
Mobile Data Models: Using Mobile
Business Objects

SAP Mobile Platform 2.3 SP02

DOCUMENT ID: DC01910-01-0232-01
LAST REVISED: April 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introducing Mobile Business Object Data Models1
Mobile Business Object Overview3

Data Modeling ...4
Datasources ...5
MBO Attributes ..5
Operations ...6
Relationships ...6
Other Key Concepts ...6

Data Caching ..7
Object API Code Generation ..8
Package Deployment ..8
Server API ..9
Javadocs ...10

Mobile Business Object Development Task Flow11
Mobile Business Object Mobility Properties27

Load Arguments ...27
Client Defined Cache Partitions28

Synchronization ..30
Understanding Synchronization Parameters30
Synchronization Parameter Considerations33
Synchronization Parameter Definition

Guidelines ...34
Synchronization Groups34

Cache Groups ...35
Cache Group Considerations36

Operation Cache Policies ...37
Operation Cache Policy Data Flow39

Composite Operations ..42
Composite Operation Data Flow42

Object Queries ..51
Object Query Definition Guidelines51

Mobile Data Models: Using Mobile Business Objects iii

Object Query Indexes ..53
FindAll Object Query Guidelines54
Improve Object Query Performance56

Datatype Support ...63
Time Zone Datatype Behavior67
Datatype Default Values and Limitations69

Remote Operation Default Value Precedence71
Structure Objects ..75

Complex Datatypes ...75
Complex Datatype Limitations76

Creating Structure Types That are Compatible With
Large Object Types for Client Parameters and
Personalization Keys ..77

SAP Mobile Platform to Enterprise Information
System Datatype Mappings78

Mobile Business Object to Mobile Device Platform
Datatype Mappings ..83

Best Practices for Developing an MBO Data Model91
Principles of MBO Modeling ...91
MBO Attributes ...93
MBO Indexes ..94
MBO Keys ...96
MBO Relationships ...97
MBO Synchronization Parameters99
Client Defined Cache Partitions102
MBO Synchronization Groups109
MBO Cache Groups ...111
Shared-Read MBOs ...112
MBO and Attachments ..114

Best Practices for Loading Data From the EIS to the
CDB ...117

Understanding Data and Datasources117
Guidelines for Data Loading118
Reference Data Loading ...121
Private Transactional Data Loading123

Contents

iv SAP Mobile Platform

Shared Transactional Data Loading124
SAP Mobile Server Cache ..125
Cache Group Policies ...127

Result Set Filters ...129
Result Set Filter Data Flow ...130
Implementing Custom Result Set Filters130

Writing a Custom Result Set Filter131
Validating Result Set Filter Performance133

Filter Class Debugging ...134
Enabling JPDA ...134
Setting Debug Breakpoints in Result Set Filter

Classes ..134
Result Checkers ...137

Implementing Customized Result Checkers137
Writing a Custom Result Checker138

Default SAP Result Checker Code144
Default SOAP Result Checker Code148
Default REST Result Checker Code149

Data Change Notification ..151
Data Change Notification Data Flow152
Data Change Notification's Effect on the SAP Mobile

Server Cache ...153
Data Change Notification With Payload and Without

Payload ...153
Performance Considerations for DCN With

Payload Versus Without Payload155
Related DCN Developer and Administrator Tasks155

Management and Monitoring of Data Change
Notifications ...155

MBO Development for Data Change Notification
...155

Implementing Data Change Notification156
Invoking upsert and delete Operations Using

Data Change Notification156

Contents

Mobile Data Models: Using Mobile Business Objects v

Controlling Notifications for Native Applications With
Cache Partitions ...159

EIS Defined Cache Partitions160
Retrieving Pending Operations From SAP

Mobile Server ..164
Basic HTTP Authentication ...166
Data Change Notification Requirements and

Guidelines ..167
Purging Expired DCN Data From the SAP

Mobile Server Cache171
Data Change Notification Results171
Data Change Notification Filters172

Implementing a Data Change Notification Filter
...173

Custom XSLT Transforms ...175
Custom XSLT Use Cases ...175
Implementing Custom Transforms175
XSLT Stylesheet Syntax ...176
XSLT Stylesheet Example ..177

Index ..181

Contents

vi SAP Mobile Platform

Introducing Mobile Business Object Data
Models

This guide provides information about how to develop mobile business objects (MBOs) to
fully maximize their potential, concepts you should know before developing MBOs, and how
to use the SAP® Mobile Platform Server API to customize MBO behavior. The audience is
mobility architects and advanced developers who work with APIs, but who may be new to
SAP Mobile Platform.

Companion guides include:

• Fundamentals – provides high-level mobile computing concepts, and a description of
how SAP Mobile Platform implements the concepts in your enterprise.

• SAP Mobile WorkSpace - Mobile Business Object Development – provides the
procedures required to develop your MBOs.

• Javadocs – provide a complete reference to the APIs.
• Device platform-specific Developer Guides – provide details about how to develop native

applications from generated Object API code.

• Developer Guide: Migrating to SAP Mobile SDK – provides information about migrating
applications and artifacts from previous versions of SAP Mobile Platform to the current
version.

• Supported Hardware and Software – provides information about the various integrated
and third party hardware and software components and versions supported by this version
of SAP Mobile Platform.

See Data Modeling for information about fundamental data modeling concepts and practices.

Introducing Mobile Business Object Data Models

Mobile Data Models: Using Mobile Business Objects 1

http://en.wikipedia.org/wiki/Data_modeling

Introducing Mobile Business Object Data Models

2 SAP Mobile Platform

Mobile Business Object Overview

The cornerstone of the solution architecture is the mobile business object (MBO). For native
Object API applications and Hybrid Apps, mobile business objects form the business logic by
defining the data you want to use from your back-end system and exposing it through your
mobile application or Hybrid App.

MBO development involves defining object data models with back-end EIS connections,
attributes, operations, and relationships that allow filtered data sets to be synchronized to
mobile devices. MBOs are built by developers who are familiar with the data and transactional
requirements of the mobile application, and how that application connects to existing
datasources.

An MBO is derived from a datasource, such as a database server, Web service, or SAP® server.
MBOs are deployed to SAP Mobile Server, and accessed from mobile device application
client code generated from SAP Mobile WorkSpace or by using command line tools. MBOs:

• Are created using the SAP Mobile WorkSpace graphical tools, which simplify and abstract
back-end system connections, and provide a uniform view of transactional objects

• Are reusable, allowing you to leverage business logic or processes across multiple device
types.

• Future-proof your application; when new device types are added, existing MBOs can be
used.

• Provide a layer of abstraction from the SAP Mobile Server interaction with heterogenous
back ends/devices, as shown in the following diagram.

MBOs can include:

Mobile Business Object Overview

Mobile Data Models: Using Mobile Business Objects 3

• Implementation-level details – metadata columns that include information about the data
from a datasource.

• Abstract-level details – attributes that correspond to instance-level properties of a
programmable object in the mobile client, and map to datasource output columns.
Parameters correspond to synchronization parameters on the mobile client, and map to
datasource arguments.
MBO operations include arguments that map to datasource input parameters. The
argument's value that is passed to the enterprise information system (EIS) at runtime can
come from an MBO attribute, personalization key, client parameter, or a default/constant
value.

• Relationships – defined between MBOs by linking attributes and load arguments in one
MBO to those in another MBO.

Developers define MBOs either by first designing attributes and load arguments, then binding
them to a datasource; or by specifying a datasource, then automatically generating attributes
and load arguments from it.

A mobile application package includes MBOs, roles, datasource connection mappings, cache
policies, synchronization related information, and other artifacts that are delivered to the SAP
Mobile Server during package deployment.

When the data model is complete, code artifacts are generated. The MBO package, containing
one or more MBOs is deployed to SAP Mobile Server. Other MBO artifacts are used to
develop a mobile application using Native Object API or Hybrid Web Container API — when
the application is deployed to a device, the MBO data model set resides on the device (in API
code form). On-device data changes are synchronized to the MBO on the server, then to the
EIS backend. Backend changes are in turn communicated to the device via the MBO on the
server that sends a notification to the device and updates the MBO data on the device.

Data Modeling
After connecting to datasources using connection profiles from SAP Mobile WorkSpace, the
MBO developer defines the mobile interaction pattern, which typically involves selecting data
subsets.

The MBO is developed to define each data subset, describe the data and the operations on the
data.

• The data subset is deployed with the MBO package to SAP Mobile Server where the MBO
manages synchronization between the EIS and SAP Mobile Server.

• Artifacts generated from the MBO are then used to develop the mobile application,
typically further defining the data subset for data representation on the device.

Mobile Business Object Overview

4 SAP Mobile Platform

Datasources
A datasource is the enterprise information system (EIS) where data is retrieved from and
transactions are executed. A connection profile is a design-time connection to a datasource.
Connection profiles are created to specific datasources by providing connection information
such as host, port, login, and password among others. The connection profiles are used to
define MBOs and operations, and mapped to existing, or used to create new, server
connections when the package is deployed to SAP Mobile Server.

SAP Mobile Platform hides the interaction complexity with datasource-specific protocols,
such as JDBC™ for database and SOAP for Web services.

SAP Mobile Platform supports multiple EIS connection types. See Supported Hardware and
Software for information.

MBO Attributes
MBO attributes define the structure for the data associated with the MBO instance on the
mobile device.

Attributes define the scope of the device-side data store. Attributes and load arguments in an
MBO define the server cache. The server cache and device data store are populated by reading
data from the EIS using exposed services or standard protocols and methods, such as a SQL
select statement for a database datasource.

Attributes also have additional metadata provided during its Read/Load operation, such as
specification of a load argument and synchronization parameter option that can be used to
provision user-specific data, that is, the load arguments narrow down the data downloaded to
the CDB, and the synchronization parameter filter the CDB data further when downloading to
the mobile device. For example, a sales representative in the Eastern region may be interested

Mobile Business Object Overview

Mobile Data Models: Using Mobile Business Objects 5

only in seeing data for that region. Developers can build the application to map those
preferences to MBOs to drive the data filtering specific to the user. The same data obtained
from the EIS is then further partitioned and used to serve all users, thereby optimizing requests
for data to the EIS and improving performance of the mobile application.

Operations
MBOs may incorporate operations that change the data retrieved from the enterprise
information system (EIS).

• Create, Update, Delete (CUD) operations – an operation definition contains arguments
that map to the arguments of the EIS operation, and can create, update, or delete data.
These operations cause state change.
Operation replay executes the client-initiated transactions (Create, Update, and Delete
operations) and propagates those changes to the EIS.

• Read/Load – an operation that includes optional load arguments that determine initial
loading of data from the EIS to the SAP Mobile Server cache. For example, a SQL Select
statement for database datasources.

• Entity Read – an operation's cache policy determines how the results of operation replay
are applied to the SAP Mobile Server cache. An Entity Read operation can be defined to
refresh a single instance of an MBO, including an MBO object graph (all MBOs linked by
composite relationships).

• OTHER operation – an operation definition for operations other than create, update, or
delete. These operations do not cause state change.

The operation definition supports validation and error handling.

Relationships
Relationships define the data association between two MBOs by linking attributes and load
arguments (the read operation's parameters) in one MBO to attributes and load arguments in
another MBO.

Relationships help provision related data as one unit, and properly sequence the operations on
the related MBOs.

Other Key Concepts
Other key concepts for understanding mobility include object queries, synchronization
parameters, result set filters, result checkers, and personalization keys.

• Object queries – a SQL statement associated with a mobile business object (MBO) that
runs on the client against data that was previously downloaded to the device. The object
query searches the device database and returns a filtered result set (such as a single row of a
table). Object queries enable discrete data handling.

• Synchronization parameters – metadata that defines how the values provided by the device
application client are used to filter data already existing in the CDB, which is downloaded
to the device, to provide data of interest to the user. Synchronization parameters may be

Mobile Business Object Overview

6 SAP Mobile Platform

used to retrieve the cached data, or mapped to load arguments to filter the data that is
cached for the MBO and then served to the client application.

• Result-set filters – a Java API used to customize the data returned by an enterprise
information system (EIS) operation. Developers can use result-set filters to alter or
manipulate returned data and its structure, that is, MBO attributes, before it is placed in the
server's cache.

• Result checkers – a Java API that implements operation execution checks, and error
handling logic for the MBO operation. Developers can use result set checkers to
implement customized error checking for MBOs, since not all MBOs use a standard error
reporting technique.

• Personalization keys – metadata that enables users to store their name/value pairs on the
device persistent store, the client application session (in memory), or the SAP Mobile
Server, and use the personalization keys to provide values to load arguments,
synchronization parameters, operation arguments, or device application business logic
specific usages. To use a personalization key for filtering, it must be mapped to a
synchronization parameter/load argument.
The developer can define personalization keys for the application, or use two built-in
system defined personalization keys—username and password—to perform single sign-
on from the device application to the SAP Mobile Server, authentication and authorization
on SAP Mobile Server, as well as connecting to the back-end EIS using the same set of
credentials. The password is never saved on the server.

Data Caching
Data caching is initial loading, or filling, the SAP Mobile Server cache with enterprise
information system (EIS) data, then continuing to refresh the cache with changes from the EIS
or mobile device on an ongoing basis.

Since continual synchronization of the data between the EIS and device puts a load on the EIS,
SAP Mobile Platform provides several options for loading and refreshing the data cache.

Options include narrowing the EIS data search so that only specific data is retrieved (based on
load arguments), identifying effective policies for handling data updates once operations are
performed (based on an operation's cache policy), scheduling periodic updates to occur when
system usage is low (based on cache group and refresh policy), updating only changed data in
the cache, and so forth.

You can use multiple options to load and refresh the right data at the right time, and to deliver
the smallest, most focused payload to the mobile device.

The primary loading schemes provide a trade-off between time and storage space. For
example, bulk loading takes more time because data is loaded for all users, but once loaded,
the data can be shared between users.

• Bulk loading – data for all users is loaded in bulk.

Mobile Business Object Overview

Mobile Data Models: Using Mobile Business Objects 7

• Client defined partitioned data loading – only user relevant data, or partition, is loaded,
based on MBO load arguments.

• EIS defined partitioned data loading – only user relevant data, or partition, is loaded, based
on the DCN partition attribute.

• On-demand loading – data is not filled, until the client performs synchronization.
• Scheduled loading – data is filled periodically according to a schedule you set.
• Event notifications – data is pushed by the EIS when specific events occur.

Data change notification (DCN) facilitates propagation of data changes from the back-end
enterprise information system (EIS) to the SAP Mobile Server interface for any MBO. The
DCN payload containing changed data is applied to the cache and the change gets published to
subscribing device users based on a change detection interval time. DCN is used for cases
where the cache refresh may be expensive due to volume. This option is the least intrusive and
most optimal for addressing high-load environments and optimizing the load on the EIS to
keep the SAP Mobile Server cache consistent.

Object API Code Generation
To access and integrate MBOs in a device application, developers generate object code for the
target device platform, and then use their IDE of choice to build the native device application.
The object code generation step is the bridge from the SAP Mobile Server server-side
development (MBOs) to client-side development (device applications).

The generated object code for each MBO follows a standard pattern of properties for
attributes, operations, and abstracts persistence and synchronization. Object code generation
is supported in the native language for each target platform. SAP Mobile Server client libraries
complement and are required for the generated object code, which together are used in the
device application.

The generated code is built upon the Mobile client libraries, which combine support for
reliable transmission of data and transactions, security of data while in transit or on device,
sending notifications when data changes occur in the back-end application, consistent
interface on all platforms, all of which abstract developers from mobility related complexities.

Code generation is supported for these platforms: BlackBerry and Android (Java), iOS
(Objective-C), Windows Mobile and Windows (C#).

See Supported Hardware and Software for the most current version information.

Package Deployment
The last step of mobile business object (MBO) development is to deploy the MBO definitions
to SAP Mobile Server as a deployment package.

When you deploy MBOs to the SAP Mobile Server, you are deploying:

Mobile Business Object Overview

8 SAP Mobile Platform

• MBO definitions including attributes, operations, connections, synchronization groups,
and cache configuration as defined in the package.

• MBO custom code related to result-set filters and result checkers.
• Other functionality captured in the MBO model.

MBOs are deployed using a deployment wizard through which you can make the choices that
are appropriate for application requirements. Developers use SAP Mobile WorkSpace to
deploy a package.

The production administrator can deploy from a wizard using the web-based management
console, or from the command line. Deployment-time tasks include choosing:

• Target domain – logical container for packages.
• Security configuration – used for authentication and authorization of users accessing the

package.
• Server connections mapping – to bind MBOs design-time datasources to production

datasources.
• Application ID – the application ID registered for the application. The value differs

according to application client type.

Server API
SAP Mobile Platform includes several interfaces that open specific features and functionality
of SAP Mobile Platform for custom development. Customizing mobile business objects
(MBOs) allows you to better control behavior of these features.

• Result set filter – use a custom Java class to filter the rows or columns of data returned
from an MBO read operation. You can write a filter to add, delete, or change columns, or to
add and delete rows.

• Result checker – use the custom Java class to implement custom error checking for MBO
operation results returned from the enterprise information system (EIS) to which the MBO
is bound.

• Data change notification (DCN) and Hybrid App DCN – a refresh mechanism that uses
an HTTP interface to inform SAP Mobile Server of EIS data changes, and to optionally
propagate those changes to the specified MBO.

• DCN filter – use a DCN filter to preprocess the submitted DCN. The filter converts raw
data in the DCN request to the required JavaScript Object Notation (JSON) format. The
filter can also postprocess the JSON response returned by the SAP Mobile Server into the
format preferred by the enterprise information system (EIS).

• Custom transforms – create a transform to modify the structure of generated Web
Services message data, so it can be used by an SAP Mobile Platform MBO.

You can program these functions in any order; each class is implemented independently.

Mobile Business Object Overview

Mobile Data Models: Using Mobile Business Objects 9

Javadocs
The full SAP Mobile Platform runtime installation includes Javadocs. Use the SAP Javadocs
as your API reference.

By default, Javadocs for Result Set Filters, Result Checkers, and Data Change Notifications
are installed in SMP_HOME\Servers\UnwiredServer\APIdocs\index.html.

Mobile Business Object Overview

10 SAP Mobile Platform

Mobile Business Object Development Task
Flow

This task flow guides the MBO developer through the decision-making process and steps
required to develop mobile business objects in SAP Mobile WorkSpace, which provide the
server-side code in mobile applications, including Hybrid Apps.

This task flow does not include all configurable options, but does guide the MBO developer
through the commonly performed tasks required to develop a mobile data model.

1. Determine the data needs of the mobile application.

For design information, see Best Practices for Developing an MBO Data Model.

2. Create and open the Mobile Application Project, which contains all project-related
information.

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 11

See Creating a Mobile Application Project in SAP Mobile WorkSpace - Mobile Business
Object Development.

3. Create and connect to the enterprise information system (EIS) datasource using a
connection profile from which you develop the MBOs.

• For design information, see Best Practices for Loading Data From the EIS to the
CDB.

• See Creating a Data Source Connection Profile in SAP Mobile WorkSpace - Mobile
Business Object Development.

4. Create the MBOs. The simplest method is to drag and drop the datasource (for example, a
database table) onto the mobile application diagram and bind the MBO to the
datasource.

Mobile Business Object Development Task Flow

12 SAP Mobile Platform

For design information, see:
• Define the attributes – see MBO Attributes
• Define the operations – see Mobile Business Object Operation Properties, and related

topics
• Define other datasource and runtime specific properties during MBO creation, or later

from the Properties view – see Mobile Business Object Properties

See these topics in SAP Mobile WorkSpace - Mobile Business Object Development:
• Creating Mobile Business Objects
• Binding Mobile Business Objects to Data Sources
• Creating Attributes for a Mobile Business Object
• Creating Operations for a Mobile Business Object
• Mobile Business Object Operation Properties

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 13

5. Define Relationships between MBOs. Most mobile applications include several to many
individual MBOs.

• For design information, see MBO Relationships
• See Creating Relationships Between Mobile Business Objects in SAP Mobile

WorkSpace - Mobile Business Object Development

6. Define cache refresh behavior.

For design information, see:
• Cache Groups and Data Change Notification.
• Operation Cache Policies.
• Load Arguments.

See these topics in SAP Mobile WorkSpace - Mobile Business Object Development:
• Creating Cache Groups:

Mobile Business Object Development Task Flow

14 SAP Mobile Platform

• Setting an Operation Cache Policy:

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 15

• Load Arguments:

Mobile Business Object Development Task Flow

16 SAP Mobile Platform

7. Define synchronization behavior.

For design information, see:
• Synchronization Groups and MBO Synchronization Groups
• Synchronization Parameter Definition Guidelines and MBO Synchronization

Parameters
• Understanding Synchronization Parameters

See these topics in SAP Mobile WorkSpace - Mobile Business Object Development:
• Creating Synchronization Groups:

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 17

• Defining Synchronization Properties for Individual Mobile Business Objects:

• Combining Load Arguments and Synchronization Parameters:

8. Consider additional MBO configuration options when defining the mobile data model.

Mobile Business Object Development Task Flow

18 SAP Mobile Platform

• Use object queries to filter and display data already downloaded to the device:
• For design information, see Object Queries.
• See Generating Object Queries from Primary Key Attributes in SAP Mobile

WorkSpace - Mobile Business Object Development.
• Use personalization keys to personalize certain input field values within the mobile

application.

See Managing Personalization Keys in SAP Mobile WorkSpace - Mobile Business
Object Development.

• Use logical roles to provide authorization to MBOs and MBO operations.

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 19

See Managing Roles and Permissions in SAP Mobile WorkSpace - Mobile Business
Object Development.

• Set runtime datasource credentials, which is required for establishing EIS connections
on the client's behalf, such as in single sign-on (SSO) configurations.

Mobile Business Object Development Task Flow

20 SAP Mobile Platform

See these topics in SAP Mobile WorkSpace - Mobile Business Object Development:
• Implementing SSO for SAP.
• Propagating a Client's Credentials to the Back-end Data Source.

• Use result set filters to add custom logic to manipulate rows and columns of data
returned to the SAP Mobile Server cache.

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 21

• For design information, see Result Set Filters.
• See Adding a Result Set Filter in SAP Mobile WorkSpace - Mobile Business

Object Development.
• Use result checkers to customize error checking for mobile business object (MBO)

operations.

Mobile Business Object Development Task Flow

22 SAP Mobile Platform

• For design information, see Result Checkers.
• See Adding a Result Checker in SAP Mobile WorkSpace - Mobile Business Object

Development.
• For more information about datatype usage in mobile applications, see Datatype

Support.

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 23

• For more information about, and to learn about planning for MBO and mobile
application life cycles, see Development Life Cycle in Fundamentals.

9. Generate the Object API code and deploy the MBOs.

• Generate the object API code for the mobile platform on which you are developing the
application.

See Generating Object API Code in SAP Mobile WorkSpace - Mobile Business Object
Development.

• When you are ready to test a mobile application, deploy the MBOs to SAP Mobile
Server.

Mobile Business Object Development Task Flow

24 SAP Mobile Platform

See Packaging and Deploying Mobile Business Objects in SAP Mobile WorkSpace -
Mobile Business Object Development.

See also
• Best Practices for Developing an MBO Data Model on page 91

• Best Practices for Loading Data From the EIS to the CDB on page 117

• MBO Attributes on page 93

• Operation Cache Policies on page 37

• MBO Relationships on page 97

• Cache Groups on page 35

• Data Change Notification on page 151

• Load Arguments on page 27

• MBO Synchronization Groups on page 109

• Synchronization on page 30

• Object Queries on page 51

• Result Set Filters on page 129

Mobile Business Object Development Task Flow

Mobile Data Models: Using Mobile Business Objects 25

• Result Checkers on page 137

Mobile Business Object Development Task Flow

26 SAP Mobile Platform

Mobile Business Object Mobility Properties

To understand how to customize MBOs to meet your device application needs, you must first
understand the concepts that affect end-to-end data flow between client, SAP Mobile Server
cache (CDB), and the enterprise information system (EIS) to which the MBOs are bound.

Load Arguments
Load arguments control the amount of data refreshed between the enterprise information
system (EIS) and the cache database (CDB), and each load argument creates its own client
defined partition in the CDB based on load argument value (partition key). Partitions are
refreshed concurrently, thus improving performance. In contrast, synchronization parameters
filter CDB data downloaded to the mobile device during device application synchronization.

Set load arguments in the Properties view, from the Attributes > Load Arguments tab. Set
synchronization parameters from the Synchronization tab. It is important to understand both
their differences and how they work together to load (data refresh) and filter (synchronize)
data. For example, you can use:

• A synchronization parameter and a separate load argument – refresh data based on an
argument independent of synchronization, or

• A load argument that maps to a synchronization parameter – use the same value for both
refreshing and synchronizing data. Basically, one synchronization parameter induces one
client defined partition. This provides more fine-grained CDB partitioning and
concurrency, but may introduce more partition refresh overhead and less data sharing
across devices when there are too many different values from synchronization parameters.

Figure 1: Synchronization Parameter

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 27

Figure 2: Load Argument

Client Defined Cache Partitions
Partitioning the SAP Mobile Server cache (CDB) divides it into segments that can be
refreshed individually, which provides faster system performance than refreshing the entire
CDB.

Client defined cache partitioning is determined by one or more partition keys, which is one or
more load arguments used by the operation to load data into the cache from the enterprise
information system (EIS).

Define a load argument (cache partition key) in the Attributes > Load Arguments tab of the
MBO's Properties view. A device application user can specify values for synchronization
parameters that are mapped to load arguments when synchronizing his or her client
application, possibly through personalization keys or default values.

All client defined cache partitions require a load argument:

• Create cache partitions through a load argument specified by the client, for example, a load
argument that maps to a synchronization parameter which uses a personalization key or
default value.

• Refresh a cache partition if data in the partition is:
• Expired
• Invalidated
• Inconsistent – if a client has multiple partitions, refresh all partitions even if only one

partition expires.
• If the MBO is defined with something other than "=" in the where clause, manually edit, in

the synchronization tab, the SQL code for the customized download data.

Examples: Parameters and Client Defined Cache Partitions
Create client defined cache partitions based on mobile business object (MBO) and load
argument definitions.

These examples use the employee table in the My Sample Database connection profile.

Mobile Business Object Mobility Properties

28 SAP Mobile Platform

Create a mobile business object (MBO) that uses a load argument and personalization key to
partition the SAP Mobile Server cache database (CDB). The general process is:

• In SAP Mobile WorkSpace, create an MBO with a load argument from the employee table,
add a personalization key, and map the load argument that defines how the CDB is
partitioned to the personalization key.

• Client (device application) partitions are created as new clients connect. Users set the
personalization key in their application, and then synchronize and download data.

• The CDB loads data that satisfies the MBO definition using the load argument value,
which is the personalization key value in this example, passed by the client, and returns
only those rows that matches the client's personalization key value.

For this example:

1. Drag and drop the employee table, and edit the definition to include the state_param
parameter (load argument):
SELECT emp_id,
 manager_id,
 emp_fname,
 emp_lname,
 dept_id,
 street,
 city,
 state,
 zip_code,
 phone,
 status,
 ss_number,
 salary,
 start_date,
 termination_date,
 birth_date,
 bene_health_ins,
 bene_life_ins,
 bene_day_care,
 sex FROM sampledb.dba.employee
where state = :state_param

2. Create a personalization key with these values:
• Name – state_pk
• Type – string(4)
• All other entries – accept default values

3. From the Attributes Load Arguments tab, map the load argument to the personalization
key:
• Argument – state_param
• Datatype – string(4)
• Nullable – no
• Propagate to – state
• Personalization key – state_pk

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 29

4. Deploy the package to SAP Mobile Server.
Client and CDB behavior is:
• Client 1 sets state_pk to "TX ", while client 2 uses "GA ". Two rows (one for each

argument) are added to the parameter table in the CDB. Two trailing white spaces are
added to pad the total length to four, since state_pk is defined as string(4).

• The CDB partition table contains values that define the partition key for each partition
(TX and GA).

• The partition refresh table tracks the most recent refresh for each partition.

Only the data in the partition of interest refreshes. This is an important performance
consideration for large tables.

Creating client defined cache partitions based on compound parameter values
This example shows how to create a partitioned cache for the employee table where the
partitions are defined by a compound partition key that uses two attributes: city and state.

Manually edit the SQL definition. For a query that does not require exact matches for the state
or city parameters, use this MBO definition as the download query:
SELECT emp_id,
 manager_id,
 emp_fname,
 emp_lname,
 dept_id,
 street,
 city,
 state,
FROM sampledb.dba.employee
WHERE state LIKE :state_param + '%'
AND city LIKE :city_param + '%'

Synchronization
Determine the amount of data (filter), and under what conditions (timing and triggers), mobile
devices upload MBO data to and download data from the SAP Mobile Server cache (CDB).

Synchronization properties are unavailable for MBOs in cache groups that use an Online
policy.

Understanding Synchronization Parameters
Synchronization parameters restrict the rows that are transferred from the SAP Mobile Server
cache database (CDB) to the device to match values the client provides.

• A synchronization parameter does not affect enterprise information system (EIS)
interaction with the CDB, unless you specify the synchronization parameter setting for a
given load argument.

Mobile Business Object Mobility Properties

30 SAP Mobile Platform

• An Online cache group policy, typically used with Hybrid Apps, does not support
synchronization parameters.

• After you bind a mobile business object (MBO) to a datasource, MBO attributes map to
datasource fields (for example, database columns). You control the amount of data
synchronized (filtered) between the CDB and device application by defining
synchronization parameters that map to attributes. For example, mapping a
synchronization parameter to the "state" attribute, returns customer records for a particular
state based on the value entered by the device application user.

• Another example is an MBO named "sales_order" with a synchronization parameter
mapped to the "region" attribute. Executing the query select * from
sales_order from the device application returns a complete copy of all sales orders in
the CDB. If the application user provides a region when synchronizing, for example
select * from sales_order where region=Eastern, the client sees sales
orders only for the Eastern region.

• Using a synchronization parameter to filter results may be particularly useful for MBOs
that have large amounts of data that do not change frequently, making periodic bulk loads
and a longer cache interval more appropriate. For example, use select * from
customer to bulk-load all customers. Then design a synchronization parameter that
maps to the "state" attribute. To load only California customers, the device application user
passes in the "CA" parameter.

Synchronization Parameter Behavior
These examples illustrate how a device application client uses a single synchronization
parameter defined in SAP Mobile WorkSpace to synchronize data on the client with data
contained in the MBO instance on SAP Mobile Server.

1. Create a Customer MBO from the customer table in the sampledb.
2. Add a stateParam synchronization parameter and map it to the state attribute.
3. Deploy the MBO.

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 31

Example device application behavior using this synchronization parameter includes:

1. Retrieve the synchronization parameters object from the MBO instance:
CustomerSynchronizationParameters sp =
Customer.SynchronizationParameters;

2. Set the stateParam synchronization parameter to "CA", save then synchronize. FindAll
retrieves all 10 records that have state="CA".
sp.stateParam = "CA";
sp.Save();
SUP101DB.Synchronize();

3. Perform a second sync without setting stateParam. FindAll again returns the same 10
records.
SUP101DB.Synchronize();

Mobile Business Object Mobility Properties

32 SAP Mobile Platform

Conclusion: You need not always set the sync parameter before a sync. If the same sync
parameter value is to be used, it does not need to be set again, since it uses the previous sync
parameter value.

4. Set stateParam to "NY", save then synchronize. FindAll retrieves 23 records, the 10
returned using the previous sync parameter state="CA" and 13 where state="NY".
sp.stateParam = "NY";
sp.Save();
SUP101DB.Synchronize();

Conclusion: When you save a new set of sync parameters the records returned from the
synchronization includes all previous sync sets. That is, synchronization parameters are
cumulative and previous sync parameters are maintained unless Delete is called on the
sync parameters.

5. Call the Delete method, set stateParam to "MN", and save then synchronize. FindAll
returns 5 records where state="MN".
sp.Delete();
//You must re-retrieve the synchronization parameter instance
sp = Customer.SynchronizationParameters;
sp.stateParam = "MN";
sp.Save();
SUP101DB.Synchronize();

Conclusion: Calling Delete on the sync parameter clears the previous sync parameters. On
the next sync the previous result sets for those sync parameters are removed.

It is not possible to retrieve all the synchronization parameter values except for those most
recently used. When a synchronization is performed it synchronizes all sync parameter sets.
That is, it attempts to load data from the SAP Mobile Server cache based on each sync
parameter (for on demand this is done during the sync, for scheduled it is based on the
configured schedule).

Synchronization Parameter Considerations
Modeling and mapping of synchronization parameters to load arguments implicitly generates
client defined data partition keys within the SAP Mobile Server cache. Partition keys define
subsections of data within an MBO, enabling parallel data access to large MBO data sets.

For example, you can refresh multiple partitions in parallel, or query one partition while
another is being refreshed. In general, partitions prevent serialized access to the cache. Some
best practices for defining client defined partition keys include:

• Synchronization parameters should be defined and mapped to all result-affecting load
arguments. Failure to do so results in partitions being continually overwritten/deleted
which leads to unexpected results in the mobile client.

• Result-affecting load arguments are those arguments of the EIS read operation that affect
the results of the operation. Some arguments may be information needed by the EIS but do
not actually affect the results of the read operation. For example; suppose an MBO is
modeled using a Web Service operation “getAllBooksByAuthor(AuthorName, userKey)
where userKey is simply a mechanism to authenticate a user and does not affect the results

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 33

of the operation. For a given “AuthorName” the service will return the same list of books
regardless of the “userKey” value. In this case “userKey” is not result-affecting and
therefore should not be mapped to a synchronization parameter.

Synchronization Parameter Definition Guidelines
Understand guidelines and restrictions when defining synchronization parameters.

Guideline Description

Datetime and time syn-
chronization parame-
ters

Synchronization may fail if you use SQL Anywhere® as the SAP Mobile Server
cache database (CDB) when the synchronization parameter is a datetime or time
datatype, since datetime and time columns contain three digits for the fraction
portion, making direct comparison incompatible with SAP Mobile WorkSpace.

To compare a datetime or time datatype to a string as a string, use the DATEFOR-
MAT function or CAST function to convert the datetime or time datatype to a string
before comparing. For example, this SQL statement is the generated download
cursor when attribute c2(datetime) is specified as the synchronization pa-
rameter:

SELECT x.* FROM Mydatetime x WHERE ((x.c2=:c2) OR (
(x.c2 IS NULL) AND (:c2 IS NULL)))
Change the statement to:

SELECT x.* FROM Mydatetime x WHERE ((dateformat(x.c2,
'yyyy-mm-dd hh:mm:ss') = dateformat(:c2, 'yyyy-mm-dd
hh:mm:ss') OR ((x.c2 IS NULL) AND (:c2 IS NULL)))

Datatype and nullable
default values

When a synchronization parameter is mapped to an attribute, to maintain consis-
tency between the two, the parameter datatype and nullable fields follow that of the
attribute to which it is mapped.

Synchronization Groups
A synchronization group specifies the synchronization behavior for every mobile business
object (MBO) within that group.

Data that is downloaded from SAP Mobile Server to the device is in the scope of a
synchronization group. That is, if the device user initializes a download to the device from a
specific MBO, SAP Mobile Server transfers the delta data of all MBOs within the same
synchronization group to the device.

Mobile Business Object Mobility Properties

34 SAP Mobile Platform

Cache Groups
A cache group specifies the data refresh behavior for every mobile business object (MBO)
within that group.

During development, you can group MBOs based on their data refresh requirements. Some
terms and concepts you should be familiar with are:

• Cache group – includes a cache policy and the MBOs that share that policy. An MBO can
belong to only one cache group.

• Cache – MBO data in the SAP Mobile Server cache (CDB) can be refreshed according to a
cache policy, along with other mechanisms, such as data change notification (DCN).

• Cache policy – defines the cache refresh behavior and properties for the MBOs within the
cache group based on the policy:

• On demand – the cache expires after a certain period of time (cache interval) such as
10 minutes. The cache is not updated until a request is made of the cache and the cache
has expired. If a request is made of the cache and it is expired, there may be a delay
responding to the request while the cache is refreshed.

• Scheduled – the cache is refreshed according to a schedule such as 7:00 am, 1:00 pm,
or 6:00 pm. Note that load arguments filled from transient personalization keys cannot
be used with a scheduled cache type, because transient personalization key values are
stored in the device application session, and unknown to SAP Mobile Server.

• DCN – the cache never expires. Data refresh is triggered by an enterprise information
system (EIS) Data Change Notification. The cache interval fields are disabled when
DCN is selected.

You can define MBOs without any load operations (not bound to a datasource), only if
the MBO belongs to a cache group that uses a DCN policy.

See the Mobile Data Models: Using Mobile Business Objects for details about
implementing DCN.

• Online – only can be used with message-based Hybrid Apps. See Online Cache Group
Policy.

• EIS managed – DCN controls cache refresh, the ability to define cache partitions,
update MBO data within those partitions, and subscribe users to those partitions.

Each cache group contains a cache policy, which in turn contains cache refresh/update
properties. When a refresh occurs, the SAP Mobile Server calls the default read operation
(for each MBO in the cache group), and all of the rows that are returned from the enterprise
information system (EIS) are compared to existing rows in the CDB as follows:

• If the CDB is empty, all rows are inserted.
• If any rows exist in the CDB, SAP Mobile Server processes the row-set and checks

(using the primary key) to determine if the row already exists in the cache:

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 35

• If it does, and all columns are the same as the EIS, nothing happens. When a client
synchronizes to request all rows that have changed since the last synchronization,
only rows that have changed are included, which is important for performance and
efficiency.

• If the row does not exist, it is inserted and the next synchronization query retrieves
the row.

Cache Group Considerations
Define multiple cache groups for data based on specific usage patterns and consistency
tolerance. For example, for transactional data that has little tolerance for EIS data that is stale,
an On-demand cache policy with a small coherence window is a more appropriate cache
solution than an hourly schedule-based refresh.

Some best practices for defining cache groups and allocating MBOs to those groups include:

• Place all MBOs that are modeled with composite relationships in the same cache group.
• Do not place reference data and transactional data in the same cache group. Typically,

reference data has different data consistency requirements than transactional data. For
example, a SalesOrder MBO that has a composite relationship to a SalesOrderItem MBO,
which contains a reference (non-composite) relationship to Product. Since products do not
change as often as sales order items, you may want to put the Product MBO in a different
cache group.

• Avoid circular dependencies between cache groups.
• Avoid loading of an MBO in one cache group based on the attributes of an MBO in another

cache group.

On-demand versus scheduled refresh
Cache policy refresh options affect cache partitions, in that they determine the frequency with
which the CDB is updated from the EIS (data refresh). The scheduled refresh option refreshes
the cache based on a clock. The on-demand refresh option, which is based on client actions, is
discussed here, with an emphasis on how to determine if cache partitions behave as expected.

To validate CDB data partition refresh behavior for client defined partitions:

1. Define multiple partitions and multiple clients.
2. Define a cache group with an On demand policy and confirm cache refresh behavior. Set

the cache policy with a cache interval that is long enough to allow you to perform updates
to the EIS and synchronize both clients.

3. Wait until the cache interval passes, then resynchronize the clients. The second
synchronization should reflect EIS changes, since the cache policy dictates that the CDB
must now refresh.

4. Inspect CDB log files for time stamps in the "LAST_REFRESH" and "LMD" columns for
your package to confirm that the partitions and rows of data for the associated partitions
have refreshed as expected.

To confirm the correct client defined partitions have refreshed:

Mobile Business Object Mobility Properties

36 SAP Mobile Platform

1. Make updates to data from multiple partitions in the EIS.
2. Synchronize one client so only one partition refreshes. Make sure the values for the length

of the cache interval and the last time the partition refreshed indicate that the data in that
partition is stale and needs to refresh when you synchronize.

3. The synchronized client retrieves refreshed rows only from the partition of interest. Data
from other EIS partitions do not update the CDB, even though data has changed in the EIS
(because no client has requested a synchronization of that partition).

4. When the second client synchronizes the second partition, only that partition refreshes.

Operation Cache Policies
Setting an operation cache policy for mobile business object (MBO) operations gives you
more control of SAP Mobile Server interactions with the enterprise information system (EIS)
to which the MBO is bound, and SAP Mobile Server cache (CDB) updates. Fine-tuning these
interactions and updates improves both SAP Mobile Server and device application
performance.

MBO operations perform specific functions based on their definition:

• Read operation (MBO attributes, load arguments, and synchronization parameters)
– the EIS operation used to define and initially populate the CDB (from the EIS) for the
MBO. Also called a load operation.

• Create, Update, Delete (CUD operations) – modify EIS data depending on the definition
of the operation. SAP Mobile Server maintains a cache (CDB) of back-end EIS data to
provide differential synchronization and to minimize EIS interaction.

While this type of bulk-fetch and CDB caching are effective in reducing the number of
interactions required with the EIS, and work well in some other cases (where MBO data is
occasionally updated in the EIS), performance suffers if changes are initiated from SAP
Mobile Server (by way of MBO operations), or if changes are frequent.

When an operation is submitted from a device application to the EIS, the cache must be
refreshed for those changes to be available to a client the next time the client synchronizes.

• Entity Read operations – refresh a single instance of an MBO composite graph (MBOs in
a composite relationship) in the SAP Mobile Server cache (CDB). This type of operation
can only be invoked for Create and Update operations that use an "Immediately update the
cache" operation cache policy.

Operation cache policies determine how the CDB is updated after an operation executes. The
operation cache policy and option combinations from which to choose to associate with MBO
CUD operations include:

• Immediately update the cache with Apply merge of operation input/output – this can
be used for CUD operations where the MBO attributes map one-to-one with
corresponding values in the EIS (no EIS generated IDs or side-effects on MBO attributes).
For example:

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 37

1. The MBO Developer edits the Contact MBO's officePhoneNumber attribute, and the
Update operation requires SAP Mobile Server to send fname, lname, city, state, and so
on attributes that have not been changed on the client.

2. SAP Mobile Server recognizes that only officePhoneNumber has changed, and
updates the cache correspondingly if the EIS operation executes without error.

• (Legacy) Apply results to the cache – used primarily to support Create operations where
the EIS generates the business ID for the new entity. SAP Mobile Platform requires the EIS
developer to provide a create method that returns all the attributes of the MBO that the SAP
Mobile Server normally sees from the read/load operation. This allows SAP Mobile
Server to insert the real business ID into the MBO instead of a temporary one
manufactured on the client (generateKey) as a placeholder. When SAP Mobile Server
synchronizes the newly created MBO back to the client, it contains the real EIS defined ID
field, and the client can update its remote copy by matching the surrogate key.

• Immediately update the cache with Apply output of ENTITY READ operation –
applies to any operation type, and also applies to graphs of related MBOs and shared read
operations. For example:

1. The MBO Developer wants to change the ShipDate attribute on the SalesOrder MBO
for a customer in a SalesOrder -> LineItems object graph, then submit the Update
operation.

2. The EIS recognizes that due to product availability, some of the line items cannot be
delivered on that date, so only some of the LineItem MBOs are modified as a result.

3. SAP Mobile Server recognizes that the Update operation succeeds (but this is the
"normal" Update operation that has not been modified to actually return MBO values,
much less the whole tree of SalesOrder->LineItem).

4. SAP Mobile Server recognizes an ENTITY READ operation associated with the
Update operation takes the SalesOrder.ID as input and executes the entity read
operation that returns the updated SalesOrder and LineItems information from the
EIS.

5. Using the shared read feature, SAP Mobile Server updates the cache for both parent
and child MBO values in the graph.

• Invalidate the cache – the cache is unaffected in terms of what is in the cache database
(CDB), but SAP Mobile Server internally marks the cache partition to which the affected
MBO belongs as invalid. The next time a client tries to synchronize values of this partition
SAP Mobile Server refreshes the cache by performing the load operation. If the cache is
very finely partitioned, this can be the equivalent to the ENTITY READ approach: apply
the operation and then perform an EIS read to update the cache. If the load operation takes
a specific ID and returns a single MBO record, then these are equivalent. If the MBO
partition is larger scale (Customer by State for example), then a lot of MBOs are
invalidated and the cache refresh (all customers in State=CA) is a more expensive
operation.

• None – the cache is not updated after an operation. If there is a one hour refresh policy,
changes are not reflected in the cache (or the device) until that hour expires and SAP

Mobile Business Object Mobility Properties

38 SAP Mobile Platform

Mobile Server refreshes the cache. If the policy is DCN, the cache is not updated until the
EIS sends a DCN message reflecting the changes.

When an MBO operation is called, its cache policy determines how operation results are
applied to the CDB.

Other mechanisms used to update the CDB that are external to MBO operations, and not
associated with operation cache policies include:

1. EIS-initiated DCN – an HTTP request to SAP Mobile Server, in which the DCN request
contains information about the changed data, or the changed data itself.

2. Scheduled data refresh – SAP Mobile Server polls the EIS for changes at specified
intervals.

3. MBO cache group – every MBO belongs to a cache group that specifies a cache refresh
policy for every MBO in that group. Plan carefully to maximize cache group and cache
policy efficiency. Examples include:
• A poorly designed MBO might have an operation with a cache policy that updates only

the operation results to the CDB, but the MBO belongs to a cache group with an
interval that refreshes the entire MBO on too short a schedule, minimizing the value of
the cache policy.

• This same MBO properly designed might have a cache group that refreshes the MBO
nightly, increasing SAP Mobile Server performance by deferring load from peak usage
hours.

Operation Cache Policy Data Flow
Understand the data flow of SAP Mobile Platform operation cache policies.

The diagrams in the following sections illustrate the data flow from an SAP Mobile Server
point of view, which is different than runtime. At runtime, the mobile application client can
send separate operation and synchronization calls to SAP Mobile Server by calling the Object
API Synchronize() method, which does both (call an operation and synchronize).

Invalidate the Cache Data Flow
Understand how the "Invalidate the cache" operation cache policy invalidates the cache after
an EIS operation.

In this example, the client defined partition for the Order MBO is defined by the customerId
attribute. The REST service exposes an Order GET operation that takes customerId as a
parameter, and returns a subset/partition of Order data specific to customerId. The REST
service also exposes an Order POST operation that takes an Order graph as a parameter:

1. The "Invalidate the cache" operation cache policy associated with the MBO Update
operation invalidates the cache partition after the REST Service POST is invoked.

2. The next client data synchronization for the invalid partition triggers the REST Service
GET operation that takes customerId as an input parameter.

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 39

3. The REST Service returns all orders for the given customerId (a partition) and the cache
manager merges the orders as well as the order/items into the cache.

Immediate Refresh with Entity Read Data Flow
The Update and Create operations use the "Apply output of ENTITY READ operation"
operation cache policy option with the "Immediately update the cache" cache policy, to
immediately apply the results of the Entity Read operation to the SAP Mobile Server cache.

This example:

• Requires the EIS to expose the REST service as a read operation that returns a single
instance of the data when given the primary key (Entity Read).

• Reduces the transaction lock scope within the cache when compared with the "Invalidate
the cache" option that refreshes a partition, because it remains coupled to the client Update
operation and the granularity of the cache refresh is at the primary key/graph ID level
rather than the partition ID level.

Mobile Business Object Mobility Properties

40 SAP Mobile Platform

When executing an operation that is configured for object graph-level immediate refresh:

1. The client executes an operation that is configured for graph-level refresh and
synchronizes.

2. The operation is replicated to SAP Mobile Server during synchronization.
3. Internally, SAP Mobile Server:

a. Begins a new transaction and reads the replay operation from the operation replay
queue.

b. Invokes the corresponding data services operation, passing in surrogate key and other
client attributes specified by the client application.

c. Obtains a graph lock to prevent concurrent modification of the graph by other refresh
activities such as On-demand refresh, Scheduled refresh, or DCN.

d. Invokes the EIS operation within the context of the operation replay transaction.
e. Combines the EIS operation results with the client attributes to determine the business

primary key of the affected graph.
f. Invokes an Entity Read operation on the EIS to read the entire graph.
g. Merges the results of the Entity Read operation with the contents of the graph currently

held in the cache bringing the cached graph up to date.
h. Commits the operation replay transaction.

Operation Cache Policies and Client Synchronization
Operation cache policies are server-side configurations only and have no impact on specific
clients.

For example, the effect of setting the "Immediately update the cache" policy is:

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 41

1. A Client invokes the Create, Update, or Delete operation on an MBO and then performs a
sync operation.

2. The operation executes on the EIS and the EIS returns a result-set.
3. When "Immediately update the cache" is checked the results from step two are used to

refresh the cache.
4. SAP Mobile Server runs the download cursor on the SAP Mobile Server cache and returns

the results as part of the client sync.
5. The client database is refreshed with the latest EIS data.

"Immediately update the cache" can be more efficient with regard to cache refresh compared
to cache groups - in particular if your client application is the primary updater of the EIS, it
may allow a larger coherence window for on-demand refresh or replace it completely.

Composite Operations
The MBO designer can model a create, update, or delete operation on the root node of a
composite relationship graph that accepts the entire composite graph as input.

The composite operation allows mapping of EIS operation arguments to any or all of the
MBOs contained in the composite MBO graph such that child nodes are not required as
explicit parameters to parent operations. Creation, deletion, or modification of child nodes in a
composite operation results in the addition of these nodes to the operation replay graph sent to
SAP Mobile Server when the composite operation on the root MBO is submitted. Composite
operations involving child nodes in a composite graph do not result in separate replay
operations for the child nodes. In other words, the device application developer can create a
composite MBO tree in one create call from the root MBO.

You can define CUD operations on child MBOs in a composite graph, but those operations are
not (and are not part of) composite operations and must be explicitly invoked by the client
(with their own replay operations).

The operation replay includes only composite graph nodes which have changed in the
operation replay message, which minimizes network traffic from the client device. SAP
Mobile Server is responsible for assembling any missing portions of the graph from the cache
prior to invoking the EIS operation.

After the EIS operation executes, the operation cache policy determines how those results are
applied to the SAP Mobile Server cache.

Composite Operation Data Flow
Understand how a composite operation together with an operation cache policy merges client-
provided parameters with merged results and applies them to the SAP Mobile Server cache to
create, add, and delete results for a composite object graph.

The data model/use case described here focuses on variations in the way that a composite
graph can be modified on the client and the implications of each modification type on SAP

Mobile Business Object Mobility Properties

42 SAP Mobile Platform

Mobile Server processing. The Order, Item and ItemNote entities that form the data model are
used for examples. The client application updates, creates, or deletes one or more nodes in the
composite graph and then submits the replay operation to SAP Mobile Server, which
constructs the composite MBO graph, binds the graph to the EIS invocation parameters and
invokes the REST service. The composite operations are configured to immediately "Apply
merge of operation input/output", so the cache is refreshed with the current EIS version of the
graph after the EIS operation is invoked.

Create:

Add:

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 43

Delete:

Mobile Business Object Mobility Properties

44 SAP Mobile Platform

Creating a New Composite Object Graph
This use case describes the creation of a new composite relationship consisting of Order<-
Item<-ItemNote MBOs.

The following diagram shows the construction of an Order with two Items and one ItemNote:

1. When the pending operation on the Order is submitted a replay operation is sent to SAP
Mobile Server which contains the entire composite graph.

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 45

2. Since the replay operation contains the entire graph, there is no need to merge the replay
graph with the cache to pick up missing graph parts.

3. The operation replay graph is bound to the EIS Order create operation’s input parameters
and the Order create operation is invoked.

4. The primary key contained in the create operation results is used to query the EIS for the
current version of the graph which is then merged into the cache.

5. The download query executes and the query results are returned to the client.

Adding a Composite Child Graph
This use case describes the creation of a new lineItem and ItemNote and attaching it to an
existing Order.

The following diagram illustrates the addition of a new Item and Note to the Order created in
the previous use case:

Mobile Business Object Mobility Properties

46 SAP Mobile Platform

1. The client looks up the existing order, creates a new Item with an attached ItemNote and
adds the new Item to the existing Order.

2. Since this modifies an existing graph and does not create a new one, the graph contained in
the replay message cannot be assumed to be complete, so SAP Mobile Server merges the
partial MBO graph contained in the operation replay message with the graph currently
contained in the cache.

3. When creating the merged MBO graph, two MBO nodes are identified in the operation
replay graph which are not present in the cached graph such that the merged graph consists
of the cached graph plus two additional MBO nodes (the new Item and ItemNote nodes).

4. The merged MBO graph is assembled and bound to the parameters of the Order update
operation, and the update operation is invoked. If the update operation is configured for
entity-level refresh, the findByPrimaryKey operation is invoked to retrieve the current
graph from the EIS so that it can be merged into the cache. In this case the primary key
required by the findByPrimaryKey operation is derived from the clientAttributes rather
than from the results of the update operation.

5. During cache merge processing the surrogate keys provided in the client attributes for the
new Item and ItemNote are preserved in the cache.

6. Cache changes are downloaded to the client.

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 47

Deleting a Composite Child
This use case describes the deletion of an Item from the composite graph.

The following diagram illustrates the removal of the Item that was created and added to Order
in the previous example:

Mobile Business Object Mobility Properties

48 SAP Mobile Platform

1. The client looks up the Order, looks up the Item and invokes the Item’s delete operation. In
this case the operation replay graph contains the Order node and a child Item node marked
as delete pending.

2. When constructing the merged MBO graph, Unwred Server notes that the Item in the
replay graph is marked as delete pending and removes it and its ItemNote child from the
merged MBO graph.

3. The merged MBO graph is then bound to the Order update operation parameters and the
rest of the flow is identical to the addition use case example.

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 49

Updating a Composite Node
This use case describes the modification of an existing ItemNote.

The following diagram shows an ItemNote created previously having its description attribute
changed. In this scenario the operation replay message contains an Order, a child Item and a
grandchild ItemNote which is marked as update pending:

1. When constructing the merged MBO graph the server sees that the ItemNote in the replay
graph is marked as update pending and replaces the corresponding ItemNote in the merged
MBO graph.

2. The merged MBO graph is then bound to the Order update operation parameters and the
rest of the flow is identical to the previous use case.

Mobile Business Object Mobility Properties

50 SAP Mobile Platform

Object Queries
Object queries are SQL statements associated with a mobile business object (MBO), against
the persistent store on the device that returns a subset of a result set. For example, an object
query is used to filter data already downloaded from the CDB to display a single row of a table
when triggered.

Define object queries to return a subset of MBO results, either from an MBO deployed to SAP
Mobile Server or a local business object.

Table 1. Object Query Usage

MBO type Usage

Local business ob-
ject

The requested data must be available on the mobile device. If not, MBO oper-
ations must be called to insert the requested data. The query can then continue to
return data from the client's local database.

Bound to a data-
source

1. Create the query.
2. Call the query from the device application at runtime to display a subset of

the results on the device.

Contained in a
cache group that
uses an Online pol-
icy

MBOs that use an Online cache group policy generate a single read-only object
query named findByParameter, which is automatically generated by SAP Mo-
bile WorkSpace. findByParameter query parameter(s) are generated for every
load argument that has a Propagate to attribute. The findByPrimaryKey ob-
ject query and any other user defined object queries are removed for MBOs that
use an Online cache policy.

By default, the return type is Return multiple objects and Create an index is
false, and these are the only values you can modify.

If you modify a Propagate To attribute of a load argument belonging to an
MBO using an Online cache group policy, the object query is automatically
updated.

See Improve Object Query Performance in Mobile Data Models: Using Mobile Business
Objects for information about optimizing object query performance in Native Object API
applications.

Object Query Definition Guidelines
Understand how to define object queries.

Support for various compact databases
Since object queries can run on multiple mobile devices that may run different compact
databases (UltraLiteJ® or SQLite® for example), object queries support a subset of UltraLiteJ
SQL statements.

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 51

Table 2. Object query restrictions

SQL Restrictions

Select statement Supported – Order by

Unsupported:

• Bulk and Math functions

• Group by

• For

• Option

• Row limitation

• As

Input-parameter Supported – :name

Comparison operators Supported:

• Date format is YYYY-MM-DD and contained in single
quotes.

• Literal strings must be contained in single quotes.

From clause Supports multiple MBOs.

See the UltraLiteJ documentation for more information about the UltraLite SELECT
statement clauses.

Object queries must use aliases
Define the object query using an alias that references the MBO and attribute names (not table
and column names from which they are derived). For example, if you have an MBO named
Cust with a cust_id attribute (which is a primary key), defining this object query:
SELECT c.* from Cust c WHERE c.cust_id = :cust_id

and this parameter:

• Name – cust_id
• Datatype – INT

results in an object query that returns a single row from the Customer table. You must use an
alias (c and c.attribute_name) in the query definition or an error occurs during code
generation.

General behavior
General object query behavior, including assigning parameters a default value/primary key
includes:

Mobile Business Object Mobility Properties

52 SAP Mobile Platform

http://dcx.sybase.com/index.php#http%3A%2F%2Fdcx.sybase.com%2F1101en%2Fuladmin_en11%2Fdynamicsql-s-5456750.html
http://dcx.sybase.com/index.php#http%3A%2F%2Fdcx.sybase.com%2F1101en%2Fuladmin_en11%2Fdynamicsql-s-5456750.html

• For automatically generated object queries derived from "Primary key" settings, SAP
Mobile WorkSpace returns the attributes marked as primary key parameters.

• For manually created object queries, the parameter field allows you to select any of the
available attributes, and, when selected, matches the datatype accordingly. You can still
manually type in the attribute name.

Validation rules
Follow these rules when defining an object query:

• All columns defined in the MBO must appear in the result set of the object query. If not, an
error is generated when running the object query similar to:
java.sql.SQLException:JZ008: invalid column index value at 2

• "findBy" is a reserved word for an object query. If you create an operation starting with
"findBy", you receive the warning message: Operation name ''{0}'' starts with 'findby',
which may cause name conflict when generating client code.

• Do not duplicate query or operation names.
• Do not use these reserved names as the query name: "pull", "downloadData."
• Do not use an operation name, query name, or attribute name that is the same as the name

of the MBO to which they belong.
• While clicking Generate generates a valid query, SAP Mobile WorkSpace does not parse

or validate the generated query. If you modify the query, be mindful that parameters are not
validated until code is generated. For example, this error (mixed case between parameter
name and query definition) is not detected until code generation or deployment:
Parameter: Param1 (INT)
Query definition: SELECT x.* FROM TravelRequest x WHERE x.trvl_Id
= :param1

Object Query Indexes
Indexes improve the performance of searches on the indexed attributes (database columns to
which the MBO attributes map), by ordering a table's rows based on the values in some or all
the attributes. An index locates rows quickly, and permits greater concurrency by limiting the
number of database pages accessed. An index also provides a convenient means of enforcing a
uniqueness constraint on the rows in a table.

Object query examples that could serve as indexes.

Object query definition Description

select x.fname, x.lname from Cus-
tomer x where x.state := :state and
x.city := :city

Create one index on the attributes "state" and "city" of the
"Customer" MBO.

select x.fname, x.lname from Cus-
tomer x where x.state := :state or
x.city := :city

One query can only generate one index, all the attributes ref-
erenced in the query construct a composite index (state, city).

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 53

Object query definition Description

select x.fname, x.lname, y.prod_id,
y.quantity from Customer x,
Sales_order y where x.id := y.id and
y.prod_id := :prod_id

No index is generated for join queries.

When to Create an Object Query Index
There is no simple formula to determine whether an index should be created. You must
consider the trade-off of the benefits of indexed retrieval versus the maintenance overhead of
that index.

Consider these factors in determining if you should create an index:

• Keys and unique columns – SAP Mobile WorkSpace automatically creates indexes for
findByPrimaryKey object queries. You should not create additional indexes on these
columns. The exception is composite keys, which can sometimes be enhanced with
additional indexes.

• Frequency of search – if a particular column is searched frequently, you can achieve
performance benefits by creating an index on that column. Creating an index on a column
that is rarely searched may not be worthwhile.

• Size of table – indexes on relatively large tables with many rows provide greater benefits
than indexes on relatively small tables. For example, a table with only 20 rows is unlikely
to benefit from an index, since a sequential table scan would not take any longer than an
index lookup.

• Number of updates – an index is updated every time a row is inserted or deleted from the
table and every time an indexed column is updated. An index on a column slows the
performance of inserts, updates and deletes. A database that is frequently updated should
have fewer indexes than one that is read-only.

• Space considerations – indexes take up space within the database. If database size is a
primary concern, you should create indexes sparingly.

• Data distribution – if an index lookup returns too many values, it is more costly than a
sequential table scan. Also, you should not create an index on a column that has only a few
distinct values.

• Order by – if you use object queries (also called dynamic queries) with "order by," then
you might require indexes for ordering columns to ensure that the database can use an
index for ordering, rather than creating a temporary table which can be slow on a mobile
device.

FindAll Object Query Guidelines
Understand FindAll query definition guidelines.

By default, a FindAll object query is generated for every MBO and uses these values:

• Name – FindAll

Mobile Business Object Mobility Properties

54 SAP Mobile Platform

• Parameters – none (A FindAll query without parameters generates a query such as
Select * from ...

)
• Query Definition – SELECT x.* FROM {Entity} x
• Create an index – false
• Return Type – Multiple Objects (accepts {Single Object, Multiple Objects, Result Set})

SAP Mobile WorkSpace validates the query name and disallows it if it is a reserved word or
restricted in some way, including:

• All MBO operation names
• Standard generated getter/setter methods (Get{Attribute}/Set{Attribute})
• Standard generated relationships (Get{RelationShip}/Set{RelationShip/

Get{RelationShip}Size}
• Standard methods (find, create, delete, update, save, refresh)
• GetMetaData
• GetClassMetaData
• Anything that starts with a underscore (e.g. _init)
• IsDeleted, IsDirty, and so on
• KeyToString
• Equals
• GetHashCode
• xxxFilterBy(...)
• Bind
• Load
• Find
• Find_os
• Merge
• CopyAll
• CreateBySQL
• GetDownloadState
• Set/GetOriginalState
• CancelPending
• CancelPendingOperations
• SubmitPendingOperations
• Internal_{xxx}
• SubmitPending
• FromJSON/ToJSON{List}
• GetSize
• FindWithQuery

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 55

• Subscribe_{xxxx}/Unsubscribe_{xxx}
• GetPendingObjects
• GetSynchronizationParameters
• GetLogRecords
• LastOperation
• GetCallbackHandler

Improve Object Query Performance
Investigate and optimize object query performance for Native Object API applications on iOS,
Windows Mobile, BlackBerry, and Android platforms.

While most simple queries run with reasonable performance, complex queries require a good
understanding of the underlying database schema derived from the MBO data model, as is the
case in a client/server computing environment where the DBA is often consulted to develop
optimized stored procedures or perform database tuning. The differences with mobile
application development are that:

• The developer is the DBA of the device database. A device database engine does not have
the complex optimization strategies nor does it keep statistics that an enterprise database
server does.

• Resources on a device are limited, and heavy or complex queries often result in significant
performance implications. For example, hash joins are not supported on the Ultralite
database due to potentially large memory requirements for less capable devices.

The Query API is used on Windows Mobile, BlackBerry, and Android platforms, while
SUPQuery is used by iOS. Mobile application developers can use these APIs to query the on
device database and return data in the form of a result set.

The SQL statement is generated based on the Query/SUPQuery object constructed by the
application and allows the Object API to inject conditions to deal with the object states
necessary for offline computing. When an object is modified, there is a pending state (current),
a download state (server), and the original state (before first modification). The pending and
download states reside in the MBO table. The extra conditions in the SQL statement enable the
return of either the pending state (if there is one) or the download state. No query optimization
is performed by the Object API during the generation of the SQL statement. See either Query
and Related Classes or SUPQuery and Related Classes in the Developer Guide: yourPlatform
Object API Applications.

Examining the Database Schema and Data Size
Use Sybase® Central from the SAP Mobile Platform installation to connect to and examine
the device's database file. The UltraLite database udb file is compatible across device
platforms.

Keep the following in mind when examining the database schema and data size:

Mobile Business Object Mobility Properties

56 SAP Mobile Platform

• Query/SUPQuery operates at the database level. The MBO attribute is simply translated
into a corresponding table column if different.

• Tuning requires knowledge of the database schema generated by the Object API to back
the MBOs. The best way to examine the schema is to make a copy of the UltraLite database
after initial synchronization finishes to make sure it contains the data set that the query
operates upon.

• Query performance depends greatly on the data set. Mock data without the characteristics
of the operational data is not useful for tuning.

• Initial synchronization may require the developer to define various synchronization
parameters to download the operational data.

• You can use an actual device or a simulator to create and populate the database.

1. Make a copy of the UltraLite database file.

The databaseName.udb file location depends on the device platform or simulator. It is
generally found in the application’s data folder.

2. Launch Sybase Central (scjview.exe) to manage SQL Anywhere and Ultralite
databases.

The default installation location of the Sybase Central executable is SMP_HOME
\Servers\SQLAnywhere12\BIN32\scjview.exe.

3. From Sybase Central, select View and edit the schema of a database.

4. Provide the connection information to the UltraLite database file copied earlier.

Generally, you need not specify either a user ID or password, since the Object API does not
set them. However, if the database is encrypted, you must supply the encryption key to
open the database.

5. Click Connect to connect to the copied database file.

Obtaining the SQL Statement Generated From the Query
Set enableTrace in the client code to trace the SQL statement.

The SUPConnectionProfile (iOS) and ConnectionProfile (Android, BlackBerry, Windows
Mobile) class includes APIs used to set tracing with or without payload:

To obtain the parameter bindings for the SQL statement, trace with payload set to true.

1. Set the appropriate trace level in the application code by inserting small fragments of code
to bracket the execution of the Query or SUPQuery.

Note: SAP recommends that you do not enable tracing from SAP Control Center, as doing
so negatively impacts performance, and creates a large trace file that makes it difficult to
locate the SQL statement corresponding to the Query/SUPQuery.

2. Use this code to turn on or off tracing of the SQL statement with payload in the trace file.

• iOS:
 (void) enableTrace:(BOOL)enable
 (void) enableTrace:(BOOL)enable withPayLoad:

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 57

(BOOL)withPayLoad

SUPConnectionProfile *cp = [SMP101DB getConnectionProfile];
 // Enable SQL trace with payload of the query
 [cp enableTrace:YES withPayload:YES];
 QueryResultSet cursor = SMP101DB.executeQuery(query);
 // Disable SQL trace
 [cp enableTrace:NO];

• Android, BlackBerry and Windows Mobile:
ConnectionProfile cp = SMP101DB.getConnectionProfile();
// Enable SQL trace with payload of the query
 cp.enableTrace(true, true);
 QueryResultSet cursor = SMP101DB.executeQuery(query);
// Disable SQL trace
 cp.enableTrace(false, false);

Showing the Execution Plan
Use dbisql to read the execution plan of the code that you are tracing.

1. If it has not already been done, register the Ultralite ODBC DLL from the SMP_HOME
\Servers\SQLAnywhere12\BIN32\ directory by executing:c:\Windows
\System32\ regsvr32.exe ulodbc12.dll.

2. From SMP_HOME\Servers\SQLAnywhere12\BIN32\, execute dbisql. When
prompted to connect to a database of a specified type, click Change database type , select
UltraLite, and provide connection information.

3. From the Sybase Central main menu, select Tools > Plan Viewer.

4. Copy and paste the SQL statement from the trace file obtained previously into the “SQL”
area and press Get Plan.
See Reading UltraLite execution plan in the online help for the version of SQL Anywhere
installed as part of SAP Mobile Platform to familiarize yourself with execution plan
operations before examining your execution plan.

Interpreting the Execution Plan
Interpret the execution plan and, based on the results, optimize object queries.

Relationship Between Query, Statement, and Plan
This example of a simple join between two MBOs or tables illustrates the relationship
between the SUPQuery/Query, generated SQL statement, and the execution plan. The column
names may be different from the attribute names, depending on the version of the client SDK
used. The table with the suffix “_os” stores the original state of the MBO and eliminates
duplicate rows if the object is in pending state.

The SUPQuery:
Query query = new Query();
query.select("p.PRODUCTID, p.TYPE, t.DESCRIPTION");
query.from("PRODUCTS", "p");
query.join("PRODUCTSDESCRIPTION","t","t.PRODUCTID","p.PRODUCTID");

Mobile Business Object Mobility Properties

58 SAP Mobile Platform

The SQL statement generates:
select p."a",p."b",t."c"
from "slowquery_1_0_productsdescription" t,"slowquery_1_0_products"
p
where p."a"= t."a"
 and (t."pending" = 1 or not exists (select 1 from
"slowquery_1_0_productsdescription_os" t_os where t."d" = t_os."d"))
 and (p."pending" = 1 or not exists (select 1 from
"slowquery_1_0_products_os" p_os where p."p" = p_os."p"))

Execution Plan
According to the plan below, the join is implemented using a table scan of the
"productsdescription" MBO. It attempts to look up a row for each row on the "products" MBO
using the index:
slowquery_1_0_products_findByPrimaryKeyIndex

The filter and subquery operations work together to limit the number of rows returned by the
scan to consist only of the pending (if there is one) or download state. Read-only MBOs do not
require filtering since there is only one state – download.

Note: The column names that appear in the SQL query are short names. The mapping between
the attribute name and the short name is in the generated code. In the internal directory of the
generated code, there is a source file that embeds the metadata information for each MBO. For
example, in iOS, the file is in the form <Package><MBO>MetaData.m. For previous releases,
the metadata information is generated only if you select the Generate Metadata option
during code generation.

join
 [
 filter[scan(slowquery_1_0_productsdescription)],
 filter[index-scan(slowquery_1_0_products,
 slowquery_1_0_products_findByPrimaryKeyIndex)]
]
 sub-query[index-scan(slowquery_1_0_products_os,primary)]
 sub-query[index-
scan(slowquery_1_0_productsdescription_os,primary)]

Table Scans
Small table scans can be quite efficient; however, avoid large table scans as much as possible
due to the linear cost. For attributes in a WHERE clause, avoid a table scan by adding
appropriate indexes. UltraLite uses direct page scans when it is more efficient to access
information directly from the database page, however, such results are returned without order.
The object query must use ORDER BY to guarantee ordering of result sets.

Joins
Join operations are common in a relational database. However, too many joins within a query,
especially queries involving tables with many records, are very expensive to perform. Because
of the limited resources associated with the device database, dividing a query into two or more

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 59

subqueries provides better performance. Since the database engine is single threaded,
allowing another application thread to process the result of a subquery while the application
thread in the database engine works on another query in parallel may provide better
performance in a multicore environment. This might involve additional work for the
application developer, but may also allow complex queries to execute with reasonable
performance.

Also, for a join operation, the query optimizer does not use table size information or gather
statistics to decide which table to scan. The table order in the SQL statement (derived from
SUPQuery/Query) determines the table to scan. Therefore if you are joining a very large table
with a small one, ordering is important to limit the amount of work the engine must do.

Temporary Tables
Avoid using temporary tables, if possible, since they are fairly expensive. There is a large
discrepancy between read and write speed for flash-based memory and storage. When using
UltraLite databases with temporary tables:

• In general, the optimizer always tries to avoid creating temporary tables to return query
results, because the entire temporary table must be populated before the first row can be
returned. If an index exists, the optimizer tries to use the index first and creates a temporary
table only as a last resort.

• A temporary table is used by an access plan to store data during its execution in a transient
or temporary worktable. This table exists only while the access plan is being executed.
Generally, temporary tables are used when intermediate results do not fit in the available
memory, such as when:
• Subqueries must be evaluated early in the access plan
• Data in a temporary table is held for only a single connection only
• A query contains an ORDER BY on a column other than an index
• A query contains a GROUP BY on a column other than an index

• It is difficult to anticipate whether an index you have created avoids the necessity for a
temporary table. Therefore, always check the plans for a query to ensure that the indexes
you have created are actually being used by the UltraLite query optimizer.

• You can avoid using temporary tables by using an index for the columns used in the
ORDER BY or GROUP BY clauses.

Indexes
The optimizer looks at query requirements and checks if there are any indexes it can use to
improve performance. If there is not, then the optimizer uses either a temporary table or a
direct page scan instead. Therefore, you may need to experiment with your indexes, and
frequently check generated execution plans to ensure that you are:

• Not maintaining indexes that are not being used by the optimizer
• Minimizing the number of temporary tables being created

The Object API uses the surrogate key scheme; the surrogate key is part of a composite
primary key with the pending flag. A second index is created for the business key of the MBO,

Mobile Business Object Mobility Properties

60 SAP Mobile Platform

designated by xxxx_findByPrimaryKeyIndex. These are all the indexes for each MBO that are
updatable. For read-only MBOs, the primary key consists of only the surrogate key. If the
query to be optimized requires additional indexes, the MBO developer must create such
indexes from the Object Queries tab in SAP Mobile WorkSpace.

Create the index by creating an appropriate object query. The new object query results in a
small amount of generated code that does not impact application performance. For example, if
you create an index for the attribute “zip”, you need only create an object query using “zip” in
the WHERE clause.

While a new object query does not impact performance, an additional index may slow down
synchronization and update/insert operations. Do not create indexes to prepare for future
upgrades that may or may not materialize. Even for a read-only MBO, additional indexes may
slow synchronization. If MBO data changes infrequently and is limited in size, then the only
concern is initial synchronization time. Faster query performance and synchronization speed
is a trade-off. Indexes are an important tuning tool but must be used with caution: they are
important for large tables due to the cost of table scans; however, redundant indexes slow
down insert/update/delete operations, but provide no benefit.

Materialized Views
For complex queries involving large reference tables that change infrequently, it may be
beneficial to construct a materialized view to have results return within user experience limits.
You can construct such views using a local MBO, and maintain them in the application code.
The change log facility notifies the application of changes to the data set after synchronization
completes. Based on the changed/new MBO instance, the application code can update the
materialized view. As a result, the query can leverage the materialized view without a join
operation and spread materialized view maintenance out over time. SAP does not recommend
this approach for volatile data, as maintenance processing is complex and time consuming.
Additionally, the most recent view is delayed until processing completes so the user may see
only partially updated materialized views.

Mobile Business Object Mobility Properties

Mobile Data Models: Using Mobile Business Objects 61

Mobile Business Object Mobility Properties

62 SAP Mobile Platform

Datatype Support

SAP Mobile WorkSpace supports a variety of datatypes, from a simple type to an array of
objects.

Mobile business object (MBO) attributes and argument/parameter datatypes map to
datasource datatypes. Select the datatype of a given argument/parameter or attribute from the
datatype drop-down list, which maps to the datasource's datatype. You define attribute and
parameter datatypes in a number of SAP Mobile WorkSpace locations, depending on the
MBO development phase, including:

• Creating MBOs – when creating MBO operations and attributes in these locations:
• Attributes Mapping wizard
• Client Parameters page (when deferring binding to a datasource)
• Attributes page (when deferring binding to a datasource)

• Editing MBOs – when editing MBO attributes and parameters from the Properties view in
these locations:
• Load Arguments tab
• Attributes Mapping tab
• Synchronization tab (for synchronization parameters)
• Object Queries tab and Object Query creation wizard

• Testing MBOs – use the Test Execute and Preview dialogs for testing mobile business
object operations or previewing attributes.

• Creating and editing personalization keys – holds the personalization parameters and
supports the same datatypes as MBO attributes and parameters.

Since attributes and parameters depend on the datasource to which the MBO maps, not all
attributes and parameters support all datatypes. Generally, if a datatype does not display in the
drop-down list, it is not supported for that MBO.

When defining the default value for a parameter with the maxlength setting, the maximum
length also applies to any localized (i18n) values (Including some double-byte character
languages, such as Chinese).

SAP Mobile WorkSpace supports various categories of datatypes.

Table 3. Datatype Categories

Category Description

Simple int, string, date, bigString/bigBinary, and so on.

List of simple types An array of simple types: int[], string[], date[],
and so on.

Datatype Support

Mobile Data Models: Using Mobile Business Objects 63

Category Description

Structure (complex) Implemented with a structure, and includes:

• SAP input structure or input table

• Nested complex types in Web Services that
handle type structures as input (repeating and
nested elements)

Note: Parameters, personalization keys, and de-
fault values all support complex types. Attributes
do not, except for those that represent relation-
ships.

List of structure types An array of objects: customer[], account[], and so
on.

The following table describes how to input values for various simple datatypes when
specifying default values of parameters of these types in SAP Mobile WorkSpace.

Table 4. Simple Datatype Description

Datatype Description

binary (%n) Select either:

• Input manually – enter a base64 encoded string directly in the input
field.

• Import from file – browse to a file from which the input string is re-
trieved.

To set the length, click the cell you require in the datatype column and select
binary(%n). Press enter and then type the size you require. For example,
you could:

1. Click the particular cell in the datatype column, and select binary(%n)
from the list of datatypes.

2. Enter the value for the binary length by highlighting %n with your
cursor, and replacing it with the size you require.

3. Press enter to set the binary length. For example, if you entered 10 as the
binary length, you see binary(10) in the datatype cell.

Note: The maximum allowable length for binary datatypes is 2G bytes. If
the MBO's attribute is a primary key, the maximum allowable length for
binary datatypes is 2048 bytes. For MBO parameters, binary default value
cannot exceed 16384 bytes.

Datatype Support

64 SAP Mobile Platform

Datatype Description

date Select the day in the provided calendar. By default the local time zone is
selected. The Time zone field is read only.

dateTime By default the current date, time and time zone display in the calendar.

time Enter the time, and enter the local time zone in the Time zone field.

string(%n) To set the string length, click the cell you require in the datatype column and
select string(%n). Press enter and then type the size you require. For ex-
ample, you could:

1. Click the particular cell in the datatype column, and select string(%n)
from the list of datatypes.

2. Enter the value for the string length by highlighting %n with your
cursor, and replacing it with the size you require.

3. Press enter to set the string length. For example, if you entered 10 as the
string length, you see string(10) in the datatype cell.

Note: The maximum allowable length for string datatypes is 2G bytes. If
the MBO's attribute is a primary key, the maximum allowable length is 512
bytes.

Datatype Support

Mobile Data Models: Using Mobile Business Objects 65

Datatype Description

BigString/BigBinary Allows you to transfer large binary or string data from/to SAP Mobile
Server by using the ObjectAPI streaming methods to optimize memory
consumption. For example, you can set an MBO's attribute/arguments as
BigString/BigBinary and get/set the data by a streaming method such as
seek/write/read/flash in the client code.

To use either BigString or BigBinary types and the associated streaming
objectAPI, an MBO operation argument must be mapped to a Fill from
attribute that uses the large object type. An error is generated if an MBO
operation argument has a BigString or BigBinary type but does not have the
associated Fill from attribute with the same large object type. Not all at-
tribute/arguments support BigString/BigBinary:

1. Only operation argument/structure object attributes can be set as Big-
String/BigBinary, which have no length limitation. Use a streaming I/O
mechanism to optimize memory consumption at runtime.

2. Personalization key/sync parameter/load argument/object query pa-
rameter/client parameter are not allowed to set BigString/BigBinary
datatype.

3. In the attribute mapping section of properties view, primary key attrib-
utes are not allowed to have BigString/BigBinary data type. If you set a
primary key attribute as BigString/BigBinary, SAP Mobile WorkSpace
displays a validation error. The BigString/BigBinary options are still
available since you can unselect the primary key checkbox.

4. To indicate an operation argument needs to use BigString/BigBinary,
change the mapped attribute’s datatype.

Note: Ensure that your SAP Mobile Server host is a 64-bit machine with a
heap size larger than 512 MB to avoid "java.lang.OutOfMemoryError: Java
heap space" errors when processing BigString or BigBinary datatypes.

All others Enter the appropriate value in the Value field.

Datatype Support

66 SAP Mobile Platform

Time Zone Datatype Behavior
Because enterprise resources are frequently located in different time zones, you need to
understand the restrictions of using time-related datatypes when developing mobile business
objects (MBOs).

Zone-offset independent field based time
SAP Mobile Platform date, time, and dateTime datatypes hold time zone independent field-
based time, as defined in Incremental versus Field-Based Time, making zone offsets invalid.
For example, if you specify a default value for a synchronization parameter, it is not valid to
include the zone offset:
2009-08-28T00:00:01+08:00

If a device application needs an attribute to store zone offset or zone name data, then define
another MBO attribute to contain it. When previewing or testing date, time, and dateTime
datatypes, values related to zone-dependent fields in Web services undergo the conversions
described in this document. You need to account for any adjustments in the expected results,
and may need to adjust any MBO default values you set.

Receiving values from Web services
Zone-offset behavior of date, time, and datetime datatypes:

• xsd:date – if SAP Mobile Server receives a date value from a Web service that includes a
zone offset (ending with "Z", "+XX:XX", or "-XX:XX"), SAP Mobile Server ignores and
drops the zone offset suffix. DATE values stored in the SAP Mobile Server cache database
(CDB), and sent to the client, do not include any zone offset. For example, if SAP Mobile
Server receives an xsd:date value:
2000-01-01+12:00

it converts that value to a DATE:
2000-01-01

• xsd:time – if SAP Mobile Server receives a time value from a Web service that includes a
zone offset (ending with "Z", "+XX:XX", or "-XX:XX"), SAP Mobile Server ignores and
drops the zone offset suffix. TIME values stored in the CDB, and sent to the client, do not
include any zone offset. For example, if SAP Mobile Server receives an xsd:time value:
14:00:00+12:00

it converts that value to a TIME:
14:00:00

• xsd:dateTime – if SAP Mobile Server receives a dateTime value from a Web service that
includes a zone offset (ending with "Z", "+XX:XX", or "-XX:XX"), SAP Mobile Server
adjusts the fields to convert the value to UTC (+00:00) and then drops the zone offset
suffix. DATETIME values stored in the CDB, and sent to the client, do not include any
zone offset. For example, if SAP Mobile Server receives an xsd:dateTime:

Datatype Support

Mobile Data Models: Using Mobile Business Objects 67

http://www.w3.org/TR/2005/NOTE-timezone-20051013/#d2e310

2000-01-01T14:00:00+12:00

it converts that value to a DATETIME:
2000-01-01 02:00:00

If SAP Mobile Server receives a value from a Web service that does not include a zone offset,
then SAP Mobile Server uses the unchanged value.

Sending values to Web services
By default, SAP Mobile Server appends a "Z" to any date/time value that it sends to a Web
service. If a Web service expects to receive zone-independent field based time, then use a
derived simpleType with a pattern restriction in the XML schema description to indicate to the
XML parser that only zoneless representation is accepted by the Web service. For example,
you could define these simpleTypes:
<s:simpleType name="ZonelessDate">
 <s:restriction base="s:date">
 <s:pattern value="[0-9]{4}-[0-9]{2}-[0-9]{2}"/>
 </s:restriction>
</s:simpleType>

<s:simpleType name="ZonelessTime">
 <s:restriction base="s:time">
 <s:pattern value="^[0-2][0-9]:[0-5][0-9]:[0-5][0-9]
 (.([0-9]{3}))?$"/>
 </s:restriction>
</s:simpleType>

<s:simpleType name="ZonelessDateTime">
 <s:restriction base="s:dateTime">
 <s:pattern value="^[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-2]
 [0-9]):[0-5][0-9]:[0-5][0-9](.([0-9]{3}))?$"/>
 </s:restriction>
</s:simpleType>

Then use the corresponding derived simpleType instead of using "xsd:date", "xsd:time", or
"xsd:dateTime" as an element's type. These patterns are only examples and not "prescriptive."

Special consideration for client applications
As an example, you are writing a device application, and know that the enterprise information
system (EIS) Web service always expects to receive values with zone offset. You also know
(from above) that SAP Mobile Server always sends a value with a "Z" suffix to the Web
service. How do you then pass the appropriate values (for MBO attributes and/or operation
arguments) from the device application?

In this example, the client device is located in New Zealand (12 hours ahead of UTC), and an
event occurs at device-local date/time "2010-05-12T11:24:00+12:00". Since the client using
the Object API can only pass zoneless values to MBO attributes or operation arguments, the
client application must convert the fields to UTC, for example,
"2010-05-11T23:24:00+00:00", and drop the zone offset to pass "2010-05-11T23:24:00" into
an MBO attribute or operation argument. When the client uploads this value to SAP Mobile

Datatype Support

68 SAP Mobile Platform

Server, it appends "Z" which results in "2010-05-11T23:24:00Z", which is then sent to the EIS
Web service. Since "2010-05-11T23:24:00Z" is an equivalent point in time to
"2010-05-12T11:24:00+12:00", no information is lost.

In other words, if the EIS expects to receive values with zone offsets, the client application
might need to do zone offset conversions to UTC. Conversely, if the EIS expects to receive
zoneless values, then the client application does not need to perform any conversions from
device-local time, other than dropping the zone offset.

Load arguments and timezone support for Web service MBOs
Avoid using date/datetime datatypes as load arguments, since you could get unexpected
results. If you want to use Web service MBO operations that have time zone offsets, convert
the date/datetime value to UTC, before sending it to SAP Mobile Server. When the date/
datetime value is returned from SAP Mobile Server, change it back. Other considerations to be
aware of:

• Date/Datetime datatype personalization keys for Web services should be avoided – if the
client is in a different time zone, the same time change to UTC may be different, requiring a
conversion to the personalization key whenever entering a different time zone.

• Default values for Date/Datetime datatypes in Web service operations with time zone
offset should be avoided – since the default values are set in the MBO at design time, the
developer cannot determine which time zone the client uses, so the UTC conversion is
impossible.

Datatype Default Values and Limitations
This topic provides information about datatype default values that can be set for mobile
business object (MBO) attributes, arguments, and parameters.

You can provide a default value for attributes and parameters that are compatible with their
datatype (and used by the device application to pass to the MBO), whereever you specify a
datatype (Properties view, Preview dialog, and so on).

Note: When possible, the default value is retrieved with an appropriate value from the
datasource when you bind to the datasource, which you can then modify.

NULL and empty default values
It is important to understand the differences between the default values NULL and no default
(leaving the default value empty):

• NULL – datatypes that do not support NULL or the load argument/operation argument
property 'Nullable' is not selected, typically do not list it as an option from the drop-down
list. After an MBO is created, NULL may be an available default value, but should not be
selected if NULL is invalid for that datatype or is otherwise problematic (for example, you
would not allow NULL for a primary key). If NULL is selected, and is invalid for the
datatype, errors occur either when you deploy the MBO to SAP Mobile Server, or when a

Datatype Support

Mobile Data Models: Using Mobile Business Objects 69

device application interacts with the deployed MBO. These examples illustrate how a
device application behaves when an MBO contains a synchronization parameter equal to
NULL:
• Where NULL is supported – the device application receives the rows where the

attribute in the MBO is NULL. If a synchronization parameter or load argument is
NULL, then data refresh is performed using the value NULL.

• Where NULL is not supported – if associating synchronization parameter X with
attribute X, the download cursor is similar to:
select ... from my_table t where t.last_modified >= ... and t.x
>= :X

If X is NULL, no rows are returned.
• empty default value – an empty string is not the same as no default. For string and binary

datatypes, an empty string is a valid default value. For other datatypes, an empty string is
invalid and generates an error.

The default value is set according to the nullability and datatype of the argument,
synchronization parameter, or personalization key. For nullable types, the initial default value
is set to NULL, for non-nullable types, a valid value is set according to the datatype (for
example, string "", boolean "false", decimal "0", integer "0", float "0", and so on).

The default datatype length, if you do not specify one, including migrated datatypes, is:

• STRING – 300
• BINARY – 32767

Note: When STRING and BINARY are set to default values, a warning displays indicating the
possibility that data truncation may occur during runtime if the length of the EIS column and
the associated data are greater than the aforementioned default settings. As the MBO
Developer, use your datasource knowledge and judgement to avoid data truncation and at the
same time, maximize efficiency and performance by modifying the default to a suitable
length. For example, instead of using a string datatype, use string(30) if it meets the needs of
your mobile application.

The total length of an MBO synchronization parameter cannot exceed its pagesize
If the total length of a synchronization parameter (sum of maxLength) exceeds the MBO
pagesize, an exception is thrown during code generation. When calculating how many BYTEs
it takes compared to pagesize, consider that for:

• String type, the length is 4*maxLength. In the MBO model, string maxLength is by
character.

• Byte[] type, the length is just maxLength.
• Decimal and Integer types, the length is its precision.
• Other types(int, long, and so on), length can be safely ignored when giving a bit larger

margin.

Datatype Support

70 SAP Mobile Platform

Ensure that the MBO developer uses a larger pagesize or makes the synchronization parameter
maxlength smaller.

Setting default values for String, BigString, Binary, and BigBinary datatypes
When editing the default value of parameters/arguments, a dialog allows you to set the default
value if the data type of the parameter/argument is String, BigString, Binary or BigBinary. The
maximum length for the default value is 16K:

1. For BigString,Binary, and BigBinary, open up a dialog to edit the default value.
2. For String of length greater than 300, open a dialog to enter the default value, otherwise,

edit it directly in the cell.
You can enter default values directly, or select the radio button Import from file and
Browse to retrieve the default value from a file.

Valid, supported value range for DateTime datatypes
When a DateTime value is stored in the database, it will only be represented accurately if it is
within the range 1600-02-28 23:59:59 to 7911-01-01 00:00:00. Attempting to store dates
outside this range may result in incomplete and inaccurate information.

Negative values
BYTE datatype range is 0-127 if targeted for .Net (C#) device platforms. Negative values are
not supported for BYTE datatypes, otherwise synchronization may generate
PersistenceException errors.

Remote Operation Default Value Precedence
Understand runtime precedence of default values during remote operation execution. Set
default values in SAP Mobile WorkSpace, from Properties view > Input > Default Values
for a given operation.

• Structure/complex operation arguments – if the parent's structure value is empty and
not mapped to MBO attributes, the parent's default value is used and all child default values
are ignored. If a child element of a parent default value is empty and not mapped to MBO
attributes, the child’s default value or personalization key value is used.

• Structure/complex load arguments – where the parent's structure default value is not
empty and at least one child element has a default value, if the parent's structure value is
empty, the parent's default value is used. If the default value of the parent's sub-element is
null, the corresponding child's default value is used.

The parent's default value is ignored and the child's default is used in cases where the child
element's value is empty.

Note: Map structure load arguments to personalization keys of the same structure type.

• Non-nullable operation arguments – where a simple datatype or a simple datatype
contained in a structure type and mapped to an attribute or a client parameter, if the client

Datatype Support

Mobile Data Models: Using Mobile Business Objects 71

does not set any value to server, the real processed value is the default value of the type, for
example: empty string for string type, 0 for int type.

Default value precedence examples

The default value precedence can be summed up as:

1. Within a complex input argument, the first node found with a default value is applied.
2. If MBO attributes are bound into a node of a complex input argument, any default values

defined for the node are ignored.

This example focuses on the “items” input argument:

• If a default value is defined for “items” it is used to invoke the remote operation.
• If no default value is defined for “items” and a default value for “item” is defined, then the

“item” default value is used.
• If a default value for both “items” and “item” is defined, the default value for “items” is

used:

The “item” input argument is mapped to the “Item” MBO:

• If the modeler defines a default value for “items” or “item” the default value is ignored if
the modeler has mapped the input argument node "item" to MBO attributes.

Datatype Support

72 SAP Mobile Platform

• If the client does send “Item” MBO data, but some attributes are empty or not mapped (for
example “item.discount”), then a defined attribute level default is used .

• If a default value has been defined for “itemNotes” or “itemNote” and the client does send
“Item” MBO data, then the default value for “itemNotes” or “itemNote” is used:

The “item” input argument is mapped to the “Item” MBO and the “itemNote” subnode is
mapped to the “ItemNote” MBO:

• If the modeler has defined default values for “itemNotes” or “itemNote” the default values
are ignored :

Datatype Support

Mobile Data Models: Using Mobile Business Objects 73

Personalization key example

Personalization keys behave similarly to default values.

In this example the “item” input argument is mapped to the “Item” MBO, and the “itemNote”
subnode is mapped to a personalization key:

• If the client sends “Item” data and has set a value for “PersonalizationKey1” then the
values for “PersonalizationKey1” are used for “ItemNote”.

Note: If a default value for “itemNotes” is defined then the default value takes precedence
over the personalization key and will be used even if the personalization key contains
data.

• If a default value for “itemNote” is defined and “PersonalizationKey1” is empty then the
default value on “itemNote” will be used.

Datatype Support

74 SAP Mobile Platform

Structure Objects
Structure objects represent complex object datatypes.

Complex Datatypes
Structure objects hold complex object types (data structures), for example, an SAP input
structure or input table.

When created, structure objects (or complex types) are generated into a class. The complex
type contains one or more attributes. Every attribute contains type and name information.

Datatype Support

Mobile Data Models: Using Mobile Business Objects 75

Type Valid element

Simple type String

BigString

Char

Double

Binary

BigBinary

Integer

Date

DateTime

Time

Boolean

Long

Float

Decimal

Byte

Short

List of simple types An array of any of the supported simple types. For
example: String[]

The name of the complex type attribute is used as the generated class name and should follow
attribute naming conventions. The complex type is used in many places so naming is
important for identification. For example, the complex type:

Address
 State
 City
 Street

could have this value, represented by this structure:
[State="Ca":City="Dublin":Street="Sybase Drive"]

Complex Datatype Limitations
Understand complex datatype (structures) restrictions and limitations.

Complex datatype default value limitations
If multiple parameters refer to the same structure object, and individual default values are set
for the parameters, only the first value to the structure is passed and other values are ignored.
To avoid this situation:

Datatype Support

76 SAP Mobile Platform

Instead of having multiple parameters referencing the same structure, copy and paste the
structure object so that each reference is to a single structure object.

Complex datatype limitations

• Complex datatypes which are not bound to any MBO operation or component are not
included in the generated code.

• If you create a nested tree with three levels (structures) and you delete the last node in the
tree (level three), no error message displays indicating that the attribute type of one of the
attributes on level two is non-existent.

• If there is a type mismatch between a synchronization parameter type and personalization
key type, the error is not visible in the header area of the properties view.

• If you attempt to model a structure with a field/attribute of the same type you either get a
StackOverflowError or if you try to model an attribute type as a list type of the same
structure, the change is ignored.

• If you attempt to model two structures each with attributes of the other type (for example,
structure5 contains an attribute of type structure6, and strcuture6 contains an attribute of
type structure5) a StackOverflowError occurs.

Deleting structures
A structure can be referenced by a personalization key or a parameter or other structure's
attribute. It can be deleted only if it's not referenced by any entity. If a personalization key
references the structure, the deletion of the structure (either from object diagram or from
workspace navigator) generates an error similar to:
"Structure type:'' < structure_name > '' can't be deleted,
because it is still referenced by personalization key : '' < PK_name
> ''".

A Cut or Delete of a structure in the object diagram generates a similar error message if the
structure is still referenced by a parameter or other structure .

Creating Structure Types That are Compatible With Large
Object Types for Client Parameters and Personalization
Keys

Client parameters and personalization keys cannot include large object (BigString or
BigBinary) types, and cannot have a structure (or list of structures) type that contains large
object fields.

If an operation argument has a:

• Large object type – map a client parameter or personalization key into the argument, and
use a compatible type (String or Binary) for the client parameter/personalization key.

Datatype Support

Mobile Data Models: Using Mobile Business Objects 77

• Structure (or list of structures) type that contains large object fields – map a client
parameter or personalization key into the argument if the type of the client parameter/
personalization key is a structure (or list) with compatible fields.

For example, if the operation argument structure is:
MYSTRUCT
mystr[STRING(10)]
mybigbin[BIGBINARY]

this is a compatible structure type:
CP_MYSTRUCT
mystr[STRING(10)]
mybigbin[BINARY(32767)]

To easily create a client parameter or personalization key that matches the type of the
argument and automatically add a mapping from the argument to the new client parameter/
personalization key, drag and drop an argument into the Personalization Keys or Client
Parameters folder of the Input Mapping figure. When the argument is a structure containing
large object fields, and you drag and drop it on the Personalization Keys or Client Parameters
folder, a new compatible structure type is created:

• For client parameters – a new client parameter is added with the compatible type, and the
mapping added.

• For personalization keys – the New Personalization Key wizard is invoked, with the initial
type set to the new compatible structure type.

SAP Mobile Platform to Enterprise Information System
Datatype Mappings

These tables provide mapping information for various EIS types into SAP Mobile Platform
data types.

Table 5. JDBC types

MBO datatype Generic JDBC type Java type

BINARY java.sql.Types.BINARY

java.sql.Types.VARBINARY

java.sql.Types.LONGVARBINA-
RY

java.sql.Types.BLOB

java.lang.Byte[]

BIGBINARY java.sql.Types.LONGVARBINA-
RY

java.lang.Byte[]

Datatype Support

78 SAP Mobile Platform

MBO datatype Generic JDBC type Java type

BIGSTRING java.sql.Types.LONGVARCHAR java.lang.String

BOOLEAN java.sql.Types.BOOLEAN

java.sql.Types.BIT

java.lang.Boolean

BYTE java.sql.Types.Byte, byte java.lang.Byte

CHAR java.sql.Types.Char, char java.lang.Character

DATE java.sql.Types.DATE java.sql.timestamp

DATETIME java.sql.Types.TIMESTAMP java.sql.timestamp

DECIMAL java.sql.Types.DECIMAL

java.sql.Types.NUMERIC

java.math.BigDecimal

DOUBLE java.sql.Types.DOUBLE java.lang.Double

FLOAT java.sql.Types.FLOAT

java.sql.Types.REAL

java.lang.Float

INT java.sql.Types.INTEGER java.math.BigInteger

INTEGER java.sql.Types.INTEGER java.math.BigInteger

LONG java.sql.Types.BIGINT java.lang.Long

SHORT java.sql.Types.BIGINT java.lang.Short

STRING java.sql.Types.CHAR

java.sql.Types.NCHAR

java.sql.Types.VARCHAR

java.sql.Types.NVARCHAR

java.sql.Types.LONGVARCHAR

java.sql.Types.LONGNVARCH-
AR

java.lang.String

TIME java.sql.Types.TIME java.lang.String

Table 6. Web service types

MBO datatype XSD type Java type

BOOLEAN xs:Boolean java.lang.Boolean

Datatype Support

Mobile Data Models: Using Mobile Business Objects 79

MBO datatype XSD type Java type

BYTE xs:Byte java.lang.Byte

BINARY xs:Base64Binary

xs:HexBinary

java.lang.Byte[]

BIGBINARY xs:Base64Binary java.lang.Byte[]

DOUBLE xs:Double java.lang.Double

FLOAT xs:Float

xs:Int

java.lang.Float

CHAR xs:UnsignedShort java.lang.Character

LONG xs:Long

xs:UnsignedInt

java.lang.Long

SHORT xs:Short

xs:UnsignedByte

java.lang.Short

Datatype Support

80 SAP Mobile Platform

MBO datatype XSD type Java type

STRING xs:String

xs:Duration

xs:GYearMonth

xs:GYear

xs:GMonthDay

xs:GDay

xs:GMonth

xs:NOTATION

xs:Token

xs:NormalizedString

xs:Language

xs:Name

xs:NMToken

xs:NCName

xs:ID

xs:IDREF

xs:ENTITY

xs:NMTokens

xs:IDREFS

xs:ENTITIES

java.lang.String

DECIMAL xs:Decimal java.math.BigDecimal

INT xs:Integer

xs:NonPositiveInteger

xs:NonNegativeInteger

xs:NegativeInteger

xs:UnsignedLong

xs:PositiveInteger

xs:AnyURI (java.net.URI.class)

java.math.BigInteger

Datatype Support

Mobile Data Models: Using Mobile Business Objects 81

MBO datatype XSD type Java type

INTEGER xs:Integer

xs:NonPositiveInteger

xs:NonNegativeInteger

xs:NegativeInteger

xs:UnsignedLong

xs:PositiveInteger

xs:AnyURI (java.net.URI.class)

java.math.BigInteger

DATETIME xs:DateTime java.sql.timestamp

TIME xs:Time java.lang.String

DATE xs:Date

xs:QName

java.sql.timestamp

Table 7. SAP RFC types

MBO data-
type

JCo version 3
type code

ABAP type Java type

BINARY JCoMetaDa-
ta.TYPE_BYTE

JCoMetaDa-
ta.TYPE_XSTRING

X

Y

java.lang.Byte[]

BOOLEAN JCoMetaDa-
ta.TYPE_BYTE JCo-
MetaDa-
ta.TYPE_XSTRING

X

Y

java.lang.Boolean

BYTE JCoMetaDa-
ta.TYPE_INT1

b java.lang.Byte

CHAR JCoMetaDa-
ta.TYPE_CHAR

C java.lang.Character

DATE JCoMetaDa-
ta.TYPE_DATE

D java.sql.timestamp

DATETIME JCoMetaDa-
ta.TYPE_DATE

D java.sql.timestamp

Datatype Support

82 SAP Mobile Platform

MBO data-
type

JCo version 3
type code

ABAP type Java type

DECIMAL JCoMetaDa-
ta.TYPE_BCD

P java.math.BigDecimal

DOUBLE JCoMetaDa-
ta.TYPE_FLOAT

F java.lang.Double

FLOAT JCoMetaDa-
ta.TYPE_FLOAT

F java.lang.Float

INT JCoMetaDa-
ta.TYPE_INT

I r java.lang.Integer

INTEGER JCoMetaDa-
ta.TYPE_INT

I java.math.BigInteger

LONG JCoMetaDa-
ta.TYPE_INT

I java.lang.Long

SHORT JCoMetaDa-
ta.TYPE_INT2

s java.lang.Short

STRING JCoMetaDa-
ta.TYPE_STRING

TYPE_NUM

TYPE_FLOAT

TYPE_DECF34

TYPE_DECF16

g

N

F

e

a

java.lang.String

TIME JCoMetaDa-
ta.TYPE_TIME

T java.sql.time

Mobile Business Object to Mobile Device Platform Datatype
Mappings

This table provides mapping information for various MBO datatypes to those of the mobile
device target language.

The optional "?" suffix indicates the datatype supports nullability. In some cases, a nullable
target language type might be used for a non-nullable MBO type. In either case, the nullability
indicator should always be specified if the target type must support nulls.

Datatype Support

Mobile Data Models: Using Mobile Business Objects 83

Any referenced type name that does not appear in the table is expected to be one of the
following:

• The name of a class defined within the same package.
• The fully qualified name of a class defined in a previously compiled package.
• The name of an imported class.
• The name of an external class.

Table 8. MBO to Java RIM datatype mappings

MBO datatype Java RIM types

BOOLEAN boolean

BOOLEAN? java.lang.Boolean

STRING java.lang.String

STRING? java.lang.String

BINARY byte[]

BINARY? byte[]

CHAR char

CHAR? java.lang.Character

BYTE byte

BYTE? java.lang.Byte

SHORT short

SHORT? java.lang.Short

INT int

INT? java.lang.Integer

LONG long

LONG? java.lang.Long

INTEGER java.math.BigInteger (javamx.math.BigInteger)

INTEGER? java.math.BigInteger (javamx.math.BigInteger)

DECIMAL java.math.BigDecimal (javamx.math.BigDecimal)

DECIMAL? java.math.BigDecimal (javamx.math.BigDecimal)

FLOAT float

Datatype Support

84 SAP Mobile Platform

MBO datatype Java RIM types

FLOAT? java.lang.Float

DOUBLE double

DOUBLE? java.lang.Double

DATE java.util.Date

DATE? java.util.Date

TIME java.util.Date

TIME? java.util.Date

DATETIME java.util.Date

DATETIME? java.util.Date

Table 9. MBO to Java Android datatype mappings

MBO datatype Java Android types

BOOLEAN boolean

BOOLEAN? java.lang.Boolean

STRING java.lang.String

STRING? java.lang.String

BINARY byte[]

BINARY? byte[]

CHAR char

CHAR? java.lang.Character

BYTE byte

BYTE? java.lang.Byte

SHORT short

SHORT? java.lang.Short

INT int

INT? java.lang.Integer

LONG long

Datatype Support

Mobile Data Models: Using Mobile Business Objects 85

MBO datatype Java Android types

LONG? java.lang.Long

INTEGER java.math.BigInteger

INTEGER? java.math.BigInteger

DECIMAL java.math.BigDecimal

DECIMAL? java.math.BigDecimal

FLOAT float

FLOAT? java.lang.Float

DOUBLE double

DOUBLE? java.lang.Double

DATE java.sql.Date

DATE? java.sql.Date

TIME java.sql.Time

TIME? java.sql.Time

DATETIME java.sql.Timestamp

DATETIME? java.sql.Timestamp

Table 10. MBO to C# device datatype mappings

MBO datatype C# type

BOOLEAN bool

BOOLEAN? bool?

STRING string

STRING? string

BINARY byte[]

BINARY? byte[]

CHAR char

CHAR? char?

BYTE byte

Datatype Support

86 SAP Mobile Platform

MBO datatype C# type

BYTE? byte?

SHORT short

SHORT? short?

INT int

INT? int?

LONG long

LONG? long?

INTEGER decimal

INTEGER? decimal?

DECIMAL decimal

DECIMAL? decimal?

FLOAT float

FLOAT? float?

DOUBLE double

DOUBLE? double?

DATE System.DateTime

DATE? System.DateTime?

TIME System.DateTime

TIME? System.DateTime?

DATETIME System.DateTime

DATETIME? System.DateTime?

Table 11. MBO to ObjectiveC device datatype mappings

MBO datatype iOS ObjectiveC type

BOOLEAN bool

BOOLEAN? NSNumber*

STRING NSString*

Datatype Support

Mobile Data Models: Using Mobile Business Objects 87

MBO datatype iOS ObjectiveC type

STRING? NSString*

BINARY NSData*

BINARY? NSData*

CHAR unichar

CHAR? NSString*

BYTE signed char

BYTE? NSNumber*

SHORT short

SHORT? NSNumber*

INT int32_t

INT? NSNumber*

LONG Int64_t

LONG? NSNumber*

INTEGER NSNumber*

INTEGER? NSNumber*

DECIMAL NSNumber*

DECIMAL? NSNumber*

FLOAT float

FLOAT? NSNumber*

DOUBLE double

DOUBLE? NSNumber*

DATE NSDate*

DATE? NSDate*

TIME NSDate*

TIME? NSDate*

DATETIME NSDate*

DATETIME? NSDate*

Datatype Support

88 SAP Mobile Platform

Table 12. MBO to VB.NET datatype mappings

MBO datatype VB.NET type

BOOLEAN boolean

BOOLEAN? nullable(of boolean)

STRING string

STRING? string

BINARY byte()

BINARY? byte()

CHAR char

CHAR? nullable(of char)

BYTE byte

BYTE? nullable(of byte)

SHORT short

SHORT? nullable(of short)

INT integer

INT? nullable(of integer)

LONG long

LONG? nullable(of long)

INTEGER decimal

INTEGER? nullable(of decimal)

DECIMAL decimal

DECIMAL? nullable(of decimal)

FLOAT single

FLOAT? nullable(of single)

DOUBLE double

DOUBLE? nullable(of double)

DATE date

DATE? nullable(of date)

Datatype Support

Mobile Data Models: Using Mobile Business Objects 89

MBO datatype VB.NET type

TIME date

TIME? nullable(of date)

DATETIME date

DATETIME? nullable(of date)

Datatype Support

90 SAP Mobile Platform

Best Practices for Developing an MBO Data
Model

Define MBOs so they can be efficiently consumed by native applications.

Principles of MBO Modeling
Understand key concepts required to develop an efficient data model.

Design the MBO model based on mobile application requirements, not on the EIS model.

Design and implement an efficient data-retrieval API for your EIS to populate the MBOs in the
cache, and return only what is required by the MBO.

Using existing EIS APIs for data retrieval simply because they already exist is inefficient
because the EIS-model APIs were likely created for other purposes, such as desktop applica-
tions, making them inappropriate for mobile applications.

Each MBO package is a client-side database. See MBO Packages.

Do not put more than 100 MBOs in a single package. Instead, use multiple packages. Managing
Project Size.

When modeling the MBO, remove unnecessary columns so they are not loaded into the SAP
Mobile Server cache (also called the cache database, or CDB). If you cannot remove these
columns, use result-set filters to remove columns from the EIS read operation and to customize
read-only data into a format more suitable for consumption by the device.

MBO Consumption
MBO data is consumed by the mobile application and has a direct impact on its performance.
The mobile application operates around the MBO data model, and an inappropriate MBO data
model impacts not only mobile application development and maintenance, but
synchronization performance and reliability.

When defining the MBO data model:

1. Understand the requirements of the mobile application.
2. Ensure that it allows the mobile application to efficiently satisfy functional requirements.
3. Keep in mind that mobile devices, including tablets, are limited in terms of resources and

capability. In most cases, it is inappropriate to make the EIS business object model
available to the mobile application to use. While doing so may save time during MBO
development, it can lead to extended testing and tuning, and potentially frustrate users.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 91

MBO Read Definition
An MBO definition is derived from the result of a read API provided by the EIS, for example, a
SQL SELECT statement. This API is usually developed specifically for mobilizing the data to
be consumed by the mobile application. The API must be as efficient as possible to minimize
impact to the EIS. While SAP Mobile WorkSpace provides an easy way to consume existing
back-end APIs, define the MBO based on application need instead of what is already exposed
by the EIS. For example, in most cases, reusing an API developed for a desktop application is
not a good choice for the mobile application.

To evaluate if an existing API is sufficient, consider whether it:

1. Returns as close to what the mobile application requires for the MBO.
2. Fills the CDB with as few interactions as possible that satisfies the data freshness

requirements of the mobile application.

Result-Set Filters
If the EIS API returns more than what the MBO requires, use a custom result-set filter to
remove unnecessary columns (vertical) or rows (horizontal). While a filter adds a certain
amount of overhead, it is more efficient than moving redundant data through the mobilization
pipeline and consuming resources on the device.

A result-set filter does more than remove columns; you can customize it to format read data,
making the data more suitable for mobile application consumption. For example, some EISs
store information as strings, which when converted to numeric values, reduces
synchronization size and causes a mismatch between datatype and usage.

Managing Project Size
An SAP Mobile WorkSpace project that contains many MBOs (hundreds), or trying to access
the project from poor performing environments, for example from a virtual machine (VM) can
lead to poor SAP Mobile WorkSpace performance when editing the project.

A best practice is to separate the MBOs into different projects then deploy them into a single
application. This practice also makes MBO development easier. For example, the developer
need not search hundreds of MBOs to find a particular MBO to view or edit. In cases where it is
not possible to split large numbers of MBOs into separate projects, try either:

• Accessing the project from a personal computer that provides good performance, or
• Modifying Eclipse startup options to increase the stack and memory (heap) size. For

example:
-Xms1024M -Xmx1152M -XX:MaxPermSize=512M

MBO Packages
A package translates to a database on the device with MBOs as tables. Updates to MBOs
within the package can occur within a transaction on the device. In other words, a package
defines a functional unit with multiple object graphs of MBOs. For convenience, the developer
can put unrelated MBOs into a single package, however when the number of MBOs becomes

Best Practices for Developing an MBO Data Model

92 SAP Mobile Platform

large, it creates a maintenance problem. Changes to one set of MBOs impacts all others as the
package needs to be redeployed. During deployment, the cache must be refilled.

MBO Attributes
Understand key MBO attribute concepts, before you define them.

An MBO instance equates to a database row, MBO attributes map to database columns, and in
the database, the database row must be less than the page size. See MBO Persistence on the
Device.

Consider row size requirements for localized applications that use multibyte encodings. See
MBO Persistence on the Device.

A smaller page size generally results in better overall database and synchronization perform-
ance. See Why Page Size Matters.

If computed maximum row size is larger than specified page size, promotions of VARCHAR to
LONG VARCHAR and BINARY to LONGBINARY occur until the row fits into the page.

Keep MBOs as lean as possible to keep page size small.

Do not define an MBO with more than 50 attributes.

For EIS operations where the maximum length information is not provided, the default is
STRING(300). Always change this default value to match the expected maximum length using
STRING(n), where n is the actual length of the STRING.

MBO Persistence on the Device
Every MBO instance is stored as a row in a table, and each attribute is represented by a column.
Row size depends on the number and type of attributes in the MBO—the larger the MBO, the

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 93

bigger the row. Since a row must fit within a database page, the page size is influenced by the
largest MBO in the package. During code generation, SAP Mobile Server computes the
maximum row size of all MBOs to make sure they fit within the specified page size. The
computation also takes into consideration the use of any multibyte encoding. In normal usage,
the actual row size is often a fraction of the maximum row size. For example, an attribute that
holds notes may be more than a thousand characters. Unless the MBO developer pays
attention, it is easy for the maximum row size to be unreasonably large.

In the event that the maximum row size computed during code generation is larger than the
specified page size, VARCHAR columns are promoted to LONG VARCHAR to move storage
out of the row until the row fits in the page. This results in an indirection to access the data, and
may impact query performance. To avoid indirect access:

1. Eliminate attributes not required by the application.
2. Reduce the maximum size. For example, the EIS may have a notes field with a 1000

character limit. Use a smaller size for the mobile application if possible.
3. Consider splitting the MBO if it contains many attributes.
4. Analyze data to determine the normal row size. Use a page size large enough to hold the

row. Code the mobile application to configure the mobile database to run with this page
size. During code generation, a much larger page size is used to avoid promotion, but the
application runs using a small page size. A drawback to this approach is a possible
synchronization failure when the actual data exceeds the page size specified during
runtime. The developer must determine the minimal page size with the lowest probability
that the actual data exceeds it.

Why Page Size Matters
SAP testing indicates that a page size of 1 – 4KB provides the best overall performance. Start
testing with these sizes, unless the MBO model requires a larger page size. The main issue
with large page size is related to slow write performance of Flash-based file system/object
storage used by the device. The impact is most evident during synchronization, when the
database applies the download transactionally.

MBO Indexes
Understand how to maximize index efficiency use in mobile applications.

Use the minimum number of indexes.

If findByPrimaryKey is not required to locate the MBO via the business key, disable generation.

If FindAll is not required, disable generation, except for MBOs with a low number of instances
on the device.

Determine if an index is required for user-defined object queries.

Best Practices for Developing an MBO Data Model

94 SAP Mobile Platform

Impact of Indexes on the Device
When performing updates, or during initial or large subsequent synchronizations, index
maintenance is a significant performance consideration, especially on device platforms where
all root index pages stay in memory. Even a small number of indexes impacts performance,
even when they belong to tables that are synchronized. For a very small table, you may not
need to use an index at all. When synchronization performance is slower than expected,
evaluate how many indexes are deployed in the package.

Reducing Indexes
By default, two queries are generated for each MBO: findByPrimaryKey and FindAll. The
primary key is the business key in the EIS. If the mobile application does not need to locate the
MBO via its business key, disable generation of the findByPrimaryKey query. This is
especially true for child MBOs that can navigate to the parent MBO and need not locate the
parent via the primary key.

FindAll does not require any index as it scans through the table, instantiates, and returns all
MBO instances as a list. Unless the number of MBO instances is small, the FindAll query is
inefficient, and SAP recommends that you disable its generation by unselecting the Generate
FindAll query checkbox.

By default, developer-defined object queries create indexes. If the number of instances of the
MBO is small, an index may not make much difference as far as performance, however, you

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 95

should disable index creation for these object queries by unselecting the Create an index
checkbox when synchronization performance is an issue.

MBO Keys
Understand the purpose of primary and surrogate keys in SAP Mobile Server.

SAP Mobile Server uses a surrogate key scheme to identify MBO instances. See Surrogate
Keys.

The CDB uses a primary key (EIS business key) to uniquely identify MBO instances. The
primary key locates instances in the CDB to compare with the corresponding instance from a
cache refresh or DCN. See Primary Keys.

The CDB creates an association between the surrogate and primary keys. See Associating the
Surrogate Key with the Primary Key.

Do not define a primary key for an MBO that is different from the EIS business key.

Do not define an MBO without a primary key, or an implicit composite primary key that
consists of all generated columns is assigned.

Create an operation that returns an EIS business key (primary key) so the CDB can associate the
newly created instance with the surrogate key.

Surrogate Keys
Each MBO instance is associated with two keys: surrogate and primary. The surrogate key
scheme allows creation of instances on the device without having to know how the EIS assigns
business keys. While business keys can be composite, the surrogate key is always singular,
which provides a performance advantage. SAP Mobile Server uses a surrogate key as the
primary key for synchronization, and to keep track of device data set membership. It also
serves as the foreign key to implement relationships on the device.

Best Practices for Developing an MBO Data Model

96 SAP Mobile Platform

Primary Keys
Each MBO must have a primary key that matches the EIS business key. During data refresh or
DCN, CDB modules use columns designated as the business key to locate the row in the CDB
table for comparison to see if it has been modified. If the defined primary key does not match
the business key, errors may result when merging the new data from the EIS with data already
in the CDB. Additionally, an MBO without a primary key is assigned an implicit composite
primary key consisting of all columns.

Associating the Surrogate Key with the Primary Key
The CDB associates the surrogate key with the EIS primary key:

1. A row (MBO instance) from the EIS is assigned a surrogate key to associate with the
business key or primary key by the CDB.

2. An instance created on the device is assigned a surrogate key locally, and the CDB uses the
primary key returned from the creation operation to form the association.

3. In the event that the creation operation does not return the primary key, the CDB module
identifies the newly created instance as deleted to purge it from the device.

4. Eventually, whether through DCN or a data refresh, the created instance from the EIS is
delivered to the CDB and subsequently downloaded to the device.

A drawback to this approach is that the newly created MBO instance on the device is deleted
and replaced by a new instance with a different surrogate key. If DCN is used to propagate the
new instance from the EIS, the mobile application may not be aware of it for some time.
Depending on the use case, the momentary disappearance of the instance may not be an issue.

MBO Relationships
Understand the role of relationships in MBOs.

Relationships provide navigation and subscription inheritance. See Relationship Modeling.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 97

Composite relationships provide navigation, subscription inheritance, and cascading create,
update, and delete capabilities. See Relationships and Primary Keys.

Relationships should not span multiple synchronization groups.

Relationships should not span multiple cache groups.

Map relationships using all primary key attributes of the source in one-to-many and one-to-one
relationships.

Map relationships using all primary key attributes of the target in many-to-one and one-to-one
relationships.

One-to-many relationships when "many" is large may be expensive to navigate on the device.

Relationship Modeling
There are two types of relationships: composite and noncomposite.

• In a noncomposite relationship, targets are automatically subscribed to. That is, all
instances related to the source are downloaded, for example, all products referred to by
sales order items. In the same way, when the source is no longer part of the device data set,
all instances of the target no longer referred to are removed. For many-to-one relationships
like sales order items to product, only those products that have no referring sales order
items are removed.

• In modeling terminology, composite means a whole-part relationship. Composite
relationships offer cascading create, update, and delete capabilities. For delete operations,
if the parent is deleted, all the target/child instances are deleted as well. For update and
create operations, when the submitPending API is invoked by the mobile application, all
modified/new instances are sent with the parent as part of the operation replay.

Both types of relationships provide bidirectional or unidirectional navigation through
generated code with lazy loading, which means children/targets are not loaded unless they are
referenced. However, due to instantiation costs, navigating to a large number of children can
be expensive, especially on devices with limited resources. If the instantiated object hierarchy
is very wide, the mobile application should consider other means to access the children.

Relationships and Primary Keys
A relationship is implemented on the device database and the CDB through foreign keys. In
SAP Mobile Server, the foreign key contains a surrogate key instead of an EIS business key or
primary key. In a one-to-many relationship, the foreign key is in the target and it is impossible
for it to reference more than one source. Therefore, the restriction of using a primary key of the
source is to ensure there is only one source.

Best Practices for Developing an MBO Data Model

98 SAP Mobile Platform

MBO Synchronization Parameters
Understand the role of synchronization parameters in MBOs.

A synchronization parameter is also referred to as synchronization key. See Data Subscription.

A set of synchronization parameters is sometimes referred to as a subscription. See Data
Subscription.

Synchronization parameters allow the user/developer to specify the data set to be downloaded to
the device. See Subscribed Data Management.

Use synchronization parameters to retrieve and filter data for the device.

Understand how multiple sets of synchronization parameters or subscriptions impact the cache
module to make sure it is a scalable solution.

To increase the membership of the download data set, use multiple sets of synchronization
parameters.

To reclaim storage during runtime via exposed APIs, if needed, purge the collection of syn-
chronization parameter sets.

To retrieve data from the EIS, define synchronization parameters and map them to all result-
affecting load arguments.

Use synchronization parameters not mapped to load arguments to filter the data retrieved into
the CDB.

Data Subscription
The mobile application uses synchronization parameters to inform SAP Mobile Server of the
data it requires. Instances of qualified MBOs that correspond to the synchronization
parameters are downloaded to the device. The set of synchronization parameters creates a
subscription that constitutes the downloaded data. Any changes to the data set are propagated
to the device when it synchronizes. In other words, synchronization parameters are the facility
that determines membership of the downloaded data set.

Data Loading from EIS
A synchronization parameter can also be used to help determine what data to load from the
EIS. When a synchronization parameter is mapped to a load argument of the load/read
operation of the MBO, it influences what data is to be retrieved. In this capacity, the
synchronization parameter determines what is loaded into CDB from the EIS. Not all load
arguments influence the data to be retrieved. For example, a Web service read operation of
getAllBooksByAuthor(Author, userKey) uses the userKey load argument only for
authentication. Whoever invokes the operation retrieves all the books by the specified author.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 99

In this case, do not map a synchronization parameter to userKey. Instead, use a personalization
parameter mapping to provide the user identity.

The key principle when mapping synchronization parameters to load arguments is to map all
result-affecting load arguments to a synchronization parameter. Failure to do this results in
constant overwriting or bouncing of instances between partitions in the CDB. SAP Mobile
Server uses the set of synchronization keys mapped to load arguments to identify the result set
from the read operation.

Data Filtering
Synchronization parameters not mapped to load arguments are used to filter the data in the
CDB. If the data in the CDB is valid, cache refresh is not required and SAP Mobile Platform
simply uses the unmapped synchronization parameters to select the subset of data in the CDB
for download. Consider this data filtering example that uses the product MBO:

Data Filtering Example

Read Operation: getProducts(Category)
Synchronization Parameters: CategoryParameter, SubCategoryParameter
Mapping: CategoryParameter -> Category
Events:

• Jane Dole synchronizes using (“Electronics”, “MP3 player”) as parameters. CDB invokes:
getProducts(“Electronics”).

• John Dole synchronizes using (“Electronics”, “Tablets”) as parameters.

CDB:

1. Uses an on-demand cache group policy with a cache interval of 12 hours.
2. For invocation one, a partition identified by the key “Electronics” is created with all

electronics product. SAP Mobile Server uses “MP3 player” as the selection criteria for the
subcategory attribute and downloads only all MP3 players in the catalog.

3. For the second synchronization using “Electronics” + “Tablets”, since the partition
identified by “Electronics” is still valid, SAP Mobile Server uses “Tablets” as the selection
criteria for the subcategory attribute and downloads only all tablets in the catalog.

Best Practices for Developing an MBO Data Model

100 SAP Mobile Platform

Subscribed Data Management
Synchronization parameter sets are cumulative; every new set submitted by the application/
user produces additional members in the download data set. You can take advantage of this to
lazily add data on an as-needed basis. For example, a service engineer usually does not require
all the product manuals associated with the assigned service tickets. Modeling the product
manuals as an MBO that takes the manual identifier as a synchronization parameter enables
the user to subscribe to a particular manual only when needed. The drawback to this approach
is that it requires network connectivity to get the manual on demand.

It is important to understand the impact to the CDB for each additional subscription.
Performance suffers if each subscription results in an invocation to the EIS to fill the CDB
whenever the user synchronizes. For example, assume that the product manual MBO is in its
own cache group with a cache interval of zero. The API to retrieve the manual uses the product
manual id as the load argument which is mapped to the synchronization parameter. If the
service engineer has subscribed to five product manuals, during each synchronization, the
cache module interacts with the EIS five times to get the manuals. The solution is to use a large
non-zero cache interval as the product manuals seldom change. Always consider what the
cache module has to perform in light of a synchronization session.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 101

Over time, the number of product manuals on the device can grow to consume significant
storage. Through the exposed API, the application can purge the entire set of subscribed
manuals to reclaim resources.

Client Defined Cache Partitions
Understand how to effectively use client defined cache partitions.

By default, the CDB for the MBO consists of a single partition. See Client Defined Cache
Partitions.

Client defined partitions are created when synchronization parameters are mapped to load
arguments. The set of load arguments that are mapped to synchronization parameters comprise
the partition key. The partition key is used to identify the horizontal subset of the cache which
corresponds to an EIS load operation invocation. If a synchronization parameter is not mapped
to a load argument, a partition can still be defined by mapping the load argument to a person-
alization key. See Partition Membership.

To increase load parallelism, use multiple client defined partitions.

To reduce refresh latency, use multiple client defined partitions.

Use small partitions to retrieve “real-time” data when coupled with an on-demand policy and a
cache interval of zero.

Use partitions for user-specific data sets.

Consider the partitioning by requester and device ID feature when appropriate.

Do not create overlapping partitions; that is, a member (MBO instance) should reside in only
one partition to avoid bouncing.

Avoid partitions that are too coarse, which result in long refresh intervals. Avoid partitions that
are too fine-grained, which require high overhead due to frequent EIS interactions.

Client Defined Cache Partitions
The cache contents for any MBO consists of one or more partitions, identified by their
corresponding partition keys:

• A partition is the EIS result set returned by the read operation using a specific set of load
arguments.

• Only the result-affecting load arguments form the partition key.
• Using non-result-affecting load arguments within the key causes multiple partitions to

hold the same data.

All result-affecting load arguments must be mapped to synchronization parameters to avoid
this anomaly in the CDB:

Best Practices for Developing an MBO Data Model

102 SAP Mobile Platform

Set of synchronization parameters mapped to load arguments =
set of result affecting load arguments =
partition key

Partitions are independent from one another, enabling the MBO cache to be refreshed and
loaded in parallel under the right conditions. If the cache group policy requires partitions to be
refreshed on access, multiple partitions may reduce contention, since refresh must be
serialized. For example, you can model a catalog to be loaded or refreshed using a single
partition. When the catalog is large, data retrieval is expensive and slow. However, if you can
partition the catalog by categories, for example, tablet, desktop, laptop, and so on, it is
reasonable to assume that each category can be loaded as needed and in parallel. Furthermore,
the loading time for each partition is much faster than a full catalog load, reducing the wait
time needed to retrieve a particular category.

Partition granularity is an important consideration during model development. Coarse-
grained partitions incur long load/refresh times, whereas fine-grained partitions create
overhead due to frequent EIS interactions. The MBO developer must analyze the data to
determine a reasonable partitioning scheme.

Partition Membership
Partitions should not overlap. A member belonging to multiple partitions causes performance
degradation, known as partition bouncing: when one partition refreshes, a multi-partition
member bounces from an existing partition to the one currently refreshing. Besides the
performance impact, the user who is downloading from the migrate-from partition may not
see the member due to the bounce, depending on the cache group policy to which the MBO
belongs.

An MBO instance is identified by its primary key which can only occur once within the table
for the MBO cache. A partition is a unit of retrieval. If the instance retrieved through partition
A is already in the cache but under partition B, the instance's partition membership is changed
from B to A. It is important to understand that there is no data movement involved, just an
update to the instance's membership information. As such, the migrated-from partition cache

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 103

status remains valid. It is the responsibility of the developer to understand the ramification and
adjust the cache group policy if needed.

Avoiding Partition Bouncing
In the following use case, where a service order is purposely assigned to multiple users and
using an On-demand policy with a zero cache interval, partition bouncing occurs when service
engineer SE-44235 synchronizes at a later time. The service order is now on the devices of
both engineers. However, consider the scenario where engineer SE-01245 also synchronizes
at time t1. Service order 025 may no longer be in the partition identified by its ID, resulting in a
deletion of the service order from the data store on the device when the client synchronizes.

To avoid partition bouncing in this example, use a requester-partitioned cache, which does not
require an MBO model change. Another solution is to augment the primary key of the
approval MBO with the user identity, which does require an MBO model change. The result is
that the same approval request is duplicated for each user to whom it is assigned. There is no
partition bouncing at the expense of replication of data in the cache. From the partition's point
of view, each member belongs to one partition because the cache module uses the primary key
of the MBO to identify the instance and there can only be one such instance in the cache for
that MBO.

The diagrams below illustrate the primary key augmentation approach. The MBO can be
assigned to multiple sales representatives in the EIS. MBO definition requests all activities for
a particular sales representative using the SalesRepID as a synchronization parameter, which
is mapped to the load argument that retrieves all activities for that user.

1. Propagate the load argument as an additional attribute (salesrep_id) to the Activity MBO.

Best Practices for Developing an MBO Data Model

104 SAP Mobile Platform

2. Designate the primary key to be a composite key: activity_id and salesrep_id. This causes
the cache module to treat the same activity as a different instance, avoiding bouncing at the
expense of duplicating them in multiple partitions.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 105

The previous example illustrates an MBO instance bouncing between partitions because they
are assigned to multiple partitions at the same time. However, partition bouncing can also
occur if load arguments to synchronization parameters are not carefully mapped. Consider
this example:

Read Operation: getAllBooksByAuthor(Author, userKey)
Synchronization Parameters: AuthorParameter, userIdParameter
Mapping: AuthorParameter → Author, userIdParameter → userKey

Events:

• Jane Dole synchronizes using (“Crichton, Michael”, “JaneDole”) as parameters Cache
invokes: getAllBooksByAuthor(“Crichton, Michael”, “JaneDole”)

• John Dole synchronizes using (“Crichton, Michael”, “JohnDole”) as parameters Cache
invokes: getAllBooksByAuthor(“Crichton, Michael”, “JohnDole”)

Cache:

1. For invocation one, a partition identified by the keys “Crichton, Michael” + “JaneDole” is
created.

2. For invocation two, a second partition identified by the keys “Crichton, Michael” +
“JohnDole” is created.

3. All the data in the partition: “Crichton, Michael” + “JaneDole” moves to the partition:
“Crichton, Michael” + “JohnDole”.

Best Practices for Developing an MBO Data Model

106 SAP Mobile Platform

Client Defined Cache Partition Overwrite
Partition overwrite is due to incorrect mapping of synchronization parameters and load
arguments, and greatly hinders performance.

Read Operation: getEmployees(Group, Department)
Synchronization Parameters: GroupParameter
Mapping: GroupParameter → Group, myDepartment (personalization key)
→ Department

Events:

• Jane Dole synchronizes using (“ATG”) as parameters and her personalization key
myDepartment Cache invokes: getEmployees(“ATG”, “Engineering”)

• John Dole synchronizes using (“ATG”) as parameters and his personalization key
myDepartment Cache invokes: getEmployees(“ATG”, “Quality Assurance”)

Cache:

1. For invocation one, a partition identified by the key “ATG” will be created with employees
from ATG Engineering department.

2. For invocation two, the same partition identified by the key “ATG” is overwritten with
employees from ATG Quality Assurance department.

3. Not only is the cache constantly overwritten, depending on the cache group policy, one
may actually get the wrong result.

The solution to this particular problem is to include department in the partition definition.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 107

User-Specific Partitions
Partitions are often used to hold user-specific data, for example, service tickets that are
assigned to a field engineer. In this case, the result-affecting load arguments consist of user-
specific identities. SAP Mobile Server provides a special user partition feature that can be
enabled by selecting the "partition by requester and device ID" option. The EIS read operation
must provide load arguments that can be mapped to both requester and device identities. The
result is that each user has his or her own partition on a particular device. That is, one user can
have two partitions if he or she uses two devices for the same mobile application. The CDB
manages partitioning of the data returned by the EIS. The primary key of the returned instance
is augmented with the requester and device identities. Even if the same instance is returned for
multiple partitions, no bouncing occurs as it is duplicated.

Best Practices for Developing an MBO Data Model

108 SAP Mobile Platform

Developers can easily define their own user-specific partition by providing appropriate user
identities as load arguments to the EIS read operation.

Partitions and Real-Time Data
For some mobile applications, current data from the EIS is required upon synchronization.
This implies that SAP Mobile Server must retrieve data from EIS to satisfy the
synchronization. If the amount of data for each retrieval is large, it is very expensive.
Fortunately, real-time data is usually relatively small so you can employ a partition to
represent that slice of data. It is important that the MBO is in its own synchronization and
cache groups, which allows a user to retrieve only the data required from the EIS and
download it to the device upon synchronization. This use case requires an on-demand cache
group policy with zero cache interval.

MBO Synchronization Groups
Understand how to effectively use MBO synchronization groups.

Synchronization groups allow MBOs with similar characteristics to be synchronized together.
See Synchronization Groups

Consider the cost of multiple synchronization sessions with a single synchronization group,
versus a single session with multiple groups. See Synchronization Sessions.

For flexibility, separate MBOs into appropriate synchronization groups.

To implement synchronization priority, use synchronization groups; indicate which group to
synchronize first.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 109

Use synchronization groups to break up large synchronization units into smaller coherent units
to deal with low-quality connectivity.

Use one synchronization session for multiple synchronization groups during runtime to reduce
overhead if appropriate.

Relationships should not span multiple synchronization groups.

Too many MBOs within a synchronization group defeats the purpose of using a group; limit
groups to no more than five MBOs.

Synchronization Groups
A synchronization group specifies a set of MBOs that are to be synchronized together.
Usually, the MBOs in a group have similar synchronization characteristics. By default, all
MBOs within a package belong to the same group.

A synchronization group enables the mobile application to control which set of MBOs is to be
synchronized, based on application requirements. This flexibility allows the mobile
application to implement synchronization prioritization, for example, to retrieve service
tickets before retrieving the product information associated with those tickets. Another
advantage is the ability to limit the amount of data to be synchronized in case of poor
connectivity. A large synchronization may fail repeatedly due to connectivity issues, whereas
a smaller group may succeed.

Placing too many MBOs in a synchronization group may defeat the purpose of using groups:
the granularity of the synchronization group is influenced by the data volume of the MBOs
within the group, urgency, data freshness requirement, and so on. As a general guideline, limit
synchronization groups to no more than five MBOs. And keep in mind that a package can
contain no more than 30 synchronization groups.

Synchronization Sessions
You can use multiple synchronization groups within a single synchronization session. If no
synchronization groups are specified, the default synchronization group is used. A session
with multiple groups is more efficient than multiple sessions using one group at a time. More
sessions means more transactions and more overhead. Therefore, the mobile application
developer should determine or allow the user to choose what to synchronize through an
appropriate user interface. For example, when Wi-Fi connectivity is available, the user can
choose an action that synchronizes all MBOs together in one session. Specifying a
synchronization session provides flexibility to both the application developer and user. This
code snippet shows how to synchronize multiple groups within a single session.

ObjectList syncGroups = new ObjectList();
syncGroups.add(CustomerDB.getSynchronizationGroup("orderSyncGroup")
);
syncGroups.add(CustomerDB.getSynchronizationGroup("activitySyncGrou
p"));
CustomerDB.beginSynchronize(syncGroups, "mycontext");

Best Practices for Developing an MBO Data Model

110 SAP Mobile Platform

Relationships and Synchronization Groups
Relationships that span multiple synchronization groups can cause inconsistent object graphs
on the client database, which may in turn cause application errors and user confusion. In
general, the only reason to have an object graph that spans synchronization groups is to
implement a deferred details scenario. For example, in a field service use case, the engineer
wants to review his latest service ticket assignments without worrying about all the relevant
details associated with the ticket (product manuals). One obvious solution is to forgo the
relationship since it is an association (in UML terminology). Although the navigation ability
provided by the relationship has been sacrificed, it can easily be addressed by using a custom
function that locates the product manual.

MBO Cache Groups
Understand how to effectively use MBO cache groups.

A cache group contains MBOs that all have the same load/refresh policy. See Cache Groups in
the Context of MBOs.

All MBOs within a cache group are refreshed as a unit for on-demand and scheduled cache
policies. MBOs in DCN cache groups are updated via DCN messages in an ongoing basis. See
Cache Groups and Synchronization Groups.

Use cache groups to break up expensive data retrievals from the EIS.

To avoid refreshing and retrieving MBOs not related to a synchronization group, map syn-
chronization groups to cache groups.

Avoid circular dependencies between cache groups.

Do not model relationships spanning multiple cache groups—in some cases, references may
resolve incorrectly.

Cache Groups in the Context of MBOs
All MBOs within a cache group are governed by the specified cache group policy. A cache
group defines how the MBOs within it are loaded and updated from the EIS to the CDB. With
on-demand and schedule policies, all MBOs are loaded and updated as a unit. In general, the
larger the unit, the longer it takes to complete. If data is not required all at once, you can
employ multiple cache groups to break up an expensive load operation. This allows loading to
occur in parallel with a lower overall wait time when compared to a large load. For example,
load products and the product manual in separate cache groups. For very large data volume,
the continual refresh cost may be too expensive, in which case a DCN cache group policy
allows the MBOs in the cache group to be updated as changes occur in the EIS through
notification messages.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 111

Cache Groups and Synchronization Groups
Cache and synchronization groups are not related. While a synchronization group specifies
which MBOs to synchronize, a cache group defines which MBOs are loaded into the CDB,
and when. However, SAP recommends that you coordinate a synchronization group with a
corresponding cache group so only the synchronized MBOs are loaded or refreshed. If the
MBOs in the synchronization group are members of a much larger cache group, the devices
performing the synchronization may wait a long time for the entire cache group to refresh.

Circular Dependencies
Circular dependencies spanning cache groups are not supported, however it is possible to have
MBOs forming a cycle as long as they are all within the same cache group. There is a
performance impact when processing updates whether it is by DCN or applying the results of
cache affecting operations. Developers should create circular relationships only when
necessary. Consider if it is reasonable to forgo the relationship and instead use custom code to
handle the navigation.

Relationships and Cache Groups
The MBO developer must be cautious when defining relationships that span cache groups as
this can cause references to be unresolved. For example, sales order has a one-to-many
composite relationship with sales order items. Both MBOs are in separate cache groups. Both
are loaded in-bulk (all instances retrieved through a single read). If they have different cache
intervals, the sale order items cache group could refresh with orphaned instances but without
corresponding sales orders. As a general rule, keep relationships within the same cache group.

Shared-Read MBOs
Understand how to effectively use shared read MBOs.

Shared-read MBOs share an EIS read operation to load MBO data into the SAP Mobile Server
cache. That is, they belong to the same load group.

"Shared-read MBO" refers to MBOs that have caches that are populated by a shared read
operation. See Populating the Cache Via a Shared Read Operation.

All MBOs sharing the common read also share the same partition key—in other words, they are
always loaded and refreshed together. See Updating Shared Read MBOs.

Use shared read whenever possible to increase load efficiency.

Use multiple partitions, if possible, to alleviate the cost of "Invalidate the cache," as only the
affected partition needs to be refreshed.

Always enable "Immediately update the cache" for a create operation to maintain surrogate key
to (just returned) business key association.

Best Practices for Developing an MBO Data Model

112 SAP Mobile Platform

Use the "Immediately update the cache" cache policy to update an MBO object graph.

Populating the Cache Via a Shared Read Operation
Shared read is an optimization that loads multiple MBOs with a single read operation. The
more MBOs that share the common read, the better the performance. All the MBOs that share
a common read operation also share the same partition key—the implication is that all MBOs
within a partition refresh and load as a unit.

Updating Shared Read MBOs
Use the "Immediately update the cache" operation cache policy and either the "Apply output
of ENTITY READ operation" or the "Apply merge of operation input/output" option to
transactionally update MBOs in an object hierarchy.

Entity Read may be useful when:

• The remote operation cannot return all the attributes of a composite graph (MBOs in a
composite relationship). If the remote operation can return all the attributes, "Apply merge
of operation input/output" provides better performance than "Apply output of ENTITY
READ operation."

• Using stored procedures, since the MBO developer can use the Entity Read operation
without needing to modify any existing stored procedure to get the results into the cache.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 113

Addressing Inconsistency
If it is not always possible to apply results to the CDB for all shared read MBOs in an object
hierarchy, the developer must decide whether the temporary inconsistency is an issue for the
user. Regardless of whether the CDB needs to be invalidated to force a refresh, the create
operation's cache policy should always enable "Immediately update the cache" to allow the
CDB to associate the returned business key with the surrogate key from the device. This allows
the CDB to avoid deleting the new object on the device in preparation for a new one from the
EIS.

MBO and Attachments
Understand how to effectively include attachments in your MBO Model.

Attachments can be large (photos, product manuals, and so on) and are not always required by
the application, as is often the case with e-mail attachments. See The Choice of Synchroniza-
tion.

It is expensive to always synchronize large objects that are only occasionally required. See
Inline Attachments are Expensive.

Use a separate MBO to carry an attachment. See Consider the Attachment as an MBO.

Inline attachments can result in redundant data transfer to and from the device. In most wireless
networks, upload is only a fraction of the advertised bandwidth, further exacerbating long
synchronization time.

Subscribe to required attachments on-demand through synchronization parameters.

Use initial synchronization in a favorable environment to load required attachments (reference
data) for full offline access. See Offline Access Pattern.

Do not include the attachment as an MBO attribute if the mobile application or EIS can update
the MBO.

Use Big data types for large attachments to avoid loading on instantiation and use offset based
access patterns. See BigString and BigBinary Datatypes.

The Choice of Synchronization
Synchronizing data that is not required on the device impacts multiple components of data
mobilization. However, there is no definitive solution for data that is only used occasionally,
since you must take into account connectivity and demand patterns. In general, SAP
recommends that you defer transfers until required. The exception is in an offline mobile
application. The developer must analyse business requirements and the environment when
making the decision of when to synchronize, and how much data to synchronize.

Best Practices for Developing an MBO Data Model

114 SAP Mobile Platform

Inline Attachments are Expensive
Regardless of the decision on synchronization, attachments should not be embedded inline
with the MBO as an attribute. Attachments do not generally change, and having it inline
results in high data transfer overhead. Updating the MBO can cause transfer of inline
attachments even though they are not modified. The cost of uploading and downloading a
large attachment can be significant. Updating the status of a service downloads the attachment
again if it is handled inline. In most wireless networks, uploads are slower than downloads, so
it is not advisable to upload attachments. The same is true for downloads. If the EIS updates
regular attributes of the MBO instance, the attachment is downloaded again if it is handled
inline. The convenience of having the attachment inline is rarely worth the cost of moving
them through the wireless network.

BigString and BigBinary Datatypes
Another cost of inline attachments is object instantiation and resource consumption. SAP
Mobile Platform handles this by providing a set of special attributes: BigString and BigBinary.
Not only are these attributes not loaded when the object containing them is instantiated, they
include a special API to access only the segment in which the application is interested. In other
words, very much like the access of a large file, the mobile application can seek to the proper
offset to avoid bringing the entire resource into memory.

Consider the Attachment as an MBO
Using a separate MBO to hold the attachment provides flexibility through synchronization
parameters and synchronization groups. Modeling the attachment MBO to employ a
synchronization parameter allows the application to subscribe to the Attachment when
required. A separate synchronization group can hold the attachment MBO, which then can be
prefetched or pulled on demand. Prefetching can usually be performed asynchronously
without impacting usability of the mobile application. In addition, this pattern enables timely
delivery of transactional information, for example, a service ticket by separating or deferring
reference data.

Offline Access Pattern
For mobile applications that run in offline mode, on-demand access of attachments is not
possible. In this case, it is better to bulk download all attachments during initial
synchronization in a high quality connected environment. For example, through device cradle
or Wi-Fi connectivity. This approach is possible because attachments rarely change and
occasional changes can be downloaded at specific times of the day. The cost of this approach is
a more complex and longer application roll out cycle.

Best Practices for Developing an MBO Data Model

Mobile Data Models: Using Mobile Business Objects 115

Best Practices for Developing an MBO Data Model

116 SAP Mobile Platform

Best Practices for Loading Data From the EIS
to the CDB

Define MBOs so they efficiently load data from the EIS to the CDB.

Understanding Data and Datasources
Designing an efficient data loading architecture for your MBOs requires a good understanding
of the data to be mobilized and the datasources that provide that data.

While you can use SAP Mobile WorkSpace to quickly create a working prototype, developing
a production environment that is scalable requires careful planning and detailed knowledge of
the data movement between the CDB and the EIS.

You must understand the characteristics of the data that is to be mobilized:

• Read/Write ratio – read-only, read/write, mostly read, mostly write
• Sharing – private versus shared
• Change source – mobile only, EIS only, mobile and EIS
• Change frequency
• Freshness expectation
• Access pattern – peak/valley or distributed
• Data volume

Table 13. Common Data Characteristics

Reference data • Mostly read or even read-only
• Usually shared between users
• Generally updated by EIS
• Infrequent or scheduled changes
• Able to tolerate stale data
• May be concentrated during initial deployment, occasional

thereafter
• Large to very large data volume is possible

Best Practices for Loading Data From the EIS to the CDB

Mobile Data Models: Using Mobile Business Objects 117

Transactional data • Read and write
• Usually private but can share with other users
• Updated by both mobile application and back end possible
• Moderate change frequency
• High freshness expectation
• Access pattern varies depends on use case: morning/evening, or

throughout the day
• Moderately low data volume (not including historic data which

is considered as reference)

Datasources
It is important to understand how, what, and when data can be obtained from the EIS to fill the
CDB. What are the characteristics of the EIS to consider for data loading?

• Efficiency of the interface:
• Protocol – JCO, Web Services, JDBC
• API – number of interactions required to retrieve the data

• Push or pull
• Reaction to peak load
• Availability of internal cache for frequently accessed data

Guidelines for Data Loading
Understand the guidelines for efficiently loading data from the EIS to the CDB.

Poor performance is often due to the manner in which data is loaded into the CDB. See Data-
Loading Design.

MBOs that use DCN as the cache group policy have only one partition. See DCN and Partitions.

Determine if the EIS can efficiently return a sorted data set based on the primary key when
retrieving very large data sets. See Optimizing Loading of Large Data Sets.

Use caution when recycling existing APIs provided by EIS for use by the mobile application.
Adopt only after careful evaluation.

Use an efficient interface (protocol) for high data volume, for example, JCo versus Web Serv-
ices.

Use DCN to push changes to avoid expensive refresh cost and differential calculation for large
amounts of data.

Use multiple partitions to load data in parallel and reduce latency.

Best Practices for Loading Data From the EIS to the CDB

118 SAP Mobile Platform

If initial data volume is very large, consider a scheduled cache group policy with an extremely
large interval to pull data into CDB and then update via DCN. However, do this only with
careful orchestration to avoid lost updates.

Use cache groups to control and fine-tune how the manner in which MBO caches are filled.

Use shared-read MBOs whenever possible.

Improve update efficiency by using small DCN message payloads.

Do not mix DCN with scheduled or on-demand cache policies, except for one-time initial data
load operations—thereafter, use only DCN for updates.

Data-Loading Design
Successful data-loading design requires careful analysis of data and datasource
characteristics, usage patterns, and expected user load. A significant portion of performance
issues are due to incorrect data loading strategies. Having a poor strategy does not prevent a
prototype from functioning, but does prevent the design from functioning properly in a
production environment. A good design always starts with analysis.

Optimizing Loading of Large Data Sets
During a cache fill operation, SAP Mobile Server retrieves a data set from the EIS. The Data
Services component performs a sort/merge algorithm upon the data set to detect what has been
modified since the last refresh and updates the cache. If the data set is sorted by the primary
key, Data Services adds new items, compares and updates matching items, and removes
missing items from the cache by traversing the records in the data set. However, if the retrieved
data set is not sorted, Data Services must perform an in-memory sort. If the retrieved data set is
very large, the sorting may require significant resources, causing the SAP Mobile Server
memory footprint to expand and CPU usage to spike.

To optimize performance, change the LOAD ALL or appropriate load queries to include an
ORDER BY <primary key> clause to the SELECT statement in cases where the EIS is a
relational database.

1. In the Properties view of SAP Mobile WorkSpace, go to the Attributes > Definition tab.
2. Click Edit, then adjust the existing SQL definition with an additional ORDER BY clause

followed by the primary key column(s).

For a detailed example of using ORDER BY to optimize data refresh of large data sets, see this
document on the SAP Community Network http://scn.sap.com/docs/DOC-32091.

Alternatively, determine if the EIS can use DCN to send changes as they occur to SAP Mobile
Server. This is a superior method to update SAP Mobile Server with deltas of a very large data
set. Regardless if the EIS can return a sorted data set or not, CPU usage, network bandwidth,
and time to process a very large data set can still be a performance concern.

SAP Mobile Platform architecture is most optimal when:

Best Practices for Loading Data From the EIS to the CDB

Mobile Data Models: Using Mobile Business Objects 119

http://scn.sap.com/docs/DOC-32091

1. The mobile client is highly selective in the data required from the EIS and uses
synchronization parameters to pull down a small subset of data from the EIS (i.e. cache
partitioning). Refreshing cache partitions on an as needed basis is more optimal than
pulling down a large number of rows from the EIS. See Client Defined Cache Partitions.

2. Effective use of applying operation results to the cache (cache write through/behind using)
are used. If the client application performs the majority of data updates then writing
through or behind, the SAP Mobile Server cache is more efficient and requires less
synchronization with the EIS. See Operation Cache Policies.

3. DCN pushes deltas from the EIS into the SAP Mobile Server cache or pushes large
unpartitioned data sets into the SAP Mobile Server cache. See Data Change
Notification.

Recycling Existing Artifacts
The most common mistake is to reuse an existing API without understanding whether it is
suitable. In some cases, you can make the trade-off of using a result-set filter to clean the data
for the MBO if the cost is reasonable. This filtering does not eliminate the cost of retrieving
data from the EIS and filtering it out. Every part of the pipeline impacts performance and
influences data loading efficiency. The best interface is always based on your requirement
rather than a design intended for a separate purpose.

Pull Versus Push
Since push-style data retrieval is performed by HTTP with JSON content, optimized
interfaces like JDBC or JCo are often more suitable for high-volume data transfer. Pull-style
data retrieval requires the same amount of data to be transferred during refresh, and then
compares changes with what is currently in the CDB. If data volume is large, the cost can be
overwhelming, even with an optimized interface. DCN can efficiently propagate changes
from the EIS to the CDB. However, mixing DCN and other refresh mechanisms is generally
not supported. When refresh and DCN collide, race conditions can occur, leading to
inconsistent data.

You can load data using a pull strategy, then switch to DCN for updates. The key is to make
sure the transition between pull and push is orchestrated correctly with the EIS so updates are
not missed between the time the pull ends and the push begins. Initial loading can be triggered
by device users by way of the on-demand cache group policy, or with a scheduled cache group
policy that has a very small interval, which then changes to an extremely large interval once
data loads.

It is not advisable to use a very large DCN message for updates. Processing a large DCN
message requires a large transaction, significant resources, and a reduction in concurrency.

Cache Group and Data Loading
Cache groups are the tuning mechanism for data loading. Within a package, there can be
multiple groups of MBOs that have very different characteristics that require their own
loading strategy. For example, it is common to have transactional and reference data in the

Best Practices for Loading Data From the EIS to the CDB

120 SAP Mobile Platform

same package. Multiple cache groups allow fine-tuning which data in a package is loaded into
the CDB independent of other cache groups.

Using Cache Partitions
Cache partitions increase performance by enabling parallel loading and refresh, reducing
latency, supporting on-demand pull of the latest data, and limiting scope invalidation. You
must determine whether a partitioned-cache makes sense for the mobile application. The
mobile application may not be able to function without the entire set of reference data, and
partitioning is a viable alternative. However, even if a cache partition is not the right approach,
it may still be worth considering if you can apply the concept of horizontal partition. A cache
partition uses vertical partitioning. In horizontal partitioning, with a hierarchy, you may not
need to load the entire object graph to start as long as some levels can be pulled on demand. By
using additional cache groups, you can potentially avoid a large data load.

A cache partition is a set of MBO instances that correspond to a particular partition key. The
loading of the MBOs is achieved through synchronization parameters mapped to result
affecting load arguments.

DCN and Partitions
There is only one partition for the DCN cache group policy. When a synchronization group
maps to a DCN cache group, the synchronization parameters are used only for filtering against
the single partition. In addition, the single partition of the MBO cache in the DCN cache group
should always be valid, and you should not use an "Invalidate the cache" cache policy for any
MBO operations.

Reference Data Loading
The strategy for reference data loading is to cache and share it.

• Usually read or read-only
• Shared between users in majority of cases
• Usually updated by the EIS
• Infrequent or scheduled changes
• Ability to tolerate stale data
• May be concentrated during initial deployment, and occasional thereafter
• Large to very large data volume is possible

The more stable the data, the more effective the cache. Once the data is cached, SAP Mobile
Server can support a large number of users without additional load on the EIS. The challenge
with reference data is size and finding the most efficient method for loading and updating the
data.

Load via Pull
Configure SAP Mobile Platform components to pull data into the CDB from the EIS:

Best Practices for Loading Data From the EIS to the CDB

Mobile Data Models: Using Mobile Business Objects 121

Partition data, if possible, within an MBO or object hierarchy.

Load partitions on demand to spread the load, increase parallelism, and reduce latency.

Use a separate cache group for each independent object hierarchy to allow each to load sepa-
rately.

Use a scheduled policy only if the EIS updates data on a schedule; otherwise, stay with an on-
demand cache group policy.

Use a large cache interval to amortize the load cost.

Use the "Immediately update the cache" cache policy if the reference MBOs use update or
create operations.

Consider DCN for large data volume if cache partition or separation into multiple cache groups
is not applicable or ineffective. This avoids heavy refresh costs.

use DCN if high data freshness is required.

Targeted change notification (TCN), previously called server-Initiated synchronization (SIS) is
challenging due to cache interval settings and require user activities to refresh for on-demand
cache group policy. Change detection is impossible until the cache is refreshed.

Do not use a zero cache interval.

Load via Push
Configure SAP Mobile Platform components and the EIS so that the EIS can push data
changes to EIS:

Use parallel DCN streams for initial loading.

Use SAP Mobile Server clustering to scale up data loading.

Use a single queue in the EIS for each individual MBO or object graph to avoid data incon-
sistency during updates. You can relax this policy for initial loading, as each instance or graph is
sent only once.

Use a notification MBO to indicate loading is complete.

Adjust change detection interval to satisfy any data freshness requirements.

Parallel Push
DCN requests are potentially processed in parallel by multiple threads, or SAP Mobile Server
nodes in case of clustering. To avoid a race condition, serialize requests for a particular MBO
or an MBO graph. That is, send a request only after completion of the previous one. This

Best Practices for Loading Data From the EIS to the CDB

122 SAP Mobile Platform

ordering must be guaranteed by the EIS initiating the push. SAP Mobile Server does not return
completion notification to the EIS until the DCN request is fully processed.

Hybrid Load – Initial Pull and DCN Update

Ensure that the end of the initial load and start of the DCN update is coordinated in the EIS to
avoid missing updates.

Use parallel loading via multiple cache groups and partitions. Once the DCN update is enabled,
there is always a single partition.

Private Transactional Data Loading
Use either pull or push loading strategies for private transaction data.

• Read and write
• Can be updated by both the mobile application and EIS
• Moderate change frequency
• High freshness expectation
• No sharing between users
• Access pattern varies depending on use case: morning/evening or throughout the day
• Moderately low data volume (not including historical data which is considered as

reference)

Pushing data from the EIS via DCN is preferable to pulling data from the EIS, since DCN with
payload performs better than an on-demand/zero coherency window where changes are
immediately applied to the cache. When using DCN, cache locking is done outside the scope
of the synchronization so overall resource utilization decreases. DCN also allows for change
detection and targeted change notification (TCN), previously called server-Initiated
synchronization (SIS) without additional work.

Load via Pull

Partition per user using either the “Partition by requester and device identity” feature in the
cache group policy, or a specific identity provided by the developer.

Use an on-demand cache group policy with a zero cache interval for consistency and high data
freshness.

Use the "Immediately update the cache" cache policy if there are create operations that asso-
ciate a surrogate key and a business key.

Use a notification MBO to implement TCN/SIS if required.

Best Practices for Loading Data From the EIS to the CDB

Mobile Data Models: Using Mobile Business Objects 123

Ensure that all members of a partition belong to only one partition.

Ensure the EIS can support peak on-demand requests based on expected client load.

Do not use a scheduled cache group policy.

Load via Push

Use parallel DCN streams for the initial load if there is a large user population.

Use SAP Mobile Server clustering to scale up data loading.

Use a single queue in the EIS for each individual MBO or object graph to avoid data incon-
sistency during updates. You can relax this policy for initial loading, as each instance or graph is
sent only once.

Use a notification MBO to signal that initial loading is complete.

Adjust the change detection interval to satisfy any data freshness requirements.

Always use the "Immediately update the cache" cache policy for all operations.

Shared Transactional Data Loading
Shared transactional data has a higher chance of being stale until it becomes consistent again.

Multiple users can update the same instance leading to race conditions. While it is possible to
provide higher consistency through the On-Demand policy with a zero cache interval, the cost
can also be high, depending on the data volume involved in a refresh. This approach is feasible
if the use case is such that each user is retrieving 10-20 object graphs shared with other users. A
use case that leverages a user identity partition means that an instance belongs to multiple
partitions as it is shared. For example, an approval request that is assigned to two managers
shows up in two partitions. This condition violates the restriction that each member can only
belong to one partition. It also means that the member bounces between partitions. To resolve
this, add the user identity as part of the primary key so the cache sees a unique instance for the
partition. In this scenario, the load argument corresponding to the user identity should be
propagated to an attribute. The other alternative is to use the "partition by requester and device
id" option in the cache group settings. With this setting, the instance identity is automatically
augmented with the requester/device ID so there is never partition bouncing.

Best Practices for Loading Data From the EIS to the CDB

124 SAP Mobile Platform

Load via Pull - High Consistency

Use an On-Demand cache group policy with a zero cache interval.

Use “Immediately update the cache” cache policy if create operations form the association
between the surrogate key and business key.

Use a notification MBO to implement targeted change notification (TCN), previously called
server-Initiated synchronization (SIS) if required.

Augment the primary key to avoid instance bouncing between partitions at the expense of
duplication.

Ensure the EIS can handle peak on-demand requests based on expected client load.

Load via Pull

Use an On-Demand cache group policy with a non-zero cache interval.

Use “Immediately update the cache” cache policy for all operations. Users see each others
changes.

SIS/TCN is activated by changes made by other users. Changes from the EIS are only detected
at expiration of the cache interval.

Do not use a partition since it creates duplicate copies of valid data until the interval expires.
This creates further inconsistency between users.

Load via Push

Use a single queue in the EIS for each individual MBO or object graph to avoid data incon-
sistency during updates. This is not required for initial loading since each instance/graph is sent
once.

Use a notification MBO to indicate initial loading is complete.

Adjust the change detection interval to satisfy data freshness requirements.

SAP Mobile Server Cache
The SAP Mobile Server cache (or cache database CDB) caches data required by device
applications.

A typical hardware cache has only two states: valid and invalid. When invalid, the data in the
cache row is no long relevant and can be overwritten. The cache contains data needed by the
processor at a given time. Data can be brought into and evicted from the cache rows rapidly.

Best Practices for Loading Data From the EIS to the CDB

Mobile Data Models: Using Mobile Business Objects 125

The CDB, however, is filled with data required by the devices. Filling can occur all at once
(DCN) or over time (on-demand). There is no eviction. In the case of a cache group policy that
uses a pull mechanism, even if the CDB or a cache partition is invalid, the data is still relevant;
The policy is used to detect changes when compared with new data from a refresh.

Whereas data in a hardware cache is always consistent with, or even supersedes data in the
memory subsystem, data in the CDB does not. In database or application terminology, it is not
the system of record, and is not guaranteed to be consistent with the EIS. This is neither a
design nor implementation flaw, but is intended to avoid tight serialization and scalability
problems. The CDB operates under the principle of eventual consistency. As stated in
Brewer's CAP Theorem "In a distributed environment, it is impossible to provide all three
guarantees simultaneously: consistency, availability, and partition tolerance":

When data resides on the device and operates in a partitioned mobility environment (tolerant
to network outage), the choice is whether to have consistency or availability. To enable mobile
users to perform their tasks even without connectivity, the choice is availability. Hence, there
is no consistency guarantee between the CDB and the mobile databases. The relationship
between CDB and EIS is somewhat different. In general, there is no expectation of a partition
between the CDB and the EIS so there is no need for partition tolerance. However, achieving
both consistency and availability means a tight coupling between them and the integration is
either too costly or invasive. This is why the CDB is never considered the system of record.

You can configure the cache group, by way of a cache group policy, to function in a high-
consistency or flow-through mode where data always has to be fetched from the EIS. The data
residing in the CDB is used only to detect data changes, so only the difference is transferred to
the device.

Best Practices for Loading Data From the EIS to the CDB

126 SAP Mobile Platform

Cache Group Policies
Understand the role of cache group policies and the effect of cache refresh.

SAP Mobile Platform supports five cache group policies, four of which are relevant to loading
data into the cache. The Online cache group policy is used only by Hybrid Apps that require
access to non-cached data:

• Scheduled and On-Demand policies are based on data retrieval APIs exposed by the EIS.
• DCN policies (DCN and EIS managed) utilize notification messages from the EIS that

push both initial data and changes to the CDB.

The cache group policy for a particular cache group depends largely on the characteristics of
the data contained within. In general, if the EIS can push and data inconsistency can be
tolerated, a DCN policy is the appropriate choice.

The following flow chart attempts to capture the logic in choosing an appropriate cache group
policy. However, use this as a reference only. Actual requirements vary due to many factors,
and you should test your cache groups in a realistic test environment to understand timing,
data flow cost, EIS load and user experience. The DCN block represents either DCN or EIS
managed.

Best Practices for Loading Data From the EIS to the CDB

Mobile Data Models: Using Mobile Business Objects 127

Best Practices for Loading Data From the EIS to the CDB

128 SAP Mobile Platform

Result Set Filters

A result set filter is a custom Java class an experienced developer writes in order to specifically
manipulate the rows or columns of data returned from a read operation for an MBO.

When a read operation returns data that does not completely suit the business requirements for
your MBO, you can write and add a filter to the MBO to customize the data into the form you
need. You can chain multiple filters together. Multiple filters are processed in the order they
are added, each applying an incremental change to the data. Consequently, SAP recommends
that you always preview the results, taking note that the MBO has a different set of attributes
than it would have had directly from the read operation. You can map and use the altered
attributes in the same way you would do so for a regular attribute from an unfiltered read
operation.

Note: The filter interfaces are defined in terms of java.sql.ResultSet and
java.sql.ResultSetMetaData, but these standard JDBC interfaces tend to be read-
only implementations. To change data, use a CachedRowSetImpl object instead. This
object implements ResultSet but also allows you to modify row data.

Example: a simple SELECT statement filter

Suppose you have an MBO based on this query that returns customer information, and you do
not want first name and last name divided between two columns (fname and lname) :

SELECT * FROM sampledb.customer
Instead, write a filter that replaces these columns with a single concatenated "commonName"
column.

Note: You could also implement the above example with a more advanced SQL statement
with additional computation in the MBO definition:

SELECT id, commonName=fname+' '+lname, address, city, state,
zip, phone, company_name FROM customer

Example: two separate data sources filter

Suppose you have customer data in two data sources: basic customer information is in an
SAP® repository, and more complete details are contained in another database on your
network, for example, SQL Anywhere®. You can use a result set filter to combine the SAP
customer data with detailed customer data from the database, so that the MBO displays a
complete set of information in a single view. You can accomplish this by:

1. Creating a filter for the SAP backend and add it to an SAP MBO.
2. Add a JDBC connection for the SQL Anywhere backend in the filter, then use the SQL

Anywhere data to filter the SAP result.

Result Set Filters

Mobile Data Models: Using Mobile Business Objects 129

3. Validate the results are what you expect upon completion. When you synchronize the SAP
MBO, you should see data from both SAP backend and SQL Anywhere backend.

Result Set Filter Data Flow
A ResultSetFilter is a custom Java class deployed to SAP Mobile Server that
manipulates rows and columns of data before synchronization.

Result set filters are more versatile (and more complicated to implement) than an attribute
filter implemented through a synchronization parameter, since you must write code that
implements the filter, instead of simply mapping a parameter to a column to use as the filter.

1. Enterprise information system (EIS) data is sent to SAP Mobile Server.
2. The result set filter filters the results, and applies those results to the CDB for a given MBO.

For example, the result set filter combines two columns into one.
3. The device application synchronizes with the results contained in the CDB.

The client cannot distinguish between MBOs that have had their attributes transformed
through a ResultSetFilter from those that have not.

Implementing Custom Result Set Filters
Developers can write a filter to add, delete, or change columns as well as to add and delete
rows.

Prerequisites

To write a filter, developers must have previous experience with Java programming —
particularly with the reference implementations for javax.sql.RowSet, which is used to
implement the filter interface and described in the JDBC RowSet Implementations Tutorial at
http://docs.oracle.com/javase/tutorial/jdbc/basics/jdbcrowset.html.

Result Set Filters

130 SAP Mobile Platform

http://docs.oracle.com/javase/tutorial/jdbc/basics/jdbcrowset.html
http://docs.oracle.com/javase/tutorial/jdbc/basics/jdbcrowset.html

Note: SAP strongly encourages developers to initially create filters in SAP Mobile
WorkSpace: a wizard assists you by autogenerating required imports and methods so the
implementation compiles and runs. Then to customize the code, you can cut and paste
fragments from the sample, and make the required changes to get the desired end result.

Task

Once the filter has been implemented and deployed to SAP Mobile Server as part of an MBO
package, the MBO developer can apply the filter to other MBOs from SAP Mobile
WorkSpace. See Adding a Result Set Filter in SAP Mobile WorkSpace - Mobile Business
Object Development.

Note: Validate the performance of any custom result set filters, before deploying packages to
SAP Mobile Server.

Writing a Custom Result Set Filter
Write a custom result set filter to define specific application processing logic. Save the
compiled Java class file to a location that is accessible from SAP Mobile WorkSpace.

In the custom filter, configure attribute properties so that the returned record set can be better
consumed by the device client application. Sometimes, a result set returned from a datasource
requires unique processing; a custom filter can perform that function before the information is
downloaded to the client.

Data in the cache is shared by all clients. If you need to identify data in the cache to a specific
client, you must define a primary key attribute that identifies the client (such as remote_id or
username).

1. (Required) Create a record set filter class that implements the
com.sybase.uep.eis.ResultSetFilter interface.

This interface defines how a custom filter for the data is called.

For example, this code fragment sets the package name and imports the required classes:

package com.mycompany.myname;
import java.sql.ResultSet;
import java.util.Map;

2. (Recommended) Implement the
com.sybase.uep.eis.ResultSetFilterMetaData interface as well as the
com.sybase.uep.eis.ResultSetFilter interface on your filter class.

If you choose not to implement this interface, SAP Mobile WorkSpace will have to execute
a chain of mobile business object operations and filters and fetch real data before you can
see the actual output column names and their datatypes. By first implementing these
interfaces, the operation does not need to be executed first. Instead, the
getMetaData() method obtains the necessary column or data type information.

Result Set Filters

Mobile Data Models: Using Mobile Business Objects 131

This example sets the package name but uses a different combination of classes than in the
example for step 1:
package com.mycompany.myname;
import java.sql.ResultSetMetaData;
import java.util.Map;

3. Call the appropriate method, which depends on the interfaces you implement.

ResultSetFilter filters the data in the first option documented in step 1. Each filter
defines a distinct set of arguments. Therefore, use only the arguments with the appropriate
filter that defines these arguments in getArguments(), rather than use all filters and
datasource operations.

The result set passed in contains the grid data, which should be considered read-only—do
not use operations that change or transform data. The return value cannot be NULL,
otherwise an execution error occurs.

public interface ResultSetFilter {
 ResultSet filter(ResultSet in, Map<String, Object> arguments)
throws
 Exception;
 Map <String, Class> getArguments();
}

Next, use ResultSetFilterMetaData to format the data from step 1. Use this
interface to avoid executing an extraneous datasource operation to generate a sample data
set.

public interface ResultSetFilterMetaData {
 ResultSetMetaData getMetaData(ResultSetMetaData in, Map<String,
 Object> arguments) throws Exception;
}

Note: If the filter returns different columns depending on the argument values supplied,
the filter may not work reliably. Ensure that any arguments that affect metadata have
constant values in the final mobile business object definition, so the schema does not
dynamically change.

4. Implement the class you have created, defining any custom processing logic.

5. Save the classes to an accessible SAP Mobile WorkSpace location. This allows you to
select the class, when you configure result set filters for your mobile business object.

6. In SAP Mobile WorkSpace, refresh configured MBO attributes, to see the result.

MBO load operations can take parameters on the enterprise information system (EIS) side.
These load parameters are defined from SAP Mobile WorkSpace as you create the MBO. For
example, defining an MBO as:

SELECT * FROM customer WHERE region = :region

results in a load argument named ''region''.

Result Set Filters

132 SAP Mobile Platform

As an example, if you want a filter that combines fname and lname into commonName, add
MyCommonNameFilter to the MBO. When MyCommonNameFilter.filter() is
called, the ''arguments'' input value to this method is a Map<String, Object> that has an
entry with the key ''region''. Your filter may or may not care about this parameter (it is the
backend database that requires the value of region to execute the query). But your filter may
need some other information to work properly, for example the remote user's zipcode. The
ResultSetFilter interface includes
java.util.Map<java.lang.String,java.lang.Class>
getArguments() that you must implement. In order to arrange for the remote user's
zipcode (as a String) to be provided to the filter, write some custom code in the body of the
getArguments method, for example:

public Map<String, Object> getArguments {
 HashMap<String, Class> myArgs = new HashMap<String, Class>();
 myArgs.put("zipcode", java.lang.String.class);
 return myArgs;
 }

This informs SAP Mobile WorkSpace that the ''zipcode'' parameter is required, and is of type
String. SAP Mobile WorkSpace automatically adds the parameter for the load operation, so
this MBO now has two (region and zipcode). Your filter gets them both when its filter()
method is called, but can ignore region if it wants.

Validating Result Set Filter Performance
After you deploy the filters to SAP Mobile Server, synchronize data and ensure that filters are
performing as you expect.

1. Confirm that the columns appear correctly after the filter has been added to the mobile
business object.

a) Refresh the object.
b) In the Properties view, select the Attributes > Attributes Mapping tab.
c) Verify that columns are correctly listed in the Map to column.

2. From the mobile application running on a device or simulator, open the mobile object, and
check that the new column appears.

3. Synchronize the object from the device client or simulator.

4. Troubleshoot filters if issues arise:

• During synchronization, all System.out statements are printed to the SAP Mobile
Server log.

• If you started SAP Mobile WorkSpace with the -consoleLog in java.exe,
System.out statements are also printed to the console window.

Result Set Filters

Mobile Data Models: Using Mobile Business Objects 133

Filter Class Debugging
SAP Mobile Platform supports various debugging models: instrumented code, and JPDA
(Java Platform Debugger Architecture).

You can also log your own output by including System.out.println() in the filter class, output
from the class is captured in the SAP Mobile Server log when the filter executes in the server.

Alternatively, you can use the standard Java debugger to debug the filter class.

Enabling JPDA
Set up JPDA and attach the Java standard debugger to SAP Mobile Server.

1. Stop SAP Mobile Server.

2. Add JPDA information from SAP Control Center:

a) Select Servers > ServerName > Server Configuration.
b) Select the General tab.
c) Add this information to the value of the User options property. In this example 5005 is

the port to which the Java debugger connects:
-Xdebug -Xnoagent -
Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=5005

3. Restart SAP Mobile Server.

4. Once SAP Mobile Server is restarted, verify that JPDA mode is working and available at
port 5005 by running:

netstat -ano | findstr 5005 from a command prompt.

Look for these results:
TCP 0.0.0.0:<JPDAport> 0.0.0.0:0 LISTENING

5. Use a standard Java debugger and attach it to SAP Mobile Server by specifying the correct
host and the JPDA port used.

Begin debugging the result filter class with the Java debugger.

Setting Debug Breakpoints in Result Set Filter Classes
Set breakpoints in the result set filter classes from the SAP Mobile WorkSpace project that
contains the filters.

Prerequisites
Add a result set filter to an SAP Mobile WorkSpace project.

Result Set Filters

134 SAP Mobile Platform

Task

1. From WorkSpace Navigator in SAP Mobile WorkSpace, expand the project Filters to
access the result set filter Java class.

2. Double-click the Java class to open it in the Java editor.

The default generated code is a filter that does nothing until you add your filter code.

3. Right-click in the grey vertical bar to the left of the actual code and select Toggle
Breakpoint to set breakpoints.

4. Compile and deploy the classes to SAP Mobile Server. Redeploy the MBO package if it
has changed as part of the filtering.

Setting Up the Debug Session
Debug the deployed result set filter from SAP Mobile WorkSpace using breakpoints.

Prerequisites

1. Set debug breakpoints in your filter class.
2. Open the Debug perspective from SAP Mobile WorkSpace by selecting Window > Open

Perspective > Other > Debug.

Task

1. From SAP Mobile WorkSpace click the down-arrow next to the Debug toolbar icon, and
select Debug Configurations.

2. Right-click Remote Java Application and select New.

3. Name the configuration and change the JPDA port to match that of SAP Mobile Server:

• Use a standard connection (Socket Attach)
• Use host 0.0.0.0
• Set the the port to match the one enabled in SAP Mobile Server (by default 5005)

4. Click Debug to save the configuration and launch the debugger.

5. Select Window > Open Perspective > Other > Debug to open the Debug perspective.

In the left pane you can view the threads running inside SAP Mobile Server. When your
filter is called, one of these threads suspends, and the code window highlights where the
debugger has stopped in the server. The right pane displays the values of local variables
inside your filter.

Result Set Filters

Mobile Data Models: Using Mobile Business Objects 135

Result Set Filters

136 SAP Mobile Platform

Result Checkers

A result checker is a custom Java class that can be implemented to customize error checking
for mobile business object (MBO) operations.

Not all MBO operations can use a "standard" error reporting technique as the EIS system may
return error codes or failures through various fields; In such cases, you may want to implement
your own custom result checker. Doing so allows you to check any field for errors, or
implement logic that determines what constitutes an error, and the severity of the error.

A custom result checker can throw errors for both a scheduled cache refresh as well as an on
demand cache refresh:

• For a scheduled refresh – the result checker writes a log message that describes the nature
of the error to the SAP Mobile Server log. As a consequence of this error, the transaction
for the entire cache group is rolled back. The device client user is not notified of these
errors; no client log records are generated.

• On demand refresh – instead of writing the error to the server log, the log message is
written to the SAP Mobile Server. Services in the server handle the exception. As a
consequence of this error, the transaction for the cache group is rolled back. But in this
case, a client log record is generated, which is visible to the client application after
synchronization.

Both cases send the OperationStatusEvent. This event indicates that an operation
failed to execute properly. The server uses OperationStatusEvent to populate a
statistics repository that tracks the success or failure of EIS operation invocations. An
administrator can review these statistics in SAP Control Center, by clicking the Monitor node
in the left navigation pane. See Reviewing System Monitoring Data in SAP Control Center for
SAP Mobile Platform.

Implementing Customized Result Checkers
Implement a custom result checker with the required Java class to implement custom error
checking for EIS-specific business objects.

This section describes how to write and add a custom result checker. See Adding a Result
Checker in SAP Mobile WorkSpace - Mobile Business Object Development for additional
information.

Result Checkers

Mobile Data Models: Using Mobile Business Objects 137

Writing a Custom Result Checker
Use a custom Java class to implement custom error checking.
Provide a Java class that extends the appropriate class for the enterprise information system
(EIS).
• SAP –

package com.sybase.sup.sap3;

import com.sap.conn.jco.JCoFunction;
import com.sybase.vader.core.OperationHandlerBase;

public abstract class SAPOperationHandler extends
OperationHandlerBase {

 /**
 *
 * @param f - JCO function that has already been executed.
 * Use the JCO API to retrieve returned values and
 * determine if the RFC has executed successfully.
 *
 * Throw OHException to return an error.
 * Call OHLog.log() as often as needed to return
 * warnings and other informational messages.
 */
 public void resultCheck(JCoFunction f) {
 }

 /**
 * @param cause Exception thrown by the call to the EIS
 *
 * @param f - JCO function that has already been executed.
 * Use the JCO API to retrieve returned values and
 * determine if the RFC has executed successfully.
 *
 * Throw OHException to return an error.
 * Call OHLog.log() as often as needed to return warnings
 * and other informational messages.
 */
 public void onError(Throwable cause, JCoFunction f) {
 }
}

• Web service (SOAP) –
package com.sybase.sup.ws.soap;

import com.sybase.vader.core.OperationHandlerBase;

public abstract class SoapOperationHandler extends
OperationHandlerBase {

 /**
 *
 * @param response the SOAP Envelope response from
 * a web service execute.

Result Checkers

138 SAP Mobile Platform

 * Use the SOAP API to retrieve values and determine
 * if the SOAP request has executed successfully.
 *
 * @param request the SOAP Envelope request sent to
 * the web service.
 * Use the SOAP API to retrieve values.
 *
 * Throw OHException to return an error.
 * Call OHLog.log() as often as needed to return warnings
 * and other informational messages.
 *
 */
 public void resultCheck(
 javax.xml.soap.SOAPEnvelope response,
 javax.xml.soap.SOAPEnvelope request) {
 }

 /**
 * @param cause Exception thrown by the call to the EIS
 *
 * @param request the SOAP Envelope request sent to the
 * web service.
 * Use the SOAP API to retrieve values.
 *
 * Throw OHException to return an error.
 * Call OHLog.log() as often as needed to return warnings
 * and other informational messages.
 *
 */
 public void onError(Throwable cause,
 javax.xml.soap.SOAPEnvelope request) {
 }
}

• RESTful Web service –
package com.sybase.sup.ws.rest;

import java.util.List;
import com.sybase.vader.core.OperationHandlerBase;

import java.net.URL;

public abstract class RestOperationHandler extends
OperationHandlerBase{

 public RestOperationHandler () {
 super();
 }

 /**
 * REST Result Check.
 *
 * @param responseBody HTTP response body.
 *

Result Checkers

Mobile Data Models: Using Mobile Business Objects 139

 * @param responseHeaders HTTP response headers in the form
 * {{header1,value1}, {header2,value2}, ...}.
 *
 * @param httpStatusCode HTTP status code.
 *
 * @param url HTTP URL.
 *
 * @param requestBody HTTP request body.
 *
 * @param requestHeaders HTTP request headers in the form
 * {{header1,value1}, {header2,value2}, ...}.
 *
 * Throw OHException to return an error.
 * Call OHLog.log() as often as needed to return warnings
 * and other informational messages.
 *
 **/
 public void resultCheck(String responseBody,
 List<List<String>> responseHeaders, int httpStatusCode, URL
url,
 String requestBody, List<List<String>> requestHeaders) {
 }

 /**
 * REST On Error
 * Note that errors are virtually never thrown by REST.
 * Instead, HTTP Error codes are returned.
 * The Result Check method can handle these codes
 * before any exception is thrown by Data Services.
 *
 * @param cause Exception thrown by the call to the EIS
 *
 * @param url HTTP URL.
 *
 * @param requestBody HTTP request body.
 *
 * @param requestHeaders HTTP request headers in the form
 * {{header1,value1}, {header2,value2}, ...}.
 *
 * @return Result Checker Return
 *
 * Throw OHException to return an error.
 * Call OHLog.log() as often as needed to return warnings
 * and other informational messages.
 *
 */
 public void onError(Throwable cause, URL url,
 String requestBody, List<List<String>> requestHeaders) {
 }
}

Result checkers depend on the SAP Mobile Server sup-ds.jar file. For example,
SMP_HOME\Servers\UnwiredServer\lib\ext\sup-ds.jar.

Result Checkers

140 SAP Mobile Platform

Result Checker Logging
Use OHLog to trap warnings but not halt execution of the result checker.

You can influence the error or warning code and message in the result checker by throwing a
DSException, which produces errors and halts execution, or by calling OHLog, which is
used for warnings and does not halt execution.

Use OHLog.log() to write to the client log. This method returns true if it successfully wrote
the log entry, and false if no client is defined. For example, no client is typically defined for
a scheduled refresh.

The following code examples illustrate implementation of OHLog for various enterprise
information systems.

Datasource: SAP
package com.sybase.vader.test.mms;

import com.sap.conn.jco.JCoFunction;
import com.sybase.sup.sap3.SAPOperationHandler;
import com.sybase.dataservices.OHException;
import com.sybase.dataservices.OHLog;

public class TestSAPOperationHandler extends SAPOperationHandler {

 public void resultCheck(JCoFunction f) {
 OHLog.warn(901, 101, f.toXML());
 //throw new OHException(901, 101, "Throwing test OHException with
901 and 101.");
 }

 public void onError(Throwable cause, JCoFunction f) {
 if(f !=null) {
 OHLog.warn(901, 101, f.toXML());
 } else {
 OHLog.warn(902, 102, "JCoFunction null");
 }
 throw new OHException(904, 103, "old exception said
'"+cause.getMessage()+"'");
 }
}

Datasource: Web Service (SOAP)
package com.sybase.vader.test.mms;

import java.io.StringWriter;

import com.sybase.dataservices.OHException;
import com.sybase.dataservices.OHLog;
import com.sybase.sup.ws.soap.SoapOperationHandler;

import javax.xml.transform.OutputKeys;

Result Checkers

Mobile Data Models: Using Mobile Business Objects 141

import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;

import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import javax.xml.soap.SOAPFault;
import javax.xml.soap.SOAPEnvelope;

public class TestSoapOperationHandler extends SoapOperationHandler {

 public void resultCheck(
 javax.xml.soap.SOAPEnvelope response,
 javax.xml.soap.SOAPEnvelope request) {

 OHLog.info(901, 101, toXML(request));
 OHLog.warn(902, 102, toXML(response));

 try{
 SOAPFault fault = response.getBody().getFault();
 if(fault!=null) {
 throw new OHException(900,
Integer.valueOf(fault.getFaultCode()), fault.getFaultString());
 }
 } catch (Exception e) {
 // ignore
 }
 }

 public void onError(Throwable cause,
 javax.xml.soap.SOAPEnvelope request) {
 if(request != null) {
 OHLog.info(901, 101, toXML(request));
 }
 throw new OHException(904, 103, "old exception said
'"+cause.getMessage()+"'");
 }

 private String toXML(javax.xml.soap.SOAPEnvelope env) {
 String xmlString="";
 try {
 TransformerFactory transfac = TransformerFactory.newInstance();
 Transformer trans = transfac.newTransformer();
 trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");
 trans.setOutputProperty(OutputKeys.INDENT, "yes");

 StringWriter sw = new StringWriter();
 StreamResult result = new StreamResult(sw);
 DOMSource source = new DOMSource(env);
 trans.transform(source, result);
 xmlString = sw.toString();
 }
 catch(Exception e) {

 }
 return xmlString;

Result Checkers

142 SAP Mobile Platform

 }
}

Datasource: RESTful Web Service
package com.sybase.vader.test.mms;

import java.net.URL;
import java.util.List;

import com.sybase.sup.ws.rest.RestOperationHandler;
import com.sybase.dataservices.OHLog;
import com.sybase.dataservices.OHException;

public class TestRestOperationHandler extends RestOperationHandler {

 public void resultCheck(String responseBody,
 List<List<String>> responseHeaders, int httpStatusCode, URL url,
 String requestBody, List<List<String>> requestHeaders) {

 OHLog.info(901, 101, url.toString());
 if(requestBody != null) {
 if(requestBody.isEmpty()){
 OHLog.debug(902, 102, "request body empty");
 }
 else {
 OHLog.debug(902, 102, requestBody);
 }
 } else {
 OHLog.debug(902, 102, "request body null");
 }
 int i=0;
 for(List<String> list : requestHeaders) {
 String msg = "" + list.get(0) + "=" + list.get(1);
 OHLog.warn(903, i++, msg);
 }

 OHLog.info(905, 105, "httpStatusCode="+httpStatusCode);
 if(responseBody != null) {
 if(responseBody.isEmpty()){
 OHLog.debug(906, 106, "response body empty");
 }
 else {
 OHLog.debug(906, 106, responseBody);
 }
 }
 else {
 OHLog.debug(906, 106, "response body null");
 }
 i=0;
 for(List<String> list : responseHeaders) {
 String msg = "" + list.get(0) + "=" + list.get(1);
 OHLog.warn(903, i++, msg);
 }

 if(httpStatusCode>=300) {

Result Checkers

Mobile Data Models: Using Mobile Business Objects 143

 throw new OHException(500, httpStatusCode, "HTTP status code
["+httpStatusCode+"] too high");
 }
 }

 public void onError(Throwable cause, URL url,
 String requestBody, List<List<String>> requestHeaders) {

 if(url != null) {
 OHLog.info(901, 101, url.toString());
 }
 if(requestBody!=null){
 OHLog.debug(902, 102, requestBody);
 }
 int i=0;
 if(requestHeaders != null) {
 for(List<String> list : requestHeaders) {
 String msg = "" + list.get(0) + "=" + list.get(1);
 OHLog.warn(903, i++, msg);
 }
 }
 System.out.println("onError called with following stack trace:");
 cause.printStackTrace();
 System.out.println("^^^^^^");
 throw new OHException(904, 103, "old exception said
'"+cause.getMessage()+"'");
 }
}

Default SAP Result Checker Code
Default Result Checkers are built-in result checkers that are applied automatically on MBO
operations by SAP Mobile Server. They can be replaced by implementing and deploying a
Custom Result Checker. This is the default result checker used to check results in SAP®

datasources.

package com.sybase.sap3;

import java.util.HashSet;
import java.util.Set;

import com.sap.conn.jco.JCoFunction;
import com.sap.conn.jco.JCoParameterList;
import com.sap.conn.jco.JCoRecord;
import com.sap.conn.jco.JCoTable;
import com.sybase.vader.utils.logging.SybLogger;
import com.sybase.sup.sap3.SAPOperationHandler;
import com.sybase.dataservices.OHLog;
import com.sybase.dataservices.OHException;

public class DefaultSAPOperationHandler extends SAPOperationHandler
{

Result Checkers

144 SAP Mobile Platform

 private static Set<String> nonErrorMessages;
 static
 {
 nonErrorMessages = new HashSet<String>();
 nonErrorMessages.add("No data found");
 nonErrorMessages.add("Data was not found for the document");
 nonErrorMessages.add("No customer was found with these
selection criteria");
 }

 public void resultCheck(JCoFunction f) {
 JCoRecord returnStructure = null;
 JCoParameterList jpl = f.getExportParameterList();
 String errorMsg = null;
 int errorNumber = 0;
 String errorDebugMsg = null;
 boolean success = true;
 if (jpl != null)
 {
 try
 {
 returnStructure = jpl.getStructure("RETURN");
 if (returnStructure != null)
 {
 SybLogger.debug("JCoRecord = '" +
returnStructure.toXML() + '"');
 String type = returnStructure.getString("TYPE");
 String message =
returnStructure.getString("MESSAGE");
 // generally TYPE is S for success, I for
informational,
 // or empty
 if (type.equals("") || type.equals("S") ||
type.equals("I")) {
 SybLogger.debug("Success");
 //sendDebugMsg(returnStructure);
 OHLog.info(OHLog.EIS_SUCCESS,
returnStructure.getInt("NUMBER"),
message.isEmpty()?"Success":message);
 }
 else
 {
 SybLogger.debug("TYPE: <<" + type + ">>,
MESSAGE: <<" + message + ">>");
 if (type.equals("W") ||
nonErrorMessages.contains(message))
 {
 SybLogger.debug("Success");
 //sendDebugMsg(returnStructure);
 OHLog.warn(OHLog.EIS_SUCCESS,
returnStructure.getInt("NUMBER"),
message.isEmpty()?"Success":message);
 }
 else
 {
 SybLogger.debug("Error");

Result Checkers

Mobile Data Models: Using Mobile Business Objects 145

 sendDebugMsg(returnStructure,
OHLog.INTERNAL_SERVER_ERROR);
 SybLogger.debug("Throwing OHException.
NUMBER="+ returnStructure.getInt("NUMBER"));
 throw new
OHException(OHLog.INTERNAL_SERVER_ERROR,
returnStructure.getInt("NUMBER"),
returnStructure.getString("MESSAGE"));
 }
 }

 }
 }
 catch (OHException ohe)
 {
 throw ohe;
 }
 catch (Exception e)
 {
 SybLogger.debug("Unable to retrieve RETURN structure -
Will try to retrieve RETURN table next.", e);
 }
 }
 // if there is no RETURN structure, look for RETURN table
 if (returnStructure == null)
 {
 jpl = f.getTableParameterList();
 if (jpl != null)
 {
 try
 {
 JCoTable returnTable = jpl.getTable("RETURN");
 SybLogger.debug("JCoTable = '" +
returnTable.toXML() + '"');
 for (int i = 0; i < returnTable.getNumRows(); i++)
 {
 returnTable.setRow(i);
 String type = returnTable.getString("TYPE");
 String message =
returnTable.getString("MESSAGE");
 // generally TYPE is S for success, I for
 // informational, or empty
 if (type.equals("") || type.equals("S") ||
type.equals("I"))
 {
 SybLogger.debug("Success");
 //sendDebugMsg(returnTable);
 OHLog.warn(OHLog.EIS_SUCCESS,
returnTable.getInt("NUMBER"), message.isEmpty()?"Success":message);
 }
 else
 {
 SybLogger.debug("TYPE: <<" + type + ">>,
MESSAGE: <<" + message + ">>");
 // throw an exception on error, but need to
discover if other rows exist first

Result Checkers

146 SAP Mobile Platform

 if (type.equals("W") ||
nonErrorMessages.contains(message))
 {
 SybLogger.debug("Success");
 //sendDebugMsg(returnTable);
 OHLog.warn(OHLog.EIS_SUCCESS,
returnTable.getInt("NUMBER"), message.isEmpty()?"Success":message);
 }
 else
 {
 // If we previously discovered an error we
can log this one and throw the other, later
 if(!success)
 {
 SybLogger.debug("Error");
 sendDebugMsg(returnTable,
OHLog.INTERNAL_SERVER_ERROR);

OHLog.error(OHLog.INTERNAL_SERVER_ERROR,
returnTable.getInt("NUMBER"), returnTable.getString("MESSAGE"));
 }
 else
 {
 SybLogger.debug("Error");
 success = false;
 errorMsg = message;
 errorNumber =
returnTable.getInt("NUMBER");
 errorDebugMsg =
makeDebugMsg(returnTable);
 }
 }
 }

 }
 }
 catch (Exception e)
 {
 success = false;
 errorMsg = e.getMessage();
 errorNumber = 0;
 if (errorMsg == null || errorMsg.isEmpty())
 {
 errorMsg = e.toString();
 }
 }
 }
 }
 if(!success)
 {
 if(errorDebugMsg != null)
 {
 OHLog.debug(OHLog.INTERNAL_SERVER_ERROR, errorNumber,
errorDebugMsg);
 }
 throw new OHException(OHLog.INTERNAL_SERVER_ERROR,

Result Checkers

Mobile Data Models: Using Mobile Business Objects 147

errorNumber, errorMsg);
 }
 }

 // JCoTables are JCoRecords, so this works
 private String makeDebugMsg (JCoRecord r) {
 String s = "";
 // Some fields may not be present, which will throw an
exception we want to ignore
 try{s+="ID='" + r.getString("ID") + "'";}
 catch(Exception e){}

 try{s+=",LOG_NO='" + r.getString("LOG_NO") + "'";}
 catch(Exception e){}

 try{s+=",LOG_MSG_NO=" + r.getInt("LOG_MSG_NO");}
 catch(Exception e){}

 try{s+=",PARAMETER='" + r.getString("PARAMETER") + "'";}
catch(Exception e){}
 try{s+=",ROW=" + r.getInt("ROW");}
 catch(Exception e){}

 try{s+=",FIELD='" + r.getString("FIELD") + "'";}
 catch(Exception e){}

 try{s+=",SYSTEM='" + r.getString("SYSTEM") + "'";}
 catch(Exception e){}
 return s;
 }

 private void sendDebugMsg (JCoRecord r, int supCode) {
 String s = makeDebugMsg(r);
 OHLog.debug(supCode, r.getInt("NUMBER"), s);
 }
 private void sendDebugMsg (JCoRecord r) {
 sendDebugMsg(r, OHLog.EIS_SUCCESS);
 }
}

Default SOAP Result Checker Code
Default Result Checkers are built-in result checkers that are applied automatically on MBO
operations by SAP Mobile Server. They can be replaced by implementing and deploying a
Custom Result Checker. This is the operation handler code used to check results in SOAP Web
service datasources.

package com.sybase.sup.ws;

import javax.xml.soap.SOAPFault;

import com.sybase.dataservices.OHException;
import com.sybase.sup.ws.soap.SoapOperationHandler;

Result Checkers

148 SAP Mobile Platform

public class DefaultSoapOperationHandler extends
SoapOperationHandler {

 public void resultCheck(
 javax.xml.soap.SOAPEnvelope response,
 javax.xml.soap.SOAPEnvelope request) {

 SOAPFault fault = null;
 try
 {
 fault = response.getBody().getFault();
 }
 catch (Exception e)
 {
 //If we're in here, no fault was found.
 }
 if (fault != null)
 {
 throw new OHException(OHException.INTERNAL_SERVER_ERROR, 0,
fault.getFaultString());
 }

 }
}

Default REST Result Checker Code
Default Result Checkers are built-in result checkers that are applied automatically on MBO
operations by SAP Mobile Server. They can be replaced by implementing and deploying a
Custom Result Checker. This is the default operation handler code used to check results in
REST Web service datasources.

package com.sybase.sup.ws;

import com.sybase.sup.ws.rest.RestOperationHandler;

/*
 * Default is a no-op
 */
public class DefaultRestOperationHandler extends
RestOperationHandler {

}

Result Checkers

Mobile Data Models: Using Mobile Business Objects 149

Result Checkers

150 SAP Mobile Platform

Data Change Notification

Data change notification (DCN) is an update mechanism that allows an enterprise information
system (EIS) to send data changes to SAP Mobile Server over an HTTP or HTTPS connection
using JavaScript Object Notation (JSON).

Two steps are required to send DCN all the way from the EIS to the device: EIS to SAP Mobile
Server (DCN), and SAP Mobile Server to device (synchronization). DCN is independent of
device synchronization and can be used with or without push synchronization.

This guide describes DCN only. For information about Hybrid App DCN (previously called
WF-DCN) see the Developer Guide: Hybrid Apps.

All DCN commands support both GET and POST methods. The EIS developer creates and
sends a DCN to SAP Mobile Server through HTTP GET or POST operations. The portion of
the DCN command parameters that come after http://host:8000/dcn/
DCNServlet, can all be in POST; any var=name can be in either the URL (GET) or in the
POST. The HTTP POST method is more secure than HTTP GET methods; therefore, SAP
recommends that you include the authenticate.password parameter in the POST method, as
well as any sensitive data provided for attributes and parameters.

You must be familiar with the EIS from which the DCN is issued. You can create and send
DCNs that are based on:

• Database triggers
• EIS system events
• External integration processes

For detailed DCN with payload and without paylod examples using POST commands from a
SAP ABAP EIS using a Firefox REST Client, see How-To Use Data Change Notification for
CDB Update at http://scn.sap.com/docs/DOC-28185# . While the example is based on SAP
Mobile Platform version 2.1, the basic procedures apply to other versions as well.

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 151

http://scn.sap.com/docs/DOC-28185#

Data Change Notification Data Flow
This diagram illustrates DCN data flow.

Steps one through four describe DCN, while steps five through eight provide an example of
how the change itself is synchronized with the client using targeted change notification
(TCN), previously called server-initiated synchronization (SIS), with a client using
synchronization parameters.

1. EIS update – a program or some other process updates data in the EIS which is associated
with a DCN.

2. HTTP(S) push – the EIS pushes a DCN message with new or changed MBO data
contained in the message on the configured HTTP(S) port.

3. DCN operation – the DCN service receives the message and performs the upsert/update to
the CDB tables of the corresponding MBOs. DCN upsert/delete operations also set the
changed flag of an MBO package to true.

4. SAP Mobile Server response – SAP Mobile Server sends a response message back to the
EIS that contains the status of each DCN in the submitted message.

5. Change detection – for a particular device that needs the new data, SAP Mobile Server
generates a message for the client indicating that it should synchronize.

6. Change notification – the message is pushed from SAP Mobile Server to the device.
The flow assumes that the device is registered for notifications and comes online to receive
the notification:
• If the device is online (as viewed in SAP Control Center, Application Connections),

then the notification message is immediately delivered to the device and the
application handles the notification accordingly (the developer must code for this
scenario).

• If the device is offline, then the notification is queued and the "Pending Count" for that
application connection increases and can be observed to be non-zero in the same SAP
Control Center screen (Application Connections). Optionally, for iOS, APNS can be
configured to provide notification to the device/application which ultimately results in

Data Change Notification

152 SAP Mobile Platform

the user launching the application, causing it to reconnect to SAP Mobile Server to
retrieve the notification.

See Subscribing Applications to Push Synchronization Notifications in Mobile
Application Life Cycle and Push Synchronization Applications in Developer Guide:
<Device Platform> Object API Applications for additional information about
notifications.

7. RBS synchronization – the client receives the message and issues a synchronization
request to SAP Mobile Server.

8. Synchronization – SAP Mobile Server retrieves the new/updated data based on the client
synchronization parameter and returns it to the client.

Data Change Notification's Effect on the SAP Mobile Server
Cache

Supported DCN types and their effect on the SAP Mobile Server cache (CDB):

• DCN with operation replay (without payload) – as an example, the EIS contains
information for the Customer MBO, with an EIS primary key cust_id, and the MBO model
includes a READ operation that retrieves all Customer details and populates the CDB
using cust_id. In DCN without payload, if the EIS notices that customer data for
cust_id=123 has changed in the EIS, it can send a DCN to SAP Mobile Server with
essentially:
{MBO=customer, operation=read, cust_id=123}

to inform SAP Mobile Server to execute the read operation that updates the CDB with
cust_id=123 changes. This form of DCN involves a lot of interactions with SAP Mobile
Server and the EIS to pull data changes into the CDB.

• DCN with payload – is more efficient since the EIS sends a DCN containing the data:
{MBO=customer, operation=upsert, {cust_id=123, fname=John,
lname=Smith, address=...}}

when the EIS notices that cust_id=123 has changes, and SAP Mobile Server applies these
changes directly to the CDB without additional calls to the EIS.

• Hybrid App DCN – used to push notifications triggered by the EIS to the Hybrid App and
has nothing to do with the CDB.

Data Change Notification With Payload and Without Payload
Understand the differences between DCN with payload and DCN without payload.

• DCN without payload – calls MBO operations, where the name used in the DCN request
matches that of the MBO definition.

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 153

1. The DCN requester sends an MBO operation execution request, along with operation
parameters, to SAP Mobile Server.

2. SAP Mobile Server executes the operation, (effectively calling the EIS operation), and
updates the cache database (CDB), if needed, depending on the operation's cache
policy.

3. SAP Mobile Server returns a DCN status message to the requester.

Note: Be careful when naming MBO operations in SAP Mobile WorkSpace, for example,
an EIS-affecting operation named "delete" may be easily confused with the direct cache-
affecting operation named :delete.

• DCN with payload – calls only the two direct cache-affecting operations (:upsert
or :delete), which always exist for an MBO, and are not related to user-defined MBO
operations.
• :upsert – the message must contain name/value pairs for every required attribute, and

the name must exactly match the MBO attribute name.
• :delete – provide only the name/value pairs for the primary key column(s).
These operations respectively insert or update, or delete a row in the CDB. Calling either of
these operations does not trigger any other refresh action. A typical sequence of events
might be:

1. Some event initiates the DCN request (a database trigger for example).
2. The SAP Mobile Server cache could be updated directly from the EIS, or the DCN

request could originate from a source other than the EIS. The actual data (payload) is
applied to the cache, through either an :upsert (update or insert) or a :delete operation.

Data Change Notification

154 SAP Mobile Platform

3. SAP Mobile Server returns a DCN status message to the requester.

Performance Considerations for DCN With Payload Versus Without
Payload

Performance is one factor to consider when determining whether to implement DCN with or
without payload.

If your application requires business data details from the EIS, including those business
objects inside your DCN message reduces the number of calls made to the EIS. In these cases,
DCN with payload generally provides better performance. But keep in mind that when using
DCN with payload, the EIS spends more time retrieving the object data and converting it into
the JSON format.

Related DCN Developer and Administrator Tasks
DCN is a feature that is performed in different runtime and development components of SAP
Mobile Platform. Review the tasks that must be performed by different roles to effectively
implement DCN and Hybrid App DCN in an end-to-end environment.

Management and Monitoring of Data Change Notifications
Various SAP product documentation guides provide information about managing DCNs and
monitoring DCN statistics and performance.

Goal Topic

Use DCN with other cache manage-
ment features.

Cache Data Management in the Mobile Application Life
Cycle

Configure synchronization groups to
notify device users when a DCN event
has occurred. The notification tells the
user to synchronize and receive those
updates.

In SAP Control Center for SAP Mobile Platform, see Con-
figuring Synchronization Groups in SAP Control Center
for SAP Mobile Platform.

Monitor DCN activity. In SAP Control Center for SAP Mobile Platform, see
Checking System Statistics, Related Data Change Notifi-
cation Information.

MBO Development for Data Change Notification
SAP Mobile WorkSpace - Mobile Business Object Development contains details about
configuring MBOs to enable DCN to refresh cached MBO data.

While an MBO belongs to a single cache group, MBOs in the same project are not necessarily
in the same cache group. The cache group policy determines the data refresh behavior of all

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 155

MBOs within the group. DCN can be used as the sole mechanism of refreshing cached data in
SAP Mobile Server by specifying the DCN cache refresh policy. See Best Practices for
Loading Data from the EIS to the CDB in Mobile Data Models: Using Mobile Business
Objects.

Implementing Data Change Notification
Follow the syntax described in this section to implement DCN with payload and DCN without
payload.

Invoking upsert and delete Operations Using Data Change
Notification

Data change notifications (DCNs) with payload directly update the SAP Mobile Server cache,
either with the built-in, direct cache-affecting operations :upsert (update or insert), or
with :delete.

Syntax

DCN with payload requires a JavaScript Object Notation (JSON) string (dcn_request) that
contains one or more :upsert and :delete operations that are applied to the SAP Mobile Server
cache (CDB).
http://SAP_mobile_server_host:SAP_mobile_server_port(default 8000)/
dcn/DCNServlet
? cmd=dcn
&username=userName
&password=password
&domain=domainName
&package=SAP_mobile_server_PackageName
&dcn_request={"pkg":"dummy","messages":
[{"id":"1","mbo":"CustomerWithParam", "exp":"2012-09-29 00:20:00",
"op":":upsert","cols":{"id":"10001","fname":"Adam"}}]}
&dcn_filter=fully_qualified_name_of_dcn_filter

Parameters

• SAP_mobile_server_host – SAP Mobile Server host name to which the DCN is issued.
• SAP_mobile_server_port – SAP Mobile Server port number. The default port is 8000.
• username – authorized SAP Mobile Server user with permission to modify the MBO and

permission to submit DCN requests (controlled by possessing the "SUP DCN User"
logical role).

• password – authorized user's password.
• domain – SAP Mobile Server domain that contains the package.

Data Change Notification

156 SAP Mobile Platform

• package – SAP Mobile Server package that contains the MBO. The format is
package:version. For example, e2e_package:1.0. This is the package name and version as
it appears in the Packages folder as viewed from SAP Control Center.

• dcn_request – the JSON string that contains operation name and parameters, which must
include:

• Package name (pkg) – this package name is required to support backwards
compatibility but ignored. The package value supplied in the header is the package
value used by DCN.

• A list of messages (messages). Each message includes:
• A unique message ID (id) used to report back the status. The values provided for the

"id" element of each DCN statement within a DCN request message are used only
to identify the corresponding status message in the DCN response, which means
you can select any value, including nonnumeric characters. Use unique values, so
that responses to the correlated requests can be clearly identified.

• Mobile business object name (mbo).
• An optional expiration date (exp) sets the expiration time for the cached data using

UTC time format (YYYY-MO-DD HH:MM:SS, for example 2012-09-29
00:20:00), which is converted to local time by SAP Mobile Server.

• Operation name (op): either one of the direct cache-affecting operations (:upsert
or :delete) or one of the user-defined MBO operations.

Note: The specified cache policy property of the operation still applies when DCN
is used to invoke a user-defined MBO operation.

• Bindings (cols): name and values of operation arguments which are mapped to
MBO attributes.

• (Optional) ppm – personalization parameters (for either the server or client side) that
need to be explicitly defined in the DCN request. The format must conform to the
JSON messaging synchronization format, which is a Base64-encoded map of
personalization parameters. For example, for runtime credentials sent via DCN, the
PPM might be:
base64encode("{\"username\":\"supAdmin\",\"password\":\"test
\"}");

See Data Change Notification Requirements and Guidelines for guidelines including
how to build the ppm.

• (Optional) partition commands – see EIS Defined Cache Partitions for information
about partition management.

• dcn_filter – (optional) the custom filter used to pre-process the DCN request and post-
process the DCN status message. By default, SAP Mobile Server requires the value of the
dcn_request field to be a valid JSON string. A DCN filter is used to convert the dcn_request
field from a client-specific format to a valid JSON string, before processing in the SUP
server. The filter can also reformat the status message returned in the DCN response into a
custom format defined by the user.

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 157

Examples

• Upsert example with header – In the following examples, supAdmin represents the SAP
Mobile Server Administrator, and supPwd represents the Administrator's password
defined during SAP Mobile Platform installation.

this DCN contains a single :upsert operation that updates or inserts (upserts) data in the
SAP Mobile Server cache for the Department MBO.

http://dsqavm5:8000/dcn/DCNServlet?cmd=dcn&username=
supAdmin&password=supPwd&package=dept:
1.0&domain=default&dcn_request=
{"pkg":"dummy","messages":
[{"id":"1","mbo":"Department","op":":upsert",
"cols":{"dept_id":"2","dept_name":"D2","dept_head_id":"501"}}]}

• Upsert example without header – this JSON string included in a DCN contains a
single :upsert operation that updates or inserts (upserts) data in the SAP Mobile Server
cache for the Department MBO.

dcn_request={"pkg":“TestPackage",
"messages":
 [{"id":"1","mbo":"Department",
 "op":":upsert",
 "cols":{"DepartmentID":"3333",
 "DepartmentName":"Test Value",
 "DepartmentHeadID":"501"}}]
}

• Delete example with header – this DCN example deletes a row of data from the SAP
Mobile Server cache for the Department MBO:
http://dspevm5:8000/dcn/DCNServlet?cmd=dcn&username=
supAdmin&password=supPwd&package=dept:
1.0&domain=default&dcn_request=
{"pkg":"dummy","messages":
[{"id":"1","mbo":"Department","op":":delete",
"cols":{"dept_id":"2"}}]}

• Delete example without header – this example JSON string included in the DCN sent to
SAP Mobile Server, deletes a row of data from the SAP Mobile Server cache for the
Department MBO:
dcn_request={"pkg":“TestPackage",
 "messages":[{"id":"1","mbo":"Department",
"op":":delete",
 "cols":{"DepartmentID":"3333"}}]}

Usage

Follow these guidelines when constructing a DCN:

• For timestamp values use this format YYYY-MM-DDTHH:MM:SS where:

Data Change Notification

158 SAP Mobile Platform

• YYYY is the four digit year, MM is the two digit month, DD - day, HH - hour, MM -
minutes, and SS -seconds

• - is the literal dash ('-') character, : is the literal colon (':') character, and T is the literal T
character.
For example, 2009-03-04T17:12:45.

Note: Time zone information should not be included since it is ignored by the server.
Convert timestamps to the corresponding UTC value before submitting them.

• The :upsert operation requires:
• All MBO primary key attributes to be present in the payload.
• Any other MBO attributes used in the upsert.
• All columns in the operation use attribute names (not the column names to which they

are mapped).
• The :delete operation requires:

• The MBO primary key attribute be present in the payload.
• All columns in the operation use attribute names (not the column names to which they

are mapped).

Controlling Notifications for Native Applications With
Cache Partitions

SAP Mobile Platform sends out change notifications based on Subscriptions. MBOs are
assigned to synchronization groups and when the device application registers for change
notifications, they become part of a subscription. Whenever SAP Mobile Platform detects a
change in an MBO, it sends out a notification to all subscribers.

You can further control notifications through the use of cache partitions:

• client defined – if MBO data within a synchronization group is partitioned by
synchronization parameters, then only subscribers who have subscriptions to data in an
affected partition are notified.

• EIS defined – if MBO data within a synchronization group is partitioned by the DCN
partition attribute, then only subscribers who have subscriptions to data in an affected
partition are notified.

In the SAP Mobile Platform client API, SynchronizationGroup includes
setEnableSIS(boolean) so that a client application can enable/disable push
notifications, and the same class has setInterval(int minutes) to specify the
minimum frequency over which SAP Mobile Platform attempts to send notifications for a
given synchronization group.

These settings can also be controlled through SAP Control Center:

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 159

1. After you deploy a package, navigate to Domains > <DomainName> > Packages >
<PackageName> > Subscriptions > Replication.

2. Select the Template tab and create subscription templates for the synchronization groups.

The template creates a subscription for each client the first time they synchronize that
synchronization group. You can use it to set defaults for the Notification Threshold (equivalent
to the SynchronizationGroup.setInterval client API). If you select the Admin
lock radio button, the template is applied and the client's synchronization group settings are
ignored.

After a client subscribes, you can view their subscriptions on the Devices tab and make manual
modifications to them as needed.

EIS Defined Cache Partitions
Data Change Notification (DCN) includes the ability to define cache partitions, update MBO
data within those partitions, and subscribe users to those partitions.

The EIS defined cache partition is a collection of data from multiple MBOs and provides an
alternative subscribe/unsubscribe model compared to the per-MBO synchronization
parameter model (client defined partition). A user can be assigned to more than one EIS cache
partition and an EIS cache partition can be assigned to more than one user.

The basic flow for defining and subscribing to an EIS cache partition is:

1. The MBO developer models the MBOs.
2. The MBO developer assigns the MBOs that are part of the EIS cache partition to a cache

group that uses the EIS Managed policy.
(Optional) The MBO developer sets the Notify EIS to fetch operation option. The
notification endpoint is set on the EIS cache group before deployment, and cannot be
added to the EIS cache group (or otherwise managed) in SAP Control Center if it is not
specified before deployment.

3. The MBO developer deploys the project to SAP Mobile Server.
4. Using SAP Control Center, the SAP Mobile Server Administrator manages the cache

group to which the EIS cache partition belongs, including:
• Defining the DCN and Notification listeners on which SAP Mobile Server

communicates with the EIS.
• Managing the Web service endpoint for operation upload notification. This endpoint is

used to notify the EIS that replay messages are ready for upload, not for pushing replay
messages to the EIS, and is available to map to a server endpoint only if the Notify EIS
to fetch operation option was set during MBO development.

• Viewing cache group information.
• Setting subscription purge threshold and unsubscribed partition purge threshold for the

“Synchronization Cache Cleanup” scheduled task, which purges expired entries from
the cache.

Data Change Notification

160 SAP Mobile Platform

5. The EIS Administrator includes JSON messages within the DCN with payload to manage
the partition, including updating data within the partition and user subscription.

An example business case that benefits from an EIS managed cache partition is a daily
delivery service:

1. Each evening the MBOs are updated by the EIS through DCN with the next day's
deliveries and services to be provided. Several MBOs contain the RouteID attribute which
identifies various aspects of the customer: location, services or products required,
customer notes, and so on.

2. MBO information also includes the user (partition) assigned to each route.
3. In the morning, each user synchronizes and retrieves their schedules based on the data to

which they subscribe.
4. Throughout the day each user enters information on the device regarding each customer

visited.
5. At the end of the day, the team member updates the EIS through SAP Mobile Server and

logs out. For example, if the Notify EIS to fetch operation option was selected for the EIS
managed cache group, operation replay records are sent to SAP Mobile Server, SAP
Mobile Platform Runtime queues them internally and notifies the EIS through the Web
service endpoint for operation upload notification, and the EIS retrieves them.

Creating an EIS Cache Partition
Partitions are created implicitly the first time a DCN upsert is performed to a new partition.

See Adding or Deleting an MBO Instance To or From an EIS Cache Partition for details.

Removing an EIS Cache Partition
This JSON message within a DCN request removes an EIS defined cache partition.

The partition and any subscriptions to the partition are removed, even if there are active
subscribers. No notifications are sent to active subscribers informing them that the partition to
which they were subscribed was removed.

Syntax
dcn_request= {"pkg":"pkgName","messages":
[{"id":"1","op":":removePartition",
"partition":"partitionName"}]}

Parameters

• "op":":removePartition" – Synchronously remove the specified partition from the
cache.

• "partition":"partitionName" – The name of the partition that is removed.

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 161

Examples

• Remove an EIS cache partition – This JSON message deletes the TOURID_1 partition:

 dcn_request={"pkg":"dummy","messages":
[{"id":"1","op":":removePartition","partition":"TOURID_1"}] }

Adding or Deleting an MBO Instance To or From an EIS Cache Partition
This JSON message within a DCN request adds or deletes an MBO instance to/from an EIS
defined cache partition.

Syntax
dcn_request={"pkg":"partitiontest","messages":
[{"id":"1","mbo":"Department","op":":upsert/
delete","partition":"partitionName",
"cols":
{"dept_id":"1","dept_name":"Demonstrationdepartment","dept_head_id"
:"501"}}]}

Parameters

• "op":":upsert/delete" – Use :upsert for insert or update operations, and :delete for
delete operations.

• "partition":"partitionName" – The partition to which the MBO instance is added or
deleted. If the partition does not already exist, it is created the first time a DCN upsert is
performed. An empty partition name (zero length string) is valid.

Examples

• Add an MBO instance to an EIS cache partition – This JSON message upserts a row of
data for the Department MBO into partition1:
{"pkg":"partitiontest","messages":
[{"id":"1","mbo":"Department","op":":upsert","partition":"partiti
on1",
"cols":
{"dept_id":"1","dept_name":"Demonstrationdepartment","dept_head_i
d":"501"}}]}

• Delete an MBO instance from an EIS cache partition – This JSON message deletes a
row of data for the Department MBO from partition1:
{"pkg":"partitiontest","messages":
[{"id":"1","mbo":"Department","op":":delete","partition":"partiti
on1",
"cols":
{"dept_id":"1","dept_name":"Demonstrationdepartment","dept_head_i
d":"501"}}]}

Data Change Notification

162 SAP Mobile Platform

Creating a User Subscription to an EIS Cache Partition
This JSON message within a DCN request creates a user subscription to an EIS defined cache
partition.

Syntax
dcn_request={"pkg":"partitiontest","messages":
[{"id":"1","op":":createSubscription",
"partition":"partitionName","username":"userName"}]}

Parameters

• "op":":createSubscription" – Creates a user subscription.
• "partition":"partitionName" – The name of the partition to which the user is

subscribed.
• "username":"userName" – The user for which the subscription is created.

Examples

• Create a user subscription to an EIS cache partition – subscribe user1 to partition1:
{"pkg":"partitiontest","messages":
[{"id":"1","op":":createSubscription",
"partition":"partition1","username":"user1"}]}

Removing a User Subscription From an EIS Cache Partition
This JSON message within a DCN request removes a user subscription from an EIS defined
cache partition.

The JSON message can remove a user's subscription from individual partitions or remove all
subscriptions for a given user.

Syntax
dcn_request= {"pkg":"pkgName","messages":
[{"id":"1","op":":removeSubscription(s)",
"partition":"partitionName","username":"userName"}]}

Parameters

• "op":":removeSubscription(s)" –

• removeSubscription – indicates that a user subscription to a partition is removed.
• removeSubscriptions – indicates that all subscriptions for a particular user are

removed.

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 163

• "partition":"partitionName" – The name of the partition from which the subscription is
removed. The partition is deleted if there are no longer any subscriptions to it. Omitting
this parameter removes all subscriptions for the given user.

• "username":"userName" – The user for which the subscription is removed.

Examples

• Remove a user subscription from an EIS cache partition – This JSON message
removes user1’s subscription from partition1:
{"pkg":"partitiontest","messages":
[{"id":"1","op":":removeSubscription",
"partition":"partition1","username":"user1"}]}

• Remove all subscriptions for a given user – This JSON message removes all
subscriptions for user1:
{"pkg":"partitiontest","messages":
[{"id":"1","op":":removeSubscriptions",
"username":"user1"}]}

Retrieving Pending Operations From SAP Mobile Server
Understand how the EIS fetches pending operations from SAP Mobile Server using SAP
Mobile Server HTTP services.

General Rules

• Authentication – the same set of rules used for accessing SAP Mobile Server REST APIs
also apply to pending operation access. See these topics in the Developer Guide: REST
API Applications:

• Authentication
• HTTP Headers and Cookies

• Authorization – to access the HTTP services, the user requires the "SUP DCN User" role,
and this DCN user is only authorized to access packages that are associated with the
security configuration against which the user is authenticated. Anonymous access is not
allowed.

• Headers – use X-SUP-DOMAIN and X-SUP-SC to override the domain derived from the
URL and the default security configuration of the domain. See HTTP Headers and
Cookies in the Developer Guide: REST API Applications.

• Response code –

• If any request parameter format is invalid, SAP Mobile Server responds with 400
Bad Request.

• If any request parameter value (domain, package) is not found in the system, SAP
Mobile Server responds with 404 Not Found.

Data Change Notification

164 SAP Mobile Platform

• If a request is unauthorized, SAP Mobile Server responds with 401
Unauthorized.

• If any other failures are encountered when processing the request, SAP Mobile Server
responds with 500 Internal Error.

Querying Pending Operations
The HTTP client can query the list of PendingOperations by making a GET request to this
URL:
http://domain:port/end2end.rdb:1.0/PendingOperations?
username=test&
remoteId=cc134c3a-1e7b-41cf-821c-900ec61eef91&$skip=0&
$top=10

All parameters are optional. If username and remoteId are not provided, SAP Mobile Server
returns all pending operations for the package. Successful invocation generates get response
200 OK with the entity set in JSON format in the response body:

[
{"data":"{\"id\":1,\"lname\":\"lname2\",\"fname\":\"fname1\",
\"id1\":3520011}",
"entityName":"topicCustomer","operation":"ChangeNameNeedManager","r
equestId":3520012,
"remoteId":"582b509f-677e-4879-b1fb-
d2e0f11d9deb","username":"test"},
{"data":"{\"id\":2,\"lname\":\"lname4\",\"fname\":\"fname3\",
\"id1\":3520013}",
"entityName":"topicCustomer","operation":"ChangeNameNeedManager","r
equestId":3520014,
"remoteId":"582b509f-677e-4879-b1fb-
d2e0f11d9deb","username":"test"}
]

Updating Pending Operations
The HTTP client can update a list of PendingOperations by making a PUT request to this
URL:
http://domain:port/end2end.rdb:1.0/UpdatePendingOperations

with this put string:
{"data":[
{"success":false,"requestId":13930007,"errorMessage":"It must
fail!","eisCode":"1234"},
{"success":false,"requestId":13930009,"errorMessage":"It must
fail!","eisCode":"1234"},
{"success":true,"requestId":13930008}]}

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 165

Basic HTTP Authentication
When you use http://<host>:8000/dcn/DCNServlet, the user authentication is done by SAP
Mobile Server extracting the user information from the request parameter.

username=<username>
password=<password>

Alternatively, you can use HTTP BASIC authentication instead of sending the username and
password as part of the URL. To use HTTP BASIC authentication, the URL is http://
<hostname>:<port>/dcn/HttpAuthDCNServlet, as this example illustrates:

URL url = new URL("http://<host>:8000/dcn/HttpAuthDCNServlet?
cmd=dcn&package=<package_name>:<package_version>");
 HttpURLConnection huc = (HttpURLConnection)
url.openConnection();
 huc.setDoOutput(true);
 huc.setRequestMethod("POST");
 final String login = "<login_name_of_user_with_DCN_role>";
 final String pwd = "<password_of_user_with_DCN_role>";
 Authenticator.setDefault(new Authenticator()
 {
 protected PasswordAuthentication
getPasswordAuthentication()
 {
 return new PasswordAuthentication(login,
pwd.toCharArray());
 }
 });
 String dcnRequest = "{\"pkg\":
\"<package_name>:<package_version>"\","
 + "\"messages\":[{\"id\":\"1\",\"mbo\":\"CustomerState
\",\"op\":\":upsert\","
 + "\"cols\":{\"id\":\"1020\",\"fname\":\"Paul\",\"city
\":\"Rutherford\"}}]}";
 StringBuffer sb = new StringBuffer();
 sb.append(dcnRequest);
 OutputStream os = huc.getOutputStream();
 os.write(sb.toString().getBytes());
 os.close();
 BufferedReader br = new BufferedReader(new
InputStreamReader(huc.getInputStream()));
 System.out.println(huc.getURL());
 huc.connect();
 String line = br.readLine();
 while (line != null)
 {
 System.out.print(line);
 line = br.readLine();
 }

Data Change Notification

166 SAP Mobile Platform

HTTP POST and DCN
You can also use the URL http://<hostname>:8000/dcn/
HttpAuthDCNServlet if you do not want to send the DCN request as a request parameter
but as an HTTP POST body instead.

If you are using HTTP BASIC authentication, the JSON encoded DCN request is always sent
as the HTTP POST body.

Data Change Notification Requirements and Guidelines
Familiarize yourself with data change notification (DCN) requirements before implementing
DCN.

Personalization parameters in DCN
Personalization parameters of the MBO need to be specified separately in the ppm parameter.
The required ppm parameter in the dcn_request has to be a string which should be a
Base64-encoded map of personalization parameters. This example shows how to use
ppmString to define the value for the ppm parameter, (including the gson.toJson()
method used to convert the parameter to the required JSON format), which is then used in the
dcn_request:

Map<String, String> ppm = new HashMap<String, String>();
ppm.put("myCompany", "SAP");
String ppmString =
Base64Binary.toString(gson.toJson(ppm).getBytes());

DCN upsert operations and MBO relationships
When using the DCN payload mode to upsert rows to MBOs where there is a relationship
between rows of data, you must provide the data in the correct order so SAP Mobile Server can
properly create the metadata in the cache (CDB) to reflect the data relationship. However,
when you are using DCN to insert data into the cache, the concept of child and parent may be
different from what is reflected in the graphical model of the package used in the design
tooling. Also, one-to-many relationships differ, as noted below.

When using DCN to upsert rows to both the parent and child MBOs in a relationship, the order
for the upserts can change depending on the nature of the relationship. This is due to the
implementation details of the cache metadata. In these examples, the Department MBO is the
parent MBO in both relationships, but notice the order of the upsert operations:

• For a one-to-one relationship between:
Dept.dept_head_id - > Employee.emp_id

(from a department to the department head) the order in which you upsert a new
department and new department head is:
1. Employee

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 167

2. Department
The foreign surrogate key reference is contained in the cache table used to hold the data for
the Department MBO.

• For a one-to-many relationship between:
Dept.dept_id - > Employee.dept_id

(from a department to all of the employees in the department) the order in which you upsert
a new department and a new employee is:
1. Department
2. Employee
The foreign surrogate key reference is contained in the cache table used to hold the data
from the Employee MBO.

Message autonomy
SAP Mobile Server expects serialized DCN message updates to MBO instances. Therefore if
concurrent DCN clients or processes are used, insure that all updates to all rows of MBO(s) are
contained within a single DCN request in order to avoid a possible deadlock condition.

SAP Mobile Server expects an entire graph when sending updates to MBOs within a
composite relationship.

DCN and deadlocks
The requirements described in Message autonomy is designed to prevent deadlock situations.
However, if you do not define an order of operation execution, deadlocks might occur
depending on the DCN implementation or the locking mechanism used by the enterprise
information system (EIS). In a deadlock situation, the entire transaction is rolled back (if there
are multiple operations in a single DCN) and a replayFailed result is returned.

DCN upsert operations and binary data
When using DCN to upsert binary data to the cache (CDB), the string used for the value of the
binary type attribute of the MBO in the request message must conform to a very specific
encoding for the DCN request to be processed correctly. Read the binary data into a byte array,
then use the following code to obtain it in the correctly encoded format:
byte[] picByteArray = < < user code to read binary data into byte[] >
>
String picStringBase64Encoded =
com.sybase.djc.util.Base64Binary.toString(picByteArray);
String picStringUrlEncoded =
java.net.URLEncoder.encode(picStringBase64Encoded, "UTF-8");

Use the picStringUrlEncoded string as the value for the binary attribute in the DCN request
message.

Note: The com.sybase.djc.util.Base64Binary class is in the sup-server.jar from the
SMP_HOME\Servers\UnwiredServer\lib of the installation directory.

Data Change Notification

168 SAP Mobile Platform

Proper encoding of DCN JSON

DCN JSON information must be properly encoded when sent to SAP Mobile Server:

• The server/SAP Mobile Platform DCN Web container accepts UTF-8 as its URL/ x-www-
form-urlencoded charset encoding scheme.

• In addition to the dcn_request parameter/value pair in the URL/ x-www-form-urlencoded
form, encode other parameter/value pairs according to W3C/IETF specifications.

Refer to http://www.w3.org/TR/1999/REC-html401-19991224/interact/
forms.html#h-17.13.4.1 and http://www.ietf.org/rfc/rfc2045.txt for details.

For example, only alphanumerics [0-9, a-z, A-Z], the special characters contained in the
parentheses ($ - . ! * ' () ,), and reserved characters used for specific reserved purposes may be
used unencoded within a URL. This DCN upsert command:
http://serverhost:8000/dcn/DCNServlet?
cmd=dcn&username=supAdmin&password=s3pAdmin&
domain=default&package=sup101:1.0&dcn_request={"pkg":"dummy","messa
ges":[{"id":"4","mbo":"Customer",
"op":":upsert","cols":{"id":"10004","fname":"B%B"}}]}

contains reserved and special characters {} [] : " % that must be encoded or a parsing error is
thrown.

If you use Java to make the DCN request, use
URLEncoder.encode(parameter,"UTF-8") to encode the URL query parameter
or post form data before making the request. For this example, construct the URL using this
code:
String url="http://serverhost:8000/dcn/DCNServlet?
cmd=dcn&username=supAdmin&
password=s3pAdmin&domain=default";
url+="&package="+URLEncoder.encode("sup101:1.0","UTF-8");
url+="&dcn_request="+ URLEncoder.encode("{\"pkg\":\"dummy\",
\"messages\":[{\"id\":\"4\",\"mbo\":\
"Customer\",\"op":\":upsert\",\"cols\":{\"id\":\"10004\",\"fname\":
\"B%B\"}}]}",”UTF-8”);

DCN and date, time, and datetime datatypes
DCN accepts date, time, and datetime attribute and parameter values using this format:

• date – yyyy-MM-dd

• time – HH:mm:ss

• datetime – yyyy-MM-dd'T'HH:mm:ss

For example, SAP Mobile Server parses string or long values and upserts a valid
timestamp object:
http://localhost:8000/dcn/DCNServlet?
cmd=dcn&username=supAdmin&password=
AdminPassword&package=testdatetime:1.0&domain=default&dcn_request=

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 169

http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/1999/REC-html401-19991224/interact/forms.html#h-17.13.4.1
http://www.ietf.org/rfc/rfc2045.txt

{"pkg":"testdatetime","messages":
[{"id":"1","mbo":"TestDateTimeStamp","op":":upsert",
"ppm":null,"cols":
{"testTimestamp":"2009-08-09T12:04:05","testDate":"2009-08-09","c_i
nt":"0",
"testDateTime":"2009-08-09T12:04:05","testSmalldt":"2009-08-09T12:0
4:05","testTime":"12:04:05"},
}]}

Complex types
Special care must be taken when using DCN to populate MBOs which form the sub-types of a
larger complex type. For example a PurchaseOrder type is composed of POHeader and
POLineItem MBOs. To successfully populate the rows of the POHeader and POLineItem
MBOs with data derived from a PurchaseOrder, the DCN code must properly set the primary
key attributes and insert the rows in the correct order so that the relationship between rows
from the POHeader and the POLineItem MBOs is successfully defined. See also the "DCN
upsert operations and MBO relationships" topic.

DCN and Cache refresh policy
If DCN is the exclusive mechanism for loading and maintaining the data for the MBOs from a
cache group, set the cache refresh policy to DCN.

DCN with payload directly updates the CDB by inserting the record into the MBO cache table.
Using a DCN cache group policy ensures that MBO data is updated only through DCN and not
another refresh mechanism. When designing your MBOs, keep in mind that if you use other
methods (for example, a Scheduled cache group policy), DCNs as well as the scheduled
refresh update the MBO.

If the cache group relies on a combination of DCN with On-demand or Schedule cache refresh
policies, then you cannot use DCN with MBOs that define more than one client defined
partition (that is, a load operation mapped to synchronization parameters in SAP Mobile
WorkSpace). The cache refresh policy does not support updating data inserted via DCN when
the configured cache policy triggers a refresh of the client defined partitioned data.

If the load operation initializes the MBO, and you use DCN to maintain the MBO, then
associate the MBO with a cache group that implements an infinite schedule. Do not send DCN
messages until the cache is initialized.

Cache policies and DCN
Do not use a cache policy that invalidates the cache if you use a DCN to populate the MBO.

Data discrepancies and deleted data
If any attribute values differ from the actual EIS values, those values are updated with the
actual value when a cache refresh occurs. Any rows inserted into the cache which contain a
primary key value which is not present in the EIS are marked as logically deleted when a cache
refresh occurs. Once a row has been marked as logically deleted from the cache, attempts to

Data Change Notification

170 SAP Mobile Platform

upsert data using that same primary key value fail until the logically deleted row is purged
from the cache.

Purging Expired DCN Data From the SAP Mobile Server Cache
Use the exp zoneless DATETIME datatype header property in DCN messages to indicate the
expiration date, after which the data is purged from the SAP Mobile Server cache based on the
defined Synchronization Cache Cleanup schedule.

The exp property is useful in cases where the EIS does not efficiently support delete
operations. It limits cache growth on the server of unwanted data and also purges data from
clients when data has expired.

1. Include the exp property in the DCN message.

For example, this DCN:
{"pkg":"Test:1.0","messages":[{"id":"1","mbo":"Department",
"exp":"2012-09-29 00:20:00",
"op":":upsert","cols":
{"dept_id":"1000","dept_name":"QA1000","dept_head_id":"501"}}]}

sets the expiration time for the cached data to 2012-09-29 00:20:00 UTC time, which is
converted to local time by SAP Mobile Server.

2. Enable the Synchronization Cache Cleanup scheduled task in SAP Control Center and
define a purge schedule to remove expired data for a configured DCN cache group.

• By default, no purge schedule is defined for a specific DCN cache group. The schedule
supports logically deleting and/or physically deleting rows (dependent on whether
Surrogate Key tracking is enabled) within the context of an expired data purge.

• SAP Mobile Server automically purges composite data based on the newest node in the
composite data graph. The caller must identify a graph by composite root MBO Name
and Business Primary Key.

• SAP Mobile Server generates log entries for:
• System log info message when DCN purge executes
• Server log for any changes to the DCN cache purge schedule

Data Change Notification Results
Each binding in a data change notification (DCN) request is associated with an ID. The result
status of the DCN request is returned in JavaScript Object Notation (JSON) format, and
includes a list of IDs followed by a Boolean success field and status message, in case of error.

The processing of the individual messages within a DCN request is done as a single
transaction. A failure of one message results in the changes from all preceding messages being
rolled back and all following messages are skipped. In response to payload and MBO
operation DCNs, SAP Mobile Server sends the requester a JSON string containing details
about the success and/or failure of the operations. These examples show the JSON-formatted

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 171

result for a multi-message DCN request, and has been formatted using newlines, and
indentations, which are not present in an actual response.

This is an example of a response message for successful processing of a request containing
four individual messages, using id values {1, 2, 3, 4):
[{"recordID":"1","success":true,"statusMessage":""},
{"recordID":"2","success":true,"statusMessage":""},
{"recordID":"3","success":true,"statusMessage":""},
{"recordID":"4","success":true,"statusMessage":""}]

In this example, the third message in the request contains an error:
[{"recordID":"1","success":false,"statusMessage":
"Changes rolled back because dcn message with ID 3 in the DCN request
failed."},

{"recordID":"2","success":false,"statusMessage":
"Changes rolled back because dcn message with ID 3 in the DCN request
failed."},

{"recordID":"3","success":false,"statusMessage":
"VirtualTableName is null. MBO name Departments might be incorrect or
with missing
capitalization in the DCN request"},

{"recordID":"4","success":false,"statusMessage":
"Processing of DCN message skipped because dcn message with ID 3 in
the DCN request failed."}]

Data Change Notification Filters
Data change notification (DCN) requests need not always be in the format SAP Mobile Server
expects.

You can deploy a DCN filter to SAP Mobile Server and reference it in the DCN request. SAP
Mobile Server allows the filter to preprocess the submitted DCN. The filter converts raw data
in the DCN request to the required JavaScript Object Notation (JSON) format. The filter can
also postprocess the JSON response returned by the SAP Mobile Server into the format
preferred by the back end (which is governed by the implementation in the filter class).

The filter interface DCNFilter is in the com.sybase.sup.server.dcn package in
the sup-server-rt.jar file. All classes that implement a DCN filter should implement
this interface. The functions available in the interface are:

• String preprocess(String blobDCNRequest, Map<String, String requestHeaders>
requestHeaders); – takes the DCN request as a binary large object (BLOB), converts it
into a valid JSON DCN request format, and returns the same.

• String postprocess(String jsonDCNResult, Map<String, String responseHeaders>
responseHeaders); – takes the DCN result in a valid JSON format, converts it to the EIS-
specific format, and returns the same.

Data Change Notification

172 SAP Mobile Platform

Figure 3: DCN filter flow

1. Changed data is sent from the EIS to SAP Mobile Server via a DCN request, where any
data preprocessing occurs. For example, the EIS data could be sent to SAP Mobile Server
as XML where the preprocess filter converts the data to JSON.

2. The DCN executes. For example, apply data changes directly to the SAP Mobile Server
cache.

3. Postprocessed DCN response is sent to the originating EIS as an HTTP response to the
original DCN request. For example, the JSON response is converted to XML.

Implementing a Data Change Notification Filter
Write and deploy preprocess and postprocess DCN and Hybrid App DCN filters to SAP
Mobile Server.

When specifying filters, add a dcn_filter parameter to the base URL, and to the parameters
specified in the DCN request section. The dcn_filter parameter specifies the fully qualified
name of the filter class, which must be in a valid CLASSPATH location so SAP Mobile Server
can locate it using its fully qualified name.

JSON requires colons to define the object structure, but since colons have a special function in
HTTP URLs, use the tilda character "~" instead of colons ":" when implementing the DCN
filter, so the JSON dcn_request string can be passed as an HTTP GET or POST parameter:

dcn_request={"pkg"~“TestPackage",
 "messages"~[{"id"~"1","mbo"~"Department","op"~"~upsert",
 "cols"~{"DepartmentID"~"3333",

Data Change Notification

Mobile Data Models: Using Mobile Business Objects 173

 "DepartmentName"~“My Department",
 "DepartmentHeadID"~"501"}}]}

The dcn_request is in a format that is specific to the back end. The filter class can
preprocess to the JSON format expected by SAP Mobile Server.

1. Write the filter. For example:
import java.util.Map;
import com.onepage.fw.uwp.shared.uwp.UWPLogger;
import com.sybase.sup.dcn.DCNFilter;

public class CustomDCNFilter implements DCNFilter
{
 String preprocess(String blobDCNRequest, Map<String,String>
headers) {
 String result = blobDCNRequest.replace(‘~’,’:’);
 return result;
 }

 String postprocess(String jsonDCNResult, Map<String,String>
responseHeaders) {
 String result = jsonDCNResult.replace(‘:’,’~’);
 return result;
 }

 public static void main(String[] args) { }
}

2. Package your DCN filter class in a JAR file.

3. Deploy the JAR file to SAP Mobile Server by using the Deployment wizard from SAP
Mobile WorkSpace (regular DCN), or manual deployment (Hybrid App DCN):

• For regular DCN:
a. Invoke the deployment wizard. For example, right-click in the Mobile Application

Diagram and select Deploy Project.
b. Select the JAR file that contains your DCN filter class files to deploy to SAP Mobile

Server in the third screen of the wizard (Package User-defined Classes).
c. Click Finish after selecting the target SAP Mobile Server.

• For Hybrid App DCN:
a. Place the JAR file in SMP_HOME\Servers\UnwiredServer\lib\ext.

b. Create an empty file named sup.cff in SMP_HOME\Servers
\UnwiredServer\bin\private.

4. Restart SAP Mobile Server.

Data Change Notification

174 SAP Mobile Platform

Custom XSLT Transforms

If you are using data from a SOAP or REST Web service, you may need to use XSLT
(Extensible Stylesheet Language Transformations) to modify the structure of the message
data generated by the service, so it can be used by an SAP Mobile Platform MBO. SAP Mobile
WorkSpace can create XSLT transforms automatically, however sometimes these generated
transforms are not sufficient and do not yield the results you require.

MBOs typically require a flat and tabular message structure from a Web service. This tabular
structure corresponds to the rows and columns that eventually materialize the MBO's
instances and attributes, respectively. Therefore the message structure used by a Web service
must align correctly. Transformation must be precise to avoid unexpected results in an MBO.

Therefore, always validate the transform before deploying it to a production environment.

Custom XSLT Use Cases
In most cases, the XSLT that is generated by SAP Mobile WorkSpace is sufficient. However,
in some cases, you may need to modify the generated XSLT file, or to create a new one
manually.

Some of these cases include:

• Web service response messages do not precisely conform to the schema.
For example, the schema indicated that an integer field is not nullable, but the Web service
response message failed to return a valid integer value. This omission triggers an error on
the device application. even though the root issue is the data from the Web service, not SAP
Mobile Platform.
In this scenario, it is simpler to modify the generated XSLT slightly, by changing the single
op_nullable field from false to true.

Implementing Custom Transforms
When the generated transform does not yield expected results in the MBO, you need to either
modify the generated transform or create a custom transform outside of SAP Mobile
WorkSpace.

1. Make changes to an existing transform or write a new one.

2. Save the changes and overwrite the file that already exists. This ensures that the binding
remains intact for the MBO. See Binding Mobile Business Objects to Data Sources in
SAP Mobile WorkSpace - Mobile Business Object Development.

Custom XSLT Transforms

Mobile Data Models: Using Mobile Business Objects 175

3. Redeploy the MBO, and include the transform in the deployment package.

See Packaging and Deploying Mobile Business Objects in SAP Mobile WorkSpace -
Mobile Business Object Development.

Note: If you are redeploying to a production environment, ensure the administrator
redeploys the MBO with the modified transform.

XSLT Stylesheet Syntax
XSLT stylesheet must follow SAP Mobile Platform stylesheet syntax requirements so that the
Web service response message is formatted correctly for MBOs bound to this datasource.

The stylesheet is applied to different parts of the Web service response message, depending on
the type:

• For SOAP web service response messages, the stylesheet is applied to the contents of the
SOAP body.

• For REST web service messages, the stylesheet is applied to the contents of the HTTP
response body.

Table 14. Stylesheet elements

Element Description Contains

Data The root element of the stylesheet. One or more Record el-

ements.

Record The element that corresponds to a row in
the tabular MBO data structure.

The first Record element resulting

from the transform describes the column
using metadata (that is, names, data types,
nullability, and so on). The Record el-

ement has no attributes, except when it is a
metadata element.

The contents of the Field elements

should match the corresponding
op_label values. The Record or

Field values from this first Record el-

ement will not appear in the resulting tab-
ular data structure.

One or more Field ele-

ments.

Custom XSLT Transforms

176 SAP Mobile Platform

Element Description Contains

Field The element that corresponds to the col-
umn value. The Field element has a

number of attributes that can be used.

One or more attributes. See
the Attributes table.

Table 15. Attributes

Attribute Applicability Description

op_label Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

The column name.

op_position Required by all. The attribute's position in the
tabular structure. The first at-
tribute is at position 1

op_nullable Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

Whether (TRUE) or not
(FALSE) the attribute is nulla-
ble.

op_datatype Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

The data type. Supported val-
ues inlclude STRING, INT,
LONG, BOOLEAN, DECI-
MAL, BINARY, FLOAT,
DOUBLE, DATE, TIME, DA-
TETIME, CHAR, BYTE,
SHORT, INTEGER. See Da-
tatype Support.

op_xsdtype Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

The XML schema primitive
type name corresponding to
this attribute.

XSLT Stylesheet Example
Use the example XSLT stylesheet to understand the structure required by SAP Mobile
Platform.

The bolded elements are required. The <xsl:stylesheet> needs a <xsl:template>
element. The first child element of <xsl:template> must be the <data> that also
requires the metadata <Record> element.

Custom XSLT Transforms

Mobile Data Models: Using Mobile Business Objects 177

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"; xmlns:ns1="urn:Sample_Enrollments" exclude-result-
prefixes="ns1">
 <xsl:template match="//ns1:OpGetListResponse">
 <data>
 <Record>
 <Field op_label="Class_Cost"
op_position="1" op_datatype="DECIMAL"
op_nullable="false">Class_Cost</Field>
 <Field op_label="Class_ID"
op_position="2" op_datatype="STRING" op_nullable="false">Class_ID</
Field>
 <Field op_label="Class_Start_Date___Time"
op_position="3" op_datatype="DATETIME"
op_nullable="false">Class_Start_Date___Time</Field>
 <Field op_label="Class_Title"
op_position="4" op_datatype="STRING"
op_nullable="false">Class_Title</Field>
 <Field op_label="Enrollee_Login"
op_position="5" op_datatype="STRING"
op_nullable="false">Enrollee_Login</Field>
 <Field op_label="Temp_Number"
op_position="6" op_datatype="INT" op_nullable="true">Temp_Number</
Field>
 </Record>
 <xsl:for-each select="ns1:getListValues">
 <Record>
 <Field>
 <xsl:attribute
name="op_position">1</xsl:attribute>
 <xsl:value-of
select="ns1:Class_Cost"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">2</xsl:attribute>
 <xsl:value-of
select="ns1:Class_ID"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">3</xsl:attribute>
 <xsl:value-of
select="ns1:Class_Start_Date___Time"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">4</xsl:attribute>
 <xsl:value-of
select="ns1:Class_Title"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">5</xsl:attribute>
 <xsl:value-of
select="ns1:Enrollee_Login"/>

Custom XSLT Transforms

178 SAP Mobile Platform

 </Field>
 <Field>
 <xsl:attribute
name="op_position">6</xsl:attribute>
 <xsl:value-of
select="ns1:Temp_Number"/>
 </Field>
 </Record>
 </xsl:for-each>
 </data>
 </xsl:template>
</xsl:stylesheet>

If you use this style sheet, the output generated by this transform would be:
<data>
 <Record>
 <Field op_label="Class_Cost" op_position="1"
op_datatype="DECIMAL" op_nullable="false">Class_Cost</Field>
 <Field op_label="Class_ID" op_position="2"
op_datatype="STRING" op_nullable="false">Class_ID</Field>
 <Field op_label="Class_Start_Date___Time"
op_position="3" op_datatype="DATETIME"
op_nullable="false">Class_Start_Date___Time</Field>
 <Field op_label="Class_Title" op_position="4"
op_datatype="STRING" op_nullable="false">Class_Title</Field>
 <Field op_label="Enrollee_Login" op_position="5"
op_datatype="STRING" op_nullable="false">Enrollee_Login</Field>
 <Field op_label="Temp_Number" op_position="6"
op_datatype="INT" op_nullable="true">Temp_Number</Field>
 </Record>
 <Record>
 <Field op_position="1">100.00</Field>
 <Field op_position="2">00001</Field>
 <Field op_position="3">2010-07-02T10:27:35-07:00</
Field>
 <Field op_position="4">Managing Within the Law</Field>
 <Field op_position="5">Demo</Field>
 <Field op_position="6"/>
 </Record>
 <Record>
 <Field op_position="1">150.00</Field>
 <Field op_position="2">00005</Field>
 <Field op_position="3">2005-11-17T08:00:00-08:00</
Field>
 <Field op_position="4">Microsoft Word for Beginners</
Field>
 <Field op_position="5">Demo</Field>
 <Field op_position="6"/>
 </Record>
 <Record>
 <Field op_position="1">299.00</Field>
 <Field op_position="2">00006</Field>
 <Field op_position="3">2005-11-15T08:00:00-08:00</
Field>
 <Field op_position="4">Meeting Planning and

Custom XSLT Transforms

Mobile Data Models: Using Mobile Business Objects 179

Facilitation</Field>
 <Field op_position="5">Demo</Field>
 <Field op_position="6"/>
 </Record>
</data>

Custom XSLT Transforms

180 SAP Mobile Platform

Index
A
attributes 5

filtering 30

C
cache groups

defining 35
cache policy

definition 37
code generation 8
companion documentation 1
composite operations

understanding 42
custom development features 9

D
data cache 7
data change notification

filters 172
data change notification filter

example 173
implementing 173

data change notification interface 151
data change notification parameters 156
data change notification syntax 156
data change notification with payload 156
data change notification, results 171
data model 5
datasources 5
DCN 155

Data Change Notification 123
deploying MBOs 8
deployment packages 8

E
EIS

datasources 5
EIS partition

adding an MBO to 162
creating a subscription to 163
removing 161

removing a user subscription from 163

F

filters
data change notification 172
result set 134

G

generate client object code 8
guide, introducing 1

H

HTTP interface for data change notification 151

I

introduction 9

J

Javadocs 10
JPDA

enabling 134

K

keeping the data cache current 7

M

MBOs
mobile business object 3
overview 3

messages, transforming 176

O

object code generation 8
object queries 6

definition 51

Index

Mobile Data Models: Using Mobile Business Objects 181

guidelines 51
OHLog 141
Operation cache policy

Apply merge of operation input/output
example 42, 45, 46, 48, 50

Apply output of Entity Read example 40
Data flow 39
Invalidate the cache example 39

operations 6

P
parameters

and partitioned cache 28
restrictions 34

parameters, data change notification
dcn_request 156
domain 156
package 156
password 156
SAP_mobile_server 156
SAP_mobile_server_port 156
username 156

partition key 28
personalization keys 6

R
relationships 6
response messages, transforming 176
REST

transforming data 175
result checker

customizing 138
default SAP code 144
default SOAP code 148, 149

result checker logging 141
result checker, implementing 137
result checkers 137
result set

checkers 6

filters 6
result set filters 130

debugging 134

S

SAP result checker 137
server API features 9
single sign-on task flow 155
SOAP

transforming data 175
stylesheet syntax, XSLT 176
sup_ec 69, 76
synchronization groups

definition 34
synchronization parameters 6
syntax, XSLT 176

T

TCN
Targeted Change Notification 123

transforms
custom, introducing 175
implementing 175
stylesheet example 177
stylesheet syntax 176
when to use custom files 175

W

Web services
transforming data 175

X

XSLTs 175

Index

182 SAP Mobile Platform

	Mobile Data Models: Using Mobile Business Objects
	Contents
	Introducing Mobile Business Object Data Models
	Mobile Business Object Overview
	Data Modeling
	Datasources
	MBO Attributes
	Operations
	Relationships
	Other Key Concepts

	Data Caching
	Object API Code Generation
	Package Deployment
	Server API
	Javadocs

	Mobile Business Object Development Task Flow
	Mobile Business Object Mobility Properties
	Load Arguments
	Client Defined Cache Partitions
	Examples: Parameters and Client Defined Cache Partitions

	Synchronization
	Understanding Synchronization Parameters
	Synchronization Parameter Behavior

	Synchronization Parameter Considerations
	Synchronization Parameter Definition Guidelines
	Synchronization Groups

	Cache Groups
	Cache Group Considerations

	Operation Cache Policies
	Operation Cache Policy Data Flow
	Invalidate the Cache Data Flow
	Immediate Refresh with Entity Read Data Flow
	Operation Cache Policies and Client Synchronization

	Composite Operations
	Composite Operation Data Flow
	Creating a New Composite Object Graph
	Adding a Composite Child Graph
	Deleting a Composite Child
	Updating a Composite Node

	Object Queries
	Object Query Definition Guidelines
	Object Query Indexes
	When to Create an Object Query Index

	FindAll Object Query Guidelines
	Improve Object Query Performance
	Examining the Database Schema and Data Size
	Obtaining the SQL Statement Generated From the Query
	Showing the Execution Plan
	Interpreting the Execution Plan

	Datatype Support
	Time Zone Datatype Behavior
	Datatype Default Values and Limitations
	Remote Operation Default Value Precedence

	Structure Objects
	Complex Datatypes
	Complex Datatype Limitations

	Creating Structure Types That are Compatible With Large Object Types for Client Parameters and Personalization Keys
	SAP Mobile Platform to Enterprise Information System Datatype Mappings
	Mobile Business Object to Mobile Device Platform Datatype Mappings

	Best Practices for Developing an MBO Data Model
	Principles of MBO Modeling
	MBO Attributes
	MBO Indexes
	MBO Keys
	MBO Relationships
	MBO Synchronization Parameters
	Client Defined Cache Partitions
	MBO Synchronization Groups
	MBO Cache Groups
	Shared-Read MBOs
	MBO and Attachments

	Best Practices for Loading Data From the EIS to the CDB
	Understanding Data and Datasources
	Guidelines for Data Loading
	Reference Data Loading
	Private Transactional Data Loading
	Shared Transactional Data Loading
	SAP Mobile Server Cache
	Cache Group Policies

	Result Set Filters
	Result Set Filter Data Flow
	Implementing Custom Result Set Filters
	Writing a Custom Result Set Filter
	Validating Result Set Filter Performance

	Filter Class Debugging
	Enabling JPDA
	Setting Debug Breakpoints in Result Set Filter Classes
	Setting Up the Debug Session

	Result Checkers
	Implementing Customized Result Checkers
	Writing a Custom Result Checker
	Result Checker Logging

	Default SAP Result Checker Code
	Default SOAP Result Checker Code
	Default REST Result Checker Code

	Data Change Notification
	Data Change Notification Data Flow
	Data Change Notification's Effect on the SAP Mobile Server Cache
	Data Change Notification With Payload and Without Payload
	Performance Considerations for DCN With Payload Versus Without Payload

	Related DCN Developer and Administrator Tasks
	Management and Monitoring of Data Change Notifications
	MBO Development for Data Change Notification

	Implementing Data Change Notification
	Invoking upsert and delete Operations Using Data Change Notification

	Controlling Notifications for Native Applications With Cache Partitions
	EIS Defined Cache Partitions
	Creating an EIS Cache Partition
	Removing an EIS Cache Partition
	Adding or Deleting an MBO Instance To or From an EIS Cache Partition
	Creating a User Subscription to an EIS Cache Partition
	Removing a User Subscription From an EIS Cache Partition

	Retrieving Pending Operations From SAP Mobile Server

	Basic HTTP Authentication
	Data Change Notification Requirements and Guidelines
	Purging Expired DCN Data From the SAP Mobile Server Cache

	Data Change Notification Results
	Data Change Notification Filters
	Implementing a Data Change Notification Filter

	Custom XSLT Transforms
	Custom XSLT Use Cases
	Implementing Custom Transforms
	XSLT Stylesheet Syntax
	XSLT Stylesheet Example

	Index

