
Developer Guide: Migrating to SAP Mobile
SDK 2.3

SAP Mobile Platform 2.3 SP04

DOCUMENT ID: DC01912-01-0234-01
LAST REVISED: May 2014
Copyright © 2014 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Migrate Your Artifacts ...1
Best Practices for Migrating Applications1

Migrate Agentry Applications ...2
Migrating From Agentry Mobile Platform to SAP

Mobile Platform ..2
Porting Agentry Applications to iOS 7 Look and Feel5

Migrate Mobile Business Objects ..7
Migrate Object API Applications ..9

Object API Application Migration Requirements in
SAP Mobile Platform Version 2.3 SP039

Native Client Version Compatibility Matrix10
Migration Paths for Android ..11

Migrating Android Applications to 2.211
Migration Paths for BlackBerry12

Migrating BlackBerry Applications to 2.212
Migrating BlackBerry Applications to 2.1 ESD #2

...15
Migration Paths for iOS ...16

Migrating iOS Native Custom Applications17
Migration Paths for Windows and Windows Mobile

Applications ..32
Migrating Windows and Windows Mobile

Applications to 2.2 ...32
Migrating Windows and Windows Mobile

Applications to 2.1 ESD #333
Migrating Windows and Windows Mobile

Applications to 2.1 ESD #233
Migrate Hybrid Web Container Projects36

Hybrid Web Container Compatibility Matrix36
Migrate Hybrid Apps to JavaScript API38

Manual Migration Tasks39

Developer Guide: Migrating to SAP Mobile SDK 2.3 iii

Generated Application Differences41
Migrating Hybrid Apps to JavaScript API47

Android ...51
Hybrid Web Container Migration Paths for

Android ..51
BlackBerry ..51

Hybrid Web Container Migration Paths for
BlackBerry ...52

iOS ..52
Hybrid Web Container Migration Paths for iOS52

Windows Mobile ..54
Hybrid Web Container Migration Paths for

Windows Mobile ..54
Migrate OData Applications ..54

OData Client Compatibility Matrix55
Android ...56
BlackBerry ..56
iOS ..56
OData SDK API Changes in Version 2.356

Migrate OData Applications to REST API57
Guidelines for On Premise and Cloud Applications58

Migrate REST API Applications ..59
Index ..61

Contents

iv SAP Mobile Platform

Migrate Your Artifacts

(Audience: application developers) Migrate your applications to SAP® Mobile Platform 2.3
SP03 to take advantage of new features.

You might need to perform some migration tasks to take advantage of new features and system
improvements. See Best Practices for Migrating Applications on page 1 for additional
information.

After you install and upgrade your SAP Mobile Server instances, migrate your mobile
business objects (MBOs), projects, and applications as needed.

Note: References to 2.2 and 2.3 include support packages; specific support packages are
identified only if there is a change significant to a particular support package. SAP
recommends you always install the latest support package available.

If you upgraded from a version earlier than 2.2 SP02, refer to Developer Guide: Migrating to
Sybase® Mobile SDK 2.2 SP02 (cumulative for 2.2), and its updates, for application
migration information: http://infocenter.sybase.com/help/topic/
com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843142074.html

For supporting information, see:
• New Features
• Supported Hardware and Software

Best Practices for Migrating Applications
Use information to formulate best practices for migrating applications.

When you upgrade to the latest version of SAP Mobile Platform, client applications continue
to run without migrating them. In some cases, adjustments are required to ensure the
application runs correctly; and in cases where the client application is based on mobile
business objects, the project needs to be started in the Mobile Application Diagram to
automatically trigger project migration steps. But overall, the client application continues to
run and can synchronize with its enterprise information system. Any exceptions are noted in
the documentation.

A client application is compiled code that is based on its data model, and consists of a binary
piece, and an SAP Mobile Server piece. This enables the application to execute on devices and
in the server. Over time, features are added and improvements made to the SDK and SAP
Mobile Server. To take advantage of these improvements, you need to upgrade your server, or
implement a more recent SDK version.

If you rely only on in-place migration, after multiple server upgrades your client application
may cease to work efficiently or at all. A best practice is to recompile your client application

Migrate Your Artifacts

Developer Guide: Migrating to SAP Mobile SDK 2.3 1

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843142074.html
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843142074.html

code after a major release, so that the binary and SAP Mobile Server versions are the latest.
One strategy is to wait several weeks to ensure the upgraded environment is stable, and then
recompile.

Migrate Agentry Applications

Procedures are required to migrate current Agentry applications to SAP Mobile Platform 2.3.

Migrating From Agentry Mobile Platform to SAP Mobile
Platform

Prerequisites

The following items must be addressed prior to performing this procedure:

• The SAP Mobile Platform 2.3 is assumed to be installed and properly configured.
• If implementing an SAP Mobile Platform clustered environment, this should be

established, and the Agentry application defined in each node, prior to beginning the
migration process. The migration should then be performed with deployment to the
primary node in the cluster.

• For mobile applications which make use of a Java system connection, the Java Runtime
Environment (JRE) should be installed to the host system for the SAP Mobile Platform
prior to performing this procedure. Note that installation of the JRE requires the update of
the system’s PATH environment variable with the location of the bin and lib directories
of the JRE installation.

• If the mobile application is one provided by SAP built on Agentry 6.0.x, review and have
available the Implementation and Administration guide for the application being
migrated. This manual can be found on the SAP Marketplace page for the mobile
application. Items related to server configuration and environment setup, as well as system
requirements, are applicable to the migration and implementation of the mobile
application in SAP Mobile Platform 2.3.

• The person performing this procedure must have detailed, development-level knowledge
concerning the application to be upgraded from Agentry Mobile Platform 6.0.x. This
includes the following items, though this list may not be comprehensive and the
requirements will vary from one application to the next:
• Java resources, such as application specific .jar files

• Application-specific configuration files
• Application-specific resource files such as dynamic link libraries (DLL’s)
• Administration scripts typically stored within the sql directory of the Agentry Server

Migrate Agentry Applications

2 SAP Mobile Platform

• The SAP Mobile SDK 2.3 should already have been retrieved and its contents extracted.
• The person performing this procedure must have access to and the proper permissions for

the SAP Control Center to allow for the import of ZIP archives into Agentry Applications
and to start and stop services within the SAP Mobile Platform.

Task

The purpose of this procedure is to upgrade or migrate a mobile application built and deployed
on Agentry Mobile Platform 6.0.x, a.k.a. “Agentry Standalone” to the SAP Mobile Platform
2.3. This process can be performed to upgrade a current production implementation, or to
upgrade a new implementation using an out-of-the-box mobile application provided by SAP
and built on Agentry Mobile platform 6.0.x. Those familiar with the process for upgrading
mobile applications from one version of Agentry to another will find this procedure to be
similar, though with some key differences in the execution.

From a high level, this procedure accomplishes the following main tasks in order to migrate
the mobile application:

• All application-specific resources stored on the Agentry 6.0.x Server are bundled together
in a ZIP archive, with the exception of the business logic itself

• The business logic is imported from the Agentry 6.0.x Server as a new project in the
Eclipse workspace for the Agentry Editor for SAP Mobile Platform 2.3. This upgrades the
business logic to the latest format.

• The application is published to the Agentry Server running with the SAP Mobile Platform
2.3. This updates the configuration sections for the application related to the defined
system connections.

• The ZIP archive containing the non-Agentry application-specific resources is imported
using the SAP Control Center into the Agentry Server for the application within the SAP
Mobile Platform 2.3.

The end result of this process is a merging of the new Agentry Server resources within the SAP
Mobile Platform with the mobile application-specific resources as implemented in the
Agentry 6.0.x Server. The following instructions provide the steps necessary to accomplish
this migration.

This procedure is applicable to any application built and deployed on Agentry Mobile
Platform 6.0.x, whether it be a product from SAP, or a custom application built by the
customer.

1. If the mobile application to be migrated is not yet installed in the implementation
environment, the server component for the mobile application should be installed to a
separate, but accessible location in order to provide the mobile application business logic
and application-specific resources. This must be a production server installation of the
mobile application.

2. Install the Agentry Server for production as provided in the SAP Mobile SDK 2.3
according to the instructions provided in the Install SAP Mobile SDK 2.3 guide.

Migrate Agentry Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 3

3. Install and configure the Agentry Editor for SAP Mobile Platform 2.3 as provided in the
SAP Mobile SDK 2.3 according to the instructions provided in the Install SAP Mobile
SDK 2.3 guide.

4. Within the Agentry Editor for SAP Mobile Platform 2.3, import the application from the
Agentry 6.0.x Server, creating a new Agentry application project within the Eclipse
workspace.

5. Publish the application project from the Agentry Editor to the Agentry Server installed
from the SAP Mobile SDK 2.3.

6. Create a ZIP archive, preserving the directory structure, containing the following items
found in the Agentry 6.0.x Server installation:

• Application-specific configuration files, which does not include configuration files
provided with standard Agentry Server installations

• Application-specific Java resources, including .jar files, but do not include the
Agentry-v5.jar or Agentry-v4.jar (if present) files found in the Java folder
of the Server’s installation. Any other resources found here should be included as they
are likely to be application-specific.

• Application-specific DLL files, but do not include DLL’s provided with a standard
Agentry Server installation.

• The contents of the sql directory under the Agentry Server’s installation location. All
files in this directory can be safely added to the ZIP archive.

• Any other files know to be a part of the mobile application but not provided with a
standard Agentry Server installation.

7. Add to the ZIP archive the folder Application found in the Agentry Server installation
from the SAP Mobile SDK 2.3, as well as the Agentry.ini configuration file.

8. Using the SAP Control Center, define a new Agentry application according to the
procedure found in the SAP Control Center for SAP Mobile Platform guide, in the section
Creating Agentry Application Definition.

9. Within the SAP Control Center, stop the Agentry Server instance just created if it is
currently running.

10. Import the ZIP archive containing the application-specific resources and the
Application folder according to the procedure in the SAP Control Center for SAP
Mobile Platform, in the section Deploying Agentry Application Files to an Exiting
Application.

11. Start the Agentry Server instance for the application using the SAP Control Center.

12. Configure the Agentry Server within the SAP Mobile Platform using the SAP Control
Center, including system connections, client-server communications, and other standard
configuration tasks. For applications provided by SAP see the Implementation and
Administration guide for the product for information on configuring the Server for the
application. Note that instructions may reference the Agentry Administration Client as

Migrate Agentry Applications

4 SAP Mobile Platform

provided with Agentry 6.0.x and prior releases. The SAP control Center is now used to
perform the configuration, but the appropriate settings and options are the same.

With the completion of this procedure, the mobile application originally built and deployed on
the Agentry Mobile Platform version 6.0.x has been upgraded and migrated to the SAP
Mobile Platform 2.3. Application-specific resources have been moved to the Agentry Server
instance within the SAP Mobile Platform and the business logic for the application has been
upgrade and imported.

Next

The next steps should be to thoroughly test the updated application with standard testing
procedures, including end-to-end synchronization tests involving the Agentry Clients.

Porting Agentry Applications to iOS 7 Look and Feel
When porting an Agentry application to iOS 7, update some of the user interface elements to
conform to iOS 7 look and feel. SAP Mobile Platform 2.3 SP04 PL01 supports developing iOS
7 applications using Xcode 5.1 and iOS 7 SDK.

iOS 7 design guidelines recommend simplifying the user interface so that application design
does not compete with the application content and functionality. Before beginning the
transition to iOS 7, review iOS Design Resources at https://developer.apple.com/library/ios/
design/index.html#//apple_ref/doc/uid/TP40013289, then update your Agentry iOS
applications so that they follow the tenants of good iOS 7 application design, and look and run
properly in iOS 7.

Note: Agentry Editor enables you to define styles and images for a specific device platform
but not a specific OS version, so the same styles apply to the application regardless of the
supported iOS version on which it runs.

This image illustrates the difference between iOS 6 and iOS 7 user interface element design.

Migrate Agentry Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 5

https://developer.apple.com/library/ios/design/index.html#//apple_ref/doc/uid/TP40013289
https://developer.apple.com/library/ios/design/index.html#//apple_ref/doc/uid/TP40013289

Application Styles - Tabs
By default, iOS 7 bars (navigation, tab, and toolbar) have a plain look with the application’s
navigation bar extending upwards behind the status bar, and the status bar is transparent. You
can use the Application Styles for Tabs property to apply a custom background color to iOS 7
navigation bars, tab bars, and toolbars. The status bar text is black or white depending on
which background color you choose for the navigation bar to provide sufficient contrast.

Application Styles - Buttons
iOS 7 introduced the concept of tint color, where the tint color is inherited by the entire
application's actionable items. For example, mail is blue, calendar is red, and so on.

Agentry Editor enables you to create a tint color using the Application Styles for Buttons
property. The foreground color is applied to the bar buttons and other actionable items
throughout the application instead of the default light blue.

Tip: Be sure to select a color that looks good and provides enough contrast on a white
background.

Bar Buttons
Agentry Editor supports the customization of bar buttons. For all images and icons, PNG
format is recommended but avoid using interlaced PNGs. Agentry Toolkit provides default
bar template images that help you quickly redesign your application with an iOS 7 look and
feel.

Migrate Agentry Applications

6 SAP Mobile Platform

• Bar buttons in iOS 7 are borderless.
• The text color for buttons with labels use the tint color for the application.
• All PNG images are rendered as templates per the iOS 7 design guidelines.
• BMP images use the mask color defined in Agentry Editor and render as templates.
• All other image types render as originals and cannot be tinted.

Selected Row Background Color
iOS 7 uses a flat gray for the table row background color. Agentry list fields (List Tile View,
and List View) use this new style by default. In Agentry Editor, you can change the selected
row background color in Screen Field > List Tile View Data > Selected Rows. Once you
select a style from the drop-down list, the background color of the selected rows uses the
selected style's background color.

Default Label Fonts
To follow iOS 7 design guidelines, the default font on Agentry Editor labels is regular instead
of bolded. Use bold fonts sparingly to highlight important content to the user. You can still
select bold fonts using existing Agentry Editor Application Styles functionality.

iOS 6 Support
Apple suggests optimizing the design for iOS 7; however, for Agentry applications that must
run in iOS 6, be sure to test the application after updating the design to iOS 7. For tips and
instructions, see Supporting iOS 6 at https://developer.apple.com/library/ios/documentation/
UserExperience/Conceptual/TransitionGuide/SupportingEarlieriOS.html#//apple_ref/doc/
uid/TP40013174-CH14-SW1.

Migrate Mobile Business Objects

You must complete the steps below to migrate 2.2 SP02 mobile business objects (MBOs) to
SAP Mobile Platform version 2.3.

If you are migrating from a version earlier than 2.2 SP02, see Developer Guide: Migrating to
SAP Mobile SDK 2.2 SP02, and its updates, on Product Documentation, the Migrate Mobile
Business Object section: http://infocenter.sybase.com/help/topic/
com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843142355.html

Migrate 2.2 SP0x Mobile Business Objects to 2.3
You must migrate 2.2 SP0x Mobile Business Objects (MBOs) to SAP Mobile Platform
version 2.3.

1. From Eclipse, point to the existing MBO project's workspace.
2. Ensure connection profiles referenced by the MBO projects are in place or imported, and

enterprise information system (EIS) data sources associated with those connection
profiles can be connected.

Migrate Mobile Business Objects

Developer Guide: Migrating to SAP Mobile SDK 2.3 7

https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/TransitionGuide/SupportingEarlieriOS.html#//apple_ref/doc/uid/TP40013174-CH14-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/TransitionGuide/SupportingEarlieriOS.html#//apple_ref/doc/uid/TP40013174-CH14-SW1
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/TransitionGuide/SupportingEarlieriOS.html#//apple_ref/doc/uid/TP40013174-CH14-SW1
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843142355.html
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843142355.html

3. Once SAP Mobile WorkSpace is started, open the Mobile Application Diagram. This
automatically triggers the Mobile Application project migration.

Additional Steps to Migrate MBOs

• In versions earlier than SAP Mobile Platform version 2.2 SP02, SAP Mobile WorkSpace
allowed mapping of operations with multiple MBO arguments (Filled from Attribute,
client parameter, and personalization key) at the same time, even though it might not work
properly on the device application during runtime.
With version 2.2 SP02, when adding a mapping of an operation argument, SAP Mobile
WorkSpace now allows only one of the three sources (MBO attribute, client parameter,
personalization key) to map into the operation argument at one time; that is, the argument
value sources are mutually exclusive.
However, when migrating the Mobile Application project from earlier versions, SAP
Mobile WorkSpace preserves the original MBO operation argument value assignment
choices the developer made, to retain backward compatibility with the project in the earlier
version. SAP Mobile WorkSpace does not remove any mappings when migrating a
project.
In a migrated project, if an operation argument is mapped to a client parameter as well as an
attribute or personalization key, this warning appears:
Client parameter parameterName might not be used, as the mapped
argument has 'Fill from Attribute' or 'Personalization Key'
specified.

The developer must adjust the MBO model so that an operation argument maps to only one
source.

Note: The developer can provide a default value for the operation argument, regardless of
how the argument is mapped.

• Starting with SAP Mobile Platform version 2.3 SP03, SAP Mobile WorkSpace no longer
allows you to set default values at the structure wrapper node levels (the structure node
which contains only a single structure element). For a project that was created before 2.3
SP03, SAP Mobile WorkSpace removes the default value of wrapper level argument and
disables it, then moves the original default values at the wrapper level to the structure fields
of its single child structure node.
In MBO Preview and MBO Operation's Test execute, SAP Mobile WorkSpace uses the
wrapper argument's child element's default value to preview and test execution; check
"Save as default value" to save the wrapped child argument's default value.

Note: In releases prior to 2.2 SP02, SAP Mobile WorkSpace automatically created client
parameters definition and mapped them to the related operation arguments. After migration,
those client parameters and mapping would stay. For Other operation types, client parameters
are created and mapped to arguments automatically. In case the users want to have the client
parameters and the mappings to the operation arguments, they can drag and drop an operation

Migrate Mobile Business Objects

8 SAP Mobile Platform

argument to the Client Parameters folder in the Input mapping page from the MBO operation
wizard or Properties view's Input tab.

Migrate Object API Applications

No steps are required to migrate 2.2 SP02 applications to SAP Mobile Platform version 2.3.

If you are migrating from a version earlier than 2.2 SP02, see Developer Guide: Migrating to
Sybase Mobile SDK 2.2 SP02, and its updates, on Product Documentation, the Migrate Object
API Applications section: http://infocenter.sybase.com/help/topic/
com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843141277.html

Object API Application Migration Requirements in SAP
Mobile Platform Version 2.3 SP03

Understand the requirements before upgrading to and migrating your Object API applications
to SAP Mobile Platform version 2.3 SP03.

Native Client UltraLite® Database Version Compatibility
The Object API Application client stack (Android, Windows/Windows Mobile, BlackBerry,
and iOS) in SAP Mobile Platform version 2.3 SP03 includes UltraLite version 16 as the on-
device database. Previous versions of the client stack included UltraLite version 12:

• UltraLite version 16 cannot read UltraLite databases that were created using previous
versions of the software.

• You cannot upgrade databases on devices.

See the topic UltraLite upgrades in the SQLAnywhere 16 documentation for details.

Client Stack Upgrades Are Not Supported
When migrating applications from SAP Mobile Platform version 2.3 SP02 and earlier to SAP
Mobile Platform version 2.3 SP03, you must:

1. Successfully synchronize all pending operations on the device prior to the upgrade.
2. Unregister the application.
3. Delete the database or uninstall the application; then upgrade the application.
4. Re-register the application.

Set Up the Encryption Key in SAP Control Center
After upgrading SAP Mobile Server to version 2.3 SP03, the Administrator must configure
the encryption key from SAP Control Center or synchronization fails for 2.3 SP03 clients of
newly created projects:

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 9

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843141277.html
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352843141277.html

1. Log in to SAP Control Center.
2. Click Configuration.
3. Click General > Components.
4. Select Replication > Properties.
5. In the replication component properties screen, specify the E2E encryption certificate

alias value.
6. Save your changes and restart SAP Mobile Server.

Native Client Version Compatibility Matrix
Compatibility between versions of the client object API and SAP Mobile Server (Unwired
Server).

Native Client Object API and SAP Mobile Server Version Compatibility

Unwired
Server 2.1

Unwired
Server 2.1
ESD #1

Unwired
Server 2.1
ESD #2

Unwired
Server 2.1
ESD #3

Unwired
Server
2.2 SP02

SAP
Mobile
Server
2.3

Native Cli-
ent Object
API 2.1

Yes Yes Yes Yes Yes Yes

Native Cli-
ent Object
API 2.1
ESD #1

No Yes Yes Yes Yes Yes

Native Cli-
ent Object
API 2.1
ESD #2

No No Yes Yes Yes Yes

Native Cli-
ent Object
API 2.1
ESD #3

No No No Yes Yes Yes

Native Cli-
ent Object
API 2.2
SP02

No No No No Yes Yes

Migrate Object API Applications

10 SAP Mobile Platform

Unwired
Server 2.1

Unwired
Server 2.1
ESD #1

Unwired
Server 2.1
ESD #2

Unwired
Server 2.1
ESD #3

Unwired
Server
2.2 SP02

SAP
Mobile
Server
2.3

Native Cli-
ent Object
API 2.3

No No No No No Yes

Note:

• Yes – the client application built in this SDK version is supported in the server version
(minor adjustments may be necessary to ensure the application runs correctly; see the
migration details for the appropriate application type, if any).

• No – the client application built in this SDK version is not supported in the server version.
• Server version – refers to the server version to which an original package is migrated, and

not a newly deployed package. For the example of "Native Client Object API 2.1" vs.
"server 2.3", the application package that runs on "server 2.3" may not always be newly
created and deployed from MobileSDK2.3; it may have been originally created from
MobileSDK2.1 and deployed to 2.1 server, and then migrated to 2.3 server.

Migration Paths for Android
Paths available to migrate Android object API applications from earlier versions to the current
version.

Application is
Built with SDK
Version

Migration Tasks

2.1.1

2.1.2

2.1.3

Migrate your application to the current version. See the migration instruc-
tions:

• Migrating Android Applications to 2.2 on page 11

2.2

2.2 SP01

2.2 SP02

2.3

No migration changes are required.

Migrating Android Applications to 2.2
These changes are required to migrate Android applications to 2.2.

Afaria library changes require you to modify and recompile your applications.

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 11

1. Access the Android Afaria client library and JAR files that are available in:
SMP_HOME\MobileSDK<X.X>\ObjectAPI\Android
Note: Alternatively, navigate to the Mobile Enterprise Technical Support website at http://
frontline.sybase.com/support/downloads.aspx (registration required).

Download the appropriate Android Afaria client (see Supported Hardware and
Software).

2. Import the Android Afaria client using information in Developer Guide: Android Object
API Applications. See Importing Libraries and Code (in either the Development Task
Flow for Object API Applications section, or the Development Task Flow for DOE-based
Object API Applications section as appropriate).

Migration Paths for BlackBerry
Paths available to migrate BlackBerry object API applications from earlier versions to the
current version.

Application is
Built with SDK
Version

Migration Tasks

2.1

2.1.1

Migrate your application to the current version. See the migration instruc-
tions:

• Migrating BlackBerry Applications to 2.1 ESD #2 on page 15
• Migrating BlackBerry Applications to 2.2 on page 12

2.1.2 Migrate your application to the current version. See the migration instruc-
tions:

• Migrating BlackBerry Applications to 2.2 on page 12

2.1.3

2.2

2.2 SP01

2.2 SP02

Migrate your application to the current version. See the migration instruc-
tions:

• Migrating BlackBerry Applications to 2.2 on page 12

2.3 No migration changes are required.

Migrating BlackBerry Applications to 2.2
No migration changes are required for BlackBerry Object API applications; however, you
may need to perform some migration steps to take advantage of new features in 2.2.

• Client library changes – for BlackBerry:

Migrate Object API Applications

12 SAP Mobile Platform

http://frontline.sybase.com/support/downloads.aspx
http://frontline.sybase.com/support/downloads.aspx

• The sup_client2.jar client is now shipped as a library, with no separate
sup_client2.cod and sup_client2.alx files. This requires a change to how
you develop BlackBerry projects:
• Eclipse projects – export sup_client2.jar into the build path configuration.

• BlackBerry JDE projects – create a library project including
sup_client2.jar.

• Several client files have been deleted in version 2.2 SP02: CommonClientLib,
MessagingClientLib, MocaClientLib files, and MCL.jar substitutes.
However, MCL.jar packages and classes are shipped into sup_client2.jar, so
change your application to reference sup_client2.jar and
UltraliteJ12.jar

For information and examples for migrating existing BlackBerry applications to 2.2 SP02
implementing these changes, see Migrating BlackBerry Applications (Eclipse Project) on
page 13 and Migrating BlackBerry Applications (JDE Project) on page 14.

• API changes – a new setApplicationIdentifier(String value,
String signerId) API is available to replace the old signing implementation. It is
based on BlackBerry Password Based Code Signing Authority.

To learn more about the BlackBerry Password Based Code Signing Authority on which the
API is based, and about the parameter signerId: http://supportforums.blackberry.com/
t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/
524282.

To download the BlackBerry signing tool used with this new API: https://
swdownloads.blackberry.com/Downloads/entry.do?
code=D82118376DF344B0010F53909B961DB3.

For information and examples for migrating existing BlackBerry applications to 2.2 SP02
implementing this change, see Migrating BlackBerry Applications (Eclipse Project) on
page 13 and Migrating BlackBerry Applications (JDE Project) on page 14.

Note: With this change, the setApplicationIdentifier(String value)
API is deprecated and will be removed in a future release.

Migrating BlackBerry Applications (Eclipse Project) to 2.2
Migrate BlackBerry Object API applications from 2.1 ESD #3 to version 2.2 using an Eclipse
project.

These steps use an example that demonstrates the new BlackBerry signing API method.

To learn more about the BlackBerry Password Based Code Signing Authority on which the
API is based, and about the parameter Signer Id: http://supportforums.blackberry.com/
t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 13

http://supportforums.blackberry.com/t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282
http://supportforums.blackberry.com/t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282
http://supportforums.blackberry.com/t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
http://supportforums.blackberry.com/t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282
http://supportforums.blackberry.com/t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282

1. Download the BlackBerry signer tool, and install it in your development environment:
https://swdownloads.blackberry.com/Downloads/entry.do?
code=D82118376DF344B0010F53909B961DB3.

2. After installing the signer tool, generate a new key file (for example: suptest.key).

3. Create the BlackBerry project in Eclipse:

a) Navigate to Configure Build Path > Libraries tab, and reference:
• sup_client2.jar
• UltraliteJ12.jar

b) Navigate to the Order and Export tab, and check to make sure the
sup_client2.jar file is included in your application JAR file.

4. Copy the generated key file (for example, suptest.key) to the project src folder.

5. In your application source code, set the new key file (suptest in this example):

com.sybase.mobile.Application.getInstance().setApplication
Identifier(end2end.test.Const.ApplicationIdentifier,
"suptest");

6. Build your project, and run the application on a simulator to test it.

7. When you are ready to run the application on a real device, sign the .cod files using the
signature tool (BlackBerry > Sign). After you sign the .cod files with the BlackBerry
signature tool, use the File Signer that you installed in step 1 to sign the .cod file again.

8. Install the cod files on the device using provisioning procedures, and run the application.

Migrating BlackBerry Applications (JDE Project) to 2.2
Migrate BlackBerry Object API applications from 2.1 ESD #3 to version 2.2 using a
BlackBerry JDE project.

These steps use an example that demonstrates the new BlackBerry signing API method.

To learn more about the BlackBerry Password Based Code Signing Authority on which the
API is based, and about the parameter Signer Id: http://supportforums.blackberry.com/
t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282

1. Download the BlackBerry signer tool, and install it in your development environment:
https://swdownloads.blackberry.com/Downloads/entry.do?
code=D82118376DF344B0010F53909B961DB3.

2. After installing the signer tool, generate a new key file (for example: suptest.key).

3. Create a BlackBerry library project in the IDE, add sup_client2.jar to the project,
and then build it.

4. Create an empty BlackBerry project in the IDE:

a) Navigate to Configure Build Path, and import JAR files:
• UltraliteJ12.jar
• ULjDatabaseTransfer.jar

Migrate Object API Applications

14 SAP Mobile Platform

https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
http://supportforums.blackberry.com/t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282
http://supportforums.blackberry.com/t5/Java-Development/Protect-persistent-objects-from-access-by-unauthorized/ta-p/524282
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3
https://swdownloads.blackberry.com/Downloads/entry.do?code=D82118376DF344B0010F53909B961DB3

b) Navigate to the Project Dependencies tab, and check the library project.

5. Copy the generated key file (for example, suptest.key to the project root folder.

6. In your application source code, set the new key file (suptest in this example):
com.sybase.mobile.Application.getInstance().setApplication
Identifier(end2end.test.Const.ApplicationIdentifier,
"suptest");

7. Build your project, and run the application on a simulator to test it.

8. When you are ready to run the application on a real device, sign the .cod files using the
signature tool. After you sign the .cod files with the BlackBerry signature tool, use the File
Signer that you installed in step 1 to sign the .cod file again.

9. Install the cod files on the device using provisioning procedures, and run the application.

Migrating BlackBerry Applications to 2.1 ESD #2
These changes are required to migrate BlackBerry applications to 2.1 ESD #2.

Update your application:

1. The Application APIs (in the Application class) are required for managing
application registrations, connections, and context. Rewrite the initialization code in your
application to use the Application APIs.
For information on the Application interface, search for Application APIs in the
Developer Guide for your platform.

2. Callbacks related to application events are contained in a separate
ApplicationCallback interface. Rewrite your application code to use this interface.
For information on the ApplicationCallback interface, search for Callback and
Listener APIs in the Developer Guide for your platform.

3. Replication-based synchronization clients require two data channels: a data channel for
data synchronization, and a messaging channel for sending registration and push
notifications to the client. Update your port configuration for both channels. See Sybase®

Control Center for Sybase Unwired Platform > Administer > Unwired Server > Server
Properties.

4. To continue using server-initiated synchronization, you must write code for handling
notifications. If change notifications are enabled for synchronization groups, you can
implement the onSynchronize callback method to monitor this condition, and either
allow or disallow default background synchronization.
public int onSynchronize(ObjectList groups,
SynchronizationContext context)
{
 int status = context.getStatus();
 if (status == SynchronizationStatus.STARTING_ON_NOTIFICATION)
 {
 // There is changes on the synchronization group
 if (busy)
 {
 return SynchronizationAction.CANCEL;

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 15

 }
 else
 {
 return SynchronizationAction.CONTINUE;
 }
 }

 // return CONTINUE for all other status
 return SynchronizationAction.CONTINUE;
}

5. Rebuild your application as described in Migrating BlackBerry Applications (Eclipse
Project) or Migrating BlackBerry Applications (JDE Project).

Migration Paths for iOS
Paths available to migrate iOS object API applications from earlier versions to the current
version.

Application is
Built with SDK
Version

Migration Tasks

2.1

2.1.1

Migrate your application to the current version. See the migration instruc-
tions:

• Transitioning Applications to Release 2.1 ESD #2 on page 19
• Transitioning MBS Applications to the Current Release (2.1 ESD #3 or

Later) on page 22

2.1.2 Migrate your application to the current version. See the migration instruc-
tions:

• Transitioning MBS Applications to the Current Release (2.1 ESD #3 or
Later) on page 22

2.1.3

2.2

2.2 SP01

2.2 SP02

2.3

No migration changes are required.

Migrate Object API Applications

16 SAP Mobile Platform

Migrating iOS Native Custom Applications
Understand the strategies and steps to follow when you transition applications to the current
release.

Migration Strategies
Your strategy for transitioning MBS-based iOS applications to the current release depends on
your current installation configuration, upgrade plans, and the data model changes in the
application to be transitioned. Follow the guidance in the scenario that fits your installation
configuration and upgrade plan.

Scenario 1

• Current Installation - 2.1 ESD #2 or earlier MBS client application on 2.1 ESD #2 or earlier
Unwired Server

• Upgrade Plan - Upgrade only Unwired Server to the current version, and maintain the
existing MBS client application

Your MBS client application should continue to work without error after server upgrade,
though some RBS features will not be available for your MBS client application. See
Maintaining MBS Client Applications on page 22

Scenario 2

• Current Installation - 2.1 ESD #2 or earlier MBS client application on 2.1 ESD #2 or earlier
Unwired Server

• Upgrade Plan - Upgrade both Unwired Server and client application to the current version.
Upgrade the client application to an RBS-based application.

• No Data Model Changes in the application

Recommended Steps:

1. Instruct application users to submit all pending data to the Unwired Server using the
existing MBS client application before you migrate to the new RBS application, and
coordinate the upgrade. This is an important step as it will ensure that application users do
not lose any modified data during your migration. With MBS, once submitPending is
invoked, the modified data is wrapped as an operation replay message to be sent as soon as
connectivity with the server is available. If the application user does not invoke
submitPending prior to migration, all of their data changes will be lost once migration
begins. For this reason, you will need to instruct the application users to use the appropriate
UI control exposed by the MBS application to invoke submitPending before you migrate
the application.

2. Follow the steps included in Transitioning MBS Client Applications on page 22 to
convert the MBS application to the new RBS application, creating a different application
name for the new RBS application on the device. Include explicit screens/message popups
within the application to alert the application user to follow these steps:

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 17

a. Submit all pending data from the MBS client application to the Unwired Server.
b. Confirm that the pending data has been submitted, delete the MBS application, and

then begin using the new RBS application.

Note: Once the application user acknowledges and confirms that pending data from
the old application has been submitted, do not display the popup/screen messages
again.

c. Subscribe and synchronize the new RBS application with the upgraded Unwired
Server.

Note: You need to use a different Application Name to avoid an accidental update of the MBS
application before the application user has a chance to submit their changes. However, you can
use the same Application ID for both the new RBS application and for the existing MBS
application.

For more in depth steps to transition your MBS client application to RBS, see Transitioning
MBS Client Applications on page 22

Scenario 3

• Current Installation - 2.1 ESD #2 or earlier MBS client application on 2.1 ESD #2 or earlier
Unwired Server

• Upgrade Plan - Upgrade both Unwired Server and client application to the current version.
Upgrade the client application to an RBS-based application.

• Data Model Changes in the application or MBO project

Recommended Steps:

1. Instruct application users to submit all pending data to the Unwired Server using the
existing MBS application before you migrate to the new RBS-based application, and
coordinate the upgrade. This is an important step as it will ensure that application users do
not lose any modified data during your migration. With MBS, once submitPending is
invoked, the modified data is wrapped as an operation replay message to be sent as soon as
connectivity with the server is available. If the application user does not invoke
submitPending prior to migration, all of their data changes will be lost once migration
begins. For this reason, you will need to instruct the application users to use the appropriate
UI control exposed by the MBS application to invoke submitPending before you migrate
the application.

2. Deploy the new package with data model changes to the server using a new Application
ID. Create a new application connection in the Sybase® Control Center.

3. Follow the steps included in Transitioning MBS Client Applications to the Current
Release on page 22 to convert the MBS application to the new RBS application, creating
a different application name and application id for the new RBS application on the device.
Include explicit screens/message popups within the application to alert the user to follow
these steps:
a. Submit all pending data from the MBS client to the Unwired Server.

Migrate Object API Applications

18 SAP Mobile Platform

b. Confirm that the pending data has been submitted, delete the MBS application, and
then begin using the new RBS application.

Note: Once the application user acknowledges and confirms that pending data from
the old application has been submitted, do not display the popup/screen messages
again.

c. Subscribe and synchronize the new RBS application with the upgraded Unwired
Server.

For more in depth steps to transition your MBS client application to RBS, see Transitioning
MBS Applications to the Current Release (2.1.3 ESD #3 or Later) on page 22

Note: For Scenario 2 and 3, there is no data transitioning solution when migrating MBS
applications to RBS applications. After the application is converted to RBS, the application
user must synchronize the application with the Unwired Server. The new application will not
use the data residing in the device database for the old application so the application user will
need to delete the old application from the device. If the old application is not removed from
the device, the database for the old application will continue to reside on the device; this may
double the space consumed on the device when the new application downloads records to the
new database.

Transitioning Applications to Release 2.1 ESD #2
Transition applications to release 2.1 ESD #2 by making changes to application registration.

Making Changes to Application Registration
This task is not required if your application is built with SDK version 2.1 ESD #2. For
applications built with SDKs prior to 2.1 ESD #2, make changes to the application to allow it
to register.

1. The Application APIs (SUPApplication class) are required for managing application
registrations, connections, and context. Rewrite the initialization code in your application
to use the Application APIs. For information on the Application interface, search for
Application APIs in the Developer Guide for your platform.
For iOS applications, the Messaging Client API has been removed. Replace references in
your application to the Messaging Client API (SUPMessage class) with the appropriate
use of the Application APIs (SUPApplication).

2. Callbacks related to application events are now contained in a
separate ApplicationCallback interface. Rewrite your application code to use this
interface. For information on the ApplicationCallback interface, search for
Callback and Listener APIs in the Developer Guide for your platform.

3. Complete application registration through an automatic or manual process. See the
Application and User Management Overview topic group in SAP Control Center for SAP
Mobile Platform.

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 19

Use the SUPApplicationCallback APIs to check that the application successfully
registered and the messaging client connection is established.

The following is sample code from the SUP101 project for
ApplicationCallbackHandler.

#import "SUPApplicationDefaultCallback.h"

// These strings will be used to send out NSNotifications.
#define ON_CONNECTING @"SUPConnecting"
#define ON_CONNECT_FAILURE @"SUPConnectFailure"
#define ON_CONNECT_DISCONNECT @"SUPConnectDisconnect"
#define ON_CONNECT_SUCCESS @"SUPConnectSuccess"
#define ON_REGISTER_SUCCESS @"SUPRegisterSuccess"
#define ON_REGISTER_FAILURE @"SUPRegisterFailure"

@interface ApplicationCallbackHandler :
SUPApplicationDefaultCallback
{

}

+ (ApplicationCallbackHandler*)getInstance;
@end
#import "ApplicationCallbackHandler.h"

@implementation ApplicationCallbackHandler

+ (ApplicationCallbackHandler*)getInstance
{
 ApplicationCallbackHandler* _me_1 = [[ApplicationCallbackHandler
alloc] init];
 [_me_1 autorelease];
 return _me_1;
}

- (void)notify:(NSNotification *)notification
{
 [[NSNotificationCenter defaultCenter]
postNotification:notification];
}

- (void)onConnectionStatusChanged:
(SUPConnectionStatusType)connectionStatus :(int32_t)errorCode :
(NSString*)errorMessage
{
 NSLog(@"===");
 NSLog(@"onConnectionStatusChanged: status = %d, code = %d,
message = %@",connectionStatus,errorCode,errorMessage);
 NSLog(@"===");
 NSString *notification = nil;
 switch(connectionStatus)
 {

Migrate Object API Applications

20 SAP Mobile Platform

 case SUPConnectionStatus_CONNECTING:
 notification = ON_CONNECTING;
 break;
 case SUPConnectionStatus_CONNECTION_ERROR:
 notification = ON_CONNECT_FAILURE;
 break;
 case SUPConnectionStatus_CONNECTED:
 notification = ON_CONNECT_SUCCESS;
 break;
 default:
 // Ignore all other status changes for this example.
 break;
 }

 if (notification != nil)
 {
 NSNotification *n = [NSNotification
notificationWithName:notification object:nil];
 [self performSelectorOnMainThread:@selector(notify:)
withObject:n waitUntilDone:NO];
 }

}

- (void)onRegistrationStatusChanged:
(SUPRegistrationStatusType)registrationStatus :(int32_t)errorCode :
(NSString*)errorMessage;
{
 NSLog(@"===");
 NSLog(@"onRegistrationStatusChanged: status = %d, code = %d,
message = %@",registrationStatus,errorCode,errorMessage);
 NSLog(@"===");

 if (registrationStatus ==
SUPRegistrationStatus_REGISTRATION_ERROR)
 {

 NSNotification *n = [NSNotification
notificationWithName:ON_REGISTER_FAILURE object:nil];
 [self performSelectorOnMainThread:@selector(notify:)
withObject:n waitUntilDone:NO];
 }

 if (registrationStatus == SUPRegistrationStatus_REGISTERED)
 {

 NSNotification *n = [NSNotification
notificationWithName:ON_REGISTER_SUCCESS object:nil];
 [self performSelectorOnMainThread:@selector(notify:)
withObject:n waitUntilDone:NO];
 }

}

@end

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 21

Maintaining MBS Client Applications
To continue to use your existing MBS client applications, continue to use an earlier version of
the SDK.

When you upgrade your Sybase Mobile SDK, the installation does not overwrite earlier
versions of the SDK. Instead, the installation coexists with the earlier version of the SDK, and
retains full backward compatibility with applications developed in the earlier version.
However, features available in 2.1 ESD #3 or later versions of the SDK may not be available
for applications developed in earlier versions of the SDK.

The following replication-based synchronization features are unavailable for messaging-
based synchronization applications:

• Asynchronous upload of operation replay results
• Push synchronization APIs for sending change notifications to devices
• Change log APIs to allow a client to retrieve entity changes from the back end

For information on support of earlier SDKs with a 2.1 ESD #3 or later server, see the
Installation Guide for Sybase Mobile SDK > Getting Started > Backward Compatibility.

For information on messaging-based synchronization applications, see the Developer Guide:
iOS Object API Applications from 2.1 ESD #2.

Transitioning MBS Applications to the Current Release (2.1 ESD #3 or Later)
(Not applicable to DOE based applications) iOS applications built with earlier versions of the
SDK use messaging-based synchronization (MBS) for data delivery. Applications built using
SDK version 2.1 ESD #3 or later use replication-based synchronization (RBS) for data
delivery to reduce synchronization time.

This task flow shows you how to transition your messaging-based application to the current
release as a replication-based application. The tasks include setting up the project, updating
the application, and testing the application.

Note: The code samples in this task flow are from the SUP101 project from the Tutorial: iOS
Object API Application Development.

Migrating the Project and Generating Code
Migrate the existing project to the current version of SAP Mobile SDK, and generate new RBS
object API code.

Important: Upgrade to the current version of SAP Mobile SDK prior to migrating your
project.

1. Export the existing mobile application project from the earlier version of SAP Mobile
WorkSpace.

2. In the current version of tooling-name, import your existing application project.

Migrate Object API Applications

22 SAP Mobile Platform

3. Right-click the project and select Open in Diagram Editor.
4. Select Yes to migrate the project to the current version of the SDK.

5. Right-click the project and select Generate Code to generate code that supports
replication-based synchronization.

For more information on code generation options, see Developer Guide: iOS Object API
Applications > Developer Task Flow for Object API Applications > Generating Objective-C
Object API Code.

Setting Up the Xcode Project
Set up the Xcode project with the generated code and libraries required in the current version
of the SDK.

Important: Install the Xcode version required for the current version of sdk-name prior to
setting up the Xcode project. See Supported Hardware and Software

1. In the Xcode project, open your existing application.
2. Remove the existing generated code and add the new generated code.

To remove the existing generated code:
a. In the Xcode tree view, right-click the Generated Code folder and select Delete.

b. In the confirmation dialog, select Delete.
c. In Finder, go to the Xcode project folder. Delete the empty Generate Code

physical folder to ensure that the new generated code gets imported correctly by
Xcode.

3. Remove all of the libraries that you added from the SMP_HOME\MobileSDK
\ObjectAPI\iOS\Libraries\ folder when you created the application in an
earlier version of the SDK.

4. Add all of the libraries from the SMP_HOME\MobileSDK<version>\ObjectAPI
\iOS\RBS\Libraries\ folder in the current version of the SDK.

5. Remove the existing \includes header files and add the new ones from SMP_HOME
\MobileSDK<version>\ObjectAPI\iOS\RBS\includes\
To remove the existing files:
a. In the Xcode tree view, right-click the includes folder and select Delete.

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 23

b. In the confirmation dialog, select Delete.
c. In Finder, go to the Xcode project folder. Delete the empty includes physical folder

to ensure that the new generated code gets imported correctly by Xcode.

Making Changes to Application Initialization
Make changes to the application to allow it to initialize as required in 2.1 ESD #3.

1. Set the login credentials for login and database synchronization.
SUPConnectionProfile *sp = [SUPSampleSUPSampleDB
getSynchronizationProfile];
[sp setUser:@"supAdmin"];
[sp setPassword:@"supPwd"];

2. After you complete the registration, the server exchanges settings from the application
connection template with the device. In most circumstances, you do not need to set
additional properties for the application in the synchronization profile. If you need to
override some of the properties from the template you can do so through the
synchronization profile.
[sp setServerName:@"relayservername.com"];
[sp setNetworkProtocol:@"networkProtocol"];
[sp setPortNumber:portNumber];

3. Login and subscribe to the server using the credentials set up in step 1. In an MBS
application, subscribe causes data to be pushed to the client from the server. For RBS,
it allows the server to clean up client-specific information proactively (for example,
synchronization parameters when they are no longer required). The server is typically
configured to remove inactive artifacts after a certain period of time. With an RBS
subscribe, no data is pushed to the device, it is only used for administrative purposes.

[SUP101SUP101DB onlineLogin];
[SUP101SUP101DB subscribe];

4. Determine the mode of synchronization to exchange data with the server. In RBS, you can
perform synchronization synchronously or asynchronously. Synchronous means that the
calling thread is blocked until the synchronization is complete whereas asynchronous
synchronization leverages a background thread. Synchronization consists of upload
(sending up the operation replay) and download (pulling down the new/changed data)
phases. If you invoke the asynchronous API to perform synchronization, the appropriate
callbacks are invoked to inform you of its completion.
[SUP101SUP101DB synchronize]; // synchronous API
[SUPSampleSUPSampleDB beginSynchronize]; // asynchronous API

5. Determine the mode of operation replay. As with synchronization, operation replay can be
processed by the server in a synchronous or asynchronous manner. Synchronous means
that the synchronization session that uploads the operation replay waits for its completion
before initiating the download phase to pull down data, including the result and status of
the operation replay. Asynchronous replay means the synchronization session
immediately goes to the download phase after the operation replay is successfully queued.
For an MBS application migrating to RBS, asynchronous replay is closer in behavior. You
can implement this behavior in the synchronization API that has an uploadOnly
parameter. By setting this parameter to true, the synchronization session skips the

Migrate Object API Applications

24 SAP Mobile Platform

download phase, and only the operation replay is sent to the server. However, that is not to
say that you should always use asynchronous replay. You should make the decision based
on the business use case instead of the behavior of the previous implementation.
You only need to set the asynchronous replay flag once.
[sp setAsyncReplay:NO]; // Synchronous replay
[SUP101SUP101DB synchronize]; // Synchronous synchronization

When the synchronize method returns, the operation replay has completed and the
data/result is on the client side database. You can also use the asynchronous
synchronization API:
[sp setAsyncReplay:NO]; // Synchronous replay
[SUP101SUP101DB beginSynchronize]; // Asynchronous
synchronization

The onSynchronize callback with a
SUPSynchronizationStatus_FINISHING status is fired when the
synchronization has completed. At this point, the operation replay has completed and the
data/result is on the client side database. To leverage asynchronous replay, use the API that
supports the uploadOnly parameter.

[sp setAysncReplay:YES]; // Asynchronous replay
[SUP101SUP101DB beginSynchronize:syncGroups
withContext:userContext withUploadOnly:YES];

With the AsyncReplay flag turned on, the client object API calls the
onSynchronize callback method with an
SUPSynchronizationStatus_ASYNC_REPLAY_UPLOADED status after the
upload phase, followed by an SUPSynchronizationStatus_FINISHING status.
No data is pulled down to the device database as there is no download phase.

Note: Control returns immediately, without the replay results synchronized to the client.
The beginSynchronize method is a nonblocking call. The following callback from
the SUPDefaultCallbackHandler is invoked as the synchronization session
progresses.
(SUPSynchronizationActionType)onSynchronize:
(SUPObjectList*)syncGroupList withContext:
(SUPSynchronizationContext *)context

Note: In later versions of the Mobile SDK, the uploadOnly parameter is available with
the synchronous API.

It is not recommended to initiate synchronization without the uploadOnly parameter
set to YES due to a race condition. You cannot predict if the download phase pulls down
data/results pertaining to the operation replay. If there are multiple operation replays being
uploaded, some may complete and get downloaded. When the batch of uploaded operation
replays is completed, the server sends a notification triggering the onSynchronize
callback with SUPSynchronizationStatus_ASYNC_REPLAY_COMPLETED. A

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 25

synchronization is automatically initiated to pull down the data/result. You can allow this
synchronization to continue or abort it by returning CANCEL to the onSynchronize
callback associated with this synchronization. This onSynchronize callback has
SUPSynchronizationStatus_STARTING.

In some use cases, you may perform a full (upload and download) synchronization.
6. Handle the callbacks associated with the completed operation replay if appropriate.

Typically, you use these callbacks in your application to signal to the UI layer that the
data/result are now available or pending status is to be turned off.
• - (void)onReplayFailure:(id)entityObject
• - (void)onReplaySuccess:(id)entityObject

Connecting Through a Relay Server
An iOS RBS client that connects through a Relay Server needs two different farm IDs: one for
a messaging client connection to register the application, and the RBS connection for database
synchronization.

In your iOS application, set up the messaging client and database connection through Relay
Server. Note that, in most cases, the application template already contains settings for the RBS
connection so you do not need to set any properties. The settings from the template are
downloaded to the client after registration is completed. However, it may be necessary in a
development environment to directly manipulate the settings.

1. To set up a messaging client connection, use:
SUPApplication * app = [SUPApplication getInstance];

// should be same as application id from SCC
[app setApplicationIdentifier:@”appId”];
SUPConnectionProperties* props = app.connectionProperties;
[props setServerName:serverName];
[props setPortNumber:80]; // or 443 for HTTPS
[props setNetworkprotocol:@"http"]; // or https for secure
connection
[props setUrlSuffix:@""];
[props setFarmId:@"farmIDMBS"];
SUPLoginCredentials* login = [SUPLoginCredentials getInstance];
login.username = @"userName"; // same as in Application Connection
login.password = nil;
props.loginCredentials = login;
props.activationCode = @"123"; // same as in Application
Connection
props.securityConfiguration = @"admin";

2. To set up a database connection:
• If the application connection template on SCC is configured with all the required Relay

Server information, application code only needs to do:
SUPConnectionProfile *sp = [SUP101SUP101DB
getSynchronizationProfile];
[sp setUser:@"supAdmin"];

Migrate Object API Applications

26 SAP Mobile Platform

[sp setPassword:@"password"];
[sp setAsyncReplay:NO];

• Otherwise, application code needs to fill all the Relay Server information before doing
data synchronization:
SUPConnectionProfile *sp = [SUP101SUP101DB
getSynchronizationProfile];
[sp setUser:@"supAdmin"];
[sp setPassword:@"password"];
[sp setAsyncReplay:NO];

[sp setServerName:@"relayServerHostName"];
[sp setPortNumber:443]; // or 80 for http
[sp setNetworkProtocol:@"https"];
// certificateName: this should come from the relay server and
should be
// included in the Resource folder of the XCode project
[sp
setNetworkStreamParams:@"trusted_certificates=certificateName;
compression=zlib;url_suffix=urlSuffixRBS"];

Note: urlSuffixRBS needs to match the exact string of Relay Server RBS
url_suffix configuration.

The above code should be done before doing any data synchronization (including subscribe/
onlineLogin).

Setting Up Callbacks
Update your application to use callbacks available in SDK version 2.1 ESD #3 or later.

All callback methods are included in the SUPCallbackHandler protocol, and you must
implement them in any class that directly implements the protocol without subclassing the
default implementation in SUPDefaultCallbackHandler.

1. If you have directly implemented the SUPCallbackHandler protocol, you must
implement all methods. In replication-based synchronization, there are several methods in
the protocol that are specific to messaging-based synchronization, and will never be
called.
If you have created your callback handler as a subclass of
SUPDefaultCallbackHandler, you can safely remove the following messaging-
based synchronization callbacks, as the SUPDefaultCallbackHandler has empty
implementations of all the required methods.
• beforeImport, onImport, and onImportSuccess
• onLoginSuccess
• onSubscribeFailure, and onSubscribeSuccess
• onSuspendSubscriptionFailure, and

onSuspendSubscriptionSuccess

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 27

• onResumeSubscriptionFailure, and
onResumeSubscriptionSuccess

• onUnsubscribeFailure, and onUnsubscribeSuccess
• onMessageException
• onTransactionCommit, and onTransactionRollback
• onRecoverFailure, and onRecoverSuccess
For a complete list of callbacks you can implement in your application, see Developer
Guide: iOS Object API Applications > Client Object API Usage > Callback and Listener
APIs. If the application uses onImport to generate a notification on instance creation
and modification, you must change to use the ChangeLog facility in RBS. By default,
ChangeLog is disabled and you can enable it using the generated database class. Once
enabled, the server creates a change log record to identify each updated and deleted
instance. Due to a limitation of RBS, the change log record only contains two operation
types: update and delete. An update is actually an upsert (update/insert). Generating
change logs can be expensive if you are downloading a large amount of data. For that
reason, it is recommended that you disable the change log facility for initial or large delta
synchronization. See Generating Change Logs.

2. If your application uses SUPApplicationCallback, update it to use these methods:

Old method:
- (void)onConnectionStatusChanged:(SUPInt)connectionStatus :
(SUPInt)errorCode :(SUPNullableString)errorMessage;

New method:
- (void)onConnectionStatusChanged:
(SUPConnectionStatusType)connectionStatus :(int32_t)errorCode :
(NSString*)errorMessage;

Old method:
- (void)onRegistrationStatusChanged:(SUPInt)registrationStatus :
(SUPInt)errorCode :(SUPNullableString)errorMessage;

New method:
- (void)onRegistrationStatusChanged:
(SUPRegistrationStatusType)registrationStatus :
(int32_t)errorCode :(NSString*)errorMessage;

Old method:
- (void)onDeviceConditionChanged :(SUPInt)condition;

New method:
- (void)onDeviceConditionChanged :
(SUPDeviceConditionType)condition;

Migrate Object API Applications

28 SAP Mobile Platform

Generating Change Logs
Use the Change Log API to generate change logs that are sent to the client after the
synchronization.

In MBS, the application can use the information in the change logs to update its UI tables with
new records and deletions. To do in the same in RBS, enable change logs in your application
before synchronizing.
[SUP101SUP101DB enableChangeLog];

This method notifies you of all changes including the initial synchronization records. You may
want to set a flag to indicate when the initial synchronization is done so you do not update the
UI for all these initial records.

To set a flag, use code similar to this in your callback onSynchronize
(isCompleteSynchronize is an application variable, set to true after the first
synchronization is complete):
- (SUPSynchronizationActionType)onSynchronize:
(SUPObjectList*)syncGroupList withContext:
(SUPSynchronizationContext*)context
{
 if (context.status == SUPSynchronizationStatus_ERROR)
 {
 MBOLogError(@"onSynchronize failed for context %@ with
exception %@", context.userContext, [context.exception reason]);
 } else if (context.status == SUPSynchronizationStatus_FINISHING)
 {

 if (self.isCompleteSynchronize)
 {
 // Handle change log
 SUPObjectList *changeLogs = (SUPObjectList *)[SUP101SUP101DB
getChangeLogs:[SUPQuery getInstance]];
 if([changeLogs size] > 0)
 {
 [changeLogs retain];

 // delete these so we don't do updates later on these.
 [SUP101SUP101DB deleteChangeLogs];
 for (id<SUPChangeLog> cl in changeLogs)
 {
 MBOLogDebug(@"Changelog: %@['%c', %ld]\n",
 [SUP101SUP101DB getEntityName:[cl
entityType]],
 [cl operationType], [cl surrogateKey]);

 // If your UI needs to find the actual object you can
 // convert the entity name to a class.
 Class entityClass =
NSClassFromString([SUP101SUP101DB getEntityName:[cl entityType]]);
 if (entityClass)
 {

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 29

 // You can either use the surrogate key or change
to the "keyToString" equivalent.
 NSString *primaryKey = [SUPStringUtil
 toString_long:[cl
surrogateKey]];
 NSString *type = ([cl operationType] == 'D'
) ? @"delete" : @"update";

 // Notify your UI with NSNotification...
 } //entityClass
 }
 [changeLogs release];
 }
 }
 }

 return SUPSynchronizationAction_CONTINUE;
}

Creating, Updating, or Deleting Records
In SDK version 2.1 ESD #2 applications, after creating, updating or deleting records, you
called the save method to save the change to the local database, and called
submitPending to send the change to the server. In SDK version 2.1 ESD #3 applications,
after updating or creating records, you call the save and submitPending methods, and
call synchronize to send the changes to the server.

1. In the 2.1 ESD #2 Tutorial: iOS Object API Application Development, locate this code:
[newCustomer save];
[newCustomer submitPending];

Note: In MBS, the generated operation from submitPending is automatically sent to
the Unwired Server. In your RBS applications, you must instead invoke the
synchronize method to send the record to the Unwired Server.

2. Add the following new code. You call synchronize to send the update or new record to
the server. The call can be either synchronous or asynchronous.
@try {
 [SUP101SUP101DB synchronize];
}
@catch (NSException *exception) {
 MBOLogError(@"%@: %@", [exception name], [exception reason]);
}

The above code examples synchronize the default group. Alternatively, you can
synchronize based on the synchronization group the MBO belongs to.
NSString *customer_sg = [customer
metaData].synchronizationGroup;
[db synchronize:customer_sg];

Migrate Object API Applications

30 SAP Mobile Platform

Note: Unlike MBS, the submitPending method in RBS is a client-side only operation,
but is still required before calling the database class’s synchronize method, which
sends the changes to the server.

Testing the Application
After you have transitioned your application to SDK version 2.1 ESD #3, test the application
to ensure that it can establish messaging and database connections to the Unwired Server,
perform an initial synchronization, and update the database.

Note: There is no data-transitioning solution. The data residing in the old device database is
not used after the application is converted to RBS. The application users should submit all
pending data to the Unwired Server using the existing MBS client application before the
migration to the new 2.1 ESD #3 RBS application. See Migration Strategies for 2.1 ESD #3 in
Migrating iOS Native Custom Applications on page 17 After all the pending changes are
synchronized to the Unwired Server, the application user needs to remove the old application
and/or the older existing database on the device. If the old application is not removed from the
device, the database for the old application will continue to reside on the device; this may
double the space consumed on the device when the new application downloads records to the
new database.

Start and test the client application:

1. Verify that no exceptions have been received from the code that subscribes to the database.
If an exception has been received, check the connection profile.
If no exception has been received, you have successfully established the connection to the
database.

2. Verify that no exceptions have been received from the code that performs initial
synchronization. If an exception has been received, check for any server-side issues in the
server log. Also ensure that there is no incompatibility in versions between the deployed
package on the server and the generated code.
If no exception has been received, you have successfully performed an initial
synchronization.

3. Verify that no exceptions have been received from the code that creates or updates a record.
Also verify that you can view the update on the server.

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 31

Migration Paths for Windows and Windows Mobile
Applications

Paths available to migrate Windows and Windows Mobile object API applications from
earlier versions to the current version.

Application is
Built with SDK
Version

Migration Tasks

2.1

2.1.1

Migrate your application to the current version. See the migration instruc-
tions:

• Migrating Windows and Windows Mobile Applications to 2.1 ESD #2
on page 33

• Migrating Windows and Windows Mobile Applications to 2.1 ESD #3
on page 33

• Migrating Windows and Windows Mobile Applications to 2.2 on page
32

2.1.2 Migrate your application to the current version. See the migration instruc-
tions:

• Migrating Windows and Windows Mobile Applications to 2.1 ESD #3
on page 33

• Migrating Windows and Windows Mobile Applications to 2.2 on page
32

2.1.3

2.2

2.2 SP01

2.2 SP02

Migrate your application to the current version. See the migration instruc-
tions:

• Migrating Windows and Windows Mobile Applications to 2.2 on page
32

2.3 No migration changes are required.

Migrating Windows and Windows Mobile Applications to 2.2
No migration changes are required for BlackBerry Object API applications; however, you
may need to perform some migration steps to take advantage of new features.

A client library name change requires you to modify and recompile your Windows Mobile and
Win32 applications. The version number is appended to the file name:
CMessagingClient.dll has been renamed to CMessagingClient2.2.2.dll.

Migrate Object API Applications

32 SAP Mobile Platform

Migrating Windows and Windows Mobile Applications to 2.1 ESD #3
These changes are required for Windows and Windows Mobile applications being migrated
from a version earlier than 2.1 ESD #3.

In 2.1 ESD#3, there are two new required libraries for Windows clients.

Rebuild your project to include additional references to the new libraries:

1. Add the following new libraries as items in the Visual Studio project. Set the "Build
Action" to Content and "Copy to Output Directory" to Copy always.
• For Windows:

• libeay32.dll – from <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\Win32\.

• ssleay32.dll – from <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\Win32\.

2. Verify that you have added all required references to your client projects as described in
Developer Guide: Windows and Windows Mobile Object API Applications >
Development Task Flow for Object API Applications > Creating a Project > Adding
References to a Mobile Application Project.

See Developer Guide: Windows and Windows Mobile Object API Applications for
information on developing your application.

Migrating Windows and Windows Mobile Applications to 2.1 ESD #2
These changes are required for Windows and Windows Mobile applications being migrated
from a version earlier than 2.1 ESD #2.

Update and rebuild your application:

1. The Application APIs (in the Application class) are required for managing
application registrations, connections, and context. Rewrite the initialization code in your
application to use the Application APIs.
For information on the Application interface, search for Application APIs in the
Developer Guide for your platform.

2. Callbacks related to application events are now contained in a separate
ApplicationCallback interface. Rewrite your application code to use this interface.

For information on the ApplicationCallback interface, search for Callback and
Listener APIs in the Developer Guide for your platform.

3. Replication-based synchronization clients require two data channels: a data channel for
data synchronization, and a messaging channel for sending registration and push
notifications to the client. Update your port configuration for both channels. See Sybase
Control Center for Sybase Unwired Platform > Administer > Unwired Server > Server
Properties.

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 33

4. To continue using server-initiated synchronization, you must write code for handling
notifications. If change notifications are enabled for synchronization groups, you can
implement the onSynchronize callback method to monitor this condition, and either
allow or disallow default background synchronization.
public int OnSynchronize(GenericList<ISynchronizationGroup>
groups, SynchronizationContext context)
{
 int status = context.Status;
 if (status == SynchronizationStatus.STARTING_ON_NOTIFICATION)
 {
 // There is changes on the synchronization group
 if (busy)
 {
 return SynchronizationAction.CANCEL;
 }
 else
 {
 return SynchronizationAction.CONTINUE;
 }
 }

 // return CONTINUE for all other status
 return SynchronizationAction.CONTINUE;
}

5. In 2.1 ESD #2, the new location of the required libraries is
<UnwiredPlatform_InstallDir>\UnwiredPlatform\MobileSDK
\ObjectAPI.

Rebuild your project as follows:
a. Reset the references of the following libraries for the appropriate device platform in the

Visual Studio project according to the new location:
• For Windows Mobile:

• sup-client.dll – from <UnwiredPlatform_InstallDir>
\MobileSDK\ObjectAPI\WM.

• iAnywhere.Data.UltraLite.dll – from
<UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI\WM
\Ultralite.

• iAnywhere.Data.UltraLite.resources.dll (several languages are supported) –
from <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\WM\Ultralite\<language>.

• For Windows:
• sup-client.dll – from <UnwiredPlatform_InstallDir>

\MobileSDK\ObjectAPI\Win32.

• iAnywhere.Data.UltraLite.dll – from
<UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI
\Win32\Ultralite.

Migrate Object API Applications

34 SAP Mobile Platform

• iAnywhere.Data.UltraLite.resources.dll (several languages are supported) –
from <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\Win32\Ultralite\<language>.

b. Remove the following libraries for the appropriate device platform as items in the
Visual Studio project. The libraries are no longer required.
• For Windows Mobile:

• ulnet11.dll
• mlcrsa11.dll (if HTTPS protocol is used)
• PUtilTRU.dll

• For Windows:
• ulnet11.dll
• mlcrsa11.dll (if HTTPS protocol is used)
• mlczlib11.dll (if using compression)

c. Add the following libraries for the appropriate device platform as items in the Visual
Studio project. Set the "Build Action" to Content and "Copy to Output Directory" to
Copy always.
• For Windows Mobile:

• ulnet12.dll – from <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\WM\Ultralite.

• mlcrsa12.dll (if HTTPS protocol is used) – from
<UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI\WM
\Ultralite.

• mlczlib12.dll (if HTTPS protocol is used) – from
<UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI\WM
\Ultralite.

• CMessagingClient.dll – from <UnwiredPlatform_InstallDir>
\MobileSDK\ObjectAPI\WM\<DeviceType>. <DeviceType> can
be Pocket PC or Smartphone as applicable.

• For Windows:
• ulnet12.dll – from <UnwiredPlatform_InstallDir>\MobileSDK

\ObjectAPI\Win32\Ultralite.

• mlcrsa12.dll (if HTTPS protocol is used) – from
<UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI
\Win32\Ultralite.

• mlczlib12.dll (if using compression) - from
<UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI
\Win32\Ultralite.

• CMessagingClient.dll – from <UnwiredPlatform_InstallDir>
\MobileSDK\ObjectAPI\Win32.

Migrate Object API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 35

• ECTrace.dll – from <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\Win32.

• TravelerLib.dll – from <UnwiredPlatform_InstallDir>
\MobileSDK\ObjectAPI\Win32.

• zlib1.dll – from <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\Win32.

Migrate Hybrid Web Container Projects

No steps are required to migrate 2.2 SP02 Hybrid Web Container projects to SAP Mobile
Platform version 2.3.

If you are migrating from a version earlier than 2.2 SP02, see Developer Guide: Migrating to
Sybase Mobile SDK 2.2 SP02, and its updates, on Product Documentation, the Migrate
Hybrid Web Container Projects section: http://infocenter.sybase.com/help/topic/
com.sybase.infocenter.dc01857.0222/doc/html/mqu1352929931447.html

Hybrid Web Container Compatibility Matrix
Compatibility between versions of the Hybrid Web Container and server, and Hybrid Web
Container and Hybrid App applications.

Hybrid Web Container and Unwired Server/SAP Mobile ServerCompatibility

Client/ Hy-
brid Web
Container

Unwired
Server 2.1

Unwired
Server 2.1
ESD #2

Unwired
Server 2.1
ESD #3

Unwired
Server 2.2
SP02 and
SP04

SAP Mo-
bile Server
2.3

Hybrid Web
Container 2.1

Yes Yes Yes Yes Yes

Hybrid Web
Container 2.1
ESD #2

No Yes Yes Yes Yes

Hybrid Web
Container 2.1
ESD #3

No Yes Yes Yes Yes

Migrate Hybrid Web Container Projects

36 SAP Mobile Platform

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352929931447.html
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352929931447.html

Client/ Hy-
brid Web
Container

Unwired
Server 2.1

Unwired
Server 2.1
ESD #2

Unwired
Server 2.1
ESD #3

Unwired
Server 2.2
SP02 and
SP04

SAP Mo-
bile Server
2.3

Hybrid Web
Container 2.2
SP02 and
SP04

No Yes Yes Yes Yes

Hybrid Web
Container 2.3

No Yes Yes Yes Yes

There was no 2.1 ESD #1 Hybrid Web Container; 2.1 ESD #1 shipped with 2.1 Mobile
Workflow clients.

Note:

• Yes – the client application built in this SDK version is supported in the server version
(minor adjustments may be necessary to ensure the application runs correctly; see the
migration details for the appropriate application type, if any).

• No – the client application built in this SDK version is not supported in the server version.
• Server version – refers to the server version to which the original package is migrated, not

the newly deployed package.

Hybrid Web Container and Hybrid App Compatibility

Client/ Hy-
brid Web
Container

Hybrid App
2.1

Hybrid App
2.1 ESD #2

Hybrid App
2.1 ESD #3

Hybrid
App 2.2
SP02 and
SP04

Hybrid
App 2.3

Hybrid Web
Container 2.1

Yes No No No No

Hybrid Web
Container 2.1
ESD #2

Yes Yes No No No

Hybrid Web
Container 2.1
ESD #3

Yes Yes Yes No No

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 37

Client/ Hy-
brid Web
Container

Hybrid App
2.1

Hybrid App
2.1 ESD #2

Hybrid App
2.1 ESD #3

Hybrid
App 2.2
SP02 and
SP04

Hybrid
App 2.3

Hybrid Web
Container 2.2
SP02 and
SP04

Yes Yes Yes Yes No

Hybrid Web
Container 2.3

Yes Yes Yes Yes Yes

There was no 2.1 ESD #1 Hybrid Web Container; 2.1 ESD #1 shipped with 2.1 Mobile
Workflow clients.

Note:

• Yes – the client application built in this SDK version is supported in the server version
(minor adjustments may be necessary to ensure the application runs correctly; see the
migration details for the appropriate application type, if any).

• No – the client application built in this SDK version is not supported in the server version.
• Server version – refers to the server version to which the original package is migrated, not

the newly deployed package.

Migrate Hybrid Apps to JavaScript API
There have been some ongoing changes to the JavaScript API for Hybrid Apps to
accommodate new Hybrid Web Container functionality, and make it more flexible and easy to
use. These changes were first made available in version 2.2, and became the default generation
method in version 2.2 SP02.

Existing applications can still use the older generated JavaScript API; if you want to use the
new Hybrid Web Container functionality or the new API, there are certain steps you must
perform to successfully migrate existing applications.

The new JavaScript API includes:

• New Hybrid Web Container functionality
• Access to third-party frameworks and designers by generating fewer Hybrid App-specific

files
• Use of a global namespace-style variable to help resolve naming conflicts
• A more logical file layout
• Naming change from Workflow to Hybrid App

Although the new files were available for 2.2 SP01, they were not used as the default
generation option. Beginning with 2.2 SP02, the Hybrid App Designer began to directly

Migrate Hybrid Web Container Projects

38 SAP Mobile Platform

support the new Hybrid Web Container functionality, and therefore the new JavaScript API
became the default in the generation wizard.

In this way, the Hybrid App Designer could move forward with the updated JavaScript API,
while still allowing previously written apps to successfully migrate without changes, giving
developers the choice to generate the backward-compatible API from earlier versions.

Note: When you generate an application that was developed using the older API, be sure to
enable the Use backwards-compatible API for generation (deprecated) option, under the
Advanced Options section of the generation wizard.

Manual Migration Tasks
Migrating a Hybrid App or Workflow to the new JavaScript API requires the developer to
perform a few manual steps.

API.js & Utils.js
Reapply any custom changes made to API.js and Utils.js in the previous Hybrid App to
the new Hybrid App.

Method Calls in Custom Code
Some methods used in previous versions may have been deprecated, renamed, removed, or
relocated within the “hwc” global namespace. In your custom code, resolve any calls to these
methods.

A new Custom.js file is automatically generated, but it will be empty. Move any
functionality from the previous version of Custom.js to the new file, paying attention to
any method name changes.

Customized Files
Move any custom CSS, JavaScript, image, or other files in the generated folder of the previous
Hybrid App or Workflow to the generated folder for the new Hybrid App.

Table 1. Generated Folder and File Name Changes

Generated Folder Name 2.1 ESD #3 (old) Starting with 2.2 SP02,
and 2.3 (new)

html/css No changes No changes

html/css/bb No changes No changes

html/css/bb/img No changes No changes

html/css/iphone No changes No changes

html/css/iphone/
images

No changes No changes

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 39

Generated Folder Name 2.1 ESD #3 (old) Starting with 2.2 SP02,
and 2.3 (new)

html/css/jquery jquery.mo-
bile-1.0.css (removed)

jquery.mo-
bile-1.1.0.css (added)

html/css/jquery/
images

ajax-loader.gif (add-

ed)

html/js json2.js (removed) datajs-1.0.3.js (new)

hwc-api.js (new)

hwc-comms.js (new)

hwc.utils.js (new)

HybridApp.js (replaces

Workflow.js)

PlatformIdentifi-
cation.js (new)

html/js/android Phone-
gap-1.4.1.java-
script (removed)

cordo-
va-2.0.0.java-
script (added)

html/js/ios Phone-
gap-1.4.1.java-
script (removed)

cordo-
va-2.0.0.java-
script (added)

html/js/jquery jquery-1.6.4.js (re-

moved)

jquery.mo-
bile-1.0.js (removed)

jquery-1.7.1.js (add-

ed)

jquery.mo-
bile-1.1.0.js (added)

Migrate Hybrid Web Container Projects

40 SAP Mobile Platform

Generated Folder Name 2.1 ESD #3 (old) Starting with 2.2 SP02,
and 2.3 (new)

html/js/widgets sy.ui.iphone.isc-
roll.js (removed)

sy.ui.iphone.isc-
roll4Lite.js (added)

sy.ui.iphone.pick-
er.js (added)

sy.ui.iphone.sig-
nature.js (added)

sy.ui.iphone.util.
js (added)

sy.ui.js (added)

html/css/makit N/A New directory added for 2.2
SP02

html/images/makit N/A New directory added for 2.2
SP02

html/js/makit N/A New directory added for 2.2
SP02

html/js/wm N/A New directory added for 2.2
SP02

html/js/blackberry N/A New directory added for 2.2
SP02

Check for Output Message
During project and application generation, check for messages in the console; these messages
provide valuable tips related to migrating your application.

Generated Application Differences
There are some important differences and concepts that have changed from the earlier (often
called "legacy") API and the new API. Use this background information to successfully
migrate your own applications.

See Migrating Hybrid Apps to JavaScript API on page 47 for an example procedure that
migrates a customized application into the new API.

Output Directories
The generated output directory has changed.

Earlier versions generated the files into:

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 41

\Generated Workflow\project_name\html\...

The current version generates the files into:
\Generated Hybrid App\project_name\html\...

The "hwc" Namespace
The SAP Mobile Platform JavaScript API implementation emulates the namespace concept.

JavaScript does not use the concept of a true namespace, but you can achieve the same result
by placing functions and objects with a new function. (This is often called a "JavaScript
Namespace" for simplicity). The SAP Mobile Platform implementation uses the JavaScript
"Immediately-Invoked Function Expression" (IIFE—pronounced "iffy" like in "jiffy")
pattern to contain the SAP Mobile Platform API in the global object named "hwc". The "hwc"
object provides a lexical scope, which is the JavaScript shorthand for what other languages
term a "namespace".

This lexical scope isolates the SAP Mobile Platform API (in the same way as a namespace)
and provides tools for minification and other processes. This change is reflected throughout
the code. A few JavaScript functions have proxy versions in the global namespace; however
SAP® recommends that you use the versions in the "hwc" namespace.

We have attempted to not move code around unnecessarily, to facilitate developers using
"difference scans" to identify changes, and to understand where to place their existing
customizations.

In many cases, you need only wrap the entire contents of a file with the "hwc" object
definition. The files that have more extensive changes are described in later topics.

Name Changes
Several coding-level name changes have been implemented.

Workflow Changed to HybridApp
The phrase Workflow has been replaced with HybridApp, both in the directory name, as
well as in the function code.

• onWorkflowLoad() is now hwc.onHybridAppLoad()
• customBeforeWorkflowLoad() is now

hwc.customBeforeHybridAppLoad()
• customAfterWorkflowLoad() is now

hwc.customAfterHybridAppLoad()

Note: Although the change from Workflow to HybridApp occurs in many places, it is not
pervasive. The following in particular:

• The file and type WorkflowMessage.

• The global variable workflowMessage in the file Utils.js.

Migrate Hybrid Web Container Projects

42 SAP Mobile Platform

Workflow Expanded to Data Message
The meaning "workflow" message has been expanded to a generic "data"’ message.

• getWorkflowMessage() is now hwc.getDataMessage().

• processWorkflowMessage() now includes the namespace
hwc.processDataMessage().

Custom implementations that override processWorkflowMessage() must now
override hwc.processDataMessage().

Note: For a better understanding of this change, examine the implementation in hwc-
comms.js.

• customBeforeProcessWorkflowMessage() is now
hwc.customBeforeProcessDataMessage().

• customAfterProcessWorkflowMessage() is now
hwc.customAfterProcessDataMessage().

Debug Logging
logToWorkflow() is now hwc.log().

Note: The legacy global name still exists.

Closing Applications
closeWorkflow() is now hwc.close().

Note: The legacy global name still exists.

New Files
In the new API, many functions have been split into new files. This change helps to both isolate
functionality, and localize areas of engagement.

The new files are:

• html/js/PlatformIdentification.js – the device and platform
identification logic like hwc.isIOS().

• html/js/hwc-comms.js – the functions that communicate with the container, and
often ultimately to SAP Mobile Server.

• html/js/hwc-api.js – the functions that work with application query, and control
of the container itself. Use these functions to restyle container behavior.

• html/js/hwc-utils.js – various utility functions used by both the container and
application.

Compare old and new HTML files, and update file source references to point to these new
files.

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 43

Files and Functions: Platform Identification
The routines that handle platform identification, like isIOS(), have been moved from
API.js into PlatformIdentification.js.

These routines are now evaluated only once at application start-up, which gives the
application an overall performance boost.

The routines retain the legacy API version, in the global namespace, along with the new API
version in the "hwc" namespace. Even though SAP recommends a scoped routine like
hwc.isIOS(), the global routine isIOS() is still available.

Files and Functions: Container API
To separate functionality between layers, the container-oriented parts of the API have been
moved into separate files. This has also split up some functions that provided communication
between the Hybrid Web Container and the JavaScript application.

The container-oriented files use an "hwc" prefix, and include:

• hwc-api.js – public API for any Hybrid Web Container application.
• hwc-comms.js – communications support for Hybrid Web Container applications.
• hwc-utils.js – miscellaneous support routines, including both internal worker functions,

and other routines that are available for Hybrid Web Container applications.

In cases where a function has been split between a HybridApp aspect and a container-specific
aspect, the suffix "_CONT" has been added to the container-specific function. The commonly
used function hwc.doOnlineRequest() first performs HybridApp-specific processing, such as
custom callbacks, then delegates hwc.doOnlineRequest_CONT() for the actual container-
side HTTP call. This same technique applies to these routines:

• onWorkflowLoad() has been replaced by:
• hwc.onHybridAppLoad () in Utils.js, which delegates to:
• hwc.onHybridAppLoad_CONT() in hwc-utils.js.

• addNativeMenuItemsForScreen () has been replaced by:
• hwc.addNativeMenuItemsForScreen() in Utils.js, which delegates to:
• hwc.addNativeMenuItem_CONT() in hwc-utils.js.

• handleCredentialChange() has been replaced by:
• hwc.handleCredentialChange() in Utils.js, which delegates to:
• hwc.handleCredentialChange_CONT() in hwc-utils.js.

• doOnlineRequest() has been replaced by:
• hwc.doOnlineRequest() in API.js, which delegates to:
• hwc.doOnlineRequest_CONT() in hwc-comms.js.

• doOnlineRequest() has been replaced by:
• hwc.doOnlineRequest() in API.js, which delegates to:
• hwc.doOnlineRequest_CONT() in hwc-comms.js.

Migrate Hybrid Web Container Projects

44 SAP Mobile Platform

• doSubmitWorkflow() has been replaced by:
• hwc.doSubmitWorkflow() in API.js, which delegates to:
• hwc.doSubmitWorkflow_CONT() in hwc-comms.js.

• setScreenTitle() has been replaced by:
• hwc.setScreenTitle() in API.js, which delegates to:
• hwc.setScreenTitle_CONT() in hwc-comms.js.

• addMenuItem() has been replaced by:
• hwc.addMenuItem() in API.js, which delegates to:
• hwc.addMenuItem_CONT() in hwc-comms.js.

• showAttachmentContents() has been replaced by:
• hwc.showAttachmentContents() in API.js, which delegates to:
• hwc.showAttachmentContents_CONT() in hwc-comms.js.

• showAttachmentFromCache() has been replaced by:
• hwc.showAttachmentFromCache() in API.js, which delegates to:
• hwc.showAttachmentFromCache_CONT() in hwc-comms.js.

• doAttachmentDownload() has been replaced by:
• hwc.doAttachmentDownload() in API.js, which delegates to:
• hwc.doAttachmentDownload_CONT() in hwc-comms.js.

• doActivateWorkflow() has been replaced by:
• hwc.doActivateWorkflow() in API.js, which delegates to:
• hwc.doActivateWorkflow_CONT() in hwc-comms.js.

• doCredentialsSubmit() has been replaced by:
• hwc.doCredentialsSubmit() in API.js, which delegates to:
• hwc.doCredentialsSubmit_CONT() in hwc-comms.js.

processWorkflowMessage()
There are some changes to consider if you override the global processWorkflowMessage()
routine, which is required in many use cases.

In the older version, the global processWorkflowMessage() routine (in Utils.js), included
either inline code changes, or customizations in the customBefore…() and customAfter…()
callback routines. In the new API, inline code changes reside in the
hwc.processDataMessage() routine (also in Utils.js). The callback routines still have similar
names.

Old API:

• processWorkflowMessage() – in old file Utils.js

• customBeforeProcessWorkflowMessage() – in old file custom.js

• customAfterProcessWorkflowMessage() – in old file custom.js

New API:

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 45

• hwc.processDataMessage() – in file Utils.js

• hwc.customBeforeProcessDataMessage () – in file custom.js

• hwc.customAfterProcessDataMessage () – in file custom.js

Custom Callback Handlers
The file and techniques outlined in js/Custom.js are all still applicable. However, all the
routines have been placed into the "hwc" namespace.

At a high level, all the routines have been wrapped in the "hwc" object (using JavaScript
Immediately-Invoked Function Expression, or IIFE). Then the changes from Workflow to
HybridApp have been applied. Function names have been retained except:

Old Global API New API

customBeforeWorkflowLoad() hwc.customBeforeHybridAppLoad()

customAfterWorkflowLoad() hwc.customAfterHybridAppLoad()

customBeforeProcessWorkflowMessage() hwc.customBeforeProcessDataMessage()

customAfterProcessWorkflowMessage() hwc.customAfterProcessDataMessage()

Miscellaneous Changes
Several procedural changes have been implemented in the new API.

Applications must call:

• hwc.setLoggingCurrentLevel()

• hwc.setLoggingAlertDialog()

• hwc.setReportErrorFromNativeCallback()

These calls are already handled in the hwc.onHybridAppLoad() function, in the new Utils.js
file. This fragment code example from the hwc.onHybridAppLoad() function shows the
change; you may need to make changes if you customized the original function:
logLevel = hwc.getURLParam("loglevel");
hwc.setLoggingCurrentLevel(logLevel); // store the log level

// set the preferred user alert dialog
hwc.setLoggingAlertDialog(hwc.showAlertDialog);

// the preferred native error callback function
hwc.setReportErrorFromNativeCallback(reportErrorFromNative);
if (logLevel >= 4) { hwc.log("entering onHybridAppLoad()", "DEBUG",
false); }

Migrate Hybrid Web Container Projects

46 SAP Mobile Platform

Variable Name Change
Some variable names have been changed to make their use more clear.

Table 2. Renamed Variable

Old Name New Name

previousScreenName[] hwc.previousScreenKeyStack[]

Migrating Hybrid Apps to JavaScript API
Migrate a customized legacy workflow or Hybrid App from 2.1.x to the new JavaScript API,
available starting in 2.2 SP02.

Keep in mind that customizations vary, so these steps cannot be specific for every situation.
Use the migration concepts and reference material in previous topics to make migration and
customization decisions.

1. Preparing to Migrate

Prepare to migrate your legacy workflow or Hybrid App.

2. Regenerating the Application (Old API)

Regenerate the application using the old API. This creates a clean version of the project
that you can use for comparison when you integrate customizations.

3. Regenerating the Application (New API)

Regenerate the application using the new API. This creates a clean version of the project
that you can use when you integrate customizations.

4. Integrating Customizations

Integrate customizations into the clean version of the project generated with the new API.
This example suggests a migration approach; adapt this method to your unique
customizations.

Preparing to Migrate
Prepare to migrate your legacy workflow or Hybrid App.

Prerequisites
SAP recommends these tools:

• Directory-wide comparison program, such as Beyond Compare (http://
www.scootersoftware.com/); ideally, a version that supports both comparison and
merging.

• JavaScript syntax checking environment, such as Eclipse-JEE; or the Chrome or FireFox
debug console into which you can load the HTML (which brings in all the JavaScript files).

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 47

http://www.scootersoftware.com/
http://www.scootersoftware.com/

Such a tool can help you identify typing errors, and errors arising from the "hwc"
namespace identifier changes.

Task

1. Back up any customized JavaScript and CSS files. For example, save the files to
\myCustomizedApplication.

This directory should have the subdirectories \html and \html\js, just like what is
generated by Hybrid App Designer.

2. Make sure the generated output directory is empty: \Generated Hybrid App
\project_name.

Regenerating the Application (Old API)
Regenerate the application using the old API. This creates a clean version of the project that
you can use for comparison when you integrate customizations.

1. Use your SAP Mobile Platform project (including the MBOs and Hybrid App Designer
XBW files) to generate a new Hybrid App package. You need not deploy the package to
SAP Mobile Server.

In the generation wizard, use these defaults:
• Output directory – use the default location to help prevent confusion.
• Under Advanced Options, Use backwards-compatible API for generation

(deprecated) – by default, this option is enabled, which generates a clean version of the
project using the old API. The wizard does not create a new directory for this project.

2. Rename the newly populated, generated output directory for later comparison, for
example, \Generated Hybrid App\project_name_OLD.

Regenerating the Application (New API)
Regenerate the application using the new API. This creates a clean version of the project that
you can use when you integrate customizations.

Use your SAP Mobile Platform project (including the MBOs and Hybrid App Designer XBW
files) to generate a new Hybrid App package. You need not deploy the package to SAP Mobile
Server.

In the generation wizard, use these defaults:
• Output directory – the default location is \Generated Hybrid App

\project_name. Using the default location helps prevent further confusion.

• Under Advanced Options, Use backwards-compatible API for generation (deprecated) –
by default, this option is not enabled. Because you renamed the project when you
generated it using the old API, you can use the default option now to create a clean project
version using the new API.

Migrate Hybrid Web Container Projects

48 SAP Mobile Platform

Integrating Customizations
Integrate customizations into the clean version of the project generated with the new API. This
example suggests a migration approach; adapt this method to your unique customizations.

Prerequisites

Verify there are three copies of the application (the directory names for your application may
vary):

• Original customized version in \myCustomizedApplication
• Legacy API version in \Generated Hybrid App\project_name_OLD
• New API version in \Generated Hybrid App\project_name

Task

1. Compare the original, customized application with the legacy API version of the
application just generated, and compile a list of areas on which to focus the migration
effort.

A typical scenario includes many changes in the standard customization file, Custom.js,
new CSS files, some new JS files, and some customizations in API.JS and Timezone.js.

2. Copy the CSS files and new JS files from the original directory into the new API directory,
and edit the HTML file or JS module loaders for the file references. Use the same
procedure you used for your original additions.

3. Use a directory-wide comparison program to compare all the files in the original and
legacy directories. This means comparing the two directories:

• Original, customized version in:
\myCustomizedApplication

• Clean legacy API version in:
\Generated Hybrid App\project_name_OLD

Differences should include only:
• The SAP Mobile Platform bug fixes between your last version and the current version

of SAP Mobile Platform.
• The code changes originating from your own modifications to the legacy API.

As described above, differences are most likely to be in Custom.js, with some changes
in API.js and Timezone.js. There will be other differences throughout the files, some
from your customizations, and some SAP Mobile Platform evolutionary changes and
Service Pack bug fixes.

4. Open another session of the directory-wide comparison program, ideally a version that
allows both comparison and merging. Open your original version, and the new but still
clean API version to compare the two directories:

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 49

• Original, customized version in:
\myCustomizedApplication

• New API version in:
\Generated Hybrid App\project_name

You might see many differences, however the important ones are the same as those
identified in the legacy API comparison (step 3).

5. Make the appropriate changes in Custom.js, and merge the changes function by function.

The order and most of the function signatures have been retained in the new API, which
should simplify this process. Keep in mind that:
• The new API functions are in the "hwc" namespace. This affects any code that uses the

API functions; any such code must use the "hwc." namespace identifier.
• All other changes, such as the Workflow to HybridApp name change, must also be

addressed.

6. In the Timezone.js file, make the appropriate changes, including any evolutionary
changes, and your customizations. Keep in mind that a Service Pack fix might have
corrected a bug that you fixed using a different approach.

7. Make any appropriate changes in the API.js file.

Any customizations you have made to this file will be challenging, due to both the size of
the file, and to separating the "container communication" aspect into hwc-comms.js. The
new API keeps functions in the same general order, which should make migrating from an
older code line more efficient.

8. Address any other differences in your legacy API comparison, and migrate them into the
new API version.

9. Launch the application in an environment you can monitor, such as FireFox or Chrome (or
even the Android Emulator); test the application and fix any errors.

Set the logging level all the way up, and continue the process of finding any missed
"‘hwc"’ references and any other missed items. During this process, examine the server
logs for enter/exit function notifications, to help find errors.

Once the application is migrated to the new API, it should:
• Run faster, due to caching device data like in PlatformIdentification.js.
• Be smaller and more efficient, due to better minification and runtime engine

optimizations from the localization and compartmentalization.
• Use fewer global variables and functions, and use a cleaner global namespace.
• More easily integrate with third-party packages, because of the cleaner global

namespace.
• Be easier to maintain and extend, due to separation of the container API and the

application level API functions.

Migrate Hybrid Web Container Projects

50 SAP Mobile Platform

Android
No migration changes are required for Android Hybrid Apps.

Hybrid Web Container Migration Paths for Android
Supported Hybrid Web Container (HWC) migration paths on Android.

Table 3. Android Migration Paths

2.1 HWC 2.1 ESD #2
HWC

2.1 ESD #3
HWC

2.2 SP02
and SP04
HWC

2.3 HWC

2.1 HWC N/A In-place up-
grade

Coexist Coexist Coexist

2.1 ESD #2
HWC

N/A N/A Coexist Coexist Coexist

2.1 ESD #3
HWC

N/A N/A N/A In-place up-
grade

In-place up-
grade

2.2 SP02 and
SP04 HWC

N/A N/A N/A N/A In-place up-
grade

2.3 HWC N/A N/A N/A N/A N/A

Note: There was no 2.0 or 2.1 ESD #1 Android Hybrid Web Container.

• N/A – not applicable.
• Coexist – the application is not upgraded; multiple versions of the application can coexist.
• In-place upgrade – the application is upgraded to the new version (you must modify the

application to add new features).

BlackBerry
No migration changes are required for BlackBerry Hybrid Apps.

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 51

Hybrid Web Container Migration Paths for BlackBerry
Supported Hybrid Web Container (HWC) migration paths on BlackBerry.

Table 4. BlackBerry Migration Paths

2.1 HWC 2.1 ESD #2
HWC

2.1 ESD #3
HWC

2.2 SP02
and SP04
HWC

2.3 HWC

2.1 HWC N/A In-place up-
grade

In-place up-
grade

Coexist Coexist

2.1 ESD #2
HWC

N/A N/A In-place up-
grade

Coexist Coexist

2.1 ESD #3
HWC

N/A N/A N/A Coexist Coexist

2.2 SP02 and
SP04 HWC

N/A N/A N/A N/A In-place up-
grade

2.3 HWC N/A N/A N/A N/A N/A

Note: There was no 2.0 ESD #1 or 2.1 ESD #1 for BlackBerry Hybrid Web Container.

• N/A – not applicable.
• Coexist – the application is not upgraded; multiple versions of the application can coexist.
• In-place upgrade – the application is upgraded to the new version (you must modify the

application to add new features).

iOS
No migration changes are required for iOS Hybrid Apps.

Hybrid Web Container Migration Paths for iOS
Supported Hybrid Web Container migration paths on iOS, including paths for applications
downloaded from the Apple App Store and those built from source code.

iOS Migration Paths (Applications Downloaded from the Apple App Store)
This matrix identifies the supported Hybrid Web Container migration or the iOS container
downloaded from the Apple App store.

Migrate Hybrid Web Container Projects

52 SAP Mobile Platform

2.1 HWC 2.1 ESD #2
HWC

2.1 ESD #3
HWC

2.2 SP02
and SP04
HWC

2.3 HWC

2.1 HWC N/A Coexist Coexist Coexist Coexist

2.1 ESD #2
HWC

N/A N/A In-place up-
grade

In-place up-
grade

In-place up-
grade

2.1 ESD #3
HWC

N/A N/A N/A In-place up-
grade

In-place up-
grade

2.2 SP02 and
SP04 HWC

N/A N/A N/A N/A In-place up-
grade

2.3 HWC N/A N/A N/A N/A N/A

Note: There was no 2.1 ESD #1 Hybrid Web Container.

• N/A – not applicable.
• Coexist – the application is not upgraded; multiple versions of the application can coexist.
• In-place upgrade – the application is upgraded to the new version (you must modify the

application to add new features).

iOS Migration Paths (Applications Built from Source Code)
This matrix identifies the supported Hybrid Web Container migration for the iOS container
that one builds from the supplied source code while keeping the same "bundle ID" between
versions.

2.1 HWC 2.1 ESD #2
HWC

2.1 ESD #3
HWC

2.2 SP02
and SP04
HWC

2.3 HWC

2.1 HWC N/A In-place up-
grade

In-place up-
grade

In-place up-
grade

In-place up-
grade

2.1 ESD2
HWC

N/A N/A In-place up-
grade

In-place up-
grade

In-place up-
grade

2.1 ESD3
HWC

N/A N/A N/A In-place up-
grade

In-place up-
grade

2.2 SP02 and
SP04 HWC

N/A N/A N/A N/A In-place up-
grade

2.3 HWC N/A N/A N/A N/A N/A

Note: There was no 2.1 ESD #1 Hybrid Web Container.

Migrate Hybrid Web Container Projects

Developer Guide: Migrating to SAP Mobile SDK 2.3 53

Windows Mobile
No migration changes are required for Windows Mobile Hybrid Apps.

Hybrid Web Container Migration Paths for Windows Mobile
Supported Hybrid Web Container (HWC) migration paths on Windows Mobile.

Table 5. Windows Mobile Migration Paths

2.1 HWC 2.1 ESD #2
HWC

2.2 SP02 HWC 2.3 HWC

2.1 HWC N/A In-place upgrade Coexist Coexist

2.1 ESD #2 HWC N/A N/A Coexist Coexist

2.2 SP02 HWC N/A N/A N/A In-place upgrade

2.3 HWC N/A N/A N/A N/A

Note: There was no new 2.1 ESD #1 or 2.1 ESD #3 for Windows Mobile Hybrid Web
Container; 2.1 ESD #3 shipped with 2.1 ESD #2 Windows Mobile clients.

• N/A – not applicable.
• Coexist – the application is not upgraded; multiple versions of the application can coexist.
• In-place upgrade – the application is upgraded to the new version (you must modify the

application to add new features).

Note: The Windows Mobile Hybrid Web Container only supports functionality up to SAP
Mobile Platform 2.2 SP02. SAP Mobile Platform 2.3 contains only documentation changes.
No additional feature enhancements are planned.

Migrate OData Applications

No migration changes are required for OData applications; however you may need to perform
migration steps to take advantage of new features.

If you are migrating from a version earlier than 2.2 SP02, see Developer Guide: Migrating to
Sybase Mobile SDK 2.2 SP02, and its updates, on Product Documentation, the Migrate OData
Applications section: http://infocenter.sybase.com/help/topic/
com.sybase.infocenter.dc01857.0222/doc/html/mqu1352854260620.html

Migrate OData Applications

54 SAP Mobile Platform

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352854260620.html
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01857.0222/doc/html/mqu1352854260620.html

OData Client Compatibility Matrix
Compatibility between versions of OData clients and SAP Mobile Server. Also compatibility
between versions of REST SDK clients and SAP Mobile Server.

OData SDK Client and Unwired Server/SAP Mobile Server Version Compatibility

OData
SDK Cli-
ent

Unwired
Server
2.1

Unwired
Server
2.1 ESD
#1

Unwired
Server
2.1 ESD
#2

Unwired
Server
2.1 ESD
#3

Unwired
Server
2.2 SP02

SAP Mo-
bile Serv-
er 2.3

OData SDK
Client 2.1

Yes Yes Yes Yes Yes Yes

OData SDK
Client 2.1
ESD #1

No Yes Yes Yes Yes Yes

OData SDK
Client 2.1
ESD #2

No Yes Yes Yes Yes Yes

OData SDK
Client 2.1
ESD #3

No Yes Yes Yes Yes Yes

OData SDK
Client 2.2
SP02

No Yes Yes Yes Yes Yes

OData SDK
Client 2.3

No Yes Yes Yes Yes Yes

Note:

• Yes – the client application built in this SDK version is supported in the server version
(minor adjustments may be necessary to ensure the application runs correctly; see the
migration details for the appropriate application type, if any).

• No – the client application built in this SDK version is not supported in the server version.
• Server version – refers to the server version to which the original package is migrated, not

the newly deployed package.

Migrate OData Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 55

REST SDK Client and Unwired Server/SAP Mobile Server Version Compatibility

REST
SDK cli-
ent

Unwired
Server
2.1.3

Unwired
Server
2.2 SP01

Unwired
Server
2.2 SP02

Unwired
Server
2.2 SP03

SAP Mo-
bile Serv-
er 2.3

SAP Mo-
bile Serv-
er 2.3
SP02

REST Cli-
ent 2.2
SP03

No Yes Yes Yes Yes Yes

Note:

• Yes – the client application built in this SDK version is supported in the server version
(minor adjustments may be necessary to ensure the application runs correctly; see the
migration details for the appropriate application type, if any).

• No – the client application built in this SDK version is not supported in the server version.
• Server version – refers to the server version to which the original package is migrated, not

the newly deployed package.

Android
No migration changes are required for OData Android applications.

BlackBerry
No migration changes are required for OData BlackBerry applications.

iOS
No migration changes are required for OData iOS applications.

OData SDK API Changes in Version 2.3
The HTTP REST client libraries are available for OData applications in 2.3 SP02.

HTTP REST Client Libraries in 2.3 SP02
The HTTP REST client libraries are available with 2.3 SP02, which enable you to implement
REST services in OData applications (Android and iOS). The REST SDK libraries enable
consumption of SAP Mobile Platform REST services with pure HTTP/HTTPS (by default in
on-premise) connectivity. The REST SDK provides simplified APIs for registration,

Migrate OData Applications

56 SAP Mobile Platform

exchange settings between client and server, and end-to-end tracing. The SDK also supports
native push notifications.

Table 6. New HTTP REST Classes for OData

Classes Platform

• ClientConnection
• UserManager
• AppSettings

Android

• SMPClientConnection
• SMPUserManager
• SMPAppSettings

iOS

Documented in: Developer Guide: OData SDK, see REST SDK API Reference (Android and
iOS)

Migrate OData Applications to REST API

Migrate messaging-based (sometimes called iMO-based) OData applications to REST API-
based, to take advantage of REST services capabilities. This enables you to run mobile
applications on-premise and in the cloud.

Prerequisites

• Import the new REST client libraries from the OData SDK into your Android or iOS
development environment.

• Arrange access to a test environment for both on-premise and cloud testing.

Task

1. In your development environment, modify the messaging-based (sometimes called iMO)
application logic to use REST-based services.

Some areas you may need to address:
• Registration
• Settings exchange
• Request response
• End-to-end tracing
• Native push notifications

Migrate OData Applications to REST API

Developer Guide: Migrating to SAP Mobile SDK 2.3 57

• For the cloud, the application may support CAPTCHA if required.

For supporting information:
• For information related to migrating OData applications to REST API, see Guidelines

for On Premise and Cloud Applications.
• For API information for all of the above, which are different for the REST SDK, see

Developer Guide: OData SDK:
• Development Task Flow Using REST SDK (HTTP Channel) – iOS section
• Development Task Flow Using REST SDK (HTTP Channel) – Android section

• For new API information, see OData SDK API Changes in Version 2.3.

2. Recompile the application.

3. Test the application in a device simulator or emulator, and in the test environment (both
on-premise and cloud configurations). Make modifications as needed.

For useful information for testing:
• iOS applications –

• Developer Guide: OData SDK (iOS section):
• Testing Applications
• Deploying Applications to Devices

• Tutorial: iOS OData Application Development with REST Services, Deploying
the Device Application on iPhone Simulator

• Android applications –
• Developer Guide: OData SDK (Android section), Deploying Applications to

Devices
• Tutorial: Android OData Application Development with REST Services, Running

your Android OData Application

4. Deploy the application to the production environment.

Guidelines for On Premise and Cloud Applications
Consider these on-premise and cloud guidelines when migrating OData applications to REST
API. The guidelines may require coding changes to your application.

• A cloud application may support CAPTCHA if required. If CAPTCHA is enabled, the
application must be able to process the CAPTCHA challenge.

• Applications that support both on-premise and cloud must incorporate logic to determine
the system to which the application should connect. This may extend to user interface
elements that prompt the user to identify the correct system. You can set up an application
to determine the system via the provided Server URL, but you must implement the logic
for this.

Migrate OData Applications to REST API

58 SAP Mobile Platform

• New versions of resource bundles on the server are not automatically pushed to the
applications in the cloud scenario. You must add application logic to request new resource
bundles from the server if needed.

• Security Configuration HTTP Headers are not supported, and are ignored by the cloud.
• The cloud always uses HTTPS, whereas it is optional in on-premise scenarios.
• Application connection registration is required in the cloud, whereas it is optional for on-

premise scenarios.
• Domains are not supported in the cloud.
• Application connection templates are not supported in the cloud.
• A subset of the SAP Mobile Platform PUSH registration settings is available for the cloud

scenario, from the full set available for the on premise scenario.
• Since the cloud enables for cross-site request forgery (XSRF) attacks, applications used in

the cloud must include XSRF token handling logic, if the back-end service demands it.

Migrate REST API Applications

No migration changes are required for REST API applications.

Migrate REST API Applications

Developer Guide: Migrating to SAP Mobile SDK 2.3 59

Migrate REST API Applications

60 SAP Mobile Platform

Index
B

best practices for migrating applications 1

C

cloud application guidelines 58
compatibility

Hybrid Web Container and Android 51
Hybrid Web Container and BlackBerry 52
Hybrid Web Container and Hybrid Apps 36
Hybrid Web Container and iOS (APNS

download) 52
Hybrid Web Container and iOS (source code)

52
Hybrid Web Container and SAP Mobile Server

36
Hybrid Web Container and Windows Mobile

54
Object API and SAP Mobile Server 10
OData client and SAP Mobile Server 55
REST SDK client and SAP Mobile Server 55

G

guidelines
migrating OData applications to REST API

58
on premise and cloud applications 58

H

Hybrid Web Container version compatibility matrix
36

M

migrating
Agentry applications 2

Android Hybrid Apps 51
artifacts 1
best practices 1
BlackBerry Hybrid Apps 51
Hybrid Web Container projects 36
iOS Hybrid Apps 52
mobile business objects 7
Object API applications 9
Object API BlackBerry applications (Eclipse

project) 13
Object API BlackBerry applications (JDE

project) 14
OData Android applications 56
OData applications 54
OData applications to REST API 57
OData BlackBerry applications 56
OData iOS applications 56
REST API applications 59
Windows Mobile Hybrid Apps 54

N

native client UltraLite version compatibility matrix
9

native client version compatibility matrix 10

O

Object API and SAP Mobile Server compatibility
10

OData client and SAP Mobile Server compatibility
55

OData SDK API, enhancements for 56
on-premise application guidelines 58

R

REST SDK client and SAP Mobile Server
compatibility 55

Index

Developer Guide: Migrating to SAP Mobile SDK 2.3 61

Index

62 SAP Mobile Platform

	Developer Guide: Migrating to SAP Mobile SDK 2.3
	Contents
	Migrate Your Artifacts
	Best Practices for Migrating Applications

	Migrate Agentry Applications
	Migrating From Agentry Mobile Platform to SAP Mobile Platform
	Porting Agentry Applications to iOS 7 Look and Feel

	Migrate Mobile Business Objects
	Migrate Object API Applications
	Object API Application Migration Requirements in SAP Mobile Platform Version 2.3 SP03
	Native Client Version Compatibility Matrix
	Migration Paths for Android
	Migrating Android Applications to 2.2

	Migration Paths for BlackBerry
	Migrating BlackBerry Applications to 2.2
	Migrating BlackBerry Applications (Eclipse Project) to 2.2
	Migrating BlackBerry Applications (JDE Project) to 2.2

	Migrating BlackBerry Applications to 2.1 ESD #2

	Migration Paths for iOS
	Migrating iOS Native Custom Applications
	Transitioning Applications to Release 2.1 ESD #2
	Making Changes to Application Registration

	Maintaining MBS Client Applications
	Transitioning MBS Applications to the Current Release (2.1 ESD #3 or Later)
	Migrating the Project and Generating Code
	Setting Up the Xcode Project
	Making Changes to Application Initialization
	Connecting Through a Relay Server
	Setting Up Callbacks
	Generating Change Logs
	Creating, Updating, or Deleting Records
	Testing the Application

	Migration Paths for Windows and Windows Mobile Applications
	Migrating Windows and Windows Mobile Applications to 2.2
	Migrating Windows and Windows Mobile Applications to 2.1 ESD #3
	Migrating Windows and Windows Mobile Applications to 2.1 ESD #2

	Migrate Hybrid Web Container Projects
	Hybrid Web Container Compatibility Matrix
	Migrate Hybrid Apps to JavaScript API
	Manual Migration Tasks
	Generated Application Differences
	Output Directories
	The "hwc" Namespace
	Name Changes
	New Files
	Files and Functions: Platform Identification
	Files and Functions: Container API
	processWorkflowMessage()
	Custom Callback Handlers
	Miscellaneous Changes
	Variable Name Change

	Migrating Hybrid Apps to JavaScript API
	Preparing to Migrate
	Regenerating the Application (Old API)
	Regenerating the Application (New API)
	Integrating Customizations

	Android
	Hybrid Web Container Migration Paths for Android

	BlackBerry
	Hybrid Web Container Migration Paths for BlackBerry

	iOS
	Hybrid Web Container Migration Paths for iOS

	Windows Mobile
	Hybrid Web Container Migration Paths for Windows Mobile

	Migrate OData Applications
	OData Client Compatibility Matrix
	Android
	BlackBerry
	iOS
	OData SDK API Changes in Version 2.3

	Migrate OData Applications to REST API
	Guidelines for On Premise and Cloud Applications

	Migrate REST API Applications
	Index

