicationTimeoutException – thrown when a call to start the connection, register the
application, or unregister the application times out.

• LoginRequiredException – thrown when the client application does not login to the
server.

• NoSuchOperationException – thrown when trying to access operation metadata that
does not exist in class metadata.

• NoSuchAttributeException – thrown when trying to access an attribute that does not
exist in class or entity metadata and thrown by a dynamic query method (ExecuteQuery), if
the Query passed in selects for an attribute that does not exist in the MBO queried.

• ObjectNotFoundException – thrown when trying to load an MBO that is not inside the
local database.

• ObjectNotSavedException – thrown when a BigBinary or BigString method is called
that requires the object to already exist in the database.

• PersistenceException – thrown when trying to access the local database.
• ProtocolException – thrown when an exception occurs during protocol version

mismatch.
• StreamNotOpenException – thrown when a BigBinary or BigString method is called

that requires the object to be open.
• StreamNotClosedException – thrown when a BigBinary or BigString method is called

that requires the object to not be open.
• SynchronizeException – thrown when an error occurs during synchronization.
• SynchronizeRequiredException – thrown when synchronization is needed.
• WriteAppendOnlyException – thrown if a BigBinary or BigString method is called that

writes to the middle of a value where only appending is allowed by the underlying
database.

• WriteOverLengthException – thrown if the platform requires the length to be
predetermined before write and a BigBinary or BigString method is called that writes past
the predetermined length.

Error Codes
Codes for errors occuring during application execution.

HTTP Error Codes
The SAP Mobile Server examines the EIS code received in a server response message and
maps it to a logical HTTP error code, if a corresponding error code exists. If no corresponding
code exists, the 500 code is assigned to signify either a SAP Mobile Platform internal error, or
an unrecognized EIS error.

The EIS code and HTTP error code values are stored in log records
(LogRecord.EisCode, and LogRecord.Code, respectively).

Client Object API Usage

194 SAP Mobile Platform

These tables list recoverable and unrecoverable error codes. All error codes that are not
explicitly considered recoverable are considered unrecoverable.

Table 6. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS is down, or the connection is terminated.

Table 7. Unrecoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on the
SAP Mobile Server due to role
constraints (applicable only for
MBS).

N/A

404 Resource (table/Web service/BA-
PI) not found on backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 SAP Mobile Platform internal er-
ror in modifying the CDB cache.

N/A

Error code 401 is not treated as a simple recoverable error. If the
SupThrowCredentialRequestOn401Error context variable is set to true (the
default), error code 401 throws a CredentialRequestException, which sends a
credential request notification to the user's inbox. You can change this behavior by modifying
the value of the SupThrowCredentialRequestOn401Error context variable in SAP
Control Center. If SupThrowCredentialRequestOn401Error is set to false, error
code 401 is treated as a normal recoverable exception.

Client Object API Usage

Developer Guide: BlackBerry Object API Applications 195

Mapping of EIS Codes to Logical HTTP Error Codes
A list of SAP® error codes mapped to HTTP error codes. By default, SAP error codes that are
not listed map to HTTP error code 500.

Table 8. Mapping of SAP Error Codes to HTTP Error Codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or un-
availability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing login. Usually caused
by unknown user name,
wrong password, or invalid
certificates.

401

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool.

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later.

503

Client Object API Usage

196 SAP Mobile Platform

Index
A

Afaria 16
Application APIs

retrieve connection properties 84
application callback handlers 153
application registration 23
arbitrary find method 157, 159, 163
AttributeMetaData 190
AttributeTest 157, 158, 163
AttributeTest condition 157
authentication

online 26
AVG 160

B

BigBinary 179
BigString 184
BlackBerry Java plug-in for Eclipse 16
BlackBerry Java Plug-in for Eclipse

installing 7
BlackBerry JDE 16
BlackBerry JDE, downloading 8
BlackBerry project, creating 17
BlackBerry simulator

downloading 8
build path 17

C

callback handlers 28, 146
CallbackHandler 59
callbacks 27
certificates 8, 106, 128
change notification 34
ClassMetadata 190
client database 179
closeConnection 107
complex attribute type 170
complex type 39
CompositeTest 163
CompositeTest condition 157
concatenate queries 161
connection profile 24, 25

ConnectionProfile 106, 128
ConnectionProperties 88

retrieve activation code 88
retrieve Farm ID 94
retrieve HTTP cookies 95
retrieve HTTP credentials 96
retrieve HTTP headers 95
retrieve login certificate 89
retrieve login credentials 90
retrieve network protocol 89
retrieve port number 91
retrieve security configuration 92
retrieve server name 91
retrieve URL suffix 93
set HTTP cookies 96
set HTTP credentials 96
set HTTP headers 95
set login certificate 90
set login credentials 90
set network protocol 89
set port number 91
set security configuration 92
set server name 92
set URL suffix 93, 94
URL scheme 89

COUNT 160
create 40, 41
create operation 167
createDatabase 179

D
data synchronization protocol 3, 4
data vault 131

change password 142, 143
creating 129
deleting 131
exists 130
locked 138
locking 137
retrieve data names 132
retrieve string 139
retrieve value 141
set string 139
set value 140
unlocking 138

Index

Developer Guide: BlackBerry Object API Applications 197

database
client 179

database connections
managing 107

DatabaseMetaData 189
DataVault 129
DataVaultException 129
debugging 59, 62
default password 137
delete 40, 41
delete operation 168
deleteDatabase 179
descriptor file 17
device database 33
Disaster recovery 46
documentation roadmap 4
dynamic query 37, 38

E
EIS error codes 194, 196
encryption key 128
entity states 171, 173
error codes

EIS 194, 196
HTTP 194, 196
mapping of SAP error codes 196
non-recoverable 194
recoverable 194

EXCEPT 161
exceptions

client-side 193
server-side 193

F
filtering results 161
FROM clause 161

G
generated code contents 14
generated code, location 14
group by 160

H
High availability 46
HTTP error codes 194, 196

I

INTERSECT 161

J

JAR files
adding 17
sup-client-rim.jar 17
UltraLiteJ.jar 17

Javadoc 1
Javadocs, opening 75
JMSBridge 59

L

listeners 27
local business object 177, 178
local MBO 177
localization 69, 70
LogRecord API 120

M

MAX 160
maxDbConnections 107
MBO 35, 37, 39–41
MBOLogger 59
messaging protocol 3, 4
MetaData API 189
MIN 160
mobile business object 177
mobile business object states 176
mobile middleware services 4

N

NoSuchAttributeException 193
NoSuchOperationException 193

O

Object API code
location of generated 14

Object Manager API 189
object query 37, 155
ObjectManager 189

Index

198 SAP Mobile Platform

ObjectNotFoundException 193
OnImportSuccess 118
onlineLogin 112
openConnection 107
other operation 168

P

paging data 157, 160
passing structures to operations 170
password policy 136

set 132
pending operation 169
pending state 40
personalization keys 116

types 116
project build path 17

Q

Query class 157
Query object 157, 160, 163
QueryResultSet 164

R

Refresh operation 177
relationships 164
replay 29

S

save operation 168
SelectItem 161
setting the database file location on the device 109
setting the databaseFile location 109
signing 73
simultaneous synchronization 118
Skip 163
Skip condition 157
SortCriteria 159, 163
SortCriteria condition 157

status methods 171, 173
structures

passing to operations 170
subqueries 161
subscribe() 118
SUM 160
sup-client-rim.jar 17
SUPBridge 59
synchronization 33

MBO package 118
of MBOs 118
replication-based 118
simultaneous 118

synchronization group 34
synchronization parameters 35
synchronization profile 25
SynchronizationProfile 110, 111
SynchronizeException 193

T

TestCriteria 163
TestCriteria condition 157

U

UltraLite 33
UltraLiteJ.jar 17
UNION 161
UNION_ALL 161
update 40, 41
update operation 167

V

value
deleting 142

X

X.509 certificates 8

Index

Developer Guide: BlackBerry Object API Applications 199

Index

200 SAP Mobile Platform

	Developer Guide: BlackBerry Object API Applications
	Contents
	Getting Started with BlackBerry Development
	Object API Applications
	Best Uses for Object API Applications
	Cache Synchronization
	Client Runtime Architecture
	Mobile Channel Interfaces
	Mobile Middleware Services
	Data Services

	Documentation Roadmap for SAP Mobile Platform

	Development Task Flow for Object API Applications
	Installing the BlackBerry Development Environment
	Installing the BlackBerry Java Plug-in for Eclipse
	Downloading the BlackBerry JDE
	Installing X.509 Certificates on BlackBerry Devices and Simulators

	Generating Java Object API Code
	Generating Java Object API Code Using SAP Mobile WorkSpace
	Generating Object API Code Using the Code Generation Utility
	Generated Code Location and Contents
	Validating Generated Code

	Creating a Project
	Downloading the Latest Afaria Libraries
	Mobile Business Object Required Files
	Differences Between the BlackBerry Java Plug-in and BlackBerry JDE
	Creating a Project in the BlackBerry JDE
	Creating a Project in the BlackBerry Java Plug-in for Eclipse
	Adding Required .jar and .cod Files
	Adding a Device Application Entry Point
	Configuring SAP Mobile Server to Use HTTPS

	Developing the Application Using the Object API
	Initializing an Application
	Initially Starting an Application
	Setting Up Application Properties
	Communicating with SAP Mobile Server Through a Reverse Proxy

	Registering an Application
	Setting Up the Connection Profile
	Setting Up Connectivity
	Setting Up the Synchronization Profile

	Creating and Deleting a Device's Local Database
	Logging In
	Check Network Connection Before Login

	Turn Off API Logger
	Setting Up Callbacks
	Setting Up Callback Handlers
	Create a Custom Callback Handler

	Asynchronous Operation Replay
	Synchronize Status Listener

	Connecting to the Device Database
	Synchronizing Applications
	Configuring Data Synchronization Using SSL Encryption
	Nonblocking Synchronization
	Enabling Change Notifications

	Specifying Personalization Parameters
	Specifying Synchronization Parameters

	Subsequently Starting an Application

	Accessing MBO Data
	Object Queries
	Dynamic Queries
	MBOs with Complex Types
	Relationships

	Manipulating Data
	Creating, Updating, and Deleting MBO Records
	Other Operations
	Using submitPending and submitPendingOperations
	Database Classes
	Generated MBOs

	Shutting Down the Application
	Closing Connections

	Tracking KPI
	Uninstalling the Application
	Deleting the Database and Unregistering the Application

	Recovering From SAP Mobile Server Failures

	Testing Applications
	Testing an Application Using a Simulator
	Client-Side Debugging
	Debugging the BlackBerry Device Application

	Server-Side Debugging
	Improve Synchronization Performance by Reducing the Log Record Size
	Determining the Log Record Size
	Reducing the Log Record Size

	Localizing Applications
	Adding a Resource File to the Application
	Adding Resource Keys and Values
	Adding Localization Code

	Packaging Applications
	Signing

	Client Object API Usage
	Client Object API Reference
	Application APIs
	Application
	getInstance
	setApplicationIdentifier
	getRegistrationStatus
	registerApplication
	registerApplication (int timeout)
	setApplicationCallback
	getApplicationCallback
	startConnection
	startConnection (int timeout)
	getConnectionStatus
	getConnectionProperties
	getApplicationSettings
	beginDownloadCustomizationBundle (java.io.OutputStream out)
	beginDownloadCustomizationBundle (String customizationBundleID java.io.OutputStream out)
	stopConnection
	stopConnection (int timeout)
	unregisterApplication
	unregisterApplication(int timeout)

	ConnectionProperties
	getActivationCode
	setActivationCode
	getNetworkProtocol
	setNetworkProtocol
	getLoginCertificate
	setLoginCertificate
	getLoginCredentials
	setLoginCredentials
	getPortNumber
	setPortNumber
	getServerName
	setServerName
	getSecurityConfiguration
	setSecurityConfiguration
	getUrlSuffix
	setUrlSuffix
	getFarmId
	setFarmId
	getHttpHeaders
	setHttpHeaders
	getHttpCookies
	setHttpCookies
	getHttpCredentials
	setHttpCredentials

	ApplicationSettings
	isApplicationSettingsAvailable
	getStringProperty
	getIntegerProperty
	getBooleanProperty
	getCustom1
	getCustom2
	getCustom3
	getCustom4
	getDomainName
	getConnectionId

	ConnectionPropertyType
	PwdPolicy_Enabled
	PwdPolicy_Default_Password_Allowed
	PwdPolicy_Length
	PwdPolicy_Has_Digits
	PwdPolicy_Has_Upper
	PwdPolicy_Has_Lower
	PwdPolicy_Has_Special
	PwdPolicy_Expires_In_N_Days
	PwdPolicy_Min_Unique_Chars
	PwdPolicy_Lock_Timeout
	PwdPolicy_Retry_Limit

	Connection APIs
	ConnectionProfile
	Managing Device Database Connections
	Improving Device Application Performance with One Writer Thread and Multiple Database Access Threads
	UltraLiteJ Database Performance Tuning Properties

	Set Database File Property

	Synchronization Profile
	Connect the Data Synchronization Channel Through a Relay Server
	Asynchronous Operation Replay

	Authentication APIs
	Logging In
	Sample Code: Setting Up Login Credentials
	Sample Code: Mutual Authentication
	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate into the Data Vault
	Selecting a Certificate for SAP Mobile Server Connections
	Connecting to SAP Mobile Server with a Certificate

	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values

	Synchronization APIs
	Managing Synchronization Parameters
	Performing Mobile Business Object Synchronization
	Push Synchronization Applications
	Retrieving Information about Synchronization Groups

	Log Record APIs
	LogRecord API
	Logger APIs

	Change Log API
	getEntityType
	getOperationType
	getRootEntityType
	getRootSurrogateKey
	getSurrogateKey
	Methods in the Generated Database Class
	enableChangeLog
	getChangeLogs
	deleteChangeLogs
	disableChangeLog

	Code Samples

	Security APIs
	Connect Using a Certificate
	Encrypt the Database
	DataVault
	createVault
	vaultExists
	getVault
	deleteVault
	getDataNames
	setPasswordPolicy
	Password Policy Structure
	Password Errors

	getPasswordPolicy
	isDefaultPasswordUsed
	lock
	isLocked
	unlock
	setString
	getString
	setValue
	getValue
	deleteValue
	changePassword (two parameters)
	changePassword (four parameters)
	Code Sample

	Callback and Listener APIs
	CallbackHandler API
	ApplicationCallback API

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Queries
	Query and Related Classes
	Arbitrary Find
	TestCriteria
	AttributeTest
	SortCriteria
	Paging Data

	Aggregate Functions
	Grouping Results
	Filtering Results

	Concatenating Queries
	Subqueries
	CompositeTest
	Complex Example
	QueryResultSet

	Retrieving Relationship Data

	Index APIs
	Create an Index
	Drop an Index
	Retrieve and List Indexes

	Persistence APIs
	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Pending Operation
	Complex Attribute Types

	Object State APIs
	Entity State Management
	Entity State Example

	Mobile Business Object States
	Refresh Operation

	Mobile and Local Business Objects
	Common Mobile Business Object Methods
	Local Business Object

	Generated Package Database APIs
	Client Database APIs

	Large Attribute APIs
	BigBinary
	close
	copyFromFile
	copyToFile
	flush
	openForRead
	openForWrite
	read
	readByte
	seek
	write
	writeByte

	BigString
	close
	copyFromFile
	copyToFile
	flush
	openForRead
	openForWrite
	read
	readChar
	seek
	write
	writeChar

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	ClassMetaData
	EntityMetaData
	AttributeMetaData

	Exceptions
	Exception Handling
	Base Exceptions
	Exception Message Service
	Service Registry
	Example Code for Handling Exceptions
	Server-Side Exceptions
	Client-Side Exceptions

	Exception Classes
	Error Codes
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes

	Index

