
Developer Guide: Hybrid Apps

SAP Mobile Platform 2.3

DOCUMENT ID: DC01920-01-0230-01
LAST REVISED: February 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introduction to Developer Guide for Hybrid Apps1
Documentation Roadmap for SAP Mobile Platform1

Introduction to Developing Hybrid Apps With SAP
Mobile Platform ...3

Hybrid Web Container Architecture3
Hybrid App Development Task Flow6

Hybrid App Development Task Flow Using Third-
Party Web Frameworks and MBOs6

Hybrid App Development Task Flow With the
Designer ..7

Develop Hybrid Apps Using Third-party Web
Frameworks ...9

Develop MBO-based Hybrid Apps9
Creating a Mobile Application Project9
Developing a Mobile Business Object10
Deploying a Mobile Application Project11
MBO Examples ..13
Generating JavaScript MBO Access API23
Processing Responses From the Server41
Error Handling ..41
URL Parameters ..42

Develop OData-based Hybrid Apps43
Connect to an OData Source43
Datajs OData Client Authentication in Hybrid

Apps ..45
Implementing Push ..63
Enabling the Datajs Library on Windows Mobile

...64
Hybrid Web Container and Hybrid App JavaScript

APIs ..64
MBO Access JavaScript API Samples67

Developer Guide: Hybrid Apps iii

MediaCache Examples ..71
Null Value Support ...72
Calling the Hybrid Web Container73
AttachmentViewer and Image Limitations76

Package Hybrid Apps ...76
Packaging Hybrid Apps Using the Packaging

Tool ..77
Packaging Hybrid Apps Manually79

Deploying a Hybrid App Package with the Deploy
Wizard ..101

Develop a Hybrid App Using the Hybrid App Designer . 103
Deploy the Hybrid App Package to SAP Mobile Server

..103
Generating Hybrid App Files and Deploying a

Package ...103
Hybrid App Patterns ..104

Online Lookup ..106
Server Notification ...111
Cached Data ...116

Hybrid App Package Customization124
Customizing Generated Code125
Adding Local Resources to a Hybrid App Project

...126
Generated Hybrid App Files126
Reference ..133
Using Third-Party JavaScript Files151
Repackaging Hybrid App Package Files151
Common Customizations151

Security ...156
Credentials ...156
Configuring the Hybrid App to Use Credentials .160
Content Security on Devices166

Localization and Internationalization172
Localization Limitations173
Localizing a Hybrid App Package173

Contents

iv SAP Mobile Platform

Hybrid App Package Internationalization179
Internationalization on the Device181

Test Hybrid App Packages ..182
Testing Server-Initiated Hybrid App Packages ...183
Launching a Server-initiated Hybrid App on the

Device ..184
Debugging Custom Code184

Manage a Hybrid App Package ...189
Registering or Reregistering Application Connections

..189
Setting General Application Properties191
Application ID and Template Guidelines192
Enabling and Configuring the Notification Mailbox193
Assigning and Unassigning a Hybrid App to an

Application Connection ...194
Activating the Hybrid App ...194
Configuring Context Variables for Hybrid App

Packages ..195
Changing Hard Coded User Credentials196
Adding a Certificate File to the Hybrid App

Package ...197
End to End Trace and Performance197

Enabling the Performance Agent on the Device 198
Tracing Application Connections198

Build a Customized Hybrid Web Container Using the
Provided Source Code ..199

Building the Android Hybrid Web Container Using the
Provided Source Code ...199

Building the Android Hybrid Web Container
Outside of Eclipse ...200

Building the BlackBerry Hybrid Web Container Using
the Provided Source Code200

Supplying a Signing Key201
Building the iOS Hybrid Web Container Using the

Provided Source Code ...201

Contents

Developer Guide: Hybrid Apps v

Building the Windows Mobile Hybrid Web Container
Using the Provided Source Code203

Install and Configure the Hybrid Web Container On the
Device ...205

Preparing Android Devices for the Hybrid Web
Container ..205

Installing the Hybrid Web Container on Android
Devices ..205

Configuring the Android Emulator205
Preparing BlackBerry Devices for the Hybrid Web

Container ..208
Installing the Hybrid Web Container on

BlackBerry Devices Over the Air209
Enabling Hybrid Web Container Message

Notification ..209
Configuring the BlackBerry Simulator for Hybrid

Web Containers ...210
Preparing iOS Devices for the Hybrid Web Container

..211
Installing the Hybrid Web Container on the iOS

Device ..211
Preparing Windows Mobile Devices for the Hybrid

Web Container ..212
Installing the Hybrid Web Container on Windows

Mobile Devices ...213
Installing Microsoft Synchronization Software . . .213
Installing the Hybrid Web Container on the

Windows Mobile Emulator214
Configure Connection Settings on the Device216

Configuring Android Connection Settings216
Configuring BlackBerry Connection Settings217
Configuring iOS Connection Settings218
Configuring Windows Mobile Connection

Settings ...219

Contents

vi SAP Mobile Platform

Install and Test Certificates on Simulators and Devices
..221

Installing X.509 Certificates on Windows Mobile
Devices and Emulators221

Installing X.509 Certificates on Android Devices
and Emulators ..222

Installing X.509 Certificates on BlackBerry
Simulators and Devices223

Installing X.509 Certificates on iOS Devices224
Uninstall the Hybrid Web Container from the Device ..229

Removing the Hybrid Web Container From the
BlackBerry Device ...229

Hybrid Web Container Customization231
Adding a Custom Icon for the Hybrid App Package

Using the Packaging Tool231
Manually Adding a Custom Icon to the

Manifest.xml File ..232
Changing the Hybrid App Package Icon233
Android Hybrid Web Container Customization234

Android Customization Touch Points234
Testing Android Hybrid Web Containers267

BlackBerry Hybrid Web Container Customization267
BlackBerry Customization Touch Points268

iOS Hybrid Web Container Customization296
iOS Customization Touch Points297

Windows Mobile Hybrid Web Container
Customization ...310

Windows Mobile Customization Touch Points ...311
Look and Feel Customization of the Windows

Mobile Hybrid Web Container312
Default Behavior Customization of the Windows

Mobile Hybrid Web Container315
Packaging a CAB File .. 319

Prepackaged Hybrid Apps .. 320

Contents

Developer Guide: Hybrid Apps vii

Including a Prepackaged Hybrid App in the
Android Hybrid Web Container320

Including a Prepackaged Hybrid App in the
BlackBerry Hybrid Web Container321

Including a Prepackaged Hybrid App in the iOS
Hybrid Web Container322

Including a Prepackaged Hybrid App in the
Windows Mobile Hybrid Web Container323

Adding Native Device Functionality to the Hybrid Web
Container ...326

Supported JavaScript PhoneGap APIs326
Implementing PhoneGap342
PhoneGap Custom Plug-ins343
Removing PhoneGap From the Hybrid Web

Container ...353
Initializing the PhoneGap Library for the

Windows Mobile Hybrid Web Container355
PhoneGap Library Downgrade356

Hybrid App Configuration for Data Change Notification
...361

Extending Data Change Notification to Hybrid Apps
..361

Non HTTP Authentication Hybrid App DCN Request
..363

Sending Hybrid App DCN to Users Regardless of
Individual Security Configurations363

Hybrid App DCN Request Response364
Hybrid App DCN Design Approach and Sample Code

..365
Comparing Hybrid App DCN With and Without

Payload ..365
Sample Java Function for Generating Hybrid

App DCN ...368
Index ..371

Contents

viii SAP Mobile Platform

Introduction to Developer Guide for Hybrid
Apps

This developer guide provides information about using SAP® Mobile Platform features to
create Hybrid App packages. The audience is Hybrid App developers.

This guide describes requirements for developing a Hybrid App package, how to generate
Hybrid App package files, and how to deploy the Hybrid App to the server. It also provides
information about how to customize the provided source code for Hybrid Web Containers.

Companion guides include:

• SAP Mobile WorkSpace - Mobile Business Object Development
• SAP Mobile WorkSpace - Hybrid App Package Development
• System Administration
• SAP Control Center for SAP Mobile Platform
• Tutorial: Hybrid App Package Development
• Troubleshooting
• Mobile Application Life Cycle
• Developer Guide: Migrating to SAP Mobile SDK

Documentation Roadmap for SAP Mobile Platform
SAP® Mobile Platform documents are available for administrative and mobile development
user roles. Some administrative documents are also used in the development and test
environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.

Check the Product Documentation Web site regularly for updates: http://sybooks.sybase.com/
sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories, then
navigate to the most current version.

Introduction to Developer Guide for Hybrid Apps

Developer Guide: Hybrid Apps 1

http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories

Introduction to Developer Guide for Hybrid Apps

2 SAP Mobile Platform

Introduction to Developing Hybrid Apps With
SAP Mobile Platform

A Hybrid App includes both business logic (the data itself and associated metadata that
defines data flow and availability), and device-resident presentation and logic.

You can develop Hybrid Apps using third-party Web frameworks, enabling you to access
gateway datasources through the Hybrid Web Container.

SAP Mobile Platform, development tools enable both aspects of Hybrid App development:

• The data aspects of the Hybrid App are called mobile business objects (MBO), and “MBO
development” refers to defining object data models with back-end enterprise information
system (EIS) connections, attributes, operations, and relationships. Hybrid Apps can
reference one or more MBOs and can include load parameters, personalization, and error
handling.

• Once you have developed MBOs and deployed them to SAP Mobile Server, develop
device-resident presentation and logic for your Hybrid App. See SAP Mobile WorkSpace -
Mobile Business Object Development for procedures and information about creating and
deploying MBOs.

• A second data option is to access OData sources from your Hybrid Apps with the Datajs
library.

• OData sources and MBOs can be used together in a Hybrid App.

Hybrid Web Container Architecture
The Hybrid Web Container is the runtime on the device within which Hybrid Apps are
executed.

Introduction to Developing Hybrid Apps With SAP Mobile Platform

Developer Guide: Hybrid Apps 3

Hybrid Web Container Customization
A Hybrid Web Container is a native application designed to process generic function calls
from a Hybrid App. The Hybrid Web Container embeds a browser control supplied by the
device OS, which allows you to build applications with simplicity of Web development but
utilize the power of native device services. By using the Hybrid Web Container for each device
type supported in a business mobility environment, you can create a single HTML5
application that performs advanced, device specific operations on all the different devices.

Hybrid App Development
The Hybrid Web Container supports workflow type applications, which are applications that
participate in a lifecycle flow involving special notifications (modified in the Transform
Queue), application flow, and finally submission of form data to matching server components
(through the Response Queue).

The Hybrid Web Container also supports applications that do not participate in a workflow
type process. In other words, applications that are not triggered by notifications (no
Transform Queue), and that do not submit asynchronous “submit” responses through queuing
(no Response Queue). These applications do not communicate with the server for data access,
but use the messaging channel for deployment, provisioning, and application life cycle
management.

Write Hybrid Apps in standards-based HTML5, JavaScript (the standard scripting language
used to create Web applications), and Cascading Style Sheets (CSS). These are technologies
familiar to web developers. This enables Web developers to incorporate open source
frameworks and also select their preferred development environment, for example, Sencha
and JQuery Mobile.

Introduction to Developing Hybrid Apps With SAP Mobile Platform

4 SAP Mobile Platform

Hybrid App Designer
The Hybrid App Designer uses the Hybrid Web Container as the runtime for Hybrid App
packages. The Hybrid App Designer included with SAP Mobile Platform is a tool that helps
you design the user interface and test the flow of the business process for an application. Using
the Hybrid App Designer allows you to develop application screens that can call on the create,
update, and delete operations, as well as object queries, of a mobile business object.

Hybrid App package files are generated using the Hybrid App Package generation wizard in
the Hybrid App designer. The generated Hybrid App package contains files that reference a
mobile business object (MBO) package, an MBO in that package, and the operation or object
query to call along with a mapping of which key values map to parameter values. The
generated Hybrid App package's output is translated to HTML\CSS\JavaScript. The logic for
accessing the data and navigating between screens is exposed as a JavaScript API.

The Hybrid App packages generated by the Hybrid App designer are not proprietary, they are
identical to what would need to be produced when using other tools and Web application
frameworks. Hybrid App Designer-generated packages use jQuery Mobile as their primary
Web application framework on most platforms.

Deploy Hybrid App packages to SAP Mobile Server and assign to users using the Hybrid App
Designer in Eclipse.

Generated Customization Files
The Hybrid Web Container uses HTML, JavaScript, and CSS Web technologies, which allow
you to customize the generated files with JavaScript code.

• HTML – the generated files depend on the device platform. You can open these files with a
third-party Web-development tool and modify them, but they are overwritten if generated
from the Hybrid App deployment tool. The Hybrid App Designer also includes a
HTMLView user interface element that can be placed on a screen, and in which custom
HTML code can be inserted, which will be published in-line when the file is re-generated.

• JavaScript – the JavaScript API exposes customization points for navigation events, and
allows access to data-access functions for requests and cached values. Customization of
the HTML page should be executed using the embedded jQuery in these customization
points. For example, execute jQuery logic to modify the toolbar in
customBeforeHybridAppLoad(). You can add additional custom JavaScript files
to the Hybrid App package in the Eclipse WorkSpace.

• CSS – the Hybrid Web Container uses a third-party CSS library, which enables you to
modify the look-and-feel of the HTML page. The jQueryMobile CSS file is embedded as
the default look-and-feel, which allows you to select from the variety of themes within the
jQueryMobile framework, or use your own CSS rules for skinning pages and screen
elements. These can be device operating system-specific. You can also leverage existing
CSS style rules from your own organization's Web standards.

The generated files are documented in the Reference section of this guide.

Introduction to Developing Hybrid Apps With SAP Mobile Platform

Developer Guide: Hybrid Apps 5

Management
You can deploy Hybrid App packages in Eclipse and manage them through the SAP Control
Center console. No device interaction is required from the administrator. Once a Hybrid App
package is deployed into an existing installation, the administrator can configure the Hybrid
App package and assign it to any active user in the system.

Offline Capabilities
Server-initiated notifications extract data from the backend and SAP Mobile Platform sends
them to the client device. The client device does not need to be online at the time the
notification is sent—the message is received as soon as the client device comes online. Submit
actions on the client can also be sent while the device is offline. They will be sent to the server
as soon as the device comes online. These notifications are made available offline for
processing once they are delivered to the device.

Online Request actions only work when the device is online. The results of object queries run
by these types of actions can be cached on the client so that the next time the same query is
invoked with the same parameters it is able to get those results from the client-side cache
without needing to go to the server. This is achieved by specifying a non-zero cache timeout
for the action.

You can also store data locally (when the device is offline) using the SUPStorage JavaScript
API.

Hybrid App Development Task Flow
This task flow describes task flows for the different Hybrid App development options.

Hybrid App Development Task Flow Using Third-Party Web
Frameworks and MBOs

This describes the basic steps for developing Hybrid Apps that access MBO operations and
object queries using a third-party tool, or by hand.

1. Define the data you want to use from your backend system and to expose through your
Hybrid App, and the methods and operations to perform.

2. Create a Mobile Application project on page 9.
3. Develop the Mobile Business Objects on page 10.
4. Deploy the Mobile Application Project on page 9.
5. Generate the JavaScript API on page 23.
6. Package the Hybrid App files. on page 76
7. In SAP Control Center, deploy the Hybrid App package to SAP Mobile Server. on page

101

Introduction to Developing Hybrid Apps With SAP Mobile Platform

6 SAP Mobile Platform

Hybrid App Development Task Flow With the Designer
Developing a Hybrid App includes these basic tasks.

1. Open or import a mobile application project with predefined mobile business objects
(MBOs).

2. Deploy the Mobile Application Project:
b. On the Target Server page, select the server and connect to it.
c. On the Server Connection Mapping page, map the database connection profile to the
server.

3. Create the application connection in SAP Control Center.

Note: This step is normally performed by the system administrator.

4. Use the Hybrid App Designer to create a new Hybrid App.

Note: Optionally, you can create a Hybrid App manually, however, using the Hybrid App
Designer, automates many tasks and provides integration across different device
platforms.

5. Use the Hybrid App Designer to generate screens by dragging and dropping MBOs and
MBO operations from WorkSpace Navigator to the Flow Design page.

6. Create, delete, and edit screens, controls, menus, screen navigations, and so on.
7. Generate the Hybrid App files.
8. (Optional) Customize the generated Custom.js file.

9. (Optional) If you customize the Hybrid App files, re-generate an repackage the files.
10. Deploy the Hybrid App package to SAP Mobile Server.
11. Install and configure the Hybrid Web Container on the device or simulator.
12. In SAP Control Center, assign the Hybrid App to the device user.
13. On the device or simulator, run, test and debug the Hybrid App.

Note: See SAP Mobile WorkSpace - Mobile Business Object Development for procedures
and information about creating and deploying MBOs.

Identify a Business Process for a Hybrid App That Uses a Lifecycle Flow
The first step in developing a Hybrid Apps that participate in a lifecycle flow involving special
e-mail messages (modified in the Transform Queue), application flow, and finally submission
of form data to matching server components (through the Response Queue) is identifying
whether a Hybrid App can implement a decision point in a particular business process.

Hybrid Apps enable a decision step or triggering of a business process, essentially mobilizing
a small decision window in a business process. While some business processes require a thick
application with business logic and access to reference data, some others do not. Sometimes a
business process can be made mobile simply by providing the ability to capture a single "Yes"
or "No" from a user, or by providing the ability to send data in structured form into the existing
backend systems.

Introduction to Developing Hybrid Apps With SAP Mobile Platform

Developer Guide: Hybrid Apps 7

A typical Hybrid App allows creating, updating or deleting of data in a backend data source
(EIS), either directly or through the SAP Mobile Server, and retrieving that data, then
displaying that information in a decision step. A more complex Hybrid App could involve an
application that uses online request menu items to invoke various create, update, or delete
operations and/or object queries all in the same flow.

An example of a business process that would be a suitable Hybrid App would be the ability of
an employee to use a mobile device to submit an expense report while out of office, or to report
on their project activities, or to make a request for travel.

Introduction to Developing Hybrid Apps With SAP Mobile Platform

8 SAP Mobile Platform

Develop Hybrid Apps Using Third-party Web
Frameworks

Developing Hybrid Apps this way allows you to use a greater variety of application designs,
from using different HTML formatting to using different Web application frameworks, and
beyond.

Note: When writing your own HTML and JavaScript to create a Hybrid App package
manually, there is one absolute requirement—you must implement the following JavaScript
function:

function processDataMessage (incomingWorkflowMessage)
The Hybrid Web Container needs to call this function when online request processing is
complete. The incoming message is an XML-formatted string.

Develop MBO-based Hybrid Apps
Develop Hybrid Apps using mobile business objects (MBO) to define object data models with
back-end enterprise information system (EIS) connections, attributes, operations, and
relationships.

A project in SAP Mobile WorkSpace must contain the MBOs to use in your application. See
SAP Mobile WorkSpace - Mobile Business Object Development.

The JavaScript APIs in the Mobile SDK are located in <SMP_HOME>\UnwiredPlatform
\MobileSDK<version>\HybridApp\API. It is split into two categories:
• Container – these APIs are fundamentally independent of the UI framework you choose to

use (if any). There is no reference to screens. These APIs are considered mandatory when
building your Hybrid App.

• AppFramework – these APIs are an optional add-on to the Container APIs that give you
functionality to navigate between screens, represent the messages sent to and from the
server in developer-friendly form, and bind the UI to and from those messages
automatically. These APIs do make some assumptions about how your UI is constructed/
manipulated, and those assumptions are not necessarily true for all UI frameworks, Sencha
among them.

Creating a Mobile Application Project
A mobile application project is the container for the mobile business objects that forms the
business logic of mobile applications.

You must create a mobile application project before you can create mobile business objects.
See Eclipse Basics for information about projects.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 9

1. Select File > New > Mobile Application Project from the main menu bar.

2. Enter a:

• Name
• Location (if other than the default).

3. Click Finish.

The Mobile Application Project is created and an empty Mobile Application Diagram
opens.

4. (Optional) Modify the Mobile Application Project configuration properties by right-
clicking the project in WorkSpace Navigator, selecting Properties, and selecting Mobile
Application Project Configuration. When modifying the configuration properties, keep
in mind that:

• The default application ID and Display name are the same as the project. The
description is "Default application ID".

• Follow these guidelines when changing application ID, application name, display
name, and description:
• ID – less that 64 bytes, begin with an alphabetic character, followed by

alphanumeric characters, a dot, or underscores, and not contain consecutive dots or
underscores.

• Display name – string, length less than 80 bytes.
• Description – string, length less than 255 bytes.
All added applications must have a name (display name and description can be empty),
but are assigned a name at runtime when the application is created.

Developing a Mobile Business Object
You can define attributes and operations of a mobile business object (MBO) without
immediately binding them to a data source, define them from and bind them to a data source,
or create an MBO that does not bind to a data source (local business object, or uses only DCN
as the refresh mechanism).

Prerequisites
Before developing MBOs, understand the key concepts and principals described in
Understanding Fundamental Mobile Development Concepts. Also, see the companion guide,
Mobile Data Models: Using Mobile Business Objects, for a deeper understanding of how to
build an efficient MBO model.

Task

The attributes and operations that define an MBO must be bound to a data source at some point
in the development process, unless it is a local business object, or the MBOs data is to be
loaded only through Data Change Notification (DCN). If you already have a connection to the
data source through a connection profile, you can quickly generate attribute and operation
bindings based on the data source. However, if you do not have access to the required data

Develop Hybrid Apps Using Third-party Web Frameworks

10 SAP Mobile Platform

source, you define the MBO, but bind your operations and attributes to the data source at a later
point. The difference between the two development approaches is when you create and bind
the attributes and operations:

• Create an MBO and bind to a data source immediately – includes two methods:
1. Drag and drop the data source onto the Mobile Application Diagram, which launches

the appropriate wizards and automatically creates bindings based on the selected data
source.

2. Create an MBO and its operations and attributes using the Mobile Application
Diagram and palette that launches a set of wizards and allows you to bind them directly
to a data source.

• Create an MBO and defer data source binding – create an MBO and it's operations and
attributes using the Mobile Application Diagram and palette that launches a set of wizards
and allows you to bind the MBO to a data source at a later time. After you define the data
source, you bind the MBO to it from the Properties view.

• Create an MBO using a DCN cache group policy without data source binding – when an
MBO's CDB data is to be filled only through DCN, a data source binding is not necessary.
In these cases, the MBO must reside in a cache group that uses the DCN policy.

• Create a local business object – create a local business object by clicking the local business
object icon in the palette then click the object diagram. Local business objects can only run
on the client and cannot be synchronized. It can contain attributes and operations that run
on the device. For example, the local business object could be combined with other MBOs,
where the local business object runs an object query against results returned by other
MBOs.

Deploying a Mobile Application Project
Deploy a Mobile Application project directly to an SAP Mobile Server, and optionally create a
reusable deployment profile.

To avoid errors or inconsistent behavior, client applications must be regenerated whenever a
package has been redeployed. Restarting the client application is not sufficient to reset the
client for a package that has been redeployed.

1. Right-click the Mobile Application project and select Deploy Project.

Alternatively, you can launch the deployment wizard, which automatically sets the SAP
Mobile Server portion of the wizard, by dragging a Mobile Application project folder from
Workspace Navigator and dropping it on the SAP Mobile Server in Enterprise Explorer to
which you are deploying.

Note: As an option, you can press F9 when your cursor is in the Mobile Application
Diagram to launch the Deployment wizard for the corresponding project. If a deployment
profile exists for the project, F9 performs quick deployment of the project according to the
profile.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 11

2. Select a deployment mode (Update, Replace, or Verify), target version, Package name,
and click Next.

3. Select the MBOs from each Synchronization Group to be deployed and click Next.

Note: If any selected MBOs contain errors, the Next and Finish buttons are disabled.

4. Create or add required JAR files for MBOs that use Resultset Filters or Custom Result
Checkers and click Next.

5. Select a target server, click Connect, and select a Domain and Security Configuration for
the deployment package and click Next. (Optional) If no SAP Mobile Server connection
exists, click Create and define a connection profile for one to which you can connect and
deploy the deployment package.

6. Deploy applications to SAP Mobile Server – select the applications to deploy to SAP
Mobile Server. A unique Application ID identifies the application and uses the project
name by default.

SAP Mobile WorkSpace lists not only local applications defined through the mobile
application project's context menu Properties > Mobile Application Project
Configuration, but all applications already assigned to the selected domain of the target
server (available applications), whether those existing applications contain this current
mobile application project or not. SAP Mobile WorkSpace validates the projects for:
• If the local and server applications are the same, but the display name or description

differ, they display in the target applications list, but a validation error appears because
the assigned application ID must be unique.

• When deploying the project/package with "Replace" mode, if the project/package
already exists in an available application that exists on the server, but that application is
not selected as the target application, a warning indicates that the server will remove
the project/package from the existing application.

• If a local application is added to the target applications list, and a server application
with the same ID but different display name/description is not assigned, a warning
indicates that you can modify the display name/description of the existing sever
application with that of the local application.

7. Map connection profile to server connections – you must map design-time connection
profiles to server-side (runtime) enterprise information system (EIS) data sources
referenced by the MBOs in the project. Deployment fails if the EIS data sources are not
running and available to connect to. To map the connection profile to a server connection,
select the connection profile from the list of available connection profiles then select the
corresponding server connection to which it maps, or select <New Server Connection...>
to create a new server connection.

Contact the system administrator in cases where your development environment permits
access to systems that the SAP Mobile Server prohibits.

Note: You can also modify server connection properties (Web service connections only).

Develop Hybrid Apps Using Third-party Web Frameworks

12 SAP Mobile Platform

8. If a logical role is defined in your MBO, map logical roles to physical roles. If there are no
logical roles defined, this page is skipped. Click Next.

9. (Optional) Specify the name and location for the new deployment profile. This is useful for
troubleshooting MBO and deployment errors.

• Save the deployment settings as a deployment profile – if you do not save your settings
to a deployment profile, they are lost when you exit the Deploy wizard.

• Enter or select the parent folder – by default, Deployment is the folder in which the
deployment profile is saved.

• File name – the name of this deployment profile. The deployment profile is assigned
a .deploy extension.

10. Click Finish to deploy the project to the SAP Mobile Server's Packages folder.

MBO Examples
This section shows examples of how to implement different patterns and functionality. These
are examples only. You must modify the procedures based on the actual MBOs, object queries,
and parameters you are using.

Implementing Online Lookup for Hybrid Apps
In this example, online lookup provides direct interaction between the data requester (client)
and the enterprise information system (EIS), supplying real-time EIS data rather than cached
data.

Prerequisites
Complete the procedure in Defining Load Arguments from Mapped Propagate to Attributes
on page 107 so that you have an MBO with the required attributes.

Task

This section describes how to invoke the Employee's findByParameter method.

1. Right-click on the mobile application project and choose Generate Hybrid App API.

2. Select the Employee MBO, choose Generate to an external folder, and add \html to
end of the folder name.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 13

3. Right-click on the generated html folder and select New > Other > General > File.

4. Enter online.html for the file name.

5. Open the online.html file and add this code:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <meta name="HandheldFriendly" content="True" />
 <meta http-equiv="PRAGMA" content="NO-CACHE" />
 <meta name="viewport" content="initial-scale =
1.0 ,maximum-scale = 1.0" />
 <script src="js/PlatformIdentification.js"></script>
 <script src="js/hwc-api.js"></script>
 <script src="js/hwc-comms.js"></script>
 <script src="js/hwc-utils.js"></script>
 <script src="js/WorkflowMessage.js"></script>
 <script src="js/HybridApp.js"></script>

 <script>
 function findEmp() {
 var deptID = document.getElementById("deptID").value;
 emp = new Employee();
 emp.deptIdLP = deptID;
 employee_findByParameter(emp,
"supusername=supAdmin&suppassword=s3pAdmin", "onError");
 }

 function onError(e) {
 alert("An error occurred");

Develop Hybrid Apps Using Third-party Web Frameworks

14 SAP Mobile Platform

 }

 hwc.processDataMessage = function
(incomingDataMessageValue) {
 if (incomingDataMessageValue.indexOf("<M>") != 0) {
 alert("An error occurred! " +
incomingDataMessageValue);
 }
 var workflowMessage = new
WorkflowMessage(incomingDataMessageValue);
 var values = workflowMessage.getValues();
 var empList = values.getData("Employee");
 var firstEmp = empList.value[0];
 var firstName =
firstEmp.getData("Employee_emp_fname_attribKey").value;
 alert("The name of the first employee is " + firstName);
 }
 </script>
 </head>
 <body>
 <form>Dept Id: <input type="text" value="100" id="deptID"/></
form>

 <button id="findEmpsButton" onclick="findEmp()">Find</
button>
 <button id="closeWorkflow" onclick="hwc.close()">Close</
button>
 </body>
</html>

Five of the included files are from <SMP_HOME>\MobileSDK22\HybridAp\API
folder. The file named HybridApp.js is generated based on the operations and object
queries of the MBOs selected in the Generate Hybrid App API wizard. When the Find
button is clicked, the department ID is retrieved and set on the employee object, which is an
input parameter to the method named employee_findByDeptId in
HybridApp.js. Once the result returns from SAP Mobile Server, it is passed into the
method processDataMesssage where the first employee's name is shown.

6. Navigate to SMP_HOME\MobileSDK22\HybridApp\PackagingTool and
double-click the packagingtool.bat file if you are using a 32-bit JDK, or
packagingtool64.bat if you are using a 64-bit JDK.

7. Click Browse to enter the file path for your project and click OK.

8. Select Project > New.

9. Fill in Patterns_Online and the location of where the generated files currently exist (the
same location specified as the Generation folder above) for the Project name and Web root
directory.

10. Fill in the MBO package name and version to match the deployed package.

11. Specify the files to include in the Hybrid App for each supported platform.

Only the selected files appear in the manifest.xml file.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 15

12. Click Generate to generate a deployable Hybrid App package.

13. Deploy and assign the Hybrid App package using SAP Control Center.

Implementing Server Notification for Hybrid App Clients
Configure matching rules for MBO-related data on SAP Mobile Server.

Prerequisites
Complete the procedure in Defining the Mobile Business Object on page 111 so that you have
an MBO with the required attributes.

Task
Any data changes matching these rules trigger a notification from SAP Mobile Server to the
Hybrid App client. This section describes how to write HTML, JavaScript, and modify the
WorkflowClient.xml to display the results of a server notification.

1. Right-click on the mobile application project and choose Generate Hybrid App API.

2. Select the Sales MBO, choose Generate to an external folder, and add \html to end of
the folder name.

3. Right-click on the generated html folder and select New > Other > General > File.

4. Enter notification.html for the file name.

5. Open the notification.html file and add this code:

 <html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <meta name="HandheldFriendly" content="True" />
 <meta http-equiv="PRAGMA" content="NO-CACHE" />
 <meta name="viewport" content="initial-scale =
1.0 ,maximum-scale = 1.0" />
 <script src="js/PlatformIdentification.js"></script>
 <script src="js/hwc-api.js"></script>
 <script src="js/hwc-comms.js"></script>
 <script src="js/hwc-utils.js"></script>
 <script src="js/WorkflowMessage.js"></script>
 <script src="js/HybridApp.js"></script>
 <script>
 hwc.processDataMessage = function
(incomingDataMessageValue) {
 if (incomingDataMessageValue.indexOf("<M>") != 0) {
 alert("An error occurred! " +
incomingDataMessageValue);
 }
 var workflowMessage = new
WorkflowMessage(incomingDataMessageValue);
 var values = workflowMessage.getValues();
 var salesOrderList = values.getData("Sales_order");
 var salesOrder = salesOrderList.value[0];
 var salesOrderId =

Develop Hybrid Apps Using Third-party Web Frameworks

16 SAP Mobile Platform

salesOrder.getData("Sales_order_id_attribKey").value;
 var custId =
salesOrder.getData("Sales_order_cust_id_attribKey").value;
 alert("The customer id for sales order " + salesOrderId
+ " is " + custId);
 }
 </script>
 </head>
 <body onload="hwc.onHybridAppLoad_CONT()">
 <h3>Server Notification Sample</h3>
 <button id="closeHybridApp" onclick="hwc.close()">Close</
button>
 </body>
</html>

Five of the included files are from the <SMP_HOME>\MobileSDK22\HybridAp
\API folder. The file named HybridApp.js is generated based on the operations and
object queries of the MBOs selected in the Generate Hybrid App API wizard. In the onload
event, the method hwc.onHybridAppLoad_CONT() is called. For server-initiated
applications this returns the data message associated with this instance of the server-
initiated application as a parameter to hwc.processDataMessage(). In
processDataMessage, some of the data is extracted from the application message
and displayed.

6. Navigate to SMP_HOME\MobileSDK22\HybridApp\PackagingTool and
double-click the packagingtool.bat file.

7. Click Browse to enter the file path for your project and click OK.

8. Select Project > New.

9. Fill in Patterns_Notification and the location of where the generated files currently exist
(the same location specified as the Generation folder above) for the Project name and Web
root directory.

10. Fill in the MBO package name and version to match the deployed package.

11. Specify a matching rule for the subject:

<![CDATA[find sales order \(.*]]>

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 17

12. Specify the files to include in the Hybrid App for each supported platform.
Only the selected files will appear in the manifest.xml file.

13. Open the generated WorkflowClient.xml file and update the Notifications
section:
<Notifications>
 <Notification type="onEmailTriggered" targetscreen="Salesorder"
asyncRequestErrorScreen="" errorNotificationSubjectLine=""
errorNotificationFromLine="" asyncRequestErrorlogs=""
asyncRequestErrorLogMessage=""

Develop Hybrid Apps Using Third-party Web Frameworks

18 SAP Mobile Platform

asyncRequestErrorLogMessageAsList="">
 <Transformation>
 <Rule type="regex-extract" source="subject"
workflowKey="order_id" workflowType="number" beforeMatch="find
sales order \(" afterMatch="\)" format=""/>
 </Transformation>
 <Methods>
 <Method name="findByParameter" type="search"
mbo="Sales_order" package="patterns_notification:1.0">
 <InputBinding opname="findByParameter" optype="none">
 <Value sourceType="Key" workflowKey="order_id"
contextVariable="" paramName="order_id" attribName="id"
mboType="int" convertToLocalTime="false"/>
 </InputBinding>
 <OutputBinding generateOld="true">
 <Mapping workflowKey="Sales_order" workflowType="list"
mboType="list">
 <Mapping workflowKey="Sales_order_id_attribKey"
workflowType="number" attribName="id" mboType="int"/>
 <Mapping workflowKey="Sales_order_cust_id_attribKey"
workflowType="number" attribName="cust_id" mboType="int"/>
 <Mapping workflowKey="Sales_order_order_date_attribKey"
workflowType="date" attribName="order_date" mboType="date"/>
 <Mapping
workflowKey="Sales_order_fin_code_id_attribKey"
workflowType="text" attribName="fin_code_id" mboType="string"/>
 <Mapping workflowKey="Sales_order_region_attribKey"
workflowType="text" attribName="region" mboType="string"/>
 </Mapping>
 </OutputBinding>
 </Method>
 </Methods>
 </Notification>
</Notifications>

14. Save and close the file.

15. In the Hybrid App Packaging Tool, click Generate to create a deployable package.

16. Login in to SAP Control Center to deploy and assign the Hybrid App package.

17. Send a notification to the device.

Typically this is triggered by a database trigger or by the EIS sending a DCN. You can also
use the Send a Notification wizard in the Hybrid App designer.

a) In the Hybrid App designer, click Flow Design.
b) Right-click in the Flow Design page and select Send a notification.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 19

Implementing the Cached Data Pattern for MBO-based Hybrid Apps
For access to cached data, define a menu action and bind it to the findByDeptId object query.

Prerequisites
Complete the procedure in Defining the Mobile Business Object on page 117 so that you have
an MBO with the required attributes.

Task

Using cached data is efficient when access to cached data is sufficient to meet business needs.
For example, it may be sufficient to refresh the cache once a day for noncritical MBO data that
changes infrequently.

1. Generate the Hybrid App API:

a) Right-click the mobile application project and choose Generate Hybrid App API.
b) In the tree view, select the Employee MBO, which contains the findByDeptId object

query.
c) Choose Generate to an external folder and add "\html" to end of the folder name.

Develop Hybrid Apps Using Third-party Web Frameworks

20 SAP Mobile Platform

By default, the wizard creates a Generated Hybrid App folder under the project
and a sub folder named APIs.

d) Click Finish.

2. Right-click the html folder and choose New > Other > General > File, and enter
cached.html for the file name.

3. Copy and paste the following contents into the cached.html file:

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <meta name="HandheldFriendly" content="True" />
 <meta http-equiv="PRAGMA" content="NO-CACHE" />
 <meta name="viewport" content="initial-scale =
1.0 ,maximum-scale = 1.0" />
 <script src="js/PlatformIdentification.js"></script>
 <script src="js/hwc-comms.js"></script>
 <script src="js/hwc-utils.js"></script>
 <script src="js/WorkflowMessage.js"></script>
 <script src="js/HybridApp.js"></script>

 <script>
 function findByDept() {
 var deptID = document.getElementById("deptID").value;
 emp = new Employee();
 emp.deptIDLP = deptID;
 employee_findByDeptId(emp,
"supusername=supAdmin&suppassword=s3pAdmin", "onError");
 }

 function onError(e) {
 alert("An error occurred");
 }

 hwc.processDataMessage = function

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 21

(incomingDataMessageValue) {
 var workflowMessage = new
WorkflowMessage(incomingDataMessageValue);
 var values = workflowMessage.getValues();
 var empList = values.getData("Employee");
 var firstEmp = empList.value[0];
 var firstName =
firstEmp.getData("Employee_emp_fname_attribKey").value;
 alert("The name of the first employee is " + firstName);
 }
 </script>
 </head>
 <body>
 <form>Dept Id: <input type="text" value="100" id="deptID"/></
form>

 <button id="findByDeptButton" onclick="findByDept()">Find</
button>
 <button id="closeWorkflow" onclick="hwc.close()">Close</
button>
 </body>
</html>

4. Open the packaging tool to create a deployable ZIP file of the Hybrid App by double-
clicking on packagingTool.bat, which is located in <SMP_HOME>
\MobileSDK22\HybridApp\PackagingTool\.

5. Enter a location for the generated ZIP file, for example, c:\patterns.

6. Choose Project > New.

7. Fill in Patterns_Cached and the location where the generated files currently exist for
the Project name and Web root directory.

8. Fill in the MBO package name and version to match the deployed package.

9. Specify the files to include in the Hybrid App for each supported platform.

Only the selected files appear in the manifest.xml file.

10. Click Deploy to create a deployable package.

11. Log in to SAP Control Center to deploy the Hybrid App package and assign the Hybrid
App to an application connection.

12. Review the contents of the cached.html file.

The first four included files are from the Mobile SDK located in the <SMP_HOME>
\MobileSDK22\HybridAp\API folder. The last file is generated based on the
operations and object queries of the MBOs selected when you generated the Hybrid App
API.

When you click the Find button, the department ID is retrieved and set on the employee
object, which is an input parameter to the method named employee_findByDeptId in
HybridApp.js. Once the result returns from the SUP server, it is passed into the
method processDataMesssage, where the first employee's name is shown.

Develop Hybrid Apps Using Third-party Web Frameworks

22 SAP Mobile Platform

Generating JavaScript MBO Access API
Generate JavaScript API for MBOs to use in your custom code.

The generated API automatically includes, and utilizes, the Container APIs, along with the
message manipulation APIs from the AppFramework portion of the Mobile SDK. The wizard
also generates the WorkflowClient.xml file, which is required to support those
functions.

Note: The generated WorkflowClient.xml file does not include a completed
Notification, so if you want a server-initiated Hybrid App, you must do this by hand.

1. In WorkSpace Navigator, right-click the Mobile Application project for which to generate
the JavaScript, and choose Generate Hybrid App API.

2. In the tree view, select the MBOs for which to generate the JavaScript.

3. Accept the default location for the files, or specify the location for the generated files and
click Finish.

By default, the wizard creates a Generated Hybrid App folder under the project,
and a subfolder named APIs.

Generated Hybrid App Files
Examine the generated files.

• WorkflowClient.xml – this file establishes the mapping between the XML
messages and JSON calls to and from the SAP Mobile Server server.

Note: The generated WorkflowClient.xml does not include a completed
notification, so if you want the Hybrid App to be server-initiated, you must write the
Notification section. See Creating Notifications to Make the Hybrid App Server-
Initiated.

• WorkflowMessage.js – defines some convenient functions for accessing incoming
application messages.

• Workflow.js – contains functions map to the MBO's operations and object queries.
The contents depend on the MBOs you select when you run the wizard, since the wizard
generates only the JavaScript API functions for the selected MBOs.

• These files are static, container related, commonly used JavaScript libraries and are copied
from the <SMP_HOME>\UnwiredPlatform\Mobile SDK HybridApp\API
\Container folder.

• Callbacks.js – Hybrid Web Container callback functions.

• SUPStorage.js – client side key/value storage.

• hwc-comms.js – native container functions that are invoked from the custom code.

• Camera.js – functions for accessing the device's native camera functionality.

• Timezone.js – utility functions for getting the local time.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 23

• hwc-utils.js – native Hybrid Web Container utility functions.
• Certificate.js – functions for processing certificates.
• json2.js – functions for processing JSON data.
• ExternalResource.js – functions for accessing external resources.
• datajs-1.0.2.js – functions for communicating through an OData protocol.

• PlatformIdentification.js – utility functions for checking the platform.
• hwc-api.js – native Hybrid Web Container functions that allow users access to

Hybrid App metadata and notifications from the custom code.

HybridApp.js
In the HybridApp.js file, helper JavaScript structures are generated for the selected
MBOs, and for the MBOs that have one-to-one, or one-to-many relationships.

Functions against selected MBO operations and object queries are also generated.

This is an example of the generated JavaScript for the Department MBO and Employee MBO
in which the Department MBO has a one-to-many relationship with the Employe MBO.
/**
 * Returns The constructor of an mbo structure. This is helper
function for creating MBO's operations or namedQuery input
structure
 * @param attributes The parameters of an mbo operation, separated by
one space. If the parameters map to MBO's attributes, use attributes
name instead.
 * @param children The relationship names of an mbo operation's
parameters or the array type of parameters, separated by one
space.
 */
function makeClass(attributes, children) {
 var attributeNames = attributes.split(' ');
 var attributeCount = attributeNames.length;
 var childrenNames = children.split(' ');
 var childrenCount = childrenNames.length;

 function constructor() {
 for (var i = 0; i < attributeCount; i++)
 {
 var name = attributeNames[i];
 var subAttr = null;

 //If the name contains . which should be structure,
 while(name.indexOf('.') >0)
 {
 var part = name.substring(0,
name.indexOf('.'));
 if (subAttr)
 {
 subAttr.part = new Object();
 subAttr = subAttr.part;

Develop Hybrid Apps Using Third-party Web Frameworks

24 SAP Mobile Platform

 }else
 {
 this[part]= new Object();
 subAttr = this[part];
 }
 name = name.substring(name.indexOf('.')+1,
name.length);
 }

 if (subAttr)
 {
 subAttr[name]= new Object();
 }else {
 this[name] = new Object();
 }
 }

 for (var i = 0; i < childrenCount; i++) {
 this[childrenNames[i]] =[];
 this['OldValue_' + childrenNames[i]] =[];
 }

 this['__state'] ="";
 this['pks'] = {};

 var self = this;

 this['pks'].put = function(pkName, pkValue) {
 self['pks'][pkName] = pkValue ;
 }
 }
 return constructor;
}

Set the "__state" field to "add," "delete," or "update" to add or delete an MBO, or to update a
child MBO to a parent MBO, respectively.

Use the "pks" field to set values for operation parameters that have personalization keys.

This example shows the JavaScript structures generated for a Department MBO and
Employee JavaScript:
/**
 * Returns Department MBO structure.
 * Used by JavaScript functions of
department_create_submit,department_create_onlineRequest,department
_update_submit,department_update_onlineRequest,department_delete_su
bmit,department_delete_onlineRequest,department_findAll,department_
findByPrimaryKey
 * @param dept_id The "dept_id" is attribute field of MBO
Department
 * @param dept_name The "dept_name" is attribute field of MBO
Department
 * @param dept_head_id The "dept_head_id" is attribute field of MBO
Department
 * @param Employee is MBO Employee javaScript structure array which

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 25

representing the MBO Department to MBO Employee one to many
relationship
 */
Department = makeClass("dept_id dept_name dept_head_id",
"Employee");
/**
 * Returns Employee MBO structure.
 * Used by JavaScript functions of
employee_create_submit,employee_create_onlineRequest,employee_updat
e_submit,employee_update_onlineRequest,employee_delete_submit,emplo
yee_delete_onlineRequest,employee_findAll,employee_findByPrimaryKey

 * @param emp_id The "emp_id" is attribute field of MBO Employee
 * @param manager_id The "manager_id" is attribute field of MBO
Employee
 * @param emp_fname The "emp_fname" is attribute field of MBO
Employee
 * @param emp_lname The "emp_lname" is attribute field of MBO
Employee
 * @param dept_id The "dept_id" is attribute field of MBO Employee
 * @param street The "street" is attribute field of MBO Employee
 * @param city The "city" is attribute field of MBO Employee
 * @param state The "state" is attribute field of MBO Employee
 * @param zip_code The "zip_code" is attribute field of MBO
Employee
 * @param phone The "phone" is attribute field of MBO Employee
 * @param status The "status" is attribute field of MBO Employee
 * @param ss_number The "ss_number" is attribute field of MBO
Employee
 * @param salary The "salary" is attribute field of MBO Employee
 * @param start_date The "start_date" is attribute field of MBO
Employee
 * @param termination_date The "termination_date" is attribute field
of MBO Employee
 * @param birth_date The "birth_date" is attribute field of MBO
Employee
 * @param bene_health_ins The "bene_health_ins" is attribute field of
MBO Employee
 * @param bene_life_ins The "bene_life_ins" is attribute field of MBO
Employee
 * @param bene_day_care The "bene_day_care" is attribute field of MBO
Employee
 * @param sex The "sex" is attribute field of MBO Employee
 */
Employee = makeClass("emp_id manager_id emp_fname emp_lname dept_id
street city state zip_code phone status ss_number salary start_date
termination_date birth_date bene_health_ins
bene_life_insbene_day_care sex" , "");

If there is one parameter that does not map to the MBO’s attribute, the JavaScript structure for
the MBO’s function input parameters is generated. This example shows an MBO called Banks
where the dataSource is an SAP® object. In addition to the Banks JavaScript structure, the
BANK_LIST and Banks_getList JavaScript structures are also generated.

Develop Hybrid Apps Using Third-party Web Frameworks

26 SAP Mobile Platform

/****************** DEFINITION OF MBO JAVASCRIPT STRUCTURE
************************/
/**
 * Returns BANK_LIST structure
 * @param BANK_CTRY The"BANK_CTRY" is the parameter field of
BANK_LIST.
 * @param BANK_NAME The"BANK_NAME" is the parameter field of
BANK_LIST.
*/
BANK_LIST = makeClass("BANK_CTRY BANK_NAME" ,"")
/**
 * Returns Banks_getList structure. Used by functions of
banks_getList_submit and banks_ getList_onlineRequest
 * @param BANK_CTRY The "BANK_CTRY " is the parameter field of the
operation of getList.
 * @param BANK_LIST The "BANK_LIST " is the array parameter field of
the operation of getList.
 */
Banks_getList = makeClass("BANK_CTRY", "BANK_LIST");

/**
 * Returns Banks MBO structure.
 * Used by JavaScript functions of banks_findAll,banks_getByName
 * @param BANK_CTRY The "BANK_CTRY" is attribute field of MBO Banks
 * @param BANK_KEY The "BANK_KEY" is attribute field of MBO Banks
 * @param BANK_NAME The "BANK_NAME" is attribute field of MBO Banks
 * @param CITY The "CITY" is attribute field of MBO Banks
 * @param BAPI_BANK_GETLIST_BANK_LIST1 is MBO
BAPI_BANK_GETLIST_BANK_LIST1 javaScript structure array which
representing the MBO Banks to MBO BAPI_BANK_GETLIST_BANK_LIST1 one to
many relationship
 */
Banks = makeClass("BANK_CTRY BANK_KEY BANK_NAME CITY" ,
"BAPI_BANK_GETLIST_BANK_LIST1");

Global variables are generated for each MBO operation. You can reference these global
variables in your code when you process incoming data to check which action was performed
for the incoming message.
/*
* Global variables for Customer actions
 */
Customer.createAction = "Customer_create";
Customer.updateAction = "Customer_update";
Customer.deleteAction = "Customer_delete";
Customer.findAllAction = "Customer_findAll";
Customer.findByPrimaryKeyAction = "Customer_findByPrimaryKey" ;

Two versions of JavaScript functions are generated for the MBO’s create, read, update, delete
operations. For example, for a create operation there is a create_submit function and
create_onlinerequest function generated. This example shows the generated JavaScript
function for the Department create operation:

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 27

/**
 * Returns void. This is submit operation, therefore no message will
be sent back to user by the hybrid web container
 * @param departmentObj which is the instance of Department
JavaScript structure. Values should be set for this instance.
 * @param credInfo, It is string value , should be something look
like "supusername=username&suppassword=password".
 * @param keepOpen, If this set to true, the Hybrid App will be kept
open, otherwise, the hybrid web container will close the Hybrid
App.
*/

function department_create_submit(departmentObj, credInfo,
keepOpen)
{
 //Collect values from departmentObj customerObj and fill the
action parameters
 var keys = ["Department_create_dept_id_paramKey",
"Department_create_dept_name_paramKey",
"Department_create_dept_head_id_paramKey"];
 var types = ["int", "string", "int"];
 var objValues = [departmentObj.dept_id, departmentObj.dept_name,
departmentObj.dept_head_id];

 var workflowMessageToSend = new WorkflowMessage("");

 workflowMessageToSend.setHeader("");

workflowMessageToSend.setRequestAction("Department_create");

 createMessageValues(workflowMessageToSend.getValues(), keys,
types, objValues);

 if (departmentObj.Employee && departmentObj.Employee.length >
0)
// we have list object array
 {
 var department_employees = new MessageValue();
 department_employees.key = "Department_employees";
 department_employees.isNull = false;
 department_employees.type = "LIST";

 var employeekeys = ["Employee_emp_id_attribKey",
"Employee_manager_id_attribKey", "Employee_emp_fname_attribKey",
"Employee_emp_lname_attribKey", "Employee_dept_id_attribKey",
"Employee_street_attribKey", "Employee_city_attribKey",
"Employee_state_attribKey", "Employee_zip_code_attribKey",
"Employee_phone_attribKey", "Employee_status_attribKey",
"Employee_ss_number_attribKey", "Employee_salary_attribKey",
"Employee_start_date_attribKey",
"Employee_termination_date_attribKey",
"Employee_birth_date_attribKey",
"Employee_bene_health_ins_attribKey",
"Employee_bene_life_ins_attribKey",
"Employee_bene_day_care_attribKey", "Employee_sex_attribKey"];

Develop Hybrid Apps Using Third-party Web Frameworks

28 SAP Mobile Platform

 var employeetypes = ["int", "int", "string", "string", "int",
"string", "string", "string", "string", "string", "string",
"string", "decimal", "DateTime", "DateTime", "DateTime", "string",
"string", "string", "string"];

 var employeeValues = [];

 for(var employeei = 0 ; employeei <
departmentObj.Employee.length ; employeei ++)
 {
 var employeelc = new MessageValueCollection();
 employeelc.key = guid();
 employeelc.parent = "Department_employees";
 employeelc.parentValue = department_employees
 employeelc.state =
departmentObj.Employee[employeei].__state;

 var employeeObjValues = [];

employeeObjValues.push(departmentObj.Employee[employeei].emp_id);

employeeObjValues.push(departmentObj.Employee[employeei].manager_i
d);

employeeObjValues.push(departmentObj.Employee[employeei].emp_fname
);

employeeObjValues.push(departmentObj.Employee[employeei].emp_lname
);

 employeeObjValues.push(departmentObj.dept_id);

employeeObjValues.push(departmentObj.Employee[employeei].street);

employeeObjValues.push(departmentObj.Employee[employeei].city);

employeeObjValues.push(departmentObj.Employee[employeei].state);

employeeObjValues.push(departmentObj.Employee[employeei].zip_code)
;

employeeObjValues.push(departmentObj.Employee[employeei].phone);

employeeObjValues.push(departmentObj.Employee[employeei].status);

employeeObjValues.push(departmentObj.Employee[employeei].ss_number

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 29

);

employeeObjValues.push(departmentObj.Employee[employeei].salary);

 employeeObjValues.push(departmentObj.Employee[employeei].start_da
te);

employeeObjValues.push(departmentObj.Employee[employeei].terminati
on_date);

employeeObjValues.push(departmentObj.Employee[employeei].birth_dat
e);

employeeObjValues.push(departmentObj.Employee[employeei].bene_heal
th_ins);

employeeObjValues.push(departmentObj.Employee[employeei].bene_life
_ins);

employeeObjValues.push(departmentObj.Employee[employeei].bene_day_
care);

 employeeObjValues.push(departmentObj.Employee[employeei].sex);

 createMessageValues(employeelc ,employeekeys ,
employeetypes, employeeObjValues);

 //Find this Employee old values if it has.
 for(var oldValueemployeei = 0 ; oldValueemployeei <
departmentObj.OldValue_Employee.length ;
 oldValueemployeei ++)
 {
 if
(departmentObj.OldValue_Employee[oldValueemployeei].emp_id ===
 departmentObj.Employee[employeei].emp_id
)
 {
 var oldValue_employeekeys =
["_old.Department.emp_id", "_old.Department.manager_id",
"_old.Department.emp_fname", "_old.Department.emp_lname",
"_old.Department.dept_id", "_old.Department.street",
"_old.Department.city", "_old.Department.state",
"_old.Department.zip_code", "_old.Department.phone",
"_old.Department.status", "_old.Department.ss_number",
"_old.Department.salary", "_old.Department.start_date",
"_old.Department.termination_date", "_old.Department.birth_date",
"_old.Department.bene_health_ins", "_old.Department.bene_life_ins",
"_old.Department.bene_day_care", "_old.Department.sex"];
 var oldValue_employeetypes = ["INT", "INT",
"STRING", "STRING", "INT", "STRING", "STRING", "STRING", "STRING",
"STRING", "STRING", "STRING", "DECIMAL", "DATE", "DATE", "DATE",
"STRING", "STRING", "STRING", "STRING"];
 var oldValue_employeeValues = [];

Develop Hybrid Apps Using Third-party Web Frameworks

30 SAP Mobile Platform

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].emp_id);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].manager_id);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].emp_fname);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].emp_lname);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].dept_id);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].street);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].city);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].state);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].zip_code);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].phone);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].status);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].ss_number);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].salary);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].start_date);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].termination_date);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].birth_date);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].bene_health_ins);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].bene_life_ins);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 31

lueemployeei].bene_day_care);

oldValue_employeeValues.push(departmentObj.OldValue_Employee[oldVa
lueemployeei].sex);

createMessageValues(employeelc,oldValue_employeekeys ,
oldValue_employeetypes, oldValue_employeeValues);

 break;
 }

 }
// end of old values --->

 employeeValues.push(employeelc);

 }

 department_employees.setValue(employeeValues);

 workFlowValues.add(department_employees.getKey(),
department_employees);

 }
 hwc.doSubmitWorkflow_CONT(credInfo,
workflowMessageToSend.serializeToString(),workflowMessageToSend.get
HasFileMessageValue());
}
/**
 * Returns void. This is an onlineRequest operation, therefore the
message will be sent back to the user by the Hybrid Web Container.
Handle the result in the function
customAfterDataReceived(incomingWorkflowMessage)defined in
Custom.js.
 * @param departmentObj, which is the instance of Department
JavaScript structure. Values should be set for this instance.
 * @param credInfo, which is a string value, and should look like
"supusername=username&suppassword=password".
 * @param errorCallback, name of the function to be called if an
online request fails.
 */

function department_create_onlineRequest(departmentObj, credInfo ,
errorCallback)
{
 var keys = ["Department_create_dept_id_paramKey",
"Department_create_dept_name_paramKey",
"Department_create_dept_head_id_paramKey"];
.......
....
..

Develop Hybrid Apps Using Third-party Web Frameworks

32 SAP Mobile Platform

WorkflowClient.xml
The WorkflowClient.xml file defines all of an application's action mappings that
correspond to selected MBO operations and named queries.

Below is part of an example of the generated WorkflowClient.xml for the create
operation on the Department MBO. Since the department has a one-to-many relationship to
the Employee MBO, all input mappings for Department MBO and Employee MBO are also
defined.
<?xml version="1.0" encoding="utf-8"?>
<Workflow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="WorkflowClient.xsd" >
 <Globals>
 <DefaultScreens activation="" credentials=""/>
 </Globals>
 <Triggers>
 <Actions>
 <Action name="Department_create" sourcescreen=""
targetscreen="" errorscreen="">
 <Methods>
 <Method type="replay" mbo="Department"
package="apiTesttDepartmentOneToMany:1.0"
showCredScreenOnAuthFailure="true" >
 <InputBinding optype="create" opname="create"
generateOld="false">
 <Value sourceType="Key"
workflowKey="Department_create_dept_id_paramKey"
paramName="dept_id" attribName="dept_id" mboType="int"/>
 <Value sourceType="Key"
workflowKey="Department_create_dept_name_paramKey"
paramName="dept_name" attribName="dept_name" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Department_create_dept_head_id_paramKey"
paramName="dept_head_id" attribName="dept_head_id" mboType="int"/
>
 <Value sourceType="Key"
workflowKey="Department_employees" relationShipName="employees"
mboType="list">
 <InputBinding actiontype="create" optype="create"
opname="create" generateOld="true">
 <Value sourceType="Key"
workflowKey="Employee_emp_id_attribKey" contextVariable=""
paramName="emp_id" attribName="emp_id" mboType="int"/>
 <Value sourceType="Key"
workflowKey="Employee_manager_id_attribKey" contextVariable=""
paramName="manager_id" attribName="manager_id" mboType="int"/>
 <Value sourceType="Key"
workflowKey="Employee_emp_fname_attribKey" contextVariable=""
paramName="emp_fname" attribName="emp_fname" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_emp_lname_attribKey" contextVariable=""
paramName="emp_lname" attribName="emp_lname" mboType="string"/>
 <Value sourceType="Key"

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 33

workflowKey="Employee_dept_id_attribKey" contextVariable=""
paramName="dept_id" attribName="dept_id" mboType="int"/>
 <Value sourceType="Key"
workflowKey="Employee_street_attribKey" contextVariable=""
paramName="street" attribName="street" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_city_attribKey" contextVariable=""
paramName="city" attribName="city" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_state_attribKey" contextVariable=""
paramName="state" attribName="state" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_zip_code_attribKey" contextVariable=""
paramName="zip_code" attribName="zip_code" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_phone_attribKey" contextVariable=""
paramName="phone" attribName="phone" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_status_attribKey" contextVariable=""
paramName="status" attribName="status" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_ss_number_attribKey" contextVariable=""
paramName="ss_number" attribName="ss_number" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_salary_attribKey" contextVariable=""
paramName="salary" attribName="salary" mboType="decimal"/>
 <Value sourceType="Key"
workflowKey="Employee_start_date_attribKey" contextVariable=""
paramName="start_date" attribName="start_date" mboType="date"/>
 <Value sourceType="Key"
workflowKey="Employee_birth_date_attribKey" contextVariable=""
paramName="birth_date" attribName="birth_date" mboType="date"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_health_ins_attribKey" contextVariable=""
paramName="bene_health_ins" attribName="bene_health_ins"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_life_ins_attribKey" contextVariable=""
paramName="bene_life_ins" attribName="bene_life_ins"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_day_care_attribKey" contextVariable=""
paramName="bene_day_care" attribName="bene_day_care"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_sex_attribKey" contextVariable=""
paramName="sex" attribName="sex" mboType="string"/>
 </InputBinding>
 <InputBinding optype="none">
 <Value sourceType="Key"
workflowKey="Employee_emp_id_attribKey" attribName="emp_id"
mboType="int"/>
 <Value sourceType="Key"
workflowKey="Employee_manager_id_attribKey" attribName="manager_id"
mboType="int"/>
 <Value sourceType="Key"

Develop Hybrid Apps Using Third-party Web Frameworks

34 SAP Mobile Platform

workflowKey="Employee_emp_fname_attribKey" attribName="emp_fname"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_emp_lname_attribKey" attribName="emp_lname"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_dept_id_attribKey" attribName="dept_id"
mboType="int"/>
 <Value sourceType="Key"
workflowKey="Employee_street_attribKey" attribName="street"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_city_attribKey" attribName="city"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_state_attribKey" attribName="state"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_zip_code_attribKey" attribName="zip_code"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_phone_attribKey" attribName="phone"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_status_attribKey" attribName="status"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_ss_number_attribKey" attribName="ss_number"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_salary_attribKey" attribName="salary"
mboType="decimal"/>
 <Value sourceType="Key"
workflowKey="Employee_start_date_attribKey" attribName="start_date"
mboType="date"/>
 <Value sourceType="Key"
workflowKey="Employee_birth_date_attribKey" attribName="birth_date"
mboType="date"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_health_ins_attribKey"
attribName="bene_health_ins" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_life_ins_attribKey"
attribName="bene_life_ins" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_day_care_attribKey"
attribName="bene_day_care" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_sex_attribKey" attribName="sex"
mboType="string"/>
 </InputBinding>
 <InputBinding actiontype="update" optype="update"
opname="update" generateOld="true">
 <Value sourceType="Key"
workflowKey="Employee_manager_id_attribKey" contextVariable=""
paramName="manager_id" attribName="manager_id" mboType="int"/>

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 35

 <Value sourceType="Key"
workflowKey="Employee_emp_fname_attribKey" contextVariable=""
paramName="emp_fname" attribName="emp_fname" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_emp_lname_attribKey" contextVariable=""
paramName="emp_lname" attribName="emp_lname" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_dept_id_attribKey" contextVariable=""
paramName="dept_id" attribName="dept_id" mboType="int"/>
 <Value sourceType="Key"
workflowKey="Employee_street_attribKey" contextVariable=""
paramName="street" attribName="street" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_city_attribKey" contextVariable=""
paramName="city" attribName="city" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_state_attribKey" contextVariable=""
paramName="state" attribName="state" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_zip_code_attribKey" contextVariable=""
paramName="zip_code" attribName="zip_code" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_phone_attribKey" contextVariable=""
paramName="phone" attribName="phone" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_status_attribKey" contextVariable=""
paramName="status" attribName="status" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_ss_number_attribKey" contextVariable=""
paramName="ss_number" attribName="ss_number" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_salary_attribKey" contextVariable=""
paramName="salary" attribName="salary" mboType="decimal"/>
 <Value sourceType="Key"
workflowKey="Employee_start_date_attribKey" contextVariable=""
paramName="start_date" attribName="start_date" mboType="date"/>
 <Value sourceType="Key"
workflowKey="Employee_birth_date_attribKey" contextVariable=""
paramName="birth_date" attribName="birth_date" mboType="date"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_health_ins_attribKey" contextVariable=""
paramName="bene_health_ins" attribName="bene_health_ins"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_life_ins_attribKey" contextVariable=""
paramName="bene_life_ins" attribName="bene_life_ins"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_bene_day_care_attribKey" contextVariable=""
paramName="bene_day_care" attribName="bene_day_care"
mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_sex_attribKey" contextVariable=""
paramName="sex" attribName="sex" mboType="string"/>
 <Value sourceType="Key"
workflowKey="Employee_emp_id_attribKey" contextVariable=""

Develop Hybrid Apps Using Third-party Web Frameworks

36 SAP Mobile Platform

paramName="emp_id" attribName="emp_id" mboType="int"/>
 </InputBinding>
 <InputBinding actiontype="delete" optype="delete"
opname="delete" generateOld="true">
 </InputBinding>
 </Value>

 </InputBinding>
 <OutputBinding/>
 </Method>
 </Methods>
 </Action>

By default, the MBO has two named queries—FindById and FindAll. The method, input and
output binding keys, and all of the dependency’s key bindings are generated.
<Action name="Department_findByPrimaryKey" sourcescreen=""
targetscreen="" errorscreen="">
 <Methods>
 <Method name="findByPrimaryKey" type="search"
mbo="Department" package="apiTesttDepartmentOneToMany:1.0"
showCredScreenOnAuthFailure="true" >
 <InputBinding optype="none" opname="findByPrimaryKey"
generateOld="true">
 <Value sourceType="Key"
workflowKey="Department_dept_id_attribKey" paramName="dept_id"
attribName="dept_id" mboType="int"/>
 </InputBinding>
 <OutputBinding generateOld="true">
 <Mapping workflowKey="Department_dept_id_attribKey"
workflowType="number" attribName="dept_id" mboType="int"/>
 <Mapping workflowKey="Department_dept_name_attribKey"
workflowType="text" attribName="dept_name" mboType="string"/>
 <Mapping workflowKey="Department_dept_head_id_attribKey"
workflowType="number" attribName="dept_head_id" mboType="int"/>
 <Mapping workflowKey="Department_employees"
workflowType="list" relationShipName="employees" mboType="list">
 <Mapping workflowKey="Employee_emp_id_attribKey"
workflowType="number" relationShipName="employees"
attribName="emp_id" mboType="int"/>
 <Mapping workflowKey="Employee_manager_id_attribKey"
workflowType="number" relationShipName="employees"
attribName="manager_id" mboType="int"/>
 <Mapping workflowKey="Employee_emp_fname_attribKey"
workflowType="text" relationShipName="employees"
attribName="emp_fname" mboType="string"/>
 <Mapping workflowKey="Employee_emp_lname_attribKey"
workflowType="text" relationShipName="employees"
attribName="emp_lname" mboType="string"/>
 <Mapping workflowKey="Employee_dept_id_attribKey"
workflowType="number" relationShipName="employees"
attribName="dept_id" mboType="int"/>
 <Mapping workflowKey="Employee_street_attribKey"
workflowType="text" relationShipName="employees" attribName="street"
mboType="string"/>
 <Mapping workflowKey="Employee_city_attribKey"

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 37

workflowType="text" relationShipName="employees" attribName="city"
mboType="string"/>
 <Mapping workflowKey="Employee_state_attribKey"
workflowType="text" relationShipName="employees" attribName="state"
mboType="string"/>
 <Mapping workflowKey="Employee_zip_code_attribKey"
workflowType="text" relationShipName="employees"
attribName="zip_code" mboType="string"/>
 <Mapping workflowKey="Employee_phone_attribKey"
workflowType="text" relationShipName="employees" attribName="phone"
mboType="string"/>
 <Mapping workflowKey="Employee_status_attribKey"
workflowType="text" relationShipName="employees" attribName="status"
mboType="string"/>
 <Mapping workflowKey="Employee_ss_number_attribKey"
workflowType="text" relationShipName="employees"
attribName="ss_number" mboType="string"/>
 <Mapping workflowKey="Employee_salary_attribKey"
workflowType="number" relationShipName="employees"
attribName="salary" mboType="decimal"/>
 <Mapping workflowKey="Employee_start_date_attribKey"
workflowType="date" relationShipName="employees"
attribName="start_date" mboType="date"/>
 <Mapping workflowKey="Employee_birth_date_attribKey"
workflowType="date" relationShipName="employees"
attribName="birth_date" mboType="date"/>
 <Mapping
workflowKey="Employee_bene_health_ins_attribKey"
workflowType="text" relationShipName="employees"
attribName="bene_health_ins" mboType="string"/>
 <Mapping
workflowKey="Employee_bene_life_ins_attribKey" workflowType="text"
relationShipName="employees" attribName="bene_life_ins"
mboType="string"/>
 <Mapping
workflowKey="Employee_bene_day_care_attribKey" workflowType="text"
relationShipName="employees" attribName="bene_day_care"
mboType="string"/>
 <Mapping workflowKey="Employee_sex_attribKey"
workflowType="text" relationShipName="employees" attribName="sex"
mboType="string"/>
 </Mapping>

 </OutputBinding>
 </Method>
 </Methods>
 </Action>

Note: By default, the <Notifications> section of the generated
WorkflowClient.xml is empty, so you must write the <Notification> section for a
server-initiated Hybrid App.

Develop Hybrid Apps Using Third-party Web Frameworks

38 SAP Mobile Platform

Creating Notifications to Make the Hybrid App Server-Initiated
To make the Hybrid App server-initiated, you must modify the WorkflowClient.xml file
and create a notification.

By default, the <Notifications> section is empty.

1. Create a notification.
Each notification has two child nodes—Transformation and Methods.

2. Create a notification node, for example:
<Notifications>
 <Notification type="onEmailTriggered" targetscreen=" ">
 </Notification>
</Notifications>

You can simply copy the Methods from the appropriate object query (for example,
findByPrimaryKey) that is generated automatically in the
WorkflowClient.xml file, for example:

<Notifications>
 <Notification type="onEmailTriggered" targetscreen=" ">
 <Methods>
 <Method name="findByPrimaryKey" type="search"
mbo="Department" package="apiTesttDepartmentOneToMany:1.0"
showCredScreenOnAuthFailure="true" >
 <InputBinding optype="none" opname="findByPrimaryKey"
generateOld="true">
 <Value sourceType="Key"
workflowKey="Department_dept_id_attribKey" paramName="dept_id"
attribName="dept_id" mboType="int"/>
 </InputBinding>
 <OutputBinding generateOld="true">
 <Mapping workflowKey="Department_dept_id_attribKey"
workflowType="number" attribName="dept_id" mboType="int"/>
 […]
 </OutputBinding>
 </Method>
 </Methods>
 </Notification>
</Notifications>

3. Create a Transformation node.

You must manually write the Transformation section. The contents depend on how
many input parameters the object query has. For each input parameter, you need a
corresponding Rule node as a child of the Transformation node. The
workflowKey of the Rule node corresponds to the InputBinding’s Value for that input
parameter. For example:
<Notifications>
 <Notification type="onEmailTriggered" targetscreen=" ">
 <Transformation>
</Transformation>
 <Methods>

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 39

 <Method name="findByPrimaryKey"
 type="search" mbo="Department"
 package="apiTesttDepartmentOneToMany:1.0"
showCredScreenOnAuthFailure="true" >
 <InputBinding optype="none" opname="findByPrimaryKey"
generateOld="true">
 <Value sourceType="Key"
 workflowKey="Department_dept_id_attribKey"
paramName="dept_id" attribName="dept_id"
 mboType="int"/>
 </InputBinding>
 <OutputBinding
 generateOld="true">
 <Mapping
 workflowKey="Department_dept_id_attribKey"
workflowType="number" attribName="dept_id"
 mboType="int"/>
 […]
 </OutputBinding>
 </Method>
 </Methods>
 </Notification>
</Notifications>

4. For each input parameter in the object query, create a corresponding Rule and make sure
the workflowKey of the Rule matches the Value of the InputBinding. For example:

<Notifications>
 <Notification type="onEmailTriggered" targetscreen=" ">
 <Transformation>
 <Rule type="regex-extract"
 source="subject" workflowKey="dept_id"
workflowType="number" beforeMatch="dept_id =
 " afterMatch="" format=""/>
 </Transformation>
 <Methods>
 <Method name="findByPrimaryKey"
 type="search" mbo="Department"
 package="apiTesttDepartmentOneToMany:1.0"
showCredScreenOnAuthFailure="true" >
 <InputBinding optype="none" opname="findByPrimaryKey"
generateOld="true">
 <Value sourceType="Key"
 workflowKey="dept_id"
 paramName="dept_id" attribName="dept_id" mboType="int"/>
 </InputBinding>
 <OutputBinding
 generateOld="true">
 <Mapping
 workflowKey="Department_dept_id_attribKey"
workflowType="number" attribName="dept_id"
 mboType="int"/>
 […]
 </OutputBinding>
 </Method>
 </Methods>

Develop Hybrid Apps Using Third-party Web Frameworks

40 SAP Mobile Platform

 </Notification>
</Notifications>

5. Save the file.

Processing Responses From the Server
There are a couple of approaches for handling callback functions.

If you want to use the JavaScript APIs generated by the wizard, for online request functions,
you must implement the function:
hwc.processDataMessage = function processDataMessage
(incomingDataMessageValue, noUI, loading, fromActivationFlow,
dataType) {

 // for example,
 // var workflowMessage = new
WorkflowMessage(incomingWorkflowMessage);

 //if (workflowMessage.getRequestAction() ==
Customer.findByPrimaryKeyAction){
 //so this workflow message is returned by calling
customer_findByPrimaryKey function

 //TODO; do whatever you want to do with the return data....

}

You can choose, instead, to take advantage of the other functions in the SMP_HOME
\UnwiredPlatform\MobileSDK<version>\ folder, specifically the files under the
AppFramework folder. In these, the incoming and outgoing messages, how they are bound
to the UI, and how navigation works are handled by the functions defined in the API.js and
Utils.js files. You can add your custom code into your own JavaScript file. You must still
create the UI and do so in a way that is compatible with the AppFramework.

Error Handling
Usually, errors come from the Hybrid Web Container or from the back-end server side.

For online requests, when the error comes from the Hybrid Web Container, handle it in the
errorCallback function, for example:

department_create_onlineRequest(dep1,
 "",
 function(errorMessage) {
 //TODO: error occurred...
 }
);

An error message passed as an incoming Hybrid App message in the user-defined function of
processDataMessage is another type of error that comes from the back-end server. The
incomingDataMessageValue should be similar to this:

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 41

<M><H><S>...<S/> ..<V k=”ErrorLogMessage” t=”T”>ERROR:......</V><V
k=ErrorLogMessageAsList></V>..</M>

hwc.processDataMessage = function processDataMessage
(incomingDataMessageValue, noUI, loading, fromActivationFlow,
dataType) {

 //// var workflowMessage = new
WorkflowMessage(incomingWorkflowMessage);

 //if (workflowMessage.getRequestAction() ==
Customer.findByPrimaryKeyAction){
 // var detailErrorMsg =
workflowMessage.getValues().getData(“ErrorLogMessage”).getValue();
 // }

}

URL Parameters
When writing your own HTML and JavaScript, when the document is loaded, these URL
parameters are present.

You can find an example of how to use these URL parameters in the onHybridAppLoad()
function in the Utils.js file.

URL parameter Description

loglevel Current device log level.

screenToShow Name of the screen to show.

supusername User name of the current Hybrid App (if availa-
ble).

lang Current language of the device.

isalreadyprocessed Indicates whether or not the Hybrid App message
has been processed. The JavaScript can, for ex-
ample, choose to show all controls as read-only if
it has already been processed but viewed again.

loadtransformdata Indicates that the JavaScript should request the
transform data (contents of the e-mail message)
from the Hybrid Web Container using the
loadtransform data query type. For infor-

mation about the query types, see the topic Call-
ing the Hybrid Web Container.

Develop Hybrid Apps Using Third-party Web Frameworks

42 SAP Mobile Platform

URL parameter Description

ignoretransformscreen Indicates that the JavaScript should ignore the
RequestScreen tag in the transform data

(contents of the message). This is set to true when
the screen to show is either the Activation or
Credentials screen.

Develop OData-based Hybrid Apps
The Hybrid App SDK includes the open source Datajs JavaScript library, which you can
include as part of your application to access OData stores.

This library, along with the rest of the Hybrid App JavaScript API, is in <SMP_HOME>
\MobileSDK<version>\HybridApp\API\Container\Datajs-1.x.x.js.
As of this writing, the latest version of Datajs is 1.0.3.

The Datajs library is used to fetch the data used in your Hybrid App. This data can be
displayed in your Hybrid App using a variety of UI frameworks such as jQuery Mobile,
Sencha, or your favorite Web-based UI framework.

Provided the backend OData service has support, you can use the Datajs library to read,
modify, and delete data using standard HTTP methods (POST, PUT, DELETE, and so on).

The basic steps for developing an OData-based Hybrid App are:

1. Add the <SMP_HOME>\UnwiredPlatform \MobileSDK<version>
\HybridApp\API\Containers\datajs-1.0.3.js to your Hybrid App.

2. Create a Hybrid App user interface with your preferred UI framework.
3. Use the Datajs library for create, read, update, and delete operations to the OData or HTTP

end point and bind it to the UI.
4. Use the packaging tool to generate the manifest.xml file and Hybrid App ZIP

package.
5. Use the Deploy Wizard in SAP Control Center to deploy the Hybrid App ZIP file.

Connect to an OData Source
The Datajs JavaScript library supports reading and writing to an OData service using both
the JSON and ATOM-based formats.

The endpoint is an HTTP based URI exposed by the server.

You can use the OData.read API with a URI to read data from a server. To add, update, or
delete data, the ODATA.request API can be used along with a POST, PUT, or DELETE
method.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 43

You can see examples at http://datajs.codeplex.com/wikipage?title=OData%20Code
%20Snippets&referringTitle=Using%20OData

In your Hybrid App, you can connect to the Proxy endpoint exposed by SAP Mobile Platform
using the Datajs library. This gives administrators and developers control over the endpoint as
only white listed endpoints are accessible from the Hybrid App and also restricts who is able to
access the endpoint based on built in SAP Mobile Platform security mechanisms.

When using Datajs to access an OData service from the Hybrid Web Container, you must
employ POST tunneling to use the PUT, MERGE, and DELETE methods. There is an
explanation of how to use POST tunneling with Datajs here: http://datajs.codeplex.com/
wikipage?title=Frequently%20Asked%20Questions#post-tunneling.

Creating a Proxy Connection (Whitelisting)
Create a new connection in SAP Control Center to allow a proxy connection (authenticated or
anonymous) through SAP Mobile Platform.

Note: When you set the proxy property with the endpoint address in the application template
(either as part of the application creation or editing the application template created for that
application), a proxy connection is generated automatically.

1. In the left navigation pane, expand the Domains folder, and select the default domain.

2. Select Connections.

3. In the right administration pane, select the Connections tab, and click New.

4. Enter a unique Connection pool name.

5. Select the Proxy Connection pool type.

6. Select the appropriate template for the data source target from the Use template menu.

7. Set the Address property by clicking the corresponding cell and entering the address of the
proxy endpoint. For example, http://odata.example.com/v2/Catalog/

8. Configure the following optional properties:

Note: You must manually enter the EnableHttpProxy and EnableUrlRewrite
properties; these properties are not pre-populated in the menu. To access an external
service, you must configure the http.proxyHost and http.proxyPort properties
during server configuration in SAP Control Center > Servers > Server Configuration >
General > User Options. If you set or change the setting for http.proxyHostand
http.proxyPort, you must restart the services using the stop/start service scripts. For
more information, see Administer > SAP Mobile Server > Configuring SAP Mobile
Server to Securely Communicate With an HTTP Proxy in SAP Control Center for SAP
Mobile Platform .

• Allow Anonymous Access – Enables anonymous authentication to SAP Mobile
Platform.

Develop Hybrid Apps Using Third-party Web Frameworks

44 SAP Mobile Platform

http://datajs.codeplex.com/wikipage?title=OData%20Code%20Snippets&referringTitle=Using%20OData
http://datajs.codeplex.com/wikipage?title=OData%20Code%20Snippets&referringTitle=Using%20OData
http://datajs.codeplex.com/wikipage?title=Frequently%20Asked%20Questions#post-tunneling
http://datajs.codeplex.com/wikipage?title=Frequently%20Asked%20Questions#post-tunneling

• Certificate Alias – Client SSL certificate stored in the SAP Mobile Platform keystore
to be forwarded to the EIS.

• Username – Username passed to the EIS.
• Password – Password passed to the EIS.
• EnableHttpProxy – Enables Internet proxy support in the proxy connector.

EnableHttpProxy defaults to false. Set explicitly to true to enable.

• EnableUrlRewrite – Enables the proxy component to rewrite URLs (or URIs)
embedded in a response, with SUP URLs that causes the client requests to be directed
back to the SAP Mobile Server (proxy component), rather than to the back end server.
EnableUrlRewrite defaults to true. Set explicitly to false to disable.

• ProxyHost – Host name of the proxy server.
• ProxyPort – Port number.

Note: On a proxy connection, if the header for X-SUP-BACKEND-URL is not NULL, or
EnableURLRewrite is false then no URL rewrite occurs for either the request or
response content.

Note: To access the external services, you must configure EnableHttpProxy = True,
ProxyHost = proxy, ProxyPort = 8080 in the connection pool.

9. Click OK to register the connection pool.

Datajs OData Client Authentication in Hybrid Apps
Several authentication schemes are available when accessing a protected OData service
through an SAP Mobile Platform proxy, from a Hybrid App, in JavaScript using Datajs.

• Basic authentication – Provide a username and password to login. This method is
available when connecting through HTTP and one-way HTTPS.

• SSO token – Provide an SSO token to login. This method is available when connecting
through HTTP and HTTPS and a token validation service is available and configured.

• X.509 Mutual authentication through intermediary – Provide a forwarded client
certificate to login using the SSL_CLIENT_CERT header name containing forwarded a
PEM-encoded client certificate. This method is available only through an appropriately
configured HTTPS listener. The certificate forwarder must have the "SUP Impersonator"
role to be authorized for this type of login. The certificate of the actual "SUP
Impersonator" user cannot be used as a regular user certificate.

In each case, if common additional JavaScript is required for every OData.read or
OData.request call, this is best implemented in a Datajs custom HTTP client. This is a wrapper
and extension of the OData.defaultHttpClient using the JavaScript proxy pattern. See http://
datajs.codeplex.com/wikipage?title=Custom%20OData%20httpClient

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 45

http://datajs.codeplex.com/wikipage?title=Custom%20OData%20httpClient
http://datajs.codeplex.com/wikipage?title=Custom%20OData%20httpClient

Basic Authentication
The Datajs JavaScript library internally uses the XmlHttpRequest (XHR) object to handle
the underlying HTTP or HTTPS requests/responses on the client.

The XHR API’s open method optionally accepts user name and password credentials passed
through parameters. Likewise, the Datajs’ request object can take user and password
members that map to those parameters. If credentials are not passed and basic authentication is
required, the client is challenged with HTTP status 401. If credentials are passed to the XHR
object, internally it does not automatically send them on the first request. It submits the
credentials only if challenged. If this standard procedure is all that is required from the calling
OData script, normally additional script can be avoided.

The below sample script shows possible alternative approaches for handling a 401 status
manually, or, in cases where the authentication needs to be centralized.

/**
* Sybase Hybrid App version 2.2
*
* Datajs.SSO.js
* This file will not be regenerated, and it is expected that the user
may want to
* include customized code herein.
*
* The template used to create this file was compiled on Mon Jul 9
19:54:04 CST 2012
*
* Copyright (c) 2012 Sybase Inc. All rights reserved.
*/

// Capture datajs' current http client object.
var oldClient = OData.defaultHttpClient;

var sso_username = "";
var sso_password = "";
var sso_session = "";
var sso_token = "";

// Creates new client object that will attempt to handle SSO
authentication, specifically SiteMinder login,
// in order to gain access to a protected URL.
var ssoClient = {
 request: function (request, success, error) {

 // For basic authentication, XMLHttpRequest.open method can
take varUser and varPassword parameters.
 // If the varUser parameter is null ("") or missing and the
site requires authentication, the
 // component displays a logon window. Although this method
accepts credentials passed via parameter,
 // those credentials are not automatically sent to the server
on the first request. The varUser and
 // varP assword parameters are not transmitted unless the

Develop Hybrid Apps Using Third-party Web Frameworks

46 SAP Mobile Platform

server challenges the client for credentials
 // with a 401 - Access Denied response. But SiteMinder may
require additional steps, so save for
 // later...
 if (request.user != undefined && request.password !=
undefined) {
 sso_username = request.user;
 sso_password = request.password;
 }

 var onSuccess = function (data, response) {
 // Browser control will automatically cache cookies, with
possible token, for next time, so
 // parsing Set-Cookie in HTTP response headers unnecessary
here.
 //var setCookieHeader = response.headers["Set-Cookie"];
 //var setCookies = [];
 //parseSetCookies(setCookieHeader, setCookies);

 //for(var i=0; i < setCookies.length; i++)
 //{
 // if (setCookies[i].substr(0, 9) === "SMSESSION")
 // sso_session = setCookies[i];
 // else if (setCookies[i].substr(0, 9) === "MYSAPSSO2")
 // sso_token = setCookies[i];
 //}

 // Call original success
 alert("Calling original success");
 success(data, response);
 }

 var onError = function (sso_error) {
 if (sso_error.response.statusCode == 0) {
 // Attempt to parse error from response.body, e.g. sent
from SAP NetWeaver as HTML page.
 if (sso_error.response.body.indexOf("401") != -1 &&
 (sso_error.response.body.indexOf("Unauthorized") !=
-1 ||
 sso_error.response.body.indexOf("UNAUTHORIZED") !=
-1)) {
 alert("SSO challenge detected");
 sso_error.response.statusCode = 401;
 }
 }

 // Ensure valid response. Expecting either HTTP status 401
for SMCHALLENGE or 302 for redirection.
 if (sso_error.response.statusCode != 401 &&
 sso_error.response.statusCode != 302) {
 alertText(sso_error.response.statusText);
 error(sso_error);
 return;
 }

 // 401 may include SMCHALLENGE=YES in Set-Cookie, so need

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 47

to return along with Authorization
 // credentials to acquire SMSESSION cookie.
 if (sso_error.response.statusCode === 401) {
 // Browser control will automatically cache cookies,
with possible token, for next time,
 // so parsing Set-Cookie in HTTP response headers
unnecessary here.
 //var setCookieHeader =
sso_error.response.headers["Set-Cookie"];
 //var setCookies = [];
 //parseSetCookies(setCookieHeader, setCookies);

 // Append existing headers.
 var newHeaders = [];
 if (request.headers) {
 for (name in request.headers) {
 newHeaders[name] = request.headers[name];
 }
 }
 // Browser control should include SMCHALLENGE cookie.
 //newHeaders["Cookie"] = "SMCHALLENGE=YES";
 var enc_username = window.btoa(sso_username);
 var enc_password = window.btoa(sso_password);
 var basic_auth = "Basic " + enc_username + ":" +
enc_password;
 newHeaders["Authorization"] = basic_auth;

 // Redo the OData request for the protected resource.
 var newRequest = {
 headers: newHeaders,
 requestUri: request.requestUri,
 method: request.method,
 user: sso_username,
 password: sso_password
 };

 oldClient.request(newRequest, onSuccess, error);
 }

 // 302 indicates that the requested information is located
at the URI specified in the Location
 // header. The default action when this status is received
is to follow the Location header
 // associated with the response. When the original request
method was POST, the redirected request
 // will use the GET method.
 if (sso_error.response.statusCode === 302) {
 // Get the redirection location.
 var siteminder_url =
sso_error.response.headers["Location"];

 // Open a connection to the redirect and load the login
form.
 // That screen can be used to capture the required form
fields.

Develop Hybrid Apps Using Third-party Web Frameworks

48 SAP Mobile Platform

 var httpRedirect = getXMLHTTPRequest();

 httpRedirect.onload = function () {

 if (this.status < 200 || this.status > 299) {
 alert("Error: " + this.status);
 alertText(this.statusText);
 error({ message: this.statusText });
 return;
 }

 var sm_form_response = this.responseXML;
 var siteminder_tags = {};

 getSiteMinderTags(sm_form_response,
siteminder_tags);

 // Create the form data to post back to SiteMinder.
Two ContentTypes are valid for sending
 // POST data. Default is application/x-www-form-
urlencoded and form data is formatted
 // similar to typical querystring. Forms submitted
with this content type are encoded as
 // follows: Control names and values are escaped.
Space characters are replaced by `+',
 // reserved characters are escaped as described in
[RFC1738], section 2.2:
 // non-alphanumeric characters are replaced by `
%HH', representing ASCII code of character.
 // Line breaks are represented as CRLF pairs (i.e.,
`%0D%0A'). Control names/values are
 // listed in order they appear in document. Name is
separated from value by '=' and name/
 // value pairs are separated from each other by ̀ &'.
Alternative is multipart/form-data.
 //var formData = new FormData();
 var postData = "";

 for (var inputName in siteminder_tags) {
 if (inputName.substring(0, 2).toLowerCase() ===
"sm") {
 postData += inputName + "=" +
encodeURIComponent(siteminder_tags[inputName]) + "&";
 // formData.append(inputName,
siteminder_tags[inputName]);
 }
 }
 postData += "postpreservationdata=&";
 postData += "USER=" +
encodeURIComponent(sso_username) + "&";
 postData += "PASSWORD=" +
encodeURIComponent(sso_password);

 // Submit data back to SiteMinder.
 var httpLogin = getXMLHTTPRequest();

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 49

 httpLogin.onload = function () {

 if (this.status < 200 || this.status > 299) {
 alert("Error: " + this.status);
 alertText(this.statusText);
 error({ message: this.statusText });
 return;
 }

 // Browser control should cache required cookies
so no need to parse HTTP response
 // headers.
 //var sm_cookie_response = this.response;
 //var setCookieHeader =
this.getResponseHeader("Set-Cookie");
 //var setCookies = [];
 //parseSetCookies(setCookieHeader, setCookies);

 // Locate the URI to access next.
 var newUrl = this.getResponseHeader("Location");

 // Append existing headers.
 var newHeaders = [];
 if (request.headers) {
 for (name in request.headers) {
 newHeaders[name] = request.headers[name];
 }
 }
 // Browser control should include SMSESSION
cookie.
 //newHeaders["Cookie"] = setCookieHeader;

 // Redo the OData request for the protected
resource.
 var newRequest = {
 headers: newHeaders,
 requestUri: newUrl,
 method: request.method,
 user: sso_username,
 password: sso_password
 };

 oldClient.request(newRequest, onSuccess, error);
 }

 httpLogin.open("POST", siteminder_url, true);
 httpLogin.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded");
 httpLogin.withCredentials = "true";
 httpLogin.send(postData);
 //httpLogin.send(formData);
 }

 httpRedirect.open("GET", siteminder_url, true);
 httpRedirect.responseType = "document";
 httpRedirect.send();

Develop Hybrid Apps Using Third-party Web Frameworks

50 SAP Mobile Platform

 }
 }

 // Call back into the original http client.
 var result = oldClient.request(request, success, onError);
 return result;
 }
};

// Parses Set-Cookie from header into array of setCookies.
function parseSetCookies(setCookieHeader, setCookies) {

 if (setCookieHeader == undefined)
 return;

 var cookieHeaders = setCookieHeader.split(", ");

 // verify comma-delimited parse by ensuring '=' within each token
 var len = cookieHeaders.length;
 if (len > 0) {
 setCookies[0] = cookieHeaders[0];
 }
 var i, j;
 for (i = 1, j = 0; i < len; i++) {
 if (cookieHeaders[i]) {
 var eqdex = cookieHeaders[i].indexOf('=');
 if (eqdex != -1) {
 var semidex = cookieHeaders[i].indexOf(';');
 if (semidex == -1 || semidex > eqdex) {
 setCookies[++j] = cookieHeaders[i];
 }
 else {
 setCookies[j] += ", " + cookieHeaders[i];
 }
 }
 else {
 setCookies[j] += ", " + cookieHeaders[i];
 }
 }
 }
}

// Parses response HTML document and returns array of INPUT tags.
function getSiteMinderTags(response, tags) {

 var inputs = new Array();
 inputs = response.getElementsByTagName("input");

 // get the 'input' tags
 for (var i = 0; i < inputs.length; i++) {
 var element = inputs.item(i).outerHTML;
 var value = "";

 // filter out inputs with type=button
 var stridex = element.indexOf("type=");

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 51

 if (stridex != -1) {
 var typ = element.substring(stridex + 5);
 stridex = typ.indexOf(' ');
 typ = typ.substring(0, stridex);

 if (typ.toLowerCase() === "button") {
 continue;
 }
 }

 stridex = element.indexOf("value=")
 if (stridex != -1) {
 value = element.substring(stridex + 6);
 stridex = value.indexOf(' ');
 value = value.substring(0, stridex);
 }

 tags[inputs.item(i).name] = value;
 }
}

function alertText(error) {

 var txt = JSON.stringify(error);
 alert("Error:\n" + txt);

 var length = txt.length;
 var sectionLength = 300;
 var index = Math.floor(length / sectionLength);
 for (i = 0; i <= index; i++) {
 var start = i * sectionLength;
 var end = (i + 1) * sectionLength;
 var segLength = sectionLength;
 if (end > length) segLength = length - start;
 alert(txt.substr(start, segLength));
 }
}

// Can either pass ssoClient explicitly, or set it globally for the
page as the default:
OData.defaultHttpClient = ssoClient;

Authentication Against an OData Source
Hybrid Apps pass user name and password information using HTTP basic authentication, by
setting the Authorization HTTP header.

It is recommended to use this in combination with SSL/TLS, otherwise user names and
passwords are passed in cleartext. For example:
var strUsername = "odata";
var strPassword = "password";
var oHeaders = {};
oHeaders['Authorization'] = "Basic " + btoa(strUsername + ":" +
strPassword);

Develop Hybrid Apps Using Third-party Web Frameworks

52 SAP Mobile Platform

var request = {
 headers : oHeaders, // object that contains HTTP headers as
name value pairs
 requestUri : sUrl, // OData endpoint URI
 method : "GET"

};

OData.read(request, function (data, response) {

 // do something with the response
 },
 function(err) {
 // handle error reading the data
 });

SSO Token, Including SAP SSO2 and SiteMinder/Network Edge
As in basic authentication, the Datajs JavaScript library internally uses the
XmlHttpRequest (XHR) object to handle the underlying HTTP or HTTPS requests/
responses on the client.

From the XHR object’s API, Datajs uses setRequestHeader() and
getAllResponseHeaders() to send and read the HTTP headers in the request and
response. For Single Sign-On and Network Edge authentication, issuers of SSO tokens,
including SAP SSO2 logon tickets (MYSAPSSO2), as well as SiteMinder tokens
(SMCHALLENGE, SMSESSION, and so on) normally use the “Set-Cookie” field in the
HTTP header to send the token to the client, and expect the “Cookie” in the header to receive
the token from the client.

However, these specific headers are omitted from JavaScript access. See the W3C spec (http://
www.w3.org/TR/XMLHttpRequest/). Instead, these headers are designed to be controlled by
the user agent, in this case the browser control hosted by the Hybrid Web Container, to protect
the client from rogue sites. According to the W3C spec it is the job of the user agent to support
HTTP state management: to persist, discard, and send cookies, as received in the Set-Cookie
response header, and sent in the Cookie header, as applicable. One possible exception allows
cookie handling in JavaScript to set up a CORS request on the client and server, using the
XHR’s “withCredentials” property.

Considering the reliance on the Hybrid Web Container-hosted browser control to handle the
required SSO tokens, it is important to note the same origin policy surrounding automatic
cookie management. That means from the client’s perspective, the domain from where the
cookie-based token originates must be the same as where it needs to be redirected to access the
protected OData endpoint, such as the SAP NetWeaver Gateway, while authenticated. For the
domain to be the same to the client, the URL pattern specifying transport protocol,
servername, domain, and port number must match between token issuer and endpoint. This
should be possible using proxy mappings in the Relay Server or reverse proxy.

Regarding the SiteMinder component of Network Edge, its Policy Server supports a variety of
authentication schemes, including Basic Authentication and HTML Forms-based

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 53

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/

Authentication. The sample script below demonstrates an approach to handling a Basic 401
challenge from SiteMinder, as well as possible Forms authentication, involving HTTP status
302 indicating redirection. The script involving cookie handling is commented out and just
informational, since this is managed by the user agent as described previously.

/**
* SAP Hybrid App version 2.2
*
* Datajs.SSO.js
* This file will not be regenerated, and it is expected that the user
may want to
* include customized code herein.
*
* The template used to create this file was compiled on Mon Jul 9
19:54:04 CST 2012
*
* Copyright (c) 2012 SAP Inc. All rights reserved.
*/

// Capture datajs' current http client object.
var oldClient = OData.defaultHttpClient;

var sso_username = "";
var sso_password = "";
var sso_session = "";
var sso_token = "";

// Creates new client object that will attempt to handle SSO
authentication, specifically SiteMinder login,
// in order to gain access to a protected URL.
var ssoClient = {
 request: function (request, success, error) {

 // For basic authentication, XMLHttpRequest.open method can
take varUser and varPassword parameters.
 // If the varUser parameter is null ("") or missing and the
site requires authentication, the
 // component displays a logon window. Although this method
accepts credentials passed via parameter,
 // those credentials are not automatically sent to the server
on the first request. The varUser and
 // varP assword parameters are not transmitted unless the
server challenges the client for credentials
 // with a 401 - Access Denied response. But SiteMinder may
require additional steps, so save for
 // later...
 if (request.user != undefined && request.password !=
undefined) {
 sso_username = request.user;
 sso_password = request.password;
 }

 var onSuccess = function (data, response) {
 // Browser control will automatically cache cookies, with
possible token, for next time, so

Develop Hybrid Apps Using Third-party Web Frameworks

54 SAP Mobile Platform

 // parsing Set-Cookie in HTTP response headers unnecessary
here.
 //var setCookieHeader = response.headers["Set-Cookie"];
 //var setCookies = [];
 //parseSetCookies(setCookieHeader, setCookies);

 //for(var i=0; i < setCookies.length; i++)
 //{
 // if (setCookies[i].substr(0, 9) === "SMSESSION")
 // sso_session = setCookies[i];
 // else if (setCookies[i].substr(0, 9) === "MYSAPSSO2")
 // sso_token = setCookies[i];
 //}

 // Call original success
 alert("Calling original success");
 success(data, response);
 }

 var onError = function (sso_error) {
 if (sso_error.response.statusCode == 0) {
 // Attempt to parse error from response.body, e.g. sent
from SAP NetWeaver as HTML page.
 if (sso_error.response.body.indexOf("401") != -1 &&
 (sso_error.response.body.indexOf("Unauthorized") !=
-1 ||
 sso_error.response.body.indexOf("UNAUTHORIZED") !=
-1)) {
 alert("SSO challenge detected");
 sso_error.response.statusCode = 401;
 }
 }

 // Ensure valid response. Expecting either HTTP status 401
for SMCHALLENGE or 302 for redirection.
 if (sso_error.response.statusCode != 401 &&
 sso_error.response.statusCode != 302) {
 alertText(sso_error.response.statusText);
 error(sso_error);
 return;
 }

 // 401 may include SMCHALLENGE=YES in Set-Cookie, so need
to return along with Authorization
 // credentials to acquire SMSESSION cookie.
 if (sso_error.response.statusCode === 401) {
 // Browser control will automatically cache cookies,
with possible token, for next time,
 // so parsing Set-Cookie in HTTP response headers
unnecessary here.
 //var setCookieHeader =
sso_error.response.headers["Set-Cookie"];
 //var setCookies = [];
 //parseSetCookies(setCookieHeader, setCookies);

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 55

 // Append existing headers.
 var newHeaders = [];
 if (request.headers) {
 for (name in request.headers) {
 newHeaders[name] = request.headers[name];
 }
 }
 // Browser control should include SMCHALLENGE cookie.
 //newHeaders["Cookie"] = "SMCHALLENGE=YES";
 var enc_username = window.btoa(sso_username);
 var enc_password = window.btoa(sso_password);
 var basic_auth = "Basic " + enc_username + ":" +
enc_password;
 newHeaders["Authorization"] = basic_auth;

 // Redo the OData request for the protected resource.
 var newRequest = {
 headers: newHeaders,
 requestUri: request.requestUri,
 method: request.method,
 user: sso_username,
 password: sso_password
 };

 oldClient.request(newRequest, onSuccess, error);
 }

 // 302 indicates that the requested information is located
at the URI specified in the Location
 // header. The default action when this status is received
is to follow the Location header
 // associated with the response. When the original request
method was POST, the redirected request
 // will use the GET method.
 if (sso_error.response.statusCode === 302) {
 // Get the redirection location.
 var siteminder_url =
sso_error.response.headers["Location"];

 // Open a connection to the redirect and load the login
form.
 // That screen can be used to capture the required form
fields.
 var httpRedirect = getXMLHTTPRequest();

 httpRedirect.onload = function () {

 if (this.status < 200 || this.status > 299) {
 alert("Error: " + this.status);
 alertText(this.statusText);
 error({ message: this.statusText });
 return;
 }

 var sm_form_response = this.responseXML;
 var siteminder_tags = {};

Develop Hybrid Apps Using Third-party Web Frameworks

56 SAP Mobile Platform

 getSiteMinderTags(sm_form_response,
siteminder_tags);

 // Create the form data to post back to SiteMinder.
Two ContentTypes are valid for sending
 // POST data. Default is application/x-www-form-
urlencoded and form data is formatted
 // similar to typical querystring. Forms submitted
with this content type are encoded as
 // follows: Control names and values are escaped.
Space characters are replaced by `+',
 // reserved characters are escaped as described in
[RFC1738], section 2.2:
 // non-alphanumeric characters are replaced by `
%HH', representing ASCII code of character.
 // Line breaks are represented as CRLF pairs (i.e.,
`%0D%0A'). Control names/values are
 // listed in order they appear in document. Name is
separated from value by '=' and name/
 // value pairs are separated from each other by ̀ &'.
Alternative is multipart/form-data.
 //var formData = new FormData();
 var postData = "";

 for (var inputName in siteminder_tags) {
 if (inputName.substring(0, 2).toLowerCase() ===
"sm") {
 postData += inputName + "=" +
encodeURIComponent(siteminder_tags[inputName]) + "&";
 // formData.append(inputName,
siteminder_tags[inputName]);
 }
 }
 postData += "postpreservationdata=&";
 postData += "USER=" +
encodeURIComponent(sso_username) + "&";
 postData += "PASSWORD=" +
encodeURIComponent(sso_password);

 // Submit data back to SiteMinder.
 var httpLogin = getXMLHTTPRequest();

 httpLogin.onload = function () {

 if (this.status < 200 || this.status > 299) {
 alert("Error: " + this.status);
 alertText(this.statusText);
 error({ message: this.statusText });
 return;
 }

 // Browser control should cache required cookies
so no need to parse HTTP response
 // headers.
 //var sm_cookie_response = this.response;

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 57

 //var setCookieHeader =
this.getResponseHeader("Set-Cookie");
 //var setCookies = [];
 //parseSetCookies(setCookieHeader, setCookies);

 // Locate the URI to access next.
 var newUrl = this.getResponseHeader("Location");

 // Append existing headers.
 var newHeaders = [];
 if (request.headers) {
 for (name in request.headers) {
 newHeaders[name] = request.headers[name];
 }
 }
 // Browser control should include SMSESSION
cookie.
 //newHeaders["Cookie"] = setCookieHeader;

 // Redo the OData request for the protected
resource.
 var newRequest = {
 headers: newHeaders,
 requestUri: newUrl,
 method: request.method,
 user: sso_username,
 password: sso_password
 };

 oldClient.request(newRequest, onSuccess, error);
 }

 httpLogin.open("POST", siteminder_url, true);
 httpLogin.setRequestHeader("Content-Type",
"application/x-www-form-urlencoded");
 httpLogin.withCredentials = "true";
 httpLogin.send(postData);
 //httpLogin.send(formData);
 }

 httpRedirect.open("GET", siteminder_url, true);
 httpRedirect.responseType = "document";
 httpRedirect.send();

 }
 }

 // Call back into the original http client.
 var result = oldClient.request(request, success, onError);
 return result;
 }
};

// Parses Set-Cookie from header into array of setCookies.
function parseSetCookies(setCookieHeader, setCookies) {

Develop Hybrid Apps Using Third-party Web Frameworks

58 SAP Mobile Platform

 if (setCookieHeader == undefined)
 return;

 var cookieHeaders = setCookieHeader.split(", ");

 // verify comma-delimited parse by ensuring '=' within each token
 var len = cookieHeaders.length;
 if (len > 0) {
 setCookies[0] = cookieHeaders[0];
 }
 var i, j;
 for (i = 1, j = 0; i < len; i++) {
 if (cookieHeaders[i]) {
 var eqdex = cookieHeaders[i].indexOf('=');
 if (eqdex != -1) {
 var semidex = cookieHeaders[i].indexOf(';');
 if (semidex == -1 || semidex > eqdex) {
 setCookies[++j] = cookieHeaders[i];
 }
 else {
 setCookies[j] += ", " + cookieHeaders[i];
 }
 }
 else {
 setCookies[j] += ", " + cookieHeaders[i];
 }
 }
 }
}

// Parses response HTML document and returns array of INPUT tags.
function getSiteMinderTags(response, tags) {

 var inputs = new Array();
 inputs = response.getElementsByTagName("input");

 // get the 'input' tags
 for (var i = 0; i < inputs.length; i++) {
 var element = inputs.item(i).outerHTML;
 var value = "";

 // filter out inputs with type=button
 var stridex = element.indexOf("type=");
 if (stridex != -1) {
 var typ = element.substring(stridex + 5);
 stridex = typ.indexOf(' ');
 typ = typ.substring(0, stridex);

 if (typ.toLowerCase() === "button") {
 continue;
 }
 }

 stridex = element.indexOf("value=")
 if (stridex != -1) {
 value = element.substring(stridex + 6);

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 59

 stridex = value.indexOf(' ');
 value = value.substring(0, stridex);
 }

 tags[inputs.item(i).name] = value;
 }
}

function alertText(error) {

 var txt = JSON.stringify(error);
 alert("Error:\n" + txt);

 var length = txt.length;
 var sectionLength = 300;
 var index = Math.floor(length / sectionLength);
 for (i = 0; i <= index; i++) {
 var start = i * sectionLength;
 var end = (i + 1) * sectionLength;
 var segLength = sectionLength;
 if (end > length) segLength = length - start;
 alert(txt.substr(start, segLength));
 }
}

// Can either pass ssoClient explicitly, or set it globally for the
page as the default:
OData.defaultHttpClient = ssoClient;

Server Certificate Validation Over HTTPS
In this pattern, which uses the CertificateAuthenticationLoginModule, the
server sends the client a certificate with which to authenticate itself.

The client uses the certificate to authenticate the identity the certificate claims to represent.
An SSL-enabled client goes through these steps to authenticate a server's identity:

1. Is today's date within the valid period?
2. Is the issuing certificate authority (CA) a trusted one? Each SSL-enabled client maintains

a list of trusted CA certificates. This list determines which server certificates the client
accepts. Validation continues if the distinguished name (DN) of the issuing CA matches
the DN of a certificate authority on the client's list of trusted certificate authorities.

3. Does the issuing certificate authority's public key validate the issuer's digital signature?
4. Does the domain name in the server's certificate match the domain name of the server

itself?
5. The server is authenticated. The client proceeds with the SSL handshake. If the client does

not get to step 5 for any reason, the server that is identified by the certificate cannot be
authenticated, and the user is warned of the problem and informed that an encrypted and
authenticated connection cannot be established.

Develop Hybrid Apps Using Third-party Web Frameworks

60 SAP Mobile Platform

Similar to cookie-based tokens, certificate authentication is also outside the scope of pure
JavaScript which has no access to certificates, and similarly falls under the control of the user
agent, in this case again the browser control, and its interface directly with the user.

X.509 SSO Authentication
For certificate based SSO authentication, due to the restriction from handling certificates in
pure JavaScript, a native counterpart on the device must be interfaced, such as the Hybrid Web
Container, using its existing Certificate.js.

In this sample script, a Datajs custom HTTP client is used to encapsulate the client certificate
component of certificate based SSO. You can provision signed certificate from a local file, a
server, or from Afaria, based on the device platform, using the existing Certificate API. You
can choose to set the results of the API call as the password.

/**
 * SAP Hybrid App version 2.2
 *
 * Datajs.Certificate.js
 * This file will not be regenerated, and it is expected that the user
may want to
 * include customized code herein.
 *
 * The template used to create this file was compiled on Mon Aug 23
16:43:02 CST 2012
 *
 * Copyright (c) 2012 SAP Inc. All rights reserved.
 */

// Capture datajs' current http client object.
var oldClient = OData.defaultHttpClient;

var cert_username = "";
var cert_password = "";

// Creates new client object that will attempt to handle Certificate
authentication.
var certClient = {
 request: function (request, success, error) {

 if (request.requestUri.substr(0, 8) === "https://")
 {
 if (request.password != undefined)
 {
 // The following script gets the signed certificate data
for the first
 // p12 file found on the sdcard
 var certStore = CertificateStore.getDefault();
 var certPaths =
certStore.listAvailableCertificatesFromFileSystem("/sdcard/",
"p12");
 var cert =
certStore.getSignedCertificateFromFile(certPaths[0],
request.password);

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 61

 var cert_username = cert.subjectCN;
 var cert_password = cert.signedCertificate;

 // Redo the OData request for the protected resource
 var newRequest = {
 headers : request.headers,
 requestUri : request.requestUri,
 method : request.method,
 user : cert_username,
 password : cert_password
 };

 // Call back into the original http client.
 return oldClient.request(newRequest, success, error);
 }
 }

 return oldClient.request(request, success, error);

 }
};

// Can either pass certClient explicitly, or set it globally for the
page as the default:
OData.defaultHttpClient = certClient;

When sending a forwarded client certificate through an intermediary, set the value to
“SSL_CLIENT_CERT” in the XHR’s HTTP request header, as shown in this example:
/**
 * SAP Hybrid App version 2.2
 *
 * Datajs.Certificate.js
 * This file will not be regenerated, and it is expected that the user
may want to
 * include customized code herein.
 *
 * The template used to create this file was compiled on Mon Aug 23
16:43:02 CST 2012
 *
 * Copyright (c) 2012 SAP Inc. All rights reserved.
 */

// Capture datajs' current http client object.
var oldClient = OData.defaultHttpClient;

// Creates new client object that will attempt to handle Certificate
authentication.
var certClient = {
 request: function (request, success, error) {

 if (request.requestUri.substr(0, 8) === "https://")
 {
 if (request.user != undefined && request.password !=
undefined)

Develop Hybrid Apps Using Third-party Web Frameworks

62 SAP Mobile Platform

 {
 // The following script gets the signed certificate
data for the first
// p12 file found on the sdcard
var certStore = CertificateStore.getDefault();
var certPaths = certStore.listAvailableCertificatesFromFileSystem("/
sdcard/","p12");
var cert = certStore.getSignedCertificateFromFile(certPaths [0] ,
request.password);

 // Append existing headers.
 var newHeaders = [];
 if (request.headers) {
 for (name in request.headers) {
 newHeaders[name] = request.headers[name];
 }
 }
 //
 newHeaders["SSL_CLIENT_CERT"] = cert.signedCertificate;

 // Redo the OData request for the protected resource
 var newRequest = {
 headers : newHeaders,
 requestUri : request.requestUri,
 method : request.method,
 user : request.user,
 password : request.password
 };

 // Call back into the original http client.
 return oldClient.request(newRequest, success, error);
 }
 }

 return oldClient.request(request, success, error);

 }
};

// Can either pass certClient explicitly, or set it globally for the
page as the default:
OData.defaultHttpClient = certClient;

Implementing Push
The backend OData source can proactively send notifications to Hybrid Apps.

SAP Mobile Platform enables this by exposing an HTTP based push interface http://
supserver:port/notifications/ApplicationConnectionID.

The Hybrid App must inform the backend of its ApplicatonConnectionID, usually on
startup. You can obtain this by using the hwc.getApplicationConnectionID()
JavaScript API. The backend service exposes an endpoint where said

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 63

ApplicationConnectionID can be sent when the Hybrid App starts up or "subscribes."
When the push notification is received, it can be handled in native code or JavaScript.

Enabling the Datajs Library on Windows Mobile
To enable the datajs-<version>.js library on Window Mobile 6.0 and Windows
Mobile 6.1, you must add some custom code into the file where the Hybrid App is first
launched.

For Windows Mobile 6.5, you need only to include the datajs-<version>.js library in
your HTML file.

1. Open the JavaScript file where the Hybrid App is first launched, for example,
Custom.js, which is located in <SMP_HOME>\MobileSDK<version>
\HybridApp\API\AppFramework.

2. Add this code:
///Begin, This code enable datajs library on Windows 6.0 and
Windows6.1
window.oldActiveXObject = window.ActiveXObject;
window.ActiveXObject = function(id) {
try{ return new window.oldActiveXObject(id); }
catch (exception) {
if(isWindowsMobile()){
try{
if(id == "Msxml2.XMLHTTP.6.0" || id == "Msxml2.XMLHTTP.3.0")
{ return new window.oldActiveXObject("Microsoft.XMLHTTP"); }
if(id == "Msxml2.DOMDocument.6.0" || id == "Msxml2.DOMDocument.
3.0"){ return new window.oldActiveXObject("Microsoft.XMLDOM"); }
}
catch(e){ throw e; }
}
throw exception;
}
};
//End

3. Save the file.

4. Rebuild the Hybrid App project.

Hybrid Web Container and Hybrid App JavaScript APIs
The container and framework JavaScript APIs provide functionality that the Hybrid Apps can
access.

Hybrid Web Container JavaScript APIs
The files where the Hybrid Web Container JavaScript APIs are defined are located in
<SMP_HOME>\MobileSDK<version>\HybridApp\API\Container. The
generated JavaScript API reference documents are located in <SMP_HOME>
\MobileSDK<version>\HybridApp\API\API.

Develop Hybrid Apps Using Third-party Web Frameworks

64 SAP Mobile Platform

Note: The detail of the individual APIs is not available if you are viewing this document from
DocCommentXchange (http://dcx.sybase.com) or in PDF format. You can access this
information by going to Product Documentation at http://infocenter.sybase.com/help/topic/
com.sybase.infocenter. dc01920.0230/doc/html/vhu1349901991724.html

Class Description Defined in

hwc.CallbackSet () Use for event handlers that are
asynchronous.

Callbacks.js

hwc.CertificateS-
tore

Create a user interface in
HTML and JavaScript that
uses X.509 certificates as the
Hybrid App credentials.

Certificate.js

hwc.ConnectionSet-
tings

The JavaScript class for the
Hybrid Web Container con-
nection settings manages the
connection between applica-
tions and the server.

hwc-api.js

hwc.CustomIcon The JavaScript class for the
Hybrid Web Container custom
icon, lists custom icons.

hwc-api.js

hwc.e2eTrace Allows for an end to end trace
of data communication from
the client to the back-end.

hwc-api.js

hwc.getExternalRe-
source

Access resources on external
HTTP servers.

ExternalRe-
source.js

hwc.getCurrentLo-
cale

The date/time functions allow
you to extract and format the
date and time for the Hybrid
App.

Timezone.js

hwc.getPicture Provides access to the device's
default camera application or
device's photo library for re-
trieving a picture asynchro-
nously.

Camera.js

hwc.HybridApp Javascript class for the Hybrid
App object. Lists installed Hy-
brid Apps.

hwc-api.js

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 65

http://dcx.sybase.com/
http://infocenter.sybase.com/help/topic/com.sybase.infocenter. dc01920.0230/doc/html/vhu1349901991724.html
http://infocenter.sybase.com/help/topic/com.sybase.infocenter. dc01920.0230/doc/html/vhu1349901991724.html

Class Description Defined in

hwc.LogEntry Javascript class for LogEntry
object.

hwc-api.js

hwc.MediaCache Used within the JavaScript to
wrap the source of an image
element. Fetches media con-
tent from a cache or the server
using a URI.

hwc-api.js

hwc.MenuItemCollec-
tion

Represents a collection of
menu items.

hwc-comms.js

hwc.Message This is the class to encapsulate
an incoming message object.
When a new message arrives,
a notification is sent to users
through custom code.

hwc-api.js

hwc.MessageFilter This is the class to encapsulate
a filter for messages.

hwc-api.js

hwc.perf The performance library al-
lows you to instrument your
application code and collect
performance counters when
executing the application on
the device. Results are repor-
ted in a log file on the SD-card
(BlackBerry and Android), or
in the sandbox (iOS). The re-
sults can also be read in the
domain log by calling Get
Trace for the application

connection in SAP Control
Center.

hwc-api.js

hwc.SUPStorage Constructs a new storage area
identified by a storage key.

SUPStorage.js

Resources Access localized string re-
sources.

Resources.js

Develop Hybrid Apps Using Third-party Web Frameworks

66 SAP Mobile Platform

Hybrid App Framework JavaScript APIs
The files where the Hybrid App framework JavaScript APIs are defined are located in
<SMP_HOME>\MobileSDK<version>\HybridApp\API\AppFramework.

Class Description Defined in

doOnlineRequest Allows an operation or object
query to be invoked.

API.js

MessageValue Message value object that stores
a key-value pair from a message
sent to or from the server and the
Hybrid App.

WorkflowMessage.js

MessageValueCol-
lection

Message value collection object
that stores a container node
from a message sent to or from
the server and theHybrid App.

WorkflowMessage.js

WorkflowMessage Access the Hybrid App message
data functions.

WorkflowMessage.js

MBO Access JavaScript API Samples
This section shows some sample JavaScript APIs that access MBOs.

Calling a Create Function

1. Create a JavaScript object, in this case, Department.

var dep1 = new Department();
2. Set the values for all the fields. The fields names map to the Department MBO

create operation’s parameter name.

dep1.dept_id = "800";
dep1.dept_name="Dept";
 dep1.dept_head_id="888";

3. Call the create online request function.
department_create_onlineRequest(dep1,

"supusername=supAdmin&suppassword=s3pAdmin",
 function() { alert(“error occurred”)});

4. For an online request, you should implement the
hwc.processDataMessage function, for example:

hwc.processDataMessage = function
processDataMessage(incomingWorkflowMessage, noUI, loading,
fromActivationFlow, dataType) {

 if
((incomingWorkflowMessage.indexOf("<XmlWidgetMessage>") === 0)

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 67

 ||
(incomingWorkflowMessage.indexOf("<XmlWorkflowMessage>") === 0)
 || (incomingWorkflowMessage.indexOf("<M>")
=== 0)) {
 var workflowMessage = new
WorkflowMessage(incomingWorkflowMessage);

if (workflowMessage.getRequestAction() ==
Department.createAction){
 alert("Department id=" +
workflowMessage.getValues().getData('Department_create_dept_id_pa
ramKey').getValue() + " has been created!");
 }else if (workflowMessage.getRequestAction()
==Sales_order.findAllAction){
 alert("Return Item count ="+
workflowMessage.getValues().getData('Sales_order').value.length)
;
//By default database it should return 54 items.
 }
 }else{

 alert("TODO: Please fix me,
incomingWorkflowMessage="+ incomingWorkflowMessage);
 }

 }

Calling an Update Function With Old Arguments

1. Set old arguments values:
var oldDep = new Department();
oldDep.dept_id = "800";
oldDep.dept_name="Dept";
oldDep.dept_head_id="888";

2. Set the new values:
var newDep = new Department();
newDep.dept_id = "800";
newDep.dept_name="DeptUpdated";
newDep.dept_head_id="777";

3. Call the update submit function:

department_update_submit(newDep, oldDep, "", true);

Passing a Personalization Key Value

1. Create Sales_order object:

var sales_order = new Sales_order();
2. Set the onload personalization key value:

sales_order.pks.put(Sales_rep_PK_pkKey, "667");
3. Call the findAll online request:

Develop Hybrid Apps Using Third-party Web Frameworks

68 SAP Mobile Platform

sales_order_findAll(sales_order , "", function() {});
}

4. In the process workflowMessage function, to process incoming message, add:

hwc.processDataMessage=function processDataMessag
(incomingWorkflowMessage, noUI, loading, fromActivationFlow,
dataType) {

 if
((incomingWorkflowMessage.indexOf("<XmlWidgetMessage>") === 0)
 ||
(incomingWorkflowMessage.indexOf("<XmlWorkflowMessage>") === 0)
 || (incomingWorkflowMessage.indexOf("<M>")
=== 0)) {
 var workflowMessage = new
WorkflowMessage(incomingWorkflowMessage);
if (workflowMessage.getRequestAction() ==
Sales_order.findAllAction){
 alert("Return Item count ="+
workflowMessage.getValues().getData('Sales_order').value.length)
; //By default database it should return 54 items.
 }
 }else{

 alert("TODO: Please fix me,
incomingWorkflowMessage="+ incomingWorkflowMessage);
 }

 }

Calling a Create Function on MBOs With a One to Many Relationship

1. Create a new Department:
var dep = new Department();
 dep.dept_id="2";
 dep.dept_name="My Dep";
dep.dept_head_id="1";

2. Create a new employee:
var emp1 = new Employee();
 emp1.emp_id = "1";
 emp1.manager_id = "2";
 emp1.emp_fname ="Yan";
 emp1.emp_lname= "Gong";
 emp1.street ="King Street";
 emp1.city="Waterloo";
 emp1.state ="ON";
 emp1.zip_code ="n2v3l4";
 emp1.phone="518-8836863";
 emp1.status="A";
 emp1.ss_number="024601768"
 emp1.salary ="324234";
emp1.start_date="1996-12-30";
emp1.termination_date ="1999-12-20";
 emp1.birth_date ="1956-12-20";
 emp1.bene_health_ins ="Y";
emp1.bene_life_ins ="Y";

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 69

emp1.bene_day_care="Y";
 emp1.sex="F";

3. Create a second employee:
var emp2 = new Employee();
emp2.emp_id = "2";
emp2.manager_id = "2";
emp2.emp_fname ="Yan2";
emp2.emp_lname= "Gong2";
emp2.street ="King Street";
emp2.city="Waterloo";
emp2.state ="ON";
emp2.zip_code ="n2v3l4";
emp2.phone="518-8836863";
emp2.status="A";
emp2.ss_number="024601768"
emp2.salary ="324234";
emp2.start_date="1996-12-30";
emp2.termination_date ="1999-12-20";
emp2.birth_date ="1956-12-20";
emp2.bene_health_ins ="Y";
emp2.bene_life_ins ="Y";
emp2.bene_day_care="Y";
emp2.sex="F";

4. Add the two employees to Department:
dep.Employee.push(emp1);
dep.Employee.push(emp2);

5. Call department create online request, it would create a new department and two new
employees entries in the database:
department_create_onlineRequest(dep,
 "", function() {});

Calling a Delete Function on MBOs With a One to Many Relationship

To delete an MBO and its children, you need to find the MBO instance online request and,
from the processDataMessage function, after the online request, you need to find each
child’s surrogate key value from the incoming message, create a child JavaScript instance,
then add the child JavaScript instance to the parent JavaScript instance. Subsequently, when
the delete function is called on the parent instance, the children are also deleted. The details
of this are shown in this example in bold font.

1. Call the department_findByPrimaryKey online request to find the department
instance:
function deleteDepartment() {

 var dep = new Department();
 dep.dept_id="2";

 alert("before delete Deparatment and its children
Empoyee, we need to call findByPrimary key first.")
 department_findByPrimaryKey(dep, "" , function(error)
{alert(error)});

Develop Hybrid Apps Using Third-party Web Frameworks

70 SAP Mobile Platform

 }

2. In the processDataMessage function, find the surrogatekey value for each Employee
and create Employee instance and add it to department instance:
 hwc.processDataMessage = function
processDataMessage(incomingWorkflowMessage, noUI, loading,
fromActivationFlow, dataType) {

 alert("incomingMessage="+ incomingWorkflowMessage);
 if
((incomingWorkflowMessage.indexOf("<XmlWidgetMessage>") === 0)
 ||
(incomingWorkflowMessage.indexOf("<XmlWorkflowMessage>") === 0)
 || (incomingWorkflowMessage.indexOf("<M>") ===
0)) {

 var workflowMessage = new
WorkflowMessage(incomingWorkflowMessage);

 if (workflowMessage.getRequestAction() ===
Department.findByPrimaryKeyAction){

 var employees =
workflowMessage.getValues().getData('Department_employees').value
;

 if
(workflowMessage.getValues().getData('Department_dept_id_attribK
ey').getValue()== '2'){
 var dep = new Department();
 dep.dept_id="2";

 for(var i = 0; i < employees.length ; i++) {
 var emp = new Employee();
 emp.emp_id =
employees[i].getData('Employee_emp_id_attribKey').getValue();
 //set surrogateKey for employ
 emp._surrogateKey
=employees[i].getData('_surrogateKey').getValue();
 dep.Employee.push(emp);
 dep.OldValue_Employee.push(emp);
 }

3. Call department_delete_onlineRequest to delete the department and all of its
children:
department_delete_onlineRequest(dep, "", function(error)
{ alert(error)});

 }
........
 }

MediaCache Examples

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 71

var resourceUrl = "http://someserver/someimage.jpg;
document.write("<img src=\”” + MediaCache.getUrl(resourceUrl,
hwc.MediaCache.Policy.CACHE_FIRST) + ”\” />”);
var oImg=document.createElement("img");
oImg.setAttribute('src', MediaCache.getUrl('http://someserver/
someimage.jpg'));
document.body.appendChild(oImg);

Null Value Support
Null data values are represented in MessageValue objects, belonging to a
MessageValue collection that is created from the data message sent by the server.

Note: Null data values are not supported on the Windows Mobile platform.

This document refers to example HTML. You can see the example HTML by downloading the
hybridapp_null_value.zip file and extracting the hybridapp_null_value.html file.

In the example, MessageValueCollection is referenced by var values =
myDataMessage.getValues();” and myDataMessage is created in the
onHybridAppLoad method.

A specific MessageValue is referenced by values.getData(string key). If you
use the Hybrid App designer, the IDE manages keys for you but with JavaScript API, you have
to implement key management in the code yourself.

This example follows the IDE style of giving each control an ID and using that as the key for
data that will be used in that control:
<input class="right" type="number"
id="Nullvaluetest_int_value2_attribKey"
smp_allows_null="true" smp_valuechanged="false"
onchange="inputChanged(this)"/>

So if you want the MessageValue object corresponding to that control:

var value = values.getData(“Nullvaluetest_int_value2_attribKey”);

Once you have the MessageValue object you can see if it is null with:

var isNull = value.getNullAttribute();

Null Values and HTML
HTML usually puts an empty string into a control if it is assigned a null value. If the control is
not changed but you get the data from it for its MessageValue object, the MessageValue
object will have an empty string as its value instead of NULL. This means the
NullAttribute is not set properly unless you set it yourself.

When using null values, keep in mind that the contents of the control do not tell you whether it
should be null. This can cause bad data on the server. Putting an empty string into a number
type MessageValue can throw a formatting exception on the server, so when using
JavaScript API, you are responsible for maintaining null values.

Develop Hybrid Apps Using Third-party Web Frameworks

72 SAP Mobile Platform

The Sample HTML
This section references the hybridapp_null_value.html file to show examples of
how to implement null values.

• Recognizing NULL values – The example uses the same techniques as an Hybrid App
generated with the designer to keep track of data values, keys, controls and null-ness.

Controls that allow null have a special attribute that identifies it is okay to be NULL:
<input class="right" type="number"
id="Nullvaluetest_int_value2_attribKey"
smp_allows_null="true" smp_valuechanged="false"
onchange="inputChanged(this)"/>

This example processes the incoming data message and checks control attributes for null
friendliness and issues an alert message for a null value in the wrong place.
hwc.processDataMessage = function(incomingDataMessageValue, noUI,
loading, fromActivationFlow, dataType)

• Handling input to NullValue controls – This example uses an event handler to recognize
user input:
<input class="right" type="number"
id="Nullvaluetest_int_value2_attribKey"
 smp_allows_null="true" smp_valuechanged="false"
onchange="inputChanged(this)" />

inputChanged uses another special attribute to indicate that the user has put something
in the control and it is no longer null.

• Setting a value to NULL – In the HTML example, setKeyValueNull and
setControlValueNull show how to set a value to null while managing the control
attributes and the MessageValue null attribute.

• Sending data to the server – In the example HTML, doUpdate uses the
getUpdatedValue method to set the right value in the newNVT object.
getUpdatedValue checks the control attributes and the MessageValue null
attribute to decide what to send to the server.

• Creating data with null values – In the example HTML, doCreate and doCreate2
show two ways of creating a record with null values.

Calling the Hybrid Web Container
It is easiest to learn how to call the Hybrid Web Container by examining the API.js and
Utils.js files, which are located in <SMP_HOME>\MobileSDK<version>
\HybridApp\API\AppFramework.

Making calls to the Hybrid Web Container is platform-dependent, as shown in this example:

 if (isWindowsMobile()) {
 var xmlhttp = getXMLHTTPRequest();

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 73

 xmlhttp.open("POST", "/sup.amp?
querytype=setscreentitle&version=2.0", false);
 xmlhttp.send("title=" + encodeURIComponent(screenTitle));
 }
 else if (isIOS()) {
 var xmlHttpReq = getXMLHTTPRequest();
 xmlHttpReq.open("GET", "http://localhost/sup.amp?
querytype=setscreentitle&version=2.0&title=" +
encodeURIComponent(screenTitle), true);
 xmlHttpReq.send("");
 }
 else if (isAndroid()) {
 var request = "http://localhost/sup.amp?
querytype=setscreentitle&version=2.0&title=" +
encodeURIComponent(screenTitle);
 _WorkflowContainer.getData(request);
 }
 else { //must be BlackBerry
 var xmlhttp = getXMLHTTPRequest();
 xmlhttp.open("POST", "http://localhost/sup.amp?
querytype=setscreentitle&version=2.0", false);
 xmlhttp.send("title=" + encodeURIComponent(screenTitle));
 }

From a high-level perspective, these are the query types used for calling the Hybrid Web
Container.

setscreentitle
Sets the native screen title on the Hybrid Web Container.

close
Closes the native Hybrid Web Container (Windows Mobile only).

addMenuItem
Adds a single menu item to the Hybrid Web Container.

removeallmenuitems
Removes all the menu items from the Hybrid Web Container.

clearrequestcache
Clears the entire Online Request cache for the current Hybrid App.

clearrequestcacheitem
Clears a single Online Request cache entry for the current Hybrid App.

logtoworkflow
Logs a message to the AMPHostLog.txt (mocalog.txt for iOS) on the device. You can
retrieve this log file remotely from SAP Control Center.

Develop Hybrid Apps Using Third-party Web Frameworks

74 SAP Mobile Platform

showcertpicker
Shows a native platform certificate picker on the device for selecting certificate credentials.

showInBrowser
On iOS, this function shows the URL in the Hybrid Web Container in a separate browser
instance. On all other platforms, this launches the native Web browser in another window with
the given URL.

showattachment
Using third party file viewers, this function displays an attachment that has previously been
downloaded using the downloadattachment querytype in a separate window.

Note: On iOS, the attachment is shown within the Hybrid Web Container.

showlocalattachment
Using third party file viewers, this function displays an attachment that was included as part of
the Hybrid App .zip package, in a separate window.

Note: On iOS, the attachment is shown within the Hybrid Web Container.

rmi
This function executes an online request to the SAP Mobile Server synchronously, in other
words, a network connection must be available. This can indicate results should be cached for
future access (in which case a network connection does not need to be available).

downloadattachment
Requests an attachment to be downloaded from the SAP Mobile Server through an object
query. A network connection is required for this operation. This operation occurs
asynchronously, and the calling JavaScript is notified when it is complete.

submit
Submits the current MessageValueCollection to the SAP Mobile Server for
processing by the server plug-in. This operation occurs asynchronously. If a network
connection is not available when this operation is performed, the request is queued up and
executed the next time a network connection is available.

alert
Shows a message box in native code (iOS and Android platforms only).

loadtransformdata
Requests the Hybrid Web Container for the transform data (the contents of the e-mail
message) for the current message.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 75

addallmenuitems
Instructs the Hybrid Web Container to add the supplied list of menu items.

formredirect
Notifies the Hybrid Web Container that a screen navigation is occurring, and to update
credentials in the credentials cache, if required.

AttachmentViewer and Image Limitations
There are some limitations on the size of the attachments and images that you can include as
part of the Hybrid App message.

These limitations vary by platform.

Platform Size Limit

iOS Large attachments can produce longer process-
ing times.

Android Large attachments can produce longer process-
ing times. There is a 1MB limit for attachments
on Android devices.

Windows Mobile The maximum size of a JavaScript variable for
Windows Mobile is 2MB, which allows for more
memory. Warning messages are shown if the
script continues for a long time, which can cause
the memory to run out.

BlackBerry 5.0 and BlackBerry 6.0 On BlackBerry 5.0, the maximum size of a Java-
Script variable is 500KB and on BlackBerry 6.0
and later, the maximum size of a JavaScript var-
iable is 2MB. The maximum size must be larger
than the attachment and the rest of the Hybrid
App message. If the attachment is Base64-enco-
ded, also allow for an increase in the attachment
size.

Note: When accessing very large binary (image) data in the mobile business object associated
with the Hybrid App, ensure that the attribute set in the mobile business object is a BigBinary
datatype, rather than Binary.

Package Hybrid Apps
Package the files for the Hybrid App so that you can deploy them to the server.

Develop Hybrid Apps Using Third-party Web Frameworks

76 SAP Mobile Platform

Packaging Hybrid Apps Using the Packaging Tool
Use the packaging tool to package existing files into a Hybrid App package.

1. Navigate to <SMP_HOME>\MobileSDK22\HybridApp\PackagingTool and
double-click the packagingtool.bat file if you are using a 32-bit JDK, or
packagingtool64.bat if you are using a 64-bit JDK.

2. Click Browse to enter the filepath for the output directory where your projects are located,
and click OK.
All of the projects stored in the output directory you set appear in the Project Explorer list
box.

3. (Optional) Select a project to see the details of the project in the right pane. You can make
changes to any of the General Information properties and click Save.

4. (Optional) To create a new project:

a) Click New at the bottom of the Project Explorer list box.
b) Enter a project name.

c) Click Browse to select a folder for the Web application folder from the local hard
disk.

The Web root folder is the location of your HTML files, typically, with any dependent
HTML, JavaScript, CSS, images, and so on, files being in the same folder or
subfolders. The WorkflowClient.xml file should also be in the Web application
folder.

Note: The Web application folder cannot be a subfolder of the workspace, and the
workspace folder cannot be a subfolder of the Web application folder.

d) Click OK.

The new project name is added to the Project Explorer, and a project file is created in
the workspace folder with the .pkgproj extension. The project will have a separate
folder under the workspace to store all temporary files for deployment.

5. (Optional) To remove a project from Project Explorer, select the project to remove and
click Delete at the bottom of the Project Explorer list box.

6. Set the configuration information for the project in the General Information tab.

• Module name – the name of the Hybrid App on the server. The default value is the
project name. This is required.

• Module version – this can be any number. The default value is 1. It is required.
• Module description – (optional) enter description text.
• Display name – (optional) the display name.
• Client icon – the default value is 48. It is required.
• MBO package name – if the Hybrid App uses MBOs, input the MBO package name.
• MBO package version – enter the version for the MBO package.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 77

• Invokable on client – a boolean value to determine whether the Hybrid App can be
invoked from the client. The default value is true.

• Processed Messages
• Mark as read – the default value is false.
• Delete – the default value is true.

• Cache key – (optional) the key to represent the cache.
• Activation key – (optional) define the key to use.
• Shared storage key – (optional) enter the shared storage key.
• SAP Mobile Platform server information – the manifest.xml file may require hard-

coded credentials for logging in to SAP Mobile Server.
• User name – enter the user name for logging into SAP Mobile Server.
• Simple password – enter the password for logging into SAP Mobile Server.
• Certificate – enter the certificate information for logging into SAP Mobile Server.

7. Click the applicable platform tab to choose files for packaging.

Five platforms are available: Android, BlackBerry 5, BlackBerry 6, iOS, and Windows
Mobile 6. For each platform, you can choose whether to include the specific platform in
the package, the files needed for the platform, the HTML files for the the platform, and the
start screen to show for ths platform.

The start screen is the screen to show by default for the selected platform. The html (or
htm) file in the HTML File for the Start Page textbox is parsed and all screens are then
listed. If the file is not an html file or there is no screen defined in the file, the start screen
textbox is empty.

8. (Optional) Click the Matching Rules tab to add matching rules.

Matching rules describe the collection of rules that are used to determine if a given server
notification will be sent to the application for processing. Each matching rule describes the
field to test (for example, Subject), and the regular expression to test against for matches.

9. (Optional) Click Custom Icon to add a custom icon for the Hybrid App package.

When you add a custom icon, the manifest.xml file is updated when you generate the
package.

10. (Optional) Click Client Variables to add client variables for data that is associated with a
particular client and application and that must be saved between user sessions.

11. Click Generate.

Configuration files are created and packaged in a ZIP file and placed in the output directory
you specified.

Refreshing the Packaging Tool Treeview
Refresh the treeview to reflect the latest changes to the package.

There are several ways to refresh the treeview.

• Exit the packaging tool and restart it. All the new files appear in the treeview automatically.

Develop Hybrid Apps Using Third-party Web Frameworks

78 SAP Mobile Platform

• Switch to another project, then switch back.
• Click the Support <xxx> platform checkbox, uncheck it and then check it. When you set

the Support <xxx> platform checkbox to true, the treeview is refreshed to get the latest
files from the Web app folder.

Packaging Hybrid Apps Manually
While using the packaging tool is the easiest way to package Hybrid Apps, it is also possible to
create a Hybrid App package without the tool.

Hybrid AppPackage Files
To build a Hybrid App package manually, you should first familiarize yourself with its
contents.

This section describes the contents of the Hybrid App package—which files are required, and
what the contents of those files should be. Particular attention is paid to the contents of the
manifest.xml and WorkflowClient XML files, along with the Web application files
(HTML, JavaScript, CSS), most specifically the public API functions available to you.

The Web Application Files
A Hybrid App package contains Web application files.

When developing a Hybrid App package manually:

• Include HTML files that follow the same general pattern as the files generated when using
the Hybrid App Designer to generate the Hybrid App package.

• Use the API.js, Callbacks.js, Camera.js, Certificate.js,
ExternalResource.js, SUPStorage.js, and Timezone.js. files to
communicate with the Hybrid Web Container. These files are in the <SMP_HOME>
\MobileSDK22\HybridApp\API\Container and <SMP_HOME>
\MobileSDK22\HybridApp\API\AppFramework directories.

• Use WorkflowMessage.js to view and manipulate the Hybrid App messages. This
file is located in <SMP_HOME>\MobileSDK22\HybridApp\API
\AppFramework

HTML Format
This is a commonly used HTML format.

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
 <meta name="HandheldFriendly" content="True" />
 <meta http-equiv="PRAGMA" content="NO-CACHE" />
 <link rel="stylesheet" href="css/MyStylesheet.css"
type="text/css" />
 […]
 <script src="js/API.js"></script>
 <script src="js/Utils.js"></script>

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 79

 <script src="js/WorkflowMessage.js"></script>
 <script src="js/MyJavaScript.js"></script>
 […]
 <script>
[…]
 </script>
 </head>
 <body onload="onHybridAppLoad();">
 <div id=Screen1KeyScreenDiv" smp_screen_title=”Screen1Title"
style="display: none"
smp_menuitems="NativeMenu1Key,NativeMenu1DisplayName,NativeMenu2Key
,NativeMenu2DisplayName" smp_okaction="myOKAction()">
[…]
 <form style="margin: 0px;" name="Screen1KeyForm"
id="Screen1KeyForm" onSubmit="return false;" autocomplete="on">
[…]
 </form>
[…]
 </div>
 </body>
 <script>
[…]
$(document).ready(function(){
 […]
 });
 […]
 </script>
</html>

Manifest.xml File
The manifest.xml file describes how the contents of the Hybrid App package .zip file
are organized.

This file must reside at the root of the Hybrid App ZIP package. This shows the outline of what
the manifest.xml file contains.

Manifest.xml
<?xml version="1.0" encoding="utf-8"?>
<Manifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="AMPManifest.xsd">
 <ModuleName>…</ModuleName>
 <ModuleVersion>…</ModuleVersion>
 <ModuleDesc>…</ModuleDesc>
 <ModuleDisplayName>…</ModuleDisplayName>
 <ClientIconIndex>…</ClientIconIndex>
 <InvokeOnClient>…</InvokeOnClient>
 <PersistAppDomain>…</PersistAppDomain>
 <MarkProcessedMessages>…</MarkProcessedMessages>
 <DeleteProcessedMessages>…</DeleteProcessedMessages>
 <ProcessUpdates>…</ProcessUpdates>
 <CredentialsCache>…</CredentialsCache>
 <RequiresActivation>…</RequiresActivation>
 < SharedStorage key> ... </ SharedStorage >

Develop Hybrid Apps Using Third-party Web Frameworks

80 SAP Mobile Platform

<TransformPlugin>
<File shared="true">WorkflowClient.dll</File>
<Class>Sybase.UnwiredPlatform.WorkflowClient.Transformer</Class>
</TransformPlugin>
- <ResponsePlugin>
<File shared="true">WorkflowClient.dll</File>
<Class>Sybase.UnwiredPlatform.WorkflowClient.Responder</Class>
</ResponsePlugin>

 <ClientWorkflows>
 <WindowsMobileProfessional>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </WindowsMobileProfessional>
 <BlackBerry>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry>
 <BlackBerry6>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry6>
 <Android>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </Android>
 <iPhone>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </iPhone>

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 81

 </ClientWorkflows>

 <ContextVariables>
 <ContextVariable>
 <Name>…</Name>
 <Value>…</Value>
 <Certificate>…</Certificate>
 <Password>…</Password>
 </ContextVariable>
 </ContextVariables>

 <Metadata version="1">
 <Item>
 <Name>Key1</Name>
 <Value>Value1</Value>
 </Item>
 <Item>
 <Name>Key2</Name>
 <Value>Value2</Value>
 </Item>
 </Metadata>
 <MatchRules>
 <SubjectRegExp>…</SubjectRegExp>
 <ToRegExp>…</ToRegExp>
 <FromRegExp>…</FromRegExp>
 <CCRegExp>…</CCRegExp>
 <BodyRegExp>…</BodyRegExp>
 </MatchRules>
</Manifest>

ModuleName
<ModuleName>SampleActivitiesModule</ModuleName>
The ModuleName defines the name of the Hybrid App package.

ModuleVersion
<ModuleVersion>2</ModuleVersion>
The ModuleVersion defines the version of the Hybrid App package.

ModuleDesc
<ModuleDesc>AMP Sample - Activities Collection</ModuleDesc>
The ModuleDesc provides a short description of the Hybrid App package.

ModuleDisplayName
<ModuleDisplayName>Activities Sample</ModuleDisplayName>
The name of the Hybrid App package that is displayed to the user in the Hybrid App list on the
device for Hybrid Apps that are client-invoked. When the Hybrid App package is deployed,
you can override the DisplayName specified here with one of your own choosing.

Develop Hybrid Apps Using Third-party Web Frameworks

82 SAP Mobile Platform

ClientIconIndex
<ClientIconIndex>35</ClientIconIndex>
The index of the icon associated with the Hybrid App package. This icon is shown beside the
e-mail message in the device’s Inbox listing instead of the regular e-mail icon. When the
Hybrid App package is deployed, you can override the icon that is specified here with one of
your own choosing.

InvokeOnClient
<InvokeOnClient>1</InvokeOnClient>
Specifies whether this Hybrid App can be used without an associated e-mail. 1 = true, 0 =
false. If 1 is specified, the Hybrid App is shown in the Hybrid App list on the device and can be
used without the context of an e-mail message.

PersistAppDomain
<PersistAppDomain>1</PersistAppDomain>
States whether this Hybrid App uses a persistent application domain when the .NET assembly
plugin is loaded. 1 = true, 0 = false. By default, it is set to false, meaning an application domain
is created and removed every time the plugin is loaded.

MarkProcessedMessages
<MarkProcessedMessages>1</MarkProcessedMessages>
Indicates whether a Hybrid App message shows a visual indication in the Inbox after it has
been processed (1 = true, 0 = false).

Note: When a Hybrid App message shows a visual indication that it has been processed, the
visual indication disappears if the device is re-registered, or if the device user performs a
Refresh All Data action.

DeleteProcessedMessages
<DeleteProcessedMessages>1</DeleteProcessedMessages>
Indicates whether a Hybrid App message is deleted from the mobile device’s Inbox after it has
been processed (1 = true, 0 = false).

Note: You cannot set both DeleteProcessedMessages and
MarkProcessedMessages to true (1). To set MarkProcessedMessages to true, you
must set DeleteProcessedMessages to false (0) as shown:

<MarkProcessedMessages>1</MarkProcessedMessages>
 <DeleteProcessedMessages>0</DeleteProcessedMessages>

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 83

ProcessUpdates
<ProcessUpdates>1</ProcessUpdates>
Indicates whether Hybrid App messages associated with this Hybrid App package that are
already delivered to the device can be updated from the server with modified content. (1 = true,
0 = false). By default, this is set to false (0).

CredentialsCache
<CredentialsCache key="activity_credentials>1</
CredentialsCache>
Specifies whether a Hybrid App requires credentials (1 = true, 0 = false). Different Hybrid
Apps can specify different credentials keys. Hybrid Apps with the same credentials key share
that set of credentials. In the case of shared credentials, they are requested only once by the
Hybrid App that is launched first.

RequiresActivation
<RequiresActivation key=”shared_credentials_key”>1</
RequiresActivation>
Specifies whether a Hybrid App requires activation (1 = true, 0 = false). If set to true, the screen
defined in the ActivationScreen tag is displayed the very first time theHybrid App is
launched, before the default screen is displayed.

If the Activation Screen contains credentials controls (and the Hybrid App requires
credentials), the values are updated to the Credentials Cache automatically, without further
prompting, with the specified Credentials Screen.

Different Hybrid Apps can specify different activation keys. Hybrid Apps with the same
activation key share their activation status. For example, if Hybrid App A and Hybrid App B
both specify an activation key of AB (using the key attribute on the RequiresActivation tag),
when Hybrid App A gets activated, it also activates Hybrid App B so that when Hybrid App B
is invoked for the very first time, its activation screen is not seen; it goes directly to the default
screen.

TransformPlugin
<TransformPlugin> <File/> <Class/> </TransformPlugin>
(Optional) If this is defined, the ResponsePlugin tag must also be defined. Describes the
server module implemented as a .NET assembly that implements the IMailProcessor
interface. This module is responsible for processing the intercepted e-mail message before it
gets delivered to the device.

Inner tags

<File shared=”true”>WorkflowClient.dll</File> The path, including the
filename of the assembly that implements the IMailProcessor interface. The path is relative to

Develop Hybrid Apps Using Third-party Web Frameworks

84 SAP Mobile Platform

the Hybrid App ZIP package. If the shared property is present and set to true, the DLL is
located in the <UnwiredPlatform_InstallDir>\Servers\MessagingServer
\bin folder (installed by an external process) and all Hybrid Apps using that DLL will use the
same version of the DLL. If the shared property is not present, or is present and is set to false,
each Hybrid App will use its own version of that DLL in the Hybrid App’s own folder.

<Class>Sybase.UnwiredPlatform.WorkflowClient.Transformer</
Class> The .NET Type in the assembly that implements the IMailProcessor interface.

ResponsePlugin
<ResponsePlugin> <File/> <Class/> </ResponsePlugin>
(Optional) If this is defined, the TransformPlugin tag must also be defined. Describes the
server module implemented as a .NET assembly that implements the IResponseProcessor
interface. This module is responsible for processing the response from the device.

Inner tags

<File shared=”true”>WorkflowClient.dll</File> The path, including the
filename, of the assembly that implements the IResponseProcessor interface. The path is
relative to the Hybrid App .zip package. If the shared property is present and set to true, the
DLL is expected to be located in the <UnwiredPlatform_InstallDir>\Servers
\MessagingServer\bin folder (installed by an external process), and all Hybrid Apps
using that DLL will use the same version of the DLL. If the shared property is not present, or is
present and set to false, each Hybrid App will use its own version of that DLL in the Hybrid
App’s own folder.

<Class>Sybase.UnwiredPlatform.WorkflowClient.Responder</
Class> The .NET Type in the assembly that implements the IResponseProcessor interface.

ClientWorkflows
<ClientWorkflows>
 <WindowsMobileProfessional>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </WindowsMobileProfessional>
 <BlackBerry>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry>

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 85

 <BlackBerry6>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </BlackBerry6>
 <iPhone>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </iPhone>
 <Android>
 <HTMLWorkflow>
 <File>…</File>
 <HtmlFiles>
 <HtmlFile>…</HtmlFile>
 <HtmlFile>…</HtmlFile>
 </HtmlFiles>
 </HTMLWorkflow>
 </Android>
</ClientWorkflows>

This section of the manifest.xml file describes the supported device platforms for the
Hybrid App and the corresponding client module to use for each platform.

Inner tags

• <WindowsMobileProfessional>…</WindowsMobileProfessional> –
Windows Mobile Professional device support

• <iPhone>…</iPhone> – iOS device support

• <BlackBerry>…</BlackBerry> – BlackBerry 5.0 device support

• <BlackBerry6>…</BlackBerry6> – BlackBerry 6.0 device support

• <Android>…</Android> – Android device support

<File>…</File>
Contains a reference to an XML file. That XML file should have contents similar to this:
<?xml version="1.0" encoding="utf-8"?>
<widget>
 <screens src="html/myAndroidHybridApp.html"
default="Start_Screen">
 <screen key="html/myAndroidHybridApp.html">
 </screen>
 </screens>
</widget>

Develop Hybrid Apps Using Third-party Web Frameworks

86 SAP Mobile Platform

The referenced HTML file must be present in the list of HtmlFiles tags that follow and must
also be present in the Hybrid App .zip package.

<HtmlFile>…</HtmlFile>
Indicates that the named file (html/js/API.js, html/myAndroidHybridApp.html) will be used
on the specified platform. The referenced file must be present in the Hybrid App .zip package.

ContextVariables
<ContextVariables>...</ContextVariables>
Describes the collection of context variables that will be made available to the methods in the
IMailProcessor and IResponseProcessor interfaces. When the Hybrid App package is
deployed by the administrator, the Display Name that is specified here can be overriden with
one of their own choosing.

<ContextVariables >
<ContextVariable>
<Name/>
<Value/>
<Certificate/>
<Password/>
</ContextVariable>

Describes a context variable that will be made available to the methods in the IMailProcessor
and IResponseProcessor interfaces. When administrators deploy a Hybrid App package, they
have the ability to override the value of the context variable that is specified here.

It is good practice for developers of Hybrid Apps to provide sufficient documentation so that
administrators can knowledgeably edit a context variable’s value as necessary. Context
variables are a good place to store configuration information that will likely change between
development and production environments.

Inner tags

<Name>OutputFolder</Name> The name of the context variable. This is the key used
to retrieve the value of the context variable in the methods defined in the IMailProcessor and
IResponseProcessor interface.

Note: The value of the <Name> tag supports single-byte characters only.

<Value>C:\ActivitiesSampleOutput</Value> The value of the context
variable. When administrators deploy a Hybrid App, they have the ability to override the value
of the context variable that is specified here.

Note: The value of the <Value> tag supports single-byte, double-byte, or both, characters.

<Certificate>false</Certificate> Indicates whether this context variable is a
Base64 string representation of an X.509 certificate. If this value is set to true, SAP Control
Center displays a dialog specific to selecting an X.509 certificate.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 87

<Password>false</Password> Indicates whether this context variable is a password.
If set to true, the value is displayed as asterisks in the SAP Control Center console.

Client Variables
You can define client variables on the server side and retrieve it on the client side by using
either native API or JavaScript API. In the JavaScript API, you can call the
hwc.getClientVariables(moduleid, version) method to retrieve the client
variables.

An optional metadata element in manifest.xml is used to specify clientvariables information.
It has a version attribute of integer type to identify and keep track of metadata changes. You
can set any positive integer value as the initial version. After the Hybrid App is deployed, each
time the metadata gets updated, the version number is increased by one.
<Metadata version="1">
 <Item>
 <Name>Key1</Name>
 <Value>Value1</Value>
 </Item>
 <Item>
 <Name>Key2</Name>
 <Value>Value2</Value>
 </Item>
</Metadata>

You can update the client variables for a Hybrid App in SAP Control Center, and the change
will be pushed to the already deployed clients. The client variables received on the client side
are treated as read-only. The client cannot update the client variables.

Similar to server side Hybrid App context variables, client variables are stored as name/value
pairs. Both name and value are string type, and the name is case sensitive. The maximum
length of the client variable key name is 256 in ANSI code (not Unicode). Although the name
is case sensitive, it cannot have the same item names that differ only by case. The metadata
item key name cannot be an empty string. The object of a complex type needs to be serialized
to string values to set the value.

Note: Due to a limitation on Windows Mobile platforms, the total length of all the client
variables (keys and values) cannot exceed 2000 characters.

If the client side variables are updated, the change is applied the next time the Hybrid App is
opened.

Similar to context variables, when the Hybrid App package is deployed in SAP Control Center
with the option of "Replace," the updated client variables for the old Hybrid App package are
not automatically passed to the new Hybrid App package.

MatchRules
<MatchRules>...</MatchRules>

Develop Hybrid Apps Using Third-party Web Frameworks

88 SAP Mobile Platform

Describes the collection of match rules that are used to determine if a message is sent to a
TransformPlugin server module for processing. When administrators deploy a Hybrid App,
they have the ability to Add, Delete, and override the Match Rules that are specified here.

<MatchRule>... </MatchRule> Describes a single match rule.

Note: The value of the <MatchRule> tag supports double-byte characters.

Inner tags

<SubjectRegExp>…</SubjectRegExp> The value to test for against the "Subject"
line of a message.

<ToRegExp>…</ToRegExp> The value to test for against the "To" line of a message.

<FromRegExp>…</FromRegExp> The value to test for against the "From" line of a
message.

<CCRegExp>…</CCRegExp> The value to test for against the "CC" line of a message.

<BodyRegExp>…</BodyRegExp> The value to test for against the <Body> text of a
message.

WorkflowClient.xml File
The WorkflowClient.xml file contains metadata that specifies how to map the data in
the Hybrid App message to and from calls to Mobile Business Object (MBO) operations and
object queries.

WorkflowClient.xml
<?xml version="1.0" encoding="utf-8"?>
<Workflow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="WorkflowClient.xsd" >
 <Globals>
 <DefaultScreens activation="…" credentials="…"/>
 </Globals>
 <Triggers>
 <Actions>
 <Action name="…" sourcescreen="…" targetscreen="…"
errorscreen="…">
 <Methods>
 <Method type="replay" mbo="…" package="…" >
 <InputBinding optype="…" opname="…"
generateOld="…">
 <Value sourceType="…" workflowKey="…" paramName="…"
mboType="…"/>
 <Value sourceType="…" workflowKey="…"
relationShipName="…" mboType="list">
 <InputBinding optype="delete" opname="…" generateOld="….">
 <Value sourceType="…" workflowKey="…" paramName="…"
attribName="…" mboType="…"/>
 </InputBinding>
 <InputBinding optype="update" opname="…" generateOld="….">
 <Value sourceType="…" workflowKey="…" paramName="…"

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 89

attribName="…" mboType="…"/>
 </InputBinding>
 <InputBinding optype="create" opname="…" generateOld="….">
 <Value sourceType="…" workflowKey="…" paramName="…"
attribName="…" mboType="…"/>
 </InputBinding>
 </Value>
 </InputBinding>
 <OutputBinding generateOld="…">
 <Mapping workflowKey="…" workflowType="…" attribName="…"
mboType="…"/>
 <Mapping workflowKey="…" workflowType="list"
mboType="list">
 <Mapping workflowKey="…" workflowType="…" attribName="…"
mboType="…"/>
 </Mapping>
 </OutputBinding>
 </Method>
 </Methods>
 </Action>
 </Actions>
 <Notifications>
 <Notification type="onEmailTriggered"
targetscreen="…">
 <Transformation>
 <Rule type="regex-extract" source="…" workflowKey="…"
workflowType="…" beforeMatch="…" afterMatch="…" format="…"/>
 </Transformation>
 <Methods>
 <Method name="…" type="…" mbo="…" package="…">
 <InputBinding opname="…" optype="…">
 <Value sourceType="…" workflowKey="…" paramName="…"
attribName="…" mboType="…"/>
 </InputBinding>
 <OutputBinding generateOld="…">
 <Mapping workflowKey="…" workflowType="…" attribName="…"
mboType="…"/>
 <Mapping workflowKey="…" workflowType="list"
mboType="list">
 <Mapping workflowKey="…" workflowType="…"
attribName="…" mboType="…"/>
 </Mapping>
 </OutputBinding>
 </Method>
 </Methods>
 </Notification>
 </Notifications>
 </Triggers>
</Workflow>

Globals
<Globals> <DefaultScreens activation="Introduction"
credentials="Authentication"/> </Globals>
Describes the global information for the Hybrid App metadata.

Develop Hybrid Apps Using Third-party Web Frameworks

90 SAP Mobile Platform

Inner tags

<DefaultScreens activation=”…” credentials=”…”/> contains two
optional attributes—activation and credentials—that allow you to specify the screens to use
for activation and credential requests.

Triggers
<Triggers> <Actions> … </Actions> <Notifications> … </
Notifications> </Triggers>
Describes the conditions under which MBO operations and/or object queries run and, where
appropriate, what to return to the device.

Inner tags

<Actions> … </Actions> Contains the description for one or more MBO operations
and/or object queries to execute when an online request or submit action is received from the
client.

<Notifications> … </Notifications> Contains the description of, at most, one
way to extract values from an incoming server notification, execute an MBO object query, and
send that notification on to the device.

Action
<Action name="Online_Request" sourcescreen="Reports_Create"
targetscreen="OnReportsCreateSuccess"
errorscreen="OnReportsCreateFailure"> … </Action>
Describes the conditions under which MBO operations and/or object queries run and, where
appropriate, what to return to the device.

Table 1. Attributes

Attribute Description

name The name of the action, which typically corre-
sponds to the key of the menuitem that invoked
the action.

sourcescreen The screen from where the action was invoked.

targetscreen This attribute is optional. The screen to which the
client will return, by default, if the MBO opera-
tion/object query succeeds. If left unspecified, the
client application remains on the current screen.
This attribute is applicable only to online request
actions.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 91

Attribute Description

errorscreen This attribute is optional. The screen to which the
client will return, by default, if the MBO opera-
tion/object query fails. If left unspecified, the cli-
ent application remains on the current screen.
This attribute is applicable only to online request
actions.

• errorlogskey

• errorlogmessagekey

• errorlogmessageaslistkey

The keys used to fill any error log messages.

Inner tags

<Methods> … </Methods> Contains the description for one or more MBO operations
and/or object queries to be executed when this online request or submit action is received from
the client.

Method
<Method type="replay" mbo="Reports" package="testReports:
1.0"> … </Method>
Describes the conditions under which MBO operations and/or object queries run and, where
appropriate, what to return to the device.

Table 2. Attributes

Attribute Description

type The type of method to invoke. For object queries,
this must be search. For operations, it must be
replay.

mbo The name of the mobile business object (MBO).

package The Hybrid App package name and version of the
MBO, separated by a colon, for example, <pack-
age_name>:<mbo_version>.

Inner tags

<InputBinding> … </InputBinding> Contains the description of how to map the
key values to the parameters of one or more of the MBO operations and/or object queries to be
executed when this online request or submit action is received from the client.

<OutputBinding> … </OutputBinding> Contains the description of how to map
the response from the object query to key values.

Develop Hybrid Apps Using Third-party Web Frameworks

92 SAP Mobile Platform

InputBinding
<InputBinding optype="create" opname="create"
generateOld="false"> … </InputBinding>
Contains the MBO operation to invoke and how to map the key values to the parameters of that
operation.

Table 3. Attributes

Attribute Description

optype The type of MBO operation to invoke. Must be
one of these types:

• none

• create

• update

• delete

• other

opname The name of the MBO operation to invoke.

generatedOld A boolean that indicates whether or not to gen-
erate old value keys.

Inner tags

<Value> … </Value> Contains the description of where to obtain the parameter values
of the MBO operations to be executed when this online request or submit action is received
from the client.

Value
<Value sourceType="Key"
workflowKey="Reports_type_id_attribKey" attribName="id"
mboType="int"/>
Describes how to obtain the parameter value or attribute value from the Hybrid App message.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 93

Table 4. Attributes

Attribute Description

sourceType The source of the data. Must be one of these types:

• Key

• BackEndPassword

• BackEndUser

• DeviceId

• DeviceName

• DeviceType

• UserName

• MessageId

• ModuleName

• ModuleVersion

• QueueId

• ContextVariable

workflowKey If the sourceType is Key, the name of the key in
the Hybrid App message from which to obtain the
value.

contextVariable If the sourceType is ContextVariable, the name of
the context variable from which to obtain the val-
ue.

paramName If present, the name of the parameter the value is
supplying.

pkName If present, the name of the personalization key the
value is supplying.

attribName If present, the name of the attribute name the val-
ue is supplying. This value may, or may not, be
present together with paramName.

parentMBO The name of the parent MBO, if any.

relationShipName The name of the relationship, if any.

Develop Hybrid Apps Using Third-party Web Frameworks

94 SAP Mobile Platform

Attribute Description

mboType The type of the value in MBO terms. Must be one
of these types:

• string

• char

• date

• datetime

• time

• int

• byte

• short

• long

• decimal

• boolean

• binary

• float

• double

• list

• integer

• structure

array A boolean that indicates whether or not the value
is an array. The default is false.

length The length of the parameter/attribute/personali-
zation key.

precision The precision of the parameter/attribute/person-
alization key.

scale The scale of the parameter/attribute/personaliza-
tion key.

convertToLocalTime A boolean that indicates whether or not to convert
the value to a local time before passing it to the
MBO. The default is false.

Inner tags

<InputBinding> … </InputBinding> If the mboType is “list,” it will be necessary
to specify child input bindings to indicate which MBO operations to invoke when a child is
updated, deleted, or created.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 95

OutputBinding
<OutputBinding generateOld="true"> … </OutputBinding>
Contains a series of mappings that indicate how to map the results of the object query to the
Hybrid App message.

Table 5. Attributes

Attribute Description

generatedOld A boolean that indicates whether or not to gen-
erate old value keys.

Inner tags

<Mapping> … </Mapping> Contains the description of how to map the results of the
object query to a key in the Hybrid App message.

Mapping
<Mapping workflowKey=”Department_dept_id_attribKey”
workflowType=”number” attribName=”dept_id” mboType=”int”/>
Describes how to fill a key’s value in the Hybrid App message from the results of the object
query.

Table 6. Attributes

Attribute Description

workflowKey The name of the key in the Hybrid App message
to fill with the results of the object query.

workflowType The type of the data in the Hybrid App message.
Must be one of these types:

• text

• number

• boolean

• datetime

• date

• time

• list

• choice

attribName If present, the name of the attribute name to which
the key is mapped.

Develop Hybrid Apps Using Third-party Web Frameworks

96 SAP Mobile Platform

Attribute Description

hardCodedValue If the workflowType is not choice, and attrib-
Name is not present, the hard-coded value to
which the key is mapped.

keyWorkflowKey If the workflowType is choice, the key to which to
map the dynamic display names of the choice.

valueWorkflowKey If the workflowType is choice, the key to which to
map the dynamic values of the choice.

assumeLocalTime A boolean to indicate whether or not to assume
that the values coming back from the object query
are in local time or not. The default is false.

array A boolean that indicates whether or not the value
is an array. The default is false.

mboType The type of the value in MBO terms. Must be one
of these types:

• string

• char

• date

• datetime

• time

• int

• byte

• short

• long

• decimal

• boolean

• binary

• float

• double

• list

• integer

• structure

relationShipName The name of the relationship, if any.

Inner tags

<Mapping> … </Mapping> If the mboType is list, you must specify child mappings to
indicate how to map the attributes of child MBO instances to keys in the Hybrid App message.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 97

Notification
<Notification type="onEmailTriggered" targetscreen="dept"> …
</Notification>
Describes how to formulate the Hybrid App message for the given notification type and which
screen to open on the device when that Hybrid App message is opened.

Table 7. Attributes

Attribute Description

type The type of the notification. Must be onEmail-
Triggered.

targetscreen The screen to which the client will be opened if
the object query succeeds.

errorscreen The screen to which the client will be opened, by
default, if the object query fails.

• errorlogskey

• errorlogmessagekey

• errorlogmessageaslistkey

The keys to use to fill any error log messages.

Inner tags

<Transformation> … </Transformation> Contains the description for one or
more rules that dictate how to extract values from the server notification and map it to a key in
the Hybrid App message.

<Methods> … </Methods> Contains the description for one or more object queries to be
executed when this online request or submit action is received from the client.

Rule
<Rule type="regex-extract" source="subject" workflowKey="ID"
workflowType="number" beforeMatch="Purchase order request \("
afterMatch="\) is ready for review" format=""/>
Describes how to extract a value from the server notification and map it to a key in the Hybrid
App message.

Table 8. Attributes

Attribute Description

type The type of the rule. Must be regex-extract.

Develop Hybrid Apps Using Third-party Web Frameworks

98 SAP Mobile Platform

Attribute Description

source The source of the data to be extracted. Must be
one of these sources:

• body

• subject

• from

• to

• cc

• receivedDate

• custom1, custom2, custom3, custom4, cus-
tom5, custom6, custom7, custom8, custom9,
or custom10

workflowKey The name of the key in the Hybrid App message
to fill with the value extracted from the server
notification.

workflowType The type of the data in the Hybrid App message.
Must be one of these data types:

• text

• number

• boolean

• datetime

• date

• time

• list

• choice

assumeLocalTime A boolean to indicate whether or not to assume
that the values coming back from the object query
are in local time or not. The default is false.

beforeMatch A regular expression used to indicate where the
value starts.

afterMatch A regular expression used to indicate where the
value ends.

format If the workflowType is datetime or time, the C#
formatting string to be passed to DateTime.Par-
seExact when converting the value to a datetime.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 99

The Look and Feel XML Files
Each device platform (WindowsMobile Professional, BlackBerry, BlackBerry6, iOS, and
Android) provides a <File>…</File> tag, which refers to an XML file in the Hybrid App
ZIP package.

The contents are similar to this:
<?xml version="1.0" encoding="utf-8"?>
<widget>
 <screens src="html/myAndroidhybridapp.html"
default="Start_Screen">
 <screen key="html/myAndroidhybridapp.html">
 </screen>
 </screens>
</widget>

Different platforms can share the same look and feel XML file, or they can use different XML
files, depending on the application design. Different XML files can refer to the same HTML
file, or to different HTML files, depending, again, on the application design.

When a Hybrid App package is generated using the Hybrid App Designer, with the
Optimized for appearance option selected in Preferences, three look and feel XML files are
generated: hybridapp.xml, hybridapp_Custom.xml, and
hybridapp_JQM.xml.

Using Third-party Files
To load external JavaScript and CSS files dynamically when creating a Hybrid App package
manually:

Add the path of the third-party JavaScript or CSS files to the manifest.xml file, in the
device platform section. For example:

<BlackBerry>
<HTMLWorkflow>
<File>TokenSI_CustomLookAndFeel.xml</File>
<HtmlFiles>
<HtmlFile>html/css/bb/some-3rd-part.css</HtmlFile>
<HtmlFile>html/css/bb/checkbox.css</HtmlFile>
<HtmlFile>html/css/bb/datepicker.css</HtmlFile>
<HtmlFile>html/css/bb/editBox.css</HtmlFile>
<HtmlFile>html/css/bb/img/btn_check_off.png</HtmlFile>
<HtmlFile>html/css/bb/img/btn_check_on.png</HtmlFile>
<HtmlFile>html/css/bb/img/btn_radio_off.png</HtmlFile>

Develop Hybrid Apps Using Third-party Web Frameworks

100 SAP Mobile Platform

Deploying a Hybrid App Package with the Deploy Wizard
Use the Deploy wizard to make Hybrid App packages available on SAP Mobile Server.

If you are deploying to a target domain, replicate the value in the context variable. The domain
deployment target must match the context variable defined. If the developer has used an
incorrect context variable (for example, one used for testing environments), you can change
the value assigned to one that is appropriate for production deployments.

1. In the left navigation pane of SAP Control Center, click Hybrid Apps.

2. From the General tab, click Deploy.

3. Click Browse to locate the Hybrid App package.

4. Select the file to upload and click Open.

5. Select the deployment mode:

• New – deploys an SAP Mobile Server package and its files for the first time.
If the uploaded file does not contain an SAP Mobile Server, or an SAP Mobile Server
with the same name and version is already deployed to SAP Mobile Server, you see an
error message.

• Update – installs a new SAP Mobile Server package with the original package name
and assigns a new, higher version number than the existing installed SAP Mobile
Server package. SAP recommends that you use this deployment mode for major new
changes to the SAP Mobile Server package.
During the update operation, SAP Mobile Server:
• Acquires a list of assigned application connections from the original package.
• Installs and assigns the package a new version number.
• Prompts the administrator to specify application connection assignments from the

acquired list of assigned application connections.
• Preserves existing notifications.
• Preserves the previous SAP Mobile Server package version.

• Replace – replaces an existing SAP Mobile Server package with a new package, but
maintains the same name and version. SAP recommends that you use the replace
deployment mode for minor changes and updates to the SAP Mobile Server package,
or during initial development.
During the replace operation, SAP Mobile Server:
• Acquires a list of assigned application connections for each user of the original

package.
• Uninstalls the original package.
• Installs the new package with the same name and version.

Develop Hybrid Apps Using Third-party Web Frameworks

Developer Guide: Hybrid Apps 101

• Assigns the original application connections list to the new package, thus
preserving any application connection assignments associated with the original
package.

The package is added to the list of deployed packages, which are sorted by Display Name.

Next
Configure the deployed package if you want it to have a different set of properties in a
production environment.

Develop Hybrid Apps Using Third-party Web Frameworks

102 SAP Mobile Platform

Develop a Hybrid App Using the Hybrid App
Designer

Hybrid Apps support the occasionally connected user and addresses the replication and
synchronization issues those users present for the back-end system.

A Hybrid App application requires an integration module on the server side, which is
implemented by a static set of logic that processes Hybrid App-specific metadata to map keys
to and from mobile business object attributes, personalization keys, and parameters. This
integration module processes the notifications identified by matching rules configured for the
server-initiated starting point and also processes the responses sent to the server from the
device.

You can develop Hybrid Apps that work on these platforms:

• Android
• Apple iOS
• BlackBerry
• Windows Mobile Professional

The Hybrid App Designer provides UI controls that make development of Hybrid Apps fast
and easy. For information about using the Hybrid App Designer to design and develop Hybrid
Apps, see online help, SAP Mobile WorkSpace - Hybrid App Package Development.

See Supported Hardware and Software for supported version levels.

Deploy the Hybrid App Package to SAP Mobile Server
Use the Hybrid App generation wizard to generate the Hybrid App package and deploy it to
SAP Mobile Server to make it available for device clients.

Generating Hybrid App Files and Deploying a Package
Use the Hybrid App Package Generation wizard to generate a Hybrid App package, or to
generate Hybrid App files that you can deploy to specific devices.

1. In the Hybrid App Designer, click the code generation icon on the toolbar.

Alternatively, right-click in the Flow Design or Screen Design page and select Generate
Hybrid App Package.

2. Specify the Mobile Server profile.

3. Choose the option to either generate a package or generate files for one or more specific
platforms. Specify the required parameters, and click Finish to generate the files and close
the wizard.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 103

Note: The files to be generated are listed in the File Order tab of the Flow Design
properties view for the application. You can optionally add or remove files or change the
order in which they are loaded in the running application. See Flow Design Application
Properties for more information.

The generated files are created in the your project, visible in Workspace Navigator under
Generated Hybrid App.

4. Deploy the Hybrid App to an appropriate device or simulator.

See the Developer Guide: Hybrid Apps for information about how to configure devices or
simulators for the Hybrid App Package.

See SAP Control Center for SAP Mobile Platform documentation for information about
managing devices, Hybrid App assignments, and users.

Hybrid App Patterns
The Hybrid Web Container allows you to create lightweight applications that implement
various business solutions. These are some of the primary Hybrid App and the SAP Mobile
Platform patterns (models):

• Online lookup – the client retrieves data directly from the EIS. This pattern typically uses a
client-initiated starting point.

• Server notification – the enterprise information system (EIS) notifies SAP Mobile
Platform of data changes and SAP Mobile Platform sends notifications to subscribed
devices based on the rules.

• Cached data – the client retrieves data from the SAP Mobile Server cache. This pattern
typically uses a client-initiated starting point.

These patterns are not mutually exclusive. You can create applications that combine patterns
in various ways to meet business needs. For example:

Develop a Hybrid App Using the Hybrid App Designer

104 SAP Mobile Platform

1. An external process or application updates EIS data.
2. The changed data triggers a data change notification (DCN), which is sent to SAP Mobile

Server, or a message from another client updates mobile business object (MBO) data
contained on SAP Mobile Server.

3. The DCN could be programmed to update MBO data.
4. SAP Mobile Server notifies the client that some action needs to be taken.
5. The client views the message.
6. The client opens a screen to perform the required action. The form may, for example, call

an object query to return cached data or online data, call an MBO operation, or perform
some other action.

7. The client sends an update to SAP Mobile Server.
8. SAP Mobile Server updates the EIS.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 105

Online Lookup
This pattern provides direct interaction between the data requester (client) and the enterprise
information system (EIS), supplying real-time EIS data or cached data.

While the server notification and cached data patterns are flexible regarding MBO definition
and cache group policy, the online lookup pattern must have at least one findByParameter and
use the Online cache group policy:

1. The client requests data using the findByParameter object query.
2. Since the MBO associated with the object query is in a cache group that uses an Online

policy, SAP Mobile Server retrieves the requested data directly from the EIS and not the
cache.

3. Online data is returned to the client.

In this example, online data retrieval by the client is triggered when the user selects the menu
item that calls the findByParameter object query.

Implementing Online Lookup for Hybrid Apps
Define an MBO with at least one load argument that maps to a propagate-to attribute, add the
MBO to a cache group that uses an Online policy, then define the Hybrid App that calls the
findByParameter object query to return real-time results from the EIS.

Develop a Hybrid App Using the Hybrid App Designer

106 SAP Mobile Platform

Defining Load Arguments from Mapped Propagate to Attributes
Create an MBO with at least one load argument, map as propagate to attributes, then assign the
MBO to a cache group that uses an Online policy.

1. From SAP Mobile WorkSpace, create an MBO that has at least one load argument. For
example, you could define an Employee MBO as:
SELECT emp_id, emp_fname, emp_lname, dept_id
FROM sampledb.dba.employee WHERE dept_id = :deptIdLP

2. In the MBO Properties view, select the Attributes > Load Arguments tab, map each load
argument to be used as an operation load argument for the Hybrid App package to a
Propagate to Attribute. This example requires you to map the deptIdLP load argument to
the empDeptId attribute. You must also verify that data types are INT and the default value
is a valid INT.

3. Set the Online cache group policy for the MBO.

a) Add the MBO to a cache group that uses the Online cache group policy. For example,
create a new cache group named CacheGroupOnline and set the policy to Online.

b) Drag and drop the MBO to CacheGroupOnline.

The findByParameter object query is automatically generated based on all load arguments
that have propagate-to attributes:

4. Deploy the project that contains the MBO to SAP Mobile Server.

Binding the findByParameter Object Query to a Menu Action
For synchronous, online data access, define an Online Request menu action and bind it to the
findByParameter object query.

Prerequisites
You must have propagate-to attributes mapped to MBO load parameters, and the deployed
MBO must use an Online cache group policy. SAP Mobile Platform services must be running.

Task

1. From SAP Mobile WorkSpace, launch the Hybrid App Designer.

2. From the Flow Design screen, double-click the screen for which you are defining a
mapping to open it in the Screen Design tab.

For example, you can have a client-initiated starting point with a Start screen that connects
to the Online Data screen.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 107

3. Highlight the menu item you want to map, or create a new menu item.

4. Define a Submit action that invokes the findByParameter object query:

a) From the General tab, select Online Request as the Type.
b) In the Details section, select Search to locate the MBO that contains the

findByParameter object query.
c) Click the General tab, select Invoke object query and select findByParameter.

If you select the Parameter Mappings tab, you see all the load parameters defined for
the MBO and used to generate the findByParameter object query. In addition to Key,
you can map parameters to BackEndPassword, BackEndUser, DeviceId,
DeviceName, DeviceType, UserName, MessageId, ModuleName, ModuleVersion,
and QueueId.

Unmapped parameters can get their value from the default value, if specified, or from
the personalization key value they are mapped to, if that is specified. If the key is
unmapped, and the parameter has no default value and is not mapped to a
personalization key value, the parameter value is empty (NULL for string, 0 for
numeric, and so on).

Defining the Control that Contains the findByParameter Object Query Parameter
Add a control to pass the load argument to SAP Mobile Server. Define a screen that displays
the results returned from the EIS.

1. Define a control that passes the load argument to SAP Mobile Server from the screen
(named Online Data) that contains the menu item (named Find) that invokes the
findByParameter object query:

a) Select an EditBox control and click in the control area.
b) Name the EditBox DeptId.

c) From the Properties view, select New key and name it DeptIdKey. Click OK.

Develop a Hybrid App Using the Hybrid App Designer

108 SAP Mobile Platform

2. Select the Find menu item, and from the Parameter Mappings tab, map parameters to input
keys defined for the controls. For example, map the deptIDLP parameter to the DeptIdKey
key.

3. Define a screen that displays the results of the findByParameter object query:

a) From the Flow Design window, add a new Screen and name it Results. Select the
Screen Design tab.

b) Drag and drop a Listview control onto the control area.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 109

c) Select the Flow Design tab and double-click the Online Data screen to open it.
d) Select the Find menu item, and in the Properties view, specify Results as the success

screen.
The Online Data screen now sends successful results returned by the EIS to the Results
screen. The Flow Design window indicates the connection between the screens.

4. Configure the Results screen to display the results. In this example, the Emp MBO,
contains three attributes: Id, empName, and empDeptId. Create a Listview with a cell for
each attribute to display the results returned from the EIS as a list:

a) From the Flow Design window, double-click the Results screen to display it in the
Screen Design window.

b) Select the control area, select the General tab in the Properties view, and for the Input
Data Binding Key select <MBOName> (where MBOName is the name of the MBO).

c) Select the Cell tab, then click Add to add cell line 0.
d) Select Add in the "Fields for cell line 0" section, then select the Emp_id_attribKey

key. Click OK.

This maps cell line 0 with the id attribute for the Emp MBO results returned by the
object query.

e) Repeat steps 3 and 4 again for the remaining two attributes.

5. Select the Problems view, and verify there are no errors.

You now have a deployable Hybrid App package that passes the DeptID value to the
findByParameter object query which returns matching EIS results and displays them in the
Results screen.

Develop a Hybrid App Using the Hybrid App Designer

110 SAP Mobile Platform

Server Notification
Configure matching rules for MBO-related data on SAP Mobile Server. Any data changes
matching these rules trigger a notification from SAP Mobile Server to the client.

1. MBO data is updated from the EIS, by an external process or application that updates EIS
data and triggers a data change notification (DCN), or a scheduled data refresh.

2. If matching rules that correspond to the notification message fields are configured for the
MBO and Hybrid App package, SAP Mobile Server sends a notification to the client.

Implementing Server Notification for Hybrid Apps
Set up SAP Mobile Server to send notifications to Hybrid Apps when matching rules are
encountered.

Defining the Mobile Business Object for Server Notification
The server notification pattern supports any number of MBO definitions. For this example,
create an MBO with one load argument, assign the load argument a propagate-to attribute
value, then assign the MBO to a cache group that uses an Online policy.

The MBO definition described here allows retrieval of online results by the Hybrid App to
which the MBO belongs.

1. In SAP Mobile WorkSpace, create an MBO from the sampledb database that has at least
one load argument. For example, you could define a Sales_order MBO as:

SELECT id,
 cust_id,
 order_date,
 fin_code_id,
 region FROM sampledb.dba.sales_order
WHERE id = :order_id

2. Preview the MBO by selecting Preview from the Definition tab. Enter 2001 as the value.
The preview returns one row from the sales_order table based on the id attribute (2001).

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 111

3. In the MBO Properties view, click the Load Arguments tab, select the id attribute as the
Propagate to attribute that maps to the order_id load argument. Change the datatype to
INT, and include an integer value for the data source default value.

4. Set the Online cache group policy for the MBO.

a) Add the MBO to a cache group that uses the Online cache group policy. For example,
create a new cache group named CacheGroupOnline and set the policy to Online.

b) Drag and drop the MBO to CacheGroupOnline.

The findByParameter object query is automatically generated based on the order_id load
argument:

SELECT x.* FROM Sales_order x WHERE x.id = :order_id
5. Deploy the project that contains the MBO to SAP Mobile Server.

Develop a Hybrid App Using the Hybrid App Designer

112 SAP Mobile Platform

Creating the Server-Driven Notification Starting Point
Create a new Hybrid App with a server-initiated starting point.

1. From SAP Mobile WorkSpace, select File > New > Hybrid App Designer.

2. Select the folder that contains the Sales_order MBO as the parent folder, name the file
Sales_order.xbw, and click Next.

3. In the Starting Points screen, select Responds to server-driven notifications, and click
Next.

4. Configure the starting point:

a) In the Select a Mobile Business Object and Object Query screen, select Search.
b) Select the project that contains the Sales_order MBO and select Search. Select the

Sales_order MBO and select OK.
c) Select the findByParameter object query.

The order_id parameter appears in the Parameters field. Click Next.
d) Specify a sample notification. Enter Order (2001) created in the Subject line.

Click Next.
e) Click and drag to select "Order (", while this phrase is highlighted, right-click and

select Select as Matching Rule:
f) Click Next. Select order_id. In the Extraction Rule Properties:

1. Select Subject as the field.
2. Select "Order (" as the Start tag.

3. Select ") created" as the End tag.

When the notification is sent to the client, the sample value (2001 in this example), is
replaced with the order_id key, which identifies the id attribute of the object query. The
Hybrid App the client receives is populated with values returned by the findByParameter
object query.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 113

5. Click Finish to create default screens and starting points.

Screens are populated with menu items and controls based on the MBO definition.

Develop a Hybrid App Using the Hybrid App Designer

114 SAP Mobile Platform

6. Deploy the Hybrid App package to SAP Mobile Server.

Sending an Order Notification to the Device
Use the "Send a notification" option to send a message to the registered user, which tests the
server notification process.

Prerequisites
Before sending notification to the client, you must:

1. Register the Hybrid App connection in SAP Control Center.
2. Download and configure the Hybrid Web Container on the device or emulator.

Task
Use this method only for testing purposes, during development. In a production system,
notifications would come in as DCN, or e-mail-based notifications.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 115

1. In the Flow Design of the Hybrid App Designer, right-click and select Send a
notification.

2. Select Get Device Users, and set the "To" field to User1, or whatever device user is
registered in SAP Control Center and assigned to the Hybrid App package.

3. In the Subject field, enter a sales order that meets the matching rules criteria defined for the
Sales_order Hybrid App. For example:

Order (2001) created
4. Click Send.

The message is sent to the device. The number 2001 in the notification identifies and
returns row 2001 (the findByParameter object query parameter).

Cached Data
This pattern is efficient when access to cached data is sufficient to meet business needs. For
example, it may be sufficient to refresh the cache once a day for noncritical MBO data that
changes infrequently.

1. EIS data is cached based on the MBO cache policy (Scheduled or On demand). Either
policy lets you define the length of time for which cached data is valid.

2. The Hybrid App requests data through an object query.
3. Cached data is returned to the client if it is within the cache policy's specified cache

interval.

Implementing the Cached Data Pattern
Define an MBO that uses either a Scheduled or On demand cache group policy to allow the
Hybrid App to which it belongs to retrieve cached data.

Develop a Hybrid App Using the Hybrid App Designer

116 SAP Mobile Platform

Defining the Mobile Business Object
Create an MBO with the required attributes, assign the MBO to a cache group that uses a
scheduled policy, and define an object query that returns the results from the SAP Mobile
Server cache (also called the CDB) to the client.

This example defines an MBO that retrieves employee benefit information for all employees
of a given department based on the dept_id attribute using the findByDeptId object query.

1. From SAP Mobile WorkSpace, create an MBO. For example, you could define the
employee MBO as:

SELECT emp_id,
 emp_fname,
 emp_lname,
 dept_id,
 bene_health_ins,
 bene_life_ins,
 bene_day_care
 FROM sampledb.dba.employee

2. Set the cache group policy for the MBO:

a) Create a new cache group named CacheGroupScheduled and set the policy to
Scheduled. Set the Cache interval to 24 hours, so the cache is refreshed once a day.

b) Drag and drop the MBO to CacheGroupScheduled.

3. Define an object query for the MBO that retrieves employee information based on the
dept_id attribute. For example, define the findByDeptId object query as:
SELECT x.* FROM Employee x
WHERE x.dept_id = :deptIDLP

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 117

4. Deploy the project that contains the MBO to SAP Mobile Server.

Binding the findByDeptId Object Query to a Menu Action
For access to cached data, define a menu action and bind it to the findByDeptId object query.

1. From SAP Mobile WorkSpace, launch the Hybrid App Designer.

2. From the Flow Design screen, double-click the screen for which you are defining a
mapping to open it in the Screen Design tab.

For example, you can have a client-initiated starting point with a Start screen that connects
to the Cached Data screen.

Develop a Hybrid App Using the Hybrid App Designer

118 SAP Mobile Platform

3. Highlight the menu item you want to map, or create a new menu item.

4. Define a Submit action named FindBenefitsInfo that invokes the findByDeptId object
query:

a) In the Properties view, in the General properties for the selected menu item, select
Online Request as the Type.

b) In the Details section, select Search to locate the MBO that contains the findByDeptId
object query.

c) Click the General tab, select Invoke object query and select findByDeptId.

If you select the Parameter Mappings tab, you see the parameters associated with the
object query (findByDeptId). Map this parameter to a key.

Defining the Control that Contains the findByDeptId Object Query Parameter
Add a control to pass the object query parameter to SAP Mobile Server. Define a screen that
displays the results returned from the SAP Mobile Server cache.

1. Define a control that passes the object query parameter to SAP Mobile Server from the
screen (named Cached Data) that contains the menu item (named FindBenefitsInfo) that
invokes the findByDeptId object query:

a) Select an EditBox control and click in the control area.
b) Name the EditBox DeptId.

c) From the Properties view, select New key and name it DeptIdKey. Click OK.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 119

2. Select the FindBenefitsInfo menu item, and from the Parameter Mappings tab, map
parameters to input keys defined for the controls. For example, map the deptIDLP
parameter to the DeptIdKey key.

3. Define a screen that displays the results of the findByDeptId object query:

a) From the Flow Design window, add a new Screen and name it Results. Select the
Screen Design tab.

b) Drag and drop a Listview control onto the control area.
c) Select the Flow Design tab and double-click the Cached Data screen to open it.
d) Select the FindBenefitsInfo menu item, and in the Properties view, in General

properties, select Online Request as the Type and in the Details section, select Results
as the Success screen.
The Cached Data screen now sends successful results returned by the SAP Mobile
Server cache to the Results screen. The Flow Design window indicates the connection
between the screens.

Develop a Hybrid App Using the Hybrid App Designer

120 SAP Mobile Platform

4. Configure the Results screen to display the results. In this example, the Employee MBO,
contains seven attributes that identify the employee and their benefits. Create a Listview
with a cell for each attribute to display the results returned from the cache as a list:

a) From the Flow Design window, double-click the Results screen to display it in the
Screen Design window.

b) Select the control area, select the General tab in the Properties view, and for the Input
Data Binding Key select MBOName_findByDeptId_resultSetkey (where
MBOName is the name of the MBO).

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 121

c) Select the Cell tab, then click Add to add cell line 0.
d) Select Add in the "Fields for cell line 0" section, then select the

Employee_emp_fname_attribKey key. Click OK.

This maps cell line 0 with the id attribute for the Emp MBO results returned by the
object query.

e) Repeat steps 3 and 4 again for the remaining employee's last name and benefits related
attributes.

Develop a Hybrid App Using the Hybrid App Designer

122 SAP Mobile Platform

5. Select the Problems view, and verify there are no errors.

You now have a deployable Hybrid Apppackage that passes the DeptID value to the
findByDeptId object query which returns matching cached results and displays them in the
Results screen.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 123

Binding Transient Personalization Keys to Hybrid App Keys
Use transient personalization key values to determine the data to be cached.

Prerequisites
You must have transient personalization keys mapped to Mobile Business Object load
arguments.

Task

1. Launch the Hybrid App Designer from SAP Mobile WorkSpace and create a new Hybrid
App:

a) Select File > New > Hybrid App Designer.
b) Select the parent folder that contains the MBO with a load argument mapped to a

transient personalization key. Name the file and click Next.
c) Select Responds to server-driven email notifications from the Starting Points screen

and click Next.
d) Select the MBO that contains the load argument to transient key mapping in the Search

for MBO screen and click OK, then click Next.
e) Specify sample e-mail contents and click Next.
f) Specify the matching rules used to trigger a screen flow by highlighting the text, right-

clicking it, and selecting Select as matching rule.
g) Click Finish.

2. In the Hybrid App Designer, map the personalization keys to the Hybrid App keys for the
menu item:

a) From the Flow Design screen select the operation for which you are defining a
mapping.

b) Select the Screen Design tab, and highlight the menu item you want to map.
c) Select Personalization Key Mappings, click Add, and select a personalization key

from the drop-down list and the key to which it maps.

You can also fill the personalization key values from values extracted from the e-mail,
depending on from where you are invoking the object query.

When the application runs, the values are sent from the client which are used to fill the load
argument values, and determine what data is cached in the SAP Mobile Server cache (CDB)
and returned to the client.

Hybrid App Package Customization
The designer-based user interface is customizable using HTML, JavaScript and CSS Web
technologies.

Develop a Hybrid App Using the Hybrid App Designer

124 SAP Mobile Platform

Customizing Generated Code
Modify generated JavaScript code to customize the Hybrid App.

1. Use the Hybrid App Package Generation wizard to generate the Hybrid App package and
its files.

When the Hybrid App package is generated, the Custom.js file is generated if not
already present in the project. The Custom.js file is located in Generated Hybrid
App\<hybridapp_project_name>\html\js.

2. Right-click the Custom.js file and select the editor with which to open the file.

3. Add your JavaScript code. For example, you can add code to call the APIs that are
available through PhoneGap (also known as Apache Cordova).

Find the line: hwc.customAfterHybridAppLoad = function() {, and add:

 document.addEventListener("deviceready", phoneGapIsReady,
false);
//call the phoneGapIsReady function when PhoneGap is fully
loaded.

Then add this function:
function phoneGapIsReady() {
 hwc.showAlertDialog("The connection type is " +
navigator.network.connection.type + " and
 the platform and version is " + device.platform + " " +
device.version);
}

In this example, when the Hybrid App is launched, the connection type, operating systerm
platform and version, and device version is shown.

4. Save and close the Custom.js file.

Since the Custom.js file is generated only if it is not already present in the Hybrid App
project, this file will not be re-generated if you subsequently re-generate the Hybrid App
package, so any modifications you make are preserved.

5. Deploy the Hybrid App package to SAP Mobile Server.

Any time you customize the code, you must redeploy the Hybrid App package to SAP
Mobile Server.

You can also add your own separate JavaScript files to Generated Hybrid Apps
\hybridapp_project_name\html\js, then add custom code to the
Custom.js file that calls the functions in the JavaScript files you added. Modularizing
your custom code can prevent the Custom.js file from becoming too long, and make it
easier for multiple developers to collaborate on the same Hybrid App.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 125

Adding Local Resources to a Hybrid App Project
When loading resources using custom JavaScript, be aware of the folder structure.

Depending on localization, the structure and path to the local resource may be different.
Possible folder paths include:

• .../html/default/hybridapp.html
• .../html/{locale}/hybridapp.html
• .../html/hybridapp.html

Referencing custom resources in HTML elements requires the use of relative URLs. The
parent directory may be the HTML directory, the root, or something else. There is no
guarantee that the URL structure is always http://hostname/html/hybridapp.html. It is
possible to copy the resources into each localization directory or reference the resources from
one directory (paying attention to localization paths).

An example of a useful helper function to get the relative path to the HTML directory is:
/**
 * Returns relative URL to the html directory
 */
function getRelativeRoot()
{
 return ((resources != null) ? "../" : ""
}

// Helper function usage
var imageElement = document.getElementById("ImageElement");
imageElement.src = getRelativeRoot() + "images/myImage.gif";

Generated Hybrid App Files
When you use the Hybrid App Generation wizard to create a Hybrid App package, all the
package files are generated the first time. Subsequent generations overwrite only a small
subset of the files.

Generated package files are created in a top-level folder with the name of the Hybrid App. If
you choose the option to generate into the current project, this file is visible in WorkSpace
Navigator under the project Generated Hybrid App folder.

These files are always generated:

• hybridapp-name.zip – a single archive containing all of the Hybrid App files,
including the Web application files, look and feel files, and JavaScript files.

• manifest.xml – describes the contents of the hybridapp-name.zip file.

• datajs-version.js – a JavaScript library of functions for ODATA and native device
services that are not included in Hybrid Apps by default. By referencing these functions in
your customization (in Custom.js, you can incorporate functionality from third-party
JavaScript SDKs into your Hybrid Apps.

Develop a Hybrid App Using the Hybrid App Designer

126 SAP Mobile Platform

These files are regenerated only if you select the Generate platform specific files option in
the Hybrid App Package Generation wizard:

• hybridapp.html – contains all the screens in the Hybrid App, each in its own div
element. This is used with the Optimize for performance look and feel. On Windows
Mobile, it is used for all looks-and-feels.

• hybridapp_Custom.html – contains all the screens in the Hybrid App.

• hybridapp_jQM.html – contains all the screens in the Hybrid App. This is used with
the Optimize for appearance look and feel on iOS, BlackBerry, and Android.

• WorkflowClient.xml – contains metadata that specifies how to map the data in the
Hybrid App message to and from calls to Mobile Business Object (MBO) operations and
object queries.

• hybridapp_name.xml – look and feel file that uses the basic
hybridapp_name.html file.

• js and css – subfolders containing the Javascript and CSS style sheet files for the
application, including these files:
• Resources.js – allows you to access localized string resources.

• HybridApp.js – contains functions for common menu, screen, and database
operations.

• PhoneGap JavaScript file. Typically named js\platform\cordova-
x.x.x.javascript, for any Hybrid App package that is built for an Android, iOS, or
BlackBerry device using the PhoneGap library. The file is copied from <SMP_HOME>
\MobileSDK<version>\HybridApp\API\Container.

These files are generated only if you select the Generate option and the files do not exist:

• API.js and Utils.js – provide Hybrid App functions used to communicate with the
Hybrid Web Container.

• Custom.js – enables you to add JavaScript code to customize the Hybrid App. Your file
is preserved each time you regenerate the package.
You can edit this file to customize your Hybrid App. It is generated the first time, but is not
overwritten subsequently. In this way, your changes are preserved each time you
regenerate the Hybrid App package. Examples of ways you can customize the Hybrid App
include:
• Manipulating HTML elements.
• Writing code that is called before or after generated behavior is invoked for menu

items.
• Implementing custom validation logic.

• WorkflowMessage.js – provides functions to access Hybrid App message resources.

• All *.css files – defines formatting rules to render the screens in HTML.

These files are overwritten when you regenerate a package:

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 127

• All the files in the top-level Generated Hybrid App\hybridapp-name folder,
including the XML and ZIP files.

• The files in the html subfolder.

Generated HTML Files
The Hybrid App Designer generates these HTML files.

• hybridapp.html – contains all the screens in the Hybrid App, each in its own div
element. This is used with the Optimize for performance look and feel. On Windows
Mobile, it is used for all looks-and-feels.

• hybridapp_Custom.html – contains all the screens in the Hybrid App.

• hybridapp_jQM.html – contains all the screens in the Hybrid App. This is used with
the Optimize for appearance look and feel on iOS, BlackBerry, and Android.

Note: In Preferences, Optimize for appearance is the default look and feel.

Look and Feel Files
By default, on BlackBerry 6.0, Android, and iOS platforms, the jQuery Mobile look and feel is
used. On BlackBerry 5.0, a custom look and feel is used as the default.

Note: In Preferences, Optimize for appearance is the default look and feel.

CSS files include:

• jquery.mobile-1.1.0.css – located in Generated Hybrid App\Hybrid
App name\html\css\jquery folder and used on BlackBerry 6.0, Android, and iOS
platforms. By default, pages are generated using the B data theme. Modify the ui-body-
a class selector in this file to modify the look and feel, for example, the background image
or color.

• master.css– located in Generated Hybrid App\Hybrid App name\html
\css\bb and used on the BlackBerry 5.0 platform. This is used on the BlackBerry 5.0
platform when the Optimize for appearance preference is selected. Modify the body
selector to change the look and feel, for example, the background color.

• stylesheet.css – located in Generated Hybrid App\Hybrid App name
\html\css. This look and feel is considerably simpler, using no JavaScript code to
manipulate the controls, and only a single CSS file. This style sheet is used on all platforms
for the Optimize for performance preference is selected. To modify the background color
for this look and feel, modify the body selector.

Default Look and Feel
The default look and feel is provided by the jQuery Mobile framework.

In Preferences, Optimize for appearance is the default look and feel.

For the standard look and feel, the layout of the HTML at a high level is:

Develop a Hybrid App Using the Hybrid App Designer

128 SAP Mobile Platform

• Each screen has a block, contained in a div element, with attributes data-
role="page" and data-theme="a". Each div element has a div child element with
a data-role="header" attribute and a child element for the menu. Use the contents
of the header div to manipulate the menu.
<div data-role="page" data-theme='a'
id="Department_createScreenDiv">
 <div data-role="header" data-position="inline">
 <a data-icon="arrow-l"
id="Department_createScreenDivCancel" name="Cancel"
onclick="menuItemCallbackDepartment_createCancel();"> Cancel
 <h1>Department_create</h1>
 <a id="Department_createScreenDivCreate" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">
Create
 </div>

• The menu has one anchor (a) element for each menu item:
<a id="Department_createScreenDivCreate" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">
Create

• In addition to a menu, each screen div has a child div element with a data-
role="content" attribute, where the controls are hosted. The content div element has
a child div with a data-role="scroller" attribute. This div in turn has a form with a
number of div elements. The content div is where you can do customizations, such as
branding.
<div data-role="content" class="wrapper" >
 <div data-role="scroller">
 <form name="Department_createForm"
id="Department_createForm">
 <div class="customTopOfFormStyle" ><span
id="Department_createForm_help" class="help"></div>
 <div class="customTopOfFormStyle"
id="topOfDepartment_createForm"></div>
 <div class="editbox">
 <label class="left"
for="Department_create_dept_name_paramKey">Dept name:</label>
 <input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_name_paramKey_help"
class="help">
 </div>

The first div element is a block used to display help in a span element.
The next div is a built-in element that can be used to find the top of the form. The last div is
another built-in element that can be used to find the bottom of the form.
In the Custom.js file, it is recommended that you add customizations such as branding
to the div element, "TopOf" ScreenKey "Form" and "bottomOf" screenKey "Form." For
example:
/*
var screenKey = getCurrentScreen();
var form = document.forms[screenKey + "Form"];

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 129

if (form) {
var topOfFormElem = document.getElementById("topOf" screenKey +
"Form");
! topOfFormElem.innerHTML = "Use this screen to ...";
var bottomOfFormElem = document.getElementById("bottomOf"
screenKey + "Form");
bottomOfFormElem.innerHTML = "Click here to
open help";
}
*/

All the other divs in the form correspond to the controls put on that screen during design
time in the Hybrid App Designer. You might see, for example, a div that holds a label and a
textbox (input element). When the page is opened, the controls are enhanced by jQuery
Mobile to supply additional functionality for controls like buttons, sliders, text inputs, and
combo boxes.

A typical Hybrid App with this look and feel, without extraneous attributes, might look like
this:
<html>
 <body onload="hwc.onHybridAppLoad();">
 <div data-role="page" data-theme='a'
id="Department_createScreenDiv">
 <div data-role="header" data-position="inline">
 <a data-icon="arrow-l" id="Department_createScreenDivCancel"
name="Cancel" onclick="menuItemCallbackDepartment_createCancel();">
Cancel
 <h1>Department_create</h1>
 <a id="Department_createScreenDivCreate" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">
Create
 </div>
 <div data-role="content" class="wrapper" >
 <div data-role="scroller">
 <form name="Department_createForm"
id="Department_createForm">
 <div class="customTopOfFormStyle" ><span
id="Department_createForm_help" class="help"></div>
 <div class="customTopOfFormStyle"
id="topOfDepartment_createForm"></div>
 <div class="editbox">
 <label class="left"
for="Department_create_dept_name_paramKey">Dept name:</label>
 <input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_name_paramKey_help"
class="help">
 </div>
 <div class="customBottomOfFormStyle"
id="bottomOfDepartment_createForm"></div>
 </form>
 </div>
 </div>
 </div>

Develop a Hybrid App Using the Hybrid App Designer

130 SAP Mobile Platform

 </body>
</html>

Default Look and Feel CSS Files
CSS look and feel files include:

• jquery.mobile-1.1.0.css – located in Generated Hybrid App
\hybridapp-name\html\css\jquery folder. By default, pages are generated
using the B data theme. Modify the ui-body-a class selector in this file to modify the
look and feel, for example, the background image or color.

• master.css– located in Generated Hybrid App\hybridapp-name\html
\css\bb. Modify the body selector to change the look and feel, for example, the
background color.

• stylesheet.css – located in Generated Hybrid App\hybridapp-name
\html\css. This look and feel is simple: it uses no JavaScript code to manipulate the
controls, and only a single CSS file. This style sheet is used on all platforms for which the
Optimize for performance preference is selected. To modify the background color for this
look and feel, modify the body selector.

BlackBerry Custom Look and Feel File
hybridapp_Custom.html defines the HTML structure for the BlackBerry custom look
and feel.

Each screen has a div element block with a form element, and each form has a number of div
child elements. The first div in the form has a span used to display help. The next div is a
built-in element that can be used to find the top of the form. The last div is another built-in
element that can be used to find the bottom of the form. All the divs in the form correspond to
the controls put on that screen in the Hybrid App Designer. You might get, for example, a div
that holds a label and a textbox (input element).

This example shows a Hybrid App with this look and feel, without extraneous attributes:
<html>
 <body onload="hwc.onHybridAppLoad();">
 <div id="Department_createScreenDiv">
 <form name="Department_createForm"
id="Department_createForm">
 <div class="customTopOfFormStyle" ><span
id="Department_createForm_help" class="help"></div>
 <div class="customTopOfFormStyle"
id="topOfDepartment_createForm"></div>
 <div class="editbox">
 <label class="left"
for="Department_create_dept_name_paramKey">Dept id:</label>
 <input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_id_paramKey_help"
class="help">
 </div>
 </form>

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 131

 </div>
 </body>
</html>

Optimize for Performance Look and Feel
This is a simple look and feel option that you can use on all platforms.

Note: Windows Mobile 6.x Professional platforms always use the Optimize for performance
look and feel, as this platform is not supported by jQuery Mobile.

Choose the Optimize for performance option when you configure Hybrid App Designer
preferences. For this look and feel, the layout of the HTML at a high level is:

• Each screen has a block, a <div> element. Each of those <div> elements has an unordered
list element, , a child element for the menu. The menu has one list item, , for each
menu item.

• In addition to a menu, each <div> has a form element, <form>, where the controls are
hosted.

• Each form has a single table, <table>, with a number of table rows, <tr>. The first table row
has a block to display help, a element. The next table row is a built-in element, a
table data or <td>, that can be used to find the top of the form.

• The last table row is another built-in element, a <td>, that can be used to find the bottom of
the form.

• All the other rows in the form correspond to the controls put on that screen in the Hybrid
App Designer. You might get, for example, a row with two table datas, the first holding a
<label> and the second holding a textbox (<input>).

• A column can have only one width, so if you have more than one line, one column may
contain different widths, which means the last width prevails. The contents of a field are
wrapped only where there is a space. If there is no space, the contents are not wrapped. As a
result, depending on the length of the data, Listviews may not respect the field widths
specified in the Hybrid App Designer with this look-and-feel.

A typical Hybrid App with this look and feel, without extraneous attributes, looks similar to
this:
<html>
 <body onload="onHybridAppLoad();">
 <div id="Department_createScreenDiv">
 <ul id="Department_createScreenDivMenu" class="menu">
 <a class="nav" name="Create"
onclick="menuItemCallbackDepartment_createSubmit_Workflow();">Creat
e
 <a class="nav" name="Cancel"
onclick="menuItemCallbackDepartment_createCancel();">Cancel</
li>

 <form name="Department_createForm"
id="Department_createForm">
 <table class="screen">
 <tr>

Develop a Hybrid App Using the Hybrid App Designer

132 SAP Mobile Platform

 <td colspan="2"><span id="Department_createForm_help"
class="help"></td>
 </tr>
 <tr>
 <td colspan="2" id="topOfDepartment_createForm"></td>
 </tr>
 <tr>
 <td class="left"><label
for="Department_create_dept_name_paramKey">Dept name:</label></td>
 <td class="right"><input class="right" type="text"
id="Department_create_dept_name_paramKey"/><span
id="Department_create_Department_create_dept_name_paramKey_help"
class="help"></td>
 </tr>
 <tr><td colspan="2" id="bottomOfDepartment_createForm"></
td></tr></table>
 </form>
 </div>
 </body>
</html>

Reference
This section describes the generated files and the Hybrid App client API.

Hybrid App Client API
SAP Mobile Platform Hybrid Apps include a JavaScript API that open Hybrid Apps to
customization, from including client-side business logic to changing the presentation layer.

Use the client API to build custom applications to support SAP Mobile Platform Hybrid App
features and functionality.

Public JavaScript Functions
The JavaScript files contain the functions that you can access for use with Hybrid App
package customization.

The files where the Hybrid Web Container JavaScript APIs are defined are located in
<SMP_HOME>\ UnwiredPlatform\MobileSDK<version>\HybridApp\API
\Container.

Note: The detail of the individual APIs is not available if you are viewing this document from
DocCommentXchange (http://dcx.sybase.com) or in PDF format. You can access this
information by going to Product Documentation at http://infocenter.sybase.com/help/topic/
com.sybase.infocenter.dc01853.0222/doc/html/vhu1349901991724.html

These JavaScript files are also included:

• Utils.js – does not contain public functions to call

• HybridApp.js – does not contain public functions to call

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 133

http://dcx.sybase.com/
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01853.0220/doc/html/vhu1349901991724.html
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01853.0220/doc/html/vhu1349901991724.html

• json2.js – third-party library. For information about the functions in this library, see
the JSON documentation.at http://json.org

• cordova-2.0.0.javascript – contains PhoneGap APIs. For information about
PhoneGap APIs, see the documentation at www.phonegap.com.

API.js
The API.js file contains several different types of functions.

They include:

• General and Hybrid App utility functions
• Validation functions
• Credential functions

Hybrid App UI Functions
Functions that allow you to access the Hybrid App user interface (UI).

updateUIFromMessageValueCollection
To completely override the behavior provided by
updateUIFromMessageValueCollection for a given screen, provide a
UIUpdateHandler object for that screen. That UIUpdateHandler object has a screenName
property, which indicates which screen's behavior it is overriding, and a callback function that
indicates the function to call for that screen. That function is passed in the relevant
MessageValueCollection object and it is its responsibility to update the controls' values based
on its contents. An example of this is:
function MyListViewUpdateHandler() {
 this.screenName = "Prev_Expenses";
 this.values;
 }

 MyListViewUpdateHandler.prototype.callback = function(valuesIn)
{
 // Rows returned from RMI Call
 this.values = valuesIn;

 // construct our table
 try {
 var mvc =
this.values.getData("PurchaseTrackingJC_findOtherRequests_resultSet
Key");
 var txt = "";
 var htmlOut = "<p>";

 // Do we have any rows to display?
 if (mvc.value.length > 0) {
 // Start the table and header
 htmlOut += "<table id='MyPrevExpensesTable'
class='altrowstable'>";
 htmlOut += "<tr><th>Item Name</th><th>Cost</th></tr>";

Develop a Hybrid App Using the Hybrid App Designer

134 SAP Mobile Platform

http://json.org
http://docs.phonegap.com/en/2.2.0/index.html

 // Draw the rows+H15
 for (var rows = 0; rows < mvc.value.length; rows++) {
 var mvName =
mvc.value[rows].getData("PurchaseTrackingJC_itemName_attribKey");
 var mvCost =
mvc.value[rows].getData("PurchaseTrackingJC_itemCost_attribKey");

 if (mvName && mvCost) {
 // Alternate the row colors
 htmlOut += "<tr
onclick='navigateForward(\"Prev_Expenses_Detail\", " +
mvc.value[rows].getKey() + ");'";
 if (rows % 2 == 0) {
 htmlOut += " class='evenrowcolor'>";
 }
 else {
 htmlOut += " class='oddrowcolor'>";
 }

 htmlOut += "<td>" + mvName.getValue() + "</
td><td>" + mvCost.getValue(); +"</td></tr>";
 }
 }

 // Finish the table
 htmlOut += "</table>";
 }
 else {
 htmlOut += "No rows returned.";
 }
 htmlOut += "</p>";

 //Now add the table to the document
 var form = document.forms[curScreenKey + "Form"];
 if (form) {
 //var topOfFormElem = document.getElementById("topOf" +
curScreenKey + "Form");

 var topOfFormElem =
document.getElementById("PurchaseTrackingJC_findOtherRequests_resul
tSetKey");
 topOfFormElem.innerHTML = htmlOut;
 }

 }
 catch (e) {
 alert(e.message);
 }
 } // function callback

 function customAfterWorkflowLoad() {
 //Setup UIHandler to draw our Listview Screen
 UIUpdateHandlers[0] = new MyListViewUpdateHandler();
 }

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 135

Hybrid App Native Device Functions
Access the native features of the device using the native device functions.

showUrlInBrowser(url)

To have a hyperlink in the default value for the HtmlView control, or for doing customization
in Javascript, follow the showUrlInBrowser method without using standard HTML. To add
HTML in the default value for the HtmlView control, you can use something similar to:
<html>
<body>
Welcome

Your activation was successful, the newly created Hybrid App
requests will automatically be pushed to you.

For more information contact your administrator or visit us
at:

<a href="javascript:showUrlInBrowser('http://www.sap.com/
unwiredenterprise')">SAP Mobile Platform
</body>
</html>

View an attachment such as an image, a Word document, a PDF file, and so on as part of the
Hybrid App package. This example uses an image file.
1. Generate the Hybrid App package and its files.
2. In WorkSpace Navigator, go to the location where the generated Hybrid App files are

located and add an images folder under the html folder, for example, Generated
Hybrid App\<hybridapp_name>\html\images.

3. Copy an image to the images folder.
4. In the Hybrid App Designer, add a menu item to the Hybrid App.
5. Open the Custom.js file with a text editor and edit the method

customBeforeMenuItemClick:

if (screen === "ScreenKeyName" && menuItem === "ShowAttachment") {
 showLocalAttachment("html/images/ipod.jpg");
 return false;
 }

6. Save and close the Custom.js file.
7. Deploy the Hybrid App package to SAP Mobile Server.

Hybrid App Message Data Functions
Access the Hybrid App message data functions.

A Hybrid App has an in-memory data structure where it stores data. This data is used to update
the controls on the screen through updateUIFromMessageValueCollection().
Values are extracted from those controls and used to update the data through
updateMessageValueCollectionFromUI().

You can program the data content and use it to make decisions on the client. To get the active
instance of this data structure, you start by calling getWorkflowMessage(). This returns

Develop a Hybrid App Using the Hybrid App Designer

136 SAP Mobile Platform

a WorkflowMessage object. This object has a function, getValues(), that is used to return
the top-level MessageValueCollection object. This object has a list of key-value pairs,
represented by MessageValue objects and is retrieved by calling getData(key).
getData() returns either a single MessageValue object, or an array of
MessageValueCollection objects.

A typical Hybrid App message might look similar to this.
WorkflowMessage
 .getHeader() <undefined>
 .getWorkflowScreen() "salesorderList_newSOCreate"
 .getRequestAction() "Submit_Workflow"
 .getValues() MessageValueCollection
 .getData("salesorderList_newSOCreate_WITHOUT_COMMIT_para
mKey")
 .getKey()
"salesorderList_newSOCreate_WITHOUT_COMMIT_paramKey"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_DOC_TYPE_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_DOC_TYPE_attribKey"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_SALES_ORG_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_SALES_ORG_attribKey
"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_DISTR_CHAN_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_DISTR_CHAN_attribKe
y"
 .getType() "TEXT"
 .getValue() "1"
 .getData("BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN
_DIVISION_attribKey")
 .getKey()
"BAPI_SALESORDER_CREATEFROMDAT1_ORDER_HEADER_IN_DIVISION_attribKey"
 .getType() "TEXT"
 .getValue() "1"
 .getData("salesorderList_newSOCreate_ORDER_PARTNERS_para
mKey")
 MessageValue
 .getKey()
"salesorderList_newSOCreate_ORDER_PARTNERS_paramKey"
 .getType() "LIST"
 .getValue() MessageValueCollection[]
 [0].getKey() "6476c1a4-94e9-e5a4-b903-
caf2ca613c4a"
 [0].getState() "add"

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 137

 [0].getData("PARTN_ROLE")
 MessageValue
 .getKey() "PARTN_ROLE"
 .getType() "TEXT"
 .getValue() "1"
 [0].getData("PARTN_NUMB")
 MessageValue
 .getKey() "PARTN_NUMB"
 .getType() "TEXT"
 .getValue() "1"
getCurrentMessageValueCollection
Handling individual items
var message = getCurrentMessageValueCollection();

var cityObj = message.getData("Customer_city_attribKey");
var city = cityObj.getValue();

var stateObj = message.getData("Customer_state_attribKey");
var state = stateObj.getValue();

var zipObj = message.getData("Customer_zip_attribKey");
var zip = zipObj.getValue();

List
var message = getCurrentMessageValueCollection();
var itemList = message.getData("CustDocs");

var items = itemList.getValue();
var noOfItems = items.length;
var i = 0;

while (i < noOfItems) {
 var theItems = items[i];
 var
fileNameObj=theItems.getData("CustDocs_fileName_attribKey");
 var fileName = fileNameObj.getValue();
 i = i + 1;
}

Callbacks.js File
This file contains callback functions.

Callback functions are typically used for event handlers that are asynchronous.

Camera.js
These functions allow you to take a picture from the camera, or pick one from the photo library
and use the picture in the Hybrid App.

Develop a Hybrid App Using the Hybrid App Designer

138 SAP Mobile Platform

getPicture Function
The getPicture function provides access to the device's default camera application or
device's photo library for retrieving a picture asynchronously.

If the SourceType is CAMERA or BOTH, the getPicture function opens the device's
default camera application (if the device has a camera) so the user can take a picture. Once the
picture is taken, the device's camera application closes and the Hybrid App is restored. If the
device does not have a camera application, the function reports that it is not supported.

Using the getPicture Function for Larger Image Sizes
For larger images, use the IMAGE_URI destination type.

For larger images, use the IMAGE_URI destination type. The MIME type for the image URI
is determined using the extension of the file name parameter in the onGetPictureSuccess
callback. You must add this extension information to the Hybrid App message as a separate
MessageValue to use it on the server. For the HTML image tags, the browser should be able to
determine the type through the HTTP connection opened on the URI.

You must create a new option object similar to this:
var options = { destinationType:
PictureOption.DestinationType.IMAGE_URI,
 sourceType: PictureOption.SourceType.CAMERA
 };

getPicture(onPictureError, onPictureSuccess, options);

The destinationType can be PictureOption.DestinationType.IMAGE_DATA (Base64 string
behavior), or the new PictureOption.DestinationType.IMAGE_URI type. Depending on the
destination type specified, the picture success callback's second parameter may be a Base64
string or a URI. The source type can be PictureOption.SourceType.CAMERA,
PictureOption.SourceType.PHOTOLIBRARY., or PictureOption.SourceType.BOTH.

The image URI passed back is expected to be valid and resolvable to the image by the browser.
You can create an HTML image tag with a URI to display the image, for example, . This can also be used
to create thumbnails.

Uploading the Image to the Server for a URI
To upload the image to the server for a URI, you must create a MessageValue in the JavaScript
with a “FILE” type. When the JavaScript Hybrid App message is serialized it will identify if
the message contains files. During a submit or online request, the query sent to the container
will contain a new query parameter that identifies that this message must be parsed again. The
query looks similar to: ?querytype=submit&parse=true.

Note: When you upload a large image to the server using an online request, rather than a
submit Hybrid App, the image contents come back from the online request, which can result in

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 139

too large of a Hybrid App message for the container to handle. It is recommended that you use
the submit action instead of online request action when it is likely that the message size will be
very large, such as when it includes large images.

The custom code must call the function
getWorkflowMessage().setHasFileMessageValue(true); for the parse
query to be sent to the container.

When uploading the image to the server for a URI, the JavaScript looks similar to this
example:
var options = { destinationType:
PictureOption.DestinationType.IMAGE_URI, sourceType:
PictureOption.SourceType.PHOTOLIBRARY };

getPicture(onGetPictureError, onGetPictureSuccess, options);

function onGetPictureSuccess(fileName, imageUri){
 // Set file for upload
 var fileDataKey = "Picture_create_fileData_paramKey";

 var messageValue =
getWorkflowMessage().getValues().getData(fileDataKey);

 if (messageValue)
 {
 // Update file for upload
 messageValue.setValue(imageUri);
 }
 else
 {
 // Add file for upload
 messageValue = new MessageValue();
 messageValue.setKey(fileDataKey);
 messageValue.setValue(imageUri);
 messageValue.setType(MessageValueType.FILE);
 getWorkflowMessage().getValues().add(fileDataKey,
messageValue);
 }

 getWorkflowMessage().setHasFileMessageValue(true);
}

Handling a larger image size example:
function reportError(errCode)
{
 if (errCode != PictureError.USER_REJECT) {
 // error occurred
 }
}

function reportImage(fileName, imageUri)
{
 // Image captured

Develop a Hybrid App Using the Hybrid App Designer

140 SAP Mobile Platform

 alert("Photo taken");

 // Optional - Display preview in image tag
 var imageTagId = "Thumbnail"; // The id of your image tag
 var imageElement = document.getElementById(imageTagId);
 imageElement.src = imageUri;

 // Optional - Create message value to upload image
 var fileKey = "Picture_create_fileData_paramKey"; // Key that
maps to submit or online request parameter
 var messageValue = new MessageValue();
 messageValue.setKey(fileKey);
 messageValue.setValue(imageUri);
 messageValue.setType(MessageValueType.FILE);

 // Add message value to Workflow message - NOTE: Code may differ
dependent on the context for adding image (Eg. ListView).
 getWorkflowMessage().getValues().add(fileKey, messageValue);

 getWorkflowMessage().setHasFileMessageValue(true); //
Explicitly tell Workflow about image
}
 var options = { destinationType:
PictureOption.DestinationType.IMAGE_URI, sourceType:
PictureOption.SourceType.CAMERA};
 getPicture(onGetPictureError, onGetPictureSuccess, options);

Limitations
The server has a limit of 75MB per parameter, which is what the Hybrid Web Container uses as
the XmlWorkflowMessage. Therefore, the server imposes a maximum size limit of 50 MB
(assuming one picture per XmlWorkflowMessage, and no other keys are present). Keep in
mind that clients may impose a lower limit than 50MB.

Note: When accessing very large binary (image) data in the mobile business object associated
with the Hybrid App, ensure that the attribute set in the mobile business object is a BigBinary
datatype, rather than Binary.

Certificate.js
Provides functions for X.509 credential handling.

Use these functions to create a user interface in HTML and JavaScript, that uses X.509
certificates as the Hybrid App credentials.

This file contains the functions that allow parsing a certificate date, creating a certificate from
a JSON string value, retrieving a certificate from a file (Android), retrieving a certificate from
the server (iOS), and so on.

You can choose to set the results of a getSignedCertificate function as the password.

certificateLabels(filterSubject, filterIssuer)

// The following script gets all the labels for certificates

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 141

// with the provided subject and issuer
var certStore = CertificateStore.getDefault();
var labels = certStore.certificateLabels("MyUser", "mydomain.com");

- getPublicCertificate(label)

// The following script gets the certificate data for the first
// certificate to match the provided subject and issuer
var certStore = CertificateStore.getDefault();
var labels = certStore.certificateLabels("MyUser", "mydomain.com");
var cert = certStore.getPublicCertificate(labels[0]);

- getSignedCertificate(label)

// The following script gets the signed certificate data for the
first
// certificate to match the provided subject and issuer
var certStore = CertificateStore.getDefault();
var labels = certStore.certificateLabels("MyUser", mydomain.com");
var cert = certStore.getSignedCertificate(labels[0]);

var username = cert.subjectCN;
var password = cert.signedCertificate;

- listAvailableCertificatesFromFileSystem(sFolder, sFileExtension)

// The following script gets an array of file paths for files on
// the sdcard with the extension p12
var certStore = CertificateStore.getDefault();
var certPaths = certStore.listAvailableCertificatesFromFileSystem("/
sdcard/", "p12");

- getSignedCertificateFromFile(filePath, password)

// The following script gets the signed certificate data for the
first
// p12 file found on the sdcard
var certStore = CertificateStore.getDefault();
var certPaths = certStore.listAvailableCertificatesFromFileSystem("/
sdcard/", "p12");
var cert = certStore.getSignedCertificateFromFile(certPaths[0],
"password");

- getSignedCertificateFromServer(username, serverPassword,
certPassword)

// The following script gets the signed certificate data for the
// user MYDOMAIN\MYUSERNAME from the server
var certStore = CertificateStore.getDefault();
cert = certStore.getSignedCertificateFromServer("MYDOMAIN\
\MYUSERNAME", "myserverpassword", "mycertpassword");

Develop a Hybrid App Using the Hybrid App Designer

142 SAP Mobile Platform

Custom.js File
The first time you generate the Hybrid App package files, the Custom.js file is generated.

In subsequent file generations for the same Hybrid App package, this file will not be
overwritten, so any customizations you make are preserved.

These touch points are available for customization: WorkflowLoad, Submit,
NavigateForward, NavigateBackward, ShowScreen, MenuItemClick, and Save. At each
touch point, a customBefore method is invoked and a customAfter method is invoked. The
customBefore method returns a boolean. If it returns true, it continues to execute the
default behavior, for example, navigating to a new screen or performing an online request. If it
returns false, it does not execute the default behavior, so you can override the default behavior
by customizing these methods.

The Custom.js file contains these methods:

Note: You can delegate the implementation of these functions to different functions supplied
in other custom JavaScript files. It is not necessary to include all of your customization logic in
the single Custom.js file.

//Use this method to add custom html to the top or bottom of a form
function customBeforeWorkflowLoad() {

 var form = document.forms[curScreenKey + "Form"];
 if (form) {
 // header
 var topOfFormElem = document.getElementById("topOf" +
curScreenKey + "Form");

 if (topOfFormElem) {
 topOfFormElem.innerHTML = "<img id='ImgSylogo' src='./
images/syLogo.gif'/>
";

 // footer
 var bottomOfFormElem = document.getElementById("bottomOf"
+ curScreenKey + "Form");
 bottomOfFormElem.innerHTML = "<p>Copyright 2010, Sybase
Inc.</p>";
 }
 }
 return true;
}

When using the customBeforeNavigateForward(screenKey, destScreenKey) { } function, if
you want to create your own JQuery Mobile style listview, remember that JQueryMobile does
not allow duplicate ID attributes. So if there is an existing listview with the same ID attribute,
you must:

1. Delete the existing listview with the same ID attribute.
2. Re-create the listview.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 143

3. Call refresh for your listview.
For example:
//Use this method to add custom code to a forward screen transition.
If you return false, the screen
//transition will not occur.
function customBeforeNavigateForward(screenKey, destScreenKey) {

..
try {
 if (destScreenKey == 'Personal_Work_Queue') {

 //grab the results from our object query
 var message = getCurrentMessageValueCollection();
 var itemList = message.getData("PersonalWorkQueue");
 var items = itemList.getValue();
 var numOfItems = items.length;
 var i = 0;

 //iterate through the results and build our list
 var htmlOutput = '<div id="CAMSCustomViewList"><ul data-
role="listview" data-filter="true">';
 var firstOrder = '';

 while (i < numOfItems){
 var currItem= items[i];
 var opFlags =
currItem.getData("PersonalWorkQueue_operationFlags_attribKey").getV
alue();
 var orderId =
currItem.getData("PersonalWorkQueue_orderId_attribKey").getValue();
 var operationNumber =
currItem.getData("PersonalWorkQueue_operationNumber_attribKey").get
Value();
 var description =
currItem.getData("PersonalWorkQueue_description_attribKey").getValu
e();
 try {
 var promDate =
currItem.getData("PersonalWorkQueue_datePromised_attribKey").getVal
ue();
 } catch (err) {
 var promDate = "";
 }

 try {
 var planDate =
currItem.getData("PersonalWorkQueue_dateStartPlan_attribKey").getVa
lue();
 } catch (err) {
 var planDate = "";
 }

 var onHold =
currItem.getData("PersonalWorkQueue_onHold_attribKey").getValue();

Develop a Hybrid App Using the Hybrid App Designer

144 SAP Mobile Platform

 htmlOutput += '<a id ="' + currItem.getKey() + '"
class="listClick">';
 htmlOutput += '<p>Flags: ' + opFlags + '</p>';
 htmlOutput += '<p>Order Id: ' + orderId + '</
p>';
 htmlOutput += '<p>Operation No: ' +
operationNumber + '</p>';
 htmlOutput += '<p>Title: ' + description + '</
p>';
 htmlOutput += '';

 i++;

 }

 htmlOutput += '</div>';

 //append the html to the appropriate form depending on the
key
 if (destScreenKey == 'Personal_Work_Queue') {

 var listview = $('div[id="CAMSCustomViewList"]');
 //Try to remove it first if already added
 if (listview.length > 0) {
 var ul = $(listview[0]).find('ul[data-
role="listview"]');
 if (ul.length > 0) {
 htmlOutput = htmlOutput.replace('<div
id="CAMSCustomViewList"><ul data-role="listview" data-
filter="true">','');
 ul.html(htmlOutput);
 ul.listview('refresh');
 }
 } else {
 $
('#Personal_Work_QueueForm').children().eq(2).hide();
 $
('#Personal_Work_QueueForm').children().eq(1).after(htmlOutput);
 }
 }
 //add the listener based on the class added in the code
above
 $(".listClick").click(function(){
 currListDivID = $(this).parent().parent();
 $(this).parent().parent().addClass("ui-btn-active");

 //special case for bb
 navigateForward("Shop_Display", this.id);

 if (isBlackBerry()) {
 return;
 }
 });
 }

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 145

Overriding the showErrorFromNative Function
The generated JavaScript allows you to override the behavior of the showErrorFromNative
function using the customBeforeReportErrorFromNative(errorString)and
customAfterReportErrorFromNative(errorString) methods.

This shows an example of how to override or customize the error message based on the
returned numeric error codes through customBeforeReportErrorFromNative.

function customBeforeReportErrorFromNative(errorString) {
 var errorCode = getURLParamFromNativeError("errCode",
errorString);
 // 500 and above are network errors
 if (errorCode >= 500)
 {
 // Could check lang global variable if so desired
 //if (lang == ...)
 {
 // Show your own custom error message based on errorCode
 showAlertDialog("Do you have a network connection?", "My
custom error");
 // return false to by pass default behavior
 return false;
 }
 }
 return true;
}

Identified error scenarios include:

• Any network related errors during an online (synchronous) request contain an error code
of 500 or greater (check for >= 500)

• public static final int UNKNOWN_ERROR = 1; // "unknown
error"

• public static final int ATTACHMENT_NOT_DOWNLOADED =
100; //"Attachment has not been downloaded"

• public static final int UNKNOWN_MIME_TYPE = 101; //"Unknown
MIME type"

• public static final int FILENAME_NO_EXTENSION =
102; //"File name without extension"

• public static final int REQUIRED_PARAMETER_NOT_AVAILABLE =
103; //"Required parameter is not available"

• public static final int UNSUPPORTED_ATTACHMENT_TYPE =
105; //attachment type is not supported

• public static final int SSOCERT_EXCEPTION = 106; //SSO
Certificate manager exception

• public static final int FAIL_TO_SAVE_CREDENTIAL = 107; //
Fail to save credential

Develop a Hybrid App Using the Hybrid App Designer

146 SAP Mobile Platform

• public static final int FAIL_TO_SAVE_CERTIFICATE = 108; //
Fail to save certificate

• public static final int DEVICE_NOT_CONNECTED = 109; //
Device is not connected

Resources.js
The resource functions allow you to access localized string resources.

ExternalResource.js
These functions allow you to access resources on external HTTP servers.

This shows an example of the UPDATE function:
function update() {
 // Using json to update a value
 var url = // URL of your external resource;
 var webResponse;
 var options = {
 method: "PUT",
 data: "{\"Value\":\"Value A Updated\"}",
 headers: {
 "Content-type": "application/json"
 },
 async: false,
 complete: function(response) { webResponse = response; }
 };

 getExternalResource(url, options);

 if (webResponse.status === 200)
 alert("Update successful");
 else
 alert("Update Failed");
}

This shows an example of the DELETE function:
function delete() {
 // Delete a value
 var url = // URL of your external resource;
 var webResponse;
 var options = {
 method: "DELETE",
 async: false,
 complete: function(response) { webResponse = response; }
 };

 getExternalResource(url, options);

 if (webResponse.status === 200)
 alert("Delete successful");
 else

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 147

 alert("Delete Failed");
}

SUPStorage.js
Access the storage functions, which allow you to specify a cache that stores results from
online requests.

These functions give you the ability to:

• Name the cached result sets
• Enumerate the cached result sets
• Read, delete, and modify cached contents individually for each cached result set

Cached result sets must be stored as strings (before deserialization to an
xmlWorkflowMessage structure).

Calls to these methods do not trigger events.

- constructor

// The following script creates a 2 local storage instances with
their own domain
var store1 = new SUPStorage("mydomain");
var store2 = new SUPStorage("myotherdomain");

- length

// The following script displays the current number of elements in
the storage
var store = new SUPStorage();
alert(store.length());

- key(index)
// The following script displays the value at the provided index in
the storage
var store = new SUPStorage();
alert(store.key(2));

- getItem(key)

// The following script displays the value for the provided key
var store = new SUPStorage();
alert(store.getItem("mykey"));

- setItem(key, value)
// The following script sets a key/value pair
var store = new SUPStorage();
store.setItem("mykey", "myvalue");

- removeItem(key)
// The following script removes a key/value pair
var store = new SUPStorage();
store.removeItem("mykey");

Develop a Hybrid App Using the Hybrid App Designer

148 SAP Mobile Platform

- clear
// The following clears the storage
var store = new SUPStorage();
store.clear();

SAP Mobile PlatformStorage
The SAP Mobile Platform Storage API allows you to store structured data on the client side.

You can also use these functions as an arbitrary key or value storage mechanism. Keys are
strings, and any string (including the empty string) is a valid key. Keys cannot be duplicated in
the same Hybrid App package. Values are also strings and values can be duplicated in the same
Hybrid App package. Keys and values can contain multi-byte characters.

SUPStorage can span multiple screens in the Hybrid App, and lasts beyond the current
session. This allows the storage of user data on the client, such as entire user-authored
documents.

Using platform-specific mechanisms, the items stored using the SUPStorage API are
encrypted according to the particular platform policies:

Platform Encryption policy

BlackBerry PersistentStore, which adheres to the
Content Protection BES IT policy

Android Encrypted before storing into the SQLite data-
base

iOS Stored in SQLite Encryption Extensions database

Windows Mobile Unencrypted SQLite—security is deferred to
Afaria Security Manager

The amount of data that can be stored on the client is limited only to the available storage space
on the particular platform:

Platform Data storage

BlackBerry Amount of free PersistentStore.

iOS and Android Amount of free file system for the SQLite data-
base, and/or the SQLite database size limit

Windows Mobile Amount of free file system, and the SQLite data-
base size limit.

Limitations

• The amount of data that you can retrieve and return to the JavaScript space when using the
SUPStorage API is limited to the JavaScript size limitation as established for each

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 149

platform. See the topic AttachmentViewer and Image Limitations in SAP Mobile
WorkSpace - Hybrid App Package Development.

• On Windows Mobile devices, there is a 500K limitation for the length of the shared storage
item. If the length of a shared item is more than 500K, the JavaScript does not accept
anything.

• Physical SAP Mobile Platform storage is tied to a Hybrid App package. When the Hybrid
App package is uninstalled, the corresponding SAP Mobile Platform storage for the
Hybrid App package is removed immediately.

• Items stored using the SUPStorage API are persisted, and therefore, survive soft device
resets.

• SUPStorage persists through invocations of the Hybrid App.

• The SUPStorage API does not restrict reading or writing of the storage data from
different domains. For example, if a Hybrid App loads some code from an external HTTP
server that attempts to access the SUPStorage API, it is allowed.

• The SUPStorage API does not take into account the current locale or language of the
device. You can, however, access the global JavaScript variable called lang and implement
this in your custom code.

Shared Storage
All Hybrid Apps with a shared storage key assigned share the storage with other Hybrid Apps
that have the same storage key assigned.

• When the last Hybrid App with the shared storage key is removed from the device, the
storage data is also removed.

• Since shared storage data is loaded into JavaScript, the same limitations apply to it as that
which applies to the JavaScript size limitation as established for each platform. See the
topic AttachmentViewer and Image Limitations. If a large amount of data is involved in the
operation, the shared storage should be used only to store the reference or location of the
data, not the data itself. This helps to ensure you stay within the JavaScript size limitations.
For example, if data for an image needs to be saved in shared storage for later use, the
image data should be stored in the device file system or the persistent store, and then store
only the file path to the shared storage.

• Shared storage items are removed when the last Hybrid App using the same shared storage
key is removed from the device (it happens on unassignment

• On Windows Mobile devices, there is a 500K limitation for the length of the shared storage
item. If the length of a shared item is more than 500K, the JavaScript does not accept
anything.

Timezone.js
The date/time functions allow you to extract and format the date and time for the Hybrid App.

Develop a Hybrid App Using the Hybrid App Designer

150 SAP Mobile Platform

WorkflowMessage.js
Use these functions to access message resources.

Using Third-Party JavaScript Files
To include your own files in Hybrid Web Container, copy them into the appropriate place in the
Generated Hybrid Apps folder.

To load external JavaScript and CSS files dynamically, copy the relevant third-party
JavaScript and CSS files to the Generated Hybrid Apps\<package_name>\html
and js or css folders. If the files are JavaScript files, and are in the html\js folder, they are
automatically included in the HTML as script.

Note: On Android, individual HTML, JavaScript, and CSS files cannot exceed 1MB.

These files will be included in the Hybrid App manifest.xml and ZIP files automatically
when the Hybrid App package is regenerated.

Repackaging Hybrid App Package Files
After modifying the Custom.js file, you must redeploy the Hybrid App package to SAP
Mobile Server.

1. Save and close the modified files after adding your custom code.

2. In WorkSpace Navigator, right-click the <hybrid_app_name>.xbw file and select
Generate Hybrid App.

3. In the Hybrid App generation wizard, select the connection profile.

4. In Generation Options, choose:

• Generate Package
• Update generated code
• Deploy to an SAP Mobile Server as a replacement

5. Click Finish.

Common Customizations

Implementing Conditional Navigation
Conditional navigation allows you to implement a custom function that allows you to override
navigation behavior between screens.

This procedure gives an example of how you can use conditional navigation to skip a screen.

1. In the Screen Design page, modify the menu item by adding conditions.

In this example, two conditions are added to the Previous Expenses menu item.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 151

2. Go to the Flow Design page to see the conditional navigation paths in the flow.

3. In the Custom.js file, add the custom code for conditional navigation.

//This example demonstrates the conditional navigation
functionality for an online request.
//In this example we skip the list view screen and go directly to
the details screen if there is only one item in the list
function customConditionalNavigation(currentScreenKey,
actionName, defaultNextScreen, conditionName, workflowMessage) {
 if ((currentScreenKey === 'Process') && (actionName ===
'Previous Expenses')) {

Develop a Hybrid App Using the Hybrid App Designer

152 SAP Mobile Platform

 if (conditionName === 'ONE_ROW') {
 var values = workflowMessage.getValues();
 var m = workflowMessage.serializeToString();
 var expenseTracking =
values.getData("ExpenseTracking21View");
 var etList = expenseTracking.getValue();
 var count = etList.length;
 if (count == 1) {
 var etRow1 = etList[0];
 workflowMessage.updateValues(etRow1);
 return true;
 }
 }
 else if (conditionName === 'MANY_ROWS') {
 return false; //ie do the normal navigation which is
to go to the listview screen
 }
 }
 // default case is to NOT change the flow
 return false;
}

4. Use the Hybrid App Generation wizard to re-generate the Hybrid App package with a new
hybridapp_jQueryMobileLookAndFeel.html file that contains the newly
added conditional navigations.

5. Use a browser to debug the code.

Implementing a Conditional Start Screen
Add conditions that determine which start screen the user sees based on the conditions.

Like the conditional success navigation feature, there is a table of condition names with the
matching Start screen. If all of the conditions are evaluated as false (or if they are absent), the
default navigation is executed.

1. In the Flow Design page, select the server-initiated starting point to see the Properties.

2. In the Properties view, click Start Screen(s).

3. Click Add to add a condition.

4. In the dialog, enter the condition name, select the target screen with which to associate the
condition, and click OK.

This means that if the defined condition is found to be true, the screen you choose here will
be the start screen. Condition names can include:
• Letters A-Z and a-z
• Numbers 0-9
• Embedded spaces (beginning and ending spaces are trimmed off)
• Special characters in the set $._-+

In the Flow Design page, you can see the flow line for the conditional start is a shade of
gray to differentiate it from the default GoTo line.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 153

5. Add you custom code to the Custom.js file. For example:

function customConditionalNavigation(currentScreenKey,
actionName,
 defaultNextScreen, conditionName,
 workflowMessage) {
 if((currentScreenKey === SERVERINITIATEDFLAG) && (actionName
=== '')) {
 // conditional start screen uses this magic screen key and
the empty action name.
 if(conditionName === 'Wilma_first_ss1') {
 // custom logic
 return true;
 }
 else if(conditionName === 'Fred_second_screen'){
 // custom logic
 // return true or false
 return false;
 }
 }
 // default case is to NOT change the flow
 return false;
}

6. Regenerate the Hybrid App package.

When you regenerate the Hybrid App package, the hybridapp.js file is regenerated.
The conditional start screen method is shown in the hybridapp.js file similar to this:

Develop a Hybrid App Using the Hybrid App Designer

154 SAP Mobile Platform

function customNavigationEntry() {
 this.condition;
 this.screen;
}
function customNavigationEntry(a_condition, a_screen) {
 this.condition = a_condition;
 this.screen = a_screen;
}

/**
 * For the specific pair - screen named 'currentScreenKey' and the
action 'actionName', return
 * the list of custom navigation condition-names and their
destination screens.
 */
function getCustomNavigations(currentScreenKey, actionName) {
 var customNavigations = new Array();
 if((currentScreenKey === SERVERINITIATEDFLAG) && (actionName
=== '')) {
 customNavigations[0] = new
customNavigationEntry('Wilma_first_ss1',
'Screen_Start_One');
 customNavigations[1] = new
customNavigationEntry('Fred_second_screen',
'Screen_Start_Two');
return customNavigations;
 }
 return customNavigations;
}

Clearing the Contents of the Signature Control
Add JavaScript to clear the contents of a signature control.

1. Use the Hybrid App Generation wizard to generate the Hybrid App package and its
files.

When the Hybrid App package is generated, the Custom.js file is generated if not
already present in the project. The Custom.js file is located in Generated Hybrid
App\<project_name\html\js.

2. Open the Custom.js file and add your JavaScript code to the click event of a menu or
button.

For example:
function customAfterMenuItemClick(screen, menuItem) {
 if (menuItem === "Clear_Signature") {
 $.data(document.getElementById('sigKey'),
'signature').clearSignature();
 }
}

3. Save and close the Custom.js file.

4. Re-generate the Hybrid App package and deploy it to SAP Mobile Server.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 155

Security
Set up static or dynamic authentication, and configure the Hybrid App to use credentials.

Credentials
You can use either dynamic or static credentials in a Hybrid App screen flow.

See Security and System Administration for more detailed information about implementing
security and certificates.

The user name and password values are required when the Hybrid App invokes a mobile
business object operation. These authentication values can be provided statically (at design
time), or dynamically (by the user at runtime). For requests sent by the client with a credential
screen specified, requests are always invoked on the server using the credentials specified by
the user, regardless of whether static or dynamic authentication is specified.

The choice of static versus dynamic authentication applies only to requests that must be
executed on the server that do not have any credentials, or that do not have valid credentials.
This happens when an object query needs to be run by a server-initiated notification, for
example, or if the client provides incorrect credentials. In that scenario, the decision between
static and dynamic becomes important. If static was chosen, it silently uses those hard-coded
credentials. If dynamic was chosen, it sends a notification to the client and asks the user to
supply the credentials.

For example, you might define a server-initiated Hybrid App with a credential screen and
static authentication. When the notification first comes in, it runs an object query using the
hard-coded credentials. This is then sent to the user, who opens the notification and then
makes an online request. This online request, be it an operation or an object query, will be
made using the credentials supplied by the user.

Dynamic credentials require the user to enter the user name and password on a screen that the
credential request starting point references. Select Credential Cache User Name and
Password to indicate the user name and password to be required on the client. When the user
logs in, the credentials are authenticated using the stored credentials.

Note: If an e-mail triggered Hybrid App has dynamic cached credentials, the cached
credentials are not cached between invocations of the Hybrid App form through an e-mail
trigger.

Static credentials mean that everyone who has access to the resource uses the same user name
and password. By default, static credentials are used. The static credential user name and
password for the Hybrid App can be extracted from the selected SAP Mobile Platform profile
user name and password when the Hybrid App is generated, or they can be hard-coded using
the Properties view. After deployment, you can change static credentials in SAP Control
Center.

Develop a Hybrid App Using the Hybrid App Designer

156 SAP Mobile Platform

The application can also have a credential screen (Credential Request) that appears if the
Hybrid App detects that the cached credentials are empty or incorrect.

Setting Up Static Authentication
With static authentication, everyone who has access to the resource uses the same user name
and password.

Set up static credentials in the Authentication section of the Properties tab. To see the
Properties page, verify there are no objects selected on the Flow Design page.

1. In the Properties view, click Authentication.

2. Select Use static credentials.

3. Select from these options:

• Use SAP Mobile Server connection profile authentication – specifies that the user
name and password associated with the connection profile are used when code is
generated for the Hybrid App. Selected by default.

• Use hard-coded credentials – sets the user name and password. When you select this
option, the User name and Password fields are activated.

• Use certificate-based credentials – enables you to use a certificate to generate
authentication credentials.

4. (Optional) If you select Use hard-coded credentials in the previous step, enter the User
name and Password that are to be used for authentication.

5. Select File > Save.

Setting Up Static Authentication Using a Certificate
Set up static authentication credentials generated from a certificate.

1. In the Properties view, click Authentication.

2. Select Use static credentials and Use certificate-based credentials.

3. Click Generate from Certificate to select a certificate file from which to generate
authentication.

4. In the Certificate Picker, click Browse to locate the certificate to use.

5. Enter a password and select an alias, then click OK.

The information from the certificate is shown in the Properties view.
• Issuer – the issuer of the certificate
• Subject – the value of the subject field in the metadata of the certificate as defined in the

X.509 standard
• Valid from – the date the certificate is valid from
• Valid until – the date after which the certificate expires

6. Select File > Save.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 157

Setting Up Dynamic Authentication
Use dynamic authentication to enable the user to set the name and password on the client.

You can create the Credential Request starting point with a Credential screen automatically
when you initially create a new Hybrid App, or you can create the Credential Request starting
point and associated screen manually. This procedure shows how to create the Credential
Request starting point automatically when you create a new Hybrid App.

1. In the Mobile Development perspective, select File > New > Hybrid App Designer.

2. Follow the instructions in the Hybrid App Designer wizard:

• Enter or select the parent folder – select the Hybrid App project in which to create
the Hybrid App screen flow.

• File name – enter a name for the Hybrid App screen flow. The extension for Hybrid
App screen flows is .xbw.

• Advanced – link the Hybrid App screen flow to an existing file in the file system.
• Link to file in the file system – click Browse to locate the file to which to link the

Hybrid App screen flow. Linked resources are files or folders that are stored in the file
system outside of the project's location. If you link a resource to an editor, when you
select the editor, the resource is selected in the WorkSpace Navigator. Conversely,
when you select the resource in the WorkSpace Navigator, the editor is selected.

Click Variables to define a new path variable. Path variables specify locations on the
file system.

3. In the Starting Points page, select Credentials (authentication) may be requested
dynamically from the client application.

4. Follow the steps to create the type of Hybrid App you want. Click Finish.

5. In the Hybrid App Designer, open the Flow Design to see the Credential Request starting
point and its associated Credential Request screen.

To see the two pre-defined keys, cc_username and cc_password in the Properties
view, click the Credential Request starting point.

6. Double-click the Credential Request screen to open the Screen Design page.

The two editbox controls on the screen are bound to the pre-defined keys, cc_username
and cc_password.

7. Select Username. In the Properties view, open the Advanced page.

On the Username editbox, Credential cache username is selected by default. Click the
Password editbox; the associated Credential cache password checkbox is selected.

Note: If you create a Credential Request starting point and screen manually, you must add
the editbox controls, create the keys for the username and password, and check the
corresponding Credential cache username or password box.

8. (Optional) To use certificate-based authentication instead of the user name and password:

Develop a Hybrid App Using the Hybrid App Designer

158 SAP Mobile Platform

a) Add a MenuItem to the Menu box.
b) Select the MenuItem to see its Properties.
c) In the Properties view, from Type, choose Select Certificate.

When the user selects the menu item on the device, a dialog opens to select a certificate
for credentials.

9. Select File > Save.

The first time the Hybrid App is started following deployment, the credential screen opens.
The username and password values are cached in the credential cache.

Note: If an e-mail-triggered screen flow has dynamic cached credentials, the cached
credentials are not cached between invocations of the screen flow through an e-mail
trigger.

Basic Authentication
On iOS, Android, and BlackBerry platforms, each Hybrid Web Container has a default basic
authentication screen to enter credentials if challenged for basic authentication when Hybrid
Web Container connects with the server.

The entered credentials are persisted, so any time the application restarts, the previously
accepted credentials are used.

If the basic authentication screen is canceled, it is shown again only under these
circumstances:

• New connection information is entered and saved on the settings screen
• The restart engine menu item is pressed on the settings screen
• The application is restarted (device restart or force stop)

See HTTP Authentication Security Provider in Security for more information.

Single Sign-on
Android, BlackBerry, and iOS Hybrid Apps can provide a single sign-on (SSO) token.

Cookie-based Network Edge Authentication
Unlike standard credential cache authentication, network edge authentication is global to the
Hybrid Web Container, not specific to each Hybrid App. Each Hybrid Web Container has a
dialog to prompt for HTTP basic authentication credentials when challenged, and a session
header or cookie is returned if the system is so configured for SSO. See HTTP Authentication
Security Provider in Security for more information.

The sequence of authentication is as follows:

1. Client Network Edge authentication – The client begins a session by sending an HTTP(S)
request to the Reverse Proxy. The Reverse Proxy detects the un-authenticated request and
challenges for Basic authentication. After the 401 challenge, the client may already have
network credentials configured, or perhaps there is a callback to prompt for credentials.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 159

2. The client sends another HTTP request with the credentials, which the Reverse Proxy
validates, and if valid issues a Cookie with an SSO token value. The HTTP headers will be
added to the request that is created and sent to SAP Mobile Platform.

3. SAP Mobile Platform receives the request and uses an enhanced CSI LoginModule to
authenticate. This login module is configured to extract HTTP Headers from the request
(Cookie values are a subset).

4. SAP Mobile Platform processes the request and a response is sent back to the client. The
client is still waiting on the original HTTP request from the Reverse Proxy. When the
response comes back, the Reverse Proxy typically adds the setCookie response header at
this time to pass the SSO data back to the client to use in subsequent HTTP requests.
• If the SSO token is valid, everything proceeds.
• If the SSO token is invalid, a server to device method instructs the Hybrid Web

Container to prompt for crdentials again.

Configuring the Hybrid App to Use Credentials
Configure a Hybrid App to pass user credentials, which are authenticated by SAP Mobile
Server and the EIS.

For information about configuring and implementing X.509 and SSO2 on the server, see
Security.

Configuring the Hybrid App to Use X.509 Credentials
Add a screen that contains a Specify Certificate Credentials menu item to the Credential
Request starting point from which a Hybrid App user selects a certificate to gain access to the
MBO and related resources.

1. In the Hybrid App Designer, add a Credential Request starting point to the Hybrid
App.

2. Add a screen named Credentials and connect it to the Credential Request starting point.

3. Double-click Credentials to open it in the Screen Design. Add a Select Certificate menu
item of the Submit type.

On the device, the Specify Certificate Credentials action prompts the user for a *.p12
certificate and passes it to SAP Mobile Server for validation.

4. Add a Client-initiated starting point to which you add screens that contain the Submit
menu items used to run MBO operations and object queries, return and display results, and
so on. These actions all use the same credentials created in the previous steps.

Develop a Hybrid App Using the Hybrid App Designer

160 SAP Mobile Platform

Configuring the Hybrid App to Use Static X.509 Credentials
When using static credentials, the Hybrid App does not prompt the user for credentials,
instead it passes the credentials to SAP Mobile Server automatically and displays the Hybrid
App's start screen.

1. Remove the Credential Request starting point and screen from the Hybrid App (so the
client is no longer prompted for credentials).

2. From Flow Design, select Authentication, Use static credentials, and Use certificate-
based credentials.

3. Click Generate from Certificate.

4. Browse to the location of the *.p12 certificate file.

5. Enter the certificate's password, select the alias, and click OK.

6. Save and regenerate the Hybrid App, and reassign it to a device.

Propagating a Client's Credentials to the Back-end Data Source
Use client credentials (including certificates and SSO tokens on EIS types that support them)
to establish enterprise information system (EIS) connections on the client's behalf for all data
source types.

To use client credentials, map an EIS connection's user name and password properties to
system-defined "user name" and "password" personalization keys respectively. This creates a
new connection for each client and the connection is established for each request (no
connection pooling.)

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 161

1. During development of the mobile business object MBO/operation, from the data source
definition page (available either in the Creation wizard or from the Properties view), in the
Runtime Data Source Credential section (or HTTP Basic Authentication section for a
Web Service, RESTful Web Service, or SOAP MBO), enter the client credentials in the
User name and Password fields. The runtime data source credential values (user name and
password) that SAP Mobile WorkSpace uses for refresh or preview operations is taken in
this order:

a) Any literal value entered in the User name and Password fields.
b) User-defined personalization keys that have non-empty default values.
c) System personalization keys 'user name' and 'password'.
d) User name and password property values contained in the connection profile.

2. During deployment of the package that contains such MBOs, map the design-time
connection profiles to the existing or new server connections, but be aware that the user
name and password portions for the selected server connection is replaced by the user
name and password propagated from the device application.

Note:
• Do not set client credentials using the Runtime Data Source Credential option for

MBO's that belong to a cache group that uses a Scheduled policy, since this is
unsupported.

• In general, a MBO operation that uses data source credential settings as connection
properties cannot have these settings mapped to an enterprise information system
(EIS) during deployment. Instead, they maintain their original settings, which you can
map after deployment using SAP Control Center.

• When you create a new security configuration that includes the
SAPSSOTokenLoginModule, and deploy it to a new domain, if the Hybrid App uses
the MBOs associated with the new security configuration, you must specify an SAP
Mobile Server domain that corresponds to the domain using the security configuration.
See Security for more information about security configurations

Configuring a Hybrid App to Use SSO2 Tokens
Configure a Credential Request starting point from which a Hybrid App user can pass a user
name and password to gain access to the MBO and related resources.

1. In the Hybrid App Designer, add a Credential Request starting point to the Hybrid
App.

2. Add two keys to the Credential Request named cc_username and cc_password.

3. Add a screen named Credentials and connect it to the Credential Request starting
point.

Develop a Hybrid App Using the Hybrid App Designer

162 SAP Mobile Platform

4. Double-click Credentials to open it in the Screen Design.

5. Add a Save screen menu item to the Menu, and two edit boxes (Username and
Password).

The Save screen saves the Username and Password entered by the Hybrid App. You
could also add a Submit menu item instead of Save screen.

6. Add a Client-initiated starting point to which you add screens that contain the Submit
menu items used to run MBO operations and object queries, return and display results, and
so on. These actions all use the same credentials created in the previous steps.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 163

Configuring the Hybrid App to Use a Static SSO2 Token
When using static credentials, the Hybrid App does not prompt the user for credentials,
instead it passes the credentials to SAP Mobile Server automatically and displays the Hybrid
App's start screen.

1. Remove the Credential Request starting point and screen from the Hybrid App (so the
client is no longer prompted for credentials).

2. From Flow Design, select Authentication, Use static credentials, and Use hard-coded
credentials. Enter a username and password that corresponds to those defined in
SAP Control Center for the server connection (for example: snctest/snctest).

Develop a Hybrid App Using the Hybrid App Designer

164 SAP Mobile Platform

3. Save and regenerate the Hybrid App package, and reassign it to a device.

Modify Certificate Information for Hybrid App Packages
If using static credentials, either SSO token or static x.509 certification, you can replace the
Hybrid App package certificate using either SAP Control Center or the
SUPMobileHybridApp.replaceMobileHybridAppCertificate() API. To
replace a certificate, you must have access to the certificate file and password.

Replacing the Hybrid App Certificate Through SAP Control Center
If using static credentials, you can set or modify the context variable certificate settings for a
Hybrid App package from SAP Control Center.

The Hybrid App certificate password context variable is read-only. You can modify this only
by using the Admin Java API method
SUPMobileHybridApp.replaceMobileHybridAppCertificate().

1. From SAP Control Center, navigate to Hybrid Apps > <Hybrid_App_Name>, where
Hybrid_App_Name is the name of the Hybrid App package.

2. On the Context Variables tab, verify that SupUser and SupPassword contain valid
credentials for the specified security configuration, for Hybrid App packages that do not
use certificate-based authentication.

3. For Hybrid App packages that use certificate based authentication, you can view these
context variables:

• SupCertificateIssuer

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 165

• SupCertificateSubject
• SupCertificateNotAfter
• SupCertificateNotBefore

Replacing the Hybrid App Certificate Using the Admin API
Use the SUPMobileHybridApp.replaceMobileHybridAppCertificate()
method to set or modify the certificate password context variable for the Hybrid App package.

InputStream is = getClass().getResourceAsStream("sybase101.p12");
ByteArrayOutputStream baos = new ByteArrayOutputStream();
byte[] buf = new byte[512];
int count;
while ((count = is.read(buf)) != -1) {
 baos.write(buf, 0, count);
}
is.close();
baos.flush();
baos.close();
MobileHybridAppIDVO hybridAppID = new MobileHybridAppIDVO();
hybridAppID.setWID(4);
hybridAppID.setVersion(1);

mobileHybridApp.replaceMobileHybridAppCertificate(hybridAppID,
 baos.toByteArray(), "password");

Content Security on Devices
This explains how the files that make up the Hybrid Web Container are protected when stored
on the device, and under what circumstances the files are stored in plain text.

Content Security on Android Devices
On Android operating systems, all Hybrid Web Container files, and extra data entered by the
user or retrieved from the server, are encrypted before being stored in the application's
sandbox and SQLite database. You can turn off the encryption of Hybrid Web Container files
to decrease the load times for Hybrid Apps by using the disableFileEncryption
customization point.

The cryptographic libraries provided by Google/Android are used. Specifically, the
encryption algorithm used is AES-256 symmetric encryption.

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<Hybrid_App_package_name>.zip that is deployed to the device, including all
HTML, JavaScript, CSS, and any other files that may be included as part of the ZIP package.

• When the platform’s browser control requests these Web files, they are read from the
device’s sandbox, stored unencrypted on the file system temporarily, and then passed to
the browser control through a content provider.

Develop a Hybrid App Using the Hybrid App Designer

166 SAP Mobile Platform

• These temporary files are removed from the content provider immediately after the last of
them are requested by the browser control.

Prepackaged Hybrid Apps
Prepackaged files are not secured on Android. They are stored in the assets directory
unencrypted.

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the
<Hybrid_App_package_name>.zip deployed to the device, they are stored in the
application's sandbox after they have been encrypted through the Google/Android crypto
libraries.

• When the JavaScript requests these attachments for viewing, they are read from the
application's sandbox, and temporarily written unencrypted to the device’s flash memory
for the external viewers to display them.

• Once the application closes, these temporary attachment files are immediately removed.

Note: The Android operating system enforces the sandboxing of these temporary files.

Attachments that are downloaded through an online request using an object query are stored
unencrypted in the device’s flash memory for the file viewers to display them. Once the
application closes, these temporary attachment files are immediately removed.

Images
The image is saved, unencrypted on the file system, into the Gallery application,
(ImageOptions.CAMERA, ImageOptions.BOTH).

Note: The Android operating system enforces the sandboxing of these image files.

Cached Online Requests
The results of online requests that are specified to be cached are stored on the device’s SQLite
database (after they are encrypted through the Google/Android cryptographic libraries).
Cached results are removed when the Hybrid Web Container is unassigned from the device, or
uninstalled from the server.

Notifications From the Server
Notifications from the server are stored in the same SQLite database after they have been
encrypted through the Google/Android cryptographic libraries, including the payload that
makes up the notification. When the notification is acted upon, the JavaScript makes a request
for the notification contents. This is read from the SQLite database, unencrypted, and passed
to the browser in memory.

User Input Sent to the Server
When the device has no network connectivity, and the user submits a Hybrid App for the server
to process, the data destined for the server is queued up on the device. The contents of this

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 167

queue are again encrypted through the Google/Android cryptographic libraries before it is
stored into the SQLite database.

Encryption Keys

• How the encryption key is generated:
• A generated GUID is used as the key for encrypting the data (“data password”)
• A user-provided password (PIN) is used to secure/encrypt the “data password," which

is persisted in its encrypted form. In order to have access to the "data password", one
must know the user password.

• The salt is a different persisted, generated GUID.
• Encryption of data is done with the "data password."

• Where is the encryption key stored?
• The "data password" is persisted in its encrypted form in a separate table in the SQLite

database.

Content Security on BlackBerry Devices
In general, all Hybrid Web Container files and extra data entered by the user, or retrieved from
the server, are stored on the BlackBerry device’s PersistentStore.

This is the same storage area used by e-mail, calendar entries, and applications. See your
BlackBerry documentation for information about persistent store APIs.

The BlackBerry Hybrid Web Container uses the RIM PersistentContent APIs when reading
and writing of data from PersistentStore is required. This ensures that the content being
written is stored at the device’s current encryption level. See your BlackBerry documentation
for information about content protection strength settings.

When content protection is turned on, content on the BlackBerry device is protected using the
256-bit Advanced Encryption Standard (AES) encryption algorithm.

• Use 256-bit AES encryption to encrypt stored data when the BlackBerry device is locked
• Use an Elliptic Curve Cryptography (ECC) public key to encrypt data that the BlackBerry

device receives when it is locked

These settings apply to the encryption of data that the BlackBerry device receives while
locked:

Content protection strength setting ECC encryption key length (in bits)

Strong 160

Stronger 283

Strongest 571

The BlackBerry Hybrid Web Container also registers a PersistentContentListener, which
allows it to be notified when the device’s encryption level changes. This also enables

Develop a Hybrid App Using the Hybrid App Designer

168 SAP Mobile Platform

previously stored content to be re-encoded to the new encryption level setting. The device’s
encryption level setting can be changed by a BlackBerry Enterprise Server Administrator
remotely, or by the user, from the device.

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<hybrid_app_name>.zip that is deployed to the device, including all HTML,
JavaScript, CSS, and any other files that may be included as part of the Hybrid App ZIP
package. When the platform’s browser control requests these Web files, they are read from the
device’s PersistentStore and passed to the browser control in memory, which means there are
no temp files.

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the
<hybrid_app_name>.zip deployed to the device, they are stored on the device’s
PersistentStore:

• When the JavaScript requests to display these attachments, they are read from the
PersistentStore, and temporarily written unencrypted to the device’s flash memory for the
external viewers to display them.

• Once the mobile Hybrid App closes, these temporary attachment files are immediately
removed.

Attachments that are downloaded using an online request that use an object query are stored
unencrypted in the device’s flash memory for the file viewers to display them. Once the
Hybrid App closes, these temporary attachment files are immediately removed.

Images
Images are stored unencrypted on the file system and saved into the Pictures folder
(ImageOptions.BOTH).

Cached Online Requests
The results of online requests that are specified to be cached are stored on the device’s
PersistentStore. Cached results are removed when the Hybrid Web Container is unassigned
from the device, or uninstalled from the server.

Notifications From the Server
Notifications from the server are stored in the same PersistentStore area, including the payload
that makes up the notification. When the notification is acted upon, the JavaScript makes a
request for the notification contents. This is read from the PersistentStore and passed to the
browser in memory.

User Input Sent to the Server
When the device has no network connectivity, and the user submits a Hybrid App for the server
to process, the data destined for the server is queued up on the device. This queue is part of the
device’s PersistentStore.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 169

Content Security on iOS Devices
On iOS devices, all Hybrid Web Container files and extra data entered by the user or retrieved
from the server, are stored in a SQLite database that uses the SQLite Encryption Extensions
(AES-128).

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<Hybrid_App_package_name>.zip that is deployed to the device, including all HTML,
JavaScript, CSS, and any other files that may be included as part of the ZIP package. When the
iOS device's browser control requests these Web files, they are read from the encrypted
SQLite database. The data is temporarily written to the file system under the application
sandbox, after which the browser control reads the file contents into memory. The temp files
are removed when the Hybrid App closes.

Note: When using a prepackaged Hybrid App, all of the files associated with the prepackaged
Hybrid App (HTML, JavaScript, CSS, and so on) exist within the sandbox in clear text.

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the
<Hybrid_App_package_name>.zip deployed to the device, they are stored in the encrypted
SQLite database.

• When the JavaScript requests the attachments for viewing, they are read from the database,
and temporarily written, unencrypted, to the Hybrid Web Container's sandbox for the
viewer to display them.

• Once the application closes, these temporary attachment files are immediately removed.

Attachments that are downloaded using an online request that uses an object query are stored
unencrypted in the Hybrid Web Container's sandbox for the file viewers to display them. Once
the application closes, these temporary attachment files are removed immediately.

Images
Images are stored unencrypted in the Hybrid Web Container's sandbox, then removed when
the application closes.

Cached Online Requests
The results of online requests that are specified to be cached are stored in the encrypted SQLite
Database. Cached results are removed when the Hybrid Web Container is unassigned from the
device, or uninstalled from the server.

Notifications From the Server
Notifications from the server are stored in the same encrypted SQLite database, including the
payload that makes up the notification. When the notification is acted upon, the JavaScript
makes a request for the notification contents. This is read from the SQLite database and passed
to the browser in memory.

Develop a Hybrid App Using the Hybrid App Designer

170 SAP Mobile Platform

User Input Sent to the Server
When the device has no network connectivity, and the user submits an application for the
server to process, the data destined for the server is queued up on the device. This queue is
again part of the encrypted SQLite database.

Encryption Keys

• The Hybrid Web Container generates a hash from the password entered by the user, and a
salt, combined

• The Hybrid Web Container generates a random key
• The Hybrid Web Container encrypts the key with the hash and stores it in the app area of

the keychain

Content Security on Windows Mobile Devices
On Windows Mobile Professional, Hybrid Web Container files are stored unencrypted on the
device’s file system, and Hybrid Web Container settings are stored unencrypted in the
device’s registry.

Note: The Windows Mobile Hybrid Web Container defers all security and encryption
responsibilities to the Afaria® Security Manager; therefore, SAP strongly recommends that
you use Afaria Security Manager.

If you do not use Afaria Security Manager, you must:

• Protect these files through alternative means. The \Program Files\SAP
\Messaging\AMP folder (and all if its sub folders) must be secured on the device.

• To protect the Hybrid Web Container settings, the [HKEY_LOCAL_MACHINE
\Software\SAP\MessagingClientLib] registry key (and all of its sub keys)
must be secured on the device.

Hybrid Web Container Files
Hybrid Web Container files include all the files contained in the
<hybrid_app_name>.zip that is deployed to the device, including all HTML,
JavaScript, CSS, and any other files that may be included as part of the Hybrid App zip
package. These are all stored unencrypted on the file system of the device.

Attachments
If attachments, such as *.docx, *.pdf, and so on, are part of the <hybrid_app_name>.zip
deployed to the device, they are stored unencrypted on the file system of the device.

• When the JavaScript requests these attachments for viewing, a file URI is constructed for a
suitable external viewer to display these files.

• Once the Hybrid App closes, these temporary attachment files are immediately removed.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 171

Images
Images are stored unencrypted on the file system, then removed when the Hybrid App closes.

Cached Online Requests
The results of online requests that are specified to be cached are stored unencrypted on the
device’s file system. Cached results are removed when the Hybrid Web Container is
unassigned from the device, or uninstalled from the server.

Notifications From the Server
Server notifications are stored unencrypted in the Inbox database of the device (the same
database that houses the device’s regular e-mail messages). When the notification is acted
upon, the JavaScript makes a request for the notification contents. This is read from the Inbox
database and passed to the browser in memory. If you are not using Afaria Security Manager,
the Windows Mobile Inbox database must be secured.

User Input Sent to the Server
When the device has no network connectivity, and the user submits a Hybrid App for the server
to process, the data destined for the server is queued up on the device. The contents of this
queue are stored in an unencrypted SQLite database.

Localization and Internationalization
You can localize different objects in the Hybrid App Designer, such as the names of screen
controls, screens, and mobile business objects.

You can localize the Hybrid App by creating locale properties files. You can then load, update,
and generate localized Hybrid Apps.

All the localizable strings in the Hybrid App Designer XML model work as resource keys in
the localization properties file. All the localization properties files are in the same directory as
the Hybrid App packages (.xbw files).

Resource keys are divided into these categories, which include all the elements of the Hybrid
App Designer XML model:

• Menus
• Controls
• Screens

Localization consists of two levels of localization—the Hybrid App Designer XML model
localization and the Hybrid App client localization.

All locale properties files are saved in the same directory as the Hybrid App package.

To ensure that the correct locale is picked up for the Hybrid Web Container, the following
mechanism is used:

Develop a Hybrid App Using the Hybrid App Designer

172 SAP Mobile Platform

1. If a precise match is found for language and country, for example, English - United States
(en-us) is the locale and the file exists in html\en-us\hybridapp*.html, that file
is used and the HTTP lang parameter is set to "en-us."

2. If a precise match for country is not found, the language is used. For example, English (en).
If the file exists in html\en\hybridapp*.html, that file is used and the HTTP lang
parameter is set to "en."

3. If a language match is not found, the default locale is used. If the file exists in html
\default\hybridapp*.html, that file is used and the HTTP lang parameter is set
to "default";

4. If a default match is not found, no locale is used. If the file exists in html
\hybridapp*.html, that file is used and the HTTP lang parameter is set to "".

Localization Limitations
Locale properties files have some restrictions.

These restrictions apply:

• Traditional Chinese characters are not supported on iOS.
• Hybrid Apps that have names that begin with numbers or special characters cannot be

localized; you will receive an error when you generate the code. Make sure that any Hybrid
App you want to localize does not have a file name that begins with a number or special
character.

• When you specify a country for the language, the basic language locale must also be
available. For example, if you create a locale and specify English as the language and the
United States as the country, then a locale for English (the basic language) must also be
available.

• If you create a locale that specifies language, country, and variant, the locale for the basic
language and the locale for the basic language and the country must be available. For
example, if you create a locale and specify English as the language, United States as the
country, and WIN as the variant, then English (United States) and English locales must
also be available.

• The language code must be a 2-letter code, and the country code can be either a 2-letter or
3-letter code.

Note: BlackBerry 9800 Asia simulators do not have a place to specify a country name, so
you can specify only a language.

• If you specify a variant, the country code must be a 2-letter code.

Localizing a Hybrid App Package
Use the Hybrid App Designer to complete these tasks to localize Hybrid App packages (.xbw
files).

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 173

Changing the Encoding Type
Change the encoding type in Preferences.

If you manually localize the locale properties file using an external editor, you must make sure
the file is encoded in ASCII, so that the content can be correctly read and converted to
Unicode. The localization file is encoded in standard ISO-8859-1. All non-ASCII character
values are converted to escaped Unicode hexadecimal values before they are written to the
properties files. Before translating the localization file, select the correct file encoding option,
for example UTF-8.

1. In SAP Mobile Platform, select Window > Preferences.

2. Expand General > Content Types.

3. In the right pane, select, Text > Java Properties File.

4. In the File Associations list, select *.properties.

5. In the Default encoding field, change ISO-8859-1 to UTF-8, and click Update.

Develop a Hybrid App Using the Hybrid App Designer

174 SAP Mobile Platform

Creating and Validating a New Locale Properties File
Create a locale properties file as the default locale.

Prerequisites
You must have an existing Hybrid App package before you create the locale properties file.

Task
When you create a new locale, keep in mind:

• When you specify a country for the language, the basic language locale must also be
available. For example, if you create a locale and specify English as the language, then
there must also be a locale for English (the basic language).

• If you create a locale that specifies language, country, and variant, the locale for the basic
language and the locale for the basic language and the country must be available. For
example, if you create a locale and specify English as the language, United States as the
country, and WIN as the variant, then English (United States) and English locales must
also be available.

1. In WorkSpace Navigator, double-click the Hybrid App.xbw file to open the Hybrid
App Designer.

2. Click the Flow Design tab.

3. Right-click in a blank area on the Flow Design page, and select Show Properties View.

4. In the Properties view, on the left, click the Localization tab.

5. In the right pane, click New.

6. Select or enter the information for the new locale, select Automatically create default
locale, and click Finish.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 175

Option Description

Language Select the language.

Country Select the country.

Variant Enter the variant, which is the vendor or browser-specific code. For example,
enter WIN for Windows, MAC for Macintosh and POSIX for POSIX. If there
are two variants, separate them with an underscore, and put the most important
one first. For example, a Traditional Spanish collation might construct a locale
with parameters for language, country, and variant as: es, ES, Tradi-
tional_WIN.

Overwrite exist-
ing file

Overwrite an existing localization file.

Automatically
create default lo-
cale

Automatically create the default locale properties file. For example, if you
specify the language as English and the country as United States
for a device application called test, then both test_en_uS.prop-
erties and test.properties files are created.

For example:
• Language – select French.
• Country – select France.
• Variant – enter a value to make this locale file unique from others, for example, WM for

Windows Mobile.

Develop a Hybrid App Using the Hybrid App Designer

176 SAP Mobile Platform

This locale file is now the default locale file, and will be used when the regional setting of
the device does not match that of any supplied locale file.

7. In the Properties view, in the Localization page, select the file to validate and click
Validate.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 177

The properties file is scanned and if there are any errors, a dialog appears. Click Yes to
correct the errors automatically; click No to see the errors in the Problems view.

Editing the Locale Properties File
Edit the locale properties file.

1. In WorkSpace Navigator, under the Generated Code folder, right-click the locale
properties file you created, and select Open With > Properties File Editor.

2. You can make and save changes to the file in the Properties File editor, for example, you
can replace all the values of the resource keys with Chinese characters.

3. Select File > Save.

The next time you open the locale properties file, notice that all of the ASCII characters
have been changed.

4. In the Localization pane, select the localization file you edited, and click Load.

The elements of the application in the editor are translated into the language you specified
if the localization file passes the loading validation.

Removing a Locale
Remove locale properties files.

1. In the Screen Design page Properties view, click Localization.

2. Select the locale to remove and click Remove.

3. Click Yes to confirm the deletion.

Updating the Current Locale
Update the currently loaded locale properties file with the resource keys from the current
Hybrid App Designer.

If the locale properties file does not already exist, it is created. If the current locale is not
defined in the Hybrid App file, the updated locale is used as the default, and the file name is
{device_application}.properties. Otherwise, the locale defined in the Hybrid App file is
updated.

Note: When you update the localization bundle, it removes all resources that are not explicitly
bound to existing UI elements (screens, menuitems, controls, and so on). If you want to
manually supply resources, you must do so after updating, and be careful not to update the
resource bundles afterwards, or you will have to re-add those manually-supplied resources
after updating.

1. In the Screen Design page Properties view, click Localization.

2. Click Update.

Develop a Hybrid App Using the Hybrid App Designer

178 SAP Mobile Platform

Hybrid App Package Internationalization
The internationalization feature depends on the internationalization setting on the operating
system where SAP Mobile Platform Hybrid App is running.

In the Hybrid App Designer, you can use international data in:

• Matching rules for notifications.

• Key names – you can create keys with names in other languages and map them to mobile
business object parameters.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 179

Develop a Hybrid App Using the Hybrid App Designer

180 SAP Mobile Platform

• Generated Code folder – you can include languages other than English in the code
generation path based on the name of the selected language.

Internationalization on the Device
On the device, e-mail messages and data can include languages other than English.

The internationalization feature depends on the internationalization setting on the device
where the Hybrid App client running.

E-mail messages can be sent and received using Chinese, for example, which can then be used
to extract the parameter. You can also create and update records in using international data,
such as Chinese. For example:

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 181

Test Hybrid App Packages
Test a Hybrid App on a device or simulator.

1. Launch and/or connect to the mobile device or emulator.
2. Deploy the Hybrid App package to the device.
3. Establish the connection to the server on the device.
4. For user-initiated Hybrid App packages, go to the Hybrid Apps menu and click on the

appropriate Hybrid App.

Develop a Hybrid App Using the Hybrid App Designer

182 SAP Mobile Platform

5. For e-mail subscription Hybrid App packages, send the e-mail to the device, either
automatically, for example, database trigger, or manually, through the Send E-mail dialog;
then open that e-mail on the device.

6. Enter data and execute menu items appropriately.
7. Verify that the backend is updated correctly.
8. Check the logs.

Testing Server-Initiated Hybrid App Packages
Test a server-initiated Hybrid App package.

1. In the Hybrid App Designer, open the Hybrid App <hybridapp>.xbw.

2. Click Flow Design.

3. Right-click in the editor, and select Send a notification.

4. In the Send a Notification window:

a) Select the SAP Mobile Server profile and click Get Device Users.
b) Choose the desired user and fill in the fields according to the matching rules specified

when creating the Hybrid App.

5. Click Send.

6. On the client, from the applications screen, open the Hybrid Web Container.

7. In the client application, click Hybrid Apps. This contains the server-initiated Hybrid
App.

Viewing Hybrid App Messages on the Device
Where Hybrid App messages that are sent to the device appear varies by platform.

Note: Registration must be successfully completed either through providing an activation
code or a password for automatic registration in the connection settings before any Hybrid
App packages appear on the device.

Android and BlackBerry
To see Hybrid App messages on BlackBerry devices and simulators:

1. In the applications screen, open Hybrid Web Container.
2. Messages appear in the Messages screen.

iOS
To see Hybrid App messages on iOS devices and simulators:

1. Open the Hybrid Web Container.
2. Click Messages to view messages.

Windows Mobile
To see Hybrid App messages on Windows Mobile devices and emulators:

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 183

1. In the Programs screen, open the Hybrid Web Container.
2. Messages appear in the Messages screen.

Launching a Server-initiated Hybrid App on the Device
Server-initiated Hybrid App messages are sent to the Hybrid Web Container that is installed
on the device.

When you click the Hybrid Apps menu item in the Hybrid Web Container, only the latest
version of the Hybrid Apps appear. When you click the icon for a particular Hybrid App, the
Hybrid App version that is associated with the notification is launched, whether it is the latest
version or not.

Example
You develop a Hybrid App that has both client-initiated and server-initiated starting points.
You deploy the initial version, which is called version 1, and a notification is sent.

Next, make some changes and deploy a second version, version 2. Again, a notification is
sent.

There are now three ways that this Hybrid App can be launched, and the way that it is launched
determines which version of the Hybrid App is launched:

• If you launch the application from the Hybrid Apps menu item, the last deployed version
of the Hybrid App, in this case, version 2, is launched. Although version 1 of the Hybrid
App still exists somewhere on the device, it is never used as long as you launch the Hybrid
App from the Hybrid Apps menu.

• If you launch the Hybrid App by opening the initial notification, the version that
corresponds with the latest version that existed at the time the notification was sent, is used.
In this case, that is version 1; it does not matter that a later version (version 2) exists.

• If you launch the Hybrid App by opening the second notification, the version that
corresponds with the latest version that existed at the time the notification was sent is used.
In this case, that is version 2.

Debugging Custom Code
Debug the Hybrid App package HTML and JavaScript files using a Windows desktop
browser.

This procedure uses Google Chrome as an example, but you can use any browser that supports
JavaScript debugging.

1. Change the tracing level of Hybrid App to Debug.

2. Open the browser to use for debugging and open the Java Console.

If you are using Chrome:

a) Add this command line option to the shortcut used to start Chrome:

..\chrome.exe" --allow-file-access-from-files

Develop a Hybrid App Using the Hybrid App Designer

184 SAP Mobile Platform

3. You can debug a client-initiated Hybrid App up until the point where a menu item of the
Submit type is performed. If the menu item action is an Online Request, place the
XMLWidgetMessage (available in the WorkflowClient trace log located in SMP_HOME
\Servers\UnwiredServer\logs\WorkflowClient) that is the expected
response message into an rmi.xml file and place it at the same level as the generated
hybridapp.html file.

Note: Control characters are not parsed correctly when using rmi.xml and Chrome to
debug the Hybrid App. Do not format the content of the rmi.xml when debugging the
Hybrid App using Chrome. If you want a formatted look at the rmi.xml file, make a copy
of the file for that purpose.

4. From WorkSpace Navigator, drag and drop the hybridapp.html file for the Hybrid
App to debug onto the browser window.

5. Find the name of the key to debug:
a) In Flow Design, click the screen to debug.
b) In the Properties view, click General in the left pane.

The key name is shown, in this example, that is TravelRequest_create.

6. In the URL, add the ?screenToShow=<Screen_name> parameter to the end of the URL,
for example:
file:///C:/Documents%20and%20Settings/<user_name>/
workspace/HybridApp101/Generated%20HybridApp/
travelrequest/html/hybridapp.html?
screenToShow=TravelRequest_create

7. To simulate an e-mail message triggered Hybrid App:
a) Create a file called transform.xml and place the contents of the

XMLWidgetMessage into it.
The contents of the XMLWidgetMessage are in the WorkflowClient trace log in
<UnwiredPlatform_InstallDir>\UnwiredPlatform\Servers
\UnwiredServer\logs\WorkflowClient).

b) To provide data to the Hybrid App you are debugging, place the transform.xml
file at the same level as the generated hybridapp.html file (Generated
Hybrid App\<Hybrid_App_name>\html).

c) Add a ?loadtransformdata=true parameter to load the data into the Hybrid App.

Configuring Messaging Server Log Settings
Messaging Server logs create trace configurations for messaging modules, and retrieve trace
data for all or specific messages. Configure trace configuration properties for modules to

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 185

specify the amount of detail that is written to the log. You can configure trace settings for the
primary server cluster in SAP Control Center for each module. The settings are available to
cluster servers through the shared data folder.

Note: The default settings may only need to change in case of technical support situations
where, for diagnostic reasons, a request is made to configure the specific module(s) settings,
and provide the request log. In all other cases, the administrator or developer should not need
to change the settings.

Additionally, you should always use SAP Control Center to configure server logs. If you
manually edit the configuration file, especially on secondary servers in a cluster, the servers
may not restart correctly once shut down.

1. In the SAP Control Center left navigation pane, click Configuration.

2. In the right administration pane, click the Log Setting tab and select Messaging
Server.

3. Select Default, or one or more of the messaging service modules. Click Show All to show
all modules.

Module Description

Default Represents the default configuration. The de-
fault values are used if optional fields are left
blank in a module trace configuration. Re-
quired.

Device Management Miscellaneous functions related to device reg-
istration, event notification, and device admin-
istration. Enable tracing for problems in these
areas.

JMSBridge This module handles communications from the
SAP Mobile Server to the messaging server.
Enable tracing to view the detailed messaging
exchange.

MO This module handles the delivery of messages
between the client and server, including syn-
chronous function calls from client to server.
Enable tracing for MO errors and message de-
livery issues.

SUPBridge This module handles communications from the
messaging server to the SAP Mobile Server.
Enable tracing to view the detailed messaging
exchange.

Develop a Hybrid App Using the Hybrid App Designer

186 SAP Mobile Platform

Module Description

TM This module handles the wire protocol, includ-
ing encryption, compression, and authentica-
tion, between the messaging server and clients.
All communication between the client and the
messaging server passes through TM. Enable
tracing for authentication issues, TM errors,
and general connectivity issues.

WorkflowClient The WorkflowClient module.

4. Click Properties.

a) Enter trace configuration properties. If you selected multiple modules, a string of
asterisks is used to indicate settings differ for the selected modules. You can select the
option to view or change the property value for any module.

Property Description

Module Display only. Default, module name, or list of
module names selected.

Description (Optional) Custom description of the server
module.

Level Trace level for the module - DISABLED,
ERROR, WARN, INFO, DEBUG, DE-
FAULT. If the default trace level is specified
for the module, the module uses the trace
level defined for Default. Required.

Max trace file size (Optional) Maximum trace file size in MB. If
the trace file size grows larger than the speci-
fied value, the trace file data is backed up
automatically.

User name (Optional) Only data for the specified user
name is traced.

Application Connection ID (Optional) Only data for the specified Appli-
cation ID is traced.

b) Click OK.
Log files for each module are stored in folders of the same name located in:
SMP_HOME\Servers\UnwiredServer\logs.

Develop a Hybrid App Using the Hybrid App Designer

Developer Guide: Hybrid Apps 187

Develop a Hybrid App Using the Hybrid App Designer

188 SAP Mobile Platform

Manage a Hybrid App Package

The Hybrid Apps node in SAP Control Center allows administrators to view and manage
deployed Hybrid App packages, including display name, module name, and module version.

Administrators deploy Hybrid App packages into the SAP Mobile Platform cluster through
this node, as well as manage notification settings configuration.

Registering or Reregistering Application Connections
Registering an application connection groups the user, device, and application to create a
unique connection in SAP Control Center, so the registered connection activity can be
monitored. Use SAP Control Center to manually register an application connection. You can
also reregister an application connection when the association between the user, device and
application breaks or requires a different pairing.

For more information on registering and reregistering application connections, see How
Connections Are Registered in Mobile Application Life Cycle.

1. In the left navigation pane, click the Applications node.

2. In the right administration pane, click the Application Connections tab.

3. Choose an action:

• Click Register to register a new application connection. Using the Activation Code,
this application is then paired with a user and a device.

• Click Reregister to associate the application with a new device and user pairing. For
example, reregister the application connection if someone loses their device. By
reregistering the application connection, the user then receives the same applications
and workflows as the previous device.

Note: If the client application does not support reregistration, you cannot reregister the
application connection. To determine if the client application supports reregistration,
review the Capabilities properties for the application connection. If the Application
Supports Client Callable Components property has a value of False, reregistration
is not supported.

4. In the Register Application Connection or the Reregister Application Connection dialog.

a) For new device registration only, type the name of the user that will activate and
register the device. For reregistrations or clones, the same name is used and cannot be
changed.

b) (Not applicable to reregistration.) Select the name of the template for initial application
connection registration. The template you use supplies initial values in the subsequent
fields.

Manage a Hybrid App Package

Developer Guide: Hybrid Apps 189

• Default – a default template that you can use as is, or customize.
• HWC – a default template for Hybrid Web Container. Use as is, or customize. If you

use the HWC template, Application ID must be set to HWC.
• Custom - customized templates are listed.

Note: You cannot change the application connection template for an application
connection after registration.

5. Change the default field values for the template you have chosen.

If you are using Relay Server, ensure the correct values are used.
• Application ID- the application ID registered for the application. The value differs

according to application client type - native application, Hybrid App, or Online Data
Proxy client. See Application ID Overview for guidelines.

Note: If the template you have chosen supplies the Application ID, then this field is
read-only.

• Security Configuration- select the security configuration relevant for the application
connection.

• Logical Role- (not applicable to reregistration) select the logical role that users must
belong to in order to access the application.

• Domain- select the domain to which the application connection is assigned. A domain
is not required for registering application connections for Hybrid Web Container
applications.

Note: This value is sent to and used by the device application, and is automatically
derived from the application ID you select. Therefore, you must set this value correctly
when using a domain with an application ID. If you set a domain, ensure it matches the
domain of the packages needed by the application; otherwise, the application generates
a Package not found error.

• Activation code length - the number of characters in the activation code.
• Activation expiration- the number of hours the activation code is valid.

6. (Optional) Select the check box adjacent to Specify activation code to enter the code sent
to the user in the activation e-mail. This value can contain letter A - Z (uppercase or
lowercase), numbers 0 - 9, or a combination of both. Acceptable range: 1 to 10 characters.

7. Click OK

The application is registered or reregistered. SAP applications that have connections
registered with SAP Mobile Server, can also have licenses counted by SAP License Audit
service. For a list of SAP applications for which licenses are counted, see SAP Applications
Tracked with SAP License Audit in System Administration..

Manage a Hybrid App Package

190 SAP Mobile Platform

Setting General Application Properties
Provide general application properties such as the application ID, description, security
configuration and domain details while registering the application.

1. In the Application Creation Wizard, enter a unique Application ID.

Note:
• SAP recommends that application IDs contain a minimum of two dots ("."). For

example, the following ID is valid: com.sybase.mobile.app1.

• Application IDs cannot start with a dot ("."). For example, the following ID is
invalid: .com.sybase.mobile.app1.

• Application IDs cannot have two consecutive dots ("."). For example, the following ID
is invalid: com..sybase.mobile.app1.

2. Enter a Display name and Description for the application.

3. Select the appropriate security configuration from the Security Configuration drop-
down list.

For applications that do not require authentication, select the anonymous security
configuration or the Anonymous access checkbox.

4. Select the appropriate domain from the Domain drop-down list.

5. (Optional) Assign one or more packages as desired.

Note: When an application ID is intended for use by Online Data Proxy, packages do not
need to be assigned. .

6. (Optional) Modify application connection template settings.

a) Select Configure additional settings, and click Next.
b) To reuse the configuration of an existing template, select a Base template from the

drop-down list.
c) Configure the application connection template properties as required.

Note: ODP applications require a proxy type connection endpoint. When modifying
application connection template settings for an ODP application, you can
automatically create the proxy connection endpoint by entering an OData URL as the
Application Endpoint value in the connection template Proxy properties. This creates a
proxy connection endpoint with the same name as the Application ID. If the ODP
application uses an anonymous security configuration, the newly created connection
endpoint will have the Allow Anonymous Access property set to True and the Address
(URL) property set to the Application ID. If you want to create the proxy connection
endpoint manually, leave the Application Endpoint property empty. You manually
create the proxy connection endpoint through the SAP Control Center Domains node.

Manage a Hybrid App Package

Developer Guide: Hybrid Apps 191

7. Click Finish to register the application with the configured settings.

Application ID and Template Guidelines
Choose an appropriate application ID while registering application connection for use by
native MBO, Hybrid App, or Online Data Proxy clients. Using an incorrect application ID
results in failure when the client tries to activate itself.

Application Type Guidelines

Hybrid App • 2.0.1 or earlier – leave the application ID empty.

• 2.1 or later – use preexisting HWC template, or, if
you are using your own template, make sure that
HWC is set as the application ID in the template.

• iOS sample container 2.1 or later – use the template
you have created. The application ID used by the iOS
sample container should match the application ID
specified in registration.

Native MBO application • Previous to 2.1.2 – leave the application ID empty.
This applies to native messaging-based application
clients.

• 2.1.2 or later – (recommended) use the application
connection template that is automatically created for
the application. Otherwise, ensure you register the
application connection with the correct template by
verifying that application ID matches, and that the
correct security configuration and domain are selec-
ted. Also, if using replication, set other template
properties (such as synchronization-related proper-
ties in Connection category) as required. For Android
native MBO applications, this recommendation ap-
plies starting with version 2.1.1.

Online Data Proxy Register the application connection using the template
created for the application. Existing templates can be
found in the Applications > Application Connection
Template tab.

Manage a Hybrid App Package

192 SAP Mobile Platform

Enabling and Configuring the Notification Mailbox
Configure the notification mailbox settings that allow SAP Mobile Server to transform e-mail
messages into Hybrid App.

The notification mailbox configuration uses a listener to scan all incoming e-mail messages
delivered to the particular inbox specified during configuration. When the listener identifies
an e-mail message that matches the rules specified by the administrator, it sends the message
as a Hybrid App to the device that matches the rule.

Note: Saving changes to the notification mailbox configuration deletes all e-mail messages
from the account. Before proceeding with configuration changes, consult your e-mail
administrator if you want to back up the existing messages in the configured account.

1. Log in to SAP Control Center.

2. In the left navigation pane, click Hybrid Apps.

3. In the right administration pane, click Notification Mailbox.

4. Select Enable.

5. Configure these properties:

• Protocol – choose between POP3 or IMAP, depending on the e-mail server used.
• Use SSL – encrypt the connection between SAP Mobile Server and the e-mail server in

your environment.
• Server and Port – configure these connection properties so SAP Mobile Server can

connect to the e-mail server in your environment. The defaults are localhost and port
110 (unencrypted) or 995 (encrypted).

• User name and Password – configure these login properties so SAP Mobile Server
can log in with a valid e-mail user identity.

• Truncation limit – specify the maximum number of characters taken from the body
text of the original e-mail message, and downloaded to the client during
synchronization. If the body exceeds this number of characters, the listener truncates
the body text to the number of specified characters before distributing it. The default is
5000 characters.

• Poll seconds – the number of seconds the listener sleeps between polls. During each
poll, the listener checks the master inbox for new e-mail messages to process. The
default is 60 seconds.

6. If you have added at least one distribution rule, you can click Test to test your
configuration. If the test is successful, click Save.

Manage a Hybrid App Package

Developer Guide: Hybrid Apps 193

Assigning and Unassigning a Hybrid App to an Application
Connection

Assign a Hybrid App package to an application connection to make it available to a device
user. Unassign the Hybrid App package when it is no longer required.

You can also assign Hybrid App packages indirectly through the application connection
template. The set of packages assigned to an application connection will be a combination of
packages assigned indirectly through the application connection template and directly
through the application connection.

1. In the left navigation pane of SAP Control Center, click Hybrid Apps and select the
Hybrid App to assign.

2. In the right administration pane, click the Application Connections tab.

3. Click Assign.

4. List the activation users to assign the Hybrid App package to.
Search for users by selecting the user property you want to search on, then selecting the
string to match against. Click Go to display the users.

5. Select the user or users from the list that you want to assign the Hybrid App package to.

6. Click OK.

7. To set the Hybrid App package as the default application for an application connection,
select the connection and click default.
Set a Hybrid App package as the default to run that application on the device as a single-
purpose application. Single-purpose applications launch automatically when the user
opens the Hybrid Web Container. This will be the only Hybrid App available on the device.
You can select only one default per application connection.

8. To unassign a Hybrid App package, select the application connection and click
Unassign.

Note: If you unassign the Hybrid App package that is set as the default, you may want to
select a new default package.

9. Click OK.

Activating the Hybrid App
Hybrid App screen menus contain two menu item types: Submit Hybrid App (asynchronous)
and Online Request (synchronous).

To complete the Hybrid App activation process, the last screen in the Hybrid App must have a
Submit Hybrid App menu item. This is necessary for the device and server-side to activate
the Hybrid App for the device.

Manage a Hybrid App Package

194 SAP Mobile Platform

A Hybrid App is considered to have been processed or activated only if it is closed with a
Submit Hybrid App menu item, which may or may not be tied to a mobile business object
(MBO).

Configuring Context Variables for Hybrid App Packages
The administrator can change some of the values of a selected variable, should the design-time
value need to change for a production environment.

Which values are configurable depends on whether the developer hard-coded a set of user
credentials or used a certificate.

1. In the left navigation pane, expand the Hybrid Apps folder and select the Hybrid App
package to configure context variables for.

2. In the right administration pane, click the Context Variables tab.

3. Select the context variable to configure, then click Modify.

Context Variable Description

SupUser The valid Hybrid App application user ID that
SAP Mobile Server uses to authenticate the
user. Depending on the security configura-
tion, SAP Mobile Server may pass that au-
thentication to an EIS.

SupDomain The name of the domain that the Hybrid App
package is deployed to.

SupUnrecoverableErrorRetryTimeout After sending a JSON request to SAP Mobile
Server, if you receive an EIS code that indi-
cates an unrecoverable error in the response
log, the Hybrid App client throws an excep-
tion. A retry attempt is made after a retry time
interval, which is set to three days by default.
Select this property to change the retry time
interval.

SupThrowCredentialRequestOn401Error The default is true, which means that an error
code 401 throws a CredentialRe-
questException, which sends a cre-
dential request notification to the user's in-
box. If this property is set to false, error code
401 is treated as a normal recoverable excep-
tion.

Manage a Hybrid App Package

Developer Guide: Hybrid Apps 195

Context Variable Description

SupThrowBadHttpHeadersOn412Error The default is true, which means that an error
code 412 throws a BadHttpHeader-
sException,. If this property is set to
false., error code 412 is treated as a normal
recoverable exception.

SupRecoverableErrorRetryTimeout After sending a JSON request to SAP Mobile
Server, if you receive an EIS code that indi-
cates a recoverable error in the response log,
the Hybrid App client throws an exception. A
retry attempt is made after a retry time inter-
val, which is set to 15 minutes by default.
Select this property to change the retry time
interval.

SupPassword The valid Hybrid App application user pass-
word that SAP Mobile Server uses to authen-
ticate the user. Depending on the security
configuration, SAP Mobile Server may pass
that authentication to an EIS. An administra-
tor must change development/test values to
those required for a production environment.

SupPackages The name and version of the MBO packages
that are used in the Hybrid App. This cannot
be changed.

SupMaximumMessageLength Use this property to increase the allowed
maximum Hybrid App message size. Limi-
tations vary depending on device platform:
• For BlackBerry 5, the limit is 512KB.
• For Windows Mobile the limit is 500KB.
• For BlackBerry 6 and Android, the limit

depends on the memory condition of the
device. Large message may result in an
out of memory error.

SupWorkflowVersion The version number of the Hybrid App pack-
age.

4. In the Context Variable dialog, change the value of the named variable and click OK.

Changing Hard Coded User Credentials
The administrator can change hard coded user credentials assigned at design time if the design
time value needs to change for a production environment.

Manage a Hybrid App Package

196 SAP Mobile Platform

1. In the left navigation pane, expand the Hybrid Apps folder and select the Hybrid App
package to configure context variables for.

2. In the right administration pane, click the Context Variables tab.

3. Select one or both of the variables: SupUser or SupPassword, and click Modify.

4. Type the new value and click OK.

Adding a Certificate File to the Hybrid App Package
The administrator can change the credential certificate assigned at design time.

Note: SAP recommends that you use Internet Explorer to perform this procedure.

1. In the left navigation pane, expand the Hybrid Apps folder and select the Hybrid App
package to configure context variables for.

2. In the right administration pane, click the Context Variables tab.

3. Select SupPassword and click Modify.

4. Select Use certificate-base credentials and click Browse to find and upload a certificate
file.

5. Set the value for Certificate password and click OK.
On the Context Variables page, the read-only values of SupUser, SupCertificateSubject,
SupCertificateNotBefore, SupCertificateNotAfter, and SupCertificateIssuer change to
reflect values of the new certificate and password you set.

End to End Trace and Performance
The SAP passport handling functionality allows for an end to end trace of data communication
from the client to the back-end.

The hwc.e2eTrace JavaScript APIs enable or disable end-to-end trace and the ability to
upload and view the trace file. SAP Mobile Server must be configured with SAP Solution
Manager to upload and view this trace. See Configuring SAP Mobile Server Performance
Properties in SAP Control Center for SAP Mobile Platform.

Note: End to end trace is supported on Android and iOS only.

The performance library provides the ability to capture performance metrics of the device
while the Hybrid Web Container is running. Administrators can use this information to
troubleshoot performance related issues.

These metrics are collected when the performance agent is enabled:

• totalTime [ms]
• networkTime [ms]
• totalCpuTime [ms]

Manage a Hybrid App Package

Developer Guide: Hybrid Apps 197

• roundTrips
• totalBytes
• sentBytes
• receivedBytes
• memMax

Enabling the Performance Agent on the Device
The performance setting on the device gives administrators a mechanism to collect
performance counters when running Hybrid Apps.

Note: The performance agent is not supported on Windows Mobile devices.

Note: To enable the performance setting on BlackBerry and Android, an SD card must be
installed on the device.

1. Go to the Hybrid App settings screen.

2. Click the menu key and select Advanced.

3. Select Performance to start the performance agent.

4. Unselect Performance to create the performance log.

The performance numbers are stored in memory and saved to a file when you stop the
performance library, either on the device or through the stopInteraction JavaScript
API. View the performance logs in SAP Control Center. See Tracing Application
Connections.

Tracing Application Connections
Send a request to SAP Mobile Server to retrieve log files for an application connection.

1. In the left navigation pane, select the Applications node.

2. In the right administration pane, click Application Connections tab.

3. Select an application connection, and click Get Trace.

Note: If the client application does not support tracing, you cannot trace the application
connection. To determine if the client application supports tracing, review the
Capabilities properties for the application connection. If the Application Supports
Client Callable Components property has a value of False, tracing is not supported.

The application connection status must be "online" to retrieve the logs.

4. Click OK.

5. When the application connection is online, check the application connection log. The
default location for single node and cluster installations is SMP_HOME\Servers
\UnwiredServer\logs\ClientTrace .

Manage a Hybrid App Package

198 SAP Mobile Platform

Build a Customized Hybrid Web Container
Using the Provided Source Code

Use the provided source code to build your own customized user interface and configure other
resources in the development environment of your choice.

Building the Android Hybrid Web Container Using the
Provided Source Code

The Hybrid Web Container in this procedure is a sample container provided with the SAP
Mobile Platform Mobile SDK installation.

Prerequisites

• Install the Android SDK version 2.2, API Level 8. You can get the Android SDK at http://
developer.android.com/sdk/index.html.

• If you are developing in Eclipse, install the ADT Plug-in for Eclipse.

Task

This example uses Eclipse as the development environment, but you can use any development
environment.

1. Open Eclipse and select File > Import.

2. Expand the General folder, choose Existing Projects into Workspace, and click Next.

3. Choose Select archive file, browse to SMP_HOME\MobileSDK<version>
\HybridApp\Containers\Android\, and select
Android_HWC_<version>.zip.

4. Click Finish.

A Hybrid Web Container project folder is added to Workspace Navigator. You may receive
an error indicating that the source folder gen is missing. If so, add an empty folder named
gen to the src folder in the project.

5. Open the local.properties file in the main directory of the project. This file
contains a non-commented line, sdk.dir = <filepath>. Verify the <filepath>
matches the filepath to your installation of the Android SDK.

6. If you receive an Android requires compiler compliance level 5.0
or 6.0. Found '1.4' instead. Please use Android Tools > Fix
Project Properties error, follow the instructions and then clean the project.

Build a Customized Hybrid Web Container Using the Provided Source Code

Developer Guide: Hybrid Apps 199

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

7. If you receive errors of the type … must override a superclass method,
make sure the Java compiler has its compliance set to 1.6.

a) Right-click the HybridWebContainer project and select Properties.
b) Go to the Java Compiler section and set the Compiler compliance level to 1.6.
c) Rebuild the project.

Building the Android Hybrid Web Container Outside of Eclipse
You can build the Android Hybrid Web Container independent from SAP Mobile Platform.

1. Open a command prompt and navigate to the base directory of the Hybrid Web Container
project.

2. Run either the ant debug or ant release command, depending on whether you want to
debug or release the Hybrid Web Container.

You can download Apache Ant from http://ant.apache.org/bindownload.cgi, if necessary.

A file named either HybridWebContainer-debug.apk or
HybridWebContainer-release-unsigned.apk (depending on the command
you used) is added to the bin folder. If a file already exists with that name, it is
overwritten.

3. Use Android Debug Bridge (ADB), which is included in the Android SDK installation, to
install the .apk to the emulator.

a) Launch an Android Virtual Device (AVD) that does not have the Hybrid Web
Container installed (or uninstall it if it is installed).

b) In the Command Prompt window, navigate to the folder that contains the adb.exe
file, which should be in the …/android-sdk/platform-tools/ folder.

c) Execute: adb install <path>, where <path> is the full filepath to the
HybridWebContainer.apk file.

Building the BlackBerry Hybrid Web Container Using the
Provided Source Code

You can use the provided BlackBerry Hybrid Web Container template to build a custom user
interface and configure other resources.

Prerequisites

• Install the BlackBerry Plug-in for Eclipse. See https://developer.blackberry.com/java/
download/eclipse?IID=DEVJVA1223.

• Register the device in SAP Control Center.

Build a Customized Hybrid Web Container Using the Provided Source Code

200 SAP Mobile Platform

http://ant.apache.org/bindownload.cgi
https://developer.blackberry.com/java/download/eclipse?IID=DEVJVA1223
https://developer.blackberry.com/java/download/eclipse?IID=DEVJVA1223

Task

This example uses Eclipse as the development environment. If you use another development
environment, the steps might vary.

1. Extract the files from SMP_HOME\MobileSDK<version>\HybridApp
\Containers\BB\BB_HWC_<version>.zip

2. In Eclipse, import the BlackBerry Hybrid Web Container template as a legacy BlackBerry
project:

a) Select File > Import.
b) Expand the BlackBerry folder.
c) Select Import Legacy BlackBerry Projects.
d) Click Next.
e) Specify the JRE and, in the BlackBerry Workspace field, browse to the

HWCtemplate.jdw file and select the project to import.

f) Select Copy BlackBerry projects into workspace to create a copy of the imported
project in the Eclipse workspace.

g) Click Finish.

3. Supply a signing key.

Supplying a Signing Key
You must supply a signing key from RIM to access the persistent store.

1. Go to https://www.blackberry.com/SignedKeys/nfc-form.html to obtain a signing key and
import them into Eclipse following RIM’s instructions.

Once you import your signing key, you must change some code to let the Hybrid Web
Container know which keys you are using.

2. Open the CustomizationHelper.java file for editing.

3. Find the method named getCodeSignerId() and update it to return the name of your
key.

4. Add the key file to your project so it is included in the .cod file.

Building the iOS Hybrid Web Container Using the Provided
Source Code

Build a sample Hybrid Web Container.

Prerequisites

• Register the device in SAP Control Center.

Build a Customized Hybrid Web Container Using the Provided Source Code

Developer Guide: Hybrid Apps 201

https://www.blackberry.com

• Have access to a Mac with a supported version of Xcode and the iOS SDK.

See Supported Hardware and Software for the most current version information for mobile
device platforms and third-party development environments.

Task

1. On your Mac, connect to the Microsoft Windows machine where SAP Mobile Platform is
installed:

a) In the Apple menu, click Go > Connect to Server.
b) Enter the name or IP address of the machine.

For example, smb://machine DNS name or smb://IP Address.

2. Copy the iOS_HWC_version.tar.gz archive from SMP_HOME
\MobileSDKversion\HybridApp\Containers\iOS\ to a location on your
Mac.

In the archive file name, version is the current SAP Mobile Server version number. For
example, iOS_HWC_2.3.0.tar.gz.

3. Unpack iOS_HWC_version.tar.gz.
The extraction creates a HybridWebContainer directory.

4. In the HybridWebContainer directory, double-click HWC.xcodeproj to open it in
the Xcode IDE.

5. If you are building for a device, you must add provisioning profiles to the project to be able
to sign the executable.

a) In Xcode, click the HWC project and select the HWC target.
b) Select the Build Settings tab.
c) Under the Code Signing section, add code-signing identities for each configuration

(Debug, Release, or Distribution) you want to build, depending on how you will deploy
the app.

When you build the Hybrid Web Container using your provisioning profile, you are
creating your own version of the application.You can reuse the bundle ID that is
distributed with the HWC template project, but you cannot upgrade your custom-built
application through the normal means.

The reason for this is because on iOS the Keychain is used to store information and
Keychain rights depend on the provisioning profile used to sign your application.
Therefore, you should consistently use the same provisioning profile across different
versions of your application. Follow the instructions in Using Multiple Hybrid Web
Containers on the Same iOS Device when you build the HWC template source.

6. In Xcode, click Product > Build to build the project.

Build a Customized Hybrid Web Container Using the Provided Source Code

202 SAP Mobile Platform

Building the Windows Mobile Hybrid Web Container Using
the Provided Source Code

Use the provided Windows Mobile Hybrid Web Container template to build your own
customized user interface and configure other resources.

1. Unpack SMP_HOME\MobileSDK<version>\HybridApp\Containers\WM
\WM_HWC_<version>.zip into a local folder.

2. Include custom code files in your template project:

a) In Visual Studio, open Solution Explorer and select the template project.
b) Click the Show All Files button and select all files in the CustomCode folder.
c) With all files selected, right-click and choose Include In Project.

3. Specify the signing for the template project:

a) Right-click the project in the Solution Explorer and choose Properties.
b) Open the Signing tab, and select an existing key file or create a new one.

4. Right-click the project and choose Add Reference.

5. Click Browse, select HybridAppLib.dll, and click OK.

Build a Customized Hybrid Web Container Using the Provided Source Code

Developer Guide: Hybrid Apps 203

Build a Customized Hybrid Web Container Using the Provided Source Code

204 SAP Mobile Platform

Install and Configure the Hybrid Web
Container On the Device

To enable deploying Hybrid App packages to a device, you must download, install, and
configure the Hybrid Web Container on the device.

Deploy the Hybrid Web Container to devices and register the devices with SAP Mobile Server.
You can use Afaria® to install the container on devices for enterprise deployment. For
information on setting up an Afaria environment, see Provisioning With Afaria in Mobile
Application Life Cycle.

See the configuration procedure for your device type.

Preparing Android Devices for the Hybrid Web Container
Install the Hybrid Web Container on the Android device using the Android SDK.
In the Settings for your Android device, disable all keyboards except the Android keyboard.

Installing the Hybrid Web Container on Android Devices
Use the Android SDK Manager to install Hybrid Web Container application files.

To install the Android Hybrid Web Container on your Android device:

1. Connect the device.
2. Install the Android SDK.
3. Run platform-tools\adb and install SMP_HOME\MobileSDK<version>

\HybridApp\Containers\Android\HybridWebContainer.apk.

For example:
C:\Android\android-sdk\platform-tools\adb install ^
SMP_HOME\MobileSDK<version>\HybridApp\Containers\Android
\HybridWebContainer.apk

Configuring the Android Emulator
Configure an Android emulator for testing a Hybrid App package.

Note: The steps or interface may be different depending on the Android SDK version you are
using.

1. Install the Android SDK.

a) Go to http://developer.android.com/sdk/.
b) Download the Android SDK (for example, installer_r21-windows.exe).

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 205

http://developer.android.com/sdk/

Note: Do not download the larger SDK starter package (ADT Bundle for Windows).
The starter package includes not only the SDK but also the ADT plug-in for Eclipse
and a more recent platform than the one shown in this tutorial.

c) In Windows Explorer, double-click the downloaded installer to run it.

Note where the SDK is installed on your system, for example,

C:\Program Files\Android\android-sdk.

2. Install the SDK platform tools:

a) Run the Android SDK Manager, android-sdk\SDK Manager.exe.

b) In the Android SDK Manager, expand Tools and select Android SDK Platform-
tools.

Android SDK Tools should already be installed.
c) Expand Android 4.0.3 (API 15) and select these packages:

• SDK Platform.
• ARM EABI v7a System Image.

d) Click the Install n packages button.

e) In Choose Packages to Install, select Accept All, then click Install. Close the log
window when done.

f) Close the Android SDK Manager.

3. Run the Android Virtual Device Manager, android-sdk\AVD Manager.exe.

Install and Configure the Hybrid Web Container On the Device

206 SAP Mobile Platform

4. Configure and start an Android emulator instance.

a) In the AVD Manager, click New.
b) In the Create new Android Virtual Device window, enter an AVD name and select a

supported Android device for this instance.

For example:

c) Click OK to add the instance to the AVD Manager.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 207

d) Select the new virtual device and click Start.
e) In Launch Options, click Launch to open the Android emulator screen.

5. Install the Hybrid Web Container on the emulator instance:

a) With the Android emulator running, open a command prompt window.
b) Run android-sdk\platform-tools install SMP_HOME

\MobileSDKversion\HybridApp\Containers\Android
\HybridWebContainer.apk.
For example:
C:\Android\android-sdk\platform-tools\adb install ^
C:\SAP\MobilePlatform\MobileSDKversion\HybridApp\Containers
\Android\HybridWebContainer.apk

Preparing BlackBerry Devices for the Hybrid Web Container
Install the Hybrid Web Container on the BlackBerry device using BlackBerry Desktop
Manager.

Prerequisites
For prerequisites and complete information about provisioning BlackBerry devices see
Setting Up BES Environments for SAP Mobile Platform Applications in Mobile Application
Life Cycle.

Install and Configure the Hybrid Web Container On the Device

208 SAP Mobile Platform

Task

1. Connect the BlackBerry device to the computer that contains the Hybrid Web Container
for BlackBerry.

2. Run the BlackBerry Desktop Manager following the instructions in the RIM
documentation.

3. In the BlackBerry Desktop Software, select Application Loader.

4. Under Add/Remove Applications, select Start.

5. Browse to the location on your local machine or network that contains the Hybrid Web
Container HybridWebContainer.cod and HybridWebContainer.alx
container files, <SMP_HOME>\MobileSDK<version>\HybridApp
\Containers\BB.

6. Select the files and click Open.

The application is listed on the Application Loader wizard.

7. Click Next.

8. Click Finish.

9. Restart your BlackBerry device.

Installing the Hybrid Web Container on BlackBerry Devices Over the
Air

Your system administrator must provide the appropriate information for installing the Hybrid
Web Container over the air, and the BlackBerry Exchange Server (BES) must be available.

Note: For information about provisioning BlackBerry devices see Setting Up BES
Environments for SAP Mobile Platform Applications in Mobile Application Life Cycle.

The administrator stages the OTA files in a Web-accessible location and notifies BlackBerry
device users through an e-mail message with a link, or A URL to the Hybrid Web Container
installation file. This can be accomplished by pointing the BlackBerry browser to the
HybridWebContainer.jad file. This single JAD and associated files for this type of
deployment are located in <SMP_HOME>\MobileSDK<version>\HybridApp
\Containers\BB\OTA.

Enabling Hybrid Web Container Message Notification
On each BlackBerry device, customize the alert profile to notify users when a new Hybrid
Web Container message is received.

By default, Hybrid Web Container messages do not trigger BlackBerry sounds and alerts. The
only indication of a new message is a change to the home screen icon. To add notifications,
each BlackBerry user can create a new alert profile.

This topic describes how to configure alert profiles for Hybrid Web Container messages on
two supported BlackBerry devices. The steps are similar for other BlackBerry devices. For

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 209

information about all devices, see the BlackBerry Manuals page at http://
docs.blackberry.com/en/smartphone_users/categories/?userType=1&category=BlackBerry
+Smartphones

• On a BlackBerry 9800 (running BlackBerry 6):

a) On the home screen, select the Sound and Alert application.
b) Select Change Sounds and Alerts.
c) Select Profile Management.
d) Select Add Custom Profile.
e) In New Custom Profile, enter a name for the new profile in Name.
f) Expand Other Applications - Notifiers and choose Hybrid Web Container.
g) Configure the sound, visual, and other alert options that you want.
h) Save your changes and close the profile.

For example, open the menu and choose Close. When prompted, choose the Save
option.

i) Activate the customized profile: return to the home screen, select the Sound and Alert
application again, and choose the new profile.

• On a BlackBerry 9700 (running BlackBerry 5):

a) On the home screen, select the Notification and Alert application.
b) Select Edit Profiles.
c) Select Add Custom Profile.
d) In New Custom Profile, enter a name for the new profile in Name.
e) Expand Other and choose Hybrid Web Container.
f) Configure the sound, visual, and other alert options that you want.
g) Save your changes and close the profile.

For example, open the menu and choose Close. When prompted, choose the Save
option.

h) Activate the customized profile: return to the home screen, select the Notification and
Alert application again, and choose the new profile.

Configuring the BlackBerry Simulator for Hybrid Web Containers
Copy the HybridWebContainer.cod file to the BlackBerry Simulator directory.

Prerequisites
MDS must be running.

Task

1. Start the BlackBerry simulator.

2. From File > Load BlackBerry Application or Theme. .

Install and Configure the Hybrid Web Container On the Device

210 SAP Mobile Platform

http://docs.blackberry.com/en/smartphone_users/categories/?userType=1&category=BlackBerry+Smartphones
http://docs.blackberry.com/en/smartphone_users/categories/?userType=1&category=BlackBerry+Smartphones
http://docs.blackberry.com/en/smartphone_users/categories/?userType=1&category=BlackBerry+Smartphones

3. Navigate to SMP_HOME\MobileSDK<version>\HybridApp\Containers
\BB.

4. Select the HybridWebContainer.cod file, then click OK.

Preparing iOS Devices for the Hybrid Web Container
Install the Hybrid Web Container on the device using the App Store, or use the source code
provided for the Hybrid Web Container to deploy to the iOS simulator from the Xcode project.

Complete these prerequisites before provisioning the Hybrid Web Container:

• Determine your security policy – SAP Mobile Platform provides a single administration
console, SAP Control Center, which allows you to centrally manage, secure, and deploy
applications and devices. Device user involvement is not required and you can maintain
the authorization methods you already have in place. See Security > Device Security.

• Register each application connection using SAP Control Center – application connections
pair an application with a device. See SAP Control Center for SAP Mobile Platform
documentation.

Installing the Hybrid Web Container on the iOS Device
How you install the Hybrid Web Container on your iOS device depends on how your company
provisions the application.

Your company will choose a method for provisioning the application. Your system
administrator determines how you obtain and install the Hybrid Web Container. The possible
methods include:

• Downloading and installing the free version of the Hybrid Web Container from the Apple
App Store. The free version should not be used for enterprise deployment.

• Obtaining a copy of the application on your corporate network or through a link in an e-
mail message, then using iTunes to install and synchronize it to your device. This
mechanism should be used for enterprise deployment and is based on the application built
using the XCode project, which is included as part of SAP Mobile Platform installation.

Installing the Hybrid Web Container from the Apple App Store
Install the Hybrid Web Container from the Apple App Store.

This is a free version of the Hybrid Web Container and should not be used for enterprise
deployment.

1. On your device, on the iOS home page, tap App Store.

2. Search for SAP Hybrid Web Container.

3. In the search results, find the version of the Hybrid Web Container to install and click
Free.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 211

4. Tap Install to download the application.

5. In Settings > HWC<version>, for Connection Info, enter:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – SAP Mobile Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the application connection in

SAP Control Center.
• Protocol – HTTP or HTTPS. The protocol with which to connect to the Relay Server or

the reverse proxy server. The default is HTTP.
• (Optional) URL Suffix – the URL suffix used to connect to a Relay Server or the

reverse proxy server. Get this information from your administrator. See Device
Advanced Properties in System Administration.

6. Scroll to the page that contains the HWC icon, then tap to launch.

7. Enter your personal identification number (PIN).

This PIN is a security measure to safeguard your company's data.
• The PIN must be at least six digits and cannot be consecutive digits (for example,

123456), or same digit (for example, 111111).
• (First time/reinstallation) Create a PIN in the Password field, then verify it in the

second field.
• (Second or subsequent logins) Enter the PIN in the Password field. Select Change

Password to change the PIN. You can change the PIN once you enter the current PIN.

The HWC page appears.

8. Tap Messages to view messages/notifications.

9. (Optional) If instructed by your system administrator, enable notifications on your
device.

Installing the Hybrid Web Container Using iTunes
Install the Hybrid Web Container using iTunes.

1. Launch iTunes.

2. Download the application from your corporate network to your Applications library.

3. Sync the application to your Apple mobile device.

4. Specify the connection settings in Settings > Hybrid App.

Preparing Windows Mobile Devices for the Hybrid Web
Container

Install the Hybrid Web Container on the Windows Mobile device.

Install and Configure the Hybrid Web Container On the Device

212 SAP Mobile Platform

Installing the Hybrid Web Container on Windows Mobile Devices
Install and configure the Hybrid Web Container required to prepare a Windows Mobile device
to run Hybrid Apps.

1. Navigate to SMP_HOME\MobileSDK\HybridApp\Containers\WM .

2. Copy the Windows Mobile Professional device file, HybridWebContainer.cab, to
the device's My Documents folder.

3. Cradle the Windows Mobile device.

4. Connect a USB cable between the PC and device, and transfer the .cab file.

5. Open the HybridWebContainer.cab file from the Windows Mobile device. This
installs the container.

6. In Programs, click the Hybrid Web Container icon and click Settings.

7. In the Connection screen, enter the connection settings. These settings should match the
values you used when you registered the device in SAP Control Center.

Note: Click Menu and select Show Log to view the container log. This is useful for
checking the connection, or retrieving other debugging information.

Installing Microsoft Synchronization Software
Install and configure Microsoft synchronization software so you can deploy and run an
application on a Windows Mobile emulator.

Note: These instructions describe how to install Microsoft ActiveSync for Windows XP. If
you are using Windows Vista, Windows 7, or Windows 2008, install Virtual PC 2007 SP1 and
Windows Mobile Device Center to manage synchronization settings. Download the Windows
Mobile Device Center from http://www.microsoft.com/en-us/download/details.aspx?id=15
and follow Microsoft instructions for installing and using that software instead of this
procedure.

1. Download Microsoft ActiveSync:

a) In a Web browser, open the Windows Phone page at http://www.microsoft.com/
windowsmobile/en-us/help/synchronize/device-synch.mspx.

b) Follow the instructions to select and download the sync software for the system's
operating system. Windows XP requires ActiveSync version 4.5.

c) In the Windows Phone downloads page, click the ActiveSync button.
d) Download the ActiveSync installation file and save it to your local system.

2. Run the downloaded installation file.
For example, double-click setup.msi in Windows Explorer.

3. When the installation is complete, restart the system.

4. Start ActiveSync if it does not start automatically.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 213

http://www.microsoft.com/en-us/download/details.aspx?id=15
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx
http://www.microsoft.com/windowsmobile/en-us/help/synchronize/device-synch.mspx

For example, click Start > Programs > Microsoft ActiveSync.

5. Click File > Connection Settings.

6. Select Allow connections to one of the following, then select DMA.

7. Select Work Network for "This computer is connected to".

8. Click OK.

Installing the Hybrid Web Container on the Windows Mobile Emulator
Install the Hybrid Web Container software on your emulator.

1. Start the synchronization software.
For example, on Windows XP, start Microsoft ActiveSync. On Windows Vista, Windows
7, or Windows 2008, start the Windows Mobile Device Center.

2. Start the Device Emulator Manager and select an emulator to run.
For example:
a. Double-click C:\Program Files\Microsoft Device Emulator

\1.0\dvcemumanager.exe.

b. In the Device Emulator Manager, right-click the device you want to run and choose
Connect to open the emulator.

Install and Configure the Hybrid Web Container On the Device

214 SAP Mobile Platform

c. In the Device Emulator Manager, right-click the device again and click Cradle.

3. The synchronization software runs and connects to your device. If the Synchronization
Setup wizard opens, follow the instructions and click Finish.

4. Run the downloaded Microsoft .NET Compact Framework Redistributable file to install
the .NET Compact Framework on your running emulator. Follow the setup wizard
instructions, and click Finish to close the wizard when you are done.

Note: Be sure to run the installer while your emulator is running; otherwise the .NET
Compact Framework Redistributable is not installed correctly.

5. Go to SMP_HOME\MobileSDK<version>\HybridApp\Containers\WM and
copy the HybridWebContainer.cab file to a folder on mobile device folder on your
system.
For example:

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 215

6. On the device emulator, open File Explorer and browse to the folder to which you copied
the CAB file. Click the file once to install the Hybrid Web Container on your emulator.

Configure Connection Settings on the Device
Configure the connection settings for the Hybrid Web Container on the device.

See the topic for your platform.

Configuring Android Connection Settings
Configure the connection settings for the Hybrid Web Container.

1. Click the HWC icon on the applications screen, then select Settings.

2. In the basic authentication screen, enter the user name and password if you are
prompted.

3. Click Registration to choose from the registration options:

• Manual – enter connection settings and register manually.
• Automatic (Password) – enter the password for automatic registration.
• Automatic (Afaria Certificate) – register using an Afaria certificate.
• Automatic (Local Certificate) – register using a local certificate.

4. Enter the settings for the Hybrid Web Container:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

Install and Configure the Hybrid Web Container On the Device

216 SAP Mobile Platform

• Server Port – SAP Mobile Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the application connection in

SAP Control Center.
• Protocol – HTTP or HTTPS. The protocol with which to connect to the Relay Server or

the reverse proxy server. The default is HTTP.
• (Optional) URL Suffix – the URL suffix used to connect to a Relay Server or the

reverse proxy server. Get this information from your administrator. See Device
Advanced Properties in System Administration.

Select Save to save the settings.

5. (Optional) Configure trace and performance settings:

Note: To enable the performance agent, an SD card must be installed.

a) In the Settings screen, click the menu key and select Advanced.
b) Select Trace to enable SAP Passport end to end trace.
c) Click Level to choose the log level.

• Low – focuses on response-time-distribution analysis, in other words, how much
time is spent on each server component, or the specific location of a bottleneck.

• Medium – (default) gives performance analysis. Performance traces are triggered
on the server-side.

• High – gives functional analysis and has detailed functional logging and tracing.
d) Select Performance to enable the performance agent.

6. Start the application, then view the settings log to verify that the connection is active.

From the application, tap Settings > Show Log.

Configuring BlackBerry Connection Settings
Configure the connection settings for the Hybrid Web Container.

1. Click the Hybrid Web Container icon on the applications screen, then press the Menu
key and select Settings.

2. Enter the settings for the Hybrid Web Container:

• Registration – choose from:
• Manual – enter connection settings and register manually.
• Auto (Password) – when you select this option, the Password field is enabled. Enter

your password.

Note: The Activation Code and Enable Automatic Registration options are
mutually exclusive. If you use a password for automatic registration, you cannot
enter an activation code, and vice versa.

• Auto (Afaria Cert) – register using an Afaria certificate. When you choose this
option, these fields are enabled:
• Common name

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 217

• Challenge code
• Auto (Local Cert) – register using a local certificate.

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – SAP Mobile Server port number. The default is 5001.
• Farm ID – the farm ID you entered when you registered the device in SAP Control

Center.
• User Name – the user you registered in SAP Control Center.

Note: When there are multiple application connection templates for the same APP ID,
and you need to establish a connection using the anonymous security configuration,
you must include the security configuration in the user name, in this format:
anonymous@anonymous.

• Activation Code – the activation code for the user, for example, 123.

• Protocol – the protocol with which to connect to the Relay Server or the reverse proxy
server. Choose from:
• HTTP
• HTTPS

• (Optional) URL Suffix – the URL suffix used to connect to a Relay Server or the
reverse proxy server. Get this information from your administrator. See Device
Advanced Properties in System Administration.

3. Select Menu > Save to save the settings.

4. (Optional) In the settings screen, click the menu key and select Advanced to turn on the
performance agent.

Note: To enable the performance agent, an SD card must be installed.

5. Start the application, then view the settings log to verify that the connection is active.

In the Hybrid Web Container, select Settings. On the connection settings screen, select
Show Log.

Configuring iOS Connection Settings
Configure the settings for the Hybrid Web Container.

1. Go to the device Settings screen and click HWC.

2. In the basic authentication screen, enter the user name and password if you are
prompted.

3. Enter the settings for the Hybrid Web Container:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – SAP Mobile Server port number. The default is 5001.

Install and Configure the Hybrid Web Container On the Device

218 SAP Mobile Platform

• Farm ID – the farm ID you entered when you registered the application connection in
SAP Control Center.

• Protocol – HTTP or HTTPS. The protocol with which to connect to the Relay Server or
the reverse proxy server. The default is HTTP.

• (Optional) URL Suffix – the URL suffix used to connect to a Relay Server or the
reverse proxy server. Get this information from your administrator. See Device
Advanced Properties in System Administration.

4. Click in the Registration Method field to choose a registration method:

• Manual – enter connection settings and register manually.
• Automatic (Password) – when you select this option, the Password field is enabled.
• Automatic (Afaria Certificate) – allows you to register using an Afaria certificate.

5. Click the HWC icon to go back to the settings screen.

6. If you chose manual registration, enter your user name and activation code.

Note: When there are multiple application connection templates for the same APP ID, and
you need to establish a connection using the anonymous security configuration, you must
include the security configuration in the user name, in this format:
anonymous@anonymous.

The activation code and password for automatic registration are mutually exclusive. If you
use a password for automatic registration, you cannot enter an activation code, and vice
versa.

7. If you chose automatic registration, enter your user name and password.

8. If you chose automatic registration with an Afaria certificate, enter the common name and
challenge code for the Afaria certificate.

Configuring Windows Mobile Connection Settings
Configure the connection settings.

Prerequisites
Install the Hybrid Web Container CAB file.

Task

1. Select Start > Programs.

2. Click the Hybrid Web Container icon.

3. Click Settings.

4. In the Connection screen, enter the connection settings:

• Server Name – the machine that hosts the server where the mobile application project
is deployed.

• Server Port – SAP Mobile Server port number. The default is 5001.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 219

• Farm ID – the farm ID you entered when you registered the device in SAP Control
Center.

• User Name – the user you registered in SAP Control Center.

Note: When there are multiple application connection templates for the same APP ID,
and you need to establish a connection using the anonymous security configuration,
you must include the security configuration in the user name, in this format:
anonymous@anonymous.

• Registration – choose from:
• Manual – enter connection settings and register manually.
• Automatic – when you select this option, the Password field is enabled.

Note: The Activation Code and Enable Automatic Registration options are
mutually exclusive. If you use a password for automatic registration, you cannot
enter an activation code, and vice versa.

• Certificate – allows you to register using a certificate.
• Activation Code – the activation code for the user, for example, 123.

• Password – this field is enabled if you chose Automatic registration. Enter your
password.

• Certificate – this field is enabled if you chose Certificate as the registration type.
Choose your certificate. The User Name field is populated with the certificate name.

• Protocol – the protocol with which to connect to the Relay Server or the reverse proxy
server. Choose from:
• HTTP
• HTTPS

5. Click Advanced for these options:

• Allow roaming – the device is allowed to connect to server while roaming. By default,
this is set to true.

• (Optional) URL Suffix – used to connect to a Relay Server or the reverse proxy server.
Get this information from your administrator. See System Administration > System
Reference > Application Connection Properties > Device Advanced Properties.

• Keep alive – the frequency used to maintain the wireless connection, in seconds.
Acceptable values: 30 to 1800. The default is 240.

6. Click Save.

7. Start the Hybrid App, then view the settings log to verify that the connection is active.

In the Settings screen, click Menu > Show Log.

Install and Configure the Hybrid Web Container On the Device

220 SAP Mobile Platform

Install and Test Certificates on Simulators and Devices
Install and test certificates on various types of simulators and devices.

Note: The supported algorithm for the public-key cryptography used in the X.509 certificates
is RSA.

Copy the generated .p12 certificate to the device on which you are installing.

See the User Guide for your device or simulator for instructions.

Installing X.509 Certificates on Windows Mobile Devices and
Emulators

Install the *.p12 certificate on a Windows Mobile device or simulator and select it during
authentication.

1. Launch the simulator or device.

2. Start the Windows synchronization software and cradle the device.

3. Use File Explorer to copy the *.p12 certificate to the simulator or device.

4. Navigate to and double-click the certificate.

5. Enter the password at the prompt and click Done.

An informational window indicates the certificate installed successfully.

Testing X.509 Certificates on Windows Mobile Devices and Emulators
Select an X.509 certificate to use for user authentication.

Prerequisites

1. Create a Hybrid App that prompts the user to specify a certificate as credentials.
2. Package and assign the Hybrid App to a Windows Mobile device user.

Task

1. In the Programs screen, open the Hybrid Web Container and select the Hybrid App to
test.

2. Select the Specify Certificate Credentials menu item from the Certificate Picker.

3. Select the certificate and continue with the Hybrid App.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 221

Installing X.509 Certificates on Android Devices and Emulators
Install the *.p12 certificate on an Android device or emulator.

Prerequisites

• Java SE Development Kit (JDK) must be installed.
• The Android SDK must be installed.

Task

1. Connect the Android device to your computer with the USB cable.

2. To install using Eclipse with the ADT plugin:

Note: USB debugging must be enabled.

a) Open the Windows File Explorer view. From the menu bar, navigate to Window >
Show View > Other.

b) In the Show View dialog, expand the Android folder and select File Explorer.
c) Expand mnt > sdcard and select the sdcard folder.
d) In the top right of the File Explorer view, click Push a file onto the device.
e) In the Put File on Device dialog, select the certificate and click Open.

3. To install using Windows Explorer:

Note: USB debugging must be disabled.

a) Open Windows Explorer
b) Under your computer, click the Android device to expand the folder.
c) Click Device Storage, navigate to and select the certificate.
d) Import the certificate to the Device Storage folder.

4. To install using the Android Debug Bridge (adb):

Note: USB debugging must be enabled.

a) Open the command line directory to the adb.exe file, for example, C:\Program
Files\android-sdk-windows\tools, or C:\Program Files
\android-sdk-windows\platform-tools

b) Run the command: adb push %PathToCert%\MyCert.p12 /sdcard/
MyCert.p12

Install and Configure the Hybrid Web Container On the Device

222 SAP Mobile Platform

Testing X.509 Certificates on Android Devices and Emulators
Select an X.509 certificate for user authentication.

Prerequisites

1. Create a Hybrid App that prompts the user to specify a certificate as credentials.
2. Package and assign the Hybrid App to an Android device user.

Task

1. On the Android device or emulator, in applications, click Hybrid Web Container.

2. Select the Hybrid App on which to test the installed certificate.

3. From the Certificate Picker, select the Specify Certificate Credentials menu item.

4. Select the certificate and click OK.

5. Enter the password and click OK.

Installing X.509 Certificates on BlackBerry Simulators and Devices
Install the .p12 certificate on the BlackBerry device or simulator and select it during
authentication.

1. Install the certificate on a device:

a) Connect to the device with a USB cable.
b) Browse to the SD Card folder on the computer to which the device is connected.
c) Navigate to and select the certificate. Enter the password.
d) Import the certificate.

You can also use the BlackBerry Desktop Manager to intstall the certificate on the device,
but you may need to perform a custom installation to access the Synchronize Certificates
option.

2. Install the certificate on a simulator:

a) From the simulator, select Simulate > Change SD Card.
b) Add/or select the directory that contains the certificate.
c) Open the media application on the device, and select Menu > Application > Files >

MyFile > MediaCard.
d) Navigate to and select the certificate. Enter the password.
e) Check the certificate and select Menu > Import Certificate. Click Import

Certificate then enter the data vault password.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 223

Testing X.509 Certificates on BlackBerry Devices and Simulators
Select an X.509 certificate to use for user authentication.

Prerequisites

1. Create a Hybrid App that prompts the user to specify a certificate as credentials.
2. Package and assign the Hybrid App to a BlackBerry device user.

Task

1. From the applications screen, open the Hybrid Web Container.

2. Select the Hybrid App for which to test the certificate.

3. From the Certificate Picker, select the Specify Certificate Credentials menu item.

4. Select the certificate and continue with the Hybrid App.

Installing X.509 Certificates on iOS Devices
Add an authentication screen to the Hybrid App from which you can authenticate with a
generated X.509 certificate instead of a user name and password combination.

1. Copy the X.509 certificate used for authentication into a directory on the same host as SAP
Mobile Server. For example, c:\certs.

2. Create a registry string value on SAP Mobile Server at HKLM\Software\SAP\SAP
Messaging Server\CertificateLocation and populate it with the path. For
example, c:\certs.

3. Name the X.509 certificate file as domain_user.p12, where domain is the SAP
Mobile Server domain and user is the certificate user. The user must have read permission
for .p12 file.

4. The system administrator must ensure the specified domain\user has “log on as batch job”
permission on the Windows machine on which SAP Mobile Server runs:

a) Double-click Control Panel > Administrative Tools > Local Security Policies.
b) Expand Local Policies and select User Rights Assignment.
c) Right-click Log on as a batch job and select Properties.
d) Select Add User or Group and add the domain\user.

5. The account under which SAP Mobile Server runs must have adequate permissions to
impersonate the domain\user, for example, the Administrator account for the domain.

Install and Configure the Hybrid Web Container On the Device

224 SAP Mobile Platform

Testing X.509 Certificates on iOS Devices and Simulators
Select an X.509 certificate for user authentication to test.

Prerequisites

1. Create a Hybrid App that prompts the user to specify a certificate as credentials.
2. Package and assign the Hybrid App to an iOS device user.

Task

1. During device application development, define and add a screen that has a Certificate
Picker menu item.

2. Generate and deploy the application to the iPhone client.

3. Select Certificate Picker from the iPhone client.

4. Enter Windows credentials and certificate password in the dialog and click Done. Make
sure the format is domain\user.

5. Submit the credentials to SAP Mobile Server.

Apple Push Notification Service
SAP Mobile Platform provides support for Apple Push Notification Service by pushing
notifications to Hybrid Apps when the Hybrid App is offline.

With APNS, each device establishes encrypted IP connections to the service and receives
notifications about availability of new items awaiting retrieval on SAP Mobile Server. This
feature overcomes network issues with always-on connectivity and battery life consumption
on 3G networks.

For more information on end-to-end iPhone application development and provisioning, see
Mobile Application Life Cycle.

Note: APNS cannot be used on a simulator.

Examples of cases when notifications are sent include:

• The server identifies that a new message needs to be sent to the device. This could include:
• A new Hybrid App is assigned to the device.
• A DCN message is sent to SAP Mobile Server, targeting a particular user and the

Hybrid App is not running.

If you want to use APNs for the Hybrid App, use the Apple Provisioning Portal to create your
own .p12 certificate if you build your own Hybrid App using the source code included in
<SMP_HOME>\MobileSDK<version>\HybridApp\Containers\iOS.

After creating the .p12 certificate, you must configure the APNs settings in SAP Control
Center.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 225

Provisioning iOS Devices
Use this procedure to provision your iOS device for APNs if you build your own application
using the source code provided in <SMP_HOME>\MobileSDK<version>\HybridApp
\Containers\iOS\iOS_HWC_<version>.tar.gz.

See the Apple developer documentation for Provisioning and Development. These procedures
are documented in detail there. Applications developed for distribution must be digitally
signed with a certificate issued by Apple. You must also provide a distribution provisioning
profile that allows user devices to execute the application.

1. Register with Apple to download and use the iOS SDK. A free account allows you to
download the SDK and develop with the simulator. To deploy Hybrid Apps to devices, you
must create a certificate in your developer account and provision your device. See the
Apple Local and Push Notification Programming Guide at http://developer.apple.com/
library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/
ProvisioningDevelopment/ProvisioningDevelopment.html for details.

2. Use the iOS Provisioning Portal at http://developer.apple.com/devcenter/ios/index.action
(you must log on or register as an Apple developer) to create the SSL certificate and Keys.
Configure the certificate to enable for Apple Push Notification service.

3. On your Mac, launch the Keychain Access program. This is located in the Utilities
folder.

a) In Keychain Access, select Keychain Access > Certificate Assistant > Request a
Certificate from Certificate Authority.

b) In the Certificate Information window, enter the information. Use a unique common
name.

Note: Make sure you use a different common name than a development certificate you
already have. This creates a private key with the name you enter here.

A certificate request is created and saved in the Desktop folder by default.

4. In the Apple Provisioning Portal, continue with the App ID provisioning and browse to the
certificate request file created in Keychain Access in the previous step, then click
Generate.

5. Click Continue.

6. Click Download Now.
The certificate is downloaded onto your machine, the Keychain utility appears, and the
certificate is imported into the "login" keychain.

7. Verify that the certificate is associated with a private key.

8. Create and install a Provisioning profile for the application.

9. In Xcode, open the HWC.xcodeproj project.

Note: Note the product name. This is used to configure the Hybrid Web Container in SAP
Control Center and corresponds to the Application Name property in SAP Control Center.

Install and Configure the Hybrid Web Container On the Device

226 SAP Mobile Platform

http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ProvisioningDevelopment/ProvisioningDevelopment.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ProvisioningDevelopment/ProvisioningDevelopment.html
http://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/ProvisioningDevelopment/ProvisioningDevelopment.html
http://developer.apple.com/devcenter/ios/index.action

By default, the application name is HWC. This needs to be configured in the properties for
the target. There is a 15-character limit for the product name.

10. Change AppName and AppId in the Branding.strings file for the necessary
language resources.

This file is available under the Resources folder of the HWC Xcode project.

Note: The Bundle Identifier must correspond to the Bundle identifier specified in the App
ID. Change it to something unique.

11. Copy the exported <certificate_name>.p12 certificate to the machine where SAP
Control Center is installed and follow the instructions in Configuring Apple Push Settings
for the Hybrid Web Container and use the certificate you just created.

Note: Make sure you select only the certificate in the Keychain tool before exporting.

Configuring Apple Push Settings for the Hybrid Web Container
The certificate that was exported from the keychain corresponding to Apple Push settings
must be configured with the correct application name in SAP Control Center.

Note: When configuring the Apple Push Notification Service, change the push gateway, push
gateway port, feedback gateway, and feedback gateway port values only when configuring
notifications in a development environment. To enable Apple push notifications, the firewall
must allow outbound connections to Apple push notification servers on default ports 2195 and
2196. The default URL is for production and should be changed to
gateway.sandbox.push.apple.com for development. After making these changes, you must
restart your machine.

1. In the left navigation pane, select Applications.

2. In the right pane, select the Applications tab.

3. Select the Application ID for which you are configuring native notification and select
Properties.

4. Select the Push Configurations tab and click Add.

5. Enter the Application name. Make sure this name matches the AppId entered in the
Branding.strings file.

Enter:

Property Description

Server The push notification server.

Port Push notification server port.

Feedback server If a feedback service is enabled, the server to which APNS routes feedback
information.

Feedback port The feedback service port.

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 227

Property Description

Certificate (enco-
ded)

The security certificate used for authentication.

Certificate pass-
word

The security certificate password.

6. Click Browse to use a security certificate file that already exists on the server.

a) Select the desired certificate from the list.
b) Enter and confirm the certificate password.

7. Click OK.

8. You can verify that the device is configured for APNS correctly by verifying that the device
token has been passed from the application after the application runs once on the device.

Use the Send a Notification tool inside the Hybrid App Designer to send a test
notification.

Apple Push Notification Properties
Apple push notification properties allow iOS users to install client software on their devices.

• APNS Device Token – the Apple push notification service token. An application must
register with Apple push notification service for the iOS to receive remote notifications

Install and Configure the Hybrid Web Container On the Device

228 SAP Mobile Platform

sent by the application’s provider. After the device is registered for push properly, this
should contain a valid device token. See the iOS developer documentation.

• Alert Message – the message that appears on the client device when alerts are enabled.
Default: New items available.

• Delivery Threshold – the frequency, in minutes, with which groupware notifications are
sent to the device. Valid values: 0 – 65535. Default: 1.

• Sounds – indicates if a sound is a made when a notification is received. The sound files
must reside in the main bundle of the client application. Because custom alert sounds are
played by the iOS system-sound facility, they must be in one of the supported audio data
formats. See the iOS developer documentation.

Acceptable values: true and false.

Default: true
• Badges – the badge of the application icon.

Acceptable values: true and false

Default: true
• Alerts – the iOS standard alert. Acceptable values: true and false. Default: true.
• Enabled – indicates if push notification using APNs is enabled or not.

Acceptable values: true and false.

Default: true

Uninstall the Hybrid Web Container from the Device
Remove the Hybrid Web Container from the device.

Removing the Hybrid Web Container From the BlackBerry Device
Remove the Hybrid Web Container from the BlackBerry device.

You can remove the Hybrid Web Container using either the delete function on the device, or by
using RIM Desktop Manager.

1. To remove the Hybrid Web Container using the delete function on the device;

a) On your BlackBerry device, navigate to Options > Advanced Options >
Applications.

b) Scroll through the list of applications, highlight the Hybrid Web Container you want to
remove and choose Delete.

c) When the confirmation dialog asks if you are sure, choose Delete. It may ask you to
reset your device after removing the program

Install and Configure the Hybrid Web Container On the Device

Developer Guide: Hybrid Apps 229

When you delete the Hybrid Web Container from the device using this method, the data
is removed by the CodeModuleListener method.

2. Use the RIM Desktop Manager to remove the Hybrid Web Container from the BlackBerry
device.

See your BlackBerry documentation for how to remove applications using RIM Desktop
Manager.

Note: If you delete the Hybrid Web Container using Desktop Manager or JavaLoader, the
data is not deleted, as the CodeModuleListener is not used.

Install and Configure the Hybrid Web Container On the Device

230 SAP Mobile Platform

Hybrid Web Container Customization

The Hybrid Web Container project is accompanied by libraries and the source code necessary
for you to build the Hybrid Web Container.

You can customize the Hybrid Web Container in a variety of ways. Whenever a customization
requires a source code modification, there is a reference to “touch points” in the code. These
references are annotated with
<PLATFORM>_CUSTOMIZATION_POINT_<descriptor> and a descriptor
identifying the customization to which they belong.

For example, all code areas associated with changing the About screen are annotated with
<PLATFORM>_CUSTOMIZATION_POINT_BRAND. The touch points are typically
accompanied by brief comments in the code explaining the necessary changes. Only source
code files contain these touch points. Many of the customizations are done in the
CustomizationHelper file.

Note: After performing any customizations, you must rebuild the container. You can
customize the Hybrid Web Container in a variety of ways. SAP recommends that you always
test your changes before using the resulting application.

Adding a Custom Icon for the Hybrid App Package Using the
Packaging Tool

Use the packaging tool to add a custom icon to the Hybrid App package.

1. Navigate to SMP_HOME\MobileSDK22\HybridApp\PackagingTool and
double-click the packagingtool.bat file if you are using a 32-bit JDK, or
packagingtool64.bat if you are using a 64-bit JDK.

2. Select the output directory for the Hybrid App package and click OK.

3. In Project Explorer, choose the project to which to add the custom icon.

4. Click the Custom Icons tab.

5. Click Add to add a custom icon.

When you add a custom icon, the manifest.xml file is updated when you generate the
package.

6. Click Save.

7. Click Generate to generate the Hybrid App package.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 231

Manually Adding a Custom Icon to the Manifest.xml File
The simplest way to add a custom icon for the Hybrid App package is by using the packaging
tool, but you can also manually update the manifest.xml file to include a custom icon.

1. Open manifest.xml for editing.

2. Specify the custom icon image files in the <Icons></Icons> section of the file, for
example:

The <Icons> element should be added under the root <Manifest> node.
<Icons>
 <Icon width="32" height="32" type="png" name="ambulance" />

 <Icon width="64" height="64" type="png" name="ambulance" />

 <Icon width="32" height="32" type="png" name="car" path="html/
car.png" processedpath=”html/carp.png”/>
 <Icon width="32" height="32" type="png" name="train"
path="html/train.png" />
 <Icon width="48" height="48" type="gif" name="van" path="html/
image/van.gif" processedpath=”html/image/vanp.gif”/>
</Icons>

The unique key of the icon element in the Icons collection is the combination of width,
height, type, and name.
• width – (required) indicates the width of the image.

• height – (required) indicates the height of the image.

• type – (required) indicates the image type. The value should be same as image file
suffix.

• name – (required) indicates the name of the icon. You can set it as an empty string.

• path – (optional) indicates the path of the normal icon image saved in the package. If
the path attribute is missing or empty, the image for the normal icon is saved in the
html\icon folder. The image file name is a combination of name, width, height and
type. For example, the above ambulance icon file path is html/icon/
ambulance32x32.png.

• processedpath – (optional) indicates the path of the processed icon image saved
in the package. If the processedpath attribute is missing or empty, the image for the
processed icon is saved in the html\icon folder. The image file name is a
combination of name, width, height and type with the letter p appended. For example,
the above ambulance processed icon file path is html/icon/
ambulance32x32p.png.

Certain image formats, such as .ico files, might contain multiple resolutions in a single
image file. Make sure that the manifest.xml file includes multiple entries for each of
the different resolutions that all point to the same file through the path and
processedpath attributes, as shown below:

Hybrid Web Container Customization

232 SAP Mobile Platform

 <Icons>
<Icon width="32" height="32" type="ico" name="car" path="html/
car.ico" processedpath=”html/carp.ico”>
<Icon width="64" height="64" type="ico" name="car" path="html/
car.ico" processedpath=”html/carp.ico”>
<Icon width="128" height="128" type="ico" name="car" path="html/
car.ico" processedpath=”html/carp.ico”>
</Icons>

When there are multiple icon files declared, the Hybrid Web Container chooses the best
matched icon based on the device's capability.

3. Add the icon file reference under the <HtmlFiles> element, for example:

<HtmlFile>html/icon/ambulance32x32.png</HtmlFile>
4. Save the manifest.xml file.

Changing the Hybrid App Package Icon
Modify the Hybrid App package application icon.

You cannot add new icons to the folder, but you can replace the existing icon images, using the
same file name. The Hybrid App icons are named ampicon<index>.png, where <index>
is a number between 30 and 116. The icon ampicon48.png is the default Hybrid App icon.
This is also the icon that is shown on the menu item that shows all the Hybrid Apps.

Each Hybrid App icon has two associated image files that contain images for processed and
unprocessed messages; ampicon<index>.png (unprocessed messages) and
ampicon<index>p.png (processed messages). Processed means the message has been
submitted to the server.

When you build the Hybrid Web Container with custom icons, the original icons still appear in
SAP Control Center and in SAP Mobile WorkSpace. You must remember the original icon, so
you can select it in SAP Mobile WorkSpace and in SAP Control Center.

1. Identify the image currently used by the Hybrid App package that you want to replace:

a) Log in to SAP Control Center.
b) In Workflows, select the Hybrid App package for which to replace the image.
c) Click the General tab.

The icon is shown in Display icon.

2. Go to the …\HybridWebContainer\res\drawable\ folder and find and replace
the ampicon<index>.png and ampicon<index>p.png image files with the new
images.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 233

If you do not want to overwrite the icon entirely, make a copy of it using another name and
move it out of the folder. Extra files in the drawable folder may interfere with resource
indexing.

3. Rebuild the Hybrid Web Container project.

Android Hybrid Web Container Customization
Customize the look and feel and default behavior of the Android Hybrid Web Container.

Before getting started:

• Install the Android Development Tools (ADT) plug-in for Eclipse. See http://
developer.android.com/sdk/installing/installing-adt.html.

Note: If you are also developing for BlackBerry, it is recommended that you do not install
the BlackBerry Java Plug-in for Eclipse and the ADT plug-in in the same Eclipse
environment.

• Build the Hybrid Web Container project as described in Building the Android Hybrid Web
Container Using the Provided Source Code. The HybridWebContainer directory
contains directories such as libs, as well as images and other files.

Documentation for the application (com.sybase.hwc) and the library
(com.sybase.hybridApp) are included in the docs directory of the
HybridWebContainer project.

Android Customization Touch Points
All code areas associated with Hybrid Web Container customizations are annotated with
ANDROID_CUSTOMIZATION_POINT_<customization> comment tags, or touch
points.

Touch Point Description

ANDROID_CUSTOMIZA-
TION_POINT_COLORS

Use custom colors for the Hybrid Web Container.

ANDROID_CUSTOMIZA-
TION_POINT_FONTS

Use custom fonts in the Hybrid Web Container.

ANDROID_CUSTOMIZA-
TION_POINT_BRAND

Change application name, copyright, and devel-
oper information

ANDROID_CUSTOMIZA-
TION_POINT_SPLASHSCREEN

Add a splash screen to the Hybrid Web Container.

Hybrid Web Container Customization

234 SAP Mobile Platform

http://developer.android.com/sdk/installing/installing-adt.html
http://developer.android.com/sdk/installing/installing-adt.html

Touch Point Description

ANDROID_CUSTOMIZATION_POINT_DE-
FAULTSETTINGS

Set the defaults for the Settings screen.

ANDROID_CUSTOMIZATION_POINT_PRE-
SETSETTINGS

Hard code settings for the Settings screen so they
do not show up on the device. This prevents the
user from changing the settings.

ANDROID_CUSTOMIZATION_POINT_PRE-
PACKAGED_APP

Run the Hybrid Web Container as a single Hybrid
App.

ANDROID_CUSTOMIZATION_POINT_PIN Use for PIN screen customizations, or to remove
the PIN screen.

ANDROID_CUSTOMIZA-
TION_POINT_SORTING

Sort Hybrid App messages based on different
criteria.

ANDROID_CUSTOMIZATION_POINT_FIL-
TERING

Filter the list of Hybrid App messages so only
messages meeting certain criteria are shown.

ANDROID_CUSTOMIZATION_POINT_HY-
BRIDAPPSORT

Customize the criteria for how the Hybrid App
list is sorted.

ANDROID_CUSTOMIZATION_POINT_HY-
BRIDAPPSEARCH

Make the list of Hybrid App packages searchable.

ANDROID_CUSTOMIZATION_POINT_HY-
BRIDAPPLIST

Customize the Hybrid App package list appear-
ance.

ANDROID_CUSTOMIZATION_POINT_CAT-
EGORIZEDVIEWS

Create categorized views of the Hybrid App
packages.

ANDROID_CUSTOMIZA-
TION_POINT_HTTPHEADERS

Set HTTP headers for the Android Hybrid Web
Container to include authentication tokens.

ANDROID_CUSTOMIZA-
TION_POINT_PUSH_NOTIFICATION

Customize how the Hybrid Web Container han-
dles the push notification.

ANDROID_CUSTOMIZA-
TION_POINT_ANONYMOUS_USER

Returns whether or not anonymous user support
is being used. Change to YES to allow clients to
register anonymously.

Note: For this to work, the HWC application
connection template must be configured to use
the anonymous security configuration. See Ap-
plication Connection Templates in SAP Control
Center for SAP Mobile Platform.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 235

Look and Feel Customization of the Android Hybrid Web Container
Customizations you can make to the look and feel include changing the splash screen,
changing the Hybrid App icons and name, changing the Hybrid App package icons, changing
labels and text, adding support for new languages, and so on.

Changing the Android Hybrid Web Container Icon
Modify the icon shown on the home screen by replacing the icon image files.

Changing this icon also changes the image used on the About screen, and the image that
sometimes shows up in the title bar.

The icon image files are located in these directories:

• ...\HybridWebContainer\res\drawable-hdpi
• ...\HybridWebContainer\res\drawable-ldpi
• ...\HybridWebContainer\res\drawable-mdpi
Go to each directory and replace the icon.png image file with another .png image of your
choice.

Note: The new image files must use the same name as those you replaced, including the file
extension, and they must have the same resolution as the original images.

Customizing the About Screen and Other Branding
Customize the About screen.

In some parts of the code, branding information is retrieved not from strings.xml, but
from a constant in the Brand class. You cannot change these constants, but they are used only
in a small number of places, and you can replace them where they are used. The Brand class
is used mostly in the About screen, but there are a few other cases (all marked by the
ANDROID_CUSTOMIZATION_POINT_BRAND comment tag).

1. Open the CustomizationHelper.java file, which is located in ...
\HybridWebContainer\src\com\sybase\hwc.

This is where the strings in the About screen are set.

2. Locate the customAbout method.

Sample code is shown in this method. The default behavior is for the method to return
false.The sample code produces the below dialog.

Hybrid Web Container Customization

236 SAP Mobile Platform

3. Uncomment the sample code, change the text to what you want to display, and change
return false; to return true;.

Adding a Splash Screen
Add a splash screen to the Hybrid Web Container.

This procedure shows an example of a splash screen, which is the first screen that you see in
the Hybrid Web Container. The related comment tag is
ANDROID_CUSTOMIZATION_POINT_SPLASHSCREEN.

1. Open the SplashScreenActivity.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Edit SplashScreenActivity.java.

a) You must call finish() on the splash screen as soon as you are finished displaying the
screen.

Currently this is done in the onStart method, so you must remove it from there.

b) Create an intent that launches the EnterPasswordActivity after finish() is called. You
must do this even if you disable the PIN screen.

It is important that finish() is called first. Currently this is done in the onStop method.

Changing Labels and Text
You can customize most of the text found in labels, dialogs, or error messages used by the
Hybrid Web Container.

1. Open the strings.xml file, which is located in ...\HybridWebContainer\res
\values for editing.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 237

This file contains the text for error messages, screen titles, screen labels, validation
messages, and so on.

2. Make your changes and save the file.

Keep in mind that for any change you make, you must also make the same change for each
language if you want your changes to translate across other languages. You must edit the
strings.xml files located in the values-<language_code> folder for each
language.

Adding a New Language
Add support to the Hybrid Web Container for a new language.

1. In the ...\HybridWebContainer\res folder, create a new folder named
values-<xx>, where <xx> is the ISO 639 code of the language, for example,
values-it, for Italian.

2. Add a file called strings.xml to the new folder. Use the strings.xml file from the
values folder as a template for the new strings.xml file.

3. Open the default strings.xml file, which is located in ...
\HybridWebContainer\res\values and use it as a template for the new
strings.xml file.

You need not include strings that do not require localization in the new strings.xml
file. Strings that are missing from a localization are pulled from the default
strings.xml file.

The new language is used automatically by a device that is set to that language.

Using Custom Colors
Use custom colors to change the look of Hybrid App messages and the Hybrid Web Container.

These examples modify the colors of the Hybrid App messages. You can also use custom
colors for the Hybrid Web Container using similar steps. The related comment tag for
customizing colors is ANDROID_CUSTOMIZATION_POINT_COLORS.

1. Open the colors.xml file, which is located in ...\HybridWebContainer\res
\values, for editing.

2. Find the ANDROID_CUSTOMIZATION_POINT_COLORS comment tag and add these
tags inside the resources tag:
 <color name="hybridapp_message_title_color">#F23431</color>
 <color name="hybridapp_message_from_color">#FF1111</color>
 <color name="hybridapp_message_date_color">#3234F1</color>

3. Open the workflowmessages.xml file, which is located in ...
\HybridWebContainer\res\layout, for editing.

4. In the msg_datetime TextView tag, modify the android:textColor attribute
to:

Hybrid Web Container Customization

238 SAP Mobile Platform

android:textColor="@color/hybridapp_message_date_color"
5. Make similar changes to the msg_from and the msg_title tags, using the color

resource defined in step 2.

If you build the Hybrid Web Container without making any more changes, notice that the
custom colors are used for msg_datetime and msg_title, but not for msg_from. This is
because the color for msg_from is overridden by the Java code. To stop a custom attribute
from being overridden:

a) Select Search > File from the menu.
b) For Containing text, enter msg_from and click Search.

The search result shows two files: workflowmessages.xml and
UiHybridAppMessagesScreen.java.

c) Open the UiHybridAppMessagesScreen.java file for editing.

d) Search the file for "msg_from."

You will find this line: TextView tf = (TextView)
v.findViewById(R.id.msg_from);
The TextView object tf represents msg_from.

e) You are changing the color, so search for “tf.setTextColor.”

The search results return two occurrences because the color is set depending on
whether the message has been read or not.

f) Comment out both lines to ensure that msg_from is always the color you set in the
workflowmessages.xml file. Save the file.

Using Custom Fonts
Customize fonts for Hybrid App messages and the Hybrid Web Container.

This example customizes the fonts for Hybrid App messages.

1. Create a new XML file named attrs.xml in the ...\HybridWebContainer
\res\values\ folder.

2. Open the attrs.xml and add this code:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <declare-styleable name="com.sybase.hwc.CustomFontTextView" >
 <attr name="customFont" format="string"/>
 </declare-styleable>
</resources>

3. You cannot set the font attribute using the standard TextView control, so you must extend
the TextView object by creating a new file named CustomFontTextView.java.

4. Add this code to the CustomFontTextView.java file:

package com.sybase.hwc;

import android.content.Context;

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 239

import android.widget.TextView;
import android.text.TextUtils;
import android.util.AttributeSet;
import android.content.res.TypedArray;
import android.graphics.Typeface;

public class CustomFontTextView extends TextView {

 public CustomFontTextView(Context oContext)
 {
 super(oContext);
 }

 public CustomFontTextView(Context oContext, AttributeSet
oAttrs)
 {
 super(oContext, oAttrs);
 setCustomFont(oContext, oAttrs,
R.styleable.com_sybase_hwc_CustomFontTextView,
R.styleable.com_sybase_hwc_CustomFontTextView_customFont);
 }

 private void setCustomFont(Context oContext, AttributeSet
oAttrs, int[] aiAttributeSet, int iFontId)
 {
 TypedArray taStyledAttributes =
oContext.obtainStyledAttributes(oAttrs, aiAttributeSet);
 String sCustomFont =
taStyledAttributes.getString(iFontId);
 if(!TextUtils.isEmpty(sCustomFont))
 {
 Typeface oTypeFace = null;

 try
 {
 oTypeFace = getFont(oContext, sCustomFont);
 setTypeface(oTypeFace);
 }
 catch (Exception e)
 {
 System.out.println("Count not set font!");
 // can't set the font
 }
 }
 else
 {
 System.out.println("Custom font string was empty!");
 }
 }

 private Typeface getFont(Context oContext, String
sCustomFont)
 {
 String sFullCustomFont = "fonts/" + sCustomFont;
 Typeface oTypeFace =
Typeface.createFromAsset(oContext.getAssets(),

Hybrid Web Container Customization

240 SAP Mobile Platform

sFullCustomFont);
 return oTypeFace;
 }
}

5. Create a fonts folder in ...\HybridWebContainer\assets and add the TTF
font file to this new folder.

For example, Windows fonts are usually in C:\Windows\Fonts\ if you want to use
one of those.

6. Open the workflowmessages.xml file for editing and add this attribute to the
RelativeLayout tag:
xmlns:custom="http://schemas.android.com/apk/res/com.sybase.hwc"

7. Find the TextView tag with the "ID msg_from" and change the tag from a TextView tag to a
"com.sybase.hwc.CustomFontTextView" tag.

8. Add this attribute to the com.sybase.hwc.CustomFontTextView tag:
custom:customFont="<NAME_OF_YOUR_FONT_FILE.TTF>"

9. Repeat the above steps for tags with the "id msg_title" and "msg_datetime."

If you build the Hybrid Web Container without making any more changes, you see that
"msg_title" and "msg_datetime" are shown with the custom font, but "msg_from" is not.
This is because the font for "msg_from" is overridden in the Java code.

10. To prevent the font from being overridden:

a) Select Search > File from the menu.
b) For Containing text, enter msg_from and click Search.

The search result shows two files: workflowmessages.xml and
UiHybridAppMessagesScreen.java.

c) Open the UiHybridAppMessagesScreen.java file for editing.

d) Search the file for "msg_from."

You will find this line: TextView tf = (TextView)
v.findViewById(R.id.msg_from);
The TextView object tf represents msg_from.

e) You are changing the font, so search for “tf.setTypeface.”

The search results return two occurrences because the text is either bolded or not
depending on whether the message has been read. Set bold, italic, or normal style for
the text in the same way you specify the font.

f) To ensure your custom font is used, make these modifications to the two occurrences of
the method calls to setTypeface:
tf.setTypeface(tf.getTypeface(), Typeface.BOLD);

tf.setTypeface(tf.getTypeface(), Typeface.NORMAL);

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 241

Default Behavior Customization for the Android Hybrid Web Container
Default behavior that you can change includes removing a PIN screen, configuring default
values for the Settings screen, sorting Hybrid App messages, and so on.

Removing Fields from the Settings Screen
You can hard-code settings for the Settings screen so they do not appear on the Settings screen
on the device.

The comment tag associated with the fields on the Settings screen is
ANDROID_CUSTOMIZATION_POINT_DEFAULTSETTINGS.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. All of the settings screen customization functionality is grouped together under this
comment in the file:
//---

 // Setting screen customization methods
 //--

3. To remove a field, set the associated property to false.

For example, if you want to remove the user name field, change:
public boolean isConnectionUserNameVisible()
{
return true;
}

to
public boolean isConnectionUserNameVisible()
{
return false;
}

Configuring Default Values for the Settings Screen
Set default values for the Settings screen.

The comment tag associated with customizations of the default settings is
ANDROID_CUSTOMIZATION_POINT_DEFAULTSETTINGS.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the collection of methods named with the pattern
getDefaultConnection<setting_name> or
isDefaultConnect<setting_name>, where <setting_name> is the name of the
setting.

Hybrid Web Container Customization

242 SAP Mobile Platform

3. Edit the methods to return the specific value you require.

The save button on the settings screen is enabled only when all of the fields requiring
values are populated and a field is changed by the user, so if you change the return value for
all of the methods to values that users do not have to modify on the device, you can run into
a problem. To avoid this issue:

a) Find the method in CustomizationHelper named
isSettingsSaveButtonAlwaysEnabled(), which, by default, returns
false.

b) Change the method to return true so the save button is always enabled if all of the fields
requiring values are populated.

Removing the PIN Screen
Remove the PIN screen (password screen) from the Hybrid Web Container.

The related comment tag is ANDROID_CUSTOMIZATION_POINT_PIN.

Note: Removing the PIN screen leaves data that is stored on the device less secure. You should
remove the PIN screen only if you are not concerned about keeping your data secure.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the enablePIN method.

By default it returns true and shows the password screen.

3. Change the enablePIN method to return false.

The application does not show a password screen if it has been idle and is reactivated.

4. Test the application.

Using Multiple Hybrid Web Containers on the Same Android Device
Configure the Hybrid Web Container so that two or more Hybrid Web Containers co-exist on
the same Android device.

1. Open the AndroidManifest.xml file, which is located under the
HybridWebContainer project folder.

2. In the manifest tag, change the "com.sybase.hwc" package attribute to something
else.

3. Search the file and change any references to "com.sybase.hwc" to the new package
from step 2.

Note: Do not change any references to com.sybase.hybridApp, as these refer to the
library jar files.

4. Save the file and choose Yes when asked if you want to change your launch configuration.

5. Change to the Eclipse Java perspective.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 243

6. Right-click the package under src (it will be the old package name, com.sybase.hwc) and
choose Refactor > Rename.

7. Set the name to be the package name you set in step 2.

8. Open the CustomizationHelper.java file, which is located in ...
\HybridWebContainer\src\com\sybase\hwc, and find the method named
getAppId():

By default getAppId() returns Brand.OEM_HYBRIDAPP_APPID. Change it to
return a String that uniquely identifies your application.

9. You must now add an application with a matching App id in SAP Control Center, and if
you want to use the automatic registration option, you must also add an Application
Connection Template.

Now when you build the Hybrid Web Container, you can install it on a device that already
has a Hybrid Web Container installed (but with a different package name). You should
make other changes to your new Hybrid Web Container, such as app_short_name in the
strings.xml file, or the icon .png image, to differentiate the Hybrid Web Containers
on the device.

Sorting the List of Hybrid Apps
You can sort and filter the list of Hybrid Apps.

By default, the Hybrid Web Container displays Hybrid App packages in alphabetical order by
package name. This procedure shows how to change the list so that it is case-sensitive. The
related comment tag is ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPSORT.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the getHybridAppComparator() method.

The comparator is used to order application (HybridApp) objects and is called by sort.

3. Modify the comparator to order the applications to meet your requirements.

4. Save the file.

Sorting Hybrid App Messages
Sort Hybrid App messages based on different criteria.

The comment tag associated with sorting Hybrid App messages is
ANDROID_CUSTOMIZATION_POINT_SORTING.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the getMessageComparator() method.

The comparator is used to order Message objects and is called by sort.

3. Modify the comparator to order the messages to meet your requirements.

Hybrid Web Container Customization

244 SAP Mobile Platform

4. Save the file.

Filtering the Hybrid App Messages
Filter the list of Hybrid App messages so only messages that meet specified criteria are shown.

The comment tag associated with Hybrid App messages is
ANDROID_CUSTOMIZATION_POINT_FILTERING.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Find the getFilteredMessages() method.

The default behavior is to return all messages.

3. To return a subset of messages, you can modify getFilteredMessages() to return a
list of messages based on your criteria.

For example, if you want only high priority messages to appear in the message list, you can
change the code to the following:
// Display high priority messages only.
 ArrayList<Message> filteredMessages =
MessageDb.getMessages(bCompleteList);
for(int iMessageIndex = 0; iMessageIndex <
filteredMessages.size(); iMessageIndex++)
{
if(filteredMessages.get(iMessageIndex).getMailPriority() !=
com.sybase.mo.AmpConsts.EMAIL_STATUS_IMPORTANCE_HIGH)
{
filteredMessages.remove(iMessageIndex);
//we need to decrement the index so we don't skip an element now
iMessageIndex--;
}
}
return filteredMessages;

You must refresh the listview before the new messages are filtered. You can refresh the
listview by switching to another view and then switching back.

Setting HTTP Headers
You can set HTTP headers for the Android Hybrid Web Container to include authentication
tokens.

There are three sample methods showing how to do this in the Android Hybrid Web Container
template source code, which include:

• setHttpHeaders() – use this method to set the authentication tokens. The tokens you
set are used until setHttpHeaders is called again.

• setHybridAppTokenErrorListener() – use this method to call
setHttpHeaders() to put the authentication tokens back in a good state, if, for
example, they have expired.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 245

• setHttpErrorListener() – use this method to handle HTTP errors.

The comment tag associated with setting HTTP headers is
ANDROID_CUSTOMIZATION_POINT_HTTPHEADERS.

1. Open the CustomizationHelper.java file and make your changes.

2. Save the file.

Modifying the Hybrid App List Appearance
Change how the Hybrid Apps are shown on the device.

The comment tag associated with customizing the Hybrid App list appearance is
ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPLIST.

To show the list of applications, the Hybrid Web Container calls the
getHybridAppScreenClass() method in CustomizationHelper.java. That
method returns the class that displays the list. The default class is UiHybridAppScreen.

1. To make small changes to the list view, open the UiHybridAppScreen.java file,
which is located in the ...\HybridWebContainer\src\com\sybase\hwc
folder, and make your changes.

Note: Optionally, you can create your own class that extends UIHybridAppScreen. If
you do this, you must modify the getHybridAppScreenClass() method in the
CustomizationHelper file to return the name of your new class.

2. Save the file.

Creating a Gallery View
Change the Hybrid App Package list view to a gallery view.

The comment tag associated with creating categorized views is
ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPLIST.

1. Add an XML layout called hybridappgallery.xml to the HybridWebContainer
project.

2. Match your hybridappgallery.xml layout to:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical" >

 <Gallery xmlns:android="http://schemas.android.com/apk/res/
android"
 android:id="@+id/gallery"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />

Hybrid Web Container Customization

246 SAP Mobile Platform

</LinearLayout>
3. Create a new activity for the HybridWebContainer.

a) Open the AndroidManifest.xml file.

b) Click the Application tab.
c) In the Application Nodes section (at the bottom left), click Add.
d) Choose Activity and click OK.
e) Select the new activity and change its name to

com.sybase.hwc.HybridAppGalleryActivity.

f) Click Name* to generate the stub Java file.
g) Click Finish.

4. Enter this code into the HybridAppGalleryActivity.java file:

package com.sybase.hwc;

import java.util.ArrayList;
import java.util.Vector;
import java.util.Arrays;

import com.sybase.hybridApp.*;
import com.sybase.hybridApp.amp.Consts;

import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.AdapterView;
import android.widget.AdapterView.OnItemClickListener;
import android.widget.BaseAdapter;
import android.widget.Gallery;
import android.widget.ImageView;

public class HybridAppGalleryActivity extends Activity {

 ImageAdapter m_adapter;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.hybridappgallery);

 Gallery oGallery = (Gallery) findViewById(R.id.gallery);
 m_adapter = new ImageAdapter(this);
 oGallery.setAdapter(m_adapter);

 oGallery.setOnItemClickListener(new OnItemClickListener ()
 {
 public void onItemClick(AdapterView parent, View v, int

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 247

position, long id)
 {
 startHybridApp(parent, v, position, id);
 }
 });
 }

 public void startHybridApp(AdapterView oParent, View v, int
iPos, long id)
 {
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_START_MODE, Consts.START_MODE_HYBRIDAPP);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_ID, m_adapter.getItem(iPos).getHybridAppId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_PROGRESS_TEXT, m_adapter.getItem(iPos).getDisplayName());
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_HYBRIDAPP_CONTAINER);
 }

 @Override
 public void onActivityResult(int iRequestCode, int
iResultCode, Intent relaunchData)
 {
 super.onActivityResult(iRequestCode, iResultCode,
relaunchData);
 if (iRequestCode == Consts.INTENT_ID_HYBRIDAPP_CONTAINER &&
iResultCode == Consts.RESULT_RELAUNCH)
 {
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_START_MODE, Consts.START_MODE_HYBRIDAPP);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_ID, relaunchData.getIntExtra(Consts.INTENT_PARAM_HYBRIDAPP_ID,
0));

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_PROGRESS_TEXT,
relaunchData.getStringExtra(Consts.INTENT_PARAM_HYBRIDAPP_PROGRE
SS_TEXT));
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_HYBRIDAPP_CONTAINER);
 }
 }

 public class ImageAdapter extends BaseAdapter
 {

Hybrid Web Container Customization

248 SAP Mobile Platform

 //int mGalleryItemBackground;
 private Context mContext;
 private Vector<HybridApp> mHybridApps;

 private ArrayList<Integer> mImageIds;

 public ImageAdapter(Context c)
 {
 mContext = c;
 mImageIds = new ArrayList<Integer>();

 //have to get a list of all installed HybridAppss
 mHybridApps = new
Vector<HybridApp>(Arrays.asList(HybridAppDb.getInvocableHybridAp
ps()));
 for(int iHybridAppIndex = 0; iHybridAppIndex <
mHybridApps.size(); iHybridAppIndex++)
 {
 HybridAppDb oHybridApp = (HybridAppDb)
mHybridApps.get(iHybridAppIndex);
 int iconIndex = oHybridApp.getIconIndex();
 if(iconIndex >= 30 &&
 iconIndex <= 116)
 {
 //luckily the icon resources are consecutive
 int iResource = 0;
 if(iconIndex < 100)
 {
 iResource = 0x7f020022;
 iResource += (iconIndex - 30)*2;
 }
 else
 {
 iResource = 0x7f020000;
 iResource += (iconIndex - 100)*2;
 }
 mImageIds.add(new Integer(iResource));
 }
 }
 }

 public int getHybridAppId(int position)
 {
 return
((HybridAppDb)mHybridApps.get(position)).getHybridAppId();
 }

 public String getDisplayName(int position)
 {
 return
((HybridAppDb)mHybridApps.get(position)).getDisplayName();
 }

 public int getCount()
 {
 return mImageIds.size();

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 249

 }

 public HybridAppDb getItem(int position)
 {
 return (HybridAppDb)mHybridApps.get(position);
 }

 public long getItemId(int position)
 {
 return position;
 }

 public View getView(int position, View convertView, ViewGroup
parent)
 {
 ImageView imageView = new ImageView(mContext);

imageView.setImageResource(mImageIds.get(position).intValue());
 imageView.setLayoutParams(new
Gallery.LayoutParams(150,100));
 imageView.setScaleType(ImageView.ScaleType.FIT_XY);

 return imageView;
 }
 }

}
5. Save the file.

6. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class.

That class must extend Activity.

7. Update the manifest.xml file to include the new activity you create.

Creating Categorized Views
Create categories so that Hybrid Apps and messages appear in lists under a category heading.

The comment tag associated with creating categorized views is
ANDROID_CUSTOMIZATION_POINT_CATEGORIZEDVIEWS.

First, determine names for the categories. SAP recommends that you name the final category
“Miscellaneous;” this adds all applications and messages that do not match a category to the
Miscellaneous category. Also in this example, all applications that belong to a category must
include the category name contained in their display name. For example, an application
named “Financial Claim” belongs in the “Financial” category.

There are other ways to determine categories; if you know the names of the applications in
advance, you can simply list all the application names that belong in each category.

Hybrid Web Container Customization

250 SAP Mobile Platform

1. Create a new XML layout called category.xml and paste the following code into the
auto generated file:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
android:layout_width="fill_parent"
android:layout_height="?android:attr/listPreferredItemHeight"
android:padding="6dip">

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
android:orientation="vertical"
android:layout_width="0dip"
android:layout_weight="1"
android:layout_height="fill_parent">
<TextView
android:id="@+id/category"
android:layout_width="fill_parent"
android:layout_height="0dip"
android:layout_weight="1"
android:singleLine="true"
android:ellipsize="marquee"
android:gravity="center_vertical"
/>
</LinearLayout>

</LinearLayout>
2. Copy the UiHybridAppScreen.java file and rename it to your own class, for

example, CategorizedAppScreen.java, and open it for editing.

3. Add the list of categories to the UiHybridAppScreen class, as a public static final
member variable:
public static final String[] m_asHybridAppCategories =
{ "Financial", "Utilities", "Miscellaneous" };

4. Replace the HybridAppAdapter class with:

private class HybridAppAdapter extends ArrayAdapter<Object>
 {
 private String[] m_asCategories;

 public HybridAppAdapter(Context context, int
textviewResourceId, List<Object> items, String[] categories){
 super(context, textviewResourceId, items);

 m_asCategories = categories;

 for(int index = 0; index < m_asCategories.length; index
++)
 {
 this.add(m_asCategories[index]);
 }
 }

 @Override

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 251

 public View getView(int position, View convertView,
ViewGroup parent)
 {
 Object oObject = this.getItem(position);
 View v = null;
 if(oObject instanceof HybridApp)
 {
 HybridApp oHybridApp = (HybridApp) oObject;
 LayoutInflater vi =
(LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE)
;
 v = vi.inflate(R.layout.workflows, null);

 if (oHybridApp != null)
 {
 ImageView ic = (ImageView)
v.findViewById(R.id.workflow_icon);

ic.setImageResource(UiIconIndexLookup.getNormalIconIdForIndex(o
HybridApp.getIconIndex()));
 TextView tt = (TextView)
v.findViewById(R.id.workflow_title);
 if (tt != null) {
 tt.setText(oHybridApp.getDisplayName());
 }
 }
 }
 else
 { //This position is not a HybridApp, but a category
heading
 String sString = (String) oObject;
 LayoutInflater vi = (LayoutInflater)
getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(R.layout.category, null);
 if(sString != null)
 {
 TextView tt = (TextView)
v.findViewById(R.id.category);
 if (tt != null)
 {
 tt.setText(sString);
 }
 }
 }
 return v;
 }

 public void remove(HybridApp oApp)
 {
 // The object to remove has a different pointer
 // so match it up with the one in the list
 for (int i = 0; i < this.getCount(); i++)
 {
 Object oObject = getItem(i);
 if(oObject instanceof HybridApp)
 {

Hybrid Web Container Customization

252 SAP Mobile Platform

 HybridApp oTemp = (HybridApp) oObject;

 if (oApp.getModuleId() == oTemp.getModuleId()
 && oApp.getVersion() == oTemp.getVersion())
 {
 super.remove(oTemp);
 return;
 }
 }

 }
 }

 public void sort()
 {
 // Sorts applications by name
 this.sort(new Comparator<Object>()
 {
 @Override
 public int compare(Object oObject1, Object
oObject2)
 {
 if(oObject1 instanceof String && oObject2
instanceof String)
 {
 String sString1 = (String) oObject1;
 String sString2 = (String) oObject2;
 for(int index = 0; index < m_asCategories.length;
index++)
 {

if(sString1.equals(m_asCategories[index]))
 {
 return -1;
 }
 if(sString2.equals(m_asCategories[index]))
 {
 return 1;
 }
 }

 }
 else if(oObject1 instanceof HybridApp && oObject2
instanceof HybridApp)
 {
 HybridApp oHybridApp1 = (HybridApp) oObject1;
 HybridApp oHybridApp2 = (HybridApp) oObject2;

 int iCategoryIndex1 =
getCategoryIndex(oHybridApp1);
 int iCategoryIndex2 =
getCategoryIndex(oHybridApp2);

 if(iCategoryIndex1 == iCategoryIndex2)
 {

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 253

 return
oHybridApp1.getDisplayName().toLowerCase().compareTo(oHybridApp2
.getDisplayName().toLowerCase());
 }
 else
 {
 return iCategoryIndex1 - iCategoryIndex2;
 }
 }
 else
 { //we have one String (category heading) and one
HybridApp
 HybridApp oHybridApp = null;
 String sString = null;
 int iSwitch = 1;
 if(oObject1 instanceof HybridApp)
 {
 oHybridApp = (HybridApp) oObject1;
 sString = (String) oObject2;
 }
 else
 {
 oHybridApp = (HybridApp) oObject2;
 sString = (String) oObject1;
 iSwitch = -1;
 }

 int iHybridAppCategoryIndex =
getCategoryIndex(oHybridApp);
 int iCategoryIndex = getCategoryIndex(sString);
 if(iCategoryIndex <= iHybridAppCategoryIndex)
 {
 return 1*iSwitch;
 }
 else
 {
 return -1*iSwitch;
 }

 }

 return 0;
 }

 private int getCategoryIndex(String sString)
 {
 for(int index = 0; index < m_asCategories.length;
index++)
 {

if(m_asCategories[index].equalsIgnoreCase(sString))
 {
 return index;
 }
 }
 return m_asCategories.length - 1;

Hybrid Web Container Customization

254 SAP Mobile Platform

 }

 private int getCategoryIndex(HybridApp oHybridApp)
 {
 for(int index = 0; index < m_asCategories.length;
index++)
 {

if(oHybridApp.getDisplayName().toLowerCase().indexOf(m_asCatego
ries[index].toLowerCase()) >= 0)
 {
 return index;
 }
 }
 return m_asCategories.length - 1;
 }
 });
 }
 }

5. In the onResume method, make modifications to the following line (changes are shown
in bold):
this.m_adapter = new HybridAppAdapter(this, R.layout.workflows,
new
ArrayList<Object>(Arrays.asList(HybridAppDb.getInvocableHybridAp
ps())), m_asHybridAppCategories);

6. Modify the onListItemClick method as shown in the example code (changes are
shown in bold):
public void onListItemClick(ListView oParent, View v, int iPos,
long id)
{
 Object oObject = m_adapter.getItem(iPos);
 if(oObject instanceof HybridApp)
 {
 HybridApp oHybridApp = (HybridApp) oObject;
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_START_MODE, Consts.START_MODE_HYBRIDAPP);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_ID, ((HybridAppDb) oHybridApp).getHybridAppId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_PROGRESS_TEXT, oHybridApp.getDisplayName());
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_HYBRIDAPP_CONTAINER);
 }
}

7. Save the file.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 255

8. Open the UiHybridAppMessagesScreen.java file for editing, and in the
onCreateContextMenu method, make these modifications (changes are shown in
bold):
public void onCreateContextMenu(ContextMenu oMenu, View v,
ContextMenu.ContextMenuInfo menuInfo)
 {
 super.onCreateContextMenu(oMenu, v, menuInfo);

 AdapterContextMenuInfo oInfo = (AdapterContextMenuInfo)
menuInfo;
 Object oObject = m_adapter.getItem(oInfo.position);
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;

 oMenu.setHeaderTitle(oMsg.getSubject());
 oMenu.add(0, CONTEXT_MENU_DELETE, 0,
R.string.Context_Menu_Delete);

 // Save the id for operations used in the context menu
 m_iContextMessageId = oMsg.getMessageId();
 }
 }

9. In the onContextItemSelected method, make these modifications (changes are
shown in bold):
public boolean onContextItemSelected(MenuItem oItem)
 {
 if (oItem.getItemId() == CONTEXT_MENU_DELETE)
 {
 AdapterContextMenuInfo oInfo = (AdapterContextMenuInfo)
oItem.getMenuInfo();

 // The message might have been deleted while the context
menu was open.
 // Make sure the position is still present and matches
the id we expect
 if (oInfo.position < m_adapter.getCount())
 {
 Object oObject = m_adapter.getItem(oInfo.position);
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;

 if (oMsg.getMessageId() == m_iContextMessageId)
 {
 // Remove message from database
 MessageDb.delete(oMsg.getMessageId());
 }
 }
 }
 return true;
 }
 return false;

Hybrid Web Container Customization

256 SAP Mobile Platform

 }
10. Replace the MessageAdapter class:

private class MessageAdapter extends ArrayAdapter<Object>
 {
 String[] m_asCategories;

 public MessageAdapter(Context context, int
textviewResourceId, ArrayList<Object> items, String[]
categories){
 super(context, textviewResourceId, items);

 m_asCategories = categories;

 for(int index = 0; index < m_asCategories.length; index
++)
 {
 this.add(m_asCategories[index]);
 }
 }

 @Override
 public View getView(int position, View convertView,
ViewGroup parent) {
 Object oObject = getItem(position);
 View v = null;
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;
 LayoutInflater vi =
(LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVICE)
;
 v = vi.inflate(R.layout.workflowmessages, null);

 if (oMsg != null)
 {
 //set the Hybrid App message priority icon
 ImageView imageForPriority = (ImageView)
v.findViewById(R.id.priority_icon);

 if (oMsg.getMailPriority() ==
AmpConsts.EMAIL_STATUS_IMPORTANCE_HIGH)
 {

imageForPriority.setImageResource(R.drawable.readhi);

imageForPriority.setVisibility(View.VISIBLE);
 }
 else if (oMsg.getMailPriority() ==
AmpConsts.EMAIL_STATUS_IMPORTANCE_LOW)
 {

imageForPriority.setImageResource(R.drawable.readlow);

imageForPriority.setVisibility(View.VISIBLE);

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 257

 }
 else
 imageForPriority.setVisibility(View.GONE);

 ImageView ic = (ImageView)
v.findViewById(R.id.msg_icon);
 if (oMsg.isMsgProcessed())

ic.setImageResource(UiIconIndexLookup.getProcessedIconIdForIndex
(oMsg.getIconIndex()));
 else

ic.setImageResource(UiIconIndexLookup.getNormalIconIdForIndex(o
Msg.getIconIndex()));
 TextView tf = (TextView)
v.findViewById(R.id.msg_from);
 TextView tt = (TextView)
v.findViewById(R.id.msg_title);
 TextView bt = (TextView)
v.findViewById(R.id.msg_datetime);
 if (tf != null) {
 tf.setText(oMsg.getMsgFrom());
 }
 if (tt != null) {
 tt.setText(oMsg.getSubject());
 }
 if(bt != null){
 Calendar dtReceived =
Calendar.getInstance();

dtReceived.setTime(oMsg.getReceivedDate());

 Calendar dtNow = Calendar.getInstance();

 if (dtNow.get(Calendar.YEAR) ==
dtReceived.get(Calendar.YEAR) &&
 dtNow.get(Calendar.MONTH) ==
dtReceived.get(Calendar.MONTH) &&
 dtNow.get(Calendar.DAY_OF_MONTH) ==
dtReceived.get(Calendar.DAY_OF_MONTH))
 {
 bt.setText((new
SimpleDateFormat("hh:mm
a")).format(oMsg.getReceivedDate()));
 }
 else {
 bt.setText((new SimpleDateFormat("MM/
dd/yy")).format(oMsg.getReceivedDate()));
 }
 }

 // Update appearance unread messages
 if (tf != null && tt != null && bt != null)
 {
 if (!oMsg.isMsgRead())
 {

Hybrid Web Container Customization

258 SAP Mobile Platform

 // Setup view for unread message

v.setBackgroundResource(R.drawable.unread_selector);

 tf.setTextColor(Color.WHITE);
 tf.setTypeface(null, Typeface.BOLD);
 }
 else
 {
 // Setup view for read message
 v.setBackgroundResource(0);

 TypedValue tv = new TypedValue();

getTheme().resolveAttribute(android.R.attr.textColorSecondary,
tv, true);

tf.setTextColor(getResources().getColor(tv.resourceId));
 tf.setTypeface(null, Typeface.NORMAL);
 }
 }
 }
 }
 else
 {
 String sString = (String) oObject;
 LayoutInflater vi = (LayoutInflater)
getSystemService(Context.LAYOUT_INFLATER_SERVICE);
 v = vi.inflate(R.layout.category, null);
 if(sString != null)
 {
 TextView tt = (TextView)
v.findViewById(R.id.category);
 if (tt != null)
 {
 tt.setText(sString);
 }
 }
 }
 return v;
 }

 public void sort()
 {
 // Sorts applications by name
 this.sort(new Comparator<Object>()
 {
 @Override
 public int compare(Object oObject1, Object
oObject2)
 {
 if(oObject1 instanceof String && oObject2
instanceof String)
 {
 String sString1 = (String) oObject1;

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 259

 String sString2 = (String) oObject2;
 for(int index = 0; index <
m_asCategories.length; index++)
 {

if(sString1.equals(m_asCategories[index]))
 {
 return -1;
 }

if(sString2.equals(m_asCategories[index]))
 {
 return 1;
 }
 }

 }
 else if(oObject1 instanceof Message && oObject2
instanceof Message)
 {
 Message oMessage1 = (Message) oObject1;
 Message oMessage2 = (Message) oObject2;

 int iCategoryIndex1 =
getCategoryIndex(oMessage1);
 int iCategoryIndex2 =
getCategoryIndex(oMessage2);

 if(iCategoryIndex1 == iCategoryIndex2)
 {
 return
oMessage1.getReceivedDate().compareTo(oMessage2.getReceivedDate(
));
 }
 else
 {
 return iCategoryIndex1 - iCategoryIndex2;
 }
 }
 else
 { //we have one String (category heading) and one
HybridApp
 Message oMessage = null;
 String sString = null;
 int iSwitch = 1;
 if(oObject1 instanceof Message)
 {
 oMessage = (Message) oObject1;
 sString = (String) oObject2;
 }
 else
 {
 oMessage = (Message) oObject2;
 sString = (String) oObject1;
 iSwitch = -1;
 }

Hybrid Web Container Customization

260 SAP Mobile Platform

 int iMessageCategoryIndex =
getCategoryIndex(oMessage);
 int iCategoryIndex = getCategoryIndex(sString);
 if(iCategoryIndex <= iMessageCategoryIndex)
 {
 return 1*iSwitch;
 }
 else
 {
 return -1*iSwitch;
 }

 }

 return 0;
 }

 private int getCategoryIndex(String sString)
 {
 for(int index = 0; index < m_asCategories.length;
index++)
 {

if(m_asCategories[index].equalsIgnoreCase(sString))
 {
 return index;
 }
 }
 return m_asCategories.length - 1;
 }

 private int getCategoryIndex(Message oMessage)
 {
 MessageDb oMessageDb = (MessageDb) oMessage;
 if(oMessageDb != null)
 {
 HybridApp oHybridApp =
HybridAppDb.getHybridApp(oMessage.getModuleId(),
oMessage.getModuleVersion());
 String sModuleName =
oHybridApp.getDisplayName();
 if(sModuleName != null)
 {
 for(int index = 0; index <
m_asCategories.length; index++)
 {

if(sModuleName.toLowerCase().indexOf(m_asCategories[index].toLo
werCase()) >= 0)
 {
 return index;
 }
 }
 }
 }

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 261

 return m_asCategories.length - 1;
 }
 });
 }
 }

11. In the onResume method, make these changes (changes are shown in bold):
try
 {
 // ANDROID_CUSTOMIZATION_POINT_FILTERING
 ArrayList<Message> alMessages = MessageDb.getMessages();
 ArrayList<Object> alMessagesObjects = new
ArrayList(alMessages);
 this.m_adapter = new MessageAdapter(this,
R.layout.workflowmessages, alMessagesObjects,
UiHybridAppScreen.m_asHybridAppCategories);

 this.m_adapter.sort();
 }

12. In the onListItemClick method, make these modifications (changes are shown in
bold):
public void onListItemClick(ListView oParent, View v, int iPos,
long id)
 {
 try
 {
 Object oObject = m_adapter.getItem(iPos);
 if(oObject instanceof Message)
 {
 Message oMsg = (Message) oObject;

 // Check if Hybrid App is available
 HybridApp oHybridApp =
HybridAppDb.getHybridApp(oMsg.getModuleId(),
oMsg.getModuleVersion());

 // CR668069 -Check if we can handle transform data -
1mb limit by sqllite database
 try
 {
 oMsg.getTransformData();
 }
 catch (Exception ex)
 {
 MocaLog.getAmpHostLog().logMessage("Failed to
read transform data", MocaLog.eMocaLogLevel.Normal);

 new AlertDialog.Builder(this)
 .setTitle(android.R.string.dialog_alert_title)
 .setMessage(R.string.IDS_MSG_ERR_MESSAGE_TOO_L
ARGE)
 .setIcon(android.R.drawable.ic_dialog_alert)
 .setPositiveButton(android.R.string.ok,
 new DialogInterface.OnClickListener()

Hybrid Web Container Customization

262 SAP Mobile Platform

 {
 public void onClick(DialogInterface dialog, int
whichButton)
 {
 dialog.dismiss();
 }
 })
 .show();

 return;
 }

 // Update read flag
 if (!oMsg.isMsgRead())
 {
 m_adapter.notifyDataSetChanged();
 }

 // Open Hybrid App
 Intent oIntentHybridAppContainer = new Intent(this,
UiHybridAppContainer.class);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_START_MODE, Consts.START_MODE_MESSAGE);

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_MSG_ID, oMsg.getMessageId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_MODULE_ID, oMsg.getModuleId());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_MODULE_VERSION, oMsg.getModuleVersion());

oIntentHybridAppContainer.putExtra(Consts.INTENT_PARAM_HYBRIDAPP
_PROGRESS_TEXT, oMsg.getSubject());
 startActivityForResult(oIntentHybridAppContainer,
Consts.INTENT_ID_HYBRIDAPP_CONTAINER);
 }
 }
 catch(Exception ex)
 {
 MocaLog.getAmpHostLog().logMessage("Failed to open
message. Caught exception - " + ex.getMessage(),
MocaLog.eMocaLogLevel.Normal);
 }
 }

13. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class, which you created in step 2.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 263

That class must extend Activity.

14. Update the manifest.xml file to include the new activity you create.

Making the List of Hybrid App Packages Searchable
Make the list of Hybrid App packages searchable.

The comment tag associated with making the list of Hybrid App packages searchable is
ANDROID_CUSTOMIZATION_POINT_HYBRIDAPPSEARCH.

1. Add an XML layout called emptyview.xml, and do not add anything to the resulting
autogenerated XML file.

2. Open the hybridapps_list.xml file for editing and add the following tag above the
ListView tag:
<EditText
 android:hint="@string/SEARCH_HINT"
 android:id="@+id/EditTextSearchHybridAppList"
 android:layout_width="match_parent"
 android:layout_height="47dp" />

3. Open ...\Values\Strings.xml and, between the <resource> and </resource>
tags, add:
 <string name="SEARCH_HINT">search</string>

4. Copy the UiHybridAppScreen.java file to your own class name, for example,
SearchableAppScreen.java and open it for editing.

a) Add these import statements:
import android.widget.EditText;
import android.text.Editable;
import android.text.TextWatcher;

b) Add the following code to the end of the onCreate method:

final EditText edittext = (EditText)
findViewById(R.id.EditTextSearchHybridAppList);
edittext.addTextChangedListener(new TextWatcher()
{
 public void afterTextChanged(Editable s)
 {
 String sSearchFor = s.toString();
 m_adapter.setSearch(sSearchFor);
 m_adapter.notifyDataSetChanged();
 }

 // stubs; have to implement the abstract methods
 public void beforeTextChanged(CharSequence s, int start, int
count, int after) {}
 public void onTextChanged(CharSequence s, int start, int
before, int count) {}
});

c) Add this member variable to the HybridAppAdapter class:

Hybrid Web Container Customization

264 SAP Mobile Platform

String m_sToSearchFor;
d) Add this line of code to the end of the HybridAppAdapter contstructor method:

m_sToSearchFor = "";
e) Replace the code inside the getView method with:

public View getView(int position, View convertView, ViewGroup
parent)
{
 LayoutInflater vi =
(LayoutInflater)getSystemService(Context.LAYOUT_INFLATER_SERVI
CE);
 View v = vi.inflate(R.layout.hybridapps, null);

 HybridApp oHybridApp = getItem(position);
 if(oHybridApp != null)
 {
 if(m_abDisplayThisApp == null || position >=
m_abDisplayThisApp.length || m_abDisplayThisApp[position])
 {
 ImageView ic = (ImageView)
v.findViewById(R.id.hybridApp_icon);

ic.setImageResource(UiIconIndexLookup.getNormalIconIdForIndex
(oHybridApp.getIconIndex()));
 TextView tt = (TextView)
v.findViewById(R.id.hybridApp_title);
 if (tt != null)
 {
 tt.setText(oHybridApp.getDisplayName());
 }
 }
 else
 {
 v = vi.inflate(R.layout.emptyview, null);
 }
 }
 return v;
}

f) Add a search method to the HybridAppAdapter class:

public void search()
{
 m_abDisplayThisApp = new boolean[m_adapter.getCount()];

 for(int index = 0; index < m_adapter.getCount(); index++)
 {
 int iIndexOfResult =
m_adapter.getItem(index).getDisplayName().indexOf(m_sToSear
chFor);
 if(iIndexOfResult >= 0)
 {
 m_abDisplayThisApp[index] = true;
 }

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 265

 }
}

g) Add these methods to the HybridAppAdapter class:

public void notifyDataSetChanged()
{
 search();
 super.notifyDataSetChanged();
}
public void setSearch(String sSearchFor)
{
 m_sToSearchFor = sSearchFor;
 }

h) Add this member variable to the UiHybridAppScreen class:

private boolean[] m_abDisplayThisApp;
5. Open the CustomizationHelper.java file, which is located in the ...

\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class.

That class must extend Activity.

6. Update the manifest.xml file to include the new activity you create.

Customizing the Push Notification Handler in the Android Hybrid Web Container
The comment tag associated with this customization is
ANDROID_CUSTOMIZATION_POINT_PUSH_NOTIFICATION.

By default, when a push notification is received by the Hybrid Web Container push listener, it
returns the PushNotificationListener.NOTIFICATION_CONTINUE method,
which allows the next push listener to handle the notification.

The comments in the onPushNotification method in the
CustomizationHelper.java file include sample code that demonstrates how to open
the default client-initiated Hybrid App if no Hybrid App is currently opened and also,
optionally, calls a JavaScript method to initialize the Hybrid App once it is opened.

1. Open the CustomizationHelper.java file for editing.

2. Find the onPushNotification method and make your changes.

For example, if PushNotificationListener.CANCEL is returned, then the push
listener manager will not invoke the next push notification listener.

3. Save the file.

4. Rebuild the project.

Hybrid Web Container Customization

266 SAP Mobile Platform

Testing Android Hybrid Web Containers
After making any customizations to the provided Hybrid Web Container source code, you
should test the changes before using the application.

Note: The steps or interface may be different depending on which Android SDK version you
are using.

This procedure assumes that you are using Eclipse.

1. Create a new Android virtual device.

a) a. Open the Android SDK Manager. If you are using Eclipse choose Window > AVD
Manager.

b) b. Select Tools > Manage AVDs.
c) Click New.
d) Enter a name for the device and select Android 2.2 as the target.
e) Click Create AVD.

2. Create a debug configuration for Android applications.

a) In Eclipse, in WorkSpace Navigator, right-click the Hybrid Web Container project and
select Debug as > Debug Configurations.

b) Right-click Android Application.
c) Click Target.
d) In Deployment Target Selection Mode, select Manual and click Debug.

In the future you will only need to right-click the project and choose Debug As >
Android Application.

e) In the Android Device Chooser, select Launch a New Android Virtual Device (AVD)
and select the AVD you created in step 1.

f) Click Start.
g) Click Launch.

The Hybrid Web Container automatically launches when the emulator is fully started.

BlackBerry Hybrid Web Container Customization
Customize the look and feel and default behavior of the BlackBerry Hybrid Web Container.

Before getting started:

• Install the BlackBerry Java Plug-in for Eclipse. For information about the BlackBerry Java
Plug-in for Eclipse, see https://developer.blackberry.com/java/download/eclipse/.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 267

https://developer.blackberry.com/java/download/eclipse/

Note: If you are also developing for Android, SAP recommends that you do not install the
BlackBerry Java Plug-in for Eclipse and the ADT plug-in in the same Eclipse
environment.

• Build the Hybrid Web Container project as described in Building the BlackBerry Hybrid
Web Container Using the Provided Source Code. The HybridWebContainer
directory contains directories such as libs, as well as images and other files.

BlackBerry Customization Touch Points
All code areas associated with BlackBerry Hybrid Web Container customizations are
annotated with BLACKBERRY_CUSTOMIZATION_POINT_<customization>
comment tags, or touch points.

Touch Point Description

BLACKBERRY_CUSTOMIZA-
TION_POINT_COLORS

Use custom colors for the Hybrid Web
Container.

BLACKBERRY_CUSTOMIZA-
TION_POINT_FONTS

Use custom fonts in the Hybrid Web
Container.

BLACKBERRY_CUSTOMIZA-
TION_POINT_BRAND

Change application name, copyright,
and developer information.

BLACKBERRY_CUSTOMIZA-
TION_POINT_SPLASHSCREEN

Add a splash screen to the Hybrid Web
Container.

BLACKBERRY_CUSTOMIZA-
TION_POINT_DEFAULTSET-
TINGS

Set the defaults for the Settings screen.

BLACKBERRY_CUSTOMIZA-
TION_POINT_PRESETSETTINGS

Hard-code Settings screen options so
they do not show up on the device,
preventing the user from changing the
settings.

BLACKBERRY_CUSTOMIZA-
TION_POINT_PIN

Use for PIN screen customizations, or
to remove the PIN screen.

BLACKBERRY_CUSTOMIZA-
TION_POINT_SORTING

Sort application messages based on a
variety of criteria.

BLACKBERRY_CUSTOMIZA-
TION_POINT_FILTERING

Filter the message list so only messag-
es meeting certain criteria are shown.

BLACKBERRY_CUSTOMIZA-
TION_POINT_HYBRIDAPPSORT

Customize the criteria for sorting the
Hybrid App list.

Hybrid Web Container Customization

268 SAP Mobile Platform

Touch Point Description

BLACKBERRY_CUSTOMIZA-
TION_POINT_HYBRIDAP-
PSEARCH

Make the list of Hybrid App packages
searchable.

BLACKBERRY_CUSTOMIZA-
TION_POINT_HYBRIDAPPLIST

Customize the Hybrid App package
list appearance.

BLACKBERRY_CUSTOMIZA-
TION_POINT_CATEGORIZED-
VIEWS

Create categorized views of the Hy-
brid App packages.

BLACKBERRY_CUSTOMIZA-
TION_POINT_HTTPHEADERS

Set HTTP headers for the BlackBerry
Hybrid Web Container to include au-
thentication tokens.

BLACKBERRY_CUSTOMIZA-
TION_POINT_ MULTIHWC

Install more than one Hybrid Web
Container on one device.

BLACKBERRY_CUSTOMIZA-
TION_POINT_PREPACK-
AGE_APP

Run the Hybrid Web Container as a
single Hybrid App.

BLACKBERRY_CUSTOMIZA-
TION_POINT_PUSH_NOTIFICA-
TION

Customize the way the Hybrid Web
Container handles push notifications.

BLACKBERRY_CUSTOMIZA-
TION_POINT_ANONY-
MOUS_USER

Returns whether or not anonymous
user login is supported. Change to
YES to allow clients to register anon-
ymously.

Note: For this to work, the HWC ap-
plication connection template must be
configured to use the anonymous se-
curity configuration. See Application
Connection Templates in SAP Control
Center for SAP Mobile Platform.

Look and Feel Customization of the BlackBerry Hybrid Web Container
Customizations you can make to the look and feel include changing the splash screen,
changing the Hybrid App icons and name, changing the Hybrid App package icons, changing
labels and text, adding support for new languages, and so on.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 269

Changing the BlackBerry Hybrid Web Container Icon
Replace the BlackBerry Hybrid Web Container icon image file.

1. Navigate to the HybridWebContainer\res\images folder.

2. Replace the icon.png file with another .png image of your choosing.

The new image must use the same name, resolution, and extension as the original file.

3. Rebuild the project.

Rebranding the BlackBerry Hybrid Web Container
Modify the strings used in the Brand class for the BlackBerry Hybrid Web Container.

Almost all company and product specific strings used in the Hybrid Web Container are
accessed through the Brand class.

1. Open the HybridWebContainer.java file for editing.

2. Make your modifications at the beginning of the main method (if you do not want to
modify a default value, simply omit the line that changes it):
Brand.OEM_COMPANY_NAME = "Your Company Name";
 Brand.OEM_FORMAL_COMPANY_NAME = "Your Formal
 Company Name";
 Brand.OEM_ROBIE_PRODUCT = "Your Name of the
 Product";
 Brand.OEM_COPYRIGHT = "Your Copyright String";
 Brand.OEM_CORPDIR_OB_NAME = "HybridAppList Title";

3. Save the file.

4. To change the title, which uses the string HybridWebContainer, that appears on the
Hybrid Web Container settings Screen:

a) In the Package Explorer view, right-click the BlackBerry application project and click
Properties.

b) In the Properties for pane, click BlackBerry Project.
c) Click Application Descriptor.
d) Click the Application tab and change the Title.
e) In Package Explorer, right-click the BlackBerry_App_Descriptor.xml file

and choose Open With > Text Edior.
f) Find the tag named Packaging and change the value of the OutputFileName to the

name you used in step 4d.

Note: Remove any spaces or dashes, since these are illegal characters for output files.

g) Open the HybridWebContainer.java file for editing.

h) Add this line at the beginning of the postEvent method:

Brand.OEM_ENGINE_EXE_NAME = "HybridWebContainer";

Replace HybridWebContainer with the name you used in step 4d.

Hybrid Web Container Customization

270 SAP Mobile Platform

Note: If you modify Brand.OEM_HYBRIDAPP_APPID, you must have a matching
Application ID in SAP Control Center.

Adding a Splash Screen
Add a splash screen to the BlackBerry Hybrid Web Container.

The splash screen is the first screen you see in the Hybrid Web Container. The related
comment tag is BLACKBERRY_CUSTOMIZATION_POINT_SPLASHSCREEN.

1. Open the CustomizationHelper.java file for editing.

2. Find the getSplashScreenClass method.

3. Write your own splash screen class.

4. Have getSplashScreenClass return the class that you wrote for your splash screen,
for example:
return SplashScreen.class;

Your class must extend MainScreen, call pushScreen on itself so that it appears,
then popScreen on itself when it is finished.

package com.sybase.hwc;
import net.rim.device.api.system .*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import java.util.*;
/**
 * A simple splash screen.
 */
public class SplashScreen extends MainScreen
{
 private Timer timer = new Timer();

 public SplashScreen()
 {
 setTitle("Splash Screen");
 add(new LabelField("Splash"));
 addKeyListener(new SplashScreenListener(this));

 // Dismiss the splash screen after 5 seconds.
 timer.schedule(new CountDown(), 5000);

 UiApplication.getUiApplication().pushScreen(this);

 UiApplication.getUiApplication().requestForeground();
 }
 public void dismiss()
 {
 timer.cancel();
 UiApplication.getUiApplication().popScreen(this);
 }

 private class CountDown extends TimerTask

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 271

 {
 public
 void run()
 {

 UiApplication.getUiApplication().invokeLater(new
DismissThread());
 }
 }

 private class DismissThread implements Runnable
 {
 public void run() {
 dismiss();
 }
 }

 protected boolean navigationClick(int status, int time)
 {
 dismiss();
 return true;
 }

 protected boolean navigationUnclick(int status, int time)
 {
 return false;
 }

 protected boolean navigationMovement(int dx, int dy, int
status, int time)
 {
 return false;
 }

 private static class SplashScreenListener implements
KeyListener
 {
 private SplashScreen screen;

 public SplashScreenListener(SplashScreen splash)
 {
 screen = splash;
 }

 public boolean keyChar(char key, int status,
 int time)
 {
 // Quit the splash screen if ESC or MENU
 key pressed.
 switch (key)
 {
 case
 Characters.CONTROL_MENU:
 case Characters.ESCAPE:
 screen.dismiss();
 return true;

Hybrid Web Container Customization

272 SAP Mobile Platform

 }
 return false;
 }

 public boolean keyDown(int keycode, int time)
 {
 return false;
 }

 public boolean keyRepeat(int keycode, int time)
 {
 return false;
 }

 public boolean keyStatus(int keycode, int time)
 {
 return false;
 }

 public boolean keyUp(int keycode, int time)

 {
 return false;
 }
 }
}

5. Save the file and rebuild the project.

Changing Labels and Text in the BlackBerry Hybrid Web Container
You can customize most of the text found in labels, dialogs, and error messages used by the
Hybrid Web Container.

All of the text that is not branding related and that appears as part of the Hybrid Web Container
is contained in the HybridWebContainer.rrc file.

1. Open the HybridWebContainer\res\com\sybase\hwc
\HybridWebContainer_<language>.rrc file, where <language> is the
language code.

This file contains the text for error messages, screen titles, screen labels, validation
messages, and so on.

2. Make your changes and save the file.

Keep in mind that you must also make the same changes for each language you want to
translate into.

Adding a New Language
Add support for a new language to the BlackBerry Hybrid Web Container.

The default language for the Hybrid Web Container is English, and the English strings are
located in HybridWebContainer\res\com\sybase\hwc
\HybridWebContainer.rrc. The strings for different languages are located in the

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 273

resources folder. In general, strings of a language are located in a file named
HybridWebContainer_<language_code>.rrc. For example, the German
resource file is named HybridWebContainer_de.rrc.

1. Right-click the resources folder and choose Create new file in resources.

2. Name the file HybridWebContainer_<language_code>.rrc, where
<language_code> is the language code of the language you want to add.

3. Double-click the new file to open it.

4. Set all the values to be in the new language.

5. Save the file and rebuild the project.

When the Hybrid Web Container is built with the resource file you added, it automatically
uses the values it contains when the language on the BlackBerry device is set to the
matching language.

Customizing the About Screen for the BlackBerry Hybrid Web Container
The related comment tag for customizing the About screen is
BLACKBERRY_CUSTOMIZATION_POINT_BRAND.

1. Open the CustomizationHelper.java file for editing.

2. Find the customAbout method, which contains commented-out code in the
customAbout method, and Replace the text with whatever values you require.

3. Save the file and rebuild the project.

Using Custom Colors
The comment tag for customizing colors is
BLACKBERRY_CUSTOMIZATION_POINT_COLORS. There are a few places where you
can change colors.

These steps provide an example of how to change the colors of different Hybrid Web
Container components.

1. To change the highlight color of the selected Hybrid App in the Hybrid App list:

a) Open the AppScreen.java file for editing.
b) Make these modifications to the drawListRow method, found in the

ListFieldCallback (the changes are in bold).

The changes in this example make the highlighted color orange and the unhighlighted
color black (by default, they are blue and white, respectively).
public void drawListRow(ListField listField, Graphics graphics,
int index, int y, int width) {
// y parameter is already offset to center text
int iOffset = (listField.getRowHeight() -
getFont().getHeight()) >> 1;

HybridApp oApp = (HybridApp) m_oApps.elementAt(index);

Hybrid Web Container Customization

274 SAP Mobile Platform

if(listField.getSelectedIndex() == index)

{
graphics.setColor(Color.ORANGE);

}

else

{

graphics.setColor(Color.BLACK);

}

graphics.fillRect(0, y - iOffset, width,
listField.getRowHeight() + y - iOffset);

final int iMargin = 2;

// Draw image

EncodedImage oImage
= EncodedImage.getEncodedImageResource("ampicon" +
oApp.getIconIndex() + ".png");
Bitmap oBitmap = oImage.getBitmap();

graphics.drawBitmap(iMargin, y - iOffset +
(listField.getRowHeight() -oBitmap.getHeight()) / 2,
oBitmap.getWidth(), oBitmap.getHeight(), oBitmap, 0, 0);

// Draw text
graphics.drawText(oApp.getDisplayName(), 2 * iMargin +
oBitmap.getWidth(), y);
}

2. To change the text color of the Hybrid App names in the Hybrid App list:
a) In the AppScreen.java file, go to the drawListRow method, which is in the

ListFieldCallback.
The color of the text is set by the code below. The first color (white, by default) is used
when the field is in focus. The second color is used when the field is not in focus. This
example coordinates these colors with the colors used in step 1. The changed code is in
bold.

b) Modify the code. For example:
// Draw text
if(listField.getSelectedIndex() == index)
{
graphics.setColor(Color.BLACK);
}
else
{
graphics.setColor(Color.WHITE);
}

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 275

graphics.drawText(oApp.getDisplayName(), 2 * iMargin +
oBitmap.getWidth(), y);

3. To change the background color of the Hybrid Web Container:

a) Add these import statements to the AppScreen.java file:

 import net.rim.device.api.ui.decor.Background;
import net.rim.device.api.ui.decor.BackgroundFactory;

b) In the AppScreen.java file, go to the constructer method and add these lines after
the setTitle(…); line:

Background bg =
BackgroundFactory.createSolidBackground(Color.BLACK);
this.getMainManager().setBackground(bg);

4. Change the background color and text color of label and edit fields.

To change the background and text colors of a label or edit field, you must override its paint
method. This is done when you create the label. Below is an example of how to set the
background color to black and the text color to white for a label. You can also do this,
similarly, for edit fields.

a) Open the HWCSettingsScreen.java file for editing.

b) Make the following modifications (changes in bold). These changes make the
background of the label black, and the text white. To use the same background color as
the rest of the screen, you can leave out the first two lines in the paint method
below:
// Connection Header
m_oConnection = null;
m_oConnection = new
LabelField(m_res.getString(HybridWebContainerResource.IDS_CO
NNECTION),

Field.FIELD_HCENTER)
{
 public void paint(Graphics g){
 g.setColor(Color.BLACK);
 g.fillRect(0, 0, getWidth(), getHeight());
 g.setColor(Color.WHITE);
 super.paint(g);
 }
};

5. Save the file and rebuild the project.

Using Custom Fonts
The customization tag for customizing fonts is
BLACKBERRY_CUSTOMIZATION_POINT_FONTS.

Use custom .ttf font files, which have a maximum size of 60KB, to install and use a custom
font. You can set the default font for the Hybrid Web Container (described in step 1), or change
the fonts for individual labels (described in step 2). Fonts for the list of Hybrid Apps are a
special case (described in step 3).

Hybrid Web Container Customization

276 SAP Mobile Platform

1. Set the default font for the Hybrid Web Container:

a) Add the .ttf font file to the resources folder of the HybridWebContainer project.

b) Open the HWCSettingsScreen.java file and navigate to the constructor
method, and add the following code to the beginning of that method.

The value FELIXTI.TTF in the second line is used. This is the name of the font file,
and you should replace this value with the name of the font file you added in step 1a.
String sCustomFontName = "MyCustomFont";
int iFontLoadCode =
FontManager.getInstance().load("FELIXTI.TTF",
sCustomFontName,

FontManager.APPLICATION_FONT);
if(iFontLoadCode == FontManager.SUCCESS)
{
 try
 {
 FontFamily oFamily =
FontFamily.forName(sCustomFontName);
 Font oFont = oFamily.getFont(Font.PLAIN, 23);
 FontManager.getInstance().setApplicationFont(oFont);
 }
 catch (ClassNotFoundException e)
 {
 // the font was not found, so it cannot be set
 }
}
else
{
 // error loading font
}

The default font is applied to menu items, but not to the menu item that has focus. The
following steps correct this.

c) Open the AppScreen.java file and add:

import net.rim.device.api.ui.Font;
import net.rim.device.api.ui.FontFamily;

d) Add this code to the end of the makeMenu method:

try
 {

 FontFamily oFamily =
FontFamily.forName("MyCustomFont");
 Font oFont = oFamily.getFont(Font.PLAIN, 23);
 menu.setFont(oFont);
 }
 catch (ClassNotFoundException e)
 {
 // problem finding the custom font
 String errormsg = e.getMessage();
 }

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 277

e) Open the LogScreen.java file and add:

import net.rim.device.api.ui.FontFamily;
import net.rim.device.api.ui.component.Menu;

f) Add the following method to both the LogScreen class (in LogScreen.java)
and to the HWCSettingsScreen class (in HWCSettingsScreen.java):

protected void makeMenu(Menu menu, int context)
 {
 try
 {
 FontFamily oFamily =
FontFamily.forName("MyCustomFont");
 Font oFont = oFamily.getFont(Font.PLAIN, 23);
 menu.setFont(oFont);
 }
 catch (ClassNotFoundException e)
 {
 String errormsg = e.getMessage();
 System.out.println(errormsg);
 }
 super.makeMenu(menu, context);
 }

g) In the HWCSettingsScreen.java file, add:

import net.rim.device.api.ui.FontFamily;
import net.rim.device.api.ui.Font;
import net.rim.device.api.ui.component.Menu;

2. Set the font for an individual label:

This example shows how to change the font for the screen title. Changing the font for any
label is similar.

a) Add the font file (a .ttf file) to the resources folder of the HybridWebContainer
project.

b) To the AppScreen.java file, add:

import net.rim.device.api.ui.Font;
import net.rim.device.api.ui.FontFamily;

c) If you are going to set the font on more than one label, have a helper method. Add the
following method to the AppScreen class:

public void setCustomFont(LabelField oLabel, String
sCustomFontName, int iSize)
 {
 try
 {
 FontFamily oFamily =
FontFamily.forName(sCustomFontName);
 Font oFont = oFamily.getFont(Font.PLAIN, iSize);
 oLabel.setFont(oFont);
 }
 catch (ClassNotFoundException e)
 {
 // the font was not found, so it cannot be set
 System.out.println("Exception: font not found!");

Hybrid Web Container Customization

278 SAP Mobile Platform

 }
 }

d) In the AppScreen constructor, replace the setTitle(…) line with the code
below.

"SHOWG.TTF" is the name of the font file. Replace this with the name of the font file
you added in step 2a.

 LabelField oTitleLabel = new LabelField(Consts.APP_TITLE,
DrawStyle.ELLIPSIS);
 FontManager.getInstance().load("SHOWG.TTF",
"CustomTitleFont", FontManager.APPLICATION_FONT);
 setCustomFont(oTitleLabel, "CustomTitleFont", 23);
 this.setTitle(oTitleLabel);

3. To change the font for the names of the Hybrid Apps in the list of Hybrid Apps:

a) Add the font file (a .ttf file) to the resources folder of the HybridWebContainer
project.

b) Open the AppScreen.java file for editing.

c) Navigate to the drawListRow in ListFieldCallback and make the changes
below, shown in bold.

"HARLOWSI.TTF" is the name of the font file. Replace this with the name of the font
file you added in step 3a.
// Draw text
FontManager.getInstance().load("HARLOWSI.TTF",
"CustomHybridAppFont", FontManager.APPLICATION_FONT);
try
{
 FontFamily oFamily =
FontFamily.forName("CustomHybridAppFont");
 Font oFont = oFamily.getFont(Font.PLAIN,
23);
 graphics.setFont(oFont);
 graphics.drawText(oApp.getDisplayNa
me(), 2 * iMargin + oBitmap.getWidth(), y);

}
catch (ClassNotFoundException e)

{
//can't load the font
}

Default Behavior Customization for the BlackBerry Hybrid Web Container
Remove a PIN screen, configure default values for the Settings screen, customize the About
screen, sort Hybrid App messages, and so on.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 279

Removing Fields from the Settings Screen
Hard-code the Settings screen so options do not appear on the Settings screen on the
BlackBerry device.

The comment tag associated with the fields on the Settings screen
is BLACKBERRY_CUSTOMIZATION_POINT_DEFAULTSETTINGS.

1. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder.

2. Search for the method named with the pattern isConnection***Visible, where
*** is the name of the connection setting field.

By default, each method returns true. To remove a field from the screen, change the
appropriate method to return false.

3. Save the file.

4. Rebuild the project.

Configuring Default Values for the Settings Screen
All customization functionality for the Settings screen is grouped together in the
CustomizationHelper.java file. The associated comment tag is
BLACKBERRY_CUSTOMIZATION_POINT_DEFAULTSETTINGS.

1. Open the CustomizationHelper.java file for editing.

2. Search for the methods named with this pattern:

• getDefaultConnection***
• isDefaultConnect***

where *** is the name of the setting.

3. Edit the methods to return the value you specify.

4. Save the file.

5. Rebuild the project.

Using Multiple Hybrid Web Containers on the Same BlackBerry Device
Configure the Hybrid Web Container so that two or more Hybrid Web Containers can coexist
on the same BlackBerry device.

Use a different COD module name, and make other changes to your new Hybrid Web
Container, such as for the icon .png image, to differentiate between the Hybrid Web
Containers on the device.

1. Right-click the HybridWebContainer project and click Properties.

2. In the General tab, change the title of the Hybrid Web Container.

Hybrid Web Container Customization

280 SAP Mobile Platform

3. In the Build tab, change the output file name to the name you used in step 2, but remove any
spaces or dashes, since these are illegal characters for output files.

4. Open the CustomizationHelper.java file for editing.

5. Find the method named getAppId() and replace Brand.OEM_HYBRIDAPP_APPID
with a unique name for your application.

The user must be registered in SAP Control Center with a device ID that matches the value
you use in this step. You might need to create the device ID in SAP Control Center.

6. Open the CustomizationHelper.java file for editing.

7. Change the return value of getApplicationIndicatorIconName to the new
indicator icon name, for example:
public class CustomizationHelper
{
....
public final String getApplicationIndicatorIconName()
{ //return HWCMessagesScreen.INDICATOR_PNG; return
"MetaData.png"; }
}

Sorting the List of Hybrid Apps
By default, Hybrid Apps are sorted alphabetically, ignoring case. The customization tag
associated with sorting the list of Hybrid Apps is
BLACKBERRY_CUSTOMIZATION_POINT_HYBRIDAPPSORT.

1. Open the CustomizationHelper.java file for editing.

2. Search for the method named getHybridAppComparator() and modify the code to
suit your sorting requirements.

This example shows the Hybrid App being sorted by display name in reverse alphabetical
order:
public Comparator getHybridAppComparator() {
return new Comparator() {
public int compare(Object oApp1, Object oApp2) {
String sDisplayName1 = ((HybridApp) oApp1).getDisplayName()
.toLowerCase();
String sDisplayName2 = ((HybridApp) oApp2).getDisplayName()
.toLowerCase();
return (-1)*sDisplayName1.compareTo(sDisplayName2);
}
};
}

3. Save the file.

4. Rebuild the project.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 281

Sorting Hybrid AppMessages
The default sorting behavior for Hybrid App messages is to list messages in the order they are
received, newest first. The customization tag for sorting messages is
BLACKBERRY_CUSTOMIZATION_POINT_SORTING.

1. Open the CustomizationHelper.java file for editing.

2. Search for the method named getMessageComparator() and modify the code to
your sorting requirements.

3. Save the file.

4. Rebuild the project.

Filtering Hybrid App Messages
Filter the list of Hybrid App messages so only messages that meet specified criteria are shown.
The default behavior is to return all messages. The comment tag associated with filtering
Hybrid App messages is BLACKBERRY_CUSTOMIZATION_POINT_FILTERING.

1. Open the CustomizationHelper.java file for editing.

2. Find the method named getFilteredMessages() and modify it to meet your
criteria.

getFilteredMessages() includes commented-out sample code that demonstrates
how to filter out low-importance messages.

3. Save the file.

4. Rebuild the project.

Setting HTTP Headers
Set HTTP headers for the BlackBerry Hybrid Web Container to include authentication tokens.

These sample methods show how to do this in the BlackBerry Hybrid Web Container template
source code.

• setHttpHeaders() – use this method to set the authentication tokens. The tokens you
set are used until setHttpHeaders is called again.

• setWorkflowTokenErrorListener() – use this method to call
setHttpHeaders() to put the authentication tokens back in a good state, if, for
example, they have expired.

• setHttpErrorListener() – use this method to handle HTTP errors.

The comment tag associated with setting HTTP headers is
BLACKBERRY_CUSTOMIZATION_POINT_HTTPHEADERS.

1. Open the CustomizationHelper.java file and make your changes.

Hybrid Web Container Customization

282 SAP Mobile Platform

2. Save the file.

3. Rebuild the project.

Modifying the Hybrid App List Appearance
The comment tag associated with customizing the Hybrid App list appearance is
BLACKBERRY_CUSTOMIZATION_POINT_HYBRIDAPPLIST.

To show the list of Hybrid Apps, the Hybrid Web Container calls the
getHybridAppScreenClass() method in the CustomizationHelper.java
file. getHybridAppScreenClass() returns the default class AppScreen that
displays the list.

1. To make small changes edit AppScreen, or create your own class that extends
UiHybridAppScreen.

2. If you write your own class to extend UiHybridAppScreen, update
getHybridAppScreenClass to return the name of your new class.

3. Save the file.

4. Rebuild the project.

Creating a Tree View
Modify the BlackBerry Hybrid Web Container so that Hybrid Apps appear in a tree view.

1. In the BlackBerry HybridWebContainer template project, in the src folder, right-click
the com.sybase.hwc.amp package and choose New > File.

2. Enter TreeViewAppScreen.java for the file name, and click Finish.

3. Open the TreeViewAppScreen.java file for editing, and paste this code into the file.
/*
 Copyright (c) SAP, Inc. 2012 All rights reserved.

 In addition to the license terms set out in the SAP License
Agreement for
 the SAP Mobile Platform ("Program"), the following additional or
different
 rights and accompanying obligations and restrictions shall apply
to the source
 code in this file ("Code"). SAP grants you a limited, non-
exclusive,
 non-transferable, revocable license to use, reproduce, and modify
the Code
 solely for purposes of (i) maintaining the Code as reference
material to better
 understand the operation of the Program, and (ii) development and
testing of
 applications created in connection with your licensed use of the
Program.
 The Code may not be transferred, sold, assigned, sublicensed or
otherwise

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 283

 conveyed (whether by operation of law or otherwise) to another
party without
 SAP's prior written consent. The following provisions shall apply
to any
 modifications you make to the Code: (i) SAP will not provide any
maintenance
 or support for modified Code or problems that result from use of
modified Code;
 (ii) SAP expressly disclaims any warranties and conditions,
express or
 implied, relating to modified Code or any problems that result
from use of the
 modified Code; (iii) SAP SHALL NOT BE LIABLE FOR ANY LOSS OR
DAMAGE RELATING
 TO MODIFICATIONS MADE TO THE CODE OR FOR ANY DAMAGES RESULTING
FROM USE OF THE
 MODIFIED CODE, INCLUDING, WITHOUT LIMITATION, ANY INACCURACY OF
DATA, LOSS OF
 PROFITS OR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES, EVEN
 IF SAP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES; (iv)
you agree
 to indemnify, hold harmless, and defend SAP from and against any
claims or
 lawsuits, including attorney's fees, that arise from or are
related to the
 modified Code or from use of the modified Code.
 */
package com.sybase.hwc.amp;

import com.sybase.mo.*;
import com.sybase.hybridApp.*;

import java.util.Enumeration;

import net.rim.device.api.i18n.ResourceBundle;
import net.rim.device.api.system.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.util.SimpleSortingVector;
import com.sybase.hwc.*;

// BLACKBERRY_CUSTOMIZATION_POINT_AUTOSTART
// BLACKBERRY_CUSTOMIZATION_POINT_COLORS
// BLACKBERRY_CUSTOMIZATION_POINT_FONTS
// BLACKBERYY_CUSTOMIZATION_POINT_HYBRIDAPPLIST

/**
 * This class displays a list of user invokable widgets currently
present on the
 * device.
 */
public class TreeViewAppScreen extends MainScreen {

 // Create a ResourceBundle object to contain the localized

Hybrid Web Container Customization

284 SAP Mobile Platform

resources.
 // Here is a little bit of MAGIC. How do you know what there is
a class HybridWebContainerResource? (hint: its not from the docs)
 // It is auto generated by the JDE. Convention is
AppNameResource.BUNDLE_ID, AppNameResource.BUNDLE_NAME
 // http://www.codeproject.com/KB/mobile/EndToEndBBApp5.aspx
 public static final ResourceBundle RESOURCE =
 ResourceBundle.getBundle(
 HybridWebContainerResource.BUNDLE_ID,
 HybridWebContainerResource.BUNDLE_NAME);

 public TreeViewAppScreen() {
 super(Manager.VERTICAL_SCROLL |
Manager.NO_HORIZONTAL_SCROLLBAR);

setTitle(RESOURCE.getString(HybridWebContainerResource.IDS_HYBR
IDAPPS));

 // Sort apps by their display name
 m_oApps = new SimpleSortingVector();

m_oApps.setSortComparator(CustomizationHelper.getInstance().getH
ybridAppComparator());

 m_oApps.setSort(false);

 // Populate and sort list
 BBHybridAppHelper.addAppStoreListener(m_oAppListener);
 // Add list field to screen
 m_oTreeField = new TreeField(m_oTreeFieldCallback,
TreeField.FOCUSABLE);

m_oTreeField.setEmptyString(BBHybridWebContainer.getMocaStringRe
source(MocaClientLibResource.LBL_NO_WIDGETS_FOUND),
DrawStyle.HCENTER);
 // set the size of the indentation
 m_oTreeField.setIndentWidth(30);
 populateList();
 updateScreen();

 // add the tree field to the screen
 add(m_oTreeField);
 }

 /**
 * Handle clicking on an application
 */
 protected boolean navigationClick(int status, int time)
 {
 Field oField = getFieldWithFocus();
 // only handle if it was the tree field that was clicked
 if (oField instanceof TreeField)
 {

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 285

 Object obj = m_oTreeField.getCookie(((TreeField)
oField).getCurrentNode());
 // only handle the click if it was a hybrid app (not a tree
label)
 if(obj instanceof HybridApp)
 {
 // launch the clicked hybrid app
 HybridApp oApp = (HybridApp) obj;
 XmlHybridApp.startHybridApp(oApp.getModuleId(),
oApp.getVersion(), false);
 return true;
 }
 }

 return super.navigationClick(status, time);
 }

 /**
 * Override the default Screen.close method
 */
 public void close()
 {
 BBHybridAppHelper.removeAppStoreListener(m_oAppListener);

 UiApplication oApp = UiApplication.getUiApplication();
 oApp.popScreen(this);

 if (oApp.getScreenCount() == 0)
 {
 oApp.requestBackground();
 }
 }

 protected void makeMenu(Menu menu, int instance)
 {
 menu.deleteAll();

 if (CustomizationHelper.getInstance().enableSettings())
 {
 menu.add(m_mniSettings);
 }

 menu.add(MenuItem.getPrefab(MenuItem.CLOSE));
 }

 /**
 * Fills in list of apps
 */
 private void populateList()
 {
 m_oApps.removeAllElements();

 for (Enumeration e =
BBHybridAppHelper.getClientHybridApps().elements();
e.hasMoreElements();)
 {

Hybrid Web Container Customization

286 SAP Mobile Platform

 HybridApp oHybridApp = (HybridApp)e.nextElement();
 m_oApps.addElement(oHybridApp);
 }
 m_oApps.reSort();
 }

 /**
 * Updates the screen
 */
 private void updateScreen()
 {
 // have to do stuff to the UI on a separate thread
 UiApplication.getUiApplication().invokeLater(
 new Runnable()
 {
 public void run()
 {
 m_oTreeField.deleteAll();
 // if there're no hybrid apps then we do not even
want to add the tree labels
 // so that the empty string will be displayed
 if(m_oApps.size() > 0)
 {
 // In this example, there are 3 top level
categories of hybrid apps: Forms, Expense, and Miscellaneous.
 // Forms has a sub-category of SpecialForms. In
practice you can have as many or as few categories
 // and sub-categories as you like. Here the
category of a hybrid app is determined by whether
 // keywords exist in the display name of that
hybrid app, but you could use anything else (for example
 // you could determine the category of a hybrid
app by its icon).
 int iMiscel = m_oTreeField.addChildNode(0,
"Miscellaneous Hybrid Apps");
 int iForms = m_oTreeField.addChildNode(0, "Form
Hybrid Apps");
 int iSpecialForms =
m_oTreeField.addChildNode(iForms, "Special Forms");
 int iExpense = m_oTreeField.addChildNode(0,
"Expense Hybrid Apps");
 //have to iterate backwards through m_oApps
since addChildNode adds the new node
 //to the first position (appears above the nodes
previously added).
 for(int index = m_oApps.size()-1; index >= 0;
index--)
 {
 HybridApp oHybridApp = (HybridApp)
m_oApps.elementAt(index);
 int iParent = iMiscel;

if(oHybridApp.getDisplayName().indexOf("Expense") >= 0)
 {
 iParent = iExpense;
 }

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 287

 else
if(oHybridApp.getDisplayName().indexOf("Form") >= 0)
 {

if(oHybridApp.getDisplayName().indexOf("Special") >= 0)
 {
 iParent = iSpecialForms;
 }
 else
 {
 iParent = iForms;
 }
 }
 m_oTreeField.addChildNode(iParent,
m_oApps.elementAt(index));
 }
 }

 }
 });
 }

 // Settings menu item
 private MenuItem m_mniSettings =
 new
MenuItem(m_res.getString(HybridWebContainerResource.IDS_SETTINGS
),
 100001,
 10)
 {
 public void run()
 {
 XmlHybridApp.startHybridAppSettings(false);
 }
 };

 // Listener for app changes
 private HybridAppsListener m_oAppListener =
 new HybridAppsListener()
 {
 public void onRefreshRequired()
 {
 populateList();
 updateScreen();
 }

 public void onHybridAppAdded(HybridApp oHybridApp)
 {
 populateList();
 updateScreen();
 }

 public void onHybridAppRemoved(HybridApp oHybridApp)
 {
 populateList();
 updateScreen();

Hybrid Web Container Customization

288 SAP Mobile Platform

 }

 public void onHybridAppUpdated(HybridApp oHybridApp)
 {
 populateList();
 updateScreen();
 }
 };

 private SimpleSortingVector m_oApps;

 private TreeField m_oTreeField;

 private static ResourceBundle m_res =
ResourceBundle.getBundle(
 HybridWebContainerResource.BUNDLE_ID,
 HybridWebContainerResource.BUNDLE_NAME);

 private TreeFieldCallback m_oTreeFieldCallback = new
TreeFieldCallback()
 {
 public void drawTreeItem(TreeField oTree, Graphics
oGraphics, int iNode, int iY, int iWidth, int iIndent)
 {

 Object obj = oTree.getCookie(iNode);
 if(obj instanceof String)
 {
 oGraphics.setColor(Color.BLACK);
 oGraphics.drawText((String)obj, iIndent, iY);
 }
 else if(obj instanceof HybridApp)
 {
 // y parameter is already offset to center text
 int iOffset = (oTree.getRowHeight() -
getFont().getHeight()) >> 1;

 // Draw a background color for the hybrid apps to
distinguish them from the tree labels.
 // However, if this node has focus we don't want to draw
the grey rectangle because it
 // will cover up the blue color indicating the node is
selected.
 if(iNode != m_oTreeField.getCurrentNode())
 {
 oGraphics.setColor(Color.LIGHTGRAY);
 oGraphics.fillRect(iIndent, iY - iOffset, iWidth,
m_oTreeField.getRowHeight());
 }

 HybridApp oApp = (HybridApp) obj;

 final int iMargin = 2;

 // Draw image
 EncodedImage oImage =

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 289

EncodedImage.getEncodedImageResource("ampicon" +
oApp.getIconIndex() + ".png");
 int iBitmapWidth = 0;

 if (oImage != null)
 {
 CustomIcon oIcon = oApp.getDefaultCustomIcon();

 if (oIcon != null)
 {
 EncodedImage oImageTmp =
oApp.getCustomIconImage(oIcon);

 if (oImageTmp != null)
 {
 if (oImageTmp.getHeight() != oImage.getHeight()
|| oImageTmp.getWidth() != oImage.getWidth())
 {
 MocaLog.getAmpHostLog().logMessage(
 "Icon image size doesn't match the
built-in icon size, the layout result could be different.",
 MocaLog.eMocaLogLevel.Normal);
 }

 oImage = oImageTmp;
 }
 }

 Bitmap oBitmap = oImage.getBitmap();
 int iRowHeight = oTree.getRowHeight();

 int iSize = oImage.getHeight() > oImage.getWidth() ?
oImage.getHeight() : oImage.getWidth();

 if (iSize >= iRowHeight)
 {
 oBitmap =
HWCMessagesListField.getScaledBitmapImage(oImage, iRowHeight -
iMargin, iSize);
 }

 oGraphics.drawBitmap(
 iMargin + iIndent,
 iY - iOffset + (oTree.getRowHeight() -
oBitmap.getHeight()) / 2,
 oBitmap.getWidth(), oBitmap.getHeight(),
oBitmap, 0, 0);

 iBitmapWidth = oBitmap.getWidth();
 }
 else
 {
 MocaLog.getAmpHostLog().logMessage("Can not find
application icon image of application " +
 oApp.getDisplayName() + ".",

Hybrid Web Container Customization

290 SAP Mobile Platform

MocaLog.eMocaLogLevel.Normal);
 }

 // Draw text
 oGraphics.setColor(Color.BLACK);
 oGraphics.drawText(oApp.getDisplayName(), 2 * iMargin
+ iBitmapWidth + iIndent, iY);
 }
 }
 };
}

This file is based on the AppScreen.java file. The main differences are in the
constructor, navigationClick, populateList, and updateScreen
functions. Also, the TreeFieldCallback class replaces the
ListFieldCallback class from AppScreen.java.

4. Open the CustomizationHelper.java file for editing, find the
getHybridAppScreenClass function, and replace the existing return statement with this
line:

return com.sybase.hwc.amp.TreeViewAppScreen.class;
5. Save the CustomizationHelper.java file.

6. Rebuild the HybridWebContainer project.
When you run the Hybrid Web Container, the Hybrid Apps are shown in a tree field.

Creating Categorized Views
Create a set of categories for the list of Hybrid Apps. The comment tag associated with this
customization is BLACKBERRY_CUSTOMIZATION_POINT_CATEGORIZEDVIEWS.

First, determine names for the categories. SAP recommends that you name the final category
“Miscellaneous;” this adds all applications and messages that do not match a category to the
Miscellaneous category. Also in this example, all applications that belong to a category must
include the category name contained in their display name. For example, an application
named “Financial Claim” belongs in the “Financial” category.

There are other ways to determine categories; if you know the names of the applications in
advance, you can simply list all the application names that belong in each category.

1. Open the AppScreen.java file for editing and add:

import java.util.Vector;
 import net.rim.device.api.util.Comparator;

2. Add a list of categories as a private final member variable to the AppScreen class, for
example:
private final String[] m_asHybridAppCategories = { "Financial",
"Utilities", "Miscellaneous" };

3. In the constructor of AppScreen, replace the compare method in the Comparator with
the following modified version:

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 291

// BLACKBERRY_CUSTOMIZATION_POINT_CATEGORIZEDVIEWS
m_oApps.setSortComparator(new Comparator()
{
public int compare(Object oApp1, Object oApp2)
{
return 0;
}
});

Although you can sort with categories, doing so becomes complicated since you must
check whether an element is a category name or a Hybrid App, and you typically want to
sort only Hybrid Apps within a common category.

4. Replace the populateList method with this modified version:

private void populateList()
{
m_oApps.removeAllElements();
Vector vHybridApps = BBHybridAppHelper.getClientHybridApps();
for (int i = 0; i < m_asHybridAppCategories.length; i++)
{
m_oApps.addElement(m_asHybridAppCategories[i]);
for (int j = 0; j < vHybridApps.size(); j++)
{HybridApp ha = (HybridApp) vHybridApps.elementAt(j);
if (ha.getDisplayName().indexOf(m_asHybridAppCategories[i]) >= 0
|| i + 1 == m_asHybridAppCategories.length)
{m_oApps.addElement(ha);vHybridApps.removeElementAt(j--);
}
}
}
}

5. Replace the drawListRow method in ListFieldCallback with this modified
version:
public void drawListRow(ListField listField, Graphics graphics,
 int index, int y, int width) {
 //
BLACKBERRY_CUSTOMIZATION_POINT_CATEGORIZEDVIEWS

 // y parameter is already offset to center
text
 int iOffset = (listField.getRowHeight() -
getFont().getHeight()) >> 1;

 //
BLACKBERRY_CUSTOMIZATION_POINT_HYBRIDAPPLIST
 // HybridApp oApp = (HybridApp)
m_oApps.elementAt(index);

 // BLACKBERRY_CUSTOMIZATION_POINT_COLORS

 final int iMargin = 2;

 Object element =
m_oApps.elementAt(index);

Hybrid Web Container Customization

292 SAP Mobile Platform

 if(element instanceof HybridApp)

 {

 HybridApp oApp = (HybridApp) element;

 // Draw image

 EncodedImage oImage
= EncodedImage.getEncodedImageResource("ampicon" +
oApp.getIconIndex() + ".png");

 Bitmap oBitmap = oImage.getBitmap();

 graphics.drawBitmap(iMargin, y - iOffset +
(listField.getRowHeight() - oBitmap.getHeight()) / 2,
oBitmap.getWidth(), oBitmap.getHeight(), oBitmap, 0, 0);

 // Draw text
 graphics.drawText(oApp.getDisplayName(),
2 * iMargin + oBitmap.getWidth(), y);

 }

 else

 {
 // element must be a String
 String sCategoryName = (String) element;

 graphics.drawText(sCategoryName, iMargin, y);
 }
}

6. Replace the navigationClick method in the AppScreen class with this modified
version:
protected boolean navigationClick(int status, int time)
 {
 Field oField = getFieldWithFocus();
 if (oField instanceof ListField)
 {
 int iIndex = ((ListField)
oField).getSelectedIndex();

 if (iIndex != -1 && m_oApps.size() > 0)

 {

 Object oElement = m_oApps.elementAt(iIndex);

 if(oElement instanceof HybridApp)
 {
 HybridApp oApp = (HybridApp)
oElement;

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 293

 XmlHybridApp.startHybridApp(oApp.getModuleId(),
oApp.getVersion(), false);
 return true;
 }

 }
 }

 return super.navigationClick(status, time);
 }

7. Replace the onHybridAppAdded method in the HybridAppsListener with this
modified version:
public void onHybridAppAdded(HybridApp oHybridApp) {

 onRefreshRequired();
 }

8. Save the AppScreen.java file.

9. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class.

Making the List of Hybrid Apps Searchable
Add a search field to the top of the Hybrid App list.

Whenever the contents of the search field change, only Hybrid Apps with matching names are
listed. The comment tag associated with this customization is
BLACKBERRY_CUSTOMIZATION_POINT_HYBRIDAPPSEARCH.

1. Open the AppScreen.java file for editing and add the following member variable to
the AppScreen class:
private String m_sSearchFor;

2. Add the following code in the constructor of AppScreen, before the line that says // Add
list field to screen:

//add in the search UI
LabelField searchLabel = new LabelField("Search: ");
add(searchLabel);
EditField searchEdit = new EditField();
searchEdit.setChangeListener(new SearchFieldListener());
add(searchEdit);
m_sSearchFor = "";

3. Add the following code to the end of the populateList method:

// BLACKBERRY_CUSTOMIZATION_POINT_HYBRIDAPPSEARCH
for (int i = 0; i < m_oApps.size(); i++) {
 HybridApp ha = (HybridApp) m_oApps.elementAt(i);
 if(m_sSearchFor == null || m_sSearchFor.equals("") ||
ha.getDisplayName().indexOf(m_sSearchFor) >= 0)

Hybrid Web Container Customization

294 SAP Mobile Platform

 {
 // there is no search, or this Hybrid App matches the
search.
 // do nothing since the Hybrid App is already in the list
 }
 else
 {
 // there is a search and this Hybrid App does not match
 // remove this Hybrid App from the list
 m_oApps.removeElementAt(i);
 i--;
 }
}

4. Add the following class to the AppScreen class:
final class SearchFieldListener implements FieldChangeListener
{
 public void fieldChanged(Field field, int context)
 {
 if(field instanceof EditField)
 {
 EditField oEditField = (EditField) field;
 m_sSearchFor = oEditField.getText();
 populateList();
 updateScreen();
 }
 }
}

5. Open the CustomizationHelper.java file, which is located in the ...
\HybridWebContainer\src\com\sybase\hwc folder and edit the
getHybridAppScreenClass() method, to change the class returned to your new
class.

That class must extend Activity.

6. Update the manifest.xml file to include the new activity you create.

Customizing the Push Notification Handler in the BlackBerry Hybrid Web Container
The comment tag associated with this customization is
BLACKBERRY_CUSTOMIZATION_POINT_PUSH_NOTIFICATION.

By default, when a push notification is received by the Hybrid Web Container push listener, it
returns the PushNotificationListener.NOTIFICATION_CONTINUE method,
which allows the next push listener to handle the notification.

The comments in the onPushNotification method in the
CustomizationHelper.java file include sample code that demonstrates how to open
the default client-initiated Hybrid App if no Hybrid App is currently opened and also,
optionally, calls a JavaScript method to initialize the Hybrid App once it is opened.

1. Open the CustomizationHelper.java file for editing.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 295

2. Find the onPushNotification method and make your changes.

For example, if PushNotificationListener.CANCEL is returned, the push
listener manager does not invoke the next push notification listener.

3. Save the file.

4. Rebuild the project.

iOS Hybrid Web Container Customization
The Hybrid Web Container project that comes with SAP Mobile Platform is accompanied by
libraries and the source code necessary for you to build the Hybrid Web Container.

Before getting started, unzip the directory that contains the Hybrid Web Container project as
outlined in Building the Hybrid Web Container Using the Provided iOS Source Code. The
Hybrid Web Container project unzips to a directory called HWC. Any references to a directory
path in these procedures are relative to that top-level HWC directory.

The HWC directory contains directories such as Classes, libs, and includes, as well as
images and other files. It also contains the HWC.xcodeproj, which is the Xcode project that
builds the Hybrid Web Container, and is the project that is referenced in the customization
procedures.

Whenever a customization requires a source code modification, there is a reference to “touch
points” in the code. These references are annotated with IOS_CUSTOMIZATION_POINT
and a descriptor identifying the customization to which they belong.

For example, all code areas associated with removing the PIN screen are annotated with
IOS_CUSTOMIZATION_POINT_PIN. The touch points are typically accompanied by
brief comments in the code explaining the necessary changes. Only source code files contain
these touch points. The procedures describe where to modify plist files, strings files, and other
non-source code files, but you must locate where to apply those changes.

The CustomizationHelper.m file included in the HWC project under the Classes
group folder in the Xcode Project Navigator is used to encapsulate some of your
customizations in a single place. In many cases, this file contains sample implementations of
the customizations that you can follow.

Note: After performing any customizations, you must rebuild the project. SAP recommends
that you always test your changes before using the resulting application.

Hybrid Web Container Customization

296 SAP Mobile Platform

iOS Customization Touch Points
All code areas associated with iOS Hybrid Web Container customizations are annotated with
IOS_CUSTOMIZATION_POINT_<customization> comment tags, or touch points.

Touch Point Description

IOS_CUSTOMIZATION_POINT_PRESET-
SETTINGS

Provides alternative ways to get connection set-
tings so they do not show up on the Settings
screen. This prevents the user from changing
them. There are variations on this customization.

IOS_CUSTOMIZATION_POINT_DEFAULT-
SETTINGS

Set the defaults for the Settings screen.

IOS_CUSTOMIZATION_POINT_PREPACK-
AGED_APP

Include a prepackaged Hybrid App that launches
automatically when the Hybrid Web Container
starts.

IOS_CUSTOMIZATION_POINT_PIN Use for PIN screen customizations, or to remove
the PIN screen.

IOS_CUSTOMIZATION_POINT_SORTING Sort Hybrid Apps or messages based on different
criteria.

IOS_CUSTOMIZATION_POINT_FILTERING Filter the list of Hybrid Apps or messages so only
items meeting certain criteria are shown.

IOS_CUSTOMIZA-
TION_POINT_HTTPHEADERS

Set HTTP headers for the iOS Hybrid Web Con-
tainer to include authentication tokens.

IOS_CUSTOMIZATION_POINT_FONTS Customize fonts in the Hybrid Web Container.

IOS_CUSTOMIZATION_POINT_SPLASH-
SCREEN

Change the splash screen, or the length of time for
which it is shown.

IOS_CUSTOMIZATION_POINT_COEXIST-
ING

Run two or more independent Hybrid Web Con-
tainers on the same device.

IOS_CUSTOMIZATION_POINT_PUSH_NO-
TIFICATION

Customize how the Hybrid Web Container han-
dles the push notification.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 297

Touch Point Description

IOS_CUSTOMIZATION_POINT_ANONY-
MOUS_USER

Returns whether or not anonymous user support
is being used. Change to YES to allow clients to
register anonymously.

Note: For this to work, the HWC application
connection template must be configured to use
the anonymous security configuration. See Ap-
plication Connection Templates in SAP Control
Center for SAP Mobile Platform.

Look and Feel Customization of the iOS Hybrid Web Container
Customizations you can make to the look and feel include changing the splash screen,
changing the Hybrid App icons and name, changing the Hybrid App package icons, changing
labels and text, and adding support for new languages.

Changing the Hybrid Web Container Application Icon
Modify the application icon shown on the home screen by replacing the image files in the
HybridWebContainer directory.

1. Go to the HybridWebContainer directory, which is in the location where you
unpacked the iOS_HWC_<version.>tar.gz file, and replace the Icon-72.png
(iPad) and Icon.png (iPhone) image files with the new images.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

2. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

3. Click Run.

Changing the iOS Hybrid App Name
Edit a plist file to modify the application name.

1. In Xcode, use Project Navigator to find the file named HWC-Info.plist.

2. Open the file and change the Bundle display name to the new name.

3. Save the file.

4. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Hybrid Web Container Customization

298 SAP Mobile Platform

Customizing the Splash Screen
The splash screen is the first screen that appears when you start the Hybrid Web Container.

You can change either the image that is shown, or you can change the length of time that it
appears.The splash screen is stored on a per-language basis in the
HybridWebContainer/<language>.lproj directories. In each of these directories,
there are three files that contain the splash screens for iPhone (Default.png) and iPad
(Default-Landscape.png and Default-Portrait.png).

You must replace the file in each language subdirectory, or your new splash screen does not
appear when the language setting is changed. The splash screen does not include any
localizable strings, so you must provide the correct screen for each language, if you plan to
support multiple languages.

1. Add a custom splash screen by replacing the appropriate files in the
HybridWebContainer/<language>.lproj directory.

Note: The new image files must use the same name as those you replaced, including the
file extension, and they must have the same resolution as the original images.

2. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Changing Labels and Text
You can customize most of the text found in labels, dialogs, or error messages used by the
Hybrid Web Container.

Changes that you can make include:

• Buttons, labels, and error messages – these strings are in Localizable.strings,
under the Resources/<language>.lproj group folders in the Xcode Project
Navigator.

• Application branding – strings that identify the application, among other things. These
strings are in Branding.strings, under the Resources/<language>.lproj
group folder in the Xcode Project Navigator.

• About box – these strings are in About.strings, under the Resources/
Settings.bundle/en.lproj folder. Expand the Settings.bundle under the
Resources group folder in the Xcode Project Navigator. Here, you can change the
company name or the version number that is shown in the About box in the Settings screen.

Keep in mind that for any change you make you must also make equivalent changes for each
language if you want your changes to translate across other languages.

When modifying one of the *.strings files, you need only to change the second string
value. For example, to change the AppId in Branding.strings, on this line: AppId =
HWC, change only the "HWC."

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 299

Adding a New Language
Add support for new languages by dropping new <language>.lproj directories into the
project.

By default, the hybrid-container is localized to several different languages. Localized
resources are in <language>.lproj directories and group folders throughout the project,
where <language> may be the full language name, or a two-digit country code. The simplest
way to add a new language is to copy existing lproj directories for another language,
translate the strings into the new language, and add the new lproj directories to the project.

This procedure uses English as a starting point.

1. Copy HybridWebContainer/English.lproj directory to
HybridWebContainer/<new_language>.lproj.

This contains resources for the PIN screens and for the splash screen. You can localize or
entirely redesign the PIN screen .

2. Add the newly created HybridWebContainer/<new_language>.lproj
directory to the project, at the top level (not under any group folders).

3. In Finder, right-click HybridWebContainer/Settings.bundle, and select
Show Package Contents.

The Settings.bundle directory opens.

4. Copy en.lproj to <new_language>.lproj.

5. Translate the strings in Root.strings (these are the strings that identify names of
settings in the Settings screen) and About.strings (associated with the About
box).

6. In Xcode, in the Project Navigator, find the newly created <new_language>.lproj
directory under the Resources/Settings.bundle.

You do not need to explicitly add the new directory to the project, but you should verify it is
there.

7. Copy HybridWebContainer/strings/English.lproj to
HybridWebContainer/strings/<new_language>.lproj.

8. Translate the strings in Branding.strings and Localizable.strings.

9. In Project Navigator, add the newly created HybridWebContainer/strings/
<new_language>.lproj directory to the project under the Resources group folder.

Default Behavior Customization for the iOS Hybrid Web Container
You can change the default behavior of the iOS Hybrid Web Container, including customizing
or removing the PIN screen, changing the default behavior for the way the application
launches, sorting and filtering the list of Hybrid App packages and messages, and so on.

Hybrid Web Container Customization

300 SAP Mobile Platform

Customizing PIN Screens on iOS
PIN screens prompt the user to either create or enter a password, respectively.

You can modify the PIN screens with custom text, or you can redesign them entirely. PIN
screens include Create PIN and Enter PIN screens.

The PIN screens are stored in .xib files in the HybridWebContainer/
<language>.lproj directories:

• CreatePasswordViewController.xib – constructs the Create Password screen

• EnterPasswordViewController.xib – constructs the Enter Password screen

Creating New PIN Screens
You can completely redesign the PIN screens by modifying the .xib files.

1. Using Interface Builder, open the CreatePasswordViewController.xib and
EnterPasswordViewController.xib files located in
HybridWebContainer/<language>.lproj.

2. Make your modifications.

You can change the look and feel of buttons, change the text, or change the background.
You likely do not want to remove buttons or fields, as doing so interferes with the
functioning of the application.

Note: You must make the equivalent changes to each language for your new PIN screen to
show correctly in other languages.

3. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Changing Localizable Strings in the PIN Screen
To modify the text, you must change strings files.

Each of the PIN screen .xib files has a corresponding strings file with the same name
with .strings appended to the end, for example, HybridWebContainer/
<French>.lproj\CreatePasswordViewController.xib.strings.

1. Open the CreatePasswordViewController.xib.strings and
EnterPasswordViewController.xib.strings files, which are located in
HybridWebContainer/<language>.lproj.

2. Modify and save the files.

3. Regenerate the .xib files:

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 301

a) Open a Terminal window.
b) Navigate to the HybridWebContainer directory, and execute:

ibtool --strings-file <language>.lproj/<strings file>
<language>.lproj/<xib file> --write <language>.lproj/
<xib file>

Note: <language> must be the same throughout, and the .strings file must correspond
with the .xib file.

4. After rebuilding the .xib files, you can return to Xcode and view the new screens before
rebuilding the Hybrid Web Container.

Removing the PIN Screen
You can disable and remove the PIN screen by making a minor code modification to the
CustomizationHelper.m file.

Note: If you have previously used the Hybrid Web Container with a password on a particular
device, you will no longer be able to access the encrypted database, or any data stored there,
and the application may not work correctly if you remove the PIN screen. In this case, uninstall
the Hybrid Web Container from the device before using the Hybrid Web Container without a
PIN screen. For a simulator, click Reset Content and Settings first.

Note: Removing the PIN screen leaves data that is stored on the device less secure. You should
remove the PIN screen only if you are not concerned about keeping your data secure.

All code areas associated with removing the PIN screen are annotated with
IOS_CUSTOMIZATION_POINT_PIN.

1. In Xcode Project Navigator, open the CustomizationHelper.m file, which is
located in HWC\Classes.

2. Find the usePIN function and change it to return NO instead of YES.

3. Save the file.

4. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Using Default Connection Settings
You can customize the Hybrid Web Container so that it is pre-populated with connection
settings, or to use default values if nothing is provided by the user, or to always use default
values on startup.

These customizations involve changes to either Root.plist or
CustomizationHelper.m.

All code areas associated with removing fields from the Settings screen are annotated with
IOS_CUSTOMIZATION_POINT_DEFAULTSETTINGS. The customizations described

Hybrid Web Container Customization

302 SAP Mobile Platform

here assume the Settings screen is used as the interface for providing input from the user. For
alternatives to using the default Settings screen, see Removing Fields from the Settings
Screen.

1. In the Xcode project, in the Project Navigator, expand Resources > Settings.bundle and
open the Root.plist file.

2. Expand the item for the settings you want to preset, and fill in the DefaultValue attribute.
Most settings do not have default values, with the exception of the protocol and the
registration method. Because these settings have a "Multi Value" Type in the .plist file
(instead of Text Field), they always have a default value that is one of the accepted values
listed in Values. You can open the Values tab to see the acceptable values for these settings.

This example sets a default value of 443 for the server port, and sets the default protocol to
HTTPS. The Values item is expanded and shows the acceptable values.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 303

Note: Pre-populating a value only sets its initial value on a one-time basis; it does not
prevent the user from later changing it, nor does it prevent a server change from
overwriting it. This approach also cannot be combined with the Removing Fields from the
Settings Screen customization because it relies on using the settings bundle.

3. Save the file.

4. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Removing Fields from the Settings Screen
Customize the Settings screen to prevent certain settings from showing.

For example, you can preset the server port connection value, and then choose not to display
that field in the Settings screen, bypassing the user’s ability to change or see that field. If you
want this behavior, but you want the user to also see the property value, see Using Default
Connection Settings.

All code areas associated with removing fields from the Settings screen are annotated with
IOS_CUSTOMIZATION_POINT_PRESETSETTINGS.

Keep in mind that connection settings sometimes have more than one “internal” name because
different developers may reference the same settings using different names, particularly in
local variable names. For example:

• server name = server id
• company id = farm id
• activation code = validation code

1. In the Xcode project, in the Project Navigator, expand Resources > Settings.bundle and
open the Root.plist file.

2. Delete the dictionary item that corresponds to the setting to remove from the Settings
screen.

For example, to remove the server port setting, delete the Text Field item with the title
ServerPortSetting.

3. Save the file.

4. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

5. For each property you remove from the Settings screen, you need to provide a way to
configure that property.

See Using Default Connection Settings.

Hybrid Web Container Customization

304 SAP Mobile Platform

Using Multiple Hybrid Web Containers on the Same iOS Device
You can configure two or more Hybrid Web Containers to coexist on the same device.

All code areas associated with creating co-existing applications are annotated with
IOS_CUSTOMIZATION_POINT_COEXISTING.

This customization allows two or more independent users to use the same device, but with
their own private version of the application. In summary, you need to change the application
ID, the bundle identifier, and possibly the URL scheme.

The application ID is used by the server to identify the application, and because of this, you
cannot run two applications on the same device with the same application ID. By default, the
Hybrid Web Container uses “HWC” for its application ID. Changing the application ID
involves a minor change to CustomizationHelper.m. Additionally, you must signify to
iOS that this is a distinct application. This requires a minor change to a plist file. Finally, if
you are using Afaria to provision your application, you need to specify a unique URL scheme.
This requires changes to the same plist file.

1. Change the application ID:

a) In Xcode Project Navigator, find and open the CustomizationHelper.m file,
which is located in the Classes group folder,

b) Locate the customization point that accompanies the getAppId function, and change
it so that it returns a unique name.

c) Save and close the file.

2. To differentiate this version of the Hybrid Web Container from another:

a) In Xcode Project Navigator, find and open the HWC-Info.plist file, which is
located in the Resources group folder.

b) Change the bundle identifier value to something unique.
c) Save and close the file.

3. If you are using Afaria to provision your application, you must specify a unique URL
scheme for your application.

a) In Xcode Project Navigator, find and open the CustomizationHelper.m file,
which is located in the Classes group folder.

b) Locate the customization point that accompanies the getAppUrlScheme function,
and change it so that it returns a unique name.

c) In Xcode Project Navigator, find and open the HWC-Info.plist file, which is
located in the Resources group folder.

d) Expand the URL types item, and expand Item 0.
e) Change the URL identifier value to the value you specified for the Bundle identifier in

the previous section.
f) Save and close the file.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 305

Sorting and Filtering the List of Hybrid App Packages and Messages
By default, the Hybrid Web Container sorts the list of applications and messages in
alphabetical order by package name.

There is no filtering by default.

You can sort and filter this list in any way you want. For example, you can filter Hybrid App
packages from appearing according to whatever criteria you specify. You can filter out
particular Hybrid App packages by name, or you can sort Hybrid App messages by subject.
Hybrid App messages are server-initiated messages associated with a Hybrid App package,
and appear in a separate TableView.

The sorting and filtering is done using arrays of NSSortDescriptor and NSPredicate objects,
respectively. These arrays can be initialized at application startup, and can also be changed
dynamically, giving you the ability to change the sorting or filtering criteria while the
application is running.

The HybridAppViewController.h file defines the interface for a Hybrid App object.
You can sort and filter the properties of this object.

1. Locate the HybridAppViewController.h file.

You do not need to modify this file, but you can view the properties of a Hybrid App object
on which you might want to filter or sort.

This file is included in the HWC/includes directory, but it is not explicitly included in
the Xcode project. To get the file to appear in the Xcode editor:

a) In Xcode, open the HWC.xcodeproj.

b) Open the WidgetFolderController.h file.

c) Locate this line: #import “HybridAppViewController.h”, right-click
inside the quotes, then select Jump to Definition.

Xcode opens the file.

2. Customizations involving filtering and sorting for both Hybrid App packages and
messages can be made in the CustomizationHelper.m file.

a) In Xcode Project Navigator, open the CustomizationHelper.m file, which is
located in HWC\Classes.

b) If you are customizing sorting behavior, locate the
IOS_CUSTOMIZATION_POINT_SORTING customization tags that accompany
these functions:

• initializeHybridAppSortingDescriptors
• initializeMessageSortingDescriptors
• addHybridAppSortDescriptor
• addMessageSortDescriptor
• clearHybridAppSortDescriptors

Hybrid Web Container Customization

306 SAP Mobile Platform

• clearMessageSortDescriptors
Customize the initialize functions to add sort descriptors at application startup. If you
want to dynamically change the sorting criteria, you can call the add functions to add a
sort descriptor to the end of the array, or you can call the clear functions to start over and
then add to a clean array. Typically, you do not need to modify the add or clear
functions.

The sort descriptor array is processed in order, so descriptors that appear toward the
end of the array are only used when descriptors earlier in the array result in a tie
between two elements. This allows you to sort on multiple property keys.

c) If you are customizing filtering behavior, locate the
IOS_CUSTOMIZATION_POINT_FILTERING customization tags that accompany
these functions:
• initializeHybridAppFilterPredicates
• initializeMessageFilterPredicates
• addHybridAppFilterPredicate
• addMessageFilterPredicate
• clearHybridAppFilterPredicates
• clearMessageFilterPredicates
Customize the initialize functions to add filter predicates at application startup. If you
want to dynamically change the filtering criteria, you can call the add functions to add a
filter predicate to the end of the array, or you can call the clear functions to start over
and then add to a clean array. Typically, you do not need to modify the add or clear
functions.

3. Save the file.

4. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Changing to a New UI Control
You can change the way the list of Hybrid App packages and messages appear.

Hybrid Web Container uses UITableView objects to display the list of Hybrid App
packages and messages. To change this behavior, you must completely rewrite some files.
This procedure shows an example of a fully functional Cover Flow style view. You can use any
UI library.

This customization involves rewriting one or two classes, depending on whether you want to
customize the appearance of the application list or the messages list, or both. The application
list view is in the HybridAppsFolderView (.m and .h) files, while the messages list view
is in the MessagesFolderView (.m and .h) files. You can change the appearance of one or
the other independently of one another.

This customization is not too difficult if you use the existing classes as an example. For the
most part, you can (and probably should) reuse a lot of the code in the original classes. You will

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 307

likely see the biggest divergence when you replace the UITableViewDelegate and
UITableViewDataSource functions, as well as the code that creates cells. This code is
tailored to a UITableView, but you will probably find that the UI library you are trying to
replace it with will have callback functions that accomplish similar things. In many cases, you
will be able to copy and paste code from the original functions into your new class with very
few modifications needed. The sample code provides very rudimentary views, but you can
experiment with different views.

This example uses an open source UI library called iCarousel, available under the zlib
License. The source is at http://cocoacontrols.com/platforms/ios/controls/icarousel. This
example replaces the UI for the applications folder, while leaving the messages folder
unchanged.

1. Download the iCarousel source code.

2. Copy the iCarousel.h and iCarousel.m files to the HWC/Classes directory,
then add these files to the Classes group folder in the Project Navigator in Xcode.

Do not drag and drop the files into the Classes group folder, or they will not be
incorporated into the project build phase. Instead, right-click the Classes group folder,
and select Add Files to HWC....

3. If you are viewing this guide online from the Product Documention Web site, click
iOS_HWC_Customization_Supplement.zip to access the ZIP file containing new copies
of HybridAppsFolderView.h and HybridAppsFolderView.m.

4. Drop the unzipped HybridAppsFolderView files into the
HybridWebContainer/Classes directory, overwriting the original files.

You can customize the code to suit your needs, for example, you may want to design your
own UIViews, or change from a cover flow to any of the other supported view types within
iCarousel, or to a different UI library altogether.

Setting HTTP Headers
You can set HTTP headers for the iOS Hybrid Web Container to include authentication tokens.

There are three sample methods showing how to do this in the iOS Hybrid Web Container
template source code, which include:

• setHttpHeaders – use this method to set the authentication tokens. The tokens you set
are used from then on until setHttpHeaders is called again.

• onHybridAppTokenError – use this method to call setHttpHeaders to put the
authentication tokens back in a good state, if, for example, they have expired.

• onHTTPError – use this method to handle HTTP errors.

All code areas associated with HTTP header customization are annotated with
IOS_CUSTOMIZATION_POINT_HTTPHEADERS.

Hybrid Web Container Customization

308 SAP Mobile Platform

http://cocoacontrols.com/platforms/ios/controls/icarousel

1. Open the CustomizationHelper.m file, which is located in
HybridWebContainer\Classes.

2. Locate the setHttpHeaders method, and uncomment its contents.

The stub code that is provided shows an example of how to add headers and cookies. You
simply need to replace the header and cookie assignments with your own. The
setHttpHeaders function is already called in the startEngine function just
before the client engine starts, so you need to provide the implementation of
setHttpHeaders.

3. CustomizationHelper.m also includes stub implementations of
onHybridAppTokenError and onHTTPError that you can implement.

The onHybridAppTokenError method is called when Hybrid App token
authentication failure occurs, so it is a good idea to use this callback as an opportunity to
refresh the HTTP headers again. A common way to do this is to maintain member variables
that contain the values for the headers you want to set. Implement the setHttpHeaders
function to use the values in those member variables when it sets the headers, then, in
onHybridAppTokenError, you can update the member variables with the new
header values, and then call setHttpHeaders again, for example:

[[CustomizationHelper getInstance] setHttpHeaders];
4. If you have custom code to run when an HTTP error occurs, add it to the onHTTPError

function.

This method is called any time there is an HTTP error. You can use this to inform the user of
errors, or log errors, or perform other custom steps in response to particular error codes.

Customizing the Push Notification Handler in the iOS Hybrid Web Container
Customize the way the Hybrid Web Container handles push notifications.

By default, when a push notification is received by the Hybrid Web Container push listener,
the kNotificationContinue method is returned, which allows the next push listener to
handle the notification. The comments in the onPushNotification method in the
HWCAppDelegate.m file includes some sample code that demonstrates how to open the
default client-initiated Hybrid App if no Hybrid App is currently opened.

The comment tag associated with this customization is
IOS_CUSTOMIZATION_POINT_PUSH_NOTIFICATION.

1. Open the HWCAppDelegate.m file for editing.

2. Find the onPushNotification method and make your changes.

For example, if kNotificationCancel is returned, the push listener manager does
not invoke the next push notification listener.

3. Save the file.

4. Rebuild the HWC.xcodeproj project.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 309

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Hiding the Listview on iPad
Hide the listview on the iPad when in landscape orientation so the Hybrid App opens in the full
screen.

When the Hybrid Web Container runs on iPad, it uses a UISplitViewController to display its
main views. The list of Hybrid Apps and messages occupies the left-hand view (the master
view), while the Hybrid App contents occupy the right-hand view (the details view). By
default, the master view hides away while the device is in the portrait orientation, and can be
accessed using a button on the navigation bar. The master view is presented side-by-side with
the detail view while the device is in the landscape orientation. To hide the listview when using
landscape orientation so the Hybrid App opens in full screen, use the customization tag
IOS_CUSTOMIZATION_POINT_IPAD_LIST_VIEW.

Note: This customization is not supported on iOS 4.3. On iOS 5.1 and later, this customization
disables the ability to present the master view with a swipe gesture, which is enabled by
default.

1. In Xcode Project Navigator, find and open the CustomizationHelper.m file, which
is located in the Classes group folder.

2. Locate the shouldHideIpadListView function and change it so it returns YES.

3. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Windows Mobile Hybrid Web Container Customization
Customize the look and feel and default behavior of the Windows Mobile Hybrid Web
Container.

Before getting started, build the Hybrid Web Container project in Visual Studio, as described
in Building the Windows Mobile Hybrid Web Container Using the Provided Source Code. In
Solution Explorer, the HybridWebContainer directory contains directories such as
libs, as well as images and other files.

The HybridWebContainer solution includes a set of sample files that you can include in
your project. After modifying the code in the sample files, rebuild your project: to preserve
your changes in the generated code. Always test your changes before using the resulting
application.

In the HybridWebContainer project, the docs directory includes JavaDoc
documentation for applications in com.sybase.hwc, and the library in
com.sybase.hybridApp.

Hybrid Web Container Customization

310 SAP Mobile Platform

Windows Mobile Customization Touch Points
Touch points for Hybrid Web Container customizations are indicated in code by comments of
the form WM_CUSTOMIZATION_POINT_customization.

Touch Point Description

WM_CUSTOMIZATION_POINT_BRAND Change application name, copyright, and devel-
oper information in the About form.

WM_CUSTOMIZATION_POINT_HYBRID-
APPSEARCH

Make the list of Hybrid App packages searchable.

WM_CUSTOMIZATION_POINT_HYBRID-
APPLIST

Change the appearance of the Hybrid App pack-
age list.

WM_CUSTOMIZATION_POINT_CATEGO-
RIZEDVIEWS

Create categorized views of the Hybrid App
packages.

WM_CUSTOMIZATION_POINT_HYBRID-
APPSORTING

Customize the criteria for sorting the Hybrid App
package list.

WM_CUSTOMIZATION_POINT_MESSAGE-
SORTING

Customize the criteria for sorting the message
list.

WM_CUSTOMIZATION_POINT_MESSAGE-
FILTERING

Change the filter used to sort the list of messages.

WM_CUSTOMIZATION_POINT_ANONY-
MOUS_USER

Indicates if the login mode is anonymous.

WM_CUSTOMIZATION_POINT_DEFAULT-
SETTINGS

Change default server settings.

WM_CUSTOMIZATION_POINT_PRESET-
SETTINGS

Hard-code settings for the Settings screen so they
do not appear on the device. This prevents the user
from changing the settings.

WM_CUSTOMIZA-
TION_POINT_HTTPHEADERS

Set HTTPS headers for the Windows Mobile Hy-
brid Web Container to include authentication to-
kens.

WM_CUSTOMIZATION_POINT_HTTPER-
RORHANDLERS

Change the handling of HTTP errors.

WM_CUSTOMIZATION_POINT_TOKENER-
ROR

Change how the client engine handles authenti-
cation token errors (for example, when a token
expires).

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 311

Look and Feel Customization of the Windows Mobile Hybrid Web
Container

Customizations you can make to the look and feel include changing the splash screen,
changing the Hybrid App icons and name, changing the Hybrid App package icons, changing
labels and text, adding support for new languages, and so on.

Changing the Hybrid Web Container Icon
Replace the icon shown on the home screen.

Changing the container icon also changes the image used on the About screen, and the image
that sometimes shows up in the title bar.

1. In Solution Explorer, navigate to HybridWebContainer\Resources\Images.

2. Replace the icon.ico file with your version.

The new image must use the same name and extension as the original file, and the same
resolution.

3. Rebuild and test the project.

Changing the Windows Mobile Hybrid App Package Icon
Modify the Hybrid App package application icon.

You cannot add new icons to the folder, but you can replace the existing icon images, using the
same file name. The Hybrid App application icons are named ampiconindex.png, where
index is a number between 30 and 116. The default Hybrid App icon is ampicon48.png.
This is also the icon shown on the menu item that lists all the Hybrid Apps.

Each Hybrid App icon uses a pair of associated images:

• ampiconindexp.png – represents a processed message (indicated by the p suffix).
Processed means the message has been submitted to the server.

• ampiconindex.png – is for unprocessed messages, which have not been submitted to
the server.

1. Identify the image currently used by the Hybrid App package that you want to replace.

When you build the Hybrid Web Container with custom icons, the original icons still
appear in SAP Control Center and in SAP Mobile WorkSpace.

2. In Solution Explorer, navigate to the HybridWebContainer\Resources
\Images folder.

3. Replace the ampiconindex.png and ampiconindexp.png image files with the
new images.

Hybrid Web Container Customization

312 SAP Mobile Platform

Note: For each icon file that you replace, use the same name, extension, and resolution as
the original. To preserve the original image make a copy of it. To prevent the copy from
interfering with resource indexing, place it in a different folder.

4. Rebuild and test the Hybrid Web Container.

Implementing a Custom HybridAppList Screen
Add a custom HybridAppList screen.

Use the CustomCode sample files as the starting point for your customization.

1. In Visual Studio Solution Explorer, click the Show All button.

2. Include all the files in the CustomCode folder.

3. Modify the code in your copy of the included files.

You can modify these files to customize the HybridAppList screen:
• MyHybridAppListScreen – class used to implement the HybridAppList screen.
• HybridAppComparer – comparer used by MyHybridAppListScreen to sort the

Hybrid Application order.
• HybridAppFilter – filter used by MyHybridAppListScreen to filter the Hybrid App.
• CustomizationHelper – class that integrates the HybridAppListScreen into the

Hybrid Web Container.

4. Rebuild and test your project.

Customizing the About Screen and Other Branding
Customize the About screen.

1. In Solution Explorer, click the Show All button.

2. Include all the files in the CustomCode folder.

3. Modify the code in your copy of the included files.

Code related to this customization is:
public override void ShowAboutForm()
 {
 System.Text.StringBuilder _sb = new
System.Text.StringBuilder();
 _sb.Append("Copyright 2012 Esabys, Inc.");
 _sb.Append("\r\n");
 _sb.Append("Version: 1.0"); _
 sb.Append("\r\n"); _
 sb.Append("Build id:20120518-0123");
 MessageBox.Show(_sb.ToString(), Consts.APP_TITLE,
MessageBoxButtons.OK,
 MessageBoxIcon.Asterisk, MessageBoxDefaultButton.Button1);
}

4. Rebuild and test your project.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 313

Adding a Splash Screen
Add a splash screen to the Hybrid Web Container.

1. In Visual Studio Solution Explorer, click the Show All button.

2. Include all the files in the CustomCode folder.

3. Modify the code in your copy of the included files.

• SplashForm – class used to implement the Splash screen. It starts a timer to show the
splash image in about one second.

• SplashBitmap.png – image shown in the splash screen.
• CustomRes.resx – resource file that contains the image file.
• CustomizationHelper – class that integrates the Splash Screen into the Hybrid Web

Container. When the application starts, CustomizationHelper displays the splash
screen.

4. Rebuild and test your project.

Changing Labels and Text
You can customize most of the text found in labels, dialogs, or error messages used by the
Hybrid Web Container.

1. In your project, open HybridWebContainer\strings.resx for editing.

This file contains the text for error messages, screen titles, screen labels, validation
messages, and so on.

2. Make your changes to strings.rex and save the file.

Note: Make the same changes for each language to which you translate your text. Edit the
Strings.xx.res file, where xx is the ISO639 code for the language (for example, it
for Italian).

Adding a New Language
Add support for a new language to the Hybrid Web Container.

1. In Solution Explorer, create a new subfolder under HybridWebContainer
\Resources named Strings_xx.res, where xx is the ISO639 code for the
language (for example, it for Italian).

2. Add a file called Strings.xx.res to the new folder.

You can copy the default Strings.res file from HybridWebContainer
\Resources\Strings, and use the copy as as a template for the new
Strings.xx.res file.

3. In the language-specific Strings.xx.res file, add your translated text.

Hybrid Web Container Customization

314 SAP Mobile Platform

You need not include strings that do not require localization. Any strings that are omitted
from localization are removed from the default Strings.res file.

Default Behavior Customization of the Windows Mobile Hybrid Web
Container

You can add or remove screens from the Hybrid Web Container, and change the behavior, such
as sorting and filtering of messages.

Customizing Settings Screen Fields
Hide fields in the Settings screen or change their default values.

1. In Visual Studio, open the CustomizationHelper class in the CustomCode
folder.

2. Override the DefaultServerSettings method.

3. Initialize the default server settings and return them outside of the DefaultServerSettings
method.

4. For each field you want to remove from the Settings screen, set its value to value to null.
In this example, the server name field is visible but no default value is assigned; the server
port is set to 5001 but the field is hidden:
public override ServerSettings DefaultServerSettings
{
 get
 {
 if (m_ServerSettings == null)
 {
 m_ServerSettings = new ServerSettings();

 // Server name will be shown and initialized as empty.
 m_ServerSettings.ServerName.IsVisible = true;
 m_ServerSettings.ServerName.HasValue = false;

 // Server port will NOT be shown and initialized as 5001.
 m_ServerSettings.ServerPort.IsVisible = false;
 m_ServerSettings.ServerPort.HasValue = true;
 m_ServerSettings.ServerPort.Value = 5001;

 // Other fields will be shown.
 }
 return m_ServerSettings;
 }
}
private ServerSettings m_ServerSettings;

Notes:
• By default, all fields are shown.
• To hide a field, set its IsVisible property to “false”.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 315

• To change a field's initial value, set HasValue to “true”, and specify a value in the Value
property.

Using Multiple Hybrid Web Containers on the Same Windows Mobile Device
You can configure two or more Hybrid Web Containers on a Windows Mobile device.

Each container can be installed separately on the same device, can connect to a different
server, and can be used independently.

1. Create a Visual Studio project for each container.

2. For each container, edit the project's config.properties file and specify a unique
AppID property for your container.
For example: AppID="HWC1".

Note: Do not change the AppID property at runtime.

3. Rebuild the project, as described in Building the Windows Mobile Hybrid Web Container
Using the Provided Source Code.

4. Configure the container's CAB build. In each project, edit the OneBridge_ppc.inf
file and customize these properties:

AppName – provide a unique name for each container.

InstallDir – enter the path where the container is to be installed on the device. Each
container must have a different path.

Shortcuts – declare a shortcut that launches the container application. Users can change
shortcut names. Shortcut names do not have to be unique.

Here are sample customized lines in OneBridge_ppc.inf:

[CEStrings]
AppName = "HWC"
InstallDir=%CE1%\Sybase\%AppName%
...
[Shortcuts.All]
Hybrid Web Container,0,HWCA.exe,%CE11%

5. Build the CAB file for each container, as described in Packaging a CAB File.

Sorting the List of Hybrid App Packages
Change the default sorting of the list of Hybrid App packages.

By default, the Hybrid Web Container displays Hybrid App package names in alphabetical
order. This example changes the list to sort case-sensitively

1. Add a HybridWebAppComparer class that uses the base class
IComparer<HybridWebAppInfo>.

2. Override the Compare method using:

public int Compare(HybridWebAppInfo x, HybridWebAppInfo y)
{

Hybrid Web Container Customization

316 SAP Mobile Platform

 return string.Compare(x.DisplayName, y.DisplayName, false);
}

3. Open the CustomizationHelper class in the CustomCode folder.

4. Override the HybridAppComparator method using:

public override IComparer<HybridWebAppInfo> HybridAppComparator
{
 get { return new HybridWebAppComparer(); }
}

5. Save the file.

Sorting Hybrid App Messages
Sort Hybrid App messages based on different criteria.

1. Add a MessageComparer class that uses the base class Icomparer<Message>.

2. Override the Compare method using this code:

public int Compare(Message x, Message y)
{
 int iModuleId1 = x.ModuleId;
 int iModuleId2 = yModuleId;

 int iCompareResult = 0;
 if (iModuleId1 < iModuleId2)
 {
 iCompareResult = -1;
 }
 if (iModuleId1 > iModuleId2)
 {
 iCompareResult = 1;
 }
 if (iCompareResult == 0)
 {
 iCompareResult = x.ReceiveDate.compareTo(y.ReceiveDate);
 }
 return iCompareResult;
}

3. Open the CustomizationHelper class in the CustomCode folder.

4. Override the MessageComparator using:

public override IComparer<Message> MessageComparator
{
 get { return new MessageComparer(); }
}

5. Save the file.

Filtering Hybrid App Messages
Prevent the Hybrid App from displaying some messages.

1. Add a MessageFilter class that uses the base class Ifilter<Message>.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 317

2. Override the select method using code similar to:

public bool Select(Message subject)
{
 if (subject.Priority ==
MessageConsts.EMAIL_STATUS_IMPORTANCE_HIGH)
 {
 return false;
 }
 return true;
}

3. Open the CustomizationHelper class in the CustomCode folder.

4. Override the MessageFilter method using:

public override IFilter<Message> MessageFilter
{
 get
 {
 return new MessageFilter();
 }
}

5. Save the file.

Setting HTTP Headers
Set HTTP headers for the Hybrid Web Container to include authentication tokens.

These methods in the Hybrid Web Container template source code show how to set HTTP
headers:

• getHttpHeaders – override this method to set the authentication tokens.
• OnHTTPError – listener called by the communication layer when an HTTP error occurs.
• OnTokenError – listener called by the client engine when Hybrid App token

authentication failure occurs.

1. In Visual Studio, open the CustomizationHelper class in the CustomCode
folder.

2. Override the getHttpHeaders method and uncomment its contents.

The stub code shows how to add headers and cookies. Simply replace the header and
cookie assignments with your own.

3. Refresh the HTTP headers.

It is a good idea to refresh the HTTP headers in the OnTokenError method , which is
called when a Hybrid App token authentication failure occurs.

Here is a common way to do this:
a. Maintain member variables that contain the values for the headers you want to set.
b. Override the GetHttpHeaders method to use the value in those member variables

when it sets the headers.
c. In OnTokenError, update the member variables with the new header values.

Hybrid Web Container Customization

318 SAP Mobile Platform

d. Call UpdateHttpHeaders again.

4. If you have custom code to run when an HTTP error occurs, add the code to override the
OnHTTPError method.

Your method is called any time there is an HTTP error. You can use it to inform the user of
errors, or to perform other custom steps in response to particular error codes.

Customizing OK Button Behavior
Control behavior when the OK button is clicked in Hybrid App forms.

To customize the OK button in the MessageList, ApplicationList, and Application forms,
override the OnClosing methods for those forms:

internal virtual void OnClosingMessageListForm(MessageListForm
form)
{
}

internal virtual void
OnClosingApplicationListForm(HybridWebAppListForm form)
{
}

internal virtual void OnClosingHybridAppForm(HybridWebAppForm
form)
{
}

Packaging a CAB File
After rebuilding your customized Hybrid Web Container, package the generated files into a
cab file that can be installed on a device.

Prerequisites
Install ActivePerl, available for download from http://www.activestate.com/. After installing
ActivePerl, add it to the environment path. When you run Perl at the command prompt, the
script is executed by the first Perl.exe it encounters in the list of paths in the PATH environment
variable. To ensure the script is executed by the correct Perl interpeter, specify the complete
path to the Perl.exe you want to use.

Task
When you build the template project, the binary release files are generated into the template
output folder.

1. Open a Command Prompt.

2. In the Command Prompt, navigate to the template\Tools folder of your project.

3. Run the buildcab script, specifying the path to the location of the release files generated
when you built the project.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 319

http://www.activestate.com

For example:

perl buildcab.pl ..\bin\Release
The packaged CAB file is generated in template\Tools.

Prepackaged Hybrid Apps
You can use the Hybrid Web Container as the runtime shell for a single Hybrid App.

When you use the prepackaged Hybrid App, the application is launched immediately and
there is no listview of Hybrid Apps. This allows for a single view of the Hybrid App. You can
still assign other applications to the Hybrid Web Container, but while running in this new
mode, only the Hybrid App designated as the default is active.

Note: Connection settings for the Hybrid Web Container must be configured before the
prepackaged Hybrid Web Container can launch.

When the user closes the default Hybrid App, he or she can then view the messages associated
with that application in the Hybrid Web Container.

Including a Prepackaged Hybrid App in the Android Hybrid Web
Container

Run a prepackaged Hybrid App so that the Hybrid Web Container functions as a single-
purpose application rather than a general purpose one.

1. Package the Hybrid App files.

You can use a Hybrid App that was generated with the Hybrid App Designer, or you can
use the packaging tool to generate a new Hybrid App.

When packaging the Hybrid App, optimize the size by generating a version for each
specific platform that includes only files for that platform.

See Packaging Hybrid Apps Using the Packaging Tool.

2. Copy the Generated Hybrid App folder under the package tool workspace, or copy the
Generated Hybrid App folder under the SAP Mobile WorkSpace, to the assets directory
of the Android Hybrid Web Container template.

3. Remove the ZIP file from the folder.

4. Refresh the Eclipse workspace.

5. Open the CustomizationHelper.java file, locate the
ANDROID_CUSTOMIZATION_POINT_PREPACKAGED_APP customization point
that accompanies the getPrepackageAppPath function, and change the contents of
this function to return the name of the top-level directory you just added to the project.

Hybrid Web Container Customization

320 SAP Mobile Platform

If the prepackaged Hybrid App manages the server connection by itself and wants to exit
the Hybrid Web Container after exiting the prepackaged Hybrid App, change return value
of the method exitHWCOnPrepackagedAppClose to true.

6. To optionally enable the Hybrid Web Container to exit after closing the prepackaged
Hybrid App, change the return value of the exitHWCOnPrepackagedAppClose
method to true.

The default return value of the method is false.

Including a Prepackaged Hybrid App in the BlackBerry Hybrid Web
Container

Run a prepackaged so that the Hybrid Web Container functions as a single-purpose
application rather than a general purpose one.

Prerequisites
Install the BlackBerry Java Plug-in for Eclipse.

Task

1. Package the Hybrid App files.

You can use a Hybrid App that was generated with the Hybrid App Designer, or you can
use the packaging tool to generate a new Hybrid App.

When packaging the Hybrid App, optimize the size by generating a version for each
specific platform that includes only files for that platform.

See Packaging Hybrid Apps Using the Packaging Tool.

2. In Eclipse, import the BlackBerry Hybrid Web Container template as a legacy BlackBerry
project:

a) Select File > Import.
b) Expand the BlackBerry folder.
c) Select Import Legacy BlackBerry Projects.
d) Click Next.
e) Specify the JRE and, in the BlackBerry Workspace field, browse to the

HWCtemplate.jdw file and select the project to import.

f) Select Copy BlackBerry projects into workspace to create a copy of the imported
project in the Eclipse workspace.

g) Click Finish.

3. Copy the generated Hybrid App folder under the package tool workspace to the res
directory of the imported Eclipse BlackBerry Hybrid Web Container project.

4. Remove the ZIP file from the folder, and refresh the Eclipse workspace.

5. Open the the CustomizationHelper.java file for editing.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 321

6. Find the BLACKBERRY_CUSTOMIZATION_POINT_PREPACKAGE_APP that
accompanies the getPrepackagedAppPath function, and change the contents of the
function to return the name of the top-level directory you just added to the project.

If the prepackaged Hybrid App manages the server connection by itself and wants to exit
the Hybrid Web Container after exiting the prepackaged Hybrid App, change return value
of the method exitHWCOnPrepackagedAppClose to true.

7. Save the CustomizationHelper.java file.

Including a Prepackaged Hybrid App in the iOS Hybrid Web Container
Run a prepackaged Hybrid App in the iOS Hybrid Web Container so that the Hybrid Web
Container functions as a single-purpose application rather than a general purpose one.

1. Package the Hybrid App files.

You can use a Hybrid App that was generated with the Hybrid App Designer, or you can
use the packaging tool to generate a new Hybrid App.

When packaging the Hybrid App, optimize the size by generating a version for each
specific platform that includes only files for that platform.

See Packaging Hybrid Apps Using the Packaging Tool.

2. Copy the generated Hybrid App folder to a location that is accessible to your Xcode
project.

3. In the Xcode Project Navigator, right-click the Resources group folder, and select Add
Files to HWC.

4. Navigate to the directory you just created that contains the generated package, and select
the top-level directory of the package.

Create folder references, not group references, when you add the files. The directories
appear directly under Resources.

5. In the Project Navigator, find and open the CustomizationHelper.m file, which is
located in the Classes group folder.

6. Locate the customization point, designated by the comment
IOS_CUSTOMIZATION_POINT_PREPACKAGED_APP, that accompanies the
getPrepackagedAppPath function, and change the contents of this function to
return the name of the top-level directory you just added to the project.

7. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Hybrid Web Container Customization

322 SAP Mobile Platform

Including a Prepackaged Hybrid App in the Windows Mobile Hybrid
Web Container

Run a prepackaged so that the Hybrid Web Container functions as a single-purpose
application rather than a general purpose one.

1. Package the Hybrid App files.

You can use a Hybrid App that was generated with the Hybrid App Designer, or you can
use the packaging tool to generate a new Hybrid App.

When packaging the Hybrid App, optimize the size by generating a version for each
specific platform that includes only files for that platform.

See Packaging Hybrid Apps Using the Packaging Tool.

2. Include the generated Hybrid App files in a Visual Studio project:

a) Copy the generated Hybrid App files to your Visual Studio project.
b) Open the HybridWebContainer.csproj, which is in the

WM_HWC<version>.zip file.

c) In Visual Studio Solution Explorer, select Show All Files.
d) Right-click the Hybrid App folder and select Include in Project.
e) Set the Copy to Output Directory property to Copy if newer for all the files under this

folder.

Note: You can select all the files using the SHIFT CTRL keys, and then set the property
for all the selected files.

3. In the CustomCode folder, create a Partial class for
CustomizationHelper.cs.

4. In the Partial class of the CustomizationHelper.cs file, create a method to
override the property PrepackageAppPath to return the full installation path of the
Hybrid App on the device.
public override string PrepackageAppPath
 {
 get
 {
 return @"\Program Files\sybase\hwc\iMOWebProto";
 }
 }

5. Rebuild the project.

6. Include the prepackaged Hybrid App in a CAB file:

Most Windows Mobile applications are deployed as CAB files. You can find information
about creating CAB files at http://msdn.microsoft.com/en-us/library/aa448616.aspx and
information about the .inf file at http://msdn.microsoft.com/en-us/library/
aa448654.aspx.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 323

http://msdn.microsoft.com/en-us/library/aa448616.aspx
http://msdn.microsoft.com/en-us/library/aa448654.aspx
http://msdn.microsoft.com/en-us/library/aa448654.aspx

a) Open the onebridge_ppc.inf file, which is located in the Tools folder of the
Hybrid Web Container template project.

b) Add the prepackaged Hybrid App folders in the [SourceDisksNames.ARM]
section:
[SourceDisksNames.ARM]
1=,"PPC",,unsigned
3=,"zh-CN",,"unsigned\zh_CN"
4=,"zh-HK",,"unsigned\zh_HK"
5=,"de",,"unsigned\de"
6=,"fr",,"unsigned\fr"
7=,"fr-CA",,"unsigned\fr_CA"
8=,"ja",,"unsigned\ja"
9=,"es",,"unsigned\es"
10=,"prepackage",,"unsigned\prepackage"
11=,"prepackage.css",,"unsigned\prepackage\html\css"
12=,"prepackage.default",,"unsigned\prepackage\html\default"
13=,"prepackage.en",,"unsigned\prepackage\html\en"
14=,"prepackage.en_US",,"unsigned\prepackage\html\en_US"
15=,"prepackage.icon",,"unsigned\prepackage\html\icon"
16=,"prepackage.images",,"unsigned\prepackage\html\images"
17=,"prepackage.js",,"unsigned\prepackage\html\js"
18=,"prepackage.html",,"unsigned\prepackage\html"

c) List all the required files in the [SourceDisksFiles.ARM] section:
[SourceDisksFiles.ARM]
CMessagingClient.2.2.0.dll=1
OBSetup.dll=1
HWCA.exe=1
HWCEngine.lnk=1
Plugins.xml=1
; other files
hybridapplib.dll=1
SQLite.Interop.DLL=1
System.Data.SQLite.dll=1
version.txt=1
config.properties=1
WorkflowClient.xml=10
index.xml=10
manifest.xml=10
"Stylesheet.css"=11
"hybridapp.html"=12
"hybridapp.html"=13
"hybridapp.html"=14
"API.js"=17
"Callbacks.js"=17

d) Define the installation target in the [DestinationDirs] section:
[DestinationDirs]
Files.ARM = 0,%InstallDir%
Shortcuts.All = 0,%CE4%
System.ARM = 0,%CE2%
zh-CN = 0,%InstallDir%\zh-CN
zh-HK = 0,%InstallDir%\zh-HK
de = 0,%InstallDir%\de
fr = 0,%InstallDir%\fr

Hybrid Web Container Customization

324 SAP Mobile Platform

fr-CA = 0,%InstallDir%\fr-CA
ja = 0,%InstallDir%\ja
es = 0,%InstallDir%\es
prepackage.css = 0,"%InstallDir%\prepackage\html\css"
prepackage.default = 0,"%InstallDir%\prepackage\html\default"
prepackage.en = 0,"%InstallDir%\prepackage\html\en"
prepackage.en_US = 0,"%InstallDir%\prepackage\html\en_US"
prepackage.icon = 0,"%InstallDir%\prepackage\html\icon"
prepackage.images = 0,"%InstallDir%\prepackage\html\images"
prepackage.js = 0,"%InstallDir%\prepackage\html\js"
prepackage.html = 0,"%InstallDir%\prepackage"
prepackage = 0,"%InstallDir%\prepackage"

e) Describe each file mapping in the File List section:

[prepackage.css]
Stylesheet.css,,0

[prepackage.default]
hybridapp.html,,0

[prepackage.en]
"hybridapp.html"

[prepackage.en_US]
"hybridapp.html"

[prepackage.icon]

[prepackage.images]

[prepackage.js]
"API.js"
"Callbacks.js"
"Camera.js"
"Certificate.js"
"Custom.js"
"datajs-1.0.2.js"
"ExternalResource.js"
"json2.js"
"MAKit.js"
"Resources.js"
"SUP0.js"
"SUPStorage.js"
"Timezone.js"
"Utils.js"
"HybridApp.js"
"WorkflowMessage.js"

[prepackage]
"index.xml"
"manifest.xml"
"WorkflowClient.xml"

[prepackage.html]
hybridapp.html

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 325

[System.ARM]
manifest.xml,,0

f) Include all the file lists in section [DefaultInstall.ARM]:

[DefaultInstall.ARM]
CopyFiles=Files.ARM,System.ARM,de,fr,fr-CA,es,zh-CN,zh-
HK,ja,prepackage,
prepackage.css,prepackage.default,prepackage.en,prepackage.en_
US,
prepackage.icon,prepackage.images,prepackage.js,prepackage.htm
l

g) Run: buildcab.pl <Path to project output>.

7. Deploy and run the customized Hybrid Web Container on the device or emulator.

a) Compile the Hybrid Web Container.
b) Deploy the Hybrid Web Container to the device or emulator.
c) Run and test the prepackaged Hybrid App.

Adding Native Device Functionality to the Hybrid Web
Container

PhoneGap (now known as Apache Cordova) is an open source framework that leverages Web
technologies such as HTML, CSS, and JavaScript to access native (system and third-party)
functionality across platforms.

SAP Mobile Platform comes with the Cordova libraries, which handle common tasks
supported by most devices, linked in and ready to use. Integrating PhoneGap plug-ins with
Hybrid Web Containers allows you to extend the set of APIs available within a Hybrid App.
See www.phonegap.com for information about the supported PhoneGap APIs.

PhoneGap API calls are made from the Hybrid App JavaScript files.

Supported JavaScript PhoneGap APIs
The Hybrid Web Container comes with the PhoneGap library linked in and ready to use.

The PhoneGap library included with SAP Mobile Platform handles common native tasks
supported by Android, BlackBerry, iOS and Windows Mobile devices, for example, accessing
geolocation, accessing contacts, and invoking calls to make those common functions available
to JavaScript.

Note: Keep in mind that PhoneGap APIs cannot be accessed successfully until initialization
has taken place. If you make calls to the PhoneGap API from the
customAfterShowScreen function, they should occur only after the PhoneGap
subsystem is initialized and ready to execute these calls. For more information, see http://
wiki.phonegap.com/w/page/36868306/ UI%20Development%20using
%20jQueryMobile#HandlingPhoneGapsdevicereadyevent.

Hybrid Web Container Customization

326 SAP Mobile Platform

http://docs.phonegap.com
http://wiki.phonegap.com/w/page/36868306/ UI%20Development%20using%20jQueryMobile#HandlingPhoneGapsdevicereadyevent
http://wiki.phonegap.com/w/page/36868306/ UI%20Development%20using%20jQueryMobile#HandlingPhoneGapsdevicereadyevent
http://wiki.phonegap.com/w/page/36868306/ UI%20Development%20using%20jQueryMobile#HandlingPhoneGapsdevicereadyevent

You can make PhoneGap calls from the Hybrid Web Container JavaScript, such as
Custom.js. For example, to save an entry to the contacts database, you can implement
something similar to:

var contact = navigator.contacts.create();
 contact.nickname = "Plumber";
 var name = new ContactName();
 name.givenName = "Jane";
 name.familyName = "Doe";
 contact.name = name;
 // save
 contact.save(onSaveSuccess,onSaveError);

You can use both Hybrid Web Container JavaScript APIs and PhoneGap APIs in a single
application. For information about PhoneGap APIs, see http://docs.phonegap.com.

Table 9. PhoneGap Supported Features

API Object and Function Plat-
form

Accelerometer

accelerometer

• getCurrentAcceleration

Note: On iOS, this function must be
called after watchAcceleration.

• watchAcceleration
• clearWatch

• An-
droi
d

• iOS
• Blac

kBe
rry

Acceleration

• x
• y
• z
• timeStamp

• An-
droi
d

• Blac
kBe
rry

• iOS

Camera

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 327

http://docs.phonegap.com

API Object and Function Plat-
form

Camera

• getPicture (Camera.PictureSource-
Type.CAMERA)

• getPicture (Camera.PictureSource-
Type.PHOTOLIBRARY)

• getPicture (Camera.PictureSource-
Type.SAVEDPHOTOALBUM)

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

CameraOptions

• quality
• dedestinationType.DATA_URL
• dedestinationType.FILE_URI

FILE_URI is the default.
• allowEdit
• encodingType
• targetWidth
• targetHeight

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Capture

Capture

• captureAudio

Note: On Android, whether this works
depends on which application the de-
vice uses to record the audio. You can
use media.record instead to
work around this issue.

• captureImage
• captureVideo

• An-
droi
d

• Blac
kBe
rry

• iOS

MediaFile

• getFormatData

• An-
droi
d

• iOS

Hybrid Web Container Customization

328 SAP Mobile Platform

API Object and Function Plat-
form

Compass

compass

• getCurrentHeading
• watchHeading
• clearWatch
• watchHeadingFilter

• An-
droi
d

• iOS

compass.Heading

• magneticHeading
• trueHeading
• headingAccuracy
• timestamp

• An-
droi
d

• iOS

Connection

network.connection.type • An-
droi
d

• Blac
kBe
rry

• iOS

Contacts

contacts.create • An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 329

API Object and Function Plat-
form

contacts.find • An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

contact.clone • An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Contacts.remove

Note: On Android, there is an issue with
contacts not being fully removed. See
https://issues.apache.org/jira/browse/
CB-75.

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Hybrid Web Container Customization

330 SAP Mobile Platform

https://issues.apache.org/jira/browse/CB-75
https://issues.apache.org/jira/browse/CB-75

API Object and Function Plat-
form

Contacts.save • An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Device

Device.name • An-
droi
d

• Blac
kBe
rry

• iOS

Device.phonegap • An-
droi
d

• Blac
kBe
rry

• iOS

Device.platform • An-
droi
d

• Blac
kBe
rry

• iOS

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 331

API Object and Function Plat-
form

Device.uuid • An-
droi
d

• Blac
kBe
rry

• iOS

Device.version • An-
droi
d

• Blac
kBe
rry

• iOS

Events

Deviceready • An-
droi
d

• iOS

Pause • An-
droi
d

Resume • An-
droi
d

Online • An-
droi
d

• iOS

Offline • An-
droi
d

• iOS

Batterycritical iOS

Hybrid Web Container Customization

332 SAP Mobile Platform

API Object and Function Plat-
form

Batterylow iOS

Batterystatus

Note: On Android, PhoneGap 1.4.1, this
does not work due to a known issue. See
https://issues.apache.org/jira/browse/
CB-173.

iOS

Menubutton • An-
droi
d

Searchbutton • An-
droi
d

File

DirectoryEntry

• copyTo
• moveTo
• toURI
• remove
• removeRecursively
• getParent
• createReader
• getDirectory
• getFile

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

FileEntry

• copyTo
• moveTo
• toURI
• remove
• getParent
• createWriter
• file

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 333

https://issues.apache.org/jira/browse/CB-173
https://issues.apache.org/jira/browse/CB-173

API Object and Function Plat-
form

FileReader

• abort
• readAsDataURL
• readAsText

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

FileWriter

• abort
• seek
• truncate
• write

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

DirectoryReader

• readEntries

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Hybrid Web Container Customization

334 SAP Mobile Platform

API Object and Function Plat-
form

LocalFileSystem

• requestFileSystem
• resolveLocalFileSystemURI

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

FileTransfer

• upload
• download

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Geolocation

geolocation

• getCurrentPosition

Note: This function does not work on
the Android Galaxy Tab P1000 device.

• watchPosition
• clearWatch

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 335

API Object and Function Plat-
form

Position

• coords
• timestamp

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Coordinates

• latitude
• longitude
• altitude
• accuracy

Note: On Android, the returned accu-
racy property is always null.

• altitudeAccuracy

Note: On Android, the returned altitu-
deAccuracy property is always null.

• heading

Note: Android only. The returned
heading property is always null.

• speed

Note: On Android, the returned speed
property is always null.

• An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Media

Hybrid Web Container Customization

336 SAP Mobile Platform

API Object and Function Plat-
form

Media.play • An-
droi
d

• iOS
• Win

dow
s
Mo-
bile

Media.pause • An-
droi
d

• iOS

Media.stop • An-
droi
d

• iOS
• Win

dow
s
Mo-
bile

Media.release • An-
droi
d

• iOS

Media.record • An-
droi
d

• iOS

Media.startRecord • An-
droi
d

• iOS

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 337

API Object and Function Plat-
form

Media.stopRecord • An-
droi
d

• iOS
• Win

dow
s
Mo-
bile

Media.getCurrentPosition • An-
droi
d

• iOS
• Win

dow
s
Mo-
bile

Media.seekTo • An-
droi
d

• iOS
• Win

dow
s
Mo-
bile

Media.getDuration

Note: On Android, this function returns a
value without an error but always returns
-1, which indicates duration is not availa-
ble.

• An-
droi
d

• iOS
• Win

dow
s
Mo-
bile

Notification

Hybrid Web Container Customization

338 SAP Mobile Platform

API Object and Function Plat-
form

Notification.beep • An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Notification.confirm • An-
droi
d

• Blac
kBe
rry

• iOS

Notification.alert • An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 339

API Object and Function Plat-
form

Notification.vibrate • An-
droi
d

• Blac
kBe
rry

• iOS
• Win

dow
s
Mo-
bile

Storage

window

• OpenDatabase

• An-
droi
d

• Blac
kBe
rry

• iOS

Database

• transaction

• An-
droi
d

• Blac
kBe
rry

• iOS

Hybrid Web Container Customization

340 SAP Mobile Platform

API Object and Function Plat-
form

SQLTransaction

• executeSQL

Note: On Android, queries on the first da-
tabase created do not work. You can work
around this by creating and opening two
databases, the first of which can have the
size of 0, and the second to use as you nor-
mally do. For example:

var db = window.openData-
base("aName1", "1.0",
"aName1", 0);
db = window.openData-
base("aName2", "1.0",
"aName2", 200000);

• An-
droi
d

• Blac
kBe
rry

• iOS

SQLResultSet

• insertid
• rowAffected

Note: The returned SQLResultSet ob-
ject does not contain a rowAffec-
ted property, as the PhoneGap API
states. Instead, use rowsAffec-
ted.

• rows

• An-
droi
d

• Blac
kBe
rry

• iOS

SQLResultSetList

• item
• length

• An-
droi
d

• Blac
kBe
rry

• iOS

SQLError

• code
• message

• An-
droi
d

• Blac
kBe
rry

• iOS

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 341

API Object and Function Plat-
form

localStorage

• key
• getitem
• setitem
• removeitem
• clear

iOS

Implementing PhoneGap
The recommended mechanism for implementing PhoneGap is to use the AppFramework, or
load PhoneGap (Apache Cordova) in the same way it does.

When you want to use the same HTML for every platform, include the Cordova files
as .javascript files, then dynamically load that code based on which platform is running. The
Cordova files are packaged in the <SMP_HOME> \UnwiredPlatform\MobileSDK
\HybridApp\Container\<Platform> directories.

function loadPhoneGap() {
var jsfile = null;
var pre = "";
var language = hwc.getURLParam("lang");
if (!(language === undefined) && (language.length > 0)){
pre = "../";
}
if (hwc.isAndroid()) {
jsfile = pre + "js/android/cordova-2.0.0.javascript";
}
else if (hwc.isIOS()) {
jsfile = pre + "js/ios/cordova-2.0.0.javascript";
}
else if (hwc.isBlackBerry()) {
jsfile = pre + "js/blackberry/cordova-2.0.0.javascript";
}
if (jsfile) {
var req = null;
if (window.XMLHttpRequest) {
req = new XMLHttpRequest();
}
else {// code for IE6, IE5
req = new ActiveXObject("Microsoft.XMLHTTP");
}
req.open("GET", jsfile, false);
req.send(null);
// Need to call eval with the global context
window["eval"].call(window, req.responseText);
}
}
loadPhoneGap();

Hybrid Web Container Customization

342 SAP Mobile Platform

PhoneGap Custom Plug-ins
You can write custom plug-ins for PhoneGap.

Custom PhoneGap plug-ins have a JavaScript component that exposes the custom native
component and a native component. See the PhoneGap documentation for information about
PhoneGap plug-ins.

Custom Plug-ins for the Android Hybrid Web Container
Integrate PhoneGap (Cordova) plug-ins with the Android Hybrid Web Container.

In general, adding a custom plug-in to Hybrid Web Container is identical to adding a plug-in to
any PhoneGap application. The basic steps are as follows (see the PhoneGap Wiki for details).

1. Create an Android project.
2. Include Cordova dependencies.
3. Implement the plug-in class.
4. Implement the plug-in JavaScript.

Adding a Custom Plug-in to the Android Hybrid Web Container
Add a PhoneGap (now called Cordova) plug-in to the Android Hybrid Web Container.

Prerequisites
Download and install the Android Developer Tools (ADT), available from http://
developer.android.com/sdk/index.html.

Task

1. In Eclipse, import the HybridWebContainer project:

a) Select File > Import.
b) Expand Android, choose Existing Android Code into Workspace, and click

Next.
c) In Import Projects, click Browse and select the root directory of the Android project

to import.
For example, if you have previously unpacked the Android HWC container to
SMP_HOME\MobileSDKversion\HybridApp\Containers\Android
\Android_HWC_version, select that folder and click OK.

d) Click Finish.

2. In the HybridWebContainer project, open res/xml/config.xml.

3. Add your custom plug-in.
For example:
<plugin name="DirectoryListPlugin"
value="com.sybase.hwc.DirectoryListPlugin" />

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 343

http://wiki.phonegap.com/w/page/36752779/PhoneGap%20Plugins
http://phonegap.pbworks.com/w/page/36753494/How%20to%20Create%20a%20PhoneGap%20Plugin%20for%20Android
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

4. Add plug-in images to the HybridWebContainer project.

The plug-in used in this example does not include images, but they are allowed in plug-ins.
Images for plug-ins are usually stored in res\drawable.

5. Add the Java source file that implements the custom plug-in, for example,
DirectoryListplugin.java.

This example PhoneGap plug-in lists all files on the SDCard of the device.
/**
 * Example of Android PhoneGap Plugin
 */
package com.sybase.hwc;

import java.io.File;

import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.util.Log;

import org.apache.cordova.api.Plugin;
import org.apache.cordova.api.PluginResult;
import org.apache.cordova.api.PluginResult.Status;

/**
 * PhoneGap plugin which can be involved in following manner from
javascript
 * <p>
 * result example - {"filename":"/
sdcard","isdir":true,"children":
[{"filename":"a.txt","isdir":false},{..}]}
 * </p>
 * <pre>
 * {@code
 * successCallback = function(result){
 * //result is a json
 *
 * }
 * failureCallback = function(error){
 * //error is error message
 * }
 *
 * window.plugins.DirectoryListing.list("/sdcard",
 * successCallback
 * failureCallback);
 *
 * }
 * </pre>
 * @author Rohit Ghatol
 *
 */
public class DirectoryListPlugin extends Plugin {

 /** List Action */

Hybrid Web Container Customization

344 SAP Mobile Platform

 public static final String ACTION="list";

 /*
 * (non-Javadoc)
 *
 * @see
org.apache.cordova.api.Plugin#execute(java.lang.String,
 * org.json.JSONArray, java.lang.String)
 */
 @Override
 public PluginResult execute(String action, JSONArray data,
String callbackId) {
 Log.d("DirectoryListPlugin", "Plugin Called");
 PluginResult result = null;
 if (ACTION.equals(action)) {
 try {

 String fileName = data.getString(0);
 JSONObject fileInfo = getDirectoryListing(new
File(fileName));
 Log
 .d("DirectoryListPlugin", "Returning "
 + fileInfo.toString());
 result = new PluginResult(Status.OK, fileInfo);
 } catch (JSONException jsonEx) {
 Log.d("DirectoryListPlugin", "Got JSON Exception "
 + jsonEx.getMessage());
 result = new PluginResult(Status.JSON_EXCEPTION);
 }
 } else {
 result = new PluginResult(Status.INVALID_ACTION);
 Log.d("DirectoryListPlugin", "Invalid action : "+action
+" passed");
 }
 return result;
 }

 /**
 * Gets the Directory listing for file, in JSON format
 * @param file The file for which we want to do directory
listing
 * @return JSONObject representation of directory list. e.g
{"filename":"/sdcard","isdir":true,"children":
[{"filename":"a.txt","isdir":false},{..}]}
 * @throws JSONException
 */
 private JSONObject getDirectoryListing(File file)
 throws JSONException {
 JSONObject fileInfo = new JSONObject();
 fileInfo.put("filename", file.getName());
 fileInfo.put("isdir", file.isDirectory());

 if (file.isDirectory()) {
 JSONArray children = new JSONArray();
 fileInfo.put("children", children);
 if (null != file.listFiles()) {

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 345

 for (File child : file.listFiles()) {
 children.put(getDirectoryListing(child));
 }
 }
 }

 return fileInfo;
 }
}

6. Save the file.

These are all the changes needed for the Hybrid Web Container; you can now build it and
install it on the device. What the plug-in actually does is implemented in the Java file in the
execute function.

Testing the Plug-in
Test the PhoneGap plug-in for the Android Hybrid Web Container.

1. Create a new Mobile Application project:

a) Select File > New > Mobile Application Project.
b) In Project name, enter PhonegapTest.
c) Click Finish.

2. Right-click the PhonegapTest project folder and select NewHybrid App Designer.

3. Click Next.

4. Select Can be started on demand from the client and click Finish.

5. Click Screen Design.

6. Add a Menu Item control of type Custom to the Menu, and in the General properties, enter
"c" for the menu item name.

This is the key name you will use for the customAfterMenuItemClick () function
in the custom.js file.

7. Run the Hybrid App Generation wizard to create the directory structure Generated
Hybrid App\PhonegapTest\ html\js.

8. Open the custom.js file for editing and add this code before the line
(function(hwc, window, undefined) :

var dirlist = {
 getlist: function(successCallback, errorCallback) {
 PhoneGap.exec(successCallback, errorCallback,
'DirectoryListPlugin', 'list',["/mnt/sdcard"]);
 }
 };

function getDlist() {
 dirlist.getlist(function(r) {
 var theHtml = "";
 if(r.children)
 {

Hybrid Web Container Customization

346 SAP Mobile Platform

 var index = 0;
 for(index = 0; index <= r.children.length;index++)
 {
 if(r.children[index]){
 theHtml += r.children[index].filename + " \n ";
 }
 }
 }
 else
 {
 alert("No r.children!!");
 }
 alert(theHtml);
 },
 function(error) {
 alert('Error:' + error);
 });
}

9. Add this code in the customAfterMenuItemClick () function:

if(menuItem == "c"){
 getDlist();
 }

10. Regenerate the Hybrid App.

11. Assign the Hybrid App to a device that has the Hybrid Web Container with the custom
plug-in.

12. On the device, run the Hybrid App, click Menu, and click c.

The custom_plug-in.java file appears on the SD card in the list of files.

Note: The code returns a list of files only if an SD card is configured on the device (or, on
an emulator, if an SD Card is configured in AVD). If no SD card is configured, the code
returns no list.

Custom Plug-ins for the BlackBerry Hybrid Web Container
Integrate PhoneGap plug-ins with the BlackBerry Hybrid Web Container.

In general, adding a custom plug-in to Hybrid Web Container is identical to adding a plug-in to
any PhoneGap application. See the PhoneGap Wiki. The basic steps are:

1. Set up a BlackBerry Eclipse development IDE. See http://us.blackberry.com/developers/
javaappdev/javaplugin.jsp.

2. Create the plug-in source code.
3. Provide the JavaScript API.
4. Package the plug-in source code.
5. Include the PhoneGap dependencies.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 347

http://phonegap.pbworks.com/w/page/35799737/How-To-Create-a-PhoneGap-Plugin-for-BlackBerry-WebWorks
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp

Adding a Custom Plug-in to the BlackBerry Hybrid Web Container
Add a PhoneGap plug-in to the BlackBerry Hybrid Web Container

Prerequisites
Set up the BlackBerry Eclipse development IDE. See http://us.blackberry.com/developers/
javaappdev/javaplugin.jsp

Task

This example procedure shows the steps to create and use a custom plug-in to get battery
information for the device.

1. In Eclipse, import the HybridWebContainer project.

2. Open the plugins.xml file, which is located in res/xml, and add this tag:

< plugin name="Battery1" value="com.sybase.hwc.Battery1"/>
3. Add a new Java source file called Battery1.java to the src folder, and paste in this

code:
package com.sybase.hwc;
import org.apache.cordova.api.Plugin;
import org.apache.cordova.api.PluginResult;
import org.apache.cordova.json4j.JSONArray;

public class Battery1 extends Plugin {
 public static final String GET_LEVEL = "getLevel";

 /**
 * Executes the requested action and returns a PluginResult.
 *
 * @param action The action to execute.
 * @param callbackId The callback ID to be invoked upon action
completion.
 * @param args JSONArry of arguments for the action.
 * @return A PluginResult object with a status and
message.
 */
 public PluginResult execute(String action, JSONArray args,
String callbackId) {
 PluginResult result = null;
 if (GET_LEVEL.equals(action)) {
 // retrieve the device battery level
 int level =
net.rim.device.api.system.DeviceInfo.getBatteryLevel();
 result = new PluginResult(PluginResult.Status.OK,
level);
 }
 else {
 result = new
PluginResult(PluginResult.Status.INVALID_ACTION,
 "Battery: Invalid action: " + action);
 }

Hybrid Web Container Customization

348 SAP Mobile Platform

http://us.blackberry.com/developers/javaappdev/javaplugin.jsp
http://us.blackberry.com/developers/javaappdev/javaplugin.jsp

 return result;
 }

 /**
 * Called when Plugin is paused.
 */
 public void onPause() {
 }

 /**
 * Called when Plugin is resumed.
 */
 public void onResume() {
 }

 /**
 * Called when Plugin is destroyed.
 */
 public void onDestroy() {
 }
}

4. Save the file.

These are all the changes needed for the Hybrid Web Container; you can now build it and
install it on the device. What the plug-in actually does is implemented in the Java file in the
execute function. The rest of this example explains how to test and use the PhoneGap
plug-in.

5. Create a new Hybrid App.

a) Select File > New > Mobile Application Project.
b) In Project name, enter PhonegapTest.

c) Click Finish.

6. Right-click the PhonegapTest project folder and select New > Hybrid App Designer.

7. Click Next.

8. Select Can be started, on demand, from the client and click Finish.

9. Add an HtmlView control to the start screen of the Hybrid App.

10. Run the Hybrid App Package Generation wizard to create the Generated Hybrid App
directory structure Generated Hybrid App\PhonegapTest\ html\js.

11. Open the Custom.js file and add this code:

var Battery1 = {
 level: function(successCallback, errorCallback) {
 PhoneGap.exec(successCallback, errorCallback,
'Battery1', 'getLevel',[]);
 }
 };

function getBatteryLevel() {
 Battery1.level(function(level) {
 alert('Battery level is ' + level);
 },

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 349

 function(error) {
 alert('Error retrieving battery level:' + error);
 });
}

12. Find the customAfterHybridAppLoad() function, and add this code:

function customAfterHybridAppLoad() {
document.addEventListener("deviceready", getBatteryLevel,
false);
}

This is the code that makes use of the plug-in.

13. Generate the Hybrid App package again.

14. Assign the Hybrid App to a device that has the modified Hybrid Web Container installed.

15. On the device, run the Hybrid App.

You see the alert message with the battery level information.

Custom Plug-ins for the iOS Hybrid Web Container
Integrate PhoneGap plug-ins with the iOS Hybrid Web Container.

In general, adding a custom plug-in to Hybrid Web Container is identical to adding a plug-in to
any PhoneGap application. The basic steps are as follows (see the PhoneGap Wiki for
details).

1. Implement the plug-in class that extends PGPlugin in an .h and .m file.
2. Implement the PhoneGap plug-in JavaScript.
3. Edit the PhoneGap plist file with a new plug-in entry.
4. Use the plug-in from JavaScript.

Adding a Custom Plug-in to the iOS Hybrid Web Container
An example plug-in class that allows access to the iOS network activity monitor is available in
HybridWebContainer/Classes/Plugins.

1. Copy the networkActivityMonitor.h and networkActivityMonitor.m
files from HybridWebContainer/Classes/Plugins to the HWC.xcodeproj
project.

2. Add the networkActivityMonitor.js to the Hybrid App /html/js/ directory that
corresponds with the Eclipse project that generated the Hybrid App files.

3. Modify your JavaScript for any event desired to call the new plug-in.

Here is an example that reacts to a menu item and uses a global variable to toggle the
activity indicator on and off.:
var gActIndicator = true; // global variable

function customAfterMenuItemClick(screen, menuItem) {
if (screen === "Start" && menuItem === "networkActivityIndicator")
{
window.plugins.networkActivityIndicator.set(gActIndicator,

Hybrid Web Container Customization

350 SAP Mobile Platform

http://wiki.phonegap.com/w/page/36753496/How%20to%20Create%20a%20PhoneGap%20Plugin%20for%20iOS
http://wiki.phonegap.com/w/page/36753496/How%20to%20Create%20a%20PhoneGap%20Plugin%20for%20iOS

aiSuccess, aiFail);
// Toggle the network activity indicator each time plugin is
selected
if (gActIndicator)
gActIndicator = false;
else
gActIndicator = true;
return false;
}
}

function aiSuccess() {
alert("Successfully enabled activity indicator");
}

function aiFail() {
alert("Failed to enable activity indicator");
}

4. Add a plug-in entry to Cordova.plist:

Key: networkActivityIndicator
Type: String
Value: networkActivityIndicator

5. Generate the Hybrid App files and deploy the package to the server..

6. Test the event in the JavaScript file that is hooked into the new plug-in.

If the plug-in requires additional resources, such as images or other files, these should be
added to the project under the Resources group folder. For example, the ChildBrowser
plug-in available at github.com contains icons that are stored in a file called
ChildBrowser.bundle. In this example, the ChildBrowser.bundle should be
added to the Resources group folder in the project in Xcode.

Some plug-ins also require files to be in a www/ directory. The notification.beep
API is one example. If this is the case, add the resources to the www directory that is
referenced by the project under the Resources group folder as described in Step 7 in
Upgrading the PhoneGap Library used by the iOS Hybrid Web Container.

Custom Plug-ins for the Windows Mobile Hybrid Web Container
Integrate PhoneGap plug-ins with the Windows Mobile Hybrid Web Container.

In general, adding a custom plug-in to Hybrid Web Container is identical to adding a plug-in to
any PhoneGap application. The basic steps include:

1. Implement the plug-in class that extends the class “PluginBase."
2. Implement the PhoneGap plug-in JavaScript.
3. Add the plug-in class to the plug-in configuration file.
4. Use the plug-in from JavaScript.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 351

https://github.com/purplecabbage/phonegap-plugins/tree/master/iPhone/ChildBrowser

Adding a Custom Plug-in to the Windows Mobile Hybrid Web Container
This procedure shows an example of adding a plug-in class that allows access to the Windows
Mobile calculator.

The plug-in class is available under the TPTools\phoneGap\wm directory. To include this
plug-in in the Hybrid Web Container, follow these steps:

1. Add a new class called Calculator into the folder CustomCode and implement the
code:
using WMGapClassLib.Cordova;
namespace Sybase.Hwc.CustomCode
{
 public class Calculator : PluginBase
 {
 public void sum(Session session,
Sybase.HybridApp.Util.Json.JsonObject arguments)
 {
 try
 {
 double x = 0;
 double y = 0;
 x = double.Parse(arguments.GetString("x"));
 y = double.Parse(arguments.GetString("y"));
 this.DispatchCommandResult(session, new
PluginResult(PluginResult.Status.OK, x + y));
 }
 catch (System.Exception ex)
 {
 this.DispatchCommandResult(session, new
PluginResult(PluginResult.Status.ERROR, ex.Message));
 }
 }
 }
}

2. Open the file Plugins.xml, which is located in the HybridWebContainer project, and
add the custom plug-in:
<?xml version="1.0" encoding="utf-8" ?>
<plugins>
 <plugin id="showcertpicker"
 class="Sybase.Hwc.CertificationPickerPlugin"/>
 <plugin id="Calculator"
class="Sybase.Hwc.CustomCode.Calculator"/>
</plugins>

3. Open the Custom.js file for editing and add this method:

function calculateSum(x, y, successCb, errorCb){
cordova.require('cordova/exec') (
 successCb,
 errorCb,
 "Calculator", "sum",
{ x: document.getElementById('x').value, y:

Hybrid Web Container Customization

352 SAP Mobile Platform

document.getElementById('y').value });
}

4. Call this JavaScript method somewhere else to get the result:
function doCalculateSum() {
 calculateSum(

 document.getElementById('x').value,

 document.getElementById('y').value,
 function (res){
 document.getElementById('res').innerHTML = res;
 },
 function (e) {

 console.log("Error occurred: " + e);

 document.getElementById('res').innerHTML = "Error
occurred: " + e;
 });
};

5. Generate and deploy the application and test the event in the custom.js file that is
hooked into the new plug-in.

Removing PhoneGap From the Hybrid Web Container
If PhoneGap functionality is not required, you can make a few modifications to remove all
references to the PhoneGap library that is linked to the Hybrid Web Container.

Removing PhoneGap from the Android Hybrid Web Container
Remove all references to the PhoneGap library that is linked to the Android Hybrid Web
Container.

Leaving PhoneGap in place does not cause any issues, but does increase overall application
size by about 70KB.

1. Open the UiHybridAppContainer.java file for editing and comment out this line:

 //import org.apache.cordova.*;
2. Change the superclass of UiWorkflowContainer from Droidgap to Activity:

public class UiWorkflowContainer extends Activity {
3. Around line 91, change the USE_PHONEGAP variable to false, so the line of code looks

like this:
private static final boolean USE_PHONEGAP = false;

4. At this point, there are 5 errors, which are caused by calling methods that were inherited
from the Droidgap class (but do not exist in the Activity class); comment out the 5
lines that cause these errors :

a) To find these lines, search for "USE_PHONEGAP."

These lines are all contained in "if (USE_PHONEGAP)" statements.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 353

b) Around line 110, comment out:
// super.init();
 // m_oWebView = this.appView;

c) Around line 262, comment out:
// super.setStringProperty("loadingDialog", m_sProgressText);
 // super.setIntegerProperty("loadUrlTimeoutValue",
300000);
 // super.loadUrlWithData(sBaseURL, abData);

5. Switch to the Java perspective, right-click on the HybridWebContainer project, and
choose Properties.

6. Under Java Build Path, click the Libraries tab.

7. Remove the PhoneGap library (phonegap<version>.jar-
HybridWebContainer/libs).

8. Delete the phonegap<version>.jar file from the HybridWebContainer
\libs folder.

Removing PhoneGap from the BlackBerry Hybrid Web Container
Remove all references to the PhoneGap library that is linked to the BlackBerry Hybrid Web
Container.

Leaving PhoneGap in place does not cause any issues, but does increase overall application
size by about 500KB.

1. Open the AmpBrowserScreen.java file for editing and comment out this line:

//m_browserField.addListener(new HWCBrowserFieldListener(new
HWCWidgetConfigImpl(), m_browserField));

2. Right-click the HybridWebContainer project and choose Properties..

3. Under Java Build Path, click the Libraries tab.

4. Remove these libraries:

• PhoneGapExtension.jar
• WebWorksCommon.jar
• WebWorksExtension.jar
• WebWorksFramework.jar

5. Delete the same jar files from the libs folder.

6. Delete the xml folder, which hosts plugins.xml.

Removing PhoneGap from the iOS Hybrid Web Container
Remove all references to the PhoneGap library that is linked to the iOS Hybrid Web Container.

Leaving PhoneGap in place does not cause any issues, but does increase overall application
size by about 400KB.

1. In Xcode, open the HWCAppDelegate.h file and comment out this line:

Hybrid Web Container Customization

354 SAP Mobile Platform

#define USE_PHONEGAP 1
2. In the Build Settings tab, for the Hybrid App project under Other Linker Flags, remove

libPhoneGap.a for all build configurations.

3. Under Warning Linker Flags remove libPhoneGap.a for all build configurations.

4. In Project Navigator, remove references to these files:

• VERSION
• PhoneGap.plist

5. In Xcode, in Project Navigator, remove the reference to the www directory.

6. In Xcode, in Project Navigator, remove the reference to the Capture.bundle
directory.

7. Clean and rebuild the project for all configurations.

Initializing the PhoneGap Library for the Windows Mobile Hybrid Web
Container

You must initialize the PhoneGap library before using it.

1. Open the HTML file for the Hybrid App for editing.

2. Add this code.
<Html>
<script>
Function onLoad(){
 try
 {

 cordova.require('cordova/
channel').onDOMContentLoaded.fire();

 cordova.require('cordova/
channel').onNativeReady.fire();
 _nativeReady = true;
 }
 catch(e)
 {
 alert("Initialize
 phonegap error:" + e.message);
 }
}
</script>
<body onload=”onLoad();”>
</html>

3. Save the file.

4. Regenerate the Hybrid App package.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 355

PhoneGap Library Downgrade
SAP Mobile Platform included PhoneGap 1.4.1 libraries embedded inside the iOS and
Android Hybrid Web Containers.

SAP Mobile Platform 2.2 includes the Cordova 2.0 libraries for Android, BlackBerry, iOS,
and Windows Mobile. When PhoneGap changed to the Cordova name in 1.5, interfaces to
native PhoneGap plug-ins were renamed, thus, 2.1.3 Hybrid Apps that use the PhoneGap 1.4.1
will not work with 2.2 Hybrid Web Container. If you want to continue to use the PhoneGap
1.4.1 libraries with the 2.2 Android and iOS Hybrid Web Containers, you can revert from the
Cordova 2.0 libraries to the PhoneGap 1.4.1 libraries.

Downgrading the PhoneGap Library Used by the Android Hybrid Web
Container
Change from the Cordova 2.0 library included with the Android Hybrid Web Container to the
PhoneGap 1.4.1 library.

The files referenced in this procedure are located in the Android_PhoneGap_Downgrade.zip
file.

1. Use a diff utility tool to compare the file
UiHybridAppContainer_before.java and
UiHybridAppContainer_after.java files.

2. Open the UiHybridAppContainer.java file, which is located
in ..HybridWebContainer\src\com\sybase\hwc, and apply the changes
found with the diff utility tool.

Note: Keep in mind that this change could remove bug fixes, or cause unexpected behavior
of the related new features.

3. Rebuild the Hybrid Web Container project to make sure there are no compilation errors.

4. Replace the cordova-2.0.0.jar located in <SMP_HOME>\UnwiredPlatform
\MobileSDK22\HybridApp\API\Container\android, with the
phonegap-1.4.1.jar file, which is in the Android_PhoneGap_Downgrade.zip
file.

5. In the HybridWebContainer project, remove the res/xml/config.xml file and add
the plugins.xml and phonegap.xml files.

6. Open the UiHybridAppContainer.java file for editing and change the import
statement from import org.apache.cordova.DroidGap to import
com.phonegap.DroidGap.

7. Find the method:
@Override
 public void onCreate(Bundle savedInstanceState) {
 super.setBooleanProperty("showTitle", true);

Hybrid Web Container Customization

356 SAP Mobile Platform

 super.onCreate(savedInstanceState);
 }

Remove the line: super.setBooleanProperty("showTitle", true);.

8. Rebuild the HybridWebContainer project.

9. (Optional) Rename the phonegap-1.4.1.js file to
phonegap-1.4.1.javascript.

10. (Optional) In the Container folder of generated applications, replace the android/
cordova-2.0.0.javascript with phonegap-1.4.1.javascript.

11. (Optional) In the API.js file, remove the string android/
cordova-2.0.0.javascript and replace it with android/
phonegap-1.4.1.javascript.

Downgrading the PhoneGap Library Used by the iOS Hybrid Web Container
Change from the Cordova 2.0 library included with the iOS Hybrid Web Container to the
PhoneGap 1.4.1 library.

1. Unzip PhoneGapLib.zip.

This unzips to a directory named PhoneGapLib.

2. Copy PhoneGapLib inside the HybridWebContainer directory, which is located in
\SMP_HOMEUnwiredPlatform\MobileSDKversion\HybridApp
\Containers\iOS\.

3. In Xcode, in the HybridWebContainer directory, open the HWC.xcodeproj.

4. Under the Resources group folder, remove VERSION, Capture.bundle, www, and
Cordova.plist, and replace them with equivalent files, from
HybridWebContainer/PhoneGapLib.

Note: The Cordova.plist file will be replaced by the PhoneGap.plist file.

5. (Optional) Delete the HybridWebContainer/CordovaLib directory and
libCordova.a in each of the HybridWebContainer/libs/
<configuration> directories.

6. Open the PhoneGapLib.xcodeproj, which is located in
HybridWebContainer/PhoneGapLib.

7. Build all four configurations of the PhoneGapLib target, including Release-iphoneos,
Debug-iphoneos, Release-iphonesimulator, and Debug-iphonesimulator.

8. Copy the libPhoneGap.a file from each configuraton build directory to the
corresponding directory in HybridWebContainer/libs/<configuration>.

9. Close the PhoneGapLib Xcode project.

10. Go back to HWC.xcodeproj, open the project settings, and go to the Build Settings
tab.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 357

a) Under Other Linker Flags, change all instances of "libCordova.a" to
"libPhoneGap.a."

b) Under Header Search Paths, change all instances of "CordovaLib" to
"PhoneGapLib."

11. Perform two global search-and-replace operations in Xcode and replace:

• USE_CORDOVA with USE_PHONEGAP
• CORDOVA_FRAMEWORK with PHONEGAP_FRAMEWORK

12. Open the HWCAppDelegate.h file, which is in the Classes group folder.

a) In the #ifdef USE_PHONEGAP block at the top of the file, change the import
statements so they are importing PhoneGapDelegate.h instead of
CDVViewController.h.

The code should look like this:
#ifdef USE_PHONEGAP
#ifdef PHONEGAP_FRAMEWORK
#import <PhoneGap/PhoneGapDelegate.h>
#else
#import "PhoneGapDelegate.h"
#endif

b) In the interface definition for HWCAppDelegate, change the superclass in the
#ifdef USE_PHONEGAP block from CDVViewController to
PhoneGapDelegate.

13. Open the HWCAppDelegate.m file, which is located in the Classes group folder, and
in each of the following functions, add the specified code at the end of the function, just
before it returns.

a) Just before the function
application:didFinishLaunchingWithOptions: returns, add:

#ifdef USE_PHONEGAP

if ([super
respondsToSelector:@selector(application:didFinishLaunchingWit
hOptions:)])

[super application:[UIApplication sharedApplication]
didFinishLaunchingWithOptions:launchOptions];

#endif
b) Just before the function applicationDidBecomeActive: returns, add:

#ifdef USE_PHONEGAP

if ([super
respondsToSelector:@selector(applicationDidBecomeActive:)])

[super applicationDidBecomeActive:application];

#endif

Hybrid Web Container Customization

358 SAP Mobile Platform

c) Just before the function applicationWillResignActive: returns, add:

#ifdef USE_PHONEGAP

if ([super
respondsToSelector:@selector(applicationWillResignActive:)])

[super applicationWillResignActive:application];

#endif
d) Just before the function applicationWillTerminate: returns, add:

#ifdef USE_PHONEGAP

if ([super
respondsToSelector:@selector(applicationWillTerminate:)])

[super applicationWillTerminate:application];

#endif
14. In the applicationWillEnterForeground: function, change the call to the

superclass method onAppWillEnterForeGround: to a call to the superclass
method applicationWillEnterForeground:.

if ([super
respondsToSelector:@selector(applicationWillEnterForeground:)])

[super applicationWillEnterForeground:application];

15. In the applicationDidEnterBackground: function, change the call to the
superclass method onAppDidEnterBackGround: to a call to the superclass method
applicationDidEnterBackground:.

if ([super
respondsToSelector:@selector(applicationDidEnterBackground:)])

[super applicationDidEnterBackground:application];

16. Save the file.

17. Rebuild the HWC.xcodeproj project.

a) From the Xcode menu, select Product > Clean.
b) Select Product > Build.

Hybrid Web Container Customization

Developer Guide: Hybrid Apps 359

Hybrid Web Container Customization

360 SAP Mobile Platform

Hybrid App Configuration for Data Change
Notification

This section contains details about developing Hybrid Apps that take advantage of DCN
updates.

Hybrid Apps require a server-initiated starting point and defined matching rules, which allows
SAP Mobile Server to push changes to Hybrid App clients. See the topics Starting Points and
Adding Matching Rules in SAP Mobile WorkSpace - Hybrid App Package Development.

Extending Data Change Notification to Hybrid Apps
Data change notification (WF-DCN) requests allow SAP Mobile Server to process the DCN
request and send notification to the device of that data change.

Depending on the cache policy used by the affected MBO, once the application receives
notification, it can retrieve data directly from the EIS or from the SAP Mobile Server cache,
keeping the application synchronized. DCN messages targeted for MBOs used in applications
(WF-DCN), uses similar syntax as general DCN, with these differences:

• The value of cmd is wf for WF-DCN requests, compared to dcn for regular DCN.
• The message contains the fields required for notification, such as the to address, from

address, e-mail subject, and e-mail body.
• The WF-DCN message is captured and parsed by the server-initiated Hybrid App, which

processes the WF-DCN message differently, depending on the message type: with payload
or without payload.

WF-DCN format
The WF-DCN request is a JSON string consisting of these fields: engine converts MBO data
and WF-DCN messages into email, and pushes it to device's inbox

1. Operation name(op) :upsert or :delete– same as regular DCN.
2. Message ID (id) of the Hybrid App – used for correlation (a :delete for a previously

submitted request with :upsert is possible)
3. Username (to) – the SAP Mobile Platform user name. For the user to be recognized by

WF-DCN, the device user should first have established communication using the
activation mechanism in SAP Control Center.

Note: The "To" field must match the SAP Mobile Platform user name—not the user name
used to register the device.

4. Subject (subject) – subject of the Hybrid App message.
5. Originator <from> – who the Hybrid App message is from.

Hybrid App Configuration for Data Change Notification

Developer Guide: Hybrid Apps 361

6. Body of the Hybrid App message <body> – it can embed customized information.
7. <received> – received time of the Hybrid App message.
8. <read> – whether the Hybrid App message is read.
9. <priority> – whether the Hybrid App message has a high priority.
10. List of dcn request <data> – JSON format string.

Example DCN request in JSON format:
{
"op":":upsert",
"id":"WID123",
"to":"SUPAdmin",
"subject":"Trip request approval required",
"from":"user321",
 "body":"This is a message just used to do a test",
"received":"2009-03-29T10:07:45+05:00",
"read":false,
"priority":true,
"data":
 [
 {"id": "1",
 <general dcn request>
 }
 …
 {"id": "4",
 < general dcn request>
 }
]
}

Hybrid App DCN request flow
WF-DCN with and without payload differ slightly, but the general flow is similar for each.
When the WF- DCN request is received, SAP Mobile Server gets the wf cmd value from the
request first, and:

1. SAP Mobile Server invokes preProcessFilter if the DCN filter is specified.
2. SAP Mobile Server receives a raw HTTP POST body to generate and return a WF- DCN

request message object.
3. The JSON format string is parsed into a WF-DCN request object.
4. The DCN request in the Hybrid App message object is parsed and those within the scope of

a single transaction per DCN request object in the array are executed. Results are recorded
for a report after completing the WF-DCN request.

5. From the CDB, the server looks up all users assigned to the indicated Hybrid App package
in the “to” attribute of the Hybrid App message, then matches them with the receiver list.
For every receiver, SAP Mobile Server generates multiple Hybrid App messages (all
Hybrid App messages are created within one transaction), one per device identified (one
user might have multiple devices), and then sends them to the JMS queues.
The lookup of the logical id is performed by combining the username in the “to” list to the
“securityProfile” specified in the HTTP POST REQUEST URL parameter list.

Hybrid App Configuration for Data Change Notification

362 SAP Mobile Platform

6. If any errors occur in step four, step five does not execute. If any errors occur in step five,
step five is not committed. If any errors occur in either of those steps, an HTTP 500 error is
returned.

7. SAP Mobile Server invokes the postProcessFilter, if specified.
8. If no errors occur, SAP Mobile Server returns success to the caller HTTP 200 with the body

of the JSON string (or any opaque data returned from the postProcessFilter) of the WF-
DCN Result. Otherwise, SAP Mobile Server returns an HTTP 500 error with the body of
the JSON log records.

Non HTTP Authentication Hybrid App DCN Request
You can send Hybrid App DCN requests that are not authenticated.

The URL is:

http://host:8000/dcn/DCNServlet?
cmd=wf&security=admin&domain=default&username=supAdmin&password=sup
Pwd&dcn_filter=aa.bb&dcn_request=<wfrequestdata>

where supAdmin represents the SAP Mobile Server Administrator, and supPwd represents
the Administrator's password defined during SAP Mobile Platform installation.

Sending Hybrid App DCN to Users Regardless of Individual
Security Configurations

You can send Hybrid App DCN requests to users in other security configurations if you belong
to the default security configuration.

If the Hybrid App DCN sender is authenticated against the default admin security
configuration, they are automatically authorized to push data to all users regardless of their
individual security configuration. If not, the sender can only push to users within the same
security configuration.

For example, in the case of a non HTTP authentication request, this request is authorized to
push data to users in other security configurations since the sender supAdmin, belongs to the
admin security configuration:

http://host:8000/dcn/DCNServlet?
cmd=wf&security=othersecurity&domain=default
&username=supAdmin@admin&password=supPwd&dcn_filter=aa.bb&dcn_reque
st=<request>

And this request is denied because supAdmin@mysecurityconfig can only push data to users
in the same security configuration:

http://host:8000/dcn/DCNServlet?
cmd=wf&security=othersecurity&domain=default

Hybrid App Configuration for Data Change Notification

Developer Guide: Hybrid Apps 363

&username=supAdmin@mysecurityconfig&password=supPwd&dcn_filter=aa.b
b&dcn_request=<request>

Hybrid App DCN Request Response
After processing of the Hybrid App DCN request, SAP Mobile Server sends the response to
notify the caller whether the request was processed successfully.

The response includes two parts:

1. The result of processing the Hybrid App request.
2. The result of processing the general DCN requests.

The response is also in a JSON format string:

{
<wf dcn result>
"result":
 [
 {
 <general dcn result>
 },
 {
 <general dcn result>
 }
]
}

An example response is:
{
 "id":"1",
"success":false,
"statusMessage":"there is error in processing dcn",
"result":
 [
 {
 "id":"1",
 "success":true,
 "statusMessage":""
 },
 {
 "id":"2",
 "success":false,
 "statusMessage":"bad msg2"
 }
]
}

Hybrid App Configuration for Data Change Notification

364 SAP Mobile Platform

Hybrid App DCN Design Approach and Sample Code
Understand the design approach for both WF-DCN with and without payload, and view
samples for each approach.

Note: Samples are for illustrative purposes only and should not be used as a guide for
developing your DCN requests.

Comparing Hybrid App DCN With and Without Payload
This section compares the two types of WF-DCN and includes examples of each.

Hybrid App DCN Without Payload
Understand how to construct a Hybrid App DCN without payload message.

This example illustrates data flow of a WF-DCN without payload using an SAP® EIS:

1. The WF-DCN pushes new messages (workitems) to SAP Mobile Server, which are then
delivered to the device, for example, a Hybrid App notification.

2. After the EIS sends a workitem id to SAP Mobile Server, SAP Mobile Server uses
workitem MBO and workitem id to retrieve details of the workitem from the EIS.

3. After SAP Mobile Server receives the message, a matching Hybrid App server starting
point parses the message and extracts data fields from the message, including data into the
parameter of an MBO object query operation.

Hybrid App Configuration for Data Change Notification

Developer Guide: Hybrid Apps 365

4. Since the MBO uses an online cache policy, the object query is mapped to a load operation,
allowing the data to be passed into the load operation as a load argument to trigger an MBO
data refresh.

5. The Hybrid App engine converts MBO data and the WF-DCN message into a notification,
and pushes it to the device's mobile inbox.

MBO cache group policy
The cache group policy of MBOs used in the WF-DCN without payload must be online. The
online MBO contains the findByParameter object query with the same parameters defined in
the load operation. The query is triggered by the Hybrid App server-initiated starting point
after extracting the parameter values from the WF-DCN message body.

Message format
The message format of the WF-DCN message without payload is:

{”id”:””,”op”:””,”subject”:””,”to”:””,”from”:””,”read”:,”priority”:
””,”body”:””,
“data”:{}

For example:
{”id”:””,”op”:”:upsert”,”subject”:”test”,”to”:”test”,”from”:”test”,
”read”:,
”priority”:””,”body”:”MATCH:SUP_MWF,TaskID:TS97200149, WIID:
1470577,
USER:PERF0111*#END#*”,“data”:{}

SAP Mobile Server extracts information from the DCN message and retrieves details from the
EIS.

Processing the WF-DCN without payload message
After SAP Mobile Server receives the message, a matching Hybrid App server-initiated
starting point parses the message and extracts data fields from the message. The server-
initiated starting point sets extracted data into the parameter of an object query operation.
Since the MBO used by the without payload message uses an online cache policy, the object
query is mapped to a load operation. The data is passed into the load operation as a load
argument to trigger MBO data refresh.

Hybrid App DCN With Payload
Understand how to construct a Hybrid App DCN with payload message.

This example illustrates data flow of a WF-DCN with payload using an SAP EIS:

Hybrid App Configuration for Data Change Notification

366 SAP Mobile Platform

1. When the EIS has new or modified data to push to SAP Mobile Server, it initiates an HTTP
request to the WF-DCN URL. The WF-DCN message contains the new or changed data
object.

2. When the WF-DCN message reaches SAP Mobile Server, the Hybrid App engine
evaluates the matching rule against all registered Hybrid Apps. If a matching rule matches
this message, the Hybrid App server starting point for that Hybrid App is triggered to
process the message.

3. The data object included in the WF-DCN message is applied to the MBO CDB table by
inserting new records or updating existing records.

4. The Hybrid App server-initiated starting point extracts parameter values from the message
body and triggers the MBO object query to retrieve the newly inserted or updated record.

5. The Hybrid App engine converts the MBO data and WF-DCN message into a Hybrid App
notification, then pushes it to the device mobile inbox using SAP messaging (MOCA).

MBO cache group policy
The cache group policy of MBOs used in WF-DCN with payload must be DCN.

Message format
The message format of the WF-DCN message with payload is:

{”id”:””,”op”:””,”subject”:””,”to”:””,”from”:””,”read”:””,”priority
”:””,”body”:””,
“data”:[{”id”:””,”pkg”:”Package”,”messages”:
[{”id”:”2”,”mbo”:”MBO”,”op”:”:upsert”,
”cols”:
{”attribute1”:”value1”,”attribute2”:”value2”,”attribute3”:”value3”}
}

Hybrid App Configuration for Data Change Notification

Developer Guide: Hybrid Apps 367

The message must contain e-mail information: subject, to, from, and so on, and include the
MBO package name and version, MBO name, attribute name, and attribute value. The
message can include multiple MBOs. For example:
{”id”:”1137”,”op”:”:upsert”,”subject”:”PERF0111’s Leave Request”,
”to”:”PERF0111”,”from”:”Leave Work
Flow”,”read”:”false”,”priority”:”true”,
”body”:”MATCH:SUP_MWF,TaskID:TS97200149, WIID:1470577,
USER:PERF0111*#END#*”,
”data”:[{”id”:”dcbtest”,”pkg”:”sup_mwf:1.2”,”messages”:
[{”id”:”2”,”mbo”:”Workitem”,
”op”:”:upsert”,”cols”:
{”WORKITEM”:”1470577”,”USERNAME”:”perf0111”,”DESCRIPTION”:”cc”,
”DECISION”:”test”}},{”id”:”6”,”mbo”:”Alternatives”,”op”:”:upsert”,
”cols”:
{”WORKITEM”:”1470577”,”USERNAME”:”perf0111”,”PKEY”:”01”,”PVALUE”:”A
p”}}]}]}

Sample Java Function for Generating Hybrid App DCN
This WF-DCN sample illustrates WF-DCN without payload.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.UnsupportedEncodingException;
import java.net.Authenticator;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.PasswordAuthentication;
import java.net.ProtocolException;
import java.net.URL;
import java.net.URLEncoder;

public class HttpAuth
{
 /**
 * @param args
 * @throws MalformedURLException
 */
 public static void main(String[] args) throws Exception
 {
 URL url = null;

 String wfdcn_request = "{\"id\":\"dcntest_69\",\"op\":
\":upsert\","
 + "\"subject\":\"dept_id = 1300\",\"to\":\"perf0111\","
 + "\"from\":\"SAP Leave WorkFlow\",\"read\":false,
\"priority\":true,"
 + "\"body\":\",TaskID:, WIID:000001468382,
USER:perf0111#END#\"}";

 url = new URL("HTTP", "10.42.39.149", 8000,

Hybrid App Configuration for Data Change Notification

368 SAP Mobile Platform

 "/dcn/HttpAuthDCNServlet?
cmd=wf&security=admin&domain=default");

 HttpURLConnection con = null;

 con = (HttpURLConnection) url.openConnection();

 con.setDoOutput(true);
 con.setRequestMethod("POST");

 final String login = "supAdmin";
 final String pwd = "AdminPassword";
 Authenticator.setDefault(new Authenticator()
 {
 protected PasswordAuthentication
getPasswordAuthentication()
 {
 return new PasswordAuthentication(login,
pwd.toCharArray());
 }
 });

 StringBuffer sb = new StringBuffer();
 sb.append(wfdcn_request);
 OutputStream os = con.getOutputStream();
 os.write(sb.toString().getBytes());
 os.flush();
 os.close();

 StringBuffer xmlResponse = new StringBuffer();

 int returnCode = con.getResponseCode();
 if (returnCode != 200)
 {
 String rspErrorMsg = "Error getting response from the
server (error code "
 + returnCode + ")" + con.getResponseMessage();
 System.out.println(rspErrorMsg);

 }
 else
 {
 BufferedReader in = new BufferedReader(new
InputStreamReader(con
 .getInputStream(), "UTF-8"));
 String line;
 while ((line = in.readLine()) != null)
 {
 xmlResponse.append(line).append("\n");
 }
 System.out.println("xmlResponse: " + xmlResponse);
 }

 }
}

Hybrid App Configuration for Data Change Notification

Developer Guide: Hybrid Apps 369

Hybrid App Configuration for Data Change Notification

370 SAP Mobile Platform

Index
.p12 certificates 221

A
ActiveSync, installing and configuring 213
Advanced Encryption Standard 168
AES

See also Advanced Encryption Standard
AES-128 170
AES-256 166
Afaria® Security Manager 171
Alert Message property 228
Alerts property 228
Android emulator

configuring 205
Android Hybrid Web Container

installing 205
Android Hybrid Web Container customization

setting HTTP headers 245
ANDROID_CUSTOMIZATION_POINT_CATEG

ORIZEDVIEWS 250
ANDROID_CUSTOMIZATION_POINT_HYBRI

DAPPSEARCH 264
API functions

credential functions 134
general utility functions 134
Hybrid App native device functions 134
Hybrid App UI functions 134
Hybrid App utility functions 134
Hybrid App validation functions 134
message data functions 134

API.js 134
APNS 225
APNS Device Token property 228
Apple push notification properties 228
Apple push notification, configuring 227
application 191
application ID

guidelines 192
arbitrary metadata 80
AttachmentViewer control

image limitations 76

B
Badges property 228

BlackBerry 209
configuring the simulator 209, 210

BlackBerry Desktop Manager 208
BlackBerry Hybrid Web Container 209

adding a new language 273
adding a splash screen 271
BLACKBERRY_CUSTOMIZATION_POIN

T_SPLASHSCREEN 271
default behavior customization 279
setting HTTP headers 282
using custom colors 274

C
cached data lookup pattern

data flow diagram 116
overview 116

Callbacks.js 138
CallbackSet 138
categorized views 250
certificate picker 157
Certificate.js 141
certificates

for context variables 195
ClientIconIndex 80
conditional navigation 151
conditional start 153
connection settings

configuring 216
default 302
device 216
Hybrid Web Container 216

content security 166
Android 166
BlackBerry 168
iOS 170
Windows Mobile 171

content type preference, changing 174
context variables 80, 196

configuring 195
credential functions 134
credentials, static and dynamic 156
CredentialsCache 80
Custom.js 125
custom.js file

methods 143

Index

Developer Guide: Hybrid Apps 371

customAfterNavigateForward 143
customAfterReportErrorFromNative 146
customAfterShowScreen 143
customAfterSubmit 143
customAfterWorkflowLoad 143
customBeforeMenuItemActivate 143
customBeforeNavigateBackward 143
customBeforeNavigateForward 143
customBeforeReportErrorFromNative 146
customBeforeShowScreen 143
customBeforeSubmit 143
customBeforeWorkflowLoad 143
customization touch points

ANDROID_CUSTOMIZATION_POINT_DE
FAULTSETTINGS 242

customValidateScreen 143

D

data change notification 363
GET 361
JSON format 361
POST 361
request response 364

Datajs 43
datajs library 64
Datajs library 43
DCN 364
debugging 184
default locale, creating 175
defining an MBO

for cached data lookup 117
for real-time data lookup 107

DeleteProcessedMessages 80
Delivery Threshold property 228
deploy 103
device platforms 103
device users

assigning Hybrid App packages 194
devices

Apple push notification properties 228
documentation roadmap 1
Dynamic authentication 158

E

editing
locale properties file 178

Enable property 228

encoding type, changing 174
encryption key length 168
encryption policy 149

F

file association 174
filtering 306
findByParameter

binding to a menu item 107
findByParameter object query 111
functions

resource 147
workflow UI 134

G

general application properties 191
general utility functions 134
generated files 126, 128
getCurrentMessageValueCollection() 136
getPicture 138, 139
getWorkflowMessage() 136

H

hard coded credentials 196
HTML format 79
HWC.xcodeproj 296
Hybrid App

prepackaged, BlackBerry 321
Hybrid App client

using credentials 160
Hybrid App clients

and static SSO2 tokens 164
and static X.509 certificates 161
using credentials in 160
using SSO2 tokens in 162

Hybrid App native device functions 134
Hybrid App package

generated files 126
Hybrid App Package Generation Wizard 103
Hybrid App packages

assigning device users 194
configuring notification mailbox 193
deploying 101

Hybrid App UI functions 134
Hybrid App utility functions 134
Hybrid App validation functions 134

Index

372 SAP Mobile Platform

Hybrid Web Container
Android 242
ANDROID_CUSTOMIZATION_POINT_DE

FAULTSETTINGS 242
architecture 3
building using source code 201
customization 3, 242
default values for settings screen 242
installing from App Store 211
management 3
offline capabilities 3
removing 229
settings screen 242
settings screen, default values 242

hybridapp_Custom.html 128
hybridapp_Custom.xml 100
hybridapp_jQM.html 128
hybridapp_JQM.xml 100
hybridapp.html 128
hybridapp.html generated file 128
HybridApp.js 24
HybridWebContainer.cod 209, 210

I
image

limitations in Hybrid App messages 76
installing 211
internationalization

Hybrid App Designer 179
on the device 181

InvokeOnClient 80
iOS 211
iOS Hybrid Web Container

customizations 298
settings screen 304

iOS Hybrid Web Container customization 300
filtering 306
setting HTTP headers 308
sorting 306

iOS push notification properties 228
IOS_CUSTOMIZATION_POINT 296
iPad

hiding the listview 310
ISO-8859-1 encoding 174
iTunes 212

J
jquery.mobile-1.1.0.css 128

L
load arguments 107
locale

editing 178
properties file 175, 178

localization 126, 172
creating a new locale 175
Hybrid App package 173
limitations 173
task flow 173
updating the current locale 178

look and feel 100
look and feel files 128

M
manage 189
manifest.xml 80
MarkProcessedMessages 80
master.css 128
matching rules

specifying 113
message data functions 134
Microsoft ActiveSync, installing and configuring

213
ModuleDesc 80
ModuleDisplayName 80
ModuleName 80
ModuleVersion 80

N
native device functions 136
network edge authentication 159
non HTTP authentication request 363
non-ASCII encoding 174
notification mailbox 193
notifications

creating 39
null value support 72

O
object queries

binding to a menu item 118
object query parameters

defining a control that passes 119

Index

Developer Guide: Hybrid Apps 373

OData 43
offline capabilities 3
Optimize for appearance look and feel 128
Optimize for performance look and feel 128, 132
OTA 209
over the air 209

P

performance agent 197, 198
PersistAppDomain 80
PersistentContent 168
PersistentContentListener 168
PersistentStore 168
PhoneGap 326

initializing 355
removing 353
supported APIs 326

PhoneGap plugin
testing 346

PIN screens
CreatePasswordViewController.xib 301
customizing 301
EnterPasswordViewController.xib 301
iOS 301

preferences
appearance 174
content types 174
general 174

ProcessUpdates 80
properties

push notification for iOS 228
propogate to attributes 107
PurchaseOrderSample 175
push notification properties for iOS 228

Q

query types
addallmenuitems 73
addMenuItem 73
alert 73
clearrequestcache 73
clearrequestcacheitem 73
close 73
downloadattachment 73
formredirect 73
loadtransformdata 73
logtoworkflow 73

removeallmenuitems 73
rmi 73
setscreentitle 73
showattachment 73
showcertpicker 73
showInBrowser 73
showlocalattachment 73
submit 73

R

real-time lookup pattern
data flow diagram 106
overview 106

RequiresActivation 80
resource functions 147
rmi.xml 184
RSA algorithm 221

S

SAP passport 197
send a notification 183
sending server notification to a device 115
server notification pattern 111

creating an MBO for 111
data flow diagram 111
overview 111

server-driven notification
creating 113

server-initiated 39
shared storage 150
SharedStorage 150
showErrorFromNative 146
signing key 201
single sign-on 159

using credentials 160
using SSO2 tokens 162
using static SSO2 tokens 164
using static X.509 certificates 161

single sign-on task flow 361
sorting 306
Sounds property 228
SQLite Encryption Extensions (AES-128) 170
static authentication 157
strings.xml 237
stylesheet.css 128
SupCertificateIssuer 197
SupCertificateNotAfter 197

Index

374 SAP Mobile Platform

SupCertificateNotBefore 197
SupCertificateSubject 197
SUPMessaging_Pro.cab 214
SUPMobileHybridApp.replaceHybridAppCertifica

te() 165
SupPassword 196

for context variables 195
SUPStorage 149
SUPStorage.js 148
SupUser 196, 197

for context variables 195
synchronization software 213

T
task flow 7
testing

X.509 certificates 221, 225
touch point 296
trace 197

U
URL parameters 42

UTF-8 encoding 174

V

variables, context
configuring 195

viewing Hybrid App messages
Android 183
BlackBerry 183
iOS 183
Windows Mobile 183

W

WorkflowClient.xml 39, 89

X

X.509 certificate 224

Index

Developer Guide: Hybrid Apps 375

Index

376 SAP Mobile Platform

	Developer Guide: Hybrid Apps
	Contents
	Introduction to Developer Guide for Hybrid Apps
	Documentation Roadmap for SAP Mobile Platform

	Introduction to Developing Hybrid Apps With SAP Mobile Platform
	Hybrid Web Container Architecture
	Hybrid App Development Task Flow
	Hybrid App Development Task Flow Using Third-Party Web Frameworks and MBOs
	Hybrid App Development Task Flow With the Designer
	Identify a Business Process for a Hybrid App That Uses a Lifecycle Flow

	Develop Hybrid Apps Using Third-party Web Frameworks
	Develop MBO-based Hybrid Apps
	Creating a Mobile Application Project
	Developing a Mobile Business Object
	Deploying a Mobile Application Project
	MBO Examples
	Implementing Online Lookup for Hybrid Apps
	Implementing Server Notification for Hybrid App Clients
	Implementing the Cached Data Pattern for MBO-based Hybrid Apps

	Generating JavaScript MBO Access API
	Generated Hybrid App Files
	HybridApp.js
	WorkflowClient.xml
	Creating Notifications to Make the Hybrid App Server-Initiated

	Processing Responses From the Server
	Error Handling
	URL Parameters

	Develop OData-based Hybrid Apps
	Connect to an OData Source
	Creating a Proxy Connection (Whitelisting)

	Datajs OData Client Authentication in Hybrid Apps
	Basic Authentication
	Authentication Against an OData Source
	SSO Token, Including SAP SSO2 and SiteMinder/Network Edge
	Server Certificate Validation Over HTTPS
	X.509 SSO Authentication

	Implementing Push
	Enabling the Datajs Library on Windows Mobile

	Hybrid Web Container and Hybrid App JavaScript APIs
	MBO Access JavaScript API Samples
	MediaCache Examples
	Null Value Support
	Calling the Hybrid Web Container
	AttachmentViewer and Image Limitations

	Package Hybrid Apps
	Packaging Hybrid Apps Using the Packaging Tool
	Refreshing the Packaging Tool Treeview

	Packaging Hybrid Apps Manually
	Hybrid AppPackage Files
	The Web Application Files
	HTML Format

	Manifest.xml File
	WorkflowClient.xml File
	The Look and Feel XML Files

	Using Third-party Files

	Deploying a Hybrid App Package with the Deploy Wizard

	Develop a Hybrid App Using the Hybrid App Designer
	Deploy the Hybrid App Package to SAP Mobile Server
	Generating Hybrid App Files and Deploying a Package

	Hybrid App Patterns
	Online Lookup
	Implementing Online Lookup for Hybrid Apps
	Defining Load Arguments from Mapped Propagate to Attributes
	Binding the findByParameter Object Query to a Menu Action
	Defining the Control that Contains the findByParameter Object Query Parameter

	Server Notification
	Implementing Server Notification for Hybrid Apps
	Defining the Mobile Business Object for Server Notification
	Creating the Server-Driven Notification Starting Point
	Sending an Order Notification to the Device

	Cached Data
	Implementing the Cached Data Pattern
	Defining the Mobile Business Object
	Binding the findByDeptId Object Query to a Menu Action
	Defining the Control that Contains the findByDeptId Object Query Parameter
	Binding Transient Personalization Keys to Hybrid App Keys

	Hybrid App Package Customization
	Customizing Generated Code
	Adding Local Resources to a Hybrid App Project
	Generated Hybrid App Files
	Generated HTML Files
	Look and Feel Files
	Default Look and Feel
	BlackBerry Custom Look and Feel File
	Optimize for Performance Look and Feel

	Reference
	Hybrid App Client API
	Public JavaScript Functions
	API.js
	Hybrid App UI Functions
	Hybrid App Native Device Functions
	Hybrid App Message Data Functions

	Callbacks.js File
	Camera.js
	getPicture Function
	Using the getPicture Function for Larger Image Sizes

	Certificate.js
	Custom.js File
	Overriding the showErrorFromNative Function

	Resources.js
	ExternalResource.js
	SUPStorage.js
	SAP Mobile PlatformStorage
	Shared Storage

	Timezone.js
	WorkflowMessage.js

	Using Third-Party JavaScript Files
	Repackaging Hybrid App Package Files
	Common Customizations
	Implementing Conditional Navigation
	Implementing a Conditional Start Screen
	Clearing the Contents of the Signature Control

	Security
	Credentials
	Setting Up Static Authentication
	Setting Up Static Authentication Using a Certificate
	Setting Up Dynamic Authentication
	Basic Authentication
	Single Sign-on

	Configuring the Hybrid App to Use Credentials
	Configuring the Hybrid App to Use X.509 Credentials
	Configuring the Hybrid App to Use Static X.509 Credentials

	Propagating a Client's Credentials to the Back-end Data Source
	Configuring a Hybrid App to Use SSO2 Tokens
	Configuring the Hybrid App to Use a Static SSO2 Token

	Modify Certificate Information for Hybrid App Packages
	Replacing the Hybrid App Certificate Through SAP Control Center
	Replacing the Hybrid App Certificate Using the Admin API

	Content Security on Devices
	Content Security on Android Devices
	Content Security on BlackBerry Devices
	Content Security on iOS Devices
	Content Security on Windows Mobile Devices

	Localization and Internationalization
	Localization Limitations
	Localizing a Hybrid App Package
	Changing the Encoding Type
	Creating and Validating a New Locale Properties File
	Editing the Locale Properties File
	Removing a Locale
	Updating the Current Locale

	Hybrid App Package Internationalization
	Internationalization on the Device

	Test Hybrid App Packages
	Testing Server-Initiated Hybrid App Packages
	Viewing Hybrid App Messages on the Device

	Launching a Server-initiated Hybrid App on the Device
	Debugging Custom Code
	Configuring Messaging Server Log Settings

	Manage a Hybrid App Package
	Registering or Reregistering Application Connections
	Setting General Application Properties
	Application ID and Template Guidelines
	Enabling and Configuring the Notification Mailbox
	Assigning and Unassigning a Hybrid App to an Application Connection
	Activating the Hybrid App
	Configuring Context Variables for Hybrid App Packages
	Changing Hard Coded User Credentials
	Adding a Certificate File to the Hybrid App Package

	End to End Trace and Performance
	Enabling the Performance Agent on the Device
	Tracing Application Connections

	Build a Customized Hybrid Web Container Using the Provided Source Code
	Building the Android Hybrid Web Container Using the Provided Source Code
	Building the Android Hybrid Web Container Outside of Eclipse

	Building the BlackBerry Hybrid Web Container Using the Provided Source Code
	Supplying a Signing Key

	Building the iOS Hybrid Web Container Using the Provided Source Code
	Building the Windows Mobile Hybrid Web Container Using the Provided Source Code

	Install and Configure the Hybrid Web Container On the Device
	Preparing Android Devices for the Hybrid Web Container
	Installing the Hybrid Web Container on Android Devices
	Configuring the Android Emulator

	Preparing BlackBerry Devices for the Hybrid Web Container
	Installing the Hybrid Web Container on BlackBerry Devices Over the Air
	Enabling Hybrid Web Container Message Notification
	Configuring the BlackBerry Simulator for Hybrid Web Containers

	Preparing iOS Devices for the Hybrid Web Container
	Installing the Hybrid Web Container on the iOS Device
	Installing the Hybrid Web Container from the Apple App Store
	Installing the Hybrid Web Container Using iTunes

	Preparing Windows Mobile Devices for the Hybrid Web Container
	Installing the Hybrid Web Container on Windows Mobile Devices
	Installing Microsoft Synchronization Software
	Installing the Hybrid Web Container on the Windows Mobile Emulator

	Configure Connection Settings on the Device
	Configuring Android Connection Settings
	Configuring BlackBerry Connection Settings
	Configuring iOS Connection Settings
	Configuring Windows Mobile Connection Settings

	Install and Test Certificates on Simulators and Devices
	Installing X.509 Certificates on Windows Mobile Devices and Emulators
	Testing X.509 Certificates on Windows Mobile Devices and Emulators

	Installing X.509 Certificates on Android Devices and Emulators
	Testing X.509 Certificates on Android Devices and Emulators

	Installing X.509 Certificates on BlackBerry Simulators and Devices
	Testing X.509 Certificates on BlackBerry Devices and Simulators

	Installing X.509 Certificates on iOS Devices
	Testing X.509 Certificates on iOS Devices and Simulators
	Apple Push Notification Service
	Provisioning iOS Devices
	Configuring Apple Push Settings for the Hybrid Web Container
	Apple Push Notification Properties

	Uninstall the Hybrid Web Container from the Device
	Removing the Hybrid Web Container From the BlackBerry Device

	Hybrid Web Container Customization
	Adding a Custom Icon for the Hybrid App Package Using the Packaging Tool
	Manually Adding a Custom Icon to the Manifest.xml File

	Changing the Hybrid App Package Icon
	Android Hybrid Web Container Customization
	Android Customization Touch Points
	Look and Feel Customization of the Android Hybrid Web Container
	Changing the Android Hybrid Web Container Icon
	Customizing the About Screen and Other Branding
	Adding a Splash Screen
	Changing Labels and Text
	Adding a New Language
	Using Custom Colors
	Using Custom Fonts

	Default Behavior Customization for the Android Hybrid Web Container
	Removing Fields from the Settings Screen
	Configuring Default Values for the Settings Screen
	Removing the PIN Screen
	Using Multiple Hybrid Web Containers on the Same Android Device
	Sorting the List of Hybrid Apps
	Sorting Hybrid App Messages
	Filtering the Hybrid App Messages
	Setting HTTP Headers
	Modifying the Hybrid App List Appearance
	Creating a Gallery View
	Creating Categorized Views
	Making the List of Hybrid App Packages Searchable

	Customizing the Push Notification Handler in the Android Hybrid Web Container

	Testing Android Hybrid Web Containers

	BlackBerry Hybrid Web Container Customization
	BlackBerry Customization Touch Points
	Look and Feel Customization of the BlackBerry Hybrid Web Container
	Changing the BlackBerry Hybrid Web Container Icon
	Rebranding the BlackBerry Hybrid Web Container
	Adding a Splash Screen
	Changing Labels and Text in the BlackBerry Hybrid Web Container
	Adding a New Language
	Customizing the About Screen for the BlackBerry Hybrid Web Container
	Using Custom Colors
	Using Custom Fonts

	Default Behavior Customization for the BlackBerry Hybrid Web Container
	Removing Fields from the Settings Screen
	Configuring Default Values for the Settings Screen
	Using Multiple Hybrid Web Containers on the Same BlackBerry Device
	Sorting the List of Hybrid Apps
	Sorting Hybrid AppMessages
	Filtering Hybrid App Messages
	Setting HTTP Headers
	Modifying the Hybrid App List Appearance
	Creating a Tree View
	Creating Categorized Views
	Making the List of Hybrid Apps Searchable

	Customizing the Push Notification Handler in the BlackBerry Hybrid Web Container

	iOS Hybrid Web Container Customization
	iOS Customization Touch Points
	Look and Feel Customization of the iOS Hybrid Web Container
	Changing the Hybrid Web Container Application Icon
	Changing the iOS Hybrid App Name
	Customizing the Splash Screen
	Changing Labels and Text
	Adding a New Language

	Default Behavior Customization for the iOS Hybrid Web Container
	Customizing PIN Screens on iOS
	Creating New PIN Screens
	Changing Localizable Strings in the PIN Screen
	Removing the PIN Screen

	Using Default Connection Settings
	Removing Fields from the Settings Screen
	Using Multiple Hybrid Web Containers on the Same iOS Device
	Sorting and Filtering the List of Hybrid App Packages and Messages
	Changing to a New UI Control
	Setting HTTP Headers
	Customizing the Push Notification Handler in the iOS Hybrid Web Container
	Hiding the Listview on iPad

	Windows Mobile Hybrid Web Container Customization
	Windows Mobile Customization Touch Points
	Look and Feel Customization of the Windows Mobile Hybrid Web Container
	Changing the Hybrid Web Container Icon
	Changing the Windows Mobile Hybrid App Package Icon
	Implementing a Custom HybridAppList Screen
	Customizing the About Screen and Other Branding
	Adding a Splash Screen
	Changing Labels and Text
	Adding a New Language

	Default Behavior Customization of the Windows Mobile Hybrid Web Container
	Customizing Settings Screen Fields
	Using Multiple Hybrid Web Containers on the Same Windows Mobile Device
	Sorting the List of Hybrid App Packages
	Sorting Hybrid App Messages
	Filtering Hybrid App Messages
	Setting HTTP Headers
	Customizing OK Button Behavior

	Packaging a CAB File

	Prepackaged Hybrid Apps
	Including a Prepackaged Hybrid App in the Android Hybrid Web Container
	Including a Prepackaged Hybrid App in the BlackBerry Hybrid Web Container
	Including a Prepackaged Hybrid App in the iOS Hybrid Web Container
	Including a Prepackaged Hybrid App in the Windows Mobile Hybrid Web Container

	Adding Native Device Functionality to the Hybrid Web Container
	Supported JavaScript PhoneGap APIs
	Implementing PhoneGap
	PhoneGap Custom Plug-ins
	Custom Plug-ins for the Android Hybrid Web Container
	Adding a Custom Plug-in to the Android Hybrid Web Container
	Testing the Plug-in

	Custom Plug-ins for the BlackBerry Hybrid Web Container
	Adding a Custom Plug-in to the BlackBerry Hybrid Web Container

	Custom Plug-ins for the iOS Hybrid Web Container
	Adding a Custom Plug-in to the iOS Hybrid Web Container

	Custom Plug-ins for the Windows Mobile Hybrid Web Container
	Adding a Custom Plug-in to the Windows Mobile Hybrid Web Container

	Removing PhoneGap From the Hybrid Web Container
	Removing PhoneGap from the Android Hybrid Web Container
	Removing PhoneGap from the BlackBerry Hybrid Web Container
	Removing PhoneGap from the iOS Hybrid Web Container

	Initializing the PhoneGap Library for the Windows Mobile Hybrid Web Container
	PhoneGap Library Downgrade
	Downgrading the PhoneGap Library Used by the Android Hybrid Web Container
	Downgrading the PhoneGap Library Used by the iOS Hybrid Web Container

	Hybrid App Configuration for Data Change Notification
	Extending Data Change Notification to Hybrid Apps
	Non HTTP Authentication Hybrid App DCN Request
	Sending Hybrid App DCN to Users Regardless of Individual Security Configurations
	Hybrid App DCN Request Response
	Hybrid App DCN Design Approach and Sample Code
	Comparing Hybrid App DCN With and Without Payload
	Hybrid App DCN Without Payload
	Hybrid App DCN With Payload

	Sample Java Function for Generating Hybrid App DCN

	Index

