
Sybase Mobiliser Platform
Developer Guide: Smartphone Mobiliser Applications

Version 5.1

ii

Document ID: DC01866-01-0510-01

Last Revised: October 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is
furnished under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the
prior written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase
and the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

IBM and Tivoli are registered trademarks of International Business Machines Corporation in the United States, other
countries, or both.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

iii

Table of Contents
1. Introduction to Developer Guide for Mobile Smartphone .. 1

2. Designing a Smartphone Application .. 2

Mobiliser Smartphone Architecture ... 2

The Reference Smartphone Application ... 3

3. Developing a Smartphone Application ... 6

Environment Setup .. 6

Smartphone Code Layers ... 6

Main Functions of the Application.. 7

4. Customizing a Smartphone Application .. 8

Custom Look and Feel .. 8

Custom Functionality ... 9

Custom Mobiliser Transactions .. 10

Different UI Packages ... 11

5. Code Generation/Building .. 11

6. Deploying the Application to Mobiliser Platform .. 11

7. Provisioning the Application to the Device ... 12

8. Debugging .. 12

9. Testing ... 12

10. Localizing ... 12

11. Securing the Application .. 13

12. Authentication/Registration ... 13

Registration ... 13

Authentication ... 14

13. Running Application on the Device ... 14

Setting the Server Information ... 14

14. API Reference .. 15

Class MobiliserClient .. 15

iv

Table of Figures
Figure 1. Smartphone Mobiliser application ... 1
Figure 2. A PhoneGap application .. 2
Figure 3. Layers of a PhoneGap application .. 3
Figure 4. Standard reference application look & feel. ... 4
Figure 5. A storyboard example ... 5
Figure 6. Eclipse IDE for Android application development... 6
Figure 7. Application framework code layers.. 7
Figure 8. Part of the app.css file ... 8
Figure 9. Part of the index.html file. ... 9
Figure 10. An example functions from the SY_Mobiliser.js file ... 10
Figure 11. Installed application on an Android phone... 11
Figure 12. Example file for Bahasa language .. 13
Figure 13. Personal information page .. 14

1

1. Introduction to Developer Guide for Mobiliser Smartphone

This developer guide provides information about using Sybase® Mobiliser Smartphone product to develop client
applications for smartphone mobile phone for the Sybase Money Mobiliser platform.

The audience is Mobile Smartphone developers.

This guide describes requirements for designing and developing a Mobile Smartphone application, how to
customize the code, and how to test, secure and deploy the Mobile Smartphone application to the device or
simulator.

Figure 1. Smartphone Mobiliser application

2

2. Designing Smartphone Application

Mobiliser Smartphone Architecture
The Mobiliser Smartphone application is a reference application framework that runs out-of-the-box with any
Money Mobiliser server. This framework is built using familiar web technologies that are prevalent within any
Information Technology department. The underlying mobile development framework is Adobe PhoneGap,
which is an open-source multi-platform mobile application framework.

Figure 2. A PhoneGap application

A PhoneGap application is build using HTML 5, CSS 3 and JavaScript code. Developers use these technologies to
specify structure of an application layout using HTML 5, to design the look and feel of the application
presentation using CSS 3 and finally to implement the business logic for the application using JavaScript.

The PhoneGap application runs inside a browser, which usually is a web-kit based browser running inside the
native operating system for mobile platform, for example Safari/iOS on an iPhone mobile phone. PhoneGap
provides a wrapper layer implemented using the native code for each specific supported mobile platform to
provide the hooks into the mobile device features like: geo-location, camera, accelerometer, and the contact
book. Below is a figure 2 that shows how each layer wraps around the one beneath it.

PhoneGap Application

Java
Script

HTML
5

CSS 3

3

Figure 3. Layers of a PhoneGap application

The Reference Smartphone Application
The reference applications come pre-built with a set of features connected to the back-end server:

mBanking

Provides mobile banking functions with various service levels.

Core Money

Provides basic mobile wallet functionality and alerts.

Open Bank API

Allows signing in via a third party banking system and provides management of checks, various banking
accounts and favorites.

They also have a standard SAP® layout, and look and feel, as can be seen below in Figure 3.

Mobile OS
Platform

PhoneGap
Native

Wrapper

WebKit
Browser

PhoneGap
Application

4

Figure 4. Standard reference application look & feel.

To design a Mobiliser Smartphone application a developer must have a plan for how the different pages that
amount to a specific business transaction will interact among each other. (Figure 5 is provided as an example
storyboard for one design.)

5

Figure 5. A storyboard example

The look and feel of the application should be provided by graphic designers that can then be implemented as
CSS 3 code within the application.

6

3. Developing Smartphone Application

Environment Setup
To start development, one needs to setup the development environment for a specific platform. The code can
be installed for any of the mobile platforms, such as: Android (see figure 6), Apple iPhone and iPad, Blackberry
and others. Please see the Sybase Mobiliser Platform Installation and Configuration Guide for the steps to install
the development environment and checking out the code from the repository.

Figure 6. Eclipse IDE for Android application development

Smartphone Code Layers
After the development environment has been setup, there are certain files that most developers will use to
build their new application. First, let’s take a look at the different layers and modules that make up the main
parts of the application framework.

7

The code in the application framework is generally separated into three logical layers which fulfills a specific
function of the application. Figure 7 shows the main files in each layer in the framework.

Figure 7. Application framework code layers

Main Functions of the Application
There are eight (8) different main functions in the Mobiliser Smartphone application framework, as shown in
figure 4, and are listed below:

1. Transaction Details
2. Send Money
3. Request Money
4. Airtime Topup
5. Pay Bills
6. Manage Accounts
7. Coupons
8. Loan Inquiry

Presentation Layer

app.css

style.css

index.html

Business Logic Layer

app.js

SY_Data_-
Objects.js

Communication Layer
SY_Transactions.js SY_Mobiliser.js

8

4. Customizing Smartphone Application

Custom Look and Feel
The basic change any developer might need is to re-brand the application with the colors and logos of his/her
business. The developer then will look at the files in the “Presentation Layer” as listed in figure 7 and modifies
the CSS and HTML code as needed.

Below is a view of the app.css file listed CSS code that defined the look and feel of the widgets in the application:

Figure 8. Part of the app.css file

9

Figure 9 shows the register input page in the HTML file index.html. A developer can change the structure of the
application by changing the HTML code. Changing images also is done through the HTML and CSS files.

Figure 9. Part of the index.html file.

Custom Functionality
Certain applications might not need all of the functions provided by the reference application out-of-the-box or
might like to manipulate the data differently. That is where the “Business Logic Layer” comes handy. One can
change the way the data is manipulated within these files in addition to the presentation layer files to achieve
such customization.

10

Custom Mobiliser Transactions
Some businesses might need to add custom business transactions to their Money Mobiliser back-end server. For
the Smartphone application framework (client) to be able to understand the new parameters and results of the
new transaction, the “Communication Layer” files need to be customized.

It is recommended that developers follow the structure currently utilized within the SY_Mobiliser.js file to
perform such communication with the back-end Money Mobiliser server. Below is an example:

Figure 10. An example functions from the SY_Mobiliser.js file

11

Different UI Packages
Currently, the framework uses jQuery® Mobile as its UI package to display the widgets on the pages. There are
many other packages that can be used instead, for example Sencha® Touch.

Note that using a different UI package will need changes within the code that is outside the scope of this
document.

5. Code Generation/Building
The reference application’s code base should be ready to be built and deployed and no special code generation
is needed. Depending on the platform you are developing for, the steps to build the code might be different. See
the Sybase Mobiliser Platform Installation and Configuration Guide for the necessary steps to build the code for
each platform.

6. Deploying the Application to Mobiliser Platform
After you build the application and install it on the device, you will get a new icon on your mobile screen such as
the one in figure 11 as an example. The reference application comes running out-of-the-box, so no additional
deployment instructions are needed (apart from initial configuration; see Section 13) to integrate the
Smartphone mobile application to the Money Mobiliser server.

If customization happened on the Money Mobiliser server, then steps should have been taken to integrate the
Smartphone application with the server before deployment. See “Custom Mobiliser Transactions” under section
4.

Figure 11. Installed application on an Android phone

12

7. Provisioning the Application to the Device
Provisioning the finalized application after development is usually done through the official distribution
marketplace for each mobile platform:

iPhone, iPad –App Store
BlackBerry – BlackBerry App World
Android – Android Market, Google Play Store

Follow the instructions and policy for each of these distribution channels for provisioning your application
through that specific channel.

In the case of Android and BlackBerry applications, it is possible to host and distribute the built package through
proprietary means, but that is out-of-scope for this document.

8. Debugging
Although there are lots of tools that will help speed up development, here are the essential tools that can be
used during debugging for such a development effort:

1. Standard browsers, such as Google Chrome, FireFox, or Internet Explorer, can be used because most of
the code is in HTML/CSS/JS in addition to using the browser’s debugging module for example FireBug on
FireFox.

2. Using a TCP monitor to trace the messages that are going to/from the device/browser is very handy.
3. There are newer tools to debug web application directly on the mobile device, but their discussion is out

of scope of this document.

9. Testing
Apart from the internal testing of code, it is important to setup a staging system that will resemble the
production environment and perform end-to-end system testing including any 3rd party integration system and
the Money Mobiliser back-end system.

10. Localizing
Localization, or changing the language of the presentation layer, is very easy using the Mobiliser Smartphone
application. It uses the jQuery module for localization, where the different text for each language is defined in
“language” folder. Every file that starts with “strings_” holds the texts for all fields for that language. The file
ends with the 2-letter language code for example “en” for English and “ba” for Bahasa (Indonesian).

13

Figure 12. Example file for Bahasa language

11. Securing the Application
The Smartphone mobile application does not store any data on the mobile device. All of the data will be
removed from the mobile phone’s memory as soon as the user finishes from using the application. The
application is residing inside a browser container which takes care of the security through SSL.

Review the Money Mobiliser Server documentation for further discussion on how the back-end system handles
sensitive data and how it stores it securely.

12. Authentication/Registration

Registration
A user can register an account from within the Smartphone application on the device after deployment. Click on
the “Register” button on the menu at the bottom, then click “Continue” as shown below:

14

Figure 13. Personal information page

Then click “Authentication” to set a password and click “Continue”, then follow the instruction to finish the
registration process. Depending on your back-end configuration, you will be sent a passcode via SMS or you can
obtain it through the Channel Manager’s console output. Then, enter it on the screen and click “Confirm.”

Authentication
Once your registration has succeeded, then proceed to the login page and enter your credentials to start using
your Smartphone Mobiliser application!

Note: In the mBanking implementation for the Smartphone application, users must have a service level that
enables them to login to the application (for example, Platinum service) that can be added by the
administrator/agent using the Customer Support Tool.

13. Running Application on the Device

Setting the Server Information
The only needed setup to run the application after it was installed on the device is perhaps the server
information. Note that mostly finalized application should be provisioned with the server setup pre-built within
the application to skip this step for the user.

At the login page, click “Mobiliser Settings” button and set the required information as is needed based on what
your administrator sets for you.

15

Note: This button appears only for development purposes, and is not available on the hosted Mobile Web
application.

14. API Reference

Class MobiliserClient

A thin JavaScript web service client that accesses the Mobiliser platform. It provides an abstraction layer
to communicate with the system and returns XML documents as a result.
Defined in: SY_Mobiliser.js.

Class Summary
MobiliserClient()

Method Summary
assignCoupon(responseBack, couponTypeId)
AssignCoupon function
balanceInquiry(responseBack)
A function to get balance of SVA
cancelBill(responseBack, invoiceId)
Cancel bill function
changeCredential(responseBack, customerId, oldCredential, newCredential)
Change Credential function
checkCredential(responseBack, Credential, type)
checkCredential function
confirmVoucher(responseBack, id, ref)
confirmVoucher function
continuePayBill(responseBack, id, ref)
ContinuePayInvoice function
createBalanceAlert(responseBack, threshold, onlyTransition)
createBalanceAlert function
createFullCustomer(responseBack, reginfo, token)
Agent create full customer function
createIdentification(responseBack, customerId, type, identification)
Agent create identification function
createInvoice(responseBack, invoiceConfigurationId, ref, amount, date)
Create an invoice for a customer for a specific type of merchant bill
createInvoiceForInvoiceType(responseBack, invoiceTypeId, reference, amount)
Get types of invoices by group in the system
createNewAlert(responseBack, alertTypeId, alertDataListItems, contactPointsItems, frequencyVal,
alertNotificationMsgId)
create a new alert for customer
createSmsToken(responseBack, phoneno)

16

Agent create sms token function
createWalletEntry(responseBack, paymentInstrument, paymentInstrumentType, nickname)
A function to create a wallet entry with paymentInstrument in the customer's mobile wallet
deleteBalanceAlert(responseBack, alertid)
deleteBalanceAlert function
deleteCoupon(responseBack, couponId)
DeleteCoupon function
deleteCustomerAlert(alert_id, responseBack)
delete an existing alert
deleteCustomerAlertByCustomerAndData(responseBack, pIId)
delete an alert if the account itself is deleted
deleteWalletEntry(responseBack, acctid)
A function to create a wallet entry with paymentInstrument in the customer's mobile wallet
demandForPayment(responseBack, username, password, payer, payee, txn)
DemandOnPayment function
findCouponTypesByTags(responseBack, tag, locale, mimeType)
FindCouponTypesByTags function
findTransactions(responseBack, customerId, maxRecords, paymentInstrumentId)
Get transaction history for a customer
getActiveAlertNotificationMessages(responseBack)
Service call to fetch the active alert notification message mapping, to be used in creating and updating
alerts
getAlertDetailsForEdit(responseBack, alert_id)
get alert details for an existing alert
getAlertNotificationMsgId(alertTypeId, notification, notificationMsgTypeId)
Service call to fetch the alert notification msg type id based of alert type id and notification msg id
getBalanceAlert(responseBack)
getBalanceAlert function
getBillTypes(responseBack)
Get all types of invoices in the system
getCategoryTree(responseBack, locale, groupId)
GetCategoryTree function
getChildCategories(responseBack, parentCategoryId, locale)
GetChildCategories function
getCouponTypesForCategory(responseBack, categoryId, locale, mimeType)
getCouponTypesForCategory function
getExistingAlerts(responseBack)
get Existing Alerts function
getIdentifications(responseBack, customerId, type)
Agent get identifications function
getInvoiceTypesByGroup(responseBack)
Get types of invoices by group in the system
getLookups(responseBack, entity)
Function to fetch list of supported look up items like currencies networkproviders etc

17

getMyCoupons(responseBack, locale, mimeType)
GetMyCoupons function
getOpenInvoices(responseBack, customerId)
Get all active invoices for a customer
getOtherIdentifications(responseBack)
get Customer's other identifications
getRegisteredBills(responseBack, customerId)
Get all configured invoices for a customer
getRootCategories(responseBack, locale, groupId)
GetRootCategories function
getTxnDetails(responseBack, customerId, maxRecords, paymentInstrumentId)
Get details of a transaction
getWallet(responseBack, customerId)
A function to query all of the payment instruments in the customer's mobile wallet
load(responseBack, payerpI, txn)
load function
login(responseBack, username, password)
Agent login function
logout(responseBack)
Agent logout function
payBill(responseBack, invoiceId, payerPaymentInstrumentId)
Pay bill function
preAuthorisationContinue(responseBack, id, ref)
transfer function
purchaseCoupon(responseBack, paymentInstrumentId, paymentInstrumentId)
PurchaseCoupon function
registerSimpleBill(responseBack, customerId, alias, typeId, alias)
Configure an invoice for some merchant bill type for a customer
request(responseBack, payermsisdn, txn)
request function
setCredential(responseBack, customerId, Credential, type)
setCredential function
setPrimary(responseBack, acctid)
A function to set primary wallet in the customer's mobile wallet
startVoucher(responseBack, payercustomerId, payerpI, payeemsisdn, txn)
startVoucher function
topUp(responseBack, invoiceId, payerPaymentInstrumentId)
Top up function
transfer(responseBack, payercustomerId, payerpI, payeemsisdn, txn)
transfer function
unload(responseBack, payeepI, txn)
unload function
unregisterBill(responseBack, invoiceConfigurationId)
Remove a configured invoice for a customer

18

updateBalanceAlert(responseBack, threshold, onlyTransition, alertid)
updateBalanceAlert function
updateCustomerBlockAccount(responseBack)
Agent update customer function
updateCustomerNotification(responseBack, mode)
Agent update customer function
updateExistingAlert(responseBack, alertId, alertTypeId, alertDataList)
Updates an existing alert
updatePaymentInstrument(responseBack, paymentInstrument, paymentInstrumentType, acctid)
A function to update a paymentInstrument of a wallet entry in the customer's mobile wallet
updateWalletEntry(responseBack, nickname, acctid)
A function to update a wallet entry in the customer's mobile wallet

Class Detail

MobiliserClient()

Method Detail

assignCoupon(responseBack, couponTypeId)
AssignCoupon function
Parameters:
responseBack

Indicates which function to be called when a response is received.
couponTypeId

The id of an coupon

balanceInquiry(responseBack)
A function to get balance of SVA
Parameters:
responseBack

Indicates which function to be called when a response is received.

cancelBill(responseBack, invoiceId)
Cancel bill function
Parameters:
responseBack

Indicates which function to be called when a response is received.
invoiceId

The id of an invoice

changeCredential(responseBack, customerId, oldCredential, newCredential)
Change Credential function
Parameters:

19

responseBack
Indicates which function to be called when a response is received.

customerId
The customer id of the user

oldCredential
The old Credential

newCredential
The new Credential chosen by the user

checkCredential(responseBack, Credential, type)
checkCredential function
Parameters:
responseBack

Indicates which function to be called when a response is received.
Credential

The PIN or Password to set
type

The type of Credential

confirmVoucher(responseBack, id, ref)
confirmVoucher function
Parameters:
responseBack

Indicates which function to be called when a response is received.
id

The systemId of previous StartVoucher
ref

The Reference of previous StartVoucher

continuePayBill(responseBack, id, ref)
ContinuePayInvoice function
Parameters:
responseBack

Indicates which function to be called when a response is received.
id

The system id of checkPayInvoice transaction
ref

The reference of checkPayInvoice transaction

createBalanceAlert(responseBack, threshold, onlyTransition)
createBalanceAlert function
Parameters:
responseBack

Indicates which function to be called when a response is received.
threshold
onlyTransition

20

createFullCustomer(responseBack, reginfo, token)
Agent create full customer function
Parameters:
responseBack

Indicates which function to be called when a response is received.
reginfo
token

createIdentification(responseBack, customerId, type, identification)
Agent create identification function
Parameters:
responseBack

Indicates which function to be called when a response is received.
customerId
type
identification

createInvoice(responseBack, invoiceConfigurationId, ref, amount, date)
Create an invoice for a customer for a specific type of merchant bill
Parameters:
responseBack

Indicates which function to be called when a response is received.
invoiceConfigurationId

The id of an invoice configuration for a customer
ref

The reference number of an invoice
amount

The amount of money to pay in cents
date

createInvoiceForInvoiceType(responseBack, invoiceTypeId, reference, amount)
Get types of invoices by group in the system
Parameters:
responseBack

Indicates which function to be called when a response is received.
invoiceTypeId
reference
amount

createNewAlert(responseBack, alertTypeId, alertDataListItems, contactPointsItems, frequencyVal,
alertNotificationMsgId)
create a new alert for customer
Parameters:
responseBack

Indicates which function to be called when a successful response is received.

21

alertTypeId
Type of alert to be created

alertDataListItems
alert data item objects list

contactPointsItems
contact point objects list

frequencyVal
Value of frequency Everytime or First time

alertNotificationMsgId
text or conv

createSmsToken(responseBack, phoneno)
Agent create sms token function
Parameters:
responseBack

Indicates which function to be called when a response is received.
phoneno

createWalletEntry(responseBack, paymentInstrument, paymentInstrumentType, nickname)
A function to create a wallet entry with paymentInstrument in the customer's mobile wallet
Parameters:
responseBack

Indicates which function to be called when a response is received.
paymentInstrument
paymentInstrumentType
nickname

deleteBalanceAlert(responseBack, alertid)
deleteBalanceAlert function
Parameters:
responseBack

Indicates which function to be called when a response is received.
alertid

deleteCoupon(responseBack, couponId)
DeleteCoupon function
Parameters:
responseBack

Indicates which function to be called when a response is received.
couponId

The id of an coupon

deleteCustomerAlert(alert_id, responseBack)
delete an existing alert
Parameters:
alert_id

22

id of an alert which needs to be deleted
responseBack

Indicate which function to be called when a response is received.

deleteCustomerAlertByCustomerAndData(responseBack, pIId)
delete an alert if the account itself is deleted
Parameters:
responseBack

function to be called in case of success
pIId

payment instrument id of the existing alert data key record

deleteWalletEntry(responseBack, acctid)
A function to create a wallet entry with paymentInstrument in the customer's mobile wallet
Parameters:
responseBack

Indicates which function to be called when a response is received.
acctid

demandForPayment(responseBack, username, password, payer, payee, txn)
DemandOnPayment function
Parameters:
responseBack

Indicates which function to be called when a response is received.
username

The username should normally be the msisdn in addition to its country code i.e. +18881234567
password

The user password
payer

The Customer object which will be making the payment
payee

The Customer object that will be receiving the payment
txn

The TxnData object that contains txn details

findCouponTypesByTags(responseBack, tag, locale, mimeType)
FindCouponTypesByTags function
Parameters:
responseBack

Indicates which function to be called when a response is received.
tag

The tag of the coupon
locale

The location of the coupon
mimeType

The mimetype of the coupon

23

findTransactions(responseBack, customerId, maxRecords, paymentInstrumentId)
Get transaction history for a customer
Parameters:
responseBack

Indicates which function to be called when a response is received.
customerId

The customer id of the user
maxRecords

The max number of transactions to return
paymentInstrumentId

The id of the payment instrument

getActiveAlertNotificationMessages(responseBack)
Service call to fetch the active alert notification message mapping, to be used in creating and updating
alerts
Parameters:
responseBack

callback handler when the results returned.

getAlertDetailsForEdit(responseBack, alert_id)
get alert details for an existing alert
Parameters:
responseBack

function to be called in case of success
alert_id

id of the existing alert record

getAlertNotificationMsgId(alertTypeId, notification, notificationMsgTypeId)
Service call to fetch the alert notification msg type id based of alert type id and notification msg id
Parameters:
alertTypeId

alert type
notification

type
notificationMsgTypeId

getBalanceAlert(responseBack)
getBalanceAlert function
Parameters:
responseBack

Indicates which function to be called when a response is received.

getBillTypes(responseBack)
Get all types of invoices in the system
Parameters:

24

responseBack
Indicates which function to be called when a response is received.

getCategoryTree(responseBack, locale, groupId)
GetCategoryTree function
Parameters:
responseBack

Indicates which function to be called when a response is received.
locale

The location of the coupon
groupId

The group id of the coupon

getChildCategories(responseBack, parentCategoryId, locale)
GetChildCategories function
Parameters:
responseBack

Indicates which function to be called when a response is received.
parentCategoryId

The parent id of the coupon
locale

The location of the coupon

getCouponTypesForCategory(responseBack, categoryId, locale, mimeType)
getCouponTypesForCategory function
Parameters:
responseBack

Indicates which function to be called when a response is received.
categoryId

The category of the coupon
locale

The location of the coupon
mimeType

The mimetype of the coupon

getExistingAlerts(responseBack)
get Existing Alerts function
Parameters:
responseBack

Indicate which function to be called when a response is received.

getIdentifications(responseBack, customerId, type)
Agent get identifications function
Parameters:
responseBack

Indicates which function to be called when a response is received.

25

customerId
type

getInvoiceTypesByGroup(responseBack)
Get types of invoices by group in the system
Parameters:
responseBack

Indicates which function to be called when a response is received.

getLookups(responseBack, entity)
Function to fetch list of supported look up items like currencies networkproviders etc
Parameters:
responseBack

the callback handler
entity

to be looked up on the server

getMyCoupons(responseBack, locale, mimeType)
GetMyCoupons function
Parameters:
responseBack

Indicates which function to be called when a response is received.
locale

The location of the coupon
mimeType

The mimetype of the coupon

getOpenInvoices(responseBack, customerId)
Get all active invoices for a customer
Parameters:
responseBack

Indicates which function to be called when a response is received.
customerId

The customer id of the user

getOtherIdentifications(responseBack)
get Customer's other identifications
Parameters:
responseBack

Indicate which function to be called when a response is received.

getRegisteredBills(responseBack, customerId)
Get all configured invoices for a customer
Parameters:
responseBack

Indicates which function to be called when a response is received.

26

customerId
The customer id of the user

getRootCategories(responseBack, locale, groupId)
GetRootCategories function
Parameters:
responseBack

Indicates which function to be called when a response is received.
locale

The location of the coupon
groupId

The group id of the coupon

getTxnDetails(responseBack, customerId, maxRecords, paymentInstrumentId)
Get details of a transaction
Parameters:
responseBack

Indicates which function to be called when a response is received.
customerId

The customer id of the user
maxRecords

The max number of transactions to return
paymentInstrumentId

The id of the payment instrument

getWallet(responseBack, customerId)
A function to query all of the payment instruments in the customer's mobile wallet
Parameters:
responseBack

Indicates which function to be called when a response is received.
customerId

The customer id of the user

load(responseBack, payerpI, txn)
load function
Parameters:
responseBack

Indicates which function to be called when a response is received.
payerpI

The paymentInstrument Id of the Customer which will use to load fund to SVA
txn

The TxnData object that contains txn details

login(responseBack, username, password)
Agent login function
 var loginBack = function(r, xmlResponse) { ... // handle response };
 mc.login(loginBack, "user1", "pass2");

27

Parameters:
responseBack

Indicates which function to be called when a response is received.
username

The username should normally be the msisdn in addition to its country code i.e. +18881234567
password

The user password

logout(responseBack)
Agent logout function
Parameters:
responseBack

Indicates which function to be called when a response is received.

payBill(responseBack, invoiceId, payerPaymentInstrumentId)
Pay bill function
Parameters:
responseBack

Indicates which function to be called when a response is received.
invoiceId

The id of an invoice
payerPaymentInstrumentId

The payment instrument id for the payer

preAuthorisationContinue(responseBack, id, ref)
transfer function
Parameters:
responseBack

Indicates which function to be called when a response is received.
id

The systemId of previous PreAuthorisation
ref

The Reference of previous PreAuthorisation

purchaseCoupon(responseBack, paymentInstrumentId, paymentInstrumentId)
PurchaseCoupon function
Parameters:
responseBack

Indicates which function to be called when a response is received.
paymentInstrumentId

The instrument id of an coupon
paymentInstrumentId

registerSimpleBill(responseBack, customerId, alias, typeId, alias)
Configure an invoice for some merchant bill type for a customer
Parameters:

28

responseBack
Indicates which function to be called when a response is received.

customerId
The customer id of the user

alias
The name the customer gives for this invoice configuration

typeId
The id of the invoice type

alias

request(responseBack, payermsisdn, txn)
request function
Parameters:
responseBack

Indicates which function to be called when a response is received.
payermsisdn

The Customer msisdn that will receive the request
txn

The TxnData object that contains txn details

setCredential(responseBack, customerId, Credential, type)
setCredential function
Parameters:
responseBack

Indicates which function to be called when a response is received.
customerId

The customer id of the user
Credential

The PIN or Password to set
type

The type of Credential

setPrimary(responseBack, acctid)
A function to set primary wallet in the customer's mobile wallet
Parameters:
responseBack

Indicates which function to be called when a response is received.
acctid

startVoucher(responseBack, payercustomerId, payerpI, payeemsisdn, txn)
startVoucher function
Parameters:
responseBack

Indicates which function to be called when a response is received.
payercustomerId

The Customer customerId which will make the payment

29

payerpI
The paymentInstrument Id of the Customer which will use to make the payment

payeemsisdn
The Customer msisdn that will receive the payment

txn
The TxnData object that contains txn details

topUp(responseBack, invoiceId, payerPaymentInstrumentId)
Top up function
Parameters:
responseBack

Indicates which function to be called when a response is received.
invoiceId

The id of an invoice
payerPaymentInstrumentId

The payment instrument id for the payer

transfer(responseBack, payercustomerId, payerpI, payeemsisdn, txn)
transfer function
Parameters:
responseBack

Indicates which function to be called when a response is received.
payercustomerId

The customerId of payer
payerpI

The paymentInstrumentId of payer
payeemsisdn

The msisdn of payee receiving the payment
txn

The TxnData object that contains txn details

unload(responseBack, payeepI, txn)
unload function
Parameters:
responseBack

Indicates which function to be called when a response is received.
payeepI

The paymentInstrument Id of the Customer which will use to receive fund from SVA
txn

The TxnData object that contains txn details

unregisterBill(responseBack, invoiceConfigurationId)
Remove a configured invoice for a customer
Parameters:
responseBack

Indicates which function to be called when a response is received.

30

invoiceConfigurationId
The id of an invoice configuration for a customer

updateBalanceAlert(responseBack, threshold, onlyTransition, alertid)
updateBalanceAlert function
Parameters:
responseBack

Indicates which function to be called when a response is received.
threshold
onlyTransition
alertid

updateCustomerBlockAccount(responseBack)
Agent update customer function
Parameters:
responseBack

Indicates which function to be called when a response is received.

updateCustomerNotification(responseBack, mode)
Agent update customer function
Parameters:
responseBack

Indicates which function to be called when a response is received.
mode

updateExistingAlert(responseBack, alertId, alertTypeId, alertDataList)
Updates an existing alert
Parameters:
responseBack

Response Handler
alertId

Id of customer alert
alertTypeId

alert type id
alertDataList

alert data list

updatePaymentInstrument(responseBack, paymentInstrument, paymentInstrumentType, acctid)
A function to update a paymentInstrument of a wallet entry in the customer's mobile wallet
Parameters:
responseBack

Indicates which function to be called when a response is received.
paymentInstrument
paymentInstrumentType
acctid

31

updateWalletEntry(responseBack, nickname, acctid)
A function to update a wallet entry in the customer's mobile wallet
Parameters:
responseBack

Indicates which function to be called when a response is received.
nickname
acctid

	1. Introduction to Developer Guide for Mobiliser Smartphone
	2. Designing a Smartphone Application
	Mobiliser Smartphone Architecture
	The Reference Smartphone Application

	3. Developing a Smartphone Application
	Environment Setup
	Smartphone Code Layers
	Main Functions of the Application

	4. Customizing a Smartphone Application
	Custom Look and Feel
	Custom Functionality
	Custom Mobiliser Transactions
	Different UI Packages

	5. Code Generation/Building
	6. Deploying the Application to Mobiliser Platform
	7. Provisioning the Application to the Device
	8. Debugging
	9. Testing
	10. Localizing
	11. Securing the Application
	12. Authentication/Registration
	Registration
	Authentication

	13. Running Application on the Device
	Setting the Server Information

	14. API Reference
	Class MobiliserClient

