
Developer Guide: iOS Object API
Applications

SAP Mobile Platform 2.3 SP04

DOCUMENT ID: DC01907-01-0234-02
LAST REVISED: May 2014
Copyright © 2014 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Getting Started with iOS Development1
Object API Applications ..1
Best Uses for Object API Applications2

Cache Synchronization ..2
Client Runtime Architecture3

Documentation Roadmap for SAP Mobile Platform4
Development Task Flow for Object API Applications5

Installing the iOS Development Environment6
Downloading the Xcode IDE6
Downloading Older Versions of the Xcode IDE6
Installing X.509 Certificates on iOS Clients6

Generating Objective-C Object API Code6
Generating Objective-C Object API Code Using

SAP Mobile WorkSpace7
Generating Object API Code Using the Code

Generation Utility ...12
Generated Code Location and Contents13
Validating Generated Code14

Creating a Project ...14
Generating HeaderDoc from Generated Code14
Downloading the Latest Afaria Libraries15
Importing Libraries and Code15
Importing Libraries and Code for Applications

Enabled with ARC ...19
Managing the Background State23

Development Task Flow for DOE-based Object API
Applications ...25

Installing the iOS Development Environment26
Downloading the Xcode IDE26
Downloading Older Versions of the Xcode IDE . . .26
Installing X.509 Certificates on iOS Clients26

Developer Guide: iOS Object API Applications iii

Generating Objective-C Object API Code26
Generated Code Location and Contents27

Creating a Project ...28
Generating HeaderDoc from Generated Code28
Downloading the Latest Afaria Libraries28
Importing Libraries and Code28
Importing Libraries and Code for Applications

Enabled with ARC ...32
Managing the Background State36

Developing the Application Using the Object API39
Initializing an Application ..39

Initially Starting an Application39
Subsequently Starting an Application50

Accessing MBO Data ..50
Object Queries ...50
Dynamic Queries ...51
MBOs with Complex Types52
Relationships ...52

Manipulating Data ...53
Creating, Updating, and Deleting MBO Records

...53
Other Operations ...54
Using submitPending and

submitPendingOperations55
Shutting Down the Application56

Closing Connections ..56
Debugging Runtime Errors and Performance Analysis

..56
End to End Tracing ..56
Tracking KPI ...59

Uninstalling the Application ...60
Deleting the Database and Unregistering the

Application ...60
Recovering From SAP Mobile Server Failures60

Client Application Recovery Examples61

Contents

iv SAP Mobile Platform

Testing Applications ..79
Testing an Application Using a Emulator79
Client-Side Debugging ..79
Server-Side Debugging .. 81
Improve Synchronization Performance by Reducing

the Log Record Size ...82
Determining the Log Record Size83
Reducing the Log Record Size86

Localizing Applications ...89
Localizing Menus and Interfaces89
Localizing Embedded Strings90
Validating Localization Changes90

Packaging Applications ..91
Signing ..91
Apple Push Notification Service Configuration91

Preparing an Application for Apple Push
Notification Service ..91

Configuring Apple Push Notification Service93
Preparing Applications for Deployment to the

Enterprise ...95
Client Object API Usage ..97

Client Object API Reference ...97
Application APIs ..97

Application ...97
ConnectionProperties ..109
ApplicationSettings ..114
ConnectionPropertyType119

Afaria APIs ..124
Using Afaria to Provision Configuration Data124
Using Certificates from Afaria for Authentication

...127
Connection APIs ...134

SUPConnectionProfile135
Set Database File Property137

Synchronization Profile ...137

Contents

Developer Guide: iOS Object API Applications v

Connect the Data Synchronization Channel
Through a Relay Server138

Authentication APIs ..138
Logging In ..139
Importing an X.509 Certificate to an iOS Client

from the SAP Mobile Server139
Sample Code: Setting Up Login Credentials140
Sample Code: Mutual Authentication143
Single Sign-On With X.509 Certificate Related

Object API ...145
Personalization APIs ...147

Type of Personalization Keys147
Getting and Setting Personalization Key Values

...148
Synchronization APIs ..148

Managing Synchronization Parameters148
Performing Mobile Business Object

Synchronization ...149
Message-Based Synchronization APIs149
Push Synchronization Applications154
Background Refresh ..155

Log Record APIs ...158
SUPLogRecord API ...158
Logger APIs ...162
Log Level and Tracing APIs162

Change Log API ...163
entityType ...163
operationType ..164
rootEntityType ..165
rootSurrogateKey ...165
surrogateKey ..166
Methods in the Generated Database Class166
Code Samples ...168

Security APIs ..169
Encrypting the Client Database169

Contents

vi SAP Mobile Platform

Accessing a Previously Encrypted Database170
SUPDataVault ..170

Callback and Listener APIs ...189
Callback Handler API ...190
SUPApplicationCallback API193
Apple Push Notification API195
SUPSyncStatusListener API196

Query APIs ...199
Retrieving Data from Mobile Business Objects . 199
Retrieving Relationship Data207

Index APIs ..208
Create an Index ...208
Drop an Index ..209
Retrieve and List Indexes209

Persistence APIs ...209
Operations APIs ...210
Object State APIs ..214
Generated Package Database APIs 220
Large Attribute APIs ...220

MetaData API ...230
MetaData API ..230
SUPDatabaseMetaDataRBS 230
SUPClassMetaDataRBS230
EntityMetaData ..231
SUPAttributeMetaData231

Exceptions ..231
Exception Handling ..231
Exception Classes ...237
Error Codes ...239

Index ..241

Contents

Developer Guide: iOS Object API Applications vii

Contents

viii SAP Mobile Platform

Getting Started with iOS Development

Use advanced SAP® Mobile Platform features to create applications for iOS devices. The
audience is advanced developers who may be new to SAP Mobile Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object API documentation.

Companion guides include:

• SAP Mobile WorkSpace - Mobile Business Object Development
• Supported Hardware and Software
• Tutorial: iOS Application Development, where you create the SMP101 sample project

referenced in this guide.
Complete the tutorials to gain a better understanding of SAP Mobile Platform components
and the development process.

• Troubleshooting.
• The iOS HeaderDoc provides a complete reference to the APIs:

• The Framework Library HeaderDoc is installed to SMP_HOME
\MobileSDK23\ObjectAPI\iOS\headerdoc. For example, C:\SAP
\MobilePlatform\MobileSDK23\ObjectAPI\iOS\headerdoc.

• You can generate HeaderDoc from the generated Objective-C code. See http://
developer.apple.com/mac/library/navigation/index.html.

• Fundamentals contains high-level mobile computing concepts, and a description of how
SAP Mobile Platform implements the concepts in your enterprise.

• Developer Guide: Migrating to SAP Mobile SDK contains information for developers
who are migrating device applications to a newer software version, and changes to MBOs,
projects, and the SAP Mobile Server.

Object API Applications
Object API applications are customized, full-featured mobile applications that use mobile
data model packages, either using mobile business objects (MBOs) or Data Orchestration
Engine, to facilitate connection with a variety of enterprise systems and leverage
synchronization to support offline capabilities.

The Object API application model enables developers to write custom code — C#, Java, or
Objective-C, depending on the target device platform — to create device applications.

Getting Started with iOS Development

Developer Guide: iOS Object API Applications 1

http://developer.apple.com/mac/library/navigation/index.html
http://developer.apple.com/mac/library/navigation/index.html

Development of Object API applications provides the most flexibility in terms of leveraging
platform specific services, but each application must be provisioned individually after being
compiled, even for minor changes or updates.

Development involves both server-side and client-side components. SAP Mobile Server
brokers data synchronization and transaction processing between the server and the client
components.

• Server-side components address the interaction between the enterprise information
system (EIS) data source and the data cache. EIS data subsets and business logic are
encapsulated in artifacts, called mobile business object packages, that are deployed to the
SAP Mobile Server.

• Client-side components are built into the mobile application and address the interaction
between the data cache and the mobile device data store. This can include synchronizing
data with the server, offline data access capabilities, and data change notification.

These applications:

• Allow users to connect to data from a variety of EIS systems, including SAP® systems.
• Build in more complex data handling and logic.
• Leverage data synchronization to optimize and balance device response time and need for

real-time data.
• Ensure secure and reliable transport of data.

Best Uses for Object API Applications
Synchronization applications provide operation replay between the mobile device, the
middleware, and the back-end system. Custom native applications are designed and built to
suit specific business scenarios from the ground up, or start with a bespoke application and be
adapted with a large degree of customization.

Cache Synchronization
Cache synchronization allows mapping mobile data to SAP Remote Function Calls (RFCs)
using Java Connector (JCO) and to other non-SAP data sources such as databases and Web
services. When SAP Mobile Platform is used in a stand-alone manner for data
synchronization (without Data Orchestration Engine), it utilizes an efficient bulk transfer and
data insertion technology between the middleware cache and the device database.

In an SAP Mobile Platform standalone deployment, the mobile application is designed such
that the developer specifies how to load data from the back end into the cache and then filters
and downloads cache data using device-supplied parameters. The mobile content model and
the mapping to the back end are directly integrated.

This style of coupling between device and back-end queries implies that the back end must be
able to respond to requests from the middleware based on user-supplied parameters and serve
up mobile data appropriately. Normally, some mobile-specific adaptation is required within

Getting Started with iOS Development

2 SAP Mobile Platform

SAP Business Application Programming Interfaces (BAPI). Because of the direct nature of
application parameter mapping and RBS protocol efficiencies, SAP Mobile Platform cache
synchronization deployment is ideal:

• With large payloads to devices (may be due to mostly disconnected scenarios)
• Where ad hoc data downloads might be expected
• For SAP® or non-SAP back ends

Large payloads, for example, can occur in task worker (service) applications that must access
large product catalogs, or where service occurs in remote locations and workers might
synchronize once a day. While SAP Mobile Platform synchronization does benefit from
middleware caching, direct coupling requires the back end to support an adaptation where
mobile user data can be determined.

Client Runtime Architecture
The goal of synchronization is to keep views (that is, the state) of data consistent among
multiple tiers. The assumption is that if data changes on one tier (for example, the enterprise
system of record), all other tiers interested in that data (mobile devices, intermediate staging
areas/caches and so on) are eventually synchronized to have the same data/state on that
system.

The SAP Mobile Server synchronizes data between the device and the back-end by
maintaining records of device synchronization activity in its cache database along with any
cached data that may have been retrieved from the back-end or pushed from the device. The
SAP Mobile Server employs several components in the synchronization chain.

Mobile Channel Interfaces
Two main channel interfaces provide notifications and data transport to and from remote
devices.

• The messaging channel serves as the abstraction to all device-side notifications
(BlackBerry Enterprise Service, Apple Push Notification Service, and others) so that
when changes to back-end data occur, devices can be notified of changes relevant for their
application and configuration.
The messaging channel sends these types of communications:
• Application registration - the messaging channel is used for application registration

before establishing a connection to the SAP Mobile Server.
• Change notifications - when the SAP Mobile Server detects changes in the back-end

EIS, the SAP Mobile Server can send a notification to the device. By default, sending
change notifications is disabled, but you can enable sending change notifications per
synchronization group.
To capture change notifications, you can register an onSynchronize callback. The
synchronization context in the callback has a status you can retrieve.

Getting Started with iOS Development

Developer Guide: iOS Object API Applications 3

• Operation replay records - when synchronizing, these records are sent to the SAP
Mobile Server and the messaging channel sends a notification of replayFinished.
The application must call another synchronize method to retrieve the result.

• SAP Data Orchestration Engine (DOE) application synchronization - the messaging
channel is used for synchronization for DOE applications.

• The synchronization channel sends data to keep the SAP Mobile Server and client
synchronized. The synchronization is bi-directional.

Mobile Middleware Services
Mobile middleware services (MMS) arbitrate and manage communications between device
requests from the mobile channel interfaces in the form that is suitable for transformation to a
common MBO service request and a canonical form of enterprise data supplied by the data
services.

Data Services
Data services is the conduit to enterprise data and operations within the firewall or hosted in
the cloud. Data services and mobile middleware services together manage the cache database
(CDB) where data is cached as it is synchronized with client devices.

Once a mobile application model is designed, it can be deployed to the SAP Mobile Server
where it operates as part of a specialized container-managed package interfacing with the
mobile middleware services and data services components. Cache data and messages persist
in the databases in the data tier. Changes made on the device are passed to the mobile
middleware services component as an operation replay and replayed against the data services
interfaces with the EIS. Data that changes on the EIS as a result of device changes, or those
originating elsewhere, are replicated to the device database.

Documentation Roadmap for SAP Mobile Platform
SAP® Mobile Platform documents are available for administrative and mobile development
user roles. Some administrative documents are also used in the development and test
environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.

Check the Product Documentation Web site regularly for updates: http://sybooks.sybase.com/
sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories, then
navigate to the most current version.

Getting Started with iOS Development

4 SAP Mobile Platform

http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories
http://sybooks.sybase.com/sybooks/sybooks.xhtml?id=1289&c=firsttab&a=0&p=categories

Development Task Flow for Object API
Applications

Describes the overall development task flow for Object API applications, and provides
information and procedures for setting up the development environment, and developing
device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated UI interaction, validation, business
logic, and performance.

The Object API provides the core application services described in the diagram.

The Authentication APIs provide security by authenticating the client to the SAP Mobile
Server.

The Synchronization APIs allow you to synchronize mobile business objects (MBOs) based
on synchronization parameters, for individual MBOs, or as a group, based on the group's
synchronization policy.

The Application and Connection APIs allow clients to register with and connect to the SAP
Mobile Server. The Callback Handler and Listener APIs, and the Target Change Notification
APIs provide notifications to the client on operation success or failure, or changes in data.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 5

Installing the iOS Development Environment
Install the iOS development environment, and prepare iOS devices for authentication.

Downloading the Xcode IDE
Download and install Xcode.

1. Download Xcode from the Apple Web site: http://developer.apple.com/xcode/.

2. Complete the Xcode installation following the instructions in the installer.

Downloading Older Versions of the Xcode IDE
If you do not have the supported version of Xcode and the iOS SDK, you need to download it
from the Downloads for Apple Developers Web site.

See Supported Hardware and Software for the most current version information for mobile
device platforms and third-party development environments. If necessary, you can download
older versions.

1. Go to http://developer.apple.com/downloads/.
You must be a paying member of the iOS Developer Program. Free members do not have
access to the supported version.

2. Log in using your Apple Developer credentials.

3. (Optional) Deselect all Categories except Developer Tools to narrow the search scope.

4. Download the supported Xcode and SDK combination.

Installing X.509 Certificates on iOS Clients
Install generated X.509 certificates and test them in your iOS clients. A certificate provides an
additional level of secure access to an application, and may be required by an organization's
security policy.

Generating Objective-C Object API Code
Generate object API code containing mobile business object (MBO) references, which allows
you to use APIs to develop device applications for Apple devices. You can generate code
either in SAP Mobile WorkSpace, or by using a command line utility for generating code.

Generated code can be used to leverage SAP Mobile Platform capabilities and services, and
access MBO-related data: calling the mobile business object operations, object queries, and so
on. This code can then be imported into an integrated development environment (IDE) of your
choice to create the device application (define the user interface, application logic, and so on.

Development Task Flow for Object API Applications

6 SAP Mobile Platform

http://developer.apple.com/xcode/
http://developer.apple.com/downloads/

Generating Objective-C Object API Code Using SAP Mobile
WorkSpace

Use SAP Mobile WorkSpace to generate object API code containing mobile business object
(MBO) references.

Prerequisites

Develop the MBOs that will be referenced in the device applications you are developing. A
mobile application project must contain at least one non-online MBO. You must have an active
connection to the datasources to which the MBOs are bound.

Task
SAP Mobile Platform provides the Code Generation wizard for generating object API code.
Code generation creates the business logic, attributes, and operations for your mobile business
object.

1. Launch the Code Generation wizard.

From Action

Mobile Application
Diagram

Right-click within the Mobile Application Diagram and select
Generate Code.

WorkSpace
Navigator

Right-click the Mobile Application project folder that contains
the mobile objects for which you are generating API code, and
select Generate Code.

2. (Optional; this page of the code generation wizard is seen only if you are using the
Advanced developer profile). Enter the information for these options, then click Next:

Option Description

Code generation
configuration

A table lists all existing named configurations plus the most recently used
configuration. You can select any of these, click Next, and proceed. Ad-
ditionally, you can:
• Create new configuration – click Add and enter the Name and optional

Description of the new configuration and click OK to save the con-
figuration for future sessions. You can also select Copy from to copy
an existing configuration which can then be modified.

• Most recent configuration – if you click Next the first time you gen-
erate code without creating a configuration, the configuration is saved
and displays as the chosen configuration the next time you invoke the
code generation wizard. If the most recent configuration used is a
named configuration, it is saved as the first item in the configuration
table, and also "Most recent configuration", even though it is still listed
as the original named configuration.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 7

3. Click Next.

4. In Select Mobile Objects, select all the MBOs in the mobile application project or select
MBOs under a specific synchronization group, whose references, metadata, and
dependencies (referenced MBOs) are included in the generated device code.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

SAP Mobile WorkSpace automatically computes the default page size after you choose
the MBOs based on total attribute size. If an MBO's accumulated attribute size is larger
than the page size setting, a warning displays.

5. Enter the information for these configuration options:

Option Description

Language Select Objective C.

Platform Select the platform (target device) for which
the device client code is intended.
• Objective C

• iOS

SAP Mobile Server Specify a default SAP Mobile Server connec-
tion profile to which the generated code con-
nects at runtime.

Server domain Choose the domain to which the generated code
will connect. If you specified an SAP Mobile
Server to which you previously connected suc-
cessfully, the first domain in the list is chosen by
default. You can enter a different domain man-
ually.

Note: This field is only enabled when an SAP
Mobile Server is selected.

Development Task Flow for Object API Applications

8 SAP Mobile Platform

Option Description

Page size (Optional) Select the page size for the gener-
ated client code. If the page size is not set, the
default page size is 4KB at runtime. The default
is a proposed page size based on the selected
MBO's attributes.

The page size should be larger than the sum of
all attribute lengths for any MBO that is inclu-
ded with all the MBOs selected, and must be
valid for the database. If the page size is
changed, but does not meet these guidelines,
object queries that use string or binary attrib-
utes with a WHERE clause may fail. See MBO
Attributes in Mobile Data Models: Using Mo-
bile Business Objects for more information.

A binary length greater than 32767 is converted
to a binary large object (BLOB), and is not in-
cluded in the sum; a string greater than 8191 is
converted to a character large object (CLOB),
and is also not included). If an MBO attribute's
length sum is greater than the page size, some
attributes automatically convert to BLOB or
CLOB, and therefore cannot be put into a
WHERE clause.

Note: This field is only enabled when an SAP
Mobile Server is selected.

Destination Specify the destination of the generated device
client files. Enter (or Browse) to either a
Project path (Mobile Application project) lo-
cation or File system path location. Select
Clean up destination before code generation
to clean up the destination folder before gener-
ating the device client files.

6. Select Including object manager classes to generate both the metadata for the attributes
and operations of each generated client object and an object manager for the generated
metadata.

The Including object manager classes option is enabled only for BlackBerry and C# if
you select Generate metadata classes. The object manager allows you to retrieve the
metadata of packages, MBOs, attributes, operations, and parameters during runtime using
the name instead of the object instance.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 9

Note: When generating code for iOS, "Generate metadata classes" is automatically
selected and cannot be unselected. The "Including object manager classes" option is
unavailable and unsupported.

7. Click Finish.

By default, the MBO source code and supporting documentation are generated in the
project's Generated Code folder. The generated files are located in the
<MBO_project_name> folder under the includes and src folders. The
includes folder contains the header (*.h) files and the src folder contains the
implementation (*.m) files.

Because there is no namespace concept in Objective-C, all generated code is prefixed with
packagename. For example, "SMP101".

Development Task Flow for Object API Applications

10 SAP Mobile Platform

The frequently used Objective-C files in this project, described in code samples include:

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 11

Table 1. Source Code File Descriptions

Objective-C File Description

MBO class (for example, SMP101Custom-
er.h, SMP101Customer.m)

Include all the attributes, operations, object
queries, and so on, defined in this MBO.

synchronization parameter class (for example,
SMP101CustomerSynchronization-
Parameter.h, SMP101Customer-
SynchronizationParameter.m)

Include any synchronization parameters de-
fined in this MBO.

Key generator classes (for example,
SMP101KeyGenerator.h,
SMP101KeyGenerator.m)

Include generation of surrogate keys used to
identify and track MBO instances and data.

Personalization parameter classes (for example,
SMP101PersonalizationParame-
ters.h, SMP101Personalization-
Parameters.m)

Include any defined personalization keys.

Note: Do not modify generated MBO API generated code directly. For MBO generated
code, create a layer on top of the MBOs using patterns native to the mobile operating
system development to extend and add functionality.

8. Examine the generated code location and contents.

9. Validate the generated code.

Generating Object API Code Using the Code Generation Utility
Use the Code Generation Utility to generate object API code containing mobile business
object (MBO) references. This method of generating code allows you to automate the process
of code generation, for example through the use of scripts.

Prerequisites

• Use SAP Mobile WorkSpace to develop and package your mobile business objects. See
SAP Mobile WorkSpace - Mobile Business Object Development > Develop > Developing
a Mobile Business Object.

• Deploy the package to the SAP Mobile Server, creating files required for code generation
from the command line. See SAP Mobile WorkSpace - Mobile Business Object
Development > Develop > Packaging and Deploying Mobile Business Objects
>Automated Deployment of SAP Mobile WorkSpace Projects.

Task

1. Locate <domain name>_package.jar in your mobile project folder. For the
SMP101 example, the project is deployed to the default domain, and the deploy jar file is in

Development Task Flow for Object API Applications

12 SAP Mobile Platform

the following location: SMP101\Deployment\.pkg.profile
\My_SAP_Mobile_Server\default_package.jar.

2. Make sure that the JAR file contains this file:

• deployment_unit.xml
3. Use a utility to extract the deployment_unit.xml file to another location.

4. From SMP_HOME\MobileSDK23\ObjectAPI\Utils\bin, run the
codegen.bat utility, specifying the following parameters:

codegen.bat -oc -client -ul -mdp deployment_unit.xml [-output
<output_dir>][-pageSize <page_size_in_bytes>] [-doc]

• The -output parameter allows you to specify an output directory. If you omit this
parameter, the output goes into the SMP_HOME\MobileSDK23\ObjectAPI
\Utils\genfiles directory, assuming codegen.bat is run from the
SMP_HOME\MobileSDK23\ObjectAPI\Utils\genfiles directory.

• The -doc parameter specifies that documentation is generated for the generated code.

• The case sensitive -pageSize parameter is optional and specifies the page size
generated in the client code. Valid values are 1024, 2048, 4096, 8192, and 16384.

Ignore these warnings:
log4j:WARN No appenders could be found for logger ...
log4j:WARN Please initialize the log4j system properly.

Generated Code Location and Contents
If you generated code in SAP Mobile WorkSpace, generated object API code is stored by
default in the "Destination" location you specified during code generation. If you generated
code with the Code Generation Utility, generated object API code is stored in the SMP_HOME
\MobileSDK23\ObjectAPI\Utils\genfiles folder after you generate code.

The contents of the folder is determined by the options you selected in the Generate Code
wizard in SAP Mobile WorkSpace, or specified in the Code Generation Utility. The contents
include generated class (.h, .m) files that contain:

• MBO – class which handles persistence and operation replay of your MBOs.
• DatabaseClass – package level class that handles subscription, login, synchronization, and

other operations for the package.
• Synchronization parameters – any synchronization parameters for the MBOs.
• Personalization parameters – personalization parameters used by the package.
• Metadata – Metadata class that allow you to query meta data including MBOs, their

attributes, and operations, in a persistent table at runtime.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 13

Validating Generated Code
Validation rules are enforced when generating client code. Define prefix names in the Mobile
Business Object Preferences page of the Code Generation wizard to correct validation errors.

SAP Mobile WorkSpace validates and enforces identifier rules and checks for keyword
conflicts in generated code, for example, by displaying error messages in the Properties view
or in the wizard. Other than the known name conversion rules (converting '.' to '_', removing
white space from names, and so on), there is no other language-specific name conversion. For
example, cust_id is not changed to custId.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

2. Expand SAP AG > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are autogenerated, for example, when you drag and drop a datasource onto the
Mobile Application Diagram.

Creating a Project
Build a device application project.

Generating HeaderDoc from Generated Code
Once you have generated Objective-C code for your mobile business objects, you can generate
HeaderDoc (HTML reference information) on the Mac from the generated code. HeaderDoc
provides reference information for the MBOs you have designed. The HeaderDoc will help
you to programmatically bind your device application to the generated code.

1. Navigate to the directory containing the generated code that was copied over from the
Eclipse environment.

2. Run:

>headerdoc2html –o GeneratedDocDir GeneratedCodeDir
>gatherheaderdoc GeneratedDocDir

You can open the file GeneratedDocDir/masterTOC.html in a Web browser to see
the interlinked sets of documentation.

Development Task Flow for Object API Applications

14 SAP Mobile Platform

Note: You can review complete details on HeaderDoc in the HeaderDoc User Guide, available
from the Mac OS X Reference Library at http://developer.apple.com/mac/library/navigation/
index.html.

Downloading the Latest Afaria Libraries
Afaria® provides provisioning of configuration data and certificates for your SAP Mobile
Platform client application. Afaria libraries are packaged with SAP Mobile Platform, but may
not be the latest software available. To ensure you have the latest Afaria libraries, download
Afaria software.

1. Navigate to the Mobile Enterprise Technical Support website at http://
frontline.sybase.com/support/downloads.aspx.

2. If not registered, register for an account.
3. Log into your account.
4. Select Software Updates and download the latest Static Link Libraries.
5. Extract the contents of the downloaded zip file.
6. Include the Afaria library into your project. See Importing Libraries and Code.

Importing Libraries and Code
Import the generated MBO code and associated libraries into the iOS development
environment.

Note: For more information on Xcode, refer to the Apple Developer Connection: http://
developer.apple.com/tools/Xcode/.

1. Start Xcode 5 and select Create a new Xcode project.

2. Select iOS Application and select an appropriate project template, and then click Next.

3. Enter <ProjectName> as the Product Name, <Company Identifier> as the
Company Identifier, select Universal as the Device Family product, and then click
Next.

Note: If you will deploy more than one Xcode project with the same application name, the
applications will overwrite each other on the device. Ensure that projects do not share the
same name even though they have different application IDs.

4. Select a location to save the project and click Create to open it.

Xcode creates a folder,<ProjectName>, to contain the project file,
<ProjectName>.xcodeproj and another <ProjectName> folder, which
contains a number of automatically generated files.

5. Select the Architectures section under Build Settings, and set Base SDK for All
Configurations to iOS 7.0.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 15

http://developer.apple.com/mac/library/navigation/index.html
http://developer.apple.com/mac/library/navigation/index.html
http://frontline.sybase.com/support/downloads.aspx
http://frontline.sybase.com/support/downloads.aspx
http://developer.apple.com/tools/Xcode/
http://developer.apple.com/tools/Xcode/

6. Select the Valid Architectures with the default value armv7 armv7s, Supported
Platforms as iOS, and the Targeted device family as iPhone/iPad. This ensures that
the build of the application can run on either iPhone or iPad.

7. Scroll to the Deployment section and set the iOS Deployment Target as appropriate for the
device version where you will deploy. The minimum version is iOS 4.3 or later. Earlier
SDKs and deployment targets are not supported.

8. Copy the files from your Windows machine to the <ProjectName> folder that Xcode
created to contain the generated source code. Connect to the Microsoft Windows machine
where SAP Mobile Platform is installed:

a) From the Apple Finder menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, smb://<machine DNS

name> or smb://<IP Address>.

You see the shared directory.

9. Navigate to the SMP_HOME\MobileSDK<version>\ObjectAPI\iOS directory,
and copy the includes and Libraries folders to the <ProjectName>/
<ProjectName> directory on your Mac.

Development Task Flow for Object API Applications

16 SAP Mobile Platform

10. Navigate to the mobile application project (for example, C:\Documents and
Settings\administrator\workspace\<ProjectName>), and copy the
Generated Code folder to the <ProjectName>/<ProjectName> directory on
your Mac.

11. Right-click the <ProjectName> folder under the project, select Add Files to
"<ProjectName>", navigate to the <ProjectName/ProjectName>/
Libraries/Debug-iphonesimulator directory, select the libclientrt.a,
libSUPObj.a, libMo.a, libPerformanceLib.a, libsupClientUtil.a,
libSUPSupportability.a, libAfariaSLL.a, libDatavault.a, and
libsupUltralite.a libraries, unselect Copy items into destination group's folder
(if needed), and click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. For example,
if you are building for a debug version of the simulator, navigate to Libraries/
Debug-iphonesimulator/ to add the libraries.

As an alternative to adding static libraries to the project, you can configure your project to
specify the libraries in the project's build settings:

• Select the project from the Project Navigator.
• Click on the target under Targets and select Build Settings.
• In the Linking section, expand Other Linker Flags.
• Under Debug, add the following linker flags:

$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libMo.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libSUPObj.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libclientrt.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libPerformanceLib.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libsupClientUtil.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libSUPSupportability.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libAfariaSLL.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libDatavault.a
$(SRCROOT)/$(PRODUCT_NAME)/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)/libsupUltralite.a

These linker flags resolve for all builds of the project.

12. Click the project root, in the middle pane click the <ProjectName> project, and set
Objective-C Automatic Reference Counting in the Apple LLVM compiler 4.1 - Language
section to No.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 17

13. Click on the active target and modify the Library Search Path from the Building Settings.
For example:
$(SRCROOT)/../iOS/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)

Enter the path to the location where you copied the libraries. Specify separate profiles for
debug and release, and specify "any iOS" and "any iOS simulator." Ensure that you escape
the paths using double quotes.

14. Click on the active target, and modify the Header Search Path from Building Settings.

Specify the path to the location where you copied the include files, and select the Recursive
checkbox. The header files in the client library are grouped into subdirectories public
and internal, so the recursive option is required.

15. Add the following frameworks from the SDK to your project by clicking on the active
target, and selecting Build Phase > Link Binary With Libraries. Click on the + button
and select the following binaries from the list:

• CoreFoundation.framework
• Security.framework
• CFNetwork.framework
• SystemConfiguration.framework
• MobileCoreServices.framework
• libicucore.A.dylib
• libstdc++.6.0.9.dylib
• libz.dylib

Development Task Flow for Object API Applications

18 SAP Mobile Platform

16. Hold the Option key, and select Product > Clean Build Folder and then Product > Build
to test the initial set up of the project. If you have correctly followed this procedure, then
you should receive a Build Succeeded message.

17. Click on the active target, select the Info tab, change the "Application requires iPhone
environment" setting to "Application does not run in background," and set to YES.

Note: If you want to allow your application to continue to run safely in the background, do
not perform this step. See Developer Guide: iOS Object API Applications > Development
Task Flow for Object API Applications > Creating a Project > Managing the Background
State.

18. Write your application code to reference the generated MBO code. See the Developer
Guide: iOS Object API Applications for information about referencing the iOS Client
Object API.

Importing Libraries and Code for Applications Enabled with ARC
Import the generated MBO code and associated libraries into the iOS development
environment, to support applications enabled with automatic reference counting (ARC).

1. Create a non-ARC static library target for the generated code.

a) Select the application project file in Xcode, and click on Add Target at the bottom of
the Project Settings screen. When prompted, select the "Cocoa Touch Static Library"
template from the Framework & Library section and click Next.

b) Enter the project name with the name you want for your library, for example,
"generatedcode_lib". Make sure the "Use Automatic Reference Counting" option is
not selected. Click on Finish. You have created a second target in your project.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 19

c) Delete the sample class files the wizard created (generatedcode_lib.h, and
generatedcode_lib.m).

2. Make sure the static library is not using ARC by selecting the generatedcode_lib
target, going to "Build Settings," and verifying "Automatic Reference Counting" is set to
"NO".

3. Add generated code into the static library target.

a) Right click on the generatedcode_lib folder from the Group & File view, and
select Add Files to

b) Select your generated code location, and select the option "Add to targets" to
"generatedcode_lib". Do not select <your main target>.

c) Click Add.

Development Task Flow for Object API Applications

20 SAP Mobile Platform

4. Modify the build settings of the static library target.

a) Select the generatedcode_lib target, and go to "Build Settings", and to "Header Search
Paths".

b) Add the location of the SUP client stack includes folder. Make sure the "Recursive"
checkbox is checked.

5. Link the main application target with the new static library.

a) Select your main application target, then click on “Build Phase” and expand the “Link
Binary With Libraries” section.

b) Click on the plus (+) button and select the new static library from the list.

6. Add the static library as a dependency.

a) Select your main application target, then click on “Build Phase” and expand the
“Target Dependencies” section.

b) Click on the plus (+) button and select the new static library from the list.

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 21

7. Make sure that ARC is enabled for your main application target.
a) Select the main target, and go to “Build Settings”.
b) Verify that Automatic Reference Counting” is set to “YES”.

8. Add your ARC enabled code into the main application target.

9. Import the SAP Mobile Platform client stack libraries to the main target. Perform the steps
in Developer Guide: iOS Object API Applications > Development Task Flow for Object
API Applications > Creating a Project > Importing Libraries and Code, to import and add
only the libraries to the main target. Do not add generated code to the main target, because
you have created the secondary static library target with the generated code.

10. Build your ARC-enabled main application target with the SAP Mobile Platform client
stack and generated code.

Development Task Flow for Object API Applications

22 SAP Mobile Platform

Ignore semantic issue warnings during compilation. For example:
"Semantic Issue
Type of property ‘databaseName’ does not match type of accessor
‘setDatabaseName:’"

Managing the Background State
To allow your application to continue to safely run when it goes into the background, you must
implement code in its AppDelegate class to ensure that the SUPApplication instance's
connection to the server shuts down gracefully when going into the background, and starts up
when the application becomes active again.

This is important because in iOS, when an application goes into the background, it can have its
network sockets invalidated, or the application may be shut down at any time. For correct
behavior of the SUPApplication connection, the connection needs to be stopped when in
background, and only started again when the application goes back to the foreground.

In addition, if your application is using replication based synchronization, and is
synchronizing a large amount of data at the time the application goes into background, it may
be necessary to interrupt the sync. To do this, the synchronization needs to be done using a
sync status listener, and the applicationDidEnterBackground method must notify
the listener to set the info.state flag to SYNC_STATUS_CANCEL (see Developer Guide: iOS
Object API Applications > Client Object API Usage > Callback and Listener APIs >
SyncStatusListener API for more details).

You must implement two appDelegate methods:
applicationDidEnterBackground and
applicationWillEnterForeground.

Note: The applicationWillEnterForeground method is also called when the
application first starts up, where most applications would have code already to register the
application and start the SUPApplication connection. This example code uses a boolean
wasPreviouslyInBackground so that the
applicationWillEnterForeground method can detect whether it is called on
coming out of the background or is called on a first startup.

BOOL wasPreviouslyInBackground = NO;

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 /*
 Use this method to release shared resources, save user data,
invalidate timers, and store enough application state information to
restore your application to its current state in case it is
terminated later.
 If your application supports background execution, this method is
called instead of applicationWillTerminate: when the user quits.
 */
 @try
 {

Development Task Flow for Object API Applications

Developer Guide: iOS Object API Applications 23

 wasPreviouslyInBackground = YES;
 [SMP101SMP101DB disableSync];
 [SUPApplication stopConnection:0];
 }
 @
 catch (NSException *ee)
 {
 // log an error or alert user via notification
 }
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 /*
 Called as part of the transition from the background to the
inactive state; here you can undo many of the changes made on
entering the background.
 */
if(wasPreviouslyInBackground)
 // Run these in the background since these are blocking calls and
 // this will be called from the UI thread.
 dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);
 dispatch_async(queue, ^
 {
 @try
 {
 [SMP101SMP101DB enableSync];
 [SUPApplication startConnection:30];
 }
 @
 catch (NSException *ee)
 {
 // log an error or alert user via notification
 }
 });
}

Development Task Flow for Object API Applications

24 SAP Mobile Platform

Development Task Flow for DOE-based Object
API Applications

Describes the overall development task flow for DOE-based native applications, and provides
information and procedures for setting up the development environment, and developing
DOE-based device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated UI interaction, validation, business
logic, and performance.

The Object API provides the core application services described in the diagram.

The Authentication APIs provide security by authenticating the client to the SAP Mobile
Server.

The Synchronization APIs allow you to synchronize mobile business objects (MBOs) based
on synchronization parameters, for individual MBOs, or as a group, based on the group's
synchronization policy.

The Application and Connection APIs allow clients to register with and connect to the SAP
Mobile Server. The Callback Handler and Listener APIs, and the Target Change Notification
APIs provide notifications to the client on operation success or failure, or changes in data.

With DOE-based applications, connectivity and notifications use the Messaging channel.

Development Task Flow for DOE-based Object API Applications

Developer Guide: iOS Object API Applications 25

Installing the iOS Development Environment
Install the iOS development environment, and prepare iOS devices for authentication.

Downloading the Xcode IDE
Download and install Xcode.

1. Download Xcode from the Apple Web site: http://developer.apple.com/xcode/.

2. Complete the Xcode installation following the instructions in the installer.

Downloading Older Versions of the Xcode IDE
If you do not have the supported version of Xcode and the iOS SDK, you need to download it
from the Downloads for Apple Developers Web site.

See Supported Hardware and Software for the most current version information for mobile
device platforms and third-party development environments. If necessary, you can download
older versions.

1. Go to http://developer.apple.com/downloads/.

You must be a paying member of the iOS Developer Program. Free members do not have
access to the supported version.

2. Log in using your Apple Developer credentials.

3. (Optional) Deselect all Categories except Developer Tools to narrow the search scope.

4. Download the supported Xcode and SDK combination.

Installing X.509 Certificates on iOS Clients
Install generated X.509 certificates and test them in your iOS clients. A certificate provides an
additional level of secure access to an application, and may be required by an organization's
security policy.

Generating Objective-C Object API Code
Use the Code Generation Utility to generate object API code, which allows you to use APIs to
develop device applications for Apple devices.

Prerequisites

• Generate and download the ESDMA bundle for you application.

Development Task Flow for DOE-based Object API Applications

26 SAP Mobile Platform

http://developer.apple.com/xcode/
http://developer.apple.com/downloads/

• Run the ESDMA Converter utility to turn your ESDMA into an SAP Mobile Platform
package.

• Deploy the package to the SAP Mobile Server.

See Create, Generate, and Download the ESDMA Bundle, Convert the ESDMA Bundle into
an SAP Mobile Platform Package, and Deploy the SAP Mobile Platform Package in Mobile
Data Models: Using Data Orchestration Engine.

Task

1. Make sure that your <ESDMA_dir>\META-INF directory contains these three files:

• afx-esdma.xml
• ds-doe.xml
• sup-db.xml

2. From SMP_HOME\MobileSDK23\ObjectAPI\Utils\bin, run the
codegen.bat utility, specifying the following parameters:

codegen -oc -client -doe -sqlite
[-output <output_dir>] [-doc] <ESDMA_dir>\META-INF\sup-db.xml
• The -output parameter allows you to specify an output directory. If you omit this

parameter, the output goes into the SMP_HOME\MobileSDK23\ObjectAPI
\Utils\genfiles directory, assuming codegen.bat is run from the SMP_HOME
\MobileSDK23\ObjectAPI\Utils\bin directory.

• The -doc parameter specifies that documentation is generated for the generated code.

Ignore these warnings:
log4j:WARN No appenders could be found for logger ...
log4j:WARN Please initialize the log4j system properly.

Generated Code Location and Contents
The location of the generated Object API code is the location you specified when you
generated the code using codegen.bat at the command line.

The contents of the folder is determined by the parameters you pass to codegen.bat in the
command line, and include generated class (.h, .m) files that contain:

• DatabaseClass – package level class that handles subscription, login, synchronization, and
other operations for the package.

• MBO – class which handles persistence and operation replay of your MBOs.
• Personalization parameters – personalization parameters used by the package.
• Metadata – Metadata class that allows you to query meta data including MBOs, their

attributes, and operations, in a persistent table at runtime.

Development Task Flow for DOE-based Object API Applications

Developer Guide: iOS Object API Applications 27

Creating a Project
Build a device application project.

Generating HeaderDoc from Generated Code
Once you have generated Objective-C code for your mobile business objects, you can generate
HeaderDoc (HTML reference information) on the Mac from the generated code. HeaderDoc
provides reference information for the MBOs you have designed. The HeaderDoc will help
you to programmatically bind your device application to the generated code.

1. Navigate to the directory containing the generated code that was copied over from the
Eclipse environment.

2. Run:

>headerdoc2html –o GeneratedDocDir GeneratedCodeDir
>gatherheaderdoc GeneratedDocDir

You can open the file GeneratedDocDir/masterTOC.html in a Web browser to see
the interlinked sets of documentation.

Note: You can review complete details on HeaderDoc in the HeaderDoc User Guide, available
from the Mac OS X Reference Library at http://developer.apple.com/mac/library/navigation/
index.html.

Downloading the Latest Afaria Libraries
Afaria® provides provisioning of configuration data and certificates for your SAP Mobile
Platform client application. Afaria libraries are packaged with SAP Mobile Platform, but may
not be the latest software available. To ensure you have the latest Afaria libraries, download
Afaria software.

1. Navigate to the Mobile Enterprise Technical Support website at http://
frontline.sybase.com/support/downloads.aspx.

2. If not registered, register for an account.
3. Log into your account.
4. Select Software Updates and download the latest Static Link Libraries.
5. Extract the contents of the downloaded zip file.
6. Include the Afaria library into your project. See Importing Libraries and Code.

Importing Libraries and Code
Import the generated MBO code and associated libraries into the iOS development
environment.

Note: For more information on Xcode, refer to the Apple Developer Connection: http://
developer.apple.com/tools/Xcode/.

Development Task Flow for DOE-based Object API Applications

28 SAP Mobile Platform

http://developer.apple.com/mac/library/navigation/index.html
http://developer.apple.com/mac/library/navigation/index.html
http://frontline.sybase.com/support/downloads.aspx
http://frontline.sybase.com/support/downloads.aspx
http://developer.apple.com/tools/Xcode/
http://developer.apple.com/tools/Xcode/

1. Start Xcode 5 and select Create a new Xcode project.

2. Select iOS Application and Window-based Application as the project template, and
then click Next.

3. Enter <ProjectName> as the Product Name, MyCorp as the Company Identifier,
select Universal as the Device Family product, and then click Next.

Note: If you will deploy more than one Xcode project with the same application name, the
applications will overwrite each other on the device. Ensure that projects do not share the
same name even though they have different application IDs.

4. Select the Architectures tab, and set Base SDK for All Configurations to iOS 7.0.

5. Select the Deployment tab and set the iOS Deployment Target to iOS 4.3 or later.
Earlier SDKs and deployment targets are not supported.

6. Select the Valid Architectures with the default value armv7 armv7s, Supported
Platforms as iOS, and the Targeted device family as iPhone/iPad. This ensures that
the build of the application can run on either iPhone or iPad.

7. Select a location to save the project and click Create to open it.

Development Task Flow for DOE-based Object API Applications

Developer Guide: iOS Object API Applications 29

Xcode creates a folder,<ProjectName>, to contain the project file,
<ProjectName>.xcodeproj and another <ProjectName> folder, which
contains a number of automatically generated files.

Copy the files from your Windows machine in to the <ProjectName> folder that Xcode
created to contain the generated source code.

8. Connect to the Microsoft Windows machine where SAP Mobile Platform is installed:

a) From the Apple Finder menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, smb://<machine DNS

name> or smb://<IP Address>.

You see the shared directory.

9. Navigate to the SMP_HOME\MobileSDK23\ObjectAPI\DOE\iOS directory, and
copy the includes and Libraries folders to the <ProjectName>/
<ProjectName> directory on your Mac.

10. Navigate to the output directory that you specified when you generated Objective-C code,
and copy that folder to the <ProjectName>/<ProjectName> directory on your
Mac.

11. In the Xcode Project Navigator, right-click the <ProjectName> folder under the
project, select Add Files to "<ProjectName>", select the output folder with the
generated Objective-C code that you just copied, unselect Copy items into destination
group's folder (if needed), and click Add.

The output folder is added to the project in the Project Navigator.

12. Right-click the <ProjectName> folder under the project, select Add Files to
"<ProjectName>", navigate to the <ProjectName/ProjectName>/
Libraries/Debug-iphonesimulator directory, select the libclientrt.a,
libSUPObj.a, libMO.a, libPerformanceLib.a, libsupClientUtil.a,
libSUPSupportability.a, libsupSqlite.a, libAfariaSLL.a and
libDatavault.a libraries, unselect Copy items into destination group's folder (if
needed), and click Add.

The libraries are added to the project in the Project Navigator.

Note: The library version corresponds to the configuration you are building. For example,
if you are building for a debug version of the simulator, navigate to libs/Debug-
iphonesimulator/ to add the libraries.

13. Right-click the project root, select New Group, and then rename it to Resources.

14. Right-click the Resources folder, select Add Files to "<ProjectName>", navigate to
the includes directory, select the Settings.bundle file, unselect Copy items into
destination group's folder (if needed), and click Add.

The bundle Settings.bundle is added to the project in the Project Navigator.

Development Task Flow for DOE-based Object API Applications

30 SAP Mobile Platform

This bundle adds resources that lets iOS device client users input information such as
server name, server port, user name and activation code in the Settings application.

15. Click the project root, in the middle pane click the <ProjectName> project, and set
Automatic Reference Counting (ARC) to NO.

16. Click on the active target and modify the Library Search Path from the Building Settings.
For example:
$(SRCROOT)/../iOS/Libraries/$(CONFIGURATION)$
(EFFECTIVE_PLATFORM_NAME)

Enter the path to the location where you copied the libraries. Specify separate profiles for
debug and release, and specify "any iOS" and "any iOS simulator." Ensure that you escape
the paths using double quotes.

17. Click on the active target, and modify the Header Search Path from Building Settings.

Specify the path to the location where you copied the include files, and select the Recursive
checkbox. The header files in the client library are grouped into subdirectories public
and internal, so the recursive option is required.

18. Add the following frameworks from the SDK to your project by clicking on the active
target, and selecting Build Phase > Link Binary With Libraries. Click on the + button
and select the following binaries from the list:

• CoreFoundation.framework
• Security.framework
• CFNetwork.framework
• SystemConfiguration.framework
• MobileCoreServices.framework

Development Task Flow for DOE-based Object API Applications

Developer Guide: iOS Object API Applications 31

• libicucore.A.dylib
• libstdc++.6.0.9.dylib
• libz.dylib

19. Hold the Option key, and select Product > Clean Build Folder and then Product > Build
to test the initial set up of the project. If you have correctly followed this procedure, then
you should receive a Build Succeeded message.

20. In the Info.plist file, set the "Application does not run in background" setting to
YES.

Note: If you want to allow your application to continue to run safely in the background, do
not perform this step. See Developer Guide: iOS Object API Applications > Development
Task Flow for DOE-based Object API Applications > Creating a Project > Managing the
Background State.

21. Write your application code to reference the generated MBO code. See the Developer
Guide: iOS Object API Applications for information about referencing the iOS Client
Object API.

Importing Libraries and Code for Applications Enabled with ARC
Import the generated MBO code and associated libraries into the iOS development
environment, to support applications enabled with automatic reference counting (ARC).

1. Create a non-ARC static library target for the generated code.

a) Select the application project file in Xcode, and click on Add Target at the bottom of
the Project Settings screen. When prompted, select the "Cocoa Touch Static Library"
template from the Framework & Library section and click Next.

b) Enter the project name with the name you want for your library, for example,
"generatedcode_lib". Make sure the "Use Automatic Reference Counting" option is
not selected. Click on Finish. You have created a second target in your project.

Development Task Flow for DOE-based Object API Applications

32 SAP Mobile Platform

c) Delete the sample class files the wizard created (generatedcode_lib.h, and
generatedcode_lib.m).

2. Make sure the static library is not using ARC by selecting the generatedcode_lib
target, going to "Build Settings," and verifying "Automatic Reference Counting" is set to
"NO".

3. Add generated code into the static library target.

a) Right click on the generatedcode_lib folder from the Group & File view, and
select Add Files to

b) Select your generated code location, and select the option "Add to targets" to
"generatedcode_lib". Do not select <your main target>.

c) Click Add.

Development Task Flow for DOE-based Object API Applications

Developer Guide: iOS Object API Applications 33

4. Modify the build settings of the static library target.

a) Select the generatedcode_lib target, and go to "Build Settings", and to "Header Search
Paths".

b) Add the location of the SUP client stack includes folder. Make sure the "Recursive"
checkbox is checked.

5. Link the main application target with the new static library.

a) Select your main application target, then click on “Build Phase” and expand the “Link
Binary With Libraries” section.

b) Click on the plus (+) button and select the new static library from the list.

6. Add the static library as a dependency.

a) Select your main application target, then click on “Build Phase” and expand the
“Target Dependencies” section.

b) Click on the plus (+) button and select the new static library from the list.

Development Task Flow for DOE-based Object API Applications

34 SAP Mobile Platform

7. Make sure that ARC is enabled for your main application target.

a) Select the main target, and go to “Build Settings”.
b) Verify that Automatic Reference Counting” is set to “YES”.

8. Add your ARC enabled code into the main application target.

9. Import the SAP Mobile Platform client stack libraries to the main target. Perform the steps
in Developer Guide: iOS Object API Applications > Development Task Flow for DOE-
based Object API Applications > Creating a Project > Importing Libraries and Code, to
import and add only the libraries to the main target. Do not add generated code to the main
target, because you have created the secondary static library target with the generated
code.

Development Task Flow for DOE-based Object API Applications

Developer Guide: iOS Object API Applications 35

10. Build your ARC-enabled main application target with the SAP Mobile Platform client
stack and generated code.

Ignore semantic issue warnings during compilation. For example:
"Semantic Issue
Type of property ‘databaseName’ does not match type of accessor
‘setDatabaseName:’"

Managing the Background State
To allow your application to continue to safely run when it goes into the background, you must
implement code in its AppDelegate class to ensure that the SUPApplication instance's
connection to the server shuts down gracefully when going into the background, and starts up
when the application becomes active again.

This is important because in iOS, when an application goes into the background, it can have its
network sockets invalidated, or the application may be shut down at any time. For correct
behavior of the SUPApplication connection, the connection needs to be stopped when in
background, and only started again when the application goes back to the foreground.

In addition, if your application is using replication based synchronization, and is
synchronizing a large amount of data at the time the application goes into background, it may
be necessary to interrupt the sync. To do this, the synchronization needs to be done using a
sync status listener, and the applicationDidEnterBackground method must notify
the listener to set the info.state flag to SYNC_STATUS_CANCEL (see Developer Guide: iOS
Object API Applications > Client Object API Usage > Callback and Listener APIs >
SyncStatusListener API for more details).

You must implement two appDelegate methods:
applicationDidEnterBackground and
applicationWillEnterForeground.

Note: The applicationWillEnterForeground method is also called when the
application first starts up, where most applications would have code already to register the
application and start the SUPApplication connection. This example code uses a boolean
wasPreviouslyInBackground so that the
applicationWillEnterForeground method can detect whether it is called on
coming out of the background or is called on a first startup.

BOOL wasPreviouslyInBackground = NO;

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 /*
 Use this method to release shared resources, save user data,
invalidate timers, and store enough application state information to
restore your application to its current state in case it is
terminated later.
 If your application supports background execution, this method is

Development Task Flow for DOE-based Object API Applications

36 SAP Mobile Platform

called instead of applicationWillTerminate: when the user quits.
 */
 @try
 {
 wasPreviouslyInBackground = YES;
 [SMP101SMP101DB disableSync];
 [SUPApplication stopConnection:0];
 }
 @
 catch (NSException *ee)
 {
 // log an error or alert user via notification
 }
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 /*
 Called as part of the transition from the background to the
inactive state; here you can undo many of the changes made on
entering the background.
 */
if(wasPreviouslyInBackground)
 // Run these in the background since these are blocking calls and
 // this will be called from the UI thread.
 dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);
 dispatch_async(queue, ^
 {
 @try
 {
 [SMP101SMP101DB enableSync];
 [SUPApplication startConnection:30];
 }
 @
 catch (NSException *ee)
 {
 // log an error or alert user via notification
 }
 });
}

Development Task Flow for DOE-based Object API Applications

Developer Guide: iOS Object API Applications 37

Development Task Flow for DOE-based Object API Applications

38 SAP Mobile Platform

Developing the Application Using the Object
API

Use the Object API to develop the application. An application consists of building blocks
which the developer uses to start the application, perform functions needed for the application,
and shutdown and uninstall the application.

Observe best practices to help improve the success of software development for SAP Mobile
Platform.
• Avoid making calls on the "main" thread on the device as this provides a poor response.

Instead, use loading screens and activity spinners while doing the work in a background
thread or operation queue. Do this while submitting and saving operations, and doing
imports that update the tables displayed.

• Use an operation queue if you are trying to process imports and show them as they come in
a UITableViewController. The operation callback will overwhelm the UI if you do
one at a time. Instead, use an operation queue and process in groups.

• When testing for memory leaks, ignore the one-time startup leaks reported for the
Messaging Server service.

Initializing an Application
Initialize the application when it starts the first time and subsequently.

Initially Starting an Application
Starting an application the first time.

Setting Up Application Properties
The Application instance contains the information and authentication credentials needed to
register and connect to the SAP Mobile Server.

The following code illustrates how to set up the minimum required fields:
// Initialize Application settings
SUPApplication* app = [SUPApplication getInstance];

// The identifier has to match the application ID deployed to the SAP
Mobile Server
app.applicationIdentifier = @"SUP101";

// ConnectionProperties has the information needed to register
// and connect to SAP Mobile Server
SUPConnectionProperties* props = app.connectionProperties;
props.serverName = @"server.mycompany.com";
// if you are using Relay Server, then use the correct port number

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 39

for the Relay Server.
// if connecting using http without a relay server, use the messaging
administration port, by default 5001.
// if connecting using https without a relay server, then use a new
port for https, for example 9001.
props.portNumber = 5001;

// if connecting using https, set the network protocol
props.NetworkProtocol = @"https";

props.activationCode = @"activationcode";
// if you are connecting through relay server, then use the MBS
farmId for that Relay Server
// otherwise use the farmId from the SCC application connection
props.farmId = @"farmId";
// if you are connecting through relay server and using auto
registration,
// then you must provide the correct urlSuffix from the relay server
// Obtain the url suffix value from the Relay Server configuration
for the specific farm.
// The client url suffix value should be used in the application.
// For example: props.urlSuffix = @"/ias_relay_server/client/
rs_client.dll";
props.urlSuffix = @"urlSuffix";

// provide user credentials
SUPLoginCredentials* login = [SUPLoginCredentials getInstance];
login.username = @"supAdmin";
login.password = @"supPwd";
props.loginCredentials = login;

// Initialize generated package database class with this Application
instance
[SUP101SUP101DB setApplication:app];

If you are using a Relay Server, specify the connection as follows:
// specify Relay Server Host
Props.serverName = @"relayserver.mycompany.com";
// specify Relay Server Port (port 80 by default)
Props.portNumber = 80;
// specify the Relay Server MBS Farm, for example MBS_Farm
Props.farmId = @"MBS_FARM";

Optionally, you can specify the Relay Server URL suffix.

Using a Reverse Proxy for Object API Applications
The Object API application communicates with SAP Mobile Server through two ports:

1. Application registration (default 5001)
2. Application synchronization (default 2480)

The SAP Mobile Server administrator configures two ports with each port serving one SAP
Mobile Server port, so that:

Developing the Application Using the Object API

40 SAP Mobile Platform

• The root context of http://reverseProxy:5001 maps to http://server-name:5001
• The root context of http://reverseProxy:2480 maps to http://server-name:2480

Set Object API application connection properties just as you would to directly connect to SAP
Mobile Server.

The SAP Mobile Server administrator configures two contexts for one SAP Mobile Server
port, so that:

• The "/smp/message" context of http://reverseProxy:8080 maps to http://server-name:
5001

• The "/smp/mobilink" context of http://reverseProxy:8080 maps to http://server-name:
2480

Set the URL suffix for the Object API application to "/smp/message" for registering
applications and "/smp/mobilink" for synchronization, just as you would if connecting to SAP
Mobile Server through a Relay Server which is not installed at the default location. The
difference is that you do not include a FarmId for the reverse proxy.

Note: When using an Apache server as a reverse proxy without SAP Hosted Relay Server to
proxy Object API Applications against SAP Mobile Server, if a custom URL suffix is used,
clients should specify a custom URL suffix including a trailing forward slash "/". For example,
"/myApp/" instead of "/myApp". If not, the client may report connection failures.

Communicating with SAP Mobile Server Through a Reverse Proxy
Connect to SAP Mobile Server through a Reverse Proxy using Relay Server or the Apache
Web server.

The Object API application can communicate with SAP Mobile Server:

• Directly
• Through Relay Server by specifying:

• Just the FarmID
• Just the URL suffix
• Both the FarmID and URL suffix

• Through a Reverse Proxy by specifying only the URL suffix - you can configure the
reverse proxy in such a way that the device communicates to http://server:port/
customcontext/tm or /tm2 when communicating with SAP Mobile Server. "FarmID" has
no meaning when using a Reverse Proxy. In this case, use only the URL suffix and leave
"FarmID" empty.

Note: You can also use the custom context with the Relay Server when using Apache.

Connecting to SAP Mobile Server Through a Reverse Proxy Using Relay
Server:
// Register:
 SUPApplication *app = [SUPApplication getInstance];
 SUPConnectionProperties *props = app.connectionProperties;

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 41

 props.urlSuffix = @"/ias_relay_server/client/rs_client.dll/
$messaging-farmId$";
 // (e.g. /ias_relay_server/client/rs_client.dll/mega-vm008.msg)

//Synchronize:
 SUPConnectionProfile *sp = [TestTestDB
getSynchronizationProfile];
 sp.networkStreamParams = @"url_suffix=/ias_relay_server/client/
rs_client.dll/$replication-farmId$";
 // (e.g. /ias_relay_server/client/rs_client.dll/mega-vm008.rep)

Connecting to SAP Mobile Server Through a Reverse Proxy Using Apache Web
Server as Proxy Server:
Add to the httpd.conf file:
content: Listen 80 <VirtualHost *:80>
ServerName proxy-server
<Location /app1/>
ProxyPass http://sup-server:5001/ ProxyPassReverse
http://sup-server:5001/
</Location>
<Location /app2/>
ProxyPass http://sup-server:2480/
ProxyPassReverse http://sup-server:2480/
</Location>
</VirtualHost>

//Register
SUPApplication *app = [SUPApplication getInstance];
 SUPConnectionProperties *props = app.connectionProperties;
 props.urlSuffix = @"/app1";

//Synchronize
SUPConnectionProfile *sp = [TestTestDB getSynchronizationProfile];
 sp.networkStreamParams = @"url_suffix=/app2";

Disabling Encryption for iOS Devices
Disable the encryption for SUPApplication messages between an iOS device on the
messaging channel (MBS).

For iOS devices, you can fully disable the encryption for SUPApplication messages between
the device and the Unwired server by setting the iOS NSUserDefaults BOOL
MCL_NO_ENCRYPTION property to YES.

To disable encryption on iOS devices, add the following code to your application:
[[NSUserDefaults standardUserDefaults] setBool:YES
forKey:@"MCL_NO_ENCRYPTION"];

Note:

Developing the Application Using the Object API

42 SAP Mobile Platform

• When you disable encryption between the iOS device and Unwired Server this way, the
device will not encrypt messages, even if the Encryption Enabled property on the "Device
Advanced" page in the Application Connection Template is set to TRUE.

• This method of disabling encryption for SUPApplication messages is only applicable for
the messaging channel (MBS). The NSUserDefaults property has no effect on the data
channel (RBS).

Registering an Application
Each device must register with the server before establishing a connection.

To register the device with the server during the initial application startup, use the
registerApplication method in the SUPApplication class. You do not need to use
the registerApplication method for subsequent application start-ups. The
registerApplication method automatically starts the connection to complete the
registration process.

Call the generated database's setApplication method before starting the connection or
registering the device.

The following code shows how to register the application and device.
SUPApplication* app = [SUPApplication getInstance];
@try {
 [app setApplicationIdentifier: @"appname"]; (same as in SCC)
 [app setApplicationCallback:self]; (must implement the
SUPApplicationCallback protocol)
 SUPConnectionProperties* props = app.connectionProperties;
 [props setServerName:@"servername"];
 [props setPortNumber:portnumber];
 [props setUrlSuffix:@""];
 [props setFarmId:@"1"]; (same as in SCC)
 SUPLoginCredentials* login = [SUPLoginCredentials getInstance];
 login.username = @"username"; (same as in SCC)
 login.password = nil;
 props.loginCredentials = login;
 props.activationCode = @"activationcode"; (same as in SCC)
}
@catch (SUPPersistenceException * pe) {
 NSLog(@"%@: %@", [pe name],[pe message]);
}

// Initialize generated package database class with this Application
instance
[SMP101SMP101DB setApplication:app];

@try {
 [app registerApplication:0];
}
@catch (SUPApplicationTimeoutException * pe) {
 NSLog(@"%@: %@", [pe name],[pe message]);
}

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 43

Setting Up the Connection Profile
The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLite®J
runtime tuning values.

Set up the connection profile before the first database access, and check if the database exists
by calling the databaseExists method in the generated package database class. Any
settings you establish after the connection has already been established will not go into effect.

The generated database class automatically contains all the default settings for the connection
profile. You may add other settings if necessary. For example, you can set the database to be
stored in an SD card or set the encryption key of the database.

Use the SUPConnectionProfile class to set up the locally generated database. Retrieve
the connection profile object using the SAP Mobile Platform database's
getConnectionProfile method.

SUPConnectionProfile* cp = [SMP101SMP101DB getConnectionProfile];
[cp setEncryptionKey:@"Your key"];

An application can have multiple threads writing to the database during synchronization by
enabling the connection profile property, allowConcurrentWrite. Setting the property
to "true" allows multiple threads to perform create, read, update, or delete operations at the
same time in a package database. For example:
[[SMP101DB getConnectionProfile]
 setBoolean:@"allowConcurrentWrite"
 :YES];

Note: Multiple threads are allowed to write to the database at the same time. However, there
will be errors when multiple threads write to the same row of one MBO. Avoid writing to the
same MBO row in your application.

Setting Up Connectivity
Store connection information to the SAP Mobile Server data synchronization channel.

Setting Up the Synchronization Profile
You can set SAP Mobile Server synchronization channel information by calling the
synchronization profile's setter method. By default, this information includes the server host,
port, domain name, certificate and public key that are pushed by the message channel during
the registration process.

Settings are automatically provisioned from the SAP Mobile Server. The values of the settings
are inherited from the application connection template used for the registration of the
application connection (automatic or manual). You must make use of the connection and
security settings that are automatically used by the Object API.

Developing the Application Using the Object API

44 SAP Mobile Platform

Typically, the application uses the settings as sent from the SAP Mobile Server to connect to
the SAP Mobile Server for synchronization so that the administrator can set those at the
application deployment time based on their deployment topology (for example, using Relay
Server, using e2ee security, or a certificate used for the intermediary, such as a Relay Server
Web server). See the Applications and Application Connection Templates topics in System
Administration.

Set up a secured connection using the ConnectionProfile object.

1. Retrieve the synchronization profile object using the SAP Mobile Platform database's
getSynchronizationionProfile method.

SUPConnectionProfile* cp = [SMP101SMP101DB
getSynchronizationProfile];

2. Set the connection fields in the ConnectionProfile object.

SUPConnectionProfile* cp = [SMP101SMP101DB
getSynchronizationProfile];
[cp setServerName:@"xxxx"];
[cp setPortNumber:2480];

Creating and Deleting a Device's Local Database
There are methods in the generated package database class that allow programmers to delete
or create a device's local database. A device local database is automatically created when
needed by the Object API. The application can also create the database programatically by
calling the createDatabase method. The device's local database should be deleted when
uninstalling the application.

1. Connect to the generated database by calling the generated database instance's
openConnection method.

[SMP101SUP101DB openConnection];

If the database does not already exist, the openConnection method creates it.

2. Optionally, you can include code in your application to check if an instance of the
generated database exists by calling the generated database instance's
databaseExists method.

If an instance of the generated database does not exist, call the generated database
instance's createDatabase method.

if (![SMP101SMP101DB databaseExists])
[SMP101SMP101DB createDatabase];

3. When the local database is no longer needed, delete it by calling the generated database
instance's deleteDatabase method.

[SMP101SMP101DB deleteDatabase];

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 45

Logging In
Use online authentication with the server.

Authenticate the user for data synchronization by calling the generated database API
onlineLogin method.

Use the SUPSynchronizationProfile to store the username and password.

SUPConnectionProfile *syncProfile = [SMP101SMP101DB
getSynchronizationProfile];
[syncProfile setUser:@"user"];
[syncProfile setPassword:@"password"];
[SMP101SMP101DB onlineLogin];

Turn Off API Logger
In production environments, turn off the API logger to improve performance.

[MBOLogger setLogLevel:LOG_OFF];

Setting Up Callbacks
When your application starts, it can register database and MBO callback listeners.

Callback handler and listener interfaces are provided so your application can monitor changes
and notifications from SAP Mobile Platform:

• The SUPApplicationCallback class is used for monitoring changes to application
settings, messaging connection status, and application registration status.

• The SUPCallbackHandler interface is used to monitor notifications and changes
related to the database. Register callback handlers at the package level use the
registerCallbackHandler method in the generated database class. To register for
a particular MBO, use the registerCallbackHandler method in the generated
MBO class.

Setting Up Callback Handlers
Use the callback handlers for event notifications.

Use the SUPCallbackHandler API for event notifications including login for
synchronization and replay. If you do not register your own implementation of the
SUPCallbackHandler interface, the generated code will register a new default callback
handler.

1. The generated database class contains a method called
registerCallbackHandler. Use this method to install your implementation of
SUPCallbackHandler.
For example:
DBCallbackHandler* handler = [DBCallbackHandler newHandler];
[SMP101SMP101DB registerCallbackHandler:handler];

Developing the Application Using the Object API

46 SAP Mobile Platform

2. Each generated MBO class also has the same method to register your implementation of
the SUPCallbackHandler for that particular type. For example, if Customer is a
generated MBO class, you can use the following code:
MyCustomerMBOCallbackHandler* handler =
[MyCustomerMBOCallbackHandler newHandler];
[Customer registerCallbackHandler:handler];

Asynchronous Operation Replay
Upload operation replay records asynchronously.

When an application calls submitPending on an MBO on which a create, update, or delete
operation is performed, an operation replay record is created on the device local database.

When synchronize is called, the operation replay records are uploaded to the server. The
method returns without waiting for the backend to replay those records. The synchronize
method downloads all the latest data changes and the results of the previously uploaded
operation replay records that the backend has finished replaying in the background. If you
choose to disable asynchronous operation replay, each synchronize call will wait for the
backend to finish replaying all the current uploaded operation replay records.

When SAP Mobile Platform does an update operation replay, if the primary key or foreign
key of the MBO is generated by the EIS and the MBO's content coming from the device has no
primary key or foreign key, the SAP Mobile Server loads the primary key or foreign key from
the CDB to merge the incoming values with the CDB content so that a full row (graph) can be
communicated to the EIS.

This feature is enabled by default. You can enable or disable the feature by setting the
asyncReplay property in the synchronization profile. The following code shows how to
disable asynchronous replay:
[[SMP101SMP101DB getSynchronizationProfile] setAsyncReplay:NO];

When the application is connected
(by Application.startConnection() or Application.registerApplica
tion), it may receive background notifications and trigger a synchronize or other database
operation. If you try to delete the database, you may receive database exceptions.

Before deleting the database, stop the application connection
(Application.stopConnection()).

You can specify an upload-only synchronization where the client sends its changes to the
server, but does not download other changes from the server. This type of synchronization
conserves device resources when receiving changes from the server.
+ (void)beginSynchronize:(SUPObjectList*)synchronizationGroups
withContext:(NSString*)context withUploadOnly:(BOOL) uploadOnly

When asynchronous replay is enabled and the replay is finished, the onSynchronize callback
method is invoked with a SynchronizationStatus value of
SynchronizationStatus.ASYNC_REPLAY_COMPLETED. Use this callback

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 47

method to invoke a synchronize call to pull in the results, as shown in the following callback
handler.
public class MyCallbackHandler extends DefaultCallbackHandler
{
 public int onSynchronize(ObjectList groups, SynchronizationContext
context)
 {
 switch(context.getStatus())
 {
 case SynchronizationStatus.ASYNC_REPLAY_UPLOADED:
 LogMessage("AsyncReplay uploaded");
 break;
 case SynchronizationStatus.ASYNC_REPLAY_COMPLETED:
 [SUP101SUP101DB synchronize:@"default"];
 LogMessage("AsyncReplay Done");
 break;
 default:
 break;
 }

 return SynchronizationAction.CONTINUE;
 }
}

Synchronizing Applications
Synchronize package data between the device and the server.

The generated database provides you with synchronization methods that apply to either all
synchronization groups in the package or a specified list of groups.

For information on synchronizing DOE-based applications, see Message-Based
Synchronization APIs.

Nonblocking Synchronization
An example that illustrates the basic code requirements for connecting to SAP Mobile Server,
updating mobile business object (MBO) data, and synchronizing the device application from a
device application based on the Client Object API.

Subscribe to the package using synchronization APIs in the generated database class, specify
the groups to be synchronized, and invoke the asynchronous synchronization method
(beginSynchronize).

1. Set the synchronization parameters if there are any.

2. Make a blocking synchronize call to SAP Mobile Server to pull in all MBO data:
[SMP101SMP101DB synchronize];

3. List all customer MBO instances from the local database using an object query, such as
findAll, which is a predefined object query.

SUPObjectList *objlist = [SMP101Customer findAll];

Developing the Application Using the Object API

48 SAP Mobile Platform

4. Find and update a particular MBO instance, and save it to the local database.
SMP101Customer *customer = [SMP101Customer findByPrimaryKey:
32838];
//Change some sttribute of the customer record
customer.fname= @"New Name";
[customer save];

5. Submit the pending changes. The changes are ready for upload, but have not yet been
uploaded to the SAP Mobile Server.
[Customer submitPending];

6. Use non-blocking synchronize call to upload the pending changes to the SAP Mobile
Server. The previous replay results and new changes are downloaded to the client device in
the download phase of the synchronization session.
[SMP101SMP101DB beginSynchronize];

Specifying Personalization Parameters
Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The
PersonalizationParameters class is within the generated code for your project.

1. To instantiate a PersonalizationParameters object, call the generated database
instance's getPersonalizationParameters method:

pp = [SMP101SMP101DB getPersonalizationParameters];
2. Assign values to the PersonalizationParameters object:

pp.Pkcity = @"New York";
3. Save the PersonalizationParameters value to the local database:

[pp save]

Note: If you define a default value for a personalization key that value will not take effect,
unless you call [pp save].

4. Synchronize the PersonalizationParameters value to the SAP Mobile Server:

[SMP101SMP101DB synchronize];

Specifying Synchronization Parameters
Use synchronization parameters within the mobile application to download filtered MBO
data.

Note: The getSynchronizationParameters method has been deprecated.

Assign the synchronization parameters of an MBO before a synchronization session. The next
synchronize sends the updated synchronization parameters to the server.

1. List all the synchronization parameters.
SUPObjectList* r = [SKPKCustomer getSubscriptions] ;

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 49

2. Add synchronization parameters. This call adds and saves the synchronization
parameters:
SKPKCustomerSubscription *sp = [SKPKCustomerSubscription
getInstance];
sp.name = @"example";
[SKPKCustomer addSubscription:sp];

3. Synchronize to download the data:
[SMP101SMP101DB synchronize];

Subsequently Starting an Application
Subsequent start-ups are different from the first start-up.

Starting an application on subsequent occasions:

1. Use the registrationStatus API in the SUPApplication class to determine if
the application has already been registered. If it has been registered, then only perform the
following steps:
a. Get the application instance.
b. Set the applicationIdentifier. The applicationIdentifier must be

the same as the one used for initial registration.
c. Initialize the generated package database class with this application instance.

Note: Once the application is registered, changes to any of the application connection
properties do not take effect. To modify the connection properties, unregister the
application, change the connection properties and then register again. Unregistering the
application also removes the user from the server.

2. Set up the connection profile properties if needed for database location and tuning
parameters.

3. Set up the synchronization profile properties if needed for SSL or a relay server.
4. Start the application connection to the server using the existing connection parameters and

registration information.

[application startConnection];

Accessing MBO Data
Use MBO object queries to retrieve lists of MBO instances, or use dynamic queries that return
results sets or object lists.

Object Queries
Use the generated static methods in the MBO classes to retrieve MBO instances.

Developing the Application Using the Object API

50 SAP Mobile Platform

1. To find all instances of an MBO, invoke the static findAll method contained in that
MBO. For example, an MBO named Customer contains a method such as findAll.

2. To find a particular instance of an MBO using the primary key, invoke [MBO
findByPrimaryKey:...]. For example, if a Customer has the primary key "key" as
int, the Customer MBO would contain the + (Customer*) findByPrimaryKey:
(int)key method, which performs the equivalent of Select x.* from
Customer x where x.key = :key.

If the return type is a list, additional methods are generated for you to further process the result,
for example, to use paging.

Dynamic Queries
Build queries based on user input.

Use the SUPQuery class to retrieve a list of MBOs.

1. Specify the where condition used in the dynamic query.
SUPQuery *myquery = [SUPQuery getInstance];
myquery.testCriteria = [SUPAttributeTest
match:@"fname" :@"Erin"];

2. Use the findWithQuery method in the MBO to dynamically retrieve a list of MBOs
acccording to the specified attributes.
SUPObjectList* customers = [SampleAppCustomer
findWithQuery:myquery]

3. Use the generated database’s executeQuery method to query multiple MBOs through
the use of joins.
SUPQuery *query = [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.id"];
[query from:@"Customer":@"c"];
[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
query.testCriteria = [SUPAttributeTest
match:@"c.lname":@"Smith"];
SUPQueryResultSet* resultSet = [SMP101SMP101DB
executeQuery:query];
if(resultSet == nil)
{
 MBOLog(@"executeQuery Failed !!");
 return;
}
for(SUPDataValueList* result in resultSet)
{
 MBOLog(@"Firstname,lastname,order date,region = %@ %@ %@ %@",
 [SUPDataValue getNullableString:[result item:0]],
 [SUPDataValue getNullableString:[result item:1]],
 [[SUPDataValue getNullableDate:[result item:2]] description],
 [SUPDataValue getNullableString:[result item:3]]);
}

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 51

MBOs with Complex Types
Mobile business objects are mapped to classes containing data and methods that support
synchronization and data manipulation. You can develop complex types that support
interactions with backend datasources such as SAP® and Web services. When you define an
MBO with complex types, SAP Mobile Platform generates one class for each complex type.

Using a complex type to create an MBO instance.

1. Suppose you have an MBO named SimpleCaseList and want to use a complex data
type called AuthenticationInfo to its Create method's parameter. Begin by
creating the complex datatype:
AuthenticationInfo* authinfo;
authinfo = [AuthenticationInfo getInstance];
authinfo.userName=@"Francie";

2. Instantiate the MBO object:
SimpleCaseList *cr = [[SimpleCaseList alloc] init];
cr.company = @"Calbro Services";

3. Call the create method of the SimpleCaseList MBO with the complex type parameter as
well as other parameters, and call submitPending() to submit the create operation
to the operation replay record. Subsequent synchronizations upload the operation replay
record to the SAP Mobile Server and get replayed.
[cr create:authinfo];
[cr submitPending];

Relationships
The Object API supports one-to-one, one-to-many, and many-to-one relationships.

Navigate between MBOs using relationships.

1. Suppose you have one MBO named Customer and another MBO named
SalesOrder. This code illustrates how to navigate from the Customer object to its
child SalesOrder objects:

SMP101Customer *customer = [SMP101Customer findByPrimaryKey:
32838];
SUPObjectList *orders = customer.salesOrders;

2. To filter the returned child MBO's list data, use the Query class:

SUPQuery *query = [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.region"];
[query from:@"Customer":@"c"];
[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
query.testCriteria = [SUPAttributeTest
match:@"c.lname":@"Devlin"];
SUPQueryResultSet* resultSet = [SMP101SMP101DB
executeQuery:query];

3. For composite relationship, you can call the parent's SubmitPending method to submit
the entire object tree of the parent and its children. Submitting the child MBO also submits

Developing the Application Using the Object API

52 SAP Mobile Platform

the parent and the entire object tree. (If you have only one child instance, it would not make
any difference. To be efficient and get one transaction for all child operations, it is
recommended to submit the parent MBO once, instead of submitting every child).

If the primary key for a parent is assigned by the EIS, you can use a multilevel insert
cascade operation to create the parent and child objects in a single operation without
synchronizing multiple times. The returned primary key for the parent's create
operation populates the children prior to their own creation.

The following example illustrates how to submit the parent MBO which also submits the
child's operation:
SMP101Customer *customer = [SMP101Customer findByPrimaryKey:
32838];
customer.city = @"Dublin";
SMP101Sales_order* order = [SMP101Sales_order findByPrimaryKey:
1220];
order.region = @"SA"; //update any field
[order update]; //call update on the child record
[order refresh];
[order.customer submitPending];

Manipulating Data
Create, update, and delete instances of generated MBO classes.

You can create a new instance of a generated MBO class, fill in the attributes, and call the
create method for that MBO instance.

You can modify an object loaded from the database by calling the update method for that
MBO instance.

You can load an MBO from the database and call the delete method for that instance.

Creating, Updating, and Deleting MBO Records
Perform create, update, and delete operations on the MBO instances that you have created.

You can call the create, update, and delete methods for MBO instances.

Note: For MBOs with custom create or update operations with parameters, you should use the
custom operations, rather than the default create and update operations. See MBOs with
Complex Types.

1. Suppose you have an MBO named Customer. To create an instance within the database,
invoke its create method, which causes the object to enter a pending state. Then call the
MBO instance's submitPending method.

SMP101Customer *newcustomer = [[SMP101Customer alloc] init];
newcustomer.fname = @"John";
... //Set the required fields for the customer

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 53

[newcustomer create];
[newcustomer submitPending];

2. To update an existing MBO instance, retrieve the object instance through a query, update
its attributes, and invoke its update method, which causes the object to enter a pending
state. Then call the MBO instance's submitPending method. Finally, synchronize with
the generated database:
SMP101Customer *customer = [SMP101Customer findByPrimaryKey:
32838]; //find by the primary key
customer.city = @"Dublin"; //update any field to a new value
[customer update];
[customer submitPending];

3. To delete an existing MBO instance, retrieve the object instance through a query and
invoke its delete method, which causes the object to enter a pending state. Then call the
MBO instance's submitPending method. Finally, synchronize with the generated
database:
SMP101Customer *customer = [SMP101Customer findByPrimaryKey:
32838];
[customer delete];
[customer submitPending];

For an object tree with MBOs in a composite (cascading) relationship, submitPending
submits changes found in the entire hierarchy. If each MBO in the hierarchy has its own
CUD operations, the submitted object tree replays in this order:
• Create and Update: a preorder traversal, for example, parent -> left child -> right child.

That is, create the parent before the children.
• Delete: a postorder traversal, for example, left child ->right child->parent.
Left and right in this context means from the first child in the children list to the last child.
For a tree with multiple operation types, for example, root (update) and two children (one
create and one update) and each child has two children, the order of the operation is: root
(update), child one(create), children of child one(create), children of child two (delete),
child two (delete).

Other Operations
Use operations other than create, update, or delete.

In this example, a customized operator is used to perform a sum operation.

1. Suppose you have an MBO that has an operator that generates a customized sum. Begin by
creating an object instance and assigning values to its attributes, specifying the "Add"
operation:
SMP101CustomerOtherOperation *other =
[[SMP101CustomerOtherOperation alloc] init];
other.P1 = @"somevalue";
other.P2 = 2;
other.P3 = [NSDate date];
[other save];

Developing the Application Using the Object API

54 SAP Mobile Platform

2. Call the MBO instance's submitPending method and synchronize with the generated
database:

[other submitPending];
[SMP101SMP101DB synchronize];

Using submitPending and submitPendingOperations
You can submit a single pending MBO, all pending MBOs of a single type, or all pending
MBOs in a package. Once those pending changes are submitted, the MBOs enter a replay
pending state. The next synchronization will submit those changes to the EIS.

Note: submitPendingOperations APIs are expensive. SAP recommends using the
submitPending API with the MBO instance whenever possible.

Database Classes
Submit pending operations for all entities in the package or synchronization group, cancel all
pending operations that have not been submitted to the server, and check if there are pending
oprations for all entities in the package.

1. To submit pending operations for all pending entities in the package, invoke the generated
database's submitPendingOperations method.

Note: submitPendingOperations APIs are expensive. SAP recommends using the
submitPending API with the MBO instance whenever possible.

2. To submit pending operations for all pending entities in the specified synchronization
group, invoke the generated database's +(void)submitPendingOperations:
(NSString*)synchronizationGroup method.

3. To cancel all pending operations that have not been submitted to the server, invoke the
generated database's cancelPendingOperations method.

Generated MBOs
Submit pending operations for all entities for a given MBO type or a single instance, and
cancel all pending operations that have not been submitted to the server for the MBO type or a
single entity.

1. To submit pending operations for all pending entities for a given MBO type, invoke the
MBO class' static submitPendingOperations method.

Note: submitPendingOperations APIs are expensive. SAP recommends using the
submitPending API with the MBO instance whenever possible.

2. To submit pending operations for a single MBO instance, invoke the MBO object's
submitPending method.

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 55

3. To cancel all pending operations that have not been submitted to the server for the MBO
type, invoke the MBO class' static cancelPendingOperations method.

4. To cancel all pending operations for a single MBO instance, invoke the MBO object's
cancelPending method.

5. For a single MBO, you must call the refresh() method of the MBO instance before
you use this instance again.

6. For related MBOs, you must call the refresh() method of the MBO instance before
you use this instance again, even if the MBO's child or parent has called
submitPending.

Shutting Down the Application
Shut down an application and clean up connections.

Closing Connections
Clean up connections from the generated database instance prior to application shutdown.

1. To release an opened application connection, stop the messaging channel by invoking the
application instance's stopConnection method.

[app stopConnection:<timeout_value>];
2. Use the closeConnection method to close all database connections for this package

and release all resources allocated for those connections. This is recommended to be part
of the application shutdown process.

Debugging Runtime Errors and Performance Analysis
To handle occurrences of exceptions and special conditions that change the normal flow of the
program execution, you must perform error handling.

End to End Tracing
End to end tracing enables an application developer and end user to trace a request that is sent
from the client to the back-end. This spans the entire landscape where you can derive a
correlation of traces at the client, server and back-end.

These correlated traces help in performance analysis and are centrally monitored on SAP
Solution Manager. These are displayed as reports where you can extract information on failure
of delivering a request, time taken for a request to reach a component and so on.

On the client side, the client framework enables an application developer to switch on the trace
for messages. The client traces the request at predefined points and all these transactions/

Developing the Application Using the Object API

56 SAP Mobile Platform

requests are recorded in a Business Transaction XML. Additionally, the client maintains a
unique identifier in the HTTP header called the SAP Passport that is used to correlate traces
across various components. This Business Transaction XML can later be uploaded to the SAP
Solution Manager which is a central location to correlate all logging information.

Using Tracing APIs
Use these APIs to enable the application user to use End-to-End tracing.

The API consists of the following interfaces or classes:

• SUPE2ETraceService – A public interface for use by the application's user interface
developers.

• SUPE2ETraceLevel – Defines an enumeration of the trace levels that you can set to a
passport. Trace levels control the amount of logging done on the server side.

• SUPE2ETraceServiceImpl – The implementation of the SUPE2EtraceService
interface; the implementation is a singleton. There are additional methods for you to create
a passport and business transaction.

• SUPE2ETraceMessage – An entity class which holds the request/response details and
statistics and the passport. Object API internally makes use of this class to add request/
response details to the business transaction and to get a new passport for each new request.
Object API sets the new passport to the HTTP header, 'SAP-PASSPORT' and sends it to the
server side, so that the server can continue processing the E2E tracing.

Getting an Instance of the E2E Trace Service
Get an instance of the SUPE2ETraceService interface.

You can create a new instance in one of two ways.

Instantiate the object through its implementation class:
[SUPE2ETraceServiceImpl getInstance];

Instantiate the object through SUPApplication:

[SUPApplication getE2ETraceService];

Initializing the Trace
Set the trace level and start the trace. The SAP Mobile Server administrator sets the trace level
from SAP Control Center.

Set the passport trace level to one of the following values.

Trace Level Description

0 (NONE) 0 (NONE) Do not use. Not Supported. (Specific
to trace analysis on the client. No traces are trig-
gered on the server.)

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 57

Trace Level Description

1 (LOW) Corresponds to response time- distribution anal-
ysis. This helps to analyse the time taken on each
server component.

2 (MEDIUM) Corresponds to performance analysis. Perform-
ance traces are triggered on the server side. Ex-
ample: Introscope Transaction Trace, ABAP
Trace, SQL Traces and so on.

3 (HIGH) Corresponds to functional analysis.

SUPE2ETraceLevel level = SUPE2ETraceLevel_NONE;
switch (val)
{
 case 1:
 level = SUPE2ETraceLevel_LOW;
 break;
...
SUPE2ETraceServiceImpl *e2eTraceService = [SUPE2ETraceServiceImpl
getInstance];
[e2eTraceService setTraceLevel:level];
[e2eTraceService startTrace];

When you call the startTrace method, the SUPE2ETraceService initializes the trace
and sets appropriate flags to indicate the trace has started. The method may perform other
tasks as required by SAP's BTX API, such as getting a handle to the BTX writer from the BTX
API.

Stopping the Trace
Stop appending trace data to the business transaction (BTX) and finish creating the BTX.

The stopTrace() method also retrieves the BTX byte array from the BTX writer and
returns it to the calling code for further use (upload). Because the stopTrace() call clears
the BTX from memory, you must make sure to save the BTX for further use, such as uploading
the trace.
NSData *btx = [[SUPE2ETraceServiceImpl getInstance] stopTrace];

Uploading the BTX
Upload the business transaction to the server.

Upload the business transaction by calling uploadTrace:(NSData *)btx and passing
the BTX byte array. The method returns true if the upload succeeds, otherwise it throws an
SUPE2ETraceUploadException.

Call this blocking method in a separate thread other than the main application thread.
//ensure this blocking call gets executed in a separate thread
@try
{

Developing the Application Using the Object API

58 SAP Mobile Platform

 [traceService uploadTrace:btx];
}@catch (SUPE2ETraceUploadException *eue) {}

Tracking KPI
Access performance libraries for tracing or collecting key performance indicators (KPIs).

User interactions are measured in intervals of these types: HttpRequest, PersistenceRead,
PersistenceWrite, SubmitPending, CancelPending, and Transaction. All intervals measure
Wallclock Time, CPU Time, and Memory Max.

The HttpRequest interval type measures some additional KPIs:

• HttpRequest
• NetworkTime
• Roundtrips
• Total Bytes
• Sent Bytes
• Received Bytes

After the interaction is stopped, a summary log in txt format is written to the device.The
summary log contains sums of each of the KPI types. For example, total Wallclock Time, total
CPU Time, total number of roundTrips, and so on. There is no detailed log that contains KPI
values for each interval.

The administrator can invoke a Get Trace request through SAP Control Center to send the
performance log to the server domain log.

To start collecting performance metrics, call the startInteraction method:

- (void)startInteraction:(NSString *)interactionName;

To stop collecting performance metrics and output a summary to the reporting target, call the
stopInteraction method:

- (void)stopInteraction;

Example of application interactions for collecting KPI:
// get the instance
id <SUPPerformanceAgentService> pa = [SUPPerfAgentServiceImpl
getInstance];
[pa startInteraction:@"Interaction 1";];
// application interaction
// ...
// ...
[pa stopInteraction];

[pa startInteraction:@"Interaction 2";];
// application interaction
// ...
// ...
[pa stopInteraction];

The following limitations apply:

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 59

• On iOS devices, there is a detailed log file only written after the interaction is stopped.
There is no report on the KPI values for each interval available.

Uninstalling the Application
Uninstall the application and clean up all package- and MBO-level data.

Deleting the Database and Unregistering the Application
Delete the package database, and unregister the application.

1. Unregister the application by invoking the Application instance's
unregisterApplication method.

@try {
 [app unregisterApplication:<time out value>]
}
@catch (SUPApplicationTimeoutException * pe) {
 NSLog(@"%@: %@", [pe name],[pe message]);
}

2. To delete the package database, call the generated database's deleteDatabase
method.
[SMP101SMP101DB deleteDatabase];

Recovering From SAP Mobile Server Failures
Add application code to check for and recover from SAP Mobile Server failures.

It is highly recommended that you add a catch call to all synchronize methods
(synchronize(), begingSynchronize(), and so on) within your applications to
allow the application to recover if SAP Mobile Server fails and needs to be restored from an
older database. If not, you may have to reinstall the application manually for all users so they
can resynchronize with SAP Mobile Server.

See Restoring from an Older Backup Database File (Data Loss) in the System Administration
Guide for information about SAP Mobile Server recovery.

As a best practice, and not included in these examples, application developers should include
code that informs mobile application users about:

• What is going to happen (for example, reregistering, recreating the local database, and so
on). And,

• The reason for the action (for example, lost registration, server is restored, and so on).

And prompt them for confirmation before executing the code.

See Client Application Recovery Examples.

Developing the Application Using the Object API

60 SAP Mobile Platform

Client Application Recovery Examples
These scenarios provide example code that illustrate how the client application recovers from
SAP Mobile Server failures in various client application states.

When the SAP Mobile Server is restored to a previous state the client might be in an
inconsistent state with that of the server. For example:

1. Client synchronized with SAP Mobile Server after the time the database was backed up.
The client cannot synchronize successfully with SAP Mobile Server once the database is
restored.

2. Client registered with SAP Mobile Server after the time the database was backed up. Client
registration was lost when the database was restored.

Client Application Registration Recovery Example
After SAP Mobile Server is restored, the client application connection information might be
lost if the registration was created after the database was backed up.

This client application calls startConnection to connect to SAP Mobile Server. The
onConnectionStatusChanged callback returns error code 580 with the message
authentication failed . The user can reregister the application using
SUPApplicationCallback implementation by this error code . If SAP Mobile Server is restored
to a point in time when the client application has registered, startConnection should be able to
start without error or with other errors when communications to SAP Mobile Server failed.

Note: In these code examples lines following "MyApplicationCallback.h" indicates they
should be in the MyApplicationCallback.h header file. Similarly, code lines
following "MyApplicationCallback.m" indicates they should be in the
MyApplicationCallback.m file.

1. Automatic registration recover:
- (void) startApplication

{
 SUPApplication *app = [SUPApplication getInstance];
 MyApplicationCallback *cb = [[[MyApplicationCallback alloc]
init] autorelease];
 [app setApplicationCallback:cb];

 @try
 {
 SUPConnectionProperties *connProperties =
app.connectionProperties;
 connProperties.serverName = testServer;
 connProperties.portNumber = testPort;
 SUPLoginCredentials *login = [SUPLoginCredentials
getInstance];
 login.username = testUser;
 login.password = testPassword;

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 61

 connProperties.loginCredentials = login;

 if (app.registrationStatus ==
SUPRegistrationStatus_UNREGISTERED)
 {
 [app registerApplication:100]; // or call
app.RegisterApplication();
 }
 else
 {
 [app startConnection:100]; // or call
app.StartConnection();
 }
 }
 @catch (SUPApplicationRuntimeException *ex)
 {
 NSLog(@"SUPApplicationRuntimeException(%d): %@",
ex.errorCode, ex.reason);
 }
 @catch (SUPApplicationTimeoutException *ex)
 {
 NSLog(@"SUPApplicationTimeoutException(%d): %@",
ex.errorCode, ex.reason);
 }

 while (app.connectionStatus != SUPConnectionStatus_CONNECTED
|| app.registrationStatus != SUPRegistrationStatus_REGISTERED)
 {
 if (cb.reregisterException != nil)
 {
 // reregister hit exception
 @throw cb.reregisterException;
 }
 sleep(1);
 }
}

MyApplicationCallback.h

#import "SUPApplicationDefaultCallback.h"

@interface MyApplicationCallback : SUPApplicationDefaultCallback
{

}

@property(readwrite, nonatomic, assign) BOOL callFlag;
@property(readwrite, nonatomic, retain) NSException
*reregisterException;

@end

MyApplicationCallback.m

Developing the Application Using the Object API

62 SAP Mobile Platform

#import "MyApplicationCallback.h"

#import "SUPApplication.h"
#import "end2end_rdbEnd2end_rdbDB.h"

@implementation MyApplicationCallback

@synthesize callFlag;
@synthesize reregisterException;

- (id) init
{
 [super init];
 callFlag = NO;
 reregisterException = nil;
 return self;
}

- (void)onConnectionStatusChanged:
(SUPConnectionStatusType)connectionStatus :(int)errorCode :
(NSString *)errorMessage
{
 // error code 580 is
COMMUNICATION_DEVICEVAL_INVALID_ACTIVE_CODE
 if (errorCode == COMMUNICATION_DEVICEVAL_INVALID_ACTIVE_CODE
&& !callFlag)
 {
 // this callback could be invoked multiple times when this
error occures,
 // but we just call once to reregister, so set the callFlag
to be true.
 callFlag = true;
 dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);
 dispatch_async(queue, ^{
 [self reregister];
 });

 }
}

- (void) reregister
{
 // do not unregister application, because the application
connection info
 // has been deleted from server side. We can call
registerApplication directly.
 @try
 {
 // call disable sync for all packages in this application
 [end2end_rdbEnd2end_rdbDB disableSync];

 SUPApplication *app = [SUPApplication getInstance];
 [app registerApplication:100];

 // call enable sync for all packages in this application

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 63

 [end2end_rdbEnd2end_rdbDB enableSync];

 NSLog(@"Done reregister.");
 }
 @catch (NSException *exception)
 {
 NSLog(@"reregister hit exception(%@): %@", exception.name,
exception.reason);
 self.reregisterException = exception;
 }

}
@end

2. Manual registration recover - if error code 580 is encountered, register the application
manually in SAP Control Center first, or else reregistering the application fails the first
time. Manual registration requires an activation code be set:
- (void) startApplication
{
 SUPApplication *app = [SUPApplication getInstance];
 MyApplicationCallback *cb = [[[MyApplicationCallback alloc]
init] autorelease];
 [app setApplicationCallback:cb];

 @try
 {
 SUPConnectionProperties *connProperties =
app.connectionProperties;
 connProperties.serverName = testServer;
 connProperties.portNumber = testPort;
 connProperties.activationCode = @”100”;
 SUPLoginCredentials *login = [SUPLoginCredentials
getInstance];
 login.username = testUser;
 login.password = nil;
 connProperties.loginCredentials = login;

 if (app.registrationStatus ==
SUPRegistrationStatus_UNREGISTERED)
 {
 [app registerApplication:100]; // or call
app.RegisterApplication();
 }
 else
 {
 [app startConnection:100]; // or call
app.StartConnection();
 }
 }
 @catch (SUPApplicationRuntimeException *ex)
 {
 NSLog(@"SUPApplicationRuntimeException(%d): %@",
ex.errorCode, ex.reason);
 }
 @catch (SUPApplicationTimeoutException *ex)

Developing the Application Using the Object API

64 SAP Mobile Platform

 {
 NSLog(@"SUPApplicationTimeoutException(%d): %@",
ex.errorCode, ex.reason);
 }

 while (app.connectionStatus != SUPConnectionStatus_CONNECTED
|| app.registrationStatus != SUPRegistrationStatus_REGISTERED)
 {
 if (cb.reregisterException != nil)
 {
 // reregister hit exception
 @throw cb.reregisterException;
 }
 sleep(1);
 }
}

MyApplicationCallback.h

#import "SUPApplicationDefaultCallback.h"

@interface MyApplicationCallback : SUPApplicationDefaultCallback
{

}

@property(readwrite, nonatomic, assign) BOOL callFlag;
@property(readwrite, nonatomic, retain) NSException
*reregisterException;

@end

MyApplicationCallback.m

#import "MyApplicationCallback.h"

#import "SUPApplication.h"
#import "end2end_rdbEnd2end_rdbDB.h"

@implementation MyApplicationCallback

@synthesize callFlag;
@synthesize reregisterException;

- (id) init
{
 [super init];
 callFlag = NO;
 reregisterException = nil;
 return self;
}

- (void) onConnectionStatusChanged: (SUPConnectionStatusType)
connectionStatus :(int)errorCode :(NSString *)errorMessage

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 65

{
 // error code 580 is
COMMUNICATION_DEVICEVAL_INVALID_ACTIVE_CODE
 if (errorCode == COMMUNICATION_DEVICEVAL_INVALID_ACTIVE_CODE
&& !callFlag)
 {
 // this callback could be invoked multiple times when this
error occures,
 // but we just call once to reregister, so set the callFlag
to be true.
 callFlag = true;
 dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);
 dispatch_async(queue, ^{
 [self reregister];
 });

 }
}

- (void) reregister
{
 // do not unregister application, because the application
connection info
 // has been deleted from server side. We can call
registerApplication directly.
 @try
 {
 // call disable sync for all packages in this application
 [end2end_rdbEnd2end_rdbDB disableSync];

 SUPApplication *app = [SUPApplication getInstance];
 [app registerApplication:100];

 // call enable sync for all packages in this application
 [end2end_rdbEnd2end_rdbDB enableSync];

 NSLog(@"Done reregister.");
 }
 @catch (NSException *exception)
 {
 NSLog(@"reregister hit exception(%@): %@", exception.name,
exception.reason);
 self.reregisterException = exception;
 }

}
@end

Client Application RBS Synchronize Recovery Example
if SAP Mobile Server is restored to a point in time of previous application synchronization, the
client synchronization gets Sybase.Persistence.SynchronizeException with

Developing the Application Using the Object API

66 SAP Mobile Platform

error code SQLE_UPLOAD_FAILED_AT_SERVER. This error code indicates the need to
recover the client database.

If SAP Mobile Server is restored to a point in time of the application's last synchronization or
the application has never synchronized, the client application can synchronize as normal
without the exception. For example:
Time1: application registered and has not synchronized.
Time2: application synchronized for the first time.
Time3: application synchronized for the second time.
Time4: application synchronized for the last time.

If SAP Mobile Server is restored to time1 or time4, the client can synchronize successfully. If
SAP Mobile Server is restored to time2 or time3, client synchronization fails with the
exception. There are three ways to recover the client database and successfully synchronize.
Before synchronization recovery, the application needs to complete application registration
recovery if nessasary. Once the client application starts (startup), the application should check
if the last recovery failed by checking the saved flag. If the last recovery failed, the application
needs to resume the recovery first. The user can mark the recovery state any number of ways,
for example, the application can save the recovery state to a file. As illustrated in example two
below, copy the old client database and use it as a recovery state flag.

1. Recreate database without copying old data (all data lost) - the simplest way to recover, but
the old data, such as synchronization parameter, SIS, Local MBO are not copied to the new
database. The end user needs to re-input those again in the application UI.
 @try
 {
 [end2end_rdbEnd2end_rdbDB synchronize];
 }
 @catch (SUPSynchronizeException *ex)
 {
 if (ex.errorCode == SYNC_UPLOAD_FAILED_AT_SERVER)
 {
 [self recoverClientDatabase];
 }
 else
 {
 @throw ex;
 }
 }

- (void) recoverClientDatabase
{
 [self setRecoveringInPlaceFlag]; // Such as saving a flag in
application sandbox.
 [end2end_rdbEnd2end_rdbDB closeConnection];
 [end2end_rdbEnd2end_rdbDB deleteDatabase];
 [self clearRecoveringInPlaceFlag];
}

2. Recreate database and copy old database (local transaction lost) - the old database data is
copied to the new database; this example includes personalization keys, subscription
information, SIS info, local MBO. But un-submitted transactions like MBO’s pending

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 67

state are lost. This sample code checks that a copy of the database is available to see if
recovering was interrupted.
if([self isRecoverFailed])
 {
 [self recoverClientDatabase];
 }
 else
 {
 @try
 {
 [end2end_rdbEnd2end_rdbDB synchronize];
 }
 @catch (SUPPersistenceException *ex)
 {
 if (ex.errorCode == SYNC_UPLOAD_FAILED_AT_SERVER)
 {
 [self recoverClientDatabase];
 }
 else
 {
 @throw ex;
 }
 }
 }

- (BOOL)isRecoverFailed
{
 NSString* dbFile = [end2end_rdbEnd2end_rdbDB getDbPath];
 NSString* recoverDbFile = [NSString
stringWithFormat:@"%@.recover.udb", dbFile];
 NSFileManager *fm = [NSFileManager defaultManager];
 BOOL ok = YES;

 if ([fm isReadableFileAtPath:recoverDbFile])
 {
 // Recover DB exists, indicating the last recover was not
finished
 // need to copy back the DB file and do recovery.
 if ([fm isReadableFileAtPath:dbFile])
 {
 if (![fm removeItemAtPath:dbFile error:nil])
 {
 ok = NO;
 }
 }

 if (ok && [fm copyItemAtPath:recoverDbFile toPath:dbFile
error:nil])
 {
 return YES;
 }
 else
 {
 @throw [NSException exceptionWithName:@"NSException"
reason:@"Failed to copy the recover database back." userInfo:nil];

Developing the Application Using the Object API

68 SAP Mobile Platform

 }
 }

 return NO;
}

- (void) recoverClientDatabase
{
 NSString* dbFile = [end2end_rdbEnd2end_rdbDB getDbPath];
 NSString* recoverDbFile = [NSString
stringWithFormat:@"%@.recover.udb", dbFile];
 NSFileManager *fm = [NSFileManager defaultManager];

 if (![fm copyItemAtPath:dbFile toPath:recoverDbFile
error:nil])
 {
 @throw [NSException exceptionWithName:@"NSException"
reason:@"Failed to copy the recover database." userInfo:nil];
 }

 //retrieve all the subscriptions from client database
 SUPObjectList *customerWithParamSubscriptions =
[end2end_rdbCustomerWithParam getSubscriptions];
 SUPObjectList *sisSubscriptions = [[end2end_rdbSISSubscription
getInstance] findAll];
 NSMutableArray *syncedPublications = [NSMutableArray
arrayWithCapacity:2];

 // check all the synchronization group, if is synchronized, add
to new sync group to synchronize
 if ([end2end_rdbEnd2end_rdbDB
isSynchronized:@"synchronizationGroup"])
 {
 [syncedPublications addObject:@"synchronizationGroup"];
 }

 //retrieve all local MBO from client database
 SUPObjectList* localBookList = [end2end_rdbLocalBook findAll];

 // Done with saving information, close connection and delete
the database
 [end2end_rdbEnd2end_rdbDB closeConnection];
 [end2end_rdbEnd2end_rdbDB deleteDatabase];

 // new subscription
 [end2end_rdbEnd2end_rdbDB subscribe];

 // merge old local BO data to new database
 for (id lbo in localBookList)
 {
 end2end_rdbLocalBook *savedLocalBook =
(end2end_rdbLocalBook*)lbo;
 end2end_rdbLocalBook *localBook = [end2end_rdbLocalBook
getInstance];
 [localBook copyAll:savedLocalBook];

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 69

 [localBook create];
 }

 // add all the subscriptions from old database to new database
 for (id sub in customerWithParamSubscriptions)
 {
 end2end_rdbCustomerWithParamSubscription *csub =
(end2end_rdbCustomerWithParamSubscription*)sub;
 [end2end_rdbCustomerWithParam addSubscription:csub];
 }

 for (id sub in sisSubscriptions)
 {
 end2end_rdbSISSubscription* ssub =
(end2end_rdbSISSubscription*)sub;
 id<SUPSynchronizationGroup> sg = [end2end_rdbEnd2end_rdbDB
getSynchronizationGroup:ssub.syncGroup];

 sg.enableSIS = ssub.enable;
 [sg save];
 }

 // synchronize for the synchronized publications
 NSString* syncGroups = [syncedPublications
componentsJoinedByString:@","];
 [end2end_rdbEnd2end_rdbDB synchronize:syncGroups];

 // finally delete the backup recover database file
 if (![fm removeItemAtPath:recoverDbFile error:nil])
 {
 @throw [NSException exceptionWithName:@"NSException"
reason:@"Failed to remove the recover database." userInfo:nil];
 }
}

3. Recover with local transactions - a complete way to recover. Both one and two above lose
local transactions. If you do not want to lose the local transaction when encountering the
SQLE_UPLOAD_FAILED_AT_SERVER exception, have the SAP Mobile Server
Administrator remove the client remote id info, which can be found in the
mlsrv_err.log, by calling the ml_delete_remote_id procedure in the CDB to
remove the remote id. Then the user can continue to synchronize using the old database to
upload all pending operations. Once uploaded, user\application must recreate the database
using example one or two, and must not reuse the old database anymore. The
mlsrv_err.log logs remote id error entries similar to this:

 I. 2013-04-14 14:13:39. <3> The sync sequence ID in the
consolidated database:
 95bd47691098419cbf8539e8151bcf00; the remote previous
sequence ID:
 95bd47691098419cbf8539e8151bcf97, and the current sequence
ID:
 401be536e6e7417fb01b196276ec11c2E. 2013-04-14 14:13:39.
<3> [-10400] Invalid sync sequence ID for remote ID
 'ed2ae448-a597-4f17-ad72-c6c61a6075a5'

Developing the Application Using the Object API

70 SAP Mobile Platform

Client Application RBS BeginSynchronize Recovery Example
BeginSynchronize is an asynchronous pattern, requiring the user to override the
onSynchronize method of the SUPDefaultCallbackHandler class to check for the
SQLE_UPLOAD_FAILED_AT_SERVER error.

The user has the same three methods as mentioned in the Client Application RBS Synchronize
Recovery Example to recover the client database. Sample code uses the second method and
implements the AsyncCallbackHandler:
if([AsyncCallbackHandler isRecoverFailed])
 {
 [AsyncCallbackHandler recoverClientDatabase];
 }
 else
 {
 @try
 {
 SUPObjectList* syncList = [SUPObjectList getInstance];
 [syncList add:@"default"];
 [self synchronize:syncList];
 }
 @catch (SUPPersistenceException *ex)
 {
 NSLog(@"sync failed(%d): %@", ex.errorCode, ex.reason);
 }
 }

- (void) synchronize: (SUPObjectList*) syncGroups
{
 AsyncCallbackHandler* callback = [[[AsyncCallbackHandler alloc]
init] autorelease];
 SUPObjectList* sgs = [SUPObjectList getInstance];
 for (NSString* sg in syncGroups) {
 [sgs add:[end2end_rdbEnd2end_rdbDB
getSynchronizationGroup:sg]];
 }

 callback.userContext = @"fistBeginSync";
 [end2end_rdbEnd2end_rdbDB registerCallbackHandler:callback];
 [end2end_rdbEnd2end_rdbDB beginSynchronize:sgs
withContext:callback.userContext];

 int waitCount = 0;
 while (![callback syncDone])
 {
 if (waitCount++ > maxWaitTime)
 {
 NSString *msg = [NSString stringWithFormat:@"No response
returned from server after waiting %d seconds", maxWaitTime];
 @throw [NSException exceptionWithName:@"NSException"
reason:msg userInfo:nil];
 }
 sleep(1);

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 71

 }

 callback.recoveryInProgress = NO;
 callback.recoveryDone = NO;
 callback.syncDone = NO;
 callback.userContext = nil;

 if ([callback errorMessage] != nil)
 {
 NSString* errMessage = callback.errorMessage;
 callback.errorMessage = nil;
 @throw [NSException exceptionWithName:@"NSException"
reason:errMessage userInfo:nil];
 }
}

// AsyncCallbackHandler.h
#import "SUPDefaultCallbackHandler.h"

@interface AsyncCallbackHandler : SUPDefaultCallbackHandler
{

}

@property(readwrite, nonatomic, assign) BOOL recoveryInProgress;
@property(readwrite, nonatomic, assign) BOOL recoveryDone;
@property(readwrite, nonatomic, assign) BOOL syncDone;
@property(readwrite, nonatomic, retain) NSString* userContext;
@property(readwrite, nonatomic, retain) NSString* errorMessage;

+ (BOOL)isRecoverFailed;
+ (void)recoverClientDatabase;

@end

// AsyncCallbackHandler.m
#import "AsyncCallbackHandler.h"
#import "end2end_rdbEnd2end_rdbDB.h"
#import "end2end_rdbCustomerWithParam.h"
#import "end2end_rdbSISSubscription.h"
#import "end2end_rdbLocalBook.h"

@implementation AsyncCallbackHandler

@synthesize recoveryInProgress;
@synthesize recoveryDone;
@synthesize syncDone;
@synthesize userContext;
@synthesize errorMessage;

- (id) init
{
 [super init];
 recoveryInProgress = NO;
 recoveryDone = NO;

Developing the Application Using the Object API

72 SAP Mobile Platform

 userContext = nil;
 errorMessage = nil;
 return self;
}

- (SUPSynchronizationActionType)onSynchronize:
(SUPObjectList*)syncGroupList withContext:
(SUPSynchronizationContext*)context
{
 NSException *ex = context.exception;
 if ((ex != nil) && [ex isKindOfClass:[SUPPersistenceException
class]])
 {
 SUPPersistenceException *pe = (SUPPersistenceException*)ex;
 if (pe.errorCode == SYNC_UPLOAD_FAILED_AT_SERVER)
 {
 if (!recoveryInProgress)
 {
 recoveryInProgress = YES;
 recoveryDone = NO;
 dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0);
 dispatch_async(queue, ^{
 @try {
 [AsyncCallbackHandler recoverClientDatabase];
 }
 @catch (NSException *exception) {
 errorMessage = exception.reason;
 }
 recoveryDone = YES;
 recoveryInProgress = NO;
 syncDone = YES;
 });
 }
 }

 return SUPSynchronizationAction_CONTINUE;
 }

 if (context.userContext != nil)
 {
 if ([context.userContext isKindOfClass:[NSString class]])
 {
 NSString *userCtx = (NSString*)context.userContext;
 if ([userCtx isEqualToString:@"firstBeginSync"])
 {
 if (context.status ==
SUPSynchronizationStatus_FINISHING || context.status ==
SUPSynchronizationStatus_ERROR)
 {
 syncDone = YES;
 }
 }
 }
 }

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 73

 return SUPSynchronizationAction_CONTINUE;
}

+ (BOOL)isRecoverFailed
{
 NSString* dbFile = [end2end_rdbEnd2end_rdbDB getDbPath];
 NSString* recoverDbFile = [NSString
stringWithFormat:@"%@.recover.udb", dbFile];
 NSFileManager *fm = [NSFileManager defaultManager];
 BOOL ok = YES;

 if ([fm isReadableFileAtPath:recoverDbFile])
 {
 // Recover DB exists, indicating the last recover was not
finished
 // need to move back the DB file and do recovery.
 if ([fm isReadableFileAtPath:dbFile])
 {
 if (![fm removeItemAtPath:dbFile error:nil])
 {
 ok = NO;
 }
 }

 if (ok && [fm moveItemAtPath:recoverDbFile toPath:dbFile
error:nil])
 {
 return YES;
 }
 else
 {
 @throw [NSException exceptionWithName:@"NSException"
reason:@"Failed to copy the recover database back." userInfo:nil];
 }
 }

 return NO;
}

+ (void) recoverClientDatabase
{
 NSString* dbFile = [end2end_rdbEnd2end_rdbDB getDbPath];
 NSString* recoverDbFile = [NSString
stringWithFormat:@"%@.recover.udb", dbFile];
 NSFileManager *fm = [NSFileManager defaultManager];

 if (![fm copyItemAtPath:dbFile toPath:recoverDbFile error:nil])
 {
 @throw [NSException exceptionWithName:@"NSException"
reason:@"Failed to copy the recover database." userInfo:nil];
 }

 //retrieve all the subscriptions from client database
 SUPObjectList *customerWithParamSubscriptions =
[end2end_rdbCustomerWithParam getSubscriptions];

Developing the Application Using the Object API

74 SAP Mobile Platform

 SUPObjectList *sisSubscriptions = [[end2end_rdbSISSubscription
getInstance] findAll];
 NSMutableArray *syncedPublications = [NSMutableArray
arrayWithCapacity:2];

 // check all the synchronization group, if is synchronized, add to
new sync group to synchronize
 if ([end2end_rdbEnd2end_rdbDB
isSynchronized:@"synchronizationGroup"])
 {
 [syncedPublications addObject:@"synchronizationGroup"];
 }

 //retrieve all local BO from client database
 SUPObjectList* localBookList = [end2end_rdbLocalBook findAll];

 // Done with saving information, close connection and delete the
database
 [end2end_rdbEnd2end_rdbDB closeConnection];
 [end2end_rdbEnd2end_rdbDB deleteDatabase];

 // new subscription
 [end2end_rdbEnd2end_rdbDB subscribe];

 // merge old local BO data to new database
 for (id lbo in localBookList)
 {
 end2end_rdbLocalBook *savedLocalBook =
(end2end_rdbLocalBook*)lbo;
 end2end_rdbLocalBook *localBook = [end2end_rdbLocalBook
getInstance];
 [localBook copyAll:savedLocalBook];
 [localBook create];
 }

 // add all the subscriptions from old database to new database
 for (id sub in customerWithParamSubscriptions)
 {
 end2end_rdbCustomerWithParamSubscription *csub =
(end2end_rdbCustomerWithParamSubscription*)sub;
 [end2end_rdbCustomerWithParam addSubscription:csub];
 }

 for (id sub in sisSubscriptions)
 {
 end2end_rdbSISSubscription* ssub =
(end2end_rdbSISSubscription*)sub;
 id<SUPSynchronizationGroup> sg = [end2end_rdbEnd2end_rdbDB
getSynchronizationGroup:ssub.syncGroup];

 sg.enableSIS = ssub.enable;
 [sg save];
 }

 // synchronize for the synchronized publications

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 75

 NSString* syncGroups = [syncedPublications
componentsJoinedByString:@","];
 [end2end_rdbEnd2end_rdbDB synchronize:syncGroups];

 // finally delete the backup recover database file
 if (![fm removeItemAtPath:recoverDbFile error:nil])
 {
 @throw [NSException exceptionWithName:@"NSException"
reason:@"Failed to remove the recover database." userInfo:nil];
 }

}

@end

MBS for DOEC Client Application Recovery Example
MBS for DOEC clients can run on the iOS platform. The registration recovery is the same as
RBS registration recovery. However, subscription recovery is different.

There are two scenarios:

1. SAP Mobile Server is restored to a point in time where the client unsubsribed - after SAP
Mobile Server is restored, the client status is unsubsribed on the server side, but the client
status may be subscribed or unsubscribed. Therefore, the client application should check
the client subscription status: if subscribed, call Unsubscribe(this leads to unsubscribe
failure message because server does not have client subscribe info), then call Subscribe, if
unsubscribed, call Subscribe:
if ([end2end_rdbEnd2end_rdbDB isSubscribed])
 {
 [end2end_rdbEnd2end_rdbDB unsubscribe];
 // wait for onUnsubscribeSuccess method in CallbackHandler
is called
 }

 [end2end_rdbEnd2end_rdbDB subscribe];
 // wait for onSubscribeSuccess method in CallbackHandler is
called

2. SAP Mobile Server is restored to a point in time where the client subsribed - after SAP
Mobile Server is restored, the client status is subsribed on the server side. For this scenario,
the client can check if it’s subsribed. If not, call Subscribe to recover. After SAP Mobile
Server is restored, the SAP Control Center Administrator can also delete the subscription
from SAP Mobile Server. This time, SAP Mobile Server sends an unsubscribe message to
the client application. When the client application is running, it receives the unsubscribe
message, then the client generated database calls DB.CleanAllData() to clean the
client data and update status to unsubscribed. The client application needs to then call
Subscribe:
// sleep some time to receive server unsubscribe messages when
application starts up
 if (![end2end_rdbEnd2end_rdbDB isSubscribed])
 {

Developing the Application Using the Object API

76 SAP Mobile Platform

 [end2end_rdbEnd2end_rdbDB subscribe];
 }

Developing the Application Using the Object API

Developer Guide: iOS Object API Applications 77

Developing the Application Using the Object API

78 SAP Mobile Platform

Testing Applications

Test native applications on a device or simulator.

For additional information about testing applications, see these topics in the Mobile
Application Life Cycle collection:

• Recommended Test Methodologies
• Best Practices for Testing Applications on a Physical Device

Testing an Application Using a Emulator
Run and test the application on an emulator and verify that the application automatically
registers to the SAP Mobile Server using the default application connection template.

1. In Xcode, select Product > Build and then Product > Run.
The project is built and the iPhone Simulator starts.

2. In the iPhone applications screen, open the application.

3. In SAP Control Center, verify that the application connection was created in Applications
> Application Connections.
When the application has successfully registered, the application connection displays a
value of zero in the Pending Items column. The Pending Items column is used only for
messaging applications.

4. Test the functionality of the application. Use debug tools as necessary, setting breakpoints
at appropriate places in the application.

Client-Side Debugging
Identify and resolve client-side issues while debugging the application.

Problems on the device client side that may cause client application problems:

• SAP Mobile Server connection failed - use your device browser to check the connectivity
of your device to the server.

• Data does not appear on the client device - check if your synchronization and
personalization parameters are set correctly. If you are using queries, check if your query
conditions are correctly constructed and if the device data match your query conditions.

• Physical device problems, such as low memory - implement
ApplicationCallback.onDeviceConditionChanged to be notified if
device storage gets too low, or recovers from an error.

To find out more information on the device client side:

Testing Applications

Developer Guide: iOS Object API Applications 79

• If you have implemented debugging in your generated or custom code (which SAP
recommends), turn on debugging and review the debugging information. See the API
Reference information about using the Logger class to add logs to the client log record
and synchronize them to the server (viewable in SAP Control Center).

• Check the log record on the device. Use the getLogRecords (SUPQQuery) or
getLogRecords methods.
This is the log format
level,code,eisCode,message,component,entityKey,operation,requestI
d,timestamp

This log format generates output similar to:
level code eisCode message component entityKey operation requestId
timestamp
 5,500,'','java.lang.SecurityException:Authorization failed:
Domain = default Package = end2end.rdb:1.0 mboName =
simpleCustomer action =
delete','simpleCustomer','100001','delete','100014','2010-05-11
14:45:59.710'

• level – the log level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.

• code – SAP Mobile Server administration codes.

• Synchronization codes:
• 200 – success.
• 500 – failure.

• eisCode – maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).

• message – the message content.

• component – MBO name.

• entityKey – MBO surrogate key, used to identify and track MBO instances and
data.

• operation – operation name.

• requestId – operation replay request ID or messaging-based synchronization
message request ID.

• timestamp – message logged time, or operation execution time.

• If you have implemented ApplicationCallback.onConnectionStatusChanged
for synchronization in the CallbackHandler, the connection status between the SAP
Mobile Server and the device is reported on the device. See the SUPCallbackHandler
API reference information. The device connection status, device connection type, and
connection error message are reported on the device:
• 1 – current device connection status.
• 2 – current device connection type.

Testing Applications

80 SAP Mobile Platform

• 3 – connection error message.
• For other issues, you can turn on SQLTrace trace on the device side to trace Client Object

API activity. To enable SQLTrace using the ConnectionProfile's enableTrace API:
SUPConnectionProfile *cp = [SMP101SMP101DB getConnectionProfile];

// To enable trace of client database operations (SQL statements,
etc.)
[cp enableTrace:YES];

// To enable trace of client database operations with values also
displayed
[cp enableTrace:YES withPayload:YES];

// To disable trace of client database operations
[cp enableTrace:NO];

// To enable trace of message headers sent to the server and
received from the server
// (this replaces the MBODebugLogger and MBODebugSettings used in
earlier versions of SUP)
[cp.syncProfile enableTrace:YES];

// To enable trace of both message headers and content, including
credentials
[cp.syncProfile enableTrace:YES withPayload:YES];

// To disable messaging trace
[cp.syncProfile enableTrace:NO];

Server-Side Debugging
Identify and resolve server-side issues while debugging the application.

Problems on the SAP Mobile Server side may cause device client problems:

• The domain or package does not exist. If you create a new domain, with a default status of
disabled, it is unavailable until enabled.

• Authentication failed for the application user credentials.
• The operation role check failed for the synchronizing user.
• Back-end authentication failed.
• An operation failed on the remote, replication database back end, for example, a table or

foreign key does not exist.
• An operation failed on the Web Service, REST, or SAP® back end.

To find out more information on the SAP Mobile Server side:

• Check the SAP Mobile Server log files.
• For message-based synchronization mode, you can set the log level to DEBUG to obtain

detailed information in the log files:

Testing Applications

Developer Guide: iOS Object API Applications 81

1. Set the log level using SAP Control Center. See SAP Control Center for SAP Mobile
Platform > Administer > SAP Mobile Server > Server Log > SAP Mobile Server
Runtime Logging > Configuring SAP Mobile Server Log Settings.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

• Obtain DEBUG information for a specific device:
• In the SCC administration console:

1. Set the DEBUG level to a higher value for a specified device:
a. In SCC, select Application Connections, then select Properties... > Device

Advanced.
b. Set the Debug Trace Level value.

2. Set the TRACE file size to be greater than 50KB.
3. View the trace file through SCC.

• Check the SMP_HOME\Servers\UnwiredServer\logs\ClientTrace
directory to see the mobile device client log files for information about a specific
device.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

Improve Synchronization Performance by Reducing the Log
Record Size

Improve synchronization performance and free SAP Mobile Server resources by deleting log
records from SAP Mobile Server and the client when no longer needed.

A large log record table can negatively impact client synchronization performance. Each
package contains a single log record table that consists of:

• SAP Mobile Server operation replay logs – downloaded to the device when the
application synchronizes. SAP Mobile Server generates a log record if the operation
replay fails, or succeeds but results in a warning.

• Client logs generated by the application – uploaded from the device to SAP Mobile
Server for audit and logging purposes.

If the application and SAP Mobile Server do not delete these log records, the log record table
continues to grow.

Unrestricted growth of the log record table eventually affects synchronization performance.
You can view client log records from SAP Control Center; however, this displays only active
log records (that is, those that have not been logically deleted). A logically deleted log record
is marked for deletion but retained until the application downloads the delete record and
deletes the copy from the device. Once SAP Mobile Server confirms that the application has

Testing Applications

82 SAP Mobile Platform

downloaded the delete, the inactive log record can be physically removed from SAP Mobile
Server.

Determining the Log Record Size
Use Sybase Central™ to query the database of a given SAP Mobile Server to determine the
size of the log record.

Prerequisites
SAP Mobile Platform services must be running and at least one Mobile Application project
deployed to SAP Mobile Server.

Task

1. Launch Sybase Central (scjview.exe) to manage SQL Anywhere® and UltraLite®

databases.

The default installation location of the Sybase Central executable is SMP_HOME
\Servers\SQLAnywhere16\BIN32\scjview.exe.

2. From Sybase Central connect to the database server by selecting Connections > Connect
with SQL Anywhere 16.

3. Provide connection details and click Connect.

For example, select Connect to a running database on this computer and enter:
• User ID and Password – dba and sql respectively

• Server name – hostName_primary
• Database name – default

Testing Applications

Developer Guide: iOS Object API Applications 83

4. Double-click the Tables folder and search for the log record table. The log record name is
typically packageName_logr… where packageName is the name of the deployed
package.

Testing Applications

84 SAP Mobile Platform

5. Right-click the log record table and select Properties.

6. In the Properties dialog, select the Miscellaneous tab, then click Calculate.

Testing Applications

Developer Guide: iOS Object API Applications 85

The number returned includes logically deleted rows.The returned number of rows
depends on the number of application users of the package, and the retention window
setting. As a general guideline, the number of rows should be fewer than 10,000.

Reducing the Log Record Size
Use SAP Control Center to delete log record entries by setting a date range window.

The SAP Mobile Server does not remove any logically deleted rows until it receives
confirmation that the device hosting the application has synchronized after the record is
logically deleted from SAP Mobile Server.

Testing Applications

86 SAP Mobile Platform

1. Clean up the client log data:

a) Expand Domains > default > Packages.
b) Select packageName then select the Client Log tab.
c) Select Clean, then enter starting and ending dates.

The LOGICAL_DEL flag is set to true for records within the range.

Note: Allow time for clients to synchronize. Logically deleted records are retained
until the client synchronizes and downloads the delete records that clean up the client
database. The length of time to wait for synchronization to complete depends on the
clients’ activities.

d) Click OK to clean the client log data.

2. Clean the logically deleted records from SAP Mobile Server:

a) Select the General tab.
b) Select Error Cleanup.

This starts a cleanup task that asynchronously removes all logically deleted records
from clients that have performed a synchronization after the time specified in the Clean
operation.

For example, if the Clean operation is performed at 1:00am on Feb 27, all clients that
synchronize after that time have their records physically removed. As a result, it takes
time to reduce the size of the log record table.

Note: Clean up the client log data (step one) during periods of low client activity: when
a single transaction processing a large log record table is active, client synchronization
is blocked, degrading client responses and performance. As a best practice, once the
log record table has been cleaned to a reasonable size, schedule the clean/error cleanup
tasks on a daily basis.

Testing Applications

Developer Guide: iOS Object API Applications 87

Testing Applications

88 SAP Mobile Platform

Localizing Applications

In iOS, you use Interface Builder, which is part of Xcode, to define and layout controls in a
view of the user interface. These descriptions are stored in Xcode Interface Builder (XIB)
files. Once you have the English version of the layout defined you will need to create an XIB
file for each language you want to support in your user interface.

Localizing Menus and Interfaces
Localize the menus and interfaces for an iOS application by selecting an XIB file to localize,
and a language for localization.

1. Select the Xcode Interface Builder (XIB) file you want to localize in the Project Explorer.

2. Open the File Inspector by selecting View > Utilities > File Inspector. The File Inspector
appears in a pane of the right of the Xcode window.

3. In the Localization section of the File Inspector pane, click the + button at the bottom of the
section.
This step makes the XIB file localizable by moving it into a folder named en.lproj.

4. Click the + button again.
A menu appears with a list of languages.

5. Select the language you want to use in localizing the XIB file.

The Localization section of the File Inspector displays the languages to which the file has
been localized (in the example, French and English).

The file's icon in the Project Explorer has a disclosure arrow next to it. Click the arrow to
reveal the contents of the file. The Project Explorer displays one copy of the XIB file for
each language you have chosen.

6. Double-click on each icon to open it in a new tab or new window.

7. Make the required changes to the interface elements in the language-specific XIB file, and
then save the file.

8. Verify that the localized XIB files are added to the list of files copied into the application's
bundle. If not:

a) Click the project icon in the Project Explorer, and then click the Target icon.
b) Select the Build Phases tab.
c) Expand the Copy Bundle Resources section, and then click the + button.
d) Select the additional XIB files from the <language>.lproj folders and click

Add.

Localizing Applications

Developer Guide: iOS Object API Applications 89

Localizing Embedded Strings
Localize embedded strings that are used in alert and dialog windows.

1. For each user interface string in your code, set the text property to a literal string using the
NSLocalizedString macro.

UserInterfaceLabel.text = NSLocalizedString(@"Display text",
nil);

2. Generate the.strings files from all the NSLocalizedString references in your
application. by using the genstrings command line program. See Apple
documentation for command syntax and parameters.
This command processes files in your directory hierarchy and creates .strings files for
them in the en.lproj directory.

3. Provide your translator a copy of the .strings file. The translator should translate the
right side of each of the .strings file entries.

Validating Localization Changes
Test that your changes appear in your application.

1. Launch the iOS simulator then launch Settings.app.

2. Select General > International > Language.

3. Select the language you want to test.
The simulator restarts in the new language.

4. Launch your application and verify that it is localized.

Localizing Applications

90 SAP Mobile Platform

Packaging Applications

Package applications according to your security or application distribution requirements.

You can package all libraries into one package. This packaging method provide more security
since packaging the entire application as one unit reduces the risk of tampering of individual
libraries.

You may package and install modules separately only if your application distribution strategy
requires sharing libraries between SAP Mobile Platform applications.

Signing
Code signing is required for applications to run on physical devices.

Apple Push Notification Service Configuration
The Apple Push Notification Service (APNS) notifies users when information on a server is
ready to be downloaded.

Apple Push Notification Service (APNS) allows users to receive notifications. APNS:

• Must be set up and configured by an administrator on the server.
• Must be enabled by the user on the device.
• Can be used with any device that supports APNS. Some older Apple devices may not

support APNS.
• Cannot be used on a simulator.

Preparing an Application for Apple Push Notification Service
There are several development steps to perform before the administrator can configure the
Apple Push Notification Service (APNS).

1. Sign up for the iOS Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

2. Create an App ID and ensure that it is configured to use Apple Push Notification Service
(APNS).

Do not use wildcard characters in App IDs for iPhone applications that use APNS.

3. Create and download an enterprise APNS certificate that uses Keychain Access in the Mac
OS. The information in the certificate request must use a different common name than the

Packaging Applications

Developer Guide: iOS Object API Applications 91

development certificate that may already exist. The reason for this naming requirement is
that the enterprise certificate creates a private key, which must be distinct from the
development key. Import the certificate as a login Keychain, not as a system Keychain.
Validate that the certificate is associated with the key in the Keychain Access application.
Get a copy of this certificate.

4. Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

5. Create the Xcode project, ensuring the bundle identifier corresponds to the bundle
identifier in the specified App ID.

6. To enable the APNS protocol, you must implement several methods in the application by
adding the code below:

Note: The location of these methods in the code depends on the application; see the APNS
documentation for the correct location.

//Enable APNS
[[UIApplication sharedApplication]
registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeBadge |
 UIRemoteNotificationTypeSound |
 UIRemoteNotificationTypeAlert)];

* Callback by the system where the token is provided to the client
application so that this
 can be passed on to the provider. In this case,
“deviceTokenForPush” and “setupForPush”
are APIs provided by SAP Mobile Platform to enable APNS and pass
the token to the SAP Mobile Server

- (void)application:(UIApplication *)app
didRegisterForRemoteNotificationsWithDeviceToken:
 (NSData *)devToken
{
 MBOLogInfo(@"In did register for Remote Notifications",
devToken);
 [SUPPushNotification setupForPush:app];
 [SUPPushNotification deviceTokenForPush:app
deviceToken:devToken];
}

* Callback by the system if registering for remote notification
failed.

- (void)application:(UIApplication *)app
didFailToRegisterForRemoteNotificationsWithError:
 (NSError *)err {
 MBOLogError(@"Error in registration. Error: %@", err);
 }

// You can alternately implement the pushRegistrationFailed API
inside the didFailToRegisterForRemoteNotificationsWithError

Packaging Applications

92 SAP Mobile Platform

method:

// +(void)pushRegistrationFailed:(UIApplication*)application
errorInfo: (NSError *)err

* Callback when notification is sent.

- (void)application:(UIApplication *)app
didReceiveRemoteNotification:(NSDictionary *)
 userInfo
{
 MBOLogInfo(@"In did receive Remote Notifications", userInfo);
}

// You can alternately implement the pushNotification API inside
the didReceiveRemoteNotification method:

+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo

Configuring Apple Push Notification Service
Use Apple Push Notification Service (APNS) to push notifications from SAP Mobile Server
to the iOS application. Notifications might include badges, sounds, or custom text alerts.
Device users can use Settings to customize which notifications to receive or ignore.

Prerequisites
Perform these prerequisites in the Apple Developer Connection Portal:

• Register for the iPhone Developer Program as an enterprise developer to access the
Developer Connection portal and get the certificate required to sign applications.

• Create an App ID and ensure that it is configured to use Apple Push Notification Service
(APNS).

• Create and download an enterprise APNS certificate that uses Keychain Access in the Mac
OS. The information in the certificate request must use a different common name than the
development certificate development teams might already have. This is because the
enterprise certificate also creates a private key, which must be distinct from the
development key. This certificate must also be imported as a login keychain and not a
system keychain and the developer should validate that the certificate is associated with
the key in the Keychain Access application. Get a copy of this certificate.

Note: A new 2048-bit Entrust certificate needed for APNS.

Apple uses a 2048-bit root certificate from Entrust, which provides a more secure
connection between SAP Mobile Server and APNS. This certificate comes with the
Windows OS, and is upgraded automatically with Windows Update, if it is enabled. This
information is not part of the procedure that documents APNS support.

If Windows Update is disabled, you must manually download and install the certificate
(entrust_2048_ca.cer). Go to https://www.entrust.net/downloads/root_index.cfm. For

Packaging Applications

Developer Guide: iOS Object API Applications 93

https://www.entrust.net/downloads/root_index.cfm

help on installing the certificate, see http://www.entrust.net/knowledge-base/
technote.cfm?tn=8282.

• Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

• Create the Xcode project ensuring the bundle identifier corresponds to the bundle
identifier in the specified App ID. Ensure you are informed of the "Product Name" used in
this project.

• Use the APNS initialization code.

Developers can review complete details in the iPhone OS Enterprise Deployment Guide
available on the Apple Developers Website.

Task
Each application that supports Apple Push Notifications must be listed in SAP Control Center
with its certificate and application name. You must perform this task for each application.

1. Confirm that the IT department has opened ports 2195 and 2196, by executing:

telnet gateway.push.apple.com 2195
telnet feedback.push.apple.com 2196
If the ports are open, you can connect to the Apple push gateway and receive feedback
from it.

2. Upload the APNS certificate to SAP Control Center:

a) In the navigation pane, click Applications.
b) In the administration pane, click the Applications tab.
c) Select the application for which you want to enable APNS, and click Properties.
d) Click the Push Configurations tab and click on Add.
e) Configure all required properties, including the corresponding password and upload

the certificate. See APNS Native Notification Properties in SAP Control Center for
SAP Mobile Platform online help.

3. Deploy the iOS application with an enterprise distribution provisioning profile to users'
iOS devices.

4. Verify that the APNS-enabled iOS device is set up correctly:

a) In SAP Control Center, ensure the user has already activated the application and is
connected to the SAP Mobile Server, by looking for the corresponding entry in
 ApplicationsApplication Connections.

b) Validate that in the Application Connection ID, the application name appears correctly
at the end of the string.

c) Select the user and click Properties.
d) Check that the APNS Device Token contains a value. This indicates that a token has

passed successfully following a successful application activation

Packaging Applications

94 SAP Mobile Platform

http://www.entrust.net/knowledge-base/technote.cfm?tn=8282
http://www.entrust.net/knowledge-base/technote.cfm?tn=8282

5. Verify that native notification is enabled for the user:

a) Select the user name and click Properties.

• For Application Settings, ensure the Notification Mode property is set to either
Only native notifications or Online/ payload push with native notification.

• For Apple Push Notifications, ensure the Enabled property is set to True.

6. Test the environment by initiating an action that results in a new message being sent to the
client.

If you have verified that both device and server can establish a connection to the APNS
gateway, the device receives notifications and messages from the SAP Mobile Server. If
you configured Online/ payload push with native notification, allow a few minutes for
the delivery. If the device is offline and the message is pending in messaging queue, SAP
Mobile Server triggers the native push notification mechanism to send the Pending Items
to the device via APNS. See Reviewing the Pending Items Count for Messaging
Applications in System Administration.

Note: Notifications require a connection to APNS on port 5223. This port is not always
routed through the firewall on corporate wireless networks.

7. To troubleshoot APNS, use the SMP_HOME\Servers\SAP Mobile Server
\logs\server log file.

Preparing Applications for Deployment to the Enterprise
After you have created your client application, you must sign your application with a
certificate from Apple, and deploy it to your enterprise.

Note: Review complete details in the iPhone OS Enterprise Deployment Guide available on
the Apple Developers Website, and About Your First App Store Submission at https://
developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/
YourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission/
AboutYourFirstAppStoreSubmission.html#//apple_ref/doc/uid/TP40011375-CH1-SW1.

1. Sign up for the iOS Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

2. Create a certificate request on your Mac through Keychain.

3. Log in to the Developer Connection portal.

4. Upload your certificate request.

5. Download the certificate to your Mac. Use this certificate to sign your application.

6. Create an AppID.

Packaging Applications

Developer Guide: iOS Object API Applications 95

https://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/YourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission.html#//apple_ref/doc/uid/TP40011375-CH1-SW1
https://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/YourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission.html#//apple_ref/doc/uid/TP40011375-CH1-SW1
https://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/YourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission.html#//apple_ref/doc/uid/TP40011375-CH1-SW1
https://developer.apple.com/library/ios/#documentation/ToolsLanguages/Conceptual/YourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission/AboutYourFirstAppStoreSubmission.html#//apple_ref/doc/uid/TP40011375-CH1-SW1

Verify that your info.plist file has the correct AppID and application name. Also, in
Xcode, right-click Targets > <your_app_target> and select Get Info to verify the AppID
and App name.

7. Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

8. Create an Xcode project ensuring the bundle identifier corresponds to the bundle identifier
in the specified App ID. Ensure you are informed of the "Product Name" used in this
project.

Packaging Applications

96 SAP Mobile Platform

Client Object API Usage

The SAP Mobile Platform Client Object API consists of generated business object classes that
represent mobile business objects (MBOs) that are designed and built in the SAP Mobile
WorkSpace development environment. Device applications use the Client Object API to
retrieve data and invoke mobile business object operations.

Refer to these sections for more information on using the APIs described in Developer Guide:
iOS Object API Applications > Developing the Application Using the Object API.

Client Object API Reference
Use the SAP Mobile Platform Client Object API Headerdocs as a Client Object API reference.

Review the reference details in the Client Object API documentation, located in SMP_HOME
\MobileSDK23\ObjectAPI\iOS\headerdoc.

Note: Due to an UltraLite limitation, the first client object API call must be on the main thread
in the application.

Application APIs
The SUPApplication class manages mobile application registrations, connections and
context.

Note: SAP recommends that you use the Application API operations with no timeout
parameter, and register an ApplicationCallback to handle completion of these
operations.

Application
Methods or properties in the SUPApplication class.

getInstance
Retrieves the Application instance for the current mobile application.

Syntax
+ (SUPApplication*)getInstance;

Returns

getInstance returns a singleton Application object.

Client Object API Usage

Developer Guide: iOS Object API Applications 97

Examples

• Get the Application Instance

SUPApplication* app = [SUPApplication getInstance];

setApplicationIdentifier
Sets the identifier for the current application.

Set the application identifer before calling startConnection or
registerApplication.

Syntax
+(void)setApplicationIdentifier:(NSString*)value;

Parameters

• value – The identifier for the current application.

Examples

• Set the Application Identifier – Sets the application identifier to SMP101.

Note: The application identifier is case-sensitive.

SUPApplication* app = [SUPApplication getInstance];
@try {
 [app setApplicationIdentifier: @"SMP101"]; (same as in SCC)
 ...
}
@catch (SUPPersistenceException * pe) {
 NSLog(@"%@: %@", [pe name],[pe message]);
}

registrationStatus
Retrieves the current status of the mobile application registration.

Syntax
+(SUPInt)registrationStatus;

Returns

registrationStatus returns one of the values defined in the
RegistrationStatus class.

//The registration bas been successfully created.
#define SUPRegistrationStatus_REGISTERED 203

//The registration is currently being created.
#define SUPRegistrationStatus_REGISTERING 202

Client Object API Usage

98 SAP Mobile Platform

//The registration could not be created or deleted. Using
onRegistrationStatusChanged you can
//capture the associated errorCode and errorMessage. This is a
permanent condition that will
//not be automatically resolved,
//so registerApplication or unregisterApplication must be! called
again to retry.
#define SUPRegistrationStatus_REGISTRATION_ERROR 201

//The registration has been successfully deleted, or there was no
previous registration.
#define SUPRegistrationStatus_UNREGISTERED 205

//The registration is currently being deleted.
#define SUPRegistrationStatus_UNREGISTERING 204

registerApplication
Creates the registration for this application and starts the connection. This method is
equivalent to calling registerApplication:0.

If an application identifier has not already been set, a SUPPersistanceException is
thrown. If connection properties are not available, a
SUPConnectionPropertyException is thrown. If you use this method, do not call
startConnection.

Syntax
- (void)registerApplication;

Parameters

None.

Examples

• Register an Application – Start registering the application and return at once.
[app registerApplication];

Usage

You must set up the ConnectionProperties and ApplicationIdentifier
before you can invoke registerApplication.

The maximum length of the Application ID is 64 characters. The total length of the
Application Connection ID cannot exceeds 128 characters. The Application Connection ID
format is deviceId__applicationId. The applicationId separator is two
underscores.
SUPApplication* app = [SUPApplication getInstance];
[app setApplicationIdentifier:@"SMP101"];

Client Object API Usage

Developer Guide: iOS Object API Applications 99

MyApplicationCallbackHandler *ch = [MyApplicationCallbackHandler
getInstance];
[app setApplicationCallback:ch];
SUPConnectionProperties* props = app.connectionProperties;
[props setServerName:@"server.mycompany.com"];
[props setPortNumber:5001];

SUPLoginCredentials* login = [SUPLoginCredentials getInstance];
login.username = @"supAdmin";
login.password = @"supPwd";
props.loginCredentials = login;
[app registerApplication]; // method returns immediately

registerApplication:timeout
Creates the registration for this application and starts the connection. An
ApplicationTimeoutException is thrown if the method does not succeed within the
number of seconds specified by the timeout.

If an application identifier has not already been set, a SUPPersistanceException is
thrown. If connection properties are not available, a
SUPConnectionPropertyException is thrown. If the timeout is greater than 0 and
the registration takes longer than the timeout, then a
SUPApplicationTimeoutException is thrown, even though the process will
continue in the background. If you use this method, do not call startConnection.

If a callback handler is registered and network connectivity is available, the sequence of
callbacks as a result of calling registerApplication is:

onRegistrationStatusChanged(RegistrationStatus.REGISTERING, 0, "")
onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, "")
onConnectionStatusChanged(ConnectionStatus.CONNECTED, 0, "")
onRegistrationStatusChanged(RegistrationStatus.REGISTERED, 0, "")

When the connectionStatus of CONNECTED has been reached and the application's
applicationSettings have been received from the server, the application is now in a suitable
state for database subscriptions and/or synchronization. If a callback handler is registered and
network connectivity is unavailable, the sequence of callbacks as a result of calling
registerApplication is:
onRegistrationStatusChanged(RegistrationStatus.REGISTERING, 0, "")
onRegistrationStatusChanged(RegistrationStatus.REGISTRATION_ERROR,
code, message)

In such a case, the registration process has permanently failed and will not continue in the
background. If a callback handler is registered and network connectivity is available for the
start of registration but becomes unavailable before the connection is established, the
sequence of callbacks as a result of calling registerApplication is:
onRegistrationStatusChanged(RegistrationStatus.REGISTERING, 0, "")
onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, "")

Client Object API Usage

100 SAP Mobile Platform

onConnectionStatusChanged(ConnectionStatus.CONNECTION_ERROR, code,
message)

In such a case, the registration process has temporarily failed and will continue in the
background when network connectivity is restored.

As a best practice, if a timeout exception occurs in registerApplication or startConnection, the
application should wait for the appropriate callback, and optionally add a user message to the
application, "please wait" for example, instead of closing the application. This prevents a build
up of start up requests by needlessly restarting the application which can adversely affect
performance.

Wait for the application callback, such as onConnectionStatusChanged() if
ApplicationTimeoutException is encountered when calling
registerApplication:timeout , instead of closing the application. This allows the application
code to catch ApplicationTimeoutException and does not throw an exception.

Syntax
- (void)registerApplication :(SUPInt)timeout;

Parameters

• timeout – Number of seconds to wait until the registration is created. If the the timeout is
greater than zero and the registration is not created within the timeout period, an
ApplicationTimeoutException is thrown (the operation might still be
completing in a background thread). If the timeout value is less than or equal to 0, then this
method returns immediately without waiting for the registration to finish (a non-blocking
call). If the timeout value is less than or equal to 0, then this method returns immediately
without waiting for the registration to finish (a non-blocking call).

Examples

• Register an Application – Registers the application with a one minute waiting period.
[app registerApplication:60];

Usage

You must set up the ConnectionProperties and ApplicationIdentifier
before you can invoke registerApplication.

The maximum length of the Application ID is 64 characters. The total length of the
Application Connection ID cannot exceeds 128 characters. The Application Connection ID
format is deviceId__applicationId. The applicationId separator is two
underscores.
SUPApplication* app = [SUPApplication getInstance];
[app setApplicationIdentifier:@"SMP101"];

Client Object API Usage

Developer Guide: iOS Object API Applications 101

MyApplicationCallbackHandler *ch = [MyApplicationCallbackHandler
getInstance];
[ch retain];
[app setApplicationCallback:ch];

SUPConnectionProperties* props = app.connectionProperties;
[props setServerName:@"server.mycompany.com"];
[props setPortNumber:5001];

SUPLoginCredentials* login = [SUPLoginCredentials getInstance];
login.username = @"supAdmin";
login.password = @"supPwd";
props.loginCredentials = login;

if ([app registrationStatus] != SUPRegistrationStatus_REGISTERED &&
[app registrationStatus] != SUPRegistrationStatus_REGISTERING)
{
[app registerApplication:120]; // 120 second timeout for
registration
}

setApplicationCallback
Sets the callback for the current application. It is optional, but recommended, to register a
callback so the application can respond to changes in connection status, registration status,
and application settings.

Syntax
+ (void)setApplicationCallback:(SUPApplicationCallback*)value;

Parameters

• value – The mobile application callback handler.

Examples

• Set the Application Callback

SUPApplication* app = [SUPApplication getInstance];
@try {
 [app setApplicationIdentifier: @"appname"]; (same as in SCC)
 [app setApplicationCallback:self];
 ...
}
@catch (SUPPersistenceException * pe) {
 NSLog(@"%@: %@", [pe name],[pe message]);
}

Client Object API Usage

102 SAP Mobile Platform

ApplicationCallback Property
Callback for the current application. It is optional (but recommended) to set a callback, so that
the application can respond to changes of connection status, registration status and application
settings.

Syntax
public IApplicationCallback ApplicationCallback { get; set; }

Examples

• Get the current ApplicationCallback handler

application.ApplicationCallback = new MyApplicationCallback();

startConnection:timeout
Starts the connection for this application. If the connection was previously started, then this
operation has no effect. You must set the appropriate connectionProperties before
calling this operation. An ApplicationTimeoutException is thrown if the method
does not succeed within the number of seconds specified by the timeout.

If connection properties are improperly set, a ConnectionPropertyException is
thrown. You can set the applicationCallback before calling this operation to receive
asynchronous notification of connection status changes. If a callback handler is registered and
network connectivity is available, the sequence of callbacks as a result of calling
startConnection is:

onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, "")
 onConnectionStatusChanged(ConnectionStatus.CONNECTED, 0, "")

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling startConnection is:

onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, null)
 onConnectionStatusChanged(ConnectionStatus.CONNECTION_ERROR, code,
message)

After a connection is successfully established, it can transition at any later time to
CONNECTION_ERROR status or NOTIFICATION_WAIT status and subsequently back to
CONNECTING and CONNECTED when connectivity resumes.

Note: The application must have already been registered for the connection to be established.
See registerApplication for details.

Syntax
+(void)startConnection:(int32_t)timeout;

Client Object API Usage

Developer Guide: iOS Object API Applications 103

Parameters

• timeout – The number of seconds to wait until the connection is started. If the timeout is
greater than zero and the connection is not started within the timeout period, an
ApplicationTimeoutException is thrown (the operation may still be completing
in a background thread). If the timeout value is less than or equal to 0, then this method
returns immediately without waiting for the registration to finish (a non-blocking call).

Returns

None.

Examples

• Start the Application

[app startConnection:timeout];

connectionStatus
Return current status of the mobile application connection.

Syntax
+ (int32_t)connectionStatus;

Returns

connectionStatus returns one of the SUPConnectionStatus class values.

//The connection been successfully started.
#define SUPConnectionStatus_CONNECTED 103

//The connection is currently being started.
#define SUPConnectionStatus_CONNECTING 102

//The connection could not be started, or was previously started and
subsequently an error occurred. Using
//onConnectionStatusChanged you can capture the associated errorCode
and errorMessage. This is a temporary condition that
//can be automatically! resolved, if network connectivity can be
established or reestablished.
#define SUPConnectionStatus_CONNECTION_ERROR 101

//The connection been successfully stopped, or there was no previous
connection.
#define SUPConnectionStatus_DISCONNECTED 105

//The connection is currently being stopped.
#define SUPConnectionStatus_DISCONNECTING 104

ConnectionStatus has the following possible values:

Client Object API Usage

104 SAP Mobile Platform

• ConnectionStatus.CONNECTED – The connection has been successfully started.
• ConnectionStatus.CONNECTING – The connection is currently being started.
• ConnectionStatus.CONNECTION_ERROR – The connection could not be started, or

was previously started and subsequently an error occurred. Use
onConnectionStatusChanged to capture the associated errorCode and
errorMessage.

• ConnectionStatus.DISCONNECTED – The connection been sucessfully stopped, or
there was no previous connection.

• ConnectionStatus.DISCONNECTING – The connection is currently being stopped.
• ConnectionStatus.NOTIFICATION_WAIT – The connection has been suspended and

is awaiting a notification from the server. This is a normal situation for those platforms
which can keep connections closed when there is no activity, since the server can reawaken
the connection as needed with a notification.

Examples

• Get the Application Connection Status

[SUPApplication connectionStatus];

getConnectionProperties
Retrieves the connection parameters from the application's connection properties instance.
You must set connection properties before calling startConnection,
registerApplication or unregisterApplication.

Syntax
+ (SUPConnectionProperties*)connectionProperties;

Parameters
None.

Returns

Returns the connection properties instance.

ApplicationSettings Property
Return application settings that have been received from the SAP Mobile Server after
application registration and connection.

Syntax
Sybase.Mobile.ApplicationSettings ApplicationSettings { get; set; }

Client Object API Usage

Developer Guide: iOS Object API Applications 105

Returns
Application settings that have been received from the SAP Mobile Server.

Examples

• Get the Application Settings

ApplicationSettings applicationSettings =
Application.GetInstance().ApplicationSettings

beginDownloadCustomizationBundle :(NSStream*)outputStream
Starts downloading the default resource bundle associated with the application, and saves it
into the output stream that you provide.

The resource bundle is saved into the output stream that you provide. An application can only
have one default resource bundle.

Syntax
-(void) beginDownloadCustomizationBundle :(NSStream*)outputStream;

Parameters

• outputStream – An output stream that you provide.

Returns

None.

Examples

• Download

// Download the default bundle file and save it to the
defaultBundle.jar file
SUPApplication* app = [SUPApplication getInstance];
NSOutputStream* ostream = [self
openOutputStream:@"defaultBundle.jar"];
[app beginDownloadCustomizationBundle:ostream];

beginDownloadCustomizationBundle:(NSString*)customizationBundleID
withOutputStream:(NSOutputStream*)outputStream
Start downloading the resource bundle named customizationBundleID and save it to
an output stream.

The resource bundle is saved into the output stream that you provide.

Client Object API Usage

106 SAP Mobile Platform

Syntax
-(void) beginDownloadCustomizationBundle:
(NSString*)customizationBundleID withOutputStream:
(NSOutputStream*)outputStream;

Parameters

• customizationBundleID – The resource bundle name.
• outputStream – An output stream of bytes that you provide.

Returns

None.

Examples

• Download

// Download a specific (“Example”) resource bundle and save to
Example.jar
SUPApplication* app = [SUPApplication getInstance];
NSOutputStream* ostream = [self openOutputStream: @"
Example.jar"];
app beginDownloadCustomizationBundle:@"Example:2.0"
withOutputStream:ostream];

stopConnection:timeout
Stop the connection for this application. An ApplicationTimeoutException is
thrown if the method does not succeed within the number of seconds specified by the timeout.

If no connection was previously stopped, then this operation has no effect. You can set the
applicationCallback before calling this operation to receive asynchronous
notification of connection status changes.

If a callback handler is registered, the sequence of callbacks as a result of calling
stopConnection is:

• onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, "")
• onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, "")

Syntax
+ (void)stopConnection:(int32_t)timeout

Parameters

• timeout – The number of seconds to wait until the connection is stopped. If the timeout
value is less than or equal to 0, then this method returns immediately without waiting for
the registration to finish (a non-blocking call).

Client Object API Usage

Developer Guide: iOS Object API Applications 107

Returns

None.

Examples

• Stop the Application

[SUPApplication stopConnection:<timeout>];

unregisterApplication
Delete the registration for this application, and stop the connection. If no registration was
previously created, or a previous registration was already deleted, then this operation has no
effect. This method is equivalent to calling unregisterApplication:0, but is a non-
blocking call which returns immediately. You can set the applicationCallback before calling
this operation to receive asynchronous notification of registration status changes.

Make sure the synchronization process has ended before calling this method.

Syntax
- (void)unregisterApplication;

Parameters
None.

Examples

• Unregister an Application – Unregisters the application.
[app unregisterApplication];

unregisterApplication:timeout
Delete the registration for this application, and stop the connection. If no registration was
previously created, or a previous registration was already deleted, then this operation has no
effect. You can set the applicationCallback before calling this operation to receive
asynchronous notification of registration status changes.

If a callback handler is registered and network connectivity is available, the sequence of
callbacks as a result of calling unregisterApplication should be:

• onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, "")
• onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, "")
• onRegistrationStatusChanged(RegistrationStatus.UNREGISTERING, 0, "")
• onRegistrationStatusChanged(RegistrationStatus.UNREGISTERED, 0, "")

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling unregisterApplication should be:

Client Object API Usage

108 SAP Mobile Platform

• onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, "")
• onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, "")
• onRegistrationStatusChanged(RegistrationStatus.UNREGISTERING, 0, "")
• onRegistrationStatusChanged(RegistrationStatus.REGISTRATION_ERROR, code,

message)

Syntax
+ (void)unregisterApplication:(int32_t)timeout;

Parameters

• timeout – Number of seconds to wait until the application is unregistered. If the timeout
value is less than or equal to 0, then this method returns immediately without waiting for
the registration to finish (a non-blocking call).

Examples

• Unregister an Application – Unregisters the application with a one minute waiting
period.
[app unregisterApplication:60];

ConnectionProperties
A class that supports the configuration of properties to enable application registrations and
connections.

activationCode
Retrieves or sets the activation code. If you register an application manually, you must set an
activation code.

Syntax
@property(readwrite, retain, nonatomic) NSString* activationCode;

Parameters
None.

Returns

Returns the activation code.

networkProtocol
Retrieves or sets the network protocol for the server connection URL, which is also known as
the URL scheme. Defaults to HTTP.

Client Object API Usage

Developer Guide: iOS Object API Applications 109

Syntax
@property(readwrite, retain, nonatomic) NSString* networkProtocol;

Parameters
None.

Returns

Returns the network protocol for the server connection URL.

loginCertificate
Retrieve the login certificate, or set this property to enable authentication by a digital
certificate.

Syntax
@property(readwrite, retain, nonatomic) SUPLoginCertificate
*loginCertificate;

Parameters
None.

Returns

Returns the login certificate.

loginCredentials
Retrieve the login credentials, or set this property to enable authentication by username and
password..

Syntax
 @property(readwrite, copy, nonatomic) SUPLoginCredentials
*loginCredentials;

Parameters
None.

Returns

Returns the login credentials.

portNumber
Retrieve or set the port number for the server connection URL.

Client Object API Usage

110 SAP Mobile Platform

Syntax
@property(readwrite) int32_t portNumber;

Parameters
None.

Returns

Returns the port number.

serverName
Retrieve or set the server name for the server connection URL.

Syntax
@property(readwrite, retain, nonatomic) NSString* serverName;

Parameters
None.

Returns

Returns the server name.

securityConfiguration
Retrieve the security configuration for the connection profile. If not specified, the server
selects the correct security configuration by matching an application connection template
with the applicationIdentifier. If you have two application connection templates
with the same application ID but different security configurations, you must set the security
configuration. Otherwise, a 'template not found' exception will be thrown.

Syntax
@property(readwrite, retain, nonatomic) NSString*
securityConfiguration;

Parameters
None.

Returns

Returns the security configuration.

Client Object API Usage

Developer Guide: iOS Object API Applications 111

urlSuffix
Retrieve the URL suffix for the server connection URL. This optional property is only used
when connecting through a proxy server or Relay Server.

If the URL Suffix is left blank, then the client will attempt to discover the correct URL using
default Relay Server URLs. If a valid urlSuffix is discovered, the value will be saved and
used exclusively.

Note: If an incorrect URL is configured, it must be cleared or corrected before the client is able
to connect.

Syntax
@property(readwrite, retain, nonatomic) NSString* urlSuffix;

Parameters
None.

Returns

Returns the URL suffix.

Usage
The suffix "/%cid%/tm" is appended if the URL does not already end in "/tm". If the URL
ends in "/", then only "%cid%/tm" is appended.

You can optionally code a Content-ID (CID) into the URL.

For example, if the CID is "XYZ" then any of these URL suffixes:

• /ias_relay_server/client/rs_client.dll
• /ias_relay_server/client/rs_client.dll/
• /ias_relay_server/client/rs_client.dll/%cid%/tm
• /ias_relay_server/client/rs_client.dll/XYZ/tm

result in the following URL suffix:

• /ias_relay_server/client/rs_client.dll/XYX/tm

farmId
Retrieve the Farm ID for the server connection URL. This optional property is used in the URL
discovery process when connecting through a proxy server or Relay Server. The farmId is
substituted into the default URL templates for Relay Server on into a configured
urlSuffix. The farmId is used only until a connection is successfully made and the
permanent urlSuffix is stored.

Client Object API Usage

112 SAP Mobile Platform

Syntax
@property(readwrite, retain, nonatomic) NSString* farmId;

Parameters
None.

Returns

Returns the Farm ID.

httpHeaders
Retrieve or set any custom headers for HTTP network communications with a proxy server or
Relay Server.

Syntax
@property(readwrite, retain, nonatomic) SUPStringProperties*
httpHeaders;

Parameters
None.

Returns

Returns the HTTP headers.

httpCookies
Retrieve or set any custom HTTP cookies for network communications with a proxy server or
Relay Server.

Syntax
@property(readwrite, retain, nonatomic) SUPStringProperties*
httpCookies;

Parameters
None.

Returns

Returns the HTTP cookies.

httpCredentials
Retrieve or set the credentials for HTTP basic authentication with a proxy server or Relay
Server.

Client Object API Usage

Developer Guide: iOS Object API Applications 113

Syntax
@property(readwrite, retain, nonatomic) SUPLoginCredentials
*httpCredentials;

Parameters
None.

Returns

Returns credentials for HTTP basic authentication with a proxy server or Relay Server.

ApplicationSettings
Methods or properties in the SUPApplicationSettings class.

isApplicationSettingsAvailable
Checks whether the application settings are available from the SAP Mobile Server.

Syntax
- (BOOL) isApplicationSettingsAvailable;

Parameters
None.

Returns
Returns true if the application settings are available.

Examples

• Check if application settings are available

BOOL isSettingsAvailable = [[SUPApplication
getInstance].applicationSettings isApplicationSettingsAvailable];

getStringProperty
Retrieves a string property from the applicationSettings.

Syntax
+ (NSString*)getStringProperty:(SUPConnectionPropertyType)propId;

Parameters

• propId – The property ID of the SUPConnectionPropertyType.

Client Object API Usage

114 SAP Mobile Platform

Returns

Returns a string property value.

Examples

• Get string property

NSString *username = [[SUPApplication
getInstance].applicationSettings
getStringProperty:USERNAME_PROP_ID];

getIntegerProperty
Retrieves an integer property from the applicationSettings.

Syntax
+ (int) getIntProperty:(SUPConnectionPropertyType)propId;

Parameters

• propId – The property ID of the SUPConnectionPropertyType.

Returns
Returns an integer property value.

Examples

• Get integer property

int min_length = [[SUPApplication
getInstance].applicationSettings
getIntegerProperty:PWDPOLICY_MIN_LENGTH_PROP_ID];

getBooleanProperty
Retrieves a boolean property from the applicationSettings.

Syntax
+ (BOOL) getBooleanProperty:(SUPConnectionPropertyType)propId;

Parameters

• propId – The property ID of the SUPConnectionPropertyType.

Returns
Returns a boolean property value.

Client Object API Usage

Developer Guide: iOS Object API Applications 115

Examples

• Get boolean property

BOOL pwdpolicy_has_lower = [[SUPApplication
getInstance].applicationSettings getBooleanProperty:
PWDPOLICY_HAS_LOWER_PROP_ID];

custom1
A custom application setting for use by the application code.

Syntax
- (NSString*)custom1

Parameters
None.

Returns

Returns a custom application setting.

Examples

• Custom application setting

SUPApplicationSettings* applicationSettings = [[SUPApplication
getInstance] applicationSettings];
NSString* custom1 = [applicationSettings custom1];

custom2
A custom application setting for use by the application code.

Syntax
- (NSString*)custom2

Parameters
None.

Returns

Returns a custom application setting.

Client Object API Usage

116 SAP Mobile Platform

Examples

• Custom application setting

SUPApplicationSettings* applicationSettings = [[SUPApplication
getInstance] applicationSettings];
NSString* custom2 = [applicationSettings custom2];

custom3
A custom application setting for use by the application code.

Syntax
- (NSString*)custom3

Parameters
None.

Returns

Returns a custom application setting.

Examples

• Custom application setting

SUPApplicationSettings* applicationSettings = [[SUPApplication
getInstance] applicationSettings];
NSString* custom3 = [applicationSettings custom3];

custom4
A custom application setting for use by the application code.

Syntax
- (NSString*)custom4

Parameters
None.

Returns

Returns a custom application setting.

Client Object API Usage

Developer Guide: iOS Object API Applications 117

Examples

• Custom application setting

SUPApplicationSettings* applicationSettings = [[SUPApplication
getInstance] applicationSettings];
NSString* custom4 = [applicationSettings custom4];

domainName

Syntax
- (NSString*)domainName

Parameters
None.

Returns

Returns the domain name.

Examples

• Domain name

SUPApplicationSettings* applicationSettings = [[SUPApplication
getInstance] applicationSettings];
NSString* domainName = [applicationSettings domainName];

connectionId

Syntax
- (NSString*) connectionId

Parameters
None.

Returns

Returns a Connection ID for this application setting.

Examples

• Connection ID

SUPApplicationSettings* applicationSettings = [[SUPApplication
getInstance] applicationSettings];
NSString* connectionId= [applicationSettings connectionId];

Client Object API Usage

118 SAP Mobile Platform

ConnectionPropertyType
Methods or properties in the SUPConnectionPropertyType class.

See the generated API reference provided with the Mobile SDK for a complete list of methods
in the SUPConnectionPropertyType class.

PwdPolicy_Enabled
Indicates whether the password policy is enabled.

Syntax
ConnectionPropertyType PwdPolicy_Enabled

Parameters
None.

Returns

A boolean true or false indicating whether or not the password policy is enabled.

Examples

• PwdPolicy_Enabled

BOOL pwdpolicy_enabled = [[SUPApplication
getInstance].applicationSettings
getBooleanProperty:PWDPOLICY_ENABLED_PROP_ID];

PwdPolicy_Default_Password_Allowed
 Indicates whether the client application is allowed to use the default password for the data
vault.

Syntax
ConnectionPropertyType PwdPolicy_Default_Password_Allowed

Parameters
None.

Returns

None.

Client Object API Usage

Developer Guide: iOS Object API Applications 119

Examples

• PwdPolicy_Default_Password_Allowed

BOOL pwdpolicy_default_pwd_allowed = [[SUPApplication
getInstance].applicationSettings
getBooleanProperty:PWDPOLICY_DEFAULT_PASSWORD_ALLOWED_PROP_ID];

PwdPolicy_Length
Defines the minimum length for a password.

Syntax
ConnectionPropertyType PwdPolicy_Length

Parameters
None.

Returns

Returns an integer value for the minimum length for a password.

Examples

• PwdPolicy_Length

int min_length = [[SUPApplication
getInstance].applicationSettings
getIntegerProperty:PWDPOLICY_MIN_LENGTH_PROP_ID];

PwdPolicy_Has_Digits
Indicates if the password must contain digits.

Syntax
ConnectionPropertyType PwdPolicy_Has_Digits

Parameters
None.

Returns

Returns true if the password must contain digits.

Client Object API Usage

120 SAP Mobile Platform

Examples

• PwdPolicy_Has_Digits

BOOL pwdpolicy_has_digits = [[SUPApplication
getInstance].applicationSettings getBooleanProperty:
PWDPOLICY_HAS_DIGITS_PROP_ID];

PwdPolicy_Has_Upper
Indicates if the password must contain at least one upper case character.

Syntax
ConnectionPropertyType PwdPolicy_Has_Upper

Parameters
None.

Returns

Returns true if the password must contain at least one upper case character.

Examples

• PwdPolicy_Has_Upper

BOOL pwdpolicy_has_upper = [[SUPApplication
getInstance].applicationSettings getBooleanProperty:
PWDPOLICY_HAS_UPPER_PROP_ID];

PwdPolicy_Has_Lower
Indicates if the password must contain at least one lower case character.

Syntax
ConnectionPropertyType PwdPolicy_Has_Lower

Parameters
None.

Returns

Returns true if the password contains at least one lower case character.

Client Object API Usage

Developer Guide: iOS Object API Applications 121

Examples

• PwdPolicy_Has_Lower

BOOL pwdpolicy_has_lower = [[SUPApplication
getInstance].applicationSettings getBooleanProperty:
PWDPOLICY_HAS_LOWER_PROP_ID];

PwdPolicy_Has_Special
Indicates if the password must contain at least one special character. A special character is a
character in the set "~!@#$%^&*()-+".

Syntax
ConnectionPropertyType PwdPolicy_Has_Special

Parameters
None.

Returns

Returns true if the password must contain at least one special character.

Examples

• PwdPolicy_Has_Special

BOOL pwdpolicy_has_special = [[SUPApplication
getInstance].applicationSettings getBooleanProperty:
PWDPOLICY_HAS_SPECIAL_PROP_ID];

PwdPolicy_Expires_In_N_Days
Specifies the number of days in which the password expires from the date of setting the
password.

Syntax
ConnectionPropertyType PwdPolicy_Expires_In_N_Days

Parameters
None.

Returns

Returns an integer value for the number of days in which the password expires.

Client Object API Usage

122 SAP Mobile Platform

Examples

• PwdPolicy_Expires_In_N_Days

int expires_in_n_days = [[SUPApplication
getInstance].applicationSettings
getIntegerProperty:PWDPOLICY_EXPIRES_IN_N_DAYS_PROP_ID];

PwdPolicy_Min_Unique_Chars
Specifies the minimum number of unique characters in the password.

Syntax
ConnectionPropertyType PwdPolicy_Min_Unique_Chars

Parameters
None.

Returns

An integer specifying the minimum number of unique characters in the password.

Examples

• PwdPolicy_Min_Unique_Characters

int min_unique_characters = [[SUPApplication
getInstance].applicationSettings
getIntegerProperty:PWDPOLICY_MIN_UNIQUE_CHARS_PROP_ID];

PwdPolicy_Lock_Timeout
Specifies the timeout value (in seconds) after which the vault is locked from the unlock time. A
value of 0 indicates no timeout.

Syntax
ConnectionPropertyType PwdPolicy_Lock_Timeout

Parameters
None.

Returns

An integer specifying the timeout value.

Client Object API Usage

Developer Guide: iOS Object API Applications 123

Examples

• PwdPolicy_Lock_Timeout

int lock_timeout = [[SUPApplication
getInstance].applicationSettings
getIntegerProperty:PWDPOLICY_LOCK_TIMEOUT_PROP_ID];

PwdPolicy_Retry_Limit
Specifies the number of failed unlock attempts after which the data vault is deleted. A value of
0 indicates no retry limit.

Syntax
ConnectionPropertyType PwdPolicy_Retry_Limit

Parameters
None.

Returns

An integer specifying the number of failed unlock attempts after which the data vault is
deleted.

Examples

• PwdPolicy_Retry_Limit

int pwdpolicy_retry_limit = [[SUPApplication
getInstance].applicationSettings
getIntegerProperty:PWDPOLICY_RETRY_LIMIT_PROP_ID];

Afaria APIs
Use the Afaria APIs to provision your SAP Mobile Platform application with configuration
data for connecting to the SAP Mobile Server, and certificates.

Using Afaria to Provision Configuration Data
You can use Afaria to provision configuration data for a SAP Mobile Platform application,
including the SAP Mobile Server server name, port number, and other parameters.

To use these APIs you must provide the application to the device through an Afaria application
policy. When setting up such an application policy, the Afaria administration interface
provides an option to add configuration data to the policy as text or binary.

The following is an an example of the Afaria administration screen for an application policy
that provides an application named "CertsOnBoard" to an enrolled device. The
"Configuration" tab shows the configuration data provided to the application.

Client Object API Usage

124 SAP Mobile Platform

In this case, the configuration information is added using the administration user interface, but
it can also be provided as a text or binary file. The example shows plain text, but you can also
provide the information as XML or JSON text for easier parsing by the application.

You can obtain configuration data for your application using Afaria by calling the following
API from the SeedingAPISynchronous class (in Afaria's
SeedingAPISynchronous.h header file:

+ (NSInteger)retrieveSeedData:(NSString *)urlScheme InFile:
(NSMutableString *)seedFile withCredentials:(NSURLCredential
*)credentials;

Or, call this asynchronous API from the SeedDataAPI class (in SeedDataAPI.h):

- (void)retrieveSeedData;

To access this data, the application provides an NSMutableString to the
retrieveSeedData API. If the device is correctly enrolled to Afaria, the API returns
kSeedDataAvailable and the NSMutableString contains the full path to a file in the
application's sandbox with the seed data.

This example code retrieves the configuration data using the Afaria API, parses it using the
native iOS APIs, and applies the appropriate settings using the SAP Mobile Platform APIs
(the SUPApplication and SUPConnectionProperties classes).

NSMutableString *seedFile = [NSMutableString string];
retCode = [SeedingAPISynchronous retrieveSeedData:@"certsonboard-
seed" InFile:seedFile withCredentials:nil];
NSError *error = nil;
switch(retCode)
{
 case kSeedDataAvailable: // Seed data is available, read the file
 NSLog(@"Seed file = %@",seedFile);
 NSLog(@"Seed data = %@",[NSString
stringWithContentsOfFile:seedFile encoding:NSUTF8StringEncoding
error:&error]);

Client Object API Usage

Developer Guide: iOS Object API Applications 125

 break;
 case kSeedDataUnavailable:
 NSLog(@"kSeedDataUnavailable"); // Error
 break;
 case kAfariaClientNotInstalled:
 NSLog(@"kAfariaClientNotInstalled"); // Error
 break;
 case kAfariaSettingsRequested:
 NSLog(@"kAfariaSettingsRequested"); // Error
 break;
}

// Read the text from the Afaria configuration file
NSString *configurationText = [NSString
stringWithContentsOfFile:seedFile encoding:NSUTF8StringEncoding
error:&error];

// Separate the text into lines
NSArray *configurationLines = [configurationText
componentsSeparatedByString:@"\n"];

// Create a dictionary, and go through the lines to find name value
pairs
NSMutableDictionary *settings = [NSMutableDictionary dictionary];
for(NSString *s in configurationLines)
{
 NSArray *nvpair = [s componentsSeparatedByString:@": "];
 if([nvpair count] == 2)
 [settings setValue:[nvpair objectAtIndex:1] forKey:[nvpair
objectAtIndex:0]];
}

// Use the name value pairs from the configuration file to set the
appropriate settings in the SUPApplication API
SUPApplication *app = [SUPApplication getInstance];
app.applicationIdentifier = @"myAppID";

SUPConnectionProperties *properties = app.connectionProperties;

properties.serverName = [settings valueForKey:@"Server"];
properties.portNumber = [[settings valueForKey:@"Port"] intValue];
properties.farmId = [settings valueForKey:@"Farm ID"];
properties.urlSuffix = [settings valueForKey:@"URL Suffix"];

NSLog(@"Server name is set to %@",properties.serverName);
NSLog(@"Port number is set to %d",properties.portNumber);
NSLog(@"Farm ID is set to %@",properties.farmId);
NSLog(@"URL suffix is set to %@",properties.urlSuffix);

Example output on the Xcode console:
2012-09-24 13:06:33.014 CertsOnboard[579:707] Seed file = /var/
mobile/Applications/21935FE8-843A-418D-A2BF-EE415B5D4DF0/Documents/
TEXT_FILE_
2012-09-24 13:06:33.016 CertsOnboard[579:707] Seed data = Server:
relayserver.sybase.com

Client Object API Usage

126 SAP Mobile Platform

Port: 80
URL Suffix: /ias_relay_server/client/rs_client.dl
Farm ID: example.exampleMBS

For more information on the Afaria APIs and the meanings of return codes, see the Afaria
documentation.

Using Certificates from Afaria for Authentication
One of the features of Afaria is the ability to provide a device with a signed certificate that
could be used as an authentication credential for SAP Mobile Platform. This note explains
how to take a certificate provided by Afaria and convert it into a form suitable for use with SAP
Mobile Platform.

Prerequisites:

• The iOS application has been built using the SAP Mobile Platform generated code and
framework headers and libraries.

• The iOS application includes the required Afaria headers SeedDataAPI.h and
SeedingAPISynchronous.h.

• The iOS application has been registered with the Afaria server as an application policy and
made available to the iOS client device.

In SAP Mobile Platform, a certificate can be used for authentication by creating a
LoginCertificate object (the SUPLoginCertificate class), and setting that as the certificate
property in the client's synchronization profile. The login certificate has two properties that are
used in authentication; the subjectCN (the common name of the certificate) and the
signedCertificate (the certificate data itself).

After calling the Afaria APIs to get initial settings and configuration data, an application using
Afaria may obtain a signed certificate using one of these APIs:
+ (NSInteger)retrieveCertificateWithPrivateKey:
(SecKeyRef)privateKey andPublicKey:(SecKeyRef)publicKey
andCommonName:(NSString *)commonName andChallenge:(NSString
*)challengeCode forUrlScheme:(NSString *)urlScheme inCertificate:
(SecCertificateRef *)certificate;

+ (NSInteger)retrieveCertificateWithUrl:(NSURL *)url andPrivateKey:
(SecKeyRef)privateKey andPublicKey:(SecKeyRef)publicKey
andCommonName:(NSString *)commonName andChallenge:(NSString
*)challengeCode inCertificate:(SecCertificateRef *)certificate;

After this, the application will have a SecCertificateRef with the certificate, and a SecKeyRef
with the private key. The certificate data in the SecCertificateRef cannot be used as is in the
signedCertificate property of an SUPLoginCertificate. The signedCertificate property value
is expected to contain the certificate and a digest of the certificate in ASN.1 format. To create
the signedCertificate property value:

Client Object API Usage

Developer Guide: iOS Object API Applications 127

This sample code shows how to get the Afaria certificate, create an
SUPLoginCertificate object, and attach it to a SAP Mobile Platform synchronization
profile.
// At this point, an Afaria user should have a signed certificate and
a private key available after importing
// their certificate using either of the Afaria APIs
 /*

+ (NSInteger)retrieveCertificateWithPrivateKey:
(SecKeyRef)privateKey andPublicKey:(SecKeyRef)publicKey
andCommonName:(NSString *)commonName andChallenge:(NSString
*)challengeCode forUrlScheme:(NSString *)urlScheme inCertificate:
(SecCertificateRef *)certificate;

+ (NSInteger)retrieveCertificateWithUrl:(NSURL *)url andPrivateKey:
(SecKeyRef)privateKey andPublicKey:(SecKeyRef)publicKey
andCommonName:(NSString *)commonName andChallenge:(NSString
*)challengeCode inCertificate:(SecCertificateRef *)certificate;

SecCertificateRef certificate;
SecKeyRef privatekey;

*/

SUPLoginCertificate *loginCertificate = [SUPLoginCertificate
getInstance];

loginCertificate.subjectCN =
(NSString*)SecCertificateCopySubjectSummary(certificate);

loginCertificate.signedCertificate = [CertBlobUtility
makeCertBlob:certificate andPrivateKey:privatekey];

NSLog(@"Certificate created. Subject =
%@",loginCertificate.subjectCN);

NSLog(@"MD5 digest = %@",[CertBlobUtility
md5sum:loginCertificate.signedCertificate]);

NSLog(@"SHA1 digest = %@",[CertBlobUtility
sha1:loginCertificate.signedCertificate]);

// Attach certificate to sync profile

SUPConnectionProfile *syncProfile = [SAPSSOCertTestSAPSSOCertTestDB
getSynchronizationProfile];
syncProfile.certificate = loginCertificate;
[loginCertificate release];

Client Object API Usage

128 SAP Mobile Platform

CertBlobUtility Header
The CertBlob Utility header of the CertBlob class.

#import <Foundation/Foundation.h>
#import <Security/Security.h>

@interface CertBlobUtility : NSObject

// Returns the MD5 sum of the input data
+ (NSString*)md5sum:(NSData*)certData;

// Returns the SHA1 fingerprint of the input data
+ (NSString*)sha1:(NSData*)certData;

// Given a signed certificate and private key, return a certificate
blob suitable for use in an SUPLoginCertificate
+ (NSData *)makeCertBlob:(SecCertificateRef)certificate
andPrivateKey:(SecKeyRef)privateKey;
@end

CertBlobUtility Source
The CertBlob Utility source of the CertBlob class.

#import "CertBlobUtility.h"
#import <CommonCrypto/CommonDigest.h>

bool getAsn1LengthBytes(
 int iLengthVal, // (IN) value to be encoded
 unsigned char* pbOut, // (IN/OUT) buffer to be populated with
the encoding or NULL to get sizing information
 int *iOutLen // (IN/OUT) if pbOut != NULL, size of pbOut buffer
in allocated bytes. Is set to the number
 // of bytes required/written in the encoding on return.
);

bool makeCertBlob(
 unsigned char* pbCert, // Certificate to be encoded in the CertBlob
 int iCertLen, // Length in bytes of pbCert
 unsigned char* pbSig, // Signature to be encoded in the CertBlob
 int iSigLen, // Length in bytes of pbSig
 unsigned char byteAlgorithm, // Algorithm constant to be encoded in
the CertBlob
 unsigned char* pbOut, // (IN/OUT) buffer to be populated with the
encoding or NULL to get sizing information
 int *iOutLen // (IN/OUT) if pbOut != NULL, size of pbOut buffer in
allocated bytes. Is set to the number
 // of bytes required/written in the encoding on return.
);

bool getAsn1LengthBytes(
 int iLengthVal, // (IN) value to be encoded
 unsigned char* pbOut, // (IN/OUT) buffer to be populated with

Client Object API Usage

Developer Guide: iOS Object API Applications 129

the encoding or NULL to get sizing information
 int *iOutLen // (IN/OUT) if pbOut != NULL, size of pbOut buffer
in allocated bytes. Is set to the number
 // of bytes required/written in the encoding on return.
)
{
 // simple short form length
 if (iLengthVal < 0x80)
 {
 if ((pbOut != NULL) && (*iOutLen < 1))
 return false;

 *iOutLen = 1;
 if (pbOut != NULL)
 *pbOut = (unsigned char) iLengthVal;
 return true;
 }

 // if we got here, we need long form, because the short form doesn't
fit in a single byte

 // count the number of bytes in iVal
 int iTmp = iLengthVal;
 int iCount = 0;
 iTmp = iLengthVal;
 unsigned char byteLast = 0;
 while (iTmp != 0)
 {
 iCount++;
 byteLast = (unsigned char) (iTmp & 0xFF);
 iTmp >>= 8;
 }

 // case where caller wants to know how to size buffer
 if (NULL == pbOut)
 {
 *iOutLen = iCount + 1; // +1 for the length byte
 return true;
 }

 if (*iOutLen < iCount + 1)
 return false;

 *iOutLen = iCount + 1; // +1 for the length byte

 // Create an array with the count of bytes, followed by the iVal
bytes
 // Setting the top bit of the count indicates that this is a count
with the value to follow, not the actual integer value
 pbOut[0] = (unsigned char) (iCount | 0x80); // count
 iTmp = iLengthVal;
 while (iTmp != 0)
 {
 unsigned char b = (unsigned char) (iTmp & 0xFF);
 iTmp >>= 8;
 pbOut[iCount--] = b;

Client Object API Usage

130 SAP Mobile Platform

 }

 return true;
}

// makeCertBlob "C" function used by SSOCertManager makeCertBlob
method below
/*
 * Returns a buffer containing an ASN.1 encoding for a CertBlob.
 * Upon return, pbOut will be filled with the result and
 * iOutLen will contain the number of bytes written. If this
 * function is called with NULL as the pbOut pointer, it will
 * populate iOutLen without writing anything. The expected usage
 * is to call with pbOut==NULL to size the buffer, allocate the
buffer,
 * then call it again with the newly allocated buffer.
 *
 * Return value of false is if pbOut!=NULL and the passed in iOutLen
 * is less than the required number of bytes to write the result.
 *
 */
bool makeCertBlob(
 unsigned char* pbCert, // Certificate to be encoded in the CertBlob
 int iCertLen, // Length in bytes of pbCert
 unsigned char* pbSig, // Signature to be encoded in the CertBlob
 int iSigLen, // Length in bytes of pbSig
 unsigned char byteAlgorithm, // Algorithm constant to be encoded in
the CertBlob
 unsigned char* pbOut, // (IN/OUT) buffer to be populated with the
encoding or NULL to get sizing information
 int *iOutLen // (IN/OUT) if pbOut != NULL, size of pbOut buffer in
allocated bytes. Is set to the number
 // of bytes required/written in the encoding on return.
)
{
 int iCertLenLen, iSigLenLen;
 int iAlgorithmLen = 2;

 // get number of bytes in length descriptors
 if (!getAsn1LengthBytes(iCertLen, NULL, &iCertLenLen))
 return false;

 if (!getAsn1LengthBytes(iSigLen, NULL, &iSigLenLen))
 return false;

 // calculate size of content of sequence
 int iSeqLen = 1 + // type code for OCTET STRING
 iCertLenLen + // length bytes for Certificate
 iCertLen + // data bytes for Certificate
 1 + // type code for OCTET STRING
 iSigLenLen + // length bytes for Signature
 iSigLen + // data bytes for Signature
 1 + // type code for INTEGER
 iAlgorithmLen; // data bytes for algorithm (assumed to be an
integer that fits in a single byte)

Client Object API Usage

Developer Guide: iOS Object API Applications 131

 // now calculate size of outer sequence
 int iSeqLenLen;
 if (!getAsn1LengthBytes(iSeqLen, NULL, &iSeqLenLen))
 return false;

 int iTotalLen = 1 + // type code for SEQUENCE
 iSeqLenLen + // length bytes for Sequence
 iSeqLen; // data bytes for Sequence

 if (NULL == pbOut)
 {
 // caller is just asking for required buffer size
 *iOutLen = iTotalLen;
 return true;
 }

 // test whether buffer is large enough
 if (*iOutLen < iTotalLen)
 return false;

 // write everything to the buffer
 int iCurIdx = 0;

 // header bytes for wrapping sequence
 pbOut[iCurIdx++] = (unsigned char) 0x30; // type code for
SEQUENCE
 if (!getAsn1LengthBytes(iSeqLen, pbOut + iCurIdx,
&iSeqLenLen)) // length bytes for Sequence
 return false;
 iCurIdx += iSeqLenLen;

 // first element of sequence -> certificate
 pbOut[iCurIdx++] = (unsigned char) 0x04; // type code for OCTET
STRING
 if (!getAsn1LengthBytes(iCertLen, pbOut + iCurIdx,
&iCertLenLen)) // length bytes for Certificate
 return false;
 iCurIdx += iCertLenLen;
 memcpy(pbOut + iCurIdx, pbCert, iCertLen); // bytes for
Certificate
 iCurIdx += iCertLen;

 // second element of sequence -> signature
 pbOut[iCurIdx++] = (unsigned char) 0x04; // type code for OCTET
STRING
 if (!getAsn1LengthBytes(iSigLen, pbOut + iCurIdx,
&iSigLenLen)) // length bytes for Certificate
 return false;

 iCurIdx += iSigLenLen;
 memcpy(pbOut + iCurIdx, pbSig, iSigLen); // bytes for
Certificate
 iCurIdx += iSigLen;

 // third element of sequence -> algorithm
 pbOut[iCurIdx++] = (unsigned char) 0x02; // type code for INTEGER

Client Object API Usage

132 SAP Mobile Platform

 pbOut[iCurIdx++] = (unsigned char) 0x01; // length bytes for
value (assume 1)
 pbOut[iCurIdx++] = byteAlgorithm; // algorithm constant

 return true;
}

@implementation CertBlobUtility

+ (NSString*)md5sum:(NSData*)certData
{

 CC_MD5_CTX md5;

 CC_MD5_Init(&md5);

 CC_MD5_Update(&md5, [certData bytes], [certData length]);

 unsigned char digest[CC_MD5_DIGEST_LENGTH];

 CC_MD5_Final(digest, &md5);

 NSString* s = [NSString stringWithFormat: @"%02x%02x%02x%02x%02x
%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x",
 digest[0], digest[1],
 digest[2], digest[3],
 digest[4], digest[5],
 digest[6], digest[7],
 digest[8], digest[9],
 digest[10], digest[11],
 digest[12], digest[13],
 digest[14], digest[15]];
 return s;
}

+ (NSString*)sha1:(NSData*)certData {
 unsigned char sha1Buffer[CC_SHA1_DIGEST_LENGTH];
 CC_SHA1(certData.bytes, certData.length, sha1Buffer);
 NSMutableString *fingerprint = [NSMutableString
stringWithCapacity:CC_SHA1_DIGEST_LENGTH * 3];
 for (int i = 0; i < CC_SHA1_DIGEST_LENGTH; ++i)
 [fingerprint appendFormat:@"%02x ",sha1Buffer[i]];
 return [fingerprint stringByTrimmingCharactersInSet:
[NSCharacterSet whitespaceCharacterSet]];
}

// SSOCertManager makeCertBlob: used by getCertBlob: API below
// Makes a certBlob from given certificate and private key and
returns it
+ (NSData *)makeCertBlob:(SecCertificateRef)certificate
andPrivateKey:(SecKeyRef)privateKey {
 NSData *sigData;
 NSData *certData;

 CFDataRef certCFData = SecCertificateCopyData(certificate);
 unsigned char certDigest[CC_SHA1_DIGEST_LENGTH];

Client Object API Usage

Developer Guide: iOS Object API Applications 133

 CC_SHA1(CFDataGetBytePtr(certCFData),
CFDataGetLength(certCFData), certDigest);

 certData = [NSData dataWithBytes:CFDataGetBytePtr(certCFData)
length:CFDataGetLength(certCFData)];

 size_t sigLen = 1024;
 uint8_t sigBuf[sigLen];

 // Encrypt the digest of the certificate with private key
 OSStatus err = SecKeyRawSign(privateKey, kSecPaddingPKCS1,
 certDigest,
CC_SHA1_DIGEST_LENGTH, //data.bytes, data.length,
 sigBuf, &sigLen);

 if (err == noErr) {
 sigData = [NSData dataWithBytes:sigBuf length:sigLen];
 }
 if (certCFData != NULL)
 CFRelease(certCFData);

 if ((certData == nil) || (sigData == nil))
 return nil;

 int iLength = 0;
 if ((!makeCertBlob((unsigned char *)[certData bytes],
[certData length], (unsigned char *)[sigData bytes], [sigData
length], 1, NULL, &iLength)) || (iLength == 0))
 return nil;

 unsigned char* pBuf = (unsigned char*)malloc(iLength);
 if (!makeCertBlob((unsigned char *)[certData bytes], [certData
length], (unsigned char *)[sigData bytes], [sigData length], 1, pBuf,
&iLength)) {
 free(pBuf);
 return nil;
 }

 NSData* certBlob = [NSData dataWithBytes:pBuf length:iLength];
 free(pBuf);

 return certBlob;
}

@end

Connection APIs
The Connection APIs contain methods for managing local database information, establishing
a connection with the SAP Mobile Server, and authenticating.

Client Object API Usage

134 SAP Mobile Platform

SUPConnectionProfile
The SUPConnectionProfile class manages local database information. Set its
properties, including the encryption key, during application initialization, and before creating
or accessing the local client database.

By default, the database class name is generated as "packageName"+"DB".
SUPConnectionProfile* cp = [SMP101SMP101DB getConnectionProfile];
[cp setPageSize:4*1024];
[cp setEncryptionKey:@"Your key of more than 16 characters"];
// Immediately after the call to setEncryptionKey, call
[SMP101SMP101DB closeConnection]; to ensure that old connections
with the wrong key are no longer being used.
[SMP101SMP101DB closeConnection];

Note: If you set the page size to a negative value, the framework uses a default value of 4K as
the page size.

You can also generate an encryption key by calling the generated database's
generateEncryptionKey method, and then store the key inside a DataVault object.
The generateEncryptionKey method automatically sets the encryption key in the
connection profile.

You can use the cacheSize API to control the size of the memory cache used by the
database. The default size is 10MB.
SUPConnectionProfile *cp = [SMP101SMP101DB getConnectionProfile];
[cp setCacheSize:5000000]; // set to 5000000 bytes (~ 5 MB)
[SMP101SMP101DB closeConnection]; // close and open the connection
to use the new cache size
[SMP101SMP101DB openConnection];

Managing Device Database Connections
Use the openConnection and closeConnection methods generated in the package
database class to manage device database connections.

Note: Any database operation triggers the establishment of the database connection. You do
not need to explicitly call the openConnection API.

The openConnection method checks that the package database exists, creates it if it does
not, and establishes a connection to the database. This method is useful when first starting the
application: since it takes a few seconds to open the database when creating the first
connection, if the application starts up with a login screen and a background thread that
performs the openConnection method, after logging in, the connection is most likely
already established and is immediately available to the user.

All ConnectionProfile properties should be set before the first access to database,
otherwise they will not take effect.

Client Object API Usage

Developer Guide: iOS Object API Applications 135

The closeConnection method closes all database connections for this package and
releases all resources allocated for those connections. This is recommended to be part of the
application shutdown process.

Note: It is recommended that the next database operation API invoked after
closeConnection is from the main thread.

Improving Device Application Performance with One Writer Thread and
Multiple Database Access Threads
The maxDbConnections property improves device application performance by allowing
multiple threads to access data concurrently from the same local database.

Connection management allows you to have at most one writer thread concurrent with
multiple reader threads. There can be other reader threads at the same time that the writer
thread is writing to the database. The total number of threads are controlled by the
maxDbConnections property.

In a typical device application such as SAP Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry appears, and
loads the details for that entry.

Prior to the implementation of maxDbConnections, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) operation waited for any previous operation to finish before the next was
allowed to proceed. In the list view to detail view example, when the background thread is
loading the entire list, and a user selects the details of one entry for display, the loading of
details for that entry must wait until the entire list is loaded, which can be a long while,
depending on the size of the list.

You can specify the number of total threads using maxDbConnections. The
ConnectionProfile class in the persistence package includes the
maxDbConnections property, which you set before performing any operation in the
application. The default value (maximum number of concurrent read threads) is 2

SUPConnectionProfile *cp = [SMP101SMP101DB getConnectionProfile];

To allow 6 concurrent threads, set the maxDbConnections property to 6 in
ConnectionProfile before accessing the package database at the beginning of the
application.
cp.maxDbConnections = 6;

Client Object API Usage

136 SAP Mobile Platform

Set Database File Property
You can use setProperty to specify the database file name created in the Documents
directory of the application, on the device or simulator.

SUPConnectionProfile *cp = [SMP101SMP101DB getConnectionProfile];
[cp setString:@"databaseFile":@"newDatabaseFileName"];

Usage
• Be sure to call this API before the database is created.
• The database is SQLite; use a database file name like mydb.db.
• If the device client user changes the file name, he or she must make sure the input file name

is a valid name and path on the client side.

Synchronization Profile
The Synchronization Profile contains information for establishing a connection with the SAP
Mobile Server's data synchronization channel where the server package has been deployed.
The SUPConnectionProfile class manages that information. By default, this
information includes the server host, port, domain name, certificate and public key that are
pushed by the message channel during the registration process.

Settings are automatically provisioned from the SAP Mobile Server. The values of the settings
are inherited from the application connection template used for the registration of the
application connection (automatic or manual). You must make use of the connection and
security settings that are automatically used by the Object API.

Typically, the application uses the settings as sent from the SAP Mobile Server to connect to
the SAP Mobile Server for synchronization so that the administrator can set those at the
application deployment time based on their deployment topology (for example, using Relay
Server, using e2ee security, or a certificate used for the intermediary, such as a Relay Server
Web server). See the Applications and Application Connection Templates topics in System
Administration.
SUPConnectionProfile* sp = [SMP101SMP101DB
getSynchronizationProfile];
[sp setDomainName:@"default"];

Encryption and Trusted Certificates for Data Synchronization
When using end-to-end encryption for synchronization with SAP Mobile Server, the public
keys need to be encapsulated in a PEM encoded X.509 certificate and be supplied with an
E2EE private key. For example:
SUPConnectionProfile *sp = [SUP101SUP101DB
getSynchronizationProfile];
[sp
setNetworkStreamParams:@"e2ee_public_key=publickeyCertificate;trust
ed_certificates=trustedCertificate"];

Client Object API Usage

Developer Guide: iOS Object API Applications 137

For details about encryption on iPhone, see iPhone and Mac OS X considerations in the
Ultralite documentation.

Connect the Data Synchronization Channel Through a Relay Server
To enable your client application to connect through a Relay Server, you can enter the related
configuration in the application connection template through SAP Control Center, and/or
setup the configuration properties in the synchronization profile using the object API.

If a Relay Server is used, the ‘companyID’ in the SUPApplication property must
correspond to the MBS farm ID that is used for the messaging client connection.
SUPConnectionProperties props = app.connectionProperties;
[props setFarmId:@"relayServer1"];

For data synchronization through a Relay Server, synchronization properties need to be set if
the corresponding application connection template in SAP Control Center does not have with
the required values:

• Add the certificate file provided by the Relay Server to the Resource folder of your
Xcode project.

• Add the following code before calling [SMP101SMP101DB subscribe]:

SUPConnectionProfile *sp = [SMP101SMP101DB
getSynchronizationProfile];
[sp setUser:@"xxxx"]; //required
[sp setPassword:@"xxxx"]; //required
[sp setNetworkProtocol:@"https"]; // or http, optional
[sp setPortNumber:443]; // if http then corresponding port,
optional
[sp
setNetworkStreamParams:@"trusted_certificates=certificateName;com
pression=zlib;url_suffix=urlsuffixProvidedByTheRelayServer"]; //
optional

• NetworkProtocol – http or https.
• PortNumber – the correct port number for the selected NetworkProtocol.
• NetworkStreamParams – certificateName: the name of the certificate you added in

the Resource folder.

urlsuffixProvidedByTheRelayServer: the RBS URL suffix provided by the Relay
Server.

For more information on Relay Server configuration, see System Administration and SAP
Control Center for SAP Mobile Platform.

Authentication APIs
You can log in to the SAP Mobile Server with your user name and credentials and use the X.
509 certificate you installed in the task flow for single sign-on.

Client Object API Usage

138 SAP Mobile Platform

http://dcx.sybase.com/index.html#1201/en/ulc/ulc-component-iphone-build-include.html

Logging In
The generated package database class provides a default synchronization connection profile
according to the SAP Mobile Server connection profile and server domain selected during
code generation. You can log in to the SAP Mobile Server with your user name and
credentials.

Note: For non-DOE-based applications, do not use beginOnlineLogin. Instead, just set
the user name and password in the synchronization profile and immediately call
subscribe.

The package database class provides methods for logging in to the SAP Mobile Server:

• – set the user name and password in the connection profile and authenticate credentials
against the SAP Mobile Server.
SUPConnectionProfile *syncProfile = [SUP101SUP101DB
getSynchronizationProfile];
[syncProfile setUser:@"user"];
[syncProfile setPassword:@"password"];
[SUP101SUP101DB onlineLogin];

Importing an X.509 Certificate to an iOS Client from the SAP Mobile
Server

Log in to SAP Mobile Server and authenticate a client using a generated X.509 certificate
instead of a user name and password combination.

1. Copy the X.509 certificate used for authentication into a directory on the same host as the
SAP Mobile Server. For example, c:\certs.

2. Create a registry string value on the SAP Mobile Server at HKLM\Software\Sybase
\Sybase Messaging Server\CertificateLocation and populate it with
the path. For example, c:\certs.

Note: For 64-bit servers, use the registry key "HKEY_LOCAL_MACHINE\SOFTWARE
\Wow6432Node\Sybase\Sybase Messaging Server\CertificateLocation"

3. Name the X.509 certificate file as domain_user.p12, where domain is the SAP
Mobile Server domain and user is the certificate user. The user must have read permission
for .p12 file.

4. The system administrator must ensure the specified domain\user has “logon as batch job”
permission on the Windows machine on which the SAP Mobile Server runs:

a) Double-click Control Panel > Administrative Tools > Local Security Policies.
b) Expand Local Policies and select User Rights Assignment.
c) Right-click Log on as a batch job and select Properties.
d) Select Add User or Group and add the domain\user.

Client Object API Usage

Developer Guide: iOS Object API Applications 139

5. The account under which the SAP Mobile Server runs must have adequate permissions to
impersonate the domain\user. For example, the Administrator account for the domain.

6. Include code that imports the certificate from the SAP Mobile Server, and sets up the login
credentials for the package.
// Import certificate from server
SUPLoginCertificate *lc = [cs
getSignedCertificateFromServer:@"<ServerName>\\ssotest"
withServerPassword:@"s1s2o3T4" withCertPassword:@"password"];
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromServer"];
NSLog(@"Imported certificate from server: subjectCN =
%@",lc.subjectCN);

// Attach certificate to sync profile
sp.certificate = lc;
[lc release];

while ([SUPApplication connectionStatus] !=
SUPConnectionStatus_CONNECTED) {
 NSLog(@"waiting to connect...");
 sleep(2);
}

7. Perform a database subscribe and synchronize as appropriate.

Sample Code: Setting Up Login Credentials
Illustrates importing the certificate and setting up login credentials, as well as other APIs
related to certificate handling:

//// SSO certificate APIs
@try
{
SUPConnectionProfile *sp = [SMP101SMP101DB
getSynchronizationProfile];
[sp setDomainName:@"ssocert"];
// Get handle to the certificate store
SUPCertificateStore *cs = [SUPCertificateStore getDefault];

// Getting certificate from a file bundled with the app
NSString *certPath = [[NSBundle mainBundle]
pathForResource:@"sap101"
ofType:@"p12"];
SUPLoginCertificate *lc_resource = [cs
getSignedCertificateFromFile:certPath withPassword:@"password"];
NSLog(@"Got certificate from resource file, subjectCN =
%@",lc_resource.subjectCN);
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromResourceFile"];

// Getting certificate from file in Documents directory
NSArray *arrayPaths =
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask,

Client Object API Usage

140 SAP Mobile Platform

YES);
NSString *docDir = [arrayPaths objectAtIndex:0];
certPath = [NSString stringWithFormat:@"%@/sap101.p12",docDir];
SUPLoginCertificate *lc_doc = [cs
getSignedCertificateFromFile:certPath withPassword:@"password"];
NSLog(@"Got certificate from documents directory file, subjectCN =
%@",lc_doc.subjectCN);
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromDocumentsFile"];

// Distinguished name property
NSLog(@"Test distinguished name property, should be null: DN =
%@",lc_doc.distinguishedName);

// Import certificate from server
SUPLoginCertificate *lc = [cs
getSignedCertificateFromServer:@"<ServerName>\\ssotest"
withServerPassword:@"s1s2o3T4" withCertPassword:@"password"];
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"GetCertificateFromServer"];
NSLog(@"Imported certificate from server: subjectCN =
%@",lc.subjectCN);

// Storage and retrieval of certificate
if(![SUPDataVault vaultExists:@"vaultTest"])
vault = [SUPDataVault createVault:@"vaultTest"
withPassword:@"vaultPassword" withSalt:@"vaultSalt"];
else
vault = [SUPDataVault getVault:@"vaultTest"];
[vault lock];
[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
[lc save:@"test" withVault:vault];
[vault lock];
[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
NSLog(@"Certificate stored. Now get the cert from the data
vault....");
SUPLoginCertificate *lc2 = [SUPLoginCertificate load:@"test"
withVault:vault];
[vault lock];
NSLog(@"Certificate retrieved successfully: subjectCN =
%@",lc2.subjectCN);
if([lc2.subjectCN isEqualToString:lc.subjectCN])
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"SaveAndLoadCertificate"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"SaveAndLoadCertificate"];
[lc2 release];
NSLog(@"Test getting a nonexistent certificate from the vault, see if
we get the right exception...");
BOOL noCertificatePass = NO;
@try
{
SUPLoginCertificate *lc_none = [SUPLoginCertificate load:@"bogus"
withVault:vault];
} @catch(SUPDataVaultException* e)

Client Object API Usage

Developer Guide: iOS Object API Applications 141

{
noCertificatePass = YES;
NSLog(@"Got exception when trying to get nonexistent cert, exception
is %@: %@",[e name],[e reason]);
}
if(noCertificatePass)
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"NonExistentCertificate"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"NonExistentCertificate"];

// Delete certificate
BOOL deletePass = YES;
// Try to get the deleted certificate, should get an exception:
SUPLoginCertificate *lc3 = nil;
[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
@try
{
[SUPLoginCertificate delete:@"test" withVault:vault];
lc3 = [SUPLoginCertificate load:@"test" withVault:vault];
deletePass = NO;
} @catch(NSException* e)
{
NSLog(@"Exception getting deleted cert: %@: %@",[e name],[e
reason]);
deletePass = YES;
}
NSLog(@"Retrieve cert that was deleted, should be null: lc3 =
%@",lc3);
if(lc3 != nil) deletePass = NO;
if(deletePass)
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"DeleteCertificate"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"DeleteCertificate"];

// changeVaultPassword for LoginCertificate
[vault lock];
[vault unlock:@"vaultPassword" withSalt:@"vaultSalt"];
[vault changePassword:@"newPassword" withSalt:@"vaultSalt"];
[vault lock];
[vault unlock:@"newPassword" withSalt:@"vaultSalt"];
[lc save:@"test" withVault:vault];
[vault lock];
[vault unlock:@"newPassword" withSalt:@"vaultSalt"];
SUPLoginCertificate *lc4 = [SUPLoginCertificate load:@"test"
withVault:vault];
[vault lock];
[vault unlock:@"newPassword" withSalt:@"vaultSalt"];

// Change password back so we can rerun the test
[vault changePassword:@"vaultPassword" withSalt:@"vaultSalt"];
[vault lock];

Client Object API Usage

142 SAP Mobile Platform

if([lc4.subjectCN isEqualToString:lc.subjectCN])
[[LogInfo sharedInstance]
testPassed:@"SAPSSOCertTest" :@"ChangeVaultPassword"];
else
[[LogInfo sharedInstance]
testFailed:@"SAPSSOCertTest" :@"ChangeVaultPassword"];
[lc4 release];

// Attach certificate to sync profile
sp.certificate = lc;
[lc release];
}
@catch(NSException *e)
{
MBOLogError(@"Exception in getting certificate");
MBOLogError(@"%@: %@",[e name],[e reason]);
[pool drain];
return;
}

// If package requires login first, use beginOnlineLogin API
// which takes no parameters
while ([SUPApplication connectionStatus] !=
SUPConnectionStatus_CONNECTED) {
 NSLog(@"waiting to connect...");
 sleep(2);
}
[CrmDatabase beginOnlineLogin];

Sample Code: Mutual Authentication
Illustrates client configuration to support mutual authentication, as well as other APIs related
to certificate handling:

Load all referenced certificates into the application Xcode project first.

//Step 1: Set up the CA certificates trusted by the client for mutual
authentication.
//You need to do this only if your server certificate is NOT signed
by the public CA
//the trusted certificate must be in DER format; the CN (common
name) of the server certificate
//must match the server name, set via the connection properties in
the step 3.

SUPApplication* app = [SUPApplication getInstance];
SUPConnectionProperties* props = app.connectionProperties;

//Load the trusted certificate

NSString *trustedCertPath = [[NSBundle mainBundle]
pathForResource:@"server_trusted" ofType:@"crt"];
NSData *trustedData = [NSData
dataWithContentsOfFile:trustedCertPath];
SecCertificateRef trusted_cert = SecCertificateCreateWithData(NULL,

Client Object API Usage

Developer Guide: iOS Object API Applications 143

(CFDataRef) trustedData);

//Create an array of SecCertificateRef objects

CFMutableArrayRef certs = CFArrayCreateMutable (NULL, 1,
&kCFTypeArrayCallBacks);
CFArrayAppendValue (certs, (CFDataRef)trusted_cert);

//Set to SUPConnectionProperties

[props setTrustedCertificates:certs];
CFRelease(trusted_cert);
CFRelease(certs);

Step 2: //Get the client's login certificate; Client identity file
must be in pkcs12 format;
//Client identity file must be encrypted with non-empty password;

NSString *certPath = [[NSBundle mainBundle]
pathForResource:@"client_identity" ofType:@"p12"];
SUPCertificateStore *cs = [SUPCertificateStore
getDefault];
SUPLoginCertificate *lc_resource = [cs
getSignedCertificateFromFile:certPath withPassword:@"password"];
props.loginCertificate = lc_resource;

//Step 3: Register the application

[props
setNetworkProtocol:SUPConnectionProperties_NETWORK_PROTOCOL_HTTPS];
[props setServerName:self.server];
[props setPortNumber:self.port];
[props setUrlSuffix:@""];
[props setFarmId:self.farmID];
props.activationCode = nil;

@try
{
 if (app.registrationStatus != SUPRegistrationStatus_REGISTERED)
 {
 [app registerApplication:300];
 }
 else
 {
 [app startConnection:300];
 }
}
 @catch (NSException *exception)
{
 NSLog(@"%@: %@",[exception name],[exception reason]);
}

//Step 4: Configure for data synchronization

SUPConnectionProfile *sp = [TestDB getSynchronizationProfile];

Client Object API Usage

144 SAP Mobile Platform

…
[sp setPortNumber:2482];

//specify trusted cert, and identity cert, and identity cert
password;
// if the same identity cert is used with application registration,
you don’t need to specify
// “identity” and “identity_password” here, otherwise, you need to
specify them.
// specify server trusted CA cert; this could be different from the
certificate used in step1
// depending on server configuration.
// In any case, server trusted CA needs to be specified for data
synchronization in networkstreamparams.

[sp
setNetworkStreamParams:@"trusted_certificates=server_trustedCA.crt;
identity=client_identity.p12;
identity_password=password"];

//Data synchronize
[TestDB synchronize];

Single Sign-On With X.509 Certificate Related Object API
Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

• SUPCertificateStore class - wraps platform-specific key/certificate store class, or
file directory

• SUPLoginCertificate class - wraps platform-specific X.509 distinguished name
and signed certificate

• SUPConnectionProfile class - includes the certificate attribute used for SAP
Mobile Server synchronization.

• SUPDataVault class - provides secure persistent storage on the device for certificates.

Refer to the API Reference for implementation details.

Importing a Certificate into the Data Vault
Obtain a certificate reference and store it in a password-protected data vault to use for X.509
certificate authentication.

// Obtain a reference to the certificate store

SUPCertificateStore *certStore = [SUPCertificateStore getDefault];

// Import a certificate from iPhone keychain (into memory)

NSString *label = ...; // ask user to select a label
NSString *password = ...; // ask the user for a password
SUPLoginCertificate *cert = [certStore getSignedCertificate:label
withPassword:password];

Client Object API Usage

Developer Guide: iOS Object API Applications 145

// Alternate code: import a certificate blob from the server into
memory (server must be specially configured for this):

NSString *windows_username = // Windows username for fileshare
on server where the password is stored
NSString *windows_password = // Windows password
NSString *cert_password = // Password to unlock the certificate
SUPLoginCertificate *cert = [certStore
getSignedCertificateFromServer:windows_username
withServerPassword:windows_password
withCertPassword:cert_password];

// Lookup or create data vault
NSString *vaultPassword = ...; // ask user or from O/S protected
storage
NSString *vaultName = "..."; // e.g. "SAP.CRM.CertificateVault"
NSString *vaultSalt = "..."; // e.g. a hard-coded random GUID
SUPDataVault *vault;
@try
{
// Get vault, or create it if it doesn't exist
 if(![SUPDataVault vaultExists:vaultName])
 vault = [SUPDataVault createVault:vaultName
withPassword:vaultPassword withSalt:vaultSalt];
 else
 vault = [SUPDataVault getVault:vaultName];

// Save certificate into data vault

 [vault unlock:vaultPassword withSalt:vaultSalt];
 [cert save:label withVault:vault];

}
@catch (NSException *ex)
{
 // Handle any errors
}
@finally
{
 // Make sure vault is locked even if an error occurs
 [vault lock];
}

Selecting a Certificate for SAP Mobile Server Connections
Select the X.509 certificate from the data vault for SAP Mobile Server authentication.

@try
{
 [vault unlock:vaultPassword withSalt:vaultSalt];
 SUPLoginCertificate *cert = [SUPLoginCertificate load:@"myCert"
withVault:vault];
 SUPConnectionProfile *syncProfile = [SMP101SMP101DB
getSynchronizationProfile];
 syncProfile.certificate = cert;
 [cert release];

Client Object API Usage

146 SAP Mobile Platform

}
@catch(NSException *ex)
 // Handle any errors
}
@finally
{
 // Make sure vault is locked even if an error occurs
 [vault lock];
}

Connecting to SAP Mobile Server with a Certificate
Once the certificate property is set, call the subscribe and synchronize methods.

[SMP101SMP101DB subscribe];
[SMP101SMP101DB synchronize];

Personalization APIs
Personalization keys allow the application to define certain input parameter values that are
personalized for each mobile user. Personalization parameters provide default values for
synchronization parameters when the synchronization key of the object is mapped to the
personalization key while developing a mobile business object. The Personalization APIs
allow you to manage personalization keys, and get and set personalization key values.

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the SAP Mobile Server. Session personalization keys are not persisted and are lost
when the device application terminates.

A personalization parameter can be a primitive or complex type.

A personalization key is metadata that enables users to store their search preferences on the
client, the server, or by session. The preferences narrow the focus of data retrieved by the
mobile device (also known as the filtering of data between the client and the SAP Mobile
Server). Often personalization keys are used to hold backend system credentials, so that they
can be propagated to the EIS. To use a personalization key for filtering, it must be mapped to a
synchronization parameter. The developer can also define personalization keys for the
application, and can use built-in personalization keys available in the SAP Mobile Server. Two
built-in (session) personalization keys — username and password — can be used to perform
single sign-on from the device application to the SAP Mobile Server, authentication and
authorization on the SAP Mobile Server, as well as connecting to the back-end EIS using the
same set of credentials. The password is never saved on the server.

Client Object API Usage

Developer Guide: iOS Object API Applications 147

Getting and Setting Personalization Key Values
The PersonalizationParameters class is generated automatically for managing
personalization keys. When a personalization parameter value is changed, the call to save
automatically propagates the change to the server.

Consider a personalization key "pkcity" that is associated with the synchronization parameter
"cityname". The following example shows how to get and set personalization key values:
//get personalization key values
SMP101PersonalizationParameters *pp = [SMP101SMP101DB
getPersonalizationparameters];
MBOLogInfo(@"Personalization Parameter for City = %@", pp.PKCity);

//Set personalization key values
pp.PKCity = @"Hull";
[pp.save]; //save the new pk value.
[SMP101SMP101DB synchronize];

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Synchronization APIs
You can synchronize mobile business objects (MBOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Managing Synchronization Parameters
Synchronization parameters let an application change the parameters that retrieve data from
an MBO during a synchronization session.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.

To add a synchronization parameter:
SKPKCustomerSubscription *sp = [SKPKCustomerSubscription
getInstance];
sp.name = @"example";
[SKPKCustomer addSubscription:sp];

To list all synchronization parameters:
SUPObjectList* r = [SKPKCustomer getSubscriptions];

To remove a synchronization parameter:
SUPObjectList* r = [SKPKCustomer getSubscriptions];
SKPKCustomerSubscription* sub = (SKPKCustomerSubscription*)[r item:

Client Object API Usage

148 SAP Mobile Platform

0];
[SKPKCustomer removeSubscription:sub];

Performing Mobile Business Object Synchronization
A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

Before you can synchronize MBO changes with the server, you must subscribe the mobile
application package deployed on the server by calling SMP101DB.subscribe(). This
also downloads certain data to devices for those that have default values. You can use the
OnImportSuccess method in the defined CallbackHandler to check if data
download has been completed.

You can then call the submitPendingOperations:(NSString*)synchronizationGroup
operation through the publication.

You can use a publication mechanism, which allows as many as 32 simultaneous
synchronizations. However, performing simultaneous synchronizations on several very large
SAP Mobile Server applications can impact server performance, and possibly affect other
remote users.

The package database class includes two synchronization methods. You can synchronize a
specified group of MBOs using the synchronization group name:
[SMP101SMP101DB submitPendingOperations:@"mySyncGroup"];

Or, you can synchronize all synchronization groups:
[SMP101SMP101DB submitPendingOperations];

Message-Based Synchronization APIs
The message-based synchronization APIs enable a user application to subscribe to a server
package, to remove an existing subscription from the SAP Mobile Server, to suspend or
resume requests to the SAP Mobile Server, and to recover data related to the package from the
server.

Note: The beginOnlineLogin, suspendSubbscription,
resumeSubscription, and vacuumDatabase methods are for use with DOE-based
applications only.

beginOnlineLogin
Sends a login message to the SAP Mobile Server with the username and password.

Typically, the generated package database class already has a valid synchronization
connection profile and you can log in to the SAP Mobile Server with your username and
credentials.

Client Object API Usage

Developer Guide: iOS Object API Applications 149

beginOnlineLogin sends a message to the SAP Mobile Server with the username and
password. The SAP Mobile Server responds with a message to the client with the login
success or failure. This method checks the SUPApplication connectionStatus and
immediately fails if the status is not SUPConnectionStatus_CONNECTED. Make sure
the connection is active before calling beginOnlineLogin, or implement the
onLoginFailure callback handler to catch cases where it may fail, otherwise an exception
may be thrown.

When the login succeeds, the onLoginSuccess method of the CallbackHandler is
invoked. When the login fails, the onLoginFailure method of the CallbackHandler is
invoked.

Syntax
+ (void)beginOnlineLogin:(NSString *)user password:(NSString *)pass

Parameters

• userName – the user name.
• password – the password.

Returns

None.

Examples

• Begin an Online Login – Start logging in with "supAdminID" for the user name and
"supPass" for the password.
[SMP101SMP101DB beginOnlineLogin:@"supAdminID"
password:@"supPwd"];

subscribe
Subscribes to a server package. A subscription message is sent to the SAP Mobile Server and
the application receives a subscription request result notification from the the SAP Mobile
Server. If the subscription succeeds, the onSubscribeSuccess method of the
ICallbackHandler is invoked. If the subscription fails, the onSubscribeFailure
method of the ICallbackHandler is invoked.

Prerequisites for using subscribe:

• The mobile application is compiled with the client framework and deployed to a mobile
device, together with the SAP Mobile Platform client process.

• The device application has already configured SAP Mobile Server connection
information.

Client Object API Usage

150 SAP Mobile Platform

• Authentication credentials must also be set, using either the beginOnlineLogin or
offlineLogin APIs.

Syntax
+(void) subscribe

Parameters

• None – subscribe has no parameters.

Returns

None.

Examples

• Subscribe to a Sample Application – Subscribe to SMP101SMP101DB.
[SUP101SUP101DB subscribe];

unsubscribe
Removes an existing subscription to a server package. An unsubscription message is sent to
the SAP Mobile Server and the application receives a subscription request result notification
from the SAP Mobile Server as a notification. The data on the local database is cleaned. If the
unsubscribe succeeds, the onSubscribeSuccess method of the CallbackHandler is
invoked. If it fails, the onSubscribeFailure method of the CallbackHandler is invoked.

The device application must already have a subscription with the server.

Syntax
+(void) unsubscribe

Parameters

• None – unsubscribe has no parameters.

Returns

None.

Examples

• Unsubscribe from a Sample Application – Unsubscribe from SMP101SMP101DB.
[SMP101SMP101DB unsubscribe];

suspendSubscription
Sends a suspend request to the SAP Mobile Server to notify the server to stop delivering data
changes. A suspend subscription message is sent to the SAP Mobile Server and the application

Client Object API Usage

Developer Guide: iOS Object API Applications 151

receives a suspend subscription request result notification from the SAP Mobile Server as a
notification. If the suspend succeeds, the onSuspendSubscriptionSuccess method
of the CallbackHandler is invoked. If the suspend fails, the
onSuspendSubscriptionFailure method of the CallbackHandler is invoked.

Syntax
+(void) suspendSubscription

Parameters

• None – suspendSubscription has no parameters.

Returns

None.

Examples

• Suspend a Subscription – Suspend the subscription to SMP101SMP101DB.
[SMP101SMP101DB suspendSubscription];

beginSynchronize
Sends a message to the SAP Mobile Server to synchronize data between the client and the
server. There are two different beginSynchronize APIs, one with no parameters that
synchronizes all the groups, and one that takes a list of groups.

The synchronization completes in the background through an asynchronous message
exchange with the server. If application code needs to know when the synchronization is
complete, a callback handler that implements the onSynchronize method must be
registered with the database class.

In RBS, beginSynchronize creates a synchronize request, and puts it in the request
queue; the synchronization thread processes the sync request, and does the synchronization
automatically in the background. The synchronization thread can combine several
synchronization requests and send them to the server. For each synchronization request, a
SUPSynchronizationStatus_STARTING status is sent to the onSynchronize user
callback function before the synchronization, and a SUPSynchronizationStatus_FINISHING
status is sent to onSynchronize after the synchronization.

Syntax
+(void) beginSynchronize

+(void) beginSynchronize[:(SUPObjectList*)synchronizationGroups]
[withContext:(NSString*)context]

Client Object API Usage

152 SAP Mobile Platform

Parameters

• synchronizationGroups – specifies a list of a list of SUPSynchronizationGroup
objects representing the groups to be synchronized. If omitted, begin synchronizing data
for all groups.

Note: This parameter is not relevant for DOE packages; pass a null value to this parameter.

• context – a reference string used when the server responds to the synchronization request.
For more information on the onSynchronize callback handler method, see Callback
Handlers in Developer Guide for iOS.

Returns
None.

Examples

• Synchronize Data between Client and Server – Synchronize data for SMP101DB for all
synchronization groups.
// Sync all groups

[SMP101SMP101DB beginSynchronize];
• Synchronize a Particular Group – Synchronize data for SMP101DB for the SMP101

group.
// Sync all groups

[SMP101SMP101DB beginSynchronize];

// Sync just for particular groups. In this case, we just
synchronize one group,
// the group for the SMP101Customer MBO.

SUPObjectList *sgs = [SUPObjectList getInstance];
[sgs add:[SMP101Customer getSynchronizationGroup]];
[SMP101SMP101DB beginSynchronize:sgs
withContext:@"customergroupcontext"];

resumeSubscription
Sends a resume request to the SAP Mobile Server.

The resume request notifies the SAP Mobile Server to resume sending data changes for the
subscription that had been suspended. On success, onResumeSubscriptionSuccess callback
handler method is called. On failure, onResumeSubscriptionFailure callback handler is
called.

Syntax
+(void) resumeSubscription

Client Object API Usage

Developer Guide: iOS Object API Applications 153

Parameters

• None – resumeSubscription has no parameters.

Returns

None.

Examples

• Resume a Subscription – Resume the subscription to SMP101SMP101DB.
[SMP101SMP101DB resumeSubscription];

recover
Sends a recover request to the SAP Mobile Server.

The recover message notifies the SAP Mobile Server to send down all the data related to the
package.

Note: Do not use recover with DOE-based applications.

Syntax
+(void) recover

Parameters

• None – recover has no parameters.

Returns

On success, onRecoverSuccess callback handler method is called. On failure,
onRecoverFailure callback handler is called.

Examples

• – Send down all data for SUP101SUP101DB.
[SUP101SUP101DB recover];

Push Synchronization Applications
Clients receive device notifications when a data change is detected for any of the MBOs in the
synchronization group to which they are subscribed.

SAP Mobile Platform uses a messaging channel to send change notifications from the server
to the client device. By default, change notification is disabled. You can enable the change
notification of a synchronization group: If you see that setInterval is set to 0, then change
detection is disabled, and notifications will not be delivered. Enable change detection and

Client Object API Usage

154 SAP Mobile Platform

notification delivery by setting an appropriate value. For recommendations, see Configuring
Synchronization Groups in SAP Control Center for SAP Mobile Platform.

id<SUPSynchronizationGroup> sg = [SMP101SMP101DB
getSynchronizationGroup:@"TCNEnabled"];
 if (![sg enableSIS]) {
 [sg setEnableSIS:YES];
 [sg setInterval:2];
 [sg save];
 [SMP101SMP101DB synchronize:@"PushEnabled"];
}

When the server detects changes in an MBO affecting a client device, and the synchronization
group of the MBO has change detection enabled, the server will send a notification to client
device through messaging channel. By default, a background synchronization downloads the
changes for that synchronization group. The application can implement the onSynchronize
callback method to monitor this condition, and either allow or disallow background
synchronization.
- (SUPSynchronizationActionType)onSynchronize:(SUPObjectList
*)syncGroupList withContext:(SUPSynchronizationContext *)context
{

 switch ([context status]) {
 case SUPSynchronizationStatus_STARTING_ON_NOTIFICATION:

 if(allowBackGroundSync)
 {
 return SUPSynchronizationAction_CONTINUE;
 }
 else
 {
 return SUPSynchronizationAction_CANCEL;
 }

 break;

 default:
 return SUPSynchronizationAction_CONTINUE; // return continue
for all other cases
 break;
 }

}

Background Refresh
SAP Mobile Platform RBS applications can take advantage of the Apple background refresh
feature to synchronize to the SAP Mobile Server in the background, and keep the client

Client Object API Usage

Developer Guide: iOS Object API Applications 155

database up to date with any server-side data changes that might occur while the user is not
using the application.

Apple iOS 7 introduced background refresh to enable an application to make background
network requests to the server for updated data, so that when a user opens the application the
next time, the most current data is available.

 Message based synchronization (MBS) cannot run in the background, and does not support
background synchronization.

Note: To use of this feature, the application must have the client database encryption key and
the SAP Mobile Server password available even when the application is in the background. On
iOS, the device keychains (and therefore SAP Mobile Platform data vaults) are not available to
the application when it is in the background, so the application developer must provide some
other way to make the encryption key and password available.

Performing Background Synchronization
Set up the iOS application to perform a background synchronization.

1. Enable this feature in the Xcode project for the application:

a) Select the Capabilities tab on the project settings screen.
b) Expand Background Modes and select the Background Fetch mode.

This adds the requisite entry to the info plist file for your application.

2. Set the minimum fetch interval in the application’s
application:didFinishLaunchingWithOptions: delegate method.

Typically, this is set to UIApplicationBackgroundFetchIntervalMinimum
to fetch as often as allowed.
 (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 [[UIApplication sharedApplication]
setMinimumBackgroundFetchInterval:UIApplicationBackgroundFetchInt
ervalMinimum];
.
.
.

The default value is UIApplicationBackgroundFetchIntervalNever, so if it
is not set to a new value upon launch, the application never wakes up to perform
background fetches.

3. Implement the method.
- (void)application:(UIApplication *)application
performFetchWithCompletionHandler:(void
 (^)(UIBackgroundFetchResult))completionHandler
.

Client Object API Usage

156 SAP Mobile Platform

This is the method that gets called when the application restarts in the background by the
system to perform a fetch.

In SAP Mobile Platform, to synchronize in the background, this method must execute as
follows:

a) Set the application ID. This is the only SUPApplication API that should be called.
b) Set up the connection profile with the correct encryption key to make the client DB

accessible.
c) Set up the synchronization profile with the correct parameters (server name, port,

protocol, network stream parameters, and the SAP Mobile Platform username and
password).

d) Synchronize.

Background Synchronization Example Code
- (void)application:(UIApplication *)application
performFetchWithCompletionHandler:(void (^)
(UIBackgroundFetchResult))completionHandler
{
 UIBackgroundFetchResult result = UIBackgroundFetchResultNoData;

 NSLog(@"background fetch called");
 SUPApplication* app = [SUPApplication getInstance];
 if (!SUPApplication.applicationIdentifier)
 {
 app.applicationIdentifier = @"supsample";
 }

 if(!self.firstRun)
 {
 SUPConnectionProfile *cp = [SUPSampleSUPSampleDB
getConnectionProfile];
 [cp
setEncryptionKey:@"e77d4007dd40d75037e3bdba005f38dc1002e41043e7ad7c
17cd34eb5eb8d7bf75e01df5001db8085179f05e040c307c"];
 [SUPSampleSUPSampleDB closeConnection];
 SUPConnectionProfile *sp = [SUPSampleSUPSampleDB
getSynchronizationProfile];
 [sp setAsyncReplay:NO];
 [sp setUser:self.userName];
 [sp setPassword:@"s3pAdmin"];
 [sp setServerName:self.serverName];
 [sp setPortNumber:[self.serverPort intValue]];
 [sp setNetworkProtocol:@"http"];
 [sp setNetworkStreamParams:@"url_suffix=/ias_relay_server/
client/rs_client.dll/douglowder.dddRBS"];
 [sp setDomainName:@"default"];

 @try
 {
 [SUPSampleSUPSampleDB synchronizeWithListener:
[CallbackHandler getInstance]];
 result = UIBackgroundFetchResultNewData;
 NSLog(@"Background fetch succeeded");

Client Object API Usage

Developer Guide: iOS Object API Applications 157

 }
 @catch (NSException *exception)
 {
 result = UIBackgroundFetchResultFailed;
 NSLog(@"Background fetch failed: %@",[exception
description]);
 NSLog(@"%@",[exception callStackSymbols]);
 }
 }
 completionHandler(result);
}

Log Record APIs
The Log Record APIs allow you to customize aspects of logging.

• Writing and retrieving log records (successful operations are not logged).
• Configuring log levels for messages reported to the console.
• Enabling the printing of server message headers and message contents, database

exceptions, and SUPLogRecord objects written for each import.

• Viewing detailed trace information on database calls.

Log records are automatically created when an operation replay fails in the SAP Mobile
Server. If an operation replay succeeds, there is no LogRecord created by default (note that
an SAP default result checker may write a log record even when the SAP operation succeeds).
To get the confirmation when an operation replay succeeds, register a CallbackHandler and
implement the CallbackHandler.onReplaySuccess method.

See Developer Guide: iOS Object API Applications > Client Object API Usage > Callback
and Listener APIs.

SUPLogRecord API
Every package has a LogRecordImpl table in its own database. The SAP Mobile Server
can send import messages with LogRecordImpl records as part of its response to replay
requests (success or failure). LogRecord stores two types of logs.

• Operation logs on the SAP Mobile Server. These logs can be downloaded to the device.
• Client logs. These logs can be uploaded to the SAP Mobile Server.

The SAP Mobile Server can embed a "log" JSON array into the header of a server message; the
array is written to the LogRecordImpl table by the client. The client application can also
write its own records. Each entity has a method called newLogRecord, which allows the
entity to write its own log record. The LogRecordImpl table has "component" and
"entityKey" columns that associate the log record entry with a particular MBO and primary
key value.
SUPObjectList *salesorders = [SMP101Sales_order findAll];
 if([salesorders size] > 0)

Client Object API Usage

158 SAP Mobile Platform

 {
 SMP101Sales_order * so = [salesorders item:0];
 SMP101LogRecordImpl *lr = [SMP101LogRecordImpl getInstance];
 lr.message = :@"testing record"];
 lr.level = [SUPLogLevel INFO];
 [lr save];

 // submitting log records
 [SMP101SMP101DB submitLogRecords];
 // synchronize with server
 [SMP101SMP101DB synchronize:@"system"];
 }
}

You can use the getLogRecords method to return log records from the table.

SUPQuery *query = [SUPQuery getInstance];
SUPObjectList *loglist = [SMP101SMP101DB getLogRecords:query];
for(id o in loglist)
{
 LogRecordImpl *log = (LogRecordImpl*)o;
 MBOLogError(@"Log Record %llu: Operation = %@, Timestamp =
%@,
 MBO = %@, key= %@,message=%@",log.messageId,log.operation,
 [SUPDateTimeUtil
toString:log.timestamp],log.component,log.entityKey,log.message);
}

Each mobile business object has a getLogRecords instance method that returns a list of all
the log records that have been recorded for a particular entity row in a mobile business object:
SUPObjectList *salesorders = [SMP101Sales_order findAll];
if([salesorders size] > 0)
{
 SMP101Sales_order * so = [salesorders item:0];
 SUPObjectList *loglist = [so getLogRecords];
 for(id o in loglist)
 {
 LogRecordImpl *log = (LogRecordImpl*)o;
 MBOLogError(@"Log Record %llu: Operation = %@, Timestamp =
%@,
 MBO = %@, key= %@,message=%@",log.messageId,log.operation,
 [SUPDateTimeUtil
toString:log.timestamp],log.component,log.entityKey,log.message);
 }
}

Mobile business objects that support dynamic queries can be queried using the synthetic
attribute hasLogRecords. This attribute generates a subquery that returns true if an entity
row has any log records in the database, otherwise it returns false. The following code example
prints out a list of customers, including first name, last name, and whether the customer row
has log records:
SUPQuery *query = [SUPQuery getInstance];
[query select:@"x.surrogateKey,x.fname,x.lname,x.hasLogRecords"];
[query from:@"Customer":@"x"];

Client Object API Usage

Developer Guide: iOS Object API Applications 159

SUPQueryResultSet *qrs = [SMP101SMP101DB executeQuery:query];
MBOLogError(@"%@",[qrs.columnNames toString]);
for(SUPDataValueList *row in qrs.array)
{
 MBOLogError(@"%@",[row toString]);
}

If there are a large number of rows in the MBO table, but only a few have log records
associated with them, you may want to keep an in-memory object to track which rows have log
records. You can define a class property as follows:
NSMutableArray* customerKeysWithLogRecords;

After data is downloaded from the server, initialize the array:
customerKeysWithLogRecords = [[NSMutableArray alloc]
initWithCapacity:20];
SUPObjectList *allLogRecords = [SMP101SMP101DB getLogRecords:nil];
for(id<SUPLogRecord> lr in allLogRecords)
{
 if(([lr entityKey] != nil) && ([[lr component] compare:@"Customer"]
== 0))
 [customerKeysWithLogRecords addObject:[lr entityKey]];
}

You do not need database access to determine if a row in the Customer MBO has a log record.
The following expression returns true if a row has a log record:
BOOL hasALogRecord = [customerKeysWithLogRecords containsObject:
[customerRow keyToString]];

This sample code shows how to find the corresponding MBO with the LogRecord and to
delete the log record when a record is processed.
- (void)processLogs
{
 SUPQuery *query = [SUPQuery getInstance];
 SUPObjectList *logRecords = [SMP101SMP101DB getLogRecords:query];

 for(id<SUPLogRecord> log in logRecords)
 {
 // Log warning message
 NSLog(@"log %@: %@ code:%d msg:%@",[log component],[log
entityKey],[log code],[log message]);
 if([[log component] isEqualToString:@"Customer"])
 {
 NSNumberFormatter *formatter = [[NSNumberFormatter alloc]
init];
 int64_t surrogateKey = [[formatter numberFromString:[log
entityKey]] longLongValue];
 [formatter release];
 SMP101Customer *c = [SMP101Customer find:surrogateKey];
 if(c.pending)
 [c cancelPending];
 [log delete];
 [log submitPending];
 }

Client Object API Usage

160 SAP Mobile Platform

 }
 [SMP101SMP101DB beginSynchronize];
}

A LogRecord is not generated for a successful operation replay. SAP Mobile Server only
creates one when an operation fails or completes with warnings. The client is responsible for
removing operation replay log records. SAP Mobile Server typically allows a period of time
for the client to download and act on the operation replay log record. Therefore, the client
should proactively remove these log records when they are consumed. Failure to do so may
result in accumulation of operation replay log records until SAP Mobile Server removes them.
This sample code illustrates how to find the corresponding MBO with the LogRecord and
delete the log record when it is processed.
private void processLogs()
{
 Query query = new Query();
 GenericList<LogRecord> logRecords =
SMP101DB.getLogRecords(query);
 for(LogRecord log : logRecords)
 {
 // log warning message
 Log.warning("log " + log.getComponent()
 + ":" + log.getEntityKey()
 + " code:" + log.getCode() + " msg:" + log.getMessage());

 if (log.getComponent().equals("Customer"))
 {
 long surrogateKey = Long.parseLong(log.getEntityKey());
 Customer c = Customer.find(surrogateKey);
 if (c.isPending())
 {
 c.cancelPending();
 }

 // delete the LogRecord after it is processed
 log.delete();
 log.submitPending();
 }
 }

SAP Mobile Server is responsible for deleting client log records uploaded by the application.
These application logs are used for audit and/or support services. Determine and set the
retention policy from SAP Control Center after consulting with the application's developers. If
there are multiple applications using the same package, retain them based on the maximum
required time for each application. Client log records are removed that are outside the
retention window, and deleted records removed from the client database the next time the
application synchronizes. See Improve Synchronization Performance by Reducing the Log
Record Size in Troubleshooting for details about reducing the Log Record size.

Client Object API Usage

Developer Guide: iOS Object API Applications 161

Logger APIs
Use the Logger API to set the log level and create log records on the client.

Each package has a Logger. To obtain the package logger, use the getLogger method in
the generated database class. The Logger is an abstraction over the LogRecord API to write
records of various log levels into the LogRecord MBO on the client database.
 // Retrieve SUPLogger from the database class
SUPLogger logger = [SMP101DB getLogger];

// Set the log level for the logger
// Application can use getLogLevel to determine the current log level
setting for the Logger
[logger setLogLevel:[SMPLogLevel DEBUG]];

// create a log record at DEBUG level
[logger debug:@"Some debug message"];

// Prepare all outstanding client generated log records for upload
[logger submitLogRecords];

Log Level and Tracing APIs
The MBOLogger class enables the client to add log levels to messages reported to the
console.The application can set the log level using the setLogLevel method.

In ascending order of detail (or descending order of severity), the log levels defined are
LOG_OFF (no logging), LOG_FATAL, LOG_ERROR, LOG_WARN, LOG_INFO, and
LOG_DEBUG.

Macros such as MBOLogError, MBOLogWarn, and MBOLogInfo allow application code
to write console messages at different log levels. You can use the method setLogLevel to
determine which messages get written to the console. For example, if the application sets the
log level to LOG_WARN, calls to MBOLogInfo and MBOLogDebug do not write anything to
the console.
[MBOLogger setLogLevel:LOG_INFO];
MBOLogInfo(@"This log message will print to the console”);
[MBOLogger setLogLevel:LOG_WARN];
MBOLogInfo(@"This log message will not print to the console");
MBOLogError(@"This log message will print to the console");

Tracing APIs
The SQL tracing API enables tracing of client database operations, and message headers sent
to and received from the SAP Mobile Server. The API is configured in the connection profile
and synchronization profile.

SUPConnectionProfile *cp = [SMP101SMP101DB getConnectionProfile];

// To enable trace of client database operations (SQL statements,
etc.)

Client Object API Usage

162 SAP Mobile Platform

[cp enableTrace:YES];

// To enable trace of client database operations with values also
displayed
[cp enableTrace:YES withPayload:YES];

// To disable trace of client database operations
[cp enableTrace:NO];

// To enable trace of message headers sent to the server and received
from the server
// (this replaces the MBODebugLogger and MBODebugSettings used in
earlier versions of SAP Mobile Platform)
[cp.syncProfile enableTrace:YES];

// To enable trace of both message headers and content, including
credentials
[cp.syncProfile enableTrace:YES withPayload:YES];

// To disable messaging trace
[cp.syncProfile enableTrace:NO];

Printing Log Messages
The following code example retrieves log messages resulting from login failures where the
SAP Mobile Server writes the failure record into the LogRecordImpl table. You can
implement the onLoginFailure callback to print out the server message.

SUPQuery * query = [SUPQuery getInstance];
SampleAppLogRecordImplList* loglist = (SUP101LogRecordImplList*)
[SMP101SMP101DB getLogRecords:query];
 for(SMP101LogRecordImpl* log in loglist)
 {
 MBOLogError(@"Log Record %llu: Operation = %@, Component = %@,
message = %@", log.messageId, log.operation,
log.component,log.message);
 }

Change Log API
The change log allows a client to retrieve entity changes from the back end. If a client
application already has a list view constructed, it simply needs to add, modify, or delete entries
in the list according to the change logs.

A single ChangeLog is generated for each changed entity. If the changed entity is a child of a
composite relationship, there is also a ChangeLog for its parent root entity.

entityType
Returns the entity type.

Client Object API Usage

Developer Guide: iOS Object API Applications 163

Syntax
- (int)entityType

Parameters
None.

Returns
Returns the entity type.

Examples

• Get the Entity Type

SUPObjectList *changeLogs = [SUP101SUP101DB getChangeLogs:
[SUPQuery getInstance]];
if([changeLogs size] > 0)
{
 for (id<SUPChangeLog> cl in changeLogs)
 {
 MBOLogInfo(@"changelog:[entityType=%d]\n", [cl
entityType]);
 }
}

operationType
Returns the operation type of the MBO.

Syntax
- (unichar)operationType

Parameters
None.

Returns
The operation type of the MBO. Possible values are 'U' for update and insert, and 'D' for
delete.

Examples

• Get the Operation Type

SUPObjectList *changeLogs = [SUP101SUP101DB getChangeLogs:
[SUPQuery getInstance]];
if([changeLogs size] > 0)
{
 for (id<SUPChangeLog> cl in changeLogs)
 {

Client Object API Usage

164 SAP Mobile Platform

 MBOLogInfo(@"changelog:[operationType=%C]\n", [cl
operationType]);
 }
}

rootEntityType
Returns the name of the root parent entity type.

Syntax
- (int)rootEntityType

Parameters
None.

Returns
Returns the root entity type which is the root of the object graph.

Examples

• Get the Root Entity Type

SUPObjectList *changeLogs = [SUP101SUP101DB getChangeLogs:
[SUPQuery getInstance]];
if([changeLogs size] > 0)
{
 for (id<SUPChangeLog> cl in changeLogs)
 {
 MBOLogInfo(@"changelog:[rootEntityType=%d]\n", [cl
rootEntityType]);
 }
}

rootSurrogateKey
Returns the surrogate key of the root parent entity.

Syntax
- (long)rootSurrogateKey

Parameters
None.

Returns
The surrogateKey of the root entity.

Client Object API Usage

Developer Guide: iOS Object API Applications 165

Examples

• Get the Root Surrogate Key

SUPObjectList *changeLogs = [SUP101SUP101DB getChangeLogs:
[SUPQuery getInstance]];
if([changeLogs size] > 0)
{
 for (id<SUPChangeLog> cl in changeLogs)
 {
 MBOLogInfo(@"changelog:[rootSurrogateKey=%ld]\n", [cl
rootSurrogateKey]);
 }
}

surrogateKey
Returns the surrogate key of the entity.

Syntax
- (long)surrogateKey

Parameters
None.

Returns
The surrogate key of the affected entity. Note that the change log contains all affected entities,
including children of the object graph.

Examples

• Get the Surrogate Key

SUPObjectList *changeLogs = [SUP101SUP101DB getChangeLogs:
[SUPQuery getInstance]];
if([changeLogs size] > 0)
{
 for (id<SUPChangeLog> cl in changeLogs)
 {
 MBOLogInfo(@"changelog:[surrogateKey=%ld]\n", [cl
surrogateKey]);
 }
}

Methods in the Generated Database Class
You can use generated methods in the package database class to manage change logs.

Client Object API Usage

166 SAP Mobile Platform

enableChangeLog
By default, Change Log is disabled. To enable the change log, invoke the
enableChangeLog API in the generated database class. The next synchronization will
have change logs sent to the client.

Syntax
+ (void) enableChangeLog

Returns

None.

Examples

• Enable Change Log

[SMP101SMP101DB enableChangeLog];

getChangeLogs
Retrieve a list of change logs.

Syntax
+ (SUPObjectList*) getChangeLogs:(SUPQuery*)query

Returns

Returns a GenericList of type <Change Log>.

Examples

• Get Change Logs

SUPObjectList *changeLogs = [SMP101SMP101DB getChangeLogs:
[SUPQuery getInstance]];

deleteChangeLogs
You are recommended to delete all change logs after the application has completed processing
them. Use the deleteChangeLogs API in the generated database class to delete all change
logs on the device.

Syntax
+ (void) deleteChangeLogs

Client Object API Usage

Developer Guide: iOS Object API Applications 167

Returns

None.

Examples

• Delete Change Logs

[SMP101SMP101DB deleteChangeLogs];

Usage

Ensure that when calling deleteChangeLogs, there are no change logs created from a
background synchronization that are not part of the original change log list returned by a
specific query:
GenericList<ChangeLog> changes = getChangeLogs(myQuery);

You should only call deleteChangeLogs in the onSynchronize() callback where
there are no multiple synchronizations occurring simultaneously.

disableChangeLog
Creating change logs consumes some processing time, which can impact application
performance. The application may can disable the change log using the disableChangeLog
API.

Syntax
+ (void) disableChangeLog

Returns

None.

Examples

• Disable Change Log

[SMP101SMP101DB.disableChangeLog];

Code Samples
Enable the change log and list all changes, or only the change logs for a particular entity,
Customer.

// Retrieve all change logs
[SMP101SMP101DB enableChangeLog];
[SMP101SMP101DB synchronize];
SUPObjectList *changeLogs = [SUP101SUP101DB getChangeLogs:[SUPQuery
getInstance]];
if([changeLogs size] > 0)

Client Object API Usage

168 SAP Mobile Platform

{
 for (id<SUPChangeLog> cl in changeLogs)
 {
 MBOLogInfo(@"changelog:[entityType=%d]\n", [cl entityType]);
 }
}

// Retrieve only the change logs for Customer:
[SMP101SMP101DB enableChangeLog];
[SMP101SMP101DB synchronize];

SUPQuery *changelogQuery = [SUPQuery getInstance];
int entityInt = SMP101_ENTITY_TYPE_Customer;
changelogQuery.testCriteria = [SUPAttributeTest
equal:@"entityType" :[NSNumber numberWithInt:entityInt]];

SUPObjectList *changeLogs = [SMP101SMP101DB
getChangeLogs:changelogQuery];
if([changeLogs size] > 0)
{
 for (id<SUPChangeLog> cl in changeLogs)
 {
 MBOLogInfo(@"changelog:[entityType=%d]\n", [cl entityType]);
 }
}

Security APIs
The security APIs allow you to customize some aspects of connection and database security.

Encrypting the Client Database
There are two APIs that you can use to encrypt the client database.

generateEncryptionKey() causes a new random encryption key to be generated and
used to encrypt the database. This key is immediately set in the connection profile.
NSString *newKey = nil;
[SUP101SUP101DB generateEncryptionKey];
newKey = [[SUP101SUP101DB getConnectionProfile] getEncryptionKey];
NSLog(@"generated encryption key = %@",newKey);
[SUP101SUP101DB closeConnection];

changeEncryptionKey() causes the database to be encrypted with the new key passed
in.
[SUP101SUP101DB
changeEncryptionKey:@"longEncryptionKeyValueABCDEFG"];
[SUP101SUP101DB closeConnection];

Client Object API Usage

Developer Guide: iOS Object API Applications 169

Accessing a Previously Encrypted Database
If an application is starting up using a previously existing database that has been encrypted, the
encryption key must be set in the connection profile before any database operations are done.
This is done using the connection profile's setEncryptionKey() API.

[[SMP101SMP101DB getConnectionProfile] setEncryptionKey:newKey];
[SMP101SMP101DB closeConnection];

SUPDataVault
The SUPDataVault class provides encrypted storage of occasionally used, small pieces of
data. All exceptions thrown by SUPDataVault methods are of type
SUPDataVaultException.

By linking the libDatavault.a static library, you can use the SUPDataVault class for
on-device persistent storage of certificates, database encryption keys, passwords, and other
sensitive items. Use this class to:

• Create a vault
• Set a vault's properties
• Store objects in a vault
• Retrieve objects from a vault
• Change the password used to access a vault
• Control access for a vault that is shared by multiple iOS applications

The contents of the data vault are strongly encrypted using AES-128. The SUPDataVault
class allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrary length and can include any characters. The password and salt
together generate the AES key. If the user enters the same password when unlocking, the
contents are decrypted. If the user enters an incorrect password, exceptions occur. If the user
enters an incorrect password a configurable number of times, the vault is deleted and any data
stored within it becomes unrecoverable. The vault can also relock itself after a configurable
amount of time.

Typical usage of the SUPDataVault is to implement an application login screen. Upon
application start, the user is prompted for a password, which unlocks the vault. If the unlock
attempt is successful, the user is allowed into the rest of the application. User credentials for
synchronization can also be extracted from the vault so the user need not reenter passwords.

createVault
Creates a new secure store (a vault).

A unique name is assigned, and after creation, the vault is referenced and accessed by that
name. This method also assigns a password and salt value to the vault. If a vault with the same
name already exists, this method throws an exception. A newly created vault is in the unlocked
state.

Client Object API Usage

170 SAP Mobile Platform

Syntax
+ (SUPDataVault*)createVault:(NSString*)name withPassword:
(NSString*)password withSalt:(NSString*)salt;

Parameters

• name – an arbitrary name for a DataVault instance on this device. This name is
effectively the primary key for looking up DataVault instances on the device, so it
cannot use the same name as any existing instance. If it does, this method throws an
exception with error code INVALID_ARG. The name also cannot be empty or null.

• password – the initial encryption password for this DataVault. This is the password
needed for unlocking the vault. If null is passed, a default password is computed and used.

• salt – the encryption salt value for this DataVault. This value, combined with the password,
creates the actual encryption key that protects the data in the vault. If null is passed, a
default salt is computed and used.

Returns

Returns the newly created instance of the DataVault with the provided ID. The returned
DataVault is in the unlocked state with default configuration values. To change the default
configuration values, you can immediately call the "set" methods for the values you want to
change.

If a vault already exists with the same name, a SUPDataVaultException is thrown with
the reason kDataVaultExceptionReasonAlreadyExists.

Examples

• Create a data vault – creates a new data vault called myVault.

@try
{
 if(![SUPDataVault vaultExists:@"myVault"])
 {
 oVault = [SUPDataVault createVault:@"myVault"
 withPassword:@"goodPassword"
 withSalt:@"goodSalt"];
 }
}
@catch (SUPDataVaultException *e)
{
 NSNumber* errCode = (NSNumber *)[[e userInfo]
objectForKey:@”ErrorCode”];
 NSString* errMsg = (NSString *)[[e userInfo]
objectForKey:@”ErrorMessage”];
 NSLog(@"SUPDataVaultException: Code: %d , Message: %@",[errCode
intValue], errMsg);
}

• Before creating a new data vault, clean up data vault created by the previous
installation – When an application is uninstalled, iOS does not remove keychain items

Client Object API Usage

Developer Guide: iOS Object API Applications 171

from the data vault. To clean up data vault data after refreshing or reinstalling an
application, delete the data vault using the deleteVault API by checking if the
messaging database exists or not. The flow for this example is:

1. Remove the messaging data vault created by the previous installation of the application
if it exists. This is just an example, it could be any other data vault.

2. Create a new messaging data vault using the standard password and standard salt. The
standard password can be replaced with any other password, for example, user input
password depending on application design.

3. Unlock the data vault if it's locked. By default, the data vault is locked, and data vault
data is not accessible until it is unlocked. CreateVault unlocks the data vault. In the
case such as re-launching the application when the data vault has already been created,
you need to unlock it by calling the unlock API.

@try
{
 if (![MessagingClientLib isMessagingDBExist])
 {
 [SUPDataVault deleteVault:kMessagingDataVaultID];
 }
}
@catch (SUPDataVaultException *exception)
{
 // Ignore this exception
 // If application is installed for the first time on the device,
DataVault will not exist
 // In this case deleteVault throws an exception which can be
ignored
}

SUPDataVault* dataVault = nil;
@try
{
 dataVault = [SUPDataVault getVault:kMessagingDataVaultID];
}
@catch (SUPDataVaultException *exception)
{
 if ([exception reason] ==
kDataVaultExceptionReasonDoesNotExist)
 {
 // Create a vault with a hard coded PIN and force the
 // user to create a PIN if the security level warrants it
 // Otherwise just use the hard coded PIN

 @try
 {
 dataVault = [SUPDataVault createVault:kMessagingDataVaultID
withPassword:kDVStandardPassword withSalt:kDVStandardSalt];
 }

 @catch (NSException * e)
 {
 // getVault and createVault failed. This should not happen

Client Object API Usage

172 SAP Mobile Platform

return -1;
 //UnexpectedError;
 }
 }
}
if ([dataVault isLocked])
{
 // Try the default PIN
 @try
 {
 [dataVault unlock:kDVStandardPassword
withSalt:kDVStandardSalt];
 }
 @catch (SUPDataVaultException *exception)
 {
 if ([exception reason] ==
kDataVaultExceptionReasonInvalidPassword)
 {
 return -2; //DataVault is Locked;
 }
 else
 {
 // Unable to unlock the DataVault with standard password
and reason is not invalid password.
 // This means it failed to unlock for some other reason
which shoule not happen
 return -1; //UnexpectedError;
 }
 }
}
return 0; // Success

vaultExists
Tests whether the specified vault exists, returns true if it does and false if the datavault is
locked, does not exist, or is inaccessible for any other reason.

Syntax
+ (BOOL)vaultExists:(NSString*)name;

Parameters

• name – the vault name.

Returns

Returns true if the vault exists; otherwise returns false.

Examples

• Check if a data vault exists – checks if a data vault called myVault exists, and if so,
deletes it.

Client Object API Usage

Developer Guide: iOS Object API Applications 173

if ([SUPDataVault vaultExists:@"myVault"])
{
 [SUPDataVault deleteVault:@"myVault"];
}

vaultExists2
Tests whether the specified vault exists, returns true if the vault exists; otherwise returns false.
If an error occurs while reading the keychain, throws an
kDataVaultExceptionReasonIORead exception.

Syntax
+ (BOOL)vaultExists2:(NSString*)dataVaultID;

Parameters

• dataVaultID – the vault name.

Returns
Returns true if the vault exists; otherwise returns false. If an error occurs while reading the
keychain, throws an kDataVaultExceptionReasonIORead exception.

Examples

• Check if a data vault exists – checks if a data vault called myVault exists, and if so,
deletes it.
@try {
 if ([SUPDataVault vaultExists2:@"myVault"]) {
 [SUPDataVault deleteVault:@"myVault"];
 }
}
@catch (SUPDataVaultException *exception) {
 //handle the exception
}

getVault
Retrieves a vault.

Syntax
+ (SUPDataVault*)getVault:(NSString*)name;

Parameters

• name – the vault name.

Client Object API Usage

174 SAP Mobile Platform

Returns

getVault returns a SUPDataVault instance.

If the vault does not exist, a SUPDataVaultException is thrown.

deleteVault
Deletes the specified vault from on-device storage.

If the vault does not exist, this method throws an exception. The vault need not be in the
unlocked state, and can be deleted even if the password is unknown.

Syntax
+ (void)deleteVault:(NSString*)name;

Parameters

• name – the vault name.

Examples

• Delete a data vault – deletes a data vault called myVault.

@try
{
 if([SUPDataVault vaultExists:@"myVault"])
 {
 [SUPDataVault deleteVault:@"myVault"];
 }
}
@catch (NSException *e)
{
 NSLog(@"SUPDataVaultException: %@",[e description]);
}

getDataNames
Retrieves information about the data names stored in the vault.

The application can pass the data names to getValue or getString to retrieve the data
values.

Syntax
- (SUPObjectList *)getDataNames;

Parameters
None.

Client Object API Usage

Developer Guide: iOS Object API Applications 175

Returns

Returns a list of objects of type SUPDVDataName.

Examples

• Get data names

// Call getDataNames to retrieve all stored element names from our
data vault
NSArray *dataNames = [dataVault getDataNames];
if (dataNames != nil) {
 DVDataName *dataName;
 for (NSInteger iIdx = 0; iIdx < [dataNames count]; iIdx++) {
 dataName = [dataNames objectAtIndex:iIdx];
 if (dataName.type == kDVDataTypeString) {
 // Stored value is of string type
 NSString *thisStringValue = [dataVault
getString:dataName.name];
 }
 else if (dataName.type == kDVDataTypeBinary) {
 // Stored value is of binary type
 NSData *thisBinaryValue = [dataVault
getValue:dataName.name];
 }
 else {
 // Unknown type. Possibly stored using previous version of
dataVault
 // Try as string first and then as binary
 NSString *thisStringValue = [dataVault
getString:dataName.name];
 if (thisStringValue == nil) {
 NSData *thisBinaryValue = [dataVault
getValue:dataName.name];
 }
 }
 }
}

setPasswordPolicy
Stores the password policy and applies it when changePassword is called, or when
validating the password in the unlock method.

If the application has not set a password policy using this method, the data vault does not
validate the password in the createVault or changePassword methods. An exception
is thrown if there is any invalid (negative) value in the passwordPolicy object.

Syntax
- (void)setPasswordPolicy:SUPDVPasswordPolicy oPasswordPolicy;

Client Object API Usage

176 SAP Mobile Platform

Parameters

• oPasswordPolicy – the password policy constraints.

Examples

• Set a password policy

// setPasswordPolicy locks the vault to ensure the old password
conforms to the new password policy settings
[dataVault setPasswordPolicy:pwdPolicy];

Password Policy Structure
A structure defines the policy used to generate the password.

Table 2. Password Policy Structure

Name Type Description

defaultPasswordAllowed Boolean Indicates if client application is
allowed to use default password
for the data Vault. If this is set to
TRUE and if client application
uses default password then min-
Length, hasDigits, hasUpper,
hasLower and hasSpecial pa-
rameters in the policy are ignor-
ed.

minimumLength Integer The minimum length of the
password.

hasDigits Boolean Indicates if the password must
contain digits.

hasUpper Boolean Indicates if the password must
contain uppercase characters.

hasLower Boolean Indicates if the password must
contain lowercase characters.

hasSpecial Boolean Indicates if the password must
contain special characters. The
set of special characters is: “~!
@#$%^&*()-+”.

expirationDays Integer Specifies password expiry days
from the date of setting the pass-
word. 0 indicates no expiry.

Client Object API Usage

Developer Guide: iOS Object API Applications 177

Name Type Description

minUniqueChars Integer The minimum number of
unique characters in the pass-
word. For example, if length is 5
and minUniqueChars is 4 then
“aaate” or “ababa” would be in-
valid passwords. Instead,
“aaord” would be a valid pass-
word.

lockTimeout Integer The timeout value (in seconds)
after which the vault will be
locked from the unlock time. 0
indicates no timeout. This value
overrides the value set by set-
LockTimeout method.

retryLimit Integer The number of failed unlock at-
tempts after which data vault is
deleted. 0 indicates no retry lim-
it. This value overrides the value
set by the setRetryLimit
method.

Settings for Password Policy
The client applications use these settings to fill the PasswordPolicy structure. The default
values are used by the data vault when no policy is configured. The defaults are also used in
SAP Control Center in the default template. The SAP Mobile Platform administrator can
modify these settings through SAP Control Center. The application must set the password
policy for the data vault with the administrative (or alternative) settings.

Note: Setting the password policy locks the vault. The password policy is enforced when
unlock is called (because the password is not saved, calling unlock is the only time that the
policy can be evaluated).

• PROP_DEF_PWDPOLICY_ENABLED – Boolean property with a default value of
false. Indicates if a password policy is enabled by the administrator.

• PROP_DEF_PWDPOLICY_DEFAULT_PASSWORD_ALLOWED – Boolean
property with a default value of false. Indicates if the client application is allowed to use the
default password for the data vault.

• PROP_DEF_PWDPOLICY_MIN_LENGTH – Integer property with a default value of
0. Defines the minimum length for the password.

• PROP_DEF_PWDPOLICY_HAS_DIGITS – Boolean property with a default value of
false. Indicates if the password must contain digits.

Client Object API Usage

178 SAP Mobile Platform

• PROP_DEF_PWDPOLICY_HAS_UPPER – Boolean property with a default value of
false. Indicates if the password must contain at least one uppercase character.

• PROP_DEF_PWDPOLICY_HAS_LOWER – Boolean property with a default value of
false. Indicates if the password must contain at least one lowercase character.

• PROP_DEF_PWDPOLICY_HAS_SPECIAL – Boolean property with a default value
of false. Indicates if the password must contain at least one special character. A special
character is a character in this set “~!@#$%^&*()-+”.

• PROP_DEF_PWDPOLICY_EXPIRATION_DAYS – Integer property with a default
value of 0. Specifies the number of days in which password will expire from the date of
setting the password. Password expiration is checked only when the vault is unlocked.

• PROP_DEF_PWDPOLICY_MIN_UNIQUE_CHARS – Integer property with a
default value of 0. Specifies minimum number of unique characters in the password. For
example, if minimum length is 5 and minUniqueChars is 4 then “aaate” or “ababa” would
be invalid passwords. Instead, “aaord” would be a valid password.

• PROP_DEF_PWDPOLICY_LOCK_TIMEOUT – Integer property with a default
value of 0. Specifies timeout value (in seconds) after which the vault is locked from the
unlock time. 0 indicates no timeout.

• PROP_DEF_PWDPOLICY_RETRY_LIMIT – Integer property with a default value
of 0. Specifies the number of failed unlock attempts after which data vault is deleted. 0
indicates no retry limit.

Password Errors
Password policy violations cause exceptions to be thrown.

Table 3. Password Errors

Name Value Description

PASSWORD_REQUIRED 50 Indicates that a blank or null
password was used when the
password policy does not allow
default password.

PASSWORD_UN-
DER_MIN_LENGTH

51 Indicates that the password
length is less than the required
minimum.

PASSWORD_RE-
QUIRES_DIGIT

52 Indicates that the password does
not contain digits.

PASSWORD_RE-
QUIRES_UPPER

53 Indicates that the password does
not contain upper case charac-
ters.

Client Object API Usage

Developer Guide: iOS Object API Applications 179

Name Value Description

PASSWORD_RE-
QUIRES_LOWER

54 Indicates that the password does
not contain lower case charac-
ters.

PASSWORD_RE-
QUIRES_SPECIAL

55 Indicates that the password does
not contain one of these special
characters: ~!@#$%^&*()-+.

PASSWORD_UN-
DER_MIN_UNIQUE

56 Indicates that the password con-
tains fewer than the minimum
required number of unique char-
acters.

PASSWORD_EXPIRED 57 Indicates that the password has
been in use longer than the num-
ber of configured expiration
days.

getPasswordPolicy
Retrieves the password policy set by setPasswordPolicy.

Use this method once the DataVault is unlocked.

Syntax
+ (SUPDataVault*)getPasswordPolicy:();

Parameters
None.

Returns

Returns a passwordPolicy structure that contains the policy set by
setPasswordPolicy.

Returns a SUPDVPasswordPolicy object with the default values if no password policy is
set.

Examples

• Get the current password policy

// Use getPasswordPolicy to get the current policy set in the
vault
 pwdPolicy = [dataVault getPasswordPolicy];

Client Object API Usage

180 SAP Mobile Platform

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, lock has no effect.

Syntax
- (void)lock;

Examples

• Locks the data vault – prevents changing the vaults properties or stored content.
[oVault lock];

isLocked
Checks whether the vault is locked.

Syntax
- (BOOL)isLocked;

Returns

Returns Indicates

YES The vault is locked.

NO The vault is unlocked.

unlock
Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
attempts exceeds the retry limit, the vault is deleted.

The password is validated against the password policy if it has been set using
setPasswordPolicy. If the password is not compatible with the password policy, an
IncompatiblePassword exception is thrown. In that case, call changePassword to
set a new password that is compatible with the password policy.

Syntax
- (void)unlock:(NSString*)password withSalt:(NSString*)salt;

Client Object API Usage

Developer Guide: iOS Object API Applications 181

Parameters

• password – the encryption password for this DataVault. If null is passed, a default
password is computed and used.

• salt – the encryption salt value for this DataVault. This value, combined with the password,
creates the actual encryption key that protects the data in the vault. This value may be an
application-specific constant. If null is passed, a default salt is computed and used.

Returns

If an incorrect password or salt is used, a SUPDataVaultException is thrown with the
reason kDataVaultExceptionReasonInvalidPassword.

Examples

• Unlocks the data vault – once the vault is unlocked, you can change its properties and
stored content.
@try
{
 [oVault unlock:@"password" withSalt:@"salt"];
}
@catch(SUPDataVaultException *e)
{
 NSLog(@"Exception will be thrown for bad password");
}

setString
Stores a string object in the vault.

An exception is thrown if the vault is locked when this method is called.

Syntax
- (void)setString:(NSString*)name withValue:(NSString*)value;

Parameters

• name – the name associated with the string object to be stored.
• value – the string object to store in the vault.

Examples

• Set a string value – creates a test string, unlocks the vault, and sets a string value
associated with the name "testString" in the vault. The finally clause in the
try/catch block ensures that the vault ends in a secure state even if an exception
occurs.
NSString *teststring = @"ABCDEFabcdef";
@try {

Client Object API Usage

182 SAP Mobile Platform

 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 [oVault setString:@"testString" withValue:teststring];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

getString
Retrieves a string value from the vault.

An exception is thrown if the vault is locked when this method is called.

Syntax
- (NSString*)getString:(NSString*)name;

Parameters

• name – the name associated with the string object to be retrieved.

Returns

Returns a string data value, associated with the specified name, from the vault.

Examples

• Get a string value – unlocks the vault and retrieves a string value associated with the name
"testString" in the vault. The finally clause in the try/catch block ensures
that the vault ends in a secure state even if an exception occurs.
NSString *retrievedstring = nil;

@try {
 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 retrievedstring = [oVault getString:@"testString"];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

setValue
Stores a binary object in the vault.

An exception is thrown if the vault is locked when this method is called.

Client Object API Usage

Developer Guide: iOS Object API Applications 183

Syntax
- (void)setValue:(NSString*)name withValue:(NSData*)value;

Parameters

• name – the name associated with the binary object to be stored.
• value – the binary object to store in the vault.

Examples

• Set a binary value – unlocks the vault and stores a binary value associated with the name
"testValue" in the vault. The finally clause in the try/catch block ensures that
the vault ends in a secure state even if an exception occurs.

@try {
 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 [oVault setValue:@"testValue" withValue:testvalue];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

getValue
Retrieves a binary object from the vault.

An exception is thrown if the vault is locked when this method is called.

Syntax
- (NSData*)getValue:(NSString*)name;

Parameters

• name – the name associated with the binary object to be retrieved.

Returns

Returns a binary data value, associated with the specified name, from the vault.

Examples

• Get a binary value – unlocks the vault and retrieves a binary value associated with the
name "testValue" in the vault. The finally clause in the try/catch block
ensures that the vault ends in a secure state even if an exception occurs.
NSData *retrievedvalue = nil;

Client Object API Usage

184 SAP Mobile Platform

@try {
 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 retrievedvalue = [oVault getValue:@"testValue"];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally {
 [oVault lock];
}

deleteValue
Deletes the specified value.

Syntax
+ (void)deleteValue:(NSString*)name;

Parameters

• name – the name of the value to be deleted.

Examples

• Delete a value – deletes a value called myValue.

[SUPDataVault deleteValue:@"myValue"];

changePassword (two parameters)
Changes the password for the vault. Use this method when the vault is unlocked.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Syntax
- (void)changePassword:(NSString*)newPassword withSalt:
(NSString*)newSalt;

Parameters

• newPassword – the new password.
• newSalt – the new encryption salt value.

Examples

• Change the password for a data vault – changes the password to "newPassword".
The finally clause in the try/catch block ensures that the vault ends in a secure
state even if an exception occurs.
@try
{

Client Object API Usage

Developer Guide: iOS Object API Applications 185

 [oVault unlock:@"goodPassword" withSalt:@"goodSalt"];
 [oVault changePassword:@"newPassword" withSalt:@"newSalt"];
}
@catch (NSException *e) {
 NSLog(@"Exception: %@",[e description]);
}
@finally
{
 [oVault lock];
}

changePassword (four parameters)
Changes the password for the vault. Use this method when the vault is locked

This overloaded method ensures the new password is compatible with the password policy,
uses the current password to unlock the vault, and changes the password of the vault to a new
password. If the current password is not valid an InvalidPassword exception is thrown.
If the new password is not compatible with the password policy set in
setPasswordPolicy then an IncompatiblePassword exception is thrown.

Syntax
- (void)changePassword:(NSString*)currentPassword:
(NSString*)currentSalt:(NSString*)newPassword:(NSString*)newSalt;

Parameters

• currentPassword – the current encryption password for this data vault. If a null value is
passed, a default password is computed and used.

• currentSalt – the current encryption salt value for this data vault. If a null value is passed, a
default password is computed and used.

• newPassword – the new encryption password for this data vault. If a null value is passed, a
default password is computed and used.

• newSalt – the new encryption salt value for this data vault. This value, combined with the
password, creates the actual encryption key that protects the data in the vault. This value
may be an application-specific constant. If a null value is passed, a default password is
computed and used.

Examples

• Change the password for a data vault

// Call changePassword with four parameters, even if the vault is
locked.
// Pass null for oldSalt and oldPassword if the defaults were
used.

Client Object API Usage

186 SAP Mobile Platform

[dataVault changePassword:nil currentSalt:nil
newPassword:@"password!1A" newSalt:@"saltD#ddg#k05%gnd[!1A"];

setAccessGroup
Sets the access group if multiple application share a data vault.

This method is used only for iOS applications, and must be called before accessing any
DataVault methods. The access group must be set only if a vault is shared by multiple
iPhone applications. If the vault is used only by one application, do not set the access group.
The access group is listed in the keychain-access-groups property of the
entitlements plist file. The recommended format is
".com.yourcompany.DataVault".

Syntax
+ (void)setAccessGroup:(NSString *)accessGroup;

Parameters

• accessGroup – The access group name.

Examples

• Sets the Access Group Name – Sets the access group name so that multiple iOS
applications can access the data vault.
[oVault
setAccessGroup:@"accessGroupName.com.yourcompany.DataVault"];

Code Sample
Create a data vault for encrypted storage of application data.

SUPDataVault* dataVault = nil;
@try
{
 // If the dataVault already exists, call getVault and unlock it
 // If not, create the vault with necessary password
 // The password is chosen to make sure it satisfies password policy
criteria given below
 if ([SUPDataVault vaultExists:@"SampleVault"]) {
 dataVault = [SUPDataVault getVault:@"SampleVault"];
 [dataVault unlock:@"password!1A" withSalt:@"saltD#ddg#k05%gnd[!
1A"];
 }
 else {
 dataVault = [SUPDataVault createVault:@"SampleVault"
withPassword:@"password!1A" withSalt:@"saltD#ddg#k05%gnd[!1A"];
 }

 // Supply various criteria for password policy
 SUPDVPasswordPolicy *pwdPolicy = [[[SUPDVPasswordPolicy alloc]
init] autorelease];

Client Object API Usage

Developer Guide: iOS Object API Applications 187

 pwdPolicy.defaultPasswordAllowed = YES;
 pwdPolicy.minLength = 4;
 pwdPolicy.hasDigits = YES;
 pwdPolicy.hasUpper = YES;
 pwdPolicy.hasLower = YES;
 pwdPolicy.hasSpecial = YES;
 pwdPolicy.expirationDays = 20;
 pwdPolicy.minUniqueChars = 3;
 pwdPolicy.lockTimeout = 1600;
 pwdPolicy.retryLimit = 20;

 // setPasswordPolicy will lock the vault to ensure old password
conforms to new password policy settings
 [dataVault setPasswordPolicy:pwdPolicy];

 // You must unlock the vault after setting the password policy
 [dataVault unlock:@"password!1A" withSalt:@"saltD#ddg#k05%gnd[!
1A"];

 // Use getPasswordPolicy to get the current policy set in the vault
 pwdPolicy = [dataVault getPasswordPolicy];
 NSLog(@" pwdPolicy %@ ",pwdPolicy.description);

 // Call setString by giving it a name:value pair to encrypt and
persist
 // a string data type within your dataVault.
 [dataVault setString:@"stringName" withValue:@"stringValue"];

 // Call getString to retrieve the string we just stored in our data
vault!
 NSString *storedStringValue = [dataVault getString:@"stringName"];
 NSLog(@" storedStringValue %@ ",storedStringValue.description);
 // Call setValue by giving it a name:value pair to encrypt and
persist
 // a binary data type within your dataVault unsigned char
acBinData[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 };
 [dataVault setValue:@"binaryName" withValue:[NSData
dataWithBytes:acBinData length:7]];

 // Call getValue to retrieve the binary we just stored in our data
vault!
 NSData *storedBinaryValue = [dataVault getValue:@"binaryName"];

 NSLog(@" storedBinaryValue %@ ",storedBinaryValue);

 // Call getDataNames to retrieve all stored element names from our
data vault
 // NSArray * dataNames = [dataVault getDataNames];

 SUPObjectList * dataNames = [dataVault getDataNames];

 if (dataNames != nil) {
 SUPDVDataName *dataName;
 // for (NSInteger iIdx = 0; iIdx < [dataNames count];
iIdx++) {
 for (NSInteger iIdx = 0; iIdx < [dataNames size]; iIdx ++) {

Client Object API Usage

188 SAP Mobile Platform

 dataName = [dataNames objectAtIndex:iIdx];
 if (dataName.type == SUPDVDataTypeString) {
 // Stored value is of string type
 NSString *thisStringValue = [dataVault
getString:dataName.name];
 NSLog(@" thisStringValue %@ ",thisStringValue);
 }
 else if (dataName.type == SUPDVDataTypeBinary) {
 // Stored value is of binary type
 NSData *thisBinaryValue = [dataVault getValue:dataName.name];
 NSLog(@" thisBinaryValue %@ ",thisBinaryValue);
 }
 else {
 // Unknown type. Possibly stored using previous version of
dataVault
 // Try as string first and then as binary
 NSString *thisStringValue = [dataVault
getString:dataName.name];
 if (thisStringValue == nil) {
 NSData *thisBinaryValue = [dataVault
getValue:dataName.name];
 NSLog(@" thisBinaryValue %@ ",thisBinaryValue);
 }
 }
 }
 }

 [dataVault changePassword:@"password!2A"
withSalt:@"saltD#ddg#k05%gnd[!2A"];

 // Because this is a test example, we will delete our vault at the
end.
 // This means we will forever lose all data we persisted in our data
vault.
 [SUPDataVault deleteVault: @"SampleVault"];
}
@catch (SUPDataVaultException *e)
{
 NSNumber* errCode = (NSNumber *)[[e userInfo]
objectForKey:@”ErrorCode”];
 NSString* errMsg = (NSString *)[[e userInfo]
objectForKey:@”ErrorMessage”];
 NSLog(@"SUPDataVaultException: Code: %d , Message: %@",[errCode
intValue], errMsg);
}

Callback and Listener APIs
The callback and listener APIs allow you to optionally register a callback handler and listen
for device events, application connection events, and package synchronize and replay events.

Client Object API Usage

Developer Guide: iOS Object API Applications 189

Callback Handler API
The SUPCallbackHandler protocol is invoked when any database event occurs. A
default callback handler is provided, which basically does nothing. You should implement a
custom CallbackHandler to register important events. The callback is invoked on the
thread that is processing the event. A callback handler provides message notifications and
success or failure messages related to message-based synchronization. To receive callbacks,
register your own handler with a database. You can use SUPDefaultCallbackHandler
as the base class. In your handler, override the particular callback you want to use (for
example, onReplaySuccess).

Because both the database and entity handler can be registered, your handler may get called
twice for a mobile business object import activity. The callback is executed in the thread that is
performing the action. For example, onReplaySuccess is always called from a thread
other than the main application thread.

When you receive the callback, the particular activity is already complete.

The SUPCallbackHandler protocol consists of these callbacks:

• onReplayFailure:(id)entityObject; – invoked when a replay failure is received from the
SAP Mobile Server, whenever a particular device sends a create, update, or delete
operation and the operation fails (SAP Mobile Server rejects the requested operation).

• onReplaySuccess:(id)entityObject; – invoked when a replay success is received from
the SAP Mobile Server, whenever a particular device sends a create, update, or delete
operation and the operation succeeds (SAP Mobile Server accepts the requested
operation). The onReplaySuccess:(id)entityObject is an MBO object
instance that contains the data prior to the synchronization. You can use the Change Log
API to find records that occur after the synchronization.

• onImport:(id)entityObject; – invoked when an import is received. If the SAP Mobile
Server accepts a requested change, it sends one or more import messages to the client,
containing data for any created, updated, or deleted row that has changed on the SAP
Mobile Server as a result of the replay request. This method is for DOE-based
applications only.

• onLoginFailure; – invoked when a login failure message is received from the SAP
Mobile Server.

• onLoginSuccess; – called when a login result is received by the client.
• onSubscribeFailure; – invoked when a subscribe failure message is received from the

SAP Mobile Server, whenever an object in a subscribed entity changes.
• onSubscribeSuccess; – invoked when a subscribe success message is received from the

SAP Mobile Server, whenever an object in a subscribed entity changes.
• - (int32_t)onSynchronize:(SUPObjectList*)syncGroupList withContext:

(SUPSynchronizationContext*)context; – invoked when the synchronization status
changes. This method is called by the database class synchronize or
beginSynchronize methods when the client initiates a synchronization, and is called

Client Object API Usage

190 SAP Mobile Platform

again when the server responds to the client that synchronization has finished, or that
synchronization failed.

The SUPSynchronizationContext object passed into this method has a “status”
attribute that contains the current synchronization status. The possible statuses are defined
in the SUPSynchronizationStatusType enum, and include:

• SUPSynchronizationStatus_STARTING – passed in when synchronize or
beginSynchronize is called.

• SUPSynchronizationStatus_UPLOADING – synchronization status upload in
progress.

• SUPSynchronizationStatus_DOWNLOADING – synchronization status download
in progress.

• SUPSynchronizationStatus_FINISHING – synchronization completed
successfully.

• SUPSynchronizationStatus_ERROR – synchronization failed.
• SUPSynchronizationStatus_ASYNC_REPLAY_UPLOADED – asynchronous

replay has been uploaded.
• SUPSynchronizationStatus_ASYNC_REPLAY_COMPLETED – asynchronous

replay has been completed.
• SUPSynchronizationStatus_STARTING_ON_NOTIFICATION – change

notification has been received from the server.

For DOE-based applications, only the status values of STARTING, FINISHING, and
ERROR are passed into this method.

This callback handler returns SUPSynchronizationActionCONTINUE, unless the
user cancels synchronization, in which case it returns
SUPSynchronizationActionCANCEL. This code example prints out the groups in
a synchronization status change:
{
 MBOLogInfo(@"Synchronization response");

MBOLogInfo(@"===");

 for(id<SUPSynchronizationGroup> sg in syncGroupList)
 {
 MBOLogInfo(@"group = %@",sg.name);
 }

MBOLogInfo(@"===");

 if(context != nil)
 {
 MBOLogInfo(@"context: %ld,
%@",context.status,context.userContext);
 } else {
 MBOLogInfo(@"context is null");
 }

Client Object API Usage

Developer Guide: iOS Object API Applications 191

MBOLogInfo(@"===");

 return SUPSynchronizationActionCONTINUE;
}

• onSuspendSubscriptionFailure; – invoked when a call to suspend fails.
• onSuspendSubscriptionSuccess; – invoked when a suspend call is successful.
• onResumeSubscriptionFailure; – invoked when a resume call fails.
• onResumeSubscriptionSuccess; – invoked when a resume call is successful.
• onUnsubscribeFailure; – invoked when an unsubscribe call fails.
• onUnsubscribeSuccess; – invoked when an unsubscribe call is successful.
• onImportSuccess; – invoked when onImport succeeds. This method is for DOE-based

applications only.
• onMessageException:(NSException*e); – invoked when an exception occurs during

message processing. Other callbacks in this interface (whose names begin with "on") are
invoked inside a database transaction. If the transaction is rolled back due to an unexpected
exception, this operation is called with the exception (before the rollback occurs).

• onTransactionCommit; – invoked on transaction commit.
• onTransactionRollback; – invoked on transaction rollback.
• onResetSuccess; – invoked when reset is successful.
• onSubscriptionEnd; – invoked on subscription end. OnSubscriptionEnd can occur

when the device is registered, unlike OnUnsubscribeSuccess.

• - (void)onMessageStart:(int)size withMethod:(NSString*)method withMbo:
(NSString*)mbo; – This method is for DOE-based applications only.

This method is called at the beginning of processing a message from the server, before the
message transaction starts. Only the callback handler registered with the package database
class is invoked. Parameters:

• size – The size of the incoming message content in bytes.
• method – The method string from the message header.
• mbo – If this message is for a specific MBO, the name of the MBO; otherwise null.

This code example shows how to register a handler to receive a callback:
DBCallbackHandler* handler = [DBCallbackHandler newHandler];
[iPhoneSMTestDB registerCallbackHandler:handler];
[handler release];

MBOCallbackHandler* mboHandler = [MBOCallbackHandler newHandler];
[Product registerCallbackHandler:mboHandler];
[mboHandler release];

Client Object API Usage

192 SAP Mobile Platform

SUPApplicationCallback API
This callback protocol is invoked by events of interest to a mobile application.

You must register an SUPApplicationCallback implementation to your
SUPApplication instance to receive these callbacks.

Note: These callbacks are not triggered by changes or errors in MobiLink™ synchronization,
which uses a different communication path than the one used for registration.

Table 4. Callbacks in the SUPApplicationCallback Interface

Callback Description

- (void)onApplicationSetting-
sChanged :(SUPString-
List*)names

Invoked when one or more application settings
have been changed by the server administration.

- (void)onConnectionStatu-
sChanged :(SUPInt)connection-
Status :(SUPInt)errorCode :
(SUPNullableString)errorMes-
sage

Invoked when the connection status changes. The
possible connection status values are defined in
the ConnectionStatus class.

Note: Some of the connection status codes are not
returned on certain client platforms due to plat-
form operating system limitations.

- (void)onDeviceCondition-
Changed :(SUPInt)deviceCondi-
tion

Invoked when a condition is detected on the mo-
bile device that may be of interest to the applica-
tion or the application user. The possible device
condition values are defined in the SUPDevi-
ceCondition class.

- (void)onRegistrationStatu-
sChanged :(SUPInt)registra-
tionStatus :(SUPInt)error-
Code :(SUPNullableString)er-
rorMessage

Invoked when the registration status changes. The
possible registration status values are defined in
the SUPRegistrationStatus class.

Client Object API Usage

Developer Guide: iOS Object API Applications 193

Callback Description

- (void)onHttpCommunicatio-
nError :(int32_t)errorCode :
(NSString*) errorMessage :
(SUPStringProperties*)respon-
seHeaders;

Invoked when an HTTP communication server/
MobiLink rejects HTTP/MobiLink communica-
tion with an error code.

• errorCode – Error code returned by the
HTTP server or MobiLink. For example:
code 401 for authentication failure, code 403
for authorization failure, and code 63 for Mo-
biLink synchronization communication er-
ror.

• errorMessage – Error message returned by
the HTTP server or MobiLink.

• responseHeaders – Response headers re-
turned by the HTTP server or MobiLink.

- (void)onCustomizationBund-
leDownloadComplete :
(NSString*) customization-
BundleID: (int32_t) error-
Code : (NSString*) errorMes-
sage;

Invoked when the download of a resource bundle
is complete.

• errorCode – If download succeeds, returns
0. If download fails, returns an error code.

• errorMessage – If download succeeds, re-
turns "". If download fails, returns an error
message.

• RESOURCE_BUNDLE_NOTFOUND
= 14881

• DOWNLOAD_RESOURCE_BUN-
DLE_STREAM_IS_NULL = 14882

• DOWNLOAD_RESOURCE_BUN-
DLE_FAILURE = 14883

• customizationBundleID – The name of the
resource bundle. If null, the default applica-
tion resource bundle is downloaded.

Client Object API Usage

194 SAP Mobile Platform

Callback Description

(int)onPushNotification :
(NSDictionary*)notification

Invoked if a push notification arrives. You can add
logic here to handle the notification. This call-
back is not called when a notification arrives
when the application is not online.

• returns – an integer to indicate if the notifi-
cation has been handled. The return value is
for future use. You are recommended to re-
turn SUP_NOTIFICATION_CONTINUE.

• 0: SUP_NOTIFICATION_CONTINUE
if the notification was not handled by the
callback method.

• 1: SUP_NOTIFICATION_CANCEL if
the notification has already been handled
by the callback method.

When iOS receives a notification from the Apple
Push Notification Service for an application, it
calls didReceiveRemoteNotifica-
tion in the client application. Call the follow-

ing API inside didReceiveRemoteNo-
tification:

 +(void)pushNotification:(UIAp-
plication*)application notifyDa-
ta:(NSDictionary *)userInfo
If

+(void)pushNotification:(UIAp-
plication*)application notifyDa-
ta:(NSDictionary *)userInfo

is added inside of didReceiveRemote-
Notification, then only the callback

method

(int)onPushNotification :(NSDic-
tionary*)notification
is triggered.

Apple Push Notification API
The Apple Push Notification API allows applications to provide various types of push
notifications to devices, such as sounds (audible alerts), alerts (displaying an alert on the

Client Object API Usage

Developer Guide: iOS Object API Applications 195

screen), and badges (displaying an image or number on the application icon). Push
notifications require network connectivity.

The client library libclientrt wraps the Apple Push Notification API in the file
SUPPushNotification.h.

In addition to using the Apple Push Notification APIs in a client application, you must
configure the push configuration on the server. This is performed under Server
Configuration > Messaging > Apple Push Configuration in SAP Control Center. You must
configure the device application name (for push), the device certificate (for push), the Apple
gateway, and the gateway port.

The following API methods of the SUPPushNotification interface abstract the SAP
Mobile Server, resolve the push-related settings, and register with an Apple Push server, if
required.

After a device successfully registers for push notifications through Apple Push Notification
Service, iOS calls the
didRegisterForRemoteNotificationWithDeviceToken method in the client
application. iOS passes the registered device token to this function. Call the
deviceTokenForPush and setupForPush methods inside the
didRegisterForRemoteNotificationWithDeviceToken method, or after the
method. For example, you can store the device token and application parameters in variables
and use them later to call deviceTokenForPush and setupForPush.

+(void)setupForPush:(UIApplication*)application
+(void)deviceTokenForPush:(UIApplication*)application deviceToken:
(NSData
*)devToken

If for any reason the registration with Apple Push Notification Service fails, iOS calls
didFailToRegisterForRemoteNotificationsWithError in the client
application. Call the following API inside
didFailToRegisterForRemoteNotificationsWithError:

+(void)pushRegistrationFailed:(UIApplication*)application
errorInfo: (NSError *)err

When iOS receives a notification from Apple Push Notification Service for an application, it
calls didReceiveRemoteNotification in the client application. Call the following
API inside didReceiveRemoteNotification:

+(void)pushNotification:(UIApplication*)application
notifyData:(NSDictionary *)userInfo

SUPSyncStatusListener API
You can implement a synchronization status listener to track synchronization progress.

Note: This topic is not applicable for DOE-based applications.

Client Object API Usage

196 SAP Mobile Platform

@class SUPSyncStatusInfo;

@protocol SUPSyncStatusListener <NSObject>

-(void)onGetSyncStatusChange:(SUPSyncStatusInfo*)info;

@end

As the application synchronization progresses, the method defined by the
SUPSyncStatusListener protocol is called and is passed an SUPSyncStatusInfo
object. The SUPSyncStatusInfo object contains information about the MBO being
synchronized, the connection to which it is related, and the current state of the synchronization
process. By testing the State property of the SUPSyncStatusInfo object and
comparing it to the possible values in the SUPSyncStatusState enumeration, the
application can react accordingly to the state of the synchronization.

The synchronization can be aborted by setting the "state" property of the
SUPSyncStatusInfo object to the value SYNC_STATUS_CANCEL before the method
returns.
info.state = SYNC_STATE_CANCEL;

This setting may be needed if the application goes into the background during a long
synchronization.

The method returns false to allow synchronization to continue. If the method returns true,
the synchronization is aborted.

Possible uses of method include changing form elements on the client screen to show
synchronization progress, such as a green image when the synchronization is in progress, a red
image if the synchronization fails, and a gray image when the synchronization has completed
successfully and disconnected from the server.

Note: The method of SUPSyncStatusListener is called and executed in the data
synchronization thread. If a client runs synchronizations in a thread other than the primary
user interface thread, the client cannot update its screen as the status changes. The client must
instruct the primary user interface thread to update the screen regarding the current
synchronization status.

This is an example of SUPSyncStatusListener implementation:

// The interface file

#import "SUPSyncStatusListener.h"
#import "SUPSyncStatusInfo.h"

@interface MySyncStatusListner : NSObject <SUPSyncStatusListener>

@end

Client Object API Usage

Developer Guide: iOS Object API Applications 197

// The implementation file

#import "MySyncStatusListner.h"

@implementation MySyncStatusListner

-(void) onGetSyncStatusChange:(SUPSyncStatusInfo*)info
{
 switch(info.state)
 {
 case SYNC_STATE_NONE:
 MBOLogDebug(@"SYNC_STATE_NONE");
 break;
 case SYNC_STATE_STARTING:
 MBOLogDebug(@"SYNC_STATE_STARTING");
 break;
 case SYNC_STATE_CONNECTING:
 MBOLogDebug(@"SYNC_STATE_CONNECTING");
 break;
 case SYNC_STATE_SENDING_HEADER:
 MBOLogDebug(@"SYNC_STATE_SENDING_HEADER");
 break;
 case SYNC_STATE_SENDING_TABLE:
 MBOLogDebug(@"SYNC_STATE_SENDING_TABLE");
 break;
 case SYNC_STATE_SENDING_DATA:
 MBOLogDebug(@"SYNC_STATE_SENDING_DATA");
 break;
 case SYNC_STATE_FINISHING_UPLOAD:
 MBOLogDebug(@"SYNC_STATE_FINISHING_UPLOAD");
 break;
 case SYNC_STATE_RECEIVING_UPLOAD_ACK:
 MBOLogDebug(@"SYNC_STATE_RECEIVING_UPLOAD_ACK");
 break;
 case SYNC_STATE_RECEIVING_TABLE:
 MBOLogDebug(@"SYNC_STATE_RECEIVING_TABLE");
 break;
 case SYNC_STATE_RECEIVING_DATA:
 MBOLogDebug(@"SYNC_STATE_RECEIVING_DATA");
 break;
 case SYNC_STATE_COMMITTING_DOWNLOAD:
 MBOLogDebug(@"SYNC_STATE_COMMITTING_DOWNLOAD");
 break;
 case SYNC_STATE_SENDING_DOWNLOAD_ACK:
 MBOLogDebug(@"SYNC_STATE_SENDING_DOWNLOAD_ACK");
 break;
 case SYNC_STATE_DISCONNECTING:
 MBOLogDebug(@"SYNC_STATE_DISCONNECTING");
 break;
 case SYNC_STATE_DONE:
 MBOLogDebug(@"SYNC_STATE_DONE");
 break;
 default:
 MBOLogDebug(@"DEFAULT");
 break;

Client Object API Usage

198 SAP Mobile Platform

 }
}

@end

Query APIs
The Query API allows you to retrieve data from mobile business objects, to page data, and to
retrieve a query result by filtering. You can also use the Query API to filter children MBOs of a
parent MBO in a one to many relationship.

Retrieving Data from Mobile Business Objects
You can retrieve data from mobile business objects through a variety of queries, including
object queries, arbitrary find, and through filtering query result sets.

Object Queries
To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
SAP Mobile WorkSpace. Object Query methods carry query names, parameters, and return
types defined in SAP Mobile WorkSpace. Object Query methods return either an object, or a
collection of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:
SUPObjectList *customers = [SampleAppCustomer findAll] ;

The preceding Object Query results in this generated method:

Consider an object query on a Customer MBO to find customers by last name. You can
construct the query as follows:
Select x.* from Customer x where x.lname =:param_lname

where param_lname is a string parameter that specifies the last name. Assume that the
query above is named findBylname

This generates the following Client Object API:
(Customer *)findBylname : (NSString *)param_lname;

The above API can then be used just like any other read API. For example:
SampleApp_Customer * thecustomer = [SampleApp_Customer findBylname:
@"Delvin"];

Client Object API Usage

Developer Guide: iOS Object API Applications 199

For each object query that returns a list, additional methods are generated that allow the caller
to select and sort the results. For example, consider an object query, findByCity, which
returns a list of customers from the same city. Since the return type is a list ,the following
methods would be generated. The additional methods help the user with ways to specify how
many results rows to skip, and how many subsequent result rows to return.
+ (SUPObjectList*) findByCity:(NSString*) city;
+ (SUPObjectList*) findByCity:(NSString*) city skip;
(int32_t) skip take:(int32_t)take;

SUPQuery and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 5. SUPQuery and Related Classes

Class Description

SUPQuery Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

SUPAttributeTest Defines filter conditions for MBO attributes.

SUPCompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

SUPQueryResultSet Provides for querying a result set for the dynamic
query API.

SelectItem Defines the entry of a select query. For example,
"select x.attr1 from MBO x", where "X.attr1" rep-
resents one SelectItem.

Column Used in a subquery to reference the outer query's
attribute.

In addition queries support select, where, and join statements.

Arbitrary Find
The arbitrary find method lets custom device applications dynamically build queries based on
user input. The Query.DISTINCT property lets you exclude duplicate entries from the
result set.

The arbitrary find method also lets the user specify a desired ordering of the results and object
state criteria. A SUPQuery class is included in the client object API. The SUPQuery class is
the single object passed to the arbitrary search methods and consists of search conditions,
object/row state filter conditions, and data ordering information.

Client Object API Usage

200 SAP Mobile Platform

Define these conditions by setting properties in a query:

• SUPTestCriteria – criteria used to filter returned data.
• SUPSortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.
• Take – an integer specifying the maximum number of rows to return. Used for paging.

SUPTestCriteria can be an SUPAttributeTest or a SUPCompositeTest.

TestCriteria
You can construct a query SQL statement to query data from a local database. You can create a
SUPTestCriteria object (in this example, AttributeTest) to filter results. You can
also query across multiple tables (MBOs) when using the executeQuery API.

SUPQuery *query = [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.region"];
[query from:@"Customer":@"c"];
[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
query.testCriteria = [SUPAttributeTest match:@"c.lname":@"Devlin"];
SUPQueryResultSet* resultSet = [SMP101SMP101DB executeQuery:query];
if(resultSet == nil)
 {
 MBOLog(@"executeQuery Failed !!");
 return;
 }
for(SUPDataValueList* result in resultSet)
{
 MBOLog(@"Firstname,lastname,order date,region = %@ %@ %@ %@",
 [SUPDataValue getNullableString:[result item:0]],
 [SUPDataValue getNullableString:[result item:1]],
 [[SUPDataValue getNullableDate:[result item:2]] description],
 [SUPDataValue getNullableString:[result item:3]]);
}

SUPAttributeTest
An SUPAttributeTest defines a filter condition using an MBO attribute, and supports
multiple conditions.

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL
• LIKE
• NOT_LIKE
• LESS_THAN
• LESS_EQUAL
• GREATER_THAN

Client Object API Usage

Developer Guide: iOS Object API Applications 201

• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH
• NOT_START_WITH
• NOT_END_WITH
• NOT_CONTAIN
• IN
• NOT_IN
• EXISTS
• NOT_EXISTS

For example, the Objective-C code shown below is equivalent to this SQL query:
SELECT * from A where id in [1,2,3]
SUPQuery *query = [SUPQuery getInstance];
SUPAttributeTest *test = [SUPAttributeTest getInstance];
test.attribute = @"id";
SUPObjectList *v = [SUPObjectList getInstance];
[v add:@"1"];
[v add:@"2"];
[v add:@"3"];
test.testValue = v;
test.operator = SUPAttributeTest_IN;

[query where:test];

When using EXISTS and NOT_EXISTS, the attribute name is not required in the
AttributeTest. The query can reference an attribute value via its alias in the outer scope.
The Objective-C code shown below is equivalent to this SQL query:
SELECT a.id from AllType a where exists (select b.id from AllType b
where b.id = a.id)
Sybase.Persistence.Query query = new Sybase.Persistence.Query();
query.Select("a.id");
query.From("AllType", "a");
Sybase.Persistence.AttributeTest test = new
Sybase.Persistence.AttributeTest();
Sybase.Persistence.Query existQuery = new
Sybase.Persistence.Query();
existQuery.Select("b.id");
existQuery.From("AllType", "b");
Sybase.Persistence.Column cl = new Sybase.Persistence.Column();
cl.Alias = "a";
cl.Attribute = "id";
Sybase.Persistence.AttributeTest test1 = new
Sybase.Persistence.AttributeTest();
test1.Attribute = "b.id";
test1.Value = cl;
test1.SetOperator(Sybase.Persistence.AttributeTest.EQUAL);
existQuery.Where(test1);

Client Object API Usage

202 SAP Mobile Platform

test.Value = existQuery;
test.SetOperator(Sybase.Persistence.AttributeTest.EXISTS);
query.Where(test);
Sybase.Persistence.QueryResultSet qs = SMP101DB.ExecuteQuery(query);

SortCriteria
SortCriteria defines a SortOrder, which contains an attribute name and an order type
(ASCENDING or DESCENDING).

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.
Consider using the SUPQuery object to limit the result set:
SUPQuery *query = [SUPQuery newInstance];
[query setSkip:10];
[query setTake:2];
SUPObjectList *customerlist = [SampleAppCustomer
findWithQuery:query];

Aggregate Functions
You can use aggregate functions in dynamic queries.

When using the select: method from SUPQuery, you can use any of these aggregate
functions:

Aggregate Function Supported Datatypes

COUNT integer

MAX string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

MIN string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

SUM byte, short, int, long, integer, decimal, float, dou-
ble

AVG byte, short, int, long, integer, decimal, float, dou-
ble

If you use an unsupported type, a PersistenceException is thrown.

SUPQuery *query1 = [SUPQuery getInstance];
[query1 select:@"MAX(c.id), MIN(c.name) as minName"];

Client Object API Usage

Developer Guide: iOS Object API Applications 203

Grouping Results
Apply grouping criteria to your results.

To group your results according to specific attributes, use the - (SUPQuery*)groupBy:
(SUPString)items method from SUPQuery. For example, to group your results by ID
and name, use:
NSString *groupByItem = @"c.id, c.name";
SUPQuery *query1 = [SUPQuery getInstance];

//other code for query1
[query1 groupBy:groupByItem];

Filtering Results
Specify test criteria for group queries.

You can specify how your results are filtered by using the - (SUPQuery*)having:
(SUPTestCriteria*)test method from SUPQuery method for queries using
groupBy. For example, limit your AllType MBO's results to c.id attribute values that are
greater than or equal to 0 using:
SUPQuery *query2 = [SUPQuery getInstance];
[query2 select:@"c.id, SUP(c.id)"];
[query2 from:@"AllType":@"c"];
SUPAttributeTest *ts = [SUPAttributeTest getInstance];
ts.attribute = @"c.id";
ts.testValue = @"0";
ts.operator = SUPAttributeTest_GREATER_EQUAL;
[query2 where:ts];
[query2 groupBy:@"c.id"];

SUPAttributeTest *ts2 = [SUPAttributeTest getInstance];
ts2.attribute = @"c.id";
ts2.testValue = @"0";
ts2.operator = SUPAttributeTest_GREATER_EQUAL;
[query2 having:ts2];

Concatenating Queries
Concatenate two queries having the same selected items.

The SUPQuery class methods for concatenating queries are:

• - (SUPCompositeQuery *)union:(SUPQuery *)otherQuery
• - (SUPCompositeQuery *)unionAll:(SUPQuery *)otherQuery
• - (SUPCompositeQuery *)except:(SUPQuery *)otherQuery
• - (SUPCompositeQuery *)intersect:(SUPQuery *)otherQuery

Note: SAP Mobile Platform adds a "LONG VARCHAR" column for all MBO tables.
UltraLiteJ cannot select a "LONG VARCHAR" in a union query. Ensure that in the selected
fields you do not use * in the select of a union query.

Client Object API Usage

204 SAP Mobile Platform

This example obtains the results from one query except for those results appearing in a second
query:
SUPQuery *query1 = [SUPQuery getInstance];
//other code for query1

SUPQuery *query2 = [SUPQuery getInstance];
//other code for query 2

SUPQuery *query3 = (SUPQuery*)[query1 except:query2];
[SMP101SMP101DB executeQuery:query3]

Subqueries
Execute subqueries using clauses, selected items, and attribute test values.

You can execute subqueries using the - (SUPQuery*)from:
(SUPString)entity:(SUPString)alias method from SUPQuery. For example,
the Objective-C code shown below is equivalent to this SQL query:
SELECT a.id FROM (SELECT b.id FROM AllType b) AS a WHERE a.id = 1

Use this Objective-C code:
SUPQuery *query1 = [SUPQuery getInstance];
[query1 select:@"b.id"];
[query1 from:@"AllType":@"b"];
SUPQuery *query2 = [SUPQuery getInstance];
[query2 select:@"a.id"];
[query2 fromQuery:query1:@"a"];
SUPAttributeTest *ts = [SUPAttributeTest getInstance];
ts.attribute = @"a.id";
[ts setTestValue:@"1"];
[query2 where:ts];
SUPQueryResultSet *qs = [SMP101DB executeQuery:query2];

You can use a subquery as the selected item of a query. Use the SelectItem to set selected
items directly. For example, the Objective-C code shown below is equivalent to this SQL
query:
SELECT (SELECT count(1) FROM AllType c WHERE c.id >= d.id) AS cn, id
FROM AllType d

Use this Objective-C code:

SUPQuery *selQuery = [SUPQuery getInstance];
[selQuery select:@"count(1)"];
[selQuery from:@"AllType":@"c"];
SUPAttributeTest *ttt = [SUPAttributeTest getInstance];
ttt.attribute = @"c.id";
ttt.operator = SUPAttributeTest_GREATER_EQUAL;
SUPColumn *cl = [SUPColumn getInstance];
cl.alias = @"d";
cl.attribute = @"id";
ttt.testValue = cl;
[selQuery where:ttt];

Client Object API Usage

Developer Guide: iOS Object API Applications 205

SUPObjectList *selectItems = [SUPObjectList getInstance];
SUPSelectItem *item = [SUPSelectItem getInstance];
item.query = selQuery;
item.asAlias = @"cn";
[selectItems add:item];
SUPQuery *subQuery2 = [SUPQuery getInstance];
subQuery2.selectItems = selectItems;
[subQuery2 from:@"AllType" :@"d"];
SUPQueryResultSet *qs = [SMP101DB executeQuery:subQuery2];

CompositeTest
A CompositeTest combines multiple TestCriteria using the logical operators and,
or, and not to create a compound filter.

Complex Example
This example shows the usage of SUPCompositeTest, SUPSortCriteria, and
SUPQuery to locate all customer objects based on particular criteria.

• FirstName = John AND LastName = Doe AND (State = CA OR State = NY)
• Customer is New OR Updated
• Ordered by LastName ASC, FirstName ASC, Credit DESC
• Skip the first 10 and take 5

SUPQuery *props = [SUPQuery getInstance];
// Define the attribute based conditions.
// Users can pass in a string if they know the attribute name. R1
column name = attribute name.
SUPCompositeTest *innerCompTest = [SUPCompositeTest getInstance];
[innerCompTest setOperator:SUPCompositeTest_OR];
[innerCompTest add:[SUPAttributeTest equal:@"state":@"CA"]];
[innerCompTest add:[SUPAttributeTest equal:@"state":@"NY"]];

SUPCompositeTest *outerCompTest = [SUPCompositeTest getInstance];
[outerCompTest setOperator:SUPCompositeTest_OR];
[outerCompTest add:[SUPAttributeTest equal:@"fname":@"Jane"]];
[outerCompTest add:[SUPAttributeTest equal:@"lname":@"Doe"]];

[outerCompTest add:innerCompTest];

// Define the ordering:
SUPSortCriteria *sort = [SUPSortCriteria getInstance];

[sort add:[SUPAttributeSort ascending:@"fname"]];
[sort add:[SUPAttributeSort ascending:@"lname"]];

// Set the Query object:
props.testCriteria = (SUPTestCriteria*)outerCompTest;
props.sortCriteria = sort;
props.skip = 10;
props.take = 5;

SUPObjectList * customers2 = [SMP101Customer findWithQuery:props];

Client Object API Usage

206 SAP Mobile Platform

Note: "Order By" is not supported for a long varchar field.

SUPQueryResultSet
The SUPQueryResultSet class provides for querying a result set from the dynamic query
API. SUPQueryResultSet is returned as a result of executing a query.

The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a SUPQuery, filling in the criteria for the query, and
filtering the query results:
SUPQuery *query [SUPQuery getInstance];
[query select:@"c.fname,c.lname,s.order_date,s.region"];
[query from:@"Customer":@"c"];
[query join:@"SalesOrder":@"s":@"s.cust_id":@"c.id"];
SUPAttributeTest *at = [SUPAttributeTest getInstance];
at.attribute = @"lname";
at.testValue = @"Devlin";
at.operator = SUPAttributeTest_EQUAL;
query.testCriteria = at;
SUPQueryResultSet *qrs = [SMP101DB executeQuery:query];
while ([qrs next])
{
NSLog(@"%@,",[qrs getString:1 withName:@"c.fname"]);
NSLog(@"%@,",[qrs getString:2 withName:@"c.lname"]);
NSLog(@"%@,",[[qrs getDate:3 withName:@"s.order_date"]
description]);
NSLog(@"%@\n",[qrs getString:4 withName:@"s.region"]);
}

}

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO. A
bidirectional relationship also allows the child MBO to access the associated parent MBO.

Assume there are two MBOs defined in SAP Mobile Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.
SMP101Customer *onecustomer = [SMP101Customer find:101];
SUPObjectList *orders = onecustomer.salesOrders;

Given an order, you can access its customer information.
SMP101Sales_order * order = [SMP101Sales_order *find: 2001];
SMP101Customer *thiscustomer = order.customer;

Client Object API Usage

Developer Guide: iOS Object API Applications 207

Index APIs
You can dynamically create, find, and drop an index for an MBO table on the device database,
which increases performance compared to modifying the data model in SAP Mobile
WorkSpace to perform these tasks.

APIs in the generated DBClass allow you to create, find, and drop an index for an MBO table.

Create an Index
Use createIndex to create an index for an MBO table located on the device database.

/*!
@method
@throws SUPPersistenceException
*/
+ (void) createIndex:(SUPIndexMetaData *)index withEntity:
(SUPEntityMetaDataRBS *)entity;

Index Example
SUPIndexMetaData *newIndex = [[SUPIndexMetaData alloc] init];
newIndex.unique = NO;
newIndex.name = @"fnameIndex";
[newIndex.attributes add:[customerMetaData getAttribute:@"fname"]];

// create new index
[SKPKSKPKDB createIndex:newIndex withEntity:customerMetaData];

// retrieve index information from database table
indexes = [SKPKSKPKDB getIndexes:customerMetaData];
BOOL found = NO;

if ([indexes length] > 0)
{
 for (SUPIndexMetaData * oneIndex in indexes)
 {
 // verify the newly created index can be retrieved.
 if ([oneIndex.name isEqualToString:newIndex.name])
 {
 found = YES; break;
 }
 }
}
 if (!found)

{ ret = NO; goto writeResult;
}

Client Object API Usage

208 SAP Mobile Platform

Drop an Index
Use dropIndex to drop an index from an MBO table located on the device database.

/*!
@method
@throws SUPPersistenceException
*/
+ (void) dropIndex:(NSString*)name withEntity:(SUPEntityMetaDataRBS
*)entity;
[SKPKSKPKDB dropIndex:newIndex.name withEntity:customerMetaData];

Retrieve and List Indexes
Use getIndexes to retrieve and list all indexes for a given MBO table located on the device
database.

/*!
@method
@result SUPObjectList object - list of SUPIndexMetaData objects.
*/
+ (SUPObjectList*) getIndexes:(SUPEntityMetaDataRBS *)entity;

// retrieve index information from database table, and verify the new
index is removed.

indexes = [SKPKSKPKDB getIndexes:[SKPKCustomer metaData]];
if ([indexes length] > 0)
{
 for (SUPIndexMetaData * oneIndex in indexes)
 {
 if ([oneIndex.name isEqualToString:newIndex.name])
 { ret = NO; break;
 }
 }
}
writeResult:

Persistence APIs
The persistence APIs include operations and object state APIs.

Client Object API Usage

Developer Guide: iOS Object API Applications 209

Operations APIs
Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create non-static
instances of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the client object API, and are not exposed. Any parameters
not mapped to the object’s attributes are left as parameters in the generated object API. The
code examples for create, update, and delete operations are based on the fill from attribute
being set. Different MBO settings affect the operation methods.

Note: If the SAP Mobile Platform object model defines one instance of a create operation and
one instance of an update operation, and all operation parameters are mapped to the object’s
attributes, then a Save method can be automatically generated which, when called internally,
determines whether to insert or update data to the local client-side database. In other
situations, where there are multiple instances of create or update operations, methods such as
Save cannot be automatically generated.

Create Operation
The create operation allows the client to create a new record in the local database. To
execute a create operation on an MBO, create a new MBO instance, and set the MBO
attributes, then call the save() or create() operation. To propagate the changes to the
server, call submitPending.

(void)create

Example 1: Supports create operations on parent entities. The sequence of calls is:

SMP101Customer *newcustomer = [[SMP101Customer alloc] init];
newcustomer.fname = @”John”;
... //Set the required fields for the customer
[newcustomer create];
[newcustomer submitPending];
[SMP101SMP101DB synchronize];

Example 2: Supports create operations on child entities.
SMP101Sales_Order *order = [[SMP101Sales_Order alloc] init];
[order autorelease];
//Set the other required fields for the order
order.region = @"Eastern";
order.xxx = yyy;

SMP101Customer *customer = [SMP101Customer find:1008];
[order setCustomer:customer];
[order create];
[order.customer refresh]; //refresh the parent
[order.customer submitPending]; //call submitPending on the parent.
[SMP101SMP101DB synchronize];

Client Object API Usage

210 SAP Mobile Platform

Note: If refresh is called on an MBO object before it has been created in the client
database, the object may be left in an inconsistent state, or an exception may be thrown.
Prevent this from occurring by adding code to your application that only calls refresh on an
object that was previously created or saved in the database. For example:
if (!(mboInstance.isNew))
[mboInstance refresh];

Update Operation
The update operation updates a record in the local database on the device. To execute update
operations on an MBO, get an instance of the MBO, set the MBO attributes, then call either the
save() or update() operation. To propagate the changes to the server, call
submitPending.

If there are previous non-default Create/Update/Delete operations pending for an object, and
submitPending or synchronize have not been called, invoking update on the same
object throws the exception:
SUPPersistenceException: Attempt to update an object
that was already changed by a non-default CUD operation.

Note: Calling update on an orphaned instance (a row that no longer exists) causes a
PersistenceException.

In the following examples, the Customer and SalesOrder MBOs have a parent-child
relationship.

Example 1: Supports update operations to parent entities. The sequence of calls is as
follows:
SMP101Customer *customer = [SMP101Customer find: 32]
//find by the unique id
customer.city = @"Dublin"; //update any field to a new value
[customer update];
[customer submitPending];
[SMP101SMP101DB synchronize];

Example 2: Supports update operations to child entities. The sequence of calls is:

SMP101Sales_Order* order = [SMP101Sales_Order find: 1220];
order.region = @"SA"; //update any field
[order update]; //call update on the child record
[order refresh];
[order.customer submitPending]; //call submitPending on the parent
[SMP101SMP101DB synchronize];

Example 3: Calling save() on a parent also saves any modifications made to its children:

SMP101Customer *customer = [SMP101Customer find: 32]
SUPObjectList* orderlist = customer.orders;
SMP101Sales_Order* order = [orderlist item:0];
order.sales_rep = @"Ram";
customer.state = @"MA" ;

Client Object API Usage

Developer Guide: iOS Object API Applications 211

[customer save];
[customer submitPending];
[SMP101SMP101DB synchronize];

Delete Operation
The delete operation allows the client to delete a new record in the local database. To
execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the delete operation. To propagate the changes to the server, call
submitPending.

(void)delete

The following examples show how to perform deletes to parent entities and child entities.

Example 1: Supports delete operations to parent entities. The sequence of calls is:

SMP101Customer *customer = [SMP101Customer find: 32]
[Customer delete];
[Customer submitPending];
[SMP101SMP101DB synchronize];

Example 2: Supports delete operations child entities. The sequence of calls is:

SMP101Sales_order *order = [SMP101Sales_order find: 32]
[order delete];
[order.customer submitPending]; //Call submitPending on the parent.
[SMP101SMP101DB synchronize];

Save Operation
The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the update operation. If a record does not exist, the save operation
creates a new record. If save is called on the parent MBO in an existing composite object, the
save operation will also be called on all the child objects in the composite object.

(void)save

SMP101Customer *customer = [SMP101Customer find: 32]
//Change some attribute of the customer record
customer.fname= @"New Name";
[customer save];
[SMP101SMP101DB synchronize];

Other Operation
Operations other than create, update, or delete operations are called "other"
operations. An Other operation class is generated for each operation in the MBO that is not a
create, update, or delete operation.

This is an example of an "other" operation:
SMP101CustomerChangeLastNameOperation *op =
[SMP101CustomerChangeLastNameOperation getInstance];
op.old_lname = @"Smith";
op.new_lname = @"Jones";

Client Object API Usage

212 SAP Mobile Platform

[op save];

[op submitPending];
[SMP101SMP101DB synchronize];

Pending Operation
You can manage the pending state.

• (void)submitPending – Submits the operation so that it can be replayed on the SAP
Mobile Server. A request is sent to the SAP Mobile Server during a synchronization.
[customer submitPending];

• (void)cancelPending – Cancels a pending record. A pending record is one that has
been updated in the local client database, but not yet sent to the SAP Mobile Server.
[customer cancelPending];

(void)cancelPending cancels pending changes for a particular instance or
instances (via (void)cancelPendingObjects from the database class). However,
if (void)submitPending has already been invoked, only the pending state and
original state (for update) are removed. The operation replay record generated by the
(void)submitPending remains. This means that the operation replay record is
uploaded to SAP Mobile Server upon synchronization. If the EIS honors the operation
replay, the changes are propagated back to the device during the download. The Object
API framework forgoes operation replay completion processing when it finds that there
are no pending/original states for the instance. Hence, (void)cancelPending is not
the inverse operation of submitPending.

• +(void)submitPendingOperations – Submits all data for all pending records to
the SAP Mobile Server. This method internally invokes the submitPending method.

[Customer submitPendingOperations];
• +(void)submitPendingOperations:

(NSString*)synchronizationGroup – Submits all data for pending records
from MBOs in this synchronization group to the SAP Mobile Server. This method
internally invokes the submitPending method.

[SMP101SMP101DB submitPendingOperations:@”default”];
• (void)cancelPendingOperations – Cancels the pending operations for an

entire entity. This method internally invokes the cancelPending method.

[Customer cancelPendingOperations];

Note: Use the submitPendingOperations and cancelPendingOperations
methods only when there are multiple pending entities on the same MBO type. Otherwise,
use the MBO instance’s submitPending or cancelPending methods, which are
more efficient if the MBO instance is already available in memory.

SMP101Customer *customer = [SMP101Customer find:101];
//Make some changes to the customer record.
//Save the changes

Client Object API Usage

Developer Guide: iOS Object API Applications 213

//If the user wishes to cancel the changes, a call to cancel pending
will revert to the old values.

[customer cancelPending];

// The user can submit the changes to the server as follows:
[customer submitPending];

Date/Time
Classes that support managing date/time objects.

• SUPDateValue.h – manages an object of datatype Date.

• SUPTimeValue.h – manages an object of datatype Time.

• SUPDateTimeValue.h – manages an object of datatype DateTime.

• SUPDateList.h – manages a list of Date objects (the objects cannot be null).

• SUPTimeList.h – manages a list of Time objects (the objects cannot be null).

• SUPDateTimeList.h – manages a list of DateTime objects (the objects cannot be
null).

• SUPNullableDateList.h – manages a list of Date objects (the objects can be null).

• SUPNullableTimeList.h – manages a list of Time objects (the objects can be null).

• SUPNullableDateTimeList.h – manages a list of DateTime objects (the objects
can be null).

Example 1: To get a Date value from a query result set:

SUPQueryResultSet* resultSet = [SMP101SMP101DB executeQuery:query];
 for(SUPDataValueList* result in resultSet)
 [[SUPDataValue getNullableDate:[result item:2]]
description];

Example 2: A method takes Date as a parameter:

-(void)setModifiedOrderDate:(SUPDateValue*) thedate;
SUPDateValue *thedatevalue = [SUPDateValue newInstance];
[thedatevalue setValue:[NSDate date]];
[customer setModifiedOrderDate:thedatevalue];

Object State APIs
The object state APIs provide methods for returning information about the state of an entity in
an application.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database.

All entities that support pending state have the following attributes:

Client Object API Usage

214 SAP Mobile Platform

Name Type Description

isNew BOOL Returns true if this entity is new, but has not yet been
created in the client database.

isCreated BOOL Returns true if this entity has been newly created in the
client database, and one of the following is true:

• The entity has not yet been submitted to the server
with a replay request.

• The entity has been submitted to the server, but the
server has not finished processing the request.

• The server rejected the replay request (replay-
Failure message received).

isDirty BOOL Returns true if this entity has been changed in memory,
but the change has not yet been saved to the client
database.

isDeleted BOOL Returns true if this entity was loaded from the database
and subsequently deleted.

isPending BOOL Checks if the object's pending flag is turned on or not,
that is, has pending change or not. Returns true if there
is a pending change, returns false if there is no pending
change.

isUpdated BOOL Returns true if this entity has been updated or changed
in the database, and one of the following is true:

• The entity has not yet been submitted to the server
with a replay request.

• The entity has been submitted to the server, but the
server has not finished processing the request.

• The server rejected the replay request (replay-
Failure message received).

pending BOOL Returns true for any row that represents a pending
create, update, or delete operation, or a row

that has cascading children with a pending operation.

Client Object API Usage

Developer Guide: iOS Object API Applications 215

Name Type Description

pendingChange char If pending is true, this attribute's value is 'C' (create),
'U' (update), 'D' (delete), or 'P' (to indicate that this
MBO is a parent in a cascading relationship for one or
more pending child objects, but this MBO itself has no
pending create, update or delete operations). If pend-
ing is false, this attribute's value is 'N'.

replayCounter long Returns a long value that is updated each time a row

is created or modified by the client. This value is de-
rived from the time in seconds since an epoch, and
increases each time a row is changed.

int64_t result = [customer replay-
Counter];

replayPending long Returns a long value. When a pending row is sub-

mitted to the server, the value of replayCounter
is copied to replayPending. This allows the cli-

ent code to detect if a row has been changed since it was
submitted to the server (that is, if the value of re-
playCounter is greater than replayPend-
ing).

int64_t result = [customer replay-
Pending];

replayFailure long Returns a long value. When the server responds with

a replayFailure message for a row that was

submitted to the server, the value of replay-
Counter is copied to replayFailure, and

replayPending is set to 0.

int64_t result = [customer replay-
Failure];

Entity State Example
Shows how the values of the entities that support pending state change at different stages
during the MBO update process. The values that change between different states appear in
bold.

Note these entity behaviors:

• The isDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

Client Object API Usage

216 SAP Mobile Platform

• The replayCounter value that gets sent to the SAP Mobile Server is the value in the
database before you call submitPending. After a successful replay, that value is
imported from the SAP Mobile Server.

• The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Description Flags/Values

After reading from the database, before any changes
are made.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

One or more attributes are changed, but changes not
saved.

isNew=false

isCreated=false

isDirty=true

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Client Object API Usage

Developer Guide: iOS Object API Applications 217

Description Flags/Values

After [entity save] or [entity up-
date] is called.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424979

replayPending=0

replayFailure=0

After [entity submitPending] is called

to submit the MBO to the server.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=33424981

replayFailure=0

Client Object API Usage

218 SAP Mobile Platform

Description Flags/Values

Possible result: the SAP Mobile Server accepts the
update, sends an import and a replayResult
for the entity, and then refreshes the entity from the
database.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Possible result: The SAP Mobile Server rejects the
update, sends a replayFailure for the entity,

and refreshes the entity from the database

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=0

replayFailure=33424981

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

For example:
Customer *cust = [Customer findById:101];
cust.fname = @"newName";
[cust refresh]; // newName is discarded

Note: If refresh is called on an MBO object before it has been created in the client
database, the object may be left in an inconsistent state, or an exception may be thrown.
Prevent this from occurring by adding code to your application that only calls refresh on an
object that was previously created or saved in the database. For example:

Client Object API Usage

Developer Guide: iOS Object API Applications 219

if (!(mboInstance.isNew))
[mboInstance refresh];

Generated Package Database APIs
The generated package database APIs include methods that exist in each generated package
database.

Client Database APIs
The generated package database class provides methods for managing the client database.

+ (void) createDatabase;
+ (void) deleteDatabase;
+ (BOOL) databaseExists;

Typically, createDatabase does not need to be called since it is called internally when
necessary. An application may use deleteDatabase when uninstalling the application.

Use the transaction API to group several transactions together for better performance.
SMP101Customer *customer1 = [SMP101Customer findByPrimaryKey:101];
SMP101Customer *customer2 = [SMP101Customer findByPrimaryKey:102];

// Use one transaction for better performance with multiple changes
SUPLocalTransaction *tx = [SMP101SMP101DB beginTransaction];
[customer1 save];
[customer2 save];
// Commit the transaction
[tx commit];
// Submit the changes to the server
[customer1 submitPending];
[customer2 submitPending];

Large Attribute APIs
Use large string and binary attributes.

You can import large messages containing binary objects (BLOBs) to the client, send new or
changed large objects to the server, and efficiently handle large attributes on the client.

The large attribute APIs allow clients to import large messages from the server or send a replay
message without using excessive memory and possibly throwing exceptions. Clients can also
access or modify a large attribute without reading the entire attribute into memory. In addition,
clients can execute queries without having large attribute valuies automatically filled in the
returned MBO lists or result sets.

SUPBigBinary
An object that allows access to a persistent binary value that may be too large to fit in available
memory. A streaming API is provided to allow the value to be accessed in chunks.

Client Object API Usage

220 SAP Mobile Platform

close
Closes the value stream.

Closes the value stream. Any buffered writes are automatically flushed. Throws a
SUPStreamNotOpenException if the stream is not open.

Syntax
- (void)close;

Examples

• Close the value stream – Writes a binary book cover image and closes the image file. In
the following example, book is the instance of an MBO and cover is a BigBinary
attribute
SUPBigBinary *image = book.cover;
NSData * data;

[image openForWrite:[data length]];
[image write:data];
[image close];

copyFromFile
Overwrites this SUPBigBinary object with data from the specified file.

Any previous contents of the file will be discarded. Throws an
SUPObjectNotSavedException if this SUPBigBinary object is an attribute of an
entity that has not yet been created in the database. Throws a
SUPStreamNotClosedException if the object is not closed.

Syntax
- (void)copyFromFile :(SUPString)filepath;

Parameters

• filepath – The file containing the data to be copied.

copyToFile
Overwrites the specified file with the contents of this SUPBigBinary object.

Any previous contents of the file are discarded. Throws an
SUPObjectNotSavedException if this SUPBigBinary object is an attribute of an
entity that has not yet been created in the database. Throws a
SUPStreamNotClosedException if the object is not closed.

Client Object API Usage

Developer Guide: iOS Object API Applications 221

Syntax
- (void)copyToFile :(SUPString)filepath;

Parameters

• filepath – The file to be overwritten.

flush
Flushes any buffered writes.

Flushes any buffered writes to the database. Throws a SUPStreamNotOpenException if
the stream is not open.

Syntax
- (void)flush;

openForRead
Opens the value stream for reading.

Has no effect if the stream was already open for reading. If the stream was already open for
writing, it is flushed before being reopened for reading. Throws an
SUPObjectNotSavedException if this SUPBigBinary object is an attribute of an
entity that has not yet been created in the database. Throws an
SUPObjectNotFoundException if this object is null.

Syntax
- (void)openForRead;

Examples

• Open for reading – Opens a binary book image for reading.
SUPBigBinary *image = book.cover;
[image openForRead];

openForWrite
Opens the value stream for writing.

Any previous contents of the value will be discarded. Throws an
SUPObjectNotSavedException if this SUPBigBinary object is an attribute of an
entity that has not yet been created in the database.

Syntax
- (void)openForWrite :(SUPLong)newLength;

Client Object API Usage

222 SAP Mobile Platform

Parameters

• newLength – The new value length in bytes. Some platforms may allow this parameter to
be specified as 0, with the actual length to be determined later, depending on the amount of
data written to the stream. Other platforms require the total amount of data written to the
stream to match the specified value.

Examples

• Open for writing – Opens a binary book image for writing.
SUPBigBinary *image = book.cover;
[image openForWrite:[data length]];

read
Reads a chunk of data from the stream.

Reads and returns the specified number of bytes, or fewer if the end of stream is reached.
Throws a SUPStreamNotOpenException if the stream is not open for reading.

Syntax
- (SUPNullableBinary)read :(SUPLong)length;

Parameters

• length – The maximum number of bytes to be read into the chunk.

Returns

read returns a chunk of binary data read from the stream, or a null value if the end of the
stream has been reached.

Examples

• Read – Reads in a binary book image.
SUPSampleBook *book = [SUPSampleBook findByPrimaryKey:bookID];
SUPBigBinary *image = book.cover;
int bufferLength2 = 1024;
[image openForRead];
NSData *data = [image read:bufferLength];

readByte
Reads a single byte from the stream.

Throws a SUPStreamNotOpenException if the stream is not open for reading.

Syntax
- (SUPInt)readByte;

Client Object API Usage

Developer Guide: iOS Object API Applications 223

Returns

readByte returns a byte of data read from the stream, or -1 if the end of the stream has been
reached.

seek
Changes the stream position.

Throws a SUPStreamNotOpenException if the stream is not open for reading.

Syntax
- (void)seek :(SUPLong)newPosition;

Parameters

• newPosition – The new stream position in bytes. Zero represents the beginning of the
value stream.

write
Writes a chunk of data to the stream.

Writes data to the stream, beginning at the current position. The stream may be buffered, so
use flush or close to be certain that any buffered changes have been applied. Throws a
SUPStreamNotOpenException if the stream is not open for writing. Throws a
SUPWriteAppendOnlyException if the platform only supports appending to the end
of a value and the current stream position precedes the end of the value. Throws a
SUPWriteOverLengthException if the platform requires the length to be
predetermined before writing and this write would exceed the predetermined length.

Syntax
- (void)write :(SUPBinary)data;

Parameters

• data – The data chunk to be written to the stream.

Examples

• Write data – Opens a binary book image for writing.
SUPSampleBook *book = [SUPSampleBook findByPrimaryKey:bookID];

SUPBigBinary *image = book.cover;
NSData * data;

[image openForWrite:[data length]];
[image write:data];

Client Object API Usage

224 SAP Mobile Platform

writeByte
Writes a single byte to the stream.

Writes a byte of data to the stream, beginning at the current position. The stream may be
buffered, so use flush or close to be certain that any buffered changes have been applied.
Throws a SUPStreamNotOpenException if the stream is not open for writing. Throws a
SUPWriteAppendOnlyException if the platform only supports appending to the end
of a value and the current stream position precedes the end of the value. Throws a
SUPWriteOverLengthException if the platform requires the length to be
predetermined before writing and this write would exceed the predetermined length.

Syntax
- (void)writeByte :(SUPByte)data;

Parameters

• data – The byte value to be written to the stream.

SUPBigString
An object that allows access to a persistent string value that might be too large to fit in available
memory. A streaming API is provided to allow the value to be accessed in chunks.

close
Closes the value stream.

Closes the value stream. Any buffered writes are automatically flushed. Throws a
SUPStreamNotOpenException if the stream is not open.

Syntax
- (void)close;

Examples

• Close the value stream – Writes to the biography file, and closes the file.
SUPSampleAuthor * author = [SUPSampleAuthor
findByPrimaryKey:authorID];

SUPBigString *text = author.biography;

NSString *stringToWrite = @"something";

[text openForWrite:[stringToWrite length]];
[text write:stringToWrite];
[text close];

Client Object API Usage

Developer Guide: iOS Object API Applications 225

copyFromFile
Overwrites this SUPBigString object with data from the specified file.

Any previous contents of the value will be discarded. Throws an
SUPObjectNotSavedException if this SUPBigString object is an attribute of an
entity that has not yet been created in the database. Throws a
SUPStreamNotClosedException if the object is not closed.

Syntax
- (void)copyFromFile :(SUPString)filepath;

Parameters

• filepath – The file containing the data to be copied.

copyToFile
Overwrites the specified file with the contents of this SUPBigString object.

Any previous contents of the file are discarded. Throws an
SUPObjectNotSavedException if this SUPBigString object is an attribute of an
entity that has not yet been created in the database. Throws a
SUPStreamNotClosedException if the object is not closed.

Syntax
- (void)copyToFile :(SUPString)filepath;

Parameters

• filepath – The file to be overwritten.

flush
Flushes any buffered writes.

Flushes any buffered writes to the database. Throws a SUPStreamNotOpenException if
the stream is not open.

Syntax
- (void)flush;

openForRead
Opens the value stream for reading.

Has no effect if the stream was already open for reading. If the stream was already open for
writing, it is flushed before being reopened for reading. Throws an

Client Object API Usage

226 SAP Mobile Platform

SUPObjectNotSavedException if this SUPBigString object is an attribute of an
entity that has not yet been created in the database.

Syntax
- (void)openForRead;

Examples

• Open for reading – Opens the biography file for reading.
SUPSampleAuthor * author = [SUPSampleAuthor
findByPrimaryKey:authorID];

SUPBigString *text = author.biography;
[text openForRead];

openForWrite
Opens the value stream for writing.

Any previous contents of the value will be discarded. Throws an
SUPObjectNotSavedException if this SUPBigString object is an attribute of an
entity that has not yet been created in the database.

Syntax
- (void)openForWrite :(SUPLong)newLength;

Parameters

• newLength – The new value length in bytes. Some platforms may allow this parameter to
be specified as 0, with the actual length to be determined later, depending on the amount of
data written to the stream. Other platforms require the total amount of data written to the
stream to match the specified value.

Examples

• Open for writing – Opens the biography file for writing.
SUPSampleAuthor * author = [SUPSampleAuthor
findByPrimaryKey:authorID];

SUPBigString *text = author.biography;

NSString *stringToWrite = @"something";

[text openForWrite:[stringToWrite length]];

Client Object API Usage

Developer Guide: iOS Object API Applications 227

read
Reads a chunk of data from the stream.

Reads and returns the specified number of characters, or fewer if the end of stream is reached.
Throws a SUPStreamNotOpenException if the stream is not open for reading.

Syntax
- (SUPNullableBinary)read :(SUPLong)length;

Parameters

• length – The maximum number of characters to be read into the chunk.

Returns

read returns a chunk of string data read from the stream, or a null value if the end of the
stream has been reached.

Examples

• Read – Reads in the biography file.
int64_t bufferLength = 1024;
NSString *something = [text read:bufferLength]; // null if EOF
while (something != nil)
{
 something = [text read:bufferLength];
}

readChar
Reads a single character from the stream.

Throws a SUPStreamNotOpenException if the stream is not open for reading.

Syntax
- (SUPInt)readChar;

Returns

readChar returns a single character read from the stream, or -1 if the end of the stream has
been reached.

seek
Changes the stream position.

Throws a SUPStreamNotOpenException if the stream is not open for reading.

Client Object API Usage

228 SAP Mobile Platform

Syntax
- (void)seek :(SUPLong)newPosition;

Parameters

• newPosition – The new stream position in characters. Zero represents the beginning of the
value stream.

write
Writes a chunk of data to the stream.

Writes data to the stream, beginning at the current position. The stream may be buffered, so
use flush or close to be certain that any buffered changes have been applied. Throws a
SUPStreamNotOpenException if the stream is not open for writing. Throws a
SUPWriteAppendOnlyException if the platform only supports appending to the end
of a value and the current stream position precedes the end of the value. Throws a
SUPWriteOverLengthException if the platform requires the length to be
predetermined before writing and this write would exceed the predetermined length.

Syntax
- (void)write :(SUPString)data;

Parameters

• data – The data chunk to be written to the stream.

Examples

• Write data – Writes to the biography file, and closes the file.
SUPSampleAuthor * author = [SUPSampleAuthor
findByPrimaryKey:authorID];

SUPBigString *text = author.biography;

NSString *stringToWrite = @"something";

[text openForWrite:[stringToWrite length]];
[text write:stringToWrite];

writeChar
Writes a single character to the stream.

Writes a character of data to the stream, beginning at the current position. The stream may be
buffered, so use flush or close to be certain that any buffered changes have been applied.
Throws a SUPStreamNotOpenException if the stream is not open for writing. Throws a
SUPWriteAppendOnlyException if the platform only supports appending to the end
of a value and the current stream position precedes the end of the value. Throws a

Client Object API Usage

Developer Guide: iOS Object API Applications 229

SUPWriteOverLengthException if the platform requires the length to be
predetermined before writing and this write would exceed the predetermined length.

Syntax
- (void)writeChar :(SUPChar)data;

Parameters

• data – The character value to be written to the stream.

MetaData API
You can access metadata for database, classes, entities, attributes, operations, and parameters
using the MetaData API.

MetaData API
Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData API.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations, and
parameters during runtime.

You can generate metadata classes using the –md code generation option. You can also
generate metadata classes by selecting the option Generate metadata classes in the code
generation wizard in the mobile application project.

SUPDatabaseMetaDataRBS
The SUPDatabaseMetaDataRBS class holds package-level metadata. You can use it to
retrieve information about all the classes and entities for which metadata has been generated.

Any entity for which "allow dynamic queries" is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.

SUPClassMetaDataRBS
The SUPClassMetaDataRBS class holds metadata for the MBO, including attributes and
operations.

NSLog(@"List classes that have metadata....");
SUPDatabaseMetaDataRBS *dmd = [SUP101SUP101DB metaData];
SUPObjectList *classes = dmd.classList;
for(SUPClassMetaDataRBS *cmd in classes)
{
 NSLog(@" Class name = %@:",cmd.name);

Client Object API Usage

230 SAP Mobile Platform

}
NSLog(@"List entities that have metadata, and their attributes
and operations....");
SUPObjectList *entities = dmd.entityList;
for(SUPEntityMetaData *emd in entities)
{
 NSLog(@" Entity name = %@, database table name =
 %@:",emd.name,emd.table);
 SUPObjectList *attributes = emd.attributes;
 for(SUPAttributeMetaData *amd in attributes)
 NSLog(@" Attribute: name = %@%@",amd.name,
 (amd.column ? [NSString stringWithFormat:@",
 database column = %@",amd.column] : @""));
 SUPObjectList *operations = emd.operations;
 for(SUPOperationMetaData *omd in operations)
 {
 NSLog(@" Operation: name = %@",omd.name);
 SUPObjectList *parameters = omd.parameters;
 for(SUPParameterMetaData *pmd in parameters)
 NSLog(@" Parameter: name = %@, type = %@",
 pmd.name, [pmd.dataType name]);
 }
}

EntityMetaData
The EntityMetaData class holds metadata for the MBO, including attributes and
operations.

SUPAttributeMetaData
The SUPAttributeMetaData class holds metadata for an attribute such as attribute
name, column name, type, and maxlength.

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution. These sections do not contain error codes contained in the exception classes. See
the Developer Guide: Device Client Error Reference for detailed information about SAP
Mobile Platform error codes.

Exception Handling
An exception represents an unexpected condition hindering a method from completion. In
some cases, the exception is transient and you can retry it at a later time. In most cases, you
must resolve the underlying cause of the exception to allow the API to complete successfully.
In rare cases, the exception encountered corrupts the application state and may require you to
terminate and restart the application.

Client Object API Usage

Developer Guide: iOS Object API Applications 231

To use the localization features in exception handling:

• Use the SUPExceptionMessageServiceImpl to import resource bundles to your project.
The default implementation provides error message strings for English. You can
optionally create more localized files for other languages.

• Register an exception message service implementation through the
SUPServiceRegistry.

Base Exceptions
A base exception class is defined as the super class for all external exceptions. Specific
exceptions always inherit from the base exception. To enable you, the Object API developer,
to write a standard exception handler, all external exceptions have an error code and a single
error message. Furthermore, the exception may contain another exception as the cause. See
the Developer Guide: Device Client Error Reference for detailed information.

/*!
 @class SUPBaseException
 @abstract This class contains information about the exception,
error code and error messages.
 @discussion
 */
@interface SUPBaseException : NSException {
 NSArray* _arguments;
 int _errorCode;
 NSException* _cause;
}

// the error code property
@property(readwrite, assign, nonatomic) int errorCode;

// the root exception
@property(readwrite, retain, nonatomic) NSException* cause;

// localized error message
@property(readwrite, copy, nonatomic) NSString* message;

...

/*!
 @method messageWithLocale
 @abstract get the error message using the locale specified
 @result the localized message
 @discussion
 */
- (NSString *)messageWithLocale:(NSString *)locale;

@end;

You can use the message and messageWithLocale(String locale) methods to
retrieve an error message for a specified locale. message is the NSString* message

Client Object API Usage

232 SAP Mobile Platform

property and messageWithLocale is the messageWithLocale:NSString* locale
method.
@try
{
// …
}
@catch (SUPBaseException *e)
{
NSString* errorMessage = e.message;
NSString* errorMessageSpanish = [e messageWithLocale:@"es"];
}

See the Object API Applications section of the Developer Guide: Device Client Error
Reference for information about possible error codes and the corresponding error messages.

Exception Message Service
You can implement an exception message service for resolving localized messages using error
codes. The exception class uses the exception message service to load resource bundles and
look up error messages based on an error code. You can use a default message provider,
SUPExceptionMessageServiceImpl, or create a custom provider by implementing
your own SUPExceptionMessageService.

To resolve localized messages, implement the SUPExceptionMessageService
protocol.
/*!
 @protocol
 @abstract SUPExceptionMessageService protocol
 @discussion SUPExceptionMessageServiceImpl is the default
implementation provided for SUPExceptionMessageSerivce protocol can
be registered with the SUPServiceRegistry.
 */
@protocol SUPExceptionMessageService

/*!
 @method
 @abstract Get the message of this error code.
 @param errorCode The error code for the message.
 @result the error message
 @discussion
 */
-(NSString*) messageWithErrorCode: (int) errorCode;

/*!
 @method
 @abstract Get the localized message of this error code for a
specific locale
 @param errorCode The error code for mthe message
 @param locale locale identifier
 @result the localized message
 @discussion The locale identifier is the language-specific project
(.lproj) directory name for loading resource bunlde,
ErrorMessages.strings. It could be also the value passed to

Client Object API Usage

Developer Guide: iOS Object API Applications 233

NSString's initWithFormat method for string formatting the
arguments.

The locale value can be in one of the following two forms:

- "language": language specific value. eg: @"en"
- "language"_"region": language and region specific value. eg:
@"en_US"

If the resource bundle is not found in the "language"_"region" form,
The "language" part of the value is used to load the resource bundle.
If a resource bundle is not found, go by [[NSBundle mainBundle]
preferredLocalizations]. If it is still not found, defaults to
"en". If the value is not one of the locale identifiers available in
[NSLocale availableLocaleIdentifiers], the locale in [[NSLocale
currentLocale] localeIdentifier] is used in string formatting the
arguments.

 */
-(NSString*) messageWithErrorCode: (int) errorCode locale:
(NSString*) locale;

@end

The exception class uses the exception message service to load resource bundles and look up
error messages based on an error code.
id<SUPExceptionMessageService> provider = [[SUPServiceRegistry
sharedInstance] getService:@protocol(SUPExceptionMessageService)];
NSString *message = [provider messageWithErrorCode:errorCode];

You can use a default message provider, SUPExceptionMessageServiceImpl. The
default implementation provides a superr.bundle which contains the default English
resource to look up an error message using an error code.

The SUPExceptionMessageServiceImpl loads resource bundles from the
superr.bundle. You must import the superr.bundle in SMP_HOME/ObjectAPI/
iOS/resources/superr.bundle to the project.

You can add support for other languages by adding new error message key-value pairs to a file
named ErrorMessages.strings inside a folder named using a <language code>.lproj
pattern. The superr.bundle structure is:

superr.bundle
 en.lproj
 ErrorMessages.strings
 <language code>.lproj
 ErrorMessages.strings
 <language code>.lproj
 ErrorMessages.strings

For example, to add support for Spanish:

1. Create a new folder, for example es.lprj, inside superr.bundle.

Client Object API Usage

234 SAP Mobile Platform

2. Create a new ErrorMessage.strings text file inside the es.lprj folder.

3. Define new localized error messages for the same set of error message keys found using
the format "<error code>" = "<error message in Spanish>".

4. Rebuild the application with the new superr.bundle file.

You can create a custom provider by implementing your own
SUPExceptionMessageService.

@interface CustomMessageService : NSObject
<SUPExceptionMessageService>

@end

@implementation CustomMessageService

-(NSString*) messageWithErrorCode: (int) errorCode
{
return @"my own way of retrieving the message";
}

-(NSString*) messageWithErrorCode: (int) errorCode locale:
(NSString*) localName
{
return @"my own way of retrieving the localized message";
}

@end

// register our custom message provider
CustomMessageService* myProvider = [[CustomMessageService alloc]
init];
[[SUPServiceRegistry sharedInstance]
registerService:@protocol(SUPExceptionMessageService)
withImplementation:myProvider];

See Service Registry for sample code on using the default exception message provider and
how to register the default provider with the service registry.

Service Registry
The service registry holds implementation instances for various services used by the entity
framework and applications. To allow you to use the exception message service, you must
register the exception message service implementation represented by the
SUPExceptionMessageService protocol with the service registry.

You can register objects that implement the SUPExceptionMessageProvider protocol
using the ServiceRegister interface's registerService and
unregisterService methods.

- (id)registerService:(Protocol *)protocol withImplementation:
(id)service;

Client Object API Usage

Developer Guide: iOS Object API Applications 235

- (id)unregisterService:(Protocol *) protocol;

For example:
// register our default message service
id <SUPExceptionMessageService> service =
[SUPExceptionMessageServiceImpl exceptionMessageServiceImpl];

SUPServiceRegistry* sr = [SUPServiceRegistry sharedInstance];
[sr registerService:@protocol(SUPExceptionMessageService)
withImplementation:service];

Example Code for Handling Exceptions
An example of registering your interface.
defaultMessageProvider = [SUPExceptionMessageDefaultProvider
getInstance];

// register a custom message provider
SUPServiceRegistry* sr = [SUPServiceRegistry getInstance];
[sr registerService:@protocol(SUPExceptionMessageProvider)
withImplementation:defaultMessageProvider];

You can retrieve error codes using the errorCode property of SUPBaseException:

@try
{
 // …
}
@catch (SUPBaseException *e)
{
 if(e.errorCode != ERR_APP_NOT_REGISTERED)
 {
 }
}

To retrieve the error message using the preferred language for the device:
@try
{
 // …
}
@catch (SUPBaseException *e)
{
 NSString* errorMessage = e.message;
}

To retrieve the error message for a specific language:
@try
{
 // …
}
@catch (SUPBaseException *e)
{
 NSString* errorMessageSpanish = [e messageWithLocale:@"es"];
}

Client Object API Usage

236 SAP Mobile Platform

You can catch exceptions using the built-in support in Objective-C. The object can be either a
SUPBaseException object or a subclass of the SUPBaseException object such as the
SUPPersistenceException object.

@try
{
 [self CallMethodThatMightThrowException];
}
@catch (SUPPersistenceException *e)
{
 // this will catch all SUPPersistenceException type objects
}
@catch (SUPBaseException *e)
{
 // this will catch all other SUPBaseExcepiton type objects
}
@finally
{
 // finally block…
}

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the SAP
Mobile Server throws an exception.

A server-side exception results in a stack trace in the server log, and a log record
(LogRecordImpl) imported to the client with information on the problem. The client
receives both the log record and a replayFailed message.

Client-Side Exceptions
Device applications are responsible for catching and handling exceptions thrown by the client
object API. The HeaderDoc for the client object API lists the possible exceptions for the
client.

Note: See Callback Handlers.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

• SUPSynchronizeException – thrown when an exception occurs during synchronization.
• SUPPersistenceException – thrown when trying to access the local database.
• SUPObjectNotFoundException – thrown when trying to load an MBO that is not inside

the local database.
• SUPNoSuchOperationException – thrown when trying to call a method (using the

Object Manager API) but the method is not defined for the MBO.
• SUPNoSuchAttributeException – thrown when trying to access an attribute (using the

Object Manager API) but the attribute is not defined for the MBO.

Client Object API Usage

Developer Guide: iOS Object API Applications 237

• SUPApplicationRuntimeException – thrown when a call to start the connection, register
the application, or unregister the application cannot be completed due to an error.

• SUPConnectionPropertyException – thrown when a call to start the connection, register
the application, or unregister the application cannot be completed due to an error in a
connection property value or application identifier.

Query Exception Classes
Exceptions thrown by SUPStatementBuilder when building an SUPQuery, or by
SUPQueryResultSet during processing of the results. These exceptions occur if the
query called for an entity or attribute that does not exist, or tried to access results with the
wrong datatype.

• SUPAbstractClassException.h – thrown when the query specifies an abstract class.
• SUPInvalidDataTypeException.h – thrown when the query tries to access results with

an invalid datatype.
• SUPNoSuchAttributeException.h – thrown when the query calls for an atttribute that

does not exist.
• SUPNoSuchClassException.h – thrown when the query calls for a class that does not

exist.
• SUPNoSuchParameterException.h – thrown when the query calls for a parameter that

does not exist.
• SUPNoSuchOperationException.h – thrown when the query calls for an operation that

does not exist.
• SUPWrongDataTypeException.h – thrown when the query tries to access results with

an incorrect datatype definition.

Messaging Client API Exception Classes
Exceptions in the messaging client (clientrt) library.

• SUPObjectNotFoundException.h – thrown by the load: method for entities if the
passed-in primary key is not found in the entity table.

• SUPPersistenceException.h – may be thrown by methods that access the database. This
may occur when application codes attempts to:

• Insert a new row in an MBO table using a duplicate key value.
• Execute a dynamic query that selects for attribute (column) names that do not exist in

an MBO.

Attribute Datatype Conversion
When a non-nullable attribute's datatype is converted to a non-primitive datatype (such as
class NSNumber, NSDate, and so on), you must verify that the the corresponding property for
the MBO instance is assigned a non-nil value, otherwise the application may receive a runtime
exception when creating a new MBO instance.

A typical scenario is when an attribute exists in ASE's identity column with a numeric
datatype. For example, for a non-nullable attribute with a decimal datatype, the corresponding

Client Object API Usage

238 SAP Mobile Platform

datatype in the generated Objective-C MBO code is NSNumber. When creating a new MBO
instance, ensure that you assign this property a non-nil value.

Error Codes
Codes for errors occuring during application execution.

HTTP Error Codes
The SAP Mobile Server examines the EIS code received in a server response message and
maps it to a logical HTTP error code, if a corresponding error code exists. If no corresponding
code exists, the 500 code is assigned to signify either a SAP Mobile Platform internal error, or
an unrecognized EIS error.

The EIS code and HTTP error code values are stored in log records
(LogRecord.EisCode, and LogRecord.Code, respectively).

These tables list recoverable and unrecoverable error codes. All error codes that are not
explicitly considered recoverable are considered unrecoverable.

Table 6. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS is down, or the connection is terminated.

Table 7. Unrecoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on the
SAP Mobile Server due to role
constraints (applicable only for
MBS).

N/A

404 Resource (table/Web service/BA-
PI) not found on backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 SAP Mobile Platform internal er-
ror in modifying the CDB cache.

N/A

Error code 401 is not treated as a simple recoverable error. If the
SupThrowCredentialRequestOn401Error context variable is set to true (the

Client Object API Usage

Developer Guide: iOS Object API Applications 239

default), error code 401 throws a CredentialRequestException, which sends a
credential request notification to the user's inbox. You can change this behavior by modifying
the value of the SupThrowCredentialRequestOn401Error context variable in SAP
Control Center. If SupThrowCredentialRequestOn401Error is set to false, error
code 401 is treated as a normal recoverable exception.

Mapping of EIS Codes to Logical HTTP Error Codes
A list of SAP® error codes mapped to HTTP error codes. By default, SAP error codes that are
not listed map to HTTP error code 500.

Note: These JCO error codes are not applicable for DOE-based applications.

Table 8. Mapping of SAP Error Codes to HTTP Error Codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or un-
availability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing login. Usually caused
by unknown user name,
wrong password, or invalid
certificates.

401

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool.

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later.

503

Client Object API Usage

240 SAP Mobile Platform

Index
A

Afaria 15, 28, 127
APNS 91, 93
Apple gateway 195
Apple Push Notification API 195
Apple Push Notification Service 91, 93
Application APIs

retrieve connection properties 105
application callback handlers 193
application provisioning

with iPhone mechanisms 91
application registration 43
arbitrary find method 200, 201, 203, 206
ARC 19, 32
AttributeTest 201, 206
AttributeTest condition 200
authentication

online 46
AVG 203

B

beginOnlineLogin 149
beginSynchronize 152

C

callback handlers 46, 190
CallbackHandler 79
callbacks 46
CertBlobUtility 129
certificates 6, 26, 127, 135
ClassMetadata 231
client database 220
closeConnection 135
complex type 52
CompositeTest 206
CompositeTest condition 200
concatenate queries 204
connection profile 44
ConnectionProfile 135
ConnectionProperties 109

retrieve activation code 109
retrieve Farm ID 112

retrieve HTTP cookies 113
retrieve HTTP credentials 113
retrieve HTTP headers 113
retrieve login certificate 110
retrieve login credentials 110
retrieve network protocol 109
retrieve port number 110
retrieve security configuration 111
retrieve server name 111
retrieve URL suffix 112

COUNT 203
create 53
create operation 210
createDatabase 220

D

data synchronization protocol 3, 4
data vault 174

access group 187
change password 185, 186
creating 170
deleting 175
exists 173
locked 181
locking 181
retrieve data names 175
retrieve string 183
retrieve value 184
set string 182
set value 183
unlocking 181

database
client 220

database connections
managing 135

debugging 79, 81
delete 53
delete operation 212
deleteDatabase 220
Disaster recovery 60
documentation roadmap 4
downloading Xcode IDE 6, 26
dynamic query 50, 51

Index

Developer Guide: iOS Object API Applications 241

E
EIS error codes 239, 240
encryption key 169, 170
entity states 214, 216
error codes

EIS 239, 240
HTTP 239, 240
mapping of SAP error codes 240
non-recoverable 239
recoverable 239

EXCEPT 204
exceptions

client-side 237
server-side 237

F
filtering results 204
FROM clause 205

G
generated code contents 13, 27
generated code, location 13, 27
getLogRecords 158
group by 204

H
HeaderDoc 14, 28
High availability 60
HTTP error codes 239, 240

I
infrastructure provisioning

with iPhone mechanisms 91
INTERSECT 204
iPhone

provisioning 91

J
Javadocs, opening 97
JMSBridge 79

L
listeners 46

localization 89, 90
LogRecord API 158
LogRecordImpl 158, 163

M

MAX 203
maxDbConnections 136
MBO 49, 50, 52, 53
MBOLogger 79, 162
messaging protocol 3, 4
MetaData API 230
MIN 203
mobile middleware services 4

N

newLogRecord 158
NoSuchAttributeException 237
NoSuchOperationException 237

O

Object API code
location of generated 13, 27

Object Manager API 230
object query 50, 199
ObjectNotFoundException 237
OnImportSuccess 149
onlineLogin 139
openConnection 135
other operation 212

P

paging data 200, 203
password policy 180

set 176
pending operation 213
pending state 53
personalization keys 148

types 147
provisioning devices

with iPhone mechanisms 91
push notifications 195

Index

242 SAP Mobile Platform

Q

Query class 200
Query object 201, 203, 206

R

recover 154
Refresh operation 219
relationships 207
replay 47
resumeSubscription 153

S

save operation 212
SelectItem 205
setting the database file location on the device 137
setting the databaseFile location 137
signing 91
simultaneous synchronization 149
Skip 206
Skip condition 200
SortCriteria 203, 206
SortCriteria condition 200
status methods 214, 216
submitLogRecords 158
subqueries 205
subscribe 150
subscribe() 149
SUM 203
SUPAbstractClassException.h 238
SUPAttributeMetaData 231
SUPBigBinary 220
SUPBigString 225
SUPBridge 79
SUPDatabaseMetaData 230
SUPDataVault 170
SUPDataVaultException 170
SUPInvalidDataTypeException.h 238
SUPNoSuchAttributeException.h 238
SUPNoSuchClassException.h 238

SUPNoSuchOperationException.h 238
SUPNoSuchParameterException.h 238
SUPObjectNotFoundException.h 238
SUPPersistenceException.h 238
SUPQuery class 200
SUPQuery object 203
SUPQueryResultSet 207
SUPWrongDataTypeException.h 238
suspendSubscription 151
synchronization 48

MBO package 149
of MBOs 149
replication-based 149
simultaneous 149

synchronization parameters 49
synchronization profile 44
SynchronizationProfile 137, 138
SynchronizeException 237

T

TestCriteria 206
TestCriteria condition 200

U

UNION 204
UNION_ALL 204
unsubscribe 151
update 53
update operation 211

V

value
deleting 185

X

X.509 certificates 6, 26
Xcode 15, 19, 28, 32

Index

Developer Guide: iOS Object API Applications 243

Index

244 SAP Mobile Platform

	Developer Guide: iOS Object API Applications
	Contents
	Getting Started with iOS Development
	Object API Applications
	Best Uses for Object API Applications
	Cache Synchronization
	Client Runtime Architecture
	Mobile Channel Interfaces
	Mobile Middleware Services
	Data Services

	Documentation Roadmap for SAP Mobile Platform

	Development Task Flow for Object API Applications
	Installing the iOS Development Environment
	Downloading the Xcode IDE
	Downloading Older Versions of the Xcode IDE
	Installing X.509 Certificates on iOS Clients

	Generating Objective-C Object API Code
	Generating Objective-C Object API Code Using SAP Mobile WorkSpace
	Generating Object API Code Using the Code Generation Utility
	Generated Code Location and Contents
	Validating Generated Code

	Creating a Project
	Generating HeaderDoc from Generated Code
	Downloading the Latest Afaria Libraries
	Importing Libraries and Code
	Importing Libraries and Code for Applications Enabled with ARC
	Managing the Background State

	Development Task Flow for DOE-based Object API Applications
	Installing the iOS Development Environment
	Downloading the Xcode IDE
	Downloading Older Versions of the Xcode IDE
	Installing X.509 Certificates on iOS Clients

	Generating Objective-C Object API Code
	Generated Code Location and Contents

	Creating a Project
	Generating HeaderDoc from Generated Code
	Downloading the Latest Afaria Libraries
	Importing Libraries and Code
	Importing Libraries and Code for Applications Enabled with ARC
	Managing the Background State

	Developing the Application Using the Object API
	Initializing an Application
	Initially Starting an Application
	Setting Up Application Properties
	Communicating with SAP Mobile Server Through a Reverse Proxy
	Disabling Encryption for iOS Devices

	Registering an Application
	Setting Up the Connection Profile
	Setting Up Connectivity
	Setting Up the Synchronization Profile

	Creating and Deleting a Device's Local Database
	Logging In
	Turn Off API Logger
	Setting Up Callbacks
	Setting Up Callback Handlers
	Asynchronous Operation Replay

	Synchronizing Applications
	Nonblocking Synchronization

	Specifying Personalization Parameters
	Specifying Synchronization Parameters

	Subsequently Starting an Application

	Accessing MBO Data
	Object Queries
	Dynamic Queries
	MBOs with Complex Types
	Relationships

	Manipulating Data
	Creating, Updating, and Deleting MBO Records
	Other Operations
	Using submitPending and submitPendingOperations
	Database Classes
	Generated MBOs

	Shutting Down the Application
	Closing Connections

	Debugging Runtime Errors and Performance Analysis
	End to End Tracing
	Using Tracing APIs
	Getting an Instance of the E2E Trace Service
	Initializing the Trace
	Stopping the Trace
	Uploading the BTX

	Tracking KPI

	Uninstalling the Application
	Deleting the Database and Unregistering the Application

	Recovering From SAP Mobile Server Failures
	Client Application Recovery Examples
	Client Application Registration Recovery Example
	Client Application RBS Synchronize Recovery Example
	Client Application RBS BeginSynchronize Recovery Example
	MBS for DOEC Client Application Recovery Example

	Testing Applications
	Testing an Application Using a Emulator
	Client-Side Debugging
	Server-Side Debugging
	Improve Synchronization Performance by Reducing the Log Record Size
	Determining the Log Record Size
	Reducing the Log Record Size

	Localizing Applications
	Localizing Menus and Interfaces
	Localizing Embedded Strings
	Validating Localization Changes

	Packaging Applications
	Signing
	Apple Push Notification Service Configuration
	Preparing an Application for Apple Push Notification Service
	Configuring Apple Push Notification Service

	Preparing Applications for Deployment to the Enterprise

	Client Object API Usage
	Client Object API Reference
	Application APIs
	Application
	getInstance
	setApplicationIdentifier
	registrationStatus
	registerApplication
	registerApplication:timeout
	setApplicationCallback
	ApplicationCallback Property
	startConnection:timeout
	connectionStatus
	getConnectionProperties
	ApplicationSettings Property
	beginDownloadCustomizationBundle :(NSStream*)outputStream
	beginDownloadCustomizationBundle:(NSString*)customizationBundleID withOutputStream:(NSOutputStream*)outputStream
	stopConnection:timeout
	unregisterApplication
	unregisterApplication:timeout

	ConnectionProperties
	activationCode
	networkProtocol
	loginCertificate
	loginCredentials
	portNumber
	serverName
	securityConfiguration
	urlSuffix
	farmId
	httpHeaders
	httpCookies
	httpCredentials

	ApplicationSettings
	isApplicationSettingsAvailable
	getStringProperty
	getIntegerProperty
	getBooleanProperty
	custom1
	custom2
	custom3
	custom4
	domainName
	connectionId

	ConnectionPropertyType
	PwdPolicy_Enabled
	PwdPolicy_Default_Password_Allowed
	PwdPolicy_Length
	PwdPolicy_Has_Digits
	PwdPolicy_Has_Upper
	PwdPolicy_Has_Lower
	PwdPolicy_Has_Special
	PwdPolicy_Expires_In_N_Days
	PwdPolicy_Min_Unique_Chars
	PwdPolicy_Lock_Timeout
	PwdPolicy_Retry_Limit

	Afaria APIs
	Using Afaria to Provision Configuration Data
	Using Certificates from Afaria for Authentication
	CertBlobUtility Header
	CertBlobUtility Source

	Connection APIs
	SUPConnectionProfile
	Managing Device Database Connections
	Improving Device Application Performance with One Writer Thread and Multiple Database Access Threads

	Set Database File Property

	Synchronization Profile
	Connect the Data Synchronization Channel Through a Relay Server

	Authentication APIs
	Logging In
	Importing an X.509 Certificate to an iOS Client from the SAP Mobile Server
	Sample Code: Setting Up Login Credentials
	Sample Code: Mutual Authentication
	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate into the Data Vault
	Selecting a Certificate for SAP Mobile Server Connections
	Connecting to SAP Mobile Server with a Certificate

	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values

	Synchronization APIs
	Managing Synchronization Parameters
	Performing Mobile Business Object Synchronization
	Message-Based Synchronization APIs
	beginOnlineLogin
	subscribe
	unsubscribe
	suspendSubscription
	beginSynchronize
	resumeSubscription
	recover

	Push Synchronization Applications
	Background Refresh
	Performing Background Synchronization

	Log Record APIs
	SUPLogRecord API
	Logger APIs
	Log Level and Tracing APIs
	Tracing APIs
	Printing Log Messages

	Change Log API
	entityType
	operationType
	rootEntityType
	rootSurrogateKey
	surrogateKey
	Methods in the Generated Database Class
	enableChangeLog
	getChangeLogs
	deleteChangeLogs
	disableChangeLog

	Code Samples

	Security APIs
	Encrypting the Client Database
	Accessing a Previously Encrypted Database
	SUPDataVault
	createVault
	vaultExists
	vaultExists2
	getVault
	deleteVault
	getDataNames
	setPasswordPolicy
	Password Policy Structure
	Password Errors

	getPasswordPolicy
	lock
	isLocked
	unlock
	setString
	getString
	setValue
	getValue
	deleteValue
	changePassword (two parameters)
	changePassword (four parameters)
	setAccessGroup
	Code Sample

	Callback and Listener APIs
	Callback Handler API
	SUPApplicationCallback API
	Apple Push Notification API
	SUPSyncStatusListener API

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Queries
	SUPQuery and Related Classes
	Arbitrary Find
	TestCriteria
	SUPAttributeTest
	SortCriteria
	Paging Data

	Aggregate Functions
	Grouping Results
	Filtering Results

	Concatenating Queries
	Subqueries
	CompositeTest
	Complex Example
	SUPQueryResultSet

	Retrieving Relationship Data

	Index APIs
	Create an Index
	Drop an Index
	Retrieve and List Indexes

	Persistence APIs
	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Pending Operation
	Date/Time

	Object State APIs
	Entity State Management
	Entity State Example

	Refresh Operation

	Generated Package Database APIs
	Client Database APIs

	Large Attribute APIs
	SUPBigBinary
	close
	copyFromFile
	copyToFile
	flush
	openForRead
	openForWrite
	read
	readByte
	seek
	write
	writeByte

	SUPBigString
	close
	copyFromFile
	copyToFile
	flush
	openForRead
	openForWrite
	read
	readChar
	seek
	write
	writeChar

	MetaData API
	MetaData API
	SUPDatabaseMetaDataRBS
	SUPClassMetaDataRBS
	EntityMetaData
	SUPAttributeMetaData

	Exceptions
	Exception Handling
	Base Exceptions
	Exception Message Service
	Service Registry
	Example Code for Handling Exceptions
	Server-Side Exceptions
	Client-Side Exceptions

	Exception Classes
	Query Exception Classes
	Messaging Client API Exception Classes
	Attribute Datatype Conversion

	Error Codes
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes

	Index

