

Developer Guide: Smartphone
Mobiliser Applications

Sybase Mobiliser Platform 5.1

SP03

ii Developer Guide: Smartphone Mobiliser Applications

DOCUMENT ID: DC01866-01-0513-01

LAST REVISED: August 2013

Copyright © 2013 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is
furnished under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the
prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other
countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of
DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Developer Guide: Smartphone Mobiliser Applications iii

Contents
Introduction .. 1

New Features in Mobiliser Platform 5.1 SP03 3

Other Changes ... 3

Reference Application Main Features ... 5

Designing a Smartphone Application ... 7

The Reference Smartphone Applications 8

Smartphone Mobiliser Architecture .. 11

Smartphone Code Layers ... 11

Developing a Hybrid Smartphone Application 15

Development Prerequisites ... 15

Environment Setup ... 15

Maven ... 15

Source Code Structure .. 17

Modules .. 17

Build ... 18

Installing Dependencies to a Local Repository 20

Uploading Dependencies to a Repository Server 20

Android Development .. 21

Android SDK Dependencies ... 21

Cordova Dependency ... 21

Facebook SDK Dependency ... 21

ODC Dependencies .. 23

Building the Android applications with Eclipse 27

Building Android Applications with Android Studio 31

iOS Development ... 33

Creating CordovaLib ... 33

Creating a Facebook SDK iOS Framework 34

Building an iPhone Application ... 34

BlackBerry Development ... 37

Command Line Build for BlackBerry 37

Building the BlackBerry Application with Eclipse 38

Customizing a Smartphone Application 39

Custom Look and Feel .. 39

Custom Functionality .. 40

Custom Mobiliser Transactions ... 40

Different UI Packages ... 41

Deploying the Application to Mobiliser Platform 43

Provisioning the Application to the Device 45

Debugging .. 47

Testing .. 49

Introduction

iv Developer Guide: Smartphone Mobiliser Applications

Localizing ... 51

Securing the Application ... 53

Authentication/Registration .. 55

Registration .. 55

Authentication ... 55

Running the Application on the Device .. 57

Setting the Server Information .. 57

Integrating Google Maps ... 59

Obtaining an API Key .. 59

Asynchronously Loading the API 59

Map DOM Elements .. 59

Adding Overlays .. 60

Integrating Facebook Single Sign-on ... 61

Register App and Obtain Application ID 61

Mobile Web ... 61

Android ... 61

iOS .. 62

Automated Testing ... 63

Known Limitation ... 65

v Developer Guide: Smartphone Mobiliser Applications

Introduction

Developer Guide: Smartphone Mobiliser Applications 1

Introduction

This guide provides information about using Sybase® Smartphone Mobiliser to develop client
applications for smartphones that run on Sybase Mobiliser Platform.

Smartphone Mobiliser is a sample application that you can use as a starting point for
developing custom Mobiliser client applications. Depending on the requirements of your
organization, you can either reuse parts of this application, or build your own application from
scratch. Smartphone Mobiliser is not a production-ready application.

The application is built using a range of open source software. Given the fast pace at which
mobile technology evolves, be sure to review the components and revisions used, and update
any to the most suitable version before you begin developing your custom application. Once
your apps are published in the various mobile application stores, update them regularly to
support the latest mobile OS versions.

This guide describes the requirements for designing and developing a mobile smartphone
application, how to set up a development environment, how to customize the code, and how
to test, secure, and deploy the application to the device or simulator.

Figure 1. Smartphone Mobiliser application – Android splash screen

Introduction

2 Developer Guide: Smartphone Mobiliser Applications

New Features in Mobiliser Platform 5.1 SP03

Developer Guide: Smartphone Mobiliser Applications 3

New Features in Mobiliser Platform 5.1 SP03

 Location-based services – use geolocation functionality to identify a location, such as
the nearest post office or ATM. Users can search within a specified distance from their
current location. Location-based services also include mobile commerce, in the form of
coupons or advertising that is directed at customers based on their current location.

 Facebook integration – simplifies the on-boarding and sign-up process during which an
end user is authenticated. For example, if a user is already signed in to mobile application
via the Facebook application, he or she need not provide additional credentials.

 Remote check deposit using images – allows the end user to use the smartphone’s
camera to take a picture of a check and send it to the server for further processing. The
user can also retrieve and view checks that were scanned earlier.

 Internationalization support – offers content and functionality in multiple languages
and regions. Other relevant localization changes include number, date, and currency
formats.

 (Android only) On device charging – provides a closed-loop near-field communication
(NFC) solution for on device charging (ODC). Smartphone Mobiliser seamlessly
integrates with the ODC service in Mobiliser Platform to enable the user to install the
Mer (a mobile-oriented software distribution), to configure the ODC wallet, and to
manage transactions on the smartphone.

Other Changes

Changes to the underlying development environment include:

Changed Aspect Release 5.1 Release 5.1 SP03

Source code management Subversion
Common code managed via
SVN:externals (internal links),
which is specific to the SCM
tool.

Perforce
No features specific to the SCM
tool are used, so you can easily
switch to other systems if needed.
Maven handles common code.

iOS build environment Xcode
Custom build scripts

Command line builds.
Maven (Xcode Maven plug-in).
Xcode.

iOS provisioning iOS Developer license.
Drawback: manage your own
device list (UDIDs)

SAP iOS enterprise license;
deploy without limitations on
corporate devices; no registration
required.
Uses SAP central build system.
Developer license option is still
available for non-SAP developers.

Android build environment Eclipse
Ant build (command line)

Command line builds.
Maven (Maven 2 Eclipse plug-
in).
Eclipse IDE.
Android Studio (IntelliJ, Gradle).

BlackBerry build
environment

Ant build (command line) Command line builds.
Maven (invokes Ant).
Eclipse IDE.

New Features in Mobiliser Platform 5.1 SP03

4 Developer Guide: Smartphone Mobiliser Applications

Reference Application Main Features

Developer Guide: Smartphone Mobiliser Applications 5

Reference Application Main Features

The main features available in the Smartphone Mobiliser reference application include:

Function Description

Consumer Sign-up New users can easily sign up, using the contact data and credentials
provided. You can sign up as a Money Consumer (mobile wallet) or
mBanking Consumer. The user confirms the sign-up process with a one-
time password (OTP) that is received via SMS.

Transaction Details Shows an overview of the latest transactions. Selecting a transaction
displays its details.

Send Money Person-to-person money transfer, based on mobile telephone number
(MSISDN) pulled from the phone’s contacts list.

Request Money Send request for money transfer to contact, based on mobile telephone
number (MSISDN) retrieved from the phone’s contacts. The request is
visible on the receiver side under Pay Bills > Open Requests.

Airtime Topup Top up your own prepaid card, or another card with specified phone
number.

Pay Bills Register new bills, pay bills, open bills, and pay open requests.

Manage Accounts Manage your SVA account, and load or unload money. You can also add
bank accounts and credit cards, manage alerts and notifications, change
your PIN, and block your account.

Coupons Search and retrieve coupons in your area. Redeem using bar code or quick
response (QR) code scanner at the counter.

Remote Deposit (checks) Allows you to upload a picture (of a check) taken with the phone’s
camera. Uploaded pictures can be retrieved from the server for further
processing.

Locate Us Example of location-based services that can be built by combining
location data stored on the Mobiliser Platform server with Google Maps
to locate offices, ATMs, branches, and so on.

Foreign Exchange Rates Check current exchange rates.

Loan Inquiry Send a request for a specific loan to a bank. The bank follows up on this
request and contacts the user.

On Device Charging (Android only) Provides a closed-loop NFC solution for On Device
Charging.

Change UI Language Change the language on the user interface at runtime. Smartphone
Mobiliser supports double-byte languages (Chinese, Arabic).

Terms and Conditions Agree to new or renewed terms and conditions during the login process or
registration.

Single Sign-On (SSO)
using Facebook account

Authenticate with a Facebook account by pushing the FB login button.
No additional credentials are needed.

Offline Demo In this mode, no credentials are required and you can demonstrate and test
the application with a fixed set of data, locally stored in JSON format.
This mode is also useful for rapid prototyping, when you do not have a
server available, or when working offline.

Reference Application Main Features

6 Developer Guide: Smartphone Mobiliser Applications

Caution: Smartphone Mobiliser is limited in scope and functionality, and is not consumer-
ready. Its purpose is as a sample, so developers can quickly extend or easily create their
own mobile smartphone applications.

Designing a Smartphone Application

Developer Guide: Smartphone Mobiliser Applications 7

Designing a Smartphone Application

The Smartphone Mobiliser application is a reference application that runs out of the box with
a matching Mobiliser Platform server. To avoid compatibility issues regarding exposing and
consuming Web services, server and client version numbers must match. The application is
available in two deployment variations, as either:

 A mobile Web app that is hosted on a Web server, or
 An installable mobile smartphone app.

More details on how to set up and install the mobile web application can be found in the
Sybase Mobiliser Platform Installation guide.

The reference application is built using Web technologies that should be familiar within any
Information Technology department. The underlying mobile development framework used for
building the installable app is Apache Cordova, which is an open-source multiplatform mobile
application framework.

Figure 2. A Cordova application

A Cordova application is built using HTML5, CSS, and JavaScript code. Developers specify
the structure of an application layout using HTML5, design the look and feel of the
application presentation using CSS, and finally, implement the business logic for the
application using JavaScript.

The Cordova application runs inside a browser, which usually is a WebKit-based browser
running inside the native operating system for each mobile platform, for example, Safari/iOS
on an iPhone. Cordova provides a wrapper layer that is implemented using native code for
each specific supported mobile platform to provide the hooks into the mobile device features,
for example: geolocation, camera, accelerometer, and the contact list. Figure 3 shows how
each layer wraps around the one beneath it.

Cordova Application

Java
Script

HTML
5

CSS 3

Designing a Smartphone Application

8 Developer Guide: Smartphone Mobiliser Applications

Figure 3. Layers of a Cordova application

The Reference Smartphone Applications

The reference applications are prebuilt, and include a set of features that are connected to the
back-end server. Both are an online applications that support offline access only in the demo
mode. Currently, there are two flavors of the applications available:

 Core Money / mBanking – combines basic mobile wallet functionality and alerts with
mobile banking functions.

 Open Bank API – allows signing in via a third-party banking system and provides
management of checks, various banking accounts, and favorites.

The applications also have a standard SAP® layout, and look and feel, as shown in Figure 4.

Mobile OS
Platform

Cordova
Native

Wrapper

Native
Browser

component

Web
Application

Designing a Smartphone Application

Developer Guide: Smartphone Mobiliser Applications 9

Figure 4. Standard mBanking reference application layout on 4-inch iPhone

To design a Smartphone Mobiliser application, a developer must plan how the different pages
that amount to a specific business transaction will interact. Figure 5 is an example storyboard
for one design, showing the (mock) screen layouts in an interface flow diagram.

Designing a Smartphone Application

10 Developer Guide: Smartphone Mobiliser Applications

Figure 5: Example of a storyboard

Usually, the application look and feel is provided by graphic designers, who provide static
screen designs created in Photoshop. Mobile application developers implement these designs
as HTML5 code to be used within the application. If the application developers do not have
access to Photoshop, they may want to request slices for each graphics element used in the
GUI. These slices can be generated by the designers in Photoshop.

Smartphone Mobiliser Architecture

Developer Guide: Smartphone Mobiliser Applications 11

Smartphone Mobiliser Architecture

Smartphone Code Layers

There are certain files that most developers use to build a new application. First, let’s take a
look at the different layers and modules that make up the main parts of the application
framework.

The code in the application framework is generally separated into three logical layers, each of
which fulfills a specific function of the application. Figure 6 shows the main files in each
framework layer.

Figure 6: Application framework code layers

Figure 7 shows a different view of the same layers. The items in yellow text are platform
specific. The cordova.js file is a platform-specific file that differs for iOS, Android,
BlackBerry, and so on. The same is true for the JavaScript and CSS files in the ext folder, and
the ODC libraries and plug-ins that are available only for Android. The resources (images for
icons, splashscreen, etc.) are also platform specific. In the reference application, most
resources and CSS definitions are similar. However, you can implement a different look and
feel for each platform if needed, such as creating custom buttons that look like native ones.

The items in white text are common across all platforms. In Smartphone Mobiliser, as much
as 80% of the code is shared, although this depends on requirements. In the reference
application, the common code is managed as a separate project that produces a repository
artifact that is reused across multiple projects.

The file serviceclient.js is derived from the JavaScript interface that is generated (on the
server side) by the smartphone web service. However, we maintain a separate copy in which
we have made a few changes:

1. Added offline demo mode implementation

2. Added control on network status

3. Implemented a service request timer

4. Added a method to add “@attribute” in JSON object.

Presentation Layer

app.css

style.css

index.html

Business Logic Layer

app.js

SY_Data_-
Objects.js

Communication Layer

SY_Transactions.js SY_Mobiliser.js

Smartphone Mobiliser Architecture

12 Developer Guide: Smartphone Mobiliser Applications

Figure 7: Layered architecture view

Smartphone Mobiliser is basically a Cordova application. Figure 8 shows the architecture of
Cordova apps and plug-ins. The Web application, the Cordova JavaScript engine, and the
JavaScript code that is related to plug-ins are all wrapped into a Web container. For the
mobile device platforms that are currently supported, this container is based on WebKit. You
should also be able port the application to the Windows Phone platform, which uses Internet
Explorer instead of WebKit. The native libraries, the native code, and the Web container
combine to make up the complete application. To avoid the development and maintenance of
several different code bases written in different languages (Objective C on iOS, Java on
Android, Java on BlackBerry), the reference application uses a minimal amount of native
code.. Depending on the requirements of your application, the developer must strike a balance
between:

 User experience
 Performance
 Native controls
 Platform limitations
 Time to market
 Resources / people
 Code reuse for Mobile Web applications

Depending on these considerations, you should develop parts of the application in native
code, and parts as a Web application. The reference application is more focused on code reuse
than on native code. More advanced applications tend to use more native code.

Smartphone Mobiliser Architecture

Developer Guide: Smartphone Mobiliser Applications 13

Figure 8: Cordova application components

The ODC plug-in (Android only) is one of the custom plug-ins that is included with
Smartphone Mobiliser. Developers can add their own plug-ins for special features that involve
a mix of native and Mobile Web code. When building or using Cordova plug-ins, make sure
they are compatible with the Cordova version you are using.

Smartphone Mobiliser Architecture

14 Developer Guide: Smartphone Mobiliser Applications

Developing a Hybrid Smartphone Application

Developer Guide: Smartphone Mobiliser Applications 15

Developing a Hybrid Smartphone Application

Building a hybrid application combines the skills and tooling required for both native
application development as well as those required for Web application development.

Development Prerequisites

1. Install and configure Mobiliser Platform.
2. Set up a server on which to run Mobiliser services (the Smartphone Web services). The

services can be installed locally, on premise, or in the (Amazon) cloud.
3. Ensure that you are using Smartphone Mobiliser version 5.1.3 with Mobiliser version

5.1.3 . The Web services available on each version of Mobiliser are different, so the
mobile client implementation differs as well.

4. Install SoapUI or other tools, such as the Google Chrome extensions “JSONView” and
“Postman – REST client,” to figure out how to use and test Web services.

5. Install Maven 3.0.3 or higher (but lower than 3.1.0), and configure to connect to the
correct Nexus repository.

Environment Setup

The current version of Smartphone Mobiliser uses Cordova version 2.5.0, and the
environment setup is based on this. More recent versions of Cordova are likely to require a
different environment. The developer must adapt, as necessary, to the requirements for the
version of Cordova used. Development tooling such as Xcode and the Android ADT are also
subject to change. Since the tools, the mobile operating systems, the dependencies such as
Cordova, jQuery Mobile, and so on continue evolving, this document provides only a
snapshot of the components that have been used for this release. Developers must update all
these components as required and consider new tools, and new features as they become
available.

SAP recommends that you set up your environment according to the guidelines available on
the PhoneGap document site:

Getting started guide PhoneGap 2.5.0

http://docs.phonegap.com/en/2.5.0/guide_getting-
started_index.md.html#Getting%20Started%20Guides

Set up the development environment for each specific platform. Install SDKs for any of the
mobile platforms, such as Android, Apple iPhone and iPad, BlackBerry, and others.

If you can build and run a standard PhoneGap application on your target platform, you will be
able to build and run Smartphone Mobiliser-based applications as well.

Maven

Smartphone Mobiliser uses Maven to handle the various artifacts, dependencies and the
shared code.

Ensure the Apache Maven software project management tool (version 3.03 or later, but lower
than 3.1.0) is installed on your system. You can download Maven from
http://maven.apache.org/. Maven also requires Java to be installed on your system. Follow the
installation instructions to set up environment variables.

Verify your installation by running:

mvn --version

http://docs.phonegap.com/en/2.5.0/guide_getting-started_index.md.html#Getting%20Started%20Guides
http://docs.phonegap.com/en/2.5.0/guide_getting-started_index.md.html#Getting%20Started%20Guides
http://docs.phonegap.com/en/2.5.0/guide_getting-started_index.md.html#Getting%20Started%20Guides
http://maven.apache.org/

Developing a Hybrid Smartphone Application

16 Developer Guide: Smartphone Mobiliser Applications

Source Code Structure

Developer Guide: Smartphone Mobiliser Applications 17

Source Code Structure

The code in this release consists of a number of modules that are managed with Maven; it
does not contain all the dependencies required to build the applications.

Modules

 www – Web resources and Mobile Web, a common resource that is shared with all
mobile clients. This module needs to be built before any of the clients.

 android – Contains code and resources for Android clients.
 blackberry – Contains code and resources for BlackBerry clients.
 ios – Contains code and resources for iOS clients.

Figure 9 shows how all modules are combined with Maven into several targets. On the left,
you see collections of HTML5, images, and open source software. Maven combines these
during the build.

To briefly explain the steps:

1. Maven combines the common HTML5 code with target-specific images and target-
specific JavaScript and CSS to match the look and feel for each platform.

2. The result of step 1 is then combined with platform-specific tools, native SDKs, plug-ins,
and frameworks.

3. The result of step 2 is published via the designated channels (Web site, app store, Market
Place, and so on).

Source Code Structure

18 Developer Guide: Smartphone Mobiliser Applications

Figure 9: How Maven combines artifacts into build targets

Build

You can navigate into a specific module’s folder and use mvn clean install to build an
individual module. You can also build several flavors of the apps from the root folder by
specifying the target’s XML file. For example, to build all Android applications, use the
following command:

mvn clean install –f android.xml

Source Code Structure

Developer Guide: Smartphone Mobiliser Applications 19

Figure 10: Command line build for all Android targets

As you can see in the build output, Maven builds several projects in a specified sequence. The
build result is pushed into the Maven repository and will be used at a later stage in the build
process. You can also see that there are separate builds targeting phones and tablets, and
builds that include and exclude the ODC feature.

The build takes a few minutes to complete, depending on how many artifacts and
dependencies are already available in your local repository. When everything is set up
correctly, the results are:

Figure 11: Build results reported for Android build

Source Code Structure

20 Developer Guide: Smartphone Mobiliser Applications

Before you can successfully build a module, you must resolve all Maven dependencies. You
can either install the dependencies that are unavailable in a public Maven repository to a local
repository on your development machine, or deploy them to your shared repository server.
This document assumes that you have sufficient knowledge about using Maven and repository
management tools (for example, Nexus) to set this up. See http://maven.apache.org/ and
http://maven.apache.org/repository-management.html for more information. We will provide
some basic guidelines for setting up your environment.

Installing Dependencies to a Local Repository

mvn install:install-file -Dfile=your-artifact-1.0.jar -

DgroupId=org.some.group] \

-DartifactId=your-artifact] -Dversion=1.0 -Dpackaging=jar

Uploading Dependencies to a Repository Server

mvn deploy:deploy-file

More information:

http://maven.apache.org/plugins/maven-install-plugin/usage.html

http://maven.apache.org/plugins/maven-deploy-plugin/usage.html

http://maven.apache.org/
http://maven.apache.org/repository-management.html
http://maven.apache.org/plugins/maven-install-plugin/usage.html
http://maven.apache.org/plugins/maven-deploy-plugin/usage.html

Android Development

Developer Guide: Smartphone Mobiliser Applications 21

Android Development

The Android Maven Plugin allows development teams to build, deploy, and release Android
applications with Apache Maven, taking advantage of all the powerful features available, such
as dependency management, reporting, code analysis, and much more.

See http://code.google.com/p/maven-android-plugin/.

Android SDK Dependencies

Install or Deploy File Artifact Information

android-sdk-path/platforms/android-17/android.jar groupId – com.google.android
artifactId – android
version – 4.2.2

android-sdk-path/extras/android/support/v4/android-support-v4.jar groupId – com.google.android
artifactId – support-v4
version – r11

Note: You may change the group ID and artifact ID as long as they match those in the
project pom files.

Cordova Dependency

Download the binary distribution (version 2.5.0) from http://phonegap.com.

unzip phonegap-2.5.0.zip (default to phonegap-2.5.0)

cd phonegap-2.5.0/lib/android

zip –r cordova-android-js.zip cordova.js xml

mvn install:install-file –Dfile=cordova-android-js.zip –

DartifactId=cordova-android-js –

DgroupId=org.apache.download.cordova –Dversion=2.5.0 –

Dpackaging=zip

mvn install:install-file –Dfile=cordova-2.5.0.jar –

DartifactId=cordova-android –

DgroupId=org.apache.download.cordova –Dversion=2.5.0 –

Dpackaging=jar

Facebook SDK Dependency

Create a Maven project in a folder such as FacebookSDK. Download facebook-android-sdk-
3.0.zip from http://developers.facebook.com and extract the “facebook” folder to the project
root directory. Delete the libs folder and build.xml.

Create a pom.xml file with the following content (see the sample pom.xml file in the android
folder):
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://code.google.com/p/maven-android-plugin/
http://code.google.com/p/maven-android-plugin/
http://phonegap.com/
https://developers.facebook.com/resources/facebook-android-sdk-3.0.zip
https://developers.facebook.com/resources/facebook-android-sdk-3.0.zip
http://developers.facebook.com/

Android Development

22 Developer Guide: Smartphone Mobiliser Applications

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion 4.0.0</modelVersion>

 <name>Facebook Android SDK Library</name>

 <groupId>com.facebook.download.sdk</groupId>

 <artifactId>facebook-android-sdk</artifactId>

 <version>3.0.0</version>

 <packaging>apklib</packaging>

 <dependencies>

 <dependency>

 <groupId>com.google.android</groupId>

 <artifactId>android</artifactId>

 <version>4.2.2</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>com.google.android</groupId>

 <artifactId>support-v4</artifactId>

 <version>r11</version>

 </dependency>

 </dependencies>

 <build>

 <sourceDirectory>src</sourceDirectory>

 <plugins>

 <plugin>

<groupId>com.jayway.maven.plugins.android.generation2</groupId>

 <artifactId>android-maven-plugin</artifactId>

 <version>3.6.0</version>

 <extensions>true</extensions>

 <configuration>

 <sdk>

 <platform>17</platform>

 </sdk>

 </configuration>

 </plugin>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>3.0</version>

 <configuration>

 <source>1.6</source>

 <target>1.6</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Build and install with:

mvn clean install

Android Development

Developer Guide: Smartphone Mobiliser Applications 23

ODC Dependencies

version.odc.server = 1.0.0.RELEASE

project.version = 1.0.0.RELEASE

Install or Deploy File Artifact Information

Android-sdk-path/extras/google/gcm/gcm-client/dist/gcm.jar groupId – com.google.android.gcm
artifactId – client
version – 1

KSOAP
http://ksoap2-android.googlecode.com/svn/m2-repo/

groupId – com.google.code.ksoap2-android
artifactId – ksoap2-android
version – 3.0.0

Mobile Security Card
(jar directly added in our nexus as third party
http://seek-for-android.googlecode.com/files/MSC%20Smartcard%20Service%203.0.tar.gz)

groupId – com.mobilesecuritycard
artifactId – com.mobilesecuritycard.openmobileapi

Device Fidelity
api-android-2.2.1.jar

groupId – com.devicefidelity
artifactId – api-android
version – 2.2.1

SDIOLib-2.2.1-armeabi.so

groupId – com.devicefidelity
artifactId – SDIOLib
version – 2.2.1
scope – runtime
classifier – armeabi
type – so

com.sap.odc.cload.core-1.0.0.RELEASE.jar

groupId – com.sap.odc.cload
artifactId – com.sap.odc.cload.core
version – ${version.odc.server}

com.sap.odc.commons.constants-1.0.0.RELEASE.jar groupId – com.sap.odc.commons
artifactId – com.sap.odc.commons.constants
version – ${version.odc.server}

http://ksoap2-android.googlecode.com/svn/m2-repo/
http://seek-for-android.googlecode.com/files/MSC%20Smartcard%20Service%203.0.tar.gz

Android Development

24 Developer Guide: Smartphone Mobiliser Applications

Install or Deploy File Artifact Information

com.sap.odc.commons.error-1.0.0.RELEASE.jar groupId – com.sap.odc.commons
artifactId – com.sap.odc.commons.error
version – ${version.odc.server}

com.sap.odc.commons.io-1.0.0.RELEASE.jar groupId – com.sap.odc.commons
artifactId – com.sap.odc.commons.io
version – ${version.odc.server}

com.sap.odc.commons.util-1.0.0.RELEASE.jar

groupId – com.sap.odc.commons
artifactId – com.sap.odc.commons.util
version – ${project.version}

com.sap.odc.gp.api-1.0.0.RELEASE.jar groupId – com.sap.odc.gp
artifactId – com.sap.odc.gp.api
version – ${project.version}

com.sap.odc.mer.api.core-1.0.0.RELEASE.jar groupId – com.sap.odc.mer.api
artifactId – com.sap.odc.mer.api.core
version – ${project.version}

com.sap.odc.mer.api.read-1.0.0.RELEASE.jar groupId – com.sap.odc.mer.api
artifactId – com.sap.odc.mer.api.read
version – ${project.version}

com.sap.odc.mer.models-1.0.0.RELEASE.jar groupId – com.sap.odc.mer
artifactId – com.sap.odc.mer.models
version – ${project.version}

com.sap.odc.mer.tlv.models-1.0.0.RELEASE.jar groupId – com.sap.odc.mer.tlv
artifactId – com.sap.odc.mer.tlv.models
version – ${project.version}

com.sap.odc.mobile.android.client.read-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android.client
artifactId – com.sap.odc.mobile.android.client.read
version – ${project.version}
type – apklib

Android Development

Developer Guide: Smartphone Mobiliser Applications 25

Install or Deploy File Artifact Information

com.sap.odc.mobile.android.client.synchro-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android.client
artifactId – com.sap.odc.mobile.android.client.synchro
version – ${project.version}
type – apklib

com.sap.odc.mobile.android.json-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android
artifactId – com.sap.odc.mobile.android.json
version – ${project.version}
type – apklib

com.sap.odc.mobile.android.plugin.impl-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android.plugin
artifactId – com.sap.odc.mobile.android.plugin.impl
version – ${project.version}
type – apklib

com.sap.odc.mobile.android.smartcard.api-1.0.0.RELEASE.apklib

groupId – com.sap.odc.mobile.android.smartcard
artifactId – com.sap.odc.mobile.android.smartcard.api
version – ${project.version}
type – apklib

com.sap.odc.mobile.android.smartcard.devicefid-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android.smartcard
artifactId – com.sap.odc.mobile.android.smartcard.devicefid
version – ${project.version}
type – apklib

com.sap.odc.mobile.android.smartcard.openmobile-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android.smartcard
artifactId – com.sap.odc.mobile.android.smartcard.openmobile
version – ${project.version}
type – apklib

com.sap.odc.mobile.android.smartcard.server-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android.smartcard
artifactId – com.sap.odc.mobile.android.smartcard.server
version – ${project.version}
type – apklib

Android Development

26 Developer Guide: Smartphone Mobiliser Applications

Install or Deploy File Artifact Information

com.sap.odc.mobile.android.synchro-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android
artifactId – com.sap.odc.mobile.android.synchro
version – ${project.version}
type – apklib

com.sap.odc.mobile.android.utils-1.0.0.RELEASE.apklib groupId – com.sap.odc.mobile.android
artifactId – com.sap.odc.mobile.android.utils
version – ${project.version}
type – apklib

Android Development

Developer Guide: Smartphone Mobiliser Applications 27

Building the Android applications with Eclipse

You can download the Android Developer Tools (ADT) from http://developer.android.com.
Google now offers an ADT bundle that comprises a complete Eclipse installation, including
all necessary plug-ins. Alternatively, you can install the ADT plug-in into your favorite
Eclipse environment.

Figure 12: ADT splash screen

Incompatibility issues between plug-ins and Java versions required might give you more
overhead than needed; Sybase recommends that you use separate Eclipse environments for
server-side (J2EE) development, for Android development, and for BlackBerry development
(32-bits only).

To use Maven from within Eclipse, you must install the Maven 2 Eclipse plug-in as shown in
Figure 13.

http://developer.android.com/

Android Development

28 Developer Guide: Smartphone Mobiliser Applications

Figure 13: Installing the Maven 2 Eclipse plug-in

Restart Eclipse, select File/Import, and import the Smartphone Mobiliser sources as
“Existing Maven Projects.”

Android Development

Developer Guide: Smartphone Mobiliser Applications 29

Figure 14: Import existing Maven project

Most of the code for Android applications is in the “Android” folder. However, common Web
application code is located in a folder called “www” and must be imported as a separate
Maven project. When you import the Android folder, Maven 2 Eclipse identifies several
subprojects; select to import them all. You might also need another Eclipse plug-in (M2E
Maven Archiver Connector), which is installed automatically.

When you make changes to code in the www folder, you will probably need build two
projects: the www project, and the phone or tablet project.

Android Development

30 Developer Guide: Smartphone Mobiliser Applications

Figure 15: Importing the common Web application code as Maven project

To build projects in Eclipse, right-click the project you want to build and select Run As >

Maven install. To build all Android projects (except the www project) in a single build,
select the “parent” project, which builds all projects in the correct sequence.

Figure 16: Building the Web application code within Eclipse

Android Development

Developer Guide: Smartphone Mobiliser Applications 31

Building Android Applications with Android Studio

Currently, it seems likely that Google plans to replace the ADT that is based on Eclipse with a
different IDE that is based on IntelliJ, and a new build system that is based on Gradle. This
new IDE is called Android Studio and can be downloaded from
http://developer.android.com/sdk/installing/studio.html. At the time of writing, the Android
Studio is available as an early access preview.

Figure 17: Android Studio's splash screen

This IDE can import Maven projects and build the required targets. It also provides a
straightforward process for deploying your target to a device or simulator. To get started with
Smartphone Mobiliser in Android Studio, use Import Project as shown in Figure 18.

Figure 18: Importing the Maven project for Android in Android Studio

Import both the Maven “android” project, and the common Web application code in the
”www” folder. During the import, you must review the settings; in most cases, the default
settings should be sufficient. After you have imported the sources, the build system
automatically starts to resolve dependencies. Since the Android Studio IDE is still subject to

http://developer.android.com/sdk/installing/studio.html

Android Development

32 Developer Guide: Smartphone Mobiliser Applications

changes, we cannot provide detailed information about using it to develop Smartphone
Mobiliser customizations.

When you set up Android Studio and build Smartphone Mobiliser, you should be able to run
the application in the emulator as show in Figure 19. Currently, this environment seems easier
to use than the Eclipse IDE, and is better integrated with other tools, such as the debugger.

Figure 19: Run and debug the app from Android Studio

iOS Development

Developer Guide: Smartphone Mobiliser Applications 33

iOS Development

The Xcode Maven plug-in developed by SAP can be used to run Xcode builds that are
embedded in a Maven life cycle. Download the plug-in from:

http://sap-production.github.io/xcode-maven-plugin/site/index.html

Creating CordovaLib

Download cordova-2.5.0-src.zip from cordova.apache.org and extract cordova-ios.zip from it.

Create a Maven project folder, such as cordova-xcode-lib:

mkdir –p src/xcode

mkdir –p unpack/project

unzip cordova-ios.zip –d unpack

./unpack/bin/create unpack/project com.sap.CordovaProject

CordovaProject

cp -R unpack/CordovaLib/ src/xcode

mkdir -p src/xcode/CordovaLib.bundle

cp -R unpack/project/www/ src/xcode/CordovaLib.bundle

Create a pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-

4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.sap.org.apache.download.cordova</groupId>

 <artifactId>CordovaLib</artifactId>

 <version>2.5.0</version>

 <packaging>xcode-lib</packaging>

 <build>

 <plugins>

 <plugin>

 <groupId>com.sap.prd.mobile.ios.mios</groupId>

 <artifactId>xcode-maven-plugin</artifactId>

 <version>1.9.3</version>

 <extensions>true</extensions>

 <configuration>

 <settings>

 <EXECUTABLE_NAME>libCordovaLib.a</EXECUTABLE_NAME>

 </settings>

 </configuration>

 </plugin>

 </plugins>

 </build>

</project>

Create the iOS lib and install it in a local repository or deploy it to a repository server:

mvn clean install

mvn clean deploy

http://sap-production.github.io/xcode-maven-plugin/site/index.html

iOS Development

34 Developer Guide: Smartphone Mobiliser Applications

Creating a Facebook SDK iOS Framework

Download and install the Facebook iOS SDK from http://developer.facebook.com:

zip -r FacebookSDKFramework-3.2.0.xcode-framework-zip

<framework-content-folder>

where <framework-content-folder> is usually
Documents/FacebookSDK/FacebookSDK.framework.

Create a FacebookSDKFramework.pom file:

<project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

 http://maven.apache.org/xsd/maven-

4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.facebook</groupId>

 <artifactId>FacebookSDKFramework</artifactId>

 <version>3.2.0</version>

 <packaging>xcode-framework</packaging>

</project>

Install to a local repository:

mvn install:install-file -Dfile=FacebookSDKFramework-

3.2.0.xcode-framework-zip -DartifactId=FacebookSDKFramework -

DgroupId=com.facebook -Dversion=3.2.0 -

DpomFile=FacebookSDKFramework.pom -Dpackaging=xcode-framework-

zip

Deploy to a repository server:

mvn deploy:deploy-file -DrepositoryId=your_repo_id -

Durl=your_repo_url -Dfile=FacebookSDKFramework-3.2.0.xcode-

framework-zip -DartifactId=FacebookSDKFramework -

DgroupId=com.facebook -Dversion=3.2.0 -

DpomFile=FacebookSDKFramework.pom -Dpackaging=xcode-framework-

zip

Building an iPhone Application

In theory, you should be able to build iOS applications in Eclipse. However, most of the other
developer tooling for iOS is not integrated with Eclipse; therefore, to develop an iPhone app,
you will need Xcode and a Mac running OS X. Make sure you have installed the command
line tools in Xcode (open XCode and go to menu, Preferences->Downloads->Components).

Go to the folder ios/phone in your terminal and run the command mvn clean install.

After building the iPhone application with Maven, you can load the Xcode project file located
in the folder called “src/xcode” into Xcode. The “target” folder in the project explorer
contains all the files collected and generated using Maven. From here, you can use Xcode to
run the application on your development phone or on the iPhone simulator.

When changing code in one of the project dependencies (including the www folder), you must
rebuild the sources with Maven. Otherwise, your changes are not reflected in the application.
The Run button in Xcode does not update your changes, unless you change the behavior of
the button so that it executes Maven via a script.

http://developer.facebook.com/

iOS Development

Developer Guide: Smartphone Mobiliser Applications 35

Figure 20: Build and run the iPhone app in the iPhone simulator

iOS Development

36 Developer Guide: Smartphone Mobiliser Applications

BlackBerry Development

Developer Guide: Smartphone Mobiliser Applications 37

BlackBerry Development

Download BlackBerry WebWorks from http://developer.blackberry.com/html5, and make
sure you have installed a 32-bit Java on your system. If you have a BlackBerry device
available for testing your application, install the BlackBerry Desktop Software that includes
the necessary drivers to connect to your phone. If you do not have a phone available, there are
several simulators (which run only on Windows) you can download.These simulators can
behave differently than real devices; you should test your code on real devices before
assuming it works as intended.

Command Line Build for BlackBerry

If you have installed the prerequisites mentioned in the PhoneGap documents, and you have
Maven installed on your system, you should be able to run the following command:

mvn clean install

Figure 21: Windows command line build for BlackBerry

All Smartphone Mobiliser builds have been standardized with Maven, except BlackBerry.
Maven still invokes the standard Ant build and uses the Ant build configurations to create and
sign the apps. We do not provide a build for Blackberry Playbook, although you should be
able to create such a build fairly easily by combining the BlackBerry phone build with the
resources used for Android tablets.

To install the application on your phone or simulator, follow exactly the same steps as for
Navigate into the BB6_7 folder and use the available Ant build configurations. Make sure you
change the configuration files to reflect the correct code signing, passwords, and related
settings. Ant build example:

ant blackberry load-device

http://developer.blackberry.com/html5

BlackBerry Development

38 Developer Guide: Smartphone Mobiliser Applications

Building the BlackBerry Application with Eclipse

The steps for installing the Maven plug-ins are the same as for Android. Import the
BlackBerry project as an existing Maven project by opening the “blackberry” folder and the
“www” folder as separate Maven projects.

Figure 22: Building the BlackBerry application in Eclipse

Customizing a Smartphone Application

Developer Guide: Smartphone Mobiliser Applications 39

Customizing a Smartphone Application

Custom Look and Feel

The most basic change any developer needs to do is to rebrand the application with the
enterprise-specific colors and logos. The developer then looks at the files in the “Presentation
Layer” (see Figure 6) and modifies the CSS and HTML code as needed.

Figure 23 shows the app.css file CSS code that defines the look and feel of the widgets in the
application:

Figure 23. Part of the app.css file

Figure 24 shows the register input page in reginput.html. A developer can change the
structure of the application by changing the HTML code. Changing images also is done
through the HTML and CSS files. Earlier implementations used a single HTML file that
contained all the page definitions (a Single Page App); the current version dynamically loads
individual pages and scripts as needed via Ajax calls. This reduces the runtime memory
required for the application and improves the performance for most low- and mid-end
smartphones. However, this implementation does affect the performance of Mobile Web, as it
introduces additional latency. You can avoid the latency by using offline caching
mechanisms.

Customizing a Smartphone Application

40 Developer Guide: Smartphone Mobiliser Applications

Figure 24. Part of the reginput.html file.

Custom Functionality

Some applications might not need all of the functions provided by the out-of-the-box
reference application, or may need to manipulate the data differently. Developers can use the
“Business Logic Layer” to change the way data is manipulated within these files.

Custom Mobiliser Transactions

Some businesses might need to add custom business transactions to their Money Mobiliser
back-end server. For the Smartphone application framework (client) to understand the new
parameters and results of the new transaction, customize the “Communication Layer” files.

SAP recommends that developers follow the structure currently utilized within the
SY_Mobiliser.js file to perform such communication with the back-end Money Mobiliser
server. For example:

Customizing a Smartphone Application

Developer Guide: Smartphone Mobiliser Applications 41

Figure 25. An example functions from the SY_Mobiliser.js file

Different UI Packages

Currently, the framework uses jQueryMobile as its UI package to display the widgets on the
pages. There are many other packages that can be used instead, for example, SenchaTouch.

Note: Using a different UI package requires code changes that are outside the scope of this
document.

Customizing a Smartphone Application

42 Developer Guide: Smartphone Mobiliser Applications

Deploying the Application to Mobiliser Platform

Developer Guide: Smartphone Mobiliser Applications 43

Deploying the Application to Mobiliser
Platform

After you build the application and install it on the device, you see a new icon on your mobile
screen (Figure 26). The reference application runs out of the box, so no additional deployment
instructions are needed (apart from initial configuration) to integrate the Smartphone mobile
application to the Money Mobiliser server.

If any Money Mobiliser server customizations should be integrated between the Smartphone
application and the server before deployment. See Custom Mobiliser Transactions on page
40.

Figure 26. Installed application on an Android phone

Deploying the Application to Mobiliser Platform

44 Developer Guide: Smartphone Mobiliser Applications

Provisioning the Application to the Device

Developer Guide: Smartphone Mobiliser Applications 45

Provisioning the Application to the Device

Provisioning a finished application is usually done through the official distribution
marketplace for each mobile platform:

 iPhone, iPad – App Store
 BlackBerry – BlackBerry App World
 Android – Android Market, Google Play Store
Follow the instructions and policies for each of these distribution channels to provision your
application.

For Android and BlackBerry applications, you can host and distribute the built package
through proprietary means, but instructions for doing so are outside the scope of this
document.

Provisioning the Application to the Device

46 Developer Guide: Smartphone Mobiliser Applications

Debugging

Developer Guide: Smartphone Mobiliser Applications 47

Debugging

These are the essential tools for debugging:

 Standard browsers, such as Google Chrome, FireFox, or Internet Explorer – most of the
code is in HTML/CSS/JS. You can also use the browser’s debugging module; for
example, FireBug on FireFox.

 A TCP monitor – trace the messages that are transmitted between devices and browsers.
 Newer tools that you can use to debug Web applications directly on the mobile device

(for example, WEINRE). However, detailed discussion about these toolsis outside the
scope of this document.

Debugging

48 Developer Guide: Smartphone Mobiliser Applications

Testing

Developer Guide: Smartphone Mobiliser Applications 49

Testing

In addition to internal code testing, it is also important that you set up a staging system that
resembles the production environment, and perform end-to-end system testing that includes
any third-party integration, and the Money Mobiliser backend.

Testing

50 Developer Guide: Smartphone Mobiliser Applications

Localizing

Developer Guide: Smartphone Mobiliser Applications 51

Localizing

Use the Smartphone Mobiliser application to localize your apps, which means changing the
language of the presentation layer. Smartphone Mobliser uses the jQuery module for
localization, which stores the different text for each language in a “language” folder. Each file
that starts with “strings_” holds the texts for all fields in a particular language, which is
determined by the two-letter language code that finishes the file name. For example, the
strings_en.js file holds English text; strings_cn.js holds Chinese (Mandarin) texts.

Figure 27. Example file for Mandarin Chinese

Localizing

52 Developer Guide: Smartphone Mobiliser Applications

Securing the Application

Developer Guide: Smartphone Mobiliser Applications 53

Securing the Application

The Smartphone Mobiliser reference application does not store any data on the mobile device.
All data is removed from the mobile phone’s memory as soon as the user finishes using the
application. The application resides inside a browser container, which manages security using
SSL.

To prevent any sniffing of credit card numbers or bank account numbers during registration,
such information is encrypted on the client before it is sent to the server over an SSL
connection. The public key used for the encryption is requested from the server first, before
the client encrypts the data. After registration and secure storage on the server side, you
cannot retrieve this information in clear text on the client. It is always returned from the server
as masked data (for example, xxxxxxxxxxx4132).

In addition to encryption, we have also added more information in the data that is sent to the
server via web service calls. We added a unique application id that can be used on the server
as input for audit data. To avoid privacy concerns and regulations, this unique id is not related
to a specific device. It is generated and stored locally on the device during the launch of the
application when there is no locally stored identification found.

See the Money Mobiliser Server documentation for additional information about how the
back-end system handles and securely stores sensitive data.

Securing the Application

54 Developer Guide: Smartphone Mobiliser Applications

Authentication/Registration

Developer Guide: Smartphone Mobiliser Applications 55

Authentication/Registration

Registration

A user can register an account from within the Smartphone application on the device after
deployment. Click the Register button on the menu at the bottom of the application, then
click Continue:

Figure 28. Personal information page

Click Authentication to set a password, then click Continue. Follow the onscreen
instructions to finish the registration process. Depending on your back-end configuration, you
are either sent a passcode via SMS, or you can obtain it from the Channel Manager’s console
output. Enter the passcode on the registration screen and click Confirm.

Authentication

Once your registration has succeeded, proceed to the login page and enter your credentials to
start using your Smartphone Mobiliser application.

Note: In the mBanking implementation for the Smartphone Mobiliser application, users must
have a service level that enables them to log in to the application (for example, Platinum
service). This can be added by the administrator/agent who is using the Customer Support
Tool (or a developer who is playing this role).

Authentication/Registration

56 Developer Guide: Smartphone Mobiliser Applications

Running the Application on the Device

Developer Guide: Smartphone Mobiliser Applications 57

Running the Application on the Device

Setting the Server Information

The only setup required to run the application after it is installed on the device is possibly
adding server information. Finished applications (or those that are nearly finished) should be
provisioned with the server setup provided within the application, allowing the user to skip
this step.

At the login page, select Services, the select Settings, push the Mobiliser Settings button and
set the required information as needed, based on what your administrator sets for you.

Note: The Mobiliser Settings button in intended only for development purposes, and is not
available on the hosted Mobile Web application.

Running the Application on the Device

58 Developer Guide: Smartphone Mobiliser Applications

Integrating Google Maps

Developer Guide: Smartphone Mobiliser Applications 59

Integrating Google Maps

To develop a customized location service using Google Maps in Smartphone Mobiliser,
follow the standard Google Maps JavaScript API v3 to create your own API key and
customized geolocation data.

Note: Using a customized location service includes agreeing to the terms of service and
conditions that are specified by Google Inc. Any such service contract is not part of Sybase
service.

The following subsections discuss the basic steps for creating a location service using Google
Map in Smartphone Mobiliser.

Obtaining an API Key

All Maps API applications* should load the Maps API using an API key.

Asynchronously Loading the API

You can load the Maps API JavaScript code either after your page has finished loading, or on
demand. To do so in either case, inject your own <script> tag in response to a
window.onload event or a function call; you must also instruct the Maps JavaScript API
bootstrap to delay execution of your application code until the API code is fully loaded. You
can do this using the callback parameter, which takes as an argument the function to
execute when the API finishes loading.

The following code instructs the application to load the Maps API after the page has fully
loaded (using window.onload) and write the Maps JavaScript API into a <script> tag
within the page. It also instructs the API to execute the initialize() function only after
the API has fully loaded, by passing callback=initialize to the Maps API bootstrap:

function initialize() {

 var mapOptions = {

 zoom: 8,

 center: new google.maps.LatLng(-34.397, 150.644),

 mapTypeId: google.maps.MapTypeId.ROADMAP

 }

 var map = new google.maps.Map(document.getElementById("map-canvas"),

mapOptions);

}

function loadScript() {

 var script = document.createElement("script");

 script.type = "text/javascript";

 script.src =

"http://maps.googleapis.com/maps/api/js?key=API_KEY&sensor=TRUE_OR_FALSE&

callback=initialize";

 document.body.appendChild(script);

}

window.onload = loadScript;

Map DOM Elements

<div id="map-canvas" style="width: 100%; height: 100%"></div>

https://developers.google.com/maps/documentation/javascript

Integrating Google Maps

60 Developer Guide: Smartphone Mobiliser Applications

Adding Overlays

Overlays are often added to the map upon their construction; all overlays define
an Options object for use in construction that allows you to designate the map on which
they should appear. You can also add an overlay to the map directly by using the
overlay's setMap() method, passing it the map on which to add the overlay.

var myLatlng = new google.maps.LatLng(-25.363882,131.044922);

var mapOptions = {

 zoom: 4,

 center: myLatlng,

 mapTypeId: google.maps.MapTypeId.ROADMAP,

}

var map = new google.maps.Map(document.getElementById("map-canvas"),

mapOptions);

var marker = new google.maps.Marker({

 position: myLatlng,

 title:"Hello World!"

});

// To add the marker to the map, call setMap();

marker.setMap(map);

See https://developers.google.com/maps/documentation/javascript/tutorial.

https://developers.google.com/maps/documentation/javascript/tutorial

Integrating Facebook Single Sign-on

Developer Guide: Smartphone Mobiliser Applications 61

Integrating Facebook Single Sign-on

To develop a customized Facebook single sign-on in Smartphone Mobiliser, developers need
only register their own applications in the Facebook developer center, then apply the
corresponding settings into Smartphone Mobiliser.

Register App and Obtain Application ID

 (Developers) Go to https://developers.facebook.com/apps and create a new Facebook app to
register your Smartphone application. An application ID is assigned to each application,
which you must apply in the corresponding place in the source code (in the ext.js file) of
Smartphone Mobiliser.

After registration, configure the setting of each platform into which the Facebook single sign-
on integrates. Currently, Smartphone Mobiliser supports Mobile Web, Android, and iOS.
Device users must select the corresponding configuration field of the platform into which they
want to integrate the Facebook single sign-on.

The following subsections discuss platform-specific configurations.

Mobile Web

Specify your own mobile site URL, which Facebook directs to after sign-on is complete.

Example:

Android

To set up a Facebook single sign-on for an Android application, configure the package name
and class name, and input the key hashes of your application to associate with Facebook.

To generate a key hash on your build machine computer, run Java's keytool utility against the
Android debug keystore (which is, by default, located in your “android” directory).

On OS X, run:

keytool -exportcert -alias androiddebugkey -keystore

~/.android/debug.keystore | openssl sha1 -binary | openssl base64

On Windows, use:

keytool -exportcert -alias androiddebugkey -keystore

%HOMEPATH%\.android\debug.keystore | openssl sha1 -binary | openssl

base64

When you are prompted for a password, enter “android” (without quotes). You are then given
a key hash that is made up of approximately 30 characters. If you are not prompted for a
password, verify your paths to ensure the debug.keystore file is present.

https://developers.facebook.com/apps

Integrating Facebook Single Sign-on

62 Developer Guide: Smartphone Mobiliser Applications

If you have a release key, add its hash in the same way. To obtain the release key hash, use
the keytool utility in the same way as above, except for the alias and path.

On OS X, run:

keytool -exportcert -alias <RELEASE_KEY_ALIAS> -keystore

<RELEASE_KEY_PATH> | openssl sha1 -binary | openssl base64

On Windows, use:

keytool -exportcert -alias <RELEASE_KEY_ALIAS> -keystore

<RELEASE_KEY_PATH> | openssl sha1 -binary | openssl base64

Make sure to use the password that you set when you first created the release key.

Example:

iOS

Fill in the Bundle ID from your Xcode project configuration, and enable Facebook login. If
the application is to be deployed to the App Store, also enter the App Store ID.

Example:

For more details, see https://developers.facebook.com/.

https://developers.facebook.com/

Automated Testing

Developer Guide: Smartphone Mobiliser Applications 63

Automated Testing

The recommended approach for testing the mobile application is to use a combination of
manual and automated tests. Because a large part of the application is written in HTML5
(JavaScript), and because the code for installable applications and Mobile Web is largely
common, you can leverage solutions that are available for testing Web applications.

To test Mobile Web, you can use an automated test structure that is based on Selenium
Webdriver and JUnit.

The following steps, which assume that Mac OS X and the Chrome browser are installed),
allow you to test the Smartphone Mobiliser Web application:

1. Download the latest chromedriver2 package from
http://code.google.com/p/chromedriver/downloads/list.

2. Unpack and run chromedriver from the command line.
3. Edit the dev/www/pom.xml file to activate (that is, uncomment) the lines that are

related to integration tests. Search for:
“<!-- remove the comment to run functional integration

test”

4. Save the file.
5. Open another shell and navigate to the folder “/mBanking/www” in your workspace.
6. Run:

mvn -Duser=<user name you've registered> -

Dpassword=<password you've registered> -Dwsurl=http://<ip

of your server>:<web service

port>/mobiliser/rest/smartphone install  

This script is written in Java and uses JUnit. The code is in:
www/src/test/java/com/sap/mobiliser/smartphone/MobileWebIT.java

You can easily extend this code by adding more test cases.

http://code.google.com/p/chromedriver/downloads/list

64 Developer Guide: Smartphone Mobiliser Applications

Known Limitation

Developer Guide: Smartphone Mobiliser Applications 65

Known Limitation

In the current implementation, the end user can add a credit card with card number
0000000000000000 (16 zeros). The credit card number validation algorithm is only a sample,
and must be replaced by a proper method, according to customer requirements.

	Introduction
	New Features in Mobiliser Platform 5.1 SP03
	Other Changes

	Reference Application Main Features
	Designing a Smartphone Application
	The Reference Smartphone Applications

	Smartphone Mobiliser Architecture
	Smartphone Code Layers

	Developing a Hybrid Smartphone Application
	Development Prerequisites
	Environment Setup
	Maven

	Source Code Structure
	Modules
	Build
	Installing Dependencies to a Local Repository
	Uploading Dependencies to a Repository Server

	Android Development
	Android SDK Dependencies
	Cordova Dependency
	Facebook SDK Dependency
	ODC Dependencies
	Building the Android applications with Eclipse
	Building Android Applications with Android Studio

	iOS Development
	Creating CordovaLib
	Creating a Facebook SDK iOS Framework
	Building an iPhone Application

	BlackBerry Development
	Command Line Build for BlackBerry
	Building the BlackBerry Application with Eclipse

	Customizing a Smartphone Application
	Custom Look and Feel
	Custom Functionality
	Custom Mobiliser Transactions
	Different UI Packages

	Deploying the Application to Mobiliser Platform
	Provisioning the Application to the Device
	Debugging
	Testing
	Localizing
	Securing the Application
	Authentication/Registration
	Registration
	Authentication

	Running the Application on the Device
	Setting the Server Information

	Integrating Google Maps
	Obtaining an API Key
	Asynchronously Loading the API
	Map DOM Elements
	Adding Overlays

	Integrating Facebook Single Sign-on
	Register App and Obtain Application ID
	Mobile Web
	Android
	iOS

	Automated Testing
	Known Limitation

