
Programming

SAP Sybase IQ 16.0 SP03

DOCUMENT ID: DC01776-01-1603-01
LAST REVISED: November 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Partner Certifications ..1
Platform Certifications ..3
SAP Sybase IQ as a Data Server for Client Applications

...5
Open Client Architecture ...5

DB-Library and Client Library5
Network Services ...5

Open Client and jConnect Connections6
login_procedure option ..6
Servers with Multiple Databases9

Using In-Database Analytics in Applications11
Scalar C or C++ UDF ..11
Aggregate C or C++ UDF ...11
Java UDFs ..12

Java Scalar UDF ..12
Java Table UDF ...12

Table UDFs ...12
TPFs ...12
Hadoop Integration ...13

Integrating SAP Sybase IQ with a Hadoop
Distributed File System13

Reading a File in a Hadoop Distributed File
System as an In-Memory Table13

Starting an External Hadoop MapReduce Job
and Using Results in a Query15

API Reference for a_v4_extfn17
Blob (a_v4_extfn_blob) ..17
Blob Input Stream (a_v4_extfn_blob_istream)21
Column Data (a_v4_extfn_column_data)22
Column List (a_v4_extfn_column_list)23
Column Order (a_v4_extfn_order_el)24

Programming iii

Column Subset
(a_v4_extfn_col_subset_of_input)25

Describe API ..25
Describe Column Type

(a_v4_extfn_describe_col_type)90
Describe Parameter Type

(a_v4_extfn_describe_parm_type)91
Describe Return (a_v4_extfn_describe_return)

...93
Describe UDF Type

(a_v4_extfn_describe_udf_type)95
Execution State (a_v4_extfn_state)95
External Function (a_v4_extfn_proc)97
External Procedure Context

(a_v4_extfn_proc_context)100
License Information (a_v4_extfn_license_info) . .112
Optimizer Estimate (a_v4_extfn_estimate)113
Order By List (a_v4_extfn_orderby_list)113
Partition By Column Number

(a_v4_extfn_partitionby_col_num)114
Row (a_v4_extfn_row)115
Row Block (a_v4_extfn_row_block)116
Table (a_v4_extfn_table)116
Table Context (a_v4_extfn_table_context)117
Table Functions (a_v4_extfn_table_func)124

Using SQL in Applications ..131
SQL statement execution in applications131
Prepared statements ..132

Prepared Statements Overview133
Cursor usage ..135

Cursors ..135
Benefits of using cursors136

Cursor principles ...137
Cursor positioning ..138
Cursor behavior when opening cursors138

Contents

iv SAP Sybase IQ

Row fetching through a cursor138
Multiple-row fetching ..139
Scrollable cursors ..139
Cursors used to modify rows140
Updatable statements ..141
Cursor operations that are canceled142

Cursor types ...142
Availability of cursors ...142
Cursor properties ...142
Bookmarks and cursors143
Block cursors ...143

SAP Sybase IQ Catalog Store Cursors143
Catalog Store Cursor Sensitivity144
Catalog Store Insensitive Cursors148
Catalog Store Sensitive Cursors149
Catalog Store Asensitive Cursors150
Catalog Store Value-Sensitive Cursors151
Catalog Store Cursor Sensitivity and

Performance ..153
Catalog Store Cursor Sensitivity and Isolation

Levels ..157
Requests for SAP Sybase IQ Catalog Store

Cursors ..158
Result set descriptors ...160
Transactions in applications ..161

Autocommit and manual commit mode161
Isolation level settings ..163
Cursors and transactions163

.NET Application Programming ..165
SAP Sybase IQ .NET Data Provider165

SAP Sybase IQ .NET Support165
SAP Sybase IQ .NET Data Provider Features ...166
.NET Sample Projects167
Using the .NET Data Provider in a Visual Studio

Project ...167

Contents

Programming v

.NET Database Connection Examples168
Data Access and Manipulation170
Stored Procedures ...185
Transaction Processing186
Error handling ..187
Entity Framework Support188
SAP Sybase IQ .NET Data Provider Deployment

...194
.NET Tracing Support ..196

.NET Data Provider Tutorials200
Tutorial: Using the Simple Code Sample200
Tutorial: Using the Table Viewer Code Sample . .201
Tutorial: Developing a Simple .NET Database

Application with Visual Studio203
.NET API Reference ...211

SAInfoMessageEventHandler(object,
SAInfoMessageEventArgs) delegate211

SARowsCopiedEventHandler(object,
SARowsCopiedEventArgs) delegate211

SARowUpdatedEventHandler(object,
SARowUpdatedEventArgs) delegate212

SARowUpdatingEventHandler(object,
SARowUpdatingEventArgs) delegate212

SABulkCopyOptions() enumeration212
SAIsolationLevel() enumeration213
SABulkCopy class ...213
SABulkCopyColumnMapping class216
SABulkCopyColumnMappingCollection class . . .219
DestinationOrdinalComparer class222
SACommLinksOptionsBuilder class223
SACommand class ..226
SACommandBuilder class239
SAConnectionStringBuilder class243
SAConnectionStringBuilderBase class258
SADataAdapter class ...262

Contents

vi SAP Sybase IQ

DREnumerator class ..270
SADataSourceEnumerator class271
SADefault class ...272
SAError class ...273
SAErrorCollection class 275
SAException class ...276
SAFactory class ...278
SAInfoMessageEventArgs class282
SAMetaDataCollectionNames class 284
SAParameter class ..290
SAParameterCollection class295
SADBParametersEditor class301
SAPermission class ...302
SAPermissionAttribute class303
SARowUpdatedEventArgs class304
SARowUpdatingEventArgs class305
SARowsCopiedEventArgs class306
SATcpOptionsBuilder class308
SATransaction class ...315

OLE DB and ADO Development319
OLE DB ...319

Connecting Using OLE DB320
Supported Platforms ..320
Distributed Transactions in OLE DB320

ADO Programming with SAP Sybase IQ320
How to Connect to a Database Using the

Connection Object ...321
How to Execute Statements Using the

Command Object ..322
How to Obtain Result Sets Using the Recordset

Object ..323
The Recordset Object ..324
Row Updates Through a Cursor Using the

Recordset Object ...325
ADO Transactions ..326

Contents

Programming vii

OLE DB Connection Parameters327
OLE DB Connection Pooling329
Microsoft Linked Servers ..329

Setting up a Linked Server Using an Interactive
Application ...330

Setting up a Linked Server Using a Script332
Supported OLE DB Interfaces333
OLE DB Provider Registration337

ODBC CLI ...339
ODBC conformance ..339
ODBC application development339

ODBC Applications on Windows340
ODBC applications on Unix341
The unixODBC driver manager342
UTF-32 ODBC driver managers for Unix342

ODBC Samples ..343
Building the Sample ODBC Program for

Windows ..343
Building the Sample ODBC Program for Unix . . .344
ODBC Sample Programs344

ODBC handles ..344
How to allocate ODBC handles345
ODBC example ..346

ODBC Connection Functions346
Establishing an ODBC Connection347

Server options changed by ODBC348
SQLSetConnectAttr extended connection attributes . .349
64-bit ODBC considerations351
Data alignment requirements355
Result sets in ODBC applications356

ODBC transaction isolation levels356
ODBC cursor characteristics357
Data retrieval ...358
Row updates and deletes through a cursor360
Bookmarks ...360

Contents

viii SAP Sybase IQ

Stored procedure considerations361
ODBC escape syntax ...362
Error handling in ODBC ..365

Java in the Database ...369
Java in the Database FAQ ..369

What Are the Key Features of Java in the
Database? ...369

How Can I Use My Own Java Classes in
Databases? ...369

How Does Java Get Executed in a Database? . .370
Java Error Handling ..370
How to Install Java Classes into a Database371

Class File Creation ..371
Special Features of Java Classes in the Database371

How to Call the Main Method371
Threads in Java Applications372
No Such Method Exception372
How to Return Result Sets from Java Methods .372
Values Returned from Java Via Stored

Procedures ..373
Security Management for Java374

How to Start and Stop the Java VM374
Shutdown Hooks in the Java VM374

JDBC CLI ..377
JDBC Applications ..377
JDBC Drivers ..378
JDBC Program Structure ..379
Differences Between Client- and Server-Side JDBC

Connections ...380
SQL Anywhere JDBC Drivers380

How to Load the SQL Anywhere JDBC 4.0
Driver ...381

SQL Anywhere 16 JDBC Driver Connection
Strings ...381

The jConnect JDBC Driver ...382

Contents

Programming ix

Installing jConnect System Objects into a
Database ...382

How to Load the jConnect Driver383
jConnect Driver Connection Strings383

Connections from a JDBC Client Application384
How the Connection Example Works386
Running the Connection Example387

How to Establish a Connection from a Server-Side
JDBC Class ..388

Server-Side Connection Example Code388
How the Server-Side Connection Example

Differs ..389
Running the Server-Side Connection Example . 389

Notes on JDBC Connections390
Data Access Using JDBC ...392

Preparing for the JDBC Examples392
Inserts, Updates, and Deletes Using JDBC393
Using Static INSERT and DELETE Statements

from JDBC ...394
How to Use Prepared Statements for More

Efficient Access ...395
Using Prepared INSERT and DELETE

Statements from JDBC397
JDBC Batch Methods ..398
How to Return Result Sets from Java399
Returning Result Sets from JDBC399
JDBC Notes ...400

JDBC Callbacks ..401
JDBC Escape Syntax ...405
JDBC 4.0 API Support ..408

Embedded SQL ..409
Development Process Overview410
The SQL Preprocessor ...411
Supported Compilers ..415
Embedded SQL Header Files416

Contents

x SAP Sybase IQ

Import Libraries ...416
Sample Embedded SQL Program417
Structure of Embedded SQL Programs418
Loading DBLIB Dynamically Under Windows418
Sample Embedded SQL Programs419

Static Cursor Sample ...420
Running the Static Cursor Sample Program420
Dynamic Cursor Sample421
Running the Dynamic Cursor Sample Program .422

Embedded SQL Data Types423
Host Variables in Embedded SQL426

Host Variable Declaration427
C Host Variable Types427
Host Variable Usage ..431
Indicator Variables ...432

The SQL Communication Area (SQLCA)435
SQLCA Fields ..435
SQLCA Management for Multithreaded or

Reentrant Code ...437
Multiple SQLCAs ...439

Static and Dynamic SQL ...440
Static SQL Statements440
Dynamic SQL Statements440
Dynamic SELECT Statement442

The SQL Descriptor Area (SQLDA)443
The SQLDA Header File443
SQLDA Fields ..444
SQLDA Host Variable Descriptions445
SQLDA sqllen Field Values446

How to Fetch Data Using Embedded SQL452
SELECT Statements That Return at Most One

Row ...452
Cursors in Embedded SQL453
Wide Fetches or Array Fetches456

Contents

Programming xi

How to Send and Retrieve Long Values Using
Embedded SQL ..460

Retrieving LONG Data Using Static SQL461
Retrieving LONG Data Using Dynamic SQL462
Sending LONG Data Using Static SQL462
Sending LONG Data Using Dynamic SQL463

Simple Stored Procedures in Embedded SQL463
Stored Procedures with Result Sets 464

Request Management with Embedded SQL466
Database Backup with Embedded SQL467
Library Function Reference ..467

alloc_sqlda Function ..467
alloc_sqlda_noind Function468
db_backup Function ..468
db_cancel_request Function473
db_change_char_charset Function473
db_change_nchar_charset Function474
db_find_engine Function475
db_fini Function ...475
db_get_property Function476
db_init Function ...477
db_is_working Function477
db_locate_servers Function478
db_locate_servers_ex Function479
db_register_a_callback Function480
db_start_database Function 483
db_start_engine Function 484
db_stop_database Function485
db_stop_engine Function485
db_string_connect Function486
db_string_disconnect Function487
db_string_ping_server Function487
db_time_change Function488
fill_s_sqlda Function ..488
fill_sqlda Function ..489

Contents

xii SAP Sybase IQ

fill_sqlda_ex Function ..489
free_filled_sqlda Function490
free_sqlda Function ...491
free_sqlda_noind Function491
sql_needs_quotes Function491
sqlda_storage Function492
sqlda_string_length Function492
sqlerror_message Function493

Embedded SQL Statement Summary493
SAP Sybase IQ Database API for C/C++495

sqlany_affected_rows(a_sqlany_stmt *) method495
sqlany_bind_param(a_sqlany_stmt *, sacapi_u32 ,

a_sqlany_bind_param *) method495
sqlany_cancel(a_sqlany_connection *) method496
sqlany_clear_error(a_sqlany_connection *) method

..496
sqlany_client_version(char *, size_t) method496
sqlany_client_version_ex(a_sqlany_interface_conte

xt *, char *, size_t) method497
sqlany_commit(a_sqlany_connection *) method497
sqlany_connect(a_sqlany_connection *, const char *)

method ...498
sqlany_describe_bind_param(a_sqlany_stmt *,

sacapi_u32 , a_sqlany_bind_param *) method499
sqlany_disconnect(a_sqlany_connection *) method

..499
sqlany_error(a_sqlany_connection *, char *, size_t)

method ...500
sqlany_execute(a_sqlany_stmt *) method500
sqlany_execute_direct(a_sqlany_connection *, const

char *) method ..501
sqlany_execute_immediate(a_sqlany_connection *,

const char *) method ..502
sqlany_fetch_absolute(a_sqlany_stmt *, sacapi_i32)

method ...503

Contents

Programming xiii

sqlany_fetch_next(a_sqlany_stmt *) method503
sqlany_finalize_interface(SQLAnywhereInterface *)

method ...504
sqlany_fini() method ...505
sqlany_fini_ex(a_sqlany_interface_context *) method

..505
sqlany_free_connection(a_sqlany_connection *)

method ...505
sqlany_free_stmt(a_sqlany_stmt *) method506
sqlany_get_bind_param_info(a_sqlany_stmt *,

sacapi_u32 , a_sqlany_bind_param_info *) method
..506

sqlany_get_column(a_sqlany_stmt *, sacapi_u32 ,
a_sqlany_data_value *) method507

sqlany_get_column_info(a_sqlany_stmt *,
sacapi_u32 , a_sqlany_column_info *) method508

sqlany_get_data(a_sqlany_stmt *, sacapi_u32 ,
size_t, void *, size_t) method508

sqlany_get_data_info(a_sqlany_stmt *, sacapi_u32 ,
a_sqlany_data_info *) method509

sqlany_get_next_result(a_sqlany_stmt *) method509
sqlany_init(const char *, sacapi_u32 , sacapi_u32 *)

method ...510
sqlany_init_ex(const char *, sacapi_u32 , sacapi_u32

*) method ..511
sqlany_initialize_interface(SQLAnywhereInterface *,

const char *) method ..511
sqlany_make_connection(void *) method512
sqlany_make_connection_ex(a_sqlany_interface_co

ntext *, void *) method ..512
sqlany_new_connection(void) method513
sqlany_new_connection_ex(a_sqlany_interface_con

text *) method ...513
sqlany_num_cols(a_sqlany_stmt *) method514
sqlany_num_params(a_sqlany_stmt *) method514

Contents

xiv SAP Sybase IQ

sqlany_num_rows(a_sqlany_stmt *) method514
sqlany_prepare(a_sqlany_connection *, const char *)

method ... 515
sqlany_reset(a_sqlany_stmt *) method 516
sqlany_rollback(a_sqlany_connection *) method516
sqlany_send_param_data(a_sqlany_stmt *,

sacapi_u32 , char *, size_t) method517
sqlany_sqlstate(a_sqlany_connection *, char *,

size_t) method ..517
a_sqlany_data_direction() enumeration 518
a_sqlany_data_type() enumeration 518
a_sqlany_native_type() enumeration519
SACAPI_ERROR_SIZE variable 520
SQLANY_API_VERSION_1 variable520
SQLANY_API_VERSION_2 variable520
SQLAnywhereInterface structure520

dll_handle void * .. 521
initialized int ... 521
sqlany_affected_rows void * 521
sqlany_bind_param void *521
sqlany_cancel void * ..521
sqlany_clear_error void * 521
sqlany_client_version void *522
sqlany_client_version_ex void *522
sqlany_commit void * ...522
sqlany_connect void * ..522
sqlany_describe_bind_param void *522
sqlany_disconnect void * 522
sqlany_error void * ...523
sqlany_execute void * .. 523
sqlany_execute_direct void * 523
sqlany_execute_immediate void *523
sqlany_fetch_absolute void * 523
sqlany_fetch_next void * 523
sqlany_fini void * ..524

Contents

Programming xv

sqlany_fini_ex void * .. 524
sqlany_free_connection void *524
sqlany_free_stmt void *524
sqlany_get_bind_param_info void *524
sqlany_get_column void *524
sqlany_get_column_info void *525
sqlany_get_data void *525
sqlany_get_data_info void *525
sqlany_get_next_result void *525
sqlany_init void * ..525
sqlany_init_ex void * ..525
sqlany_make_connection void *526
sqlany_make_connection_ex void *526
sqlany_new_connection void *526
sqlany_new_connection_ex void *526
sqlany_num_cols void *526
sqlany_num_params void *526
sqlany_num_rows void *527
sqlany_prepare void * ..527
sqlany_reset void * ..527
sqlany_rollback void * ..527
sqlany_send_param_data void *527
sqlany_sqlstate void * ..527

a_sqlany_bind_param structure528
direction a_sqlany_data_direction528
name char * ...528
value a_sqlany_data_value528

a_sqlany_bind_param_info structure528
direction a_sqlany_data_direction529
input_value a_sqlany_data_value529
name char * ...529
output_value a_sqlany_data_value529

a_sqlany_column_info structure529
max_size size_t ...530
name char * ...530

Contents

xvi SAP Sybase IQ

native_type a_sqlany_native_type530
nullable sacapi_bool ..530
precision unsigned short530
scale unsigned short ..531
type a_sqlany_data_type531

a_sqlany_data_info structure531
data_size size_t ...531
is_null sacapi_bool ..531
type a_sqlany_data_type532

a_sqlany_data_value structure532
buffer char * ...532
buffer_size size_t ...532
is_null sacapi_bool * ..533
length size_t * ..533
type a_sqlany_data_type533

Perl DBI Support ..535
DBD::SQLAnywhere ...535
Installing DBD::SQLAnywhere on Windows535
Installing DBD::SQLAnywhere on Unix537
Perl Scripts That Use DBD::SQLAnywhere538

The DBI Module ...538
How to Open and Close a Database Connection

Using Perl DBI ...539
How to Obtain Result Sets Using Perl DBI540
How to Process Multiple Result Sets Using Perl

DBI ..541
How to Insert Rows Using Perl DBI542

Python Support ..545
sqlanydb ...545
Installing Python Support on Windows546
Installing Python Support on Unix546
Python Scripts That Use sqlanydb547

The sqlanydb Module ..547
How to Open and Close a Database Connection

Using Python ...548

Contents

Programming xvii

How to Obtain Result Sets Using Python548
How to Insert Rows Using Python549
Database Type Conversion550

PHP Support ..553
SAP Sybase IQ PHP Extension553

Testing the PHP Extension553
Creating and Running PHP Test Pages554
PHP Script Development556
How to Build the SAP Sybase IQ PHP Extension

on Unix ..561
SAP Sybase IQ PHP API Reference566

sasql_affected_rows ..566
sasql_commit ...567
sasql_close ..567
sasql_connect ..567
sasql_data_seek ..568
sasql_disconnect ...568
sasql_error ...568
sasql_errorcode ...569
sasql_escape_string ..569
sasql_fetch_array ...570
sasql_fetch_assoc ...570
sasql_fetch_field ..571
sasql_fetch_object ...571
sasql_fetch_row ...572
sasql_field_count ...572
sasql_field_seek ..572
sasql_free_result ...573
sasql_get_client_info ...573
sasql_insert_id ...573
sasql_message ..574
sasql_multi_query ..574
sasql_next_result ...575
sasql_num_fields ...575
sasql_num_rows ..575

Contents

xviii SAP Sybase IQ

sasql_pconnect ..576
sasql_prepare ..576
sasql_query ...576
sasql_real_escape_string577
sasql_real_query ...577
sasql_result_all ..578
sasql_rollback ..579
sasql_set_option ..579
sasql_stmt_affected_rows580
sasql_stmt_bind_param580
sasql_stmt_bind_param_ex581
sasql_stmt_bind_result582
sasql_stmt_close ...582
sasql_stmt_data_seek582
sasql_stmt_errno ...583
sasql_stmt_error ..583
sasql_stmt_execute ...583
sasql_stmt_fetch ..584
sasql_stmt_field_count584
sasql_stmt_free_result584
sasql_stmt_insert_id ..585
sasql_stmt_next_result585
sasql_stmt_num_rows586
sasql_stmt_param_count586
sasql_stmt_reset ..586
sasql_stmt_result_metadata587
sasql_stmt_send_long_data587
sasql_stmt_store_result587
sasql_store_result ..588
sasql_sqlstate ..588
sasql_use_result ..589

Ruby Support ...591
Ruby API Support ...591

Configuring Rails Support in SAP Sybase IQ592
Ruby-DBI Driver ...595

Contents

Programming xix

SAP Sybase IQ Ruby API Reference599
sqlany_affected_rows .. 600
sqlany_bind_param Function600
sqlany_clear_error Function 601
sqlany_client_version Function601
sqlany_commit Function601
sqlany_connect Function602
sqlany_describe_bind_param Function602
sqlany_disconnect Function 603
sqlany_error Function ..603
sqlany_execute Function 604
sqlany_execute_direct Function 604
sqlany_execute_immediate Function605
sqlany_fetch_absolute Function 605
sqlany_fetch_next Function 606
sqlany_fini Function ...607
sqlany_free_connection Function607
sqlany_free_stmt Function608
sqlany_get_bind_param_info Function608
sqlany_get_column Function609
sqlany_get_column_info Function 609
sqlany_get_next_result Function 610
sqlany_init Function ...611
sqlany_new_connection Function611
sqlany_num_cols Function 612
sqlany_num_params Function612
sqlany_num_rows Function 612
sqlany_prepare Function 613
sqlany_rollback Function 614
sqlany_sqlstate Function 614
Column Types ..614
Native Column Types ...615

Sybase Open Client Support ..617
Open Client Architecture ...617
What You Need to Build Open Client Applications 618

Contents

xx SAP Sybase IQ

Open Client Data Type Mappings619
Range Limitations in Open Client Data Type

Mapping ...619
SQL in Open Client Applications620

Open Client SQL Statement Execution620
Open Client Prepared Statements621
Open Client Cursor Management621
Open Client Result Sets622

Known Open Client Limitations of SAP Sybase IQ623
HTTP Web Services ...625

SAP Sybase IQ As an HTTP Web Server625
Quick Start to Using SAP Sybase IQ As an

HTTP Web Server ...625
How to Start an HTTP Web Server626
What Are Web Services629
How to Develop Web Service Applications in an

HTTP Web Server ...638
How to Browse the SAP Sybase IQ HTTP Web

Server ..654
Access to Web Services Using Web Clients658

Quick Start to Using SAP Sybase IQ As a Web
Client ...658

Quick Start to Accessing an SAP Sybase IQ
HTTP Web Server ...660

Web Client Application Development662
HTTP and SOAP Request Structures693
How to Log Web Client Requests694

Web Services References ..695
Web Service Error Code Reference695

HTTP Web Service Examples697
Tutorial: Create a Web Server and Access It from

a Web Client ..697
Tutorial: Using SAP Sybase IQ to Access a

SOAP/DISH Service701

Contents

Programming xxi

Tutorial: Using Visual C# to Access a SOAP/
DISH Web Service ...709

Tutorial: Using JAX-WS to Access a SOAP/
DISH Web Service ...715

Three-Tier Computing and Distributed Transactions725
Three-Tier Computing Architecture725

Distributed Transactions in Three-Tier
Computing ...726

The Vocabulary of Distributed Transactions727
How Application Servers Use DTC727
Distributed Transaction Architecture728

Distributed Transactions ...728
DTC Isolation Levels ..729
Recovery From Distributed Transactions729

Database Tools Interface (DBTools)731
DBTools Import Libraries ..732
DBTools Library Initialization and Finalization732
DBTools Function Calls ...733
Callback Functions ...733
Version Numbers and Compatibility735
Bit Fields ...735
A DBTools Example ..736
Software Component Exit Codes738
Database Tools C API Reference739

DBBackup(const a_backup_db *) method740
DBChangeLogName(const a_change_log *)

method ..740
DBCreate(a_create_db *) method741
DBCreatedVersion(a_db_version_info *)

method ..741
DBErase(const an_erase_db *) method741
DBInfo(a_db_info *) method742
DBInfoDump(a_db_info *) method742
DBInfoFree(a_db_info *) method743
DBLicense(const a_dblic_info *) method743

Contents

xxii SAP Sybase IQ

DBLogFileInfo(const a_log_file_info *) method
...743

DBRemoteSQL(a_remote_sql *) method744
DBSynchronizeLog(const a_sync_db *) method

...744
DBToolsFini(const a_dbtools_info *) method744
DBToolsInit(const a_dbtools_info *) method745
DBToolsVersion(void) method745
DBTranslateLog(const a_translate_log *)

method ..746
DBTruncateLog(const a_truncate_log *) method

...746
DBUnload(an_unload_db *) method746
DBUpgrade(const an_upgrade_db *) method

...747
DBValidate(const a_validate_db *) method747
Autotune() enumeration748
Checkpoint() enumeration748
History() enumeration ..748
Padding() enumeration749
Unit() enumeration ...749
Unload() enumeration ..749
UserList() enumeration749
Validation() enumeration750
Verbosity() enumeration750
Version() enumeration ..750
a_backup_db structure751
a_change_log structure756
a_create_db structure ..759
a_db_info structure ..765
a_db_version_info structure770
a_dblic_info structure ...771
a_dbtools_info structure773
a_log_file_info structure773
a_name structure ...775

Contents

Programming xxiii

a_remote_sql structure775
a_sync_db structure ..787
a_syncpub structure ..808
a_sysinfo structure ...809
a_table_info structure ..810
a_translate_log structure812
a_truncate_log structure821
a_validate_db structure822
an_erase_db structure824
an_unload_db structure826
an_upgrade_db structure839

Appendix: Using OLAP ...843
About OLAP ..843

OLAP Benefits ...844
OLAP Evaluation ...844

GROUP BY Clause Extensions845
Group by ROLLUP and CUBE846

Analytical Functions ..858
Simple Aggregate Functions859
Windowing ...859
Numeric Functions ...892

OLAP Rules and Restrictions901
Additional OLAP Examples ...902

Example: Window Functions in Queries903
Example: Window With Multiple Functions904
Example: Calculate Cumulative Sum904
Example: Calculate Moving Average905
Example: ORDER BY Results905
Example: Multiple Aggregate Functions in a

Query ...906
Example: Window Frame Comparing ROWS

and RANGE ...906
Example: Window Frame Excludes Current Row

...907
Example: Window Frame for RANGE908

Contents

xxiv SAP Sybase IQ

Example: Unbounded Preceding and
Unbounded Following908

Example: Default Window Frame for RANGE909
BNF Grammar for OLAP Functions910

Appendix: Accessing Remote Data917
SAP Sybase IQ and Remote Data917

Characteristics of Sybase Open Client and
jConnect connections917

Requirements for Accessing Remote Data919
Remote Servers ...940
External Logins ..948
Proxy tables ...948
Joins between remote tables951
Joins between tables from multiple local

databases ..952
Native statements and remote servers953
Remote Procedure Calls (RPCs)953

Remote Transactions ..954
Remote transaction management954
Remote Transaction Restrictions955

Internal Operations ...955
Query Parsing ..955
Query Normalization ..955
Query preprocessing ...955
Complete passthrough of the statement956
Partial passthrough of the statement956

Remote Data Access Troubleshooting957
Features not supported for remote data958
Case sensitivity ..958
Connectivity tests ...958
Remote data access connections via ODBC959
Remote data access on multiplex servers959

Appendix: SQL Reference ..961
ALTER SERVER Statement ..961
CREATE EXISTING TABLE Statement964

Contents

Programming xxv

CREATE SERVER Statement966
CREATE TABLE Statement ..968
DROP SERVER Statement ..985

Index ..987

Contents

xxvi SAP Sybase IQ

Partner Certifications

The SAP® Sybase® IQ partner ecosystem includes certified partners, data warehouse
infrastructure partners, analytics solutions partners, and business intelligence partner
applications.

For certification reports and the list of SAP Sybase IQ partners, see the SAP Sybase IQ
Marketplace.

Partner Certifications

Programming 1

http://www.sybase.com/files/sites/Sybase-Marketplace/index.html
http://www.sybase.com/files/sites/Sybase-Marketplace/index.html

Partner Certifications

2 SAP Sybase IQ

Platform Certifications

Certified means that a product runs on, and is supported on, a specific platform environment.
SAP Sybase IQ is certified on certain operating systems with specific CPU architecture
combinations.

Find certified product-platform combinations at http://certification.sybase.com/ucr/
search.do.

Platform Certifications

Programming 3

http://certification.sybase.com/ucr/search.do
http://certification.sybase.com/ucr/search.do

Platform Certifications

4 SAP Sybase IQ

SAP Sybase IQ as a Data Server for Client
Applications

SAP Sybase IQ supports client application connections through either ODBC or JDBC. Use
SAP Sybase IQ as a data server for client applications.

With certain limitations, SAP Sybase IQ may also appear to certain client applications as an
Open Server™.

The facilities described in this chapter do not provide remote data access for IQ users on
Windows and Sun Solaris systems. Remote data access is provided by Component Integration
Services (CIS), the core interoperability feature of Enterprise Connect™ Data Access
(ECDA).

Open Client Architecture
The primary documentation for Sybase Open Client™ application development is the Open
Client documentation, available from SAP. This section describes features specific to SAP
Sybase IQ, but it is not an exhaustive guide to Sybase Open Client application programming.

Sybase Open Client has two components: programming interfaces and network services.

DB-Library and Client Library
Sybase Open Client provides two core programming interfaces for writing client applications:
DB-Library™ and Client-Library.

Open Client DB-Library provides support for older Open Client applications, and is a
completely separate programming interface from Client-Library. DB-Library is documented
in the Open Client DB-Library/C Reference Manual, provided with the Sybase Open Client
product.

Client-Library programs also depend on CS-Library, which provides routines that are used in
both Client-Library and Server-Library applications. Client-Library applications can also use
routines from Bulk-Library to help high-speed data transfer.

Both CS-Library and Bulk-Library are included in the Sybase Open Client, which is available
separately.

Network Services
Open Client network services include Sybase Net-Library, which provides support for
specific network protocols such as TCP/IP and DECnet. The Net-Library interface is invisible
to application developers. However, on some platforms, an application may need a different
Net-Library driver for different system network configurations. Depending on your host

SAP Sybase IQ as a Data Server for Client Applications

Programming 5

platform, the Net-Library driver is specified either by the system's Sybase configuration or
when you compile and link your programs.

Instructions for driver configuration can be found in the Open Client/Server Configuration
Guide.

Instructions for building Client-Library programs can be found in the Open Client/Server
Programmer's Supplement.

Open Client and jConnect Connections
When SAP Sybase IQ serves applications over TDS, it automatically sets relevant database
options to values that are compatible with SAP Sybase SQL Anywhere® Server default
behavior. These options are set temporarily, for the duration of the connection only. The client
application can override these options at any time.

Note: SAP Sybase IQ does not support the ANSI_BLANKS, FLOAT_AS_DOUBLE, and
TSQL_HEX_CONSTANT options.

Although SAP Sybase IQ allows longer user names and passwords, TDS client user names
and passwords cannot exceed 30 bytes. If your password or user ID is longer than 30 bytes,
attempts to connect over TDS (for example, using jConnect) return an Invalid user ID
or password error.

Note: ODBC applications, including Interactive SQL applications, automatically set certain
database options to values mandated by the ODBC specification. This overwrites settings by
the LOGIN_PROCEDURE database option.

login_procedure option
Specifies a login procedure that sets connection compatibility options at startup.

Allowed values
String

Default
sp_login_environment system procedure

Scope
Can be set for an individual connection or for PUBLIC. You must have the SET ANY
SECURITY OPTION system privilege to set this option.

Remarks
This login procedure calls the sp_login_environment procedure at run time to determine the
database connection settings. The login procedure is called after all the checks have been
performed to verify that the connection is valid. The procedure specified by the

SAP Sybase IQ as a Data Server for Client Applications

6 SAP Sybase IQ

login_procedure option is not executed for event connections, but it is executed for web
service connections.

You can customize the default database option settings by creating a new procedure and
setting login_procedure to call the new procedure. This custom procedure needs to call either
sp_login_environment or detect when a TDS connection occurs (see the default
sp_login_environment code) and call sp_tsql_environment directly. Failure to do so can break
TDS-based connections. Do not edit either sp_login_environment or sp_tsql_environment.

A password expired error message with SQLSTATE 08WA0 can be signaled by a user-defined
login procedure to indicate to a user that their password has expired. Signaling the error allows
applications to check for the error and process expired passwords. It is recommended that you
use a login policy to implement password expiry and not a login procedure that returns the
expired password error message.

If you use the NewPassword=* connection parameter, signaling this error is required for the
client libraries to prompt for a new password. If the procedure signals SQLSTATE 28000
(invalid user ID or password) or SQLSTATE 08WA0 (expired password), or the procedure
raises an error with RAISERROR, the login fails and an error is returned to the user. If you
signal any other error or if another error occurs, then the user login is successful and a message
is written to the database server message log.

Example

The following example shows how you can disallow a connection by signaling the
INVALID_LOGON error.
CREATE PROCEDURE DBA.login_check()
 BEGIN
 DECLARE INVALID_LOGON EXCEPTION FOR SQLSTATE '28000';
 // Allow a maximum of 3 concurrent connections
 IF(DB_PROPERTY('ConnCount') > 3) THEN
 SIGNAL INVALID_LOGON;
 ELSE
 CALL sp_login_environment;
 END IF;
 END
go

GRANT EXECUTE ON DBA.login_check TO PUBLIC
go

SET OPTION PUBLIC.login_procedure='DBA.login_check'
go

The following example shows how you can block connection attempts if the number of failed
connections for a user exceeds 3 within a 30 minute period. All blocked attempts during the
block out period receive an invalid password error and are logged as failures. The log is kept
long enough for a DBA to analyze it.
CREATE TABLE DBA.ConnectionFailure(
 pk INT PRIMARY KEY DEFAULT AUTOINCREMENT,

SAP Sybase IQ as a Data Server for Client Applications

Programming 7

 user_name CHAR(128) NOT NULL,
 tm TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP
)
go

CREATE INDEX ConnFailTime ON DBA.ConnectionFailure(
 user_name, tm)
go

CREATE EVENT ConnFail TYPE ConnectFailed
HANDLER
BEGIN
 DECLARE usr CHAR(128);
 SET usr = event_parameter('User');

 // Put a limit on the number of failures logged.
 IF (SELECT COUNT(*) FROM DBA.ConnectionFailure
 WHERE user_name = usr
 AND tm >= DATEADD(minute, -30,
 CURRENT TIMESTAMP)) < 20 THEN
 INSERT INTO DBA.ConnectionFailure(user_name)
 VALUES(usr);
 COMMIT;
 // Delete failures older than 7 days.
 DELETE DBA.ConnectionFailure
 WHERE user_name = usr
 AND tm < dateadd(day, -7, CURRENT TIMESTAMP);
 COMMIT;
 END IF;
END
go

CREATE PROCEDURE DBA.login_check()
BEGIN
 DECLARE usr CHAR(128);
 DECLARE INVALID_LOGON EXCEPTION FOR SQLSTATE '28000';
 SET usr = CONNECTION_PROPERTY('Userid');
 // Block connection attempts from this user
 // if 3 or more failed connection attempts have occurred
 // within the past 30 minutes.
 IF (SELECT COUNT(*) FROM DBA.ConnectionFailure
 WHERE user_name = usr
 AND tm >= DATEADD(minute, -30,
 CURRENT TIMESTAMP)) >= 3 THEN
 SIGNAL INVALID_LOGON;
 ELSE
 CALL sp_login_environment;
 END IF;
END
go

GRANT EXECUTE ON DBA.login_check TO PUBLIC
go

SET OPTION PUBLIC.login_procedure='DBA.login_check'
go

SAP Sybase IQ as a Data Server for Client Applications

8 SAP Sybase IQ

The following example shows how to signal an error indicating that the user's password has
expired. It is recommended that you use a login policy to implement password expiry
notification.
CREATE PROCEDURE DBA.check_expired_login()
BEGIN
 DECLARE PASSWORD_EXPIRED EXCEPTION FOR SQLSTATE '08WA0';

 IF(condition-to-check-for-expired-password) THEN
 SIGNAL PASSWORD_EXPIRED;
 ELSE
 CALL sp_login_environment;
 END IF;
END;

Servers with Multiple Databases
Using Open Client Library, you can connect to a specific database on a server containing
multiple databases.

• Set up entries in the interfaces file for the server.

• Use the -n parameter on the start_iq command to set up a shortcut for the database name.
• Specify the -S database_name parameter with the database name on the isql command.

This parameter is required whenever you connect.

You can run the same program against multiple databases without changing the program itself
by putting the shortcut name into the program and merely changing the shortcut definition.

For example, the following interfaces file excerpt defines two servers, live_sales
and test_sales:

live_sales
 query tcp ether myhostname 5555
 master tcp ether myhostname 5555
test_sales
 query tcp ether myhostname 7777
 master tcp ether myhostname 7777

Start the server and set up an alias for a particular database. The following command sets
live_sales equivalent to salesbase.db:

start_iq -n sales_live <other parameters> -x \ ‘tcpip{port=5555}’
salesbase.db -n live_sales

To connect to the live_sales server:

isql -Udba -Psql -Slive_sales

A server name may only appear once in the interfaces file. Because the connection to
SAP Sybase IQ is now based on the database name, the database name must be unique. If all

SAP Sybase IQ as a Data Server for Client Applications

Programming 9

your scripts are set up to work on salesbase database, you will not have to modify them to
work with live_sales or test_sales.

SAP Sybase IQ as a Data Server for Client Applications

10 SAP Sybase IQ

Using In-Database Analytics in Applications

SAP Sybase IQ provides in-database analytics in three ways: native built-in analytics, native
UDF plug-in analytics, and external UDF plug-in analytics. As a developer, you can enable
complex analysis of big data by providing analytics as external UDFs.

• Native built-in analytics – Examples of native in-kernel analytics include OLAP, and
full-text search. The CUME_DIST function is one example of a built-in ANSI SQL OLAP
built-in aggregate function.

• Native UDF plug-in analytics – Using out-of-process shared libraries, you can develop
text analytics solutions. By developing out-of-process in-database UDFs, you minimize
the security and robustness risks inherent in running user-defined code in-process. See
Unstructured Data Analytics for LOB documentation.

• External UDF plug-in analytics – Use Java UDFs, table UDFs, and Table Parameterized
Functions (TPFs) to develop out-of-process analytics solutions for big data.

See also
• Appendix: Using OLAP on page 843

Scalar C or C++ UDF
A scalar UDF is a V3 or V4 external C or C++ procedure that operates on a single value.

See User-Defined Functions for detailed information and examples. External C and C++
procedures require a separately licensed SAP Sybase IQ option.

Aggregate C or C++ UDF
An aggregate UDF is a V3 or V4 external C or C++ procedure that operates on multiple values.
Aggregate UDFs are also sometimes known as UDAs or UDAFs. The context structure for
coding aggregate UDFs is slightly different than the context structure used for coding scalar
UDFs.

See User-Defined Functions for detailed information and examples. External C and C++
procedures require a separately licensed SAP Sybase IQ option.

Using In-Database Analytics in Applications

Programming 11

Java UDFs
Java UDFs behave like SQL functions except that the code for the procedure or function is
written in Java, and the execution takes place outside the database server, within a Java VM
environment. You can define Java scalar UDFs, and Java table UDFs.

Java UDFs do not require a separately licensed SAP Sybase IQ option.

Java Scalar UDF
An out-of-process (external environment) scalar user-defined function implemented in Java
code.

See User-Defined Functions for detailed information and examples.

Java Table UDF
An out-of-process (external environment) table UDF implemented in Java code.

See User-Defined Functions for detailed information and examples.

Table UDFs
Table UDFs are external user-defined C, C++, or Java table functions. Unlike scalar and
aggregate UDFs, table UDFs produce row sets as output. A SQL query can consume the row
sets as a table expression in the FROM clause of a SQL statement.

Scalar and aggregate UDFs can use either the v3 or v4 extfn API, but table UDFs can use only
v4.

See User-Defined Functions for detailed information and examples.

TPFs
Table parameterized functions (TPFs) are enhanced table UDFs that accept either scalar
values or row sets as input. You can configure user-specified partitioning for your TPF. The
UDF developer can declare a partitioning scheme that breaks down the dataset into smaller
pieces of query processing that you distribute across multiplex nodes. This enables you to
execute the TPF in parallel in a distributed server environment over partitions of row sets. The
query engine supports massive parallelization of TPF processing.

See User-Defined Functions for detailed information and examples.

Using In-Database Analytics in Applications

12 SAP Sybase IQ

Hadoop Integration
SAP Sybase IQ includes a UDF API that you can use to build MapReduce components, which
can be used for Hadoop integration. The SAP Sybase solutions store has examples of Hadoop
integration.

The MapReduce programming model is designed for massively parallel distributed
computing. The MapReduce programming model consists of two main stages:

• Map stage – The leader node divides a problem into subproblems or maps. These maps
must be independent of each other and are executed in parallel.

• Reduce stage – The leader node collects the answers of the subproblems and combines
them in a meaningful way to get the answer to the original problem.

Apache Hadoop is a MapReduce implementation. Hadoop is a Java software framework that
automates scheduling of map and reduce jobs.

SAP Sybase IQ supports Hadoop-like parallel scheduling using Table Parameterized
Functions (TPFs), a class of external user-defined functions. TPFs accept arbitrary rowsets of
table-valued input parameters, and can be parallized in a distributed server environment. You
can specify partitioning and ordering requirements on the TPF input. As a developer, you can
use TPFs to exploit the MapReduce paradigm from within the database server, using SQL.

For TPF fundamentals, see the User-Defined Functions guide.

Integrating SAP Sybase IQ with a Hadoop Distributed File System
The data returned from a Hadoop analysis can be integrated into an SAP Sybase IQ database in
several ways.

• ETL Processing – Bulk load data from Hadoop data stores into SAP Sybase IQ using the
open source utility SCOOP.

• Data Federation – Expose HDFS files as tables in an SAP Sybase IQ database that
participate in SQL queries. The HDFS files do not need to be loaded into SAP Sybase IQ.

• Query Federation – Allow SQL queries in SAP Sybase IQ to execute Hadoop processes
that return data that is incorporated into the SQL result set.

• Client-side Federation – Federate queries across SAP Sybase IQ databases and Hadoop
files using the TOAD™ SQL tool.

Reading a File in a Hadoop Distributed File System as an In-Memory
Table

A data federation example where SAP Sybase IQ reads a file in the Hadoop Distributed File
System (HDFS) as an in-memory table.

Note: This sample code is primarily for illustration purposes and is not intended for
production. Although effort was made to ensure reasonable error handling, the examples are

Using In-Database Analytics in Applications

Programming 13

not production-grade and will require additional safeguards and testing prior to using in
production.

1. Create the Java class:
public class HDFSclient {
 public static void readFileByLine(String file, ResultSet
rset[])
throws IOException {

// Set Configuration to point to HDFS NameNode and find input dir
Configuration conf = new Configuration();
conf.addResource(new Path(“/home/mymachine/hadoop/conf/core-
site.xml”));
FileSystem fileSystem = FileSystem.get(conf);
Path path = new Path(file);
if (!fileSystem.exists(path)); {
 System.out.println(“File ” + file + “ does not exists”);
 return;
}

// Create meta data for the result set
ResultSetMetaDataImpl rsmd = new ResultSetMetaDataImpl(1);
rsmd.setColumnType(1, Typs.VARCHAR);
rsmd.setColumnName(1, ”c1”);
rsmd.setColumnLabel(1, ”c1”);
rsmd.setColumnDisplaySize(1, ”c1”);
rsmd.setTableName(1, ”MyTable”);

// Create ResultSet using the meta data
ResultSetImpl rs = null;
try {
 rs = new ResultSetImpl((ResultSetMetaDataImpl)rsmd);
 rs.beforeFirst();// Make sure we are at the beginning
} catch(Exception e) {
 System.out.println(”Could not create result set.”);
 System.out.println(e.toString());
}

// Read files from input dir line by line inserting into rs
String line;
DataInputStream in = new DataInputSteam(fileSystem.open(path));
BufferedReader reader = new BufferedReader(new
InputStreamReader(in));
while ((line = reader.readline()) != null) {
try {
 rs.insertRow();// Insert a new row
 rs.updateString(1,(line));
} catch(Exception e) {
 System.out.println(”Could not insert row/data”);
 System.out.println(e.toString());
}
}
try {
rs.beforeFirst();// Make sure we are at the beginning
} catch(Exception e) {

Using In-Database Analytics in Applications

14 SAP Sybase IQ

 System.out.println(e.toString());
 }

rset[0] = rs; // Assign result set to the 1st of the passé din
array.

in.close();
reader.close();
fileSystem.close();

}
}
}

2. Install the class or the packaged JAR file:
INSTALL JAVA NEW JAR ‘myjar’ FROM FILE ‘/home/mymachine/UDFs/
myjar.jar’;

3. Create the function:
CREATE or REPLACE PROCEDURE readFileByLine(IN fileName CHAR(50))
RESULT (c1 VARCHAR(255))
EXTERNAL NAME 'example.HDFSclient.readFileByLine(Ljava/lang/
String;[Ljava/sql/ResultSet;)V'
LANGUAGE JAVA;

4. Execute the function:
SELECT c1 FROM readFileByLine('/home/mymachine/input/input.txt');

Starting an External Hadoop MapReduce Job and Using Results in a
Query

Define the map and reduce methods to input and output data structured in <key, value> pairs.

Assume you have a directory with two text files with the following contents:

• File1.txt: Hello World Goodbye World

• File2.txt: Goodbye World Hadoop

1. During the mapping step, each file is worked on as a separate map job and the output from
each of these maps is the following <key, value>:

• Job1: <Hello, one> <World, one> <Goodbye, one> <World, one>
• Job2: <Goodbye, one> <world, one> <Hadoop, one>

2. Call the Reducer which simply adds the <key, value> outputted from the Map step. Output
from the local Reducer is:

• Job1: <Hello, one> <World, two> <Goodbye, one>
• Job2: <Goodbye, one> <World, one> <Hadoop, one>

3. Combine to get the final output:
<Hello, one> <World, 3><Goodbye,2><Hadoop, 1>

Note: This sample code is primarily for illustration purposes and is not intended for
production. Although effort was made to ensure reasonable error handling, the examples are

Using In-Database Analytics in Applications

Programming 15

not production-grade and will require additional safeguards and testing prior to using in
production.

 public class WordCountDriver extends Configured {
 public static void String HADOOP_ROOT_DIR = “hdfs://localhost:
9000”
private Text word = new Text();
private final IntWritable one = new IntWritable(1);

static class WordCountMapper extends Mapper<LongWritable, Text,
Text, IntWritable> {

public void map(LongWritable key Text value, Context context) throws
IOException, InterruptedException {
 String line = value.toString();
StringTokenizer itr = new StringTokenizer(line.toLowerCase());
while (itr.hasMoreTokens()){
 word.set(itr.next(Token));
 context.write(word, one);
}
};

static class WordCountReducer extends Reducer<Text, IntWritable,
Text, IntWritable > {

public void reduce (Text key, Iterable<IntWritable> values, Context
context) throws IOException, InterruptedException {
 int sum = 0;
for (IntWritable value : values) {
 sum += value.get();
}
context.write(key, new IntWrtiable(sum));
}
};

Public static void run(String input, String output, ResultSet rs[])
throws Exception {
Configuration conf = new Configuration();
conf.addResource(new Path(“/home/mymachine/hadoop/conf/core-
site.xml”));
conf.set(“fs.default.name”,”hdfs://localhost:9000”);
conf.set(“mapred.job.tracker”,”localhost:9000”);

// Specify output types
Job job = new Job(conf, “Word Count”);
Job.setOutputKeyClass(Text.class);
Job.setOutputValueClass(IntWritable.class);

// Specify input and output locations
FileInputFormat.addInputPath(job, new Path(HADOOP_ROOT_DIR+input));)
FileOutputFormat.addInputPath(job, new Path(HADOOP_ROOT_DIR
+output));

// Specify a mapper
job.setMapperClass(WordCountDriver.WordCountMapper.class);

Using In-Database Analytics in Applications

16 SAP Sybase IQ

// Specify a reducer
job.setReducerClass(WordCountDriver.WordCountReducer.class);
job.setCombinerClass(WordCountDriver.WordCountReducer.class);
job.setJarByClass(WordCountDriver.class)

// Wait for MR job to complete
while (job.waitForCompletion(true) ? false : true) {
 // Waiting…
}
 HDFSclient hdfsc = new HDFSclient();
 hdfsc.readFileByLine(file, rs);
 }
}
}

API Reference for a_v4_extfn
Reference information for a_v4_extfn functions, methods, and attributes.

Blob (a_v4_extfn_blob)
Use the a_v4_extfn_blob structure to represent a free-standing blob object.

Implementation
typedef struct a_v4_extfn_blob {
 a_sql_uint64 (SQL_CALLBACK *blob_length)(a_v4_extfn_blob *blob);
 void (SQL_CALLBACK *open_istream)(a_v4_extfn_blob *blob,
a_v4_extfn_blob_istream **is);
 void (SQL_CALLBACK *close_istream)(a_v4_extfn_blob *blob,
a_v4_extfn_blob_istream *is);
 void (SQL_CALLBACK *release)(a_v4_extfn_blob *blob);
} a_v4_extfn_blob;

Method Summary

Method Name Data Type Description

blob_length a_sql_uint64 Returns the length, in
bytes, of the specified
blob.

open_istream void Opens an input stream
that can be used to be-
gin reading from the
specified blob.

close_istream void Closes the input stream
for the specified blob.

Using In-Database Analytics in Applications

Programming 17

Method Name Data Type Description

release void Indicates that the caller
is done with this blob
and that the blob owner
is free to release resour-
ces. After release(),
referencing the blob re-
sults in an error. The
owner usually deletes
the memory when re-

lease() is called.

Description
The object a_v4_extfn_blob is used when:

• a table UDF needs to read LOB or CLOB data from a scalar input value
• a TPF needs to read LOB or CLOB data from a column in an input table

Restrictions and Limitations
None.

blob_length
Use the blob_length v4 API method to return the length, in bytes, of the specified blob.

Declaration
a_sql_uint64 blob_length(
 a_v4_extfn_blob *
)

Usage
Returns the length, in bytes, of the specified blob.

Parameters

Parameter Description

blob The blob to return the length of.

Returns
The length of the specified blob.

See also
• open_istream on page 19
• close_istream on page 19

Using In-Database Analytics in Applications

18 SAP Sybase IQ

• release on page 20

open_istream
Use the open_istream v4 API method to open an input stream to read from a blob.

Declaration
void open_istream(
 a_v4_extfn_blob *blob,
 a_v4_extfn_blob_istream **is
)

Usage
Opens an input stream that can be used to begin reading from the specified blob.

Parameters

Parameter Description

blob The blob to open the input stream on.

is An output parameter identifying the returned
open input stream.

Returns
Nothing.

See also
• blob_length on page 18

• close_istream on page 19

• release on page 20

close_istream
Use the close_istream v4 API method to close the input stream for the specified blob.

Declaration
void close_istream(
 a_v4_extfn_blob *blob,
 a_v4_extfn_blob_istream *is
)

Usage
Closes the input stream previously opened with the open_istream API.

Using In-Database Analytics in Applications

Programming 19

Parameters

Parameter Description

blob The blob to close the input stream on.

is A parameter identifying the input stream to close.

Returns
Nothing.

See also
• blob_length on page 18

• open_istream on page 19

• release on page 20

release
Use the release v4 API method to indicate that the caller is done with the currently selected
blob. Releasing enables the owner to free memory.

Declaration
void release(
a_v4_extfn_blob *blob
)

Usage
Indicates that the caller is done with this blob and that the blob owner is free to release
resources. After release(), referencing the blob results in an error. The owner usually deletes
the memory when release() is called.

Parameters

Parameter Description

blob The blob to release.

Returns
Nothing.

See also
• blob_length on page 18

• open_istream on page 19

• close_istream on page 19

Using In-Database Analytics in Applications

20 SAP Sybase IQ

Blob Input Stream (a_v4_extfn_blob_istream)
Use the a_v4_extfn_blob_istream structure to read blob data for a LOB or CLOB
scalar input column, or LOB or CLOB column in an input table.

Implementation
typedef struct a_v4_extfn_blob_istream {
 size_t (SQL_CALLBACK *get)(a_v4_extfn_blob_istream *is, void
*buf, size_t len);
 a_v4_extfn_blob *blob;
 a_sql_byte *beg;
 a_sql_byte *ptr;
 a_sql_byte *lim;
} a_v4_extfn_blob_istream;

Method Summary

Method Name Data Type Description

get size_t Gets a specified
amount of data from a
blob input stream.

Data Members and Data Types Summary

Data Member Data Type Description

Blob a_v4_extfn_blob The underlying blob structure
for which this input stream was
created.

Beg a_sql_byte A pointer to the beginning of the
current chunk of data.

Ptr a_sql_byte A pointer to the current byte in
the chunk of data.

Lim a_sql_byte A pointer to the end of the cur-
rent chunk of data.

get
Use the get v4 API method to get a specified amount of data from a blob input stream.

Declaration
size_t get(
 a_v4_extfn_blob_istream *is,
 void *buf,
 size_t len

Using In-Database Analytics in Applications

Programming 21

)

Usage
Gets a specified amount of data from a blob input stream.

Parameters

Parameter Description

is The input stream to retrieve data from.

buf The buffer to store the data in.

len The amount of data to retrieve.

Returns
The amount of data received.

Column Data (a_v4_extfn_column_data)
The structure a_v4_extfn_column_data represents a single column's worth of data.
This is used by the producer when generating result set data, or by the consumer when reading
input table column data.

Implementation
typedef struct a_v4_extfn_column_data {
 a_sql_byte *is_null;
 a_sql_byte null_mask;
 a_sql_byte null_value;

 void *data;
 a_sql_uint32 *piece_len;
 size_t max_piece_len;

 void *blob_handle;
} a_v4_extfn_column_data;

Data Members and Data Types Summary

Data Member Data Type Description

is_null a_sql_byte * Points to a byte where the NULL information for the value is
stored.

null_mask a_sql_byte One or more bits used to represent the NULL value

null_value a_sql_byte The value representing NULL

Using In-Database Analytics in Applications

22 SAP Sybase IQ

Data Member Data Type Description

data void * Pointer to the data for the column. Depending on the type of fetch
mechanism, either points to an address in the consumer, or an
address where the data is stored in the UDF.

piece_len a_sql_uint32 * The actual length of data for variable-length data types

max_piece_len size_t The maximum data length allowed for this column.

blob_handle void * A non-NULL value means that the data for this column must be
read using the blob API

Description
The a_v4_extfn_column_data structure represents the data values and related
attributes for a specific data column. This structure is used by the producer when generating
result set data. Data producers are also expected to create storage for data, piece_len, and the
is_null flag.

The is_null, null_mask, and null_value data members indicate null in a column, and handle
situations in which the null-bits are encoded into one byte for eight columns, or other cases in
which a full byte is used for each column.

This example shows how to interpret the three fields used to represent NULL: is_null,
null_mask, and null_value.

 is_value_null()
 return((*is_null & null_mask) == null_value)

 set_value_null()
 *is_null = (*is_null & ~null_mask) | null_value

 set_value_not_null()
 *is_null = *is_null & ~null_mask | (~null_value & null_mask)

Column List (a_v4_extfn_column_list)
Use the a_v4_extfn_column_list structure to provide a list of columns when
describing PARTITION BY or to provide a list of columns when describing
TABLE_UNUSED_COLUMNS.

Implementation
typedef struct a_v4_extfn_column_list {
 a_sql_int32 number_of_columns;
 a_sql_uint32 column_indexes[1]; // there are
number_of_columns entries
} a_v4_extfn_column_list;

Using In-Database Analytics in Applications

Programming 23

Data Members and Data Types Summary

Data Member Data Type Description

number_of_columns a_sql_uint32 The number of columns in the list.

column_indexes a_sql_uint32 * A contiguous array of size num-
ber_of_columns with the column in-
dexes (1-based).

Description
The meaning of the contents of the column list changes, depending on whether the list is used
with TABLE_PARTITIONBY or TABLE_UNUSED_COLUMNS.

Column Order (a_v4_extfn_order_el)
Use the a_v4_extfn_order_el structure to describe the element order in a column.

Implementation
typedef struct a_v4_extfn_order_el {
 a_sql_uint32 column_index; // Index of the column in the
table (1-based)
 a_sql_byte ascending; // Nonzero if the column
is ordered "ascending".
} a_v4_extfn_order_el;

Data Members and Data Types Summary

Data Member Data Type Description

column_index a_sql_uint32 Index of the column in the table (1-
based).

ascending a_sql_byte Nonzero, if the column order is "as-
cending."

Description
The a_v4_extfn_order_el structure describes a column and tells whether it should be
in ascending or descending order. The a_v4_extfn_orderby_list structure holds an
array of these structures. There is one a_v4_extfn_order_el structure for each column
in the ORDERBY clause.

Using In-Database Analytics in Applications

24 SAP Sybase IQ

Column Subset (a_v4_extfn_col_subset_of_input)
Use the a_v4_extfn_col_subset_of_input structure to declare that an output
column has a value that is always taken from a particular input column to the UDF.

Implementation
typedef struct a_v4_extfn_col_subset_of_input {
 a_sql_uint32 source_table_parameter_arg_num; // arg_num of
the source table parameter
 a_sql_uint32 source_column_number; // source column of
the source table
} a_v4_extfn_col_subset_of_input;

Data Members and Data Types Summary

Data Member Data Type Description

source_table_parameter_arg_num a_sql_uint32 * arg_num of the source TABLE param-
eter

source_column_number a_sql_uint32 * Source column of the source table

Description
The query optimizer uses the subset of input to infer logical properties of the values in the
output column. For example, the number of distinct values in the input column is an upper
bound on the distinct values in the output column, and any local predicates on the input column
also hold on the output column.

Describe API
The _describe_extfn function is a member of a_v4_extfn_proc. A UDF gets and sets
logical properties using the describe_column, describe_parameter, and
describe_udf properties in the a_v4_extfn_proc_context object.

_describe_extfn Declaration
void (UDF_CALLBACK *_describe_extfn)(a_v4_extfn_proc_context
*cntxt);
)

Usage
The _describe_extfn function describes the procedure evaluation to the server.

Each of the describe_column, describe_parameter, and describe_udf
properties has an associated get and set method, a set of attribute types, and an associated data
type for each attribute. The get methods retrieve information from the server; the set methods
describe the logical properties of the UDF (such as the number of output columns or the
number of distinct values for a output column) to the server.

Using In-Database Analytics in Applications

Programming 25

*describe_column_get
The describe_column_get v4 API method is used by the table UDF to retrieve
properties about an individual column of a TABLE parameter.

Declaration
a_sql_int32 (SQL_CALLBACK *describe_column_get)(
 a_v4_extfn_proc_context *cntxt,
 a_sql_uint32 arg_num,
 a_sql_uint32 column_num,
 a_v4_extfn_describe_parm_type describe_type,
 void *describe_buffer,
 size_t describe_buffer_len);

Parameters

Parameter Description

cntxt The procedure context object for this UDF.

arg_num The ordinal of the TABLE parameter (0 is the
result table, 1 for first input argument).

column_num The ordinal of the column starting at 1.

describe_type A selector indicating what property to retrieve.

describe_buffer A structure that holds the describe information
for the specified property to get from the server.
The specific structure or data type is indicated by
the describe_type parameter.

describe_buffer_length The length, in bytes, of the describe_buffer.

Returns
On success, returns the number of bytes written to the describe_buffer. If an error occurs, or
no property is retrieved, this function returns one of the generic describe_column errors.

Attributes for *describe_column_get
Code showing the attributes for describe_column_get v4 API method.

typedef enum a_v4_extfn_describe_col_type {
 EXTFNAPIV4_DESCRIBE_COL_NAME,
 EXTFNAPIV4_DESCRIBE_COL_TYPE,
 EXTFNAPIV4_DESCRIBE_COL_WIDTH,
 EXTFNAPIV4_DESCRIBE_COL_SCALE,
 EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL,
 EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES,
 EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE,
 EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT,

Using In-Database Analytics in Applications

26 SAP Sybase IQ

 EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER,
 EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT,
 } a_v4_extfn_describe_col_type;

EXTFNAPIV4_DESCRIBE_COL_NAME (Get)
The EXTFNAPIV4_DESCRIBE_COL_NAME attribute indicates the column name. Used in a
describe_column_get scenario.

Data Type
char[]

Description
The column name. This property is valid only for table arguments.

Usage
If a UDF gets this property, then the name of the specified column is returned.

Returns
On success, returns the length of the column name.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
buffer length has insufficient characters or is 0 length.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – get error returned if the
parameter is not a TABLE parameter.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_COL_TYPE (Get)
The EXTFNAPIV4_DESCRIBE_COL_TYPE attribute indicates the data type of the column.
Used in a describe_column_get scenario.

Data Type
a_sql_data_type

Using In-Database Analytics in Applications

Programming 27

Description
The data type of the column. This property is valid only for table arguments.

Usage
If a UDF gets this property, then returns the data type of the specified column.

Returns
On success, the sizeof(a_sql_data_type) is returned.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_sql_data_type.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_COL_WIDTH (Get)
The EXTFNAPIV4_DESCRIBE_COL_WIDTH attribute indicates the width of the column.
Used in a describe_column_get scenario.

Data Type
a_sql_uint32

Description
The width of a column. Column width is the amount of storage, in bytes, required to store a
value of the associated data type. This property is valid only for table arguments.

Usage
If a UDF gets this property, then returns the width of the column as defined in the CREATE
PROCEDURE statement.

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_column errors, or:

Using In-Database Analytics in Applications

28 SAP Sybase IQ

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_COL_SCALE (Get)
The EXTFNAPIV4_DESCRIBE_COL_SCALE attribute indicates the scale of the column. Used
in a describe_column_get scenario.

Data Type
a_sql_uint32

Description
The scale of a column. For arithmetic data types, parameter scale is the number of digits to the
right of the decimal point in a number. This property is valid only for table arguments.

Usage
If the UDF gets this property, returns the scale of the column as defined in the CREATE
PROCEDURE statement. This property is valid only for arithmetic data types.

Returns
On success, returns the sizeof(a_sql_uint32) if the value was returned, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – get error returned if the scale is
unavailable for the data type of the specified column.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases

• Annotation phase
• Query Optimization phase
• Plan Building phase

Using In-Database Analytics in Applications

Programming 29

• Execution phase

EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL (Get)
The EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL attribute indicates if the column can be
NULL. Used in a describe_column_get scenario.

Data Type
a_sql_byte

Description
True, if the column can be NULL. This property is valid only for table arguments. This
property is valid only for argument 0.

Usage
If a UDF gets this property, returns 1 if the column can be NULL, and returns 0 if otherwise.

Returns
On success, returns the sizeof(a_sql_byte) if the attribute is available, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – returned if the attribute was not
available to get. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the specified
argument is an input table and the query processing phase is not greater than Plan Building
phase.

Query Processing Phases
Valid in:

• Execution phase

EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES (Get)
The EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES attribute describes the distinct
values for a column. Used in a describe_column_get scenario.

Data Type
a_v4_extfn_estimate

Description
The estimated number of distinct values for a column. This property is valid only for table
arguments.

Using In-Database Analytics in Applications

30 SAP Sybase IQ

Usage
If a UDF gets this property, it returns the estimated number of distinct values for a column.

Returns
On success, returns the sizeof(a_v4_extfn_estimate), if it returns a value, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – returned if the attribute was not
available to get. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_v4_extfn_estimate.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the specified
argument is an input table and the query processing phase is greater than Optimization.

Query Processing Phases
Valid in:

• Plan Building phase
• Execution phase

Example
Consider this procedure definition and code fragment in the _describe_extfn API
function:

CREATE PROCEDURE my_tpf(col_char char(10), col_table TABLE(c1 INT,
c2 INT))
RESULTS (r1 INT, r2 INT, r3 INT)
EXTERNAL ‘my_tpf_proc@mylibrary’;
CREATE TABLE T(x INT, y INT, z INT);
select * from my_tpf('test', TABLE(select x,y from T))

This example shows how a TPF gets the number of distinct values for column one of the input
table. A TPF may want to get this value, if it is beneficial for choosing an appropriate
processing algorithm.

my_tpf_describe(a_v4_extfn_proc_context *cntxt)
{
 if(cntxt->current_state == EXTFNAPIV4_STATE_PLAN_BUILDING) {
 a_v4_extfn_estimate num_distinct;

 a_sql_int32 ret = 0;

 // Get the number of distinct values expected from the first
column
 // of the table input parameter 'col_table'
 ret = cntxt->describe_column_get(cntxt, 2, 1
 EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES,

Using In-Database Analytics in Applications

Programming 31

 &num_distinct,
 sizeof(a_v4_extfn_estimate));

 // default algorithm is 1
 _algorithm = 1;

 if(ret > 0) {
 // choose the best algorithm for sample size.

 if (num_distinct.value < 100) {
 // use faster algorithm for small distinct values.
 _algorithm = 2;
 }
 }
 else {
 if (ret < 0) {
 // Handle the error
 // or continue with default algorithm
 } else {
 // Attribute was unavailable
 // We will use the default algorithm.
 }
 }
 }
}

EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE (Get)
The EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE attribute indicates if a column is unique in
the table. Used in a describe_column_get scenario.

Data Type
a_sql_byte

Description
True, if the column is unique within the table. This property is valid only for table arguments.

Usage
If the UDF gets this property, then returns 1 if the column is unique, and 0 otherwise.

Returns
On success, returns the sizeof(a_sql_byte) or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – if the attribute was unavailable to get.
This can happen if the column was not involved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_sql_byte.

Using In-Database Analytics in Applications

32 SAP Sybase IQ

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT (Get)
The EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT attribute indicates if a column is
constant. Used in a describe_column_get scenario.

Data Type
a_sql_byte

Description
True, if the column is constant for the lifetime of the statement. This property is valid only for
input table arguments.

Usage
If a UDF gets this property, the return value is 1 if the column is constant for the lifetime of the
statement and 0 otherwise. Input table columns are constant, if the column in the select list for
the input table is a constant expression or NULL.

Returns
On success, returns the sizeof(a_sql_byte), if the value was returned, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – the attribute is not available to get.
Returned, if the column is not involved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned, if the
describe buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned, if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned, if the
specified argument is not an input table.

Query Processing Phases
Valid in:

Using In-Database Analytics in Applications

Programming 33

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE (Get)
The EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE attribute indicates the constant
value of a column. Used in a describe_column_get scenario.

Data Type
an_extfn_value

Description
The value of the column, if it is constant for the statement lifetime. If
EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT for this column returns true, this value
is available. This property is valid only for table arguments.

Usage
For columns of input tables that have a constant value, the value is returned. If the value is
unavailable, then NULL is returned.

Returns
On success, returns the sizeof(a_sql_byte), if the value was returned, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – the attribute is not available to get.
Returned, if the column is not involved in the query, or if the value is not considered
constant.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned, if the
describe buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned, if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned, if the
specified argument is not an input table.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

Using In-Database Analytics in Applications

34 SAP Sybase IQ

EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER (Get)
The EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER attribute indicates if a
column in the result table is used by the consumer. Used in a describe_column_get
scenario.

Data Type
a_sql_byte

Description
Used either to determine whether a column in the result table is used by the consumer, or to
indicate that a column in an input is not needed. Valid for table arguments. Allows the user to
set or retrieve information about a single column, whereas the similar attribute
EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS sets or retrieves
information about all columns in a single call.

Usage
The UDF queries this property to determine if a result table column is required by the
consumer. This can help the UDF avoid unnecessary work for unused columns.

Returns
On success, returns the sizeof(a_sql_byte) or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – if the attribute was unavailable to get.
This can happen if the column was not involved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_v4_extfn_estimate.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
argument specified is not argument 0.

Query Processing Phases
Valid during:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

The PROCEDURE definition and code fragment in the _describe_extfn API function:

CREATE PROCEDURE my_tpf(col_char char(10), col_table TABLE(c1 INT,
c2

Using In-Database Analytics in Applications

Programming 35

INT))
 RESULTS (r1 INT, r2 INT, r3 INT)
 EXTERNAL ‘my_tpf_proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

select r2,r3 from my_tpf('test', TABLE(select x,y from T))

When this TPF runs, it is beneficial to know if the user has selected column r1 of the result set.
If the user does not need r1, calculations for r1 may be unnecessary and we do not need to
produce it for the server.

my_tpf_describe(a_v4_extfn_proc_context *cntxt)
{
 if(cntxt->current_state > EXTFNAPIV4_STATE_INITIAL) {
 a_sql_byte col_is_used = 0;
 a_sql_int32 ret = 0;

 ret = cntxt->describe_column_get(cntxt, 0, 1,
 EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER,
 &col_is_used,
 sizeof(a_sql_byte));

 if(ret < 0) {
 // Handle the error.
 }

 }

EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE (Get)
The EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE attribute indicates the minimum
value for a column. Used in a describe_column_get scenario.

Data Type
an_extfn_value

Description
The minimum value for a column, if available. Valid only for argument 0 and table arguments.

Usage
If a UDF gets the EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE property, the minimum
value of the column data is returned in the describe_buffer. If the input table is a base table, the
minimum value is based on all of the column data in the table and is accessible only if there is
an index on the table column. If the input table is the result of another UDF, the minimum value
is the EXTFNAPIV4_DESCRIBE_COL_TYPE set by that UDF.

The data type for this property is different for different columns. The UDF can use
EXTFNAPIV4_DESCRIBE_COL_TYPE to determine the data type of the column. The UDF

Using In-Database Analytics in Applications

36 SAP Sybase IQ

can also use EXTFNAPIV4_DESCRIBE_COL_WIDTH to determine the storage
requirements of the column,to provide an equivalently sized buffer to hold the value.

describe_buffer_length allows the server to determine if the buffer is valid.

If the EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE property is unavailable,
describe_buffer is NULL.

Returns
On success, returns the describe_buffer_length, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – if the attribute was unavailable to get.
Returned if the column was not involved in the query or the minimum value was
unavailable for the requested column.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – Get error returned, if the
describe buffer is not large enough to hold the minimum value.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – Get error returned if the state is not
greater than Initial.

Query Processing States
Valid in any state except Initial state:

• Annotation state
• Query Optimization state
• Plan Building state
• Execution state

Example
The procedure definition and code fragment in the _describe_extfn API function:

CREATE PROCEDURE my_tpf(col_char char(10), col_table TABLE(c1 INT,
c2 INT))
 RESULTS (r1 INT, r2 INT, r3 INT)
 EXTERNAL ‘my_tpf_proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

select * from my_tpf('test', TABLE(select x,y from T))

This example illustrates how a TPF would get the minimum value for column two of the input
table, for internal optimization purposes.

my_tpf_describe(a_v4_extfn_proc_context *cntxt)
{
 if(cntxt->current_state > EXTFNAPIV4_STATE_INITIAL) {
 a_sql_int32 min_value = 0;
 a_sql_int32 ret = 0;

Using In-Database Analytics in Applications

Programming 37

 // Get the minimum value of the second column of the
 // table input parameter 'col_table'

 ret = cntxt->describe_column_get(cntxt, 2, 2
 EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE,
 &min_value,
 sizeof(a_sql_int32));

 if(ret < 0) {
 // Handle the error.
 }

 }
}

EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE (Get)
The EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE attribute indicates the maximum
value for the column. Used in a describe_column_get scenario.

Data Type
an_extfn_value

Description
The maximum value for a column. This property is valid only for argument 0 and table
arguments.

Usage
If a UDF gets the EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE property, then the
maximum value of the column data is returned in the describe_buffer. If the input table is a
base table, the maximum value is based on all of the column data in the table and is accessible
only if there is an index on the table column. If the input table is the result of another UDF, the
maximum value is the COL_MAXIMUM_VALUE set by that UDF.

The data type for this property is different for different columns. The UDF can use
EXTFNAPIV4_DESCRIBE_COL_TYPE to determine the data type of the column. The UDF
can also use EXTFNAPIV4_DESCRIBE_COL_WIDTH to determine the storage
requirements of the column, to provide an equivalently sized buffer to hold the value.

describe_buffer_length allows the server to determine if the buffer is valid.

If EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE is unavailable,
describe_buffer is NULL.

Returns
On success, returns the describe_buffer_length or:

Using In-Database Analytics in Applications

38 SAP Sybase IQ

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – If the attribute was unavailable to get.
This can happen if the column was uninvolved in the query, or if the maximum value was
unavailable for the requested column.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – Get error returned if the
describe buffer is not large enough to hold the maximum value.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – Get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases
Valid in any phase except Initial phase:

• Annotation phase
• Query Optimization phase
• Plan building phase
• Execution phase

Example
The PROCEDURE definition and code fragment in the _describe_extfn API function:

CREATE PROCEDURE my_tpf(col_char char(10), col_table TABLE(c1 INT,
c2 INT))
 RESULTS (r1 INT, r2 INT, r3 INT)
 EXTERNAL ‘my_tpf_proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

select * from my_tpf('test', TABLE(select x,y from T))

This example illustrates how a TPF would get the maximum value for column two of the input
table, for internal optimization purposes.

my_tpf_describe(a_v4_extfn_proc_context *cntxt)
{
 if(cntxt->current_state > EXTFNAPIV4_STATE_INITIAL) {
 a_sql_int32 max_value = 0;
 a_sql_int32 ret = 0;

 // Get the maximum value of the second column of the
 // table input parameter 'col_table'
 ret = cntxt->describe_column_get(cntxt, 2, 2
 EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE,
 &max_value,
 sizeof(a_sql_int32));

 if(ret < 0) {
 // Handle the error.
 }
 }
}

Using In-Database Analytics in Applications

Programming 39

EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT (Get)
The EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT attribute sets a subset of
the values specified in an input column. Using this attribute in a describe_column_get
scenario returns an error.

Data Type
a_v4_extfn_col_subset_of_input

Description
Column values are a subset of the values specified in an input column.

Usage
This attribute can be set only.

Returns
Returns the error EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE.

Query Processing States
Error EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE is returned in any state.

*describe_column_set
The describe_column_set v4 API method sets UDF column-level properties on the
server.

Description
Column-level properties describe various characteristics about columns in the result set or
input tables in a TPF. For example, a UDF can tell the server that a column in its result set will
have only ten distinct values.

Declaration
a_sql_int32 (SQL_CALLBACK *describe_column_set)(
 a_v4_extfn_proc_context *cntxt,
 a_sql_uint32 arg_num,
 a_sql_uint32 column_num,
 a_v4_extfn_describe_udf_type describe_type,
 const void *describe_buffer,
 size_t describe_buffer_len);

Parameters

Parameter Description

cntxt The procedure context object for this UDF.

Using In-Database Analytics in Applications

40 SAP Sybase IQ

Parameter Description

arg_num The ordinal of the TABLE parameter (0 is the
result table, 1 for first input argument).

column_num The ordinal of the column starting at 1.

describe_type A selector indicating what property to set.

describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.

describe_buffer_length The length, in bytes, of the describe_buffer.

Returns
On success, returns the number of bytes written to the describe_buffer. If an error occurs, or
no property is retrieved, this function returns one of the generic describe_column errors.

Attributes for *describe_column_set
Code showing the attributes for describe_column_set.

typedef enum a_v4_extfn_describe_col_type {
 EXTFNAPIV4_DESCRIBE_COL_NAME,
 EXTFNAPIV4_DESCRIBE_COL_TYPE,
 EXTFNAPIV4_DESCRIBE_COL_WIDTH,
 EXTFNAPIV4_DESCRIBE_COL_SCALE,
 EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL,
 EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES,
 EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE,
 EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT,
 EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER,
 EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT,
 } a_v4_extfn_describe_col_type;

EXTFNAPIV4_DESCRIBE_COL_NAME (Set)
The EXTFNAPIV4_DESCRIBE_COL_NAME attribute indicates a column name. Used in a
describe_column_set scenario.

Data Type
char[]

Using In-Database Analytics in Applications

Programming 41

Description
The column name. This property is valid only for table arguments.

Usage
For argument 0, if the UDF sets this property, the server compares the value with the name of
the column supplied in the CREATE PROCEDURE statement. The comparison ensures that the
CREATE PROCEDURE statement has the same column name as expected by the UDF.

Returns
On success, returns the length of the column name.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
Annotation.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – set error returned if the
parameter is not a TABLE parameter.

• EXTFNAPIV4_DESCRIBE_ INVALID_ATTRIBUTE_VALUE – set error returned if
the length of input column name exceeds 128 characters or if the input column name and
column name stored in the catalog do not match.

Query Processing States

• Annotation state

Example
short desc_rc = 0;
 char name[7] = ‘column1’;
 // Verify that the procedure was created with the second column
of the result table as an int
 if(ctx->current_state == EXTFNAPIV4_STATE_ANNOTATION) {
 desc_rc = ctx->describe_column_set(ctx, 0, 2,
EXTFNAPIV4_DESCRIBE_COL_NAME,
 name,
 sizeof(name));
 if(desc_rc < 0) {
 // handle the error.
 }
 }

EXTFNAPIV4_DESCRIBE_COL_TYPE (Set)
The EXTFNAPIV4_DESCRIBE_COL_TYPE attribute indicates the data type of the column.
Used in a describe_column_set scenario.

Data Type
a_sql_data_type

Using In-Database Analytics in Applications

42 SAP Sybase IQ

Description
The data type of the column. This property is valid only for table arguments.

Usage
For argument zero, if the UDF sets this property, then the server compares the value with the
data type of the column supplied in the CREATE PROCEDURE statement. This allows the
UDF to ensure the CREATE PROCEDURE statement has the same data type as expected by the
UDF.

Returns
On success, returns the a_sql_data_type.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – Set error returned if the
describe buffer is not the size of a_sql_data_type.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – Set error returned if the state is not
Annotation.

• EXTFNAPIV4_DESCRIBE_ INVALID_ATTRIBUTE_VALUE – Set error returned if
the input data type and the data type stored in the catalog do not match,.

Query processing states

• Annotation state

Example
short desc_rc = 0;
a_sql_data_type type = DT_INT;

 // Verify that the procedure was created with the second column of
the result table as an int
 if(ctx->current_state == EXTFNAPIV4_STATE_ANNOTATION) {
 desc_rc = ctx->describe_column_set(ctx, 0, 2,
EXTFNAPIV4_DESCRIBE_COL_TYPE,
 &type,
 sizeof(a_sql_data_type));
 if(desc_rc < 0) {
 // handle the error.
 }
 }

EXTFNAPIV4_DESCRIBE_COL_WIDTH (Set)
The EXTFNAPIV4_DESCRIBE_COL_WIDTH attribute indicates the width of the column.
Used in a describe_column_set scenario.

Data Type
a_sql_uint32

Using In-Database Analytics in Applications

Programming 43

Description
The width of a column. Column width is the amount of storage, in bytes, required to store a
value of the associated data type. This property is valid only for table arguments.

Usage
If the UDF sets this property, the server compares the value with the width of the column
supplied in the CREATE PROCEDURE statement. This allows the UDF to ensure the CREATE
PROCEDURE statement has the same column width as expected by the UDF.

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the query
processing state is not Annotation.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the input width and width stored in the catalog do not match.

Query Processing States
Valid in:

• Annotation state

EXTFNAPIV4_DESCRIBE_COL_SCALE (Set)
The EXTFNAPIV4_DESCRIBE_COL_SCALE attribute indicates the scale of the column. Used
in a describe_column_set scenario.

Data Type
a_sql_uint32

Description
The scale of a column. For arithmetic data types, parameter scale is the number of digits to the
right of the decimal point in a number. This property is valid only for table arguments.

Usage
If the UDF sets this property, the server compares the value with the scale of the column
supplied in the CREATE PROCEDURE statement. This allows the UDF to ensure the CREATE
PROCEDURE statement has the same column width as expected by the UDF. This property is
valid only for arithmetic data types.

Returns
On success, returns the sizeof(a_sql_uint32), or:

Using In-Database Analytics in Applications

44 SAP Sybase IQ

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – set error returned if the scale is not
available for the data type of the specified column.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the query
processing state is not Annotation.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the input scale and scale stored in the catalog do not match.

Query Processing States
Valid in:

• Annotation state

Example
 short desc_rc = 0;
 a_sql_uint32 scale = 0;

 // Verify that the procedure has a scale of zero for the
second result table column.
 if(ctx->current_state == EXTFNAPIV4_STATE_ANNOTATION) {
 desc_rc = ctx->describe_column_set(ctx, 0, 2,
EXTFNAPIV4_DESCRIBE_COL_SCALE,
 &scale,
 sizeof(a_sql_data_type));
 if(desc_rc < 0) {
 // handle the error.
 }
 }

EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL (Set)
The EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL attribute indicates if the column can be
null. Used in a describe_column_set scenario.

Data Type
a_sql_byte

Description
True, if the column can be NULL. This property is valid only for table arguments. This
property is valid only for argument 0.

Usage
The UDF can set this property for a result table column if that column can be NULL. If the
UDF does not explicitly set this property, it is assumed that the column can be NULL. The
server can use this information during the Optimization state.

Using In-Database Analytics in Applications

Programming 45

Returns
On success, returns the sizeof(a_sql_byte) if the attribute was set or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – returned if the attribute was
unavailable to set, which may happen if the column was uninvolved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
equal to OPTIMIZATION.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

• Optimization state

EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES (Set)
The EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES attribute describes the distinct
values for a column. Used in a describe_column_set scenario.

Data Type
a_v4_extfn_estimate

Description
The estimated number of distinct values for a column. This property is valid only for table
arguments.

Usage
The UDF can set this property if it knows how many distinct values a column can have in its
result table. The server uses this information during the Optimization state.

Returns
On success, returns the sizeof(a_v4_extfn_estimate), if it sets the value, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – returned if the attribute was
unavailable to set. This can happen if the column was not involved in the query.

On failure, returns:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe buffer is not the size of a_v4_extfn_estimate.

Using In-Database Analytics in Applications

46 SAP Sybase IQ

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
equal to Optimization.

Query Processing States
Valid in:

• Optimization state

EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE attribute indicates if the column is unique
in the table. Used in a describe_column_set scenario.

Data Type
a_sql_byte

Description
True, if the column is unique within the table. This property is valid only for table arguments.

Usage
The UDF can set this property if it knows the result table column value is unique. The server
uses this information during the Optimization state. The UDF can set this property only for
argument 0.

Returns
On success, returns the sizeof(a_sql_byte) or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – if the attribute was not available to
set. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the query
processing state is not Optimization.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the
arg_num is not zero.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

• Optimization state

Using In-Database Analytics in Applications

Programming 47

EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT (Set)
The EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT attribute indicates if the column is
constant. Used in a describe_column_set scenario.

Data Type
a_sql_byte

Description
True, if the column is constant for the lifetime of the statement. This property is valid only for
input table arguments.

Usage
This is a read only property. All attempts to set it return
EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE.

Returns

• EXTFNAPIV4_DESCRIBE_INVALID ATTRIBUTE – this is a read-only property; all
attempts to set return this error.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned, if the state is not
Optimization.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned, if the
arg_num is not zero.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned, if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Not applicable.

EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE attribute indicates the constant
value of the column. Used in a describe_column_set scenario.

Data Type
an_extfn_value

Description
The value of the column, if it is constant for the statement lifetime. If
EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT for this column returns true, this value
is available. This property is valid only for table arguments.

Usage
This property is read-only.

Using In-Database Analytics in Applications

48 SAP Sybase IQ

Returns

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE – this is a read-only property; all
attempts to set return this error.

Query Processing States
Not applicable.

EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER (Set)
The EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER attribute indicates if the
column in the result table is used by the consumer. Used in a describe_column_set
scenario.

Data Type
a_sql_byte

Description
Used either to determine whether a column in the result table is used by the consumer, or to
indicate that a column in an input is not needed. Valid for table arguments. Allows the user to
set or retrieve information about a single column, whereas the similar attribute
EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS sets or retrieves
information about all columns in a single call.

Usage
The UDF sets EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER on columns in an
input table to inform the producer that it does not need values for the column.

Returns
On success, returns the sizeof(a_sql_byte) or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – if the attribute was not available to
set. This can happen if the column was not involved in the query.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe buffer is not the size of a_v4_extfn_estimate.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the
argument specified is argument 0.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
equal to Optimization.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the value the UDF is setting is not 0 or 1.

Using In-Database Analytics in Applications

Programming 49

Query Processing States
Valid during:

• Optimization state

The PROCEDURE definition and code fragment in the _describe_extfn API function:

CREATE PROCEDURE my_tpf(col_char char(10), col_table TABLE(c1 INT,
c2
INT))
 RESULTS (r1 INT, r2 INT, r3 INT)
 EXTERNAL ‘my_tpf_proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

select r2,r3 from my_tpf('test', TABLE(select x,y from T))

When this TPF runs, it is beneficial for the server to know if column y is used by this TPF. If the
TPF does not need y, the server can use this knowledge for optimization and does not send this
column information to the TPF.

my_tpf_describe(a_v4_extfn_proc_context *cntxt)
{
 if(cntxt->current_state == EXTFNAPIV4_STATE_OPTIMIZATION) {
 a_sql_byte col_is_used = 0;
 a_sql_int32 ret = 0;

 ret = cntxt->describe_column_get(cntxt, 2, 2,
 EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER,
 &col_is_used,
 sizeof(a_sql_byte));

 if(ret < 0) {
 // Handle the error.
 }

 }
}

EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE attribute indicates the minimum
value for the column. Used in a describe_column_set scenario.

Data Type
an_extfn_value

Description
The minimum value a column can have, if available. Only valid for argument 0.

Using In-Database Analytics in Applications

50 SAP Sybase IQ

Usage
The UDF can set EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE, if it knows what
the minimum data value of the column is. The server can use this information during
optimization.

The UDF can use EXTFNAPIV4_DESCRIBE_COL_TYPE to determine the data type of the
column, and EXTFNAPIV4_DESCRIBE_COL_WIDTH to determine the storage
requirements of the column, to provide an equivalently sized buffer to hold the value to set.

Returns
On success, returns the describe_buffer_length, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – if the attribute cannot be set.
Returned if the column was not involved in the query or the minimum value was not
available for the requested column.

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned, if the
describe buffer is not large enough to hold the minimum value.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned, if the state is not
equal to Optimization.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned, if the
arg_num is not 0.

Query Processing States
Valid in:

• Optimization state

Example
The PROCEDURE definition and UDF code fragment that implements the
_describe_extfn callback API function:

CREATE PROCEDURE my_tpf(col_char char(10), col_table TABLE(c1 INT,
c2 INT))
 RESULTS (r1 INT, r2 INT, r3 INT)
 EXTERNAL ‘my_tpf_proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

select * from my_tpf('test', TABLE(select x,y from T))

This example shows a TPF where it is useful to the server (or to another TPF that takes the
result of this TPF as input) to know the minimum value of result set column one. In this
instance, the minimum output value of column one is 27.

my_tpf_describe(a_v4_extfn_proc_context *cntxt)
{

Using In-Database Analytics in Applications

Programming 51

 if(cntxt->current_state == EXTFNAPIV4_STATE_OPTIMIZATION) {
 a_sql_int32 min_value = 27;
 a_sql_int32 ret = 0;

// Tell the server what the minimum value of the first column
// of our result set will be.

 ret = cntxt->describe_column_set(cntxt, 0, 1
 EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE,
 &min_value,
 sizeof(a_sql_int32));

 if(ret < 0) {
 // Handle the error.
 }
}
}

EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE (Set)
The EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE attribute indicates the maximum
value for the column. Used in a describe_column_set scenario.

Data Type
an_extfn_value

Description
The maximum value for a column. This property is valid only for argument 0 and table
arguments.

Usage
The UDF can set EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE, if it knows what
the maximum data value of the column is. The server can use this information during
optimization.

The UDF can use EXTFNAPIV4_DESCRIBE_COL_TYPE to determine the data type of the
column, and EXTFNAPIV4_DESCRIBE_COL_WIDTH to determine the storage
requirements of the column, to provide an equivalently sized buffer to hold the value to set.

describe_buffer_length is the sizeof() this buffer.

Returns
On success, returns the describe_buffer_length, if the value was set, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – if the attribute could not be set.
Returned if the column was not involved in the query or the maximum value was not
available for the requested column.

On failure, returns one of the generic describe_column errors, or:

Using In-Database Analytics in Applications

52 SAP Sybase IQ

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned, if the
describe buffer is not large enough to hold the maximum value.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – Set error returned, if the query
processing state is not equal to Optimization.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned, if the
arg_num is not 0.

Query Processing States
Valid in:

• Optimization state

Example
The PROCEDURE definition and and UDF code fragment that implements the
_describe_extfn callback API function:

CREATE PROCEDURE my_tpf(col_char char(10), col_table TABLE(c1 INT,
c2 INT))
 RESULTS (r1 INT, r2 INT, r3 INT)
 EXTERNAL ‘my_tpf_proc@mylibrary’;

CREATE TABLE T(x INT, y INT, z INT);

select * from my_tpf('test', TABLE(select x,y from T))

This example shows a TPF where it is useful to the server (or to another TPF that takes the
result of this TPF as input) to know the maximum value of result set column one. In this
instance, the maximum output value of column one is 500000.

my_tpf_describe(a_v4_extfn_proc_context *cntxt)
{
 if(cntxt->current_state == EXTFNAPIV4_STATE_OPTIMIZATION) {
 a_sql_int32 max_value = 500000;
 a_sql_int32 ret = 0;

 // Tell the server what the maximum value of the first column
 // of our result set will be.

 ret = cntxt->describe_column_set(cntxt, 0, 1
 EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE,
 &max_value,
 sizeof(a_sql_int32));

 if(ret < 0) {
 // Handle the error.
 }

 }
}

Using In-Database Analytics in Applications

Programming 53

EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT (Set)
The EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT attribute sets a subset of
the values specified in an input column. Used in a describe_column_set scenario.

Data Type
a_v4_extfn_col_subset_of_input

Description
Column values are a subset of the values specified in an input column.

Usage
Setting this describe attribute informs the query optimizer that the indicated column values are
a subset of those values specified in an input column. For example, consider a filter TPF that
consumes a table and filters out rows based on a function. In such a case, the return table is a
subset of the input table. Setting
EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT for the filter TPF optimizes
the query.

Returns
On success, returns the sizeof(a_v4_extfn_col_subset_of_input).

On failure, returns one of the generic describe_column errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
buffer length is less than sizeof (a_v4_extfn_col_subset_of_input).

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the column index of the source table is out of range.

• EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE – set error returned if the column
subset_of_input is set on is not aplicable (for example, if the column is not in the
select list).

• EXTFNAPIV4_DESCRIBE_INVAILD_STATE – set error returned if the query
processing state is not Optimization.

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
buffer length is zero.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if called on a
parameter other than the return table.

Query Processing States
Valid in:
• Optimization state

Example
a_v4_extfn_col_subset_of_input colMap;

Using In-Database Analytics in Applications

54 SAP Sybase IQ

 colMap.source_table_parameter_arg_num = 4;
 colMap.source_column_number = i;

 desc_rc = ctx->describe_column_set(ctx,
 0, i,
 EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT,
 &colMap, sizeof(a_v4_extfn_col_subset_of_input));

*describe_parameter_get
The describe_parameter_get v4 API method gets UDF parameter properties from
the server.

Declaration
a_sql_int32 (SQL_CALLBACK *describe_parameter_get)(
 a_v4_extfn_proc_context *cntxt,
 a_sql_uint32 arg_num,
 a_v4_extfn_describe_udf_type describe_type,
 const void *describe_buffer,
 size_t describe_buffer_len);

Parameters

Parameter Description

cntxt The procedure context object.

arg_num The ordinal of the TABLE parameter (0 is for the
result table and 1 is for first input argument)

describe_type A selector indicating what property to set.

describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.

describe_buffer_length The length, in bytes, of the describe_buffer.

Returns
On success, returns 0 or the number of bytes written to the describe_buffer. A value of 0
indicates that the server was unable to get the attribute, but no error condition occurred. If an
error occurred, or no property was retrieved, this function returns one of the generic
describe_parameter errors.

Attributes for *describe_parameter_get
Code showing the attributes for describe_parameter_get.

typedef enum a_v4_extfn_describe_parm_type {
 EXTFNAPIV4_DESCRIBE_PARM_NAME,

Using In-Database Analytics in Applications

Programming 55

 EXTFNAPIV4_DESCRIBE_PARM_TYPE,
 EXTFNAPIV4_DESCRIBE_PARM_WIDTH,
 EXTFNAPIV4_DESCRIBE_PARM_SCALE,
 EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL,
 EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES,
 EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT,
 EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE,

 EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS,

} a_v4_extfn_describe_parm_type;

EXTFNAPIV4_DESCRIBE_PARM_NAME Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_NAME attribute indicates the parameter name.
Used in a describe_parameter_get scenario.

Data Type
char[]

Description
The name of a parameter to a UDF.

Usage
Gets the parameter name as defined in the CREATE PROCEDURE statement. Invalid for
parameter 0.

Returns
On success, returns the length of the parameter name.

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not large enough to hold the name.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
parameter is the result table.

Query Processing Phases
Valid in:

• Annotation phase

Using In-Database Analytics in Applications

56 SAP Sybase IQ

• Query optimization phase
• Plan building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TYPE attribute returns the data type in a
describe_parameter_get scenario.

Data Type
a_sql_data_type

Description
The data type of a parameter to a UDF.

Usage
Gets the data type of the parameter as defined in the CREATE PROCEDURE statement.

Returns
On success, returns sizeof(a_sql_data_type).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the sizeof(a_sql_data_type).

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_PARM_WIDTH Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_WIDTH attribute indicates the width of a parameter.
Used in a describe_parameter_get scenario.

Data Type
a_sql_uint32

Using In-Database Analytics in Applications

Programming 57

Description
The width of a parameter to a UDF. EXTFNAPIV4_DESCRIBE_PARM_WIDTH applies
only to scalar parameters. Parameter width is the amount of storage, in bytes, required to store
a parameter of the associated data type.

• Fixed length data types – the bytes required to store the data.
• Variable length data types – the maximum length.
• LOB data types – the amount of storage required to store a handle to the data.
• TIME data types – the amount of storage required to store the encoded time.

Usage
Gets the width of the parameter as defined in the CREATE PROCEDURE statement.

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
specified parameter is a TABLE parameter. This includes parameter 0, or parameter n
where n is an input table.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

Example
Sample procedure definition:
CREATE PROCEDURE my_udf(IN p1 INT, IN p2 char(100))
RESULT (x INT)
EXTERNAL NAME ‘my_udf@myudflib’;

Sample _describe_extfn API function code fragment:

my_udf_describe(a_v4_extfn_proc_context *cntxt)
{
 if(cntxt->current_state == EXTFNAPIV4_STATE_OPTIMIZATION) {
 a_sql_uint32 width = 0;

Using In-Database Analytics in Applications

58 SAP Sybase IQ

 a_sql_int32 ret = 0;

 // Get the width of parameter 1
 ret = cntxt->describe_parameter_get(cntxt, 1,
 EXTFNAPIV4_DESCRIBE_PARM_WIDTH,
 &width,
 sizeof(a_sql_uint32));

 if(ret < 0) {
 // Handle the error.
 }

 //Allocate some storage based on parameter width
 a_sql_byte *p = (a_sql_byte *)cntxt->alloc(cntxt, width)

 // Get the width of parameter 2
 ret = cntxt->describe_parameter_get(cntxt, 2,
 EXTFNAPIV4_DESCRIBE_PARM_WIDTH,
 &width,
 sizeof(a_sql_uint32));
 if(ret <= 0) {
 // Handle the error.
 }

 // Allocate some storage based on parameter width
 char *c = (char *)cntxt->alloc(cntxt, width)

 …

}
}

EXTFNAPIV4_DESCRIBE_PARM_SCALE Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_SCALE attribute indicates the scale of a parameter.
Used in a describe_parameter_get scenario.

Data Type
a_sql_uint32

Description
The scale of a parameter to a UDF. For arithmetic data types, parameter scale is the number of
digits to the right of the decimal point in a number.

This attribute is not valid for:

• non-arithmetic data types
• TABLE parameters

Usage
Gets the scale of the parameter as defined in the CREATE PROCEDURE statement.

Using In-Database Analytics in Applications

Programming 59

Returns
On success, returns the size of (a_sql_uint32).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
specified parameter is a TABLE parameter. This includes parameter 0, or parameter n
where n is an input table.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

Example
Sample _describe_extfn API function code fragment that gets the scale of parameter
1:
if(cntxt->current_state > EXTFNAPIV4_STATE_ANNOTATION) {
 a_sql_uint32 scale = 0;
 a_sql_int32 ret = 0;

 ret = ctx->describe_parameter_get(ctx, 1,
EXTFNAPIV4_DESCRIBE_PARM_SCALE,
 &scale, sizeof(a_sql_uint32));

 if(ret <= 0) {
 // Handle the error.
 }
}

EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL attribute indicates whether or not the
parameter is null. Used in a describe_parameter_get scenario.

Data Type
a_sql_byte

Using In-Database Analytics in Applications

60 SAP Sybase IQ

Description
True, if the value of a parameter can be NULL at the time of execution. For a TABLE
parameter or parameter 0, the value is false.

Usage
Gets whether or not the specified parameter can be null during query execution.

Returns
On success, returns the sizeof(a_sql_byte).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – Get error returned if the
describe_buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – Get error returned if the query
processing phase is not greater than Plan Building.

Query Processing Phases
Valid in:

• Execution phase

Examples: EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL (Get)
Example procedure definitions, _describe_extfn API function code fragment, and SQL
queries for getting EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL values.

Procedure Definition
Sample procedure definition used by the example queries in this topic:
CREATE PROCEDURE my_udf(IN p INT)
RESULT (x INT)
EXTERNAL NAME ‘my_udf@myudflib’;

API Function Code Fragment
Sample _describe_extfn API function code fragment used by the example queries in
this topic:
my_udf_describe(a_v4_extfn_proc_context *cntxt)
{

 if(cntxt->current_state > EXTFNAPIV4_STATE_OPTIMIZATION) {
 a_sql_byte can_be_null = 0;
 a_sql_int32 ret = 0;

 ret = cntxt->describe_parameter_get(cntxt, 1,
 EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL,
 &can_be_null,
 sizeof(a_sql_byte));

Using In-Database Analytics in Applications

Programming 61

 if(ret <= 0) {
 // Handle the error.
 }
}
}

Example 1: Without NOT NULL
This example creates a table with a single integer column without the NOT NULL modifier
specified. The correlated subquery passes in column c1 from the table has_nulls. When
the procedure my_udf_describe is called during the Execution state, the call to
describe_parameter_get populates can_be_null with a value of 1.

CREATE TABLE has_nulls (c1 INT);
INSERT INTO has_nulls VALUES(1);
INSERT INTO has_nulls VALUES(NULL);
SELECT * from has_nulls WHERE (SELECT sum(my_udf.x) FROM
my_udf(has_nulls.c1)) > 0;

Example 2: With NOT NULL
This example creates a table with a single integer column with the NOT NULL modifier
specified. The correlated subquery passes in column c1 from the table no_nulls. When the
procedure my_udf_describe is called during the Execution state, the call to
describe_parameter_get populates can_be_null with a value of 0.

CREATE TABLE no_nulls (c1 INT NOT NULL);
INSERT INTO no_nulls VALUES(1);
INSERT INTO no_nulls VALUES(2);
SELECT * from no_nulls WHERE (SELECT sum(my_udf.x) FROM
my_udf(no_nulls.c1)) > 0;

Example 3: With a Constant
This example calls the procedure my_udf with a constant. When the procedure
my_udf_describe is called, during the Execution state, the call to
describe_parameter_get populates can_be_null with a value of 0.

SELECT * from my_udf(5);

Example 4: With a NULL
This example calls the procedure my_udf with a NULL. When the procedure
my_udf_describe is called, during the Execution state, the call to
describe_parameter_get populates can_be_null with a value of 1.

SELECT * from my_udf(NULL);

EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES attribute returns the number of
distinct values. Used in a describe_parameter_get scenario.

Data Type
a_v4_extfn_estimate

Using In-Database Analytics in Applications

62 SAP Sybase IQ

Description
Returns the estimated number of distinct values across all invocations. valid only for scalar
parameters.

Usage
If this information is available, the UDF returns the estimated number of distinct values with
100% confidence. If the information is not available, the UDF returns an estimate of 0 with 0%
confidence.

Returns
On success, returns the sizeof(a_v4_extfn_estimate).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of a_v4_extfn_estimate.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
parameter is a TABLE parameter.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

Example
Sample _describe_extfn API function code fragment:

if(ctx->current_state >= EXTFNAPIV4_STATE_ANNOTATION) {
 desc_est.value = 0.0;
 desc_est.confidence = 0.0;

 desc_rc = ctx->describe_parameter_get(ctx,
 1,
 EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES,
 &desc_est, sizeof(a_v4_extfn_estimate));
}

Using In-Database Analytics in Applications

Programming 63

EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES attribute returns whether or
not the parameter is constant. Used in a describe_parameter_get scenario.

Data Type
a_sql_byte

Description
True, if the parameter is a constant for the statement. Valid only for scalar parameters.

Usage
Returns 0 if the value of the specified parameter is not a constant; returns 1 if the value of the
specified parameter is a constant.

Returns
On success, returns the sizeof(a_sql_byte).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
parameter is a TABLE parameter.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

Example
Sample _describe_extfn API function code fragment:

if(ctx->current_state >= EXTFNAPIV4_STATE_ANNOTATION) {
 desc_rc = ctx->describe_parameter_get(ctx,
 1,
 EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT,
 &desc_byte, sizeof(a_sql_byte));
}

Using In-Database Analytics in Applications

64 SAP Sybase IQ

EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE attribute indicates the value of
the parameter. Used in a describe_parameter_get scenario.

Data Type
an_extfn_value

Description
The value of the parameter if it is known at describe time. Valid only for scalar parameters.

Usage
Returns the value of the parameters.

Returns
On success, returns the sizeof(an_extfn_value) if the value is available, or:

• EXTFNAPIV4_DESCRIBE_NOT_AVILABLE – Value returned if the value is not
constant.

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of an_extfn_value.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the phase is not
greater than Initial.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
parameter is a TABLE parameter.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

Example
Sample _describe_extfn API function code fragment:

if(ctx->current_state >= EXTFNAPIV4_STATE_ANNOTATION) {
 a_sql_int32 desc_rc;
 desc_rc = ctx->describe_parameter_get(ctx,
 1,
 EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE,
 &arg,
 sizeof(an_extfn_value));
}

Using In-Database Analytics in Applications

Programming 65

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS attribute indicates the
number of columns in the table. Used in a describe_parameter_get scenario.

Data Type
a_sql_uint32

Description
The number of columns in the table. Only valid for argument 0 and table arguments.

Usage
Returns the number of columns in the specified table argument. Argument 0 returns the
number of columns in the result table.

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – get error returned if the
parameter is not a TABLE parameter.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS attribute indicates the
number of rows in the table. Used in a describe_parameter_get scenario.

Data Type
a_v4_extfn_estimate

Description
The estimated number of rows in the table. Only valid for argument 0 and table arguments.

Using In-Database Analytics in Applications

66 SAP Sybase IQ

Usage
Returns the estimated number of rows in the specified table argument or result set with a
confidence of 100%.

Returns
On success, returns the size of a_v4_extfn_estimate.

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of a_v4_extfn_estimate.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Initial.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – get error returned if the
parameter is not a TABLE parameter.

Query Processing Phases
Valid in:

• Annotation phase
• Query Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY attribute indicates the order of
rows in the table. Used in a describe_parameter_get scenario.

Data Type
a_v4_extfn_orderby_list

Description
The order of rows in the table. This property is only valid for argument 0 and table arguments.

Usage
This attribute allows the UDF code to:

• Determine if the input TABLE parameter has been ordered
• Declare that the result set is ordered

If the parameter number is 0, then the attribute refers to the outbound result set. If the
parameter is > 0 and the parameter type is a table then the attribute refers to the input TABLE
parameter.

The order is specified by the a_v4_extfn_orderby_list, which is a structure
supporting a list of column ordinals and their associated ascending or descending property. If

Using In-Database Analytics in Applications

Programming 67

the UDF sets the order by property for the outbound result set, the server is then able to
perform order by optimizations. For example, if the UDF produced ascending order on the
first result set column, the server will eliminate a redundant order by request on the same
column.

If the UDF does not set the orderby property on the outbound result set, the server assumes the
data is not ordered.

If the UDF sets the orderby property on the input TABLE parameter, the server guarantees data
ordering for the input data. In this scenario, the UDF describes to the server that the input data
must be ordered. If the server detects a runtime conflict it raises a SQL exception. For
example, when the UDF describes that the first column of the input TABLE parameter must
have ascending order and the SQL statement contains a descending clause, the server raises a
SQL exception.

In the event that the SQL did not contain an ordering clause, the server automatically adds the
ordering to ensure that input TABLE parameter is ordered as required.

Returns
If successful, returns the number of bytes copied from a_v4_extfn_orderby_list.

Query Processing States
Valid in:

• Annotation state
• Query optimization state

EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY attribute indicates that
the UDF requires partitioning. Used in a describe_parameter_get scenario.

Data Type
a_v4_extfn_column_list

Description
UDF developers use EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY to
programmatically declare that the UDF requires partitioning before invocation can proceed.

Usage
The UDF can inquire to the partition to enforce it, or to dynamically adapt the partitioning. It is
the UDF's responsibility to allocate the a_v4_extfn_column_list, taking into consideration the
total number of columns in the input table, and sending that data to the server.

Returns
On success, returns the size of a_v4_extfn_column_list. This value is equal to:

Using In-Database Analytics in Applications

68 SAP Sybase IQ

sizeof(a_v4_extfn_column_list) + sizeof(a_sql_uint32) *
number_of_partition_columns

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
buffer length is less than the expected size.

Query Processing Phases
Valid in:

• Query Optimization phase
• Plan Building phase
• Execution phase

Example
void UDF_CALLBACK my_tpf_proc_describe(a_v4_extfn_proc_context
*ctx)
{
 if(ctx->current_state == EXTFNAPIV4_STATE_OPTIMIZATION) {
 a_sql_uint32 col_count = 0;
 a_sql_uint32 buffer_size = 0;
 a_v4_extfn_column_list *clist = NULL;

 col_count = 3; // Set to the max number of possible pby
columns

 buffer_size = sizeof(a_v4_extfn_column_list) + (col_count -
1) * sizeof(a_sql_uint32);

 clist = (a_v4_extfn_column_list *)ctx->alloc(ctx,
buffer_size);

 clist->number_of_columns = 0;
 clist->column_indexes[0] = 0;
 clist->column_indexes[1] = 0;
 clist->column_indexes[2] = 0;

 args->r_api_rc = ctx->describe_parameter_get(ctx,
 args->p3_arg_num,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY,
 clist,
 buffer_size);
}
}

Using In-Database Analytics in Applications

Programming 69

EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND attribute indicates
that the consumer requests rewind of an input table. Used in a
describe_parameter_get scenario.

Data Type
a_sql_byte

Description
Indicates that the consumer wants to rewind an input table. Valid only for table input
arguments. By default, this property is false.

Usage
The UDF queries this property to retrieve the true/false value.

Returns
On success, returns sizeof(a_sql_byte).

On failure, returns one of the generic describe_parameter errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the phase is not
Optimization or Plan Building.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the UDF
attempts to get this attribute on parameter 0.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – get error returned if the
UDF attempts to get this attribute on a parameter that is not a table.

Query Processing Phases
Valid in:

• Optimization phase
• Plan Building phase

EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND attribute indicates if the
parameter supports rewind. Used in a describe_parameter_get scenario.

Data Type
a_sql_byte

Description
Indicates whether a producer can support rewind. Valid only for table arguments.

Using In-Database Analytics in Applications

70 SAP Sybase IQ

You must also provide an implementation of the rewind table callback (_rewind_extfn()) if
you plan on setting DESCRIBE_PARM_TABLE_HAS_REWIND to true. The server will
fail to execute the UDF if the callback method is not provided.

Usage
The UDF asks if a table input argument supports rewind. As a prerequisite, the UDF must
request rewind using DESCRIBE_PARM_TABLE_REQUEST_REWIND before you can use
this property.

Returns
On success, returns sizeof(a_sql_byte).

On failure, returns one of the generic describe_parameter errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error error returned if the query
processing phase is not greater than Annotation.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – get error returned if the
UDF attempts to get this attribute on a parameter that is not a table.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the UDF
attempts to get this attribute on the result table.

Query Processing Phases
Valid in:
• Optimization phase
• Plan Building phase
• Execution phase

EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS Attribute (Get)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS attribute lists
unconsumed columns. Used in a describe_parameter_get scenario.

Data Type
a_v4_extfn_column_list

Description
The list of output table columns that are not going to be consumed by the server or the UDF.

For the output TABLE parameter, the UDF normally produces the data for all the columns, and
the server consumes all the columns. The same holds true for the input TABLE parameter
where the server normally produces the data for all the columns, and the UDF consumes all the
columns.

However, in some cases the server, or the UDF, may not consume all the columns. The best
practice in such a case is for the UDF to perform a GET for the output table on the describe

Using In-Database Analytics in Applications

Programming 71

attribute EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS. This action
queries the server for the list of output table columns that are not going to be consumed by the
server. The list can then be used by the UDF when populating the column data for the output
table; that is, the UDF does not attemp to populate data for unused columns.

In summary, for the output table the UDF polls the list of unused columns. For the input table,
the UDF pushes the list of unused columns.

Usage
The UDF asks the server if all the columns of the output table are going to be used. The UDF
must allocate a a_v4_extfn_column_list that includes all the columns of the output
table, and then must pass it to the server. The server then marks all the unprojected column
ordinals as 1. The list returned by the server can be used while producing the data.

Returns
On success, returns the size of the column list: sizeof(a_v4_extfn_column_list)
+ sizeof(a_sql_uint32) * number result columns.

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the query
processing phase is not greater than Plan Building.

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe_buffer is not large enough to hold the returned list.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the UDF
attempts to get this attribute on an input table.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – get error returned if the
UDF attempts to get this attribute on a parameter that is not a table.

Query Processing Phases
Valid in:

• Execution phase

*describe_parameter_set
The describe_parameter_set v4 API method sets properties about a single parameter
to the UDF.

Declaration
a_sql_int32 (SQL_CALLBACK *describe_parameter_set)(
 a_v4_extfn_proc_context *cntxt,
 a_sql_uint32 arg_num,
 a_v4_extfn_describe_udf_type describe_type,
 const void *describe_buffer,
 size_t describe_buffer_len);

Using In-Database Analytics in Applications

72 SAP Sybase IQ

Parameters

Parameter Description

cntxt The procedure context object.

arg_num The ordinal of the TABLE parameter (0 is for the
result table and 1 is for first input argument)

describe_type A selector indicating what property to set.

describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.

describe_buffer_length The length in bytes of the describe_buffer.

Returns
On success, returns 0 or the number of bytes written to the describe_buffer. A value of 0
indicates that the server was unable to set the attribute, but no error condition occurred. If an
error occurred, or no property was retrieved, this function returns one of the generic
describe_parameter errors.

Attributes for *describe_parameter_set
Code showing the attributes for describe_parameter_set.

typedef enum a_v4_extfn_describe_parm_type {
 EXTFNAPIV4_DESCRIBE_PARM_NAME,
 EXTFNAPIV4_DESCRIBE_PARM_TYPE,
 EXTFNAPIV4_DESCRIBE_PARM_WIDTH,
 EXTFNAPIV4_DESCRIBE_PARM_SCALE,
 EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL,
 EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES,
 EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT,
 EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE,

 EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS,

 } a_v4_extfn_describe_parm_type;

Using In-Database Analytics in Applications

Programming 73

EXTFNAPIV4_DESCRIBE_PARM_NAME Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_NAME attribute indicates the parameter name.
Used in a describe_parameter_set scenario.

Data Type
char[]

Description
The name of a parameter to a UDF.

Usage
If the UDF sets this property, the server compares the value with the name of the parameter
supplied in the CREATE PROCEDURE statement. If the two values do not match, the server
returns an error. This allows the UDF to ensure the CREATE PROCEDURE statement has the
same parameter names as the UDF is expecting.

Returns
On success, returns the length of the parameter name.

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
equal to Annotation.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the
parameter is the result table.

• EXTFNAPI4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if the
UDF tries to reset the name.

Query Processing States
Valid in:

• Annotation state

EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TYPE attribute indicates the data type of the
parameter. Used in a describe_parameter_set scenario.

Data Type
a_sql_data_type

Description
The data type of a parameter to a UDF.

Using In-Database Analytics in Applications

74 SAP Sybase IQ

Usage
When the UDF sets this property, the server compares the value to the parameter type supplied
in the CREATE PROCEDURE statement. If the two values do not match, the server returns an
error. This check ensures that the CREATE PROCEDURE statement has the same parameter
data types that the UDF expects.

Returns
On success, returns sizeof(a_sql_data_type).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe_buffer is not the sizeof(a_sql_data_type).

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the query
processing state is not equal to Annotation.

• EXTFNAPI4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if the
UDF tries to set the datatype of a parameter to something other than what it is already
defined as.

Query Processing States
Valid in:

• Annotation state

EXTFNAPIV4_DESCRIBE_PARM_WIDTH Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_WIDTH attribute indicates the width of a parameter.
Used in a describe_parameter_set scenario.

Data Type
a_sql_uint32

Description
The width of a parameter to a UDF. EXTFNAPIV4_DESCRIBE_PARM_WIDTH applies
only to scalar parameters. Parameter width is the amount of storage, in bytes, required to store
a parameter of the associated data type.

• Fixed length data types – the bytes required to store the data.
• Variable length data types – the maximum length.
• LOB data types – the amount of storage required to store a handle to the data.
• TIME data types – the amount of storage required to store the encoded time.

Usage
This is a read-only property. The width is derived from the associated column data type. Once
the data type is set, you cannot change the width.

Using In-Database Analytics in Applications

Programming 75

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the query
processing state is not equal to Annotation.

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe_buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the
specified parameter is a TABLE parameter. This includes parameter 0, or parameter n,
where n is an input table.

• EXTFNAPI4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if the
UDF tries to reset the parameter width.

Query Processing States
Valid in:

• Annotation state

EXTFNAPIV4_DESCRIBE_PARM_SCALE Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_SCALE attribute indicates the scale of a parameter.
Used in a describe_parameter_set scenario.

Data Type
a_sql_uint32

Description
The scale of a parameter to a UDF. For arithmetic data types, parameter scale is the number of
digits to the right of the decimal point in a number.

This attribute is invalid for:

• Nonarithmetic data types
• TABLE parameters

Usage
This is a read-only property. The scale is derived from the associated column data type. Once
the data type is set, you cannot change the scale.

Returns
On success, returns sizeof(a_sql_uint32).

On failure, returns one of the generic describe_parameter errors or:

Using In-Database Analytics in Applications

76 SAP Sybase IQ

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe_buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
Annotation.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the
specified parameter is a TABLE parameter. This includes parameter 0, or parameter n,
where n is an input table.

Query Processing States
Valid in:

• Annotation state

EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL attribute returns whether or not the
parameter is null. Using this attribute in a describe_parameter_set scenario returns
an error.

Data Type
a_sql_byte

Description
True, if the value of a parameter can be NULL at the time of execution. For a TABLE
parameter or parameter 0, the value is false.

Usage
This is a read-only property.

Returns
This is a read-only property, so all attempts to set result in an
EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE error.

Query Processing States
Not applicable.

EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES attribute returns the number of
distinct values. Using this attribute in a describe_parameter_set scenario returns an
error.

Data Type
a_v4_extfn_estimate

Using In-Database Analytics in Applications

Programming 77

Description
Returns the estimated number of distinct values across all invocations. valid only for scalar
parameters.

Usage
This is a read-only property.

Returns
This is a read-only property; all attempts to set result in an
EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE error.

Query Processing States
Not applicable.

EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES attribute returns whether or
not the parameter is constant. Using this attribute in a describe_parameter_set
scenario returns an error.

Data Type
a_sql_byte

Description
True, if the parameter is a constant for the statement. Valid only for scalar parameters.

Usage
This is a read-only property.

Returns
This is a read-only property; all attempts to set result in an
EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE error.

Query Processing States
Not applicable.

EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE attribute indicates the value of
the parameter. Used in a describe_parameter_set scenario.

Data Type
an_extfn_value

Using In-Database Analytics in Applications

78 SAP Sybase IQ

Description
The value of the parameter if it is known at describe time. Valid only for scalar parameters.

Usage
This is a read-only property.

Returns
This is a read-only property; all attempts to set result in an
EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE error.

Query Processing States
Not applicable.

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS attribute indicates the
number of columns in the table. Used in a describe_parameter_set scenario.

Data Type
a_sql_uint32

Description
The number of columns in the table. Only valid for argument 0 and table arguments.

Usage
If the UDF sets this property, the server compares the value with the name of the parameter
supplied in the CREATE PROCEDURE statement. If the two values do not match, the server
returns an error. This allows the UDF to ensure the CREATE PROCEDURE statement has the
same parameter names as the UDF is expecting.

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe_buffer is not the size of size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
ANNOTATION.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – set error returned if the
parameter is not a TABLE parameter.

• EXTFNAPI4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if the
UDF tries to reset the number of columns of the specified table.

Using In-Database Analytics in Applications

Programming 79

Query Processing States
Valid in:

• Annotation state

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS attribute indicates the
number of rows in the table. Used in a describe_parameter_set scenario.

Data Type
a_sql_a_v4_extfn_estimate

Description
The estimated number of rows in the table. Only valid for argument 0 and table arguments.

Usage
The UDF sets this property for argument 0 if it estimates the number of rows in the result set.
The server uses the estimate during optimization to make query processing decisions. You
cannot set this value for an input table.

If you do not set a value, the server defaults to the number of rows specified by the
DEFAULT_TABLE_UDF_ROW_COUNT option.

Returns
On success, returns a_v4_extfn_estimate.

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe_buffer is not the size of a_v4_extfn_estimate.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
Optimization.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – get error returned if the
parameter is not a TABLE parameter.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – get error returned if the
TABLE parameter is not the result table.

• EXTFNAPI4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – get error returned if the
UDF tries to reset the number of columns of the specified table.

Query Processing States
Valid in:

• Query Optimization state

Using In-Database Analytics in Applications

80 SAP Sybase IQ

EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY attribute indicates the order of
rows in the table. Used in a describe_parameter_set scenario.

Data Type
a_v4_extfn_orderby_list

Description
The order of rows in the table. This property is only valid for argument 0 and table arguments.

Usage
This attribute allows the UDF code to:

• Determine if the input TABLE parameter has been ordered
• Declare that the result set is ordered.

If the parameter number is 0, then the attribute refers to the outbound result set. If the
parameter is > 0 and the parameter type is a table then the attribute refers to the input TABLE
parameter.

The order is specified by the a_v4_extfn_orderby_list, which is a structure
supporting a list of column ordinals and their associated ascending or descending property. If
the UDF sets the order by property for the outbound result set, the server is then able to
perform order by optimizations. For example, if the UDF produced ascending order on the
first result set column, the server will eliminate a redundant order by request on the same
column.

If the UDF does not set the orderby property on the outbound result set, the server assumes the
data is not ordered.

If the UDF sets the orderby property on the input TABLE parameter, the server guarantees data
ordering for the input data. In this scenario, the UDF describes to the server that the input data
must be ordered. If the server detects a runtime conflict it raises a SQL exception. For
example, when the UDF describes that the first column of the input TABLE parameter must
have ascending order and the SQL statement contains a descending clause, the server raises a
SQL exception.

In the event that the SQL did not contain an ordering clause, the server automatically adds the
ordering to ensure that input TABLE parameter is ordered as required.

Returns
If successful, returns the number of bytes copied from a_v4_extfn_orderby_list.

Query Processing States
Valid in:

Using In-Database Analytics in Applications

Programming 81

• Annotation state
• Query optimization state

EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY attribute indicates that
the UDF requires partitioning. Used in a describe_parameter_set scenario.

Data Type
a_v4_extfn_column_list

Description
UDF developers use EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY to
programmatically declare that the UDF requires partitioning before invocation can proceed.

Usage
The UDF can inquire to the partition to enforce it, or to dynamically adapt the partitioning.
The UDF must allocate the a_v4_extfn_column_list, taking into consideration the total
number of columns in the input table, and sending that data to the server.

Returns
On success, returns the size of a_v4_extfn_column_list. This value is equal to:

sizeof(a_v4_extfn_column_list) + sizeof(a_sql_uint32) *
number_of_partition_columns

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – Set error returned if the
buffer length is less than the expected size.

Query Processing States
Valid in:

• Annotation state
• Query Optimization state

Example
void UDF_CALLBACK my_tpf_proc_describe(a_v4_extfn_proc_context
*ctx)
{
 if(ctx->current_state == EXTFNAPIV4_STATE_ANNOTATION) {
 a_sql_int32 rc = 0;
 a_v4_extfn_column_list pbcol =
 { 1, // 1 column in the partition by list
 2 }; // column index 2 requires partitioning

 // Describe partitioning for argument 1 (the table)
 rc = ctx->describe_parameter_set(
 ctx, 1,

Using In-Database Analytics in Applications

82 SAP Sybase IQ

 EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY,
 &pbcol,
 sizeof(pbcol));

 if(rc == 0) {
 ctx->set_error(ctx, 17000,
 “Runtime error, unable set partitioning requirements for
column.”);
 }
 }
}

EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND attribute indicates
that the consumer requests rewind of an input table. Used in a
describe_parameter_set scenario.

Data Type
a_sql_byte

Description
Indicates that the consumer wants to rewind an input table. Valid only for table input
arguments. By default, this property is false.

Usage
If the UDF requires input table rewind capability, the UDF must set this property during
Optimization.

Returns
On success, returns sizeof(a_sql_byte).

On failure, returns one of the generic describe_parameter errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe_buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
equal to Optimization.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the UDF
attempts to set this attribute on parameter 0.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – set error returned if the
UDF attempts to set this attribute on a parameter that is not a table.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

Using In-Database Analytics in Applications

Programming 83

• Optimization state

Example
In this example, when the function my_udf_describe is called during the Optimization state,
the call to describe_parameter_set informs the producer of the table input parameter
1 that a rewind may be required.

Sample procedure definition:

CREATE PROCEDURE my_udf(IN t TABLE(c1 INT))
RESULT (x INT)
EXTERNAL NAME ‘my_udf@myudflib’;
Sample _describe_extfn API function code fragment:

my_udf_describe(a_v4_extfn_proc_context *cntxt)
{
if(cntxt->current_state == EXTFNAPIV4_STATE_OPTIMIZATION) {
a_sql_byte rewind_required = 1;
a_sql_int32 ret = 0;

ret = cntxt->describe_parameter_set(cntxt, 1,
EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND,
&rewind_required,
sizeof(a_sql_byte));

if(ret <= 0) {
 // Handle the error.
}
}
}

EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND attribute indicates if the
parameter supports rewind. Used in a describe_parameter_set scenario.

Data Type
a_sql_byte

Description
Indicates whether a producer can support rewind. Valid only for table arguments.

You must also provide an implementation of the rewind table callback (_rewind_extfn()), if
you plan on setting DESCRIBE_PARM_TABLE_HAS_REWIND to true. The server cannot
execute the UDF if you do not provide the callback method.

Usage
A UDF sets this property during the Optimization state if it can provide rewind capability for
its result table at no cost. If it is expensive for the UDF to provide rewind, do not set this
property, or set it to 0. If set to 0, the server provides rewind support.

Using In-Database Analytics in Applications

84 SAP Sybase IQ

Returns
On success, returns sizeof(a_sql_byte).

On failure, returns one of the generic describe_parameter errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if the
describe_buffer is not the size of a_sql_byte.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
equal to Optimization.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – set error returned if the
UDF attempts to set this attribute on a parameter that is not a table.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the
specified argument is not the result table.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the UDF attempts to set this attribute to a value other than 0 or 1.

Query Processing States
Valid in:

• Optimization state

EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS Attribute (Set)
The EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS attribute lists
unconsumed columns. Used in a describe_parameter_set scenario.

Data Type
a_v4_extfn_column_list

Description
The list of output table columns that are not going to be consumed by the server or the UDF.

For the output TABLE parameter, the UDF normally produces the data for all the columns, and
the server consumes all the columns. The same holds true for the input TABLE parameter
where the server normally produces the data for all the columns, and the UDF consumes all the
columns.

However, in some cases the server, or the UDF, may not consume all the columns. The best
practice in such a case is that the UDF performs a GET for the output table on the describe
attribute EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS. This action
queries the server for the list of output table columns which are not going to be consumed by
the server. The list can then be used by the UDF when populating the column data for the
output table; that is, the UDF skips populating data for unused columns.

In summary, for the output table the UDF polls the list of unused columns. For the input table,
the UDF pushes the list of unused columns.

Using In-Database Analytics in Applications

Programming 85

Usage
The UDF sets this property during Optimization if it is not going to use certain columns of the
input TABLE parameter. The UDF must allocate a a_v4_extfn_column_list that
includes all the columns of the output table, and then must pass it to the server. The server then
marks all the un-projected column ordinals as 1. The server copies the list into its internal data
structure.

Returns
On success, returns the size of the column list: sizeof(a_v4_extfn_column_list)
+ sizeof(a_sql_uint32) * number result columns.

On failure, returns one of the generic describe_parameter errors or:

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – set error returned if the state is not
Optimization.

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if the UDF
attempts to get this attribute on an input table.

• EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER – set error returned if the
UDF attempts to set this attribute on a parameter that is not a table.

Query Processing States
Valid in:

• Optimization state

*describe_udf_get
The describe_udf_get v4 API method gets UDF properties from the server.

Declaration
a_sql_int32 (SQL_CALLBACK *describe_udf_get)(
 a_v4_extfn_proc_context *cntxt,
 a_v4_extfn_describe_udf_type describe_type,
 void *describe_buffer,
 size_t describe_buffer_len);

Parameters

Parameter Description

cntxt The procedure context object for this UDF.

describe_type A selector indicating what property to retrieve.

Using In-Database Analytics in Applications

86 SAP Sybase IQ

Parameter Description

describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data type is indicated by the
describe_type parameter.

describe_buffer_length The length in bytes of the describe_buffer.

Returns
On success, returns 0 or the number of bytes written to the describe_buffer. A value of 0
indicates that the server was unable to get the attribute but no error condition occurred. If an
error occurred, or no property was retrieved, this function returns one of the generic
describe_udf errors.

Attributes for *describe_udf_get
Code showing the attributes for describe_udf_get.

typedef enum a_v4_extfn_describe_udf_type {
 EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS,
 EXTFNAPIV4_DESCRIBE_UDF_LAST
} a_v4_extGetfn_describe_udf_type;

EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS Attribute (Get)
The EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS attribute indicates the number of
parameters. Used in a describe_udf_get scenario.

Data Type
a_sql_uint32

Description
The number of parameters supplied to the UDF.

Usage
Gets the number of parameters as defined in the CREATE PROCEDURE statement.

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_udf errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – get error returned if the
describe buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – get error returned if the phase is not
greater than Initial.

Using In-Database Analytics in Applications

Programming 87

Query Processing Phases

• Annotation phase
• Query optimization phase
• Plan building phase
• Execution phase

*describe_udf_set
The describe_udf_set v4 API method sets UDF properties on the server.

Declaration
a_sql_int32 (SQL_CALLBACK *describe_udf_set)(
 a_v4_extfn_proc_context *cntxt,
 a_v4_extfn_describe_udf_type describe_type,
 const void *describe_buffer,
 size_t describe_buffer_len);

Parameters

Parameter Description

cntxt The procedure context object for this UDF.

describe_type A selector indicating what property to set.

describe_buffer A structure that holds the describe information
for the specified property to set on the server. The
specific structure or data-type is indicated by the
describe_type parameter.

describe_buffer_length The length, in bytes, of describe_buffer.

Returns
On success, returns the number of bytes written to the describe_buffer. If an error occurs, or
no property is retrieved, this function returns one of the generic describe_udf errors.

If an error occurs, or no property is retrieved, this function returns one of the generic
describe_udf errors, or:

• EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER – set error returned if any of the
cntxt or describe_buffer arguments are NULL or if describe_buffer_length is 0.

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – set error returned if there
is a discrepancy between the requested attribute’s size and the supplied
describe_buffer_length.

Using In-Database Analytics in Applications

88 SAP Sybase IQ

Attributes for *describe_udf_set
Code showing the attributes for describe_udf_set.

typedef enum a_v4_extfn_describe_udf_type {
 EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS,
 EXTFNAPIV4_DESCRIBE_UDF_LAST
} a_v4_extGetfn_describe_udf_type;

EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS Attribute (Set)
The EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS attribute indicates the number of
parameters. Used in a describe_udf_set scenario.

Data Type
a_sql_uint32

Description
The number of parameters supplied to the UDF.

Usage
If the UDF sets this property, the server compares the value with the number of parameters
supplied in the CREATE PROCEDURE statement. If the two values do not match, the server
returns a SQL error. This allows the UDF to ensure the CREATE PROCEDURE statement has
the same number of parameters expected by the UDF.

Returns
On success, returns the sizeof(a_sql_uint32).

On failure, returns one of the generic describe_udf errors, or:

• EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH – Set error returned if the
describe buffer is not the size of a_sql_uint32.

• EXTFNAPIV4_DESCRIBE_INVALID_STATE – Set error returned if the state is not
equal to Annotation.

• EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE – set error returned if
the UDF tries to reset the parameter datatype.

Query processing states

• Annotation state

Using In-Database Analytics in Applications

Programming 89

Describe Column Type (a_v4_extfn_describe_col_type)
The a_v4_extfn_describe_col_type enumerated type selects the column property
retrieved or set by the UDF.

Implementation
typedef enum a_v4_extfn_describe_col_type {
 EXTFNAPIV4_DESCRIBE_COL_NAME,
 EXTFNAPIV4_DESCRIBE_COL_TYPE,
 EXTFNAPIV4_DESCRIBE_COL_WIDTH,
 EXTFNAPIV4_DESCRIBE_COL_SCALE,
 EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL,
 EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES,
 EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE,
 EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT,
 EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER,
 EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE,
 EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT,
 EXTFNAPIV4_DESCRIBE_COL_LAST
} a_v4_extfn_describe_col_type;

Members Summary

Member Description

EXTFNAPIV4_DESCRIBE_COL_NAME Column name (valid identifier).

EXTFNAPIV4_DESCRIBE_COL_TYPE Column data type.

EXTFNAPIV4_DESCRIBE_COL_WIDTH String width (precision for NU-
MERIC).

EXTFNAPIV4_DESCRIBE_COL_SCALE Scale for NUMERIC.

EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL True, if a column can be NULL.

EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES Estimated number of distinct
values in the column.

EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE True, if column is unique within
the table.

EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT True, if column is constant for
statement lifetime.

EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE The value of a parameter, if
known at describe time.

Using In-Database Analytics in Applications

90 SAP Sybase IQ

Member Description

EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUM-
ER

True, if column is needed by the
consumer of the table.

EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE The minimum value for the col-
umn (if known).

EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE The maximum value for the col-
umn (if known).

EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_IN-
PUT

The result column values are a
subset of columns from an input
table.

EXTFNAPIV4_DESCRIBE_COL_LAST First illegal value for v4 API.
Out-of-band value.

Describe Parameter Type (a_v4_extfn_describe_parm_type)
The a_v4_extfn_describe_parm_type enumerated type selects the parameter
property retrieved or set by the UDF.

Implementation
typedef enum a_v4_extfn_describe_parm_type {
 EXTFNAPIV4_DESCRIBE_PARM_NAME,
 EXTFNAPIV4_DESCRIBE_PARM_TYPE,
 EXTFNAPIV4_DESCRIBE_PARM_WIDTH,
 EXTFNAPIV4_DESCRIBE_PARM_SCALE,
 EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL,
 EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES,
 EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT,
 EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE,

 EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND,
 EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS,

 EXTFNAPIV4_DESCRIBE_PARM_LAST
} a_v4_extfn_describe_parm_type;

Using In-Database Analytics in Applications

Programming 91

Members Summary

Member Description

EXTFNAPIV4_DESCRIBE_PARM_NAME Parameter name (valid iden-
tifier).

EXTFNAPIV4_DESCRIBE_PARM_TYPE Data type.

EXTFNAPIV4_DESCRIBE_PARM_WIDTH String width (precision for
NUMERIC).

EXTFNAPIV4_DESCRIBE_PARM_SCALE Scale for NUMERIC.

EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL True, if the value can be
NULL.

EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES Estimated number of distinct
values across all invocations.

EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT True, if parameter is a con-
stant for the statement.

EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE The value of a parameter, if
known at describe time.

These selectors can retrieve or set properties of a TABLE parameter. These enumerator values cannot
be used with scalar parameters:

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS The number of columns in the
table.

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS Estimated number of rows in
the table.

EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY The order of rows in a table.

EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY The partitioning; use num-
ber_of_columns=0 for ANY.

EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_RE-
WIND

True, if the consumer wants
the ability rewind the input
table.

EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND Return true, if the producer
supports rewind.

Using In-Database Analytics in Applications

92 SAP Sybase IQ

Member Description

EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COL-
UMNS

The list of output table col-
umns that are not going to be
consumed by the server or the
UDF.

EXTFNAPIV4_DESCRIBE_PARM_LAST First illegal value for v4 API.
Out-of-band value.

Describe Return (a_v4_extfn_describe_return)
The a_v4_extfn_describe_return enumerated type provides a return value, when
a_v4_extfn_proc_context.describe_xxx_get() or
a_v4_extfn_proc_context.describe_xxx_set() does not succeed.

Implementation
typedef enum a_v4_extfn_describe_return {
 EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE = 0, // the specified operation has no
meaning either for this attribute or in

the current context.
 EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH = -1, // the provided buffer size
does not match the required length or the

length is insufficient.
 EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER = -2, // the provided parameter number
is invalid
 EXTFNAPIV4_DESCRIBE_INVALID_COLUMN = -3, // the column number is invalid
for this TABLE parameter
 EXTFNAPIV4_DESCRIBE_INVALID_STATE = -4, // the describe method call is not
valid in the present state
 EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE = -5, // the attribute is known but not
appropriate for this object
 EXTFNAPIV4_DESCRIBE_UNKNOWN_ATTRIBUTE = -6, // the identified attribute is
not known to this server version
 EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER = -7, // the specified parameter is
not a TABLE parameter (for describe_col_get()

or set())
 EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE_VALUE = -8, // the specified attribute
value is illegal
 EXTFNAPIV4_DESCRIBE_LAST = -9
} a_v4_extfn_describe_return;

Members Summary

Member Re-
turn
Value

Description

EXTFNAPIV4_DESCRIBE_NOT_AVAILABLE 0 The specified operation
has no meaning either for
this attribute or in the cur-
rent context.

Using In-Database Analytics in Applications

Programming 93

Member Re-
turn
Value

Description

EXTFNAPIV4_DESCRIBE_BUFFER_SIZE_MISMATCH -1 The provided buffer size
does not match the re-
quired length, or the
length is insufficient.

EXTFNAPIV4_DESCRIBE_INVALID_PARAMETER -2 The provided parameter
number is invalid.

EXTFNAPIV4_DESCRIBE_INVALID_COLUMN -3 The column number is in-
valid for this TABLE pa-
rameter.

EXTFNAPIV4_DESCRIBE_INVALID_STATE -4 The describe method call
is invalid in the present
state.

EXTFNAPIV4_DESCRIBE_INVALID_ATTRIBUTE -5 The attribute is known but
not appropriate for this ob-
ject.

EXTFNAPIV4_DESCRIBE_UNKNOWN_ATTRIBUTE -6 The identified attribute is
not known to this server
version.

EXTFNAPIV4_DESCRIBE_NON_TABLE_PARAMETER -7 The specified parameter is
not a TABLE parameter
(for de-
scribe_col_get(
) or de-
scribe_col_set(
)).

EXTFNAPIV4_DESCRIBE_INVALID_ATTRIB-
UTE_VALUE

-8 The specified attribute val-
ue is illegal.

EXTFNAPIV4_DESCRIBE_LAST -9 First illegal value for v4
API.

Description
The return value of a_v4_extfn_proc_context.describe_xxx_get() and
a_v4_extfn_proc_context.describe_xxx_set() is a signed integer. If the
result is positive, the operation succeeds, and the value is the number of bytes copied. If the

Using In-Database Analytics in Applications

94 SAP Sybase IQ

return value is less or equal to zero, the operation does not succeed, and the return value is one
of the a_v4_extfn_describe_return values.

Describe UDF Type (a_v4_extfn_describe_udf_type)
Use the a_v4_extfn_describe_udf_type enumerated type to select the logical
property the UDF retrieves or sets.

Implementation
typedef enum a_v4_extfn_describe_udf_type {
 EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS,
 EXTFNAPIV4_DESCRIBE_UDF_LAST
} a_v4_extfn_describe_udf_type;

Members Summary

Member Description

EXTFNAPIV4_DE-
SCRIBE_UDF_NUM_PARMS

The number of parameters supplied to the UDF.

EXTFNAPIV4_DE-
SCRIBE_UDF_LAST

Out-of-band value.

Description
The a_v4_extfn_proc_context.describe_udf_get() method is used by the
UDF to retrieve properties, and the
a_v4_extfn_proc_context.describe_udf_set() method is used by the UDF
to set properties about the UDF as a whole. The a_v4_extfn_describe_udf_type
enumerator selects the logical property the UDF retrieves or sets.

Execution State (a_v4_extfn_state)
The a_v4_extfn_state enumerated type represents the query processing phase of a
UDF.

Implementation
typedef enum a_v4_extfn_state {
 EXTFNAPIV4_STATE_INITIAL, // Server initial state,
not used by UDF
 EXTFNAPIV4_STATE_ANNOTATION, // Annotating parse
tree with UDF reference
 EXTFNAPIV4_STATE_OPTIMIZATION, // Optimizing
 EXTFNAPIV4_STATE_PLAN_BUILDING, // Building execution
plan
 EXTFNAPIV4_STATE_EXECUTING, // Executing UDF and
fetching results from UDF
 EXTFNAPIV4_STATE_LAST
} a_v4_extfn_state;

Using In-Database Analytics in Applications

Programming 95

Members Summary

Member Description

EXTFNAPIV4_STATE_INITIAL Server initial phase. The only UDF method that is
called during this query processing phase is
_start_extfn.

EXTFNAPIV4_STATE_ANNOTATION Annotating parse tree with UDF reference. The
UDF is not invoked during this phase.

EXTFNAPIV4_STATE_OPTIMIZATION Optimizing. The server calls the UDF’s
_start_extfn method, followed by the

_describe_extfn function.

EXTFNAPIV4_STATE_PLAN_BUILDING Building a query execution plan. The server calls
the UDF’s _describe_extfn function.

EXTFNAPIV4_STATE_EXECUTING Executing UDF and fetching results from UDF.
The server calls the _describe_extfn
function before starting to fetch data from the
UDF. The server then calls _evalu-
ate_extfn to start the fetch cycle. During the

fetch cycle, the server calls the functions defined
in a_v4_extfn_table_func. When

fetching finishes, the server calls the UDF’s
_close_extfn function.

EXTFNAPIV4_STATE_LAST First illegal value for v4 API. Out-of-band value.

Description
The a_v4_extfn_state enumeration indicates which stage of UDF execution the server
is in. When the server makes a transition from one phase to the next, the server informs the
UDF it is leaving the previous phase by calling the UDF’s _leave_state_extfn
function. The server informs the UDF it is entering the new phase by calling the UDF’s
_enter_state_extfn function.

The query processing phase of a UDF restricts the operations that the UDF can perform. For
example, in the Annotation phase, the UDF can retrieve the data types only for constant
parameters.

Using In-Database Analytics in Applications

96 SAP Sybase IQ

External Function (a_v4_extfn_proc)
The server uses the a_v4_extfn_proc structure to call into the various entry points in the
UDF. The server passes an instance of a_v4_extfn_proc_context to each of the
functions.

Method Summary

Method Description

_start_extfn Allocates a structure and stores its address in the
_user_data field in the
a_v4_extfn_proc_context.

_finish_extfn Deallocates a structure whose address was stored
in the user_data field in the
a_v4_extfn_proc_context.

_evaluate_extfn Required function pointer to be called for each
invocation of the function on a new set of argu-
ment values.

_describe_extfn See Describe API on page 25.

_enter_state_extfn The UDF can use this function to allocate struc-
tures.

_leave_state_extfn The UDF can use this function to release memory
or resources needed for the state.

_start_extfn
Use the _start_extfn v4 API method as an optional pointer to an initializer function, for
which the only argument is a pointer to a_v4_extfn_proc_context structure.

Declaration
_start_extfn(
a_v4_extfn_proc_context *
)

Usage
Use the _start_extfn method to allocate a structure and store its address in the
_user_data field in the a_v4_extfn_proc_context. This function pointer must be
set to the null pointer if there is no need for any initialization.

Using In-Database Analytics in Applications

Programming 97

Parameters

Parameter Description

cntxt The procedure context object.

_finish_extfn
Use the _finish_extfn v4 API method as an optional pointer to a shutdown function, for
which the only argument is a pointer to a_v4_extfn_proc_context.

Declaration
_finish_extfn(
 a_v4_extfn_proc_context *cntxt,
)

Usage
The _finish_extfn API deallocates a structure for which the address was stored in the
user_data field in the a_v4_extfn_proc_context. This function pointer must be
set to the null pointer if there is no need for any cleanup.

Parameters

Parameter Description

cntxt The procedure context object.

_evaluate_extfn
Use the _evaluate_extfn v4 API method as a required function pointer that is called for
each invocation of the function on a new set of argument values.

Declaration
_evaluate_extfn(
 a_v4_extfn_proc_context *cntxt,
 void *args_handle
)

Usage
The _evaluate_extfn function must describe to the server how to fetch results by filling
in the a_v4_extfn_table_func portion of the a_v4_extfn_table structure and
use the set_value method on the context with argument zero to send this information to the
server. This function must also inform the server of its output schema by filling in the
a_v4_extfn_value_schema of the a_v4_extfn_table structure before calling
set_value on argument 0. It can access its input argument values via the get_value
callback function. Both constant and nonconstant arguments are available to the UDF at this
time.

Using In-Database Analytics in Applications

98 SAP Sybase IQ

Parameters

Parameter Description

cntxt The procedure context object.

args_handle Handle to the arguments in the server.

_describe_extfn
_describe_extfn is called at the beginning of each state to allow the server to get and set
logical properties. The UDF can do this by using the six describe methods
(describe_parameter_get, describe_parameter_set,
describe_column_get, describe_column_set, describe_udf_get, and
describe_udf_set) in the a_v4_proc_context object.

See Describe API on page 25.

_enter_state_extfn
The UDF can implement the _enter_state_extfn v4 API method as an optional entry
point to be notified whenever the UDF enters a new state.

Declaration
_enter_state_extfn(
 a_v4_extfn_proc_context *cntxt,
)

Usage
The UDF can use this notification to allocate structures.

Parameters

Parameter Description

cntxt The procedure context object.

_leave_state_extfn
The _leave_state_extfn v4 API method is an optional entry point the UDF can
implement to receive a notification when the UDF moves out of a query processing state.

Declaration
_leave_state_extfn(
 a_v4_extfn_proc_context *cntxt,
)

Usage
The UDF can use this notification to release memory or resources needed for the state.

Using In-Database Analytics in Applications

Programming 99

Parameters

Parameter Description

cntxt The procedure context object.

External Procedure Context (a_v4_extfn_proc_context)
Use the a_v4_extfn_proc_context structure to retain context information from the
server and from the UDF.

Implementation
typedef struct a_v4_extfn_proc_context {
.
.
.
} a_v4_extfn_proc_context;

Method Summary

Re-
turn
Type

Method Description

short get_value Gets input arguments to the UDF.

short get_value_is_constant Allows the UDF to ask whether a given argument is a con-
stant.

short set_value Used by the UDF in either the _evaluate_extfn or

_describe_extfn functions to describe to the server

what its output will look like and to inform the server how to
fetch results from the UDF.

a_sql_
uint32

get_is_cancelled Call the get_is_cancelled callback every second or two to see
if the user has interrupted the current statement.

short set_error Rolls back the current statement and generates an error.

void log_message Writes a message to the message log.

short convert_value Converts one data type to another.

short get_option Gets the value of a settable option.

void alloc Allocates a block of memory of length at least "len".

void free Free the memory allocated by alloc() for the specified life-
time.

Using In-Database Analytics in Applications

100 SAP Sybase IQ

Re-
turn
Type

Method Description

a_sql_
uint32

describe_column_get See *describe_column_get on page 26.

a_sql_
uint32

describe_column_set See *describe_column_set on page 40.

a_sql_
uint32

describe_parameter_get See *describe_parameter_get on page 55.

a_sql_
uint32

describe_parameter_set See *describe_parameter_set on page 72.

a_sql_
uint32

describe_udf_get See *describe_udf_get on page 86.

a_sql_
uint32

describe_udf_set See *describe_udf_set on page 88.

short open_result_set Opens a result set for a table value.

short close_result_set Closes an open result set.

short get_blob Retrieves an input parameter that is a blob.

short set_cannot_be_distrib-

uted

Disables distribution at the UDF level even if the library is
distributable.

Data Members and Data Types Summary

Data Member Data
Type

Description

_user_data void * This data pointer can be filled in by any usage with whatever
context data the external routine requires.

_executionMode a_sql_ui
nt32

Indicates the debug/trace level requested via the Exter-

nal_UDF_Execution_Mode option. This is a read-only field.

current_state a_sql_ui
nt32

The current_state attribute reflects the current execution mode of
the context. This can be queried from functions such as _de-
scribe_extfn to determine what course of action to take.

Description
In addition to retaining context information from the server and the UDF, the structure
a_v4_extfn_proc_context allows the UDF to call back into the server to perform

Using In-Database Analytics in Applications

Programming 101

certain actions. The UDF can store private data in this structure in the _user_data member.
An instance of this structure gets passed to the functions in the a_v4_extfn_proc method
by the server. User data is not maintained until after the server reaches the Annotation state.

get_value
Use the get_value v4 API method to obtain the values of input arguments sent to the UDF
in a SQL query.

Declaration
 short get_value(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value
)

Usage
The get_value API is used in an evaluation method to retrieve the value of each input
argument to the UDF. For narrow argument data types (>32K), a call to get_value is
sufficient to retrieve the entire argument value.

The get_value API can be called from any API that has access to the arg_handle
pointer. This includes API functions that take a_v4_table_context as a parameter. The
a_v4_table_context has an args_handle member variable that can be used for this
purpose.

For all fixed-length data types, the data is available in the returned value and no further calls
are necessary to obtain all of the data. The producer can decide what the maximum length is
that is returned entirely in the call to get_value method. All fixed length data types should
be guaranteed to fit in a single contiguous buffer. For variable-length data, the limit is
producer-dependant.

For nonfixed-length data types, and depending on the length of the data, a blob may need to be
created using the get_blob method to get the data. You can use the macro
EXTFN_IS_INCOMPLETE on the value returned by get_value to determine whether a blob
object is required. If EXTFN_IS_INCOMPLETE evaluates to true, a blob is required.

For input arguments that are tables, the type is AN_EXTFN_TABLE. For this type of argument,
you must create a result set using the open_result_set method to read values in from the
table.

If a UDF requires the value of an argument prior to the _evaluate_extfn API being
called, then the UDF should implement the _describe_extfn API. From the
_describe_extfn API, the UDF can obtain the value of constant expressions using the
describe_parameter_get method.

Using In-Database Analytics in Applications

102 SAP Sybase IQ

Parameters

Parameter Description

arg_handle A context pointer provided by the consumer.

arg_num The index of the argument to get a value for. The argument index starts at 1.

value The value of the specified argument.

Returns
1 if successful, 0 otherwise.

an_extfn_value Structure
The an_extfn_value structure represents the value of an input argument returned by the
get_value API.

This code shows the declaration of the an_extfn_value structure:

 short typedef struct an_extfn_value {
 void* data;
 a_sql_uint32 piece_len,
 an_extfn_value *value {
 a_sql_uint32 total_len;
 a_sql_uint32 remain_len;
 } len;
 a_sql_data_type type;
} an_extfn_value;

This table describes what the returned values of an_extfn_value object look like after calling
the get_value method:

Value Re-
turned by
get_value API

EXTFN_IS_IN
COMPLETE

total_len piece_len data

null FALSE 0 0 null

empty string FALSE 0 0 non-null

Size <
MAX_UINT32

FALSE actual actual non-null

size <
MAX_UINT32

TRUE actual 0 non-null

size >=
MAX_UINT32

TRUE MAX_UINT32 0 non-null

Using In-Database Analytics in Applications

Programming 103

The type field of an_extfn_value contains the data type of the value. For UDFs that have tables
as input arguments, the data type of that argument is DT_EXTFN_TABLE. For v4 Table UDFs,
the remain_len field is not used.

get_value_is_constant
Use the get_value_is_constant v4 API method to determine whether the specified
input argument value is a constant.

Declaration
 short get_value_is_constant(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value_is_constant
)

Usage
The UDF can ask whether a given argument is a constant. This is useful for optimizing a UDF,
for example, where work can be performed once during the first call to the
_evaluate_extfn function, rather than for every evaluation call.

Parameters

Parameter Description

arg_handle Handle the arguments in the server.

arg_num The index value of the input argument being retrieved. Index values are 1..N.

value_is_constant Out parameter for storing is constant.

Returns
1 if successful, 0 otherwise.

set_value
Use the set_value v4 API method to describe to the consumer how many columns the
result set has and how data should be read.

Declaration
 short set_value(
 void * arg_handle,
 a_sql_uint32 arg_num,
 an_extfn_value *value
)

Using In-Database Analytics in Applications

104 SAP Sybase IQ

Usage
This method is used by the UDF in the _evaluate_extfn API. The UDF must call the
set_value method to tell the consumer how many columns are in the result set and what set
of a_v4_extfn_table_func functions the UDF supports.

For the set_value API, the UDF provides an appropriate arg_handle pointer via the
_evaluate_extfnAPI, or from the args_handle member of
a_v4_extfn_table_context structure.

The value argument for the set_value method must be of type DT_EXTFN_TABLE for v4
Table UDFs.

Parameters

Parameter Description

arg_handle A context pointer provided by the consumer.

arg_num The index of the argument to set a value for. The only supported argument is 0.

value The value of the specified argument.

Returns
1 if successful, 0 otherwise.

get_is_cancelled
Use the get_is_cancelled v4 API method to determine whether the statement has been
cancelled.

Declaration
 short get_is_cancelled(
 a_v4_extfn_proc_context * cntxt,

)

Usage
If a UDF entry point is performing work for an extended period of time (many seconds), it
should, if possible, call the get_is_cancelled callback every second or two to see if the
user has interrupted the current statement. If the statement has been interrupted, a nonzero
value is returned and the UDF entry point should then immediately return. Call the
_finish_extfn function to perform necessary cleanup. Do not subsequently call any
other UDF entry points.

Using In-Database Analytics in Applications

Programming 105

Parameters

Parameter Description

cntxt The procedure context object.

Returns
A nonzero value, if the statement is interrupted.

set_error
Use the set_error v4 API method to communicate an error back to the server and
eventually to the user.

Declaration
 void set_error(
 a_v4_extfn_proc_context * cntxt,
 a_sql_uint32 error_number,
 const char *error_desc_string
)

Usage
Call the set_error API, if a UDF entry point encounters an error that should send an error
message to the user and shut down the current statement. When called, set_error API rolls
back the current statement and the user sees “Error raised by user-defined
function: <error_desc_string>”. The SQLCODE is the negated form of the
supplied <error_number>.

To avoid collisions with existing error codes, UDFs should generate error numbers between
17000 and 99999. If a number outside this range is provided, the statement is still rolled back,
but the error message is "Invalid error raised by user-defined
function: (<error_number>) <error_desc_string>" with a SQLCODE of
-1577. The maximum length of error_desc_string is 140 characters.

After a call to set_error is made, the UDF entry point should immediately perform a
return; eventually the _finish_extfn function is called to perform necessary cleanup. Do
not subsequently call any other UDF entry points.

Parameters

Parameter Description

cntxt The procedure context object

error_number The error number to set

Using In-Database Analytics in Applications

106 SAP Sybase IQ

Parameter Description

error_desc_string The message string to use

log_message
Use the log_message v4 API method to to send a message to the server's message log.

Declaration
 short log_message(
 const char *msg,
 short msg_length
)

Usage
The log_message method writes a message to the message log. The message string must be
a printable text string no longer than 255 bytes; longer messages may be truncated.

Parameters

Parameter Description

msg The message string to log

msg_length The length of the message string

convert_value
Use the convert_value v4 API method to convert data types.

Declaration
 short convert_value(
 an_extfn_value *input,
 an_extfn_value *output
)

Usage
. The primary use of the convert_value API is the converting between DT_DATE,
DT_TIME, and DT_TIMESTAMP, and DT_TIMESTAMP_STRUCT. An input and output
an_extfn_value is passed to the function.

Input Parameters

Parameter Description

an_extfn_value.data Input data pointer

Using In-Database Analytics in Applications

Programming 107

Parameter Description

an_extfn_value.total_len Length of input data

an_extfn_value.type DT_ datatype of input

Output Parameters

Parameter Description

an_extfn_value.data UDF supplied output data point

an_extfn_value.piece_len Maximum length of output data.

an_extfn_value.total_len Server set length of converted

an_extfn_value.type DT_ datatype of desired output

Returns
1 if successful, 0 otherwise.

get_option
The get_option v4 API method gets the value of a settable option.

Declaration
short get_option(
a_v4_extfn_proc_context * cntxt,
char *option_name,
an_extfn_value *output
)

Parameters

Parameter Description

cntxt The procedure context object

option_name Name of the option to get

output • an_extfn_value.data – UDF sup-

plied output data pointer

• an_extfn_value.piece_len –

maximum length of output data

• an_extfn_value.total_len –

server set length of converted output

• an_extfn_value.type – server set

data type of value

Using In-Database Analytics in Applications

108 SAP Sybase IQ

Returns
1 if successful, 0 otherwise.

alloc
The alloc v4 API method allocates a block of memory.

Declaration
void*alloc(
 a_v4_extfn_proc_context *cntxt,
 size_t len
)

Usage
Allocates a block of memory of length at least len. The returned memory is 8-byte aligned.

Tip: Use the alloc() method as your only means of memory allocation, which allows the
server to keep track of how much memory is used by external routines. The server can adapt
other memory users, track leaks, and provide improved diagnostics and monitoring.

Memory tracking is enabled only when external_UDF_execution_mode is set to a value of 1
or 2 (validation mode or tracing mode).

Parameters

Parameter Description

cntxt The procedure context object

len The length, in bytes, to allocate

free
The free v4 API method frees an allocated block of memory.

Declaration
void free(
 a_v4_extfn_proc_context *cntxt,
 void *mem
)

Usage
Frees the memory allocated by alloc() for the specified lifetime.

Memory tracking is enabled only when external_UDF_execution_mode is set to a value of 1
or 2 (validation mode or tracing mode).

Using In-Database Analytics in Applications

Programming 109

Parameters

Parameter Description

cntxt The procedure context object

mem Pointer to the memory allocated using the al-
loc method

open_result_set
The open_result_set v4 API method opens a result set for a table value.

Declaration
short open_result_set(
a_v4_extfn_proc_context *cntxt,
a_v4_extfn_table *table,
a_v4_extfn_table_context **result_set
)

Usage
open_result_set opens a result set for a table value. A UDF can open a result set to read
rows from an input parameter of type DT_EXTFN_TABLE. The server (or another UDF) can
open a result set to read rows from the UDF.

Parameters

Parameter Description

cntxt The procedure context object

table The table object on which to open a result set

result_set An output parameter that is set to be an opened
result set

Returns
1 if successful, 0 otherwise.

See the fetch_block and fetch_into v4 API method descriptions for examples of the
use of open_result_set.

close_result_set
The close_result_set v4 API method closes an open result set.

Declaration
short close_result_set(
 a_v4_extfn_proc_context *cntxt,

Using In-Database Analytics in Applications

110 SAP Sybase IQ

 a_v4_extfn_table_context *result_set
)

Usage
You can only use close_result_set once per result set.

Parameters

Parameter Description

cntxt The procedure context object

result_set The result set to close

Returns
1 if successful, 0 otherwise.

get_blob
Use the get_blob v4 API method to retrieve an input blob parameter.

Declaration
 short get_blob(
 void *arg_handle,
 a_sql_uint32 arg_num,
 a_v4_extfn_blob **blob
)

Usage
Use get_blob to retrieve a blob input parameter after calling get_value(). Use the
macro EXTFN_IS_INCOMPLETE to determine if a blob object is required to read the data
for the value returned from get_value(), if piece_len < total_len. The blob object is
returned as an output parameter and is owned by the caller.

get_blob obtains a blob handle that can be used to read the contents of the blob. Call this
method only on columns that contain blob objects.

Parameters

Parameter Description

arg_handle Handle to the arguments in the server

arg_num The argument is a number 1...N

blob Output argument containing the blob object

Returns
1 if successful, 0 otherwise.

Using In-Database Analytics in Applications

Programming 111

set_cannot_be_distributed
The set_cannot_be_distributed v4 API method disables distributions at the UDF
level, even if the distribution criteria are met at the library level.

Declaration
void set_cannot_be_distributed(a_v4_extfn_proc_context *cntxt)

Usage
In the default behavior, if the library is distributable, then the UDF is distributable. Use
set_cannot_be_distributed in the UDF to push the decision to disable distribution
to the server.

License Information (a_v4_extfn_license_info)
If you are a design partner, use the a_v4_extfn_license_info structure to define
library-level license validations for your UDFs, including your company name, library
version information, and an SAP-supplied license key.

Implementation
typedef struct an_extfn_license_info {
 short version;
} an_extfn_license_info;

typedef struct a_v4_extfn_license_info {
 an_extfn_license_info version;

 const char name[255];
 const char info[255];
 void * key;
} a_v4_extfn_license_info;

Data Member Summary

Data Member Description

version Internal use only. Must be set to 1.

name Value the UDF sets as your company name.

info Value the UDF sets for additional library information such as library version
and build numbers.

key (Design partners only) An SAP-supplied license key. The key is a 26-character
array.

Using In-Database Analytics in Applications

112 SAP Sybase IQ

Optimizer Estimate (a_v4_extfn_estimate)
Use the a_v4_extfn_estimate structure to describe an estimate, which includes a value
and a confidence level.

Implementation
typedef struct a_v4_extfn_estimate {
 double value;
 double confidence;
} a_v4_extfn_estimate;

Data Members and Data Types Summary

Data Member Data Type Description

value double The value for the estimate.

confidence double The confidence level associated
with the estimate. The confi-
dence varies from 0.0 to 1.0,
with 0.0 meaning the estimate is
invalid and 1.0 meaning the es-
timate is known to be true.

Order By List (a_v4_extfn_orderby_list)
Use the a_v4_extfn_orderby_list structure to describe the ORDER BY property of a
table.

Implementation
typedef struct a_v4_extfn_orderby_list {
 a_sql_uint32 number_of_elements;
 a_v4_extfn_order_el order_elements[1]; // there are
number_of_elements entries
} a_v4_extfn_orderby_list;

Data Members and Data Types Summary

Data Member Data Type Description

number_of_elements a_sql_uint32 The number of entries

order_elements[1] a_v4_extfn_order_el The order of the elements

Using In-Database Analytics in Applications

Programming 113

Description
There are number_of_elements entries, each with a flag indicating whether the element is
ascending or descending, and a column index indicating the appropriate column in the
associated table.

Partition By Column Number (a_v4_extfn_partitionby_col_num)
The a_v4_extfn_partitionby_col_num enumerated type represents the column
number to allow the UDF to express PARTITION BY support similar to that of SQL support.

Implementation
typedef enum a_v4_extfn_partitionby_col_num {
 EXTFNAPIV4_PARTITION_BY_COLUMN_NONE = -1, // NO PARTITION
BY
 EXTFNAPIV4_PARTITION_BY_COLUMN_ANY = 0, // PARTITION BY
ANY
 // + INTEGER representing a specific
column ordinal
} a_v4_extfn_partitionby_col_num;

Members Summary

Member of a_v4_extfn_partition-
by_col_num Enumerated Type

Val-
ue

Description

EXTFNAPIV4_PARTITION_BY_COL-
UMN_NONE

-1 NO PARTITION BY

EXTFNAPIV4_PARTITION_BY_COL-
UMN_ANY

0 PARTITION BY ANY positive inte-
ger representing a specific column
ordinal

Column Ordinal Number N > 0 Ordinal for the table column number
to partition on

Description
This structure allows the UDF to programmatically describe the partitioning and the column
to partition on.

Use this enumeration when populating the a_v4_extfn_column_list
number_of_columns field. When describing partition by support to the server, the UDF
sets the number_of_columns to one of the enumerated values, or to a positive integer
representing the number of column ordinals listed. For example, to describe to the server that
no partitioning is supported, create the structure as:
a_v4_extfn_column_list nopby = {
EXTFNAPIV4_PARTITION_BY_COLUMN_NONE,

Using In-Database Analytics in Applications

114 SAP Sybase IQ

0
};

The EXTFNAPIV4_PARTITION_BY_COLUMN_ANY member informs the server that the
UDF supports any form of partitioning.

To describe a set of ordinals to partition on, create the structure as:
a_v4_extfn_column_list nopby = {
2,
3, 4
};

This describes a partition by over 2 columns whose ordinals are 3 and 4.

Note: This example is for illustrative purposes only and is not legal code. The caller must
allocate the structure accordingly with room for 3 integers.

Row (a_v4_extfn_row)
Use the a_v4_extfn_row structure to represent the data in a single row.

Implementation
/* a_v4_extfn_row - */
typedef struct a_v4_extfn_row {
 a_sql_uint32 *row_status;
 a_v4_extfn_column_data *column_data;
} a_v4_extfn_row;

Data Members and Data Types Summary

Data Member Data Type Description

row_status a_sql_uint32 * The status of the row. Set to 1 for existing rows and 0
otherwise.

column_data a_v4_extfn_column_data * An array of column data for the row.

Description
The row structure contains information for a specific row of columns. This structure defines
the status of an individual row and includes a pointer to the individual columns within the row.
The row status is a flag that indicates the existence of a row. The row status flag can be altered
by nested fetch calls without requiring manipulation of the row block structure.

The row_status flag set as 1 indicates that the row is available and can be included in the result
set. The row_status set as 0 means the row should be ignored. This is useful when the TPF is
acting as a filter because TPF may pass through rows of an input table to the result set, but it
may also want to skip certain rows, which it can do by setting a status of 0 for those rows.

Using In-Database Analytics in Applications

Programming 115

Row Block (a_v4_extfn_row_block)
Use the a_v4_extfn_row_block structure to represent the data in a block of rows.

Implementation
/* a_v4_extfn_row_block - */
typedef struct a_v4_extfn_row_block {
 a_sql_uint32 max_rows;
 a_sql_uint32 num_rows;
 a_v4_extfn_row *row_data;
} a_v4_extfn_row_block;

Data Members and Data Types Summary

Data Member Data Type Description

max_rows a_sql_uint32 The maximum number of rows this row block can handle

num_rows a_sql_uint32 Must be less than or equal to the maximum of rows the row
block contains

row_data a_v4_extfn_row * The row data vector

Description
The row block structure is utilized by the fetch_into and fetch_block methods to
allow the production and consumption of data. The allocator sets the maximum number of
rows. The producer icorrectly sets the number of rows. The data consumer should not attempt
to read more than number of rows produced.

The owner of the row_block structure determines the value of max_rows data member. For
example, when a table UDF is implementing fetch_into, the value of max_rows is
determined by the server as the number of rows that can fit into 128K of memory. However,
when a table UDF is implementing fetch_block, the table UDF itself determines the value
of max_rows.

Restrictions and Limitations
The value for the both the num_rows and max_rows is > 0. The num_rows must be <=
max_rows. The row_data field should not be NULL for a valid row block.

Table (a_v4_extfn_table)
Use the a_v4_extfn_table structure to represent how data is stored in a table and how
the consumer fetches that data.

Implementation
typedef struct a_v4_extfn_table {
 a_v4_extfn_table_func *func;

Using In-Database Analytics in Applications

116 SAP Sybase IQ

 a_sql_uint32 number_of_columns;
} a_v4_extfn_table;

Data Members and Data Types Summary

Data Member Data Type Description

func a_v4_extfn_ta-
ble_func *

This member holds a set of function pointers that
the consumer uses to fetch result data

number_of_columns a_sql_uint32 * The number of columns in the table

Table Context (a_v4_extfn_table_context)
The a_v4_extfn_table_context structure represents an open result set over a table.

Implementation
typedef struct a_v4_extfn_table_context {

// size_t struct_size;

 /* fetch_into() - fetch into a specified row_block. This entry point
 is used when the consumer has a transfer area with a specific format.
 The fetch_into() function will write the fetched rows into the provided row block.
 */
 short (UDF_CALLBACK *fetch_into)(a_v4_extfn_table_context *cntxt,
a_v4_extfn_row_block *);

 /* fetch_block() - fetch a block of rows. This entry point is used
 when the consumer does not need the data in a particular format. For example,
 if the consumer is reading a result set and formatting it as HTML, the consumer
 does not care how the transfer area is layed out. The fetch_block() entry point is
 more efficient if the consumer does not need a specific layout.

 The row_block parameter is in/out. The first call should point to a NULL row
block.
 The fetch_block() call sets row_block to a block that can be consumed, and this
block
 should be passed on the next fetch_block() call.
 */
 short (UDF_CALLBACK *fetch_block)(a_v4_extfn_table_context *cntxt,
a_v4_extfn_row_block **row_block);

 /* rewind() - this is an optional entry point. If NULL, rewind is not supported.
Otherwise,
 the rewind() entry point restarts the result set at the beginning of the table.
 */
 short (UDF_CALLBACK *rewind)(a_v4_extfn_table_context *);

 /* get_blob() - If the specified column has a blob object, return it. The blob
 is returned as an out parameter and is owned by the caller. This method should
 only be called on a column that contains a blob. The helper macro
EXTFN_COL_IS_BLOB can
 be used to determine whether a column contains a blob.
 */
 short (UDF_CALLBACK *get_blob)(a_v4_extfn_table_context *cntxt,
 a_v4_extfn_column_data *col,
 a_v4_extfn_blob **blob);

 /* The following fields are reserved for future use and must be initialized to NULL.
*/
 void *reserved1_must_be_null;
 void *reserved2_must_be_null;
 void *reserved3_must_be_null;

Using In-Database Analytics in Applications

Programming 117

 void *reserved4_must_be_null;
 void *reserved5_must_be_null;

 a_v4_extfn_proc_context *proc_context;
 void *args_handle; // use in
a_v4_extfn_proc_context::get_value() etc.
 a_v4_extfn_table *table;
 void *user_data;
 void *server_internal_use;

 /* The following fields are reserved for future use and must be initialized to NULL.
*/
 void *reserved6_must_be_null;
 void *reserved7_must_be_null;
 void *reserved8_must_be_null;
 void *reserved9_must_be_null;
 void *reserved10_must_be_null;

} a_v4_extfn_table_context;

Method Summary

Data
Type

Method Description

short fetch_into Fetch into a specified row_block
short fetch_block Fetch a block of rows

short rewind Restarts the result set at the beginning of the table

short get_blob Return a blob object, if the specified column has a blob object

Data Members and Data Types Summary

Data Mem-
ber

Data Type Description

proc_context a_v4_extfn_proc_c
ontext *

A pointer to the procedure context object. The UDF can use
this to set errors, log messages, cancel, and so on.

args_handle void * A handle to the arguments provided by the server.

table a_v4_extfn_table * Points to the open result set table. This is populated after
a_v4_extfn_proc_context open_re-
sult_set has been called.

user_data void * This data pointer can be filled in by any usage with whatever
context data the external routine requires.

server_inter-
nal_use

void * Internal use only.

Using In-Database Analytics in Applications

118 SAP Sybase IQ

Description
The a_v4_extfn_table_context structure acts as a middle layer between the
producer and the consumer to help manage the data, when the consumer and producer require
separate formats.

A UDF can read rows from an input TABLE parameter using
a_v4_extfn_table_context. The server or another UDF can read rows from the result
table of a UDF using a_v4_extfn_table_context.

The server implements the methods of a_v4_extfn_table_context, which gives the
server an opportunity to resolve impedance mismatches.

fetch_into
The fetch_into v4 API method fetches data into a specified row block.

Declaration
short fetch_into(
a_v4_extfn_table_context *cntxt,
a_v4_extfn_row_block *)

Usage
The fetch_into method is useful when the producer does not know how data should be
arranged in memory. This method is used as an entry point when the consumer has a transfer
area with a specific format. The fetch_into() function writes the fetched rows into the
provided row block. This method is part of the a_v4_extfn_table_context structure.

Use fetch_into when the consumer owns the memory for the data transfer area and
requests that the producer use this area. You use the fetch_into method when the
consumer cares about how the data transfer area is set up and it is up to the producer to perform
the necessary data copying into this area.

Parameters

Parameter Description

cntxt The table context object obtained from the
open_result_set API

row_block The row block object to fetch into

Returns
1 if successful, 0 otherwise.

If the UDF returns 1, the consumer knows that there are more rows left and the fetch_into
method should be called again. However, a UDF returning a value of 0 indicates that there are
no more rows and a call to the fetch_into method is unnecessary.

Using In-Database Analytics in Applications

Programming 119

Consider the following procedure definition, which is an example of a TPF function that
consumes an input parameter table and produces it as a result table. Both are instances of SQL
values that are obtained and returned through the get_value and set_value v4 API
methods, respectively.

CREATE PROCEDURE FETCH_EX(IN a INT, INT b TABLE(c1 INT))
 RESULT SET (rc INT)

This procedure definition contains two table objects:

• The input TABLE parameter named b
• The return result set table

The following example shows how output tables are fetched from by the caller, in this case, the
server. The server might decide to use the fetch_into method. Input tables are fetched
from by the called entity, in this case the TPF. The TPF decides which fetch API to use.

SELECT rc from FETCH_EX(1, TABLE(SELECT c1 from TABLE))

The example shows that prior to fetching/consuming from an input table, a table context must
be established via the open_result_set API on the a_v4_extfn_proc structure. The
open_result_set requires a table object, which can be obtained through the
get_value API.

 an_extfn_value arg;
 ctx->get_value(args_handle, 3, &arg);

 if(arg.type != DT_EXTFN_TABLE) {
 // handle error
 }

 a_v4_extfn_table_context *rs = NULL;
 a_v4_extfn_table *inTable = arg.data;
 ctx->open_result_set(ctx, inTable, &rs);

After the table context is created, the rs structure executes the fetch_into API and fetches
the rows.

a_v4_extfn_row_block *rb = // get a row block to hold a series of
INT values.
rs->fetch_into(rs, &rb) // fetch the rows.

Prior to producing rows to a result table, a table object must be created and returned to the
caller via the set_value API on the a_v4_extfn_proc_context structure.

This example shows that a table UDF must create an instance of the a_v4_extfn_table
structure. Each invocation of the table UDF should return a separate instance of the
a_v4_extfn_table structure. The table contains the state fields to keep track of the
current row and the number of rows to generate. State for a table can be stored as a field of the
instance.

 typedef struct rg_table : a_v4_extfn_table {
 a_sql_uint32 rows_to_generate;

Using In-Database Analytics in Applications

120 SAP Sybase IQ

 a_sql_uint32 current_row;
 } my_table;

In the following example, each time a row is produced, current_row is incremented until the
number of rows to be generated is reached, when fetch_into returns false to indicate end-
of-file. The consumer executes the fetch_into API implemented by the table UDF. As
part of the call to the fetch_into method, the consumer provides the table context, as well
as the row block to fetch into.

 rs->fetch_into(rs, &rb)

short UDF_CALLBACK my_table_func_fetch_into(
 a_v4_extfn_table_context *tctx,
 a_v4_extfn_row_block *rb)
/***/
{
 my_table *myTable = tctx->table;

 if(rgTable->current_row < rgTable->rows_to_generate) {
 // Produce the row...
 rgTable->current_row++;
 return 1;
 }

 return 0;
}

fetch_block
The fetch_block v4 API method fetches a block of rows.

Declaration
short fetch_block(
a_v4_extfn_table_context *cntxt,
a_v4_extfn_row_block **row_block)

Usage
The fetch_block method is used as an entry point when the consumer does not need the
data in a particular format. fetch_block requests that the producer create a data transfer
area and provide a pointer to that area. The consumer owns the memory and takes
responsibility for copying data from this area.

The fetch_block is more efficient if the consumer does not require a specific layout. The
fetch_block call sets a fetch_block to a block that can be consumed, and this block
should be passed on the next fetch_block call. This method is part of the
a_v4_extfn_table_context structure.

Using In-Database Analytics in Applications

Programming 121

Parameters

Parameter Description

cntxt The table context object.

row_block An in/out parameter. The first call should always
point to a NULL row_block.

When fetch_block is called and row_block points to NULL, the UDF must allocate a
a_v4_extfn_row_block structure.

Returns
1 if successful, 0 otherwise.

If the UDF returns 1, the consumer knows that there are more rows left and calls the
fetch_block method again. However, a UDF returning a value of 0 indicates that there are
no more rows and a call to the fetch_block method is unnecessary.

Consider the following procedure definition, which is an example of a TPF function that
consumes an input parameter table and produces it as a result table. Both are instances of SQL
values that are obtained and returned through the get_value and set_value v4 API
methods, respectively.

CREATE PROCEDURE FETCH_EX(IN a INT, INT b TABLE(c1 INT))
 RESULT SET (rc INT)

This procedure definition contains two table objects:

• The input TABLE parameter named b
• The return result set table

The following example shows how output tables are fetched from by the caller, in this case, the
server. The server might decide to use the fetch_block method. Input tables are fetched
from by the called entity, in this case the TPF, which decides which fetch API to use.

SELECT rc from FETCH_EX(1, TABLE(SELECT c1 from TABLE))

The example shows that prior to fetching/consuming from an input table, a table context must
be established via the open_result_set API on the a_v4_extfn_proc structure. The
open_result_set requires a table object, which can be obtained through the
get_value API.

 an_extfn_value arg;
 ctx->get_value(args_handle, 3, &arg);

 if(arg.type != DT_EXTFN_TABLE) {
 // handle error
 }

Using In-Database Analytics in Applications

122 SAP Sybase IQ

 a_v4_extfn_table_context *rs = NULL;
 a_v4_extfn_table *inTable = arg.data;
 ctx->open_result_set(ctx, inTable, &rs);

After the table context is created, the rs structure executes the fetch_block API and
fetches the rows.

a_v4_extfn_row_block *rb = // get a row block to hold a series of
INT values.
rs->fetch_block(rs, &rb) // fetch the rows.

Prior to producing rows to a result table, a table object must be created and returned to the
caller via the set_value API on the a_v4_extfn_proc_context structure.

This example shows that a table UDF must create an instance of the a_v4_extfn_table
structure. Each invocation of the table UDF should return a separate instance of the
a_v4_extfn_table structure. The table contains the state fields to keep track of the
current row and the number of rows to generate. State for a table can be stored as a field of the
instance.

 typedef struct rg_table : a_v4_extfn_table {
 a_sql_uint32 rows_to_generate;
 a_sql_uint32 current_row;
 } my_table;

rewind
Use the rewind v4 API method to restart a result set at the beginning of the table.

Declaration
 short rewind(
 a_v4_extfn_table_context *cntxt,
)

Usage
Call the rewind method on an open result set to rewind the table to the beginning. If the UDF
intends to rewind an input table, it must inform the producer during the state
EXTFNAPIV4_STATE_OPTIMIZATION using the
EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND parameter.

rewind() is an optional entry point. If NULL, rewind is not supported. Otherwise, the
rewind() entry point restarts the result set at the beginning of the table.

Parameters

Parameter Description

cntxt The table context object

Using In-Database Analytics in Applications

Programming 123

Returns
1 if successful, 0 otherwise.

get_blob
Use the get_blob v4 API method to return a blob object from a specified column.

Declaration
 short get_blob(
a_v4_extfn_table_context *cntxt,
a_v4_extfn_column_data *col,
a_v4_extfn_blob **blob
)

Usage
The blob is returned as an output parameter and is owned by the caller. Call this method only
on a column that contains a blob.

Use the helper macro EXTFN_COL_IS_BLOB to determine whether a column contains a
blob. This is the declaration of EXTFN_COL_IS_BLOB in the header file
extfnapiv4.h:

 #define EXTFN_COL_IS_BLOB(c, n) (c[n].blob_handle != NULL)

Parameters

Parameter Description

cntxt The table context object

col The column data pointer for which to get the blob

blob On success, contains the blob object associated
with the column

Returns
1 if successful, 0 otherwise.

Table Functions (a_v4_extfn_table_func)
The consumer uses the a_v4_extfn_table_func structure to retrieve results from the
producer.

Implementation
typedef struct a_v4_extfn_table_func {
// size_t struct_size;

 /* Open a result set. The UDF can allocate any resources needed
for the result set.

Using In-Database Analytics in Applications

124 SAP Sybase IQ

 */
 short (UDF_CALLBACK *_open_extfn)(a_v4_extfn_table_context *);

 /* Fetch rows into a provided row block. The UDF should implement
this method if it does
 not have a preferred layout for its transfer area.
 */
 short (UDF_CALLBACK *_fetch_into_extfn)(a_v4_extfn_table_context
*, a_v4_extfn_row_block

*row_block);

 /* Fetch a block that is allocated and configured by the UDF. The
UDF should implement this
 method if it has a preferred layout of the transfer area.
 */
 short (UDF_CALLBACK *_fetch_block_extfn)
(a_v4_extfn_table_context *, a_v4_extfn_row_block

**row_block);

 /* Restart a result set at the beginning of the table. This is an
optional entry point.
 */
 short (UDF_CALLBACK *_rewind_extfn)(a_v4_extfn_table_context *);

 /* Close a result set. The UDF can release any resources
allocated for the result set.
 */
 short (UDF_CALLBACK *_close_extfn)(a_v4_extfn_table_context *);

 /* The following fields are reserved for future use and must be
initialized to NULL. */
 void *_reserved1_must_be_null;
 void *_reserved2_must_be_null;

} a_v4_extfn_table_func;

Method Summary

Method Data Type Description

_open_extfn void Called by the server to initiate row fetching by opening
a result set. The UDF can allocate any resources nee-
ded for the result set.

_fetch_in-
to_extfn

short Fetch rows into a provided row block. The UDF im-
plements this method, if it does not have a preferred
layout for its transfer area.

_fetch_block_ext
fn

short Fetch a block that is allocated and configured by the
UDF. The UDF implements this method, if it has a
preferred layout of the transfer area.

Using In-Database Analytics in Applications

Programming 125

Method Data Type Description

_rewind_extfn void Optional function called by the server to restart the
fetching from the beginning of the table.

_close_extfn void Called by the server to terminate row fetching by clos-
ing the result set. The UDF can release any resources
allocated for the result set.

_re-
served1_must_be_
null

void Reserved for future use. Must be initialized to NULL.

_re-
served1_must_be_
null

void Reserved for future use. Must be initialized to NULL.

Description
The a_v4_extfn_table_func structure defines the methods used to fetch results from a
table.

_open_extfn
The server calls the_open_extfn v4 API method to initiate fetching of rows.

Declaration
void _open_extfn(
 a_v4_extfn_table_context *cntxt,
)

Usage
The UDF uses this method to open a result set and allocate any resources (for example,
streams) needed for sending results to the server.

Parameters

Parameter Description

cntxt The procedure context object

_fetch_into_extfn
The _fetch_into_extfn v4 API method fetches rows into a provided row block.

Declaration
short _fetch_into_extfn(
 a_v4_extfn_table_context *cntxt,

Using In-Database Analytics in Applications

126 SAP Sybase IQ

 a_v4_extfn_row_block *row_block
)

Usage
The UDF should implement this method, if it does not have a preferred layout for its transfer
area.

Parameters

Parameter Description

cntxt The procedure context object

row_block The row block object to fetch into.

Returns
1 if successful, 0 otherwise.

_fetch_block_extfn
The _fetch_block_extfn v4 API method fetches a block that is allocated and
configured by the UDF.

Declaration
short _fetch_block_extfn(
a_v4_extfn_table_context *cntxt,
a_v4_extfn_row_block **
)

Usage
The UDF should implement this method, if it has a preferred layout for its transfer area.

Parameters

Parameter Description

cntxt The procedure context object

row_block The row block object to fetch into

Returns
1 if successful, 0 otherwise.

Using In-Database Analytics in Applications

Programming 127

_rewind_extfn
The _rewind_extfn v4 API method restarts a result set at the beginning of the table.

Declaration
void _rewind_extfn(
a_v4_extfn_table_context *cntxt,
)

Usage
This function is an optional entry point. The UDF implements the _rewind_extfn method
when the result table is rewound to the beginning. The UDF should consider implementing
this method only if it can provide the rewind functionality in an efficient and cost-effective
manner.

If a UDF chooses to implement the _rewind_extfn method, it should tell the consumer
during the state EXTFNAPIV4_STATE_OPTIMIZATION by setting the
EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND parameter for argument 0.

The UDF may decide not to provide the rewind functionality, in which case the server
compensates and provides the functionality.

Note: The server can choose not to call the _rewind_extfn method to perform the rewind.

Parameters

Parameter Description

cntxt The procedure context object

Returns
No return value.

_close_extfn
The server calls the _close_extfn v4 API method to terminate fetching of rows.

Declaration
void _close_extfn(
 a_v4_extfn_table_context *cntxt,
)

Usage
The UDF uses this method when fetching is complete to close a result set and release any
resources allocated for the result set.

Using In-Database Analytics in Applications

128 SAP Sybase IQ

Parameters

Parameter Description

cntxt The procedure context object

Using In-Database Analytics in Applications

Programming 129

Using In-Database Analytics in Applications

130 SAP Sybase IQ

Using SQL in Applications

This section provides information about using SQL in applications.

SQL statement execution in applications
The way you include SQL statements in your application depends on the application
development tool and programming interface you use.

• ADO.NET – You can execute SQL statements using various ADO.NET objects. The
SACommand object is one example:
SACommand cmd = new SACommand(
 "DELETE FROM Employees WHERE EmployeeID = 105", conn);
cmd.ExecuteNonQuery();

• ODBC – If you are writing directly to the ODBC programming interface, your SQL
statements appear in function calls. For example, the following C function call executes a
DELETE statement:
SQLExecDirect(stmt,
 "DELETE FROM Employees
 WHERE EmployeeID = 105",
 SQL_NTS);

• JDBC – If you are using the JDBC programming interface, you can execute SQL
statements by invoking methods of the statement object. For example:
stmt.executeUpdate(
 "DELETE FROM Employees
 WHERE EmployeeID = 105");

• Embedded SQL – If you are using embedded SQL, you prefix your C language SQL
statements with the keyword EXEC SQL. The code is then run through a preprocessor
before compiling. For example:
EXEC SQL EXECUTE IMMEDIATE
 'DELETE FROM Employees
 WHERE EmployeeID = 105';

• Sybase Open Client – If you use the Sybase Open Client interface, your SQL statements
appear in function calls. For example, the following pair of calls executes a DELETE
statement:
ret = ct_command(cmd, CS_LANG_CMD,
 "DELETE FROM Employees
 WHERE EmployeeID=105"
 CS_NULLTERM,
 CS_UNUSED);
ret = ct_send(cmd);

For more details about including SQL in your application, see your development tool
documentation. If you are using ODBC or JDBC, consult the software development kit for
those interfaces.

Using SQL in Applications

Programming 131

Applications inside the database server
In many ways, stored procedures and triggers act as applications or parts of applications
running inside the database server. You can also use many of the techniques here in stored
procedures.

Java classes in the database can use the JDBC interface in the same way as Java applications
outside the server. This section discusses some aspects of JDBC.

Prepared statements
Each time a statement is sent to a database, the database server must perform the following
steps:

• It must parse the statement and transform it into an internal form. This process is
sometimes called preparing the statement.

• It must verify the correctness of all references to database objects by checking, for
example, that columns named in a query actually exist.

• If the statement involves joins or subqueries, then the query optimizer generates an access
plan.

• It executes the statement after all these steps have been carried out.

Reusing prepared statements can improve performance
If you use the same statement repeatedly, for example inserting many rows into a table,
repeatedly preparing the statement causes a significant and unnecessary overhead. To remove
this overhead, some database programming interfaces provide ways of using prepared
statements. A prepared statement is a statement containing a series of placeholders. When you
want to execute the statement, assign values to the placeholders, rather than prepare the entire
statement over again.

Using prepared statements is useful when carrying out many similar actions, such as inserting
many rows.

Generally, using prepared statements requires the following steps:

• Prepare the statement – In this step, you generally provide the statement with some
placeholder character instead of the values.

• Repeatedly execute the prepared statement – In this step, you supply values to be used
each time the statement is executed. The statement does not have to be prepared each
time.

• Drop the statement – In this step, you free the resources associated with the prepared
statement. Some programming interfaces handle this step automatically.

Using SQL in Applications

132 SAP Sybase IQ

Do not prepare statements that are used only once
In general, you should not prepare statements if they are only executed once. There is a slight
performance penalty for separate preparation and execution, and it introduces unnecessary
complexity into your application.

In some interfaces, however, you do need to prepare a statement to associate it with a cursor.

The calls for preparing and executing statements are not a part of SQL, and they differ from
interface to interface. Each of the SAP Sybase IQ programming interfaces provides a method
for using prepared statements.

Prepared Statements Overview
This section provides a brief overview of how to use prepared statements. The general
procedure is the same, but the details vary from interface to interface. Comparing how to use
prepared statements in different interfaces illustrates this point.

You typically perform the following tasks to use a prepared statement:

1. Prepare the statement.
2. Bind the parameters that will hold values in the statement.
3. Assign values to the bound parameters in the statement.
4. Execute the statement.
5. Repeat steps 3 and 4 as needed.
6. Drop the statement when finished. In JDBC the Java garbage collection mechanism drops

the statement.

Use a Prepared Statement in ADO.NET
You typically perform the following tasks to use a prepared statement in ADO.NET:

1. Create an SACommand object holding the statement:
SACommand cmd = new SACommand(
 "SELECT * FROM Employees WHERE Surname = ?", conn);

2. Declare data types for any parameters in the statement.
Use the SACommand.CreateParameter method.
SAParameter param = cmd.CreateParameter();
param.SADbType = SADbType.Char;
param.Direction = ParameterDirection.Input;
param.Value = "Smith";
cmd.Parameters.Add(param);

3. Prepare the statement using the Prepare method.
4. Execute the statement:

SADataReader reader = cmd.ExecuteReader();
For an example of preparing statements using ADO.NET, see the source code in
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\ADO.NET
\SimpleWin32.

Using SQL in Applications

Programming 133

Use a prepared statement in ODBC
You typically perform the following tasks to use a prepared statement in ODBC:

1. Prepare the statement using SQLPrepare.
2. Bind the statement parameters using SQLBindParameter.
3. Execute the statement using SQLExecute.
4. Drop the statement using SQLFreeStmt.

For an example of preparing statements using ODBC, see the source code in
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\ODBCPrepare.

Use a Prepared Statement in JDBC
You typically perform the following tasks to use a prepared statement in JDBC:

1. Prepare the statement using the prepareStatement method of the connection object. This
returns a prepared statement object.

2. Set the statement parameters using the appropriate setType methods of the prepared
statement object. Here, Type is the data type assigned.

3. Execute the statement using the appropriate method of the prepared statement object. For
inserts, updates, and deletes this is the executeUpdate method.

For an example of preparing statements using JDBC, see the source code file
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC
\JDBCExample.java.

Use a Prepared Statement in Embedded SQL
You typically perform the following tasks to use a prepared statement in embedded SQL:

1. Prepare the statement using the EXEC SQL PREPARE statement.
2. Assign values to the parameters in the statement.
3. Execute the statement using the EXEC SQL EXECUTE statement.
4. Free the resources associated with the statement using the EXEC SQL DROP statement.

Use a Prepared Statement in Open Client
You typically perform the following tasks to use a prepared statement in Open Client:

1. Prepare the statement using the ct_dynamic function, with a CS_PREPARE type
parameter.

2. Set statement parameters using ct_param.
3. Execute the statement using ct_dynamic with a CS_EXECUTE type parameter.
4. Free the resources associated with the statement using ct_dynamic with a CS_DEALLOC

type parameter.

Using SQL in Applications

134 SAP Sybase IQ

Cursor usage
When you execute a query in an application, the result set consists of several rows. In general,
you do not know how many rows the application is going to receive before you execute the
query. Cursors provide a way of handling query result sets in applications.

The way you use cursors and the kinds of cursors available to you depend on the programming
interface you use.

SAP Sybase IQ provides several system procedures to help determine what cursors are in use
for a connection, and what they contain:

sa_list_cursors system procedure
sa_describe_cursor system procedure
sa_copy_cursor_to_temp_table system procedure

With cursors, you can perform the following tasks within any programming interface:

• Loop over the results of a query.
• Perform inserts, updates, and deletes on the underlying data at any point within a result

set.

In addition, some programming interfaces allow you to use special features to tune the way
result sets return to your application, providing substantial performance benefits for your
application.

Cursors
A cursor is a name associated with a result set. The result set is obtained from a SELECT
statement or stored procedure call.

A cursor is a handle on the result set. At any time, the cursor has a well-defined position within
the result set. With a cursor you can examine and possibly manipulate the data one row at a
time. SAP Sybase IQ cursors support forward and backward movement through the query
results.

Cursor positions
Cursors can be positioned in the following places:

• Before the first row of the result set.
• On a row in the result set.
• After the last row of the result set.

Using SQL in Applications

Programming 135

The cursor position and result set are maintained in the database server. Rows are fetched by
the client for display and processing either one at a time or a few at a time. The entire result set
does not need to be delivered to the client.

Benefits of using cursors
Although server-side cursors are not required in database applications, they do provide several
benefits. A server-side cursor is preferable to a client-side cursor for the following reasons:

• Response time – Server-side cursors do not require that the whole result set be assembled
before the first row is fetched by the client. A client-side cursor requires that the entire
result set be obtained and transferred to the client before the first row is fetched by the
client.

• Client-side memory – For large result sets, obtaining the entire result set on the client side
can lead to demanding memory requirements.

• Concurrency control – If you make updates to your data and do not use server-side
cursors in your application, you must send separate SQL statements like UPDATE,
INSERT, or DELETE to the database server to apply changes. This raises the possibility of
concurrency problems if any corresponding rows in the database have changed since the
result set was delivered to the client. As a consequence, updates by other clients may be
lost.

Server-side cursors can act as pointers to the underlying data, permitting you to impose
proper concurrency constraints on any changes made by the client by setting an
appropriate isolation level.

Using SQL in Applications

136 SAP Sybase IQ

Cursor principles
To use a cursor in ADO.NET, ODBC, JDBC, or Open Client, follow these general steps:

1. Prepare and execute a statement.
Execute a statement using the usual method for the interface. You can prepare and then
execute the statement, or you can execute the statement directly.
With ADO.NET, only the SACommand.ExecuteReader method returns a cursor. It
provides a read-only, forward-only cursor.

2. Test to see if the statement returns a result set.
A cursor is implicitly opened when a statement that creates a result set is executed. When
the cursor is opened, it is positioned before the first row of the result set.

3. Fetch results.
Although simple fetch operations move the cursor to the next row in the result set, SAP
Sybase IQ permits more complicated movement around the result set.

4. Close the cursor.
When you have finished with the cursor, close it to free associated resources.

5. Free the statement.
If you used a prepared statement, free it to reclaim memory.

The approach for using a cursor in embedded SQL differs from the approach used in other
interfaces. Follow these general steps to use a cursor in embedded SQL:

1. Prepare a statement.
Cursors generally use a statement handle rather than a string. You need to prepare a
statement to have a handle available.

2. Declare the cursor.
Each cursor refers to a single SELECT or CALL statement. When you declare a cursor,
you state the name of the cursor and the statement it refers to.

3. Open the cursor.
For a CALL statement, opening the cursor executes the procedure up to the point where the
first row is about to be obtained.

4. Fetch results.
Although simple fetch operations move the cursor to the next row in the result set, SAP
Sybase IQ permits more complicated movement around the result set. How you declare the
cursor determines which fetch operations are available to you.

5. Close the cursor.
When you have finished with the cursor, close it. This frees any resources associated with
the cursor.

6. Drop the statement.
To free the memory associated with the statement, you must drop the statement.

Using SQL in Applications

Programming 137

Cursor positioning
When a cursor is opened, it is positioned before the first row. You can move the cursor position
to an absolute position from the start or the end of the query results, or to a position relative to
the current cursor position. The specifics of how you change cursor position, and what
operations are possible, are governed by the programming interface.

The number of row positions you can fetch in a cursor is governed by the size of an integer. You
can fetch rows numbered up to number 2147483646, which is one less than the value that can
be held in an integer. When using negative numbers (rows from the end) you can fetch down to
one more than the largest negative value that can be held in an integer.

You can use special positioned update and delete operations to update or delete the row at the
current position of the cursor. If the cursor is positioned before the first row or after the last
row, an error is returned indicating that there is no corresponding cursor row.

Note: Inserts and some updates to asensitive cursors can cause problems with cursor
positioning. SAP Sybase IQ does not put inserted rows at a predictable position within a cursor
unless there is an ORDER BY clause on the SELECT statement. Sometimes the inserted row
does not appear at all until the cursor is closed and opened again. With SAP Sybase IQ, this
occurs if a work table had to be created to open the cursor.

The UPDATE statement may cause a row to move in the cursor. This happens if the cursor has
an ORDER BY clause that uses an existing index (a work table is not created). Using STATIC
SCROLL cursors alleviates these problems but requires more memory and processing.

Cursor behavior when opening cursors
You can configure the following aspects of cursor behavior when you open the cursor:

• Isolation level – You can explicitly set the isolation level of operations on a cursor to be
different from the current isolation level of the transaction. To do this, set the
isolation_level option.

• Holding – By default, cursors in embedded SQL close at the end of a transaction. Opening
a cursor WITH HOLD allows you to keep it open until the end of a connection, or until you
explicitly close it. ADO.NET, ODBC, JDBC, and Open Client leave cursors open at the
end of transactions by default.

Row fetching through a cursor
The simplest way of processing the result set of a query using a cursor is to loop through all the
rows of the result set until there are no more rows. You can accomplish this task by performing
these steps:

1. Declare and open the cursor (embedded SQL), or execute a statement that returns a result
set (ODBC, JDBC, Open Client) or SADataReader object (ADO.NET).

2. Continue to fetch the next row until you get a Row Not Found error.

Using SQL in Applications

138 SAP Sybase IQ

3. Close the cursor.

The technique used to fetch the next row is dependent on the interface you use. For example:

• ADO.NET – Use the SADataReader.Read method.
• ODBC – SQLFetch, SQLExtendedFetch, or SQLFetchScroll advances the cursor to the

next row and returns the data.
• JDBC – The next method of the ResultSet object advances the cursor and returns the data.
• Embedded SQL – The FETCH statement carries out the same operation.
• Open Client – The ct_fetch function advances the cursor to the next row and returns the

data.

Multiple-row fetching
Multiple-row fetching should not be confused with prefetching rows. Multiple row fetching is
performed by the application, while prefetching is transparent to the application, and provides
a similar performance gain. Fetching multiple rows at a time can improve performance.

Multiple-row fetches
Some interfaces provide methods for fetching more than one row at a time into the next several
fields in an array. Generally, the fewer separate fetch operations you execute, the fewer
individual requests the server must respond to, and the better the performance. A modified
FETCH statement that retrieves multiple rows is also sometimes called a wide fetch. Cursors
that use multiple-row fetches are sometimes called block cursors or fat cursors.

Using multiple-row fetching

• In ODBC, you can set the number of rows that will be returned on each call to
SQLFetchScroll or SQLExtendedFetch by setting the
SQL_ATTR_ROW_ARRAY_SIZE or SQL_ROWSET_SIZE attribute.

• In embedded SQL, the FETCH statement uses an ARRAY clause to control the number of
rows fetched at a time.

• Open Client and JDBC do not support multi-row fetches. They do use prefetching.

Scrollable cursors
ODBC and embedded SQL provide methods for using scrollable cursors and dynamic
scrollable cursors. These methods allow you to move several rows forward at a time, or to
move backward through the result set.

The JDBC and Open Client interfaces do not support scrollable cursors.

Prefetching does not apply to scrollable operations. For example, fetching a row in the reverse
direction does not prefetch several previous rows.

Using SQL in Applications

Programming 139

Cursors used to modify rows
Cursors can do more than just read result sets from a query. You can also modify data in the
database while processing a cursor. These operations are commonly called positioned insert,
update, and delete operations, or PUT operations if the action is an insert.

Not all query result sets allow positioned updates and deletes. If you perform a query on a
non-updatable view, then no changes occur to the underlying tables. Also, if the query
involves a join, then you must specify which table you want to delete from, or which columns
you want to update, when you perform the operations.

Inserts through a cursor can only be executed if any non-inserted columns in the table allow
NULL or have defaults.

If multiple rows are inserted into a value-sensitive (keyset driven) cursor, they appear at the
end of the cursor result set. The rows appear at the end, even if they do not match the WHERE
clause of the query or if an ORDER BY clause would normally have placed them at another
location in the result set. This behavior is independent of programming interface. For
example, it applies when using the embedded SQL PUT statement or the ODBC
SQLBulkOperations function. The value of an AUTOINCREMENT column for the most
recent row inserted can be found by selecting the last row in the cursor. For example, in
embedded SQL the value could be obtained using FETCH ABSOLUTE -1 cursor-
name. As a result of this behavior, the first multiple-row insert for a value-sensitive cursor
may be expensive.

ODBC, JDBC, embedded SQL, and Open Client permit data manipulation using cursors, but
ADO.NET does not. With Open Client, you can delete and update rows, but you can only
insert rows on a single-table query.

Which table are rows deleted from?
If you attempt a positioned delete through a cursor, the table from which rows are deleted is
determined as follows:

1. If no FROM clause is included in the DELETE statement, the cursor must be on a single
table only.

2. If the cursor is for a joined query (including using a view containing a join), then the
FROM clause must be used. Only the current row of the specified table is deleted. The
other tables involved in the join are not affected.

3. If a FROM clause is included, and no table owner is specified, the table-spec value is first
matched against any correlation names.

4. If a correlation name exists, the table-spec value is identified with the correlation name.
5. If a correlation name does not exist, the table-spec value must be unambiguously

identifiable as a table name in the cursor.
6. If a FROM clause is included, and a table owner is specified, the table-spec value must be

unambiguously identifiable as a table name in the cursor.

Using SQL in Applications

140 SAP Sybase IQ

7. The positioned DELETE statement can be used on a cursor open on a view as long as the
view is updatable.

Updatable statements
This section describes how clauses in the SELECT statement affect updatable statements and
cursors.

Updatability of read-only statements
Specifying FOR READ ONLY in the cursor declaration, or including a FOR READ ONLY
clause in the statement, renders the statement read-only. In other words, a FOR READ ONLY
clause, or the appropriate read-only cursor declaration when using a client API, overrides any
other updatability specification.

If the outermost block of a SELECT statement contains an ORDER BY clause, and the
statement does not specify FOR UPDATE, then the cursor is read-only. If the SQL SELECT
statement specifies FOR XML, then the cursor is read-only. Otherwise, the cursor is
updatable.

Updatable statements and concurrency control
For updatable statements, SAP Sybase IQ provides both optimistic and pessimistic
concurrency control mechanisms on cursors to ensure that a result set remains consistent
during scrolling operations. These mechanisms are alternatives to using INSENSITIVE
cursors or snapshot isolation, although they have different semantics and tradeoffs.

The specification of FOR UPDATE can affect whether a cursor is updatable. However, in SAP
Sybase IQ, the FOR UPDATE syntax has no other effect on concurrency control. If FOR
UPDATE is specified with additional parameters, SAP Sybase IQ alters the processing of the
statement to incorporate one of two concurrency control options as follows:

• Pessimistic – For all rows fetched in the cursor's result set, the database server acquires
intent row locks to prevent the rows from being updated by any other transaction.

• Optimistic – The cursor type used by the database server is changed to a keyset-driven
cursor (insensitive row membership, value-sensitive) so that the application can be
informed when a row in the result has been modified or deleted by this, or any other
transaction.

Pessimistic or optimistic concurrency is specified at the cursor level either through options
with DECLARE CURSOR or FOR statements, or though the concurrency setting API for a
specific programming interface. If a statement is updatable and the cursor does not specify a
concurrency control mechanism, the statement's specification is used. The syntax is as
follows:

• FOR UPDATE BY LOCK – The database server acquires intent row locks on fetched
rows of the result set. These are long-term locks that are held until transaction COMMIT or
ROLLBACK.

Using SQL in Applications

Programming 141

• FOR UPDATE BY { VALUES | TIMESTAMP } – The database server utilizes a keyset-
driven cursor to enable the application to be informed when rows have been modified or
deleted as the result set is scrolled.

Restricting updatable statements
FOR UPDATE (column-list) enforces the restriction that only named result set attributes can
be modified in a subsequent UPDATE WHERE CURRENT OF statement.

Cursor operations that are canceled
You can cancel a request through an interface function. If you cancel a request that is carrying
out a cursor operation, the position of the cursor is indeterminate. After canceling the request,
you must locate the cursor by its absolute position, or close it.

Cursor types
This section describes mappings between SAP Sybase IQ cursors and the options available to
you from the programming interfaces supported by SAP Sybase IQ.

Availability of cursors
Not all interfaces provide support for all types of cursors.

• ADO.NET provides only forward-only, read-only cursors.
• ADO/OLE DB and ODBC support all types of cursors.
• Embedded SQL™ supports all types of cursors.
• For JDBC:

• The SQL Anywhere JDBC driver supports the JDBC 4.0 specification and permits the
declaration of insensitive, sensitive, and forward-only asensitive cursors.

• jConnect supports the declaration of insensitive, sensitive, and forward-only asensitive
cursors in the same manner as the SQL Anywhere JDBC driver. However, the
underlying implementation of jConnect only supports asensitive cursor semantics.

• Sybase Open Client supports only asensitive cursors. Also, a severe performance penalty
results when using updatable, non-unique cursors.

Cursor properties
You request a cursor type, either explicitly or implicitly, from the programming interface.
Different interface libraries offer different choices of cursor types. For example, JDBC and
ODBC specify different cursor types.

Each cursor type is defined by several characteristics:

• Uniqueness – Declaring a cursor to be unique forces the query to return all the columns
required to uniquely identify each row. Often this means returning all the columns in the

Using SQL in Applications

142 SAP Sybase IQ

primary key. Any columns required but not specified are added to the result set. The default
cursor type is non-unique.

• Updatability – A cursor declared as read-only cannot be used in a positioned update or
delete operation. The default cursor type is updatable.

• Scrollability – You can declare cursors to behave different ways as you move through the
result set. Some cursors can fetch only the current row or the following row. Others can
move backward and forward through the result set.

• Sensitivity – Changes to the database may or may not be visible through a cursor.

These characteristics may have significant side effects on performance and on database server
memory usage.

SAP Sybase IQ makes available cursors with a variety of mixes of these characteristics. When
you request a cursor of a given type, SAP Sybase IQ tries to match those characteristics.

There are some occasions when not all characteristics can be supplied. For example,
insensitive cursors in SAP Sybase IQ must be read-only. If your application requests an
updatable insensitive cursor, a different cursor type (value-sensitive) is supplied instead.

Bookmarks and cursors
ODBC provides bookmarks, or values, used to identify rows in a cursor. SAP Sybase IQ
supports bookmarks for value-sensitive and insensitive cursors. For example, the ODBC
cursor types SQL_CURSOR_STATIC and SQL_CURSOR_KEYSET_DRIVEN support
bookmarks while cursor types SQL_CURSOR_DYNAMIC and
SQL_CURSOR_FORWARD_ONLY do not.

Block cursors
ODBC provides a cursor type called a block cursor. When you use a BLOCK cursor, you can
use SQLFetchScroll or SQLExtendedFetch to fetch a block of rows, rather than a single row.
Block cursors behave identically to embedded SQL ARRAY fetches.

SAP Sybase IQ Catalog Store Cursors
Any SAP Sybase IQ Catalog store cursor, once opened, has an associated result set. The cursor
is kept open for a length of time. During that time, the result set associated with the cursor may
be changed, either through the cursor itself or, subject to isolation level requirements, by other
transactions. Some cursors permit changes to the underlying data to be visible, while others do
not reflect these changes. A sensitivity to changes to the underlying data causes different
cursor behavior, or cursor sensitivity.

The SAP Sybase IQ Catalog store provides cursors with a variety of sensitivity characteristics.
This section describes what sensitivity is, and describes the sensitivity characteristics of
cursors.

Using SQL in Applications

Programming 143

Membership, order, and value changes
Changes to the underlying data can affect the result set of a cursor in the following ways:

• Membership – The set of rows in the result set, as identified by their primary key values.
• Order – The order of the rows in the result set.
• Value – The values of the rows in the result set.

For example, consider the following simple table with employee information (EmployeeID is
the primary key column):

EmployeeID Surname

1 Whitney

2 Cobb

3 Chin

A cursor on the following query returns all results from the table in primary key order:
SELECT EmployeeID, Surname
FROM Employees
ORDER BY EmployeeID;

The membership of the result set could be changed by adding a new row or deleting a row. The
values could be changed by changing one of the names in the table. The order could be
changed by changing the primary key value of one of the employees.

Visible and invisible changes
Subject to isolation level requirements, the membership, order, and values of the result set of a
cursor can be changed after the cursor is opened. Depending on the type of cursor in use, the
result set as seen by the application may or may not change to reflect these changes.

Changes to the underlying data may be visible or invisible through the cursor. A visible change
is a change that is reflected in the result set of the cursor. Changes to the underlying data that
are not reflected in the result set seen by the cursor are invisible.

Catalog Store Cursor Sensitivity
SAP Sybase IQ cursors are classified by their sensitivity to changes in the underlying data. In
other words, cursor sensitivity is defined by the changes that are visible.

• Insensitive cursors – The result set is fixed when the cursor is opened. No changes to the
underlying data are visible.

• Sensitive cursors – The result set can change after the cursor is opened. All changes to the
underlying data are visible.

• Asensitive cursors – Changes may be reflected in the membership, order, or values of the
result set seen through the cursor, or may not be reflected at all.

Using SQL in Applications

144 SAP Sybase IQ

• Value-sensitive cursors – Changes to the order or values of the underlying data are
visible. The membership of the result set is fixed when the cursor is opened.

The differing requirements on cursors place different constraints on execution and therefore
affect performance.

Cursor sensitivity example: A deleted row
This example uses a simple query to illustrate how different cursors respond to a row in the
result set being deleted.

Consider the following sequence of events:

1. An application opens a cursor on the following query against the sample database.
SELECT EmployeeID, Surname
FROM Employees
ORDER BY EmployeeID;

EmployeeID Surname

102 Whitney

105 Cobb

160 Breault

... ...

2. The application fetches the first row through the cursor (102).
3. The application fetches the next row through the cursor (105).
4. A separate transaction deletes employee 102 (Whitney) and commits the change.

The results of cursor actions in this situation depend on the cursor sensitivity:

• Insensitive cursors – The DELETE is not reflected in either the membership or values of
the results as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row (absolute fetch) Returns the original copy of the row (102).

Fetch the second row (absolute fetch) Returns the unchanged row (105).

• Sensitive cursors – The membership of the result set has changed so that row 105 is now
the first row in the result set:

Action Result

Fetch previous row Returns Row Not Found. There is no pre-

vious row.

Using SQL in Applications

Programming 145

Action Result

Fetch the first row (absolute fetch) Returns row 105.

Fetch the second row (absolute fetch) Returns row 160.

• Value-sensitive cursors – The membership of the result set is fixed, and so row 105 is still
the second row of the result set. The DELETE is reflected in the values of the cursor, and
creates an effective hole in the result set.

Action Result

Fetch previous row Returns No current row of cur-
sor. There is a hole in the cursor where the

first row used to be.

Fetch the first row (absolute fetch) Returns No current row of cur-
sor. There is a hole in the cursor where the

first row used to be.

Fetch the second row (absolute fetch) Returns row 105.

• Asensitive cursors – For changes, the membership and values of the result set are
indeterminate. The response to a fetch of the previous row, the first row, or the second row
depends on the particular optimization method for the query, whether that method
involved the formation of a work table, and whether the row being fetched was prefetched
from the client.

The benefit of asensitive cursors is that for many applications, sensitivity is unimportant.
In particular, if you are using a forward-only, read-only cursor, no underlying changes are
seen. Also, if you are running at a high isolation level, underlying changes are disallowed.

Cursor sensitivity example: An updated row
This example uses a simple query to illustrate how different cursor types respond to a row in
the result set being updated in such a way that the order of the result set is changed.

Consider the following sequence of events:

1. An application opens a cursor on the following query against the sample database.
SELECT EmployeeID, Surname
FROM Employees;

EmployeeID Surname

102 Whitney

105 Cobb

160 Breault

Using SQL in Applications

146 SAP Sybase IQ

EmployeeID Surname

... ...

2. The application fetches the first row through the cursor (102).
3. The application fetches the next row through the cursor (105).
4. A separate transaction updates the employee ID of employee 102 (Whitney) to 165 and

commits the change.

The results of the cursor actions in this situation depend on the cursor sensitivity:

• Insensitive cursors – The UPDATE is not reflected in either the membership or values of
the results as seen through the cursor:

Action Result

Fetch previous row Returns the original copy of the row (102).

Fetch the first row (absolute fetch) Returns the original copy of the row (102).

Fetch the second row (absolute fetch) Returns the unchanged row (105).

• Sensitive cursors – The membership of the result set has changed so that row 105 is now
the first row in the result set:

Action Result

Fetch previous row Returns SQLCODE 100. The membership of
the result set has changed so that 105 is now the
first row. The cursor is moved to the position
before the first row.

Fetch the first row (absolute fetch) Returns row 105.

Fetch the second row (absolute fetch) Returns row 160.

In addition, a fetch on a sensitive cursor returns a SQLE_ROW_UPDATED_WARNING
warning if the row has changed since the last reading. The warning is given only once.
Subsequent fetches of the same row do not produce the warning.

Similarly, a positioned update or delete through the cursor on a row since it was last fetched
returns the SQLE_ROW_UPDATED_SINCE_READ error. An application must fetch the
row again for an update or delete on a sensitive cursor to work.

An update to any column causes the warning/error, even if the column is not referenced by
the cursor. For example, a cursor on a query returning Surname would report the update
even if only the Salary column was modified.

• Value-sensitive cursors – The membership of the result set is fixed, and so row 105 is still
the second row of the result set. The UPDATE is reflected in the values of the cursor, and
creates an effective "hole" in the result set.

Using SQL in Applications

Programming 147

Action Result

Fetch previous row Returns SQLCODE 100. The membership of
the result set has changed so that 105 is now the
first row: The cursor is positioned on the hole: it
is before row 105.

Fetch the first row (absolute fetch) Returns SQLCODE -197. The membership of
the result set has changed so that 105 is now the
first row: The cursor is positioned on the hole: it
is before row 105.

Fetch the second row (absolute fetch) Returns row 105.

• Asensitive cursors – For changes, the membership and values of the result set are
indeterminate. The response to a fetch of the previous row, the first row, or the second row
depends on the particular optimization method for the query, whether that method
involved the formation of a work table, and whether the row being fetched was prefetched
from the client.

Note: Update warning and error conditions do not occur in bulk operations mode (-b database
server option).

Catalog Store Insensitive Cursors
These cursors have insensitive membership, order, and values. No changes made after cursor
open time are visible.

Insensitive cursors are used only for read-only cursor types.

Standards
Insensitive cursors correspond to the ISO/ANSI standard definition of insensitive cursors, and
to ODBC static cursors.

Programming interfaces

Interface Cursor type Comment

ODBC, ADO/OLE DB Static If an updatable static cursor is
requested, a value-sensitive cur-
sor is used instead.

Embedded SQL INSENSITIVE

JDBC INSENSITIVE Insensitive semantics are only
supported by the SQL Any-
where JDBC driver.

Open Client Unsupported

Using SQL in Applications

148 SAP Sybase IQ

Description
Insensitive cursors always return rows that match the query's selection criteria, in the order
specified by any ORDER BY clause.

The result set of an insensitive cursor is fully materialized as a work table when the cursor is
opened. This has the following consequences:

• If the result set is very large, the disk space and memory requirements for managing the
result set may be significant.

• No row is returned to the application before the entire result set is assembled as a work
table. For complex queries, this may lead to a delay before the first row is returned to the
application.

• Subsequent rows can be fetched directly from the work table, and so are returned quickly.
The client library may prefetch several rows at a time, further improving performance.

• Insensitive cursors are not affected by ROLLBACK or ROLLBACK TO SAVEPOINT.

Catalog Store Sensitive Cursors
Sensitive cursors can be used for read-only or updatable cursor types.

These cursors have sensitive membership, order, and values.

Standards
Sensitive cursors correspond to the ISO/ANSI standard definition of sensitive cursors, and to
ODBC dynamic cursors.

Programming interfaces

Interface Cursor type Comment

ODBC, ADO/OLE DB Dynamic

Embedded SQL SENSITIVE Also supplied in response to a
request for a DYNAMIC
SCROLL cursor when no work
table is required and the pre-
fetch option is set to Off.

JDBC SENSITIVE Sensitive cursors are fully sup-
ported by the SQL Anywhere
JDBC driver.

Description
Prefetching is disabled for sensitive cursors. All changes are visible through the cursor,
including changes through the cursor and from other transactions. Higher isolation levels may
hide some changes made in other transactions because of locking.

Using SQL in Applications

Programming 149

Changes to cursor membership, order, and all column values are all visible. For example, if a
sensitive cursor contains a join, and one of the values of one of the underlying tables is
modified, then all result rows composed from that base row show the new value. Result set
membership and order may change at each fetch.

Sensitive cursors always return rows that match the query's selection criteria, and are in the
order specified by any ORDER BY clause. Updates may affect the membership, order, and
values of the result set.

The requirements of sensitive cursors place restrictions on the implementation of sensitive
cursors:

• Rows cannot be prefetched, as changes to the prefetched rows would not be visible through
the cursor. This may impact performance.

• Sensitive cursors must be implemented without any work tables being constructed, as
changes to those rows stored as work tables would not be visible through the cursor.

• The no work table limitation restricts the choice of join method by the optimizer and
therefore may impact performance.

• For some queries, the optimizer is unable to construct a plan that does not include a work
table that would make a cursor sensitive.
Work tables are commonly used for sorting and grouping intermediate results. A work
table is not needed for sorting if the rows can be accessed through an index. It is not
possible to state exactly which queries employ work tables, but the following queries do
employ them:
• UNION queries, although UNION ALL queries do not necessarily use work tables.
• Statements with an ORDER BY clause, if there is no index on the ORDER BY column.
• Any query that is optimized using a hash join.
• Many queries involving DISTINCT or GROUP BY clauses.
In these cases, SAP Sybase IQ either returns an error to the application, or changes the
cursor type to an asensitive cursor and returns a warning.

Catalog Store Asensitive Cursors
These cursors do not have well-defined sensitivity in their membership, order, or values. The
flexibility that is allowed in the sensitivity permits asensitive cursors to be optimized for
performance.

Asensitive cursors are used only for read-only cursor types.

Standards
Asensitive cursors correspond to the ISO/ANSI standard definition of asensitive cursors, and
to ODBC cursors with unspecific sensitivity.

Using SQL in Applications

150 SAP Sybase IQ

Programming interfaces

Interface Cursor type

ODBC, ADO/OLE DB Unspecified sensitivity

Embedded SQL DYNAMIC SCROLL

Description
A request for an asensitive cursor places few restrictions on the methods SAP Sybase IQ can
use to optimize the query and return rows to the application. For these reasons, asensitive
cursors provide the best performance. In particular, the optimizer is free to employ any
measure of materialization of intermediate results as work tables, and rows can be prefetched
by the client.

SAP Sybase IQ makes no guarantees about the visibility of changes to base underlying rows.
Some changes may be visible, others not. Membership and order may change at each fetch. In
particular, updates to base rows may result in only some of the updated columns being
reflected in the cursor's result.

Asensitive cursors do not guarantee to return rows that match the query's selection and order.
The row membership is fixed at cursor open time, but subsequent changes to the underlying
values are reflected in the results.

Asensitive cursors always return rows that matched the customer's WHERE and ORDER BY
clauses at the time the cursor membership is established. If column values change after the
cursor is opened, rows may be returned that no longer match WHERE and ORDER BY
clauses.

Catalog Store Value-Sensitive Cursors
For value-sensitive cursors, membership is insensitive, and the order and value of the result set
is sensitive.

Value-sensitive cursors can be used for read-only or updatable cursor types.

Standards
Value-sensitive cursors do not correspond to an ISO/ANSI standard definition. They
correspond to ODBC keyset-driven cursors.

Programming interfaces

Interface Cursor type Comment

ODBC, ADO/OLE DB Keyset-driven

Embedded SQL SCROLL

Using SQL in Applications

Programming 151

Interface Cursor type Comment

JDBC INSENSITIVE and CON-
CUR_UPDATABLE

With the SQL Anywhere JDBC
driver, a request for an updata-
ble INSENSITIVE cursor is an-
swered with a value-sensitive
cursor.

Open Client and jConnect Not supported

Description
If the application fetches a row composed of a base underlying row that has changed, then the
application must be presented with the updated value, and the SQL_ROW_UPDATED status
must be issued to the application. If the application attempts to fetch a row that was composed
of a base underlying row that was deleted, a SQL_ROW_DELETED status must be issued to
the application.

Changes to primary key values remove the row from the result set (treated as a delete, followed
by an insert). A special case occurs when a row in the result set is deleted (either from cursor or
outside) and a new row with the same key value is inserted. This will result in the new row
replacing the old row where it appeared.

There is no guarantee that rows in the result set match the query's selection or order
specification. Since row membership is fixed at open time, subsequent changes that make a
row not match the WHERE clause or ORDER BY do not change a row's membership nor
position.

All values are sensitive to changes made through the cursor. The sensitivity of membership to
changes made through the cursor is controlled by the ODBC option
SQL_STATIC_SENSITIVITY. If this option is on, then inserts through the cursor add the row
to the cursor. Otherwise, they are not part of the result set. Deletes through the cursor remove
the row from the result set, preventing a hole returning the SQL_ROW_DELETED status.

Value-sensitive cursors use a key set table. When the cursor is opened, SAP Sybase IQ
populates a work table with identifying information for each row contributing to the result set.
When scrolling through the result set, the key set table is used to identify the membership of
the result set, but values are obtained, if necessary, from the underlying tables.

The fixed membership property of value-sensitive cursors allows your application to
remember row positions within a cursor and be assured that these positions will not change.

• If a row was updated or may have been updated since the cursor was opened, SAP Sybase
IQ returns a SQLE_ROW_UPDATED_WARNING when the row is fetched. The warning
is generated only once: fetching the same row again does not produce the warning.
An update to any column of the row causes the warning, even if the updated column is not
referenced by the cursor. For example, a cursor on Surname and GivenName would report
the update even if only the Birthdate column was modified. These update warning and

Using SQL in Applications

152 SAP Sybase IQ

error conditions do not occur in bulk operations mode (-b database server option) when
row locking is disabled.

• An attempt to execute a positioned update or delete on a row that has been modified since it
was last fetched returns a SQLE_ROW_UPDATED_SINCE_READ error and cancels the
statement. An application must FETCH the row again before the UPDATE or DELETE is
permitted.
An update to any column of the row causes the error, even if the updated column is not
referenced by the cursor. The error does not occur in bulk operations mode.

• If a row has been deleted after the cursor is opened, either through the cursor or from
another transaction, a hole is created in the cursor. The membership of the cursor is fixed,
so a row position is reserved, but the DELETE operation is reflected in the changed value
of the row. If you fetch the row at this hole, you receive a -197 SQLCODE error, indicating
that there is no current row, and the cursor is left positioned on the hole. You can avoid
holes by using sensitive cursors, as their membership changes along with the values.

Rows cannot be prefetched for value-sensitive cursors. This requirement may affect
performance.

Inserting multiple rows
When inserting multiple rows through a value-sensitive cursor, the new rows appear at the end
of the result set.

Catalog Store Cursor Sensitivity and Performance
There is a trade-off between performance and other cursor properties. In particular, making a
cursor updatable places restrictions on the cursor query processing and delivery that constrain
performance. Also, putting requirements on cursor sensitivity may constrain cursor
performance.

To understand how the updatability and sensitivity of cursors affects performance, you need to
understand how the results that are visible through a cursor are transmitted from the database
to the client application.

In particular, results may be stored at two intermediate locations for performance reasons:

• Work tables – Either intermediate or final results may be stored as work tables. Value-
sensitive cursors employ a work table of primary key values. Query characteristics may
also lead the optimizer to use work tables in its chosen execution plan.

• Prefetching – The client side of the communication may retrieve rows into a buffer on the
client side to avoid separate requests to the database server for each row.

Using SQL in Applications

Programming 153

Sensitivity and updatability limit the use of intermediate locations.

Prefetches
Prefetches and multiple-row fetches are different. Prefetches can be carried out without
explicit instructions from the client application. Prefetching retrieves rows from the server
into a buffer on the client side, but does not make those rows available to the client application
until the application fetches the appropriate row.

By default, the SAP Sybase IQ client library prefetches multiple rows whenever an
application fetches a single row. The SAP Sybase IQ client library stores the additional rows in
a buffer.

Prefetching assists performance by cutting down on client/server round trips, and increases
throughput by making many rows available without a separate request to the server for each
row or block of rows.

Controlling prefetching from an application

• The prefetch option controls whether prefetching occurs. You can set the prefetch option to
Always, Conditional, or Off for a single connection. By default, it is set to Conditional.

• In embedded SQL, you can control prefetching on a per-cursor basis when you open a
cursor on an individual FETCH operation using the BLOCK clause.
The application can specify a maximum number of rows contained in a single fetch from
the server by specifying the BLOCK clause. For example, if you are fetching and
displaying 5 rows at a time, you could use BLOCK 5. Specifying BLOCK 0 fetches 1
record at a time and also causes a FETCH RELATIVE 0 to always fetch the row from the
server again.
Although you can also turn off prefetch by setting a connection parameter on the
application, it is more efficient to specify BLOCK 0 than to set the prefetch option to Off.

• Prefetch is disabled by default for value sensitive cursor types.
• In Open Client, you can control prefetching behavior using ct_cursor with

CS_CURSOR_ROWS after the cursor is declared, but before it is opened.

Prefetch dynamically increases the number of prefetch rows when improvements in
performance could be achieved. This includes cursors that meet the following conditions:

Using SQL in Applications

154 SAP Sybase IQ

• They use one of the supported cursor types:
• ODBC and OLE DB – FORWARD-ONLY and READ-ONLY (default) cursors
• Embedded SQL – DYNAMIC SCROLL (default), NO SCROLL, and INSENSITIVE

cursors
• ADO.NET – all cursors

• They perform only FETCH NEXT operations (no absolute, relative, or backward
fetching).

• The application does not change the host variable type between fetches and does not use a
GET DATA statement to get column data in chunks (using one GET DATA statement to get
the value is supported).

Lost updates
When using an updatable cursor, it is important to guard against lost updates. A lost update is a
scenario in which two or more transactions update the same row, but neither transaction is
aware of the modification made by the other transaction, and the second change overwrites the
first modification. The following example illustrates this problem:

1. An application opens a cursor on the following query against the sample database.
SELECT ID, Quantity
FROM Products;

ID Quantity

300 28

301 54

302 75

... ...

2. The application fetches the row with ID = 300 through the cursor.
3. A separate transaction updates the row using the following statement:

UPDATE Products
SET Quantity = Quantity - 10
WHERE ID = 300;

4. The application then updates the row through the cursor to a value of (Quantity -
5).

5. The correct final value for the row would be 13. If the cursor had prefetched the row, the
new value of the row would be 23. The update from the separate transaction is lost.

In a database application, the potential for a lost update exists at any isolation level if changes
are made to rows without verification of their values beforehand. At higher isolation levels (2
and 3), locking (read, intent, and write locks) can be used to ensure that changes to rows cannot
be made by another transaction once the row has been read by the application. However, at
isolation levels 0 and 1, the potential for lost updates is greater: at isolation level 0, read locks
are not acquired to prevent subsequent changes to the data, and isolation level 1 only locks the
current row. Lost updates cannot occur when using snapshot isolation since any attempt to

Using SQL in Applications

Programming 155

change an old value results in an update conflict. Also, the use of prefetching at isolation level
1 can also introduce the potential for lost updates, since the result set row that the application is
positioned on, which is in the client's prefetch buffer, may not be the same as the current row
that the server is positioned on in the cursor.

To prevent lost updates from occurring with cursors at isolation level 1, the database server
supports three different concurrency control mechanisms that can be specified by an
application:

1. The acquisition of intent row locks on each row in the cursor as it is fetched. Intent locks
prevent other transactions from acquiring intent or write locks on the same row, preventing
simultaneous updates. However, intent locks do not block read row locks, so they do not
affect the concurrency of read-only statements.

2. The use of a value-sensitive cursor. Value-sensitive cursors can be used to track when an
underlying row has changed, or has been deleted, so that the application can respond.

3. The use of FETCH FOR UPDATE, which acquires an intent row lock for that specific
row.

How these alternatives are specified depends on the interface used by the application. For the
first two alternatives that pertain to a SELECT statement:

• In ODBC, lost updates cannot occur because the application must specify a cursor
concurrency parameter to the SQLSetStmtAttr function when declaring an updatable
cursor. This parameter is one of SQL_CONCUR_LOCK, SQL_CONCUR_VALUES,
SQL_CONCUR_READ_ONLY, or SQL_CONCUR_TIMESTAMP. For
SQL_CONCUR_LOCK, the database server acquires row intent locks. For
SQL_CONCUR_VALUES and SQL_CONCUR_TIMESTAMP, a value-sensitive cursor
is used. SQL_CONCUR_READ_ONLY is used for read-only cursors, and is the default.

• In JDBC, the concurrency setting for a statement is similar to that of ODBC. The SQL
Anywhere JDBC driver supports the JDBC concurrency values
RESULTSET_CONCUR_READ_ONLY and RESULTSET_CONCUR_UPDATABLE.
The first value corresponds to the ODBC concurrency setting
SQL_CONCUR_READ_ONLY and specifies a read-only statement. The second value
corresponds to the ODBC SQL_CONCUR_LOCK setting, so row intent locks are used to
prevent lost updates. Value-sensitive cursors cannot be specified directly in the JDBC 4.0
specification.

• In jConnect, updatable cursors are supported at the API level, but the underlying
implementation (using TDS) does not support updates through a cursor. Instead, jConnect
sends a separate UPDATE statement to the database server to update the specific row. To
avoid lost updates, the application must run at isolation level 2 or higher. Alternatively, the
application can issue separate UPDATE statements from the cursor, but you must ensure
that the UPDATE statement verifies that the row values have not been altered since the row
was read by placing appropriate conditions in the UPDATE statement's WHERE clause.

• In embedded SQL, a concurrency specification can be set by including syntax within the
SELECT statement itself, or in the cursor declaration. In the SELECT statement, the

Using SQL in Applications

156 SAP Sybase IQ

syntax SELECT...FOR UPDATE BY LOCK causes the database server to acquire intent
row locks on the result set.
Alternatively, SELECT...FOR UPDATE BY [VALUES | TIMESTAMP] causes the
database server to change the cursor type to a value-sensitive cursor, so that if a specific
row has been changed since the row was last read through the cursor, the application
receives either a warning (SQLE_ROW_UPDATED_WARNING) on a FETCH
statement, or an error (SQLE_ROW_UPDATED_SINCE_READ) on an UPDATE
WHERE CURRENT OF statement. If the row was deleted, the application also receives an
error (SQLE_NO_CURRENT_ROW).

FETCH FOR UPDATE functionality is also supported by the embedded SQL and ODBC
interfaces, although the details differ depending on the API that is used.

In embedded SQL, the application uses FETCH FOR UPDATE, rather than FETCH, to cause
an intent lock to be acquired on the row. In ODBC, the application uses the API call
SQLSetPos with the operation argument SQL_POSITION or SQL_REFRESH, and the lock
type argument SQL_LOCK_EXCLUSIVE, to acquire an intent lock on a row. In SAP Sybase
IQ, these are long-term locks that are held until the transaction commits or rolls back.

Catalog Store Cursor Sensitivity and Isolation Levels
Both cursor sensitivity and isolation levels address the problem of concurrency control, but in
different ways, and with different sets of tradeoffs.

By choosing an isolation level for a transaction (typically at the connection level), you
determine the type and locks to place, and when, on rows in the database. Locks prevent other
transactions from accessing or modifying rows in the database. In general, the greater the
number of locks held, the lower the expected level of concurrency across concurrent
transactions.

However, locks do not prevent updates from other portions of the same transaction from
occurring. So, a single transaction that maintains multiple updatable cursors cannot rely on
locking to prevent such problems as lost updates.

Snapshot isolation is intended to eliminate the need for read locks by ensuring that each
transaction sees a consistent view of the database. The obvious advantage is that a consistent
view of the database can be queried without relying on fully serializable transactions
(isolation level 3), and the loss of concurrency that comes with using isolation level 3.
However, snapshot isolation comes with a significant cost because copies of modified rows
must be maintained to satisfy the requirements of both concurrent snapshot transactions
already executing, and snapshot transactions that have yet to start. Because of this copy
maintenance, the use of snapshot isolation may be inappropriate for heavy-update workloads.

Cursor sensitivity, however, determines which changes are visible (or not) to the cursor's
result. Because cursor sensitivity is specified on a cursor basis, cursor sensitivity applies to
both the effects of other transactions and to update activity of the same transaction, although
these effects depend entirely on the cursor type specified. By setting cursor sensitivity, you are
not directly determining when locks are placed on rows in the database. However, it is the

Using SQL in Applications

Programming 157

combination of cursor sensitivity and isolation level that controls the various concurrency
scenarios that are possible with a particular application.

Requests for SAP Sybase IQ Catalog Store Cursors
When you request a cursor type from your client application, SAP Sybase IQ provides a
cursor. SAP Sybase IQ cursors are defined, not by the type as specified in the programming
interface, but by the sensitivity of the result set to changes in the underlying data. Depending
on the cursor type you ask for, SAP Sybase IQ provides a cursor with behavior to match the
type.

SAP Sybase IQ cursor sensitivity is set in response to the client cursor type request.

ADO.NET
Forward-only, read-only cursors are available by using SACommand.ExecuteReader. The
SADataAdapter object uses a client-side result set instead of cursors.

ADO/OLE DB and ODBC
The following table illustrates the cursor sensitivity that is set in response to different ODBC
scrollable cursor types.

ODBC scrollable cursor type SAP Sybase IQ cursor

STATIC Insensitive

KEYSET-DRIVEN Value-sensitive

DYNAMIC Sensitive

MIXED Value-sensitive

A MIXED cursor is obtained by setting the cursor type to
SQL_CURSOR_KEYSET_DRIVEN, and then specifying the number of rows in the keyset
for a keyset-driven cursor using SQL_ATTR_KEYSET_SIZE. If the keyset size is 0 (the
default), the cursor is fully keyset-driven. If the keyset size is greater than 0, the cursor is
mixed (keyset-driven within the keyset and dynamic outside the keyset). The default keyset
size is 0. It is an error if the keyset size is greater than 0 and less than the rowset size
(SQL_ATTR_ROW_ARRAY_SIZE).

Exceptions
If a STATIC cursor is requested as updatable, a value-sensitive cursor is supplied instead and a
warning is issued.

If a DYNAMIC or MIXED cursor is requested and the query cannot be executed without using
work tables, a warning is issued and an asensitive cursor is supplied instead.

JDBC
The JDBC 4.0 specification supports three types of cursors: insensitive, sensitive, and
forward-only asensitive. The SQL Anywhere JDBC driver is compliant with these JDBC

Using SQL in Applications

158 SAP Sybase IQ

specifications and supports these different cursor types for a JDBC ResultSet object.
However, there are cases when the database server cannot construct an access plan with the
required semantics for a given cursor type. In these cases, the database server either returns an
error or substitutes a different cursor type.

With jConnect, the underlying protocol (TDS) only supports forward-only, read-only
asensitive cursors on the database server, even though jConnect supports the APIs for creating
different types of cursors following the JDBC 2.0 specification. All jConnect cursors are
asensitive because the TDS protocol buffers the statement's result set in blocks. These blocks
of buffered results are scrolled when the application needs to scroll through an insensitive or
sensitive cursor type that supports scrollability. If the application scrolls backward past the
beginning of the cached result set, the statement is re-executed, which can result in data
inconsistencies if the data has been altered between statement executions.

Embedded SQL
To request a cursor from an embedded SQL application, you specify the cursor type on the
DECLARE statement. The following table illustrates the cursor sensitivity that is set in
response to different requests:

Cursor type SAP Sybase IQ cursor

NO SCROLL Asensitive

DYNAMIC SCROLL Asensitive

SCROLL Value-sensitive

INSENSITIVE Insensitive

SENSITIVE Sensitive

Exceptions
If a DYNAMIC SCROLL or NO SCROLL cursor is requested as UPDATABLE, then a
sensitive or value-sensitive cursor is supplied. It is not guaranteed which of the two is supplied.
This uncertainty fits the definition of asensitive behavior.

If an INSENSITIVE cursor is requested as UPDATABLE, then a value-sensitive cursor is
supplied.

If a DYNAMIC SCROLL cursor is requested, if the prefetch database option is set to Off, and
if the query execution plan involves no work tables, then a sensitive cursor may be supplied.
Again, this uncertainty fits the definition of asensitive behavior.

Open Client
As with jConnect, the underlying protocol (TDS) for Open Client only supports forward-only,
read-only, asensitive cursors.

Using SQL in Applications

Programming 159

Result set descriptors
Some applications build SQL statements that cannot be completely specified in the
application. Sometimes statements are dependent on a user response before the application
knows exactly what information to retrieve, such as when a reporting application allows a user
to select which columns to display.

In such a case, the application needs a method for retrieving information about both the nature
of the result set and the contents of the result set. The information about the nature of the result
set, called a descriptor, identifies the data structure, including the number and type of columns
expected to be returned. Once the application has determined the nature of the result set,
retrieving the contents is straightforward.

This result set metadata (information about the nature and content of the data) is manipulated
using descriptors. Obtaining and managing the result set metadata is called describing.

Since cursors generally produce result sets, descriptors and cursors are closely linked,
although some interfaces hide the use of descriptors from the user. Typically, statements
needing descriptors are either SELECT statements or stored procedures that return result sets.

A sequence for using a descriptor with a cursor-based operation is as follows:

1. Allocate the descriptor. This may be done implicitly, although some interfaces allow
explicit allocation as well.

2. Prepare the statement.
3. Describe the statement. If the statement is a stored procedure call or batch, and the result

set is not defined by a result clause in the procedure definition, then the describe should
occur after opening the cursor.

4. Declare and open a cursor for the statement (embedded SQL) or execute the statement.
5. Get the descriptor and modify the allocated area if necessary. This is often done implicitly.
6. Fetch and process the statement results.
7. Deallocate the descriptor.
8. Close the cursor.
9. Drop the statement. Some interfaces do this automatically.

Implementation notes

• In embedded SQL, a SQLDA (SQL Descriptor Area) structure holds the descriptor
information.

• In ODBC, a descriptor handle allocated using SQLAllocHandle provides access to the
fields of a descriptor. You can manipulate these fields using SQLSetDescRec,
SQLSetDescField, SQLGetDescRec, and SQLGetDescField.
Alternatively, you can use SQLDescribeCol and SQLColAttributes to obtain column
information.

Using SQL in Applications

160 SAP Sybase IQ

• In Open Client, you can use ct_dynamic to prepare a statement and ct_describe to describe
the result set of the statement. However, you can also use ct_command to send a SQL
statement without preparing it first and use ct_results to handle the returned rows one by
one. This is the more common way of operating in Open Client application development.

• In JDBC, the java.sql.ResultSetMetaData class provides information about result sets.
• You can also use descriptors for sending data to the database server (for example, with the

INSERT statement); however, this is a different kind of descriptor than for result sets.

Transactions in applications
Transactions are sets of atomic SQL statements. Either all statements in the transaction are
executed, or none. This section describes a few aspects of transactions in applications.

Autocommit and manual commit mode
Database programming interfaces can operate in either manual commit mode or autocommit
mode.

• Manual commit mode – Operations are committed only when your application carries
out an explicit commit operation or when the database server carries out an automatic
commit, for example when executing an ALTER TABLE statement or other data definition
statement. Manual commit mode is also sometimes called chained mode.

To use transactions in your application, including nested transactions and savepoints, you
must operate in manual commit mode.

• Autocommit mode – Each statement is treated as a separate transaction. Autocommit
mode is equivalent to appending a COMMIT statement to the end of each of your SQL
statements. Autocommit mode is also sometimes called unchained mode.

Autocommit mode can affect the performance and behavior of your application. Do not use
autocommit if your application requires transactional integrity.

How to control autocommit behavior
The way to control the commit behavior of your application depends on the programming
interface you are using. The implementation of autocommit may be client-side or server-side,
depending on the interface.

Control autocommit mode (ADO.NET)
By default, the ADO.NET provider operates in autocommit mode. To use explicit
transactions, use the SAConnection.BeginTransaction method.

Control autocommit mode (OLE DB)
By default, the OLE DB provider operates in autocommit mode. To use explicit transactions,
use the ITransactionLocal::StartTransaction, ITransaction::Commit, and ITransaction::Abort
methods.

Using SQL in Applications

Programming 161

Control autocommit mode (ODBC)
By default, ODBC operates in autocommit mode. The way you turn off autocommit depends
on whether you are using ODBC directly, or using an application development tool. If you are
programming directly to the ODBC interface, set the SQL_ATTR_AUTOCOMMIT
connection attribute.

Control autocommit mode (JDBC)
By default, JDBC operates in autocommit mode. To turn off autocommit, use the
setAutoCommit method of the connection object:
conn.setAutoCommit(false);

Control autocommit mode (embedded SQL)
By default, embedded SQL applications operate in manual commit mode. To turn on
autocommit, set the chained database option (a server-side option) to Off using a statement
such as the following:
SET OPTION chained='Off';

Control autocommit mode (Open Client)
By default, a connection made through Open Client operates in autocommit mode. You can
change this behavior by setting the chained database option (a server-side option) to On in
your application using a statement such as the following:
SET OPTION chained='On';

Control autocommit mode (PHP)
By default, PHP operates in autocommit mode. To turn off autocommit, use the
sasql_set_option function:
$result = sasql_set_option($conn, "auto_commit", "Off");

Control autocommit mode (on the server)
By default, the database server operates in manual commit mode. To turn on automatic
commits, set the chained database option (a server-side option) to Off using a statement such
as the following:
SET OPTION chained='Off';

If you are using an interface that controls commits on the client side, setting the chained
database option (a server-side option) can impact performance and/or behavior of your
application. Setting the server's chained mode is not recommended.

Autocommit implementation details
Autocommit mode has slightly different behavior depending on the interface and provider that
you are using and how you control the autocommit behavior.

Autocommit mode can be implemented in one of two ways:

Using SQL in Applications

162 SAP Sybase IQ

• Client-side autocommit – When an application uses autocommit, the client-library sends
a COMMIT statement after each SQL statement executed.

ADO.NET, ADO/OLE DB, ODBC, PHP, and SQL Anywhere JDBC driver applications
control commit behavior from the client side.

• Server-side autocommit – When an application turns off chained mode, the database
server commits the results of each SQL statement. For the Sybase jConnect JDBC driver,
this behavior is controlled by the chained database option.

Embedded SQL, the jConnect driver, and Open Client applications manipulate server-side
commit behavior (for example, they set the chained option).

For compound statements such as stored procedures or triggers there is a difference between
client-side and server-side autocommit. From the client side, a stored procedure is a single
statement, and so autocommit sends a single commit statement after the whole procedure is
executed. From the database server perspective, the stored procedure may be composed of
many SQL statements, and so server-side autocommit commits the results of each SQL
statement within the procedure.

Note: Do not mix client-side and server-side implementations. You should not combine the
setting of the chained option with the setting of the autocommit option in your SAP Sybase IQ
ADO.NET, OLE DB, ODBC, PHP, or JDBC application.

Isolation level settings
You can set the isolation level of a current connection using the isolation_level database
option.

Some interfaces, such as ODBC, allow you to set the isolation level for a connection at
connection time. You can reset this level later using the isolation_level database option.

You can override any temporary or public settings for the isolation_level database option
within individual INSERT, UPDATE, DELETE, SELECT, and UNION statements by
including an OPTION clause in the statement.

Cursors and transactions
In general, a cursor closes when a COMMIT is performed. There are two exceptions to this
behavior.

• The close_on_endtrans database option is set to Off.
• A cursor is opened WITH HOLD, which is the default with Open Client and JDBC.

If either of these two cases is true, the cursor remains open on a COMMIT.

ROLLBACK and cursors
If a transaction rolls back, then cursors close except for those cursors opened WITH HOLD.
However, don't rely on the contents of any cursor after a rollback.

Using SQL in Applications

Programming 163

The draft ISO SQL3 standard states that on a rollback, all cursors (even those cursors opened
WITH HOLD) should close. You can obtain this behavior by setting the
ansi_close_cursors_on_rollback option to On.

Savepoints
If a transaction rolls back to a savepoint, and if the ansi_close_cursors_on_rollback option is
On, then all cursors (even those cursors opened WITH HOLD) opened after the SAVEPOINT
close.

Cursors and isolation levels
You can change the isolation level of a connection during a transaction using the SET
OPTION statement to alter the isolation_level option. However, this change does not affect
open cursors.

A snapshot of all rows committed at the snapshot start time is visible when the WITH HOLD
clause is used with the snapshot, statement-snapshot, and readonly-statement-snapshot
isolation levels. Also visible are all modifications completed by the current connection since
the start of the transaction within which the cursor was open.

Using SQL in Applications

164 SAP Sybase IQ

.NET Application Programming

This section describes how to use SAP Sybase IQ with .NET, and includes the API for the SAP
Sybase IQ .NET Data Provider.

SAP Sybase IQ .NET Data Provider
This section describes .NET support, including tips on using the SAP Sybase IQ .NET Data
Provider in Visual Studio projects, connecting to databases, fetching, inserting, updating and
deleting rows from database tables, calling stored procedures, using transactions, and basic
error handling.

SAP Sybase IQ .NET Support
ADO.NET is the latest data access API from Microsoft in the line of ODBC, OLE DB, and
ADO. It is the preferred data access component for the Microsoft .NET Framework and allows
you to access relational database systems.

The SAP Sybase IQ .NET Data Provider implements the iAnywhere.Data.SQLAnywhere
namespace and allows you to write programs in any of the .NET supported languages, such as
C# and Visual Basic .NET, and access data from SAP Sybase IQ databases.

For general information about .NET data access, see the Microsoft ".NET Data Access
Architecture Guide" at http://msdn.microsoft.com/en-us/library/Ee817654%28pandp.
10%29.aspx.

ADO.NET applications
You can develop Internet and intranet applications using object-oriented languages, and then
connect these applications to SAP Sybase IQ using the ADO.NET data provider.

Combine this provider with built-in XML and web services features, .NET scripting
capability for MobiLink™ synchronization, and an UltraLite.NET™ component for
development of handheld database applications, and SAP Sybase IQ can integrate with
the .NET Framework.

.NET Application Programming

Programming 165

http://msdn.microsoft.com/en-us/library/Ee817654%28pandp.10%29.aspx
http://msdn.microsoft.com/en-us/library/Ee817654%28pandp.10%29.aspx

SAP Sybase IQ .NET Data Provider Features
SAP Sybase IQ supports the Microsoft .NET Framework versions 2.0, 3.0, 3.5, 4.0, and 4.5
through three distinct namespaces.

• iAnywhere.Data.SQLAnywhere – The ADO.NET object model is an all-purpose data
access model. ADO.NET components were designed to factor data access from data
manipulation. There are two central components of ADO.NET that do this: the DataSet,
and the .NET Framework data provider, which is a set of components including the
Connection, Command, DataReader, and DataAdapter objects. SAP Sybase IQ includes
a .NET Entity Framework Data Provider that communicates directly with an SAP Sybase
IQ database server without adding the overhead of OLE DB or ODBC. The SAP Sybase
IQ .NET Data provider is represented in the .NET namespace as
iAnywhere.Data.SQLAnywhere.

The Microsoft .NET Compact Framework is the smart device development framework for
Microsoft .NET. The SAP Sybase IQ.NET Compact Framework Data Provider supports
devices running Windows Mobile. Compact Framework 2.0 and 3.5 are supported.

The SAP Sybase IQ .NET Data Provider namespace is described in this document.

To read more about how to access data stored inside an SAP Sybase IQ database using the
ADO.NET object model, in particular via the Language Integrated Query (LINQ) to
Entities methodology, see the SQL Anywhere and the ADO.NET Entity Framework white
paper at www.sybase.com/detail?id=1060541.

• System.Data.Oledb – This namespace supports OLE DB data sources. This namespace is
an intrinsic part of the Microsoft .NET Framework. You can use System.Data.Oledb
together with the SQL Anywhere OLE DB provider, SAOLEDB, to access SAP Sybase IQ
databases.

.NET Application Programming

166 SAP Sybase IQ

http://www.sybase.com/detail?id=1060541

• System.Data.Odbc – This namespace supports ODBC data sources. This namespace is an
intrinsic part of the Microsoft .NET Framework. You can use System.Data.Odbc together
with the SQL Anywhere ODBC driver to access SAP Sybase IQ databases.

There are some key benefits to using the SAP Sybase IQ .NET Data Provider:

• In the .NET environment, the SAP Sybase IQ .NET Data Provider provides native access
to an SAP Sybase IQ database. Unlike the other supported providers, it communicates
directly with an SAP Sybase IQ server and does not require bridge technology.

• As a result, the SAP Sybase IQ .NET Data Provider is faster than the OLE DB and ODBC
Data Providers. It is the recommended Data Provider for accessing SAP Sybase IQ
databases.

.NET Sample Projects
There are several sample projects included with the SAP Sybase IQ .NET Data Provider:

• LinqSample – A .NET Framework sample project for Windows that demonstrates
language-integrated query, set, and transform operations using the SAP Sybase IQ .NET
Data Provider and C#.

• SimpleWin32 – A .NET Framework sample project for Windows that demonstrates a
simple listbox that is filled with the names from the Employees table when you click
Connect.

• SimpleXML – A .NET Framework sample project for Windows that demonstrates how to
obtain XML data from SAP Sybase IQ via ADO.NET. Samples for C#, Visual Basic, and
Visual C++ are provided.

• SimpleViewer – A .NET Framework sample project for Windows.
• TableViewer – A .NET Framework sample project for Windows that allows you to enter

and execute SQL statements.

Using the .NET Data Provider in a Visual Studio Project
Use the SAP Sybase IQ .NET Data Provider to develop .NET applications with Visual Studio
by including both a reference to the SAP Sybase IQ .NET Data Provider, and a line in your
source code referencing the SAP Sybase IQ .NET Data Provider classes.

Prerequisites

There are no prerequisites for this task.

Task

1. Start Visual Studio and open your project.

2. In the Solution Explorer window, right-click References and click Add Reference.

.NET Application Programming

Programming 167

The reference indicates which provider to include and locates the code for the SAP Sybase
IQ .NET Data Provider.

3. Click the .NET tab, and scroll through the list to locate any of the following:

iAnywhere.Data.SQLAnywhere for .NET 2
iAnywhere.Data.SQLAnywhere for .NET 3.5
iAnywhere.Data.SQLAnywhere for .NET 4

4. Click the desired provider and then click OK.

The provider is added to the References folder in the Solution Explorer window of your
project.

5. Specify a directive to your source code to assist with the use of the SAP Sybase IQ .NET
Data Provider namespace and the defined types.

Add the following line to your project:

• If you are using C#, add the following line to the list of using directives at the
beginning of your source code:
using iAnywhere.Data.SQLAnywhere;

• If you are using Visual Basic, add the following line at the beginning of source code:
Imports iAnywhere.Data.SQLAnywhere

The SAP Sybase IQ .NET Data Provider is set up for use with your .NET application.

.NET Database Connection Examples
To connect to a database, an SAConnection object must be created. The connection string can
be specified when creating the object or it can be established later by setting the
ConnectionString property.

A well-designed application should handle any errors that occur when attempting to connect
to a database.

A connection to the database is created when the connection is opened and released when the
connection is closed.

C# SAConnection example
The following C# code creates a button click handler that opens a connection to the SAP
Sybase IQ sample database and then closes it. An exception handler is included.
private void button1_Click(object sender, EventArgs e)
{
 SAConnection conn = new SAConnection("Data Source=Sybase IQ
Demo");
 try
 {
 conn.Open();

 conn.Close();
 }

.NET Application Programming

168 SAP Sybase IQ

 catch (SAException ex)
 {
 MessageBox.Show(ex.Errors[0].Source + " : " +
 ex.Errors[0].Message + " (" +
 ex.Errors[0].NativeError.ToString() + ")",
 "Failed to connect");
 }
}

Visual Basic SAConnection example
The following Visual Basic code creates a button click handler that opens a connection to the
SAP Sybase IQ sample database and then closes it. An exception handler is included.
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim conn As New SAConnection("Data Source=Sybase IQ Demo")
 Try
 conn.Open()

 conn.Close()
 Catch ex As SAException
 MessageBox.Show(ex.Errors(0).Source & " : " & _
 ex.Errors(0).Message & " (" & _
 ex.Errors(0).NativeError.ToString() & ")", _
 "Failed to connect")
 End Try
End Sub

Connection Pooling
The SAP Sybase IQ .NET Data Provider supports native .NET connection pooling.
Connection pooling allows your application to reuse existing connections by saving the
connection handle to a pool so it can be reused, rather than repeatedly creating a new
connection to the database. Connection pooling is enabled by default.

Connection pooling is enabled and disabled using the Pooling option. The maximum pool
size is set in your connection string using the Max Pool Size option. The minimum or
initial pool size is set in your connection string using the Min Pool Size option. The
default maximum pool size is 100, while the default minimum pool size is 0.
"Data Source=Sybase IQ Demo;Pooling=true;Max Pool Size=50;Min Pool
Size=5"

When your application first attempts to connect to the database, it checks the pool for an
existing connection that uses the same connection parameters you have specified. If a
matching connection is found, that connection is used. Otherwise, a new connection is used.
When you disconnect, the connection is returned to the pool so that it can be reused.

The SAP Sybase IQ database server also supports connection pooling. This feature is
controlled using the ConnectionPool (CPOOL) connection parameter. However, the SAP
Sybase IQ .NET Data Provider does not use this server feature and disables it (CPOOL=NO).
All connection pooling is done in the .NET client application instead (client-side connection
pooling).

.NET Application Programming

Programming 169

Connection State
Once your application has established a connection to the database, you can check the
connection state to ensure that the connection is still open before communicating a request to
the database server. If a connection is closed, you can return an appropriate message to the user
and/or attempt to reopen the connection.

The SAConnection class has a State property that can be used to check the state of the
connection. Possible state values are ConnectionState.Open and ConnectionState.Closed.

The following code checks whether the SAConnection object has been initialized, and if it has,
it checks that the connection is open. A message is returned to the user if the connection is not
open.
if (conn == null || conn.State != ConnectionState.Open)
{
 MessageBox.Show("Connect to a database first", "Not
connected");
 return;
}

Data Access and Manipulation
With the SAP Sybase IQ .NET Data Provider, there are two ways you can access data:

• SACommand object – The SACommand object is the recommended way of accessing
and manipulating data in .NET.

The SACommand object allows you to execute SQL statements that retrieve or modify
data directly from the database. Using the SACommand object, you can issue SQL
statements and call stored procedures directly against the database.

Within an SACommand object, an SADataReader is used to return read-only result sets
from a query or stored procedure. The SADataReader returns only one row at a time, but
this does not degrade performance because the SAP Sybase IQ client-side libraries use
prefetch buffering to prefetch several rows at a time.

Using the SACommand object allows you to group your changes into transactions rather
than operating in autocommit mode. When you use the SATransaction object, locks are
placed on the rows so that other users cannot modify them.

• SADataAdapter object – The SADataAdapter object retrieves the entire result set into a
DataSet. A DataSet is a disconnected store for data that is retrieved from a database. You
can then edit the data in the DataSet and when you are finished, the SADataAdapter object
updates the database with the changes made to the DataSet. When you use the
SADataAdapter, there is no way to prevent other users from modifying the rows in your
DataSet. You need to include logic within your application to resolve any conflicts that
may occur.

There is no performance impact from using the SADataReader within an SACommand object
to fetch rows from the database rather than the SADataAdapter object.

.NET Application Programming

170 SAP Sybase IQ

SACommand: Fetch Data Using ExecuteReader and ExecuteScalar
The SACommand object allows you to execute a SQL statement or call a stored procedure
against an SAP Sybase IQ database. You can use any of the following methods to retrieve data
from the database:

• ExecuteReader – Issues a SQL query that returns a result set. This method uses a forward-
only, read-only cursor. You can loop quickly through the rows of the result set in one
direction.

• ExecuteScalar – Issues a SQL query that returns a single value. This can be the first
column in the first row of the result set, or a SQL statement that returns an aggregate value
such as COUNT or AVG. This method uses a forward-only, read-only cursor.

When using the SACommand object, you can use the SADataReader to retrieve a result set
that is based on a join. However, you can only make changes (inserts, updates, or deletes) to
data that is from a single table. You cannot update result sets that are based on joins.

When using the SADataReader, there are several Get methods available that you can use to
return the results in the specified data type.

C# ExecuteReader Example
The following C# code opens a connection to the SAP Sybase IQ sample database and uses the
ExecuteReader method to create a result set containing the last names of employees in the
Employees table:
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT Surname FROM Employees", conn);
SADataReader reader = cmd.ExecuteReader();
listEmployees.BeginUpdate();
while (reader.Read())
{
 listEmployees.Items.Add(reader.GetString(0));
}
listEmployees.EndUpdate();
reader.Close();
conn.Close();

Visual Basic ExecuteReader Example
The following Visual Basic code opens a connection to the SAP Sybase IQ sample database
and uses the ExecuteReader method to create a result set containing the last names of
employees in the Employees table:
Dim conn As New SAConnection("Data Source=Sybase IQ Demo")
Dim cmd As New SACommand("SELECT Surname FROM Employees", conn)
Dim reader As SADataReader
conn.Open()
reader = cmd.ExecuteReader()
ListEmployees.BeginUpdate()
Do While (reader.Read())
 ListEmployees.Items.Add(reader.GetString(0))
Loop

.NET Application Programming

Programming 171

ListEmployees.EndUpdate()
conn.Close()

C# ExecuteScalar Example
The following C# code opens a connection to the SAP Sybase IQ sample database and uses the
ExecuteScalar method to obtain a count of the number of male employees in the Employees
table:
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand cmd = new SACommand(
 "SELECT COUNT(*) FROM Employees WHERE Sex = 'M'", conn);
int count = (int) cmd.ExecuteScalar();
textBox1.Text = count.ToString();
conn.Close();

SACommand: Fetch Result Set Schema Using GetSchemaTable
You can obtain schema information about columns in a result set.

The GetSchemaTable method of the SADataReader class obtains information about the
current result set. The GetSchemaTable method returns the standard .NET DataTable object,
which provides information about all the columns in the result set, including column
properties.

C# Schema Information Example
The following example obtains information about a result set using the GetSchemaTable
method and binds the DataTable object to the datagrid on the screen.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM Employees", conn);
SADataReader reader = cmd.ExecuteReader();
DataTable schema = reader.GetSchemaTable();
reader.Close();
conn.Close();
dataGridView1.DataSource = schema;

SACommand: Insert, Delete, and Update Rows Using ExecuteNonQuery
To perform an insert, update, or delete with the SACommand object, use the
ExecuteNonQuery function. The ExecuteNonQuery function issues a query (SQL statement
or stored procedure) that does not return a result set.

You can only make changes (inserts, updates, or deletes) to data that is from a single table. You
cannot update result sets that are based on joins. You must be connected to a database to use the
SACommand object.

To set the isolation level for a SQL statement, you must use the SACommand object as part of
an SATransaction object. When you modify data without an SATransaction object, the
provider operates in autocommit mode and any changes that you make are applied
immediately.

.NET Application Programming

172 SAP Sybase IQ

C# ExecuteNonQuery DELETE and INSERT Example
The following example opens a connection to the SAP Sybase IQ sample database and uses
the ExecuteNonQuery method to remove all departments whose ID is greater than or equal to
600 and then add two new rows to the Departments table. It displays the updated table in a
datagrid.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();

SACommand deleteCmd = new SACommand(
 "DELETE FROM Departments WHERE DepartmentID >= 600",
 conn);
deleteCmd.ExecuteNonQuery();

SACommand insertCmd = new SACommand(
 "INSERT INTO Departments(DepartmentID, DepartmentName)
VALUES(?, ?)",
 conn);
SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Integer;
insertCmd.Parameters.Add(parm);
parm = new SAParameter();
parm.SADbType = SADbType.Char;
insertCmd.Parameters.Add(parm);

insertCmd.Parameters[0].Value = 600;
insertCmd.Parameters[1].Value = "Eastern Sales";
int recordsAffected = insertCmd.ExecuteNonQuery();

insertCmd.Parameters[0].Value = 700;
insertCmd.Parameters[1].Value = "Western Sales";
recordsAffected = insertCmd.ExecuteNonQuery();

SACommand selectCmd = new SACommand(
 "SELECT * FROM Departments", conn);
SADataReader dr = selectCmd.ExecuteReader();

System.Windows.Forms.DataGrid dataGrid;
dataGrid = new System.Windows.Forms.DataGrid();
dataGrid.Location = new Point(15, 50);
dataGrid.Size = new Size(275, 200);
dataGrid.CaptionText = "SACommand Example";
this.Controls.Add(dataGrid);

dataGrid.DataSource = dr;
dr.Close();
conn.Close();

C# ExecuteNonQuery UPDATE Example
The following example opens a connection to the SAP Sybase IQ sample database and uses
the ExecuteNonQuery method to update the DepartmentName column to "Engineering" in all

.NET Application Programming

Programming 173

rows of the Departments table where the DepartmentID is 100. It displays the updated table in
a datagrid.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();

SACommand updateCmd = new SACommand(
 "UPDATE Departments SET DepartmentName = 'Engineering' " +
 "WHERE DepartmentID = 100", conn);
int recordsAffected = updateCmd.ExecuteNonQuery();

SACommand selectCmd = new SACommand(
 "SELECT * FROM Departments", conn);
SADataReader dr = selectCmd.ExecuteReader();

System.Windows.Forms.DataGrid dataGrid;
dataGrid = new System.Windows.Forms.DataGrid();
dataGrid.Location = new Point(15, 50);
dataGrid.Size = new Size(275, 200);
dataGrid.CaptionText = "SACommand Example";
this.Controls.Add(dataGrid);

dataGrid.DataSource = dr;
dr.Close();
conn.Close();

SACommand: Retrieve Primary Key Values for Newly Inserted Rows
If the table you are updating has an autoincremented primary key, uses UUIDs, or if the
primary key comes from a primary key pool, you can use a stored procedure to obtain the
primary key values generated by the data source.

C# SACommand Primary Key Example
The following example shows how to obtain the primary key that is generated for a newly
inserted row. The example uses an SACommand object to call a SQL stored procedure and an
SAParameter object to retrieve the primary key that it returns. For demonstration purposes, the
example creates a sample table (adodotnet_primarykey) and the stored procedure
(sp_adodotnet_primarykey) that will be used to insert rows and return primary key values.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();

SACommand cmd = conn.CreateCommand();

cmd.CommandText = "DROP TABLE adodotnet_primarykey";
cmd.ExecuteNonQuery();

cmd.CommandText = "CREATE TABLE IF NOT EXISTS adodotnet_primarykey ("
+
 "ID INTEGER DEFAULT AUTOINCREMENT, " +
 "Name CHAR(40))";
cmd.ExecuteNonQuery();

cmd.CommandText = "CREATE or REPLACE PROCEDURE

.NET Application Programming

174 SAP Sybase IQ

sp_adodotnet_primarykey(" +
 "out p_id int, in p_name char(40))" +
 "BEGIN " +
 "INSERT INTO adodotnet_primarykey(name) VALUES(p_name);" +
 "SELECT @@IDENTITY INTO p_id;" +
 "END";
cmd.ExecuteNonQuery();

cmd.CommandText = "sp_adodotnet_primarykey";
cmd.CommandType = CommandType.StoredProcedure;

SAParameter parmId = new SAParameter();
parmId.SADbType = SADbType.Integer;
parmId.Direction = ParameterDirection.Output;
cmd.Parameters.Add(parmId);

SAParameter parmName = new SAParameter();
parmName.SADbType = SADbType.Char;
parmName.Direction = ParameterDirection.Input;
cmd.Parameters.Add(parmName);

parmName.Value = "R & D --- Command";
cmd.ExecuteNonQuery();
int id1 = (int)parmId.Value;
System.Console.WriteLine("Primary key=" + id1);

parmName.Value = "Marketing --- Command";
cmd.ExecuteNonQuery();
int id2 = (int)parmId.Value;
System.Console.WriteLine("Primary key=" + id2);

parmName.Value = "Sales --- Command";
cmd.ExecuteNonQuery();
int id3 = (int)parmId.Value;
System.Console.WriteLine("Primary key=" + id3);

parmName.Value = "Shipping --- Command";
cmd.ExecuteNonQuery();
int id4 = (int)parmId.Value;
System.Console.WriteLine("Primary key=" + id4);

cmd.CommandText = "SELECT * FROM adodotnet_primarykey";
cmd.CommandType = CommandType.Text;
SADataReader dr = cmd.ExecuteReader();
conn.Close();
dataGridView1.DataSource = dr;

SADataAdapter: Overview
The SADataAdapter retrieves a result set into a DataTable. A DataSet is a collection of tables
(DataTables) and the relationships and constraints between those tables. The DataSet is built

.NET Application Programming

Programming 175

into the .NET Framework, and is independent of the Data Provider used to connect to your
database.

When you use the SADataAdapter, you must be connected to the database to fill a DataTable
and to update the database with changes made to the DataTable. However, once the DataTable
is filled, you can modify the DataTable while disconnected from the database.

If you do not want to apply your changes to the database right away, you can write the DataSet,
including the data and/or the schema, to an XML file using the WriteXml method. Then, you
can apply the changes at a later time by loading a DataSet with the ReadXml method. The
following shows two examples.
ds.WriteXml("Employees.xml");
ds.WriteXml("EmployeesWithSchema.xml", XmlWriteMode.WriteSchema);

For more information, see the .NET Framework documentation for WriteXml and ReadXml.

When you call the Update method to apply changes from the DataSet to the database, the
SADataAdapter analyzes the changes that have been made and then invokes the appropriate
statements, INSERT, UPDATE, or DELETE, as necessary. When you use the DataSet, you
can only make changes (inserts, updates, or deletes) to data that is from a single table. You
cannot update result sets that are based on joins. If another user has a lock on the row you are
trying to update, an exception is thrown.

Warning! Any changes you make to the DataSet are made while you are disconnected. Your
application does not have locks on these rows in the database. Your application must be
designed to resolve any conflicts that may occur when changes from the DataSet are applied to
the database if another user changes the data you are modifying before your changes are
applied to the database.

Resolving Conflicts When Using the SADataAdapter
When you use the SADataAdapter, no locks are placed on the rows in the database. This means
there is the potential for conflicts to arise when you apply changes from the DataSet to the
database. Your application should include logic to resolve or log conflicts that arise.

Some of the conflicts that your application logic should address include:
• Unique primary keys – If two users insert new rows into a table, each row must have a

unique primary key. For tables with AUTOINCREMENT primary keys, the values in the
DataSet may become out of sync with the values in the data source.

• Updates made to the same value – If two users modify the same value, your application
should include logic to determine which value is correct.

• Schema changes – If a user modifies the schema of a table you have updated in the
DataSet, the update will fail when you apply the changes to the database.

• Data concurrency – Concurrent applications should see a consistent set of data. The
SADataAdapter does not place a lock on rows that it fetches, so another user can update a
value in the database once you have retrieved the DataSet and are working offline.

Many of these potential problems can be avoided by using the SACommand, SADataReader,
and SATransaction objects to apply changes to the database. The SATransaction object is

.NET Application Programming

176 SAP Sybase IQ

recommended because it allows you to set the isolation level for the transaction and it places
locks on the rows so that other users cannot modify them.

To simplify the process of conflict resolution, you can design your INSERT, UPDATE, or
DELETE statement to be a stored procedure call. By including INSERT, UPDATE, and
DELETE statements in stored procedures, you can catch the error if the operation fails. In
addition to the statement, you can add error handling logic to the stored procedure so that if the
operation fails the appropriate action is taken, such as recording the error to a log file, or trying
the operation again.

SADataAdapter: Fetch Data into a DataTable Using Fill
The SADataAdapter allows you to view a result set by using the Fill method to fill a DataTable
with the results from a query and then binding the DataTable to a display grid.

When setting up an SADataAdapter, you can specify a SQL statement that returns a result set.
When Fill is called to populate a DataTable, all the rows are fetched in one operation using a
forward-only, read-only cursor. Once all the rows in the result set have been read, the cursor is
closed. Changes made to the rows in a DataTable can be reflected to the database using the
Update method.

You can use the SADataAdapter object to retrieve a result set that is based on a join. However,
you can only make changes (inserts, updates, or deletes) to data that is from a single table. You
cannot update result sets that are based on joins.

Warning! Any changes you make to a DataTable are made independently of the original
database table. Your application does not have locks on these rows in the database. Your
application must be designed to resolve any conflicts that may occur when changes from the
DataTable are applied to the database if another user changes the data you are modifying
before your changes are applied to the database.

C# SADataAdapter Fill Example Using a DataTable
The following example shows how to fill a DataTable using the SADataAdapter. It creates a
new DataTable object named Results and a new SADataAdapter object. The SADataAdapter
Fill method is used to fill the DataTable with the results of the query. The DataTable is then
bound to the grid on the screen.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
DataTable dt = new DataTable("Results");
SADataAdapter da = new SADataAdapter("SELECT * FROM Employees",
conn);
da.Fill(dt);
conn.Close();
dataGridView1.DataSource = dt;

C# SADataAdapter Fill Example Using a DataSet
The following example shows how to fill a DataTable using the SADataAdapter. It creates a
new DataSet object and a new SADataAdapter object. The SADataAdapter Fill method is

.NET Application Programming

Programming 177

used to create a DataTable table named Results in the DataSet and then fill it with the results of
the query. The Results DataTable is then bound to the grid on the screen.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
DataSet ds = new DataSet();
SADataAdapter da = new SADataAdapter("SELECT * FROM Employees",
conn);
da.Fill(ds, "Results");
conn.Close();
dataGridView1.DataSource = ds.Tables["Results"];

SADataAdapter: Format a DataTable Using FillSchema
The SADataAdapter allows you to configure the schema of a DataTable to match that of a
specific query using the FillSchema method. The attributes of the columns in the DataTable
will match those of the SelectCommand of the SADataAdapter object. Unlike the Fill method,
no rows are stored in the DataTable.

C# SADataAdapter FillSchema Example Using a DataTable
The following example shows how to use the FillSchema method to set up a new DataTable
object with the same schema as a result set. The Additions DataTable is then bound to the grid
on the screen.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SADataAdapter da = new SADataAdapter("SELECT * FROM Employees",
conn);
DataTable dt = new DataTable("Additions");
da.FillSchema(dt, SchemaType.Source);
conn.Close();
dataGridView1.DataSource = dt;

C# SADataAdapter FillSchema Example Using a DataSet
The following example shows how to use the FillSchema method to set up a new DataTable
object with the same schema as a result set. The DataTable is added to the DataSet using the
Merge method. The Additions DataTable is then bound to the grid on the screen.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SADataAdapter da = new SADataAdapter("SELECT * FROM Employees",
conn);
DataTable dt = new DataTable("Additions");
da.FillSchema(dt, SchemaType.Source);
DataSet ds = new DataSet();
ds.Merge(dt);
conn.Close();
dataGridView1.DataSource = ds.Tables["Additions"];

.NET Application Programming

178 SAP Sybase IQ

SADataAdapter: Insert Rows using Update
An example showing how to use the Update method of SADataAdapter to add rows to a table.

C# SADataAdapter Insert Example
The example fetches the Departments table into a DataTable using the SelectCommand
property and the Fill method of the SADataAdapter. It then adds two new rows to the
DataTable and updates the Departments table from the DataTable using the InsertCommand
property and the Update method of the SADataAdapter.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand deleteCmd = new SACommand(
 "DELETE FROM Departments WHERE DepartmentID >= 600", conn);
deleteCmd.ExecuteNonQuery();

SADataAdapter da = new SADataAdapter();
da.MissingMappingAction = MissingMappingAction.Passthrough;
da.MissingSchemaAction = MissingSchemaAction.Add;
da.SelectCommand = new SACommand(
 "SELECT * FROM Departments", conn);
da.InsertCommand = new SACommand(
 "INSERT INTO Departments(DepartmentID, DepartmentName) " +
 "VALUES(?, ?)", conn);
da.InsertCommand.UpdatedRowSource =
 UpdateRowSource.None;

SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Integer;
parm.SourceColumn = "DepartmentID";
parm.SourceVersion = DataRowVersion.Current;
da.InsertCommand.Parameters.Add(parm);

parm = new SAParameter();
parm.SADbType = SADbType.Char;
parm.SourceColumn = "DepartmentName";
parm.SourceVersion = DataRowVersion.Current;
da.InsertCommand.Parameters.Add(parm);

DataTable dataTable = new DataTable("Departments");
int rowCount = da.Fill(dataTable);

DataRow row1 = dataTable.NewRow();
row1[0] = 600;
row1[1] = "Eastern Sales";
dataTable.Rows.Add(row1);

DataRow row2 = dataTable.NewRow();
row2[0] = 700;
row2[1] = "Western Sales";
dataTable.Rows.Add(row2);

rowCount = da.Update(dataTable);

.NET Application Programming

Programming 179

dataTable.Clear();
rowCount = da.Fill(dataTable);
conn.Close();
dataGridView1.DataSource = dataTable;

SADataAdapter: Delete Rows Using Update
An example showing how to use the Update method of SADataAdapter to delete rows from a
table.

C# SADataAdapter Delete Example
The example adds two new rows to the Departments table and then fetches this table into a
DataTable using the SelectCommand property and the Fill method of the SADataAdapter. It
then deletes some rows from the DataTable and updates the Departments table from the
DataTable using the DeleteCommand property and the Update method of the SADataAdapter.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand prepCmd = new SACommand("", conn);
prepCmd.CommandText =
 "DELETE FROM Departments WHERE DepartmentID >= 600";
prepCmd.ExecuteNonQuery();
prepCmd.CommandText =
 "INSERT INTO Departments VALUES (600, 'Eastern Sales', 902)";
prepCmd.ExecuteNonQuery();
prepCmd.CommandText =
 "INSERT INTO Departments VALUES (700, 'Western Sales', 902)";
prepCmd.ExecuteNonQuery();

SADataAdapter da = new SADataAdapter();
da.MissingMappingAction = MissingMappingAction.Passthrough;
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;
da.SelectCommand = new SACommand(
 "SELECT * FROM Departments", conn);
da.DeleteCommand = new SACommand(
 "DELETE FROM Departments WHERE DepartmentID = ?",
 conn);
da.DeleteCommand.UpdatedRowSource = UpdateRowSource.None;

SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Integer;
parm.SourceColumn = "DepartmentID";
parm.SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add(parm);

DataTable dataTable = new DataTable("Departments");
int rowCount = da.Fill(dataTable);

foreach (DataRow row in dataTable.Rows)
{
 if (Int32.Parse(row[0].ToString()) > 500)
 {
 row.Delete();
 }
}

.NET Application Programming

180 SAP Sybase IQ

rowCount = da.Update(dataTable);

dataTable.Clear();
rowCount = da.Fill(dataTable);
conn.Close();
dataGridView1.DataSource = dataTable;

SADataAdapter: Update Rows using Update
An example showing how to use the Update method of SADataAdapter to update rows in a
table.

C# SADataAdapter Update Example
The example adds two new rows to the Departments table and then fetches this table into a
DataTable using the SelectCommand property and the Fill method of the SADataAdapter. It
then modifies some values in the DataTable and updates the Departments table from the
DataTable using the UpdateCommand property and the Update method of the
SADataAdapter.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand prepCmd = new SACommand("", conn);
prepCmd.CommandText =
 "DELETE FROM Departments WHERE DepartmentID >= 600";
prepCmd.ExecuteNonQuery();
prepCmd.CommandText =
 "INSERT INTO Departments VALUES (600, 'Eastern Sales', 902)";
prepCmd.ExecuteNonQuery();
prepCmd.CommandText =
 "INSERT INTO Departments VALUES (700, 'Western Sales', 902)";
prepCmd.ExecuteNonQuery();

SADataAdapter da = new SADataAdapter();
da.MissingMappingAction = MissingMappingAction.Passthrough;
da.MissingSchemaAction = MissingSchemaAction.Add;
da.SelectCommand = new SACommand(
 "SELECT * FROM Departments", conn);
da.UpdateCommand = new SACommand(
 "UPDATE Departments SET DepartmentName = ? " +
 "WHERE DepartmentID = ?",
 conn);
da.UpdateCommand.UpdatedRowSource = UpdateRowSource.None;

SAParameter parm = new SAParameter();
parm.SADbType = SADbType.Char;
parm.SourceColumn = "DepartmentName";
parm.SourceVersion = DataRowVersion.Current;
da.UpdateCommand.Parameters.Add(parm);

parm = new SAParameter();
parm.SADbType = SADbType.Integer;
parm.SourceColumn = "DepartmentID";
parm.SourceVersion = DataRowVersion.Original;
da.UpdateCommand.Parameters.Add(parm);

.NET Application Programming

Programming 181

DataTable dataTable = new DataTable("Departments");
int rowCount = da.Fill(dataTable);

foreach (DataRow row in dataTable.Rows)
{
 if (Int32.Parse(row[0].ToString()) > 500)
 {
 row[1] = (string)row[1] + "_Updated";
 }
}
rowCount = da.Update(dataTable);

dataTable.Clear();
rowCount = da.Fill(dataTable);
conn.Close();
dataGridView1.DataSource = dataTable;

SADataAdapter: Retrieve Primary Key Values for Newly Inserted Rows
If the table you are updating has an autoincremented primary key, uses UUIDs, or if the
primary key comes from a primary key pool, you can use a stored procedure to obtain the
primary key values generated by the data source.

C# SADataAdapter primary key example
The following example shows how to obtain the primary key that is generated for a newly
inserted row. The example uses an SADataAdapter object to call a SQL stored procedure and
an SAParameter object to retrieve the primary key that it returns. For demonstration purposes,
the example creates a sample table (adodotnet_primarykey) and the stored procedure
(sp_adodotnet_primarykey) that will be used to insert rows and return primary key values.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();

SACommand cmd = conn.CreateCommand();

cmd.CommandText = "DROP TABLE adodotnet_primarykey";
cmd.ExecuteNonQuery();

cmd.CommandText = "CREATE TABLE IF NOT EXISTS adodotnet_primarykey ("
+
 "ID INTEGER DEFAULT AUTOINCREMENT, " +
 "Name CHAR(40))";
cmd.ExecuteNonQuery();

cmd.CommandText = "CREATE or REPLACE PROCEDURE
sp_adodotnet_primarykey(" +
 "out p_id int, in p_name char(40))" +
 "BEGIN " +
 "INSERT INTO adodotnet_primarykey(name) VALUES(p_name);" +
 "SELECT @@IDENTITY INTO p_id;" +
 "END";
cmd.ExecuteNonQuery();

.NET Application Programming

182 SAP Sybase IQ

SADataAdapter da = new SADataAdapter();
da.MissingMappingAction = MissingMappingAction.Passthrough;
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.SelectCommand = new SACommand(
 "SELECT * FROM adodotnet_primarykey", conn);

da.InsertCommand = new SACommand(
 "sp_adodotnet_primarykey", conn);
da.InsertCommand.CommandType = CommandType.StoredProcedure;
da.InsertCommand.UpdatedRowSource =
UpdateRowSource.OutputParameters;

SAParameter parmId = new SAParameter();
parmId.SADbType = SADbType.Integer;
parmId.Direction = ParameterDirection.Output;
parmId.SourceColumn = "ID";
parmId.SourceVersion = DataRowVersion.Current;
da.InsertCommand.Parameters.Add(parmId);

SAParameter parmName = new SAParameter();
parmName.SADbType = SADbType.Char;
parmName.Direction = ParameterDirection.Input;
parmName.SourceColumn = "Name";
parmName.SourceVersion = DataRowVersion.Current;
da.InsertCommand.Parameters.Add(parmName);

DataTable dataTable = new DataTable("Departments");
da.FillSchema(dataTable, SchemaType.Source);

DataRow row = dataTable.NewRow();
row[0] = -1;
row[1] = "R & D --- Adapter";
dataTable.Rows.Add(row);

row = dataTable.NewRow();
row[0] = -2;
row[1] = "Marketing --- Adapter";
dataTable.Rows.Add(row);

row = dataTable.NewRow();
row[0] = -3;
row[1] = "Sales --- Adapter";
dataTable.Rows.Add(row);

row = dataTable.NewRow();
row[0] = -4;
row[1] = "Shipping --- Adapter";
dataTable.Rows.Add(row);

DataSet ds = new DataSet();
ds.Merge(dataTable);
da.Update(ds, "Departments");

conn.Close();
dataGridView1.DataSource = ds.Tables["Departments"];

.NET Application Programming

Programming 183

BLOBs
When fetching long string values or binary data, there are methods that you can use to fetch the
data in pieces. For binary data, use the GetBytes method, and for string data, use the GetChars
method. Otherwise, BLOB data is treated in the same manner as any other data you fetch from
the database.

C# GetChars BLOB example
The following example reads three columns from a result set. The first two columns are
integers, while the third column is a LONG VARCHAR. The length of the third column is
computed by reading this column with the GetChars method in chunks of 100 characters.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM MarketingInformation",
conn);
SADataReader reader = cmd.ExecuteReader();

int idValue;
int productIdValue;
int length = 100;
char[] buf = new char[length];
while (reader.Read())
{
 idValue = reader.GetInt32(0);
 productIdValue = reader.GetInt32(1);
 long blobLength = 0;
 long charsRead;
 while ((charsRead = reader.GetChars(2, blobLength, buf, 0,
length))
 == (long)length)
 {
 blobLength += charsRead;
 }
 blobLength += charsRead;
}
reader.Close();
conn.Close();

Time Values
The .NET Framework does not have a Time structure. To fetch time values from SAP Sybase
IQ, you must use the GetTimeSpan method. This method returns the data as a .NET
Framework TimeSpan object.

C# TimeSpan Example
The following example uses the GetTimeSpan method to return the time as TimeSpan.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT 123, CURRENT TIME", conn);
SADataReader reader = cmd.ExecuteReader();
while (reader.Read())

.NET Application Programming

184 SAP Sybase IQ

{
 int ID = reader.GetInt32(0);
 TimeSpan time = reader.GetTimeSpan(1);
}
reader.Close();
conn.Close();

Stored Procedures
You can use SQL stored procedures with the SAP Sybase IQ .NET Data Provider.

The ExecuteReader method is used to call stored procedures that return result sets, while the
ExecuteNonQuery method is used to call stored procedures that do not return any result sets.
The ExecuteScalar method is used to call stored procedures that return only a single value.

You can use SAParameter objects to pass parameters to a stored procedure.

C# Stored Procedure Call with Parameters Example
The following example shows two ways to call a stored procedure and pass it a parameter. The
example uses an SADataReader to fetch the result set returned by the stored procedure.
SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
bool method1 = true;

SACommand cmd = new SACommand("", conn);
if (method1)
{
 cmd.CommandText = "ShowProductInfo";
 cmd.CommandType = CommandType.StoredProcedure;
}
else
{
 cmd.CommandText = "call ShowProductInfo(?)";
 cmd.CommandType = CommandType.Text;
}

SAParameter param = cmd.CreateParameter();
param.SADbType = SADbType.Integer;
param.Direction = ParameterDirection.Input;
param.Value = 301;
cmd.Parameters.Add(param);

SADataReader reader = cmd.ExecuteReader();
reader.Read();
int ID = reader.GetInt32(0);
string name = reader.GetString(1);
string description = reader.GetString(2);
decimal price = reader.GetDecimal(6);
reader.Close();

listBox1.BeginUpdate();
listBox1.Items.Add("Name=" + name +
 " Description=" + description + " Price=" + price);
listBox1.EndUpdate();

.NET Application Programming

Programming 185

conn.Close();

Transaction Processing
With the SAP Sybase IQ .NET Data Provider, you can use the SATransaction object to group
statements together. Each transaction ends with a COMMIT or ROLLBACK, which either
makes your changes to the database permanent or cancels all the operations in the transaction.
Once the transaction is complete, you must create a new SATransaction object to make further
changes. This behavior is different from ODBC and embedded SQL, where a transaction
persists after you execute a COMMIT or ROLLBACK until the transaction is closed.

If you do not create a transaction, the SAP Sybase IQ .NET Data Provider operates in
autocommit mode by default. There is an implicit COMMIT after each insert, update, or
delete, and once an operation is completed, the change is made to the database. In this case, the
changes cannot be rolled back.

Isolation Level Settings for Transactions
The database isolation level is used by default for transactions. You can choose to specify the
isolation level for a transaction using the IsolationLevel property when you begin the
transaction. The isolation level applies to all statements executed within the transaction. The
SQL Anywhere .NET Data Provider supports snapshot isolation.

The locks that SAP Sybase IQ uses when you execute a SQL statement depend on the
transaction's isolation level.

Distributed Transaction Processing
The .NET 2.0 framework introduced a new namespace System.Transactions, which contains
classes for writing transactional applications. Client applications can create and participate in
distributed transactions with one or multiple participants. Client applications can implicitly
create transactions using the TransactionScope class. The connection object can detect the
existence of an ambient transaction created by the TransactionScope and automatically enlist.
The client applications can also create a CommittableTransaction and call the
EnlistTransaction method to enlist. This feature is supported by the SAP Sybase IQ .NET Data
Provider. Distributed transaction has significant performance overhead. It is recommended
that you use database transactions for non-distributed transactions.

C# SATransaction Example
The following example shows how to wrap an INSERT into a transaction so that it can be
committed or rolled back. A transaction is created with an SATransaction object and linked to
the execution of a SQL statement using an SACommand object. Isolation level 2
(RepeatableRead) is specified so that other database users cannot update the row. The lock on
the row is released when the transaction is committed or rolled back. If you do not use a
transaction, the SAP Sybase IQ .NET Data Provider operates in autocommit mode and you
cannot roll back any changes that you make to the database.

.NET Application Programming

186 SAP Sybase IQ

SAConnection conn = new SAConnection("Data Source=Sybase IQ Demo");
conn.Open();
string stmt = "UPDATE Products SET UnitPrice = 2000.00 " +
 "WHERE Name = 'Tee shirt'";
bool goAhead = false;

SATransaction trans =
conn.BeginTransaction(SAIsolationLevel.RepeatableRead);
SACommand cmd = new SACommand(stmt, conn, trans);
int rowsAffected = cmd.ExecuteNonQuery();
if (goAhead)
 trans.Commit();
else
 trans.Rollback();
conn.Close();

Error handling
Your application should be designed to handle any errors that occur.

The SAP Sybase IQ .NET Data Provider creates an SAException object and throws an
exception whenever errors occur during execution. Each SAException object consists of a list
of SAError objects, and these error objects include the error message and code.

Errors are different from conflicts. Conflicts arise when changes are applied to the database.
Your application should include a process to compute correct values or to log conflicts when
they arise.

C# error handling example
The following C# code creates a button click handler that opens a connection to the SAP
Sybase IQ sample database. If the connection cannot be made, the exception handler displays
one or more messages.
private void button1_Click(object sender, EventArgs e)
{
 SAConnection conn = new SAConnection("Data Source=Sybase IQ
Demo");
 try
 {
 conn.Open();
 }
 catch (SAException ex)
 {
 for (int i = 0; i < ex.Errors.Count; i++)
 {
 MessageBox.Show(ex.Errors[i].Source + " : " +
 ex.Errors[i].Message + " (" +
 ex.Errors[i].NativeError.ToString() + ")",
 "Failed to connect");
 }
 }
}

.NET Application Programming

Programming 187

Visual Basic error handling example
The following Visual Basic code creates a button click handler that opens a connection to the
SAP Sybase IQ sample database. If the connection cannot be made, the exception handler
displays one or more messages.
Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Dim conn As New SAConnection("Data Source=Sybase IQ Demo")
 Try
 conn.Open()
 Catch ex As SAException
 For i = 0 To ex.Errors.Count - 1
 MessageBox.Show(ex.Errors(i).Source & " : " & _
 ex.Errors(i).Message & " (" & _
 ex.Errors(i).NativeError.ToString() & ")", _
 "Failed to connect")
 Next i
 End Try
End Sub

Entity Framework Support
The SAP Sybase IQ .NET Data Provider supports Entity Framework 4.3, a separate package
available from Microsoft. To use Entity Framework 4.3,you must add it to Visual Studio using
Microsoft's NuGet Package Manager.

One of the new features of Entity Framework is Code First. It enables a different development
workflow: defining data model objects by simply writing C# or VB.NET classes mapping to
database objects without ever having to open a designer or define an XML mapping file.
Optionally, additional configuration can be performed by using data annotations or the Fluent
API. Models can be used to generate a database schema or map to an existing database.

Here's an example which creates new database objects using the model:
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Data.Entity;
using System.Data.Entity.Infrastructure;
using System.Linq;
using iAnywhere.Data.SQLAnywhere;

namespace CodeFirstExample
{
 [Table("EdmCategories", Schema = "DBA")]
 public class Category
 {
 public string CategoryID { get; set; }
 [MaxLength(64)]
 public string Name { get; set; }

 public virtual ICollection<Product> Products { get; set; }
 }

.NET Application Programming

188 SAP Sybase IQ

 [Table("EdmProducts", Schema = "DBA")]
 public class Product
 {
 public int ProductId { get; set; }
 [MaxLength(64)]
 public string Name { get; set; }
 public string CategoryID { get; set; }

 public virtual Category Category { get; set; }
 }

 [Table("EdmSuppliers", Schema = "DBA")]
 public class Supplier
 {
 [Key]
 public string SupplierCode { get; set; }
 [MaxLength(64)]
 public string Name { get; set; }
 }

 public class Context : DbContext
 {
 public Context() : base() { }
 public Context(string connStr) : base(connStr) { }

 public DbSet<Category> Categories { get; set; }
 public DbSet<Product> Products { get; set; }
 public DbSet<Supplier> Suppliers { get; set; }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)
 {
 modelBuilder.Entity<Supplier>().Property(s =>
s.Name).IsRequired();
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Database.DefaultConnectionFactory = new
SAConnectionFactory();
 Database.SetInitializer<Context>(new
DropCreateDatabaseAlways<Context>());

 using (var db = new Context("DSN=Sybase IQ Demo"))
 {
 var query = db.Products.ToList();
 }
 }
 }
}

To build and run this example, the following assembly references must be added:

.NET Application Programming

Programming 189

EntityFramework
iAnywhere.Data.SQLAnywhere.v4.0
System.ComponentModel.DataAnnotations
System.Data.Entity

Here is another example that maps to an existing database:
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Data.Entity;
using System.Data.Entity.Infrastructure;
using System.Linq;
using iAnywhere.Data.SQLAnywhere;

namespace CodeFirstExample
{
 [Table("Customers", Schema = "GROUPO")]
 public class Customer
 {
 [Key()]
 public int ID { get; set; }
 public string SurName { get; set; }
 public string GivenName { get; set; }
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string PostalCode { get; set; }
 public string Phone { get; set; }
 public string CompanyName { get; set; }

 public virtual ICollection<Contact> Contacts { get; set; }
 }

 [Table("Contacts", Schema = "GROUPO")]
 public class Contact
 {
 [Key()]
 public int ID { get; set; }
 public string SurName { get; set; }
 public string GivenName { get; set; }
 public string Title { get; set; }
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string PostalCode { get; set; }
 public string Phone { get; set; }
 public string Fax { get; set; }

 [ForeignKey("Customer")]
 public int CustomerID { get; set; }
 public virtual Customer Customer { get; set; }
 }

.NET Application Programming

190 SAP Sybase IQ

 public class Context : DbContext
 {
 public Context() : base() { }
 public Context(string connStr) : base(connStr) { }

 public DbSet<Contact> Contacts { get; set; }
 public DbSet<Customer> Customers { get; set; }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Database.DefaultConnectionFactory = new
SAConnectionFactory();
 Database.SetInitializer<Context>(null);

 using (var db = new Context("DSN=SAP Sybase IQ 16
Demo"))
 {
 foreach (var customer in db.Customers.ToList())
 {
 Console.WriteLine("Customer - " + string.Format(
 "{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8},
{9}",
 customer.ID, customer.SurName,
customer.GivenName,
 customer.Street, customer.City, customer.State,
 customer.Country, customer.PostalCode,
 customer.Phone, customer.CompanyName));

 foreach (var contact in customer.Contacts)
 {
 Console.WriteLine(" Contact - " +
string.Format(
 "{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8},
{9}, {10}",
 contact.ID, contact.SurName,
contact.GivenName,
 contact.Title,
 contact.Street, contact.City,
contact.State,
 contact.Country, contact.PostalCode,
 contact.Phone, contact.Fax));
 }
 }
 }
 }
 }
}

There are some implementation detail differences between the Microsoft .NET Framework
Data Provider for SQL Server (SqlClient) and the SAP Sybase IQ .NET Data Provider of
which you should be aware.

.NET Application Programming

Programming 191

1. A new class SAConnectionFactory (implements IDbConnectionFactory) is included. You
set the Database.DefaultConnectionFactory to an instance of SAConnectionFactory
before creating any data model as shown below:
Database.DefaultConnectionFactory = new SAConnectionFactory();

2. The major principle of Entity Framework Code First is coding by conventions. The Entity
Framework infers the data model by coding conventions. Entity Framework also does lots
of things implicitly. Sometimes the developer might not realize all these Entity Framework
conventions. But some code conventions do not make sense for SAP Sybase IQ. There is a
big difference between SQL Server and SAP Sybase IQ. Every SQL Server instance
maintains multiple databases, but every SAP Sybase IQ database is a single file.
• If the user creates a user-defined DbContext using the parameterless constructor,

SqlClient will connect to SQL Server Express on the local computer using integrated
security. The SAP Sybase IQ provider connects to the default server using integrated
login if the user has already created a login mapping.

• SqlClient drops the existing database and creates a new database when the Entity
Framework calls DbDeleteDatabase or DbCreateDatabase (SQL Server Express
Edition only). The SAP Sybase IQ provider never drops or creates the database. It
creates or drops the database objects (tables, relations, constraints for example). The
user must create the database first.

• The IDbConnectionFactory.CreateConnection method treats the string parameter
"nameOrConnectionString" as database name (initial catalog for SQL Server) or a
connection string. If the user does not provide the connection string for DbContext,
SqlClient will automatically connect to the SQL Express server on the local computer
using the namespace of user-defined DbContext class as the initial catalog. For SAP
Sybase IQ, that parameter can only contain a connection string. A database name will
be ignored and integrated login will be used instead.

3. The SQL Server SqlClient API maps a column with data annotation attribute TimeStamp
to SQL Server data type timestamp/rowversion. There are some misconceptions about
SQL Server timestamp/rowversion among developers. The SQL Server timestamp/
rowversion data type is different from SAP Sybase IQ and most other database vendors:
• The SQL Server timestamp/rowversion is binary(8). It is does not support a combined

date and time value. SAP Sybase IQ supports a data type called timestamp that is
equivalent to the SQL Server datetime data type.

• SQL Server timestamp/rowversion values are guaranteed to be unique. SAP Sybase IQ
timestamp values are not unique.

• A SQL Server timestamp/rowversion value changes every time the row is updated.
The TimeStamp data annotation attribute is not supported by SAP Sybase IQ provider.

4. By default, Entity Framework 4.1 always sets the schema or owner name to dbo which is
the default schema of SQL Server. However, dbo is not appropriate for SAP Sybase IQ.
For SAP Sybase IQ, you must specify the schema name (GROUPO for example) with the
table name either by using data annotations or the Fluent API. Here's an example:
namespace CodeFirstTest
{
 public class Customer

.NET Application Programming

192 SAP Sybase IQ

 {
 [Key()]
 public int ID { get; set; }
 public string SurName { get; set; }
 public string GivenName { get; set; }
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string PostalCode { get; set; }
 public string Phone { get; set; }
 public string CompanyName { get; set; }

 public virtual ICollection<Contact> Contacts { get; set; }
 }

 public class Contact
 {
 [Key()]
 public int ID { get; set; }
 public string SurName { get; set; }
 public string GivenName { get; set; }
 public string Title { get; set; }
 public string Street { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string PostalCode { get; set; }
 public string Phone { get; set; }
 public string Fax { get; set; }

 [ForeignKey("Customer")]
 public int CustomerID { get; set; }
 public virtual Customer Customer { get; set; }
 }

 [Table("Departments", Schema = "GROUPO")]
 public class Department
 {
 [Key()]
 public int DepartmentID { get; set; }
 public string DepartmentName { get; set; }
 public int DepartmentHeadID { get; set; }
 }

 public class Context : DbContext
 {
 public Context() : base() { }
 public Context(string connStr) : base(connStr) { }

 public DbSet<Contact> Contacts { get; set; }
 public DbSet<Customer> Customers { get; set; }
 public DbSet<Department> Departments { get; set; }

 protected override void OnModelCreating(DbModelBuilder
modelBuilder)

.NET Application Programming

Programming 193

 {
 modelBuilder.Entity<Contact>().ToTable("Contacts",
"GROUPO");
 modelBuilder.Entity<Customer>().ToTable("Customers",
"GROUPO");
 }
 }
}

SAP Sybase IQ .NET Data Provider Deployment
The following sections describe how to deploy the SAP Sybase IQ .NET Data Provider.

SAP Sybase IQ .NET Data Provider System Requirements
To use the SAP Sybase IQ .NET Data Provider, you must have the following installed on your
computer or handheld device:

• The .NET Framework and/or .NET Compact Framework version 2.0 or later.
• Visual Studio 2005 or later, or a .NET language compiler, such as C# (required only for

development).

SAP Sybase IQ .NET Data Provider Required Files
The SAP Sybase IQ .NET Data Provider code resides in a DLL for each platform.

Windows Required Files
For Windows, one of the following DLLs is required:

• %IQDIR16%\V2\Assembly\V2\iAnywhere.Data.SQLAnywhere.dll
• %IQDIR16%\V2\Assembly

\V3.5\iAnywhere.Data.SQLAnywhere.v3.5.dll
• %IQDIR16%\V2\Assembly

\V4\iAnywhere.Data.SQLAnywhere.v4.0.dll
The choice of DLL depends on the version of .NET that you are targeting.

The Windows version of the provider also requires the following DLLs.

• policy.16.0.iAnywhere.Data.SQLAnywhere.dll – The policy file can be
used to override the provider version that the application was built with. The policy file is
updated by Sybase whenever an update to the provider is released. There are also policy
files for the version 3.5 provider (policy.
16.0.iAnywhere.Data.SQLAnywhere.v3.5.dll) and the version 4.0
provider (policy.16.0.iAnywhere.Data.SQLAnywhere.v4.0.dll).

• dblgen16.dll – This language DLL contains English (en) messages issued by the
provider. It is available in many other languages including Chinese (zh), French (fr),
German (de), and Japanese (jp).

.NET Application Programming

194 SAP Sybase IQ

• dbcon16.dll – The Connect to SQL Anywhere window support code is contained in
this DLL.

Visual Studio deploys the .NET Data Provider DLL
(iAnywhere.Data.SQLAnywhere.dll or
iAnywhere.Data.SQLAnywhere.v3.5.dll) to your device along with your
program. If you are not using Visual Studio, you must copy the Data Provider DLL to the
device along with your application. It can go in the same directory as your application, or in the
\Windows directory.

The SAP Sybase IQ .NET Data Provider dbdata DLL
When the SAP Sybase IQ .NET Data Provider is first loaded by a .NET application (usually
when making a database connection using SAConnection), it unpacks a DLL that contains the
provider's unmanaged code. The file dbdata16.dll is placed by the provider in a
subdirectory of the directory identified using the following strategy.

1. The first directory it attempts to use for unloading is the one returned by the first of the
following:

The path identified by the TMP environment variable.
The path identified by the TEMP environment variable.
The path identified by the USERPROFILE environment variable.
The Windows directory.

2. If the identified directory is inaccessible, then the provider will attempt to use the current
working directory.

3. If the current working directory is inaccessible, then the provider will attempt to use the
directory from where the application itself was loaded.

The subdirectory name will take the form of a GUID with a suffix including the version
number, bitness of the DLL, and an index number used to guarantee uniqueness. The
following is an example of a possible subdirectory name.
{16AA8FB8-4A98-4757-B7A5-0FF22C0A6E33}_1601.x64_1

SAP Sybase IQ .NET Data Provider DLL Registration
The Windows version of the SAP Sybase IQ .NET Data Provider DLL (%IQDIR%
\Assembly\V2\iAnywhere.Data.SQLAnywhere.dll) is registered in the Global
Assembly Cache when you install the SAP Sybase IQ software. On Windows Mobile, you do
not need to register the DLL.

If you are deploying the SAP Sybase IQ .NET Data Provider, you can register it using the
gacutil utility that is included with the Microsoft SDK.

To register the SAP Sybase IQ .NET Data Provider as a DbProviderFactory instance when
deploying the provider, you must add an entry to the .NET machine.config file. An entry
similar to the following must be placed in the <DbProviderFactories> section.

<add invariant="iAnywhere.Data.SQLAnywhere"
name="SAP Sybase IQ 16 Data Provider"

.NET Application Programming

Programming 195

description=".Net Framework Data Provider for SAP Sybase IQ 16"
type="iAnywhere.Data.SQLAnywhere.SAFactory,
iAnywhere.Data.SQLAnywhere.v3.5,
 Version=16.0.0.36003, Culture=neutral,
PublicKeyToken=f222fc4333e0d400"/>

The version number must match the version of the provider that you are installing. The
configuration file is located in \WINDOWS\Microsoft.NET\Framework
\v2.0.50727\CONFIG. For 64-bit Windows systems, there is a second configuration file
under the Framework64 tree that must also be modified.

.NET Tracing Support
The SAP Sybase IQ .NET Data Provider supports tracing using the .NET tracing feature.

By default, tracing is disabled. To enable tracing, specify the trace source in your application's
configuration file.

The following is an example of a configuration file:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.diagnostics>
<sources>
 <source name="iAnywhere.Data.SQLAnywhere"
 switchName="SASourceSwitch"
 switchType="System.Diagnostics.SourceSwitch">
 <listeners>
 <add name="ConsoleListener"
 type="System.Diagnostics.ConsoleTraceListener"/>
 <add name="EventListener"
 type="System.Diagnostics.EventLogTraceListener"
 initializeData="MyEventLog"/>
 <add name="TraceLogListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="myTrace.log"
 traceOutputOptions="ProcessId, ThreadId, Timestamp"/>
 <remove name="Default"/>
 </listeners>
 </source>
</sources>
<switches>
 <add name="SASourceSwitch" value="All"/>
 <add name="SATraceAllSwitch" value="1" />
 <add name="SATraceExceptionSwitch" value="1" />
 <add name="SATraceFunctionSwitch" value="1" />
 <add name="SATracePoolingSwitch" value="1" />
 <add name="SATracePropertySwitch" value="1" />
</switches>
</system.diagnostics>
</configuration>

There are four types of trace listeners referenced in the configuration file shown above.

.NET Application Programming

196 SAP Sybase IQ

• ConsoleTraceListener – Tracing or debugging output is directed to either the standard
output or the standard error stream. When using Microsoft Visual Studio, output appears in
the Output window.

• DefaultTraceListener – This listener is automatically added to the Debug.Listeners and
Trace.Listeners collections using the name "Default". Tracing or debugging output is
directed to either the standard output or the standard error stream. When using Microsoft
Visual Studio, output appears in the Output window. To avoid duplication of output
produced by the ConsoleTraceListener, this listener is removed.

• EventLogTraceListener – Tracing or debugging output is directed to an EventLog
identified in the initializeData option. In the example, the event log is named
MyEventLog. Writing to the system event log requires administrator privileges and is
not a recommended method for debugging applications.

• TextWriterTraceListener – Tracing or debugging output is directed to a TextWriter
which writes the stream to the file identified in the initializeData option.

To disable tracing to any of the trace listeners described above, remove the corresponding add
entry under <listeners>.

The trace configuration information is placed in the application's project folder in the
App.config file. If the file does not exist, it can be created and added to the project using
Visual Studio by choosing Add » New Item and selecting Application Configuration
File.

The traceOutputOptions can be specified for any listener and include the following:

• Callstack – Write the call stack, which is represented by the return value of the
Environment.StackTrace property.

• DateTime – Write the date and time.
• LogicalOperationStack – Write the logical operation stack, which is represented by the

return value of the CorrelationManager.LogicalOperationStack property.
• None – Do not write any elements.
• ProcessId – Write the process identity, which is represented by the return value of the

Process.Id property.
• ThreadId – Write the thread identity, which is represented by the return value of the

Thread.ManagedThreadId property for the current thread.
• Timestamp – Write the timestamp, which is represented by the return value of the

System.Diagnostics.Stopwatch.GetTimeStamp method.

The example configuration file, shown earlier, specifies trace output options for the
TextWriterTraceListener only.

You can limit what is traced by setting specific trace options. By default the numeric-valued
trace option settings are all 0. The trace options that can be set include the following:

• SASourceSwitch – SASourceSwitch can take any of the following values. It it is Off then
there is no tracing.

.NET Application Programming

Programming 197

Off – Does not allow any events through.

Critical – Allows only Critical events through.

Error – Allows Critical and Error events through.

Warning – Allows Critical, Error, and Warning events through.

Information – Allows Critical, Error, Warning, and Information events through.

Verbose – Allows Critical, Error, Warning, Information, and Verbose events through.

ActivityTracing – Allows the Stop, Start, Suspend, Transfer, and Resume events through.

All – Allows all events through.

Here is an example setting.
<add name="SASourceSwitch" value="Error"/>

• SATraceAllSwitch – All the trace options are enabled. You do not need to set any other
options since they are all selected. You cannot disable individual options if you choose this
option. For example, the following will not disable exception tracing.
<add name="SATraceAllSwitch" value="1" />
<add name="SATraceExceptionSwitch" value="0" />

• SATraceExceptionSwitch – All exceptions are logged. Trace messages have the
following form.
<Type|ERR> message='message_text'[nativeError=error_number]

The nativeError=error_number text will only be displayed if there is an SAException
object.

• SATraceFunctionSwitch – All function scope entry/exits are logged. Trace messages
have any of the following forms.
enter_nnn <sa.class_name.method_name|API> [object_id#]
[parameter_names]
leave_nnn

The nnn is an integer representing the scope nesting level 1, 2, 3, ... The optional
parameter_names is a list of parameter names separated by spaces.

• SATracePoolingSwitch – All connection pooling is logged. Trace messages have any of
the following forms.
<sa.ConnectionPool.AllocateConnection|CPOOL>
connectionString='connection_text'
<sa.ConnectionPool.RemoveConnection|CPOOL>
connectionString='connection_text'
<sa.ConnectionPool.ReturnConnection|CPOOL>
connectionString='connection_text'
<sa.ConnectionPool.ReuseConnection|CPOOL>
connectionString='connection_text'

• SATracePropertySwitch – All property setting and retrieval is logged. Trace messages
have any of the following forms.

.NET Application Programming

198 SAP Sybase IQ

<sa.class_name.get_property_name|API> object_id#
<sa.class_name.set_property_name|API> object_id#

For more information, see "Tracing Data Access" at http://msdn.microsoft.com/en-us/library/
ms971550.aspx.

Configuring a Windows Application for Tracing
Enabling tracing on the TableViewer sample application involves creating a configuration file
that references the ConsoleTraceListener and TextWriterTraceListener listeners, removes the
default listener, and enables all switches that would otherwise be set to 0.

Prerequisites

You must have Visual Studio installed.

Task

1. Open the TableViewer sample in Visual Studio.

Start Visual Studio and open the %ALLUSERSPROFILE%\SybaseIQ\samples
\SQLAnywhere\ADO.NET\TableViewer\TableViewer.sln.

2. Create an application file named App.config and copy the following configuration
setup:
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.diagnostics>
<sources>
 <source name="iAnywhere.Data.SQLAnywhere"
 switchName="SASourceSwitch"
 switchType="System.Diagnostics.SourceSwitch">
 <listeners>
 <add name="ConsoleListener"
 type="System.Diagnostics.ConsoleTraceListener"/>
 <add name="TraceLogListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="myTrace.log"
 traceOutputOptions="ProcessId, ThreadId, Timestamp"/>
 <remove name="Default"/>
 </listeners>
 </source>
</sources>
<switches>
 <add name="SASourceSwitch" value="All"/>
 <add name="SATraceAllSwitch" value="1" />
 <add name="SATraceExceptionSwitch" value="1" />
 <add name="SATraceFunctionSwitch" value="1" />
 <add name="SATracePoolingSwitch" value="1" />
 <add name="SATracePropertySwitch" value="1" />
</switches>
</system.diagnostics>
</configuration>

.NET Application Programming

Programming 199

http://msdn.microsoft.com/en-us/library/ms971550.aspx
http://msdn.microsoft.com/en-us/library/ms971550.aspx

3. Rebuild the application.

4. Click Debug » Start Debugging.

When the application finishes execution, the trace output is recorded in the bin\Debug
\myTrace.log file.

Next

View the trace log in the Output window of Visual Studio.

.NET Data Provider Tutorials
The Simple and Table Viewer sample projects are included with the .NET Data Provider.

The sample projects can be used with Visual Studio 2005 or later versions. The sample
projects were developed with Visual Studio 2005. If you use a later version, you may have to
run the Visual Studio Upgrade Wizard. This section also includes a tutorial that takes you
though the steps of building the Simple Viewer .NET database application using Visual
Studio.

Tutorial: Using the Simple Code Sample
The Simple project uses the .NET Data Provider to obtain a result set from the database server.

Prerequisites

You must have Visual Studio and the .NET Framework installed on your computer.

You must have the SELECT ANY TABLE system privilege.

Task

The Simple project is included with the SAP Sybase IQ samples. It demonstrates a simple
listbox that is filled with the names from the Employees table.

1. Start Visual Studio.

2. Click File » Open » Project.

3. Browse to %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere
\ADO.NET\SimpleWin32 and open the Simple.sln project.

4. When you use the SAP Sybase IQ .NET Data Provider in a project, you must add a
reference to the Data Provider. This has already been done in the Simple code sample. To
view the reference to the Data Provider (iAnywhere.Data.SQLAnywhere), open
the References folder in the Solution Explorer window.

.NET Application Programming

200 SAP Sybase IQ

5. You must also add a using directive to your source code to reference the Data Provider
classes. This has already been done in the Simple code sample. To view the using
directive:

• Open the source code for the project. In the Solution Explorer window, right-click
Form1.cs and click View Code.

In the using directives in the top section, you should see the following line:

using iAnywhere.Data.SQLAnywhere;

This line is required for C# projects. If you are using Visual Basic .NET, you need to
add an Imports line to your source code.

6. Click Debug » Start Without Debugging or press Ctrl+F5 to run the Simple sample.

7. In the SQL Anywhere Sample window, click Connect.

The application connects to the SAP Sybase IQ sample database and puts the surname of
each employee in the window, as follows:

8. Close the SQL Anywhere Sample window to shut down the application and disconnect
from the sample database. This also shuts down the database server.

You have built and executed a simple .NET application that uses the SAP Sybase IQ .NET
Data Provider to obtain a result set from an SAP Sybase IQ database server.

Tutorial: Using the Table Viewer Code Sample
The TableViewer project uses the .NET Data Provider to connect to a database, execute SQL
statements, and display the results using a DataGrid object.

Prerequisites

You must have Visual Studio and the .NET Framework installed on your computer.

You must have the SELECT ANY TABLE system privilege.

.NET Application Programming

Programming 201

Task

The TableViewer project is included with the SAP Sybase IQ samples. The Table Viewer
project is more complex than the Simple project. You can use it to connect to a database, select
a table, and execute SQL statements on the database.

1. Start Visual Studio.

2. Click File » Open » Project.

3. Browse to %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere
\ADO.NET\TableViewer and open the TableViewer.sln project.

4. To use the SAP Sybase IQ .NET Data Provider in a project, you must add a reference to the
Data Provider DLL. This has already been done in the Table Viewer code sample. To view
the reference to the Data Provider (iAnywhere.Data.SQLAnywhere), open the
References folder in the Solution Explorer window.

5. You must also add a using directive to your source code to reference the Data Provider
classes. This has already been done in the Table Viewer code sample. To view the using
directive:

• Open the source code for the project. In the Solution Explorer window, right-click
TableViewer.cs and click View Code.

• In the using directives in the top section, you should see the following line:

using iAnywhere.Data.SQLAnywhere;

This line is required for C# projects. If you are using Visual Basic, you need to add an
Imports line to your source code.

6. Click Debug » Start Without Debugging or press Ctrl+F5 to run the Table Viewer
sample.

The application connects to the SAP Sybase IQ sample database.

7. In the Table Viewer window, click Connect.

8. In the Table Viewer window, click Execute.

The application retrieves the data from the Employees table in the sample database and
puts the query results in the Results datagrid, as follows:

.NET Application Programming

202 SAP Sybase IQ

You can also execute other SQL statements from this application: type a SQL statement in
the SQL Statement pane, and then click Execute.

9. Close the Table Viewer window to shut down the application and disconnect from the
sample database. This also shuts down the database server.

You have built and executed a .NET application that uses the .NET Data Provider to connect to
a database, execute SQL statements, and display the results using a DataGrid object.

Tutorial: Developing a Simple .NET Database Application with Visual
Studio

This section contains a tutorial that takes you though the steps of building the Simple
Viewer .NET database application using Visual Studio.

Prerequisites

You must have the SELECT ANY TABLE system privilege.

Lesson 1: Creating a Table Viewer
In this lesson, you use Microsoft Visual Studio, the Server Explorer, and the SAP Sybase
IQ .NET Data Provider to create an application that accesses one of the tables in the SAP
Sybase IQ sample database, allowing you to examine rows and perform updates.

Prerequisites

You must have Visual Studio and the .NET Framework installed on your computer.

.NET Application Programming

Programming 203

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Developing a simple .NET database application with Visual
Studio.

Task

This tutorial is based on Visual Studio and the .NET Framework. The complete application
can be found in the ADO.NET project %ALLUSERSPROFILE%\SybaseIQ\samples
\SQLAnywhere\ADO.NET\SimpleViewer\SimpleViewer.sln.

1. Start Visual Studio.

2. Click File » New » Project.

The New Project window appears.

a. In the left pane of the New Project window, click either Visual Basic or Visual C# for
the programming language.

b. From the Windows subcategory, click Windows Application (VS 2005) or Windows
Forms Application (VS 2008/2010).

c. In the project Name field, type MySimpleViewer.

d. Click OK to create the new project.

3. Click View » Server Explorer.

4. In the Server Explorer window, right-click Data Connections and click Add
Connection.

5. In the Add Connection window:

a. If you have never used Add Connection for other projects, then you see a list of data
sources. Click SQL Anywhere from the list of data sources presented.
If you have used Add Connection before, then click Change to change the data source
to SQL Anywhere.

b. Under Data Source, click ODBC Data Source Name and type Sybase IQ
Demo.

Note: When using the Visual Studio Add Connection wizard on 64-bit Windows, only
the 64-bit System Data Source Names (DSN) are included with the User Data Source
Names. Any 32-bit System Data Source Names are not displayed. In Visual Studio's
32-bit design environment, the Test Connection button will attempt to establish a
connection using the 32-bit equivalent of the 64-bit System DSN. If the 32-bit System
DSN does not exist, the test will fail.

c. Click Test Connection to verify that you can connect to the sample database.
d. Click OK.

A new connection named Sybase IQ.demo appears in the Server Explorer window.

6. Expand the Sybase IQ.demo connection in the Server Explorer window until you see
the table names.

.NET Application Programming

204 SAP Sybase IQ

(Visual Studio 2005 only) Try the following:

a. Right-click the Products table and click Show Table Data.
This shows the rows and columns of the Products table in a window.

b. Close the table data window.

7. Click Data » Add New Data Source.

8. In the Data Source Configuration Wizard, do the following:

a. On the Data Source Type page, click Database, then click Next.
b. (Visual Studio 2010 only) On the Database Model page, click Dataset, then click

Next.
c. On the Data Connection page, click Sybase IQ.demo, then click Next.

d. On the Save The Connection String page, make sure that Yes, Save The Connection
As is chosen and click Next.

e. On the Choose Your Database Objects page, click Tables, then click Finish.

9. Click Data » Show Data Sources.

The Data Sources window appears.

Expand the Products table in the Data Sources window.

a. Click Products, then click Details from the dropdown list.
b. Click Photo, then click Picture Box from the dropdown list.
c. Click Products and drag it to your form (Form1).

.NET Application Programming

Programming 205

A dataset control and several labeled text fields appear on the form.

10. On the form, click the picture box next to Photo.

a. Change the shape of the box to a square.
b. Click the right-arrow in the upper-right corner of the picture box.

The Picture Box Tasks window opens.
c. From the Size Mode dropdown list, click Zoom.
d. To close the Picture Box Tasks window, click anywhere outside the window.

11. Build and run the project.

a. Click Build » Build Solution.
b. Click Debug » Start Debugging.

The application connects to the SAP Sybase IQ sample database and displays the first
row of the Products table in the text boxes and picture box.

c. You can use the buttons on the control to scroll through the rows of the result set.
d. You can go directly to a row in the result set by entering the row number in the scroll

control.
e. You can update values in the result set using the text boxes and save them by clicking

the Save Data button.

12. Shut down the application and then save your project.

You have now created a simple, yet powerful, .NET application using Visual Studio, the
Server Explorer, and the SAP Sybase IQ .NET Data Provider.

.NET Application Programming

206 SAP Sybase IQ

Next

In the next lesson, you add a datagrid control to the form developed in this lesson.

Lesson 2: Adding a Synchronizing Data Control
In this lesson, you add a datagrid control to the form developed in the previous lesson. This
control updates automatically as you navigate through the result set.

Prerequisites

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using Java in the databasTutorial: Developing a Simple .NET
Database Application with Visual Studio.

Task

The complete application can be found in the ADO.NET project %ALLUSERSPROFILE%
\SybaseIQ\samples\SQLAnywhere\ADO.NET\SimpleViewer
\SimpleViewer.sln.

1. Start Visual Studio and load your MySimpleViewer project.

2. Right-click DataSet1 in the Data Sources window and click Edit DataSet With
Designer.

3. Right-click an empty area in the DataSet Designer window and click Add »
TableAdapter.

4. In the TableAdapter Configuration Wizard:

a. On the Choose Your Data Connection page, click Next.
b. On the Choose A Command Type page, click Use SQL Statements, then click

Next.
c. On the Enter A SQL Statement page, click Query Builder.
d. On the Add Table window, click the Views tab, then click ViewSalesOrders, and then

click Add.
e. Click Close to close the Add Table window.

5. Expand the Query Builder window so that all sections of the window are visible.

a. Expand the ViewSalesOrders window so that all the checkboxes are visible.
b. Click Region.
c. Click Quantity.
d. Click ProductID.
e. In the grid below the ViewSalesOrders window, clear the checkbox under Output for

the ProductID column.
f. For the ProductID column, type a question mark (?) in the Filter cell. This generates a

WHERE clause for ProductID.

A SQL query has been built that looks like the following:

.NET Application Programming

Programming 207

SELECT Region, Quantity
FROM GROUPO.ViewSalesOrders
WHERE (ProductID = :Param1)

6. Modify the SQL query as follows:

a. Change Quantity to SUM(Quantity) AS TotalSales.

b. Add GROUP BY Region to the end of the query following the WHERE clause.

The modified SQL query now looks like this:
SELECT Region, SUM(Quantity) as TotalSales
FROM GROUPO.ViewSalesOrders
WHERE (ProductID = :Param1)
GROUP BY Region

7. Click OK.

8. Click Finish.

A new TableAdapter called ViewSalesOrders has been added to the DataSet Designer
window.

9. Click the form design tab (Form1).

• Stretch the form to the right to make room for a new control.

10. Expand ViewSalesOrders in the Data Sources window.

a. Click ViewSalesOrders and click DataGridView from the dropdown list.
b. Click ViewSalesOrders and drag it to your form (Form1).

.NET Application Programming

208 SAP Sybase IQ

A datagrid view control appears on the form.

11. Build and run the project.

• Click Build » Build Solution.
• Click Debug » Start Debugging.
• In the Param1 or ProductID (VS 2010) text box, enter a product ID number such as

300 and click Fill.
The datagrid view displays a summary of sales by region for the product ID entered.

You can also use the other control on the form to move through the rows of the result set.

It would be ideal, however, if both controls could stay synchronized with each other. The
next few steps show how to do this.

12. Shut down the application and then save your project.

13. Delete the Fill strip on the form since you do not need it.

• On the design form (Form1), right-click the Fill strip to the right of the word Fill, then
click Delete.
The Fill strip is removed from the form.

14. Synchronize the two controls as follows.

a. On the design form (Form1), right-click the ID text box, then click Properties.
b. Click the Events button (it appears as a lightning bolt).
c. Scroll down until you find the TextChanged event.

.NET Application Programming

Programming 209

d. Click TextChanged, then click fillToolStripButton_Click from the dropdown list. If
you are using Visual Basic, the event is called FillToolStripButton_Click.

e. Double-click fillToolStripButton_Click and the form's code window opens on the
fillToolStripButton_Click event handler.

f. Find the reference to param1ToolStripTextBox or
productIDToolStripTextBox (VS 2010) and change this to iDTextBox. If
you are using Visual Basic, the text box is called IDTextBox.

g. Rebuild and run the project.

15. The application form now appears with a single navigation control.

• The datagrid view displays an updated summary of sales by region corresponding to
the current product as you move through the result set.

16. Shut down the application and then save your project.

You have now added a control that updates automatically as you navigate through the result
set.

In this tutorial, you saw how the powerful combination of Microsoft Visual Studio, the Server
Explorer, and the SAP Sybase IQ .NET Data Provider can be used to create database
applications.

.NET Application Programming

210 SAP Sybase IQ

.NET API Reference
The namespace is iAnywhere.Data.SQLAnywhere.

SAInfoMessageEventHandler(object, SAInfoMessageEventArgs)
delegate

Represents the method that handles the SAConnection.InfoMessage event of an
SAConnection object.

Visual Basic syntax
Public Delegate Sub SAInfoMessageEventHandler (ByVal obj As
Object, ByVal args As SAInfoMessageEventArgs)

C# syntax
public delegate void SAInfoMessageEventHandler (object obj,
SAInfoMessageEventArgs args);

SARowsCopiedEventHandler(object, SARowsCopiedEventArgs)
delegate

Represents the method that handles the SABulkCopy.SARowsCopied event of an
SABulkCopy.

Visual Basic syntax
Public Delegate Sub SARowsCopiedEventHandler (ByVal sender As
Object, ByVal rowsCopiedEventArgs As SARowsCopiedEventArgs)

C# syntax
public delegate void SARowsCopiedEventHandler (object sender,
SARowsCopiedEventArgs rowsCopiedEventArgs);

Usage
The SARowsCopiedEventHandler delegate is not available in the .NET Compact Framework
2.0.

.NET Application Programming

Programming 211

SARowUpdatedEventHandler(object, SARowUpdatedEventArgs)
delegate

Represents the method that handles the RowUpdated event of an SADataAdapter.

Visual Basic syntax
Public Delegate Sub SARowUpdatedEventHandler (ByVal sender As
Object, ByVal e As SARowUpdatedEventArgs)

C# syntax
public delegate void SARowUpdatedEventHandler (object sender,
SARowUpdatedEventArgs e);

SARowUpdatingEventHandler(object, SARowUpdatingEventArgs)
delegate

Represents the method that handles the RowUpdating event of an SADataAdapter.

Visual Basic syntax
Public Delegate Sub SARowUpdatingEventHandler (ByVal sender As
Object, ByVal e As SARowUpdatingEventArgs)

C# syntax
public delegate void SARowUpdatingEventHandler (object sender,
SARowUpdatingEventArgs e);

SABulkCopyOptions() enumeration
A bitwise flag that specifies one or more options to use with an instance of SABulkCopy.

Enum Constant Summary

• Default – Specifying only this value causes the default behavior to be used.
• DoNotFireTriggers – When specified, triggers are not fired.
• KeepIdentity – When specified, the source values to be copied into an identity column are

preserved.
• TableLock – When specified the table is locked using the command LOCK TABLE

table_name WITH HOLD IN SHARE MODE.
• UseInternalTransaction – When specified, each batch of the bulk-copy operation is

executed within a transaction.

.NET Application Programming

212 SAP Sybase IQ

SAIsolationLevel() enumeration
Specifies SQL Anywhere isolation levels.

Enum Constant Summary

• Chaos – This isolation level is unsupported.
• ReadCommitted – Sets the behavior to be equivalent to isolation level 1.
• ReadUncommitted – Sets the behavior to be equivalent to isolation level 0.
• RepeatableRead – Sets the behavior to be equivalent to isolation level 2.
• Serializable – Sets the behavior to be equivalent to isolation level 3.
• Snapshot – Uses a snapshot of committed data from the time when the first row is read,

inserted, updated, or deleted by the transaction.
• Unspecified – This isolation level is unsupported.
• ReadOnlySnapshot – For read-only statements, use a snapshot of committed data from

the time when the first row is read from the database.
• StatementSnapshot – Use a snapshot of committed data from the time when the first row

is read by the statement.

SABulkCopy class
Efficiently bulk load a SQL Anywhere table with data from another source.

Visual Basic syntax
Public NotInheritable Class SABulkCopy Implements
System.IDisposable

C# syntax
public sealed class SABulkCopy : System.IDisposable

Remarks
The SABulkCopy class is not available in the .NET Compact Framework 2.0.

Implements: System.IDisposable

Custom Attribute: sealed

Close() method
Closes the SABulkCopy instance.

Visual Basic syntax
Public Sub Close ()

C# syntax
public void Close ()

.NET Application Programming

Programming 213

BatchSize property
Gets or sets the number of rows in each batch.

Visual Basic syntax
Public Property BatchSize As Integer

C# syntax
public int BatchSize {get;set;}

Remarks
At the end of each batch, the rows in the batch are sent to the server.

The number of rows in each batch. The default is 0.

Setting this property to zero causes all the rows to be sent in one batch.

Setting this property to a value less than zero is an error.

If this value is changed while a batch is in progress, the current batch completes and any
further batches use the new value.

BulkCopyTimeout property
Gets or sets the number of seconds for the operation to complete before it times out.

Visual Basic syntax
Public Property BulkCopyTimeout As Integer

C# syntax
public int BulkCopyTimeout {get;set;}

Remarks
The default value is 30 seconds.

A value of zero indicates no limit. This should be avoided because it may cause an indefinite
wait.

If the operation times out, then all rows in the current transaction are rolled back and an
SAException is raised.

Setting this property to a value less than zero is an error.

.NET Application Programming

214 SAP Sybase IQ

ColumnMappings property
Returns a collection of SABulkCopyColumnMapping items.

Visual Basic syntax
Public ReadOnly Property ColumnMappings As
SABulkCopyColumnMappingCollection

C# syntax
public SABulkCopyColumnMappingCollection ColumnMappings {get;}

Remarks
Column mappings define the relationships between columns in the data source and columns in
the destination.

By default, it is an empty collection.

The property cannot be modified while WriteToServer is executing.

If ColumnMappings is empty when WriteToServer is executed, then the first column in the
source is mapped to the first column in the destination, the second to the second, and so on.
This takes place as long as the column types are convertible, there are at least as many
destination columns as source columns, and any extra destination columns are nullable.

DestinationTableName property
Gets or sets the name of the destination table on the server.

Visual Basic syntax
Public Property DestinationTableName As String

C# syntax
public string DestinationTableName {get;set;}

Remarks
The default value is a null reference. In Visual Basic it is Nothing.

If the value is changed while WriteToServer is executing, the change has no effect.

If the value has not been set before a call to WriteToServer, an InvalidOperationException is
raised.

It is an error to set the value to NULL or the empty string.

.NET Application Programming

Programming 215

NotifyAfter property
Gets or sets the number of rows to be processed before generating a notification event.

Visual Basic syntax
Public Property NotifyAfter As Integer

C# syntax
public int NotifyAfter {get;set;}

Remarks
Zero is returned if the property has not been set.

Changes made to NotifyAfter, while executing WriteToServer, do not take effect until after the
next notification.

Setting this property to a value less than zero is an error.

The values of NotifyAfter and BulkCopyTimeout are mutually exclusive, so the event can fire
even if no rows have been sent to the database or committed.

SARowsCopied() event
This event occurs every time the number of rows specified by the NotifyAfter property have
been processed.

Visual Basic syntax
Public Event SARowsCopied As SARowsCopiedEventHandler

C# syntax
public event SARowsCopiedEventHandler SARowsCopied;

Usage
The receipt of an SARowsCopied event does not imply that any rows have been sent to the
database server or committed. You cannot call the Close method from this event.

SABulkCopyColumnMapping class
Defines the mapping between a column in an SABulkCopy instance's data source and a
column in the instance's destination table.

Visual Basic syntax
Public NotInheritable Class SABulkCopyColumnMapping

C# syntax
public sealed class SABulkCopyColumnMapping

.NET Application Programming

216 SAP Sybase IQ

Remarks
The SABulkCopyColumnMapping class is not available in the .NET Compact Framework
2.0.

Custom Attribute: sealed

DestinationColumn property
Gets or sets the name of the column in the destination database table being mapped to.

Visual Basic syntax
Public Property DestinationColumn As String

C# syntax
public string DestinationColumn {get;set;}

Remarks
A string specifying the name of the column in the destination table or a null reference (Nothing
in Visual Basic) if the DestinationOrdinal property has priority.

The DestinationColumn property and DestinationOrdinal property are mutually exclusive.
The most recently set value takes priority.

Setting the DestinationColumn property causes the DestinationOrdinal property to be set to
-1. Setting the DestinationOrdinal property causes the DestinationColumn property to be set
to a null reference (Nothing in Visual Basic).

It is an error to set DestinationColumn to null or the empty string.

DestinationOrdinal property
Gets or sets the ordinal value of the column in the destination table being mapped to.

Visual Basic syntax
Public Property DestinationOrdinal As Integer

C# syntax
public int DestinationOrdinal {get;set;}

Remarks
An integer specifying the ordinal of the column being mapped to in the destination table or -1
if the property is not set.

The DestinationColumn property and DestinationOrdinal property are mutually exclusive.
The most recently set value takes priority.

.NET Application Programming

Programming 217

Setting the DestinationColumn property causes the DestinationOrdinal property to be set to
-1. Setting the DestinationOrdinal property causes the DestinationColumn property to be set
to a null reference (Nothing in Visual Basic).

SourceColumn property
Gets or sets the name of the column being mapped in the data source.

Visual Basic syntax
Public Property SourceColumn As String

C# syntax
public string SourceColumn {get;set;}

Remarks
A string specifying the name of the column in the data source or a null reference (Nothing in
Visual Basic) if the SourceOrdinal property has priority.

The SourceColumn property and SourceOrdinal property are mutually exclusive. The most
recently set value takes priority.

Setting the SourceColumn property causes the SourceOrdinal property to be set to -1. Setting
the SourceOrdinal property causes the SourceColumn property to be set to a null reference
(Nothing in Visual Basic).

It is an error to set SourceColumn to null or the empty string.

SourceOrdinal property
Gets or sets ordinal position of the source column within the data source.

Visual Basic syntax
Public Property SourceOrdinal As Integer

C# syntax
public int SourceOrdinal {get;set;}

Remarks
An integer specifying the ordinal of the column in the data source or -1 if the property is not
set.

The SourceColumn property and SourceOrdinal property are mutually exclusive. The most
recently set value takes priority.

Setting the SourceColumn property causes the SourceOrdinal property to be set to -1. Setting
the SourceOrdinal property causes the SourceColumn property to be set to a null reference
(Nothing in Visual Basic).

.NET Application Programming

218 SAP Sybase IQ

SABulkCopyColumnMappingCollection class
A collection of SABulkCopyColumnMapping objects that inherits from
System.Collections.CollectionBase.

Visual Basic syntax
Public NotInheritable Class SABulkCopyColumnMappingCollection
Inherits System.Collections.CollectionBase

C# syntax
public sealed class SABulkCopyColumnMappingCollection :
System.Collections.CollectionBase

Remarks
The SABulkCopyColumnMappingCollection class is not available in the .NET Compact
Framework 2.0.

Implements: ICollection, IEnumerable, IList

Custom Attribute: sealed

DestinationOrdinalComparer class

Visual Basic syntax
Private Class DestinationOrdinalComparer Implements
System.Collections.IComparer

C# syntax
private class DestinationOrdinalComparer :
System.Collections.IComparer

DestinationOrdinalComparer() constructor

Visual Basic syntax
Public Sub New ()

C# syntax
public DestinationOrdinalComparer ()

Compare(object, object) method

Visual Basic syntax
Public Function Compare (ByVal o1 As Object, ByVal o2 As
Object) As Integer

.NET Application Programming

Programming 219

C# syntax
public int Compare (object o1, object o2)

Contains(SABulkCopyColumnMapping) method
Gets a value indicating whether a specified SABulkCopyColumnMapping object exists in the
collection.

Visual Basic syntax
Public Function Contains (ByVal value As
SABulkCopyColumnMapping) As Boolean

C# syntax
public bool Contains (SABulkCopyColumnMapping value)

Parameters

• value – A valid SABulkCopyColumnMapping object.

Returns
True if the specified mapping exists in the collection; otherwise, false.

CopyTo(SABulkCopyColumnMapping[], int) method
Copies the elements of the SABulkCopyColumnMappingCollection to an array of
SABulkCopyColumnMapping items, starting at a particular index.

Visual Basic syntax
Public Sub CopyTo (ByVal array As SABulkCopyColumnMapping(),
ByVal index As Integer)

C# syntax
public void CopyTo (SABulkCopyColumnMapping[] array, int
index)

Parameters

• array – The one-dimensional SABulkCopyColumnMapping array that is the destination
of the elements copied from SABulkCopyColumnMappingCollection. The array must
have zero-based indexing.

• index – The zero-based index in the array at which copying begins.

.NET Application Programming

220 SAP Sybase IQ

IndexOf(SABulkCopyColumnMapping) method
Gets or sets the index of the specified SABulkCopyColumnMapping object within the
collection.

Visual Basic syntax
Public Function IndexOf (ByVal value As
SABulkCopyColumnMapping) As Integer

C# syntax
public int IndexOf (SABulkCopyColumnMapping value)

Parameters

• value – The SABulkCopyColumnMapping object to search for.

Returns
The zero-based index of the column mapping is returned, or -1 is returned if the column
mapping is not found in the collection.

Remove(SABulkCopyColumnMapping) method
Removes the specified SABulkCopyColumnMapping element from the
SABulkCopyColumnMappingCollection.

Visual Basic syntax
Public Sub Remove (ByVal value As SABulkCopyColumnMapping)

C# syntax
public void Remove (SABulkCopyColumnMapping value)

Parameters

• value – The SABulkCopyColumnMapping object to be removed from the collection.

RemoveAt(int) method
Removes the mapping at the specified index from the collection.

Visual Basic syntax
Public Shadows Sub RemoveAt (ByVal index As Integer)

C# syntax
public new void RemoveAt (int index)

.NET Application Programming

Programming 221

Parameters

• index – The zero-based index of the SABulkCopyColumnMapping object to be removed
from the collection.

this property
Gets the SABulkCopyColumnMapping object at the specified index.

Visual Basic syntax
Public ReadOnly Property Item As SABulkCopyColumnMapping

C# syntax
public SABulkCopyColumnMapping this {get;}

DestinationOrdinalComparer class

Visual Basic syntax
Private Class DestinationOrdinalComparer Implements
System.Collections.IComparer

C# syntax
private class DestinationOrdinalComparer :
System.Collections.IComparer

DestinationOrdinalComparer() constructor

Visual Basic syntax
Public Sub New ()

C# syntax
public DestinationOrdinalComparer ()

Compare(object, object) method

Visual Basic syntax
Public Function Compare (ByVal o1 As Object, ByVal o2 As
Object) As Integer

C# syntax
public int Compare (object o1, object o2)

.NET Application Programming

222 SAP Sybase IQ

SACommLinksOptionsBuilder class
Provides a simple way to create and manage the CommLinks options portion of connection
strings used by the SAConnection class.

Visual Basic syntax
Public NotInheritable Class SACommLinksOptionsBuilder

C# syntax
public sealed class SACommLinksOptionsBuilder

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework
2.0.

For a list of connection parameters, see Connection parameters.

Custom Attribute: sealed

GetUseLongNameAsKeyword() method
Gets a boolean values that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Function GetUseLongNameAsKeyword () As Boolean

C# syntax
public bool GetUseLongNameAsKeyword ()

Returns
True if long connection parameter names are used to build connection strings; otherwise,
false.

Usage
SQL Anywhere connection parameters have both long and short forms of their names. For
example, to specify the name of an ODBC data source in your connection string, you can use
either of the following values: DataSourceName or DSN. By default, long connection
parameter names are used to build connection strings.

.NET Application Programming

Programming 223

SetUseLongNameAsKeyword(bool) method
Sets a boolean value that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Sub SetUseLongNameAsKeyword (ByVal useLongNameAsKeyword
As Boolean)

C# syntax
public void SetUseLongNameAsKeyword (bool useLongNameAsKeyword)

Parameters
• useLongNameAsKeyword – A boolean value that indicates whether the long connection

parameter name is used in the connection string.

Usage
Long connection parameter names are used by default.

ToString() method
Converts the SACommLinksOptionsBuilder object to a string representation.

Visual Basic syntax
Public Overrides Function ToString () As String

C# syntax
public override string ToString ()

Returns
The options string being built.

All property
Gets or sets the ALL CommLinks option.

Visual Basic syntax
Public Property All As Boolean

C# syntax
public bool All {get;set;}

Remarks
Attempt to connect using the shared memory protocol first, followed by all remaining and
available communication protocols. Use this setting if you are unsure of which
communication protocol(s) to use.

.NET Application Programming

224 SAP Sybase IQ

The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework
2.0.

ConnectionString property
Gets or sets the connection string being built.

Visual Basic syntax
Public Property ConnectionString As String

C# syntax
public string ConnectionString {get;set;}

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework
2.0.

SharedMemory property
Gets or sets the SharedMemory protocol.

Visual Basic syntax
Public Property SharedMemory As Boolean

C# syntax
public bool SharedMemory {get;set;}

Remarks
The SACommLinksOptionsBuilder class is not available in the .NET Compact Framework
2.0.

TcpOptionsBuilder property
Gets or sets an SATcpOptionsBuilder object used to create a TCP options string.

Visual Basic syntax
Public Property TcpOptionsBuilder As SATcpOptionsBuilder

C# syntax
public SATcpOptionsBuilder TcpOptionsBuilder {get;set;}

TcpOptionsString property
Gets or sets a string of TCP options.

Visual Basic syntax
Public Property TcpOptionsString As String

.NET Application Programming

Programming 225

C# syntax
public string TcpOptionsString {get;set;}

SACommand class
A SQL statement or stored procedure that is executed against a SQL Anywhere database.

Visual Basic syntax
Public NotInheritable Class SACommand Inherits
System.Data.Common.DbCommand Implements System.ICloneable

C# syntax
public sealed class SACommand : System.Data.Common.DbCommand,
System.ICloneable

Remarks
Implements: IDbCommand, ICloneable

For more information, see Accessing and manipulating data.

Custom Attribute: sealed

Cancel() method
Cancels the execution of an SACommand object.

Visual Basic syntax
Public Overrides Sub Cancel ()

C# syntax
public override void Cancel ()

Usage
If there is nothing to cancel, nothing happens. If there is a command in process, a "Statement
interrupted by user" exception is thrown.

CreateDbParameter() method
Creates a new instance of a System.Data.Common.DbParameter object.

Visual Basic syntax
Protected Overrides Function CreateDbParameter () As
DbParameter

C# syntax
protected override DbParameter CreateDbParameter ()

.NET Application Programming

226 SAP Sybase IQ

Returns
A System.Data.Common.DbParameter object.

CreateParameter() method
Provides an SAParameter object for supplying parameters to SACommand objects.

Visual Basic syntax
Public Shadows Function CreateParameter () As SAParameter

C# syntax
public new SAParameter CreateParameter ()

Returns
A new parameter, as an SAParameter object.

Usage
Stored procedures and some other SQL statements can take parameters, indicated in the text of
a statement by a question mark (?).

The CreateParameter method provides an SAParameter object. You can set properties on the
SAParameter to specify the value, data type, and so on for the parameter.

Dispose(bool) method
Frees the resources associated with the object.

Visual Basic syntax
Protected Overrides Sub Dispose (ByVal disposing As Boolean)

C# syntax
protected override void Dispose (bool disposing)

EndExecuteNonQuery(IAsyncResult) method
Finishes asynchronous execution of a SQL statement or stored procedure.

Visual Basic syntax
Public Function EndExecuteNonQuery (ByVal asyncResult As
IAsyncResult) As Integer

C# syntax
public int EndExecuteNonQuery (IAsyncResult asyncResult)

.NET Application Programming

Programming 227

Parameters

• asyncResult – The IAsyncResult returned by the call to
SACommand.BeginExecuteNonQuery.

Returns
The number of rows affected (the same behavior as SACommand.ExecuteNonQuery).

Exceptions

• ArgumentException – The asyncResult parameter is null (Nothing in Microsoft Visual
Basic).

• InvalidOperationException – The SACommand.EndExecuteNonQuery(IAsyncResult)
was called more than once for a single command execution, or the method was
mismatched against its execution method.

Usage
You must call EndExecuteNonQuery once for every call to BeginExecuteNonQuery. The call
must be after BeginExecuteNonQuery has returned. ADO.NET is not thread safe; it is your
responsibility to ensure that BeginExecuteNonQuery has returned. The IAsyncResult passed
to EndExecuteNonQuery must be the same as the one returned from the
BeginExecuteNonQuery call that is being completed. It is an error to call
EndExecuteNonQuery to end a call to BeginExecuteReader, and vice versa.

If an error occurs while executing the command, the exception is thrown when
EndExecuteNonQuery is called.

There are four ways to wait for execution to complete:

(1) Call EndExecuteNonQuery.

Calling EndExecuteNonQuery blocks until the command completes. For example:

 SAConnection conn = new SAConnection("DSN=SQL
Anywhere 16 Demo");
conn.Open();
SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"
 + " WHERE DepartmentID=100",
 conn);
IAsyncResult res = cmd.BeginExecuteNonQuery();
// perform other work
// this will block until the command completes
int rowCount = cmd.EndExecuteNonQuery(res);

(2) Poll the IsCompleted property of the IAsyncResult.

You can poll the IsCompleted property of the IAsyncResult. For example:

.NET Application Programming

228 SAP Sybase IQ

 SAConnection conn = new SAConnection("DSN=SQL
Anywhere 16 Demo");
conn.Open();
SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"
 + " WHERE DepartmentID=100",
 conn);
IAsyncResult res = cmd.BeginExecuteNonQuery();
while(!res.IsCompleted) {
 // do other work
}
// this will not block because the command is finished
int rowCount = cmd.EndExecuteNonQuery(res);

(3) Use the IAsyncResult.AsyncWaitHandle property to get a synchronization object.

You can use the IAsyncResult.AsyncWaitHandle property to get a synchronization object,
and wait on that. For example:

 SAConnection conn = new SAConnection("DSN=SQL
Anywhere 16 Demo");
conn.Open();
SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"
 + " WHERE DepartmentID=100",
 conn);
IAsyncResult res = cmd.BeginExecuteNonQuery();
// perform other work
WaitHandle wh = res.AsyncWaitHandle;
wh.WaitOne();
// this will not block because the command is finished
int rowCount = cmd.EndExecuteNonQuery(res);

(4) Specify a callback function when calling BeginExecuteNonQuery.

You can specify a callback function when calling BeginExecuteNonQuery. For example:
 private void callbackFunction(IAsyncResult ar) {
 SACommand cmd = (SACommand) ar.AsyncState;
 // this won't block since the command has completed
 int rowCount = cmd.EndExecuteNonQuery(ar);
}

 // elsewhere in the code
private void DoStuff() {
 SAConnection conn = new SAConnection("DSN=SQL Anywhere 16 Demo");
 conn.Open();
 SACommand cmd = new SACommand(
 "UPDATE Departments"
 + " SET DepartmentName = 'Engineering'"
 + " WHERE DepartmentID=100",

.NET Application Programming

Programming 229

 conn);
 IAsyncResult res = cmd.BeginExecuteNonQuery(callbackFunction,
cmd);
 // perform other work. The callback function will be
 // called when the command completes
}

The callback function executes in a separate thread, so the usual caveats related to updating the
user interface in a threaded program apply.

EndExecuteReader(IAsyncResult) method
Finishes asynchronous execution of a SQL statement or stored procedure, returning the
requested SADataReader.

Visual Basic syntax
Public Function EndExecuteReader (ByVal asyncResult As
IAsyncResult) As SADataReader

C# syntax
public SADataReader EndExecuteReader (IAsyncResult
asyncResult)

Parameters

• asyncResult – The IAsyncResult returned by the call to
SACommand.BeginExecuteReader.

Returns
An SADataReader object that can be used to retrieve the requested rows (the same behavior as
SACommand.ExecuteReader).

Exceptions

• ArgumentException – The asyncResult parameter is null (Nothing in Microsoft Visual
Basic)

• InvalidOperationException – The SACommand.EndExecuteReader(IAsyncResult)
was called more than once for a single command execution, or the method was
mismatched against its execution method.

Usage
You must call EndExecuteReader once for every call to BeginExecuteReader. The call must be
after BeginExecuteReader has returned. ADO.NET is not thread safe; it is your responsibility
to ensure that BeginExecuteReader has returned. The IAsyncResult passed to
EndExecuteReader must be the same as the one returned from the BeginExecuteReader call
that is being completed. It is an error to call EndExecuteReader to end a call to
BeginExecuteNonQuery, and vice versa.

.NET Application Programming

230 SAP Sybase IQ

If an error occurs while executing the command, the exception is thrown when
EndExecuteReader is called.

There are four ways to wait for execution to complete:

(1) Call EndExecuteReader.

Calling EndExecuteReader blocks until the command completes. For example:

 SAConnection conn = new SAConnection("DSN=SQL
Anywhere 16 Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM Departments", conn);
IAsyncResult res = cmd.BeginExecuteReader();
// perform other work
// this blocks until the command completes
SADataReader reader = cmd.EndExecuteReader(res);

(2) Poll the IsCompleted property of the IAsyncResult.

You can poll the IsCompleted property of the IAsyncResult. For example:

 SAConnection conn = new SAConnection("DSN=SQL
Anywhere 16 Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM Departments", conn);
IAsyncResult res = cmd.BeginExecuteReader();
while(!res.IsCompleted) {
 // do other work
}
// this does not block because the command is finished
SADataReader reader = cmd.EndExecuteReader(res);

(3) Use the IAsyncResult.AsyncWaitHandle property to get a synchronization object.

You can use the IAsyncResult.AsyncWaitHandle property to get a synchronization object,
and wait on that. For example:

 SAConnection conn = new SAConnection("DSN=SQL
Anywhere 16 Demo");
conn.Open();
SACommand cmd = new SACommand("SELECT * FROM Departments", conn);
IAsyncResult res = cmd.BeginExecuteReader();
// perform other work
WaitHandle wh = res.AsyncWaitHandle;
wh.WaitOne();
// this does not block because the command is finished
SADataReader reader = cmd.EndExecuteReader(res);

(4) Specify a callback function when calling BeginExecuteReader

You can specify a callback function when calling BeginExecuteReader. For example:
 private void callbackFunction(IAsyncResult ar) {
 SACommand cmd = (SACommand) ar.AsyncState;

.NET Application Programming

Programming 231

 // this does not block since the command has completed
 SADataReader reader = cmd.EndExecuteReader();
}

 // elsewhere in the code
private void DoStuff() {
 SAConnection conn = new SAConnection("DSN=SQL Anywhere 16 Demo");
 conn.Open();
 SACommand cmd = new SACommand("SELECT * FROM Departments",
conn);
 IAsyncResult res = cmd.BeginExecuteReader(callbackFunction,
cmd);
 // perform other work. The callback function will be
 // called when the command completes
}

The callback function executes in a separate thread, so the usual caveats related to updating the
user interface in a threaded program apply.

ExecuteDbDataReader(CommandBehavior) method
Executes the command text against the connection.

Visual Basic syntax
Protected Overrides Function ExecuteDbDataReader (ByVal behavior
As CommandBehavior) As DbDataReader

C# syntax
protected override DbDataReader ExecuteDbDataReader
(CommandBehavior behavior)

Parameters

• behavior – An instance of System.Data.CommandBehavior.

Returns
A System.Data.Common.DbDataReader.

ExecuteNonQuery() method
Executes a statement that does not return a result set, such as an INSERT, UPDATE, DELETE,
or data definition statement.

Visual Basic syntax
Public Overrides Function ExecuteNonQuery () As Integer

C# syntax
public override int ExecuteNonQuery ()

.NET Application Programming

232 SAP Sybase IQ

Returns
The number of rows affected.

Usage
You can use ExecuteNonQuery to change the data in a database without using a DataSet. Do
this by executing UPDATE, INSERT, or DELETE statements.

Although ExecuteNonQuery does not return any rows, output parameters or return values that
are mapped to parameters are populated with data.

For UPDATE, INSERT, and DELETE statements, the return value is the number of rows
affected by the command. For all other types of statements, and for rollbacks, the return value
is -1.

ExecuteScalar() method
Executes a statement that returns a single value.

Visual Basic syntax
Public Overrides Function ExecuteScalar () As Object

C# syntax
public override object ExecuteScalar ()

Returns
The first column of the first row in the result set, or a null reference if the result set is empty.

Usage
If this method is called on a query that returns multiple rows and columns, only the first
column of the first row is returned.

Prepare() method
Prepares or compiles the SACommand on the data source.

Visual Basic syntax
Public Overrides Sub Prepare ()

C# syntax
public override void Prepare ()

Usage
If you call one of the ExecuteNonQuery, ExecuteReader, or ExecuteScalar methods after
calling Prepare, any parameter value that is larger than the value specified by the Size property

.NET Application Programming

Programming 233

is automatically truncated to the original specified size of the parameter, and no truncation
errors are returned.

The truncation only happens for the following data types:

• CHAR
• VARCHAR
• LONG VARCHAR
• TEXT
• NCHAR
• NVARCHAR
• LONG NVARCHAR
• NTEXT
• BINARY
• LONG BINARY
• VARBINARY
• IMAGE

If the size property is not specified, and so is using the default value, the data is not truncated.

ResetCommandTimeout() method
Resets the CommandTimeout property to its default value of 30 seconds.

Visual Basic syntax
Public Sub ResetCommandTimeout ()

C# syntax
public void ResetCommandTimeout ()

CommandText property
Gets or sets the text of a SQL statement or stored procedure.

Visual Basic syntax
Public Overrides Property CommandText As String

C# syntax
public override string CommandText {get;set;}

Remarks
The SQL statement or the name of the stored procedure to execute. The default is an empty
string.

.NET Application Programming

234 SAP Sybase IQ

CommandTimeout property
This feature is not supported by the SQL Anywhere .NET Data Provider.

Visual Basic syntax
Public Overrides Property CommandTimeout As Integer

C# syntax
public override int CommandTimeout {get;set;}

Remarks
To set a request timeout, use the following example.
 cmd.CommandText = "SET OPTION request_timeout = 30";
 cmd.ExecuteNonQuery();

CommandType property
Gets or sets the type of command represented by an SACommand.

Visual Basic syntax
Public Overrides Property CommandType As CommandType

C# syntax
public override CommandType CommandType {get;set;}

Remarks
One of the System.Data.CommandType values. The default is
System.Data.CommandType.Text.

Supported command types are as follows:

• System.Data.CommandType.StoredProcedure When you specify this CommandType, the
command text must be the name of a stored procedure and you must supply any arguments
as SAParameter objects.

• System.Data.CommandType.Text This is the default value.

When the CommandType property is set to StoredProcedure, the CommandText property
should be set to the name of the stored procedure. The command executes this stored
procedure when you call one of the Execute methods.

Use a question mark (?) placeholder to pass parameters. For example:
 SELECT * FROM Customers WHERE ID = ?

The order in which SAParameter objects are added to the SAParameterCollection must
directly correspond to the position of the question mark placeholder for the parameter.

.NET Application Programming

Programming 235

Connection property
Gets or sets the connection object to which the SACommand object applies.

Visual Basic syntax
Public Shadows Property Connection As SAConnection

C# syntax
public new SAConnection Connection {get;set;}

Remarks
The default value is a null reference. In Visual Basic it is Nothing.

DbConnection property
Gets or sets the System.Data.Common.DbConnection used by this SACommand object.

Visual Basic syntax
Protected Overrides Property DbConnection As DbConnection

C# syntax
protected override DbConnection DbConnection {get;set;}

Remarks
The connection to the data source.

DbParameterCollection property
Gets the collection of System.Data.Common.DbParameter objects.

Visual Basic syntax
Protected ReadOnly Overrides Property DbParameterCollection
As DbParameterCollection

C# syntax
protected override DbParameterCollection
DbParameterCollection {get;}

Remarks
The parameters of the SQL statement or stored procedure.

.NET Application Programming

236 SAP Sybase IQ

DbTransaction property
Gets or sets the System.Data.Common.DbTransaction within which this SACommand object
executes.

Visual Basic syntax
Protected Overrides Property DbTransaction As DbTransaction

C# syntax
protected override DbTransaction DbTransaction {get;set;}

Remarks
The transaction within which a Command object of a .NET Framework data provider
executes. The default value is a null reference (Nothing in Visual Basic).

DesignTimeVisible property
Gets or sets a value that indicates if the SACommand should be visible in a Windows Form
Designer control.

Visual Basic syntax
Public Overrides Property DesignTimeVisible As Boolean

C# syntax
public override bool DesignTimeVisible {get;set;}

Remarks
The default is true.

True if this SACommand instance should be visible, false if this instance should not be visible.
The default is false.

Parameters property
A collection of parameters for the current statement.

Visual Basic syntax
Public ReadOnly Shadows Property Parameters As
SAParameterCollection

C# syntax
public new SAParameterCollection Parameters {get;}

Remarks
Use question marks in the CommandText to indicate parameters.

.NET Application Programming

Programming 237

The parameters of the SQL statement or stored procedure. The default value is an empty
collection.

When CommandType is set to Text, pass parameters using the question mark placeholder. For
example:
 SELECT * FROM Customers WHERE ID = ?

The order in which SAParameter objects are added to the SAParameterCollection must
directly correspond to the position of the question mark placeholder for the parameter in the
command text.

When the parameters in the collection do not match the requirements of the query to be
executed, an error may result or an exception may be thrown.

Transaction property
Specifies the SATransaction object in which the SACommand executes.

Visual Basic syntax
Public Shadows Property Transaction As SATransaction

C# syntax
public new SATransaction Transaction {get;set;}

Remarks
The default value is a null reference. In Visual Basic, this is Nothing.

You cannot set the Transaction property if it is already set to a specific value and the command
is executing. If you set the transaction property to an SATransaction object that is not
connected to the same SAConnection object as the SACommand object, an exception will be
thrown the next time you attempt to execute a statement.

For more information, see Transaction processing.

UpdatedRowSource property
Gets or sets how command results are applied to the DataRow when used by the Update
method of the SADataAdapter.

Visual Basic syntax
Public Overrides Property UpdatedRowSource As
UpdateRowSource

C# syntax
public override UpdateRowSource UpdatedRowSource {get;set;}

.NET Application Programming

238 SAP Sybase IQ

Remarks
One of the UpdatedRowSource values. The default value is
UpdateRowSource.OutputParameters. If the command is automatically generated, this
property is UpdateRowSource.None.

UpdatedRowSource.Both, which returns both resultset and output parameters, is not
supported.

SACommandBuilder class
A way to generate single-table SQL statements that reconcile changes made to a DataSet with
the data in the associated database.

Visual Basic syntax
Public NotInheritable Class SACommandBuilder Inherits
System.Data.Common.DbCommandBuilder

C# syntax
public sealed class SACommandBuilder :
System.Data.Common.DbCommandBuilder

Remarks
Custom Attribute: sealed

ApplyParameterInfo(DbParameter , DataRow, StatementType, bool) method
Allows the provider implementation of System.Data.Common.DbCommandBuilder to
handle additional parameter properties.

Visual Basic syntax
Protected Overrides Sub ApplyParameterInfo (ByVal parameter As
DbParameter , ByVal row As DataRow, ByVal statementType As
StatementType, ByVal whereClause As Boolean)

C# syntax
protected override void ApplyParameterInfo (DbParameter
parameter, DataRow row, StatementType statementType, bool
whereClause)

Parameters

• parameter – A System.Data.Common.DbParameter to which the additional
modifications are applied.

• row – The System.Data.DataRow from the schema table provided by
SADataReader.GetSchemaTable.

.NET Application Programming

Programming 239

• statementType – The type of command being generated: INSERT, UPDATE or
DELETE.

• whereClause – The value is true if the parameter is part of the UPDATE or DELETE
WHERE clause, and false if it is part of the INSERT or UPDATE values.

DeriveParameters(SACommand) method
Populates the Parameters collection of the specified SACommand object.

Visual Basic syntax
Public Shared Sub DeriveParameters (ByVal command As
SACommand)

C# syntax
public static void DeriveParameters (SACommand command)

Parameters

• command – An SACommand object for which to derive parameters.

Usage
This is used for the stored procedure specified in the SACommand.

DeriveParameters overwrites any existing parameter information for the SACommand.

DeriveParameters requires an extra call to the database server. If the parameter information is
known in advance, it is more efficient to populate the Parameters collection by setting the
information explicitly.

GetParameterPlaceholder(int) method
Returns the placeholder for the parameter in the associated SQL statement.

Visual Basic syntax
Protected Overrides Function GetParameterPlaceholder (ByVal
index As Integer) As String

C# syntax
protected override string GetParameterPlaceholder (int index)

Parameters

• index – The number to be included as part of the parameter's name.

Returns
The name of the parameter with the specified number appended.

.NET Application Programming

240 SAP Sybase IQ

GetSchemaTable(DbCommand) method
Returns the schema table for the SACommandBuilder object.

Visual Basic syntax
Protected Overrides Function GetSchemaTable (ByVal
sourceCommand As DbCommand) As DataTable

C# syntax
protected override DataTable GetSchemaTable (DbCommand
sourceCommand)

Parameters

• sourceCommand – The System.Data.Common.DbCommand for which to retrieve the
corresponding schema table.

Returns
A System.Data.DataTable that represents the schema for the specific
System.Data.Common.DbCommand.

InitializeCommand(DbCommand) method
Resets the System.Data.Common.DbCommand.CommandTimeout,
System.Data.Common.DbCommand.Transaction,
System.Data.Common.DbCommand.CommandType, and
System.Data.Common.DbCommand.UpdatedRowSource properties on the
System.Data.Common.DbCommand.

Visual Basic syntax
Protected Overrides Function InitializeCommand (ByVal command
As DbCommand) As DbCommand

C# syntax
protected override DbCommand InitializeCommand (DbCommand
command)

Parameters

• command – The System.Data.Common.DbCommand to be used by the command
builder for the corresponding insert, update, or delete command.

Returns
A System.Data.Common.DbCommand instance to use for each insert, update, or delete
operation. Passing a null value allows the InitializeCommand method to create a

.NET Application Programming

Programming 241

System.Data.Common.DbCommand object based on the SELECT statement associated with
the SACommandBuilder object.

QuoteIdentifier(string) method
Returns the correct quoted form of an unquoted identifier, including properly escaping any
embedded quotes in the identifier.

Visual Basic syntax
Public Overrides Function QuoteIdentifier (ByVal unquotedIdentifier
As String) As String

C# syntax
public override string QuoteIdentifier (string unquotedIdentifier)

Parameters

• unquotedIdentifier – The string representing the unquoted identifier that will have be
quoted.

Returns
Returns a string representing the quoted form of an unquoted identifier with embedded quotes
properly escaped.

SetRowUpdatingHandler(DbDataAdapter) method
Registers the SACommandBuilder object to handle the SADataAdapter.RowUpdating event
for an SADataAdapter object.

Visual Basic syntax
Protected Overrides Sub SetRowUpdatingHandler (ByVal adapter As
DbDataAdapter)

C# syntax
protected override void SetRowUpdatingHandler (DbDataAdapter
adapter)

Parameters

• adapter – The SADataAdapter object to be used for the update.

.NET Application Programming

242 SAP Sybase IQ

UnquoteIdentifier(string) method
Returns the correct unquoted form of a quoted identifier, including properly un-escaping any
embedded quotes in the identifier.

Visual Basic syntax
Public Overrides Function UnquoteIdentifier (ByVal quotedIdentifier
As String) As String

C# syntax
public override string UnquoteIdentifier (string quotedIdentifier)

Parameters

• quotedIdentifier – The string representing the quoted identifier that will have its
embedded quotes removed.

Returns
Returns a string representing the unquoted form of a quoted identifier with embedded quotes
properly un-escaped.

DataAdapter property
Specifies the SADataAdapter for which to generate statements.

Visual Basic syntax
Public Shadows Property DataAdapter As SADataAdapter

C# syntax
public new SADataAdapter DataAdapter {get;set;}

Remarks
An SADataAdapter object.

When you create a new instance of SACommandBuilder, any existing SACommandBuilder
that is associated with this SADataAdapter is released.

SAConnectionStringBuilder class
Provides a simple way to create and manage the contents of connection strings used by the
SAConnection class.

Visual Basic syntax
Public NotInheritable Class SAConnectionStringBuilder Inherits
SAConnectionStringBuilderBase

.NET Application Programming

Programming 243

C# syntax
public sealed class SAConnectionStringBuilder :
SAConnectionStringBuilderBase

Remarks
The SAConnectionStringBuilder class inherits SAConnectionStringBuilderBase, which
inherits DbConnectionStringBuilder.

The SAConnectionStringBuilder class is not available in the .NET Compact Framework 2.0.

For a list of connection parameters, see Connection parameters.

Custom Attribute: sealed

ContainsKey(string) method
Determines whether the SAConnectionStringBuilder object contains a specific keyword.

Visual Basic syntax
Public Overrides Function ContainsKey (ByVal keyword As String)
As Boolean

C# syntax
public override bool ContainsKey (string keyword)

Parameters

• keyword – The keyword to locate in the SAConnectionStringBuilder.

Returns
True if the value associated with keyword has been set; otherwise, false.

Examples
The following statement determines whether the SAConnectionStringBuilder object contains
the UserID keyword.
connectString.ContainsKey("UserID")

GetUseLongNameAsKeyword() method
Gets a boolean values that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Function GetUseLongNameAsKeyword () As Boolean

C# syntax
public bool GetUseLongNameAsKeyword ()

.NET Application Programming

244 SAP Sybase IQ

Returns
True if long connection parameter names are used to build connection strings; otherwise,
false.

Usage
SQL Anywhere connection parameters have both long and short forms of their names. For
example, to specify the name of an ODBC data source in your connection string, you can use
either of the following values: DataSourceName or DSN. By default, long connection
parameter names are used to build connection strings.

Remove(string) method
Removes the entry with the specified key from the SAConnectionStringBuilder instance.

Visual Basic syntax
Public Overrides Function Remove (ByVal keyword As String) As
Boolean

C# syntax
public override bool Remove (string keyword)

Parameters

• keyword – The key of the key/value pair to be removed from the connection string in this
SAConnectionStringBuilder.

Returns
True if the key existed within the connection string and was removed; false if the key did not
exist.

SetUseLongNameAsKeyword(bool) method
Sets a boolean value that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Sub SetUseLongNameAsKeyword (ByVal useLongNameAsKeyword
As Boolean)

C# syntax
public void SetUseLongNameAsKeyword (bool useLongNameAsKeyword)

.NET Application Programming

Programming 245

Parameters

• useLongNameAsKeyword – A boolean value that indicates whether the long connection
parameter name is used in the connection string.

Usage
Long connection parameter names are used by default.

ShouldSerialize(string) method
Indicates whether the specified key exists in this SAConnectionStringBuilder instance.

Visual Basic syntax
Public Overrides Function ShouldSerialize (ByVal keyword As
String) As Boolean

C# syntax
public override bool ShouldSerialize (string keyword)

Parameters

• keyword – The key to locate in the SAConnectionStringBuilder.

Returns
True if the SAConnectionStringBuilder contains an entry with the specified key; otherwise
false.

TryGetValue(string, out object) method
Retrieves a value corresponding to the supplied key from this SAConnectionStringBuilder.

Visual Basic syntax
Public Overrides Function TryGetValue (ByVal keyword As String,
ByVal value As Object) As Boolean

C# syntax
public override bool TryGetValue (string keyword, out object
value)

Parameters

• keyword – The key of the item to retrieve.
• value – The value corresponding to keyword.

Returns
true if keyword was found within the connection string; otherwise false.

.NET Application Programming

246 SAP Sybase IQ

AppInfo property
Gets or sets the AppInfo connection property.

Visual Basic syntax
Public Property AppInfo As String

C# syntax
public string AppInfo {get;set;}

AutoStart property
Gets or sets the AutoStart connection property.

Visual Basic syntax
Public Property AutoStart As String

C# syntax
public string AutoStart {get;set;}

AutoStop property
Gets or sets the AutoStop connection property.

Visual Basic syntax
Public Property AutoStop As String

C# syntax
public string AutoStop {get;set;}

Charset property
Gets or sets the Charset connection property.

Visual Basic syntax
Public Property Charset As String

C# syntax
public string Charset {get;set;}

CommBufferSize property
Gets or sets the CommBufferSize connection property.

Visual Basic syntax
Public Property CommBufferSize As Integer

.NET Application Programming

Programming 247

C# syntax
public int CommBufferSize {get;set;}

CommLinks property
Gets or sets the CommLinks property.

Visual Basic syntax
Public Property CommLinks As String

C# syntax
public string CommLinks {get;set;}

Compress property
Gets or sets the Compress connection property.

Visual Basic syntax
Public Property Compress As String

C# syntax
public string Compress {get;set;}

CompressionThreshold property
Gets or sets the CompressionThreshold connection property.

Visual Basic syntax
Public Property CompressionThreshold As Integer

C# syntax
public int CompressionThreshold {get;set;}

ConnectionLifetime property
Gets or sets the ConnectionLifetime connection property.

Visual Basic syntax
Public Property ConnectionLifetime As Integer

C# syntax
public int ConnectionLifetime {get;set;}

.NET Application Programming

248 SAP Sybase IQ

ConnectionName property
Gets or sets the ConnectionName connection property.

Visual Basic syntax
Public Property ConnectionName As String

C# syntax
public string ConnectionName {get;set;}

ConnectionPool property
Gets or sets the ConnectionPool property.

Visual Basic syntax
Public Property ConnectionPool As String

C# syntax
public string ConnectionPool {get;set;}

ConnectionReset property
Gets or sets the ConnectionReset connection property.

Visual Basic syntax
Public Property ConnectionReset As Boolean

C# syntax
public bool ConnectionReset {get;set;}

Remarks
A DataTable that contains schema information.

ConnectionTimeout property
Gets or sets the ConnectionTimeout connection property.

Visual Basic syntax
Public Property ConnectionTimeout As Integer

C# syntax
public int ConnectionTimeout {get;set;}

The following statement displays the value of the ConnectionTimeout property.

MessageBox.Show(connString.ConnectionTimeout.ToString());

.NET Application Programming

Programming 249

DatabaseFile property
Gets or sets the DatabaseFile connection property.

Visual Basic syntax
Public Property DatabaseFile As String

C# syntax
public string DatabaseFile {get;set;}

DatabaseKey property
Gets or sets the DatabaseKey connection property.

Visual Basic syntax
Public Property DatabaseKey As String

C# syntax
public string DatabaseKey {get;set;}

DatabaseName property
Gets or sets the DatabaseName connection property.

Visual Basic syntax
Public Property DatabaseName As String

C# syntax
public string DatabaseName {get;set;}

DatabaseSwitches property
Gets or sets the DatabaseSwitches connection property.

Visual Basic syntax
Public Property DatabaseSwitches As String

C# syntax
public string DatabaseSwitches {get;set;}

DataSourceName property
Gets or sets the DataSourceName connection property.

Visual Basic syntax
Public Property DataSourceName As String

.NET Application Programming

250 SAP Sybase IQ

C# syntax
public string DataSourceName {get;set;}

DisableMultiRowFetch property
Gets or sets the DisableMultiRowFetch connection property.

Visual Basic syntax
Public Property DisableMultiRowFetch As String

C# syntax
public string DisableMultiRowFetch {get;set;}

Elevate property
Gets or sets the Elevate connection property.

Visual Basic syntax
Public Property Elevate As String

C# syntax
public string Elevate {get;set;}

EncryptedPassword property
Gets or sets the EncryptedPassword connection property.

Visual Basic syntax
Public Property EncryptedPassword As String

C# syntax
public string EncryptedPassword {get;set;}

Encryption property
Gets or sets the Encryption connection property.

Visual Basic syntax
Public Property Encryption As String

C# syntax
public string Encryption {get;set;}

.NET Application Programming

Programming 251

Enlist property
Gets or sets the Enlist connection property.

Visual Basic syntax
Public Property Enlist As Boolean

C# syntax
public bool Enlist {get;set;}

FileDataSourceName property
Gets or sets the FileDataSourceName connection property.

Visual Basic syntax
Public Property FileDataSourceName As String

C# syntax
public string FileDataSourceName {get;set;}

ForceStart property
Gets or sets the ForceStart connection property.

Visual Basic syntax
Public Property ForceStart As String

C# syntax
public string ForceStart {get;set;}

Host property
Gets or sets the Host property.

Visual Basic syntax
Public Property Host As String

C# syntax
public string Host {get;set;}

IdleTimeout property
Gets or sets the IdleTimeout connection property.

Visual Basic syntax
Public Property IdleTimeout As Integer

.NET Application Programming

252 SAP Sybase IQ

C# syntax
public int IdleTimeout {get;set;}

InitString property
Gets or sets the InitString connection property.

Visual Basic syntax
Public Property InitString As String

C# syntax
public string InitString {get;set;}

Integrated property
Gets or sets the Integrated connection property.

Visual Basic syntax
Public Property Integrated As String

C# syntax
public string Integrated {get;set;}

Kerberos property
Gets or sets the Kerberos connection property.

Visual Basic syntax
Public Property Kerberos As String

C# syntax
public string Kerberos {get;set;}

Keys property
Gets an System.Collections.ICollection that contains the keys in the
SAConnectionStringBuilder.

Visual Basic syntax
Public ReadOnly Overrides Property Keys As ICollection

C# syntax
public override ICollection Keys {get;}

Remarks
An System.Collections.ICollection that contains the keys in the SAConnectionStringBuilder.

.NET Application Programming

Programming 253

Language property
Gets or sets the Language connection property.

Visual Basic syntax
Public Property Language As String

C# syntax
public string Language {get;set;}

LazyClose property
Gets or sets the LazyClose connection property.

Visual Basic syntax
Public Property LazyClose As String

C# syntax
public string LazyClose {get;set;}

LivenessTimeout property
Gets or sets the LivenessTimeout connection property.

Visual Basic syntax
Public Property LivenessTimeout As Integer

C# syntax
public int LivenessTimeout {get;set;}

LogFile property
Gets or sets the LogFile connection property.

Visual Basic syntax
Public Property LogFile As String

C# syntax
public string LogFile {get;set;}

MaxPoolSize property
Gets or sets the MaxPoolSize connection property.

Visual Basic syntax
Public Property MaxPoolSize As Integer

.NET Application Programming

254 SAP Sybase IQ

C# syntax
public int MaxPoolSize {get;set;}

MinPoolSize property
Gets or sets the MinPoolSize connection property.

Visual Basic syntax
Public Property MinPoolSize As Integer

C# syntax
public int MinPoolSize {get;set;}

NewPassword property
Gets or sets the NewPassword connection property.

Visual Basic syntax
Public Property NewPassword As String

C# syntax
public string NewPassword {get;set;}

NodeType property
Gets or sets the NodeType property.

Visual Basic syntax
Public Property NodeType As String

C# syntax
public string NodeType {get;set;}

Password property
Gets or sets the Password connection property.

Visual Basic syntax
Public Property Password As String

C# syntax
public string Password {get;set;}

.NET Application Programming

Programming 255

PersistSecurityInfo property
Gets or sets the PersistSecurityInfo connection property.

Visual Basic syntax
Public Property PersistSecurityInfo As Boolean

C# syntax
public bool PersistSecurityInfo {get;set;}

Pooling property
Gets or sets the Pooling connection property.

Visual Basic syntax
Public Property Pooling As Boolean

C# syntax
public bool Pooling {get;set;}

PrefetchBuffer property
Gets or sets the PrefetchBuffer connection property.

Visual Basic syntax
Public Property PrefetchBuffer As Integer

C# syntax
public int PrefetchBuffer {get;set;}

PrefetchRows property
Gets or sets the PrefetchRows connection property.

Visual Basic syntax
Public Property PrefetchRows As Integer

C# syntax
public int PrefetchRows {get;set;}

Remarks
The default value is 200.

.NET Application Programming

256 SAP Sybase IQ

RetryConnectionTimeout property
Gets or sets the RetryConnectionTimeout property.

Visual Basic syntax
Public Property RetryConnectionTimeout As Integer

C# syntax
public int RetryConnectionTimeout {get;set;}

ServerName property
Gets or sets the ServerName connection property.

Visual Basic syntax
Public Property ServerName As String

C# syntax
public string ServerName {get;set;}

StartLine property
Gets or sets the StartLine connection property.

Visual Basic syntax
Public Property StartLine As String

C# syntax
public string StartLine {get;set;}

this property
Gets or sets the value of the connection keyword.

Visual Basic syntax
Public Overrides Property Item As Object

C# syntax
public override object this {get;set;}

Remarks
An object representing the value of the specified connection keyword.

If the keyword or type is invalid, an exception is raised. keyword is case insensitive.

When setting the value, passing NULL clears the value.

.NET Application Programming

Programming 257

Unconditional property
Gets or sets the Unconditional connection property.

Visual Basic syntax
Public Property Unconditional As String

C# syntax
public string Unconditional {get;set;}

UserID property
Gets or sets the UserID connection property.

Visual Basic syntax
Public Property UserID As String

C# syntax
public string UserID {get;set;}

SAConnectionStringBuilderBase class
Base class of the SAConnectionStringBuilder class.

Visual Basic syntax
Public MustInherit Class SAConnectionStringBuilderBase
Inherits System.Data.Common.DbConnectionStringBuilder

C# syntax
public abstract class SAConnectionStringBuilderBase :
System.Data.Common.DbConnectionStringBuilder

Derived classes

• SAConnectionStringBuilder on page 243
• SATcpOptionsBuilder on page 308

Remarks
Custom Attribute: abstract

ContainsKey(string) method
Determines whether the SAConnectionStringBuilder object contains a specific keyword.

Visual Basic syntax
Public Overrides Function ContainsKey (ByVal keyword As String)
As Boolean

.NET Application Programming

258 SAP Sybase IQ

C# syntax
public override bool ContainsKey (string keyword)

Parameters

• keyword – The keyword to locate in the SAConnectionStringBuilder.

Returns
True if the value associated with keyword has been set; otherwise, false.

Examples
The following statement determines whether the SAConnectionStringBuilder object contains
the UserID keyword.
connectString.ContainsKey("UserID")

GetUseLongNameAsKeyword() method
Gets a boolean values that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Function GetUseLongNameAsKeyword () As Boolean

C# syntax
public bool GetUseLongNameAsKeyword ()

Returns
True if long connection parameter names are used to build connection strings; otherwise,
false.

Usage
SQL Anywhere connection parameters have both long and short forms of their names. For
example, to specify the name of an ODBC data source in your connection string, you can use
either of the following values: DataSourceName or DSN. By default, long connection
parameter names are used to build connection strings.

Remove(string) method
Removes the entry with the specified key from the SAConnectionStringBuilder instance.

Visual Basic syntax
Public Overrides Function Remove (ByVal keyword As String) As
Boolean

.NET Application Programming

Programming 259

C# syntax
public override bool Remove (string keyword)

Parameters

• keyword – The key of the key/value pair to be removed from the connection string in this
SAConnectionStringBuilder.

Returns
True if the key existed within the connection string and was removed; false if the key did not
exist.

SetUseLongNameAsKeyword(bool) method
Sets a boolean value that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Sub SetUseLongNameAsKeyword (ByVal useLongNameAsKeyword
As Boolean)

C# syntax
public void SetUseLongNameAsKeyword (bool useLongNameAsKeyword)

Parameters

• useLongNameAsKeyword – A boolean value that indicates whether the long connection
parameter name is used in the connection string.

Usage
Long connection parameter names are used by default.

ShouldSerialize(string) method
Indicates whether the specified key exists in this SAConnectionStringBuilder instance.

Visual Basic syntax
Public Overrides Function ShouldSerialize (ByVal keyword As
String) As Boolean

C# syntax
public override bool ShouldSerialize (string keyword)

Parameters

• keyword – The key to locate in the SAConnectionStringBuilder.

.NET Application Programming

260 SAP Sybase IQ

Returns
True if the SAConnectionStringBuilder contains an entry with the specified key; otherwise
false.

TryGetValue(string, out object) method
Retrieves a value corresponding to the supplied key from this SAConnectionStringBuilder.

Visual Basic syntax
Public Overrides Function TryGetValue (ByVal keyword As String,
ByVal value As Object) As Boolean

C# syntax
public override bool TryGetValue (string keyword, out object
value)

Parameters
• keyword – The key of the item to retrieve.
• value – The value corresponding to keyword.

Returns
true if keyword was found within the connection string; otherwise false.

Keys property
Gets an System.Collections.ICollection that contains the keys in the
SAConnectionStringBuilder.

Visual Basic syntax
Public ReadOnly Overrides Property Keys As ICollection

C# syntax
public override ICollection Keys {get;}

Remarks
An System.Collections.ICollection that contains the keys in the SAConnectionStringBuilder.

this property
Gets or sets the value of the connection keyword.

Visual Basic syntax
Public Overrides Property Item As Object

C# syntax
public override object this {get;set;}

.NET Application Programming

Programming 261

Remarks
An object representing the value of the specified connection keyword.

If the keyword or type is invalid, an exception is raised. keyword is case insensitive.

When setting the value, passing NULL clears the value.

SADataAdapter class
Represents a set of commands and a database connection used to fill a System.Data.DataSet
and to update a database.

Visual Basic syntax
Public NotInheritable Class SADataAdapter Inherits
System.Data.Common.DbDataAdapter Implements System.ICloneable

C# syntax
public sealed class SADataAdapter :
System.Data.Common.DbDataAdapter, System.ICloneable

Remarks
The System.Data.DataSet provides a way to work with data offline. The SADataAdapter
provides methods to associate a DataSet with a set of SQL statements.

Implements: IDbDataAdapter, IDataAdapter, ICloneable

For more information, see Using the SADataAdapter object to access and manipulate data and
Accessing and manipulating data.

Custom Attribute: sealed

ClearBatch() method
Removes all SACommand objects from the batch.

Visual Basic syntax
Protected Overrides Sub ClearBatch ()

C# syntax
protected override void ClearBatch ()

.NET Application Programming

262 SAP Sybase IQ

CreateRowUpdatedEvent(DataRow, IDbCommand, StatementType,
DataTableMapping) method
Initializes a new instance of the System.Data.Common.RowUpdatedEventArgs class.

Visual Basic syntax
Protected Overrides Function CreateRowUpdatedEvent (ByVal
dataRow As DataRow, ByVal command As IDbCommand, ByVal
statementType As StatementType, ByVal tableMapping As
DataTableMapping) As RowUpdatedEventArgs

C# syntax
protected override RowUpdatedEventArgs CreateRowUpdatedEvent
(DataRow dataRow, IDbCommand command, StatementType
statementType, DataTableMapping tableMapping)

Parameters

• dataRow – The System.Data.DataRow used to update the data source.
• command – The System.Data.IDbCommand executed during the

System.Data.IDataAdapter.Update(System.Data.DataSet).
• statementType – Whether the command is an UPDATE, INSERT, DELETE, or SELECT

statement.
• tableMapping – A System.Data.Common.DataTableMapping object.

Returns
A new instance of the System.Data.Common.RowUpdatedEventArgs class.

CreateRowUpdatingEvent(DataRow, IDbCommand, StatementType,
DataTableMapping) method
Initializes a new instance of the System.Data.Common.RowUpdatingEventArgs class.

Visual Basic syntax
Protected Overrides Function CreateRowUpdatingEvent (ByVal
dataRow As DataRow, ByVal command As IDbCommand, ByVal
statementType As StatementType, ByVal tableMapping As
DataTableMapping) As RowUpdatingEventArgs

C# syntax
protected override RowUpdatingEventArgs
CreateRowUpdatingEvent (DataRow dataRow, IDbCommand command,
StatementType statementType, DataTableMapping tableMapping)

.NET Application Programming

Programming 263

Parameters

• dataRow – The System.Data.DataRow used to update the data source.
• command – The System.Data.IDbCommand executed during the

System.Data.IDataAdapter.Update(System.Data.DataSet).
• statementType – Whether the command is an UPDATE, INSERT, DELETE, or SELECT

statement.
• tableMapping – A System.Data.Common.DataTableMapping object.

Returns
A new instance of the System.Data.Common.RowUpdatingEventArgs class.

Dispose(bool) method
Releases the unmanaged resources used by the SADataAdapter object and optionally releases
the managed resources.

Visual Basic syntax
Protected Overrides Sub Dispose (ByVal disposing As Boolean)

C# syntax
protected override void Dispose (bool disposing)

Parameters

• disposing – True releases both managed and unmanaged resources; false releases only
unmanaged resources.

GetFillParameters() method
Returns the parameters set by you when executing a SELECT statement.

Visual Basic syntax
Public Shadows Function GetFillParameters () As
SAParameter()

C# syntax
public new SAParameter[] GetFillParameters ()

Returns
An array of IDataParameter objects that contains the parameters set by the user.

.NET Application Programming

264 SAP Sybase IQ

InitializeBatching() method
Initializes batching for the SADataAdapter object.

Visual Basic syntax
Protected Overrides Sub InitializeBatching ()

C# syntax
protected override void InitializeBatching ()

OnRowUpdated(RowUpdatedEventArgs) method
Raises the RowUpdated event of a .NET Framework data provider.

Visual Basic syntax
Protected Overrides Sub OnRowUpdated (ByVal value As
RowUpdatedEventArgs)

C# syntax
protected override void OnRowUpdated (RowUpdatedEventArgs
value)

Parameters

• value – A System.Data.Common.RowUpdatedEventArgs that contains the event data.

OnRowUpdating(RowUpdatingEventArgs) method
Raises the RowUpdating event of a .NET Framework data provider.

Visual Basic syntax
Protected Overrides Sub OnRowUpdating (ByVal value As
RowUpdatingEventArgs)

C# syntax
protected override void OnRowUpdating (RowUpdatingEventArgs
value)

Parameters

• value – A System.Data.Common.RowUpdatingEventArgs that contains the event data.

TerminateBatching() method
Ends batching for the SADataAdapter object.

Visual Basic syntax
Protected Overrides Sub TerminateBatching ()

.NET Application Programming

Programming 265

C# syntax
protected override void TerminateBatching ()

Update(DataRow[], DataTableMapping) method
Updates the tables in a database with the changes made to the DataSet.

Visual Basic syntax
Protected Overrides Function Update (ByVal dataRows As
DataRow(), ByVal tableMapping As DataTableMapping) As Integer

C# syntax
protected override int Update (DataRow[] dataRows,
DataTableMapping tableMapping)

Parameters

• dataRows – An array of System.Data.DataRow to update from.
• tableMapping – The System.Data.IDataAdapter.TableMappings collection to use.

Returns
The number of rows successfully updated from the System.Data.DataRow array.

Usage
The Update is carried out using the InsertCommand, UpdateCommand, and DeleteCommand
on each row in the data set that has been inserted, updated, or deleted.

For more information, see Inserting, updating, and deleting rows using the SADataAdapter
object.

DeleteCommand property
Specifies an SACommand object that is executed against the database when the Update
method is called to delete rows in the database that correspond to deleted rows in the DataSet.

Visual Basic syntax
Public Shadows Property DeleteCommand As SACommand

C# syntax
public new SACommand DeleteCommand {get;set;}

Remarks
If this property is not set and primary key information is present in the DataSet during Update,
DeleteCommand can be generated automatically by setting SelectCommand and using the
SACommandBuilder. In that case, the SACommandBuilder generates any additional

.NET Application Programming

266 SAP Sybase IQ

commands that you do not set. This generation logic requires key column information to be
present in the SelectCommand.

When DeleteCommand is assigned to an existing SACommand object, the SACommand
object is not cloned. The DeleteCommand maintains a reference to the existing SACommand.

InsertCommand property
Specifies an SACommand that is executed against the database when the Update method is
called that adds rows to the database to correspond to rows that were inserted in the DataSet.

Visual Basic syntax
Public Shadows Property InsertCommand As SACommand

C# syntax
public new SACommand InsertCommand {get;set;}

Remarks
The SACommandBuilder does not require key columns to generate InsertCommand.

When InsertCommand is assigned to an existing SACommand object, the SACommand is not
cloned. The InsertCommand maintains a reference to the existing SACommand.

If this command returns rows, the rows may be added to the DataSet depending on how you set
the UpdatedRowSource property of the SACommand object.

SelectCommand property
Specifies an SACommand that is used during Fill or FillSchema to obtain a result set from the
database for copying into a DataSet.

Visual Basic syntax
Public Shadows Property SelectCommand As SACommand

C# syntax
public new SACommand SelectCommand {get;set;}

Remarks
When SelectCommand is assigned to a previously-created SACommand, the SACommand is
not cloned. The SelectCommand maintains a reference to the previously-created
SACommand object.

If the SelectCommand does not return any rows, no tables are added to the DataSet, and no
exception is raised.

The SELECT statement can also be specified in the SADataAdapter constructor.

.NET Application Programming

Programming 267

TableMappings property
Specifies a collection that provides the master mapping between a source table and a
DataTable.

Visual Basic syntax
Public ReadOnly Shadows Property TableMappings As
DataTableMappingCollection

C# syntax
public new DataTableMappingCollection TableMappings {get;}

Remarks
The default value is an empty collection.

When reconciling changes, the SADataAdapter uses the DataTableMappingCollection
collection to associate the column names used by the data source with the column names used
by the DataSet.

The TableMappings property is not available in the .NET Compact Framework 2.0.

UpdateBatchSize property
Gets or sets the number of rows that are processed in each round-trip to the server.

Visual Basic syntax
Public Overrides Property UpdateBatchSize As Integer

C# syntax
public override int UpdateBatchSize {get;set;}

Remarks
The default value is 1.

Setting the value to something greater than 1 causes SADataAdapter.Update to execute all the
insert statements in batches. The deletions and updates are executed sequentially as before, but
insertions are executed afterward in batches of size equal to the value of UpdateBatchSize.
Setting the value to 0 causes Update to send the insert statements in a single batch.

Setting the value to something greater than 1 causes SADataAdapter.Fill to execute all the
insert statements in batches. The deletions and updates are executed sequentially as before, but
insertions are executed afterward in batches of size equal to the value of UpdateBatchSize.

Setting the value to 0 causes Fill to send the insert statements in a single batch.

Setting it less than 0 is an error.

.NET Application Programming

268 SAP Sybase IQ

If UpdateBatchSize is set to something other than one, and the InsertCommand property is set
to something that is not an INSERT statement, then an exception is thrown when calling Fill.

This behavior is different from SqlDataAdapter. It batches all types of commands.

UpdateCommand property
Specifies an SACommand that is executed against the database when the Update method is
called to update rows in the database that correspond to updated rows in the DataSet.

Visual Basic syntax
Public Shadows Property UpdateCommand As SACommand

C# syntax
public new SACommand UpdateCommand {get;set;}

Remarks
During Update, if this property is not set and primary key information is present in the
SelectCommand, the UpdateCommand can be generated automatically if you set the
SelectCommand property and use the SACommandBuilder. Then, any additional commands
that you do not set are generated by the SACommandBuilder. This generation logic requires
key column information to be present in the SelectCommand.

When UpdateCommand is assigned to a previously-created SACommand, the SACommand
is not cloned. The UpdateCommand maintains a reference to the previously-created
SACommand object.

If execution of this command returns rows, these rows can be merged with the DataSet
depending on how you set the UpdatedRowSource property of the SACommand object.

RowUpdated() event
Occurs during an update after a command is executed against the data source.

Visual Basic syntax
Public Event RowUpdated As SARowUpdatedEventHandler

C# syntax
public event SARowUpdatedEventHandler RowUpdated;

Usage
When an attempt to update is made, the event fires.

The event handler receives an argument of type SARowUpdatedEventArgs containing data
related to this event.

For more information, see the .NET Framework documentation for
OleDbDataAdapter.RowUpdated Event.

.NET Application Programming

Programming 269

RowUpdating() event
Occurs during an update before a command is executed against the data source.

Visual Basic syntax
Public Event RowUpdating As SARowUpdatingEventHandler

C# syntax
public event SARowUpdatingEventHandler RowUpdating;

Usage
When an attempt to update is made, the event fires.

The event handler receives an argument of type SARowUpdatingEventArgs containing data
related to this event.

For more information, see the .NET Framework documentation for
OleDbDataAdapter.RowUpdating Event.

DREnumerator class

Visual Basic syntax
Private NotInheritable Class DREnumerator Implements
System.Collections.IEnumerator

C# syntax
private sealed class DREnumerator :
System.Collections.IEnumerator

Remarks
Custom Attribute: sealed

DREnumerator(SADataReader) constructor

Visual Basic syntax
Public Sub New (ByVal dataReader As SADataReader)

C# syntax
public DREnumerator (SADataReader dataReader)

MoveNext() method

Visual Basic syntax
Public Function MoveNext () As Boolean

.NET Application Programming

270 SAP Sybase IQ

C# syntax
public bool MoveNext ()

Reset() method

Visual Basic syntax
Public Sub Reset ()

C# syntax
public void Reset ()

Current property

Visual Basic syntax
Public ReadOnly Property Current As Object

C# syntax
public object Current {get;}

SADataSourceEnumerator class
Provides a mechanism for enumerating all available instances of SQL Anywhere database
servers within the local network.

Visual Basic syntax
Public NotInheritable Class SADataSourceEnumerator Inherits
System.Data.Common.DbDataSourceEnumerator

C# syntax
public sealed class SADataSourceEnumerator :
System.Data.Common.DbDataSourceEnumerator

Remarks
There is no constructor for SADataSourceEnumerator.

The SADataSourceEnumerator class is not available in the .NET Compact Framework 2.0.

Custom Attribute: sealed

.NET Application Programming

Programming 271

GetDataSources() method
Retrieves a DataTable containing information about all visible SQL Anywhere database
servers.

Visual Basic syntax
Public Overrides Function GetDataSources () As DataTable

C# syntax
public override DataTable GetDataSources ()

Examples
The following code fills a DataTable with information for each database server that is
available.
DataTable servers =
SADataSourceEnumerator.Instance.GetDataSources();

Usage
The returned table has four columns: ServerName, IPAddress, PortNumber, and
DataBaseNames. There is a row in the table for each available database server.

Instance property
Gets an instance of SADataSourceEnumerator, which can be used to retrieve information
about all visible SQL Anywhere database servers.

Visual Basic syntax
Public Shared ReadOnly Property Instance As
SADataSourceEnumerator

C# syntax
public SADataSourceEnumerator Instance {get;}

SADefault class
Represents a parameter with a default value.

Visual Basic syntax
Public NotInheritable Class SADefault

C# syntax
public sealed class SADefault

Remarks
There is no constructor for SADefault.

.NET Application Programming

272 SAP Sybase IQ

 SAParameter parm = new SAParameter();
parm.Value = SADefault.Value;

Custom Attribute: sealed

Value field
Gets the value for a default parameter.

Visual Basic syntax
Public Shared ReadOnly Value As SADefault

C# syntax
public static readonly SADefault Value;

Remarks
This field is read-only and static.

SAError class
Collects information relevant to a warning or error returned by the data source.

Visual Basic syntax
Public NotInheritable Class SAError

C# syntax
public sealed class SAError

Remarks
There is no constructor for SAError.

For information about error handling, see Error handling and the SQL Anywhere .NET Data
Provider.

Custom Attribute: sealed

ToString() method
The complete text of the error message.

Visual Basic syntax
Public Overrides Function ToString () As String

C# syntax
public override string ToString ()

.NET Application Programming

Programming 273

Examples
The return value is a string is in the form SAError:, followed by the Message. For example:
SAError:UserId or Password not valid.

Message property
Returns a short description of the error.

Visual Basic syntax
Public ReadOnly Property Message As String

C# syntax
public string Message {get;}

NativeError property
Returns database-specific error information.

Visual Basic syntax
Public ReadOnly Property NativeError As Integer

C# syntax
public int NativeError {get;}

Source property
Returns the name of the provider that generated the error.

Visual Basic syntax
Public ReadOnly Property Source As String

C# syntax
public string Source {get;}

SqlState property
The SQL Anywhere five-character SQLSTATE following the ANSI SQL standard.

Visual Basic syntax
Public ReadOnly Property SqlState As String

C# syntax
public string SqlState {get;}

.NET Application Programming

274 SAP Sybase IQ

SAErrorCollection class
Collects all errors generated by the SQL Anywhere .NET Data Provider.

Visual Basic syntax
Public NotInheritable Class SAErrorCollection Implements
System.Collections.ICollection, System.Collections.IEnumerable

C# syntax
public sealed class SAErrorCollection :
System.Collections.ICollection, System.Collections.IEnumerable

Remarks
There is no constructor for SAErrorCollection. Typically, an SAErrorCollection is obtained
from the SAException.Errors property.

Implements: ICollection, IEnumerable

For information about error handling, see Error handling and the SQL Anywhere .NET Data
Provider.

Custom Attribute: sealed

CopyTo(Array, int) method
Copies the elements of the SAErrorCollection into an array, starting at the given index within
the array.

Visual Basic syntax
Public Sub CopyTo (ByVal array As Array, ByVal index As Integer)

C# syntax
public void CopyTo (Array array, int index)

Parameters

• array – The array into which to copy the elements.
• index – The starting index of the array.

GetEnumerator() method
Returns an enumerator that iterates through the SAErrorCollection.

Visual Basic syntax
Public Function GetEnumerator () As IEnumerator

.NET Application Programming

Programming 275

C# syntax
public IEnumerator GetEnumerator ()

Returns
An System.Collections.IEnumerator for the SAErrorCollection.

Count property
Returns the number of errors in the collection.

Visual Basic syntax
Public ReadOnly Property Count As Integer

C# syntax
public int Count {get;}

this property
Returns the error at the specified index.

Visual Basic syntax
Public ReadOnly Property Item As SAError

C# syntax
public SAError this {get;}

Remarks
An SAError object that contains the error at the specified index.

SAException class
The exception that is thrown when SQL Anywhere returns a warning or error.

Visual Basic syntax
Public Class SAException Inherits System.Exception

C# syntax
public class SAException : System.Exception

Remarks
There is no constructor for SAException. Typically, an SAException object is declared in a
catch. For example:
 ...
catch(SAException ex)
{

.NET Application Programming

276 SAP Sybase IQ

 MessageBox.Show(ex.Errors[0].Message, "Error");
}

For information about error handling, see Error handling and the SQL Anywhere .NET Data
Provider.

GetObjectData(SerializationInfo, StreamingContext) method
Sets the SerializationInfo with information about the exception.

Visual Basic syntax
Public Overrides Sub GetObjectData (ByVal info As
SerializationInfo, ByVal context As StreamingContext)

C# syntax
public override void GetObjectData (SerializationInfo info,
StreamingContext context)

Parameters

• info – The SerializationInfo that holds the serialized object data about the exception being
thrown.

• context – The StreamingContext that contains contextual information about the source or
destination.

Usage
Overrides Exception.GetObjectData.

Errors property
Returns a collection of one or more SAError objects.

Visual Basic syntax
Public ReadOnly Property Errors As SAErrorCollection

C# syntax
public SAErrorCollection Errors {get;}

Remarks
The SAErrorCollection object always contains at least one instance of the SAError object.

Message property
Returns the text describing the error.

Visual Basic syntax
Public ReadOnly Overrides Property Message As String

.NET Application Programming

Programming 277

C# syntax
public override string Message {get;}

Remarks
This method returns a single string that contains a concatenation of all of the Message
properties of all of the SAError objects in the Errors collection. Each message, except the last
one, is followed by a carriage return.

NativeError property
Returns database-specific error information.

Visual Basic syntax
Public ReadOnly Property NativeError As Integer

C# syntax
public int NativeError {get;}

Source property
Returns the name of the provider that generated the error.

Visual Basic syntax
Public ReadOnly Overrides Property Source As String

C# syntax
public override string Source {get;}

SAFactory class
Represents a set of methods for creating instances of the iAnywhere.Data.SQLAnywhere
provider's implementation of the data source classes.

Visual Basic syntax
Public NotInheritable Class SAFactory Inherits
System.Data.Common.DbProviderFactory

C# syntax
public sealed class SAFactory :
System.Data.Common.DbProviderFactory

Remarks
There is no constructor for SAFactory.

.NET Application Programming

278 SAP Sybase IQ

ADO.NET 2.0 adds two new classes, DbProviderFactories and DbProviderFactory, to make
provider independent code easier to write. To use them with SQL Anywhere specify
iAnywhere.Data.SQLAnywhere as the provider invariant name passed to GetFactory. For
example:
 ' Visual Basic
Dim factory As DbProviderFactory = _
 DbProviderFactories.GetFactory("iAnywhere.Data.SQLAnywhere")
Dim conn As DbConnection = _
 factory.CreateConnection()

 // C#
DbProviderFactory factory =

DbProviderFactories.GetFactory("iAnywhere.Data.SQLAnywhere");
DbConnection conn = factory.CreateConnection();

In this example, conn is created as an SAConnection object.

For an explanation of provider factories and generic programming in ADO.NET 2.0, see
Generic Coding with the ADO.NET 2.0 Base Classes and Factories.

The SAFactory class is not available in the .NET Compact Framework 2.0.

Custom Attribute: sealed

CreateCommand() method
Returns a strongly typed System.Data.Common.DbCommand instance.

Visual Basic syntax
Public Overrides Function CreateCommand () As DbCommand

C# syntax
public override DbCommand CreateCommand ()

Returns
A new SACommand object typed as DbCommand.

CreateCommandBuilder() method
Returns a strongly typed System.Data.Common.DbCommandBuilder instance.

Visual Basic syntax
Public Overrides Function CreateCommandBuilder () As
DbCommandBuilder

C# syntax
public override DbCommandBuilder CreateCommandBuilder ()

.NET Application Programming

Programming 279

http://msdn.microsoft.com/en-us/library/ms379620.aspx

Returns
A new SACommand object typed as DbCommand.

CreateConnection() method
Returns a strongly typed System.Data.Common.DbConnection instance.

Visual Basic syntax
Public Overrides Function CreateConnection () As DbConnection

C# syntax
public override DbConnection CreateConnection ()

Returns
A new SACommand object typed as DbCommand.

CreateConnectionStringBuilder() method
Returns a strongly typed System.Data.Common.DbConnectionStringBuilder instance.

Visual Basic syntax
Public Overrides Function CreateConnectionStringBuilder () As
DbConnectionStringBuilder

C# syntax
public override DbConnectionStringBuilder
CreateConnectionStringBuilder ()

Returns
A new SACommand object typed as DbCommand.

CreateDataAdapter() method
Returns a strongly typed System.Data.Common.DbDataAdapter instance.

Visual Basic syntax
Public Overrides Function CreateDataAdapter () As
DbDataAdapter

C# syntax
public override DbDataAdapter CreateDataAdapter ()

Returns
A new SACommand object typed as DbCommand.

.NET Application Programming

280 SAP Sybase IQ

CreateDataSourceEnumerator() method
Returns a strongly typed System.Data.Common.DbDataSourceEnumerator instance.

Visual Basic syntax
Public Overrides Function CreateDataSourceEnumerator () As
DbDataSourceEnumerator

C# syntax
public override DbDataSourceEnumerator
CreateDataSourceEnumerator ()

Returns
A new SACommand object typed as DbCommand.

CreateParameter() method
Returns a strongly typed System.Data.Common.DbParameter instance.

Visual Basic syntax
Public Overrides Function CreateParameter () As DbParameter

C# syntax
public override DbParameter CreateParameter ()

Returns
A new SACommand object typed as DbCommand.

CreatePermission(PermissionState) method
Returns a strongly-typed CodeAccessPermission instance.

Visual Basic syntax
Public Overrides Function CreatePermission (ByVal state As
PermissionState) As CodeAccessPermission

C# syntax
public override CodeAccessPermission CreatePermission
(PermissionState state)

Parameters

• state – A member of the System.Security.Permissions.PermissionState enumeration.

Returns
A new SACommand object typed as DbCommand.

.NET Application Programming

Programming 281

CanCreateDataSourceEnumerator property
Always returns true, which indicates that an SADataSourceEnumerator object can be created.

Visual Basic syntax
Public ReadOnly Overrides Property
CanCreateDataSourceEnumerator As Boolean

C# syntax
public override bool CanCreateDataSourceEnumerator {get;}

Remarks
A new SACommand object typed as DbCommand.

Instance field
Represents the singleton instance of the SAFactory class.

Visual Basic syntax
Public Shared ReadOnly Instance As SAFactory

C# syntax
public static readonly SAFactory Instance;

Remarks
SAFactory is a singleton class, which means only this instance of this class can exist.

Normally you would not use this field directly. Instead, you get a reference to this instance of
SAFactory using System.Data.Common.DbProviderFactories.GetFactory(String). For an
example, see the SAFactory description.

The SAFactory class is not available in the .NET Compact Framework 2.0.

SAInfoMessageEventArgs class
Provides data for the InfoMessage event.

Visual Basic syntax
Public NotInheritable Class SAInfoMessageEventArgs Inherits
System.EventArgs

C# syntax
public sealed class SAInfoMessageEventArgs : System.EventArgs

.NET Application Programming

282 SAP Sybase IQ

Remarks
There is no constructor for SAInfoMessageEventArgs.

Custom Attribute: sealed

ToString() method
Retrieves a string representation of the InfoMessage event.

Visual Basic syntax
Public Overrides Function ToString () As String

C# syntax
public override string ToString ()

Returns
A string representing the InfoMessage event.

Errors property
Returns the collection of messages sent from the data source.

Visual Basic syntax
Public ReadOnly Property Errors As SAErrorCollection

C# syntax
public SAErrorCollection Errors {get;}

Message property
Returns the full text of the error sent from the data source.

Visual Basic syntax
Public ReadOnly Property Message As String

C# syntax
public string Message {get;}

MessageType property
Returns the type of the message.

Visual Basic syntax
Public ReadOnly Property MessageType As SAMessageType

C# syntax
public SAMessageType MessageType {get;}

.NET Application Programming

Programming 283

Remarks
This can be one of: Action, Info, Status, or Warning.

NativeError property
Returns the SQLCODE returned by the database.

Visual Basic syntax
Public ReadOnly Property NativeError As Integer

C# syntax
public int NativeError {get;}

Source property
Returns the name of the SQL Anywhere .NET Data Provider.

Visual Basic syntax
Public ReadOnly Property Source As String

C# syntax
public string Source {get;}

SAMetaDataCollectionNames class
Provides a list of constants for use with the SAConnection.GetSchema(string) method to
retrieve metadata collections.

Visual Basic syntax
Public NotInheritable Class SAMetaDataCollectionNames

C# syntax
public sealed class SAMetaDataCollectionNames

Remarks
This field is constant and read-only.

Custom Attribute: sealed

Columns field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the Columns collection.

Visual Basic syntax
Public Shared ReadOnly Columns As String

.NET Application Programming

284 SAP Sybase IQ

C# syntax
public static readonly string Columns;

The following code fills a DataTable with the Columns collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.Columns);

DataSourceInformation field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the DataSourceInformation collection.

Visual Basic syntax
Public Shared ReadOnly DataSourceInformation As String

C# syntax
public static readonly string DataSourceInformation;

The following code fills a DataTable with the DataSourceInformation collection.
 DataTable schema =
 GetSchema(SAMetaDataCollectionNames.DataSourceInformation);

DataTypes field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the DataTypes collection.

Visual Basic syntax
Public Shared ReadOnly DataTypes As String

C# syntax
public static readonly string DataTypes;

The following code fills a DataTable with the DataTypes collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.DataTypes);

ForeignKeys field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the ForeignKeys collection.

Visual Basic syntax
Public Shared ReadOnly ForeignKeys As String

C# syntax
public static readonly string ForeignKeys;

.NET Application Programming

Programming 285

The following code fills a DataTable with the ForeignKeys collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.ForeignKeys);

IndexColumns field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the IndexColumns collection.

Visual Basic syntax
Public Shared ReadOnly IndexColumns As String

C# syntax
public static readonly string IndexColumns;

The following code fills a DataTable with the IndexColumns collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.IndexColumns);

Indexes field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the Indexes collection.

Visual Basic syntax
Public Shared ReadOnly Indexes As String

C# syntax
public static readonly string Indexes;

The following code fills a DataTable with the Indexes collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.Indexes);

MetaDataCollections field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the MetaDataCollections collection.

Visual Basic syntax
Public Shared ReadOnly MetaDataCollections As String

C# syntax
public static readonly string MetaDataCollections;

The following code fills a DataTable with the MetaDataCollections collection.
 DataTable schema =
 GetSchema(SAMetaDataCollectionNames.MetaDataCollections);

.NET Application Programming

286 SAP Sybase IQ

ProcedureParameters field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the ProcedureParameters collection.

Visual Basic syntax
Public Shared ReadOnly ProcedureParameters As String

C# syntax
public static readonly string ProcedureParameters;

The following code fills a DataTable with the ProcedureParameters collection.
 DataTable schema =
 GetSchema(SAMetaDataCollectionNames.ProcedureParameters);

Procedures field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the Procedures collection.

Visual Basic syntax
Public Shared ReadOnly Procedures As String

C# syntax
public static readonly string Procedures;

The following code fills a DataTable with the Procedures collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.Procedures);

ReservedWords field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the ReservedWords collection.

Visual Basic syntax
Public Shared ReadOnly ReservedWords As String

C# syntax
public static readonly string ReservedWords;

The following code fills a DataTable with the ReservedWords collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.ReservedWords);

.NET Application Programming

Programming 287

Restrictions field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the Restrictions collection.

Visual Basic syntax
Public Shared ReadOnly Restrictions As String

C# syntax
public static readonly string Restrictions;

The following code fills a DataTable with the Restrictions collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.Restrictions);

Tables field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the Tables collection.

Visual Basic syntax
Public Shared ReadOnly Tables As String

C# syntax
public static readonly string Tables;

The following code fills a DataTable with the Tables collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.Tables);

UserDefinedTypes field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the UserDefinedTypes collection.

Visual Basic syntax
Public Shared ReadOnly UserDefinedTypes As String

C# syntax
public static readonly string UserDefinedTypes;

The following code fills a DataTable with the UserDefinedTypes collection.
 DataTable schema =
 GetSchema(SAMetaDataCollectionNames.UserDefinedTypes);

.NET Application Programming

288 SAP Sybase IQ

Users field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the Users collection.

Visual Basic syntax
Public Shared ReadOnly Users As String

C# syntax
public static readonly string Users;

The following code fills a DataTable with the Users collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.Users);

ViewColumns field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the ViewColumns collection.

Visual Basic syntax
Public Shared ReadOnly ViewColumns As String

C# syntax
public static readonly string ViewColumns;

The following code fills a DataTable with the ViewColumns collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.ViewColumns);

Views field
Provides a constant for use with the SAConnection.GetSchema(string) method that represents
the Views collection.

Visual Basic syntax
Public Shared ReadOnly Views As String

C# syntax
public static readonly string Views;

The following code fills a DataTable with the Views collection.
 DataTable schema =
GetSchema(SAMetaDataCollectionNames.Views);

.NET Application Programming

Programming 289

SAParameter class
Represents a parameter to an SACommand, and optionally, its mapping to a DataSet column.

Visual Basic syntax
Public NotInheritable Class SAParameter Inherits
System.Data.Common.DbParameter Implements System.ICloneable

C# syntax
public sealed class SAParameter :
System.Data.Common.DbParameter, System.ICloneable

Remarks
Implements: IDbDataParameter, IDataParameter, ICloneable

Custom Attribute: sealed

ResetDbType() method
Resets the type (the values of DbType and SADbType) associated with this SAParameter.

Visual Basic syntax
Public Overrides Sub ResetDbType ()

C# syntax
public override void ResetDbType ()

ToString() method
Returns a string containing the ParameterName.

Visual Basic syntax
Public Overrides Function ToString () As String

C# syntax
public override string ToString ()

Returns
The name of the parameter.

DbType property
Gets and sets the DbType of the parameter.

Visual Basic syntax
Public Overrides Property DbType As DbType

.NET Application Programming

290 SAP Sybase IQ

C# syntax
public override DbType DbType {get;set;}

Remarks
The SADbType and DbType are linked. Therefore, setting the DbType changes the
SADbType to a supporting SADbType.

The value must be a member of the SADbType enumerator.

Direction property
Gets and sets a value indicating whether the parameter is input-only, output-only,
bidirectional, or a stored procedure return value parameter.

Visual Basic syntax
Public Overrides Property Direction As ParameterDirection

C# syntax
public override ParameterDirection Direction {get;set;}

Remarks
One of the ParameterDirection values.

If the ParameterDirection is output, and execution of the associated SACommand does not
return a value, the SAParameter contains a null value. After the last row from the last result set
is read, the Output, InputOut, and ReturnValue parameters are updated.

IsNullable property
Gets and sets a value indicating whether the parameter accepts null values.

Visual Basic syntax
Public Overrides Property IsNullable As Boolean

C# syntax
public override bool IsNullable {get;set;}

Remarks
This property is true if null values are accepted; otherwise, it is false. The default is false. Null
values are handled using the DBNull class.

Offset property
Gets and sets the offset to the Value property.

Visual Basic syntax
Public Property Offset As Integer

.NET Application Programming

Programming 291

C# syntax
public int Offset {get;set;}

Remarks
The offset to the value. The default is 0.

ParameterName property
Gets and sets the name of the SAParameter.

Visual Basic syntax
Public Overrides Property ParameterName As String

C# syntax
public override string ParameterName {get;set;}

Remarks
The default is an empty string.

The SQL Anywhere .NET Data Provider uses positional parameters that are marked with a
question mark (?) instead of named parameters.

Precision property
Gets and sets the maximum number of digits used to represent the Value property.

Visual Basic syntax
Public Property Precision As Byte

C# syntax
public byte Precision {get;set;}

Remarks
The value of this property is the maximum number of digits used to represent the Value
property. The default value is 0, which indicates that the data provider sets the precision for the
Value property.

The Precision property is only used for decimal and numeric input parameters.

SADbType property
The SADbType of the parameter.

Visual Basic syntax
Public Property SADbType As SADbType

.NET Application Programming

292 SAP Sybase IQ

C# syntax
public SADbType SADbType {get;set;}

Remarks
The SADbType and DbType are linked. Therefore, setting the SADbType changes the
DbType to a supporting DbType.

The value must be a member of the SADbType enumerator.

Scale property
Gets and sets the number of decimal places to which Value is resolved.

Visual Basic syntax
Public Property Scale As Byte

C# syntax
public byte Scale {get;set;}

Remarks
The number of decimal places to which Value is resolved. The default is 0.

The Scale property is only used for decimal and numeric input parameters.

Size property
Gets and sets the maximum size, in bytes, of the data within the column.

Visual Basic syntax
Public Overrides Property Size As Integer

C# syntax
public override int Size {get;set;}

Remarks
The value of this property is the maximum size, in bytes, of the data within the column. The
default value is inferred from the parameter value.

The value of this property is the maximum size, in bytes, of the data within the column. The
default value is inferred from the parameter value.

The Size property is used for binary and string types.

For variable length data types, the Size property describes the maximum amount of data to
transmit to the server. For example, the Size property can be used to limit the amount of data
sent to the server for a string value to the first one hundred bytes.

.NET Application Programming

Programming 293

If not explicitly set, the size is inferred from the actual size of the specified parameter value.
For fixed width data types, the value of Size is ignored. It can be retrieved for informational
purposes, and returns the maximum amount of bytes the provider uses when transmitting the
value of the parameter to the server.

SourceColumn property
Gets and sets the name of the source column mapped to the DataSet and used for loading or
returning the value.

Visual Basic syntax
Public Overrides Property SourceColumn As String

C# syntax
public override string SourceColumn {get;set;}

Remarks
A string specifying the name of the source column mapped to the DataSet and used for loading
or returning the value.

When SourceColumn is set to anything other than an empty string, the value of the parameter
is retrieved from the column with the SourceColumn name. If Direction is set to Input, the
value is taken from the DataSet. If Direction is set to Output, the value is taken from the data
source. A Direction of InputOutput is a combination of both.

SourceColumnNullMapping property
Gets and sets value that indicates whether the source column is nullable.

Visual Basic syntax
Public Overrides Property SourceColumnNullMapping As Boolean

C# syntax
public override bool SourceColumnNullMapping {get;set;}

Remarks
This allows SACommandBuilder to generate Update statements for nullable columns
correctly.

If the source column is nullable, true is returned; otherwise, false.

SourceVersion property
Gets and sets the DataRowVersion to use when loading Value.

Visual Basic syntax
Public Overrides Property SourceVersion As DataRowVersion

.NET Application Programming

294 SAP Sybase IQ

C# syntax
public override DataRowVersion SourceVersion {get;set;}

Remarks
Used by UpdateCommand during an Update operation to determine whether the parameter
value is set to Current or Original. This allows primary keys to be updated. This property is
ignored by InsertCommand and DeleteCommand. This property is set to the version of the
DataRow used by the Item property, or the GetChildRows method of the DataRow object.

Value property
Gets and sets the value of the parameter.

Visual Basic syntax
Public Overrides Property Value As Object

C# syntax
public override object Value {get;set;}

Remarks
An Object that specifies the value of the parameter.

For input parameters, the value is bound to the SACommand that is sent to the server. For
output and return value parameters, the value is set on completion of the SACommand and
after the SADataReader is closed.

When sending a null parameter value to the server, you must specify DBNull, not null. The
null value in the system is an empty object that has no value. DBNull is used to represent null
values.

If the application specifies the database type, the bound value is converted to that type when
the SQL Anywhere .NET Data Provider sends the data to the server. The provider attempts to
convert any type of value if it supports the IConvertible interface. Conversion errors may result
if the specified type is not compatible with the value.

Both the DbType and SADbType properties can be inferred by setting the Value.

The Value property is overwritten by Update.

SAParameterCollection class
Represents all parameters to an SACommand object and, optionally, their mapping to a
DataSet column.

Visual Basic syntax
Public NotInheritable Class SAParameterCollection Inherits
System.Data.Common.DbParameterCollection

.NET Application Programming

Programming 295

C# syntax
public sealed class SAParameterCollection :
System.Data.Common.DbParameterCollection

Remarks
There is no constructor for SAParameterCollection. You obtain an SAParameterCollection
object from the SACommand.Parameters property of an SACommand object.

Custom Attribute: sealed

SADBParametersEditor class

Visual Basic syntax
Private Class SADBParametersEditor Inherits CollectionEditor

C# syntax
private class SADBParametersEditor : CollectionEditor

SADBParametersEditor(Type) constructor

Visual Basic syntax
Public Sub New (ByVal type As Type)

C# syntax
public SADBParametersEditor (Type type)

CanSelectMultipleInstances() method

Visual Basic syntax
Protected Overrides Function CanSelectMultipleInstances () As
Boolean

C# syntax
protected override bool CanSelectMultipleInstances ()

CreateInstance(Type) method

Visual Basic syntax
Protected Overrides Function CreateInstance (ByVal type As
Type) As Object

.NET Application Programming

296 SAP Sybase IQ

C# syntax
protected override object CreateInstance (Type type)

EditValue(ITypeDescriptorContext, IServiceProvider, object) method

Visual Basic syntax
Public Overrides Function EditValue (ByVal context As
ITypeDescriptorContext, ByVal provider As IServiceProvider,
ByVal value As Object) As Object

C# syntax
public override object EditValue (ITypeDescriptorContext
context, IServiceProvider provider, object value)

GetEditStyle(ITypeDescriptorContext) method

Visual Basic syntax
Public Overrides Function GetEditStyle (ByVal context As
ITypeDescriptorContext) As UITypeEditorEditStyle

C# syntax
public override UITypeEditorEditStyle GetEditStyle
(ITypeDescriptorContext context)

AddWithValue(string, object) method
Adds a value to the end of this collection.

Visual Basic syntax
Public Function AddWithValue (ByVal parameterName As String,
ByVal value As Object) As SAParameter

C# syntax
public SAParameter AddWithValue (string parameterName, object
value)

Parameters

• parameterName – The name of the parameter.
• value – The value to be added.

Returns
The new SAParameter object.

.NET Application Programming

Programming 297

Clear() method
Removes all items from the collection.

Visual Basic syntax
Public Overrides Sub Clear ()

C# syntax
public override void Clear ()

CopyTo(Array, int) method
Copies SAParameter objects from the SAParameterCollection to the specified array.

Visual Basic syntax
Public Overrides Sub CopyTo (ByVal array As Array, ByVal index As
Integer)

C# syntax
public override void CopyTo (Array array, int index)

Parameters

• array – The array to copy the SAParameter objects into.
• index – The starting index of the array.

GetEnumerator() method
Returns an enumerator that iterates through the SAParameterCollection.

Visual Basic syntax
Public Overrides Function GetEnumerator () As IEnumerator

C# syntax
public override IEnumerator GetEnumerator ()

Returns
An System.Collections.IEnumerator for the SAParameterCollection object.

Insert(int, object) method
Inserts an SAParameter object in the collection at the specified index.

Visual Basic syntax
Public Overrides Sub Insert (ByVal index As Integer, ByVal value
As Object)

.NET Application Programming

298 SAP Sybase IQ

C# syntax
public override void Insert (int index, object value)

Parameters

• index – The zero-based index where the parameter is to be inserted within the collection.
• value – The SAParameter object to add to the collection.

Remove(object) method
Removes the specified SAParameter object from the collection.

Visual Basic syntax
Public Overrides Sub Remove (ByVal value As Object)

C# syntax
public override void Remove (object value)

Parameters

• value – The SAParameter object to remove from the collection.

Count property
Returns the number of SAParameter objects in the collection.

Visual Basic syntax
Public ReadOnly Overrides Property Count As Integer

C# syntax
public override int Count {get;}

Remarks
The number of SAParameter objects in the collection.

IsFixedSize property
Gets a value that indicates whether the SAParameterCollection has a fixed size.

Visual Basic syntax
Public ReadOnly Overrides Property IsFixedSize As Boolean

C# syntax
public override bool IsFixedSize {get;}

Remarks
True if this collection has a fixed size, false otherwise.

.NET Application Programming

Programming 299

IsReadOnly property
Gets a value that indicates whether the SAParameterCollection is read-only.

Visual Basic syntax
Public ReadOnly Overrides Property IsReadOnly As Boolean

C# syntax
public override bool IsReadOnly {get;}

Remarks
True if this collection is read-only, false otherwise.

IsSynchronized property
Gets a value that indicates whether the SAParameterCollection object is synchronized.

Visual Basic syntax
Public ReadOnly Overrides Property IsSynchronized As Boolean

C# syntax
public override bool IsSynchronized {get;}

Remarks
True if this collection is synchronized, false otherwise.

SyncRoot property
Gets an object that can be used to synchronize access to the SAParameterCollection.

Visual Basic syntax
Public ReadOnly Overrides Property SyncRoot As Object

C# syntax
public override object SyncRoot {get;}

this property
Gets and sets the SAParameter object at the specified index.

Visual Basic syntax
Public Shadows Property Item As SAParameter

C# syntax
public new SAParameter this {get;set;}

.NET Application Programming

300 SAP Sybase IQ

Remarks
An SAParameter object.

In C#, this property is the indexer for the SAParameterCollection object.

An SAParameter object.

In C#, this property is the indexer for the SAParameterCollection object.

SADBParametersEditor class

Visual Basic syntax
Private Class SADBParametersEditor Inherits CollectionEditor

C# syntax
private class SADBParametersEditor : CollectionEditor

SADBParametersEditor(Type) constructor

Visual Basic syntax
Public Sub New (ByVal type As Type)

C# syntax
public SADBParametersEditor (Type type)

CanSelectMultipleInstances() method

Visual Basic syntax
Protected Overrides Function CanSelectMultipleInstances () As
Boolean

C# syntax
protected override bool CanSelectMultipleInstances ()

CreateInstance(Type) method

Visual Basic syntax
Protected Overrides Function CreateInstance (ByVal type As
Type) As Object

C# syntax
protected override object CreateInstance (Type type)

.NET Application Programming

Programming 301

EditValue(ITypeDescriptorContext, IServiceProvider, object) method

Visual Basic syntax
Public Overrides Function EditValue (ByVal context As
ITypeDescriptorContext, ByVal provider As IServiceProvider,
ByVal value As Object) As Object

C# syntax
public override object EditValue (ITypeDescriptorContext
context, IServiceProvider provider, object value)

GetEditStyle(ITypeDescriptorContext) method

Visual Basic syntax
Public Overrides Function GetEditStyle (ByVal context As
ITypeDescriptorContext) As UITypeEditorEditStyle

C# syntax
public override UITypeEditorEditStyle GetEditStyle
(ITypeDescriptorContext context)

SAPermission class
Enables the SQL Anywhere .NET Data Provider to ensure that a user has a security level
adequate to access a SQL Anywhere data source.

Visual Basic syntax
Public NotInheritable Class SAPermission Inherits
System.Data.Common.DBDataPermission

C# syntax
public sealed class SAPermission :
System.Data.Common.DBDataPermission

Remarks
Custom Attribute: sealed

SAPermission(PermissionState) constructor
Initializes a new instance of the SAPermission class.

Visual Basic syntax
Public Sub New (ByVal state As PermissionState)

.NET Application Programming

302 SAP Sybase IQ

C# syntax
public SAPermission (PermissionState state)

Parameters

• state – One of the PermissionState values.

CreateInstance() method
Creates a new instance of an SAPermission class.

Visual Basic syntax
Protected Overrides Function CreateInstance () As
DBDataPermission

C# syntax
protected override DBDataPermission CreateInstance ()

Returns
A new SAPermission object.

SAPermissionAttribute class
Associates a security action with a custom security attribute.

Visual Basic syntax
Public NotInheritable Class SAPermissionAttribute Inherits
System.Data.Common.DBDataPermissionAttribute

C# syntax
public sealed class SAPermissionAttribute :
System.Data.Common.DBDataPermissionAttribute

Remarks
Custom Attribute: sealed

SAPermissionAttribute(SecurityAction) constructor
Initializes a new instance of the SAPermissionAttribute class.

Visual Basic syntax
Public Sub New (ByVal action As SecurityAction)

C# syntax
public SAPermissionAttribute (SecurityAction action)

.NET Application Programming

Programming 303

Parameters

• action – One of the SecurityAction values representing an action that can be performed
using declarative security.

Returns
An SAPermissionAttribute object.

CreatePermission() method
Returns an SAPermission object that is configured according to the attribute properties.

Visual Basic syntax
Public Overrides Function CreatePermission () As IPermission

C# syntax
public override IPermission CreatePermission ()

SARowUpdatedEventArgs class
Provides data for the RowUpdated event.

Visual Basic syntax
Public NotInheritable Class SARowUpdatedEventArgs Inherits
System.Data.Common.RowUpdatedEventArgs

C# syntax
public sealed class SARowUpdatedEventArgs :
System.Data.Common.RowUpdatedEventArgs

Remarks
Custom Attribute: sealed

SARowUpdatedEventArgs(DataRow, IDbCommand, StatementType,
DataTableMapping) constructor
Initializes a new instance of the SARowUpdatedEventArgs class.

Visual Basic syntax
Public Sub New (ByVal row As DataRow, ByVal command As
IDbCommand, ByVal statementType As StatementType, ByVal
tableMapping As DataTableMapping)

C# syntax
public SARowUpdatedEventArgs (DataRow row, IDbCommand command,
StatementType statementType, DataTableMapping tableMapping)

.NET Application Programming

304 SAP Sybase IQ

Parameters

• row – The DataRow sent through an Update.
• command – The IDbCommand executed when Update is called.
• statementType – One of the StatementType values that specifies the type of query

executed.
• tableMapping – The DataTableMapping sent through an Update.

Command property
Gets the SACommand that is executed when DataAdapter.Update is called.

Visual Basic syntax
Public ReadOnly Shadows Property Command As SACommand

C# syntax
public new SACommand Command {get;}

RecordsAffected property
Returns the number of rows changed, inserted, or deleted by execution of the SQL statement.

Visual Basic syntax
Public ReadOnly Shadows Property RecordsAffected As Integer

C# syntax
public new int RecordsAffected {get;}

Remarks
The number of rows changed, inserted, or deleted; 0 if no rows were affected or the statement
failed; and -1 for SELECT statements.

SARowUpdatingEventArgs class
Provides data for the RowUpdating event.

Visual Basic syntax
Public NotInheritable Class SARowUpdatingEventArgs Inherits
System.Data.Common.RowUpdatingEventArgs

C# syntax
public sealed class SARowUpdatingEventArgs :
System.Data.Common.RowUpdatingEventArgs

Remarks
Custom Attribute: sealed

.NET Application Programming

Programming 305

SARowUpdatingEventArgs(DataRow, IDbCommand, StatementType,
DataTableMapping) constructor
Initializes a new instance of the SARowUpdatingEventArgs class.

Visual Basic syntax
Public Sub New (ByVal row As DataRow, ByVal command As
IDbCommand, ByVal statementType As StatementType, ByVal
tableMapping As DataTableMapping)

C# syntax
public SARowUpdatingEventArgs (DataRow row, IDbCommand
command, StatementType statementType, DataTableMapping
tableMapping)

Parameters
• row – The DataRow to update.
• command – The IDbCommand to execute during update.
• statementType – One of the StatementType values that specifies the type of query

executed.
• tableMapping – The DataTableMapping sent through an Update.

Command property
Specifies the SACommand to execute when performing the Update.

Visual Basic syntax
Public Shadows Property Command As SACommand

C# syntax
public new SACommand Command {get;set;}

SARowsCopiedEventArgs class
Represents the set of arguments passed to the SARowsCopiedEventHandler.

Visual Basic syntax
Public NotInheritable Class SARowsCopiedEventArgs

C# syntax
public sealed class SARowsCopiedEventArgs

Remarks
The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

Custom Attribute: sealed

.NET Application Programming

306 SAP Sybase IQ

SARowsCopiedEventArgs(long) constructor
Creates a new instance of the SARowsCopiedEventArgs object.

Visual Basic syntax
Public Sub New (ByVal rowsCopied As Long)

C# syntax
public SARowsCopiedEventArgs (long rowsCopied)

Parameters

• rowsCopied – An 64-bit integer value that indicates the number of rows copied during the
current bulk-copy operation.

Usage
The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

Abort property
Gets or sets a value that indicates whether the bulk-copy operation should be aborted.

Visual Basic syntax
Public Property Abort As Boolean

C# syntax
public bool Abort {get;set;}

Remarks
The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

RowsCopied property
Gets the number of rows copied during the current bulk-copy operation.

Visual Basic syntax
Public ReadOnly Property RowsCopied As Long

C# syntax
public long RowsCopied {get;}

Remarks
The SARowsCopiedEventArgs class is not available in the .NET Compact Framework 2.0.

.NET Application Programming

Programming 307

SATcpOptionsBuilder class
Provides a simple way to create and manage the TCP options portion of connection strings
used by the SAConnection object.

Visual Basic syntax
Public NotInheritable Class SATcpOptionsBuilder Inherits
SAConnectionStringBuilderBase

C# syntax
public sealed class SATcpOptionsBuilder :
SAConnectionStringBuilderBase

Remarks
The SATcpOptionsBuilder class is not available in the .NET Compact Framework 2.0.

Custom Attribute: sealed

ContainsKey(string) method
Determines whether the SAConnectionStringBuilder object contains a specific keyword.

Visual Basic syntax
Public Overrides Function ContainsKey (ByVal keyword As String)
As Boolean

C# syntax
public override bool ContainsKey (string keyword)

Parameters

• keyword – The keyword to locate in the SAConnectionStringBuilder.

Returns
True if the value associated with keyword has been set; otherwise, false.

Examples
The following statement determines whether the SAConnectionStringBuilder object contains
the UserID keyword.
connectString.ContainsKey("UserID")

.NET Application Programming

308 SAP Sybase IQ

GetUseLongNameAsKeyword() method
Gets a boolean values that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Function GetUseLongNameAsKeyword () As Boolean

C# syntax
public bool GetUseLongNameAsKeyword ()

Returns
True if long connection parameter names are used to build connection strings; otherwise,
false.

Usage
SQL Anywhere connection parameters have both long and short forms of their names. For
example, to specify the name of an ODBC data source in your connection string, you can use
either of the following values: DataSourceName or DSN. By default, long connection
parameter names are used to build connection strings.

Remove(string) method
Removes the entry with the specified key from the SAConnectionStringBuilder instance.

Visual Basic syntax
Public Overrides Function Remove (ByVal keyword As String) As
Boolean

C# syntax
public override bool Remove (string keyword)

Parameters

• keyword – The key of the key/value pair to be removed from the connection string in this
SAConnectionStringBuilder.

Returns
True if the key existed within the connection string and was removed; false if the key did not
exist.

.NET Application Programming

Programming 309

SetUseLongNameAsKeyword(bool) method
Sets a boolean value that indicates whether long connection parameter names are used in the
connection string.

Visual Basic syntax
Public Sub SetUseLongNameAsKeyword (ByVal useLongNameAsKeyword
As Boolean)

C# syntax
public void SetUseLongNameAsKeyword (bool useLongNameAsKeyword)

Parameters

• useLongNameAsKeyword – A boolean value that indicates whether the long connection
parameter name is used in the connection string.

Usage
Long connection parameter names are used by default.

ShouldSerialize(string) method
Indicates whether the specified key exists in this SAConnectionStringBuilder instance.

Visual Basic syntax
Public Overrides Function ShouldSerialize (ByVal keyword As
String) As Boolean

C# syntax
public override bool ShouldSerialize (string keyword)

Parameters

• keyword – The key to locate in the SAConnectionStringBuilder.

Returns
True if the SAConnectionStringBuilder contains an entry with the specified key; otherwise
false.

ToString() method
Converts the SATcpOptionsBuilder object to a string representation.

Visual Basic syntax
Public Overrides Function ToString () As String

.NET Application Programming

310 SAP Sybase IQ

C# syntax
public override string ToString ()

Returns
The options string being built.

TryGetValue(string, out object) method
Retrieves a value corresponding to the supplied key from this SAConnectionStringBuilder.

Visual Basic syntax
Public Overrides Function TryGetValue (ByVal keyword As String,
ByVal value As Object) As Boolean

C# syntax
public override bool TryGetValue (string keyword, out object
value)

Parameters

• keyword – The key of the item to retrieve.
• value – The value corresponding to keyword.

Returns
true if keyword was found within the connection string; otherwise false.

Broadcast property
Gets or sets the Broadcast option.

Visual Basic syntax
Public Property Broadcast As String

C# syntax
public string Broadcast {get;set;}

BroadcastListener property
Gets or sets the BroadcastListener option.

Visual Basic syntax
Public Property BroadcastListener As String

C# syntax
public string BroadcastListener {get;set;}

.NET Application Programming

Programming 311

ClientPort property
Gets or sets the ClientPort option.

Visual Basic syntax
Public Property ClientPort As String

C# syntax
public string ClientPort {get;set;}

DoBroadcast property
Gets or sets the DoBroadcast option.

Visual Basic syntax
Public Property DoBroadcast As String

C# syntax
public string DoBroadcast {get;set;}

Host property
Gets or sets the Host option.

Visual Basic syntax
Public Property Host As String

C# syntax
public string Host {get;set;}

IPV6 property
Gets or sets the IPV6 option.

Visual Basic syntax
Public Property IPV6 As String

C# syntax
public string IPV6 {get;set;}

Keys property
Gets an System.Collections.ICollection that contains the keys in the
SAConnectionStringBuilder.

Visual Basic syntax
Public ReadOnly Overrides Property Keys As ICollection

.NET Application Programming

312 SAP Sybase IQ

C# syntax
public override ICollection Keys {get;}

Remarks
An System.Collections.ICollection that contains the keys in the SAConnectionStringBuilder.

LDAP property
Gets or sets the LDAP option.

Visual Basic syntax
Public Property LDAP As String

C# syntax
public string LDAP {get;set;}

LocalOnly property
Gets or sets the LocalOnly option.

Visual Basic syntax
Public Property LocalOnly As String

C# syntax
public string LocalOnly {get;set;}

MyIP property
Gets or sets the MyIP option.

Visual Basic syntax
Public Property MyIP As String

C# syntax
public string MyIP {get;set;}

ReceiveBufferSize property
Gets or sets the ReceiveBufferSize option.

Visual Basic syntax
Public Property ReceiveBufferSize As Integer

C# syntax
public int ReceiveBufferSize {get;set;}

.NET Application Programming

Programming 313

SendBufferSize property
Gets or sets the Send BufferSize option.

Visual Basic syntax
Public Property SendBufferSize As Integer

C# syntax
public int SendBufferSize {get;set;}

ServerPort property
Gets or sets the ServerPort option.

Visual Basic syntax
Public Property ServerPort As String

C# syntax
public string ServerPort {get;set;}

TDS property
Gets or sets the TDS option.

Visual Basic syntax
Public Property TDS As String

C# syntax
public string TDS {get;set;}

this property
Gets or sets the value of the connection keyword.

Visual Basic syntax
Public Overrides Property Item As Object

C# syntax
public override object this {get;set;}

Remarks
An object representing the value of the specified connection keyword.

If the keyword or type is invalid, an exception is raised. keyword is case insensitive.

When setting the value, passing NULL clears the value.

.NET Application Programming

314 SAP Sybase IQ

Timeout property
Gets or sets the Timeout option.

Visual Basic syntax
Public Property Timeout As Integer

C# syntax
public int Timeout {get;set;}

VerifyServerName property
Gets or sets the VerifyServerName option.

Visual Basic syntax
Public Property VerifyServerName As String

C# syntax
public string VerifyServerName {get;set;}

SATransaction class
Represents a SQL transaction.

Visual Basic syntax
Public NotInheritable Class SATransaction Inherits
System.Data.Common.DbTransaction

C# syntax
public sealed class SATransaction :
System.Data.Common.DbTransaction

Remarks
There is no constructor for SATransaction. To obtain an SATransaction object, use one of the
BeginTransaction methods. To associate a command with a transaction, use the
SACommand.Transaction property.

For more information, see Transaction processing and Inserting, updating, and deleting rows
using the SACommand object.

Custom Attribute: sealed

.NET Application Programming

Programming 315

Commit() method
Commits the database transaction.

Visual Basic syntax
Public Overrides Sub Commit ()

C# syntax
public override void Commit ()

Save(string) method
Creates a savepoint in the transaction that can be used to roll back a portion of the transaction,
and specifies the savepoint name.

Visual Basic syntax
Public Sub Save (ByVal savePoint As String)

C# syntax
public void Save (string savePoint)

Parameters
• savePoint – The name of the savepoint to which to roll back.

Connection property
The SAConnection object associated with the transaction, or a null reference (Nothing in
Visual Basic) if the transaction is no longer valid.

Visual Basic syntax
Public ReadOnly Shadows Property Connection As SAConnection

C# syntax
public new SAConnection Connection {get;}

Remarks
A single application can have multiple database connections, each with zero or more
transactions. This property enables you to determine the connection object associated with a
particular transaction created by BeginTransaction.

DbConnection property
Specifies the System.Data.Common.DbConnection object associated with the transaction.

Visual Basic syntax
Protected ReadOnly Overrides Property DbConnection As
DbConnection

.NET Application Programming

316 SAP Sybase IQ

C# syntax
protected override DbConnection DbConnection {get;}

Remarks
The System.Data.Common.DbConnection object associated with the transaction.

IsolationLevel property
Specifies the isolation level for this transaction.

Visual Basic syntax
Public ReadOnly Overrides Property IsolationLevel As
System.Data.IsolationLevel

C# syntax
public override System.Data.IsolationLevel IsolationLevel
{get;}

Remarks
The IsolationLevel for this transaction. This can be one of:

• Unspecified
• Chaos
• ReadUncommitted
• ReadCommitted
• RepeatableRead
• Serializable
• Snapshot

The default is ReadCommitted.

SAIsolationLevel property
Specifies the extended isolation level for this transaction.

Visual Basic syntax
Public ReadOnly Property SAIsolationLevel As SAIsolationLevel

C# syntax
public SAIsolationLevel SAIsolationLevel {get;}

Remarks
The SAIsolationLevel for this transaction. This can be one of:

.NET Application Programming

Programming 317

• Unspecified
• Chaos
• ReadUncommitted
• ReadCommitted
• RepeatableRead
• Serializable
• Snapshot
• StatementSnapshot
• ReadOnlySnapshot

The default is ReadCommitted.

Parallel transactions are not supported. Therefore, the SAIsolationLevel applies to the entire
transaction.

.NET Application Programming

318 SAP Sybase IQ

OLE DB and ADO Development

SAP Sybase IQ includes an OLE DB provider for OLE DB and ADO.

OLE DB is a set of Component Object Model (COM) interfaces developed by Microsoft,
which provide applications with uniform access to data stored in diverse information sources
and that also provide the ability to implement additional database services. These interfaces
support the amount of DBMS functionality appropriate to the data store, enabling it to share its
data.

ADO is an object model for programmatically accessing, editing, and updating a wide variety
of data sources through OLE DB system interfaces. ADO is also developed by Microsoft.
Most developers using the OLE DB programming interface do so by writing to the ADO API
rather than directly to the OLE DB API.

Do not confuse the ADO interface with ADO.NET. ADO.NET is a separate interface.

Refer to the Microsoft Developer Network for documentation on OLE DB and ADO
programming. For SAP Sybase IQ-specific information about OLE DB and ADO
development, use this document.

OLE DB
OLE DB is a data access model from Microsoft. It uses the Component Object Model (COM)
interfaces and, unlike ODBC, OLE DB does not assume that the data source uses a SQL query
processor.

SAP Sybase IQ includes an OLE DB provider named SAOLEDB. This provider is available for
current Windows platforms. The provider is not available for Windows Mobile platforms.

You can also access SAP Sybase IQ using the Microsoft OLE DB Provider for ODBC
(MSDASQL), together with the SQL Anywhere ODBC driver.

Using the SAP Sybase IQOLE DB provider brings several benefits:

• Some features, such as updating through a cursor, are not available using the OLE DB/
ODBC bridge.

• If you use the SAP Sybase IQ OLE DB provider, ODBC is not required in your
deployment.

• MSDASQL allows OLE DB clients to work with any ODBC driver, but does not guarantee
that you can use the full range of functionality of each ODBC driver. Using the SAP
Sybase IQprovider, you can get full access to SAP Sybase IQ features from OLE DB
programming environments.

OLE DB and ADO Development

Programming 319

Connecting Using OLE DB
SAP Sybase IQ includes an OLE DB provider as an alternative to ODBC. OLE DB is a data
access model from Microsoft that uses the Component Object Model (COM) interfaces.
Unlike ODBC, OLE DB does not assume that the data source uses a SQL query processor.
Although OLE DB requires a Windows client, you can use OLE DB to access Windows and
UNIX servers.

SAP Sybase IQ OLE DB support differs from SQL Anywhere support. SAP Sybase IQ
supports Dynamic (dynamic scroll), Static (insensitive) and Forward only (no–scroll) cursors,
but does not support Keyset (scroll) cursors. In SAP Sybase IQ the isolation level is always 3,
no matter what you specify.

SAP Sybase IQ supports Dynamic (dynamic scroll), Static (insensitive) and Forward only
(no–scroll) cursors, but does not support Keyset (scroll) cursors. In SAP Sybase IQ the
isolation level is always 3, no matter what you specify.

SAP Sybase IQ does not support Windows CE or remote updates through a cursor.

Additional Information
Programming > OLE DB and ADO Development > OLE DB Connection Parameters

Supported Platforms
The SAP Sybase IQ OLE DB provider is designed to work with Microsoft Data Access
Components (MDAC) 2.8 and later versions.

Distributed Transactions in OLE DB
The OLE DB driver can be used as a resource manager in a distributed transaction
environment.

ADO Programming with SAP Sybase IQ
ADO (ActiveX Data Objects) is a data access object model exposed through an Automation
interface, which allows client applications to discover the methods and properties of objects at
runtime without any prior knowledge of the object. Automation allows scripting languages
like Visual Basic to use a standard data access object model. ADO uses OLE DB to provide
data access.

Using the SAP Sybase IQ OLE DB provider, you get full access to SAP Sybase IQ features
from an ADO programming environment.

This section describes how to perform basic tasks while using ADO from Visual Basic. It is not
a complete guide to programming using ADO.

OLE DB and ADO Development

320 SAP Sybase IQ

Code samples from this section can be found in the %ALLUSERSPROFILE%\SybaseIQ
\samples\SQLAnywhere\VBSampler\vbsampler.sln project file.

For information about programming in ADO, see your development tool documentation.

How to Connect to a Database Using the Connection Object
This section describes a simple Visual Basic routine that connects to a database.

Sample Code
You can try this routine by placing a command button named cmdTestConnection on a form,
and pasting the routine into its Click event. Run the program and click the button to connect
and then disconnect.
Private Sub cmdTestConnection_Click(_
 ByVal eventSender As System.Object, _
 ByVal eventArgs As System.EventArgs) _
 Handles cmdTestConnection.Click

 ' Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim cAffected As Integer

 On Error GoTo HandleError

 ' Establish the connection
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=Sybase IQ Demo"
 myConn.Open()
 MsgBox("Connection succeeded")
 myConn.Close()
 Exit Sub

HandleError:
 MsgBox(ErrorToString(Err.Number))
 Exit Sub
End Sub

Notes
The sample carries out the following tasks:

• It declares the variables used in the routine.
• It establishes a connection, using the SAP Sybase IQ OLE DB provider, to the sample

database.
• It uses a Command object to execute a simple statement, which displays a message in the

database server messages window.
• It closes the connection.

OLE DB and ADO Development

Programming 321

How to Execute Statements Using the Command Object
This section describes a simple routine that sends a simple SQL statement to the database.

Sample Code
You can try this routine by placing a command button named cmdUpdate on a form, and
pasting the routine into its Click event. Run the program and click the button to connect,
display a message in the database server messages window, and then disconnect.
Private Sub cmdUpdate_Click(_
 ByVal eventSender As System.Object, _
 ByVal eventArgs As System.EventArgs) _
 Handles cmdUpdate.Click

 ' Declare variables
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim cAffected As Integer

 On Error GoTo HandleError

 ' Establish the connection
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=Sybase IQ Demo"
 myConn.Open()

 'Execute a command
 myCommand.CommandText = _
 "UPDATE Customers SET GivenName='Liz' WHERE ID=102"
 myCommand.ActiveConnection = myConn
 myCommand.Execute(cAffected)
 MsgBox(CStr(cAffected) & " rows affected.", _
 MsgBoxStyle.Information)

 myConn.Close()
 Exit Sub

HandleError:
 MsgBox(ErrorToString(Err.Number))
 Exit Sub
End Sub

Notes
After establishing a connection, the example code creates a Command object, sets its
CommandText property to an update statement, and sets its ActiveConnection property to the
current connection. It then executes the update statement and displays the number of rows
affected by the update in a window.

In this example, the update is sent to the database and committed when it is executed.

You can also perform updates through a cursor.

OLE DB and ADO Development

322 SAP Sybase IQ

How to Obtain Result Sets Using the Recordset Object
The ADO Recordset object represents the result set of a query. You can use it to view data from
a database.

Sample code
You can try this routine by placing a command button named cmdQuery on a form and pasting
the routine into its Click event. Run the program and click the button to connect, display a
message in the database server messages window, execute a query and display the first few
rows in windows, and then disconnect.
Private Sub cmdQuery_Click(_
 ByVal eventSender As System.Object, _
 ByVal eventArgs As System.EventArgs) _
 Handles cmdQuery.Click

 ' Declare variables
 Dim i As Integer
 Dim myConn As New ADODB.Connection
 Dim myCommand As New ADODB.Command
 Dim myRS As New ADODB.Recordset

 On Error GoTo ErrorHandler

 ' Establish the connection
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=Sybase IQ Demo"
 myConn.CursorLocation = _
 ADODB.CursorLocationEnum.adUseServer
 myConn.Mode = _
 ADODB.ConnectModeEnum.adModeReadWrite
 myConn.IsolationLevel = _
 ADODB.IsolationLevelEnum.adXactCursorStability
 myConn.Open()

 'Execute a query
 myRS = New ADODB.Recordset
 myRS.CacheSize = 50
 myRS.let_Source("SELECT * FROM Customers")
 myRS.let_ActiveConnection(myConn)
 myRS.CursorType = ADODB.CursorTypeEnum.adOpenKeyset
 myRS.LockType = ADODB.LockTypeEnum.adLockOptimistic
 myRS.Open()

 'Scroll through the first few results
 myRS.MoveFirst()
 For i = 1 To 5
 MsgBox(myRS.Fields("CompanyName").Value, _
 MsgBoxStyle.Information)
 myRS.MoveNext()
 Next

OLE DB and ADO Development

Programming 323

 myRS.Close()
 myConn.Close()
 Exit Sub

ErrorHandler:
 MsgBox(ErrorToString(Err.Number))
 Exit Sub
End Sub

Notes
The Recordset object in this example holds the results from a query on the Customers table.
The For loop scrolls through the first several rows and displays the CompanyName value for
each row.

This is a simple example of using a cursor from ADO.

The Recordset Object
When working with SAP Sybase IQ, the ADO Recordset represents a cursor. You can choose
the type of cursor by declaring a CursorType property of the Recordset object before you open
the Recordset. The choice of cursor type controls the actions you can take on the Recordset
and has performance implications.

Cursor types
ADO has its own naming convention for cursor types.

The available cursor types, the corresponding cursor type constants, and the SQL Anywhere
types they are equivalent to, are as follows:

ADO cursor type ADO constant SAP Sybase IQ type

Dynamic cursor adOpenDynamic Dynamic scroll cursor

Keyset cursor adOpenKeyset Scroll cursor

Static cursor adOpenStatic Insensitive cursor

Forward only adOpenForwardOnly No-scroll cursor

Sample code
The following code sets the cursor type for an ADO Recordset object:
Dim myRS As New ADODB.Recordset
myRS.CursorType = ADODB.CursorTypeEnum.adOpenDynamic

OLE DB and ADO Development

324 SAP Sybase IQ

Row Updates Through a Cursor Using the Recordset Object
The SAP Sybase IQ OLE DB provider lets you update a result set through a cursor. This
capability is not available through the MSDASQL provider.

Updating Record Sets
You can update the database through a Recordset.
Private Sub cmdUpdateThroughCursor_Click(_
 ByVal eventSender As System.Object, _
 ByVal eventArgs As System.EventArgs) _
 Handles cmdUpdateThroughCursor.Click

 ' Declare variables
 Dim i As Integer
 Dim myConn As New ADODB.Connection
 Dim myRS As New ADODB.Recordset
 Dim SQLString As String

 On Error GoTo HandleError

 ' Connect
 myConn.Provider = "SAOLEDB"
 myConn.ConnectionString = _
 "Data Source=Sybase IQ Demo"
 myConn.Open()
 myConn.BeginTrans()
 SQLString = "SELECT * FROM Customers"
 myRS.Open(SQLString, myConn, _
 ADODB.CursorTypeEnum.adOpenDynamic, _
 ADODB.LockTypeEnum.adLockBatchOptimistic)

 If myRS.BOF And myRS.EOF Then
 MsgBox("Recordset is empty!", 16, "Empty Recordset")
 Else
 MsgBox("Cursor type: " & CStr(myRS.CursorType), _
 MsgBoxStyle.Information)
 myRS.MoveFirst()
 For i = 1 To 3
 MsgBox("Row: " & CStr(myRS.Fields("ID").Value), _
 MsgBoxStyle.Information)
 If i = 2 Then
 myRS.Update("City", "Toronto")
 myRS.UpdateBatch()
 End If
 myRS.MoveNext()
 Next i
 myRS.Close()
 End If
 myConn.CommitTrans()
 myConn.Close()
 Exit Sub

HandleError:

OLE DB and ADO Development

Programming 325

 MsgBox(ErrorToString(Err.Number))
 Exit Sub

End Sub

Notes
If you use the adLockBatchOptimistic setting on the Recordset, the myRS.Update method
does not make any changes to the database itself. Instead, it updates a local copy of the
Recordset.

The myRS.UpdateBatch method makes the update to the database server, but does not commit
it, because it is inside a transaction. If an UpdateBatch method was invoked outside a
transaction, the change would be committed.

The myConn.CommitTrans method commits the changes. The Recordset object has been
closed by this time, so there is no issue of whether the local copy of the data is changed or
not.

ADO Transactions
By default, any change you make to the database using ADO is committed when it is executed.
This includes explicit updates, and the UpdateBatch method on a Recordset. However, the
previous section illustrated that you can use the BeginTrans and RollbackTrans or
CommitTrans methods on the Connection object to use transactions.

The transaction isolation level is set as a property of the Connection object. The IsolationLevel
property can take on one of the following values:

ADO isolation level Constant SAP Sybase IQ level

Unspecified adXactUnspecified Not applicable. Set to 0

Chaos adXactChaos Unsupported. Set to 0

Browse adXactBrowse 0

Read uncommitted adXactReadUncommitted 0

Cursor stability adXactCursorStability 1

Read committed adXactReadCommitted 1

Repeatable read adXactRepeatableRead 2

Isolated adXactIsolated 3

Serializable adXactSerializable 3

Snapshot 2097152 4

Statement snapshot 4194304 5

Readonly statement snapshot 8388608 6

OLE DB and ADO Development

326 SAP Sybase IQ

OLE DB Connection Parameters
OLE DB connection parameters are defined by Microsoft. The SAP Sybase IQ OLE DB
provider supports a subset of these connection parameters. A typical connection string looks
like this:
"Provider=SAOLEDB;Data Source=myDsn;Initial Catalog=myDbn;
 User ID=myUid;Password=myPwd"

Below are the OLE DB connection parameters that are supported by the provider. In some
cases, OLE DB connection parameters are identical to (for example, Password) or resemble
(for example, User ID) SAP Sybase IQ connection parameters. Note the use of spaces in many
of these connection parameters.

• Provider – This parameter is used to identify the SQL Anywhere OLE DB provider
(SAOLEDB).

• User ID – This connection parameter maps directly to the SAP Sybase IQ UserID (UID)
connection parameter.

• Password – This connection parameter maps directly to the SAP Sybase IQ Password
(PWD) connection parameter.

• Data Source – This connection parameter maps directly to the SAP Sybase IQ
DataSourceName (DSN) connection parameter. For example: Data Source=Sybase
IQ Demo.

• Initial Catalog – This connection parameter maps directly to the SAP Sybase IQ
DatabaseName (DBN) connection parameter. For example: Initial
Catalog=demo.

• Location – This connection parameter maps directly to the SAP Sybase IQ Host
connection parameter. The parameter value has the same form as the Host parameter value.
For example: Location=localhost:4444.

• Extended Properties – This connection parameter is used by OLE DB to pass in all the
SAP Sybase IQ specific connection parameters. For example: Extended
Properties="UserID=DBA;DBKEY=V3moj3952B;DBF=demo.db".

ADO uses this connection parameter to collect and pass in all the connection parameters
that it does not recognize.

Some Microsoft connection windows have a field called Prov String or Provider String.
The contents of this field are passed as the value to Extended Properties.

• OLE DB Services – This connection parameter is not directly handled by the SAP Sybase
IQ OLE DB provider. It controls connection pooling in ADO.

• Prompt – This connection parameter governs how a connection attempt handles errors.
The possible prompt values are 1, 2, 3, or 4. The meanings are DBPROMPT_PROMPT
(1), DBPROMPT_COMPLETE (2), DBPROMPT_COMPLETEREQUIRED (3), and
DBPROMPT_NOPROMPT (4).

OLE DB and ADO Development

Programming 327

The default prompt value is 4 which means the provider does not present a connect
window. Setting the prompt value to 1 causes a connect window to always appear. Setting
the prompt value to 2 causes a connect window to appear if the initial connection attempt
fails. Setting the prompt value to 3 causes a connect window to appear if the initial
connection attempt fails but the provider disables the controls for any information not
required to connect to the data source.

• Window Handle – The application can pass the handle of the parent window, if
applicable, or a null pointer if either the window handle is not applicable or the provider
does present any windows. The window handle value is typically 0 (NULL).

Other OLE DB connection parameters can be specified but they are ignored by the OLE DB
provider.

When the SAP Sybase IQ OLE DB provider is invoked, it gets the property values for the OLE
DB connection parameters. Here is a typical set of property values obtained from Microsoft's
RowsetViewer application.
User ID '<user_id>'
Password '<password>'
Location 'localhost:4444'
Initial Catalog 'demo'
Data Source 'testds'
Extended Properties 'appinfo=api=oledb'
Prompt 2
Window Handle 0

The connection string that the provider constructs from this set of parameter values is:
'DSN=testds;HOST=localhost:
4444;DBN=demo;UID=<user_id>;PWD=<password>;appinfo=api=oledb'

The SAP Sybase IQ OLE DB provider uses the connection string, Window Handle, and
Prompt values as parameters to the database server connection call that it makes.

This is a simple ADO connection string example.
connection.Open
"Provider=SAOLEDB;UserID=<user_id>;Location=localhost:
4444;Pwd=<password>"

ADO parses the connection string and passes all of the unrecognized connection parameters in
Extended Properties. When the SAP Sybase IQ OLE DB provider is invoked, it gets the
property values for the OLE DB connection parameters. Here is the set of property values
obtained from the ADO application that used the connection string shown above.
User ID ''
Password ''
Location 'localhost:4444'
Initial Catalog ''
Data Source ''
Extended Properties 'UserID=<user_id>;Pwd=<password>'
Prompt 4
Window Handle 0

The connection string that the provider constructs from this set of parameter values is:

OLE DB and ADO Development

328 SAP Sybase IQ

'HOST=localhost:4444; UserID=<user_id>;Pwd=<password>'

The provider uses the connection string, Window Handle, and Prompt values as parameters to
the database server connection call that it makes.

OLE DB Connection Pooling
The .NET Framework Data Provider for OLE DB automatically pools connections using OLE
DB session pooling.

When the application closes the connection, it is not actually closed. Instead, the connection is
held for a period of time. When your application re-opens a connection, ADO/OLE DB
recognizes that the application is using an identical connection string and reuses the open
connection. For example, if the application does an Open/Execute/Close 100 times, there is
only 1 actual open and 1 actual close. The final close occurs after about 1 minute of idle time.

If a connection is terminated by external means (such as a forced disconnect using an
administrative tool), ADO/OLE DB does not know that this has occurred until the next
interaction with the server. Caution should be exercised before resorting to forcible
disconnects.

The flag that controls connection pooling is DBPROPVAL_OS_RESOURCEPOOLING (1).
This flag can be turned off using a connection parameter in the connection string.

If you specify OLE DB Services=-2 in your connection string, then connection pooling
is disabled. Here is a sample connection string:
Provider=SAOLEDB;OLE DB Services=-2;...

If you specify OLE DB Services=-4 in your connection string, then connection pooling
and transaction enlistment are disabled. Here is a sample connection string:
Provider=SAOLEDB;OLE DB Services=-4;...

If you disable connection pooling, there is a performance penalty if your application
frequently opens and closes connections using the same connection string.

Microsoft Linked Servers
A Microsoft Linked Server can be created that uses the SAP Sybase IQ OLE DB provider to
obtain access to an SAP Sybase IQ database. SQL queries can be issued using either the
Microsoft four-part table referencing syntax or the Microsoft OPENQUERY SQL function.
An example of the four-part syntax follows.
SELECT * FROM SADATABASE.demo.GROUPO.Customers

In this example, SADATABASE is the name of the Linked Server, demo is the catalog or
database name, GROUPO is the table owner in the SAP Sybase IQ database, and Customers
is the table name in the SAP Sybase IQ database.

OLE DB and ADO Development

Programming 329

The other form uses the Microsoft OPENQUERY function.
SELECT * FROM OPENQUERY(SADATABASE, 'SELECT * FROM Customers')

In the OPENQUERY syntax, the second SELECT statement ('SELECT * FROM
Customers') is passed to the SAP Sybase IQ server for execution.

For complex queries, OPENQUERY may be the better choice since the entire query is
evaluated on the SAP Sybase IQ server. With the four-part syntax, SQL Server may retrieve
the contents of all tables referenced by the query before it can evaluate it (for example, queries
with WHERE, JOIN, nested queries, etc.). For queries involving very large tables, processing
time may be very poor when using four-part syntax. In the following four-part query example,
SQL Server passes a simple SELECT on the entire table (no WHERE clause) to the SAP
Sybase IQ database server via the OLE DB provider and then evaluates the WHERE condition
itself.
SELECT ID, Surname, GivenName FROM [SADATABASE].[demo].[GROUPO].
[Customers]
WHERE Surname = 'Elkins'

Instead of returning one row in the result set to SQL Server, all rows are returned and then this
result set is reduced to one row by SQL Server. The following example produces an identical
result but only one row is returned to SQL Server.
SELECT * FROM OPENQUERY(SADATABASE,
 'SELECT ID, Surname, GivenName FROM [GROUPO].[Customers]
 WHERE Surname = ''Elkins''')

You can set up a Linked Server that uses the SAP Sybase IQ OLE DB provider using a
Microsoft SQL Server interactive application or a SQL Server script.

Note: Before setting up a Linked Server, there are a few things to consider when using
Windows Vista or later versions of Windows. SQL Server runs as a service on your system.
Depending on how the service is set up on Windows Vista or later versions, a service may not
be able to use shared memory connections, it may not be able to start a server, and it may not be
able to access User Data Source definitions. For example, a service logged in as a Network
Service cannot start servers, connect via shared memory, or access User Data Sources. For
these situations, the SAP Sybase IQ server must be started ahead of time and the TCPIP
communication protocol must be used. Also, if a data source is to be used, it must be a System
Data Source.

Setting up a Linked Server Using an Interactive Application
Use a Microsoft SQL Server interactive application to create a Microsoft Linked Server that
uses the SAP Sybase IQ OLE DB provider to obtain access to an SAP Sybase IQ database.

Prerequisites

SQL Server 2000 or later.

OLE DB and ADO Development

330 SAP Sybase IQ

Task

1. For Microsoft SQL Server 2005/2008, start SQL Server Management Studio. For other
versions of SQL Server, the name of this application and the steps to setting up a Linked
Server may vary.

In the Object Explorer pane, expand Server Objects » Linked Servers. Right-click
Linked Servers and then click New Linked Server.

2. Fill in the General page.

The Linked Server field on the General page should contain a Linked Server name (like
SADATABASE in the example above).

The Other Data Source option should be chosen, and SQL Anywhere OLE DB
Provider 16 should be chosen from the Provider list.

The Product Name field can be anything you like (for example, SAP Sybase IQ or your
application name).

The Data Source field can contain an ODBC data source name (DSN). This is a
convenience option and a data source name is not required. If you use a System DSN, it
must be a 32-bit DSN for 32-bit versions of SQL Server or a 64-bit DSN for 64-bit versions
of SQL Server.
Data Source: SAP Sybase IQ 16 Demo

The Provider String field can contain additional connection parameters such as UserID
(UID), ServerName (Server), and DatabaseFile (DBF).
Provider string: Server=myserver;DBF=sample.db

The Location field can contain the equivalent of the SAP Sybase IQ Host connection
parameter (for example, localhost:4444 or 10.25.99.253:2638).
Location: AppServer-pc:2639

The Initial Catalog field can contain the name of the database to connect to (for example,
demo). The database must have been previously started.
Initial Catalog: demo

The combination of these last four fields and the user ID and password from the Security
page must contain enough information to successfully connect to a database server.

3. Instead of specifying the database user ID and password as a connection parameter in the
Provider String field where it would be exposed in plain text, you can fill in the Security
page.

In SQL Server 2005/2008, click the Be made using this security context option and fill in
the Remote login and With password fields (the password is displayed as asterisks).

4. Go to the Server Options page.

Enable the RPC and RPC Out options.

OLE DB and ADO Development

Programming 331

The technique for doing this varies with different versions of Microsoft SQL Server. In
SQL Server 2000, there are two checkboxes that must be checked for these two options. In
SQL Server 2005/2008, the options are True/False settings. Make sure that they are set
True. The Remote Procedure Call (RPC) options must be set to execute stored
procedure/function calls in an SAP Sybase IQ database and pass parameters in and out
successfully.

5. Choose the Allow Inprocess provider option.

The technique for doing this varies with different versions of Microsoft SQL Server. In
SQL Server 2000, there is a Provider Options button that takes you to the page where you
can choose this option. For SQL Server 2005/2008, right-click the SAOLEDB.16 provider
name under Linked Servers » Providers and click Properties. Make sure the Allow
Inprocess checkbox is checked. If the Inprocess option is not chosen, queries fail.

6. Other provider options can be ignored. Several of these options pertain to SQL Server
backwards compatibility and have no effect on the way SQL Server interacts with the SAP
Sybase IQ OLE DB provider. Examples are Nested queries and Supports LIKE
operator. Other options, when selected, may result in syntax errors or degraded
performance.

The Microsoft Linked Server is configured.

Setting up a Linked Server Using a Script
A Linked Server definition may be set up using a SQL Server script.

Prerequisites

SQL Server 2005 or later.

Task

Make the appropriate changes to the following script using the steps below before running it
on SQL Server.
USE [master]
GO
EXEC master.dbo.sp_addlinkedserver @server=N'SADATABASE',
 @srvproduct=N'SAP Sybase IQ', @provider=N'SAOLEDB.16',
 @datasrc=datasrc=N'Sybase IQ Demo',
 @provstr=N'host=localhost:4444;server=myserver;dbn=demo'
GO
EXEC master.dbo.sp_serveroption @server=N'SADATABASE',
 @optname=N'rpc', @optvalue=N'true'
GO
EXEC master.dbo.sp_serveroption @server=N'SADATABASE',
 @optname=N'rpc out', @optvalue=N'true'
GO
-- Set remote login
EXEC master.dbo.sp_addlinkedsrvlogin @rmtsrvname = N'SADATABASE',
 @locallogin = NULL , @useself = N'False',

OLE DB and ADO Development

332 SAP Sybase IQ

 @rmtuser = N'DBA', @rmtpassword = N'sql'
GO
-- Set global provider "allow in process" flag
EXEC master.dbo.sp_MSset_oledb_prop N'SAOLEDB.16',
N'AllowInProcess', 1

1. Choose a new Linked Server name (SADATABASE is used in the example).

2. Choose an optional data source name (SAP Sybase IQ 16 Demo is used in the example).

3. Choose an optional provider string (N'host=localhost:
4444;server=myserver;dbn=demo' is used in the example).

4. Choose a remote user ID and password (N'DBA' and N'sql' are used in the example).

Your modified script can be run under Microsoft SQL Server to create a new Linked Server.

Supported OLE DB Interfaces
The OLE DB API consists of a set of interfaces. The following table describes the support for
each interface in the SQL Anywhere OLE DB driver.

Interface Purpose Limitations

IAccessor Define bindings between client
memory and data store values.

DBACCESSOR_PASSBYREF
not supported.DBACCES-
SOR_OPTIMIZED not suppor-
ted.

IAlterIndex

IAlterTable

Alter tables, indexes, and col-
umns.

Not supported.

IChapteredRowset A chaptered rowset allows rows
of a rowset to be accessed in
separate chapters.

Not supported. SAP Sybase IQ
does not support chaptered row-
sets.

IColumnsInfo Get simple information about
the columns in a rowset.

Supported.

IColumnsRowset Get information about optional
metadata columns in a rowset,
and get a rowset of column met-
adata.

Supported.

ICommand Execute SQL statements. Does not support calling. ICom-
mandProperties: GetProperties
with DBPROPSET_PROPER-
TIESINERROR to find proper-
ties that could not have been set.

OLE DB and ADO Development

Programming 333

Interface Purpose Limitations

ICommandPersist Persist the state of a command
object (but not any active row-
sets). These persistent com-
mand objects can subsequently
be enumerated using the PRO-
CEDURES or VIEWS rowset.

Supported.

ICommandPrepare Prepare commands. Supported.

ICommandProperties Set Rowset properties for row-
sets created by a command.
Most commonly used to specify
the interfaces the rowset should
support.

Supported.

ICommandText Set the SQL statement text for
ICommand.

Only the DBGUID_DEFAULT
SQL dialect is supported.

ICommandWithParameters Set or get parameter informa-
tion for a command.

No support for parameters stor-
ed as vectors of scalar values.

No support for BLOB parame-
ters.

IConvertType Supported.

IDBAsynchNotify

IDBAsynchStatus

Asynchronous processing.

Notify client of events in the
asynchronous processing of da-
ta source initialization, populat-
ing rowsets, and so on.

Not supported.

IDBCreateCommand Create commands from a ses-
sion.

Supported.

IDBCreateSession Create a session from a data
source object.

Supported.

IDBDataSourceAdmin Create/destroy/modify data
source objects, which are COM
objects used by clients. This in-
terface is not used to manage
data stores (databases).

Not supported.

OLE DB and ADO Development

334 SAP Sybase IQ

Interface Purpose Limitations

IDBInfo Find information about key-
words unique to this provider
(that is, to find non-standard
SQL keywords).

Also, find information about lit-
erals, special characters used in
text matching queries, and other
literal information.

Supported.

IDBInitialize Initialize data source objects
and enumerators.

Supported.

IDBProperties Manage properties on a data
source object or enumerator.

Supported.

IDBSchemaRowset Get information about system
tables, in a standard form (a
rowset).

Supported.

IErrorInfo

IErrorLookup

IErrorRecords

ActiveX error object support. Supported.

IGetDataSource Returns an interface pointer to
the session's data source object.

Supported.

IIndexDefinition Create or drop indexes in the
data store.

Not supported.

IMultipleResults Retrieve multiple results (row-
sets or row counts) from a com-
mand.

Supported.

IOpenRowset Non-SQL way to access a data-
base table by its name.

Supported.

Opening a table by its name is
supported, not by a GUID.

IParentRowset Access chaptered/hierarchical
rowsets.

Not supported.

IRowset Access rowsets. Supported.

OLE DB and ADO Development

Programming 335

Interface Purpose Limitations

IRowsetChange Allow changes to rowset data,
reflected back to the data store.

InsertRow/SetData for BLOBs
are not implemented.

Supported.

IRowsetChapterMember Access chaptered/hierarchical
rowsets.

Not supported.

IRowsetCurrentIndex Dynamically change the index
for a rowset.

Not supported.

IRowsetFind Find a row within a rowset
matching a specified value.

Not supported.

IRowsetIdentity Compare row handles. Not supported.

IRowsetIndex Access database indexes. Not supported.

IRowsetInfo Find information about rowset
properties or to find the object
that created the rowset.

Supported.

IRowsetLocate Position on rows of a rowset,
using bookmarks.

Supported.

IRowsetNotify Provides a COM callback inter-
face for rowset events.

Supported.

IRowsetRefresh Get the latest value of data that
is visible to a transaction.

Not supported.

IRowsetResynch Old OLE DB 1.x interface, su-
perseded by IRowsetRefresh.

Not supported.

IRowsetScroll Scroll through rowset to fetch
row data.

Not supported.

IRowsetUpdate Delay changes to rowset data
until Update is called.

Supported.

IRowsetView Use views on an existing row-
set.

Not supported.

ISequentialStream Retrieve a BLOB column. Supported for reading only.

No support for SetData with this
interface.

OLE DB and ADO Development

336 SAP Sybase IQ

Interface Purpose Limitations

ISessionProperties Get session property informa-
tion.

Supported.

ISourcesRowset Get a rowset of data source ob-
jects and enumerators.

Supported.

ISQLErrorInfo

ISupportErrorInfo

ActiveX error object support. Supported.

ITableDefinition

ITableDefinitionWithCon-
straints

Create, drop, and alter tables,
with constraints.

Supported.

ITransaction Commit or abort transactions. Not all the flags are supported.

ITransactionJoin Support distributed transac-
tions.

Not all the flags are supported.

ITransactionLocal Handle transactions on a ses-
sion.

Not all the flags are supported.

Supported.

ITransactionOptions Get or set options on a transac-
tion.

Supported.

IViewChapter Work with views on an existing
rowset, specifically to apply
post-processing filters/sorting
on rows.

Not supported.

IViewFilter Restrict contents of a rowset to
rows matching a set of condi-
tions.

Not supported.

IViewRowset Restrict contents of a rowset to
rows matching a set of condi-
tions, when opening a rowset.

Not supported.

IViewSort Apply sort order to a view. Not supported.

OLE DB Provider Registration
When the SAOLEDB provider is installed using the SAP Sybase IQ installer, the provider
registers itself. This registration process includes making registry entries in the COM section

OLE DB and ADO Development

Programming 337

of the registry, so that ADO can locate the DLL when the SAOLEDB provider is called. If you
change the location of your DLL, you must re-register it.

Example

The following commands register the SAP Sybase IQ OLE DB provider when run from the
directory where the provider is installed:
regsvr32 dboledb16.dll
regsvr32 dboledba16.dll

OLE DB and ADO Development

338 SAP Sybase IQ

ODBC CLI

ODBC (Open Database Connectivity) is a standard call level interface (CLI) developed by
Microsoft Corporation. It is based on the SQL Access Group CLI specification. ODBC
applications can run against any data source that provides an ODBC driver. ODBC is a good
choice for a programming interface if you want your application to be portable to other data
sources that have ODBC drivers.

ODBC conformance
SAP Sybase IQ provides support for ODBC 3.5, which is supplied as part of the Microsoft
Data Access Kit 2.7.

Levels of ODBC support
ODBC features are arranged according to level of conformance. Features are either Core,
Level 1, or Level 2, with Level 2 being the most complete level of ODBC support. These
features are listed in the Microsoft ODBC Programmer's Reference at http://
msdn.microsoft.com/en-us/library/ms714177.aspx.

Features supported by SAP Sybase IQ
SAP Sybase IQ supports the ODBC 3.5 specification as follows:

• Core conformance – SAP Sybase IQ supports all Core level features.
• Level 1 conformance – SAP Sybase IQ supports all Level 1 features, except for

asynchronous execution of ODBC functions.

SAP Sybase IQ supports multiple threads sharing a single connection. The requests from
the different threads are serialized by SAP Sybase IQ.

• Level 2 conformance – SAP Sybase IQ supports all Level 2 features, except for the
following ones:

• Three part names of tables and views. This is not applicable for SAP Sybase IQ.
• Asynchronous execution of ODBC functions for specified individual statements.
• Ability to time out login requests and SQL queries.

ODBC application development
Every C/C++ source file that calls ODBC functions must include a platform-specific ODBC
header file. Each platform-specific header file includes the main ODBC header file odbc.h,

ODBC CLI

Programming 339

http://msdn.microsoft.com/en-us/library/ms714177.aspx
http://msdn.microsoft.com/en-us/library/ms714177.aspx

which defines all the functions, data types, and constant definitions required to write an ODBC
program.

Perform the following tasks to include the ODBC header file in a C/C++ source file:

1. Add an include line referencing the appropriate platform-specific header file to your
source file. The lines to use are as follows:

Operating system Include line

Windows #include "ntodbc.h"

Unix #include "unixodbc.h"

Windows Mobile #include "ntodbc.h"

2. Add the directory containing the header file to the include path for your compiler.
Both the platform-specific header files and odbc.h are installed in the SDK\Include
subdirectory of your SAP Sybase IQ installation directory.

3. When building ODBC applications for Unix, you might have to define the macro "UNIX"
for 32-bit applications or "UNIX64" for 64-bit applications to obtain the correct data
alignment and sizes. This step is not required if you are using one of the following
supported compilers:

GNU C/C++ compiler on any supported platform
Intel C/C++ compiler for Linux (icc)
SunPro C/C++ compiler for Linux or Solaris
VisualAge C/C++ compiler for AIX
C/C++ compiler (cc/aCC) for HP-UX

Once your source code has been written, you are ready to compile and link the application. The
following sections describe how to create executable applications.

ODBC Applications on Windows
When linking your application, you must link against the appropriate import library file to
have access to the ODBC functions.

The import library defines entry points for the ODBC driver manager odbc32.dll. The
driver manager in turn loads the SAP Sybase IQ ODBC driver dbodbc16.dll.

Typically, the import library is stored under the Lib directory structure of the Microsoft
platform SDK:

Operating system Import library

Windows (32-bit) \Lib\X86\odbc32.lib
Windows (64-bit) \Lib\X86\odbc32.lib

ODBC CLI

340 SAP Sybase IQ

Example

The following command illustrates how to add the directory containing the platform-specific
import library to the list of library directories in your LIB environment variable:
set LIB=%LIB%;c:\mssdk\v7.0\lib

The following command illustrates how to compile and link the application stored in odbc.c
using the Microsoft compile and link tool:
cl odbc.c /I"%IQDIR16%\SDK\Lib\X86\Include" odbc32.lib

ODBC applications on Unix
An ODBC driver manager for Unix is included with SAP Sybase IQ and there are third party
driver managers available. This section describes how to build ODBC applications that do not
use an ODBC driver manager.

ODBC driver
The ODBC driver is a shared object or shared library. Separate versions of the SAP Sybase IQ
ODBC driver are supplied for single-threaded and multithreaded applications. A generic SAP
Sybase IQ ODBC driver is supplied that will detect the threading model in use and direct calls
to the appropriate single-threaded or multithreaded library.

The ODBC drivers are the following files:

Operating system Threading model ODBC driver

(all Unix except HP-UX) Generic libdbodbc16.so
(libdbodbc16.so.1)

(all Unix except HP-UX) Single threaded libdbodbc16_n.so
(libdbodbc16_n.so.
1)

(all Unix except HP-UX) Multithreaded libdbodbc16_r.so
(libdbodbc16_r.so.
1)

HP-UX Generic libdbodbc16.sl
(libdbodbc16.sl.1)

HP-UX Single threaded libdbodbc16_n.sl
(libdbodbc16_n.sl.
1)

HP-UX Multithreaded libdbodbc16_r.sl
(libdbodbc16_r.sl.
1)

ODBC CLI

Programming 341

The libraries are installed as symbolic links to the shared library with a version number (shown
in parentheses).

When linking an ODBC application on Unix, link your application against the generic ODBC
driver libdbodbc16. When deploying your application, ensure that the appropriate (or all)
ODBC driver versions (non-threaded or threaded) are available in the user's library path.

Data source information
If SAP Sybase IQ does not detect the presence of an ODBC driver manager, it uses the system
information file for data source information.

The unixODBC driver manager
Versions of the unixODBC release before version 2.2.14 have incorrectly implemented some
aspects of the 64-bit ODBC specification as defined by Microsoft. These differences will
cause problems when using the unixODBC driver manager with the SAP Sybase IQ 64-bit
ODBC driver.

To avoid these problems, you should be aware of the differences. One of them is the definition
of SQLLEN and SQLULEN. These are 64-bit types in the Microsoft 64-bit ODBC
specification, and are expected to be 64-bit quantities by the SAP Sybase IQ 64-bit ODBC
driver. Some implementations of unixODBC define these two types as 32-bit quantities and
this will result in problems when interfacing to the SAP Sybase IQ 64-bit ODBC driver.

There are three things that you must do to avoid problems on 64-bit platforms.

1. Instead of including the unixODBC headers like sql.h and sqlext.h, you should
include the SAP Sybase IQ ODBC header file unixodbc.h. This will guarantee that you
have the correct definitions for SQLLEN and SQLULEN. The header files in unixODBC
2.2.14 or later versions correct this problem.

2. You must ensure that you have used the correct types for all parameters. Use of the correct
header file and the strong type checking of your C/C++ compiler should help in this area.
You must also ensure that you have used the correct types for all variables that are set by the
SAP Sybase IQ driver indirectly through pointers.

3. Do not use versions of the unixODBC driver manager before release 2.2.14. Link directly
to the SAP Sybase IQ ODBC driver instead. For example, ensure that the libodbc shared
object is linked to the SAP Sybase IQ driver.
libodbc.so.1 -> libdbodbc16_r.so.1

Alternatively, you can use the SAP Sybase IQ driver manager on platforms where it is
available.

UTF-32 ODBC driver managers for Unix
Versions of ODBC driver managers that define SQLWCHAR as 32-bit (UTF-32) quantities
cannot be used with the SAP Sybase IQ ODBC driver that supports wide calls since this driver
is built for 16-bit SQLWCHAR. For these cases, an ANSI-only version of the SAP Sybase IQ

ODBC CLI

342 SAP Sybase IQ

ODBC driver is provided. This version of the ODBC driver does not support the wide call
interface (for example, SQLConnectW).

The shared object name of the driver is libdbodbcansi16_r. Only a threaded variant of
the driver is provided. Certain frameworks, such as Real Basic, do not work with the dylib and
require the bundle.

The regular ODBC driver treats SQLWCHAR strings as UTF-16 strings. This driver cannot be
used with some ODBC driver managers, such as iODBC, which treat SQLWCHAR strings as
UTF-32 strings. When dealing with Unicode-enabled drivers, these driver managers translate
narrow calls from the application to wide calls into the driver. An ANSI-only driver gets
around this behavior, allowing the driver to be used with such driver managers, as long as the
application does not make any wide calls. Wide calls through iODBC, or any other driver
manager with similar semantics, remain unsupported.

ODBC Samples
Several ODBC samples are included with SAP Sybase IQ. You can find the samples in the
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\C directory
(Windows) and $SYBASE/IQ-16_0/samples/sqlanywhere/c directory (UNIX).

The samples in directories starting with ODBC illustrate separate and simple ODBC tasks,
such as connecting to a database and executing statements. A complete sample ODBC
program is supplied in the odbc.c file. This program performs the same actions as the
embedded SQL dynamic cursor example program that is in the same directory.

Building the Sample ODBC Program for Windows
Building the sample ODBC program allows you to run the program and see how it performs
ODBC tasks, such as connecting to a database and executing statements.

Prerequisites

For x64 platform builds, you may need to set up the correct environment for compiling and
linking. Here is an example that builds the sample programs for an x64 platform.
set mssdk=c:\mssdk\v7.0
build64

Task

A batch file located in the %ALLUSERSPROFILE%\SybaseIQ\samples
\SQLAnywhere\C directory can be used to compile and link all the sample applications.

1. Open a command prompt and change the directory to the %ALLUSERSPROFILE%
\SybaseIQ\samples\SQLAnywhere\C directory.

ODBC CLI

Programming 343

2. Run the build.bat or build64.bat batch file.

The sample ODBC program is built.

Building the Sample ODBC Program for Unix
Building the sample ODBC program allows you to run the program and see how it performs
ODBC tasks, such as connecting to a database and executing statements.

Prerequisites

There are no prerequisites for this task.

Task

A shell script located in the $SYBASE/IQ-16_0/samples/sqlanywhere/c
directory can be used to compile and link all the sample applications.

1. Open a command shell and change the directory to the $SYBASE/IQ-16_0/
samples/sqlanywhere/c directory.

2. Run the build.sh shell script.

The sample ODBC program is built.

ODBC Sample Programs
You can load the sample ODBC program by running the file on the appropriate platform.

• For 32-bit Windows, run %ALLUSERSPROFILE%\SybaseIQ\samples
\sqlanywhere\C\odbcwin.exe.

• For 64-bit Windows, run %ALLUSERSPROFILE%\SybaseIQ\samples
\sqlanywhere\C\odbcx64.exe.

• For Unix, run $SYBASE/IQ-16_0/samples/sqlanywhere/C/odbc.

After running the file, choose one of the tables in the sample database. For example, you can
enter Customers or Employees.

ODBC handles
ODBC applications use a small set of handles to define basic features such as database
connections and SQL statements. A handle is a 32-bit value.

The following handles are used in essentially all ODBC applications:

• Environment – The environment handle provides a global context in which to access data.
Every ODBC application must allocate exactly one environment handle upon starting, and
must free it at the end.

ODBC CLI

344 SAP Sybase IQ

The following code illustrates how to allocate an environment handle:
SQLRETURN rc;
SQLHENV env;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);

• Connection – A connection is specified by an ODBC driver and a data source. An
application can have several connections associated with its environment. Allocating a
connection handle does not establish a connection; a connection handle must be allocated
first and then used when the connection is established.

The following code illustrates how to allocate a connection handle:
SQLRETURN rc;
SQLHDBC dbc;
rc = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

• Statement – A statement handle provides access to a SQL statement and any information
associated with it, such as result sets and parameters. Each connection can have several
statements. Statements are used both for cursor operations (fetching data) and for single
statement execution (for example, INSERT, UPDATE, and DELETE).

The following code illustrates how to allocate a statement handle:
SQLRETURN rc;
SQLHSTMT stmt;
rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);

How to allocate ODBC handles
The handle types required for ODBC programs are as follows:

Item Handle type

Environment SQLHENV

Connection SQLHDBC

Statement SQLHSTMT

Descriptor SQLHDESC

To use an ODBC handle, you perform the following tasks:

1. Call the SQLAllocHandle function.
2. Use the handle in subsequent function calls.
3. Free the object using SQLFreeHandle.

SQLAllocHandle takes the following parameters:

• an identifier for the type of item being allocated
• the handle of the parent item
• a pointer to the location of the handle to be allocated

ODBC CLI

Programming 345

For information, see SQLAllocHandle in the Microsoft ODBC API Reference at http://
msdn.microsoft.com/en-us/library/ms712455.aspx.

SQLFreeHandle takes the following parameters:

• an identifier for the type of item being freed
• the handle of the item being freed

For information, see SQLFreeHandle in the Microsoft ODBC API Reference at http://
msdn.microsoft.com/en-us/library/ms710123.aspx.

Example

The following code fragment allocates and frees an environment handle:
SQLRETURN rc;
SQLHENV env;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
if(rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
{
 .
 .
 .
}
SQLFreeHandle(SQL_HANDLE_ENV, env);

ODBC example
A simple ODBC program that connects to the SAP Sybase IQ sample database and
immediately disconnects can be found in %IQDIRSAMP16%\SQLAnywhere
\ODBCConnect\odbcconnect.cpp. This example shows the steps required in setting
up the environment to make a connection to a database server, as well as the steps required in
disconnecting from the server and freeing up resources.

ODBC Connection Functions
ODBC supplies a set of connection functions. Which one you use depends on how you expect
your application to be deployed and used:

• SQLConnect – The simplest connection function.

SQLConnect takes a data source name and optional user ID and password. You may want
to use SQLConnect if you hard-code a data source name into your application.

For more information, see SQLConnect in the Microsoft ODBC API Reference at http://
msdn.microsoft.com/en-us/library/ms711810.aspx.

• SQLDriverConnect – Connects to a data source using a connection string.

SQLDriverConnect allows the application to use SAP Sybase IQ-specific connection
information that is external to the data source. Also, you can use SQLDriverConnect to
request that the Sybase IQ ODBC driver driver prompt for connection information.

ODBC CLI

346 SAP Sybase IQ

http://msdn.microsoft.com/en-us/library/ms712455.aspx
http://msdn.microsoft.com/en-us/library/ms712455.aspx
http://msdn.microsoft.com/en-us/library/ms710123.aspx
http://msdn.microsoft.com/en-us/library/ms710123.aspx
http://msdn.microsoft.com/en-us/library/ms711810.aspx
http://msdn.microsoft.com/en-us/library/ms711810.aspx

SQLDriverConnect can also be used to connect without specifying a data source. The
Sybase IQ ODBC driver name is specified instead. The following example connects to a
server and database that is already running.
SQLSMALLINT cso;
SQLCHAR scso[2048];

SQLDriverConnect(hdbc, NULL,
 "Driver=Sybase IQ;UID=<user_id>;PWD=<password>", SQL_NTS,
 scso, sizeof(scso)-1,
 &cso, SQL_DRIVER_NOPROMPT);

For more information, see SQLDriverConnect in the Microsoft ODBC API Reference at
http://msdn.microsoft.com/en-us/library/ms715433.aspx.

• SQLBrowseConnect – Connects to a data source using a connection string, like
SQLDriverConnect.

SQLBrowseConnect allows your application to build its own windows to prompt for
connection information and to browse for data sources used by a particular driver (in this
case the Sybase IQ ODBC driver).

For more information, see SQLBrowseConnect in the Microsoft ODBC API Reference at
http://msdn.microsoft.com/en-us/library/ms714565.aspx.

Establishing an ODBC Connection
Establish an ODBC connection in your application to perform any database operations.

Prerequisites

There are no prerequisites for this task.

Task

You can find a complete sample in %ALLUSERSPROFILE%\SybaseIQ\samples
\ODBCConnect\odbcconnect.cpp.

1. Allocate an ODBC environment.

For example:
SQLRETURN rc;
SQLHENV env;
rc = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);

2. Declare the ODBC version.

By declaring that the application follows ODBC version 3, SQLSTATE values and some
other version-dependent features are set to the proper behavior. For example:
rc = SQLSetEnvAttr(env, SQL_ATTR_ODBC_VERSION,
(void*)SQL_OV_ODBC3, 0);

3. Allocate an ODBC connection item.

ODBC CLI

Programming 347

http://msdn.microsoft.com/en-us/library/ms715433.aspx
http://msdn.microsoft.com/en-us/library/ms714565.aspx

For example:
rc = SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);

4. Set any connection attributes that must be set before connecting.

Some connection attributes must be set before establishing a connection or after
establishing a connection, while others can be set either before or after. The
SQL_AUTOCOMMIT attribute is one that can be set before or after:
rc = SQLSetConnectAttr(dbc, SQL_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF, 0);

By default, ODBC operates in autocommit mode. This mode is turned off by setting
SQL_AUTOCOMMIT to false.

5. If necessary, assemble the data source or connection string.

Depending on your application, you may have a hard-coded data source or connection
string, or you may store it externally for greater flexibility.

6. Call the ODBC connection function.

For example:
if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
{
 printf("dbc allocated\n");
 rc = SQLConnect(dbc,
 (SQLCHAR *) "Sybase IQ Demo", SQL_NTS,
 (SQLCHAR *) "<user_id>", SQL_NTS,
 (SQLCHAR *) "<password>", SQL_NTS);
 if (rc == SQL_SUCCESS || rc == SQL_SUCCESS_WITH_INFO)
 {
 // Successfully connected.

Every string passed to ODBC has a corresponding length. If the length is unknown, you
can pass SQL_NTS indicating that it is a Null Terminated String whose end is marked by
the null character (\0).

The application, when built and run, establishes an ODBC connection.

Server options changed by ODBC
The SAP Sybase IQ ODBC driver sets some temporary server options when connecting to an
SAP Sybase IQ database. The following options are set as indicated.

• date_format – yyyy-mm-dd
• date_order – ymd
• isolation_level – based on the SQL_ATTR_TXN_ISOLATION/

SA_SQL_ATTR_TXN_ISOLATION attribute setting of SQLSetConnectAttr. The
following options are available.
SQL_TXN_READ_UNCOMMITTED
SQL_TXN_READ_COMMITTED

ODBC CLI

348 SAP Sybase IQ

SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE
SA_SQL_TXN_SNAPSHOT
SA_SQL_TXN_STATEMENT_SNAPSHOT
SA_SQL_TXN_READONLY_STATEMENT_SNAPSHOT

• time_format – hh:nn:ss
• timestamp_format – yyyy-mm-dd hh:nn:ss.ssssss
• timestamp_with_time_zone_format – yyyy-mm-dd hh:nn:ss.ssssss +hh:nn

To restore the default option setting, execute a SET statement. Here is an example of a
statement that will reset the timestamp_format option.
set temporary option timestamp_format =

SQLSetConnectAttr extended connection attributes
The SAP Sybase IQ ODBC driver supports some extended connection attributes.

• SA_REGISTER_MESSAGE_CALLBACK – Messages can be sent to the client
application from the database server using the SQL MESSAGE statement. Messages can
also be generated by long running database server statements.

A message handler routine can be created to intercept these messages. The message
handler callback prototype is as follows:

void SQL_CALLBACK message_handler(
SQLHDBC sqlany_dbc,
unsigned char msg_type,
long code,
unsigned short length,
char * message
);
The following possible values for msg_type are defined in sqldef.h.

• MESSAGE_TYPE_INFO – The message type was INFO.
• MESSAGE_TYPE_WARNING – The message type was WARNING.
• MESSAGE_TYPE_ACTION – The message type was ACTION.
• MESSAGE_TYPE_STATUS – The message type was STATUS.
• MESSAGE_TYPE_PROGRESS – The message type was PROGRESS. This type of

message is generated by long running database server statements such as BACKUP
DATABASE and LOAD TABLE.

A SQLCODE associated with the message may be provided incode. When not available,
thecode parameter value is 0.

The length of the message is contained in length.

A pointer to the message is contained in message. The message string is not null-
terminated. Your application must be designed to handle this. The following is an example.

ODBC CLI

Programming 349

memcpy(mybuff, msg, len);
mybuff[len] = '\0';

To register the message handler in ODBC, call the SQLSetConnectAttr function as
follows:
rc = SQLSetConnectAttr(
 hdbc,
 SA_REGISTER_MESSAGE_CALLBACK,
 (SQLPOINTER) &message_handler, SQL_IS_POINTER);

To unregister the message handler in ODBC, call the SQLSetConnectAttr function as
follows:
rc = SQLSetConnectAttr(
 hdbc,
 SA_REGISTER_MESSAGE_CALLBACK,
 NULL, SQL_IS_POINTER);

• SA_GET_MESSAGE_CALLBACK_PARM – To retrieve the value of the SQLHDBC
connection handle that will be passed to message handler callback routine, use
SQLGetConnectAttr with the SA_GET_MESSAGE_CALLBACK_PARM parameter.
SQLHDBC callback_hdbc = NULL;
rc = SQLGetConnectAttr(
 hdbc,
 SA_GET_MESSAGE_CALLBACK_PARM,
 (SQLPOINTER) &callback_hdbc, 0, 0);

The returned value will be the same as the parameter value that is passed to the message
handler callback routine.

• SA_REGISTER_VALIDATE_FILE_TRANSFER_CALLBACK – This is used to
register a file transfer validation callback function. Before allowing any transfer to take
place, the ODBC driver will invoke the validation callback, if it exists. If the client data
transfer is being requested during the execution of indirect statements such as from within
a stored procedure, the ODBC driver will not allow a transfer unless the client application
has registered a validation callback. The conditions under which a validation call is made
are described more fully below.

The callback prototype is as follows:

int SQL_CALLBACK file_transfer_callback(
void * sqlca,
char * file_name,
int is_write
);
The file_name parameter is the name of the file to be read or written. The is_write
parameter is 0 if a read is requested (transfer from the client to the server), and non-zero for
a write. The callback function should return 0 if the file transfer is not allowed, non-zero
otherwise.

For data security, the server tracks the origin of statements requesting a file transfer. The
server determines if the statement was received directly from the client application. When

ODBC CLI

350 SAP Sybase IQ

initiating the transfer of data from the client, the server sends the information about the
origin of the statement to the client software. On its part, the ODBC driver allows
unconditional transfer of data only if the data transfer is being requested due to the
execution of a statement sent directly by the client application. Otherwise, the application
must have registered the validation callback described above, in the absence of which the
transfer is denied and the statement fails with an error. If the client statement invokes a
stored procedure already existing in the database, then the execution of the stored
procedure itself is considered not to have been for a client initiated statement. However, if
the client application explicitly creates a temporary stored procedure then the execution of
the stored procedure results in the server treating the procedure as having been client
initiated. Similarly, if the client application executes a batch statement, then the execution
of the batch statement is considered as being done directly by the client application.

• SA_SQL_ATTR_TXN_ISOLATION – This is used to set an extended transaction
isolation level. The following example sets a Snapshot isolation level:
SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
SQLSetConnectAttr(dbc, SA_SQL_ATTR_TXN_ISOLATION,
 SA_SQL_TXN_SNAPSHOT, SQL_IS_UINTEGER);

64-bit ODBC considerations
When you use an ODBC function like SQLBindCol, SQLBindParameter, or SQLGetData,
some of the parameters are typed as SQLLEN or SQLULEN in the function prototype.
Depending on the date of the Microsoft ODBC API Reference documentation that you are
looking at, you might see the same parameters described as SQLINTEGER or
SQLUINTEGER.

SQLLEN and SQLULEN data items are 64 bits in a 64-bit ODBC application and 32 bits in a
32-bit ODBC application. SQLINTEGER and SQLUINTEGER data items are 32 bits on all
platforms.

To illustrate the problem, the following ODBC function prototype was excerpted from an
older copy of the Microsoft ODBC API Reference.
SQLRETURN SQLGetData(
 SQLHSTMT StatementHandle,
 SQLUSMALLINT ColumnNumber,
 SQLSMALLINT TargetType,
 SQLPOINTER TargetValuePtr,
 SQLINTEGER BufferLength,
 SQLINTEGER *StrLen_or_IndPtr);

Compare this with the actual function prototype found in sql.h in Microsoft Visual Studio
version 8.
SQLRETURN SQL_API SQLGetData(
 SQLHSTMT StatementHandle,
 SQLUSMALLINT ColumnNumber,
 SQLSMALLINT TargetType,
 SQLPOINTER TargetValue,

ODBC CLI

Programming 351

 SQLLEN BufferLength,
 SQLLEN *StrLen_or_Ind);

As you can see, the BufferLength and StrLen_or_Ind parameters are now typed as SQLLEN,
not SQLINTEGER. For the 64-bit platform, these are 64-bit quantities, not 32-bit quantities as
indicated in the Microsoft documentation.

To avoid issues with cross-platform compilation, SAP Sybase IQ provides its own ODBC
header files. For Windows platforms, you should include the ntodbc.h header file. For Unix
platforms such as Linux, you should include the unixodbc.h header file. Use of these
header files ensures compatibility with the corresponding SAP Sybase IQ ODBC driver for
the target platform.

The following table lists some common ODBC types that have the same or different storage
sizes on 64-bit and 32-bit platforms.

ODBC API 64-bit platform 32-bit platform

SQLINTEGER 32 bits 32 bits

SQLUINTEGER 32 bits 32 bits

SQLLEN 64 bits 32 bits

SQLULEN 64 bits 32 bits

SQLSETPOSIROW 64 bits 16 bits

SQL_C_BOOKMARK 64 bits 32 bits

BOOKMARK 64 bits 32 bits

If you declare data variables and parameters incorrectly, then you may encounter incorrect
software behavior.

The following table summarizes the ODBC API function prototypes that have changed with
the introduction of 64-bit support. The parameters that are affected are noted. The parameter
name as documented by Microsoft is shown in parentheses when it differs from the actual
parameter name used in the function prototype. The parameter names are those used in the
Microsoft Visual Studio version 8 header files.

ODBC API Parameter (documented parameter
name)

SQLBindCol SQLLEN BufferLength

SQLLEN *Strlen_or_Ind

SQLBindParam SQLULEN LengthPrecision

SQLLEN *Strlen_or_Ind

ODBC CLI

352 SAP Sybase IQ

ODBC API Parameter (documented parameter
name)

SQLBindParameter SQLULEN cbColDef (ColumnSize)

SQLLEN cbValueMax (BufferLength)

SQLLEN *pcbValue (Strlen_or_IndPtr)

SQLColAttribute SQLLEN *NumericAttribute

SQLColAttributes SQLLEN *pfDesc

SQLDescribeCol SQLULEN *ColumnSize (ColumnSizePtr)

SQLDescribeParam SQLULEN *pcbParamDef (ParameterSizePtr)

SQLExtendedFetch SQLLEN irow (FetchOffset)

SQLULEN *pcrow (RowCountPtr)

SQLFetchScroll SQLLEN FetchOffset

SQLGetData SQLLEN BufferLength

SQLLEN *Strlen_or_Ind (Strlen_or_IndPtr)

SQLGetDescRec SQLLEN *Length (LengthPtr)

SQLParamOptions SQLULEN crow,

SQLULEN *pirow

SQLPutData SQLLEN Strlen_or_Ind

SQLRowCount SQLLEN *RowCount (RowCountPtr)

SQLSetConnectOption SQLULEN Value

SQLSetDescRec SQLLEN Length

SQLLEN *StringLength (StringLengthPtr)

SQLLEN *Indicator (IndicatorPtr)

SQLSetParam SQLULEN LengthPrecision

SQLLEN *Strlen_or_Ind (Strlen_or_IndPtr)

SQLSetPos SQLSETPOSIROW irow (RowNumber)

SQLSetScrollOptions SQLLEN crowKeyset

SQLSetStmtOption SQLULEN Value

ODBC CLI

Programming 353

Some values passed into and returned from ODBC API calls through pointers have changed to
accommodate 64-bit applications. For example, the following values for the SQLSetStmtAttr
and SQLSetDescField functions are no longer SQLINTEGER/SQLUINTEGER. The same
rule applies to the corresponding parameters for the SQLGetStmtAttr and SQLGetDescField
functions.

ODBC API Type for Value/ValuePtr variable

SQLSetStmtAttr(SQL_ATTR_FETCH_BOOK-
MARK_PTR)

SQLLEN * value

SQLSetStmtAttr(SQL_ATTR_KEYSET_SIZE) SQLULEN value

SQLSetStm-
tAttr(SQL_ATTR_MAX_LENGTH)

SQLULEN value

SQLSetStmtAttr(SQL_ATTR_MAX_ROWS) SQLULEN value

SQLSetStmtAttr(SQL_ATTR_PAR-
AM_BIND_OFFSET_PTR)

SQLULEN * value

SQLSetStmtAttr(SQL_ATTR_PARAMS_PRO-
CESSED_PTR)

SQLULEN * value

SQLSetStmtAttr(SQL_ATTR_PARA-
MSET_SIZE)

SQLULEN value

SQLSetStmtAttr(SQL_ATTR_ROW_AR-
RAY_SIZE)

SQLULEN value

SQLSetStm-
tAttr(SQL_ATTR_ROW_BIND_OFF-
SET_PTR)

SQLULEN * value

SQLSetStmtAttr(SQL_ATTR_ROW_NUM-
BER)

SQLULEN value

SQLSetStmtAttr(SQL_ATTR_ROWS_FETCH-
ED_PTR)

SQLULEN * value

SQLSetDescField(SQL_DESC_ARRAY_SIZE) SQLULEN value

SQLSetDescField(SQL_DESC_BIND_OFF-
SET_PTR)

SQLLEN * value

SQLSetDescField(SQL_DESC_ROWS_PRO-
CESSED_PTR)

SQLULEN * value

SQLSetDescField(SQL_DESC_DIS-
PLAY_SIZE)

SQLLEN value

ODBC CLI

354 SAP Sybase IQ

ODBC API Type for Value/ValuePtr variable

SQLSetDescField(SQL_DESC_INDICA-
TOR_PTR)

SQLLEN * value

SQLSetDescField(SQL_DESC_LENGTH) SQLLEN value

SQLSetDescField(SQL_DESC_OC-
TET_LENGTH)

SQLLEN value

SQLSetDescField(SQL_DESC_OC-
TET_LENGTH_PTR)

SQLLEN * value

For more information, see the Microsoft article "ODBC 64-Bit API Changes in MDAC 2.7" at
http://support.microsoft.com/kb/298678.

Data alignment requirements
When you use SQLBindCol, SQLBindParameter, or SQLGetData, a C data type is specified
for the column or parameter. On certain platforms, the storage (memory) provided for each
column must be properly aligned to fetch or store a value of the specified type. The ODBC
driver checks for proper data alignment. When an object is not properly aligned, the ODBC
driver will issue an "Invalid string or buffer length" message (SQLSTATE HY090 or
S1090).

The following table lists memory alignment requirements for processors such as Sun Sparc,
Itanium-IA64, and ARM-based devices. The memory address of the data value must be a
multiple of the indicated value.

C data type Alignment required

SQL_C_CHAR none

SQL_C_BINARY none

SQL_C_GUID none

SQL_C_BIT none

SQL_C_STINYINT none

SQL_C_UTINYINT none

SQL_C_TINYINT none

SQL_C_NUMERIC none

SQL_C_DEFAULT none

SQL_C_SSHORT 2

ODBC CLI

Programming 355

http://support.microsoft.com/kb/298678

C data type Alignment required

SQL_C_USHORT 2

SQL_C_SHORT 2

SQL_C_DATE 2

SQL_C_TIME 2

SQL_C_TIMESTAMP 2

SQL_C_TYPE_DATE 2

SQL_C_TYPE_TIME 2

SQL_C_TYPE_TIMESTAMP 2

SQL_C_WCHAR 2 (buffer size must be a multiple of 2 on all plat-
forms)

SQL_C_SLONG 4

SQL_C_ULONG 4

SQL_C_LONG 4

SQL_C_FLOAT 4

SQL_C_DOUBLE 8 (4 for ARM)

SQL_C_SBIGINT 8

SQL_C_UBIGINT 8

The x86, x64, and PowerPC platforms do not require memory alignment. The x64 platform
includes Advanced Micro Devices (AMD) AMD64 processors and Intel Extended Memory
64 Technology (EM64T) processors.

Result sets in ODBC applications
ODBC applications use cursors to manipulate and update result sets. SAP Sybase IQ provides
extensive support for different kinds of cursors and cursor operations.

ODBC transaction isolation levels
You can use SQLSetConnectAttr to set the transaction isolation level for a connection. The
characteristics that determine the transaction isolation level that SAP Sybase IQ provides
include the following:

• SQL_TXN_READ_UNCOMMITTED – Set isolation level to 0. When this attribute
value is set, it isolates any data read from changes by others and changes made by others

ODBC CLI

356 SAP Sybase IQ

cannot be seen. The re-execution of the read statement is affected by others. This does not
support a repeatable read. This is the default value for isolation level.

• SQL_TXN_READ_COMMITTED – Set isolation level to 1. When this attribute value
is set, it does not isolate data read from changes by others, and changes made by others can
be seen. The re-execution of the read statement is affected by others. This does not support
a repeatable read.

• SQL_TXN_REPEATABLE_READ – Set isolation level to 2. When this attribute value
is set, it isolates any data read from changes by others, and changes made by others cannot
be seen. The re-execution of the read statement is affected by others. This supports a
repeatable read.

• SQL_TXN_SERIALIZABLE – Set isolation level to 3. When this attribute value is set, it
isolates any data read from changes by others, and changes made by others cannot be seen.
The re-execution of the read statement is not affected by others. This supports a repeatable
read.

• SA_SQL_TXN_SNAPSHOT – Set isolation level to Snapshot. When this attribute value
is set, it provides a single view of the database for the entire transaction.

• SA_SQL_TXN_STATEMENT_SNAPSHOT – Set isolation level to Statement-
snapshot. When this attribute value is set, it provides less consistency than Snapshot
isolation, but may be useful when long running transactions result in too much space being
used in the temporary file by the version store.

• SA_SQL_TXN_READONLY_STATEMENT_SNAPSHOT – Set isolation level to
Readonly-statement-snapshot. When this attribute value is set, it provides less consistency
than Statement-snapshot isolation, but avoids the possibility of update conflicts.
Therefore, it is most appropriate for porting applications originally intended to run under
different isolation levels.

The allow_snapshot_isolation database option must be set to On to use the Snapshot,
Statement-snapshot, or Readonly-statement-snapshot settings.

For more information, see SQLSetConnectAttr in the Microsoft ODBC API Reference at
http://msdn.microsoft.com/en-us/library/ms713605.aspx.

Example

The following fragment sets the isolation level to Snapshot:
SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
SQLSetConnectAttr(dbc, SQL_ATTR_TXN_ISOLATION,
 SA_SQL_TXN_SNAPSHOT, SQL_IS_UINTEGER);

ODBC cursor characteristics
ODBC functions that execute statements and manipulate result sets, use cursors to perform
their tasks. Applications open a cursor implicitly whenever they execute a SQLExecute or
SQLExecDirect function.

For applications that move through a result set only in a forward direction and do not update
the result set, cursor behavior is relatively straightforward. By default, ODBC applications

ODBC CLI

Programming 357

http://msdn.microsoft.com/en-us/library/ms713605.aspx

request this behavior. ODBC defines a read-only, forward-only cursor, and SAP Sybase IQ
provides a cursor optimized for performance in this case.

For applications that need to scroll both forward and backward through a result set, such as
many graphical user interface applications, cursor behavior is more complex. What does the
application when it returns to a row that has been updated by some other application? ODBC
defines a variety of scrollable cursors to allow you to build in the behavior that suits your
application. SAP Sybase IQ provides a full set of cursors to match the ODBC scrollable cursor
types.

You set the required ODBC cursor characteristics by calling the SQLSetStmtAttr function that
defines statement attributes. You must call SQLSetStmtAttr before executing a statement that
creates a result set.

You can use SQLSetStmtAttr to set many cursor characteristics. The characteristics that
determine the cursor type that SAP Sybase IQ supplies include the following:

• SQL_ATTR_CURSOR_SCROLLABLE – Set to SQL_SCROLLABLE for a scrollable
cursor and SQL_NONSCROLLABLE for a forward-only cursor.
SQL_NONSCROLLABLE is the default.

• SQL_ATTR_CONCURRENCY – Set to one of the following values:

• SQL_CONCUR_READ_ONLY – Disallow updates.
SQL_CONCUR_READ_ONLY is the default.

• SQL_CONCUR_LOCK – Use the lowest level of locking sufficient to ensure that the
row can be updated.

• SQL_CONCUR_ROWVER – Use optimistic concurrency control, comparing row
versions such as SQLBase ROWID or Sybase TIMESTAMP.

• SQL_CONCUR_VALUES – Use optimistic concurrency control, comparing values.

For more information, see SQLSetStmtAttr in the Microsoft ODBC API Reference at http://
msdn.microsoft.com/en-us/library/ms712631.aspx.

Example

The following fragment requests a read-only, scrollable cursor:
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLSetStmtAttr(stmt, SQL_ATTR_CURSOR_SCROLLABLE,
 SQL_SCROLLABLE, SQL_IS_UINTEGER);

Data retrieval
To retrieve rows from a database, you execute a SELECT statement using SQLExecute or
SQLExecDirect. This opens a cursor on the statement.

You then use SQLFetch or SQLFetchScroll to fetch rows through the cursor. These functions
fetch the next rowset of data from the result set and return data for all bound columns. Using
SQLFetchScroll, rowsets can be specified at an absolute or relative position or by bookmark.
SQLFetchScroll replaces the older SQLExtendedFetch from the ODBC 2.0 specification.

ODBC CLI

358 SAP Sybase IQ

http://msdn.microsoft.com/en-us/library/ms712631.aspx
http://msdn.microsoft.com/en-us/library/ms712631.aspx

When an application frees the statement using SQLFreeHandle, it closes the cursor.

To fetch values from a cursor, your application can use either SQLBindCol or SQLGetData. If
you use SQLBindCol, values are automatically retrieved on each fetch. If you use
SQLGetData, you must call it for each column after each fetch.

SQLGetData is used to fetch values in pieces for columns such as LONG VARCHAR or
LONG BINARY. As an alternative, you can set the SQL_ATTR_MAX_LENGTH statement
attribute to a value large enough to hold the entire value for the column. The default value for
SQL_ATTR_MAX_LENGTH is 256 KB.

The SAP Sybase IQ ODBC driver implements SQL_ATTR_MAX_LENGTH in a different
way than intended by the ODBC specification. The intended meaning for
SQL_ATTR_MAX_LENGTH is that it be used as a mechanism to truncate large fetches. This
might be done for a "preview" mode where only the first part of the data is displayed. For
example, instead of transmitting a 4 MB blob from the server to the client application, only the
first 500 bytes of it might be transmitted (by setting SQL_ATTR_MAX_LENGTH to 500).
The SAP Sybase IQ ODBC driver does not support this implementation.

The following code fragment opens a cursor on a query and retrieves data through the cursor.
Error checking has been omitted to make the example easier to read. The fragment is taken
from a complete sample, which can be found in %IQDIRSAMP16%\SQLAnywhere
\ODBCSelect\odbcselect.cpp.

SQLINTEGER cbDeptID = 0, cbDeptName = SQL_NTS, cbManagerID = 0;
SQLCHAR deptName[DEPT_NAME_LEN + 1];
SQLSMALLINT deptID, managerID;
SQLHENV env;
SQLHDBC dbc;
SQLHSTMT stmt;
SQLRETURN rc;

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env);
SQLSetEnvAttr(env,
 SQL_ATTR_ODBC_VERSION,
 (void *)SQL_OV_ODBC3, 0);
SQLAllocHandle(SQL_HANDLE_DBC, env, &dbc);
SQLConnect(dbc,
 (SQLCHAR *) "SAP Sybase IQ 16 Demo", SQL_NTS,
 (SQLCHAR *) "DBA", SQL_NTS,
 (SQLCHAR *) "sql", SQL_NTS);
SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
SQLBindCol(stmt, 1,
 SQL_C_SSHORT, &deptID, 0, &cbDeptID);
SQLBindCol(stmt, 2,
 SQL_C_CHAR, deptName,
 sizeof(deptName), &cbDeptName);
SQLBindCol(stmt, 3,
 SQL_C_SSHORT, &managerID, 0, &cbManagerID);
SQLExecDirect(stmt, (SQLCHAR *)
 "SELECT DepartmentID, DepartmentName, DepartmentHeadID "
 "FROM Departments "
 "ORDER BY DepartmentID", SQL_NTS);

ODBC CLI

Programming 359

while((rc = SQLFetch(stmt)) != SQL_NO_DATA)
{
 printf("%d %20s %d\n", deptID, deptName, managerID);
}
SQLFreeHandle(SQL_HANDLE_STMT, stmt);
SQLDisconnect(dbc);
SQLFreeHandle(SQL_HANDLE_DBC, dbc);
SQLFreeHandle(SQL_HANDLE_ENV, env);

The number of row positions you can fetch in a cursor is governed by the size of an integer. You
can fetch rows numbered up to number 2147483646, which is one less than the value that can
be held in a 32-bit integer. When using negative numbers (rows from the end) you can fetch
down to one more than the largest negative value that can be held in an integer.

Row updates and deletes through a cursor

The Microsoft ODBC Programmer's Reference suggests that you use SELECT...FOR
UPDATE to indicate that a query is updatable using positioned operations. You do not need to
use the FOR UPDATE clause in SAP Sybase IQ: SELECT statements are automatically
updatable as long as the following conditions are met:

• The underlying query supports updates.
That is to say, as long as a data manipulation statement on the columns in the result is
meaningful, then positioned data manipulation statements can be carried out on the cursor.
The ansi_update_constraints database option limits the type of queries that are updatable.

• The cursor type supports updates.
If you are using a read-only cursor, you cannot update the result set.

ODBC provides two alternatives for carrying out positioned updates and deletes:

• Use the SQLSetPos function.
Depending on the parameters supplied (SQL_POSITION, SQL_REFRESH,
SQL_UPDATE, SQL_DELETE) SQLSetPos sets the cursor position and allows an
application to refresh data, or update, or delete data in the result set.
This is the method to use with SAP Sybase IQ.

• Send positioned UPDATE and DELETE statements using SQLExecute. This method
should not be used with SAP Sybase IQ.

Bookmarks
ODBC provides bookmarks, which are values used to identify rows in a cursor. SAP Sybase
IQ supports bookmarks for value-sensitive and insensitive cursors. For example, the ODBC
cursor types SQL_CURSOR_STATIC and SQL_CURSOR_KEYSET_DRIVEN support
bookmarks while cursor types SQL_CURSOR_DYNAMIC and
SQL_CURSOR_FORWARD_ONLY do not.

Before ODBC 3.0, a database could specify only whether it supported bookmarks or not: there
was no interface to provide this information for each cursor type. There was no way for a
database server to indicate for what kind of cursor bookmarks were supported. For ODBC 2

ODBC CLI

360 SAP Sybase IQ

applications, SAP Sybase IQ returns that it does support bookmarks. There is therefore
nothing to prevent you from trying to use bookmarks with dynamic cursors; however, you
should not use this combination.

Stored procedure considerations
This section describes how to create and call stored procedures and process the results from an
ODBC application.

Procedures and result sets
There are two types of procedures: those that return result sets and those that do not. You can
use SQLNumResultCols to tell the difference: the number of result columns is zero if the
procedure does not return a result set. If there is a result set, you can fetch the values using
SQLFetch or SQLExtendedFetch just like any other cursor.

Parameters to procedures should be passed using parameter markers (question marks). Use
SQLBindParameter to assign a storage area for each parameter marker, whether it is an
INPUT, OUTPUT, or INOUT parameter.

To handle multiple result sets, ODBC must describe the currently executing cursor, not the
procedure-defined result set. Therefore, ODBC does not always describe column names as
defined in the RESULT clause of the stored procedure definition. To avoid this problem, you
can use column aliases in your procedure result set cursor.

Example 1

This example creates and calls a procedure that does not return a result set. The procedure
takes one INOUT parameter, and increments its value. In the example, the variable
num_columns has the value zero, since the procedure does not return a result set. Error
checking has been omitted to make the example easier to read.
HDBC dbc;
SQLHSTMT stmt;
SQLINTEGER I;
SQLSMALLINT num_columns;

SQLAllocStmt(dbc, &stmt);
SQLExecDirect(stmt,
 "CREATE PROCEDURE Increment(INOUT a INT)"
 "BEGIN "
 " SET a = a + 1 "
 "END", SQL_NTS);

/* Call the procedure to increment 'I' */
I = 1;
SQLBindParameter(stmt, 1, SQL_C_LONG, SQL_INTEGER, 0, 0, &I, NULL);
SQLExecDirect(stmt, "CALL Increment(?)", SQL_NTS);
SQLNumResultCols(stmt, &num_columns);

ODBC CLI

Programming 361

Example 2

This example calls a procedure that returns a result set. In the example, the variable
num_columns will have the value 2 since the procedure returns a result set with two
columns. Again, error checking has been omitted to make the example easier to read.
SQLRETURN rc;
SQLHDBC dbc;
SQLHSTMT stmt;
SQLSMALLINT num_columns;

SQLCHAR ID[10];
SQLCHAR Surname[20];

SQLExecDirect(stmt,
 "CREATE PROCEDURE EmployeeList() "
 "RESULT(ID CHAR(10), Surname CHAR(20)) "
 "BEGIN "
 " SELECT EmployeeID, Surname FROM Employees "
 "END", SQL_NTS);

/* Call the procedure - print the results */
SQLExecDirect(stmt, "CALL EmployeeList()", SQL_NTS);
SQLNumResultCols(stmt, &num_columns);
SQLBindCol(stmt, 1, SQL_C_CHAR, &ID, sizeof(ID), NULL);
SQLBindCol(stmt, 2, SQL_C_CHAR, &Surname, sizeof(Surname), NULL);

for(;;)
{
 rc = SQLFetch(stmt);
 if(rc == SQL_NO_DATA_FOUND)
 {
 rc = SQLMoreResults(stmt);
 if(rc == SQL_NO_DATA_FOUND) break;
 }
 else
 {
 do_something(ID, Surname);
 }
}

ODBC escape syntax
You can use ODBC escape syntax from any ODBC application. This escape syntax allows you
to call a set of common functions regardless of the database management system you are
using. The general form for the escape syntax is

{ keyword parameters }

The set of keywords includes the following:

• {d date-string} – The date string is any date value accepted by SAP Sybase IQ.

ODBC CLI

362 SAP Sybase IQ

• {t time-string} – The time string is any time value accepted by SAP Sybase IQ.
• {ts date-string time-string} – The date/time string is any timestamp value accepted by

SAP Sybase IQ.
• {guid uuid-string} – The uuid-string is any valid GUID string, for example, 41dfe9ef-

db91-11d2-8c43-006008d26a6f.
• {oj outer-join-expr} – The outer-join-expr is a valid OUTER JOIN expression accepted

by SAP Sybase IQ.
• {? = call func(p1,...)} – The function is any valid function call accepted by SAP Sybase

IQ.
• {call proc(p1,...)} – The procedure is any valid stored procedure call accepted by SAP

Sybase IQ.
• {fn func(p1,...)} – The function is any one of the library of functions listed below.

You can use the escape syntax to access a library of functions implemented by the ODBC
driver that includes number, string, time, date, and system functions.

For example, to obtain the current date in a database management system-neutral way, you
would execute the following:
SELECT { FN CURDATE() }

The following tables list the functions that are supported by the SAP Sybase IQ ODBC driver.

SAP Sybase IQ ODBC driver supported functions

Numeric func-
tions

String functions System functions Time/date func-
tions

ABS ASCII DATABASE CURDATE

ACOS BIT_LENGTH IFNULL CURRENT_DATE

ASIN CHAR USER CURRENT_TIME

ATAN CHAR_LENGTH CONVERT CURRENT_TIME-
STAMP

ATAN2 CHARAC-
TER_LENGTH

CURTIME

CEILING CONCAT DAYNAME

COS DIFFERENCE DAYOFMONTH

COT INSERT DAYOFWEEK

DEGREES LCASE DAYOFYEAR

EXP LEFT EXTRACT

ODBC CLI

Programming 363

Numeric func-
tions

String functions System functions Time/date func-
tions

FLOOR LENGTH HOUR

LOG LOCATE MINUTE

LOG10 LTRIM MONTH

MOD OCTET_LENGTH MONTHNAME

PI POSITION NOW

POWER REPEAT QUARTER

RADIANS REPLACE SECOND

RAND RIGHT TIMESTAMPADD

ROUND RTRIM TIMESTAMPDIFF

SIGN SOUNDEX WEEK

SIN SPACE YEAR

SQRT SUBSTRING

TAN UCASE

TRUNCATE

ODBC TIMESTAMPADD, TIMESTAMPDIFF
The ODBC driver maps the TIMESTAMPADD and TIMESTAMPDIFF functions to the
corresponding database server DATEADD and DATEDIFF functions. The syntax for the
TIMESTAMPADD and TIMESTAMPDIFF functions is as follows.
{ fn TIMESTAMPADD(interval, integer-expr, timestamp-expr) }

Returns the timestamp calculated by adding integer-expr intervals of type interval to
timestamp-expr. Valid values of interval are shown below.
{ fn TIMESTAMPDIFF(interval, timestamp-expr1, timestamp-expr2) }

Returns the integer number of intervals of type interval by which timestamp-expr2 is greater
than timestamp-expr1. Valid values of interval are shown below.

interval DATEADD/DATE-
DIFF date-part
mapping

SQL_TSI_YEAR YEAR

SQL_TSI_QUARTER QUARTER

ODBC CLI

364 SAP Sybase IQ

interval DATEADD/DATE-
DIFF date-part
mapping

SQL_TSI_MONTH MONTH

SQL_TSI_WEEK WEEK

SQL_TSI_DAY DAY

SQL_TSI_HOUR HOUR

SQL_TSI_MINUTE MINUTE

SQL_TSI_SECOND SECOND

SQL_TSI_FRAC_SE
COND

MICROSECOND -
The DATEADD and
DATEDIFF functions
do not support a reso-
lution of nanoseconds.

Interactive SQL
The ODBC escape syntax is identical to the JDBC escape syntax. In Interactive SQL, which
uses JDBC, the braces must be doubled. There must not be a space between successive braces:
"{{" is acceptable, but "{ {" is not. As well, you cannot use newline characters in the statement.
The escape syntax cannot be used in stored procedures because they are not parsed by
Interactive SQL.

For example, to obtain the number of weeks in February 2013, execute the following in
Interactive SQL:
SELECT {{ fn TIMESTAMPDIFF(SQL_TSI_WEEK, '2013-02-01T00:00:00',
'2013-03-01T00:00:00') }}

Error handling in ODBC
Errors in ODBC are reported using the return value from each of the ODBC function calls and
either the SQLError function or the SQLGetDiagRec function. The SQLError function was
used in ODBC versions up to, but not including, version 3. As of version 3 the SQLError
function has been deprecated and replaced by the SQLGetDiagRec function.

Every ODBC function returns a SQLRETURN, which is one of the following status codes:

Status code Description

SQL_SUCCESS No error.

ODBC CLI

Programming 365

Status code Description

SQL_SUCCESS_WITH_INFO The function completed, but a call to SQLError
will indicate a warning.

The most common case for this status is that a
value being returned is too long for the buffer
provided by the application.

SQL_ERROR The function did not complete because of an er-
ror. Call SQLError to get more information about
the problem.

SQL_INVALID_HANDLE An invalid environment, connection, or statement
handle was passed as a parameter.

This often happens if a handle is used after it has
been freed, or if the handle is the null pointer.

SQL_NO_DATA_FOUND There is no information available.

The most common use for this status is when
fetching from a cursor; it indicates that there are
no more rows in the cursor.

SQL_NEED_DATA Data is needed for a parameter.

This is an advanced feature described in the
ODBC SDK documentation under SQLParam-
Data and SQLPutData.

Every environment, connection, and statement handle can have one or more errors or
warnings associated with it. Each call to SQLError or SQLGetDiagRec returns the
information for one error and removes the information for that error. If you do not call
SQLError or SQLGetDiagRec to remove all errors, the errors are removed on the next
function call that passes the same handle as a parameter.

Each call to SQLError passes three handles for an environment, connection, and statement.
The first call uses SQL_NULL_HSTMT to get the error associated with a connection.
Similarly, a call with both SQL_NULL_DBC and SQL_NULL_HSTMT get any error
associated with the environment handle.

Each call to SQLGetDiagRec can pass either an environment, connection or statement handle.
The first call passes in a handle of type SQL_HANDLE_DBC to get the error associated with a
connection. The second call passes in a handle of type SQL_HANDLE_STMT to get the error
associated with the statement that was just executed.

SQLError and SQLGetDiagRec return SQL_SUCCESS if there is an error to report (not
SQL_ERROR), and SQL_NO_DATA_FOUND if there are no more errors to report.

Example 1

The following code fragment uses SQLError and return codes:

ODBC CLI

366 SAP Sybase IQ

SQLRETURN rc;
SQLHDBC dbc;
SQLHSTMT stmt;
UCHAR errmsg[100];

rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(rc == SQL_ERROR)
{
 SQLError(env, dbc, SQL_NULL_HSTMT, NULL, NULL,
 errmsg, sizeof(errmsg), NULL);
 print_error("Allocation failed", errmsg);
 return;
}

/* Delete items for order 2015 */
rc = SQLExecDirect(stmt,
 "DELETE FROM SalesOrderItems WHERE ID=2015",
 SQL_NTS);
if(rc == SQL_ERROR)
{
 SQLError(env, dbc, stmt, NULL, NULL,
 errmsg, sizeof(errmsg), NULL);
 print_error("Failed to delete items", errmsg);
 return;
}

Example 2

The following code fragment uses SQLGetDiagRec and return codes:
SQLRETURN rc;
SQLHDBC dbc;
SQLHSTMT stmt;
SQLSMALLINT errmsglen;
SQLINTEGER errnative;
SQLCHAR errmsg[255];
SQLCHAR errstate[5];

rc = SQLAllocHandle(SQL_HANDLE_STMT, dbc, &stmt);
if(rc == SQL_ERROR)
{
 SQLGetDiagRec(SQL_HANDLE_DBC, dbc, 1, errstate,
 &errnative, errmsg, sizeof(errmsg), &errmsglen);
 print_error("Allocation failed", errstate, errnative, errmsg);
 return;
}

rc = SQLExecDirect(stmt,
 "DELETE FROM SalesOrderItems WHERE ID=2015",
 SQL_NTS);
if(rc == SQL_ERROR)
{
 SQLGetDiagRec(SQL_HANDLE_STMT, stmt, 1, errstate,
 &errnative, errmsg, sizeof(errmsg), &errmsglen);
 print_error("Failed to delete items", errstate, errnative,
errmsg);

ODBC CLI

Programming 367

 return;
}

ODBC CLI

368 SAP Sybase IQ

Java in the Database

SAP Sybase IQ provides a mechanism for executing Java classes from within the database
server environment. Using Java methods in the database server provides powerful ways of
adding programming logic to a database.

Java support in the database offers the following:

• Reuse Java components in the different layers of your application—client, middle-tier, or
server—and use them wherever it makes the most sense to you. SAP Sybase IQ becomes a
platform for distributed computing.

• Java provides a more powerful language than the SQL stored procedure language for
building logic into the database.

• Java can be used in the database server without jeopardizing the integrity, security, or
robustness of the database and the server.

The SQLJ standard
Java in the database is based on the SQLJ Part 1 proposed standard (ANSI/INCITS
331.1-1999). SQLJ Part 1 provides specifications for calling Java static methods as SQL
stored procedures and functions.

Java in the Database FAQ
This section describes the key features of Java in the database.

What Are the Key Features of Java in the Database?
Detailed explanations of all the following points appear in later sections.

• You can run Java in the database – An external Java VM runs Java code on behalf of the
database server.

• You can access data from Java – SAP Sybase IQ lets you access data from Java.
• SQL is preserved – The use of Java does not alter the behavior of existing SQL statements

or other aspects of non-Java relational database behavior.

How Can I Use My Own Java Classes in Databases?
The Java language is more powerful than SQL. Java is an object-oriented language, so its
instructions (source code) come in the form of classes. To execute Java in a database, you write
the Java instructions outside the database and compile them outside the database into
compiled classes (byte code), which are binary files holding Java instructions.

Compiled classes can be called from client applications as easily and in the same way as stored
procedures. Java classes can contain both information about the subject and some

Java in the Database

Programming 369

computational logic. For example, you could design, write, and compile Java code to create an
Employees class complete with various methods that perform operations on an Employees
table. You install your Java classes as objects into a database and write SQL cover functions or
procedures to invoke the methods in the Java classes.

Once installed, you can execute these classes from the database server using stored
procedures. For example, the following statement creates the interface to a Java procedure:
CREATE PROCEDURE MyMethod()
EXTERNAL NAME 'JDBCExample.MyMethod()V'
LANGUAGE JAVA;

SAP Sybase IQ facilitates a runtime environment for Java classes, not a Java development
environment. You need a Java development environment, such as the Java Development Kit
(JDK), to write and compile Java. You also need a Java Runtime Environment to execute Java
classes.

You can use many of the classes that are part of the Java API as included in the Java
Development Kit. You can also use classes created and compiled by Java developers.

How Does Java Get Executed in a Database?
SAP Sybase IQ launches a Java VM. The Java VM interprets compiled Java instructions and
runs them on behalf of the database server. The database server starts the Java VM
automatically when needed: you do not have to take any explicit action to start or stop the Java
VM.

The SQL request processor in the database server has been extended so it can call into the Java
VM to execute Java instructions. It can also process requests from the Java VM to enable data
access from Java.

Java Error Handling
Errors in Java applications generate an exception object representing the error (called
throwing an exception). A thrown exception terminates a Java program unless it is caught and
handled properly at some level of the application.

Both Java API classes and custom-created classes can throw exceptions. In fact, users can
create their own exception classes that throw their own custom-created classes of errors.

If there is no exception handler in the body of the method where the exception occurred, then
the search for an exception handler continues up the call stack. If the top of the call stack is
reached and no exception handler has been found, the default exception handler of the Java
interpreter running the application is called and the program terminates.

In SAP Sybase IQ, if a SQL statement calls a Java method, and an unhandled exception is
thrown, a SQL error is generated. The full text of the Java exception plus the Java stack trace is
displayed in the server messages window.

Java in the Database

370 SAP Sybase IQ

How to Install Java Classes into a Database
You can install Java classes into a database as a single class or a JAR.

• A single class – You can install a single class into a database from a compiled class file.
Class files typically have extension .class.

• A JAR – You can install a set of classes all at once if they are in either a compressed or
uncompressed JAR file. JAR files typically have the extension .jar or .zip. SAP
Sybase IQ supports all compressed JAR files created with the JAR utility, and some other
JAR compression schemes.

Class File Creation
Although the details of each step may differ depending on whether you are using a Java
development tool, the steps involved in creating your own class generally include the
following steps:

1. Define your class.
Write the Java code that defines your class.

2. Name and save your class.
Save your class declaration (Java code) in a file with the extension .java. Make certain
the name of the file is the same as the name of the class and that the case of both names is
identical.
For example, a class called Utility should be saved in a file called Utility.java.

3. Compile your class.
This step turns your class declaration containing Java code into a new, separate file
containing byte code. The name of the new file is the same as the Java code file, but has an
extension of .class. You can run a compiled Java class in a Java Runtime Environment,
regardless of the platform you compiled it on or the operating system of the runtime
environment.

Special Features of Java Classes in the Database
This section describes features of Java classes when used in the database.

How to Call the Main Method
You typically start Java applications (outside the database) by running the Java VM on a class
that has a main method.

For example, the Invoice class in the file %ALLUSERSPROFILE%\SybaseIQ\samples
\JavaInvoice\Invoice.java has a main method. When you execute the class from
the command line using a command such as the following, it is the main method that executes.

Java in the Database

Programming 371

java Invoice

Threads in Java Applications
With features of the java.lang.Thread package, you can use multiple threads in a Java
application.

You can synchronize, suspend, resume, interrupt, or stop threads in Java applications.

No Such Method Exception
If you supply an incorrect number of arguments when calling a Java method, or if you use an
incorrect data type, the Java VM responds with a
java.lang.NoSuchMethodException error. Check the number and type of
arguments.

How to Return Result Sets from Java Methods
Write a Java method that returns a result set to the calling environment, and wrap this method
in a SQL stored procedure declared to be EXTERNAL NAME of LANGUAGE JAVA.

Perform the following tasks to return result sets from a Java method:

1. Ensure that the Java method is declared as public and static in a public class.
2. For each result set you expect the method to return, ensure that the method has a parameter

of type java.sql.ResultSet[]. These result set parameters must all occur at the end of the
parameter list.

3. In the method, first create an instance of java.sql.ResultSet and then assign it to one of the
ResultSet[] parameters.

4. Create a SQL stored procedure of type EXTERNAL NAME LANGUAGE JAVA. This
type of procedure is a wrapper around a Java method. You can use a cursor on the SQL
procedure result set in the same way as any other procedure that returns result sets.

Example

The following simple class has a single method that executes a query and passes the result set
back to the calling environment.
import java.sql.*;

public class MyResultSet
{
 public static void return_rset(ResultSet[] rset1)
 throws SQLException
 {
 Connection conn = DriverManager.getConnection(
 "jdbc:default:connection");
 Statement stmt = conn.createStatement();
 ResultSet rset =
 stmt.executeQuery (
 "SELECT Surname " +
 "FROM Customers");
 rset1[0] = rset;

Java in the Database

372 SAP Sybase IQ

 }
}

You can expose the result set using a CREATE PROCEDURE statement that indicates the
number of result sets returned from the procedure and the signature of the Java method.

A CREATE PROCEDURE statement indicating a result set could be defined as follows:
CREATE PROCEDURE result_set()
 RESULT (SurName person_name_t)
 DYNAMIC RESULT SETS 1
 EXTERNAL NAME
 'MyResultSet.return_rset([Ljava/sql/ResultSet;)V'
 LANGUAGE JAVA;

You can open a cursor on this procedure, just as you can with any SAP Sybase IQ procedure
returning result sets.

The string ([Ljava/sql/ResultSet;)V is a Java method signature that is a compact
character representation of the number and type of the parameters and return value.

Values Returned from Java Via Stored Procedures
You can use stored procedures created using the EXTERNAL NAME LANGUAGE JAVA as
wrappers around Java methods. This section describes how to write your Java method to
exploit OUT or INOUT parameters in the stored procedure.

Java does not have explicit support for INOUT or OUT parameters. Instead, you can use an
array of the parameter. For example, to use an integer OUT parameter, create an array of
exactly one integer:
public class Invoice
{
 public static boolean testOut(int[] param)
 {
 param[0] = 123;
 return true;
 }
}

The following procedure uses the testOut method:
CREATE PROCEDURE testOut(OUT p INTEGER)
EXTERNAL NAME 'Invoice.testOut([I)Z'
LANGUAGE JAVA;

The string ([I)Z is a Java method signature, indicating that the method has a single
parameter, which is an array of integers, and returns a Boolean value. Define the method so
that the method parameter you want to use as an OUT or INOUT parameter is an array of a
Java data type that corresponds to the SQL data type of the OUT or INOUT parameter.

To test this, call the stored procedure with an uninitialized variable.

Java in the Database

Programming 373

CREATE VARIABLE zap INTEGER;
CALL testOut(zap);
SELECT zap;

The result set is 123.

Security Management for Java
Java provides security managers that you can use to control user access to security-sensitive
features of your applications, such as file access and network access. You should take
advantage of the security management features supported by your Java VM.

How to Start and Stop the Java VM
The Java VM loads automatically whenever the first Java operation is carried out. To load it
explicitly in readiness for carrying out Java operations, you can do so by executing the
following statement:
START JAVA;

You can unload the Java VM when Java is not in use using the STOP JAVA statement. The
syntax is:
STOP JAVA;

Shutdown Hooks in the Java VM
The SAP Sybase IQ Java VM ClassLoader which is used in providing JAVA in the database
support allows applications to install shutdown hooks. These shutdown hooks are similar to
the shutdown hooks that applications install with the JVM Runtime.

When a connection that is using JAVA in the database support executes a STOP JAVA
statement or disconnects, the ClassLoader for that connection runs all shutdown hooks that
have been installed for that particular connection prior to unloading. For regular JAVA in the
database applications that install all Java classes within the database, the installation of
shutdown hooks should not be necessary. The ClassLoader shutdown hooks should be used
with extreme caution and should only be used to clean up any system-wide resources that were
allocated for the particular connection that is stopping Java. Also, jdbc:default JDBC requests
are not allowed within shutdown hooks since the jdbc:default connection is already closed
prior to the ClassLoader shutdown hook being called.

To install a shutdown hook with the SQL Anywhere Java VM ClassLoader, an application
must include sajvm.jar in the Java compiler classpath and it needs to execute code similar
to the following:
SDHookThread hook = new SDHookThread(...);
ClassLoader classLoader =
Thread.currentThread().getContextClassLoader();

Java in the Database

374 SAP Sybase IQ

((ianywhere.sa.jvm.SAClassLoader)classLoader).addShutdownHook(hook
);

The SDHookThread class extends the standard Thread class and that the above code must be
executed by a class that was loaded by the ClassLoader for the current connection. Any class
that is installed within the database and that is later called via an external environment call is
automatically executed by the correct SQL Anywhere Java VM ClassLoader.

To remove a shutdown hook from the SQL Anywhere Java VM ClassLoader list, an
application will need to execute code similar to the following:
ClassLoader classLoader =
Thread.currentThread().getContextClassLoader();
((ianywhere.sa.jvm.SAClassLoader)classLoader).removeShutdownHook(h
ook);

The above code must be executed by a class that was loaded by the ClassLoader for the current
connection.

Java in the Database

Programming 375

Java in the Database

376 SAP Sybase IQ

JDBC CLI

JDBC is a call-level interface for Java applications. JDBC provides you with a uniform
interface to a wide range of relational databases, and provides a common base on which higher
level tools and interfaces can be built. JDBC is now a standard part of Java and is included in
the JDK.

SAP Sybase IQ includes a 4.0 driver, which is a Type 2 driver.

SAP Sybase IQ also supports a pure Java JDBC driver, named jConnect, which is available
from SAP.

In addition to using JDBC as a client-side application programming interface, you can also use
JDBC inside the database server to access data by using Java in the database.

JDBC Applications
You can develop Java applications that use the JDBC API to connect to SAP Sybase IQ.
Several of the applications supplied with SAP Sybase IQ use JDBC, such as Interactive SQL.

Java and JDBC are also important programming languages for developing UltraLite®

applications.

JDBC can be used both from client applications and inside the database. Java classes using
JDBC provide a more powerful alternative to SQL stored procedures for incorporating
programming logic into the database.

JDBC CLI

Programming 377

JDBC provides a SQL interface for Java applications: to access relational data from Java, you
do so using JDBC calls.

The phrase client application applies both to applications running on a user's computer and to
logic running on a middle-tier application server.

The examples illustrate the distinctive features of using JDBC in SAP Sybase IQ. For more
information about JDBC programming, see any JDBC programming book.

You can use JDBC with SAP Sybase IQ in the following ways:

• JDBC on the client – Java client applications can make JDBC calls to SAP Sybase IQ.
The connection takes place through a JDBC driver.

SAP Sybase IQ includes a JDBC 4.0 driver, which is a Type 2 JDBC driver, and also
supports the jConnect driver for pure Java applications, which is a Type 4 JDBC driver.

• JDBC in the database – Java classes installed into a database can make JDBC calls to
access and modify data in the database using an internal JDBC driver.

JDBC resources

• Example source code – You can find source code for the examples in this section in the
directory %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC.

• JDBC Specification – You can find more information about the JDBC Data Access API at
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html.

• Required software – You need TCP/IP to use the jConnect driver.

The jConnect driver is available at http://www.sybase.com/products/allproductsa-z/
softwaredeveloperkit/jconnect.

JDBC Drivers
SAP Sybase IQ supports the following JDBC drivers:

• SQL Anywhere 16 JDBC 4.0 driver – This driver communicates with SAP Sybase IQ
using the Command Sequence client/server protocol. Its behavior is consistent with
ODBC, embedded SQL, and OLE DB applications. The SQL Anywhere 16 JDBC 4.0
driver is the recommended JDBC driver for connecting to SAP Sybase IQ databases. The
JDBC 4.0 driver can be used only with JRE 1.6 or later.

The JDBC 4.0 driver takes advantage of the new automatic JDBC driver registration.
Hence, if an application wants to make use of the JDBC 4.0 driver, it no longer needs to
perform a Class.forName call to get the JDBC driver loaded. It is instead sufficient to have
the sajdbc4.jar file in the class file path and simply call
DriverManager.getConnection() with a URL that begins with jdbc:sqlanywhere.

The JDBC 4.0 driver contains manifest information to allow it to be loaded as an OSGi
(Open Services Gateway initiative) bundle.

JDBC CLI

378 SAP Sybase IQ

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

With the JDBC 4.0 driver, metadata for NCHAR data now returns the column type as
java.sql.Types.NCHAR, NVARCHAR, or LONGNVARCHAR. In addition, applications
can now fetch NCHAR data using the Get/SetNString or Get/SetNClob methods instead
of the Get/SetString and Get/SetClob methods.

• jConnect – This driver is a 100% pure Java driver. It communicates with SAP Sybase IQ
using the TDS client/server protocol.

jConnect and jConnect documentation are available at http://www.sybase.com/products/
allproductsa-z/softwaredeveloperkit/jconnect.

When choosing which driver to use, you should consider the following factors:

• Features – The SQL Anywhere 16 JDBC 4.0 driver and jConnect are JDBC 4.0 compliant.
The SQL Anywhere 16 JDBC driver provides fully-scrollable cursors when connected to
an SAP Sybase IQ database. The jConnect JDBC driver provides scrollable cursors when
connected to an SAP Sybase IQ database server, but the result set is cached on the client
side. The jConnect JDBC driver provides fully-scrollable cursors when connected to a
SAP Adaptive Server® Enterprise database.

The JDBC 4.0 API documentation is available at http://www.oracle.com/technetwork/
java/javase/tech/index-jsp-136101.html.

• Pure Java – The jConnect driver is a pure Java solution. The SQL Anywhere 16 JDBC
drivers are based on the SQL Anywhere 16 ODBC driver and are not pure Java solutions.

• Performance – The SQL Anywhere 16 JDBC drivers provide better performance for most
purposes than the jConnect driver.

• Compatibility – The TDS protocol used by the jConnect driver is shared with Adaptive
Server. Some aspects of the driver's behavior are governed by this protocol, and are
configured to be compatible with Adaptive Server.

For information about platform availability for the SQL Anywhere 16 JDBC drivers and
jConnect, see http://www.sybase.com/detail?id=1061806.

JDBC Program Structure
The following sequence of events typically occurs in JDBC applications:

• Create a Connection object – Calling a getConnection class method of the
DriverManager class creates a Connection object, and establishes a connection with a
database.

• Generate a Statement object – The Connection object generates a Statement object.
• Pass a SQL statement – A SQL statement that executes within the database environment

is passed to the Statement object. If the statement is a query, this action returns a ResultSet
object.

JDBC CLI

Programming 379

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
http://www.sybase.com/detail?id=1061806

The ResultSet object contains the data returned from the SQL statement, but exposes it one
row at a time (similar to the way a cursor works).

• Loop over the rows of the result set – The next method of the ResultSet object performs
two actions:

• The current row (the row in the result set exposed through the ResultSet object)
advances one row.

• A boolean value returns to indicate whether there is a row to advance to.
• For each row, retrieve the values – Values are retrieved for each column in the ResultSet

object by identifying either the name or position of the column. You can use the getData
method to get the value from a column on the current row.

Java objects can use JDBC objects to interact with a database and get data for their own use.

Differences Between Client- and Server-Side JDBC
Connections

A difference between JDBC on the client and in the database server lies in establishing a
connection with the database environment.

• Client side – In client-side JDBC, establishing a connection requires a SQL Anywhere
JDBC driver or the jConnect JDBC driver. Passing arguments to
DriverManager.getConnection establishes the connection. The database environment is
an external application from the perspective of the client application.

• Server-side – When using JDBC within the database server, a connection already exists.
The string "jdbc:default:connection" is passed to DriverManager.getConnection, which
allows the JDBC application to work within the current user connection. This is a quick,
efficient, and safe operation because the client application has already passed the database
security to establish the connection. The user ID and password, having been provided
once, do not need to be provided again. The server-side JDBC driver can only connect to
the database of the current connection.

You can write JDBC classes so that they can run both at the client and at the server by
employing a single conditional statement for constructing the URL. An external connection
requires the host name and port number, while the internal connection requires
"jdbc:default:connection".

SQL Anywhere JDBC Drivers
The SQL Anywhere JDBC 4.0 driver provides some performance benefits and feature benefits
compared to the pure Java jConnect JDBC driver, however, this driver does not provide a
pure-Java solution. The SQL Anywhere JDBC 4.0 driver is recommended.

JDBC CLI

380 SAP Sybase IQ

How to Load the SQL Anywhere JDBC 4.0 Driver
Ensure that the SQL Anywhere JDBC 4.0 driver is in your class file path.
set classpath=%IQDIR%\java\sajdbc4.jar;%classpath%

The JDBC 4.0 driver takes advantage of the new automatic JDBC driver registration. The
driver is automatically loaded at execution startup when it is in the class file path.

Required Files
The Java component of the SQL Anywhere JDBC 4.0 driver is included in the
sajdbc4.jar file installed into the Java subdirectory of your SAP Sybase IQ installation.
For Windows, the native component is dbjdbc16.dll in the bin32 or bin64
subdirectory of your SAP Sybase IQ installation; for Unix, the native component is
libdbjdbc16.so. This component must be in the system path.

SQL Anywhere 16 JDBC Driver Connection Strings
To connect to a database via a SQL Anywhere 16 JDBC driver, you need to supply a URL for
the database. For example:
Connection con = DriverManager.getConnection(
 "jdbc:sqlanywhere:DSN=Sybase IQ Demo");
Connection con =
DriverManager.getConnection("jdbc:sqlanywhere:DSN=Sybase IQ Demo");

The URL contains jdbc:sqlanywhere: followed by a connection string. If the
sajdbc4.jar file is in your class file path, then the JDBC 4.0 driver will have been loaded
automatically and it will handle the URL. As shown in the example, an ODBC data source
(DSN) may be specified for convenience, but you can also use explicit connection parameters,
separated by semicolons, in addition to or instead of the data source connection parameter.

If you do not use a data source, you must specify all required connection parameters in the
connection string:
Connection con = DriverManager.getConnection(

"jdbc:sqlanywhere:UserID=<user_id>;Password=<password>;Start=...")
;

The Driver connection parameter is not required since neither the ODBC driver nor ODBC
driver manager is used. If present, it will be ignored.

JDBC CLI

Programming 381

The jConnect JDBC Driver
The jConnect driver is available as a separate download. To use JDBC from an applet, you
must use the jConnect JDBC driver to connect to SAP Sybase IQ databases.

Download the jConnect driver at http://www.sybase.com/products/allproductsa-z/
softwaredeveloperkit/jconnect. Documentation for jConnect can also be found on the same
page.

The jConnect Driver Files
jConnect is supplied as a JAR file named jconn4.jar. This file is located in your jConnect
install location.

Setting the Class File Path for jConnect
For your application to use jConnect, the jConnect classes must be in your class file path at
compile time and run time, so that the Java compiler and Java runtime can locate the necessary
files.

The following command adds the jConnect driver to an existing CLASSPATH environment
variable (where jconnect-path is your jConnect installation directory).
set classpath=jconnect-path\classes\jconn4.jar;%classpath%

Importing the jConnect Classes
The classes in jConnect are all in com.sybase.jdbc4.jdbc. You must import these classes at the
beginning of each source file:
import com.sybase.jdbc4.jdbc.*

Encrypting Passwords
SAP Sybase IQ supports password encryption for jConnect connections.

Installing jConnect System Objects into a Database
To use jConnect to access system table information (database metadata), you must add the
jConnect system objects to your database.

Prerequisites

You must have the ALTER DATABASE system privilege, and must be the only connection to
the database.

Back up your database files before upgrading. If you attempt to upgrade a database and it fails,
then the database becomes unusable.

JDBC CLI

382 SAP Sybase IQ

http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect
http://www.sybase.com/products/allproductsa-z/softwaredeveloperkit/jconnect

Task

jConnect system objects are installed into an SAP Sybase IQ database by default when you use
the iqinit utility. You can add the jConnect system objects to the database when creating the
database or at a later time by upgrading the database.

How to Load the jConnect Driver
Ensure that the jConnect driver is in your class file path. The driver file jconn4.jar is
located in the classes subdirectory of your jConnect installation.

set classpath=.;c:\jConnect-7_0\classes\jconn4.jar;%classpath%

The jConnect driver takes advantage of the new automatic JDBC driver registration. The
driver is automatically loaded at execution startup when it is in the class file path.

jConnect Driver Connection Strings
To connect to a database via jConnect, you need to supply a URL for the database. For
example:
Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:2638", "<user_id>", "<password>");

The URL is composed in the following way:
jdbc:sybase:Tds:host:port

The individual components are:

• jdbc:sybase:Tds – The jConnect JDBC driver, using the TDS application protocol.
• host – The IP address or name of the computer on which the server is running. If you are

establishing a same-host connection, you can use localhost, which means the computer
system you are logged into.

• port – The port number on which the database server listens. The port number assigned to
SAP Sybase IQ is 2638. Use that number unless there are specific reasons not to do so.

The connection string must be less than 253 characters in length.

If you are using the SAP Sybase IQ personal server, make sure to include the TCP/IP support
option when starting the server.

How to Specify a Database with a jConnect Connection String
Each SAP Sybase IQ database server can have one or more databases loaded at a time. If the
URL you supply when connecting via jConnect specifies a server, but does not specify a
database, then the connection attempt is made to the default database on the server.

You can specify a particular database by providing an extended form of the URL in one of the
following ways.

Using the ServiceName Parameter
jdbc:sybase:Tds:host:port?ServiceName=database

JDBC CLI

Programming 383

The question mark followed by a series of assignments is a standard way of providing
arguments to a URL. The case of ServiceName is not significant, and there must be no spaces
around the = sign. The database parameter is the database name, not the server name. The
database name must not include the path or file suffix. For example:
Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:2638?ServiceName=demo", "DBA",
"sql");

Using the RemotePWD Parameter
A workaround exists for passing additional connection parameters to the server.

This technique allows you to provide additional connection parameters such as the database
name, or a database file, using the RemotePWD field. You set RemotePWD as a Properties
field using the put method.

The following code illustrates how to use the field.
import java.util.Properties;
.
.
.
Properties props = new Properties();
props.put("User", "DBA");
props.put("Password", "sql");
props.put("RemotePWD", ",DatabaseFile=mydb.db");

Connection con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:2638", props);

As shown in the example, a comma must precede the DatabaseFile connection parameter.
Using the DatabaseFile parameter, you can start a database on a server using jConnect. By
default, the database is started with AutoStop=YES. If you specify utility_db with a
DatabaseFile (DBF) or DatabaseName (DBN) connection parameter (for example,
DBN=utility_db), then the utility database is started automatically.

Database Options Set for jConnect Connections
When an application connects to the database using the jConnect driver, the
sp_tsql_environment stored procedure is called. The sp_tsql_environment procedure sets
some database options for compatibility with Adaptive Server Enterprise behavior.

Connections from a JDBC Client Application
Database metadata is always available when using a SQL Anywhere JDBC driver.

To access database system tables (database metadata) from a JDBC application that uses
jConnect, you must add a set of jConnect system objects to your database. These procedures
are installed to all databases by default. The iqinit -i option prevents this installation.

JDBC CLI

384 SAP Sybase IQ

The following complete Java application is a command line program that connects to a
running database, prints a set of information to your command line, and terminates.

Establishing a connection is the first step any JDBC application must take when working with
database data.

This example illustrates an external connection, which is a regular client/server connection.

Connection Example Code
The following example uses the JDBC 4.0 version of the SQL Anywhere JDBC driver by
default to connect to the database. To use a different driver, you can pass in the driver name
(jdbc4, jConnect) on the command line. Examples for using the JDBC 4.0 driver and jConnect
are included in the code. This example assumes that a database server has already been started
using the sample database. The source code can be found in the file JDBCConnect.java in
the %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC directory.

import java.io.*;
import java.sql.*;

public class JDBCConnect
{
 public static void main(String args[])
 {
 try
 {
 String arg;
 Connection con;

 // Select the JDBC driver and create a connection.
 // May throw a SQLException.
 // Choices are:
 // 1. jConnect driver
 // 2. SQL Anywhere JDBC 4.0 driver
 arg = "jdbc4";
 if(args.length > 0) arg = args[0];
 if(arg.compareToIgnoreCase("jconnect") == 0)
 {
 con = DriverManager.getConnection(
 "jdbc:sybase:Tds:localhost:2638", "<user_id>",
"<password>");
 }
 else
 {
 con = DriverManager.getConnection(
 "jdbc:sqlanywhere:uid=<user_id>;pwd=<password>");
 }

 System.out.println("Using "+arg+" driver");

 // Create a statement object, the container for the SQL
 // statement. May throw a SQLException.
 Statement stmt = con.createStatement();

JDBC CLI

Programming 385

 // Create a result set object by executing the query.
 // May throw a SQLException.
 ResultSet rs = stmt.executeQuery(
 "SELECT ID, GivenName, Surname FROM Customers");

 // Process the result set.
 while (rs.next())
 {
 int value = rs.getInt(1);
 String FirstName = rs.getString(2);
 String LastName = rs.getString(3);
 System.out.println(value+" "+FirstName+" "+LastName);
 }
 rs.close();
 stmt.close();
 con.close();
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 System.exit(1);
 }
 catch (Exception e)
 {
 e.printStackTrace();
 System.exit(1);
 }

 System.exit(0);
 }
}

How the Connection Example Works
The external connection example is a Java command line program.

Importing Packages
The application requires a couple of packages, which are imported in the first lines of
JDBCConnect.java:

• The java.io package contains the Java input/output classes, which are required for printing
to the command prompt window.

• The java.sql package contains the JDBC classes, which are required for all JDBC
applications.

The Main Method
Each Java application requires a class with a method named main, which is the method
invoked when the program starts. In this simple example, JDBCConnect.main is the only
public method in the application.

The JDBCConnect.main method carries out the following tasks:

JDBC CLI

386 SAP Sybase IQ

1. Determines which driver to load based on the command line argument. The SQL
Anywhere JDBC 4.0 and jConnect 7.0 drivers are automatically loaded at startup if they
are in the class file path.

2. Connects to the default running database using the selected JDBC driver URL. The
getConnection method establishes a connection using the specified URL.

3. Creates a statement object, which is the container for the SQL statement.
4. Creates a result set object by executing a SQL query.
5. Iterates through the result set, printing the column information.
6. Closes each of the result set, statement, and connection objects.

Running the Connection Example
The steps involved in creating and executing a JDBC application are shown through the use of
an example.

Prerequisites

A Java Development Kit (JDK) must be installed.

Task

Two different types of connections using JDBC can be made. One is the client-side connection
and the other is the server-side connection. The following example uses a client-side
connection.

1. At a command prompt, change to the %ALLUSERSPROFILE%\SybaseIQ\samples
\SQLAnywhere\JDBC directory.

2. Start a database server with the iqdemo.db database on your local computer.

3. Set the CLASSPATH environment variable. The SQL Anywhere JDBC 4.0 driver
contained in sajdbc4.jar is used in this example.

set classpath=.;%IQDIR%\java\sajdbc4.jar

If you are using the jConnect driver instead, then use the following (where path is your
jConnect installation directory):
set classpath=.;jconnect-path\classes\jconn4.jar

4. Run the following command to compile the example:
javac JDBCConnect.java

5. Run the following command to execute the example:
java JDBCConnect

Add a command line argument such as jconnect to load a different JDBC driver.

java JDBCConnect jconnect
6. Confirm that a list of identification numbers with customer's names appears at the

command prompt.

JDBC CLI

Programming 387

If the attempt to connect fails, an error message appears instead. Confirm that you have
executed all the steps as required. Check that your class file path is correct. An incorrect
setting may result in a failure to locate a class.

A list of identification numbers with customer's names is displayed.

How to Establish a Connection from a Server-Side JDBC
Class

SQL statements in JDBC are built using the createStatement method of a Connection object.
Even classes running inside the server need to establish a connection to create a Connection
object.

Establishing a connection from a server-side JDBC class is more straightforward than
establishing an external connection. Because the user is already connected to the database, the
class simply uses the current connection.

Server-Side Connection Example Code
The following is the source code for the server-side connection example. It is a modified
version of the JDBCConnect.java example and is located in %ALLUSERSPROFILE%
\SybaseIQ\samples\SQLAnywhere\JDBC\JDBCConnect2.java.

import java.io.*;
import java.sql.*;

public class JDBCConnect2
{
 public static void main(String args[])
 {
 try
 {
 // Open the connection. May throw a SQLException.
 Connection con = DriverManager.getConnection(
 "jdbc:default:connection");

 // Create a statement object, the container for the SQL
 // statement. May throw a SQLException.
 Statement stmt = con.createStatement();
 // Create a result set object by executing the query.
 // May throw a SQLException.
 ResultSet rs = stmt.executeQuery(
 "SELECT ID, GivenName, Surname FROM Customers");

 // Process the result set.
 while (rs.next())
 {
 int value = rs.getInt(1);
 String FirstName = rs.getString(2);
 String LastName = rs.getString(3);
 System.out.println(value+" "+FirstName+" "+LastName);

JDBC CLI

388 SAP Sybase IQ

 }
 rs.close();
 stmt.close();
 con.close();
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

How the Server-Side Connection Example Differs
The server-side connection example is almost identical to the client-side connection example,
with the following exceptions:

1. The JDBC driver does not need to be preloaded.
2. It connects to the default running database using the current connection. The URL in the

getConnection call has been changed as follows:
Connection con = DriverManager.getConnection(
 "jdbc:default:connection");

3. The System.exit() statements have been removed.

Running the Server-Side Connection Example
The steps involved in creating and executing a JDBC server-side application are shown
through the use of an example.

Prerequisites

A Java Development Kit (JDK) must be installed.

Task

Two different types of connections using JDBC can be made. One is the client-side connection
and the other is the server-side connection. The following example uses a server-side
connection.

1. At a command prompt, change to the %ALLUSERSPROFILE%\SybaseIQ\samples
\SQLAnywhere\JDBC directory.

cd %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC
2. For server-side JDBC, it is not necessary to set the CLASSPATH environment variable

unless the server will be started from a different current working directory.

JDBC CLI

Programming 389

set classpath=.;%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere
\JDBC

3. Start a database server with the iqdemo database on your local computer.

4. Enter the following command to compile the example:
javac JDBCConnect2.java

5. Install the class into the sample database using Interactive SQL. Execute the following
statement (a path to the class file may be required):
INSTALL JAVA NEW
FROM FILE 'JDBCConnect2.class';

6. Define a stored procedure named JDBCConnect that acts as a wrapper for the
JDBCConnect2.main method in the class:
CREATE PROCEDURE JDBCConnect(OUT args LONG VARCHAR)
 EXTERNAL NAME 'JDBCConnect2.main([Ljava/lang/String;)V'
 LANGUAGE JAVA;

7. Call the JDBCConnect2.main method as follows:
CALL JDBCConnect();

The first time a Java class is called in a session, the Java VM must be loaded. This might
take a few seconds.

8. Confirm that a list of identification numbers with customers' names appears in the database
server messages window.

If the attempt to connect fails, an error message appears instead. Confirm that you have
executed all the steps as required.

A list of identification numbers with customer's names is displayed in the database server
messages window.

Notes on JDBC Connections
Familiarize yourself with autocommit behavior, transaction isolation levels, and connection
defaults.

• Autocommit behavior – The JDBC specification requires that, by default, a COMMIT is
performed after each data manipulation statement. Currently, the client-side JDBC
behavior is to commit (autocommit is true) and the server-side behavior is to not commit
(autocommit is false). To obtain the same behavior in both client-side and server-side
applications, you can use a statement such as the following:
con.setAutoCommit(false);

In this statement, con is the current connection object. You could also set autocommit to
true.

• Setting transaction isolation level – To set the transaction isolation level, the application
must call the Connection.setTransactionIsolation method with one of the following
values.

JDBC CLI

390 SAP Sybase IQ

For the SQL Anywhere JDBC 4.0 driver use:

TRANSACTION_NONE
TRANSACTION_READ_COMMITTED
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_REPEATABLE_READ
TRANSACTION_SERIALIZABLE
sybase.jdbc4.sqlanywhere.IConnection.SA_TRANSACTION_SNAPSHOT
sybase.jdbc4.sqlanywhere.IConnection.SA_TRANSACTION_STATEMENT_SNA
PSHOT
sybase.jdbc4.sqlanywhere.IConnection.SA_TRANSACTION_STATEMENT_REA
DONLY_SNAPSHOT

The following example sets the transaction isolation level to SNAPSHOT using the JDBC
4.0 driver.
try
{
 con.setTransactionIsolation(

sybase.jdbc4.sqlanywhere.IConnection.SA_TRANSACTION_SNAPSHOT
);
}
catch(Exception e)
{
 System.err.println("Error! Could not set isolation level");
 System.err.println(e.getMessage());
 printExceptions((SQLException)e);
}

For more information about the getTransactionIsolation and setTransactionIsolation, see
documentation on the java.sql.Connection interface at http://docs.oracle.com/javase/6/
docs/technotes/guides/jdbc/.

• Connection defaults – From server-side JDBC, only the first call to
getConnection("jdbc:default:connection") creates a new connection
with the default values. Subsequent calls return a wrapper of the current connection with
all connection properties unchanged. If you set autocommit to false in your initial
connection, any subsequent getConnection calls within the same Java code return a
connection with autocommit set to false.

You may want to ensure that closing a connection restores the connection properties to
their default values, so that subsequent connections are obtained with standard JDBC
values. The following code achieves this:
Connection con =
 DriverManager.getConnection("jdbc:default:connection");

boolean oldAutoCommit = con.getAutoCommit();
try
{
 // main body of code here

JDBC CLI

Programming 391

http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/

}
finally
{
 con.setAutoCommit(oldAutoCommit);
}

This discussion applies not only to autocommit, but also to other connection properties
such as transaction isolation level and read-only mode.

For more information about the getTransactionIsolation, setTransactionIsolation, and
isReadOnly methods, see documentation on the java.sql.Connection interface at http://
docs.oracle.com/javase/6/docs/technotes/guides/jdbc/.

Data Access Using JDBC
Java applications that hold some or all classes in the database have significant advantages over
traditional SQL stored procedures. At an introductory level, however, it may be helpful to use
the parallels with SQL stored procedures to demonstrate the capabilities of JDBC. In the
following examples, you write Java classes that insert a row into the Departments table.

As with other interfaces, SQL statements in JDBC can be either static or dynamic. Static SQL
statements are constructed in the Java application and sent to the database. The database server
parses the statement, selects an execution plan, and executes the statement. Together, parsing
and selecting an execution plan are referred to as preparing the statement.

If a similar statement has to be executed many times (many inserts into one table, for example),
there can be significant overhead in static SQL because the preparation step has to be executed
each time.

In contrast, a dynamic SQL statement contains place holders. The statement, prepared once
using these place holders, can be executed many times without the additional expense of
preparing.

Preparing for the JDBC Examples
The code fragments in the following sections are taken from the complete class in
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC
\JDBCExample.java. In preparation for these sections, the sample Java application is
compiled and installed into the database.

Prerequisites

You must have the MANAGE ANY EXTERNAL OBJECT system privilege.

A Java Development Kit (JDK) must be installed.

JDBC CLI

392 SAP Sybase IQ

http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/
http://docs.oracle.com/javase/6/docs/technotes/guides/jdbc/

Task

1. Compile the JDBCExample.java source code.

2. Connect to the database from Interactive SQL.

3. Install the JDBCExample.class file into the sample database by executing the
following statement in Interactive SQL:
INSTALL JAVA NEW
FROM FILE 'JDBCExample.class';

If the database server was not started from the same directory as the class file and the path
to the class file is not listed in the database server's CLASSPATH, then you will have to
include the path to the class file in the INSTALL statement.

The JDBCExample class file is installed in the database and ready for demonstration.

Inserts, Updates, and Deletes Using JDBC
Static SQL statements such as INSERT, UPDATE, and DELETE, which do not return result
sets, are executed using the executeUpdate method of the Statement class. Statements, such as
CREATE TABLE and other data definition statements, can also be executed using
executeUpdate.

The addBatch, clearBatch, and executeBatch methods of the Statement class may also be
used. Due to the fact that the JDBC specification is unclear on the behavior of the
executeBatch method of the Statement class, the following notes should be considered when
using this method with the SQL Anywhere JDBC drivers:

• Processing of the batch stops immediately upon encountering a SQL exception or result
set. If processing of the batch stops, then a BatchUpdateException will be thrown by the
executeBatch method. Calling the getUpdateCounts method on the
BatchUpdateException will return an integer array of row counts where the set of counts
prior to the batch failure will contain a valid non-negative update count; while all counts at
the point of the batch failure and beyond will contain a -1 value. Casting the
BatchUpdateException to a SQLException will provide additional details as to why batch
processing was stopped.

• The batch is only cleared when the clearBatch method is explicitly called. As a result,
calling the executeBatch method repeatedly will re-execute the batch over and over again.
In addition, calling execute(sql_query) or executeQuery(sql_query) will correctly execute
the specified SQL query, but will not clear the underlying batch. Hence, calling the
executeBatch method followed by execute(sql_query) followed by the executeBatch
method again will execute the set of batched statements, then execute the specified SQL
query, and then execute the set of batched statements again.

The following code fragment illustrates how to execute an INSERT statement. It uses a
Statement object that has been passed to the InsertStatic method as an argument.
public static void InsertStatic(Statement stmt)
{

JDBC CLI

Programming 393

 try
 {
 int iRows = stmt.executeUpdate(
 "INSERT INTO Departments (DepartmentID, DepartmentName)"
 + " VALUES (201, 'Eastern Sales')");
 // Print the number of rows inserted
 System.out.println(iRows + " rows inserted");
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

Notes

• This code fragment is part of the JDBCExample.java file included in the
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC directory.

• The executeUpdate method returns an integer that reflects the number of rows affected by
the operation. In this case, a successful INSERT would return a value of one (1).

• When run as a server-side class, the output from System.out.println goes to the
database server messages window.

Using Static INSERT and DELETE Statements from JDBC
A sample JDBC application is called from the database server to insert and delete rows in the
Departments table using static SQL statements.

Prerequisites

To create an external procedure, you must have the CREATE PROCEDURE and CREATE
EXTERNAL REFERENCE system privileges. You must also have SELECT, DELETE, and
INSERT privileges on the database object you are modifying.

A Java Development Kit (JDK) must be installed.

Task

1. Connect to the database from Interactive SQL.

2. Ensure the JDBCExample class has been installed.

3. Define a stored procedure named JDBCExample that acts as a wrapper for the
JDBCExample.main method in the class:

JDBC CLI

394 SAP Sybase IQ

CREATE PROCEDURE JDBCExample(IN arg CHAR(50))
 EXTERNAL NAME 'JDBCExample.main([Ljava/lang/String;)V'
 LANGUAGE JAVA;

4. Call the JDBCExample.main method as follows:
CALL JDBCExample('insert');

The argument string 'insert' causes the InsertStatic method to be invoked.

5. Confirm that a row has been added to the Departments table.
SELECT * FROM Departments;

The example program displays the updated contents of the Departments table in the
database server messages window.

6. There is a similar method in the example class called DeleteStatic that shows how to delete
the row that has just been added. Call the JDBCExample.main method as follows:
CALL JDBCExample('delete');

The argument string 'delete' causes the DeleteStatic method to be invoked.

7. Confirm that the row has been deleted from the Departments table.
SELECT * FROM Departments;

The example program displays the updated contents of the Departments table in the
database server messages window.

Rows are inserted and deleted from a table using static SQL statements in a server-side JDBC
application.

How to Use Prepared Statements for More Efficient Access
If you use the Statement interface, you parse each statement that you send to the database,
generate an access plan, and execute the statement. The steps before execution are called
preparing the statement.

You can achieve performance benefits if you use the PreparedStatement interface. This allows
you to prepare a statement using placeholders, and then assign values to the placeholders when
executing the statement.

Using prepared statements is particularly useful when carrying out many similar actions, such
as inserting many rows.

Example

The following example illustrates how to use the PreparedStatement interface, although
inserting a single row is not a good use of prepared statements.

The following InsertDynamic method of the JDBCExample class carries out a prepared
statement:
public static void InsertDynamic(Connection con,
 String ID, String name)
{

JDBC CLI

Programming 395

 try
 {
 // Build the INSERT statement
 // ? is a placeholder character
 String sqlStr = "INSERT INTO Departments " +
 "(DepartmentID, DepartmentName) " +
 "VALUES (? , ?)";

 // Prepare the statement
 PreparedStatement stmt =
 con.prepareStatement(sqlStr);

 // Set some values
 int idValue = Integer.valueOf(ID);
 stmt.setInt(1, idValue);
 stmt.setString(2, name);

 // Execute the statement
 int iRows = stmt.executeUpdate();

 // Print the number of rows inserted
 System.out.println(iRows + " rows inserted");
 }
 catch (SQLException sqe)
 {
 System.out.println("Unexpected exception : " +
 sqe.toString() + ", sqlstate = " +
 sqe.getSQLState());
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
}

Notes

• This code fragment is part of the JDBCExample.java file included in the
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC directory.

• The executeUpdate method returns an integer that reflects the number of rows affected by
the operation. In this case, a successful INSERT would return a value of one (1).

• When run as a server-side class, the output from System.out.println goes to the
database server messages window.

JDBC CLI

396 SAP Sybase IQ

Using Prepared INSERT and DELETE Statements from JDBC
A sample JDBC application is called from the database server to insert and delete rows in the
Departments table using prepared statements.

Prerequisites

To create an external procedure, you must have the CREATE PROCEDURE and CREATE
EXTERNAL REFERENCE system privileges. You must also have SELECT, DELETE, and
INSERT privileges on the database object you are modifying.

A Java Development Kit (JDK) must be installed.

Task

1. Connect to the database from Interactive SQL.

2. Ensure the JDBCExample class has been installed.

3. Define a stored procedure named JDBCInsert that acts as a wrapper for the
JDBCExample.Insert method in the class:
CREATE PROCEDURE JDBCInsert(IN arg1 INTEGER, IN arg2 CHAR(50))
 EXTERNAL NAME 'JDBCExample.Insert(ILjava/lang/String;)V'
 LANGUAGE JAVA;

4. Call the JDBCExample.Insert method as follows:
CALL JDBCInsert(202, 'Southeastern Sales');

The Insert method causes the InsertDynamic method to be invoked.

5. Confirm that a row has been added to the Departments table.
SELECT * FROM Departments;

The example program displays the updated contents of the Departments table in the
database server messages window.

6. There is a similar method in the example class called DeleteDynamic that shows how to
delete the row that has just been added.

Define a stored procedure named JDBCDelete that acts as a wrapper for the
JDBCExample.Delete method in the class:
CREATE PROCEDURE JDBCDelete(IN arg1 INTEGER)
 EXTERNAL NAME 'JDBCExample.Delete(I)V'
 LANGUAGE JAVA;

7. Call the JDBCExample.Delete method as follows:
CALL JDBCDelete(202);

The Delete method causes the DeleteDynamic method to be invoked.

8. Confirm that the row has been deleted from the Departments table.
SELECT * FROM Departments;

JDBC CLI

Programming 397

The example program displays the updated contents of the Departments table in the
database server messages window.

Rows are inserted and deleted from a table using prepared SQL statements in a server-side
JDBC application.

JDBC Batch Methods
The addBatch method of the PreparedStatement class is used for performing batched (or wide)
inserts. The following are some guidelines to using this method.

1. An INSERT statement should be prepared using one of the prepareStatement methods of
the Connection class.
// Build the INSERT statement
String sqlStr = "INSERT INTO Departments " +
 "(DepartmentID, DepartmentName) " +
 "VALUES (? , ?)";
// Prepare the statement
PreparedStatement stmt =
 con.prepareStatement(sqlStr);

2. The parameters for the prepared insert statement should be set and batched as follows:
// loop to batch "n" sets of parameters
for(i=0; i < n; i++)
{
 // "stmt" is the original prepared insert statement from step
1.
 stmt.setSomeType(1, param_1);
 stmt.setSomeType(2, param_2);
 .
 .
 .
 // There are "m" parameters in the statement.
 stmt.setSomeType(m , param_m);

 // Add the set of parameters to the batch and
 // move to the next row of parameters.
 stmt.addBatch();
}

Example:
for(i=0; i < 5; i++)
{
 stmt.setInt(1, idValue);
 stmt.setString(2, name);
 stmt.addBatch();
}

3. The batch must be executed using the executeBatch method of the PreparedStatement
class.

BLOB parameters are not supported in batches.

When using the SQL Anywhere JDBC driver to perform batched inserts, it is recommended
that you use a small column size. Using batched inserts to insert large binary or character data

JDBC CLI

398 SAP Sybase IQ

into long binary or long varchar columns is not recommended and may degrade performance.
The performance can decrease because the SQL Anywhere JDBC driver must allocate large
amounts of memory to hold each of the batched insert rows. In all other cases, using batched
inserts should provide better performance than using individual inserts.

How to Return Result Sets from Java
This section describes how to make one or more result sets available from Java methods.

You must write a Java method that returns one or more result sets to the calling environment,
and wrap this method in a SQL stored procedure. The following code fragment illustrates how
multiple result sets can be returned to the caller of this Java procedure. It uses three
executeQuery statements to obtain three different result sets.
public static void Results(ResultSet[] rset)
 throws SQLException
{
 // Demonstrate returning multiple result sets

 Connection con = DriverManager.getConnection(
 "jdbc:default:connection");
 rset[0] = con.createStatement().executeQuery(
 "SELECT * FROM Employees" +
 " ORDER BY EmployeeID");
 rset[1] = con.createStatement().executeQuery(
 "SELECT * FROM Departments" +
 " ORDER BY DepartmentID");
 rset[2] = con.createStatement().executeQuery(
 "SELECT i.ID,i.LineID,i.ProductID,i.Quantity," +
 " s.OrderDate,i.ShipDate," +
 " s.Region,e.GivenName||' '||e.Surname" +
 " FROM SalesOrderItems AS i" +
 " JOIN SalesOrders AS s" +
 " JOIN Employees AS e" +
 " WHERE s.ID=i.ID" +
 " AND s.SalesRepresentative=e.EmployeeID");
 con.close();
}

Notes

• This server-side JDBC example is part of the JDBCExample.java file included in the
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\JDBC directory.

• It obtains a connection to the default running database by using getConnection.
• The executeQuery methods return result sets.

Returning Result Sets from JDBC
A sample JDBC application is called from the database server to return multiple result sets.

Prerequisites

A Java Development Kit (JDK) must be installed.

JDBC CLI

Programming 399

Task

1. Connect to the database from Interactive SQL.

2. Ensure the JDBCExample class has been installed.

3. Define a stored procedure named JDBCResults that acts as a wrapper for the
JDBCExample.Results method in the class.

For example:
CREATE PROCEDURE JDBCResults(OUT args LONG VARCHAR)
 DYNAMIC RESULT SETS 3
 EXTERNAL NAME 'JDBCExample.Results([Ljava/sql/ResultSet;)V'
 LANGUAGE JAVA;

The example returns 3 result sets.

4. Set the following Interactive SQL options so you can see all the results of the query:

a. Click Tools » Options.
b. Click Sybase IQ.
c. Click the Results tab.
d. Set the value for Maximum Number Of Rows To Display to 5000.

e. Click Show All Result Sets.
f. Click OK.

5. Call the JDBCExample.Results method.
CALL JDBCResults();

6. Check each of the three results tabs, Result Set 1, Result Set 2, and Result Set 3.

Three different result sets are returned from a server-side JDBC application.

JDBC Notes
Learn about privileges for accessing and executing Java classes.

• Access privileges – Like all Java classes in the database, classes containing JDBC
statements can be accessed by any user if the GRANT EXECUTE statement has granted
them privilege to execute the stored procedure that is acting as a wrapper for the Java
method.

• Execution privileges – Java classes are executed with the privileges of the connection
executing them. This behavior is different from that of stored procedures, which execute
with the privileges of the owner.

JDBC CLI

400 SAP Sybase IQ

JDBC Callbacks
The SQL Anywhere JDBC driver supports two asynchronous callbacks, one for handling the
SQL MESSAGE statement and the other for validating requests for file transfers.

Messages can be sent to the client application from the database server using the SQL
MESSAGE statement. Messages can also be generated by long running database server
statements.

A message handler routine can be created to intercept these messages. The following is an
example of a message handler callback routine.
class T_message_handler implements
sybase.jdbc4.sqlanywhere.ASAMessageHandler
{
 private final int MSG_INFO = 0x80 | 0;
 private final int MSG_WARNING = 0x80 | 1;
 private final int MSG_ACTION = 0x80 | 2;
 private final int MSG_STATUS = 0x80 | 3;
 T_message_handler()
 {
 }

 public SQLException messageHandler(SQLException sqe)
 {
 String msg_type = "unknown";

 switch(sqe.getErrorCode()) {
 case MSG_INFO: msg_type = "INFO "; break;
 case MSG_WARNING: msg_type = "WARNING"; break;
 case MSG_ACTION: msg_type = "ACTION "; break;
 case MSG_STATUS: msg_type = "STATUS "; break;
 }

 System.out.println(msg_type + ": " + sqe.getMessage());
 return sqe;
 }
}

A client file transfer request can be validated. Before allowing any transfer to take place, the
JDBC driver will invoke the validation callback, if it exists. If the client data transfer is being
requested during the execution of indirect statements such as from within a stored procedure,
the JDBC driver will not allow a transfer unless the client application has registered a
validation callback. The conditions under which a validation call is made are described more
fully below. The following is an example of a file transfer validation callback routine.
class T_filetrans_callback implements
sybase.jdbc4.sqlanywhere.SAValidateFileTransferCallback
{
 T_filetrans_callback()
 {
 }

JDBC CLI

Programming 401

 public int callback(String filename, int is_write)
 {
 System.out.println("File transfer granted for file " +
filename +
 " with an is_write value of " +
is_write);
 return(1); // 0 to disallow, non-zero to allow
 }
}

The filename argument is the name of the file to be read or written. The is_write parameter is 0
if a read is requested (transfer from the client to the server), and non-zero for a write. The
callback function should return 0 if the file transfer is not allowed, non-zero otherwise.

For data security, the server tracks the origin of statements requesting a file transfer. The server
determines if the statement was received directly from the client application. When initiating
the transfer of data from the client, the server sends the information about the origin of the
statement to the client software. On its part, the JDBC driver allows unconditional transfer of
data only if the data transfer is being requested due to the execution of a statement sent directly
by the client application. Otherwise, the application must have registered the validation
callback described above, in the absence of which the transfer is denied and the statement fails
with an error. If the client statement invokes a stored procedure already existing in the
database, then the execution of the stored procedure itself is considered not to have been for a
client initiated statement. However, if the client application explicitly creates a temporary
stored procedure then the execution of the stored procedure results in the server treating the
procedure as having been client initiated. Similarly, if the client application executes a batch
statement, then the execution of the batch statement is considered as being done directly by the
client application.

The following sample Java application demonstrates the use of the callbacks supported by the
SQL Anywhere JDBC 4.0 driver. You need to place the file %ALLUSERSPROFILE%
\SybaseIQ\samples\java\sajdbc4.jar in your classpath.

import java.io.*;
import java.sql.*;
import java.util.*;

public class callback
{
 public static void main (String args[]) throws IOException
 {
 Connection con = null;
 Statement stmt;

 System.out.println ("Starting... ");
 con = connect();
 if(con == null)
 {
 return; // exception should already have been reported
 }
 System.out.println ("Connected... ");

JDBC CLI

402 SAP Sybase IQ

 try
 {
 // create and register message handler callback
 T_message_handler message_worker = new
T_message_handler();

((sybase.jdbc4.sqlanywhere.IConnection)con).setASAMessageHandler(m
essage_worker);

 // create and register validate file transfer callback
 T_filetrans_callback filetran_worker = new
T_filetrans_callback();

((sybase.jdbc4.sqlanywhere.IConnection)con).setSAValidateFileTransf
erCallback(filetran_worker);

 stmt = con.createStatement();

 // execute message statements to force message handler to
be called
 stmt.execute("MESSAGE 'this is an info message' TYPE
INFO TO CLIENT");
 stmt.execute("MESSAGE 'this is an action message' TYPE
ACTION TO CLIENT");
 stmt.execute("MESSAGE 'this is a warning message' TYPE
WARNING TO CLIENT");
 stmt.execute("MESSAGE 'this is a status message' TYPE
STATUS TO CLIENT");

 System.out.println("\n==================\n");

 stmt.execute("set temporary option
allow_read_client_file='on'");
 try
 {
 stmt.execute("drop procedure read_client_file_test");
 }
 catch(SQLException dummy)
 {
 // ignore exception if procedure does not exist
 }
 // create procedure that will force file transfer callback
to be called
 stmt.execute("create procedure read_client_file_test()" +
 "begin" +
 " declare v long binary;" +
 " set v = read_client_file('sample.txt');" +
 "end");

 // call procedure to force validate file transfer callback
to be called
 try
 {
 stmt.execute("call read_client_file_test()");
 }
 catch(SQLException filetrans_exception)

JDBC CLI

Programming 403

 {
 // Note: Since the file transfer callback returns 1,
 // do not expect a SQL exception to be thrown
 System.out.println("SQLException: " +
 filetrans_exception.getMessage());
 }
 stmt.close();
 con.close();
 System.out.println("Disconnected");
 }
 catch(SQLException sqe)
 {
 printExceptions(sqe);
 }
 }

 private static Connection connect()
 {
 Connection connection;

 System.out.println("Using jdbc4 driver");
 try
 {
 connection = DriverManager.getConnection(
 "jdbc:sqlanywhere:uid=DBA;pwd=sql");
 }
 catch(Exception e)
 {
 System.err.println("Error! Could not connect");
 System.err.println(e.getMessage());
 printExceptions((SQLException)e);
 connection = null;
 }
 return connection;
 }

 static private void printExceptions(SQLException sqe)
 {
 while (sqe != null)
 {

 System.out.println("Unexpected exception : " +
 "SqlState: " + sqe.getSQLState() +
 " " + sqe.toString() +
 ", ErrorCode: " + sqe.getErrorCode());
 System.out.println("==================\n");
 sqe = sqe.getNextException();
 }
 }
}

JDBC CLI

404 SAP Sybase IQ

JDBC Escape Syntax
You can use JDBC escape syntax from any JDBC application, including Interactive SQL. This
escape syntax allows you to call stored procedures regardless of the database management
system you are using. The general form for the escape syntax is

{ keyword parameters }

The set of keywords includes the following:

• {d date-string} – The date string is any date value accepted by SAP Sybase IQ.
• {t time-string} – The time string is any time value accepted by SAP Sybase IQ.
• {ts date-string time-string} – The date/time string is any timestamp value accepted by

SAP Sybase IQ.
• {guid uuid-string} – The uuid-string is any valid GUID string, for example, 41dfe9ef-

db91-11d2-8c43-006008d26a6f.
• {oj outer-join-expr} – The outer-join-expr is a valid OUTER JOIN expression accepted

by SAP Sybase IQ.
• {? = call func(p1,...)} – The function is any valid function call accepted by SAP Sybase

IQ.
• {call proc(p1,...)} – The procedure is any valid stored procedure call accepted by SAP

Sybase IQ.
• {fn func(p1,...)} – The function is any one of the library of functions listed below.

You can use the escape syntax to access a library of functions implemented by the JDBC driver
that includes number, string, time, date, and system functions.

For example, to obtain the current date in a database management system-neutral way, you
would execute the following:
SELECT { FN CURDATE() }

The functions that are available depend on the JDBC driver that you are using. The following
tables list the functions that are supported by the SQL Anywhere JDBC driver and by the
jConnect driver.

SQL Anywhere JDBC Driver Supported Functions

Numeric func-
tions

String functions System functions Time/date func-
tions

ABS ASCII DATABASE CURDATE

ACOS BIT_LENGTH IFNULL CURRENT_DATE

ASIN CHAR USER CURRENT_TIME

JDBC CLI

Programming 405

Numeric func-
tions

String functions System functions Time/date func-
tions

ATAN CHAR_LENGTH CURRENT_TIME-
STAMP

ATAN2 CHARAC-
TER_LENGTH

CURTIME

CEILING CONCAT DAYNAME

COS DIFFERENCE DAYOFMONTH

COT INSERT DAYOFWEEK

DEGREES LCASE DAYOFYEAR

EXP LEFT EXTRACT

FLOOR LENGTH HOUR

LOG LOCATE MINUTE

LOG10 LTRIM MONTH

MOD OCTET_LENGTH MONTHNAME

PI POSITION NOW

POWER REPEAT QUARTER

RADIANS REPLACE SECOND

RAND RIGHT WEEK

ROUND RTRIM YEAR

SIGN SOUNDEX

SIN SPACE

SQRT SUBSTRING

TAN UCASE

TRUNCATE

jConnect supported functions

Numeric func-
tions

String functions System functions Time/date func-
tions

ABS ASCII DATABASE CURDATE

JDBC CLI

406 SAP Sybase IQ

Numeric func-
tions

String functions System functions Time/date func-
tions

ACOS CHAR IFNULL CURTIME

ASIN CONCAT USER DAYNAME

ATAN DIFFERENCE CONVERT DAYOFMONTH

ATAN2 LCASE DAYOFWEEK

CEILING LENGTH HOUR

COS REPEAT MINUTE

COT RIGHT MONTH

DEGREES SOUNDEX MONTHNAME

EXP SPACE NOW

FLOOR SUBSTRING QUARTER

LOG UCASE SECOND

LOG10 TIMESTAMPADD

PI TIMESTAMPDIFF

POWER YEAR

RADIANS

RAND

ROUND

SIGN

SIN

SQRT

TAN

A statement using the escape syntax should work in SAP Sybase IQ, Adaptive Server
Enterprise, Oracle, SQL Server, or another database management system to which you are
connected.

In Interactive SQL, the braces must be doubled. There must not be a space between successive
braces: "{{" is acceptable, but "{ {" is not. As well, you cannot use newline characters in the
statement. The escape syntax cannot be used in stored procedures because they are not parsed
by Interactive SQL.

JDBC CLI

Programming 407

For example, to obtain database properties with the sa_db_info procedure using SQL escape
syntax, you would execute the following in Interactive SQL:
{{CALL sa_db_info(0) }}

JDBC 4.0 API Support
All mandatory classes and methods of the JDBC 4.0 specification are supported by the SQL
Anywhere JDBC driver. Some optional methods of the java.sql.Blob interface are not
supported. These optional methods are:

long position(Blob pattern, long start);
long position(byte[] pattern, long start);
OutputStream setBinaryStream(long pos)
int setBytes(long pos, byte[] bytes)
int setBytes(long pos, byte[] bytes, int offset, int len);
void truncate(long len);

JDBC CLI

408 SAP Sybase IQ

Embedded SQL

SQL statements embedded in a C or C++ source file are referred to as embedded SQL. A
preprocessor translates these statements into calls to a runtime library. Embedded SQL is an
ISO/ANSI and IBM standard.

Embedded SQL is portable to other databases and other environments, and is functionally
equivalent in all operating environments. It is a comprehensive, low-level interface that
provides all the functionality available in the product. Embedded SQL requires knowledge of
C or C++ programming languages.

Embedded SQL applications
You can develop C or C++ applications that access the SAP Sybase IQ server using the SAP
Sybase IQ embedded SQL interface. The command line database tools are examples of
applications developed in this manner.

Embedded SQL is a database programming interface for the C and C++ programming
languages. It consists of SQL statements intermixed with (embedded in) C or C++ source
code. These SQL statements are translated by a SQL preprocessor into C or C++ source code,
which you then compile.

Embedded SQL

Programming 409

At runtime, embedded SQL applications use an SAP Sybase IQ interface library called
DBLIB to communicate with a database server. DBLIB is a dynamic link library (DLL) or
shared object on most platforms.

• On Windows operating systems, the interface library is dblib16.dll.

• On Unix operating systems, the interface library is libdblib16.so,
libdblib16.sl, or libdblib16.a, depending on the operating system.

• On Mac OS X, the interface library is libdblib16.dylib.1.

SAP Sybase IQ provides two flavors of embedded SQL. Static embedded SQL is simpler to
use, but is less flexible than dynamic embedded SQL.

Development Process Overview
Overview of the embedded SQL development process.

Once the program has been successfully preprocessed and compiled, it is linked with the
import library for DBLIB to form an executable file. When the database server is running, this
executable file uses DBLIB to interact with the database server. The database server does not
have to be running when the program is preprocessed.

For Windows, there are 32-bit and 64-bit import libraries for Microsoft Visual C++. The use of
import libraries is one method for developing applications that call functions in DLLs.
However, it is recommended that the library be dynamically loaded, avoiding the use of import
libraries.

Embedded SQL

410 SAP Sybase IQ

The SQL Preprocessor
The SQL preprocessor is an executable named iqiqsqlpp.

The preprocessor command line is as follows:

iqsqlpp [options] sql-filename [output-filename]
The preprocessor translates the embedded SQL statements in a C or C++ source file into C
code and places the result in an output file. A C or C++ compiler is then used to process the
output file. The normal extension for source programs with embedded SQL is .sqc. The
default output file name is the sql-filename with an extension of .c. If the sql-filename has
a .c extension, then the default output file name extension will change to .cc.

Note: When an application is rebuilt to use a new major version of the database interface
library, the embedded SQL files must be preprocessed with the same version's SQL
preprocessor.

The following table describes the preprocessor options.

Option Description

-d Generate code that reduces data space size. Data
structures are reused and initialized at execution
time before use. This increases code size.

Embedded SQL

Programming 411

Option Description

-e level Flag as an error any static embedded SQL that is
not part of a specified standard. The level value
indicates the standard to use. For example,
iqsqlpp -e c03 ... flags any syntax

that is not part of the core SQL/2008 standard.
The supported level values are:

• c08 – Flag syntax that is not core SQL/2008
syntax

• p08 – Flag syntax that is not full SQL/2008
syntax

• c03 – Flag syntax that is not core SQL/2003
syntax

• p03 – Flag syntax that is not full SQL/2003
syntax

• c99 – Flag syntax that is not core SQL/1999
syntax

• p99 – Flag syntax that is not full SQL/1999
syntax

• e92 – Flag syntax that is not entry-level SQL/
1992 syntax

• i92 – Flag syntax that is not intermediate-lev-
el SQL/1992 syntax

• f92 – Flag syntax that is not full-SQL/1992
syntax

• t – Flag non-standard host variable types

• u – Flag syntax that is not supported by Ul-
traLite

For compatibility with previous SAP Sybase IQ
versions, you can also specify e, i, and f, which
correspond to e92, i92, and f92, respectively.

-h width Limit the maximum length of lines output by
iqsqlpp to width. The continuation character is a
backslash (\) and the minimum value of width is
10.

-k Notify the preprocessor that the program to be
compiled includes a user declaration of
SQLCODE. The definition must be of type long,
but does not need to be in a declaration section.

Embedded SQL

412 SAP Sybase IQ

Option Description

-m mode Specify the cursor updatability mode if it is not
specified explicitly in the embedded SQL appli-
cation. The mode can be one of:

• HISTORICAL – In previous versions, em-
bedded SQL cursors defaulted to either FOR
UPDATE or READ ONLY (depending on the
query and the ansi_update_constraints option
value). Explicit cursor updatability was
specified on DECLARE CURSOR. Use this
option to preserve this behavior.

• READONLY – Embedded SQL cursors de-
fault to READ ONLY. Explicit cursor updat-
ability is specified on PREPARE. This is the
default behavior. READ ONLY cursors can
result in improved performance.

-n Generate line number information in the C file.
This consists of #line directives in the appropriate
places in the generated C code. If the compiler
that you are using supports the #line directive, this
option makes the compiler report errors on line
numbers in the SQC file (the one with the em-
bedded SQL) as opposed to reporting errors on
line numbers in the C file generated by the SQL
preprocessor. Also, the #line directives are used
indirectly by the source level debugger so that you
can debug while viewing the SQC source file.

-o operating-system Specify the target operating system. The suppor-
ted operating systems are:

• WINDOWS – Microsoft Windows.

• UNIX – Use this option if you are creating a
32-bit Unix application.

• UNIX64 – Use this option if you are creating
a 64-bit Unix application.

-q Quiet mode—do not print messages.

-r- Generate non-reentrant code.

Embedded SQL

Programming 413

Option Description

-s len Set the maximum size string that the preprocessor
puts into the C file. Strings longer than this value
are initialized using a list of characters ('a','b','c',
and so on). Most C compilers have a limit on the
size of string literal they can handle. This option is
used to set that upper limit. The default value is
500.

-u Generate code for UltraLite.

-w level Flag as a warning any static embedded SQL that
is not part of a specified standard. The level value
indicates the standard to use. For example,
iqsqlpp -w c08 ... flags any SQL

syntax that is not part of the core SQL/2008 syn-
tax. The supported level values are:

• c08 – Flag syntax that is not core SQL/2008
syntax

• p08 – Flag syntax that is not full SQL/2008
syntax

• c03 – Flag syntax that is not core SQL/2003
syntax

• p03 – Flag syntax that is not full SQL/2003
syntax

• c99 – Flag syntax that is not core SQL/1999
syntax

• p99 – Flag syntax that is not full SQL/1999
syntax

• e92 – Flag syntax that is not entry-level SQL/
1992 syntax

• i92 – Flag syntax that is not intermediate-lev-
el SQL/1992 syntax

• f92 – Flag syntax that is not full-SQL/1992
syntax

• t – Flag non-standard host variable types

• u – Flag syntax that is not supported by Ul-
traLite

For compatibility with previous SAP Sybase IQ
versions, you can also specify e, i, and f, which
correspond to e92, i92, and f92, respectively.

Embedded SQL

414 SAP Sybase IQ

Option Description

-x Change multibyte strings to escape sequences so
that they can pass through compilers.

-z cs Specify the collation sequence. For a list of rec-
ommended collation sequences, run iqinit
-l at a command prompt.

The collation sequence is used to help the pre-
processor understand the characters used in the
source code of the program, for example, in iden-
tifying alphabetic characters suitable for use in
identifiers. If -z is not specified, the preprocessor
attempts to determine a reasonable collation to
use based on the operating system and the SAL-
ANG and SACHARSET environment variables.

sql-filename A C or C++ program containing embedded SQL
to be processed.

output-filename The C language source file created by the SQL
preprocessor.

Supported Compilers
The C language SQL preprocessor has been used with the following compilers:

Operating system Compiler Version

Windows Microsoft Visual C++ 6.0 or later

Windows Mobile Microsoft Visual C++ 2005

Unix GNU or native compiler

Embedded SQL

Programming 415

Embedded SQL Header Files
All header files are installed in the SDK\Include subdirectory of your SAP Sybase IQ
installation directory.

File name Description

sqlca.h Main header file included in all embedded SQL
programs. This file includes the structure defini-
tion for the SQL Communication Area (SQLCA)
and prototypes for all embedded SQL database
interface functions.

sqlda.h SQL Descriptor Area structure definition inclu-
ded in embedded SQL programs that use dynamic
SQL.

sqldef.h Definition of embedded SQL interface data types.
This file also contains structure definitions and
return codes needed for starting the database
server from a C program.

sqlerr.h Definitions for error codes returned in the sqlcode
field of the SQLCA.

sqlstate.h Definitions for ANSI/ISO SQL standard error
states returned in the sqlstate field of the SQLCA.

pshpk1.h, pshpk4.h, poppk.h These headers ensure that structure packing is
handled correctly.

Import Libraries
On Windows platforms, all import libraries are installed in the SDK\Lib subdirectories,
under the SAP Sybase IQ installation directory. Windows import libraries are stored in the
SDK\Lib\x86 and SDK\Lib\x64 subdirectories. An export definition list is stored in
SDK\Lib\Def\dblib.def.

On Unix platforms, all import libraries are installed in the lib32 and lib64 subdirectories,
under the SAP Sybase IQ installation directory.

Operating system Compiler Import library

Windows Microsoft Visual C++ dblibtm.lib

Embedded SQL

416 SAP Sybase IQ

Operating system Compiler Import library

Unix (unthreaded applications) All compilers libdblib16.so,

libdbtasks16.so,

libdblib16.sl,

libdbtasks16.sl
Unix (threaded applications) All compilers libdblib16_r.so,

libdb-
tasks16_r.so,libd-
blib16_r.sl, libdb-
tasks16_r.sl

The libdbtasks16 libraries are called by the libdblib16 libraries. Some compilers
locate libdbtasks16 automatically. For others, you need to specify it explicitly.

Sample Embedded SQL Program
The following is a very simple example of an embedded SQL program.
#include <stdio.h>
EXEC SQL INCLUDE SQLCA;
main()
{
 db_init(&sqlca);
 EXEC SQL WHENEVER SQLERROR GOTO error;
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";
 EXEC SQL UPDATE Employees
 SET Surname = 'Plankton'
 WHERE EmployeeID = 195;
 EXEC SQL COMMIT WORK;
 EXEC SQL DISCONNECT;
 db_fini(&sqlca);
 return(0);
error:
 printf("update unsuccessful -- sqlcode = %ld\n",
 sqlca.sqlcode);
 db_fini(&sqlca);
 return(-1);
}

This example connects to the database, updates the last name of employee number 195,
commits the change, and exits. There is virtually no interaction between the embedded SQL
code and the C code. The only thing the C code is used for in this example is control flow. The
WHENEVER statement is used for error checking. The error action (GOTO in this example)
is executed after any SQL statement that causes an error.

Embedded SQL

Programming 417

Structure of Embedded SQL Programs
SQL statements are placed (embedded) within regular C or C++ code. All embedded SQL
statements start with the words EXEC SQL and end with a semicolon (;). Normal C language
comments are allowed in the middle of embedded SQL statements.

Every C program using embedded SQL must contain the following statement before any other
embedded SQL statements in the source file.
EXEC SQL INCLUDE SQLCA;

Every C program using embedded SQL must initialize a SQLCA first:
db_init(&sqlca);

One of the first embedded SQL statements executed by the C program must be a CONNECT
statement. The CONNECT statement is used to establish a connection with the database
server and to specify the user ID that is used for authorizing all statements executed during the
connection.

Some embedded SQL statements do not generate any C code, or do not involve
communication with the database. These statements are allowed before the CONNECT
statement. Most notable are the INCLUDE statement and the WHENEVER statement for
specifying error processing.

Every C program using embedded SQL must finalize any SQLCA that has been initialized.
db_fini(&sqlca);

Loading DBLIB Dynamically Under Windows
Load DBLIB dynamically from your embedded SQL application using the esqldll.c
module in the SDK\C subdirectory of your installation directory so that you do not need to link
against the import library.

Prerequisites

There are no prerequisites for this task.

Task

This task is an alternative to the usual technique of linking an application against a static
import library for a Dynamic Link Library (DLL) that contains the required function
definitions.

A similar task can be used to dynamically load DBLIB on Unix platforms.

Embedded SQL

418 SAP Sybase IQ

1. Your application must call db_init_dll to load the DBLIB DLL, and must call db_fini_dll
to free the DBLIB DLL. The db_init_dll call must be before any function in the database
interface, and no function in the interface can be called after db_fini_dll.

You must still call the db_init and db_fini library functions.

2. You must include the esqldll.h header file before the EXEC SQL INCLUDE SQLCA
statement or include sqlca.h in your embedded SQL program. The esqldll.h
header file includes sqlca.h.

3. A SQL OS macro must be defined. The header file sqlos.h, which is included by
sqlca.h, attempts to determine the appropriate macro and define it. However, certain
combinations of platforms and compilers may cause this to fail. In this case, you must add
a #define to the top of this file, or make the definition using a compiler option. The macro
that must be defined for Windows is shown below.

Macro Platforms

_SQL_OS_WINDOWS All Windows operating systems

4. Compile esqldll.c.

5. Instead of linking against the import library, link the object module esqldll.obj with
your embedded SQL application objects.

The DBLIB interface DLL loads dynamically when you run your embedded SQL application.

Sample Embedded SQL Programs
Sample embedded SQL programs are included with the SAP Sybase IQ installation. They are
placed in the %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\C
directory.

• The static cursor embedded SQL example, cur.sqc, demonstrates the use of static SQL
statements.

• The dynamic cursor embedded SQL example, dcur.sqc, demonstrates the use of
dynamic SQL statements.

To reduce the amount of code that is duplicated by the sample programs, the mainlines and the
data printing functions have been placed into a separate file. This is mainch.c for character
mode systems and mainwin.c for windowing environments.

The sample programs each supply the following three routines, which are called from the
mainlines:

• WSQLEX_Init – Connects to the database and opens the cursor.
• WSQLEX_Process_Command – Processes commands from the user, manipulating the

cursor as necessary.

Embedded SQL

Programming 419

• WSQLEX_Finish – Closes the cursor and disconnects from the database.

The function of the mainline is to:

1. Call the WSQLEX_Init routine.
2. Loop, getting commands from the user and calling WSQL_Process_Command until the

user quits.
3. Call the WSQLEX_Finish routine.

Connecting to the database is done with the embedded SQL CONNECT statement supplying
the appropriate user ID and password.

In addition to these samples, you may find other programs and source files as part of SAP
Sybase IQ that demonstrate features available for particular platforms.

Static Cursor Sample
This example demonstrates the use of cursors. The particular cursor used here retrieves certain
information from the Employees table in the sample database. The cursor is declared
statically, meaning that the actual SQL statement to retrieve the information is hard coded into
the source program. This is a good starting point for learning how cursors work. The Dynamic
Cursor sample takes this first example and converts it to use dynamic SQL statements.

The open_cursor routine both declares a cursor for the specific SQL query and also opens the
cursor.

Printing a page of information is done by the print routine. It loops pagesize times, fetching a
single row from the cursor and printing it out. The fetch routine checks for warning conditions,
such as rows that cannot be found (SQLCODE 100), and prints appropriate messages when
they arise. In addition, the cursor is repositioned by this program to the row before the one that
appears at the top of the current page of data.

The move, top, and bottom routines use the appropriate form of the FETCH statement to
position the cursor. This form of the FETCH statement doesn't actually get the data—it only
positions the cursor. Also, a general relative positioning routine, move, has been implemented
to move in either direction depending on the sign of the parameter.

When the user quits, the cursor is closed and the database connection is also released. The
cursor is closed by a ROLLBACK WORK statement, and the connection is released by a
DISCONNECT.

Running the Static Cursor Sample Program
Run the static cursor sample program.

Prerequisites

There are no prerequisites for this task.

Embedded SQL

420 SAP Sybase IQ

Task

The executable files and corresponding source code are located in the %ALLUSERSPROFILE
%\SybaseIQ\samples\SQLAnywhere\C directory.

1. Start the SAP Sybase IQ sample database, iqdemo.db.

2. Files to build the sample programs are supplied with the sample code.

To build the 32-bit samples on Windows, use build.bat.

To build the 64-bit samples on Windows, use build64.bat. You may need to set up the
correct environment for compiling and linking. Here is an example that builds the sample
programs for an x64 platform.
set mssdk=c:\MSSDK\v7.0
build64

To build the samples on Unix, use the shell script build.sh.

3. For the 32-bit Windows example, run the file curwin.exe.

For the 64-bit Windows example, run the file curx64.exe.

For the Unix example, run the file cur.

4. Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query results on the screen.
Enter the letter of the command that you want to perform. Some systems may require you to
press Enter after the letter.

Dynamic Cursor Sample
This sample demonstrates the use of cursors for a dynamic SQL SELECT statement.

The dynamic cursor sample program (dcur) allows the user to select a table to look at with the
N command. The program then presents as much information from that table as fits on the
screen.

When this program is run, it prompts for a connection string. The following is an example.
UID=<userid>;PWD=<your_password>;DBF=iqdemo.db

The C program with the embedded SQL is located in the %ALLUSERSPROFILE%
\SybaseIQ\samples\SQLAnywhere\C directory.

The dcur program uses the embedded SQL interface function db_string_connect to connect to
the database. This function provides the extra functionality to support the connection string
that is used to connect to the database.

The open_cursor routine first builds the SELECT statement
SELECT * FROM table-name

Embedded SQL

Programming 421

where table-name is a parameter passed to the routine. It then prepares a dynamic SQL
statement using this string.

The embedded SQL DESCRIBE statement is used to fill in the SQLDA structure with the
results of the SELECT statement.

Note: An initial guess is taken for the size of the SQLDA (3). If this is not big enough, the
actual size of the SELECT list returned by the database server is used to allocate a SQLDA of
the correct size.

The SQLDA structure is then filled with buffers to hold strings that represent the results of the
query. The fill_s_sqlda routine converts all data types in the SQLDA to DT_STRING and
allocates buffers of the appropriate size.

A cursor is then declared and opened for this statement. The rest of the routines for moving and
closing the cursor remain the same.

The fetch routine is slightly different: it puts the results into the SQLDA structure instead of
into a list of host variables. The print routine has changed significantly to print results from the
SQLDA structure up to the width of the screen. The print routine also uses the name fields of
the SQLDA to print headings for each column.

Running the Dynamic Cursor Sample Program
Run the dynamic cursor sample program.

Prerequisites

There are no prerequisites for this task.

Task

The executable files and corresponding source code are located in the %ALLUSERSPROFILE
%\SybaseIQ\samples\SQLAnywhere\C directory. For Windows Mobile, an
additional example is located in the \SQLAnywhere\CE\esql_sample directory.

1. Start the SAP Sybase IQ sample database, iqdemo.db.

2. Files to build the sample programs are supplied with the sample code.

To build the 32-bit samples on Windows, use build.bat.

To build the 64-bit samples on Windows, use build64.bat. You may need to set up the
correct environment for compiling and linking. Here is an example that builds the sample
programs for an x64 platform.
set mssdk=c:\MSSDK\v7.0
build64

For Windows Mobile, use the esql_sample.sln project file for Microsoft Visual C
++. This file appears in SQLAnywhere\CE\esql_sample.

Embedded SQL

422 SAP Sybase IQ

To build the samples on Unix, use the shell script build.sh.

3. For the 32-bit Windows example, run the file dcurwin.exe.

For the 64-bit Windows example, run the file dcurx64.exe.

For the Windows Mobile example, deploy and run the file esql_sample.exe on your
Windows Mobile device.

For the Unix example, run the file dcur.

4. Each sample program presents a console-type user interface and prompts you for a
command. Enter the following connection string to connect to the sample database:
DSN=Sybase IQ Demo

5. Each sample program prompts you for a table. Choose one of the tables in the sample
database. For example, you can enter Customers or Employees.

6. Follow the on-screen instructions.

The various commands manipulate a database cursor and print the query results on the screen.
Enter the letter of the command that you want to perform. Some systems may require you to
press Enter after the letter.

Embedded SQL Data Types
To transfer information between a program and the database server, every piece of data must
have a data type. The embedded SQL data type constants are prefixed with DT_, and can be
found in the sqldef.h header file. You can create a host variable of any one of the supported
types. You can also use these types in a SQLDA structure for passing data to and from the
database.

You can define variables of these data types using the DECL_ macros listed in sqlca.h. For
example, a variable holding a BIGINT value could be declared with DECL_BIGINT.

The following data types are supported by the embedded SQL programming interface:

• DT_BIT – 8-bit signed integer.
• DT_SMALLINT – 16-bit signed integer.
• DT_UNSSMALLINT – 16-bit unsigned integer.
• DT_TINYINT – 8-bit signed integer.
• DT_BIGINT – 64-bit signed integer.
• DT_UNSBIGINT – 64-bit unsigned integer.
• DT_INT – 32-bit signed integer.
• DT_UNSINT – 32-bit unsigned integer.
• DT_FLOAT – 4-byte floating-point number.
• DT_DOUBLE – 8-byte floating-point number.

Embedded SQL

Programming 423

• DT_DECIMAL – Packed decimal number (proprietary format).
typedef struct TYPE_DECIMAL {
 char array[1];
} TYPE_DECIMAL;

• DT_STRING – Null-terminated character string, in the CHAR character set. The string is
blank-padded if the database is initialized with blank-padded strings.

• DT_NSTRING – Null-terminated character string, in the NCHAR character set. The
string is blank-padded if the database is initialized with blank-padded strings.

• DT_DATE – Null-terminated character string that is a valid date.
• DT_TIME – Null-terminated character string that is a valid time.
• DT_TIMESTAMP – Null-terminated character string that is a valid timestamp.
• DT_FIXCHAR – Fixed-length blank-padded character string, in the CHAR character set.

The maximum length, specified in bytes, is 32767. The data is not null-terminated.
• DT_NFIXCHAR – Fixed-length blank-padded character string, in the NCHAR character

set. The maximum length, specified in bytes, is 32767. The data is not null-terminated.
• DT_VARCHAR – Varying length character string, in the CHAR character set, with a

two-byte length field. The maximum length is 32765 bytes. When sending data, you must
set the length field. When fetching data, the database server sets the length field. The data is
not null-terminated or blank-padded.
typedef struct VARCHAR {
 a_sql_ulen len;
 char array[1];
} VARCHAR;

• DT_NVARCHAR – Varying length character string, in the NCHAR character set, with a
two-byte length field. The maximum length is 32765 bytes. When sending data, you must
set the length field. When fetching data, the database server sets the length field. The data is
not null-terminated or blank-padded.
typedef struct NVARCHAR {
 a_sql_ulen len;
 char array[1];
} NVARCHAR;

• DT_LONGVARCHAR – Long varying length character string, in the CHAR character
set.
typedef struct LONGVARCHAR {
 a_sql_uint32 array_len; /* number of allocated bytes in array */
 a_sql_uint32 stored_len; /* number of bytes stored in array
 * (never larger than array_len) */
 a_sql_uint32 untrunc_len;/* number of bytes in untruncated
expression
 * (may be larger than array_len) */
 char array[1]; /* the data */
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

The LONGVARCHAR structure can be used with more than 32767 bytes of data. Large
data can be fetched all at once, or in pieces using the GET DATA statement. Large data can

Embedded SQL

424 SAP Sybase IQ

be supplied to the server all at once, or in pieces by appending to a database variable using
the SET statement. The data is not null-terminated or blank-padded.

• DT_LONGNVARCHAR – Long varying length character string, in the NCHAR
character set. The macro defines a structure, as follows:
typedef struct LONGVARCHAR {
 a_sql_uint32 array_len; /* number of allocated bytes in array */
 a_sql_uint32 stored_len; /* number of bytes stored in array
 * (never larger than array_len) */
 a_sql_uint32 untrunc_len;/* number of bytes in untruncated
expression
 * (may be larger than array_len) */
 char array[1]; /* the data */
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

The LONGNVARCHAR structure can be used with more than 32767 bytes of data. Large
data can be fetched all at once, or in pieces using the GET DATA statement. Large data can
be supplied to the server all at once, or in pieces by appending to a database variable using
the SET statement. The data is not null-terminated or blank-padded.

• DT_BINARY – Varying length binary data with a two-byte length field. The maximum
length is 32765 bytes. When supplying information to the database server, you must set the
length field. When fetching information from the database server, the server sets the length
field.
typedef struct BINARY {
 a_sql_ulen len;
 char array[1];
} BINARY;

• DT_LONGBINARY – Long binary data. The macro defines a structure, as follows:
typedef struct LONGVARCHAR {
 a_sql_uint32 array_len; /* number of allocated bytes in array */
 a_sql_uint32 stored_len; /* number of bytes stored in array
 * (never larger than array_len) */
 a_sql_uint32 untrunc_len;/* number of bytes in untruncated
expression
 * (may be larger than array_len) */
 char array[1]; /* the data */
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

The LONGBINARY structure may be used with more than 32767 bytes of data. Large data
can be fetched all at once, or in pieces using the GET DATA statement. Large data can be
supplied to the server all at once, or in pieces by appending to a database variable using the
SET statement.

• DT_TIMESTAMP_STRUCT – SQLDATETIME structure with fields for each part of a
timestamp.
typedef struct sqldatetime {
 unsigned short year; /* for example 1999 */
 unsigned char month; /* 0-11 */
 unsigned char day_of_week; /* 0-6 0=Sunday */
 unsigned short day_of_year; /* 0-365 */
 unsigned char day; /* 1-31 */
 unsigned char hour; /* 0-23 */

Embedded SQL

Programming 425

 unsigned char minute; /* 0-59 */
 unsigned char second; /* 0-59 */
 unsigned long microsecond; /* 0-999999 */
} SQLDATETIME;

The SQLDATETIME structure can be used to retrieve fields of DATE, TIME, and
TIMESTAMP type (or anything that can be converted to one of these). Often, applications
have their own formats and date manipulation code. Fetching data in this structure makes it
easier for you to manipulate this data. DATE, TIME, and TIMESTAMP fields can also be
fetched and updated with any character type.

If you use a SQLDATETIME structure to enter a date, time, or timestamp into the
database, the day_of_year and day_of_week members are ignored.

• DT_VARIABLE – Null-terminated character string. The character string must be the
name of a SQL variable whose value is used by the database server. This data type is used
only for supplying data to the database server. It cannot be used when fetching data from
the database server.

The structures are defined in the sqlca.h file. The VARCHAR, NVARCHAR, BINARY,
DECIMAL, and LONG data types are not useful for declaring host variables because they
contain a one-character array. However, they are useful for allocating variables dynamically or
typecasting other variables.

DATE and TIME database types
There are no corresponding embedded SQL interface data types for the various DATE and
TIME database types. These database types are all fetched and updated using either the
SQLDATETIME structure or character strings.

Host Variables in Embedded SQL
Host variables are C variables that are identified to the SQL preprocessor. Host variables can
be used to send values to the database server or receive values from the database server.

Host variables are quite easy to use, but they have some restrictions. Dynamic SQL is a more
general way of passing information to and from the database server using a structure known as
the SQL Descriptor Area (SQLDA). The SQL preprocessor automatically generates a
SQLDA for each statement in which host variables are used.

Host variables cannot be used in batches. Host variables cannot be used within a subquery in a
SET statement.

Embedded SQL

426 SAP Sybase IQ

Host Variable Declaration
Host variables are defined by putting them into a declaration section. According to the ANSI
embedded SQL standard, host variables are defined by surrounding the normal C variable
declarations with the following:
EXEC SQL BEGIN DECLARE SECTION;
/* C variable declarations */
EXEC SQL END DECLARE SECTION;

These host variables can then be used in place of value constants in any SQL statement. When
the database server executes the statement, the value of the host variable is used. Host
variables cannot be used in place of table or column names: dynamic SQL is required for this.
The variable name is prefixed with a colon (:) in a SQL statement to distinguish it from other
identifiers allowed in the statement.

In the SQL preprocessor, C language code is only scanned inside a DECLARE SECTION. So,
TYPEDEF types and structures are not allowed, but initializers on the variables are allowed
inside a DECLARE SECTION.

Example

The following sample code illustrates the use of host variables on an INSERT statement. The
variables are filled in by the program and then inserted into the database:
EXEC SQL BEGIN DECLARE SECTION;
long employee_number;
char employee_name[50];
char employee_initials[8];
char employee_phone[15];
EXEC SQL END DECLARE SECTION;
/* program fills in variables with appropriate values
*/
EXEC SQL INSERT INTO Employees
VALUES (:employee_number, :employee_name,
:employee_initials, :employee_phone);

C Host Variable Types
Only a limited number of C data types are supported as host variables. Also, certain host
variable types do not have a corresponding C type.

Macros defined in the sqlca.h header file can be used to declare host variables of the
following types: NCHAR, VARCHAR, NVARCHAR, LONGVARCHAR,
LONGNVARCHAR, BINARY, LONGBINARY, DECIMAL, DT_FIXCHAR,
DT_NFIXCHAR, DATETIME (SQLDATETIME), BIT, BIGINT, or UNSIGNED BIGINT.
They are used as follows:
EXEC SQL BEGIN DECLARE SECTION;
DECL_NCHAR v_nchar[10];
DECL_VARCHAR(10) v_varchar;
DECL_NVARCHAR(10) v_nvarchar;
DECL_LONGVARCHAR(32768) v_longvarchar;

Embedded SQL

Programming 427

DECL_LONGNVARCHAR(32768) v_longnvarchar;
DECL_BINARY(4000) v_binary;
DECL_LONGBINARY(128000) v_longbinary;
DECL_DECIMAL(30, 6) v_decimal;
DECL_FIXCHAR(10) v_fixchar;
DECL_NFIXCHAR(10) v_nfixchar;
DECL_DATETIME v_datetime;
DECL_BIT v_bit;
DECL_BIGINT v_bigint;
DECL_UNSIGNED_BIGINT v_ubigint;
EXEC SQL END DECLARE SECTION;

The preprocessor recognizes these macros within an embedded SQL declaration section and
treats the variable as the appropriate type. It is recommended that the DECIMAL
(DT_DECIMAL, DECL_DECIMAL) type not be used since the format of decimal numbers
is proprietary.

The following table lists the C variable types that are allowed for host variables and their
corresponding embedded SQL interface data types.

C data type Embedded SQL inter-
face type

Description

short si;
short int si;

DT_SMALLINT 16-bit signed integer.

unsigned short int
usi;

DT_UNSSMALLINT 16-bit unsigned integer.

long l;
long int l;

DT_INT 32-bit signed integer.

unsigned long int ul; DT_UNSINT 32-bit unsigned integer.

DECL_BIGINT ll; DT_BIGINT 64-bit signed integer.

DECL_UNSIGNED_BIGINT
ull;

DT_UNSBIGINT 64-bit unsigned integer.

float f; DT_FLOAT 4-byte single-precision float-
ing-point value.

double d; DT_DOUBLE 8-byte double-precision float-
ing-point value.

char a[n]; /*n>=1*/ DT_STRING Null-terminated string, in
CHAR character set. The string
is blank-padded if the database
is initialized with blank-padded
strings. This variable holds n-1
bytes plus the null terminator.

Embedded SQL

428 SAP Sybase IQ

C data type Embedded SQL inter-
face type

Description

char *a; DT_STRING Null-terminated string, in
CHAR character set. This vari-
able points to an area that can
hold up to 32766 bytes plus the
null terminator.

DECL_NCHAR a[n]; /
n>=1/

DT_NSTRING Null-terminated string, in
NCHAR character set. The
string is blank-padded if the da-
tabase is initialized with blank-
padded strings. This variable
holds n-1 bytes plus the null ter-
minator.

DECL_NCHAR *a; DT_NSTRING Null-terminated string, in
NCHAR character set. This var-
iable points to an area that can
hold up to 32766 bytes plus the
null terminator.

DECL_VARCHAR(n) a; DT_VARCHAR Varying length character string,
in CHAR character set, with 2-
byte length field. Not null-ter-
minated or blank-padded. The
maximum value for n is 32765
(bytes).

DECL_NVARCHAR(n) a; DT_NVARCHAR Varying length character string,
in NCHAR character set, with
2-byte length field. Not null-ter-
minated or blank-padded. The
maximum value for n is 32765
(bytes).

DECL_LONGVARCHAR(n)
a;

DT_LONGVARCHAR Varying length long character
string, in CHAR character set,
with three 4-byte length fields.
Not null-terminated or blank-
padded.

Embedded SQL

Programming 429

C data type Embedded SQL inter-
face type

Description

DECL_LONGNVARCHAR(n)
a;

DT_LONGNVARCHAR Varying length long character
string, in NCHAR character set,
with three 4-byte length fields.
Not null-terminated or blank-
padded.

DECL_BINARY(n) a; DT_BINARY Varying length binary data with
2-byte length field. The maxi-
mum value for n is 32765
(bytes).

DECL_LONGBINARY(n) a; DT_LONGBINARY Varying length long binary data
with three 4-byte length fields.

char a; /
n=1/
DECL_FIXCHAR(n) a;

DT_FIXCHAR Fixed length character string, in
CHAR character set. Blank-
padded but not null-terminated.
The maximum value for n is
32767 (bytes).

DECL_NCHAR a; /
n=1/
DECL_NFIXCHAR(n) a;

DT_NFIXCHAR Fixed length character string, in
NCHAR character set. Blank-
padded but not null-terminated.
The maximum value for n is
32767 (bytes).

DECL_DATETIME a; DT_TIMESTAMP_STRUCT SQLDATETIME structure

Character sets
For DT_FIXCHAR, DT_STRING, DT_VARCHAR, and DT_LONGVARCHAR, character
data is in the application's CHAR character set, which is usually the character set of the
application's locale. An application can change the CHAR character set either by using the
CHARSET connection parameter, or by calling the db_change_char_charset function.

For DT_NFIXCHAR, DT_NSTRING, DT_NVARCHAR, and DT_LONGNVARCHAR,
data is in the application's NCHAR character set. By default, the application's NCHAR
character set is the same as the CHAR character set. An application can change the NCHAR
character set by calling the db_change_nchar_charset function.

Data lengths
Regardless of the CHAR and NCHAR character sets in use, all data lengths are specified in
bytes.

Embedded SQL

430 SAP Sybase IQ

If character set conversion occurs between the server and the application, it is the application's
responsibility to ensure that buffers are sufficiently large to handle the converted data, and to
issue additional GET DATA statements if data is truncated.

Pointers to char
The database interface considers a host variable declared as a pointer to char (char * a) to be
32767 bytes long. Any host variable of type pointer to char used to retrieve information from
the database must point to a buffer large enough to hold any value that could possibly come
back from the database.

This is potentially quite dangerous because someone could change the definition of the
column in the database to be larger than it was when the program was written. This could cause
random memory corruption problems. It is better to use a declared array, even as a parameter
to a function, where it is passed as a pointer to char. This technique allows the embedded SQL
statements to know the size of the array.

Scope of host variables
A standard host-variable declaration section can appear anywhere that C variables can
normally be declared. This includes the parameter declaration section of a C function. The C
variables have their normal scope (available within the block in which they are defined).
However, since the SQL preprocessor does not scan C code, it does not respect C blocks.

As far as the SQL preprocessor is concerned, host variables are global to the source file; two
host variables cannot have the same name.

Host Variable Usage
Host variables can be used in the following circumstances:

• SELECT, INSERT, UPDATE, and DELETE statements in any place where a number or
string constant is allowed.

• The INTO clause of SELECT and FETCH statements.
• Host variables can also be used in place of a statement name, a cursor name, or an option

name in statements specific to embedded SQL.
• For CONNECT, DISCONNECT, and SET CONNECT statements, a host variable can be

used in place of a server name, database name, connection name, user ID, password, or
connection string.

• For SET OPTION and GET OPTION, a host variable can be used in place of the option
value.

Host variables cannot be used in the following circumstances:

• Host variables cannot be used in place of a table name or a column name in any statement.
• Host variables cannot be used in batches.
• Host variables cannot be used within a subquery in a SET statement.

Embedded SQL

Programming 431

SQLCODE and SQLSTATE host variables
The ISO/ANSI standard allows an embedded SQL source file to declare the following special
host variables within an embedded SQL declaration section:
long SQLCODE;
char SQLSTATE[6];

If used, these variables are set after any embedded SQL statement that makes a database
request (EXEC SQL statements other than DECLARE SECTION, INCLUDE, WHENEVER
SQLCODE, and so on). As a consequence, the SQLCODE and SQLSTATE host variables
must be visible in the scope of every embedded SQL statement that generates database
requests.

The following is valid embedded SQL:
EXEC SQL INCLUDE SQLCA;
// declare SQLCODE with global scope
EXEC SQL BEGIN DECLARE SECTION;
long SQLCODE;
EXEC SQL END DECLARE SECTION;
sub1() {
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 EXEC SQL END DECLARE SECTION;
 exec SQL CREATE TABLE ...
}
sub2() {
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 EXEC SQL END DECLARE SECTION;
 exec SQL DROP TABLE ...
}

The following is not valid embedded SQL because SQLSTATE is not defined in the scope of
the function sub2:
EXEC SQL INCLUDE SQLCA;
sub1() {
 EXEC SQL BEGIN DECLARE SECTION;
 char SQLSTATE[6];
 EXEC SQL END DECLARE SECTION;
 exec SQL CREATE TABLE...
}
sub2() {
 exec SQL DROP TABLE...
}

Indicator Variables
Indicator variables are C variables that hold supplementary information when you are fetching
or putting data. There are several distinct uses for indicator variables:

• NULL values – To enable applications to handle NULL values.

Embedded SQL

432 SAP Sybase IQ

• String truncation – To enable applications to handle cases when fetched values must be
truncated to fit into host variables.

• Conversion errors – To hold error information.

An indicator variable is a host variable of type a_sql_len that is placed immediately following
a regular host variable in a SQL statement. For example, in the following INSERT
statement, :ind_phone is an indicator variable:
EXEC SQL INSERT INTO Employees
 VALUES (:employee_number, :employee_name,
 :employee_initials, :employee_phone:ind_phone);

On a fetch or execute where no rows are received from the database server (such as when an
error or end of result set occurs), then indicator values are unchanged.

Note: To allow for the future use of 32 and 64-bit lengths and indicators, the use of short int for
embedded SQL indicator variables is deprecated. Use a_sql_len instead.

Indicator Variables: The SQL NULL Value
Do not confuse the SQL concept of NULL with the C-language constant of the same name. In
the SQL language, NULL represents either an unknown attribute or inapplicable information.
The C-language constant represents a pointer value that does not point to a memory location.

When NULL is used in the SAP Sybase IQ documentation, it refers to the SQL database
meaning given above. The C language constant is referred to as the null pointer (lowercase).

NULL is not the same as any value of the column's defined type. So, something extra is
required beyond regular host variables to pass NULL values to the database or receive NULL
results back. Indicator variables are used for this purpose.

Using indicator variables when inserting NULL
An INSERT statement could include an indicator variable as follows:
EXEC SQL BEGIN DECLARE SECTION;
short int employee_number;
char employee_name[50];
char employee_initials[6];
char employee_phone[15];
a_sql_len ind_phone;
EXEC SQL END DECLARE SECTION;
/*
This program fills in the employee number,
name, initials, and phone number.
*/
if(/* Phone number is unknown */) {
 ind_phone = -1;
} else {
 ind_phone = 0;
}
EXEC SQL INSERT INTO Employees
 VALUES (:employee_number, :employee_name,
 :employee_initials, :employee_phone:ind_phone);

Embedded SQL

Programming 433

If the indicator variable has a value of -1, a NULL is written. If it has a value of 0, the actual
value of employee_phone is written.

Using indicator variables when fetching NULL
Indicator variables are also used when receiving data from the database. They are used to
indicate that a NULL value was fetched (indicator is negative). If a NULL value is fetched
from the database and an indicator variable is not supplied, an error is generated
(SQLE_NO_INDICATOR).

Indicator Variables: Truncated Values
Indicator variables indicate whether any fetched values were truncated to fit into a host
variable. This enables applications to handle truncation appropriately.

If a value is truncated on fetching, the indicator variable is set to a positive value, containing
the actual length of the database value before truncation. If the actual length of the database
value is greater than 32767 bytes, then the indicator variable contains 32767.

Indicator Variables: Conversion Errors
By default, the conversion_error database option is set to On, and any data type conversion
failure leads to an error, with no row returned.

You can use indicator variables to tell which column produced a data type conversion failure.
If you set the database option conversion_error to Off, any data type conversion failure gives a
CANNOT_CONVERT warning, rather than an error. If the column that suffered the
conversion error has an indicator variable, that variable is set to a value of -2.

If you set the conversion_error option to Off when inserting data into the database, a value of
NULL is inserted when a conversion failure occurs.

Summary of Indicator Variable Values
The following table provides a summary of indicator variable usage.

Indicator value Supplying value to data-
base

Receiving value from
database

> 0 Host variable value Retrieved value was truncated
—actual length in indicator var-
iable.

0 Host variable value Fetch successful, or conver-
sion_error set to On.

-1 NULL value NULL result.

-2 NULL value Conversion error (when conver-
sion_error is set to Off only).
SQLCODE indicates a CAN-
NOT_CONVERT warning.

Embedded SQL

434 SAP Sybase IQ

Indicator value Supplying value to data-
base

Receiving value from
database

< -2 NULL value NULL result.

The SQL Communication Area (SQLCA)
The SQL Communication Area (SQLCA) is an area of memory that is used on every database
request for communicating statistics and errors from the application to the database server and
back to the application. The SQLCA is used as a handle for the application-to-database
communication link. It is passed in to all database library functions that need to communicate
with the database server. It is implicitly passed on all embedded SQL statements.

A global SQLCA variable is defined in the interface library. The preprocessor generates an
external reference for the global SQLCA variable and an external reference for a pointer to it.
The external reference is named sqlca and is of type SQLCA. The pointer is named sqlcaptr.
The actual global variable is declared in the import library.

The SQLCA is defined by the sqlca.h header file, included in the SDK\Include
subdirectory of your installation directory.

SQLCA provides error codes
You reference the SQLCA to test for a particular error code. The sqlcode and sqlstate fields
contain error codes when a database request has an error. Some C macros are defined for
referencing the sqlcode field, the sqlstate field, and some other fields.

SQLCA Fields
The fields in the SQLCA have the following meanings:

• sqlcaid – An 8-byte character field that contains the string SQLCA as an identification of
the SQLCA structure. This field helps in debugging when you are looking at memory
contents.

• sqlcabc – A 32-bit integer that contains the length of the SQLCA structure (136 bytes).
• sqlcode – A 32-bit integer that specifies the error code when the database detects an error

on a request. Definitions for the error codes can be found in the header file sqlerr.h.
The error code is 0 (zero) for a successful operation, positive for a warning, and negative
for an error.

• sqlerrml – The length of the information in the sqlerrmc field.
• sqlerrmc – Zero or more character strings to be inserted into an error message. Some error

messages contain one or more placeholder strings (%1, %2, ...) that are replaced with the
strings in this field.

For example, if a Table Not Found error is generated, sqlerrmc contains the table
name, which is inserted into the error message at the appropriate place.

Embedded SQL

Programming 435

• sqlerrp – Reserved.
• sqlerrd – A utility array of 32-bit integers.
• sqlwarn – Reserved.
• sqlstate – The SQLSTATE status value. The ANSI SQL standard defines this type of

return value from a SQL statement in addition to the SQLCODE value. The SQLSTATE
value is always a five-character null-terminated string, divided into a two-character class
(the first two characters) and a three-character subclass. Each character can be a digit from
0 through 9 or an uppercase alphabetic character A through Z.

Any class or subclass that begins with 0 through 4 or A through H is defined by the SQL
standard; other classes and subclasses are implementation defined. The SQLSTATE value
'00000' means that there has been no error or warning.

sqlerror array
The sqlerror field array has the following elements.

• sqlerrd[1] (SQLIOCOUNT) – The actual number of input/output operations that were
required to complete a statement.

The database server does not set this number to zero for each statement. Your program can
set this variable to zero before executing a sequence of statements. After the last statement,
this number is the total number of input/output operations for the entire statement
sequence.

• sqlerrd[2] (SQLCOUNT) – The value of this field depends on which statement is being
executed.

• INSERT, UPDATE, PUT, and DELETE statements – The number of rows that were
affected by the statement.

• OPEN and RESUME statements – On a cursor OPEN or RESUME, this field is
filled in with either the actual number of rows in the cursor (a value greater than or
equal to 0) or an estimate thereof (a negative number whose absolute value is the
estimate). It is the actual number of rows if the database server can compute it without
counting the rows. The database can also be configured to always return the actual
number of rows using the row_counts option.

• FETCH cursor statement – The SQLCOUNT field is filled if a SQLE_NOTFOUND
warning is returned. It contains the number of rows by which a FETCH RELATIVE or
FETCH ABSOLUTE statement goes outside the range of possible cursor positions (a
cursor can be on a row, before the first row, or after the last row). For a wide fetch,
SQLCOUNT is the number of rows actually fetched, and is less than or equal to the
number of rows requested. During a wide fetch, SQLE_NOTFOUND is only set if no
rows are returned.

The value is 0 if the row was not found, but the position is valid, for example, executing
FETCH RELATIVE 1 when positioned on the last row of a cursor. The value is positive

Embedded SQL

436 SAP Sybase IQ

if the attempted fetch was beyond the end of the cursor, and negative if the attempted
fetch was before the beginning of the cursor.

• GET DATA statement – The SQLCOUNT field holds the actual length of the value.
• DESCRIBE statement – If the WITH VARIABLE RESULT clause is used to

describe procedures that may have more than one result set, SQLCOUNT is set to one
of the following values:

• 0 – The result set may change: the procedure call should be described again
following each OPEN statement.

• 1 – The result set is fixed. No re-describing is required.

For the SQLE_SYNTAX_ERROR syntax error, the field contains the approximate
character position within the statement where the error was detected.

• sqlerrd[3] (SQLIOESTIMATE) – The estimated number of input/output operations that
are required to complete the statement. This field is given a value on an OPEN or
EXPLAIN statement.

SQLCA Management for Multithreaded or Reentrant Code
You can use embedded SQL statements in multithreaded or reentrant code. However, if you
use a single connection, you are restricted to one active request per connection. In a
multithreaded application, you should not use the same connection to the database on each
thread unless you use a semaphore to control access.

There are no restrictions on using separate connections on each thread that wants to use the
database. The SQLCA is used by the runtime library to distinguish between the different
thread contexts. So, each thread wanting to use the database concurrently must have its own
SQLCA. The exception is that a thread can use the db_cancel_request function to cancel a
statement executing on a different thread using that thread's SQLCA.

The following is an example of reentrant multithreaded embedded SQL code.
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <ctype.h>
#include <stdlib.h>
#include <process.h>
#include <windows.h>
EXEC SQL INCLUDE SQLCA;
EXEC SQL INCLUDE SQLDA;

#define TRUE 1
#define FALSE 0

// multithreading support

typedef struct a_thread_data {
 SQLCA sqlca;
 int num_iters;
 int thread;
 int done;

Embedded SQL

Programming 437

} a_thread_data;

// each thread's ESQL test

EXEC SQL SET SQLCA "&thread_data->sqlca";

static void PrintSQLError(a_thread_data * thread_data)
/**/
{
 char buffer[200];

 printf("%d: SQL error %d -- %s ... aborting\n",
 thread_data->thread,
 SQLCODE,
 sqlerror_message(&thread_data->sqlca,
 buffer, sizeof(buffer)));
 exit(1);
}

EXEC SQL WHENEVER SQLERROR { PrintSQLError(thread_data); };

static void do_one_iter(void * data)
{
 a_thread_data * thread_data = (a_thread_data *)data;
 int i;
 EXEC SQL BEGIN DECLARE SECTION;
 char user[20];
 EXEC SQL END DECLARE SECTION;

 if(db_init(&thread_data->sqlca) != 0) {
 for(i = 0; i < thread_data->num_iters; i++) {
 EXEC SQL CONNECT "dba" IDENTIFIED BY "sql";
 EXEC SQL SELECT USER INTO :user;
 EXEC SQL DISCONNECT;
 }
 printf("Thread %d did %d iters successfully\n",
 thread_data->thread, thread_data->num_iters);
 db_fini(&thread_data->sqlca);
 }
 thread_data->done = TRUE;
}

int main()
{
 int num_threads = 4;
 int thread;
 int num_iters = 300;
 int num_done = 0;
 a_thread_data *thread_data;
 thread_data = (a_thread_data *)malloc(sizeof(a_thread_data) *
num_threads);
 for(thread = 0; thread < num_threads; thread++) {
 thread_data[thread].num_iters = num_iters;
 thread_data[thread].thread = thread;
 thread_data[thread].done = FALSE;
 if(_beginthread(do_one_iter,

Embedded SQL

438 SAP Sybase IQ

 8096,
 (void *)&thread_data[thread]) <= 0) {
 printf("FAILED creating thread.\n");
 return(1);
 }
 }
 while(num_done != num_threads) {
 Sleep(1000);
 num_done = 0;
 for(thread = 0; thread < num_threads; thread++) {
 if(thread_data[thread].done == TRUE) {
 num_done++;
 }
 }
 }
 return(0);
}

Multiple SQLCAs
You must not use the SQL preprocessor option (-r-) that generates non-reentrant code.
Reentrant code is a little larger and a little slower because statically initialized global variables
cannot be used. However, these effects are minimal.

Each SQLCA used in your program must be initialized with a call to db_init and cleaned up at
the end with a call to db_fini.

The embedded SQL statement SET SQLCA is used to tell the SQL preprocessor to use a
different SQLCA for database requests. Usually, a statement such as EXEC SQL SET
SQLCA 'task_data->sqlca'; is used at the top of your program or in a header file to
set the SQLCA reference to point at task specific data. Performance is unaffected because this
statement does not generate any code. It changes the state within the preprocessor so that any
reference to the SQLCA uses the given string.

Each thread must have its own SQLCA. This requirement also applies to code in a shared
library (in a DLL, for example) that uses embedded SQL and is called by more than one thread
in your application.

You can use the multiple SQLCA support in any of the supported embedded SQL
environments, but it is only required in reentrant code.

You do not need to use multiple SQLCAs to connect to more than one database or have more
than one connection to a single database.

Each SQLCA can have one unnamed connection. Each SQLCA has an active or current
connection.

All operations on a given database connection must use the same SQLCA that was used when
the connection was established.

Note: Operations on different connections are subject to the normal record locking
mechanisms and may cause each other to block and possibly to deadlock.

Embedded SQL

Programming 439

Static and Dynamic SQL
There are two ways to embed SQL statements into a C program:

Static statements
Dynamic statements

Static SQL Statements
All standard SQL data manipulation and data definition statements can be embedded in a C
program by prefixing them with EXEC SQL and suffixing the statement with a semicolon (;).
These statements are referred to as static statements.

Static statements can contain references to host variables. Host variables can only be used in
place of string or numeric constants. They cannot be used to substitute column names or table
names; dynamic statements are required to perform those operations.

Dynamic SQL Statements
In the C language, strings are stored in arrays of characters. Dynamic statements are
constructed in C language strings. These statements can then be executed using the PREPARE
and EXECUTE statements. These SQL statements cannot reference host variables in the same
manner as static statements since the C language variables are not accessible by name when
the C program is executing.

To pass information between the statements and the C language variables, a data structure
called the SQL Descriptor Area (SQLDA) is used. This structure is set up for you by the SQL
preprocessor if you specify a list of host variables on the EXECUTE statement in the USING
clause. These variables correspond by position to placeholders in the appropriate positions of
the prepared statement.

A placeholder is put in the statement to indicate where host variables are to be accessed. A
placeholder is either a question mark (?) or a host variable reference as in static statements (a
host variable name preceded by a colon). In the latter case, the host variable name used in the
actual text of the statement serves only as a placeholder indicating a reference to the SQL
descriptor area.

A host variable used to pass information to the database is called a bind variable.

Example
EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
char street[30];
char city[20];
a_sql_len cityind;
long empnum;
EXEC SQL END DECLARE SECTION;

Embedded SQL

440 SAP Sybase IQ

...
sprintf(comm,
 "UPDATE %s SET Street = :?, City = :?"
 "WHERE EmployeeID = :?",
 tablename);
EXEC SQL PREPARE S1 FROM :comm FOR UPDATE;
EXEC SQL EXECUTE S1 USING :street, :city:cityind, :empnum;

This method requires you to know how many host variables there are in the statement. Usually,
this is not the case. So, you can set up your own SQLDA structure and specify this SQLDA in
the USING clause on the EXECUTE statement.

The DESCRIBE BIND VARIABLES statement returns the host variable names of the bind
variables that are found in a prepared statement. This makes it easier for a C program to
manage the host variables. The general method is as follows:
EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
EXEC SQL END DECLARE SECTION;
...
sprintf(comm,
 "UPDATE %s SET Street = :street, City = :city"
 " WHERE EmployeeID = :empnum",
 tablename);
EXEC SQL PREPARE S1 FROM :comm FOR UPDATE;
/* Assume that there are no more than 10 host variables.
 * See next example if you cannot put a limit on it. */
sqlda = alloc_sqlda(10);
EXEC SQL DESCRIBE BIND VARIABLES FOR S1 INTO sqlda;
/* sqlda->sqld will tell you how many
 host variables there were. */
/* Fill in SQLDA_VARIABLE fields with
 values based on name fields in sqlda. */
...
EXEC SQL EXECUTE S1 USING DESCRIPTOR sqlda;
free_sqlda(sqlda);

SQLDA contents
The SQLDA consists of an array of variable descriptors. Each descriptor describes the
attributes of the corresponding C program variable or the location that the database stores data
into or retrieves data from:

data type
length if type is a string type
memory address
indicator variable

Indicator variables and NULL
The indicator variable is used to pass a NULL value to the database or retrieve a NULL value
from the database. The database server also uses the indicator variable to indicate truncation
conditions encountered during a database operation. The indicator variable is set to a positive
value when not enough space was provided to receive a database value.

Embedded SQL

Programming 441

Dynamic SELECT Statement
A SELECT statement that returns only a single row can be prepared dynamically, followed by
an EXECUTE with an INTO clause to retrieve the one-row result. SELECT statements that
return multiple rows, however, are managed using dynamic cursors.

With dynamic cursors, results are put into a host variable list or a SQLDA that is specified on
the FETCH statement (FETCH INTO and FETCH USING DESCRIPTOR). Since the
number of SELECT list items is usually unknown, the SQLDA route is the most common. The
DESCRIBE SELECT LIST statement sets up a SQLDA with the types of the SELECT list
items. Space is then allocated for the values using the fill_sqlda or fill_s_sqlda functions, and
the information is retrieved by the FETCH USING DESCRIPTOR statement.

The typical scenario is as follows:
EXEC SQL BEGIN DECLARE SECTION;
char comm[200];
EXEC SQL END DECLARE SECTION;
int actual_size;
SQLDA * sqlda;
...
sprintf(comm, "SELECT * FROM %s", table_name);
EXEC SQL PREPARE S1 FROM :comm;
/* Initial guess of 10 columns in result.
 If it is wrong, it is corrected right
 after the first DESCRIBE by reallocating
 sqlda and doing DESCRIBE again. */
sqlda = alloc_sqlda(10);
EXEC SQL DESCRIBE SELECT LIST FOR S1
 INTO sqlda;
if(sqlda->sqld > sqlda->sqln)
{
 actual_size = sqlda->sqld;
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(actual_size);
 EXEC SQL DESCRIBE SELECT LIST FOR S1
 INTO sqlda;
}
fill_sqlda(sqlda);
EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
EXEC SQL WHENEVER NOTFOUND {break};
for(;;)
{
 EXEC SQL FETCH C1 USING DESCRIPTOR sqlda;
 /* do something with data */
}
EXEC SQL CLOSE C1;
EXEC SQL DROP STATEMENT S1;

Note: To avoid consuming unnecessary resources, ensure that statements are dropped after
use.

Embedded SQL

442 SAP Sybase IQ

The SQL Descriptor Area (SQLDA)
The SQLDA (SQL Descriptor Area) is an interface structure that is used for dynamic SQL
statements. The structure is used to pass information regarding host variables and SELECT
statement results to and from the database. The SQLDA is defined in the header file
sqlda.h.

There are functions in the database interface shared library or DLL that you can use to manage
SQLDAs.

When host variables are used with static SQL statements, the preprocessor constructs a
SQLDA for those host variables. It is this SQLDA that is actually passed to and from the
database server.

The SQLDA Header File
The contents of sqlda.h are as follows:

#ifndef _SQLDA_H_INCLUDED
#define _SQLDA_H_INCLUDED
#define II_SQLDA
#include "sqlca.h"
#if defined(_SQL_PACK_STRUCTURES)
 #if defined(_MSC_VER) && _MSC_VER > 800
 #pragma warning(push)
 #pragma warning(disable:4103)
 #endif
 #include "pshpk1.h"
#endif
#define SQL_MAX_NAME_LEN 30
#define _sqldafar
typedef short int a_sql_type;

struct sqlname {
 short int length; /* length of char data */
 char data[SQL_MAX_NAME_LEN]; /* data */
};

struct sqlvar { /* array of variable descriptors */
 short int sqltype; /* type of host variable */
 a_sql_len sqllen; /* length of host variable */
 void *sqldata; /* address of variable */
 a_sql_len *sqlind; /* indicator variable pointer */
 struct sqlname sqlname;
};

#if defined(_SQL_PACK_STRUCTURES)
 #include "poppk.h"
 /* The SQLDA should be 4-byte aligned */
 #include "pshpk4.h"
#endif

Embedded SQL

Programming 443

struct sqlda {
 unsigned char sqldaid[8]; /* eye catcher "SQLDA" */
 a_sql_int32 sqldabc; /* length of sqlda structure */
 short int sqln; /* descriptor size in number of entries */
 short int sqld; /* number of variables found by DESCRIBE */
 struct sqlvar sqlvar[1]; /* array of variable descriptors */
};

#define SCALE(sqllen) ((sqllen)/256)
#define PRECISION(sqllen) ((sqllen)&0xff)
#define SET_PRECISION_SCALE(sqllen,precision,scale) \
 sqllen = (scale)*256 + (precision)
#define DECIMALSTORAGE(sqllen) (PRECISION(sqllen)/2 + 1)
typedef struct sqlda SQLDA;
typedef struct sqlvar SQLVAR, SQLDA_VARIABLE;
typedef struct sqlname SQLNAME, SQLDA_NAME;
#ifndef SQLDASIZE
#define SQLDASIZE(n) (sizeof(struct sqlda) + \
 (n-1) * sizeof(struct sqlvar))
#endif
#if defined(_SQL_PACK_STRUCTURES)
 #include "poppk.h"
 #if defined(_MSC_VER) && _MSC_VER > 800
 #pragma warning(pop)
 #endif
#endif
#endif

SQLDA Fields
The SQLDA fields have the following meanings:

Field Description

sqldaid An 8-byte character field that contains the string
SQLDA as an identification of the SQLDA struc-

ture. This field helps in debugging when you are
looking at memory contents.

sqldabc A 32-bit integer containing the length of the
SQLDA structure.

sqln The number of variable descriptors allocated in
the sqlvar array.

sqld The number of variable descriptors that are valid
(contain information describing a host variable).
This field is set by the DESCRIBE statement. As
well, you can set it when supplying data to the
database server.

Embedded SQL

444 SAP Sybase IQ

Field Description

sqlvar An array of descriptors of type struct sqlvar, each
describing a host variable.

SQLDA Host Variable Descriptions
Each sqlvar structure in the SQLDA describes a host variable. The fields of the sqlvar structure
have the following meanings:

• sqltype – The type of the variable that is described by this descriptor.

The low order bit indicates whether NULL values are allowed. Valid types and constant
definitions can be found in the sqldef.h header file.

This field is filled by the DESCRIBE statement. You can set this field to any type when
supplying data to the database server or retrieving data from the database server. Any
necessary type conversion is done automatically.

• sqllen – The length of the variable. A sqllen value has type a_sql_len. What the length
actually means depends on the type information and how the SQLDA is being used.

For LONG VARCHAR, LONG NVARCHAR, and LONG BINARY data types, the
array_len field of the DT_LONGVARCHAR, DT_LONGNVARCHAR, or
DT_LONGBINARY data type structure is used instead of the sqllen field.

• sqldata – A pointer to the memory occupied by this variable. This memory must
correspond to the sqltype and sqllen fields.

For UPDATE and INSERT statements, this variable is not involved in the operation if the
sqldata pointer is a null pointer. For a FETCH, no data is returned if the sqldata pointer is a
null pointer. In other words, the column returned by the sqldata pointer is an unbound
column.

If the DESCRIBE statement uses LONG NAMES, this field holds the long name of the
result set column. If, in addition, the DESCRIBE statement is a DESCRIBE USER
TYPES statement, then this field holds the long name of the user-defined data type, instead
of the column. If the type is a base type, the field is empty.

• sqlind – A pointer to the indicator value. An indicator value has type a_sql_len. A negative
indicator value indicates a NULL value. A positive indicator value indicates that this
variable has been truncated by a FETCH statement, and the indicator value contains the
length of the data before truncation. A value of -2 indicates a conversion error if the
conversion_error database option is set to Off.

If the sqlind pointer is the null pointer, no indicator variable pertains to this host variable.

The sqlind field is also used by the DESCRIBE statement to indicate parameter types. If
the type is a user-defined data type, this field is set to DT_HAS_USERTYPE_INFO. In
this case, you may want to perform a DESCRIBE USER TYPES to obtain information
about the user-defined data types.

Embedded SQL

Programming 445

• sqlname – A VARCHAR-like structure, as follows:
struct sqlname {
 short int length;
 char data[SQL_MAX_NAME_LEN];
};

It is filled by a DESCRIBE statement and is not otherwise used. This field has a different
meaning for the two formats of the DESCRIBE statement:

• SELECT LIST – The name data buffer is filled with the column heading of the
corresponding item in the SELECT list.

• BIND VARIABLES – The name data buffer is filled with the name of the host variable
that was used as a bind variable, or "?" if an unnamed parameter marker is used.

On a DESCRIBE SELECT LIST statement, any indicator variables present are filled with
a flag indicating whether the SELECT list item is updatable or not. More information
about this flag can be found in the sqldef.h header file.

If the DESCRIBE statement is a DESCRIBE USER TYPES statement, then this field
holds the long name of the user-defined data type instead of the column. If the type is a base
type, the field is empty.

SQLDA sqllen Field Values
SQLDA sqllen field values after a DESCRIBE, when sending values, and when retrieving
data.

SQLDA sqllen Field Values After a DESCRIBE
The DESCRIBE statement gets information about the host variables required to store data
retrieved from the database, or host variables required to pass data to the database.

The following table indicates the values of the sqllen and sqltype structure members returned
by the DESCRIBE statement for the various database types (both SELECT LIST and BIND
VARIABLE DESCRIBE statements). For a user-defined database data type, the base type is
described.

Your program can use the types and lengths returned from a DESCRIBE, or you may use
another type. The database server performs type conversions between any two types. The
memory pointed to by the sqldata field must correspond to the sqltype and sqllen fields. The
embedded SQL type is obtained by a bitwise AND of sqltype with DT_TYPES (sqltype &
DT_TYPES).

Database field type Embedded SQL type re-
turned

Length (in bytes) re-
turned on describe

BIGINT DT_BIGINT 8

BINARY(n) DT_BINARY n

Embedded SQL

446 SAP Sybase IQ

Database field type Embedded SQL type re-
turned

Length (in bytes) re-
turned on describe

BIT DT_BIT 1

CHAR(n) DT_FIXCHAR1 n times maximum data expan-
sion when converting from da-
tabase character set to the cli-
ent's CHAR character set. If this
length would be more than
32767 bytes, then the embedded
SQL type returned is
DT_LONGVARCHAR with a
length of 32767 bytes.

CHAR(n CHAR) DT_FIXCHAR1 n times maximum character
length in the client's CHAR
character set. If this length
would be more than 32767
bytes, then the embedded SQL
type returned is DT_LONG-
VARCHAR with a length of
32767 bytes.

DATE DT_DATE length of longest formatted
string

DECIMAL(p,s) DT_DECIMAL low byte of length field in
SQLDA set to p, and high byte
set to s. See PRECISION and
SCALE macros in sqlda.h.

DOUBLE DT_DOUBLE 8

FLOAT DT_FLOAT 4

INT DT_INT 4

LONG BINARY DT_LONGBINARY 32767

LONG NVARCHAR DT_LONGVARCHAR /
DT_LONGNVARCHAR2

32767

LONG VARCHAR DT_LONGVARCHAR 32767

Embedded SQL

Programming 447

Database field type Embedded SQL type re-
turned

Length (in bytes) re-
turned on describe

NCHAR(n) DT_FIXCHAR / DT_NFIX-
CHAR2

n times maximum character
length in the client's NCHAR
character set. If this length
would be more than 32767
bytes, then the embedded SQL
type returned is DT_LONG-
NVARCHAR with a length of
32767 bytes.

NVARCHAR(n) DT_VARCHAR /
DT_NVARCHAR2

n times maximum character
length in the client's NCHAR
character set. If this length
would be more than 32767
bytes, then the embedded SQL
type returned is DT_LONG-
NVARCHAR with a length of
32767 bytes.

REAL DT_FLOAT 4

SMALLINT DT_SMALLINT 2

TIME DT_TIME length of longest formatted
string

TIMESTAMP DT_TIMESTAMP length of longest formatted
string

TINYINT DT_TINYINT 1

UNSIGNED BIGINT DT_UNSBIGINT 8

UNSIGNED INT DT_UNSINT 4

UNSIGNED SMALLINT DT_UNSSMALLINT 2

VARCHAR(n) DT_VARCHAR1 n times maximum data expan-
sion when converting from da-
tabase character set to the cli-
ent's CHAR character set. If this
length would be more than
32767 bytes, then the embedded
SQL type returned is
DT_LONGVARCHAR with a
length of 32767 bytes.

Embedded SQL

448 SAP Sybase IQ

Database field type Embedded SQL type re-
turned

Length (in bytes) re-
turned on describe

VARCHAR(n CHAR) DT_VARCHAR1 n times maximum character
length in the client's CHAR
character set. If this length
would be more than 32767, then
the embedded SQL type re-
turned is DT_LONGVARCH-
AR with length 32767.

1 The type returned for CHAR and VARCHAR may be DT_LONGVARCHAR if the
maximum byte length in the client's CHAR character set is greater than 32767 bytes.

2 The type returned for NCHAR and NVARCHAR may be DT_LONGNVARCHAR if the
maximum byte length in the client's NCHAR character set is greater than 32767 bytes.
NCHAR, NVARCHAR, and LONG NVARCHAR are described by default as either
DT_FIXCHAR, DT_VARCHAR, or DT_LONGVARCHAR, respectively. If the
db_change_nchar_charset function has been called, the types are described as
DT_NFIXCHAR, DT_NVARCHAR, and DT_LONGNVARCHAR, respectively.

SQLDA sqllen Field Values when Sending Values
The following table indicates how you specify lengths of values when you supply data to the
database server in the SQLDA.

Only the data types displayed in the table are allowed in this case. The DT_DATE, DT_TIME,
and DT_TIMESTAMP types are treated the same as DT_STRING when supplying
information to the database; the value must be a null-terminated character string in an
appropriate date or time of day format.

Embedded SQL data type Program action to set the length

DT_BIGINT No action required.

DT_BINARY(n) Length taken from field in BINARY structure.

DT_BIT No action required.

DT_DATE Length determined by terminating null character.

DT_DOUBLE No action required.

DT_FIXCHAR(n) Length field in SQLDA determines length of
string.

DT_FLOAT No action required.

DT_INT No action required.

Embedded SQL

Programming 449

Embedded SQL data type Program action to set the length

DT_LONGBINARY Length field ignored.

DT_LONGNVARCHAR Length field ignored.

DT_LONGVARCHAR Length field ignored.

DT_NFIXCHAR(n) Length field in SQLDA determines length of
string.

DT_NSTRING Length determined by terminating \0. If the an-
si_blanks option is On and the database is blank-
padded, then the length field in the SQLDA must
be set to the length of the buffer containing the
value (at least the length of the value plus space
for the terminating null character).

DT_NVARCHAR Length taken from field in NVARCHAR struc-
ture.

DT_SMALLINT No action required.

DT_STRING Length determined by terminating \0. If the an-
si_blanks option is On and the database is blank-
padded, then the length field in the SQLDA must
be set to the length of the buffer containing the
value (at least the length of the value plus space
for the terminating null character).

DT_TIME Length determined by terminating null character.

DT_TIMESTAMP Length determined by terminating null character.

DT_TIMESTAMP_STRUCT No action required.

DT_UNSBIGINT No action required.

DT_UNSINT No action required.

DT_UNSSMALLINT No action required.

DT_VARCHAR(n) Length taken from field in VARCHAR structure.

DT_VARIABLE Length determined by terminating \0.

Embedded SQL

450 SAP Sybase IQ

SQLDA sqllen Field Values when Retrieving Data
The following table indicates the values of the length field when you retrieve data from the
database using a SQLDA. The sqllen field is never modified when you retrieve data.

Only the interface data types displayed in the table are allowed in this case. The DT_DATE,
DT_TIME, and DT_TIMESTAMP data types are treated the same as DT_STRING when you
retrieve information from the database. The value is formatted as a character string in the
current date format.

Embedded SQL data
type

What the program must
set length field to when
receiving

How the database re-
turns length information
after fetching a value

DT_BIGINT No action required. No action required.

DT_BINARY(n) Maximum length of BINARY
structure (n+2). The maximum
value for n is 32765.

len field of BINARY structure
set to actual length in bytes.

DT_BIT No action required. No action required.

DT_DATE Length of buffer. null character at end of string.

DT_DOUBLE No action required. No action required.

DT_FIXCHAR(n) Length of buffer, in bytes. The
maximum value for n is 32767.

Padded with blanks to length of
buffer.

DT_FLOAT No action required. No action required.

DT_INT No action required. No action required.

DT_LONGBINARY Length field ignored. Length field ignored.

DT_LONGNVARCHAR Length field ignored. Length field ignored.

DT_LONGVARCHAR Length field ignored. Length field ignored.

DT_NFIXCHAR(n) Length of buffer, in bytes. The
maximum value for n is 32767.

Padded with blanks to length of
buffer.

DT_NSTRING Length of buffer. null character at end of string.

DT_NVARCHAR(n) Maximum length of NVARCH-
AR structure (n+2). The maxi-
mum value for n is 32765.

len field of NVARCHAR struc-
ture set to actual length in bytes
of string.

DT_SMALLINT No action required. No action required.

DT_STRING Length of buffer. null character at end of string.

Embedded SQL

Programming 451

Embedded SQL data
type

What the program must
set length field to when
receiving

How the database re-
turns length information
after fetching a value

DT_TIME Length of buffer. null character at end of string.

DT_TIMESTAMP Length of buffer. null character at end of string.

DT_TIMESTAMP_ STRUCT No action required. No action required.

DT_UNSBIGINT No action required. No action required.

DT_UNSINT No action required. No action required.

DT_UNSSMALLINT No action required. No action required.

DT_VARCHAR(n) Maximum length of VAR-
CHAR structure (n+2). The
maximum value for n is 32765.

len field of VARCHAR struc-
ture set to actual length in bytes
of string.

How to Fetch Data Using Embedded SQL
Fetching data in embedded SQL is done using the SELECT statement. There are two cases:

• The SELECT statement returns at most one row – Use an INTO clause to assign the
returned values directly to host variables.

• The SELECT statement may return multiple rows – Use cursors to manage the rows of
the result set.

SELECT Statements That Return at Most One Row
A single row query retrieves at most one row from the database. A single-row query SELECT
statement has an INTO clause following the SELECT list and before the FROM clause. The
INTO clause contains a list of host variables to receive the value for each SELECT list item.
There must be the same number of host variables as there are SELECT list items. The host
variables may be accompanied by indicator variables to indicate NULL results.

When the SELECT statement is executed, the database server retrieves the results and places
them in the host variables. If the query results contain more than one row, the database server
returns an error.

If the query results in no rows being selected, an error is returned indicating that no rows can be
found (SQLCODE 100). Errors and warnings are returned in the SQLCA structure.

Example

The following code fragment returns 1 if a row from the Employees table is fetched
successfully, 0 if the row doesn't exist, and -1 if an error occurs.

Embedded SQL

452 SAP Sybase IQ

EXEC SQL BEGIN DECLARE SECTION;
long id;
char name[41];
char sex;
char birthdate[15];
a_sql_len ind_birthdate;
EXEC SQL END DECLARE SECTION;
...
int find_employee(long employee_id)
{
 id = employee_id;
 EXEC SQL SELECT GivenName ||
 ' ' || Surname, Sex, BirthDate
 INTO :name, :sex,
 :birthdate:ind_birthdate
 FROM Employees
 WHERE EmployeeID = :id;
 if(SQLCODE == SQLE_NOTFOUND)
 {
 return(0); /* employee not found */
 }
 else if(SQLCODE < 0)
 {
 return(-1); /* error */
 }
 else
 {
 return(1); /* found */
 }
}

Cursors in Embedded SQL
A cursor is used to retrieve rows from a query that has multiple rows in its result set. A cursor is
a handle or an identifier for the SQL query and a position within the result set.

Cursor management in embedded SQL involves of the following steps:

1. Declare a cursor for a particular SELECT statement, using the DECLARE CURSOR
statement.

2. Open the cursor using the OPEN statement.
3. Retrieve results one row at a time from the cursor using the FETCH statement.
4. Fetch rows until the Row Not Found warning is returned.

Errors and warnings are returned in the SQLCA structure.
5. Close the cursor, using the CLOSE statement.

By default, cursors are automatically closed at the end of a transaction (on COMMIT or
ROLLBACK). Cursors that are opened with a WITH HOLD clause are kept open for
subsequent transactions until they are explicitly closed.

The following is a simple example of cursor usage:
void print_employees(void)
{

Embedded SQL

Programming 453

 EXEC SQL BEGIN DECLARE SECTION;
 char name[50];
 char sex;
 char birthdate[15];
 a_sql_len ind_birthdate;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT GivenName || ' ' || Surname, Sex, BirthDate FROM Employees;
 EXEC SQL OPEN C1;
 for(;;)
 {
 EXEC SQL FETCH C1 INTO :name, :sex, :birthdate:ind_birthdate;
 if(SQLCODE == SQLE_NOTFOUND)
 {
 break;
 }
 else if(SQLCODE < 0)
 {
 break;
 }

 if(ind_birthdate < 0)
 {
 strcpy(birthdate, "UNKNOWN");
 }
 printf("Name: %s Sex: %c Birthdate: %s\n", name, sex,
birthdate);
 }
 EXEC SQL CLOSE C1;
}

Cursor positioning
A cursor is positioned in one of three places:

• On a row
• Before the first row
• After the last row

Embedded SQL

454 SAP Sybase IQ

When a cursor is opened, it is positioned before the first row. The cursor position can be moved
using the FETCH statement. It can be positioned to an absolute position either from the start or
from the end of the query results. It can also be moved relative to the current cursor position.

There are special positioned versions of the UPDATE and DELETE statements that can be
used to update or delete the row at the current position of the cursor. If the cursor is positioned
before the first row or after the last row, an error is returned indicating that there is no
corresponding row in the cursor.

The PUT statement can be used to insert a row into a cursor.

Cursor positioning problems
Inserts and some updates to DYNAMIC SCROLL cursors can cause problems with cursor
positioning. The database server does not put inserted rows at a predictable position within a
cursor unless there is an ORDER BY clause on the SELECT statement. Sometimes the
inserted row does not appear until the cursor is closed and opened again.

With SAP Sybase IQ, this occurs if a temporary table had to be created to open the cursor.

The UPDATE statement can cause a row to move in the cursor. This happens if the cursor has
an ORDER BY clause that uses an existing index (a temporary table is not created).

Embedded SQL

Programming 455

Wide Fetches or Array Fetches
The FETCH statement can be modified to fetch more than one row at a time, which may
improve performance. This is called a wide fetch or an array fetch.

SAP Sybase IQ also supports wide puts and inserts.

To use wide fetches in embedded SQL, include the FETCH statement in your code as follows:
EXEC SQL FETCH ... ARRAY nnn

where ARRAY nnn is the last item of the FETCH statement. The fetch count nnn can be a host
variable. The number of variables in the SQLDA must be the product of nnn and the number of
columns per row. The first row is placed in SQLDA variables 0 to (columns per row) - 1, and so
on.

Each column must be of the same type in each row of the SQLDA, or a
SQLDA_INCONSISTENT error is returned.

The server returns in SQLCOUNT the number of records that were fetched, which is always
greater than zero unless there is an error or warning. On a wide fetch, a SQLCOUNT of 1 with
no error condition indicates that one valid row has been fetched.

Example

The following example code illustrates the use of wide fetches. You can also find this code in
%ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere\esqlwidefetch
\widefetch.sqc.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sqldef.h"
EXEC SQL INCLUDE SQLCA;

EXEC SQL WHENEVER SQLERROR { PrintSQLError();
 goto err; };

static void PrintSQLError()
{
 char buffer[200];

 printf("SQL error %d -- %s\n",
 SQLCODE,
 sqlerror_message(&sqlca,
 buffer,
 sizeof(buffer)));
}
static SQLDA * PrepareSQLDA(
 a_sql_statement_number stat0,
 unsigned width,
 unsigned *cols_per_row)

/* Allocate a SQLDA to be used for fetching from

Embedded SQL

456 SAP Sybase IQ

 the statement identified by "stat0". "width"
 rows are retrieved on each FETCH request.
 The number of columns per row is assigned to
 "cols_per_row". */
{
 int num_cols;
 unsigned row, col, offset;
 SQLDA * sqlda;
 EXEC SQL BEGIN DECLARE SECTION;
 a_sql_statement_number stat;
 EXEC SQL END DECLARE SECTION;
 stat = stat0;
 sqlda = alloc_sqlda(100);
 if(sqlda == NULL) return(NULL);
 EXEC SQL DESCRIBE :stat INTO sqlda;
 *cols_per_row = num_cols = sqlda->sqld;
 if(num_cols * width > sqlda->sqln)
 {
 free_sqlda(sqlda);
 sqlda = alloc_sqlda(num_cols * width);
 if(sqlda == NULL) return(NULL);
 EXEC SQL DESCRIBE :stat INTO sqlda;
 }
 // copy first row in SQLDA setup by describe
 // to following (wide) rows
 sqlda->sqld = num_cols * width;
 offset = num_cols;
 for(row = 1; row < width; row++)
 {
 for(col = 0;
 col < num_cols;
 col++, offset++)
 {
 sqlda->sqlvar[offset].sqltype =
 sqlda->sqlvar[col].sqltype;
 sqlda->sqlvar[offset].sqllen =
 sqlda->sqlvar[col].sqllen;
 // optional: copy described column name
 memcpy(&sqlda->sqlvar[offset].sqlname,
 &sqlda->sqlvar[col].sqlname,
 sizeof(sqlda->sqlvar[0].sqlname));
 }
 }
 fill_s_sqlda(sqlda, 40);
 return(sqlda);
err:
 return(NULL);
}
static void PrintFetchedRows(
 SQLDA * sqlda,
 unsigned cols_per_row)
{
 /* Print rows already wide fetched in the SQLDA */
 long rows_fetched;
 int row, col, offset;

Embedded SQL

Programming 457

 if(SQLCOUNT == 0)
 {
 rows_fetched = 1;
 }
 else
 {
 rows_fetched = SQLCOUNT;
 }
 printf("Fetched %d Rows:\n", rows_fetched);
 for(row = 0; row < rows_fetched; row++)
 {
 for(col = 0; col < cols_per_row; col++)
 {
 offset = row * cols_per_row + col;
 printf(" \"%s\"",
 (char *)sqlda->sqlvar[offset].sqldata);
 }
 printf("\n");
 }
}
static int DoQuery(
 char * query_str0,
 unsigned fetch_width0)
{
 /* Wide Fetch "query_str0" select statement
 * using a width of "fetch_width0" rows" */
 SQLDA * sqlda;
 unsigned cols_per_row;
 EXEC SQL BEGIN DECLARE SECTION;
 a_sql_statement_number stat;
 char * query_str;
 unsigned fetch_width;
 EXEC SQL END DECLARE SECTION;

 query_str = query_str0;
 fetch_width = fetch_width0;

 EXEC SQL PREPARE :stat FROM :query_str;
 EXEC SQL DECLARE QCURSOR CURSOR FOR :stat
 FOR READ ONLY;
 EXEC SQL OPEN QCURSOR;
 sqlda = PrepareSQLDA(stat,
 fetch_width,
 &cols_per_row);
 if(sqlda == NULL)
 {
 printf("Error allocating SQLDA\n");
 return(SQLE_NO_MEMORY);
 }
 for(;;)
 {
 EXEC SQL FETCH QCURSOR INTO DESCRIPTOR sqlda
 ARRAY :fetch_width;
 if(SQLCODE != SQLE_NOERROR) break;
 PrintFetchedRows(sqlda, cols_per_row);
 }

Embedded SQL

458 SAP Sybase IQ

 EXEC SQL CLOSE QCURSOR;
 EXEC SQL DROP STATEMENT :stat;
 free_filled_sqlda(sqlda);
err:
 return(SQLCODE);
}
void main(int argc, char *argv[])
{
 /* Optional first argument is a select statement,
 * optional second argument is the fetch width */
 char *query_str =
 "SELECT GivenName, Surname FROM Employees";
 unsigned fetch_width = 10;

 if(argc > 1)
 {
 query_str = argv[1];
 if(argc > 2)
 {
 fetch_width = atoi(argv[2]);
 if(fetch_width < 2)
 {
 fetch_width = 2;
 }
 }
 }
 db_init(&sqlca);
 EXEC SQL CONNECT "DBA" IDENTIFIED BY "sql";

 DoQuery(query_str, fetch_width);

 EXEC SQL DISCONNECT;
err:
 db_fini(&sqlca);
}

Notes on using wide fetches

• In the function PrepareSQLDA, the SQLDA memory is allocated using the alloc_sqlda
function. This allows space for indicator variables, rather than using the
alloc_sqlda_noind function.

• If the number of rows fetched is fewer than the number requested, but is not zero (at the end
of the cursor for example), the SQLDA items corresponding to the rows that were not
fetched are returned as NULL by setting the indicator value. If no indicator variables are
present, an error is generated (SQLE_NO_INDICATOR: no indicator variable for NULL
result).

• If a row being fetched has been updated, generating a
SQLE_ROW_UPDATED_WARNING warning, the fetch stops on the row that caused the
warning. The values for all rows processed to that point (including the row that caused the
warning) are returned. SQLCOUNT contains the number of rows that were fetched,

Embedded SQL

Programming 459

including the row that caused the warning. All remaining SQLDA items are marked as
NULL.

• If a row being fetched has been deleted or is locked, generating a
SQLE_NO_CURRENT_ROW or SQLE_LOCKED error, SQLCOUNT contains the
number of rows that were read before the error. This does not include the row that caused
the error. The SQLDA does not contain values for any of the rows since SQLDA values are
not returned on errors. The SQLCOUNT value can be used to reposition the cursor, if
necessary, to read the rows.

How to Send and Retrieve Long Values Using Embedded
SQL

The method for sending and retrieving LONG VARCHAR, LONG NVARCHAR, and LONG
BINARY values in embedded SQL applications is different from that for other data types. The
standard SQLDA fields are limited to 32767 bytes of data as the fields holding the length
information (sqllen, *sqlind) are 16-bit values. Changing these values to 32-bit values would
break existing applications.

The method of describing LONG VARCHAR, LONG NVARCHAR, and LONG BINARY
values is the same as for other data types.

Static SQL structures
Separate fields are used to hold the allocated, stored, and untruncated lengths of LONG
BINARY, LONG VARCHAR, and LONG NVARCHAR data types. The static SQL data types
are defined in sqlca.h as follows:

#define DECL_LONGVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }
#define DECL_LONGNVARCHAR(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size+1];\
 }
#define DECL_LONGBINARY(size) \
 struct { a_sql_uint32 array_len; \
 a_sql_uint32 stored_len; \
 a_sql_uint32 untrunc_len; \
 char array[size]; \
 }

Embedded SQL

460 SAP Sybase IQ

Dynamic SQL structures
For dynamic SQL, set the sqltype field to DT_LONGVARCHAR, DT_LONGNVARCHAR,
or DT_LONGBINARY as appropriate. The associated LONGVARCHAR,
LONGNVARCHAR, and LONGBINARY structure is as follows:
typedef struct LONGVARCHAR {
 a_sql_uint32 array_len;
 a_sql_uint32 stored_len;
 a_sql_uint32 untrunc_len;
 char array[1];
} LONGVARCHAR, LONGNVARCHAR, LONGBINARY;

Structure member definitions
For both static and dynamic SQL structures, the structure members are defined as follows:

• array_len – (Sending and retrieving.) The number of bytes allocated for the array part of
the structure.

• stored_len – (Sending and retrieving.) The number of bytes stored in the array. Always
less than or equal to array_len and untrunc_len.

• untrunc_len – (Retrieving only.) The number of bytes that would be stored in the array if
the value was not truncated. Always greater than or equal to stored_len. If truncation
occurs, this value is larger than array_len.

Retrieving LONG Data Using Static SQL
Retrieve a LONG VARCHAR, LONG NVARCHAR, or LONG BINARY value using static
SQL.

Prerequisites

There are no prerequisites for this task.

Task

1. Declare a host variable of type DECL_LONGVARCHAR, DECL_LONGNVARCHAR,
or DECL_LONGBINARY, as appropriate. The array_len member is filled in
automatically.

2. Retrieve the data using FETCH, GET DATA, or EXECUTE INTO. SAP Sybase IQ sets the
following information:

• indicator variable – Negative if the value is NULL, 0 if there is no truncation,
otherwise the positive untruncated length in bytes up to a maximum of 32767.

• stored_len – The number of bytes stored in the array. Always less than or equal to
array_len and untrunc_len.

Embedded SQL

Programming 461

• untrunc_len – The number of bytes that would be stored in the array if the value was
not truncated. Always greater than or equal to stored_len. If truncation occurs, this
value is larger than array_len.

The LONG data is retrieved using static SQL.

Retrieving LONG Data Using Dynamic SQL
Retrieve a LONG VARCHAR, LONG NVARCHAR, or LONG BINARY value using
dynamic SQL.

Prerequisites

There are no prerequisites for this task.

Task

1. Set the sqltype field to DT_LONGVARCHAR, DT_LONGNVARCHAR, or
DT_LONGBINARY as appropriate.

2. Set the sqldata field to point to the LONGVARCHAR, LONGNVARCHAR, or
LONGBINARY host variable structure.

You can use the LONGVARCHARSIZE(n), LONGNVARCHARSIZE(n), or
LONGBINARYSIZE(n) macro to determine the total number of bytes to allocate to hold n
bytes of data in the array field.

3. Set the array_len field of the host variable structure to the number of bytes allocated for the
array field.

4. Retrieve the data using FETCH, GET DATA, or EXECUTE INTO. SAP Sybase IQ sets the
following information:

• * sqlind – This sqlda field is negative if the value is NULL, 0 if there is no truncation,
and is the positive untruncated length in bytes up to a maximum of 32767.

• stored_len – The number of bytes stored in the array. Always less than or equal to
array_len and untrunc_len.

• untrunc_len – The number of bytes that would be stored in the array if the value was
not truncated. Always greater than or equal to stored_len. If truncation occurs, this
value is larger than array_len.

The LONG data is retrieved using dynamic SQL.

Sending LONG Data Using Static SQL
Send LONG values to the database using static SQL from an embedded SQL application.

Prerequisites

There are no prerequisites for this task.

Embedded SQL

462 SAP Sybase IQ

Task

1. Declare a host variable of type DECL_LONGVARCHAR, DECL_LONGNVARCHAR,
or DECL_LONGBINARY, as appropriate.

2. If you are sending NULL, set the indicator variable to a negative value.

3. Set the stored_len field of the host variable structure to the number of bytes of data in the
array field.

4. Send the data by opening the cursor or executing the statement.

The embedded SQL application is ready to send LONG values to the database.

Sending LONG Data Using Dynamic SQL
Send LONG values to the database using dynamic SQL from an embedded SQL application.

Prerequisites

There are no prerequisites for this task.

Task

1. Set the sqltype field to DT_LONGVARCHAR, DT_LONGNVARCHAR, or
DT_LONGBINARY, as appropriate.

2. If you are sending NULL, set * sqlind to a negative value.

3. If you are not sending NULL, set the sqldata field to point to the LONGVARCHAR,
LONGNVARCHAR, or LONGBINARY host variable structure.

You can use the LONGVARCHARSIZE(n), LONGNVARCHARSIZE(n), or
LONGBINARYSIZE(n) macros to determine the total number of bytes to allocate to hold
n bytes of data in the array field.

4. Set the array_len field of the host variable structure to the number of bytes allocated for the
array field.

5. Set the stored_len field of the host variable structure to the number of bytes of data in the
array field. This must not be more than array_len.

6. Send the data by opening the cursor or executing the statement.

The embedded SQL application is ready to send LONG values to the database.

Simple Stored Procedures in Embedded SQL
You can create and call stored procedures in embedded SQL.

You can embed a CREATE PROCEDURE just like any other data definition statement, such
as CREATE TABLE. You can also embed a CALL statement to execute a stored procedure.

Embedded SQL

Programming 463

The following code fragment illustrates both creating and executing a stored procedure in
embedded SQL:
EXEC SQL CREATE PROCEDURE pettycash(
 IN Amount DECIMAL(10,2))
BEGIN
 UPDATE account
 SET balance = balance - Amount
 WHERE name = 'bank';

 UPDATE account
 SET balance = balance + Amount
 WHERE name = 'pettycash expense';
END;
EXEC SQL CALL pettycash(10.72);

To pass host variable values to a stored procedure or to retrieve the output variables, you
prepare and execute a CALL statement. The following code fragment illustrates the use of
host variables. Both the USING and INTO clauses are used on the EXECUTE statement.
EXEC SQL BEGIN DECLARE SECTION;
double hv_expense;
double hv_balance;
EXEC SQL END DECLARE SECTION;

// Code here
EXEC SQL CREATE PROCEDURE pettycash(
 IN expense DECIMAL(10,2),
 OUT endbalance DECIMAL(10,2))
BEGIN
 UPDATE account
 SET balance = balance - expense
 WHERE name = 'bank';
 UPDATE account
 SET balance = balance + expense
 WHERE name = 'pettycash expense';

 SET endbalance = (SELECT balance FROM account
 WHERE name = 'bank');
END;

EXEC SQL PREPARE S1 FROM 'CALL pettycash(?, ?)';
EXEC SQL EXECUTE S1 USING :hv_expense INTO :hv_balance;

Stored Procedures with Result Sets
Database procedures can also contain SELECT statements. The procedure is declared using a
RESULT clause to specify the number, name, and types of the columns in the result set. Result
set columns are different from output parameters. For procedures with result sets, the CALL
statement can be used in place of a SELECT statement in the cursor declaration:
EXEC SQL BEGIN DECLARE SECTION;
 char hv_name[100];
EXEC SQL END DECLARE SECTION;

Embedded SQL

464 SAP Sybase IQ

EXEC SQL CREATE PROCEDURE female_employees()
 RESULT(name char(50))
BEGIN
 SELECT GivenName || Surname FROM Employees
 WHERE Sex = 'f';
END;

EXEC SQL PREPARE S1 FROM 'CALL female_employees()';

EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
for(;;)
{
 EXEC SQL FETCH C1 INTO :hv_name;
 if(SQLCODE != SQLE_NOERROR) break;
 printf("%s\n", hv_name);
}
EXEC SQL CLOSE C1;

In this example, the procedure has been invoked with an OPEN statement rather than an
EXECUTE statement. The OPEN statement causes the procedure to execute until it reaches a
SELECT statement. At this point, C1 is a cursor for the SELECT statement within the
database procedure. You can use all forms of the FETCH statement (backward and forward
scrolling) until you are finished with it. The CLOSE statement stops execution of the
procedure.

If there had been another statement following the SELECT in the procedure, it would not have
been executed. To execute statements following a SELECT, use the RESUME cursor-name
statement. The RESUME statement either returns the warning
SQLE_PROCEDURE_COMPLETE or it returns SQLE_NOERROR indicating that there is
another cursor. The example illustrates a two-select procedure:
EXEC SQL CREATE PROCEDURE people()
 RESULT(name char(50))
BEGIN
 SELECT GivenName || Surname
 FROM Employees;

 SELECT GivenName || Surname
 FROM Customers;
END;

EXEC SQL PREPARE S1 FROM 'CALL people()';
EXEC SQL DECLARE C1 CURSOR FOR S1;
EXEC SQL OPEN C1;
while(SQLCODE == SQLE_NOERROR)
{
 for(;;)
 {
 EXEC SQL FETCH C1 INTO :hv_name;
 if(SQLCODE != SQLE_NOERROR) break;
 printf("%s\n", hv_name);
 }
 EXEC SQL RESUME C1;

Embedded SQL

Programming 465

}
EXEC SQL CLOSE C1;

Dynamic cursors for CALL statements
These examples have used static cursors. Full dynamic cursors can also be used for the CALL
statement.

The DESCRIBE statement works fully for procedure calls. A DESCRIBE OUTPUT produces
a SQLDA that has a description for each of the result set columns.

If the procedure does not have a result set, the SQLDA has a description for each INOUT or
OUT parameter for the procedure. A DESCRIBE INPUT statement produces a SQLDA
having a description for each IN or INOUT parameter for the procedure.

DESCRIBE ALL
DESCRIBE ALL describes IN, INOUT, OUT, and RESULT set parameters. DESCRIBE
ALL uses the indicator variables in the SQLDA to provide additional information.

The DT_PROCEDURE_IN and DT_PROCEDURE_OUT bits are set in the indicator
variable when a CALL statement is described. DT_PROCEDURE_IN indicates an IN or
INOUT parameter and DT_PROCEDURE_OUT indicates an INOUT or OUT parameter.
Procedure RESULT columns have both bits clear.

After a DESCRIBE OUTPUT, these bits can be used to distinguish between statements that
have result sets (need to use OPEN, FETCH, RESUME, CLOSE) and statements that do not
(need to use EXECUTE).

Multiple result sets
If you have a procedure that returns multiple result sets, you must re-describe after each
RESUME statement if the result sets change shapes.

You need to describe the cursor, not the statement, to re-describe the current position of the
cursor.

Request Management with Embedded SQL
Since a typical embedded SQL application must wait for the completion of each database
request before carrying out the next step, an application that uses multiple execution threads
can carry on with other tasks.

If you must use a single execution thread, then some degree of multitasking can be
accomplished by registering a callback function using the db_register_a_callback function
with the DB_CALLBACK_WAIT option. Your callback function is called repeatedly by the
interface library while the database server or client library is busy processing your database
request.

Embedded SQL

466 SAP Sybase IQ

In your callback function, you cannot start another database request but you can cancel the
current request using the db_cancel_request function. You can use the db_is_working
function in your message handlers to determine if you have a database request in progress.

Database Backup with Embedded SQL
The recommended way to backup a database is to use the BACKUP DATABASE statement.

The db_backup function provides another way to perform an online backup in embedded SQL
applications. The SAP Sybase IQ utility also makes use of this function.

You can also interface directly to the SAP Sybase IQ Backup utility using the Database Tools
DBBackup function.

You should only undertake to write a program using the db_backup function if your backup
requirements are not satisfied by the any of the other backup methods.

Library Function Reference
The SQL preprocessor generates calls to functions in the interface library or DLL. In addition
to the calls generated by the SQL preprocessor, a set of library functions is provided to make
database operations easier to perform. Prototypes for these functions are included by the
EXEC SQL INCLUDE SQLCA statement.

This section contains a reference description of these various functions.

DLL entry points
The DLL entry points are the same except that the prototypes have a modifier appropriate for
DLLs.

You can declare the entry points in a portable manner using _esqlentry_, which is defined
in sqlca.h. It resolves to the value __stdcall.

alloc_sqlda Function
Allocates a SQLDA with descriptors for numvar variables.

Syntax
struct sqlda * alloc_sqlda(unsigned numvar);

Parameters

• numvar – The number of variable descriptors to allocate.

Embedded SQL

Programming 467

Returns
Pointer to a SQLDA if successful and returns the null pointer if there is not enough memory
available.

Remarks
Allocates a SQLDA with descriptors for numvar variables. The sqln field of the SQLDA is
initialized to numvar. Space is allocated for the indicator variables, the indicator pointers are
set to point to this space, and the indicator value is initialized to zero. A null pointer is returned
if memory cannot be allocated. It is recommended that you use this function instead of the
alloc_sqlda_noind function.

alloc_sqlda_noind Function
Allocates a SQLDA with descriptors for numvar variables.

Syntax
struct sqlda * alloc_sqlda_noind(unsigned numvar);

Parameters

• numvar – The number of variable descriptors to allocate.

Returns
Pointer to a SQLDA if successful and returns the null pointer if there is not enough memory
available.

Remarks
Allocates a SQLDA with descriptors for numvar variables. The sqln field of the SQLDA is
initialized to numvar. Space is not allocated for indicator variables; the indicator pointers are
set to the null pointer. A null pointer is returned if memory cannot be allocated.

db_backup Function
Although this function provides one way to add backup features to an application, the
recommended way to do this task is to use the BACKUP DATABASE statement.

Syntax
void db_backup(
SQLCA * sqlca,
int op,
int file_num,
unsigned long page_num,
struct sqlda * sqlda);

Embedded SQL

468 SAP Sybase IQ

Parameters

• sqlca – A pointer to a SQLCA structure.
• op – The action or operation to be performed.
• file_num – The file number of the database.
• page_num – The page number of the database. A value in the range 0 to the maximum

number of pages less 1.
• sqlda – A pointer to a SQLDA structure.

Authorization
Must be connected as a user with BACKUP DATABASE system privilege, or have the
SYS_RUN_REPLICATION_ROLE system role.

Remarks
Although this function provides one way to add backup features to an application, the
recommended way to do this task is to use the BACKUP DATABASE statement.

The action performed depends on the value of the op parameter:

• DB_BACKUP_START – Must be called before a backup can start. Only one backup can
be running per database at one time against any given database server. Database
checkpoints are disabled until the backup is complete (db_backup is called with an op
value of DB_BACKUP_END). If the backup cannot start, the SQLCODE is
SQLE_BACKUP_NOT_STARTED. Otherwise, the SQLCOUNT field of the sqlca is set
to the database page size. Backups are processed one page at a time.

The file_num, page_num, and sqlda parameters are ignored.
• DB_BACKUP_OPEN_FILE – Open the database file specified by file_num, which

allows pages of the specified file to be backed up using DB_BACKUP_READ_PAGE.
Valid file numbers are 0 through DB_BACKUP_MAX_FILE for the root database files,
and 0 through DB_BACKUP_TRANS_LOG_FILE for the transaction log file. If the
specified file does not exist, the SQLCODE is SQLE_NOTFOUND. Otherwise,
SQLCOUNT contains the number of pages in the file, SQLIOESTIMATE contains a 32-
bit value (POSIX time_t) that identifies the time that the database file was created, and the
operating system file name is in the sqlerrmc field of the SQLCA.

The page_num and sqlda parameters are ignored.
• DB_BACKUP_READ_PAGE – Read one page of the database file specified by

file_num. The page_num should be a value from 0 to one less than the number of pages
returned in SQLCOUNT by a successful call to db_backup with the
DB_BACKUP_OPEN_FILE operation. Otherwise, SQLCODE is set to
SQLE_NOTFOUND. The sqlda descriptor should be set up with one variable of type
DT_BINARY or DT_LONG_BINARY pointing to a buffer. The buffer should be large
enough to hold binary data of the size returned in the SQLCOUNT field on the call to
db_backup with the DB_BACKUP_START operation.

Embedded SQL

Programming 469

DT_BINARY data contains a two-byte length followed by the actual binary data, so the
buffer must be two bytes longer than the page size.

Note: This call makes a copy of the specified database page into the buffer, but it is up to
the application to save the buffer on some backup media.

• DB_BACKUP_READ_RENAME_LOG – This action is the same as
DB_BACKUP_READ_PAGE, except that after the last page of the transaction log has
been returned, the database server renames the transaction log and starts a new one.

If the database server is unable to rename the log at the current time (for example in version
7.0.x or earlier databases there may be incomplete transactions), the
SQLE_BACKUP_CANNOT_RENAME_LOG_YET error is set. In this case, do not use
the page returned, but instead reissue the request until you receive SQLE_NOERROR and
then write the page. Continue reading the pages until you receive the SQLE_NOTFOUND
condition.

The SQLE_BACKUP_CANNOT_RENAME_LOG_YET error may be returned multiple
times and on multiple pages. In your retry loop, you should add a delay so as not to slow the
server down with too many requests.

When you receive the SQLE_NOTFOUND condition, the transaction log has been backed
up successfully and the file has been renamed. The name for the old transaction file is
returned in the sqlerrmc field of the SQLCA.

You should check the sqlda->sqlvar[0].sqlind value after a db_backup call. If this value is
greater than zero, the last log page has been written and the log file has been renamed. The
new name is still in sqlca.sqlerrmc, but the SQLCODE value is SQLE_NOERROR.

You should not call db_backup again after this, except to close files and finish the backup.
If you do, you get a second copy of your backed up log file and you receive
SQLE_NOTFOUND.

• DB_BACKUP_CLOSE_FILE – Must be called when processing of one file is complete
to close the database file specified by file_num.

The page_num and sqlda parameters are ignored.
• DB_BACKUP_END – Must be called at the end of the backup. No other backup can start

until this backup has ended. Checkpoints are enabled again.

The file_num, page_num and sqlda parameters are ignored.
• DB_BACKUP_PARALLEL_START – Starts a parallel backup. Like

DB_BACKUP_START, only one backup can be running against a database at one time on
any given database server. Database checkpoints are disabled until the backup is complete
(until db_backup is called with an op value of DB_BACKUP_END). If the backup cannot
start, you receive SQLE_BACKUP_NOT_STARTED. Otherwise, the SQLCOUNT field
of the sqlca is set to the database page size.

The file_num parameter instructs the database server to rename the transaction log and
start a new one after the last page of the transaction log has been returned. If the value is

Embedded SQL

470 SAP Sybase IQ

non-zero then the transaction log is renamed or restarted. Otherwise, it is not renamed and
restarted. This parameter eliminates the need for the
DB_BACKUP_READ_RENAME_LOG operation, which is not allowed during a
parallel backup operation.

The page_num parameter informs the database server of the maximum size of the client's
buffer, in database pages. On the server side, the parallel backup readers try to read
sequential blocks of pages—this value lets the server know how large to allocate these
blocks: passing a value of nnn lets the server know that the client is willing to accept at
most nnnn database pages at a time from the server. The server may return blocks of pages
of less than size nnn if it is unable to allocate enough memory for blocks of nnn pages. If
the client does not know the size of database pages until after the call to
DB_BACKUP_PARALLEL_START, this value can be provided to the server with the
DB_BACKUP_INFO operation. This value must be provided before the first call to
retrieve backup pages (DB_BACKUP_PARALLEL_READ).

Note: If you are using db_backup to start a parallel backup, db_backup does not create
writer threads. The caller of db_backup must receive the data and act as the writer.

• DB_BACKUP_INFO – This parameter provides additional information to the database
server about the parallel backup. The file_num parameter indicates the type of information
being provided, and the page_num parameter provides the value. You can specify the
following additional information with DB_BACKUP_INFO:

• DB_BACKUP_INFO_PAGES_IN_BLOCK – The page_num argument contains
the maximum number of pages that should be sent back in one block.

• DB_BACKUP_INFO_CHKPT_LOG – This is the client-side equivalent to the
WITH CHECKPOINT LOG option of the BACKUP DATABASE statement. A
page_num value of DB_BACKUP_CHKPT_COPY indicates COPY, while the value
DB_BACKUP_CHKPT_NOCOPY indicates NO COPY. If this value is not provided
it defaults to COPY.

• DB_BACKUP_PARALLEL_READ – This operation reads a block of pages from the
database server. Before invoking this operation, use the DB_BACKUP_OPEN_FILE
operation to open all the files that you want to back up.
DB_BACKUP_PARALLEL_READ ignores the file_num and page_num arguments.

The sqlda descriptor should be set up with one variable of type DT_LONGBINARY
pointing to a buffer. The buffer should be large enough to hold binary data of the size nnn
pages (specified in the DB_BACKUP_START_PARALLEL operation, or in a
DB_BACKUP_INFO operation).

The server returns a sequential block of database pages for a particular database file. The
page number of the first page in the block is returned in the SQLCOUNT field. The file
number that the pages belong to is returned in the SQLIOESTIMATE field, and this value
matches one of the file numbers used in the DB_BACKUP_OPEN_FILE calls. The size of
the data returned is available in the stored_len field of the DT_LONGBINARY variable,
and is always a multiple of the database page size. While the data returned by this call
contains a block of sequential pages for a given file, it is not safe to assume that separate

Embedded SQL

Programming 471

blocks of data are returned in sequential order, or that all of one database file's pages are
returned before another database file's pages. The caller should be prepared to receive
portions of another individual file out of sequential order, or of any opened database file on
any given call.

An application should make repeated calls to this operation until the size of the read data is
0, or the value of sqlda->sqlvar[0].sqlind is greater than 0. If the backup is started with
transaction log renaming/restarting, SQLERROR could be set to
SQLE_BACKUP_CANNOT_RENAME_LOG_YET. In this case, do not use the pages
returned, but instead reissue the request until you receive SQLE_NOERROR, and then
write the data. The SQLE_BACKUP_CANNOT_RENAME_LOG_YET error may be
returned multiple times and on multiple pages. In your retry loop, you should add a delay
so the database server is not slowed down by too many requests. Continue reading the
pages until either of the first two conditions are met.

The dbbackup utility uses the following algorithm. This is not C code, and does not include
error checking.
sqlda->sqld = 1;
sqlda->sqlvar[0].sqltype = DT_LONGBINARY

/* Allocate LONGBINARY value for page buffer. It MUST have */
/* enough room to hold the requested number (128) of database pages
*/
sqlda->sqlvar[0].sqldata = allocated buffer

/* Open the server files needing backup */
for file_num = 0 to DB_BACKUP_MAX_FILE
 db_backup(... DB_BACKUP_OPEN_FILE, file_num ...)
 if SQLCODE == SQLE_NO_ERROR
 /* The file exists */
 num_pages = SQLCOUNT
 file_time = SQLE_IO_ESTIMATE
 open backup file with name from sqlca.sqlerrmc
end for

/* read pages from the server, write them locally */
while TRUE
 /* file_no and page_no are ignored */
 db_backup(&sqlca, DB_BACKUP_PARALLEL_READ, 0, 0, &sqlda);

 if SQLCODE != SQLE_NO_ERROR
 break;

 if buffer->stored_len == 0 || sqlda->sqlvar[0].sqlind > 0
 break;

 /* SQLCOUNT contains the starting page number of the block */
 /* SQLIOESTIMATE contains the file number the pages belong to */
 write block of pages to appropriate backup file
end while

/* close the server backup files */
for file_num = 0 to DB_BACKUP_MAX_FILE

Embedded SQL

472 SAP Sybase IQ

 /* close backup file */
 db_backup(... DB_BACKUP_CLOSE_FILE, file_num ...)
end for

/* shut down the backup */
db_backup(... DB_BACKUP_END ...)

/* cleanup */
free page buffer

db_cancel_request Function
Cancels the currently active database server request. This function checks to make sure a
database server request is active before sending the cancel request.

Syntax
int db_cancel_request(SQLCA * sqlca);

Parameters

• sqlca – A pointer to a SQLCA structure.

Returns
1 when the cancel request is sent; 0 if no request is sent.

Remarks
A non-zero return value does not mean that the request was canceled. There are a few critical
timing cases where the cancel request and the response from the database or server cross. In
these cases, the cancel simply has no effect, even though the function still returns TRUE.

The db_cancel_request function can be called asynchronously. This function and
db_is_working are the only functions in the database interface library that can be called
asynchronously using a SQLCA that might be in use by another request.

If you cancel a request that is carrying out a cursor operation, the position of the cursor is
indeterminate. You must locate the cursor by its absolute position or close it, following the
cancel.

db_change_char_charset Function
Changes the application's CHAR character set for this connection.

Syntax
unsigned int db_change_char_charset(
SQLCA * sqlca,
char * charset);

Embedded SQL

Programming 473

Parameters

• sqlca – A pointer to a SQLCA structure.
• charset – A string representing the character set.

Returns
1 if the change is successful; 0 otherwise.

Remarks
Data sent and fetched using DT_FIXCHAR, DT_VARCHAR, DT_LONGVARCHAR, and
DT_STRING types are in the CHAR character set.

db_change_nchar_charset Function
Changes the application's NCHAR character set for this connection.

Syntax
unsigned int db_change_nchar_charset(
SQLCA * sqlca,
char * charset);

Parameters

• sqlca – A pointer to a SQLCA structure.
• charset – A string representing the character set.

Returns
1 if the change is successful; 0 otherwise.

Remarks
Data sent and fetched using DT_NFIXCHAR, DT_NVARCHAR, DT_LONGNVARCHAR,
and DT_NSTRING host variable types are in the NCHAR character set.

If the db_change_nchar_charset function is not called, all data is sent and fetched using the
CHAR character set. Typically, an application that wants to send and fetch Unicode data
should set the NCHAR character set to UTF-8.

If this function is called, the charset parameter is usually "UTF-8". The NCHAR character set
cannot be set to UTF-16.

In embedded SQL, NCHAR, NVARCHAR and LONG NVARCHAR are described as
DT_FIXCHAR, DT_VARCHAR, and DT_LONGVARCHAR, respectively, by default. If the
db_change_nchar_charset function has been called, these types are described as
DT_NFIXCHAR, DT_NVARCHAR, and DT_LONGNVARCHAR, respectively.

Embedded SQL

474 SAP Sybase IQ

db_find_engine Function
Returns status information about the local database server.

Syntax
unsigned short db_find_engine(
SQLCA * sqlca,
char * name);

Parameters

• sqlca – A pointer to a SQLCA structure.
• name – NULL or a string containing the server's name.

Returns
Server status as an unsigned short value, or 0 if no server can be found over shared memory.

Remarks
Returns an unsigned short value, which indicates status information about the local database
server whose name is name. If no server can be found over shared memory with the specified
name, the return value is 0. A non-zero value indicates that the local server is currently
running.

If a null pointer is specified for name, information is returned about the default database
server.

Each bit in the return value conveys some information. Constants that represent the bits for the
various pieces of information are defined in the sqldef.h header file. Their meaning is
described below.

• DB_ENGINE – This flag is always set.
• DB_CLIENT – This flag is always set.
• DB_CAN_MULTI_DB_NAME – This flag is obsolete.
• DB_DATABASE_SPECIFIED – This flag is always set.
• DB_ACTIVE_CONNECTION – This flag is always set.
• DB_CONNECTION_DIRTY – This flag is obsolete.
• DB_CAN_MULTI_CONNECT – This flag is obsolete.
• DB_NO_DATABASES – This flag is set if the server has no databases started.

db_fini Function
This function frees resources used by the database interface or DLL.

Syntax
int db_fini(SQLCA * sqlca);

Embedded SQL

Programming 475

Parameters

• sqlca – A pointer to a SQLCA structure.

Returns
Non-zero value for success; 0 otherwise.

Remarks
You must not make any other library calls or execute any embedded SQL statements after
db_fini is called. If an error occurs during processing, the error code is set in SQLCA and the
function returns 0. If there are no errors, a non-zero value is returned.

You need to call db_fini once for each SQLCA being used.

The db_fini function should not be called directly or indirectly from the DllMain function in a
Windows Dynamic Link Library. The DllMain entry point function is intended to perform
only simple initialization and termination tasks. Calling db_fini can create deadlocks and
circular dependencies.

db_get_property Function
Obtains information about the database interface or the server to which you are connected.

Syntax
unsigned int db_get_property(
SQLCA * sqlca,
a_db_property property,
char * value_buffer,
int value_buffer_size);

Parameters

• sqlca – A pointer to a SQLCA structure.
• a_db_property – The property requested, either DB_PROP_CLIENT_CHARSET,

DB_PROP_SERVER_ADDRESS, or DB_PROP_DBLIB_VERSION.
• value_buffer – This argument is filled with the property value as a null-terminated string.
• value_buffer_size – The maximum length of the string value_buffer, including room for

the terminating null character.

Returns
1 if successful; 0 otherwise.

Remarks
The following properties are supported:

Embedded SQL

476 SAP Sybase IQ

• DB_PROP_CLIENT_CHARSET – This property value gets the client character set (for
example, "windows-1252").

• DB_PROP_SERVER_ADDRESS – This property value gets the current connection's
server network address as a printable string. The shared memory protocol always returns
the empty string for the address. The TCP/IP protocol returns non-empty string addresses.

• DB_PROP_DBLIB_VERSION – This property value gets the database interface
library's version (for example, "16.0.0.1297").

db_init Function
This function initializes the database interface library.

Syntax
int db_init(SQLCA * sqlca);

Parameters

• sqlca – A pointer to a SQLCA structure.

Returns
Non-zero value if successful; 0 otherwise.

Remarks
This function must be called before any other library call is made and before any embedded
SQL statement is executed. The resources the interface library required for your program are
allocated and initialized on this call.

Use db_fini to free the resources at the end of your program. If there are any errors during
processing, they are returned in the SQLCA and 0 is returned. If there are no errors, a non-zero
value is returned and you can begin using embedded SQL statements and functions.

Usually, this function should be called only once (passing the address of the global sqlca
variable defined in the sqlca.h header file). If you are writing a DLL or an application that
has multiple threads using embedded SQL, call db_init once for each SQLCA that is being
used.

db_is_working Function
Returns 1 if your application has a database request in progress that uses the given sqlca and 0
if there is no request in progress that uses the given sqlca.

Syntax
unsigned short db_is_working(SQLCA * sqlca);

Embedded SQL

Programming 477

Parameters

• sqlca – A pointer to a SQLCA structure.

Returns
1 if your application has a database request in progress that uses the given sqlca and 0 if there is
no request in progress that uses the given sqlca.

Remarks
This function can be called asynchronously. This function and db_cancel_request are the only
functions in the database interface library that can be called asynchronously using a SQLCA
that might be in use by another request.

db_locate_servers Function
Provides programmatic access to the information displayed by the dblocate utility, listing all
the SAP Sybase IQ database servers on the local network that are listening on TCP/IP.

Syntax
unsigned int db_locate_servers(
SQLCA * sqlca,
SQL_CALLBACK_PARM callback_address,
void * callback_user_data);

Parameters

• sqlca – A pointer to a SQLCA structure.
• callback_address – The address of a callback function.
• callback_user_data – The address of a user-defined area in which to store data.

Returns
1 if successful; 0 otherwise.

Remarks
The callback function must have the following prototype:
int (*)(SQLCA * sqlca,
a_server_address * server_addr,
void * callback_user_data);

The callback function is called for each server found. If the callback function returns 0,
db_locate_servers stops iterating through servers.

The sqlca and callback_user_data passed to the callback function are those passed into
db_locate_servers. The second parameter is a pointer to an a_server_address structure.
a_server_address is defined in sqlca.h, with the following definition:

typedef struct a_server_address {
 a_sql_uint32 port_type;

Embedded SQL

478 SAP Sybase IQ

 a_sql_uint32 port_num;
 char *name;
 char *address;
} a_server_address;

• port_type – Is always PORT_TYPE_TCP at this time (defined to be 6 in sqlca.h).

• port_num – Is the TCP port number on which this server is listening.
• name – Points to a buffer containing the server name.
• address – Points to a buffer containing the IP address of the server.

db_locate_servers_ex Function
Provides programmatic access to the information displayed by the dblocate utility, listing all
the SAP Sybase IQ database servers on the local network that are listening on TCP/IP, and
provides a mask parameter used to select addresses passed to the callback function.

Syntax
unsigned int db_locate_servers_ex(
SQLCA * sqlca,
SQL_CALLBACK_PARM callback_address,
void * callback_user_data,
unsigned int bitmask);

Parameters

• sqlca – A pointer to a SQLCA structure.
• callback_address – The address of a callback function.
• callback_user_data – The address of a user-defined area in which to store data.
• bitmask – A mask composed of any of DB_LOOKUP_FLAG_NUMERIC,

DB_LOOKUP_FLAG_ADDRESS_INCLUDES_PORT, or
DB_LOOKUP_FLAG_DATABASES.

Returns
1 if successful; 0 otherwise.

Remarks
The callback function must have the following prototype:
int (*)(SQLCA * sqlca,
a_server_address * server_addr,
void * callback_user_data);

The callback function is called for each server found. If the callback function returns 0,
db_locate_servers_ex stops iterating through servers.

The sqlca and callback_user_data passed to the callback function are those passed into
db_locate_servers. The second parameter is a pointer to an a_server_address structure.
a_server_address is defined in sqlca.h, with the following definition:

Embedded SQL

Programming 479

typedef struct a_server_address {
 a_sql_uint32 port_type;
 a_sql_uint32 port_num;
 char *name;
 char *address;
 char *dbname;
} a_server_address;

• port_type – Is always PORT_TYPE_TCP at this time (defined to be 6 in sqlca.h).

• port_num – Is the TCP port number on which this server is listening.
• name – Points to a buffer containing the server name.
• address – Points to a buffer containing the IP address of the server.
• dbname – Points to a buffer containing the database name.

Three bitmask flags are supported:

DB_LOOKUP_FLAG_NUMERIC
DB_LOOKUP_FLAG_ADDRESS_INCLUDES_PORT
DB_LOOKUP_FLAG_DATABASES

These flags are defined in sqlca.h and can be ORed together.

DB_LOOKUP_FLAG_NUMERIC ensures that addresses passed to the callback function are
IP addresses, instead of host names.

DB_LOOKUP_FLAG_ADDRESS_INCLUDES_PORT specifies that the address includes
the TCP/IP port number in the a_server_address structure passed to the callback function.

DB_LOOKUP_FLAG_DATABASES specifies that the callback function is called once for
each database found, or once for each database server found if the database server doesn't
support sending database information (version 9.0.2 and earlier database servers).

db_register_a_callback Function
This function registers callback functions.

Syntax
void db_register_a_callback(
SQLCA * sqlca,
a_db_callback_index index,
(SQL_CALLBACK_PARM) callback);

Parameters

• sqlca – A pointer to a SQLCA structure.
• index – An index value identifying the type of callback as described below.
• callback – The address of a user-defined callback function.

Embedded SQL

480 SAP Sybase IQ

Remarks

If you do not register a DB_CALLBACK_WAIT callback, the default action is to do nothing.
Your application blocks, waiting for the database response. You must register a callback for
the MESSAGE TO CLIENT statement.

To remove a callback, pass a null pointer as the callback function.

The following values are allowed for the index parameter:

• DB_CALLBACK_DEBUG_MESSAGE – The supplied function is called once for each
debug message and is passed a null-terminated string containing the text of the debug
message. A debug message is a message that is logged to the LogFile file. In order for a
debug message to be passed to this callback, the LogFile connection parameter must be
used. The string normally has a newline character (\n) immediately before the terminating
null character. The prototype of the callback function is as follows:

void SQL_CALLBACK debug_message_callback(
SQLCA * sqlca,
char * message_string);

• DB_CALLBACK_START – The prototype is as follows:

void SQL_CALLBACK start_callback(SQLCA * sqlca);
This function is called just before a database request is sent to the server.
DB_CALLBACK_START is used only on Windows.

• DB_CALLBACK_FINISH – The prototype is as follows:

void SQL_CALLBACK finish_callback(SQLCA * sqlca);
This function is called after the response to a database request has been received by the
DBLIB interface DLL. DB_CALLBACK_FINISH is used only on Windows operating
systems.

• DB_CALLBACK_CONN_DROPPED – The prototype is as follows:

void SQL_CALLBACK conn_dropped_callback (
SQLCA * sqlca,
char * conn_name);
This function is called when the database server is about to drop a connection because of a
liveness timeout, through a DROP CONNECTION statement, or because the database
server is being shut down. The connection name conn_name is passed in to allow you to
distinguish between connections. If the connection was not named, it has a value of NULL.

• DB_CALLBACK_WAIT – The prototype is as follows:

void SQL_CALLBACK wait_callback(SQLCA * sqlca);
This function is called repeatedly by the interface library while the database server or
client library is busy processing your database request.

You would register this callback as follows:

Embedded SQL

Programming 481

db_register_a_callback(&sqlca,
 DB_CALLBACK_WAIT,
 (SQL_CALLBACK_PARM)&db_wait_request);

• DB_CALLBACK_MESSAGE – This is used to enable the application to handle
messages received from the server during the processing of a request. Messages can be
sent to the client application from the database server using the SQL MESSAGE
statement. Messages can also be generated by long running database server statements.

The callback prototype is as follows:

void SQL_CALLBACK message_callback(
SQLCA * sqlca,
unsigned char msg_type,
an_sql_code code,
unsigned short length,
char * msg
);
The msg_type parameter states how important the message is. You may want to handle
different message types in different ways. The following possible values for msg_type are
defined in sqldef.h.

• MESSAGE_TYPE_INFO – The message type was INFO.
• MESSAGE_TYPE_WARNING – The message type was WARNING.
• MESSAGE_TYPE_ACTION – The message type was ACTION.
• MESSAGE_TYPE_STATUS – The message type was STATUS.
• MESSAGE_TYPE_PROGRESS – The message type was PROGRESS. This type of

message is generated by long running database server statements such as BACKUP
DATABASE and LOAD TABLE.

The code field may provide a SQLCODE associated with the message, otherwise the value
is 0. The length field tells you how long the message is. The message is not null-
terminated. SAP Sybase IQ DBLIB and ODBC clients can use the
DB_CALLBACK_MESSAGE parameter to receive progress messages.

For example, the Interactive SQL callback displays STATUS and INFO message on the
Messages tab, while messages of type ACTION and WARNING go to a window. If an
application does not register this callback, there is a default callback, which causes all
messages to be written to the server logfile (if debugging is on and a logfile is specified). In
addition, messages of type MESSAGE_TYPE_WARNING and
MESSAGE_TYPE_ACTION are more prominently displayed, in an operating system-
dependent manner.

When a message callback is not registered by the application, messages sent to the client
are saved to the log file when the LogFile connection parameter is specified. Also,
ACTION or STATUS messages sent to the client appear in a window on Windows
operating systems and are logged to stderr on Unix operating systems.

• DB_CALLBACK_VALIDATE_FILE_TRANSFER – This is used to register a file
transfer validation callback function. Before allowing any transfer to take place, the client

Embedded SQL

482 SAP Sybase IQ

library will invoke the validation callback, if it exists. If the client data transfer is being
requested during the execution of indirect statements such as from within a stored
procedure, the client library will not allow a transfer unless the client application has
registered a validation callback. The conditions under which a validation call is made are
described more fully below.

The callback prototype is as follows:

int SQL_CALLBACK file_transfer_callback(
SQLCA * sqlca,
char * file_name,
int is_write
);
The file_name parameter is the name of the file to be read or written. The is_write
parameter is 0 if a read is requested (transfer from the client to the server), and non-zero for
a write. The callback function should return 0 if the file transfer is not allowed, non-zero
otherwise.

For data security, the server tracks the origin of statements requesting a file transfer. The
server determines if the statement was received directly from the client application. When
initiating the transfer of data from the client, the server sends the information about the
origin of the statement to the client software. On its part, the embedded SQL client library
allows unconditional transfer of data only if the data transfer is being requested due to the
execution of a statement sent directly by the client application. Otherwise, the application
must have registered the validation callback described above, in the absence of which the
transfer is denied and the statement fails with an error. If the client statement invokes a
stored procedure already existing in the database, then the execution of the stored
procedure itself is considered not to have been for a client initiated statement. However, if
the client application explicitly creates a temporary stored procedure then the execution of
the stored procedure results in the server treating the procedure as having been client
initiated. Similarly, if the client application executes a batch statement, then the execution
of the batch statement is considered as being done directly by the client application.

db_start_database Function
Starts the database on an existing server, if possible. Otherwise, a new server is started.

Syntax
unsigned int db_start_database(SQLCA * sqlca, char * parms);

Parameters

• sqlca – A pointer to a SQLCA structure.
• parms – A null-terminated string containing a semicolon-delimited list of parameter

settings, each of the form KEYWORD=value. For example:
"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

Embedded SQL

Programming 483

Returns
Non-zero if successful; 0 otherwise.

Remarks
The database is started on an existing server, if possible. Otherwise, a new server is started.

If the database was already running or was successfully started, the return value is true (non-
zero) and SQLCODE is set to 0. Error information is returned in the SQLCA.

If a user ID and password are supplied in the parameters, they are ignored.

The privilege required to start and stop a database is set on the server command line using the
-gd option.

db_start_engine Function
Starts the database server if it is not running.

Syntax
unsigned int db_start_engine(SQLCA * sqlca, char * parms);

Parameters

• sqlca – A pointer to a SQLCA structure.
• parms – A null-terminated string containing a semicolon-delimited list of parameter

settings, each of the form KEYWORD=value. For example:
"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

Returns
Non-zero if successful; 0 otherwise.

Remarks
If the database server was already running or was successfully started, the return value is
TRUE (non-zero) and SQLCODE is set to 0. Error information is returned in the SQLCA.

The following call to db_start_engine starts the database server, loads the specified database,
and names the server demo.
db_start_engine(&sqlca, "DBF=demo.db;START=iqsrv16");

Unless the ForceStart (FORCE) connection parameter is used and set to YES, the
db_start_engine function attempts to connect to a server before starting one, to avoid
attempting to start a server that is already running.

When the ForceStart connection is set to YES, there is no attempt to connect to a server before
trying to start one. This enables the following pair of commands to work as expected:

1. Start a database server named server_1:

Embedded SQL

484 SAP Sybase IQ

iqsrv16 -n server_1 demo.db
2. Force a new server to start and connect to it:

db_start_engine(&sqlda,
 "START=iqsrv16 -n server_2 mydb.db;ForceStart=YES")

If ForceStart (FORCE) is not used and the ServerName (Server) parameter is not used, then
the second command would have attempted to connect to server_1. The db_start_engine
function does not pick up the server name from the -n option of the StartLine (START)
parameter.

db_stop_database Function
Stop the database identified by DatabaseName (DBN) on the server identified by ServerName
(Server). If ServerName is not specified, the default server is used.

Syntax
unsigned int db_stop_database(SQLCA * sqlca, char * parms);

Parameters

• sqlca – A pointer to a SQLCA structure.
• parms – A null-terminated string containing a semicolon-delimited list of parameter

settings, each of the form KEYWORD=value. For example:
"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

Returns
Non-zero if successful; 0 otherwise.

Remarks
By default, this function does not stop a database that has existing connections. If
Unconditional (UNC) is set to yes, the database is stopped regardless of existing connections.

A return value of TRUE indicates that there were no errors.

The privilege required to start and stop a database is set on the server command line using the
-gd option.

db_stop_engine Function
Stops execution of the database server.

Syntax
unsigned int db_stop_engine(SQLCA * sqlca, char * parms);

Parameters

• sqlca – A pointer to a SQLCA structure.

Embedded SQL

Programming 485

• parms – A null-terminated string containing a semicolon-delimited list of parameter
settings, each of the form KEYWORD=value. For example:
"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

Returns
Non-zero if successful; 0 otherwise.

Remarks
The steps carried out by this function are:

• Look for a local database server that has a name that matches the ServerName (Server)
parameter. If no ServerName is specified, look for the default local database server.

• If no matching server is found, this function returns with success.
• Send a request to the server to tell it to checkpoint and shut down all databases.
• Unload the database server.

By default, this function does not stop a database server that has existing connections. If the
Unconditional=yes connection parameter is specified, the database server is stopped
regardless of existing connections.

A C program can use this function instead of spawning dbstop. A return value of TRUE
indicates that there were no errors.

The use of db_stop_engine is subject to the privileges set with the -gk server option.

db_string_connect Function
Provides extra functionality beyond the embedded SQL CONNECT statement.

Syntax
unsigned int db_string_connect(SQLCA * sqlca, char * parms);

Parameters

• sqlca – A pointer to a SQLCA structure.
• parms – A null-terminated string containing a semicolon-delimited list of parameter

settings, each of the form KEYWORD=value. For example:
"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

Returns
Non-zero if successful; 0 otherwise.

Remarks
The return value is TRUE (non-zero) if a connection was successfully established and FALSE
(zero) otherwise. Error information for starting the server, starting the database, or connecting
is returned in the SQLCA.

Embedded SQL

486 SAP Sybase IQ

db_string_disconnect Function
This function disconnects the connection identified by the ConnectionName parameter. All
other parameters are ignored.

Syntax
unsigned int db_string_disconnect(
 SQLCA * sqlca,
 char * parms);

Parameters

• sqlca – A pointer to a SQLCA structure.
• parms – A null-terminated string containing a semicolon-delimited list of parameter

settings, each of the form KEYWORD=value. For example:
"UID=DBA;PWD=sql;DBF=c:\\db\\mydatabase.db"

Returns
Non-zero if successful; 0 otherwise.

Remarks
If no ConnectionName parameter is specified in the string, the unnamed connection is
disconnected. This is equivalent to the embedded SQL DISCONNECT statement. The return
value is TRUE if a connection was successfully ended. Error information is returned in the
SQLCA.

This function shuts down the database if it was started with the AutoStop=yes connection
parameter and there are no other connections to the database. It also stops the server if it was
started with the AutoStop=yes parameter and there are no other databases running.

db_string_ping_server Function
This function can be used to determine if a server can be located, and optionally, if it a
successful connection to a database can be made.

Syntax
unsigned int db_string_ping_server(
SQLCA * sqlca,
char * connect_string,
unsigned int connect_to_db);

Parameters

• sqlca – A pointer to a SQLCA structure.

Embedded SQL

Programming 487

• connect_string – The connect_string is a normal connection string that may or may not
contain server and database information.

• connect_to_db – If connect_to_db is non-zero (TRUE), then the function attempts to
connect to a database on a server. It returns TRUE only if the connection string is sufficient
to connect to the named database on the named server.

If connect_to_db is zero, then the function only attempts to locate a server. It returns TRUE
only if the connection string is sufficient to locate a server. It makes no attempt to connect
to the database.

Returns
TRUE (non-zero) if the server or database was successfully located; FALSE (zero) otherwise.
Error information for locating the server or database is returned in the SQLCA.

db_time_change Function
This function permits clients to notify the server that the time has changed on the client.

Syntax
unsigned int db_time_change(
SQLCA * sqlca);

Parameters

• sqlca – A pointer to a SQLCA structure.

Returns
TRUE if successful; FALSE otherwise.

Remarks
This function recalculates the time zone adjustment and sends it to the server. On Windows
platforms, it is recommended that applications call this function when they receive the
WM_TIMECHANGE message. This will make sure that UTC timestamps are consistent over
time changes, time zone changes, or daylight savings time changeovers.

fill_s_sqlda Function
The same as fill_sqlda, except that it changes all the data types in sqlda to type DT_STRING.

Syntax
struct sqlda * fill_s_sqlda(
struct sqlda * sqlda,
unsigned int maxlen);

Embedded SQL

488 SAP Sybase IQ

Parameters

• sqlda – A pointer to a SQLDA structure.
• maxlen – The maximum number of bytes to allocate for the string.

Returns
sqlda if successful and returns NULL if there is not enough memory available.

Remarks
Enough space is allocated to hold the string representation of the type originally specified by
the SQLDA, up to a maximum of maxlen bytes. The length fields in the SQLDA (sqllen) are
modified appropriately.

The SQLDA should be freed using the free_filled_sqlda function.

fill_sqlda Function
Allocates space for each variable described in each descriptor of sqlda, and assigns the address
of this memory to the sqldata field of the corresponding descriptor.

Syntax
struct sqlda * fill_sqlda(struct sqlda * sqlda);

Parameters

• sqlda – A pointer to a SQLDA structure.

Returns
sqlda if successful and returns NULL if there is not enough memory available.

Remarks
Enough space is allocated for the database type and length indicated in the descriptor.

The SQLDA should be freed using the free_filled_sqlda function.

fill_sqlda_ex Function
Allocates space for each variable described in each descriptor of sqlda, and assigns the address
of this memory to the sqldata field of the corresponding descriptor.

Syntax
struct sqlda * fill_sqlda_ex(struct sqlda * sqlda , unsigned int
flags);

Embedded SQL

Programming 489

Parameters

• sqlda – A pointer to a SQLDA structure.
• flags – 0 or FILL_SQLDA_FLAG_RETURN_DT_LONG

Returns
sqlda if successful and returns NULL if there is not enough memory available.

Remarks
Enough space is allocated for the database type and length indicated in the descriptor.

The SQLDA should be freed using the free_filled_sqlda function.

One flag bit is supported: FILL_SQLDA_FLAG_RETURN_DT_LONG. This flag is defined
in sqlca.h.

FILL_SQLDA_FLAG_RETURN_DT_LONG preserves DT_LONGVARCHAR,
DT_LONGNVARCHAR and DT_LONGBINARY types in the filled descriptor. If this flag
bit is not specified, fill_sqlda_ex converts DT_LONGVARCHAR, DT_LONGNVARCHAR
and DT_LONGBINARY types to DT_VARCHAR, DT_NVARCHAR and DT_BINARY
respectively. Using DT_LONGxyz types makes it possible to fetch 32767 bytes, not the 32765
bytes that DT_VARCHAR, DT_NVARCHAR and DT_BINARY are limited to.

fill_sqlda(sqlda) is equivalent to fill_sqlda_ex(sqlda, 0).

free_filled_sqlda Function
Free the memory allocated to each sqldata pointer and the space allocated for the SQLDA
itself. Any null pointer is not freed.

Syntax
void free_filled_sqlda(struct sqlda * sqlda);

Parameters

• sqlda – A pointer to a SQLDA structure.

Remarks
This should only be called if fill_sqlda, fill_sqlda_ex, or fill_s_sqlda was used to allocate the
sqldata fields of the SQLDA.

Calling this function causes free_sqlda to be called automatically, and so any descriptors
allocated by alloc_sqlda are freed.

Embedded SQL

490 SAP Sybase IQ

free_sqlda Function
Free space allocated to this sqlda and free the indicator variable space, as allocated in
fill_sqlda.

Syntax
void free_sqlda(struct sqlda * sqlda);

Parameters

• sqlda – A pointer to a SQLDA structure.

Remarks
Do not free the memory referenced by each sqldata pointer.

free_sqlda_noind Function
Free space allocated to this sqlda. Do not free the memory referenced by each sqldata pointer.
The indicator variable pointers are ignored.

Syntax
void free_sqlda_noind(struct sqlda * sqlda);

Parameters

• sqlda – A pointer to a SQLDA structure.

sql_needs_quotes Function
This function formulates a request to the database server to determine if quotes are needed.
Relevant information is stored in the sqlcode field.

Syntax
unsigned int sql_needs_quotes(SQLCA *sqlca, char * str);

Parameters

• sqlca – A pointer to a SQLCA structure.
• str – A string of characters that is a candidate for a SQL identifier.

Returns
TRUE or FALSE indicating whether the string requires double quotes around it when it is used
as a SQL identifier.

Remarks
There are three cases of return value/code combinations:

Embedded SQL

Programming 491

• return = FALSE, sqlcode = 0 – The string does not need quotes.
• return = TRUE – The sqlcode is always SQLE_WARNING, and the string requires

quotes.
• return = FALSE – If sqlcode is something other than 0 or SQLE_WARNING, the test is

inconclusive.

sqlda_storage Function
An unsigned 32-bit integer value representing the amount of storage required to store any
value for the varno variable.

Syntax
a_sql_uint32 sqlda_storage(struct sqlda * sqlda, int varno);

Parameters

• sqlda – A pointer to a SQLDA structure.
• varno – An index for a sqlvar host variable.

Returns
An unsigned 32-bit integer value representing the amount of storage required to store any
value for the variable.

sqlda_string_length Function
Returns an unsigned 32-bit integer value representing the length of the C string (type
DT_STRING) that would be required to hold the variable sqlda->sqlvar[varno] (no matter
what its type is).

Syntax
a_sql_uint32 sqlda_string_length(struct sqlda * sqlda, int
varno);

Parameters

• sqlda – A pointer to a SQLDA structure.
• varno – An index for a sqlvar host variable.

Returns
An unsigned 32-bit integer value representing the length of the C string (type DT_STRING)
that would be required to hold the variable sqlda->sqlvar[varno] (no matter what its type is).

Embedded SQL

492 SAP Sybase IQ

sqlerror_message Function
Returns a pointer to a string that contains an error message. The error message contains text for
the error code in the SQLCA. If no error was indicated, a null pointer is returned. The error
message is placed in the buffer supplied, truncated to length max if necessary.

Syntax
char * sqlerror_message(SQLCA * sqlca, char * buffer, int max);

Parameters

• sqlca – A pointer to a SQLCA structure.
• buffer – The buffer in which to place the message (up to max characters).
• max – The maximum length of the buffer.

Returns
A pointer to a string that contains an error message or NULL if no error was indicated.

Embedded SQL Statement Summary
ALL embedded SQL statements must be preceded with EXEC SQL and end with a semicolon
(;).

There are two groups of embedded SQL statements. Standard SQL statements are used by
simply placing them in a C program enclosed with EXEC SQL and a semicolon (;).
CONNECT, DELETE, SELECT, SET, and UPDATE have additional formats only available
in embedded SQL. The additional formats fall into the second category of embedded SQL
specific statements.

Several SQL statements are specific to embedded SQL and can only be used in a C program.

Standard data manipulation and data definition statements can be used from embedded SQL
applications. In addition, the following statements are specifically for embedded SQL
programming:

• ALLOCATE DESCRIPTOR statement [ESQL] – allocate memory for a descriptor.
• CLOSE statement [ESQL] [SP] – close a cursor.
• CONNECT statement [ESQL] [Interactive SQL] – connect to the database.
• DEALLOCATE DESCRIPTOR statement [ESQL] – reclaim memory for a descriptor.
• Declaration section [ESQL] – declare host variables for database communication.
• DECLARE CURSOR statement [ESQL] [SP] – declare a cursor.
• DELETE statement (positioned) [ESQL] [SP] – delete the row at the current position in

a cursor.

Embedded SQL

Programming 493

• DESCRIBE statement [ESQL] – describe the host variables for a particular SQL
statement.

• DISCONNECT statement [ESQL] [Interactive SQL] – disconnect from database
server.

• DROP STATEMENT statement [ESQL] – free resources used by a prepared statement.
• EXECUTE statement [ESQL] – execute a particular SQL statement.
• EXPLAIN statement [ESQL] – explain the optimization strategy for a particular cursor.
• FETCH statement [ESQL] [SP] – fetch a row from a cursor.
• GET DATA statement [ESQL] – fetch long values from a cursor.
• GET DESCRIPTOR statement [ESQL] – retrieve information about a variable in a

SQLDA.
• GET OPTION statement [ESQL] – get the setting for a particular database option.
• INCLUDE statement [ESQL] – include a file for SQL preprocessing.
• OPEN statement [ESQL] [SP] – open a cursor.
• PREPARE statement [ESQL] – prepare a particular SQL statement.
• PUT statement [ESQL] – insert a row into a cursor.
• SET CONNECTION statement [Interactive SQL] [ESQL] – change active

connection.
• SET DESCRIPTOR statement [ESQL] – describe the variables in a SQLDA and place

data into the SQLDA.
• SET SQLCA statement [ESQL] – use a SQLCA other than the default global one.
• UPDATE (positioned) statement [ESQL] [SP] – update the row at the current location of

a cursor.
• WHENEVER statement [ESQL] – specify actions to occur on errors in SQL statements.

Embedded SQL

494 SAP Sybase IQ

SAP Sybase IQ Database API for C/C++

The SAP Sybase IQ C application programming interface (API) is a data access API for the C /
C++ languages. The C API specification defines a set of functions, variables and conventions
that provide a consistent database interface independent of the actual database being used.
Using the SAP Sybase IQ C API, your C / C++ applications have direct access to SAP Sybase
IQ database servers.

sqlany_affected_rows(a_sqlany_stmt *) method
Returns the number of rows affected by execution of the prepared statement.

Syntax
public sacapi_i32 sqlany_affected_rows (a_sqlany_stmt *
sqlany_stmt)

Parameters

• sqlany_stmt – A statement that was prepared and executed successfully with no result set
returned. For example, an INSERT, UPDATE or DELETE statement was executed.

Returns
The number of rows affected or -1 on failure.

sqlany_bind_param(a_sqlany_stmt *, sacapi_u32 ,
a_sqlany_bind_param *) method

Bind a user-supplied buffer as a parameter to the prepared statement.

Syntax
public sacapi_bool sqlany_bind_param (a_sqlany_stmt *
sqlany_stmt, sacapi_u32 index, a_sqlany_bind_param * param)

Parameters

• sqlany_stmt – A statement prepared successfully using sqlany_prepare().
• index – The index of the parameter. This number must be between 0 and

sqlany_num_params() - 1.
• param – A a_sqlany_bind_param structure description of the parameter to be bound.

SAP Sybase IQ Database API for C/C++

Programming 495

Returns
1 on success or 0 on unsuccessful.

sqlany_cancel(a_sqlany_connection *) method
Cancel an outstanding request on a connection.

Syntax
public void sqlany_cancel (a_sqlany_connection * sqlany_conn)

Parameters

• sqlany_conn – A connection object with a connection established using
sqlany_connect().

sqlany_clear_error(a_sqlany_connection *) method
Clears the last stored error code.

Syntax
public void sqlany_clear_error (a_sqlany_connection *
sqlany_conn)

Parameters

• sqlany_conn – A connection object returned from sqlany_new_connection().

sqlany_client_version(char *, size_t) method
Returns the current client version.

Syntax
public sacapi_bool sqlany_client_version (char * buffer, size_t
len)

Parameters

• buffer – The buffer to be filled with the client version string.
• len – The length of the buffer supplied.

SAP Sybase IQ Database API for C/C++

496 SAP Sybase IQ

Returns
1 when successful or 0 when unsuccessful.

Usage

This method fills the buffer passed with the major, minor, patch, and build number of the client
library. The buffer will be null-terminated.

sqlany_client_version_ex(a_sqlany_interface_context *,
char *, size_t) method

Returns the current client version.

Syntax
public sacapi_bool sqlany_client_version_ex
(a_sqlany_interface_context * context, char * buffer, size_t
len)

Parameters

• context – object that was create with sqlany_init_ex()
• buffer – The buffer to be filled with the client version string.
• len – The length of the buffer supplied.

Returns
1 when successful or 0 when unsuccessful.

Usage

This method fills the buffer passed with the major, minor, patch, and build number of the client
library. The buffer will be null-terminated.

sqlany_commit(a_sqlany_connection *) method
Commits the current transaction.

Syntax
public sacapi_bool sqlany_commit (a_sqlany_connection *
sqlany_conn)

SAP Sybase IQ Database API for C/C++

Programming 497

Parameters

• sqlany_conn – The connection object on which the commit operation is performed.

Returns
1 when successful or 0 when unsuccessful.

sqlany_connect(a_sqlany_connection *, const char *)
method

Creates a connection to a SQL Anywhere database server using the supplied connection object
and connection string.

Syntax
public sacapi_bool sqlany_connect (a_sqlany_connection *
sqlany_conn, const char * str)

Parameters

• sqlany_conn – A connection object created by sqlany_new_connection().
• str – A SQL Anywhere connection string.

Returns
1 if the connection is established successfully or 0 when the connection fails. Use
sqlany_error() to retrieve the error code and message.

Usage

The supplied connection object must first be allocated using sqlany_new_connection().

The following example demonstrates how to retrieve the error code of a failed connection
attempt:

a_sqlany_connection * sqlany_conn;
sqlany_conn = sqlany_new_connection();
if(!sqlany_connect(sqlany_conn, "uid=dba;pwd=sql")) {
 char reason[SACAPI_ERROR_SIZE];
 sacapi_i32 code;
 code = sqlany_error(sqlany_conn, reason, sizeof(reason));
 printf("Connection failed. Code: %d Reason: %s\n", code,
reason);
} else {
 printf("Connected successfully!\n");
 sqlany_disconnect(sqlany_conn);
}
sqlany_free_connection(sqlany_conn);

SAP Sybase IQ Database API for C/C++

498 SAP Sybase IQ

For more information on connecting to a SQL Anywhere database server, see Connection
parameters and SQL Anywhere database connections.

sqlany_describe_bind_param(a_sqlany_stmt *,
sacapi_u32 , a_sqlany_bind_param *) method

Describes the bind parameters of a prepared statement.

Syntax
public sacapi_bool sqlany_describe_bind_param (a_sqlany_stmt
* sqlany_stmt, sacapi_u32 index, a_sqlany_bind_param * param)

Parameters

• sqlany_stmt – A statement prepared successfully using sqlany_prepare().
• index – The index of the parameter. This number must be between 0 and

sqlany_num_params() - 1.
• param – A a_sqlany_bind_param structure that is populated with information.

Returns
1 when successful or 0 when unsuccessful.

Usage

This function allows the caller to determine information about prepared statement parameters.
The type of prepared statement, stored procedured or a DML, determines the amount of
information provided. The direction of the parameters (input, output, or input-output) are
always provided.

sqlany_disconnect(a_sqlany_connection *) method
Disconnects an already established SQL Anywhere connection.

Syntax
public sacapi_bool sqlany_disconnect (a_sqlany_connection *
sqlany_conn)

Parameters

• sqlany_conn – A connection object with a connection established using
sqlany_connect().

SAP Sybase IQ Database API for C/C++

Programming 499

Returns
1 when successful or 0 when unsuccessful.

Usage

All uncommitted transactions are rolled back.

sqlany_error(a_sqlany_connection *, char *, size_t) method
Retrieves the last error code and message stored in the connection object.

Syntax
public sacapi_i32 sqlany_error (a_sqlany_connection *
sqlany_conn, char * buffer, size_t size)

Parameters

• sqlany_conn – A connection object returned from sqlany_new_connection().
• buffer – A buffer to be filled with the error message.
• size – The size of the supplied buffer.

Returns
The last error code. Positive values are warnings, negative values are errors, and 0 indicates
success.

Usage

For more information on SQLCODE error messages, see SQL Anywhere error messages
sorted by SQLCODE.

sqlany_execute(a_sqlany_stmt *) method
Executes a prepared statement.

Syntax
public sacapi_bool sqlany_execute (a_sqlany_stmt *
sqlany_stmt)

Parameters

• sqlany_stmt – A statement prepared successfully using sqlany_prepare().

SAP Sybase IQ Database API for C/C++

500 SAP Sybase IQ

Returns
1 if the statement is executed successfully or 0 on failure.

Usage

You can use sqlany_num_cols() to verify if the executed statement returned a result set.

The following example shows how to execute a statement that does not return a result set:

a_sqlany_stmt * stmt;
int i;
a_sqlany_bind_param param;

 stmt = sqlany_prepare(sqlany_conn, "insert into
moe(id,value) values(?,?)");
if(stmt) {
 sqlany_describe_bind_param(stmt, 0, ¶m);
 param.value.buffer = (char *)&i;
 param.value.type = A_VAL32;
 sqlany_bind_param(stmt, 0, ¶m);

 sqlany_describe_bind_param(stmt, 1, ¶m);
 param.value.buffer = (char *)&i;
 param.value.type = A_VAL32;
 sqlany_bind_param(stmt, 1, ¶m);

 for(i = 0; i < 10; i++) {
 if(!sqlany_execute(stmt)) {
 // call sqlany_error()
 }
 }
 sqlany_free_stmt(stmt);
}

sqlany_execute_direct(a_sqlany_connection *, const char
*) method

Executes the SQL statement specified by the string argument and possibly returns a result
set.

Syntax
public a_sqlany_stmt * sqlany_execute_direct
(a_sqlany_connection * sqlany_conn, const char * sql_str)

SAP Sybase IQ Database API for C/C++

Programming 501

Parameters

• sqlany_conn – A connection object with a connection established using
sqlany_connect().

• sql_str – A SQL string. The SQL string should not have parameters such as ?.

Returns
A statement handle if the function executes successfully, NULL when the function executes
unsuccessfully.

Usage

Use this method if you want to prepare and execute a statement, or instead of calling
sqlany_prepare() followed by sqlany_execute().

The following example shows how to execute a statement that returns a result set:

a_sqlany_stmt * stmt;

 stmt = sqlany_execute_direct(sqlany_conn, "select *
from employees");
if(stmt && sqlany_num_cols(stmt) > 0) {
 while(sqlany_fetch_next(stmt)) {
 int i;
 for(i = 0; i < sqlany_num_cols(stmt); i++) {
 // Get column i data
 }
 }
 sqlany_free_stmt(stmt);
}

Note: This function cannot be used for executing a SQL statement with parameters.

sqlany_execute_immediate(a_sqlany_connection *, const
char *) method

Executes the supplied SQL statement immediately without returning a result set.

Syntax
public sacapi_bool sqlany_execute_immediate
(a_sqlany_connection * sqlany_conn, const char * sql)

SAP Sybase IQ Database API for C/C++

502 SAP Sybase IQ

Parameters

• sqlany_conn – A connection object with a connection established using
sqlany_connect().

• sql – A string representing the SQL statement to be executed.

Returns
1 on success or 0 on failure.

Usage

This function is useful for SQL statements that do not return a result set.

sqlany_fetch_absolute(a_sqlany_stmt *, sacapi_i32)
method

Moves the current row in the result set to the row number specified and then fetches the data at
that row.

Syntax
public sacapi_bool sqlany_fetch_absolute (a_sqlany_stmt *
sqlany_stmt, sacapi_i32 row_num)

Parameters

• sqlany_stmt – A statement object that was executed by sqlany_execute() or
sqlany_execute_direct().

• row_num – The row number to be fetched. The first row is 1, the last row is -1.

Returns
1 if the fetch was successfully, 0 when the fetch is unsuccessful.

sqlany_fetch_next(a_sqlany_stmt *) method
Returns the next row from the result set.

Syntax
public sacapi_bool sqlany_fetch_next (a_sqlany_stmt *
sqlany_stmt)

SAP Sybase IQ Database API for C/C++

Programming 503

Parameters

• sqlany_stmt – A statement object that was executed by sqlany_execute() or
sqlany_execute_direct().

Returns
1 if the fetch was successfully, 0 when the fetch is unsuccessful.

Usage

This function fetches the next row from the result set. When the result object is first created,
the current row pointer is set to before the first row, that is, row 0. This function first advances
the row pointer and then fetches the data at the new row.

sqlany_finalize_interface(SQLAnywhereInterface *)
method

Unloads the C API DLL library and resets the SQLAnywhereInterface structure.

Syntax
public void sqlany_finalize_interface (SQLAnywhereInterface *
api)

Parameters

• api – An initialized structure to finalize.

Usage

Use the following statement to include the function prototype:

#include "sacapidll.h"

Use this method to finalize and free resources associated with the SQL Anywhere C API
DLL.

Examples of how the sqlany_finalize_interface method is used can be found in the C API
examples in the sdk\dbcapi\examples directory of your SQL Anywhere installation.

SAP Sybase IQ Database API for C/C++

504 SAP Sybase IQ

sqlany_fini() method
Finalizes the interface.

Syntax
public void sqlany_fini ()

Usage

Frees any resources allocated by the API.

sqlany_fini_ex(a_sqlany_interface_context *) method
Finalize the interface that was created using the specified context.

Syntax
public void sqlany_fini_ex (a_sqlany_interface_context *
context)

Parameters

• context – A context object that was returned from sqlany_init_ex()

sqlany_free_connection(a_sqlany_connection *) method
Frees the resources associated with a connection object.

Syntax
public void sqlany_free_connection (a_sqlany_connection *
sqlany_conn)

Parameters

• sqlany_conn – A connection object created with sqlany_new_connection().

SAP Sybase IQ Database API for C/C++

Programming 505

sqlany_free_stmt(a_sqlany_stmt *) method
Frees resources associated with a prepared statement object.

Syntax
public void sqlany_free_stmt (a_sqlany_stmt * sqlany_stmt)

Parameters

• sqlany_stmt – A statement object returned by the successful execution of
sqlany_prepare() or sqlany_execute_direct().

sqlany_get_bind_param_info(a_sqlany_stmt *,
sacapi_u32 , a_sqlany_bind_param_info *) method

Retrieves information about the parameters that were bound using sqlany_bind_param().

Syntax
public sacapi_bool sqlany_get_bind_param_info (a_sqlany_stmt
* sqlany_stmt, sacapi_u32 index, a_sqlany_bind_param_info * info)

Parameters

• sqlany_stmt – A statement prepared successfully using sqlany_prepare().
• index – The index of the parameter. This number should be between 0 and

sqlany_num_params() - 1.
• info – A sqlany_bind_param_info buffer to be populated with the bound parameter's

information.

Returns
1 on success or 0 on failure.

SAP Sybase IQ Database API for C/C++

506 SAP Sybase IQ

sqlany_get_column(a_sqlany_stmt *, sacapi_u32 ,
a_sqlany_data_value *) method

Fills the supplied buffer with the value fetched for the specified column.

Syntax
public sacapi_bool sqlany_get_column (a_sqlany_stmt *
sqlany_stmt, sacapi_u32 col_index, a_sqlany_data_value * buffer)

Parameters

• sqlany_stmt – A statement object executed by sqlany_execute() or
sqlany_execute_direct().

• col_index – The number of the column to be retrieved. A column number is between 0 and
sqlany_num_cols() - 1.

• buffer – A a_sqlany_data_value object to be filled with the data fetched for column
col_index.

Returns
1 on success or 0 for failure. A failure can happen if any of the parameters are invalid or if there
is not enough memory to retrieve the full value from the SQL Anywhere database server.

Usage

For A_BINARY and A_STRING * data types, value->buffer points to an internal buffer
associated with the result set. Do not rely upon or alter the content of the pointer buffer as it
changes when a new row is fetched or when the result set object is freed. Users should copy the
data out of those pointers into their own buffers.

The value->length field indicates the number of valid characters that value->buffer points to.
The data returned in value->buffer is not null-terminated. This function fetches all the
returned values from the SQL Anywhere database server. For example, if the column contains
a blob, this function attempts to allocate enough memory to hold that value. If you do not want
to allocate memory, use sqlany_get_data() instead.

SAP Sybase IQ Database API for C/C++

Programming 507

sqlany_get_column_info(a_sqlany_stmt *, sacapi_u32 ,
a_sqlany_column_info *) method

Retrieves column metadata information and fills the a_sqlany_column_info structure with
information about the column.

Syntax
public sacapi_bool sqlany_get_column_info (a_sqlany_stmt *
sqlany_stmt, sacapi_u32 col_index, a_sqlany_column_info * buffer)

Parameters

• sqlany_stmt – A statement object created by sqlany_prepare() or
sqlany_execute_direct().

• col_index – The column number between 0 and sqlany_num_cols() - 1.
• buffer – A column info structure to be filled with column information.

Returns
1 on success or 0 if the column index is out of range, or if the statement does not return a result
set.

sqlany_get_data(a_sqlany_stmt *, sacapi_u32 , size_t, void
*, size_t) method

Retrieves the data fetched for the specified column into the supplied buffer memory.

Syntax
public sacapi_i32 sqlany_get_data (a_sqlany_stmt * sqlany_stmt,
sacapi_u32 col_index, size_t offset, void * buffer, size_t size)

Parameters

• sqlany_stmt – A statement object executed by sqlany_execute() or
sqlany_execute_direct().

• col_index – The number of the column to be retrieved. A column number is between 0 and
sqlany_num_cols() - 1.

• offset – The starting offset of the data to get.
• buffer – A buffer to be filled with the contents of the column. The buffer pointer must be

aligned correctly for the data type copied into it.

SAP Sybase IQ Database API for C/C++

508 SAP Sybase IQ

• size – The size of the buffer in bytes. The function fails if you specify a size greater than
2^31 - 1.

Returns
The number of bytes successfully copied into the supplied buffer. This number must not
exceed 2^31 - 1. 0 indicates that no data remains to be copied. -1 indicates a failure.

sqlany_get_data_info(a_sqlany_stmt *, sacapi_u32 ,
a_sqlany_data_info *) method

Retrieves information about the data that was fetched by the last fetch operation.

Syntax
public sacapi_bool sqlany_get_data_info (a_sqlany_stmt *
sqlany_stmt, sacapi_u32 col_index, a_sqlany_data_info * buffer)

Parameters

• sqlany_stmt – A statement object executed by sqlany_execute() or
sqlany_execute_direct().

• col_index – The column number between 0 and sqlany_num_cols() - 1.
• buffer – A data info buffer to be filled with the metadata about the data fetched.

Returns
1 on success, and 0 on failure. Failure is returned when any of the supplied parameters are
invalid.

sqlany_get_next_result(a_sqlany_stmt *) method
Advances to the next result set in a multiple result set query.

Syntax
public sacapi_bool sqlany_get_next_result (a_sqlany_stmt *
sqlany_stmt)

Parameters

• sqlany_stmt – A statement object executed by sqlany_execute() or
sqlany_execute_direct().

SAP Sybase IQ Database API for C/C++

Programming 509

Returns
1 if the statement successfully advances to the next result set, 0 otherwise.

Usage

If a query (such as a call to a stored procedure) returns multiple result sets, then this function
advances from the current result set to the next.

The following example demonstrates how to advance to the next result set in a multiple result
set query:

stmt = sqlany_execute_direct(sqlany_conn, "call
my_multiple_results_procedure()");
if(result) {
 do {
 while(sqlany_fetch_next(stmt)) {
 // get column data
 }
 } while(sqlany_get_next_result(stmt));
 sqlany_free_stmt(stmt);
}

sqlany_init(const char *, sacapi_u32 , sacapi_u32 *) method
Initializes the interface.

Syntax
public sacapi_bool sqlany_init (const char * app_name,
sacapi_u32 api_version, sacapi_u32 * version_available)

Parameters

• app_name – A string that names the application that is using the API. For example,
"PHP", "PERL", or "RUBY".

• api_version – The version of the compiled application.
• version_available – An optional argument to return the maximum supported API version.

Returns
1 on success, 0 otherwise

Usage

The following example demonstrates how to initialize the SQL Anywhere C API DLL:

sacapi_u32 api_version;
if(sqlany_init("PHP", SQLANY_API_VERSION_1, &api_version)) {
 printf("Interface initialized successfully!\n");

SAP Sybase IQ Database API for C/C++

510 SAP Sybase IQ

} else {
 printf("Failed to initialize the interface! Supported version=
%d\n", api_version);
}

sqlany_init_ex(const char *, sacapi_u32 , sacapi_u32 *)
method

Initializes the interface using a context.

Syntax
public a_sqlany_interface_context * sqlany_init_ex (const char
* app_name, sacapi_u32 api_version, sacapi_u32 * version_available)

Parameters

• app_name – A string that names the API used, for example "PHP", "PERL", or "RUBY".
• api_version – The current API version that the application is using. This should normally

be one of the SQLANY_API_VERSION_* macros
• version_available – An optional argument to return the maximum API version that is

supported.

Returns
a context object on success and NULL on failure.

sqlany_initialize_interface(SQLAnywhereInterface *, const
char *) method

Initializes the SQLAnywhereInterface object and loads the DLL dynamically.

Syntax
public int sqlany_initialize_interface (SQLAnywhereInterface
* api, const char * optional_path_to_dll)

Parameters

• api – An API structure to initialize.
• optional_path_to_dll – An optional argument that specifies a path to the SQL Anywhere

C API DLL.

Returns
1 on successful initialization, and 0 on failure.

SAP Sybase IQ Database API for C/C++

Programming 511

Usage

Use the following statement to include the function prototype:

#include "sacapidll.h"

This function attempts to load the SQL Anywhere C API DLL dynamically and looks up all
the entry points of the DLL. The fields in the SQLAnywhereInterface structure are populated
to point to the corresponding functions in the DLL. If the optional path argument is NULL, the
environment variable SQLANY_DLL_PATH is checked. If the variable is set, the library
attempts to load the DLL specified by the environment variable. If that fails, the interface
attempts to load the DLL directly (this relies on the environment being setup correctly).

Examples of how the sqlany_initialize_interface method is used can be found in the C API
examples in the sdk\dbcapi\examples directory of your SQL Anywhere installation.

sqlany_make_connection(void *) method
Creates a connection object based on a supplied DBLIB SQLCA pointer.

Syntax
public a_sqlany_connection * sqlany_make_connection (void *
arg)

Parameters

• arg – A void * pointer to a DBLIB SQLCA object.

Returns
A connection object.

sqlany_make_connection_ex(a_sqlany_interface_context
*, void *) method

Creates a connection object based on a supplied DBLIB SQLCA pointer and context.

Syntax
public a_sqlany_connection * sqlany_make_connection_ex
(a_sqlany_interface_context * context, void * arg)

Parameters

• context – A valid context object that was created by sqlany_init_ex()

SAP Sybase IQ Database API for C/C++

512 SAP Sybase IQ

• arg – A void * pointer to a DBLIB SQLCA object.

Returns
A connection object.

sqlany_new_connection(void) method
Creates a connection object.

Syntax
public a_sqlany_connection * sqlany_new_connection (void)

Returns
A connection object

Usage

You must create an API connection object before establishing a database connection. Errors
can be retrieved from the connection object. Only one request can be processed on a
connection at a time. In addition, not more than one thread is allowed to access a connection
object at a time. Undefined behavior or a failure occurs when multiple threads attempt to
access a connection object simultaneously.

sqlany_new_connection_ex(a_sqlany_interface_context *)
method

Creates a connection object using a context.

Syntax
public a_sqlany_connection * sqlany_new_connection_ex
(a_sqlany_interface_context * context)

Parameters

• context – A context object that was returned from sqlany_init_ex()

Returns
A connection object

SAP Sybase IQ Database API for C/C++

Programming 513

sqlany_num_cols(a_sqlany_stmt *) method
Returns number of columns in the result set.

Syntax
public sacapi_i32 sqlany_num_cols (a_sqlany_stmt *
sqlany_stmt)

Parameters

• sqlany_stmt – A statement object created by sqlany_prepare() or
sqlany_execute_direct().

Returns
The number of columns in the result set or -1 on a failure.

sqlany_num_params(a_sqlany_stmt *) method
Returns the number of parameters expected for a prepared statement.

Syntax
public sacapi_i32 sqlany_num_params (a_sqlany_stmt *
sqlany_stmt)

Parameters

• sqlany_stmt – A statement object returned by the successful execution of
sqlany_prepare().

Returns
The expected number of parameters, or -1 if the statement object is not valid.

sqlany_num_rows(a_sqlany_stmt *) method
Returns the number of rows in the result set.

Syntax
public sacapi_i32 sqlany_num_rows (a_sqlany_stmt *
sqlany_stmt)

SAP Sybase IQ Database API for C/C++

514 SAP Sybase IQ

Parameters

• sqlany_stmt – A statement object that was executed by sqlany_execute() or
sqlany_execute_direct().

Returns
The number rows in the result set. If the number of rows is an estimate, the number returned is
negative and the estimate is the absolute value of the returned integer. The value returned is
positive if the number of rows is exact.

Usage

By default this function only returns an estimate. To return an exact count, set the row_counts
option on the connection. For more information on the row_counts option, see row_counts
option [database].

sqlany_prepare(a_sqlany_connection *, const char *)
method

Prepares a supplied SQL string.

Syntax
public a_sqlany_stmt * sqlany_prepare (a_sqlany_connection *
sqlany_conn, const char * sql_str)

Parameters

• sqlany_conn – A connection object with a connection established using
sqlany_connect().

• sql_str – The SQL statement to be prepared.

Returns
A handle to a SQL Anywhere statement object. The statement object can be used by
sqlany_execute() to execute the statement.

Usage

Execution does not happen until sqlany_execute() is called. The returned statement object
should be freed using sqlany_free_stmt().

The following statement demonstrates how to prepare a SELECT SQL string:

char * str;
a_sqlany_stmt * stmt;

SAP Sybase IQ Database API for C/C++

Programming 515

 str = "select * from employees where salary >= ?";
stmt = sqlany_prepare(sqlany_conn, str);
if(stmt == NULL) {
 // Failed to prepare statement, call sqlany_error() for more info
}

sqlany_reset(a_sqlany_stmt *) method
Resets a statement to its prepared state condition.

Syntax
public sacapi_bool sqlany_reset (a_sqlany_stmt * sqlany_stmt)

Parameters

• sqlany_stmt – A statement prepared successfully using sqlany_prepare().

Returns
1 on success, 0 on failure.

sqlany_rollback(a_sqlany_connection *) method
Rolls back the current transaction.

Syntax
public sacapi_bool sqlany_rollback (a_sqlany_connection *
sqlany_conn)

Parameters

• sqlany_conn – The connection object on which the rollback operation is to be performed.

Returns
1 on success, 0 otherwise.

SAP Sybase IQ Database API for C/C++

516 SAP Sybase IQ

sqlany_send_param_data(a_sqlany_stmt *, sacapi_u32 ,
char *, size_t) method

Sends data as part of a bound parameter.

Syntax
public sacapi_bool sqlany_send_param_data (a_sqlany_stmt *
sqlany_stmt, sacapi_u32 index, char * buffer, size_t size)

Parameters

• sqlany_stmt – A statement prepared successfully using sqlany_prepare().
• index – The index of the parameter. This should be a number between 0 and

sqlany_num_params() - 1.
• buffer – The data to be sent.
• size – The number of bytes to send.

Returns
1 on success or 0 on failure.

Usage

This method can be used to send a large amount of data for a bound parameter in chunks.

sqlany_sqlstate(a_sqlany_connection *, char *, size_t)
method

Retrieves the current SQLSTATE.

Syntax
public size_t sqlany_sqlstate (a_sqlany_connection *
sqlany_conn, char * buffer, size_t size)

Parameters

• sqlany_conn – A connection object returned from sqlany_new_connection().
• buffer – A buffer to be filled with the current 5-character SQLSTATE.
• size – The buffer size.

SAP Sybase IQ Database API for C/C++

Programming 517

Returns
The number of bytes copied into the buffer.

Usage

For more information on SQLSTATE error messages, see SQL Anywhere error messages
sorted by SQLSTATE.

a_sqlany_data_direction() enumeration
A data direction enumeration.

Enum Constant Summary

• DD_INVALID – Invalid data direction.
• DD_INPUT – Input-only host variables.
• DD_OUTPUT – Output-only host variables.
• DD_INPUT_OUTPUT – Input and output host variables.

a_sqlany_data_type() enumeration
Specifies the data type being passed in or retrieved.

Enum Constant Summary

• A_INVALID_TYPE – Invalid data type.
• A_BINARY – Binary data. Binary data is treated as-is and no character set conversion is

performed.
• A_STRING – String data. The data where character set conversion is performed.
• A_DOUBLE – Double data. Includes float values.
• A_VAL64 – 64-bit integer.
• A_UVAL64 – 64-bit unsigned integer.
• A_VAL32 – 32-bit integer.
• A_UVAL32 – 32-bit unsigned integer.
• A_VAL16 – 16-bit integer.
• A_UVAL16 – 16-bit unsigned integer.
• A_VAL8 – 8-bit integer.
• A_UVAL8 – 8-bit unsigned integer.

SAP Sybase IQ Database API for C/C++

518 SAP Sybase IQ

a_sqlany_native_type() enumeration
An enumeration of the native types of values as described by the server.

Enum Constant Summary

• DT_NOTYPE – No data type.
• DT_DATE – Null-terminated character string that is a valid date.
• DT_TIME – Null-terminated character string that is a valid time.
• DT_TIMESTAMP – Null-terminated character string that is a valid timestamp.
• DT_VARCHAR – Varying length character string, in the CHAR character set, with a

two-byte length field. The maximum length is 32765 bytes. When sending data, you must
set the length field. When fetching data, the database server sets the length field. The data is
not null-terminated or blank-padded.

• DT_FIXCHAR – Fixed-length blank-padded character string, in the CHAR character
set. The maximum length, specified in bytes, is 32767. The data is not null-terminated.

• DT_LONGVARCHAR – Long varying length character string, in the CHAR character
set.

• DT_STRING – Null-terminated character string, in the CHAR character set. The string is
blank-padded if the database is initialized with blank-padded strings.

• DT_DOUBLE – 8-byte floating-point number.
• DT_FLOAT – 4-byte floating-point number.
• DT_DECIMAL – Packed decimal number (proprietary format).
• DT_INT – 32-bit signed integer.
• DT_SMALLINT – 16-bit signed integer.
• DT_BINARY – Varying length binary data with a two-byte length field. The maximum

length is 32765 bytes. When supplying information to the database server, you must set the
length field. When fetching information from the database server, the server sets the length
field.

• DT_LONGBINARY – Long binary data.
• DT_TINYINT – 8-bit signed integer.
• DT_BIGINT – 64-bit signed integer.
• DT_UNSINT – 32-bit unsigned integer.
• DT_UNSSMALLINT – 16-bit unsigned integer.
• DT_UNSBIGINT – 64-bit unsigned integer.
• DT_BIT – 8-bit signed integer.
• DT_LONGNVARCHAR – Long varying length character string, in the NCHAR

character set.

SAP Sybase IQ Database API for C/C++

Programming 519

SACAPI_ERROR_SIZE variable
Returns the minimal error buffer size.

Syntax
#define SACAPI_ERROR_SIZE

SQLANY_API_VERSION_1 variable
Defines to indicate the API versions.

Syntax
#define SQLANY_API_VERSION_1

SQLANY_API_VERSION_2 variable
Version 2 introduced the "_ex" functions and the ability to cancel requests.

Syntax
#define SQLANY_API_VERSION_2

SQLAnywhereInterface structure
The SQL Anywhere C API interface structure.

Syntax
typedef struct SQLAnywhereInterface

Remarks
Only one instance of this structure is required in your application environment. This structure
is initialized by the sqlany_initialize_interface method. It attempts to load the SQL Anywhere
C API DLL or shared object dynamically and looks up all the entry points of the DLL. The
fields in the SQLAnywhereInterface structure is populated to point to the corresponding
functions in the DLL.

SAP Sybase IQ Database API for C/C++

520 SAP Sybase IQ

dll_handle void *
DLL handle.

Syntax
public void * dll_handle;

initialized int
Flag to know if initialized or not.

Syntax
public int initialized;

sqlany_affected_rows void *
Pointer to sqlany_affected_rows() function.

Syntax
public void * sqlany_affected_rows;

sqlany_bind_param void *
Pointer to sqlany_bind_param() function.

Syntax
public void * sqlany_bind_param;

sqlany_cancel void *
Pointer to sqlany_cancel() function.

Syntax
public void * sqlany_cancel;

sqlany_clear_error void *
Pointer to sqlany_clear_error() function.

Syntax
public void * sqlany_clear_error;

SAP Sybase IQ Database API for C/C++

Programming 521

sqlany_client_version void *
Pointer to sqlany_client_version() function.

Syntax
public void * sqlany_client_version;

sqlany_client_version_ex void *
Pointer to sqlany_client_version_ex() function.

Syntax
public void * sqlany_client_version_ex;

sqlany_commit void *
Pointer to sqlany_commit() function.

Syntax
public void * sqlany_commit;

sqlany_connect void *
Pointer to sqlany_connect() function.

Syntax
public void * sqlany_connect;

sqlany_describe_bind_param void *
Pointer to sqlany_describe_bind_param() function.

Syntax
public void * sqlany_describe_bind_param;

sqlany_disconnect void *
Pointer to sqlany_disconnect() function.

Syntax
public void * sqlany_disconnect;

SAP Sybase IQ Database API for C/C++

522 SAP Sybase IQ

sqlany_error void *
Pointer to sqlany_error() function.

Syntax
public void * sqlany_error;

sqlany_execute void *
Pointer to sqlany_execute() function.

Syntax
public void * sqlany_execute;

sqlany_execute_direct void *
Pointer to sqlany_execute_direct() function.

Syntax
public void * sqlany_execute_direct;

sqlany_execute_immediate void *
Pointer to sqlany_execute_immediate() function.

Syntax
public void * sqlany_execute_immediate;

sqlany_fetch_absolute void *
Pointer to sqlany_fetch_absolute() function.

Syntax
public void * sqlany_fetch_absolute;

sqlany_fetch_next void *
Pointer to sqlany_fetch_next() function.

Syntax
public void * sqlany_fetch_next;

SAP Sybase IQ Database API for C/C++

Programming 523

sqlany_fini void *
Pointer to sqlany_fini() function.

Syntax
public void * sqlany_fini;

sqlany_fini_ex void *
Pointer to sqlany_fini_ex() function.

Syntax
public void * sqlany_fini_ex;

sqlany_free_connection void *
Pointer to sqlany_free_connection() function.

Syntax
public void * sqlany_free_connection;

sqlany_free_stmt void *
Pointer to sqlany_free_stmt() function.

Syntax
public void * sqlany_free_stmt;

sqlany_get_bind_param_info void *
Pointer to sqlany_get_bind_param_info() function.

Syntax
public void * sqlany_get_bind_param_info;

sqlany_get_column void *
Pointer to sqlany_get_column() function.

Syntax
public void * sqlany_get_column;

SAP Sybase IQ Database API for C/C++

524 SAP Sybase IQ

sqlany_get_column_info void *
Pointer to sqlany_get_column_info() function.

Syntax
public void * sqlany_get_column_info;

sqlany_get_data void *
Pointer to sqlany_get_data() function.

Syntax
public void * sqlany_get_data;

sqlany_get_data_info void *
Pointer to sqlany_get_data_info() function.

Syntax
public void * sqlany_get_data_info;

sqlany_get_next_result void *
Pointer to sqlany_get_next_result() function.

Syntax
public void * sqlany_get_next_result;

sqlany_init void *
Pointer to sqlany_init() function.

Syntax
public void * sqlany_init;

sqlany_init_ex void *
Pointer to sqlany_init_ex() function.

Syntax
public void * sqlany_init_ex;

SAP Sybase IQ Database API for C/C++

Programming 525

sqlany_make_connection void *
Pointer to sqlany_make_connection() function.

Syntax
public void * sqlany_make_connection;

sqlany_make_connection_ex void *
Pointer to sqlany_make_connection_ex() function.

Syntax
public void * sqlany_make_connection_ex;

sqlany_new_connection void *
Pointer to sqlany_new_connection() function.

Syntax
public void * sqlany_new_connection;

sqlany_new_connection_ex void *
Pointer to sqlany_new_connection_ex() function.

Syntax
public void * sqlany_new_connection_ex;

sqlany_num_cols void *
Pointer to sqlany_num_cols() function.

Syntax
public void * sqlany_num_cols;

sqlany_num_params void *
Pointer to sqlany_num_params() function.

Syntax
public void * sqlany_num_params;

SAP Sybase IQ Database API for C/C++

526 SAP Sybase IQ

sqlany_num_rows void *
Pointer to sqlany_num_rows() function.

Syntax
public void * sqlany_num_rows;

sqlany_prepare void *
Pointer to sqlany_prepare() function.

Syntax
public void * sqlany_prepare;

sqlany_reset void *
Pointer to sqlany_reset() function.

Syntax
public void * sqlany_reset;

sqlany_rollback void *
Pointer to sqlany_rollback() function.

Syntax
public void * sqlany_rollback;

sqlany_send_param_data void *
Pointer to sqlany_send_param_data() function.

Syntax
public void * sqlany_send_param_data;

sqlany_sqlstate void *
Pointer to sqlany_sqlstate() function.

Syntax
public void * sqlany_sqlstate;

SAP Sybase IQ Database API for C/C++

Programming 527

a_sqlany_bind_param structure
A bind parameter structure used to bind parameter and prepared statements.

Syntax
typedef struct a_sqlany_bind_param

Remarks
To view examples of the a_sqlany_bind_param structure in use, see any of the following
sample files in the sdk\dbcapi\examples directory of your SQL Anywhere installation.

• preparing_statements.cpp
• send_retrieve_full_blob.cpp
• send_retrieve_part_blob.cpp

direction a_sqlany_data_direction
The direction of the data. (input, output, input_output).

Syntax
public a_sqlany_data_direction direction;

name char *
Name of the bind parameter. This is only used by sqlany_describe_bind_param().

Syntax
public char * name;

value a_sqlany_data_value
The actual value of the data.

Syntax
public a_sqlany_data_value value;

a_sqlany_bind_param_info structure
Gets information about the currently bound parameters.

Syntax
typedef struct a_sqlany_bind_param_info

SAP Sybase IQ Database API for C/C++

528 SAP Sybase IQ

Remarks
sqlany_get_bind_param_info() can be used to populate this structure.

To view examples of the a_sqlany_bind_param_info structure in use, see any of the following
sample files in the sdk\dbcapi\examples directory of your SQL Anywhere installation.

• preparing_statements.cpp
• send_retrieve_full_blob.cpp
• send_retrieve_part_blob.cpp

direction a_sqlany_data_direction
The direction of the parameter.

Syntax
public a_sqlany_data_direction direction;

input_value a_sqlany_data_value
Information about the bound input value.

Syntax
public a_sqlany_data_value input_value;

name char *
A pointer to the name of the parameter.

Syntax
public char * name;

output_value a_sqlany_data_value
Information about the bound output value.

Syntax
public a_sqlany_data_value output_value;

a_sqlany_column_info structure
Returns column metadata information.

Syntax
typedef struct a_sqlany_column_info

SAP Sybase IQ Database API for C/C++

Programming 529

Remarks
sqlany_get_column_info() can be used to populate this structure.

To view an example of the a_sqlany_column_info structure in use, see the following sample
file in the sdk\dbcapi\examples directory of your SQL Anywhere installation.

• dbcapi_isql.cpp

max_size size_t
The maximum size a data value in this column can take.

Syntax
public size_t max_size;

name char *
The name of the column (null-terminated).

Syntax
public char * name;

Remarks
The string can be referenced as long as the result set object is not freed.

native_type a_sqlany_native_type
The native type of the column in the database.

Syntax
public a_sqlany_native_type native_type;

nullable sacapi_bool
Indicates whether a value in the column can be null.

Syntax
public sacapi_bool nullable;

precision unsigned short
The precision.

Syntax
public unsigned short precision;

SAP Sybase IQ Database API for C/C++

530 SAP Sybase IQ

scale unsigned short
The scale.

Syntax
public unsigned short scale;

type a_sqlany_data_type
The column data type.

Syntax
public a_sqlany_data_type type;

a_sqlany_data_info structure
Returns metadata information about a column value in a result set.

Syntax
typedef struct a_sqlany_data_info

Remarks
sqlany_get_data_info() can be used to populate this structure with information about what
was last retrieved by a fetch operation.

To view an example of the a_sqlany_data_info structure in use, see the following sample file in
the sdk\dbcapi\examples directory of your SQL Anywhere installation.

• send_retrieve_part_blob.cpp

data_size size_t
The total number of bytes available to be fetched.

Syntax
public size_t data_size;

Remarks
This field is only valid after a successful fetch operation.

is_null sacapi_bool
Indicates whether the last fetched data is NULL.

Syntax
public sacapi_bool is_null;

SAP Sybase IQ Database API for C/C++

Programming 531

Remarks
This field is only valid after a successful fetch operation.

type a_sqlany_data_type
The type of the data in the column.

Syntax
public a_sqlany_data_type type;

a_sqlany_data_value structure
Returns a description of the attributes of a data value.

Syntax
typedef struct a_sqlany_data_value

Remarks
To view examples of the a_sqlany_data_value structure in use, see any of the following sample
files in the sdk\dbcapi\examples directory of your SQL Anywhere installation.

• dbcapi_isql.cpp
• fetching_a_result_set.cpp
• send_retrieve_full_blob.cpp
• preparing_statements.cpp

buffer char *
A pointer to user supplied buffer of data.

Syntax
public char * buffer;

buffer_size size_t
The size of the buffer.

Syntax
public size_t buffer_size;

SAP Sybase IQ Database API for C/C++

532 SAP Sybase IQ

is_null sacapi_bool *
A pointer to indicate whether the last fetched data is NULL.

Syntax
public sacapi_bool * is_null;

length size_t *
A pointer to the number of valid bytes in the buffer. This value must be less than buffer_size.

Syntax
public size_t * length;

type a_sqlany_data_type
The type of the data.

Syntax
public a_sqlany_data_type type;

SAP Sybase IQ Database API for C/C++

Programming 533

SAP Sybase IQ Database API for C/C++

534 SAP Sybase IQ

Perl DBI Support

DBD::SQLAnywhere is the SAP Sybase IQ database driver for DBI, which is a data access
API for the Perl language. The DBI API specification defines a set of functions, variables and
conventions that provide a consistent database interface independent of the actual database
being used. Using DBI and DBD::SQLAnywhere, your Perl scripts have direct access to SAP
Sybase IQ database servers.

DBD::SQLAnywhere
DBD::SQLAnywhere is a driver for the Database Independent Interface for Perl (DBI)
module written by Tim Bunce. Once you have installed the DBI module and
DBD::SQLAnywhere, you can access and change the information in SAP Sybase IQ
databases from Perl.

The DBD::SQLAnywhere driver is thread-safe when using Perl with ithreads.

Requirements
The DBD::SQLAnywhere interface requires the following components.

• Perl 5.6.0 or later. On Windows, ActivePerl 5.6.0 build 616 or later is required.
• DBI 1.34 or later.
• A C compiler. On Windows, only the Microsoft Visual C++ compiler is supported.

Installing DBD::SQLAnywhere on Windows
Install the DBD::SQLAnywhere interface on the supported Windows platform to use Perl to
access SAP Sybase IQ databases.

Prerequisites

• Make the iqdemo database.
• Install ActivePerl 5.6.0 or later. You can use the ActivePerl installer to install Perl and

configure your computer. You do not need to recompile Perl.
• Install Microsoft Visual Studio and configure your environment.

If you did not choose to configure your environment at install time, you must set your
PATH, LIB, and INCLUDE environment variables correctly before proceeding. Microsoft
provides a batch file for this purpose. For 32-bit builds, a batch file called
vcvars32.bat is included in the vc\bin subdirectory of the Visual Studio 2005 or
2008 installation. For 64-bit builds, look for a 64-bit version of this batch file such as

Perl DBI Support

Programming 535

vcvarsamd64.bat. Open a new system command prompt and run this batch file
before continuing.
For more information about configuring a 64-bit Visual C++ build environment, see http://
msdn.microsoft.com/en-us/library/x4d2c09s.aspx.

Task

1. At a command prompt, change to the bin subdirectory of your ActivePerl installation
directory.

The system command prompt is strongly recommended as the following steps may not
work from alternative shells.

2. Using the Perl Module Manager, enter the following command.
ppm query dbi

If ppm fails to run, check that Perl is installed correctly.

This command should generate two lines of text similar to those shown below. In this case,
the information indicates that ActivePerl version 5.8.1 build 807 is running and that DBI
version 1.38 is installed.
Querying target 1 (ActivePerl 5.8.1.807)
 1. DBI [1.38] Database independent interface for Perl

Later versions of Perl may show instead a table similar to the following. In this case, the
information indicates that DBI version 1.58 is installed.

name version abstract area

DBI 1.58 Database independent
interface for Perl

perl

If DBI is not installed, you must install it. To do so, enter the following command at the
ppm prompt.
ppm install dbi

3. At a command prompt, change to the SDK\Perl subdirectory of your SAP Sybase IQ
installation.

4. Enter the following commands to build and test DBD::SQLAnywhere.
perl Makefile.PL
nmake

If for any reason you need to start over, you can run the command nmake clean to
remove any partially built targets.

5. To test DBD::SQLAnywhere, copy the sample database file to your SDK\Perl directory
and make the tests.
copy "%ALLUSERSPROFILE%\SybaseIQ\demo\iqdemo.db" .

Perl DBI Support

536 SAP Sybase IQ

http://msdn.microsoft.com/en-us/library/x4d2c09s.aspx
http://msdn.microsoft.com/en-us/library/x4d2c09s.aspx

iqsrv16 demo
nmake test

If the tests do not run, ensure that the bin32 or bin64 subdirectory of the SAP Sybase IQ
installation is in your path.

6. To complete the installation, run the following command at the same prompt.
nmake install

The DBI Perl module and the DBD::SQLAnywhere interface are now ready to use.

Installing DBD::SQLAnywhere on Unix
Install the DBD::SQLAnywhere interface on the supported Unix platforms to use Perl to
access SAP Sybase IQ databases.

Prerequisites

You must have ActivePerl 5.6.0 build 616 or later and a C compiler installed.

Task

1. Download the DBI module source from http://www.cpan.org.

2. Extract the contents of this file into a new directory.

3. At a command prompt, change to the new directory and run the following commands to
build the DBI module.
perl Makefile.PL
make

If for any reason you need to start over, you can use the command make clean to
remove any partially built targets.

4. Use the following command to test the DBI module.
make test

5. To complete the installation, run the following command at the same prompt.
make install

6. Make sure the environment is set up for SAP Sybase IQ.

Depending on which shell you are using, enter the appropriate command to source the SAP
Sybase IQ configuration script from the SAP Sybase IQ installation directory:

In this shell... Use this command...

sh, ksh, or bash . bin/sa_config.sh

Perl DBI Support

Programming 537

http://www.cpan.org

In this shell... Use this command...

csh or tcsh source bin/sa_config.csh
7. At a shell prompt, change to the sdk/perl subdirectory of your SAP Sybase IQ

installation.

8. At a command prompt, run the following commands to build DBD::SQLAnywhere.
perl Makefile.PL
make

If for any reason you need to start over, you can use the command make clean to
remove any partially built targets.

9. To test DBD::SQLAnywhere, copy the sample database file to your sdk/perl directory
and make the tests.
cp samples-dir/demo.db .
iqsrv16 demo
make test

If the tests do not run, ensure that the bin32 or bin64 subdirectory of the SAP Sybase IQ
installation is in your path.

10. To complete the installation, run the following command at the same prompt.
make install

The DBI Perl module and the DBD::SQLAnywhere interface are ready for use.

Next

Optionally, you can delete the DBI source tree. It is no longer required.

Perl Scripts That Use DBD::SQLAnywhere
This section provides an overview of how to write Perl scripts that use the
DBD::SQLAnywhere interface.

DBD::SQLAnywhere is a driver for the DBI module. Complete documentation for the DBI
module is available online at http://dbi.perl.org.

The DBI Module
To use the DBD::SQLAnywhere interface from a Perl script, you must first tell Perl that you
plan to use the DBI module. To do so, include the following line at the top of the file.
use DBI;

In addition, it is highly recommended that you run Perl in strict mode. This statement, which
for example makes explicit variable definitions mandatory, is likely to greatly reduce the

Perl DBI Support

538 SAP Sybase IQ

http://dbi.perl.org

chance that you will run into mysterious errors due to such common mistakes as typographical
errors.
#!/usr/local/bin/perl -w
#
use DBI;
use strict;

The DBI module automatically loads the DBD drivers, including DBD::SQLAnywhere, as
required.

How to Open and Close a Database Connection Using Perl DBI
Generally, you open a single connection to a database and then perform all the required
operations through it by executing a sequence of SQL statements. To open a connection, you
use the connect method. The return value is a handle to the database connection that you use to
perform subsequent operations on that connection.

The parameters to the connect method are as follows:

1. "DBI:SQLAnywhere:" and additional connection parameters separated by semicolons.
2. A user name. Unless this string is blank, ";UID=value" is appended to the connection

string.
3. A password value. Unless this string is blank, ";PWD=value" is appended to the

connection string.
4. A pointer to a hash of default values. Settings such as AutoCommit, RaiseError, and

PrintError may be set in this manner.

The following code sample opens and closes a connection to the SAP Sybase IQ sample
database. You must start the database server and sample database before running this script.
#!/usr/local/bin/perl -w
#
use DBI;
use strict;
my $database = "demo";
my $data_src = "DBI:SQLAnywhere:SERVER=$database;DBN=$database";
my $uid = "DBA";
my $pwd = "sql";
my %defaults = (
 AutoCommit => 1, # Autocommit enabled.
 PrintError => 0 # Errors not automatically printed.
);
my $dbh = DBI->connect($data_src, $uid, $pwd, \%defaults)
 or die "Cannot connect to $data_src: $DBI::errstr\n";
$dbh->disconnect;
exit(0);
__END__

Optionally, you can append the user name or password value to the data-source string instead
of supplying them as separate parameters. If you do so, supply a blank string for the
corresponding argument. For example, in the above script may be altered by replacing the
statement that opens the connections with these statements:

Perl DBI Support

Programming 539

$data_src .= ";UID=$uid";
$data_src .= ";PWD=$pwd";
my $dbh = DBI->connect($data_src, '', '', \%defaults)
 or die "Cannot connect to $data_src: $DBI::errstr\n";

How to Obtain Result Sets Using Perl DBI
Once you have obtained a handle to an open connection, you can access and modify data
stored in the database. Perhaps the simplest operation is to retrieve some rows and print them
out.

SQL statements that return row sets must be prepared before being executed. The prepare
method returns a handle to the statement. You use the handle to execute the statement, then
retrieve meta information about the result set and the rows of the result set.
#!/usr/local/bin/perl -w
#
use DBI;
use strict;
my $database = "demo";
my $data_src = "DBI:SQLAnywhere:SERVER=$database;DBN=$database";
my $uid = "DBA";
my $pwd = "sql";
my $sel_stmt = "SELECT ID, GivenName, Surname
 FROM Customers
 ORDER BY GivenName, Surname";
my %defaults = (
 AutoCommit => 0, # Require explicit commit or rollback.
 PrintError => 0
);
my $dbh = DBI->connect($data_src, $uid, $pwd, \%defaults)
 or die "Cannot connect to $data_src: $DBI::errstr\n";
&db_query($sel_stmt, $dbh);
$dbh->rollback;
$dbh->disconnect;
exit(0);

sub db_query {
 my($sel, $dbh) = @_;
 my($row, $sth) = undef;
 $sth = $dbh->prepare($sel);
 $sth->execute;
 print "Fields: $sth->{NUM_OF_FIELDS}\n";
 print "Params: $sth->{NUM_OF_PARAMS}\n\n";
 print join("\t\t", @{$sth->{NAME}}), "\n\n";
 while($row = $sth->fetchrow_arrayref) {
 print join("\t\t", @$row), "\n";
 }
 $sth = undef;
}
__END__

Prepared statements are not dropped from the database server until the Perl statement handle is
destroyed. To destroy a statement handle, reuse the variable or set it to undef. Calling the finish

Perl DBI Support

540 SAP Sybase IQ

method does not drop the handle. In fact, the finish method should not be called, except when
you have decided not to finish reading a result set.

To detect handle leaks, the SAP Sybase IQ database server limits the number of cursors and
prepared statements permitted to a maximum of 50 per connection by default. The resource
governor automatically generates an error if these limits are exceeded. If you get this error,
check for undestroyed statement handles. Use prepare_cached sparingly, as the statement
handles are not destroyed.

If necessary, you can alter these limits by setting the max_cursor_count and
max_statement_count options.

How to Process Multiple Result Sets Using Perl DBI
The method for handling multiple result sets from a query involves wrapping the fetch loop
within another loop that moves between result sets.

SQL statements that return multiple result sets must be prepared before being executed. The
prepare method returns a handle to the statement. You use the handle to execute the statement,
then retrieve meta information about the result set and the rows of each of the result sets.
#!/usr/local/bin/perl -w
#
use DBI;
use strict;
my $database = "demo";
my $data_src = "DBI:SQLAnywhere:SERVER=$database;DBN=$database";
my $uid = "DBA";
my $pwd = "sql";
my $sel_stmt = "SELECT ID, GivenName, Surname
 FROM Customers
 ORDER BY GivenName, Surname;
 SELECT *
 FROM Departments
 ORDER BY DepartmentID";
my %defaults = (
 AutoCommit => 0, # Require explicit commit or rollback.
 PrintError => 0
);
my $dbh = DBI->connect($data_src, $uid, $pwd, \%defaults)
 or die "Cannot connect to $data_src: $DBI::errstr\n";
&db_query($sel_stmt, $dbh);
$dbh->rollback;
$dbh->disconnect;
exit(0);

sub db_query {
 my($sel, $dbh) = @_;
 my($row, $sth) = undef;
 $sth = $dbh->prepare($sel);
 $sth->execute;
 do {
 print "Fields: $sth->{NUM_OF_FIELDS}\n";
 print "Params: $sth->{NUM_OF_PARAMS}\n\n";

Perl DBI Support

Programming 541

 print join("\t\t", @{$sth->{NAME}}), "\n\n";
 while($row = $sth->fetchrow_arrayref) {
 print join("\t\t", @$row), "\n";
 }
 print "---end of results---\n\n";
 } while (defined $sth->more_results);
 $sth = undef;
}
__END__

How to Insert Rows Using Perl DBI
Inserting rows requires a handle to an open connection. The simplest method is to use a
parameterized INSERT statement, meaning that question marks are used as placeholders for
values. The statement is first prepared, and then executed once per new row. The new row
values are supplied as parameters to the execute method.

The following sample program inserts two new customers. Although the row values appear as
literal strings, you may want to read the values from a file.
#!/usr/local/bin/perl -w
#
use DBI;
use strict;
my $database = "demo";
my $data_src = "DBI:SQLAnywhere:SERVER=$database;DBN=$database";
my $uid = "DBA";
my $pwd = "sql";
my $ins_stmt = "INSERT INTO Customers (ID, GivenName, Surname,
 Street, City, State, Country, PostalCode,
 Phone, CompanyName)
 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)";
my %defaults = (
 AutoCommit => 0, # Require explicit commit or rollback.
 PrintError => 0
);
my $dbh = DBI->connect($data_src, $uid, $pwd, \%defaults)
 or die "Can't connect to $data_src: $DBI::errstr\n";
&db_insert($ins_stmt, $dbh);
$dbh->commit;
$dbh->disconnect;
exit(0);

sub db_insert {
 my($ins, $dbh) = @_;
 my($sth) = undef;
 my @rows = (
 "801,Alex,Alt,5 Blue Ave,New York,NY,USA,
10012,5185553434,BXM",
 "802,Zach,Zed,82 Fair St,New York,NY,USA,
10033,5185552234,Zap"
);
 $sth = $dbh->prepare($ins);
 my $row = undef;
 foreach $row (@rows) {

Perl DBI Support

542 SAP Sybase IQ

 my @values = split(/,/, $row);
 $sth->execute(@values);
 }
}
__END__

Perl DBI Support

Programming 543

Perl DBI Support

544 SAP Sybase IQ

Python Support

The SAP Sybase IQ Python database interface, sqlanydb, is a data access API for the Python
language. This section describes how to use SAP Sybase IQ with Python.

sqlanydb
The SQL Anywhere Python database interface (sqlanydb) is a data access API for the Python
language. The Python Database API specification defines a set of methods that provides a
consistent database interface independent of the actual database being used. Using the
sqlanydb module, your Python scripts have direct access to SAP Sybase IQ database servers.

The sqlanydb module implements, with extensions, the Python Database API specification
v2.0 written by Marc-André Lemburg. Once you have installed the sqlanydb module, you can
access and change the information in SAP Sybase IQ databases from Python.

For information about the Python Database API specification v2.0, see http://
www.python.org/dev/peps/pep-0249/.

The sqlanydb module is thread-safe when using Python with threads.

Requirements
The sqlanydb module requires the following components.

• Python is required. For a list of supported versions, see http://www.sybase.com/detail?
id=1068981.

• The ctypes module is required. To test if the ctypes module is present, open a command
prompt window and run Python.
At the Python prompt, enter the following statement.
import ctypes

If you see an error message, then ctypes is not present. The following is an example.
>>> import ctypes
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
ImportError: No module named ctypes

If ctypes is not included in your Python installation, install it. Installs can be found in the
SourceForge.net files section at http://sourceforge.net/project/showfiles.php?
group_id=71702.
Peak EasyInstall also installs ctypes. To download Peak EasyInstall, go to http://
peak.telecommunity.com/DevCenter/EasyInstall.

Python Support

Programming 545

http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/
http://www.sybase.com/detail?id=1068981
http://www.sybase.com/detail?id=1068981
http://sourceforge.net/project/showfiles.php?group_id=71702
http://sourceforge.net/project/showfiles.php?group_id=71702
http://peak.telecommunity.com/DevCenter/EasyInstall
http://peak.telecommunity.com/DevCenter/EasyInstall

Installing Python Support on Windows
Python support can be set up on Windows by running the applicable setup python script from
the SDK\Python subdirectory of your SAP Sybase IQ installation.

Prerequisites

Ensure that Python and the ctypes module are installed. For a list of supported versions of
Python, see http://www.sybase.com/detail?id=1068981.

Task

1. At a system command prompt, change to the SDK\Python subdirectory of your SAP
Sybase IQ installation.

2. Run the following command to install sqlanydb.
python setup.py install

3. To test sqlanydb, make a copy of the sample database file in your current directory and run
a test.
newdemo
cd "%ALLSERPROFILE%"\SybaseIQ\demo
start_iq @iqdemo.cfg iqdemo.db
python Scripts\test.py

The test script makes a connection to the database server and executes a SQL query. If
successful, the test displays the message sqlanydb successfully installed.
If the tests do not run, ensure that the bin32 or bin64 subdirectory of the SAP Sybase IQ
installation is in your path.

The sqlanydb module is now ready to use.

Installing Python Support on Unix
Python support can be set up on Unix by running the applicable setup python script from the
sdk/python subdirectory of your SAP Sybase IQ installation.

Prerequisites

Ensure that Python and the ctypes module are installed. For a list of supported versions of
Python, see http://www.sybase.com/detail?id=1068981.

Python Support

546 SAP Sybase IQ

http://www.sybase.com/detail?id=1068981
http://www.sybase.com/detail?id=1068981

Task

1. Make sure the environment is set up for SAP Sybase IQ.

Depending on which shell you are using, enter the appropriate command to source the SAP
Sybase IQ configuration script from the SAP Sybase IQ installation directory (bin64
may be used in place of bin32, if you have the 64-bit software installed):

In this shell... Use this command...

sh, ksh, or bash . bin32/sa_config.sh
csh or tcsh source bin32/sa_config.csh

2. At a shell prompt, change to the sdk/python subdirectory of your SAP Sybase IQ
installation.

3. Enter the following command to install sqlanydb.
python setup.py install

4. To test sqlanydb, make a copy of the sample database file in your current directory and run
a test.
newdemo
cd "%ALLSERPROFILE%"\SybaseIQ\demo
start_iq @iqdemo.cfg iqdemo.db
python scripts/test.py

The test script makes a connection to the database server and executes a SQL query. If
successful, the test displays the message sqlanydb successfully installed.
If the test does not run, ensure that the bin32 or bin64 subdirectory of the SAP Sybase
IQ installation is in your path.

The sqlanydb module is now ready to use.

Python Scripts That Use sqlanydb
This section provides an overview of how to write Python scripts that use the sqlanydb
interface.

Complete documentation for the API is available online at http://www.python.org/dev/peps/
pep-0249/.

The sqlanydb Module
To use the sqlanydb module from a Python script, you must first load it by including the
following line at the top of the file.
import sqlanydb

Python Support

Programming 547

http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/

How to Open and Close a Database Connection Using Python
Generally, you open a single connection to a database and then perform all the required
operations through it by executing a sequence of SQL statements. To open a connection, you
use the connect method. The return value is a handle to the database connection that you use to
perform subsequent operations on that connection.

The parameters to the connect method are specified as a series of keyword=value pairs
delimited by commas.
sqlanydb.connect(keyword=value, ...)

Some common connection parameters are as follows:

• DataSourceName="dsn" – A short form for this connection parameter is DSN="dsn". An
example is DataSourceName="Sybase IQ demo".

• UserID="user-id" – A short form for this connection parameter is UID="user-id".
• Password="passwd" – A short form for this connection parameter is PWD="passwd".
• DatabaseFile="db-file" – A short form for this connection parameter is DBF="db-file".

An example is DatabaseFile="iqdemo.db".

The following code sample opens and closes a connection to the SAP Sybase IQ sample
database. You must start the database server and sample database before running this script.
import sqlanydb

Create a connection object
con = sqlanydb.connect(userid="<user_id>",
 password="<password>")
Close the connection
con.close()

To avoid starting the database server manually, you could use a data source that is configured
to start the server. This is shown in the following example.
import sqlanydb

Create a connection object
con = sqlanydb.connect(DSN="Sybase IQ Demo")

Close the connection
con.close()

How to Obtain Result Sets Using Python
Once you have obtained a handle to an open connection, you can access and modify data
stored in the database. Perhaps the simplest operation is to retrieve some rows and print them
out.

The cursor method is used to create a cursor on the open connection. The execute method is
used to create a result set. The fetchall method is used to obtain the rows in this result set.
import sqlanydb

Python Support

548 SAP Sybase IQ

Create a connection object, then use it to create a cursor
con = sqlanydb.connect(userid="<user_id>",
 password="<password>")
cursor = con.cursor()

Execute a SQL string
sql = "SELECT * FROM Employees"
cursor.execute(sql)

Get a cursor description which contains column names
desc = cursor.description
print len(desc)

Fetch all results from the cursor into a sequence,
display the values as column name=value pairs,
and then close the connection
rowset = cursor.fetchall()
for row in rowset:
 for col in range(len(desc)):
 print "%s=%s" % (desc[col][0], row[col])
 print
cursor.close()
con.close()

How to Insert Rows Using Python
The simplest way to insert rows into a table is to use a non-parameterized INSERT statement,
meaning that values are specified as part of the SQL statement. A new statement is constructed
and executed for each new row. As in the previous example, a cursor is required to execute
SQL statements.

The following sample program inserts two new customers into the sample database. Before
disconnecting, it commits the transactions to the database.
import sqlanydb

Create a connection object, then use it to create a cursor
con = sqlanydb.connect(userid="<user_id>", pwd="<password>")
cursor = con.cursor()
cursor.execute("DELETE FROM Customers WHERE ID > 800")

rows = ((801,'Alex','Alt','5 Blue Ave','New York','NY',
 'USA','10012','5185553434','BXM'),
 (802,'Zach','Zed','82 Fair St','New York','NY',
 'USA','10033','5185552234','Zap'))

Set up a SQL INSERT
parms = ("'%s'," * len(rows[0]))[:-1]
sql = "INSERT INTO Customers VALUES (%s)" % (parms)
print sql % rows[0]
cursor.execute(sql % rows[0])
print sql % rows[1]
cursor.execute(sql % rows[1])
cursor.close()

Python Support

Programming 549

con.commit()
con.close()

An alternate technique is to use a parameterized INSERT statement, meaning that question
marks are used as placeholders for values. The executemany method is used to execute an
INSERT statement for each member of the set of rows. The new row values are supplied as a
single argument to the executemany method.
import sqlanydb

Create a connection object, then use it to create a cursor
con = sqlanydb.connect(userid="<user_id>", pwd="<password>")
cursor = con.cursor()
cursor.execute("DELETE FROM Customers WHERE ID > 800")

rows = ((801,'Alex','Alt','5 Blue Ave','New York','NY',
 'USA','10012','5185553434','BXM'),
 (802,'Zach','Zed','82 Fair St','New York','NY',
 'USA','10033','5185552234','Zap'))

Set up a parameterized SQL INSERT
parms = ("?," * len(rows[0]))[:-1]
sql = "INSERT INTO Customers VALUES (%s)" % (parms)
print sql
cursor.executemany(sql, rows)
cursor.close()
con.commit()
con.close()

Although both examples may appear to be equally suitable techniques for inserting row data
into a table, the latter example is superior for a couple of reasons. If the data values are
obtained by prompts for input, then the first example is susceptible to injection of rogue data
including SQL statements. In the first example, the execute method is called for each row to be
inserted into the table. In the second example, the executemany method is called only once to
insert all the rows into the table.

Database Type Conversion
To control how database types are mapped into Python objects when results are fetched from
the database server, conversion callbacks can be registered.

Callbacks are registered using the module level register_converter method. This method is
called with the database type as the first parameter and the conversion function as the second
parameter. For example, to request that sqlanydb create Decimal objects for data in any
column described as having type DT_DECIMAL, you would use the following example:
import sqlanydb
import decimal

def convert_to_decimal(num):
 return decimal.Decimal(num)

sqlanydb.register_converter(sqlanydb.DT_DECIMAL,
convert_to_decimal)

Python Support

550 SAP Sybase IQ

Converters may be registered for the following database types:
DT_DATE
DT_TIME
DT_TIMESTAMP
DT_VARCHAR
DT_FIXCHAR
DT_LONGVARCHAR
DT_DOUBLE
DT_FLOAT
DT_DECIMAL
DT_INT
DT_SMALLINT
DT_BINARY
DT_LONGBINARY
DT_TINYINT
DT_BIGINT
DT_UNSINT
DT_UNSSMALLINT
DT_UNSBIGINT
DT_BIT

The following example demonstrates how to convert decimal results to integer resulting in the
truncation of any digits after the decimal point. The salary amount displayed when the
application is run is an integral value.
import sqlanydb

def convert_to_int(num):
 return int(float(num))

sqlanydb.register_converter(sqlanydb.DT_DECIMAL, convert_to_int)

Create a connection object, then use it to create a cursor
con = sqlanydb.connect(userid="<user_id>",
 password="<password>")
cursor = con.cursor()

Execute a SQL string
sql = "SELECT * FROM Employees WHERE EmployeeID=105"
cursor.execute(sql)

Get a cursor description which contains column names
desc = cursor.description
print len(desc)

Fetch all results from the cursor into a sequence,
display the values as column name=value pairs,
and then close the connection
rowset = cursor.fetchall()
for row in rowset:
 for col in range(len(desc)):
 print "%s=%s" % (desc[col][0], row[col])
 print
cursor.close()
con.close()

Python Support

Programming 551

Python Support

552 SAP Sybase IQ

PHP Support

PHP provides the ability to retrieve information from many popular databases. SAP Sybase IQ
includes a module that provides access to SAP Sybase IQ databases from PHP. You can use the
PHP language to retrieve information from SAP Sybase IQ databases and provide dynamic
web content on your own web sites.

SAP Sybase IQ PHP Extension
PHP, which stands for PHP: Hypertext Preprocessor, is an open source scripting
language. Although it can be used as a general-purpose scripting language, it was designed to
be a convenient language in which to write scripts that could be embedded with HTML
documents. Unlike scripts written in JavaScript, which are frequently executed by the client,
PHP scripts are processed by the web server, and the resulting HTML output sent to the
clients. The syntax of PHP is derived from that of other popular languages, such as Java and
Perl.

To make it a convenient language in which to develop dynamic web pages, PHP provides the
ability to retrieve information from many popular databases, such as SAP Sybase IQ. Included
with SAP Sybase IQ is an extension that provides access to SAP Sybase IQ databases from
PHP. You can use the SAP Sybase IQ PHP extension and the PHP language to write standalone
scripts and create dynamic web pages that rely on information stored in SAP Sybase IQ
databases.

The SAP Sybase IQ PHP extension provides a native means of accessing your databases from
PHP. You might prefer it to other PHP data access techniques because it is simple, and it helps
to avoid system resource leaks that can occur with other techniques.

Prebuilt versions of the PHP extension are provided for Windows, Linux, and Solaris and are
installed in the binaries subdirectories of your SAP Sybase IQ installation. Source code for the
SAP Sybase IQ PHP extension is installed in the sdk\php subdirectory of your SAP Sybase
IQ installation.

For more information and the latest SAP Sybase IQ PHP drivers, see http://www.sybase.com/
detail?id=1019698.

Testing the PHP Extension
Perform a quick check to verify that the SAP Sybase IQ PHP extension is working correctly.

Prerequisites

All of the required PHP components should be installed on your system

PHP Support

Programming 553

http://www.sybase.com/detail?id=1019698
http://www.sybase.com/detail?id=1019698

Task

1. Make sure that the bin32 subdirectory of your SAP Sybase IQ installation is in your path.
The SAP Sybase IQ PHP extension requires the bin32 directory to be in your path.

2. At a command prompt, run the following command to start the SAP Sybase IQ sample
database.
cd "%ALLUSERSPROFILE%"\SybaseIQ\demo
start_iq @iqdemo.cfg iqdemo.db

The command starts a database server using the sample database.

3. At a command prompt, change to the SDK\PHP\Examples subdirectory of your SAP
Sybase IQ installation. Make sure that the php executable directory is included in your
path. Enter the following command:
php test.php

Messages similar to the following should appear. If the PHP command is not recognized,
verify that PHP is in your path.
Installation successful
Using php-5.2.11_sqlanywhere.dll
Connected successfully

If the SAP Sybase IQ PHP extension does not load, you can use the command "php -i" for
helpful information about your PHP setup. Search for extension_dir and
sqlanywhere in the output from this command.

4. When you are done, stop the SAP Sybase IQ database server by clicking Shut Down in the
database server messages window.

The tests should succeed, indicating that the SAP Sybase IQ PHP extension is working
correctly.

Creating and Running PHP Test Pages
Create and run several web pages that test whether PHP is set up properly.

Prerequisites

You must install PHP. For information about installing PHP, see http://us2.php.net/install.

Task

This procedure applies to all configurations.

1. Create a file in your root web content directory named info.php.

If you are not sure which directory to use, check your web server's configuration file. In
Apache installations, the content directory is often called htdocs.

PHP Support

554 SAP Sybase IQ

http://us2.php.net/install

2. Insert the following code into this file:
<?php phpinfo(); ?>

The PHP function, phpinfo, generates a page of system setup information. This confirms
that your installation of PHP and your web server are working together properly.

3. Copy the file connect.php from the sdk\php\examples directory to your root
web content directory. This confirms that your installation of PHP and SQL Anywhere are
working together properly.

4. Create a file in your root web content directory named sa_test.php and insert the
following code into this file:
<?php
 $conn = sasql_connect("UID=DBA;PWD=sql");
 $result = sasql_query($conn, "SELECT * FROM Employees");
 sasql_result_all($result);
 sasql_free_result($result);
 sasql_disconnect($conn);
?>

The sa_test page displays the contents of the Employees table.

5. Start your web server if it is required.

For example, to start the Apache web server, run the following command from the bin
subdirectory of your Apache installation:
apachectl start

6. On Linux, set the SAP Sybase IQ environment variables using one of the supplied scripts.

Depending on which shell you are using, enter the appropriate command to source the SAP
Sybase IQ configuration script from your SAP Sybase IQ installation directory:

In this shell... ...use this command

sh, ksh, or bash . /bin32/sa_config.sh
csh or tcsh source /bin32/sa_config.csh

7. At a command prompt, start the iqdemo.db sample database.

8. To test that PHP and your web server are working correctly with SAP Sybase IQ, access
the test pages from a browser that is running on the same computer as the server:

For this test page... Use this URL...

info.php http://localhost/info.php
connect.php http://localhost/con-

nect.php
sa_test.php http://localhost/

sa_test.php
The info page displays the output from the phpinfo() call.

PHP Support

Programming 555

The connect page displays the message Connected successfully.

The sa_test page displays the contents of the Employees table.

PHP Script Development
This section describes how to write PHP scripts that use the SAP Sybase IQ PHP extension to
access SAP Sybase IQ databases.

The source code for these and other examples is located in the SDK\PHP\Examples
subdirectory of your SAP Sybase IQ installation.

How to Connect to a Database Using PHP
To make a connection to a database, pass a standard SAP Sybase IQ connection string to the
database server as a parameter to the sasql_connect function. The <?php and ?> tags tell the
web server that it should let PHP execute the code that lies between them and replace it with
the PHP output.

The source code for this example is contained in your SAP Sybase IQ installation in a file
called connect.php.

<?php
 # Connect using the default user ID and password
 $conn = sasql_connect("UID=DBA;PWD=sql");
 if(! $conn) {
 echo "Connection failed\n";
 } else {
 echo "Connected successfully\n";
 sasql_close($conn);
 }?>

This script attempts to make a connection to a database on a local server. For this code to
succeed, the SAP Sybase IQ sample database or one with identical credentials must be started
on a local server.

How to Retrieve Data from a Database Using PHP
One use of PHP scripts in web pages is to retrieve and display information contained in a
database. The following examples demonstrate some useful techniques.

Simple select query
The following PHP code demonstrates a convenient way to include the result set of a SELECT
statement in a web page. This sample is designed to connect to the SAP Sybase IQ sample
database and return a list of customers.

This code can be embedded in a web page, provided your web server is configured to execute
PHP scripts.

The source code for this sample is contained in your SAP Sybase IQ installation in a file called
query.php.

PHP Support

556 SAP Sybase IQ

<?php
 # Connect using the default user ID and password
 $conn = sasql_connect("UID=DBA;PWD=sql");
 if(! $conn) {
 echo "sasql_connect failed\n";
 } else {
 echo "Connected successfully\n";
 # Execute a SELECT statement
 $result = sasql_query($conn, "SELECT * FROM Customers");
 if(! $result) {
 echo "sasql_query failed!";
 } else {
 echo "query completed successfully\n";
 # Generate HTML from the result set
 sasql_result_all($result);
 sasql_free_result($result);
 }
 sasql_close($conn);
 }
?>

The sasql_result_all function fetches all the rows of the result set and generates an HTML
output table to display them. The sasql_free_result function releases the resources used to
store the result set.

Fetching by column name
In certain cases, you may not want to display all the data from a result set, or you may want to
display the data in a different manner. The following sample illustrates how you can exercise
greater control over the output format of the result set. PHP allows you to display as much
information as you want in whatever manner you choose.

The source code for this sample is contained in your SAP Sybase IQ installation in a file called
fetch.php.

<?php
 # Connect using the default user ID and password
 $conn = sasql_connect("UID=DBA;PWD=sql");
 if(! $conn) {
 die ("Connection failed");
 } else {
 # Connected successfully.
 }
 # Execute a SELECT statement
 $result = sasql_query($conn, "SELECT * FROM Customers");
 if(! $result) {
 echo "sasql_query failed!";
 return 0;
 } else {
 echo "query completed successfully\n";
 }
 # Retrieve meta information about the results
 $num_cols = sasql_num_fields($result);
 $num_rows = sasql_num_rows($result);
 echo "Num of rows = $num_rows\n";

PHP Support

Programming 557

 echo "Num of cols = $num_cols\n";
 while(($field = sasql_fetch_field($result))) {
 echo "Field # : $field->id \n";
 echo "\tname : $field->name \n";
 echo "\tlength : $field->length \n";
 echo "\ttype : $field->type \n";
 }
 # Fetch all the rows
 $curr_row = 0;
 while(($row = sasql_fetch_row($result))) {
 $curr_row++;
 $curr_col = 0;
 while($curr_col < $num_cols) {
 echo "$row[$curr_col]\t|";
 $curr_col++;
 }
 echo "\n";
 }
 # Clean up.
 sasql_free_result($result);
 sasql_disconnect($conn);
?>

The sasql_fetch_array function returns a single row from the table. The data can be retrieved
by column names and column indexes.

The sasql_fetch_assoc function returns a single row from the table as an associative array. The
data can be retrieved by using the column names as indexes. The following is an example.
<?php
 # Connect using the default user ID and password
 $conn = sasql_connect("UID=DBA;PWD=sql");

 /* check connection */
 if(sasql_errorcode()) {
 printf("Connect failed: %s\n", sasql_error());
 exit();
 }

 $query = "SELECT Surname, Phone FROM Employees ORDER by
EmployeeID";

 if($result = sasql_query($conn, $query)) {

 /* fetch associative array */
 while($row = sasql_fetch_assoc($result)) {
 printf ("%s (%s)\n", $row["Surname"], $row["Phone"]);
 }

 /* free result set */
 sasql_free_result($result);
 }

 /* close connection */
 sasql_close($conn);
?>

PHP Support

558 SAP Sybase IQ

Two other similar methods are provided in the PHP interface: sasql_fetch_row returns a row
that can be searched by column indexes only, while sasql_fetch_object returns a row that can
be searched by column names only.

For an example of the sasql_fetch_object function, see the fetch_object.php example
script.

Nested result sets
When a SELECT statement is sent to the database, a result set is returned. The
sasql_fetch_row and sasql_fetch_array functions retrieve data from the individual rows of a
result set, returning each row as an array of columns that can be queried further.

The source code for this sample is contained in your SAP Sybase IQ installation in a file called
nested.php.

<?php
 $conn = sasql_connect("UID=DBA;PWD=sql");
 if($conn) {
 // get the GROUPO user id
 $result = sasql_query($conn,
 "SELECT user_id FROM SYS.SYSUSER " .
 "WHERE user_name='GROUPO'");
 if($result) {
 $row = sasql_fetch_array($result);
 $user = $row[0];
 } else {
 $user = 0;
 }
 // get the tables created by user GROUPO
 $result = sasql_query($conn,
 "SELECT table_id, table_name FROM SYS.SYSTABLE " .
 "WHERE creator = $user");
 if($result) {
 $num_rows = sasql_num_rows($result);
 echo "Returned rows : $num_rows\n";
 while($row = sasql_fetch_array($result)) {
 echo "Table: $row[1]\n";
 $query = "SELECT table_id, column_name FROM SYS.SYSCOLUMN
" .
 "WHERE table_id = '$row[table_id]'";
 $result2 = sasql_query($conn, $query);
 if($result2) {
 echo "Columns:";
 while($detailed = sasql_fetch_array($result2)) {
 echo " $detailed[column_name]";
 }
 sasql_free_result($result2);
 }
 echo "\n\n";
 }
 sasql_free_result($result);
 }
 sasql_disconnect($conn);

PHP Support

Programming 559

 }
?>

In the above sample, the SQL statement selects the table ID and name for each table from
SYSTAB. The sasql_query function returns an array of rows. The script iterates through the
rows using the sasql_fetch_array function to retrieve the rows from an array. An inner iteration
goes through the columns of each row and prints their values.

Web Forms
PHP can take user input from a web form, pass it to the database server as a SQL query, and
display the result that is returned. The following example demonstrates a simple web form that
gives the user the ability to query the sample database using SQL statements and display the
results in an HTML table.

The source code for this sample is contained in your SAP Sybase IQ installation in a file called
webisql.php.

<?php
 echo "<HTML>\n";
 $qname = $_POST["qname"];
 $qname = str_replace("\\", "", $qname);
 echo "<form method=post action=webisql.php>\n";
 echo "
Query: <input type=text Size=80 name=qname value=\"$qname
\">\n";
 echo "<input type=submit>\n";
 echo "</form>\n";
 echo "<HR>
\n";
 if(! $qname) {
 echo "No Current Query\n";
 return;
 }
 # Connect to the database
 $con_str =
"UID=<user_id>;PWD=<password>;SERVER=iqdemo;LINKS=tcpip";
 $conn = sasql_connect($con_str);
 if(! $conn) {
 echo "sasql_connect failed\n";
 echo "</html>\n";
 return 0;
 }
 $qname = str_replace("\\", "", $qname);
 $result = sasql_query($conn, $qname);
 if(! $result) {
 echo "sasql_query failed!";
 } else {
 // echo "query completed successfully\n";
 sasql_result_all($result, "border=1");
 sasql_free_result($result);
 }
 sasql_disconnect($conn);
 echo "</html>\n";
?>

PHP Support

560 SAP Sybase IQ

This design could be extended to handle complex web forms by formulating customized SQL
queries based on the values entered by the user.

BLOBs in PHP Applications
SAP Sybase IQ databases can store any type of data as a binary large object (BLOB). If that
data is of a type readable by a web browser, a PHP script can easily retrieve it from the database
and display it on a dynamically generated page.

BLOB fields are often used for storing non-text data, such as images in GIF or JPG format.
Numerous types of data can be passed to a web browser without any need for third-party
software or data type conversion. The following sample illustrates the process of adding an
image to the database and then retrieving it again to be displayed in a web browser.

This sample is similar to the sample code in the files image_insert.php and
image_retrieve.php of your SAP Sybase IQ installation. These samples also illustrate
the use of a BLOB column for storing images.
<?php
 $conn = sasql_connect("UID=DBA;PWD=sql")
 or die("Cannot connect to database");
 $create_table = "CREATE TABLE images (ID INTEGER PRIMARY KEY, img
IMAGE)";
 sasql_query($conn, $create_table);
 $insert = "INSERT INTO images VALUES (99,
xp_read_file('ianywhere_logo.gif'))";
 sasql_query($conn, $insert);
 $query = "SELECT img FROM images WHERE ID = 99";
 $result = sasql_query($conn, $query);
 $data = sasql_fetch_row($result);
 $img = $data[0];
 header("Content-type: image/gif");
 echo $img;
 sasql_disconnect($conn);
?>

To be able to send the binary data from the database directly to a web browser, the script must
set the data's MIME type using the header function. In this case, the browser is told to expect a
GIF image so it can display it correctly.

How to Build the SAP Sybase IQ PHP Extension on Unix
To connect PHP to SAP Sybase IQ using the SAP Sybase IQ PHP extension on Unix, you must
add the SAP Sybase IQ PHP extension's files to PHP's source tree, and then re-compile PHP.

PHP Support

Programming 561

Adding the SAP Sybase IQ PHP Extension Files to the PHP Source Tree on
Unix
This topic describes the steps required to add the SAP Sybase IQ PHP extension files to the
PHP source tree.

Prerequisites

The following is a list of software you need to have on your system to complete to use the SAP
Sybase IQ PHP extension on Unix:

• an SAP Sybase IQ installation, which can run on the same computer as the Apache web
server, or on a different computer.

• The source code for the SQL Anywhere PHP extension, which can be downloaded from
http://download.sybase.com/ianywhere/php/2.0.3/src/sasql_php.zip.
You also need sqlpp and libdblib16.so (Unix) installed (check your SAP Sybase
IQ lib32 directory).

• The PHP source code, which can be downloaded from http://www.php.net.
For a list of supported versions, see http://www.sybase.com/detail?id=1068981.

• The Apache web server source code, which can be downloaded from http://
httpd.apache.org.
If you are going to use a pre-built version of Apache, make sure that you have apache and
apache-devel installed.

• If you plan to use the Unified ODBC PHP extension, you need to have
libdbodbc16.so (Unix) installed (check your SAP Sybase IQ lib32 directory).

The following binaries should be installed from your Unix installation disk if they are not
already installed, and can be found as RPMs:

make
automake
autoconf
makeinfo
bison
gcc
cpp
glibc-devel
kernel-headers
flex

You must have the same access privileges as the person who installed PHP to perform certain
steps of the installation. Most Unix-based systems offer a sudo command that allows users
with insufficient permissions to execute certain commands as a user with the right to execute
them.

PHP Support

562 SAP Sybase IQ

http://download.sybase.com/ianywhere/php/2.0.3/src/sasql_php.zip
http://www.php.net
http://www.sybase.com/detail?id=1068981
http://httpd.apache.org
http://httpd.apache.org

Task

You must have the same access privileges as the person who installed PHP to perform certain
steps of the installation. Most Unix-based systems offer a sudo command that allows users
with insufficient permissions to execute certain commands as a user with the right to execute
them.

1. Download the SAP Sybase IQ PHP extension source code from http://www.sybase.com/
detail?id=1019698. Look for the section entitled Building the Driver from Source.

2. From the directory where you saved the SAP Sybase IQ PHP extension, extract the files to
the ext subdirectory of the PHP source tree:

$ tar -xzf sasql_php.zip -C PHP-source-directory/ext/

The following example is for PHP version 5.2.11. You must change php-5.2.11 below to
the version of PHP you are using.
$ tar -xzf sqlanywhere_php-1.0.8.tar.gz -C ~/php-5.2.11/ext

3. Make PHP aware of the extension:
$ cd PHP-source-directory/ext/sqlanywhere
$ touch *
$ cd ~/PHP-source-directory
$./buildconf

The following example is for PHP version 5.2.11. You must change php-5.2.11 below to
the version of PHP you are using.
$ cd ~/php-5.2.11/ext/sqlanywhere
$ touch *
$ cd ~/php-5.2.11
$./buildconf

4. Verify that PHP is aware of the extension:
$./configure -help | egrep sqlanywhere

If you were successful in making PHP aware of the SAP Sybase IQ extension, you should see
the following text:
--with-sqlanywhere=[DIR]

If you are unsuccessful, keep track of the output of this command and post it to the SQL
Anywhere Forum at http://sqlanywhere-forum.sybase.com/ for assistance.

How to Compile Apache and PHP
PHP can be compiled as a shared module of a web server (such as Apache) or as a CGI
executable. If you are using a web server that is not supported by PHP, or to execute PHP
scripts in a command shell rather than on a web page, you should compile PHP as a CGI
executable. Otherwise, to install PHP to operate with Apache, compile it as an Apache
module.

PHP Support

Programming 563

http://www.sybase.com/detail?id=1019698
http://www.sybase.com/detail?id=1019698
http://sqlanywhere-forum.sybase.com/

Compiling PHP As an Apache Module
To install PHP to operate with Apache, compile it as an Apache module.

Prerequisites

Configure Apache so that it recognizes shared modules using the following steps.

• Configure Apache to recognize shared modules.
Execute commands similar to the following from the directory where your Apache files
were extracted:
$ cd Apache-source-directory
$./configure --enabled-shared=max --enable-module=most --
prefix=/Apache-installation-directory

The following example is for Apache version 2.2.9. You must change apache_2.2.9 to
the version of Apache you are using.
$ cd ~/apache_2.2.9
$./configure --enabled-shared=max --enable-module=most --
prefix=/usr/local/web/apache

• Recompile and install the relevant components:
$ make
$ make install

Now you are ready to compile PHP to operate as an Apache module.

Task

1. Make sure the environment is set up for SAP Sybase IQ.

Depending on which shell you are using, enter the appropriate command from the
directory where SAP Sybase IQ is installed.

If you are using this shell... ...use this command

sh, ksh, bash ../IQ_16.sh

csh, tcsh ./IQ_16.csh

2. Configure PHP as an Apache module to include the SAP Sybase IQ PHP extension.

Run the following commands:
$ cd PHP-source-directory
$./configure --with-sqlanywhere --with- apxs=/Apache-
installation-directory/bin/apxs

The following example is for PHP version 5.2.11. You must change php-5.2.11 to the
version of PHP you are using.

$ cd ~/php-5.2.11

PHP Support

564 SAP Sybase IQ

$./configure --with-sqlanywhere --with- apxs=/usr/local/web/
apache/bin/apxs

The configure script will try to determine the version and location of your SAP Sybase
IQ installation.

3. Recompile the relevant components:
$ make

4. Check that the libraries are properly linked.

• Linux users (the following example assumes you are using PHP version 5):
ldd ./.libs/libphp5.so

5. Install the PHP binaries in Apache's lib directory:

$ make install
6. Perform verification. PHP does this automatically. All you need is to make sure that your

httpd.conf configuration file is verified so that Apache will recognize .php files as
PHP scripts.

httpd.conf is stored in the conf subdirectory of the Apache directory:

$ cd Apache-installation-directory/conf

For example:
$ cd /usr/local/web/apache/conf

Make a backup copy of httpd.conf before editing the file (you can replace pico with
the text editor of your choice):
$ cp httpd.conf httpd.conf.backup
$ pico httpd.conf

Add or uncomment the following lines in httpd.conf (they are not located together in
the file):
LoadModule php5_module libexec/libphp5.so
AddModule mod_php5.c
AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

The first two lines point Apache to the files that are used for interpreting PHP code, while
the other two lines declare file types for files whose extension is .php or .phps so
Apache can recognize and deal with them appropriately.

PHP is successfully compiled as a shared module.

Compiling PHP as a CGI Executable
If you are using a web server that is not supported by PHP, or to execute PHP scripts in a
command shell rather than on a web page, you should compile PHP as a CGI executable.

Prerequisites

There are no prerequisites for this task.

PHP Support

Programming 565

Task

1. Make sure the environment is set up for SAP Sybase IQ.

Depending on which shell you are using, enter the appropriate command from the
directory where SAP Sybase IQ is installed.

If you are using this shell... ...use this command

sh, ksh, bash ../IQ_16.sh

csh, tcsh ./IQ_16.csh

2. Configure PHP as a CGI executable and with the SAP Sybase IQ PHP extension.

Run the following command from the directory where your PHP files were extracted:
$ cd PHP-source-directory
$./configure --with-sqlanywhere

The following example is for PHP version 5.2.11. You must change php-5.2.11 to the
version of PHP you are using.
$ cd ~/php-5.2.11
$./configure --with-sqlanywhere

The configuration script will try to determine the version and location of your SAP Sybase
IQ installation.

3. Compile the executable:
$ make

4. Install the components.
$ make install

PHP is successfully compiled as a CGI executable.

SAP Sybase IQ PHP API Reference
The PHP API supports the following functions:

sasql_affected_rows
Returns the number of rows affected by the last SQL statement. This function is typically used
for INSERT, UPDATE, or DELETE statements. For SELECT statements, use the
sasql_num_rows function.

Prototype
int sasql_affected_rows(sasql_conn $conn)

PHP Support

566 SAP Sybase IQ

Parameters

$conn – The connection resource returned by a connect function.

Returns
The number of rows affected.

sasql_commit
Ends a transaction on the SQL Anywhere database and makes any changes made during the
transaction permanent. Useful only when the auto_commit option is Off

Prototype
bool sasql_commit(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
TRUE on success or FALSE on failure.

sasql_close
Closes a previously opened database connection.

Prototype
bool sasql_close(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
TRUE on success or FALSE on failure.

sasql_connect
Establishes a connection to an SAP Sybase IQ database.

Prototype
sasql_conn sasql_connect(string $con_str)

Parameters

$con_str – A connection string as recognized by SAP Sybase IQ.

PHP Support

Programming 567

Returns
A positive SAP Sybase IQ connection resource on success, or an error and 0 on failure.

sasql_data_seek
Positions the cursor on row row_num on the $result that was opened using sasql_query.

Prototype
bool sasql_data_seek(sasql_result $result, int row_num)

Parameters

$result – The result resource returned by the sasql_query function.

row_num – An integer that represents the new position of the cursor within the result
resource. For example, specify 0 to move the cursor to the first row of the result set or 5 to move
it to the sixth row. Negative numbers represent rows relative to the end of the result set. For
example, -1 moves the cursor to the last row in the result set and -2 moves it to the second-last
row.

Returns
TRUE on success or FALSE on error.

sasql_disconnect
Closes a connection that has been opened with sasql_connect or sasql_pconnect.

Prototype
bool sasql_disconnect(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
TRUE on success or FALSE on error.

sasql_error
Returns the error text of the most recently executed SAP Sybase IQ PHP function. Error
messages are stored per connection. If no $conn is specified, then sasql_error returns the last
error message where no connection was available. For example, if you call sasql_connect and
the connection fails, then call sasql_error with no parameter for $conn to get the error
message. To obtain the corresponding error code value, use the sasql_errorcode function.

PHP Support

568 SAP Sybase IQ

Prototype
string sasql_error([sasql_conn $conn])

Parameters

$conn – The connection resource returned by a connect function.

Returns
A string describing the error.

sasql_errorcode
Returns the error code of the most-recently executed SAP Sybase IQ PHP function. Error
codes are stored per connection. If no $conn is specified, then sasql_errorcode returns the last
error code where no connection was available. For example, if you are calling sasql_connect
and the connection fails, then call sasql_errorcode with no parameter for the $conn to get the
error code. To get the corresponding error message use the sasql_error function

Prototype
int sasql_errorcode([sasql_conn $conn])

Parameters

$conn – The connection resource returned by a connect function.

Returns
An integer representing an error code. An error code of 0 means success. A positive error code
indicates success with warnings. A negative error code indicates failure.

sasql_escape_string
Escapes all special characters in the supplied string. The special characters that are escaped are
\r, \n, ', ", ;, \, and the NULL character. This function is an alias of sasql_real_escape_string.

Prototype
string sasql_escape_string(sasql_conn $conn, string $str)

Parameters

$conn – The connection resource returned by a connect function.

$string – The string to be escaped.

Returns
The escaped string.

PHP Support

Programming 569

sasql_fetch_array
Fetches one row from the result set. This row is returned as an array that can be indexed by the
column names or by the column indexes.

Prototype
array sasql_fetch_array(sasql_result $result [, int
$result_type])

Parameters

$result – The result resource returned by the sasql_query function.

$result_type – This optional parameter is a constant indicating what type of array should be
produced from the current row data. The possible values for this parameter are the constants
SASQL_ASSOC, SASQL_NUM, or SASQL_BOTH. It defaults to SASQL_BOTH.

By using the SASQL_ASSOC constant this function will behave identically to the
sasql_fetch_assoc function, while SASQL_NUM will behave identically to the
sasql_fetch_row function. The final option SASQL_BOTH will create a single array with the
attributes of both.

Returns
An array that represents a row from the result set, or FALSE when no rows are available.

sasql_fetch_assoc
Fetches one row from the result set as an associative array.

Prototype
array sasql_fetch_assoc(sasql_result $result)

Parameters

$result – The result resource returned by the sasql_query function.

Returns
An associative array of strings representing the fetched row in the result set, where each key in
the array represents the name of one of the result set's columns or FALSE if there are no more
rows in resultset.

PHP Support

570 SAP Sybase IQ

sasql_fetch_field
Returns an object that contains information about a specific column.

Prototype
object sasql_fetch_field(sasql_result $result [, int
$field_offset])

Parameters

$result – The result resource returned by the sasql_query function.

$field_offset – An integer representing the column/field on which you want to retrieve
information. Columns are zero based; to get the first column, specify the value 0. If this
parameter is omitted, then the next field object is returned.

Returns
An object that has the following properties:

• id – contains the field's number.
• name – contains the field's name.
• numeric – indicates whether the field is a numeric value.
• length – returns the field's native storage size.
• type – returns the field's type.
• native_type – returns the field's native type. These are values like DT_FIXCHAR,

DT_DECIMAL or DT_DATE.
• precision – returns the field's numeric precision. This property is only set for fields with

native_type equal to DT_DECIMAL.
• scale – returns the field's numeric scale. This property is only set for fields with

native_type equal to DT_DECIMAL.

sasql_fetch_object
Fetches one row from the result set as an object.

Prototype
object sasql_fetch_object(sasql_result $result)

Parameters

$result – The result resource returned by the sasql_query function.

Returns
An object representing the fetched row in the result set where each property name matches one
of the result set column names, or FALSE if there are no more rows in result set.

PHP Support

Programming 571

sasql_fetch_row
Fetches one row from the result set. This row is returned as an array that can be indexed by the
column indexes only.

Prototype
array sasql_fetch_row(sasql_result $result)

Parameters

$result – The result resource returned by the sasql_query function.

Returns
An array that represents a row from the result set, or FALSE when no rows are available.

sasql_field_count
Returns the number of columns (fields) the last result contains.

Prototype
int sasql_field_count(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
A positive number of columns, or FALSE if $conn is not valid.

sasql_field_seek
Sets the field cursor to the given offset. The next call to sasql_fetch_field will retrieve the field
definition of the column associated with that offset.

Prototype
bool sasql_field_seek(sasql_result $result, int $field_offset)

Parameters

$result – The result resource returned by the sasql_query function.

$field_offset – An integer representing the column/field on which you want to retrieve
information. Columns are zero based; to get the first column, specify the value 0. If this
parameter is omitted, then the next field object is returned.

PHP Support

572 SAP Sybase IQ

Returns
TRUE on success or FALSE on error.

sasql_free_result
Frees database resources associated with a result resource returned from sasql_query.

Prototype
bool sasql_free_result(sasql_result $result)

Parameters

$result – The result resource returned by the sasql_query function.

Returns
TRUE on success or FALSE on error.

sasql_get_client_info
Returns the version information of the client.

Prototype
string sasql_get_client_info()

Parameters
None

Returns
A string that represents the SQL Anywhere client software version. The returned string is of
the form X.Y.Z.W where X is the major version number, Y is the minor version number, Z is
the patch number, and W is the build number (for example, 10.0.1.3616).

sasql_insert_id
Returns the last value inserted into an IDENTITY column or a DEFAULT
AUTOINCREMENT column, or zero if the most recent insert was into a table that did not
contain an IDENTITY or DEFAULT AUTOINCREMENT column. The sasql_insert_id
function is provided for compatibility with MySQL databases.

Prototype
int sasql_insert_id(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

PHP Support

Programming 573

Returns
The ID generated for an AUTOINCREMENT column by a previous INSERT statement or
zero if last insert did not affect an AUTOINCREMENT column. The function can return
FALSE if the $conn is not valid.

sasql_message
Writes a message to the server messages window.

Prototype
bool sasql_message(sasql_conn $conn, string $message)

Parameters

$conn – The connection resource returned by a connect function.

$message – A message to be written to the server messages window.

Returns
TRUE on success or FALSE on failure.

sasql_multi_query
Prepares and executes one or more SQL queries specified by $sql_str using the supplied
connection resource. Each query is separated from the other using semicolons. The first query
result can be retrieved or stored using sasql_use_result or sasql_store_result.
sasql_field_count can be used to check if the query returns a result set or not. All subsequent
query results can be processed using sasql_next_result and sasql_use_result/
sasql_store_result.

Prototype
bool sasql_multi_query(sasql_conn $conn, string $sql_str)

Parameters

$conn – The connection resource returned by a connect function.

$sql_str – One or more SQL statements separated by semicolons.

Returns
TRUE on success or FALSE on failure.

PHP Support

574 SAP Sybase IQ

sasql_next_result
Prepares the next result set from the last query that executed on $conn.

Prototype
bool sasql_next_result(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
FALSE if there is no other result set to be retrieved. TRUE if there is another result to be
retrieved. Call sasql_use_result or sasql_store_result to retrieve the next result set.

sasql_num_fields
Returns the number of fields that a row in the $result contains.

Prototype
int sasql_num_fields(sasql_result $result)

Parameters

$result – The result resource returned by the sasql_query function.

Returns
Returns the number of fields in the specified result set.

sasql_num_rows
Returns the number of rows that the $result contains.

Prototype
int sasql_num_rows(sasql_result $result)

Parameters

$result – The result resource returned by the sasql_query function.

Returns
A positive number if the number of rows is exact, or a negative number if it is an estimate. To
get the exact number of rows, the database option row_counts must be set permanently on the
database, or temporarily on the connection.

PHP Support

Programming 575

sasql_pconnect
Establishes a persistent connection to an SAP Sybase IQ database. Because of the way Apache
creates child processes, you may observe a performance gain when using sasql_pconnect
instead of sasql_connect. Persistent connections may provide improved performance in a
similar fashion to connection pooling. If your database server has a limited number of
connections (for example, the personal database server is limited to 10 concurrent
connections), caution should be exercised when using persistent connections. Persistent
connections could be attached to each of the child processes, and if you have more child
processes in Apache than there are available connections, you will receive connection errors.

Prototype
sasql_conn sasql_pconnect(string $con_str)

Parameters

$con_str – A connection string as recognized by SAP Sybase IQ.

Returns
A positive SAP Sybase IQ persistent connection resource on success, or an error and 0 on
failure.

sasql_prepare
Prepares the supplied SQL string.

Prototype
sasql_stmt sasql_prepare(sasql_conn $conn, string $sql_str)

Parameters

$conn – The connection resource returned by a connect function.

$sql_str – The SQL statement to be prepared. The string can include parameter markers by
embedding question marks at the appropriate positions.

Returns
A statement object or FALSE on failure.

sasql_query
Prepares and executes the SQL query $sql_str on the connection identified by $conn that has
already been opened using sasql_connect or sasql_pconnect. The sasql_query function is

PHP Support

576 SAP Sybase IQ

equivalent to calling two functions, sasql_real_query and one of sasql_store_result or
sasql_use_result.

Prototype
mixed sasql_query(sasql_conn $conn, string $sql_str [, int
$result_mode])

Parameters

$conn – The connection resource returned by a connect function.

$sql_str – A SQL statement supported by SQL Anywhere.

$result_mode – Either SASQL_USE_RESULT, or SASQL_STORE_RESULT (the default).

Returns
FALSE on failure; TRUE on success for INSERT, UPDATE, DELETE, CREATE;
sasql_result for SELECT.

sasql_real_escape_string
Escapes all special characters in the supplied string. The special characters that are escaped are
\r, \n, ', ", ;, \, and the NULL character.

Prototype
string sasql_real_escape_string(sasql_conn $conn, string $str)

Parameters

$conn – The connection resource returned by a connect function.

$string – The string to be escaped.

Returns
The escaped string or FALSE on error.

sasql_real_query
Executes a query against the database using the supplied connection resource. The query
result can be retrieved or stored using sasql_store_result or sasql_use_result. The
sasql_field_count function can be used to check if the query returns a result set or not. The
sasql_query function is equivalent to calling this function and one of sasql_store_result or
sasql_use_result.

Prototype
bool sasql_real_query(sasql_conn $conn, string $sql_str)

PHP Support

Programming 577

Parameters

$conn – The connection resource returned by a connect function.

$sql_str – A SQL statement supported by SQL Anywhere.

Returns
TRUE on success or FALSE on failure.

sasql_result_all
Fetches all results of the $result and generates an HTML output table with an optional
formatting string.

Prototype
bool sasql_result_all(resource $result
[, $html_table_format_string
[, $html_table_header_format_string
[, $html_table_row_format_string
[, $html_table_cell_format_string
]]]])

Parameters

$result – The result resource returned by the sasql_query function.

$html_table_format_string – A format string that applies to HTML tables. For example,
"Border=1; Cellpadding=5". The special value none does not create an HTML table.
This is useful to customize your column names or scripts. To avoid specifying an explicit value
for this parameter, use NULL for the parameter value.

$html_table_header_format_string – A format string that applies to column headings for
HTML tables. For example, "bgcolor=#FF9533". The special value none does not create
an HTML table. This is useful to customize your column names or scripts. To avoid specifying
an explicit value for this parameter, use NULL for the parameter value.

$html_table_row_format_string – A format string that applies to rows within HTML tables.
For example, "onclick='alert('this')'". If you would like different formats that
alternate, use the special token ><. The left side of the token indicates which format to use on
odd rows and the right side of the token is used to format even rows. If you do not place this
token in your format string, all rows have the same format. If you do not want to specify an
explicit value for this parameter, use NULL for the parameter value.

$html_table_cell_format_string – A format string that applies to cells within HTML table
rows. For example, "onclick='alert('this')'". If you do not want to specify an
explicit value for this parameter, use NULL for the parameter value.

PHP Support

578 SAP Sybase IQ

Returns
TRUE on success or FALSE on failure.

sasql_rollback
Ends a transaction on the database and discards any changes made during the transaction. This
function is only useful when the auto_commit option is Off.

Prototype
bool sasql_rollback(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
TRUE on success or FALSE on failure.

sasql_set_option
Sets the value of the specified option on the specified connection.

Prototype
bool sasql_set_option(sasql_conn $conn, string $option, mixed
$value)

Description
You can set the value for the following options:

Name Description Default

auto_commit When this option is set to on, the
database server commits after
executing each statement.

on

row_counts When this option is set to
FALSE, the sasql_num_rows
function returns an estimate of
the number of rows affected. To
obtain an exact count, set this
option to TRUE.

FALSE

PHP Support

Programming 579

Name Description Default

verbose_errors When this option is set to
TRUE, the PHP driver returns
verbose errors. When this op-
tion is set to FALSE, you must
call the sasql_error or sasql_er-
rorcode functions to get further
error information.

TRUE

You can change the default value for an option by including the following line in the
php.ini file. In this example, the default value is set for the auto_commit option.

sqlanywhere.auto_commit=0

Parameters

$conn – The connection resource returned by a connect function.

$option – The name of the option you want to set.

$value – The new option value.

Returns
TRUE on success or FALSE on failure.

sasql_stmt_affected_rows
Returns the number of rows affected by executing the statement.

Prototype
int sasql_stmt_affected_rows(sasql_stmt $stmt)

Parameters

$stmt – A statement resource that was executed by sasql_stmt_execute.

Returns
The number of rows affected or FALSE on failure.

sasql_stmt_bind_param
Binds PHP variables to statement parameters.

Prototype
bool sasql_stmt_bind_param(sasql_stmt $stmt, string $types,
mixed &$var_1 [, mixed &$var_2 ..])

PHP Support

580 SAP Sybase IQ

Parameters

$stmt – A prepared statement resource that was returned by the sasql_prepare function.

$types – A string that contains one or more characters specifying the types of the
corresponding bind. This can be any of: s for string, i for integer, d for double, b for blobs.
The length of the $types string must match the number of parameters that follow the $types
parameter ($var_1, $var_2, ...). The number of characters should also match the number of
parameter markers (question marks) in the prepared statement.

$var_n – The variable references.

Returns
TRUE if binding the variables was successful or FALSE otherwise.

sasql_stmt_bind_param_ex
Binds a PHP variable to a statement parameter.

Prototype
bool sasql_stmt_bind_param_ex(sasql_stmt $stmt, int
$param_number, mixed &$var, string $type [, bool $is_null [, int
$direction]])

Parameters

$stmt – A prepared statement resource that was returned by the sasql_prepare function.

$param_number – The parameter number. This should be a number between 0 and
(sasql_stmt_param_count($stmt) - 1).

$var – A PHP variable. Only references to PHP variables are allowed.

$type – Type of the variable. This can be one of: s for string, i for integer, d for double, b for
blobs.

$is_null – Whether the value of the variable is NULL or not.

$direction – Can be SASQL_D_INPUT, SASQL_D_OUTPUT, or
SASQL_INPUT_OUTPUT.

Returns
TRUE if binding the variable was successful or FALSE otherwise.

PHP Support

Programming 581

sasql_stmt_bind_result
Binds one or more PHP variables to result columns of a statement that was executed, and
returns a result set.

Prototype
bool sasql_stmt_bind_result(sasql_stmt $stmt, mixed &$var1 [,
mixed &$var2 ..])

Parameters

$stmt – A statement resource that was executed by sasql_stmt_execute.

$var1 – References to PHP variables that will be bound to result set columns returned by the
sasql_stmt_fetch.

Returns
TRUE on success or FALSE on failure.

sasql_stmt_close
Closes the supplied statement resource and frees any resources associated with it. This
function will also free any result objects that were returned by the
sasql_stmt_result_metadata.

Prototype
bool sasql_stmt_close(sasql_stmt $stmt)

Parameters

$stmt – A prepared statement resource that was returned by the sasql_prepare function.

Returns
TRUE for success or FALSE on failure.

sasql_stmt_data_seek
This function seeks to the specified offset in the result set.

Prototype
bool sasql_stmt_data_seek(sasql_stmt $stmt, int $offset)

Parameters

$stmt – A statement resource.

PHP Support

582 SAP Sybase IQ

$offset – The offset in the result set. This is a number between 0 and
(sasql_stmt_num_rows($stmt) - 1).

Returns
TRUE on success or FALSE failure.

sasql_stmt_errno
Returns the error code for the most recently executed statement function using the specified
statement resource.

Prototype
int sasql_stmt_errno(sasql_stmt $stmt)

Parameters

$stmt – A prepared statement resource that was returned by the sasql_prepare function.

Returns
An integer error code.

sasql_stmt_error
Returns the error text for the most recently executed statement function using the specified
statement resource.

Prototype
string sasql_stmt_error(sasql_stmt $stmt)

Parameters

$stmt – A prepared statement resource that was returned by the sasql_prepare function.

Returns
A string describing the error.

sasql_stmt_execute
Executes the prepared statement. The sasql_stmt_result_metadata can be used to check
whether the statement returns a result set.

Prototype
bool sasql_stmt_execute(sasql_stmt $stmt)

PHP Support

Programming 583

Parameters

$stmt – A prepared statement resource that was returned by the sasql_prepare function.
Variables should be bound before calling execute.

Returns
TRUE for success or FALSE on failure.

sasql_stmt_fetch
This function fetches one row out of the result for the statement and places the columns in the
variables that were bound using sasql_stmt_bind_result.

Prototype
bool sasql_stmt_fetch(sasql_stmt $stmt)

Parameters

$stmt – A statement resource.

Returns
TRUE on success or FALSE on failure.

sasql_stmt_field_count
This function returns the number of columns in the result set of the statement.

Prototype
int sasql_stmt_field_count(sasql_stmt $stmt)

Parameters

$stmt – A statement resource.

Returns
The number of columns in the result of the statement. If the statement does not return a result,
it returns 0.

sasql_stmt_free_result
This function frees cached result set of the statement.

Prototype
bool sasql_stmt_free_result(sasql_stmt $stmt)

PHP Support

584 SAP Sybase IQ

Parameters

$stmt – A statement resource that was executed using sasql_stmt_execute.

Returns
TRUE on success or FALSE on failure.

sasql_stmt_insert_id
Returns the last value inserted into an IDENTITY column or a DEFAULT
AUTOINCREMENT column, or zero if the most recent insert was into a table that did not
contain an IDENTITY or DEFAULT AUTOINCREMENT column.

Prototype
int sasql_stmt_insert_id(sasql_stmt $stmt)

Parameters

$stmt – A statement resource that was executed by sasql_stmt_execute.

Returns
The ID generated for an IDENTITY column or a DEFAULT AUTOINCREMENT column by
a previous INSERT statement, or zero if the last insert did not affect an IDENTITY or
DEFAULT AUTOINCREMENT column. The function can return FALSE (0) if $stmt is not
valid.

sasql_stmt_next_result
This function advances to the next result from the statement. If there is another result set, the
currently cashed results are discarded and the associated result set object deleted (as returned
by sasql_stmt_result_metadata).

Prototype
bool sasql_stmt_next_result(sasql_stmt $stmt)

Parameters

$stmt – A statement resource.

Returns
TRUE on success or FALSE failure.

PHP Support

Programming 585

sasql_stmt_num_rows
Returns the number of rows in the result set. The actual number of rows in the result set can
only be determined after the sasql_stmt_store_result function is called to buffer the entire
result set. If the sasql_stmt_store_result function has not been called, 0 is returned.

Prototype
int sasql_stmt_num_rows(sasql_stmt $stmt)

Parameters

$stmt – A statement resource that was executed by sasql_stmt_execute and for which
sasql_stmt_store_result was called.

Returns
The number of rows available in the result or 0 on failure.

sasql_stmt_param_count
Returns the number of parameters in the supplied prepared statement resource.

Prototype
int sasql_stmt_param_count(sasql_stmt $stmt)

Parameters

$stmt – A statement resource returned by the sasql_prepare function.

Returns
The number of parameters or FALSE on error.

sasql_stmt_reset
This function resets the $stmt object to the state just after the describe. Any variables that were
bound are unbound and any data sent using sasql_stmt_send_long_data are dropped.

Prototype
bool sasql_stmt_reset(sasql_stmt $stmt)

Parameters

$stmt – A statement resource.

Returns
TRUE on success or FALSE on failure.

PHP Support

586 SAP Sybase IQ

sasql_stmt_result_metadata
Returns a result set object for the supplied statement.

Prototype
sasql_result sasql_stmt_result_metadata(sasql_stmt $stmt)

Parameters

$stmt – A statement resource that was prepared and executed.

Returns
sasql_result object or FALSE if the statement does not return any results.

sasql_stmt_send_long_data
Allows the user to send parameter data in chunks. The user must first call
sasql_stmt_bind_param or sasql_stmt_bind_param_ex before attempting to send any data.
The bind parameter must be of type string or blob. Repeatedly calling this function appends on
to what was previously sent.

Prototype
bool sasql_stmt_send_long_data(sasql_stmt $stmt, int
$param_number, string $data)

Parameters

$stmt – A statement resource that was prepared using sasql_prepare.

$param_number – The parameter number. This must be a number between 0 and
(sasql_stmt_param_count($stmt) - 1).

$data – The data to be sent.

Returns
TRUE on success or FALSE on failure.

sasql_stmt_store_result
This function allows the client to cache the whole result set of the statement. You can use the
function sasql_stmt_free_result to free the cached result.

Prototype
bool sasql_stmt_store_result(sasql_stmt $stmt)

PHP Support

Programming 587

Parameters

$stmt – A statement resource that was executed using sasql_stmt_execute.

Returns
TRUE on success or FALSE on failure.

sasql_store_result
Transfers the result set from the last query on the database connection $conn to be used with
the sasql_data_seek function.

Prototype
sasql_result sasql_store_result(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
FALSE if the query does not return a result object, or a result set object, that contains all the
rows of the result. The result is cached at the client.

sasql_sqlstate
Returns the most recent SQLSTATE string. SQLSTATE indicates whether the most recently
executed SQL statement resulted in a success, error, or warning condition. SQLSTATE codes
consists of five characters with "00000" representing no error. The values are defined by the
ISO/ANSI SQL standard.

Prototype
string sasql_sqlstate(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
Returns a string of five characters containing the current SQLSTATE code. The result "00000"
means no error.

PHP Support

588 SAP Sybase IQ

sasql_use_result
Initiates a result set retrieval for the last query that executed on the connection.

Prototype
sasql_result sasql_use_result(sasql_conn $conn)

Parameters

$conn – The connection resource returned by a connect function.

Returns
FALSE if the query does not return a result object or a result set object. The result is not cached
on the client.

PHP Support

Programming 589

PHP Support

590 SAP Sybase IQ

Ruby Support

There are three different Ruby Application Programming Interfaces supported by SAP Sybase
IQ. First, there is the SAP Sybase IQ Ruby API. This API provides a Ruby wrapping over the
interface exposed by the SAP Sybase IQ C API. Second, there is support for ActiveRecord, an
object-relational mapper popularized by being part of the Ruby on Rails web development
framework. Third, there is support for Ruby DBI. SAP Sybase IQ provides a Ruby Database
Driver (DBD) which can be used with DBI.

Ruby API Support
There are three separate packages available in the SAP Sybase IQ Ruby project. The simplest
way to install any of these packages is to use RubyGems.

The home for the SAP Sybase IQ Ruby project is http://sqlanywhere.rubyforge.org/.

Native Ruby Driver

sqlanywhere – This package is a low-level driver that allows Ruby code to interface with SAP
Sybase IQ databases. This package provides a Ruby wrapping over the interface exposed by
the SAP Sybase IQ C API. This package is written in C and is available as source, or as pre-
compiled gems, for Windows and Linux. If you have RubyGems installed, this package can
be obtained by running the following command:
gem install sqlanywhere

This package is a prerequisite for any of the other SQL Anywhere Ruby packages.

Rails
Rails is a web development framework written in the Ruby language. Its strength is in web
application development. A familiarity with the Ruby programming language is highly
recommended before you attempt Rails development. See http://www.rubyonrails.org/.

ActiveRecord Adapter

activerecord-sqlanywhere-adapter – This package is an adapter that allows ActiveRecord
to communicate with SAP Sybase IQ. ActiveRecord is an object-relational mapper,
popularized by being part of the Ruby on Rails web development framework. This package is
written in pure Ruby, and available in source, or gem format. This adapter uses (and has a
dependency on) the sqlanywhere gem. If you have RubyGems installed, this package and
its dependencies can be installed by running the following command:
gem install activerecord-sqlanywhere-adapter

Ruby Support

Programming 591

http://sqlanywhere.rubyforge.org/
http://www.rubyonrails.org/

SQL Anywhere Ruby/DBI Driver

dbi – This package is a DBI driver for Ruby. If you have RubyGems installed, this package and
its dependencies can be installed by running the following command:
gem install dbi

dbd-sqlanywhere – This package is a driver that allows Ruby/DBI to communicate with SAP
Sybase IQ. Ruby/DBI is a generic database interface modeled after the popular Perl DBI
module. This package is written in pure Ruby, and available in source, or gem format. This
driver uses (and has a dependency on) the sqlanywhere gem. If you have RubyGems installed,
this package and its dependencies can be installed by running the following command:
gem install dbd-sqlanywhere

For feedback on any of these packages, use the mailing list sqlanywhere-
users@rubyforge.com.

Configuring Rails Support in SAP Sybase IQ
You can configure Ruby on Rails support in SAP Sybase IQ.

Prerequisites

There are no prerequisites for this task.

Task

1. Install RubyGems. It simplifies the installation of Ruby packages. The Ruby on Rails
download page directs you to the correct version to install. See http://
www.rubyonrails.org/.

2. Install the Ruby interpreter on your system. The Ruby on Rails download page
recommends which version to install. See http://www.rubyonrails.org/.

3. Install Ruby Rails and its dependencies by running the following command:
gem install rails

4. Install the Ruby Development Kit (DevKit). Download the DevKit from http://
rubyinstaller.org/downloads/ and follow the instructions at http://github.com/oneclick/
rubyinstaller/wiki/Development-Kit.

5. Install the SQL Anywhere ActiveRecord support (activerecord-sqlanywhere-adapter) by
running the following command:
gem install activerecord-sqlanywhere-adapter

6. Add SAP Sybase IQ to the set of database management systems supported by Rails. At the
time of writing, Rails 3.1.3 was the current released version.

a. Configure a database by creating a sqlanywhere.yml file in the Rails configs
\databases directory. If you have installed Ruby in the \Ruby directory and you
have installed version 3.1.3 of Rails, then the path to this file would be \Ruby\lib

Ruby Support

592 SAP Sybase IQ

mailto:sqlanywhere-users@rubyforge.com
mailto:sqlanywhere-users@rubyforge.com
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://www.rubyonrails.org/
http://rubyinstaller.org/downloads/
http://rubyinstaller.org/downloads/
http://github.com/oneclick/rubyinstaller/wiki/Development-Kit
http://github.com/oneclick/rubyinstaller/wiki/Development-Kit

\ruby\gems\1.9.1\gems\railties-3.1.3\lib\rails
\generators\rails\app\templates\config\databases. The
contents of this file should be:
#
SQL Anywhere database configuration
#
This configuration file defines the patten used for
database filenames. If your application is called "blog",
then the database names will be blog_development,
blog_test, blog_production. The specified username and
password should permit DBA access to the database.
#

development:
 adapter: sqlanywhere
 server: <%= app_name %>
 database: <%= app_name %>_development
 username: DBA
 password: sql

Warning: The database defined as "test" will be erased and
re-generated from your development database when you run
"rake".
Do not set this db to the same as development or production.
test:
 adapter: sqlanywhere
 server: <%= app_name %>
 database: <%= app_name %>_test
 username: DBA
 password: sql

production:
 adapter: sqlanywhere
 server: <%= app_name %>
 database: <%= app_name %>_production
 username: DBA
 password: sql

The sqlanywhere.yml file provides a template for creating database.yml
files in Rails projects. The following database options can be specified:
• adapter – (required, no default). This option must be set to sqlanywhere to use

the SQL Anywhere ActiveRecord adapter.
• database – (required, no default). This option corresponds to DatabaseName in a

connection string.
• server – (optional, defaults to the database option). This option corresponds to

ServerName in a connection string.
• username – (optional, defaults to 'DBA'). This option corresponds to UserID in a

connection string.
• password – (optional, defaults to 'sql'). This option corresponds to Password in a

connection string.

Ruby Support

Programming 593

• encoding – (optional, defaults to the OS character set). This option corresponds to
CharSet in a connection string.

• commlinks – (optional). This option corresponds to CommLinks in a connection
string.

• connection_name – (optional). This option corresponds to ConnectionName in
connection string.

b. Update the Rails app_base.rb file. Using the same assumptions in the previous
step, this file is located in the path \Ruby\lib\ruby\gems\1.9.1\gems
\railties-3.1.3\lib\rails\generators\app_base.rb. Edit the
app_base.rb file and locate the following line:

DATABASES = %w(mysql oracle postgresql sqlite3 frontbase
ibm_db sqlserver)

Add sqlanywhere to the list as follows:

DATABASES = %w(sqlanywhere mysql oracle postgresql sqlite3
frontbase ibm_db sqlserver)

7. Follow the tutorial on the Ruby on Rails web site (http://guides.rails.info/
getting_started.html) using the following SAP Sybase IQ-specific notes:

• In the tutorial, you are shown the command to initialize the blog project. Here is the
command to initialize the blog project for use with SAP Sybase IQ:

rails new blog -d sqlanywhere
• After you create the blog application, switch to its folder to continue work directly in

that application:
cd blog

• Edit the gemfile file to include a gem directive for the SQL Anywhere ActiveRecord
adapter. Add the new directive following the indicated line below:
gem 'sqlanywhere'
gem 'activerecord-sqlanywhere-adapter'

• The config\database.yml file references the development, test, and production
databases. Instead of using a rake command to create the databases as indicated by
the tutorial, change to the db directory of the project and create three databases as
follows.
cd db
iqinit -dba DBA,sql blog_development
iqinit -dba DBA,sql blog_test
iqinit -dba DBA,sql blog_production
cd ..

You have configured Rails support in SAP Sybase IQ.

Next

Start the database server and the three databases as follows.
iqsrv16 -n blog blog_development.db blog_production.db blog_test.db

Ruby Support

594 SAP Sybase IQ

http://guides.rails.info/getting_started.html
http://guides.rails.info/getting_started.html

The database server name in the command line (blog) must match the name specified by the
server: tags in the database.yml file. The sqlanywhere.yml template file is
configured to ensure that the database server name matches the project name in all generated
database.yml files.

Ruby-DBI Driver
This section provides an overview of how to write Ruby applications that use the DBI driver.

Loading the DBI Module
To use the DBI:SQLAnywhere interface from a Ruby application, you must first tell Ruby that
you plan to use the Ruby DBI module. To do so, include the following line near the top of the
Ruby source file.
require 'dbi'

The DBI module automatically loads the SQLAnywhere database driver (DBD) interface as
required.

Opening and Closing a Connection
Generally, you open a single connection to a database and then perform all the required
operations through it by executing a sequence of SQL statements. To open a connection, you
use the connect function. The return value is a handle to the database connection that you use
to perform subsequent operations on that connection.

The call to the connect function takes the general form:
dbh = DBI.connect('DBI:SQLAnywhere:server-name', user-id, password,
options)

• server-name – is the name of the database server that you want to connect to. Alternately,
you can specify a connection string in the format "option1=value1;option2=value2;...".

• user-id – is a valid user ID. Unless this string is empty, ";UID=value" is appended to the
connection string.

• password – is the corresponding password for the user ID. Unless this string is empty,
";PWD=value" is appended to the connection string.

• options – is a hash of additional connection parameters such as DatabaseName,
DatabaseFile, and ConnectionName. These are appended to the connection string in the
format "option1=value1;option2=value2;...".

To demonstrate the connect function, make the iqdemo database, start the database server and
iqdemo database before running the sample Ruby scripts.
$IQDIR16/demo
 mkiqdemo.sh
start_iq @iqdemo.cfg iqdemo.db

The following code sample opens and closes a connection to the iqdemo database. The string
"myserver" in the example below is the server name.
require 'dbi'
DBI.connect('DBI:SQLAnywhere:myserver', '<user_id>', '<password>')

Ruby Support

Programming 595

do |dbh|
 if dbh.ping
 print "Successfully Connected\n"
 dbh.disconnect()
 end
end

Optionally, you can specify a connection string in place of the server name. For example, in the
above script may be altered by replacing the first parameter to the connect function as follows:
require 'dbi'
DBI.connect('DBI:SQLAnywhere:SERVER=myserver;DBN=iqdemo',
'<user_id>', '<password>') do |dbh|
 if dbh.ping
 print "Successfully Connected\n"
 dbh.disconnect()
 end
end

The user ID and password cannot be specified in the connection string. Ruby DBI will
automatically fill in the username and password with defaults if these arguments are omitted,
so you should never include a UID or PWD connection parameter in your connection string. If
you do, an exception will be thrown.

The following example shows how additional connection parameters can be passed to the
connect function as a hash of key/value pairs.
require 'dbi'
DBI.connect('DBI:SQLAnywhere:myserver', '<user_id>', '<password>',
 { :ConnectionName => "RubyDemo",
 :DatabaseFile => "iqdemo.db",
 :DatabaseName => "iqdemo" }
) do |dbh|
 if dbh.ping
 print "Successfully Connected\n"
 dbh.disconnect()
 end
end

Selecting Data
Once you have obtained a handle to an open connection, you can access and modify data
stored in the database. Perhaps the simplest operation is to retrieve some rows and print them
out.

A SQL statement must be executed first. If the statement returns a result set, you use the
resulting statement handle to retrieve meta information about the result set and the rows of the
result set. The following example obtains the column names from the metadata and displays
the column names and values for each row fetched.
require 'dbi'

def db_query(dbh, sql)
 sth = dbh.execute(sql)
 print "# of Fields: #{sth.column_names.size}\n"

Ruby Support

596 SAP Sybase IQ

 sth.fetch do |row|
 print "\n"
 sth.column_info.each_with_index do |info, i|
 unless info["type_name"] == "LONG VARBINARY"
 print "#{info["name"]}=#{row[i]}\n"
 end
 end
 end
 sth.finish
end

begin
 dbh = DBI.connect('DBI:SQLAnywhere:demo', '<user_id>',
'<password>')
 db_query(dbh, "SELECT * FROM Products")
rescue DBI::DatabaseError => e
 puts "An error occurred"
 puts "Error code: #{e.err}"
 puts "Error message: #{e.errstr}"
 puts "Error SQLSTATE: #{e.state}"
ensure
 dbh.disconnect if dbh
end

The first few lines of output that appear are reproduced below.
of Fields: 8

ID=300
Name=Tee Shirt
Description=Tank Top
Size=Small
Color=White
Quantity=28
UnitPrice=9.00

ID=301
Name=Tee Shirt
Description=V-neck
Size=Medium
Color=Orange
Quantity=54
UnitPrice=14.00

It is important to call finish to release the statement handle when you are done. If you do not,
then you may get an error like the following:
Resource governor for 'prepared statements' exceeded

To detect handle leaks, the SAP Sybase IQ database server limits the number of cursors and
prepared statements permitted to a maximum of 50 per connection by default. The resource
governor automatically generates an error if these limits are exceeded. If you get this error,
check for undestroyed statement handles. Use prepare_cached sparingly, as the statement
handles are not destroyed.

Ruby Support

Programming 597

If necessary, you can alter these limits by setting the max_cursor_count and
max_statement_count options.

Inserting Rows
Inserting rows requires a handle to an open connection. The simplest way to insert rows is to
use a parameterized INSERT statement, meaning that question marks are used as placeholders
for values. The statement is first prepared, and then executed once per new row. The new row
values are supplied as parameters to the execute method.
require 'dbi'

def db_query(dbh, sql)
 sth = dbh.execute(sql)
 print "# of Fields: #{sth.column_names.size}\n"
 sth.fetch do |row|
 print "\n"
 sth.column_info.each_with_index do |info, i|
 unless info["type_name"] == "LONG VARBINARY"
 print "#{info["name"]}=#{row[i]}\n"
 end
 end
 end
 sth.finish
end

def db_insert(dbh, rows)
 sql = "INSERT INTO Customers (ID, GivenName, Surname,
 Street, City, State, Country, PostalCode,
 Phone, CompanyName)
 VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)"
 sth = dbh.prepare(sql);
 rows.each do |row|
 sth.execute(row[0],row[1],row[2],row[3],row[4],
 row[5],row[6],row[7],row[8],row[9])
 end
end

begin
 dbh = DBI.connect('DBI:SQLAnywhere:demo', '<user_id>',
'<password>')
 rows = [
 [801,'Alex','Alt','5 Blue Ave','New York','NY','USA',
 '10012','5185553434','BXM'],
 [802,'Zach','Zed','82 Fair St','New York','NY','USA',
 '10033','5185552234','Zap']
]
 db_insert(dbh, rows)
 dbh.commit
 db_query(dbh, "SELECT * FROM Customers WHERE ID > 800")
rescue DBI::DatabaseError => e
 puts "An error occurred"
 puts "Error code: #{e.err}"
 puts "Error message: #{e.errstr}"
 puts "Error SQLSTATE: #{e.state}"

Ruby Support

598 SAP Sybase IQ

ensure
 dbh.disconnect if dbh
end

SAP Sybase IQ Ruby API Reference
SAP Sybase IQ provides a low-level interface to the SAP Sybase IQ C API. The API described
in the following sections permits the rapid development of SQL applications. To demonstrate
the power of Ruby application development, consider the following sample Ruby program. It
loads the SAP Sybase IQ Ruby extension, connects to the sample database, lists column values
from the Products table, disconnects, and terminates.

begin
 require 'rubygems'
 gem 'sqlanywhere'
 unless defined? SQLAnywhere
 require 'sqlanywhere'
 end
end
api = SQLAnywhere::SQLAnywhereInterface.new()
SQLAnywhere::API.sqlany_initialize_interface(api)
api.sqlany_init()
conn = api.sqlany_new_connection()
api.sqlany_connect(conn, "DSN=Sybase IQ Demo")
stmt = api.sqlany_execute_direct(conn, "SELECT * FROM Products")
num_rows = api.sqlany_num_rows(stmt)
num_rows.times {
 api.sqlany_fetch_next(stmt)
 num_cols = api.sqlany_num_cols(stmt)
 for col in 1..num_cols do
 info = api.sqlany_get_column_info(stmt, col - 1)
 unless info[3]==1 # Don't do binary
 rc, value = api.sqlany_get_column(stmt, col - 1)
 print "#{info[2]}=#{value}\n"
 end
 end
 print "\n"
}
api.sqlany_free_stmt(stmt)
api.sqlany_disconnect(conn)
api.sqlany_free_connection(conn)
api.sqlany_fini()
SQLAnywhere::API.sqlany_finalize_interface(api)

The first two rows of the result set output from this Ruby program are shown below:
ID=300
Name=Tee Shirt
Description=Tank Top
Size=Small
Color=White
Quantity=28
UnitPrice=9.00

Ruby Support

Programming 599

ID=301
Name=Tee Shirt
Description=V-neck
Size=Medium
Color=Orange
Quantity=54
UnitPrice=14.00

The following sections describe each of the supported functions.

sqlany_affected_rows
Returns the number of rows affected by execution of the prepared statement.

Syntax
sqlany_affected_rows ($stmt)

Parameters

• $stmt – A statement that was prepared and executed successfully in which no result set
was returned. For example, an INSERT, UPDATE or DELETE statement was executed.

Returns
Returns a scalar value that is the number of rows affected, or -1 on failure.

Example
affected = api.sqlany_affected(stmt)

sqlany_bind_param Function
Binds a user-supplied buffer as a parameter to the prepared statement.

Syntax
sqlany_bind_param ($stmt, $index, $param)

Parameters

• $stmt – A statement object returned by the successful execution of sqlany_prepare.
• $index – The index of the parameter. The number must be between 0 and

sqlany_num_params() - 1.
• $param – A filled bind object retrieved from sqlany_describe_bind_param.

Returns
Returns a scalar value that is 1 when successful or 0 when unsuccessful.

Example
stmt = api.sqlany_prepare(conn, "UPDATE Contacts
 SET Contacts.ID = Contacts.ID + 1000

Ruby Support

600 SAP Sybase IQ

 WHERE Contacts.ID >= ?")
rc, param = api.sqlany_describe_bind_param(stmt, 0)
print "Param name = ", param.get_name(), "\n"
print "Param dir = ", param.get_direction(), "\n"
param.set_value(50)
rc = api.sqlany_bind_param(stmt, 0, param)

sqlany_clear_error Function
Clears the last stored error code.

Syntax
sqlany_clear_error ($conn)

Parameters

• $conn – A connection object returned from sqlany_new_connection.

Returns
Returns nil.

Example
api.sqlany_clear_error(conn)

sqlany_client_version Function
Returns the current client version.

Syntax
sqlany_client_version ()

Returns
Returns a scalar value that is the client version string.

Example
buffer = api.sqlany_client_version()

sqlany_commit Function
Commits the current transaction.

Syntax
sqlany_commit ($conn)

Parameters

• $conn – The connection object on which the commit operation is to be performed.

Ruby Support

Programming 601

Returns
Returns a scalar value that is 1 when successful or 0 when unsuccessful.

Example
rc = api.sqlany_commit(conn)

sqlany_connect Function
Creates a connection to a SQL Anywhere database server using the specified connection
object and connection string.

Syntax
sqlany_connect ($conn, $str)

Parameters

• $conn – The connection object created by sqlany_new_connection.
• $str – A SQL Anywhere connection string.

Returns
Returns a scalar value that is 1 if the connection is established successfully or 0 when the
connection fails. Use sqlany_error to retrieve the error code and message.

Example
Create a connection
conn = api.sqlany_new_connection()

Establish a connection
status = api.sqlany_connect(conn, "UID=DBA;PWD=sql")
print "Connection status = #{status}\n"

sqlany_describe_bind_param Function
Describes the bind parameters of a prepared statement.

Syntax
sqlany_describe_bind_param ($stmt, $index)

Parameters

• $stmt – A statement prepared successfully using sqlany_prepare.
• $index – The index of the parameter. The number must be between 0 and

sqlany_num_params() - 1.

Returns
Returns a 2-element array that contains 1 on success or 0 on failure as the first element and a
described parameter as the second element.

Ruby Support

602 SAP Sybase IQ

Remarks
This function allows the caller to determine information about prepared statement parameters.
The type of prepared statement (stored procedure or a DML), determines the amount of
information provided. The direction of the parameters (input, output, or input-output) are
always provided.

Example
stmt = api.sqlany_prepare(conn, "UPDATE Contacts
 SET Contacts.ID = Contacts.ID + 1000
 WHERE Contacts.ID >= ?")
rc, param = api.sqlany_describe_bind_param(stmt, 0)
print "Param name = ", param.get_name(), "\n"
print "Param dir = ", param.get_direction(), "\n"
param.set_value(50)
rc = api.sqlany_bind_param(stmt, 0, param)

sqlany_disconnect Function
Disconnects a SQL Anywhere connection. All uncommitted transactions are rolled back.

Syntax
sqlany_disconnect ($conn)

Parameters

• $conn – A connection object with a connection established using sqlany_connect.

Returns
Returns a scalar value that is 1 on success or 0 on failure.

Example
Disconnect from the database
status = api.sqlany_disconnect(conn)
print "Disconnect status = #{status}\n"

sqlany_error Function
Returns the last error code and message stored in the connection object.

Syntax
sqlany_error ($conn)

Parameters

• $conn – A connection object returned from sqlany_new_connection.

Ruby Support

Programming 603

Returns
Returns a 2-element array that contains the SQL error code as the first element and an error
message string as the second element.

For the error code, positive values are warnings, negative values are errors, and 0 is success.

Example
code, msg = api.sqlany_error(conn)
print "Code=#{code} Message=#{msg}\n"

sqlany_execute Function
Executes a prepared statement.

Syntax
sqlany_execute ($stmt)

Parameters

• $stmt – A statement prepared successfully using sqlany_prepare.

Returns
Returns a scalar value that is 1 on success or 0 on failure.

Remarks
You can use sqlany_num_cols to verify if the statement returned a result set.

Example
stmt = api.sqlany_prepare(conn, "UPDATE Contacts
 SET Contacts.ID = Contacts.ID + 1000
 WHERE Contacts.ID >= ?")
rc, param = api.sqlany_describe_bind_param(stmt, 0)
param.set_value(50)
rc = api.sqlany_bind_param(stmt, 0, param)
rc = api.sqlany_execute(stmt)

sqlany_execute_direct Function
Executes the SQL statement specified by the string argument.

Syntax
sqlany_execute_direct ($conn, $sql)

Parameters

• $conn – A connection object with a connection established using sqlany_connect.
• $sql – A SQL string. The SQL string should not have parameters such as ?.

Ruby Support

604 SAP Sybase IQ

Returns
Returns a statement object or nil on failure.

Remarks
Use this function to prepare and execute a statement in one step. Do not use this function to
execute a SQL statement with parameters.

Example
stmt = api.sqlany_execute_direct(conn, "SELECT * FROM Employees")
rc = api.sqlany_fetch_next(stmt)
rc, employeeID = api.sqlany_get_column(stmt, 0)
rc, managerID = api.sqlany_get_column(stmt, 1)
rc, surname = api.sqlany_get_column(stmt, 2)
rc, givenName = api.sqlany_get_column(stmt, 3)
rc, departmentID = api.sqlany_get_column(stmt, 4)
print employeeID, ",", managerID, ",",
 surname, ",", givenName, ",", departmentID, "\n"

sqlany_execute_immediate Function
Executes the specified SQL statement immediately without returning a result set. It is useful
for statements that do not return result sets.

Syntax
sqlany_execute_immediate ($conn, $sql)

Parameters

• $conn – A connection object with a connection established using sqlany_connect.
• $sql – A SQL string. The SQL string should not have parameters such as ?.

Returns
Returns a scalar value that is 1 on success or 0 on failure.

Example
rc = api.sqlany_execute_immediate(conn, "UPDATE Contacts
 SET Contacts.ID = Contacts.ID + 1000
 WHERE Contacts.ID >= 50")

sqlany_fetch_absolute Function
Moves the current row in the result set to the row number specified and then fetches the data at
that row.

Syntax
sqlany_fetch_absolute ($stmt, $row_num)

Ruby Support

Programming 605

Parameters

• $stmt – A statement object that was executed by sqlany_execute or
sqlany_execute_direct.

• $row_num – The row number to be fetched. The first row is 1, the last row is -1.

Returns
Returns a scalar value that is 1 on success or 0 on failure.

Example
stmt = api.sqlany_execute_direct(conn, "SELECT * FROM Employees")
Fetch the second row
rc = api.sqlany_fetch_absolute(stmt, 2)
rc, employeeID = api.sqlany_get_column(stmt, 0)
rc, managerID = api.sqlany_get_column(stmt, 1)
rc, surname = api.sqlany_get_column(stmt, 2)
rc, givenName = api.sqlany_get_column(stmt, 3)
rc, departmentID = api.sqlany_get_column(stmt, 4)
print employeeID, ",", managerID, ",",
 surname, ",", givenName, ",", departmentID, "\n"

sqlany_fetch_next Function
Returns the next row from the result set. This function first advances the row pointer and then
fetches the data at the new row.

Syntax
sqlany_fetch_next ($stmt)

Parameters

• $stmt – A statement object that was executed by sqlany_execute or
sqlany_execute_direct.

Returns
Returns a scalar value that is 1 on success or 0 on failure.

Example
stmt = api.sqlany_execute_direct(conn, "SELECT * FROM Employees")
Fetch the second row
rc = api.sqlany_fetch_next(stmt)
rc, employeeID = api.sqlany_get_column(stmt, 0)
rc, managerID = api.sqlany_get_column(stmt, 1)
rc, surname = api.sqlany_get_column(stmt, 2)
rc, givenName = api.sqlany_get_column(stmt, 3)
rc, departmentID = api.sqlany_get_column(stmt, 4)
print employeeID, ",", managerID, ",",
 surname, ",", givenName, ",", departmentID, "\n"

Ruby Support

606 SAP Sybase IQ

sqlany_fini Function
Frees resources allocated by the API.

Syntax
sqlany_fini ()

Returns
Returns nil.

Example
Disconnect from the database
api.sqlany_disconnect(conn)

Free the connection resources
api.sqlany_free_connection(conn)

Free resources the api object uses
api.sqlany_fini()

Close the interface
SQLAnywhere::API.sqlany_finalize_interface(api)

sqlany_free_connection Function
Frees the resources associated with a connection object.

Syntax
sqlany_free_connection ($conn)

Parameters

• $conn – A connection object created by sqlany_new_connection.

Returns
Returns nil.

Example
Disconnect from the database
api.sqlany_disconnect(conn)

Free the connection resources
api.sqlany_free_connection(conn)

Free resources the api object uses
api.sqlany_fini()

Close the interface
SQLAnywhere::API.sqlany_finalize_interface(api)

Ruby Support

Programming 607

sqlany_free_stmt Function
Frees resources associated with a statement object.

Syntax
sqlany_free_stmt ($stmt)

Parameters

• $stmt – A statement object returned by the successful execution of sqlany_prepare or
sqlany_execute_direct.

Returns
Returns nil.

Example
stmt = api.sqlany_prepare(conn, "UPDATE Contacts
 SET Contacts.ID = Contacts.ID + 1000
 WHERE Contacts.ID >= ?")
rc, param = api.sqlany_describe_bind_param(stmt, 0)
param.set_value(50)
rc = api.sqlany_bind_param(stmt, 0, param)
rc = api.sqlany_execute(stmt)
rc = api.sqlany_free_stmt(stmt)

sqlany_get_bind_param_info Function
Retrieves information about the parameters that were bound using sqlany_bind_param.

Syntax
sqlany_get_bind_param_info ($stmt, $index)

Parameters

• $stmt – A statement successfully prepared using sqlany_prepare.
• $index – The index of the parameter. The number must be between 0 and

sqlany_num_params() - 1.

Returns
Returns a 2-element array that contains 1 on success or 0 on failure as the first element and a
described parameter as the second element.

Example
Get information on first parameter (0)
rc, param_info = api.sqlany_get_bind_param_info(stmt, 0)
print "Param_info direction = ", param_info.get_direction(), "\n"
print "Param_info output = ", param_info.get_output(), "\n"

Ruby Support

608 SAP Sybase IQ

sqlany_get_column Function
Returns the value fetched for the specified column.

Syntax
sqlany_get_column ($stmt, $col_index)

Parameters

• $stmt – A statement object that was executed by sqlany_execute or
sqlany_execute_direct.

• $col_index – The number of the column to be retrieved. A column number is between 0
and sqlany_num_cols() - 1.

Returns
Returns a 2-element array that contains 1 on success or 0 on failure as the first element and the
column value as the second element.

Example
stmt = api.sqlany_execute_direct(conn, "SELECT * FROM Employees")
Fetch the second row
rc = api.sqlany_fetch_next(stmt)
rc, employeeID = api.sqlany_get_column(stmt, 0)
rc, managerID = api.sqlany_get_column(stmt, 1)
rc, surname = api.sqlany_get_column(stmt, 2)
rc, givenName = api.sqlany_get_column(stmt, 3)
rc, departmentID = api.sqlany_get_column(stmt, 4)
print employeeID, ",", managerID, ",",
 surname, ",", givenName, ",", departmentID, "\n"

sqlany_get_column_info Function
Gets column information for the specified result set column.

Syntax
sqlany_get_column_info ($stmt, $col_index)

Parameters

• $stmt – A statement object that was executed by sqlany_execute or
sqlany_execute_direct.

• $col_index – The column number between 0 and sqlany_num_cols() - 1.

Returns
Returns a 9-element array of information describing a column in a result set. The first element
contains 1 on success or 0 on failure. The array elements are described in the following table.

Ruby Support

Programming 609

Element number Type Description

0 Integer 1 on success or 0 on failure.

1 Integer Column index (0 to sqla-
ny_num_cols() - 1).

2 String Column name.

3 Integer Column type.

4 Integer Column native type.

5 Integer Column precision (for numeric
types).

6 Integer Column scale (for numeric
types).

7 Integer Column size.

8 Integer Column nullable (1=nullable,
0=not nullable).

Example
Get column info for first column (0)
rc, col_num, col_name, col_type, col_native_type, col_precision,
col_scale,
 col_size, col_nullable = api.sqlany_get_column_info(stmt, 0)

sqlany_get_next_result Function
Advances to the next result set in a multiple result set query.

Syntax
sqlany_get_next_result ($stmt)

Parameters

• $stmt – A statement object executed by sqlany_execute or sqlany_execute_direct.

Returns
Returns a scalar value that is 1 on success or 0 on failure.

Example
stmt = api.sqlany_prepare(conn, "call two_results()")
rc = api.sqlany_execute(stmt)
Fetch from first result set
rc = api.sqlany_fetch_absolute(stmt, 3)
Go to next result set
rc = api.sqlany_get_next_result(stmt)

Ruby Support

610 SAP Sybase IQ

Fetch from second result set
rc = api.sqlany_fetch_absolute(stmt, 2)

sqlany_init Function
Initializes the interface.

Syntax
sqlany_init ()

Returns
Returns a 2-element array that contains 1 on success or 0 on failure as the first element and the
Ruby interface version as the second element.

Example
Load the SQLAnywhere gem
begin
 require 'rubygems'
 gem 'sqlanywhere'
 unless defined? SQLAnywhere
 require 'sqlanywhere'
 end
end
Create an interface
api = SQLAnywhere::SQLAnywhereInterface.new()
Initialize the interface (loads the DLL/SO)
SQLAnywhere::API.sqlany_initialize_interface(api)
Initialize our api object
api.sqlany_init()

sqlany_new_connection Function
Creates a connection object.

Syntax
sqlany_new_connection ()

Returns
Returns a scalar value that is a connection object.

Remarks
A connection object must be created before a database connection is established. Errors can be
retrieved from the connection object. Only one request can be processed on a connection at a
time.

Example
Create a connection
conn = api.sqlany_new_connection()

Establish a connection

Ruby Support

Programming 611

status = api.sqlany_connect(conn, "UID=DBA;PWD=sql")
print "Status=#{status}\n"

sqlany_num_cols Function
Returns number of columns in the result set.

Syntax
sqlany_num_cols ($stmt)

Parameters

• $stmt – A statement object executed by sqlany_execute or sqlany_execute_direct.

Returns
Returns a scalar value that is the number of columns in the result set, or -1 on a failure.

Example
stmt = api.sqlany_execute_direct(conn, "SELECT * FROM Employees")
Get number of result set columns
num_cols = api.sqlany_num_cols(stmt)

sqlany_num_params Function
Returns the number of parameters that are expected for a prepared statement.

Syntax
sqlany_num_params ($stmt)

Parameters

• $stmt – A statement object returned by the successful execution of sqlany_prepare.

Returns
Returns a scalar value that is the number of parameters in a prepared statement, or -1 on a
failure.

Example
stmt = api.sqlany_prepare(conn, "UPDATE Contacts
 SET Contacts.ID = Contacts.ID + 1000
 WHERE Contacts.ID >= ?")
num_params = api.sqlany_num_params(stmt)

sqlany_num_rows Function
Returns the number of rows in the result set.

Syntax
sqlany_num_rows ($stmt)

Ruby Support

612 SAP Sybase IQ

Parameters

• $stmt – A statement object executed by sqlany_execute or sqlany_execute_direct.

Returns
Returns a scalar value that is the number of rows in the result set. If the number of rows is an
estimate, the number returned is negative and the estimate is the absolute value of the returned
integer. The value returned is positive if the number of rows is exact.

Remarks
By default, this function only returns an estimate. To return an exact count, set the
ROW_COUNTS option on the connection.

A count of the number of rows in a result set can be returned only for the first result set in a
statement that returns multiple result sets. If sqlany_get_next_result is used to move to the
next result set, sqlany_num_rows will still return the number of rows in the first result set.

Example
stmt = api.sqlany_execute_direct(conn, "SELECT * FROM Employees")
Get number of rows in result set
num_rows = api.sqlany_num_rows(stmt)

sqlany_prepare Function
Prepares the supplied SQL string.

Syntax
sqlany_prepare ($conn, $sql)

Parameters

• $conn – A connection object with a connection established using sqlany_connect.
• $sql – The SQL statement to be prepared.

Returns
Returns a scalar value that is the statement object, or nil on failure.

Remarks
The statement associated with the statement object is executed by sqlany_execute. You can
use sqlany_free_stmt to free the resources associated with the statement object.

Example
stmt = api.sqlany_prepare(conn, "UPDATE Contacts
 SET Contacts.ID = Contacts.ID + 1000
 WHERE Contacts.ID >= ?")
rc, param = api.sqlany_describe_bind_param(stmt, 0)
param.set_value(50)

Ruby Support

Programming 613

rc = api.sqlany_bind_param(stmt, 0, param)
rc = api.sqlany_execute(stmt)

sqlany_rollback Function
Rolls back the current transaction.

Syntax
sqlany_rollback ($conn)

Parameters

• $conn – The connection object on which the rollback operation is to be performed.

Returns
Returns a scalar value that is 1 on success, 0 on failure.

Example
rc = api.sqlany_rollback(conn)

sqlany_sqlstate Function
Retrieves the current SQLSTATE.

Syntax
sqlany_sqlstate ($conn)

Parameters

• $conn – A connection object returned from sqlany_new_connection.

Returns
Returns a scalar value that is the current five-character SQLSTATE.

Example
sql_state = api.sqlany_sqlstate(conn)

Column Types
The following Ruby class defines the column types returned by some SQL Anywhere Ruby
functions.

class Types
 A_INVALID_TYPE = 0
 A_BINARY = 1
 A_STRING = 2
 A_DOUBLE = 3
 A_VAL64 = 4
 A_UVAL64 = 5
 A_VAL32 = 6
 A_UVAL32 = 7

Ruby Support

614 SAP Sybase IQ

 A_VAL16 = 8
 A_UVAL16 = 9
 A_VAL8 = 10
 A_UVAL8 = 11
end

Native Column Types
The following table defines the native column types returned by some SQL Anywhere
functions.

Native type value Native type

384 DT_DATE

388 DT_TIME

390 DT_TIMESTAMP_STRUCT

392 DT_TIMESTAMP

448 DT_VARCHAR

452 DT_FIXCHAR

456 DT_LONGVARCHAR

460 DT_STRING

480 DT_DOUBLE

482 DT_FLOAT

484 DT_DECIMAL

496 DT_INT

500 DT_SMALLINT

524 DT_BINARY

528 DT_LONGBINARY

600 DT_VARIABLE

604 DT_TINYINT

608 DT_BIGINT

612 DT_UNSINT

616 DT_UNSSMALLINT

620 DT_UNSBIGINT

Ruby Support

Programming 615

Native type value Native type

624 DT_BIT

628 DT_NSTRING

632 DT_NFIXCHAR

636 DT_NVARCHAR

640 DT_LONGNVARCHAR

Ruby Support

616 SAP Sybase IQ

Sybase Open Client Support

Sybase Open Client provides customer applications, third-party products, and other Sybase
products with the interfaces needed to communicate with SAP Sybase IQ and other Open
Servers.

When to use Open Client
You should consider using the Open Client interface if you are concerned with Adaptive
Server Enterprise compatibility or if you are using other Sybase products that support the
Open Client interface.

Open Client applications
You can develop applications in C or C++, and then connect those applications to SAP Sybase
IQ using the Open Client API. Other Sybase applications, such as OmniConnect, use Open
Client. The Open Client API is also supported by Sybase Adaptive Server Enterprise.

Open Client Architecture
This section describes the Open Client programming interface for SAP Sybase IQ. The
primary documentation for Sybase Open Client application development is the Sybase Open
Client documentation, available from SAP. This section describes features specific to SAP
Sybase IQ, but it is not an exhaustive guide to Sybase Open Client application programming.

Sybase Open Client has two components: programming interfaces and network services.

Sybase Open Client Support

Programming 617

DB-Library and Client Library
Sybase Open Client provides two core programming interfaces for writing client applications:
DB-Library and Client-Library.

Open Client DB-Library provides support for older Open Client applications, and is a
completely separate programming interface from Client-Library. DB-Library is documented
in the Open Client DB-Library/C Reference Manual, provided with the Sybase Open Client
product.

Client-Library programs also depend on CS-Library, which provides routines that are used in
both Client-Library and Server-Library applications. Client-Library applications can also use
routines from Bulk-Library to help high-speed data transfer.

Both CS-Library and Bulk-Library are included in the Sybase Open Client, which is available
separately.

Network services
Open Client network services include Sybase Net-Library, which provides support for
specific network protocols such as TCP/IP and DECnet. The Net-Library interface is invisible
to application developers. However, on some platforms, an application may need a different
Net-Library driver for different system network configurations. Depending on your host
platform, the Net-Library driver is specified either by the system's Sybase configuration or
when you compile and link your programs.

Instructions for driver configuration can be found in the Open Client/Server Configuration
Guide.

Instructions for building Client-Library programs can be found in the Open Client/Server
Programmer's Supplement.

What You Need to Build Open Client Applications
To run Open Client applications, you must install and configure Sybase Open Client
components on the computer where the application is running. You may have these
components present as part of your installation of other Sybase products or you can optionally
install these libraries with SAP Sybase IQ, subject to the terms of your license agreement.

Open Client applications do not need any Open Client components on the computer where the
database server is running.

To build Open Client applications, you need the development version of Open Client,
available from SAP.

By default, SAP Sybase IQ databases are created as case-insensitive, while Adaptive Server
databases are case-sensitive.

Sybase Open Client Support

618 SAP Sybase IQ

Open Client Data Type Mappings
Sybase Open Client has its own internal data types, which differ in some details from those
available in SAP Sybase IQ. For this reason, SAP Sybase IQ internally maps some data types
between those used by Open Client applications and those available in SAP Sybase IQ.

To build Open Client applications, you need the development version of Open Client. To use
Open Client applications, the Open Client run-times must be installed and configured on the
computer where the application runs.

The SAP Sybase IQ server does not require any external communications runtime to support
Open Client applications.

Each Open Client data type is mapped onto the equivalent SAP Sybase IQ data type. All Open
Client data types are supported.

SAP Sybase IQ Data Types with no Direct Counterpart in Open Client
The following table lists the mappings of data types supported in SAP Sybase IQ that have no
direct counterpart in Open Client.

SAP Sybase IQ data type Open Client data type

unsigned short int

unsigned int bigint

unsigned bigint numeric(20,0)

string varchar

timestamp datetime

Range Limitations in Open Client Data Type Mapping
Some data types have different ranges in SAP Sybase IQ than in Open Client. In such cases,
overflow errors can occur during retrieval or insertion of data.

The following table lists Open Client application data types that can be mapped to SAP Sybase
IQ data types, but with some restriction in the range of possible values.

The Open Client data type is usually mapped to an SAP Sybase IQ data type with a greater
range of possible values. As a result, it is possible to pass a value to SAP Sybase IQ that will be
accepted and stored in a database, but that is too large to be fetched by an Open Client
application.

Sybase Open Client Support

Programming 619

Data type Open Client
lower range

Open Client
upper range

SAP Sybase
IQ lower
range

SAP Sybase
IQupper
range

MONEY -922 377 203 685
477.5808

922 377 203 685
477.5807

-999 999 999 999
999.9999

999 999 999 999
999.9999

SMALLMONEY -214 748.3648 214 748.3647 -999 999.9999 -999 999.9999

DATETIME [1] January 1, 1753 December 31,
9999

January 1, 0001 December 31,
9999

SMALLDATE-
TIME

January 1, 1900 June 6, 2079 January 1, 0001 December 31,
9999

[1] For versions earlier than OpenClient 15.5; otherwise, the full range of dates from
0001-01-01 to 9999-12-31 is supported.

Example

For example, the Open Client MONEY and SMALLMONEY data types do not span the entire
numeric range of their underlying SAP Sybase IQ implementations. Therefore, it is possible to
have a value in an SAP Sybase IQ column which exceeds the boundaries of the Open Client
data type MONEY. When the client fetches any such offending values via SAP Sybase IQ, an
error is generated.

Timestamps
TIMESTAMP values inserted into or retrieved from SAP Sybase IQ will have the date portion
restricted to January 1, 1753 or later and the time version restricted to 1/300th of a second
precision if the client is using Open Client 15.1 or earlier. If, however, the client is using Open
Client 15.5 or later, then no restriction will apply to TIMESTAMP values.

SQL in Open Client Applications
This section provides a very brief introduction to using SQL in Open Client applications, with
a particular focus on SAP Sybase IQ-specific issues.

For a complete description, see the Open Client documentation at http://www.sybase.com/
products/databasemanagement/openserver.

Open Client SQL Statement Execution
You send SQL statements to a database server by including them in Client Library function
calls. For example, the following pair of calls executes a DELETE statement:
ret = ct_command(cmd, CS_LANG_CMD,
 "DELETE FROM Employees
 WHERE EmployeeID=105"
 CS_NULLTERM,

Sybase Open Client Support

620 SAP Sybase IQ

http://www.sybase.com/products/databasemanagement/openserver
http://www.sybase.com/products/databasemanagement/openserver

 CS_UNUSED);
ret = ct_send(cmd);

Open Client Prepared Statements
The ct_dynamic function is used to manage prepared statements. This function takes a type
parameter that describes the action you are taking.

Perform the following tasks to use a prepared statement in Open Client:

1. Prepare the statement using the ct_dynamic function, with a CS_PREPARE type
parameter.

2. Set statement parameters using ct_param.
3. Execute the statement using ct_dynamic with a CS_EXECUTE type parameter.
4. Free the resources associated with the statement using ct_dynamic with a CS_DEALLOC

type parameter.

For more information about using prepared statements in Open Client, see your Open Client
documentation.

Open Client Cursor Management
The ct_cursor function is used to manage cursors. This function takes a type parameter that
describes the action you are taking.

Supported Cursor Types
Not all the types of cursor that SAP Sybase IQ supports are available through the Open Client
interface. You cannot use scroll cursors, dynamic scroll cursors, or insensitive cursors through
Open Client.

Uniqueness and updatability are two properties of cursors. Cursors can be unique (each row
carries primary key or uniqueness information, regardless of whether it is used by the
application) or not. Cursors can be read-only or updatable. If a cursor is updatable and not
unique, performance may suffer, as no prefetching of rows is done in this case, regardless of
the CS_CURSOR_ROWS setting.

The Steps in Using Cursors
In contrast to some other interfaces, such as embedded SQL, Open Client associates a cursor
with a SQL statement expressed as a string. Embedded SQL first prepares a statement and then
the cursor is declared using the statement handle.

Perform the following tasks to use cursors in Open Client:

1. To declare a cursor in Open Client, use ct_cursor with CS_CURSOR_DECLARE as the
type parameter.

2. After declaring a cursor, you can control how many rows are prefetched to the client side
each time a row is fetched from the server by using ct_cursor with CS_CURSOR_ROWS
as the type parameter.

Sybase Open Client Support

Programming 621

Storing prefetched rows at the client side reduces the number of calls to the server and this
improves overall throughput and turnaround time. Prefetched rows are not immediately
passed on to the application; they are stored in a buffer at the client side ready for use.
The setting of the prefetch database option controls prefetching of rows for other
interfaces. It is ignored by Open Client connections. The CS_CURSOR_ROWS setting is
ignored for non-unique, updatable cursors.

3. To open a cursor in Open Client, use ct_cursor with CS_CURSOR_OPEN as the type
parameter.

4. To fetch each row in to the application, use ct_fetch.
5. To close a cursor, you use ct_cursor with CS_CURSOR_CLOSE.
6. In Open Client, you also need to deallocate the resources associated with a cursor. You do

this by using ct_cursor with CS_CURSOR_DEALLOC. You can also use
CS_CURSOR_CLOSE with the additional parameter CS_DEALLOC to perform these
operations in a single step.

Open Client Row Modification Through a Cursor
With Open Client, you can delete or update rows in a cursor, as long as the cursor is for a single
table. The user must have permissions to update the table and the cursor must be marked for
update.

Instead of carrying out a fetch, you can delete or update the current row of the cursor using
ct_cursor with CS_CURSOR_DELETE or CS_CURSOR_UPDATE, respectively.

You cannot insert rows through a cursor in Open Client applications.

Open Client Result Sets
Open Client handles result sets in a different way than some other SAP Sybase IQ interfaces.

In embedded SQL and ODBC, you describe a query or stored procedure to set up the proper
number and types of variables to receive the results. The description is done on the statement
itself.

In Open Client, you do not need to describe a statement. Instead, each row returned from the
server can carry a description of its contents. If you use ct_command and ct_send to execute
statements, you can use the ct_results function to handle all aspects of rows returned in
queries.

If you do not want to use this row-by-row method of handling result sets, you can use
ct_dynamic to prepare a SQL statement and use ct_describe to describe its result set. This
corresponds more closely to the describing of SQL statements in other interfaces.

Sybase Open Client Support

622 SAP Sybase IQ

Known Open Client Limitations of SAP Sybase IQ
Using the Open Client interface, you can use an SAP Sybase IQ database in much the same
way as you would an Adaptive Server Enterprise database. There are some limitations,
including the following:

• SAP Sybase IQ does not support the Adaptive Server Enterprise Commit Service.
• A client/server connection's capabilities determine the types of client requests and server

responses permitted for that connection. The following capabilities are not supported:

CS_CSR_ABS
CS_CSR_FIRST
CS_CSR_LAST
CS_CSR_PREV
CS_CSR_REL
CS_DATA_BOUNDARY
CS_DATA_SENSITIVITY
CS_OPT_FORMATONLY
CS_PROTO_DYNPROC
CS_REG_NOTIF
CS_REQ_BCP

• Security options, such as SSL, are not supported. However, password encryption is
supported.

• Open Client applications can connect to SAP Sybase IQ using TCP/IP.
For more information about capabilities, see the Open Server Server-Library C Reference
Manual.

• When the CS_DATAFMT is used with the CS_DESCRIBE_INPUT, it does not return the
data type of a column when a parameterized variable is sent to SAP Sybase IQ as input.

Sybase Open Client Support

Programming 623

Sybase Open Client Support

624 SAP Sybase IQ

HTTP Web Services

Develop web service applications that use SAP Sybase IQ as an HTTP web server.

SAP Sybase IQ As an HTTP Web Server
SAP Sybase IQ contains a built-in HTTP web server that allows you to create online web
services in SAP Sybase IQ databases. SAP Sybase IQ web servers support HTTP and SOAP
over HTTP requests sent by web browsers and client applications. The web server
performance is optimized because web services are embedded in the database.

SAP Sybase IQ web services provide client applications with an alternative to traditional
interfaces, such as JDBC and ODBC. They are easily deployed because additional
components are not needed, and can be accessed from multi-platform client applications
written in a variety of languages, including scripting languages—such as Perl and Python.

In addition to providing web services over an HTTP web server, SAP Sybase IQ can function
as a SOAP or HTTP client application to access standard web services available over the
Internet and other SAP Sybase IQ HTTP web servers.

Quick Start to Using SAP Sybase IQ As an HTTP Web Server
This section illustrates how to start an SAP Sybase IQ HTTP web server, create a web service,
and access it from a web browser. It does not illustrate SAP Sybase IQ web service features,
such as SOAP over HTTP support and application development, to a full extent. Many SAP
Sybase IQ web service features are available that are beyond the scope of this guide.

Perform the following tasks to create an SAP Sybase IQ HTTP web server and HTTP web
service:

1. Start the SAP Sybase IQ HTTP web server while loading an SAP Sybase IQ database.
Run the following command at a command prompt:
iqsrv16 -xs http(port=8082) iqdemo.db

Note: Use the iqsrv16 command to start a database server that can be accessed on a
network.

The -xs http(port=8082) option instructs the server to listen for HTTP requests on port
8082. Use a different port number if a web server is already running on port 8082.

2. Use the CREATE SERVICE statement to create a web service that responds to incoming
web browser requests.
a. Connect to the demo.db database using Interactive SQL by running the following

command:

HTTP Web Services

Programming 625

dbisql -c "dbf=iqdemo.db;uid=<user_id>;pwd=<password>"
b. Create a new web service in the database.

Execute the following SQL statement in Interactive SQL:
CREATE SERVICE SampleWebService
 TYPE 'web-service-type-clause'
 AUTHORIZATION OFF
 USER DBA
 AS SELECT 'Hello world!';

Replace web-service-type-clause with the desired web service type. The HTML type
clause is recommended for web browser compatibility. Other general HTTP web
service type clauses include XML, RAW, and JSON.
The CREATE SERVICE statement creates the SampleWebService web service,
which returns the result set of the SELECT statement. In this example, the statement
returns "Hello world!"
The AUTHORIZATION OFF clause indicates that authorization is not required to
access the web service.
The USER DBA statement indicates that the service statement should be run under the
DBA login name.
The AS SELECT clause allows the service to select from a table or function, or view
data directly. Use AS CALL as an alternative clause to call a stored procedure.

3. View the web service in a web browser.
On the computer running the SAP Sybase IQ HTTP web server, open a web browser, such
as Internet Explorer or Firefox, and go to the following URL:
http://localhost:8082/demo/SampleWebService

This URL directs your web browser to the HTTP web server on port 8082.
SampleWebService prints "Hello world". The result set output is displayed in the
format specified by the web-service-type-clause from step 2.

Other Sample Resources
Samples are included in the %ALLUSERSPROFILE%\SybaseIQ\samples
\SQLAnywhere\http directory.

Other examples might be available on CodeXchange at http://www.sybase.com/developer/
codexchange.

How to Start an HTTP Web Server
The SAP Sybase IQ HTTP web server starts automatically when you launch the database
server with the -xs server option. This option allows you to perform the following tasks:

Enable a web service protocol to listen for web service requests.
Configure network protocol options, such as server port, logging, time-out criteria, and the
maximum request size.

The general format of the command line is as follows:

HTTP Web Services

626 SAP Sybase IQ

http://www.sybase.com/developer/codexchange
http://www.sybase.com/developer/codexchange

iqsrv16 -xs protocol-type(protocol-options) your-database-name.db

Replace protocol-type and protocol-options with one of the following supported protocols
and any appropriate protocol options:

• HTTP – Use this protocol to listen for HTTP connections. Here is an example.
iqsrv16 -xs HTTP(PORT=8082) services.db

• HTTPS – Use this protocol to listen for HTTPS connections. SSL version 3.0 and TLS
version 1.0/1.1 are supported. Here is an example.
iqsrv16 -xs "HTTPS(FIPS=N;PORT=8082;IDENTITY="%ALLUSERSPROFILE
%"\SybaseIQ\samples\Certificates
\rsaserver.id;IDENTITY_PASSWORD=test)" services.db

Note: Network protocol options are available for each supported protocol. These options
allow you to control protocol behavior and can be configured at the command line when you
launch your database server.

Configuration of Network Protocol Options
Network protocol options are optional settings that provide control over a specified web
service protocol. These settings are configured at the command line when you launch your
database server with the -xs database server option.

For example, the following command line configures an HTTPS listener with the PORT, FIPS,
Identity, and Identity_Password network protocol options specified:
iqsrv16 -xs https(PORT=544;FIPS=YES;
 IDENTITY=certificate.id;IDENTITY_PASSWORD=password) your-
database-name.db

This command starts a database server that enables the HTTPS web service protocol for the
your-database-name.db database. The network protocol options indicate that the web
server should perform the following tasks:

Listen on port 544 instead of the default HTTPS port (443).
Enable FIPS-approved security algorithms to encrypt communications.
Locate the specified identity file, certificate.id, which contains a public certificate
and its private key.
Validate the private key against the specified identity password, password.

The following list identifies the network protocol options that are commonly used for web
service protocols:

HTTP Web Services

Programming 627

Network protocol option Available web service
protocols

Description

DatabaseName (DBN) protocol
option

HTTP, HTTPS Specifies the name of a database
to use when processing web re-
quests, or uses the REQUIRED
or AUTO keyword to specify
whether database names are re-
quired as part of the URL.

FIPS protocol option HTTPS Enables FIPS-approved securi-
ty algorithms to encrypt data-
base files, communications for
database client/server commu-
nication, and web services.

Identity protocol option HTTPS Specifies the name of an identi-
ty file to use for secure HTTPS
connections.

Identity_Password protocol op-
tion

HTTPS Specifies the password for the
encryption certificate.

LocalOnly (LO) protocol op-
tion

HTTP, HTTPS Allows a client to choose to
connect only to a server on the
local computer, if one exists.

LogFile (LOG) protocol option HTTP, HTTPS Specifies the name of the file
where the database server writes
information about web requests.

LogFormat (LF) protocol op-
tion

HTTP, HTTPS Controls the format of messages
written to the log file where the
database server writes informa-
tion about web requests, and
specifies which fields appear in
the messages.

LogOptions (LOPT) protocol
option

HTTP, HTTPS Specifies the types of messages
that are recorded in the log
where the database server writes
information about web requests.

ServerPort (PORT) protocol op-
tion

HTTP, HTTPS Specifies the port on which the
database server is listening.

How to Start Multiple HTTP Web Servers
A multiple HTTP web server configuration allows you to create web services across databases
and have them appear as part of a single web site. You can start multiple HTTP web servers by

HTTP Web Services

628 SAP Sybase IQ

using multiple instances of the -xs database server option. This task is performed by
specifying a unique port number for each HTTP web server.

Example

In this example, the following command line starts two HTTP web services—one for your-
first-database.db and one for your-second-database.db:

iqsrv16 -xs http(port=80;dbn=your-first-
database),http(port=8800;dbn=your-second-database)
 your-first-database.db your-second-database.db

What Are Web Services
Web services refer to software that assists inter-computer data transfer and interoperability.
They make segments of business logic available over the Internet. URLs become available to
clients when managing web services in an HTTP web server. The conventions used when
specifying a URL determine how the server should communicate with web clients.

Web service management involves the following tasks:

Choosing the types of web services that you want to manage.
Creating and maintaining those web services

Web services can be created and stored in a SQL Anywhere database.

Web Service Types
When a web browser or client application makes a web service request to an SAP Sybase IQ
web service, the request is processed and a result set is returned in the response. SAP Sybase
IQ supports several web service types that provide control over the result set format and how
result sets are returned. You specify the web server type with the TYPE clause of the CREATE
SERVICE or ALTER SERVICE statement after choosing an appropriate web service type.

The following web service types are supported:

• HTML – The result set of a statement, function, or procedure is formatted into an HTML
document that contains a table. Web browsers display the body of the HTML document.

• XML – The result set of a statement, function, or procedure is returned as an XML
document. Non-XML formatted result sets are automatically formatted into XML. Web
browsers display the raw XML code, including tags and attributes.

The XML formatting is the equivalent of using the FOR XML RAW clause in a SELECT
statement, such as in the following SQL statement example:
SELECT * FROM table-name FOR XML RAW

• RAW – The result set of a statement, function, or procedure is returned without automatic
formatting.

This service type provides the most control over the result set. However, you must generate
the response by writing the necessary markup (HTML, XML) explicitly within your stored
procedure. You can use the SA_SET_HTTP_HEADER system procedure to set the HTTP

HTTP Web Services

Programming 629

Content-Type header to specify the MIME type, allowing web browsers to correctly
display the result set.

• JSON – The result set of a statement, function, or procedure is returned in JSON
(JavaScript Object Notation). JavaScript Object Notation (JSON) is a language-
independent, text-based data interchange format developed for the serialization of
JavaScript data. JSON represents four basic types: strings, numbers, booleans, and NULL.
JSON also represents two structured types: objects and arrays. For more information about
JSON, see http://www.json.org/.

This service is used by AJAX to make HTTP calls to web applications. For an example of
the JSON type, see %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere
\HTTP\json_sample.sql.

• SOAP – The result set of a statement, function, or procedure is returned as a SOAP
response. SOAP services provide a common data interchange standard to provide data
access to disparate client applications that support SOAP. SOAP request and response
envelopes are transported as an XML payload using HTTP (SOAP over HTTP). A request
to a SOAP service must be a valid SOAP request, not a general HTTP request. The output
of SOAP services can be adjusted using the FORMAT and DATATYPE attributes of the
CREATE or ALTER SERVICE statement.

• DISH – A DISH service (Determine SOAP Handler) is an SAP Sybase IQ SOAP endpoint.
The DISH service exposes the WSDL (Web Services Description Language) document
that describes all SOAP Operations (SAP Sybase IQ SOAP services) accessible through it.
A SOAP client toolkit builds the client application with interfaces based on the WSDL.
The SOAP client application directs all SOAP requests to the SOAP endpoint (the SAP
Sybase IQ DISH service).

Example

The following example illustrates the creation of a general HTTP web service that uses the
RAW service type:

CREATE PROCEDURE sp_echotext(str LONG VARCHAR)
BEGIN
 CALL sa_set_http_header('Content-Type', 'text/plain');
 SELECT str;
END;

CREATE SERVICE SampleWebService
 TYPE 'RAW'
 AUTHORIZATION OFF
 USER DBA
 AS CALL sp_echotext (:str);

HTTP Web Services

630 SAP Sybase IQ

http://www.json.org/

Web Service Maintenance
Web service maintenance involves the following tasks:

• Creating or altering web services – Create or alter web services to provide web
applications supporting a web browser interface and provide data interchange over the
web using REST and SOAP methodologies.

• Dropping web services – Dropping a web service causes the subsequent requests made
for that service to return a 404 Not Found HTTP status message. All unresolved
requests, intended or unintended, are processed if a root web service exists.

• Commenting on web services – Commenting is optional and allows you to provide
documentation for your web services.

• Creating and customizing a root web service – You can create a root web service to
handle HTTP requests that do not match any other web service requests.

• Enabling and disabling web services – A disabled web service returns a 404 Not
Found HTTP status message. The METHOD clause specifies the HTTP methods that can
be called for a particular web service.

How to Create or Alter a Web Service
Creating or altering a web service requires use of the CREATE SERVICE or ALTER
SERVICE statement, respectively. This section illustrates how to execute these statements
with Interactive SQL to create different kinds of web services. The examples in this section
assume that you have connected to an SAP Sybase IQ database, your-database.db, through
Interactive SQL using the following command:
dbisql -c "dbf=your-database.db;uid=your-userid;pwd=your-password"

How to Create HTTP Web Services
HTTP web services are classified as HTML, XML or RAW. All HTTP web services can be
created or altered using the same CREATE SERVICE and ALTER SERVICE statement
syntax.

Example

Execute the following statement in Interactive SQL to create a sample general HTTP web
service in the HTTP web server:
CREATE SERVICE SampleWebService
 TYPE 'web-service-type-clause'
 URL OFF
 USER DBA
 AUTHORIZATION OFF
 AS sql-statement;

The CREATE SERVICE statement creates a new web service named SampleWebService
and returns the result set of sql-statement. You can replace sql-statement with either a
SELECT statement to select data from a table or view directly, or a CALL statement to call a
stored procedure in the database.

HTTP Web Services

Programming 631

Replace web-service-type-clause with the desired web service type. Valid clauses for HTTP
web services include HTML, XML, RAW and JSON.

You can view the generated result set for the SampleWebService service by accessing the
service in a web browser.

How to Create SOAP Over HTTP Services
SOAP is a data interchange standard supported by many development environments.

A SOAP payload consists of an XML document, known as a SOAP envelope. A SOAP request
envelope contains the SOAP operation (a SOAP service) and specifies all appropriate
parameters. The SOAP service parses the request envelope to obtain the parameters and calls
or selects a stored procedure or function just as any other service does. The presentation layer
of the SOAP service streams the result set back to the client within a SOAP envelope in a
predefined format as specified by the DISH service's WSDL. For more information about
SOAP standards, see http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

By default, SOAP service parameters and result data are typed as XmlSchema string
parameters. DATATYPE ON specifies that input parameters and response data should use
TRUE types. Specifying DATATYPE changes the WSDL specification accordingly, so that
client SOAP toolkits generate interfaces with the appropriate type of parameters and response
objects.

The FORMAT clause is used to target specific SOAP toolkits with varying capabilities. DNET
provides Microsoft .NET client applications to consume a SOAP service response as a
System.Data.DataSet object. CONCRETE exposes a more general structure that allows an
object-oriented application, such as .NET or Java, to generate response objects that package
rows and columns. XML returns the entire response as an XML document, exposing it as a
string. Clients can further process the data using an XML parser. The FORMAT clause of the
CREATE SERVICE statement supports multiple client application types.

Note: The DATATYPE clause only pertains to SOAP services (there is no data typing in
HTML) The FORMAT clause can be specified for either a SOAP or DISH service. A SOAP
service FORMAT specification overrides that of the DISH service.

Example

Execute the following statement in Interactive SQL to create a SOAP over HTTP service:
CREATE SERVICE SampleSOAPService
 TYPE 'SOAP'
 DATATYPE ON
 FORMAT 'CONCRETE'
 USER DBA
 AUTHORIZATION OFF
 AS sql-statement;

HTTP Web Services

632 SAP Sybase IQ

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

How to Create DISH Services
SAP Sybase IQ allows you to create DISH services that act as SOAP endpoints for groups of
SOAP services. DISH services also automatically construct WSDL (Web Services
Description Language) documents that allow SOAP client toolkits to generate the interfaces
necessary to interchange data with the SOAP services described by the WSDL.

SOAP services can be added and removed without requiring maintenance to the DISH
services because the current working set of SOAP over HTTP services are always exposed.

Example

Execute the following SQL statements in Interactive SQL to create sample SOAP and DISH
services in the HTTP web server:
CREATE SERVICE "Samples/TestSoapOp"
 TYPE 'SOAP'
 DATATYPE ON
 USER DBA
 AUTHORIZATION OFF
 AS CALL sp_echo(:i, :f, :s);

CREATE PROCEDURE sp_echo(i INTEGER, f REAL, s LONG VARCHAR)
RESULT(ret_i INTEGER, ret_f REAL, ret_s LONG VARCHAR)
BEGIN
 SELECT i, f, s;
END;

CREATE SERVICE "dnet_endpoint"
 TYPE 'DISH'
 GROUP "Samples"
 FORMAT 'DNET';

The first CREATE SERVICE statement creates a new SOAP service named Samples/
TestSoapOp.

The second CREATE SERVICE statement creates a new DISH service named
dnet_endpoint. The Samples portion of the GROUP clause identifies the group of
SOAP services to expose. You can view the WSDL document generated by the DISH service.
When running your SAP Sybase IQ web server on a computer, you can access the service
using the http://localhost:port-number/dnet_endpoint URL, where port-
number is the port number that the server is running on.

In this example, the SOAP service does not contain a FORMAT clause to indicate a SOAP
response format. Therefore, the SOAP response format is dictated by the DISH service, which
does not override the FORMAT clause of the SOAP service. This feature allows you to create
homogeneous DISH services where each DISH endpoint can serve SOAP clients with varying
capabilities.

HTTP Web Services

Programming 633

Creating homogeneous DISH services
When SOAP service definitions defer the specification of the FORMAT clause to the DISH
service, a set of SOAP services can be grouped together within a DISH service that defines the
format. Multiple DISH services can then expose the same group of SOAP services with a
different FORMAT specifications. If you expand on the TestSoapOp example, you can
create another DISH service named java_endpoint using the following SQL statement:

CREATE SERVICE "java_endpoint"
 TYPE 'DISH'
 GROUP "Samples"
 FORMAT 'CONCRETE';

In this example, the SOAP client receives a response object named
TestSoapOp_Dataset when it makes a web service request for the TestSoapOp
operation through the java_endpoint DISH service. The WSDL can be inspected to
compare the differences between dnet_endpoint and java_endpoint. Using this
technique, a SOAP endpoint can quickly be constructed to meet the needs of a particular
SOAP client toolkit.

How to Drop a Web Service
Dropping a web service causes the subsequent requests made for that service to return a 404
Not Found HTTP status message. All unresolved requests, intended or unintended, are
processed if a root web service exists.

Example

Execute the following SQL statement to drop a web service named
SampleWebService:

DROP SERVICE SampleWebService;

How to Comment a Web Service
Providing documentation for a web service requires use of the COMMENT ON SERVICE
statement. A comment can be removed by setting the statement clause to null.

Example

For example, execute the following SQL statement to create a new comment on a web service
named SampleWebService:

COMMENT ON SERVICE SampleWebService
 IS "This is a comment on my web service.";

HTTP Web Services

634 SAP Sybase IQ

How to Create and Customize a Root Web Service
An HTTP client request that does not match any web service request is processed by the root
web service if a root web service is defined.

The root web service provides you with an easy and flexible method to handle arbitrary
HTTP requests whose URLs are not necessarily known at the time when you build your
application, and to handle unrecognized requests.

Example

This example illustrates how to use a root web service, which is stored in a table within the
database, to provide content to web browsers and other HTTP clients. It assumes that you have
started a local HTTP web server on a single database and listening on port 80. All scripts are
run on the web server.

Connect to the database server through Interactive SQL and execute the following SQL
statement to create a root web service that passes the url host variable, which is supplied by
the client, to a procedure named PageContent:

CREATE SERVICE root
 TYPE 'RAW'
 AUTHORIZATION OFF
 SECURE OFF
 URL ON
 USER DBA
 AS CALL PageContent(:url);

The URL ON portion specifies that the full path component is made accessible by an HTTP
variable named URL.

Execute the following SQL statement to create a table for storing page content. In this
example, the page content is defined by its URL, MIME-type, and the content itself.
CREATE TABLE Page_Content (
 url VARCHAR(1024) NOT NULL PRIMARY KEY,
 content_type VARCHAR(128) NOT NULL,
 image LONG VARCHAR NOT NULL
);

Execute the following SQL statements to populate the table. In this example, the intent is to
define the content to be provided to the HTTP client when the index.html page is requested.
INSERT INTO Page_Content
VALUES(
 'index.html',
 'text/html',
 '<html><body><h1>Hello World</h1></body></html>'
);
COMMIT;

Execute the following SQL statements to implement the PageContent procedure, which
accepts the url host variable that is passed through to the root web service:

HTTP Web Services

Programming 635

CREATE PROCEDURE PageContent(IN @url LONG VARCHAR)
RESULT (html_doc LONG VARCHAR)
BEGIN
 DECLARE @status CHAR(3);
 DECLARE @type VARCHAR(128);
 DECLARE @image LONG VARCHAR;

 SELECT content_type, image INTO @type, @image
 FROM Page_Content
 WHERE url = @url;

 IF @image is NULL THEN
 SET @status = '404';
 SET @type = 'text/html';
 SET @image = '<html><body><h1>404 - Page Not Found</h1>'
 || '<p>There is no content located at the URL "'
 || html_encode(@url) || '" on this server.<p>'
 || '</body></html>';
 ELSE
 SET @status = '200';
 END IF;
 CALL sa_set_http_header('@HttpStatus', @status);
 CALL sa_set_http_header('Content-Type', @type);
 SELECT @image;
END;

The root web service calls the PageContent procedure when a request to the HTTP
server does not match any other defined web service URL. The procedure checks if the client-
supplied URL matches a url in the Page_Content table. The SELECT statement sends a
response to the client. If the client-supplied URL was not found in the table, a generic 404 -
Page Not Found html page is built and sent to the client.

Some browsers will respond to the 404 status with their own page, so there is no guarantee that
the generic page will be displayed.

In the error message, the HTML_ENCODE function is used to encode the special characters
in the client-supplied URL.

The @HttpStatus header is used to set the status code returned with the request. A 404 status
indicates a Not Found error, and a 200 status indicates OK. The 'Content-Type' header is used
to set the content type returned with the request. In this example, the content (MIME) type of
the index.html page is text/html.

Web Service SQL Statements
The following SQL statements are available to assist with web service development:

Web server related SQL statements Description

CREATE SERVICE statement [HTTP web serv-
ice]

Creates a new HTTP web service.

HTTP Web Services

636 SAP Sybase IQ

Web server related SQL statements Description

CREATE SERVICE statement [SOAP web serv-
ice]

Creates a new SOAP over HTTP or DISH service.

ALTER SERVICE statement [HTTP web serv-
ice]

Alters an existing HTTP web service.

ALTER SERVICE statement [SOAP web serv-
ice]

Alters an existing HTTP over SOAP or DISH
service.

COMMENT statement Stores a comment for a database object in the
system tables.

Use the following syntax to comment on a web
service:

COMMENT ON SERVICE 'web-service-
name'
 IS 'your comments'

DROP SERVICE statement Drops a web service.

Connection Pooling for Web Services
Each database that exposes web services has access to a pool of database connections. The
pool is grouped by user name such that all services defined under a given USER clause share
the same connection pool group.

A service request executing a query for the first time must go through an optimization phase to
establish an execution plan. If the plan can be cached and reused, then the optimization phase
can be skipped for subsequent executions. HTTP connection pooling leverages the plan
caching in database connections by reusing them whenever possible. Each service maintains
its own list of connections to optimize reuse. However, during peak loads, a service can steal
least utilized connections from within the same user group of connections.

Over time, a given connection may acquire cached plans that can optimize performance for the
execution of a number of services.

In a connection pool, an HTTP request for a given service tries to acquire a database
connection from a pool. Unlike HTTP sessions, pooled connections are sanitized by resetting
the connection scope environment, such as connection scope variables and temporary tables.

Database connections that are pooled within the HTTP connection pool are not counted as
connections in use for the purposes of licensing. Connections are counted as licensed
connections when they are acquired from the pool. A 503 Service Temporarily
Unavailable status is returned when an HTTP request exceeds the licensing restrictions
while acquiring a connection from the pool.

HTTP Web Services

Programming 637

Web services can only utilize a connection pool when they are defined with
AUTHORIZATION OFF.

A database connection within a pool is not updated when changes occur to database and
connection options.

How to Develop Web Service Applications in an HTTP Web Server
This section provides an overview of web page creation and customization. It explains how to
develop stored procedures for your HTTP web server. It assumes that you have knowledge of
starting SAP Sybase IQ HTTP web servers and creating web services that call stored
procedures.

For detailed examples of web service applications, see the %ALLUSERSPROFILE%
\SybaseIQ\samples\SQLAnywhere\HTTP directory.

How to Customize Web Pages
You must first evaluate the format of the web service invoked by the HTTP web server to
customize your web pages. For example, web pages are formatted in HTML when the web
service specifies the HTML type.

The RAW web service type provides the most customization because it requires that web
service procedures and functions explicitly require coding to provide the required markup
such as HTML or XML. The following tasks must be performed to customize web pages when
using the RAW type:

• Set the HTTP Content-Type header field to the appropriate MIME type, such as text/html,
in the called stored procedure.

• Apply appropriate markup for the MIME type when generating web page output from the
called stored procedure.

Example

The following example illustrates how to create a new web service with the RAW type
specified:
CREATE SERVICE WebServiceName
 TYPE 'RAW'
 AUTHORIZATION OFF
 URL ON
 USER DBA
 AS CALL HomePage(:url);

In this example, the web service calls the HomePage stored procedure, which is required to
define a single URL parameter that receives the PATH component of the URL.

Setting the Content-Type header field
Use the sa_set_http_header system procedure to define the HTTP Content-Type header to
ensure that web browsers correctly render the content.

HTTP Web Services

638 SAP Sybase IQ

The following example illustrates how to format web page output in HTML using the text/
html MIME-type with the sa_set_http_header system procedure:
CREATE PROCEDURE HomePage (IN url LONG VARCHAR)
 RESULT (html_doc XML)
 BEGIN
 CALL sa_set_http_header ('Content-Type', 'text/html');
 -- Your SQL code goes here.
 ...
 END

Applying tagging conventions of the MIME-type
You must apply the tagging conventions of the MIME-type specified by the Content-Type
header in your stored procedure. SAP Sybase IQ provides several functions that allow you to
create tags.

The following example illustrates how to use the XMLCONCAT, and XMLELEMENT
functions to generate HTML content, assuming that the sa_set_http_header system procedure
is used to set the Content-Type header to the text/html MIME-type:
XMLCONCAT(
 CAST('<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">' AS XML),
 XMLELEMENT(
 'HTML',
 XMLELEMENT(
 'HEAD',
 XMLELEMENT('TITLE', 'My Home Page')
),
 XMLELEMENT(
 'BODY',
 XMLELEMENT('H1', 'My home on the web'),
 XMLELEMENT('P', 'Thank you for visiting my web site!')
)
)
)

Since element content is always escaped unless the data type is XML, the above example uses
the CAST function. Otherwise, special characters are escaped (for example, < for <).

How to Access Client-Supplied HTTP Variables and Headers
Variables and headers in an HTTP client request can be accessed using one of the following
approaches:

• The web service statement declaration to pass them as host parameters of a stored function
and procedure call.

• Calling the HTTP_VARIABLE, NEXT_HTTP_VARIABLE, HTTP_HEADER,
NEXT_HTTP_HEADER functions in a stored function or procedure.

HTTP Web Services

Programming 639

How to Access HTTP Variables Using Host Parameters
You can reference client-supplied variables when you pass them as host parameters of a
function or procedure call.

Example

The following example illustrates how to access the host parameters used in a web service
named ShowTable:

CREATE SERVICE ShowTable
 TYPE 'RAW'
 AUTHORIZATION ON
 AS CALL ShowTable(:user_name, :table_name);

CREATE PROCEDURE ShowTable(IN username VARCHAR(128), IN tblname
VARCHAR(128))
BEGIN
 -- write SQL code utilizing the username and tblname variables
here.
END;

Service host parameters are mapped in the declaration order of procedure parameters. In the
above example, the user_name and table_name host parameters map to the username
and tblname parameters, respectively.

How to Access HTTP Variables and Headers Using Web Service Functions
The HTTP_VARIABLE, NEXT_HTTP_VARIABLE, HTTP_HEADER,
NEXT_HTTP_HEADER functions can be used to iterate through the variables and headers
supplied by the client.

Accessing variables using HTTP_VARIABLE and HTTP_NEXT_VARIABLE
You can iterate through all client-supplied variables using NEXT_HTTP_VARIABLE and
HTTP_VARIABLE functions within your stored procedures.

The HTTP_VARIABLE function allows you to get the value of a variable name.

The NEXT_HTTP_VARIABLE function allows you to iterate through all variables sent by
the client. Pass the NULL value when calling it for the first time to get the first variable name.
Use the returned variable name as a parameter to an HTTP_VARIABLE function call to get its
value. Passing the previous variable name to the next_http_variable call gets the next variable
name. Null is returned when the last variable name is passed.

Iterating through the variable names guarantees that each variable name is returned exactly
once but the variable name order may not be the same as the order they appear in the client
request.

The following example illustrates how to use the HTTP_VARIABLE function to retrieve
values from parameters supplied in a client request that accesses the ShowDetail service:

HTTP Web Services

640 SAP Sybase IQ

CREATE SERVICE ShowDetail
 TYPE 'HTML'
 URL PATH OFF
 AUTHORIZATION OFF
 USER DBA
 AS CALL ShowDetail();

CREATE PROCEDURE ShowDetail()
BEGIN
 DECLARE v_customer_id LONG VARCHAR;
 DECLARE v_product_id LONG VARCHAR;
 SET v_customer_id = HTTP_VARIABLE('customer_id');
 SET v_product_id = HTTP_VARIABLE('product_id');
 CALL ShowSalesOrderDetail(v_customer_id, v_product_id);
END;

The following example illustrates how to retrieve three attributes from header-field values
associated with the image variable:

SET v_name = HTTP_VARIABLE('image', NULL, 'Content-Disposition');
SET v_type = HTTP_VARIABLE('image', NULL, 'Content-Type');
SET v_image = HTTP_VARIABLE('image', NULL, '@BINARY');

Supplying an integer as the second parameter allows you to retrieve additional values. The
third parameter allows you to retrieve header-field values from multi-part requests. Supply the
name of a header field to retrieve its value.

Accessing headers using HTTP_HEADER and NEXT_HTTP_HEADER
HTTP request headers can be obtained from a request using the NEXT_HTTP_HEADER and
HTTP_HEADER functions.

The HTTP_HEADER function returns the value of the named HTTP header field.

The NEXT_HTTP_HEADER function iterates through the HTTP headers and returns the
next HTTP header name. Calling this function with NULL causes it to return the name of the
first header. Subsequent headers are retrieved by passing the name of the previous header to
the function. NULL is returned when the last header name is called.

The following table lists some common HTTP request headers and typical values:

Header name Header value

Accept image/gif, image/x-xbitmap, image/jpeg, image/
pjpeg, application/x-shockwave-flash, applica-
tion/vnd.ms-excel, application/vnd.ms-power-
point, application/msword, */*

Accept-Language en-us

Accept-Charset utf-8, iso-8859-5;q=0.8

Accept-Encoding gzip, deflate

HTTP Web Services

Programming 641

Header name Header value

User-Agent Mozilla/4.0 (compatible; MSIE 7.0; Windows
NT 5.2; WOW64; SV1; .NET CLR 2.0.50727)

Host localhost:8080

Connection Keep-Alive

The following table lists special headers and typical values:

Header Name Header Value

@HttpMethod GET

@HttpURI /demo/ShowHTTPHeaders

@HttpVersion HTTP/1.1

@HttpQueryString id=-123&version=109&lang=en

You can use the @HttpStatus special header to set the status code of the request being
processed.

The following example illustrates how to format header names and values into an HTML
table.

Create the ShowHTTPHeaders web service:

CREATE SERVICE ShowHTTPHeaders
 TYPE 'RAW'
 AUTHORIZATION OFF
 USER DBA
 AS CALL HTTPHeaderExample();

Create a HTTPHeaderExample procedure that uses the NEXT_HTTP_HEADER function
to get the name of the header, then uses the HTTP_HEADER function to retrieve its value:
CREATE PROCEDURE HTTPHeaderExample()
RESULT (html_string LONG VARCHAR)
BEGIN
 declare header_name LONG VARCHAR;
 declare header_value LONG VARCHAR;
 declare header_query LONG VARCHAR;
 declare table_rows XML;
 set header_name = NULL;
 set table_rows = NULL;
header_loop:
 LOOP
 SET header_name = NEXT_HTTP_HEADER(header_name);
 IF header_name IS NULL THEN
 LEAVE header_loop
 END IF;
 SET header_value = HTTP_HEADER(header_name);
 SET header_query = HTTP_HEADER('@HttpQueryString');

HTTP Web Services

642 SAP Sybase IQ

 -- Format header name and value into an HTML table row
 SET table_rows = table_rows ||
 XMLELEMENT(name "tr",
 XMLATTRIBUTES('left' AS "align",
 'top' AS "valign"),
 XMLELEMENT(name "td", header_name),
 XMLELEMENT(name "td", header_value),
 XMLELEMENT(name "td", header_query));

 END LOOP;
 SELECT XMLELEMENT(name "table",
 XMLATTRIBUTES('' AS "BORDER",
 '10' AS "CELLPADDING",
 '0' AS "CELLSPACING"),
 XMLELEMENT(name "th",
 XMLATTRIBUTES('left' AS "align",
 'top' AS "valign"),
 'Header Name'),
 XMLELEMENT(name "th",
 XMLATTRIBUTES('left' AS "align",
 'top' AS "valign"),
 'Header Value'),
 XMLELEMENT(name "th",
 XMLATTRIBUTES('left' AS "align",
 'top' AS "valign"),
 'HTTP Query String'),
 table_rows);
END;

Access the ShowHTTPHeaders in a web browser to see the request headers arranged in an
HTML table.

How to Access Client-Supplied SOAP Request Headers
Headers in SOAP requests can be obtained using a combination of the
NEXT_SOAP_HEADER and SOAP_HEADER functions.

The NEXT_SOAP_HEADER function iterates through the SOAP headers included within a
SOAP request envelope and returns the next SOAP header name. Calling it with NULL causes
it to return the name of the first header. Subsequent headers are retrieved by passing the name
of the previous header to the NEXT_SOAP_HEADER function. This function returns NULL
when called with the name of the last header.

The following example illustrates the SOAP header retrieval:
SET hd_key = NEXT_SOAP_HEADER(hd_key);
 IF hd_key IS NULL THEN
 -- no more header entries
 LEAVE header_loop;
 END IF;

Calling this function repeatedly returns all the header fields exactly once, but not necessarily
in the order they appear in the SOAP request.

HTTP Web Services

Programming 643

The SOAP_HEADER function returns the value of the named SOAP header field, or NULL if
not called from an SOAP service. It is used when processing an SOAP request via a web
service. If a header for the given field-name does not exist, the return value is NULL.

The example searches for a SOAP header named Authentication. When it finds this header, it
extracts the value for entire SOAP header and the values of the @namespace and
mustUnderstand attributes. The SOAP header value might look something like this XML
string:
<Authentication xmlns="CustomerOrderURN" mustUnderstand="1">
 <userName pwd="none">
 <first>John</first>
 <last>Smith</last>
 </userName>
</Authentication>

For this header, the @namespace attribute value would be CustomerOrderURN
Also, the mustUnderstand attribute value would be 1

The interior of this XML string is parsed with the OPENXML function using an XPath string
set to /*:Authentication/*:userName.

SELECT * FROM OPENXML(hd_entry, xpath)
 WITH (pwd LONG VARCHAR '@*:pwd',
 first_name LONG VARCHAR '*:first/text()',
 last_name LONG VARCHAR '*:last/text()');

Using the sample SOAP header value shown above, the SELECT statement would create a
result set as follows:

pwd first_name last_name

none John Smith

A cursor is declared on this result set and the three column values are fetched into three
variables. At this point, you have all the information of interest that was passed to the web
service.

Example

The following example illustrates how a web server can process SOAP requests containing
parameters, and SOAP headers. The example implements an addItem SOAP operation that
takes two parameters: amount of type int and item of type string. The sp_addItems
procedure processes an Authentication SOAP header extracting the first and last name of the
user. The values are used to populate a SOAP response Validation header via the
sa_set_soap_header system procedure. The response is a result of three columns: quantity,
item and status with types INT, LONG VARCHAR and LONG VARCHAR respectively.

// create the SOAP service
CREATE SERVICE addItems
 TYPE 'SOAP'
 FORMAT 'CONCRETE'
 AUTHORIZATION OFF

HTTP Web Services

644 SAP Sybase IQ

 USER DBA
 AS CALL sp_addItems(:amount, :item);

// create SOAP endpoint for related services
CREATE SERVICE itemStore
 TYPE 'DISH'
 AUTHORIZATION OFF
 USER DBA;

// create the procedure that will process the SOAP requests for the
addItems service
CREATE PROCEDURE sp_addItems(count INT, item LONG VARCHAR)
RESULT(quantity INT, item LONG VARCHAR, status LONG VARCHAR)
BEGIN
 DECLARE hd_key LONG VARCHAR;
 DECLARE hd_entry LONG VARCHAR;
 DECLARE pwd LONG VARCHAR;
 DECLARE first_name LONG VARCHAR;
 DECLARE last_name LONG VARCHAR;
 DECLARE xpath LONG VARCHAR;
 DECLARE authinfo LONG VARCHAR;
 DECLARE namespace LONG VARCHAR;
 DECLARE mustUnderstand LONG VARCHAR;

 header_loop:
 LOOP
 SET hd_key = next_soap_header(hd_key);
 IF hd_key IS NULL THEN
 // no more header entries.
 leave header_loop;
 END IF;
 IF hd_key = 'Authentication' THEN
 SET hd_entry = soap_header(hd_key);
 SET xpath = '/*:' || hd_key || '/*:userName';
 SET namespace = soap_header(hd_key, 1, '@namespace');
 SET mustUnderstand = soap_header(hd_key, 1,
'mustUnderstand');
 BEGIN
 // parse for the pieces that you are interested in
 DECLARE crsr CURSOR FOR SELECT * FROM
 OPENXML(hd_entry, xpath)
 WITH (pwd LONG VARCHAR '@*:pwd',
 first_name LONG VARCHAR '*:first/text()',
 last_name LONG VARCHAR '*:last/text()');
 OPEN crsr;
 FETCH crsr INTO pwd, first_name, last_name;
 CLOSE crsr;
 END;
 // build a response header, based on the pieces from the
request header
 SET authinfo = XMLELEMENT('Validation',
 XMLATTRIBUTES(
 namespace as xmlns,
 mustUnderstand as mustUnderstand),
 XMLELEMENT('first', first_name),
 XMLELEMENT('last', last_name));

HTTP Web Services

Programming 645

 CALL sa_set_soap_header('authinfo', authinfo);
 END IF;
 END LOOP header_loop;
 // code to validate user/session and check item goes here...
 SELECT count, item, 'available';
END;

HTTP Session Management on an HTTP Server
A web application can support sessions in various ways. Hidden fields within HTML forms
can be used to preserve client/server data across multiple requests. Alternatively, Web 2.0
techniques, such as an AJAX enabled client-side JavaScript, can make asynchronous HTTP
requests based on client state. SAP Sybase IQ offers the additional capability of preserving a
database connection for exclusive use of sessioned HTTP requests.

Any connection scope variables and temporary tables created and altered within the HTTP
session are accessible to subsequent HTTP requests that specify the given SessionID. The
SessionID can be specified by a GET or POST HTTP request method or specified within an
HTTP cookie header. When an HTTP request is received with a SessionID variable, the server
checks its session repository for a matching context. If it finds a session, the server utilizes its
database connection for processing the request. If the session is in use, it queues the HTTP
request and activates it when the session is freed.

The sa_set_http_option can be used to create, delete and change session ids.

HTTP sessions require special handling for management of the session criteria. Only one
database connection exists for use by a given SessionID, so consecutive client requests for that
SessionID are serialized by the server. Up to 16 requests can be queued for a given SessionID.
Subsequent requests for the given SessionID are rejected with a 503 Service
Unavailable status when the session queue is full.

When creating a SessionID for the first time, the SessionID is immediately registered by the
system. Subsequent requests that modify or delete the SessionID are only applied when the
given HTTP request terminates. This approach promotes consistent behavior if the request
processing results in a roll-back or if the application deletes and resets the SessionID.

The current session is deleted and replaced with the pending session when an HTTP request
changes the SessionID. The database connection cached by the session is effectively moved to
the new session context, and all state data is preserved, such as temporary tables and created
variables.

For a complete example of HTTP session usage, see %ALLUSERSPROFILE%\SybaseIQ
\samples\SQLAnywhere\HTTP\session.sql.

Note: Stale sessions should be deleted and an appropriate timeout should be set to minimize
the number of outstanding connections because each client application connection holds a
license seat. Connections associated with HTTP sessions maintain their hold on the server
database for the duration of the connection.

For more information about licensing, see http://www.sybase.com/detail?id=1056242.

HTTP Web Services

646 SAP Sybase IQ

http://www.sybase.com/detail?id=1056242

How to Create an HTTP Session
Sessions can be created using the SessionID option in the sa_set_http_option system
procedure. The session ID can be defined by any non-null string.

Session state management is supported by URLs and cookies. HTTP sessions can be accessed
using HTTP cookies, or through the URL of a GET request or from within the body of a POST
(x-www-form-urlencoded) request. For example, the following URL utilizes the XYZ
database connection when it executes:
http://localhost/sa_svc?SESSIONID=XYZ

The request is processed as a standard session-less request if an XYZ database connection does
not exist.

Example

The following code illustrates how to create a RAW web service that creates and deletes
sessions. A connection scope variable named request_count is incremented each time an
HTTP request is made while specifying a valid SessionID.
CREATE SERVICE mysession
 TYPE 'RAW'
 AUTHORIZATION OFF
 USER DBA
 AS CALL mysession_proc();

CREATE PROCEDURE mysession_proc()
BEGIN
 DECLARE body LONG VARCHAR;
 DECLARE hostname LONG VARCHAR;
 DECLARE svcname LONG VARCHAR;
 DECLARE sesid LONG VARCHAR;

 CALL sa_set_http_header ('Content-Type', 'text/html');
 SELECT CONNECTION_PROPERTY('SessionID') INTO sesid;
 SELECT CONNECTION_PROPERTY('HttpServiceName') INTO svcname;
 SELECT HTTP_HEADER('Host') INTO hostname;
 IF HTTP_VARIABLE('delete') IS NOT NULL THEN
 CALL sa_set_http_option('SessionID', NULL);
 SET body = '<html><body>Deleted ' || sesid
 || '</BR><a href="http://' || hostname || '/' || svcname ||
'">Start Again';
 SELECT body;
 END IF;
 IF sesid = '' THEN
 SET sesid = set_session_url();
 CREATE VARIABLE request_count INT;
 SET request_count = 0;

 SET body = '<html><body> Created session ID ' || sesid
 || '</br><a href="http://' || hostname || '/' || svcname
 || '?SessionID=' || sesid || '"> Enter into Session';
 ELSE

HTTP Web Services

Programming 647

 SELECT CONNECTION_PROPERTY('SessionID') INTO sesid;
 SET request_count = request_count +1;
 SET body = '<html><body>Session ' || sesid || '</br>'
 || 'created ' || CONNECTION_PROPERTY('SessionCreateTime')
|| '</br>'
 || 'last access ' ||
CONNECTION_PROPERTY('SessionLastTime') || '</br>'
 || 'connection ID ' || CONNECTION_PROPERTY('Number') ||
'</br>'
 || '<h3>REQUEST COUNT is '|| request_count || '</h3><hr></
br>'
 || '<a href="http://' || hostname || '/' || svcname
 || '?SessionID=' || sesid || '">Enter into Session</
br>'
 || '<a href="http://' || hostname || '/' || svcname
 || '?SessionID=' || sesid || '&delete">Delete Session</
a>';
 END IF;

 SELECT body;
END;

How to Use the URL to Manage a Session
In a URL session state management system, the client application or web browser provides the
session ID in a URL.

Example

The following example illustrates unique session ID creation within an HTTP web server SQL
function where session IDs can be provided by a URL only:
CREATE FUNCTION set_session_url()
RETURNS LONG VARCHAR
BEGIN
 DECLARE session_id LONG VARCHAR;
 DECLARE tm TIMESTAMP;
 SET tm = NOW(*);
 SET session_id = 'session_' ||
 CONVERT(VARCHAR, SECONDS(tm) * 1000 + DATEPART(MILLISECOND,
tm));
 CALL sa_set_http_option('SessionID', session_id);
 SELECT CONNECTION_PROPERTY('SessionID') INTO session_id;
 RETURN(session_id);
END;

The SessionID is represented as an empty string if the session_id is not defined for the
connection, making a sessionless connection.

The sa_set_http_option system procedure returns an error if the session_id is owned by
another HTTP request.

How to Use Cookies to Manage a Session
In a cookie session state management system, the client application or web browser provides
the session ID in an HTTP cookie header instead of a URL. Cookie session management is

HTTP Web Services

648 SAP Sybase IQ

supported with the 'Set-Cookie' HTTP response header of the sa_set_http_header system
procedure.

Note: You cannot rely on cookie state management when cookies can be disabled in the client
application or web browser. Support for both URL and cookie state management is
recommended. The URL-supplied session ID is used when session IDs are provided by both
the URL and a cookie.

Example

The following example illustrates unique session ID creation within an HTTP web server SQL
function where session IDs can be provided by a URL or a cookie:
CREATE FUNCTION set_session_cookie()
RETURNS LONG VARCHAR
BEGIN
 DECLARE session_id LONG VARCHAR;
 DECLARE tm TIMESTAMP;
 SET tm = NOW(*);
 SET session_id = 'session_' ||
 CONVERT(VARCHAR, SECONDS(tm) * 1000 + DATEPART(MILLISECOND,
tm));
 CALL sa_set_http_option('SessionID', session_id);
 CALL sa_set_http_header('Set-Cookie',
 'sessionid=' || session_id || ';' ||
 'max-age=60;' ||
 'path=/session;');
 SELECT CONNECTION_PROPERTY('SessionID') INTO session_id;
 RETURN(session_id);
END;

How to Detect an Inactive HTTP Session
The SessionCreateTime and SessionLastTime connection properties can be used to determine
if the current connection is within a session context. The HTTP request is not running within a
session context when either connection property query returns an empty string.

The SessionCreateTime connection property provides a metric of when a given session was
created. It is initially defined when the sa_set_http_option system procedure is called to
establish the SessionID.

The SessionLastTime connection property provides the time when the last processed session
request released the database connection upon termination of the previous request. It is
returned as an empty string when the session is first created until the creator request releases
the connection.

Note: You can adjust the session timeout duration using the http_session_timeout option.

Example

The following example illustrates session detection using the SessionCreateTime and
SessionLastTime connection properties:

HTTP Web Services

Programming 649

SELECT CONNECTION_PROPERTY('sessioncreatetime') INTO ses_create;
SELECT CONNECTION_PROPERTY('sessionlasttime') INTO ses_last;

How to Delete an HTTP Session or Change the Session ID
Explicitly dropping a database connection that is cached within a session context causes the
session to be deleted. Session deletion in this manner is a cancel operation; any requests
released from the session queue are in a canceled state. This action ensures that any
outstanding requests waiting on the session are terminated. Similarly, a server or database
shutdown cancels all database connections.

A session can be deleted by setting the SessionID option in the sa_set_http_option system
procedure to null or an empty string.

The following code can be used for session deletion:
CALL sa_set_http_option('SessionID', null);

When an HTTP session is deleted or the SessionID is changed, any pending HTTP requests
that are waiting on the session queue are released and allowed to run outside of a session
context. The pending requests do not reuse the same database connection.

A session ID cannot be set to an existing session ID. Pending requests referring to the old
SessionID are released to run as session-less requests when a SessionID has changed.
Subsequent requests referring to the new SessionID reuse the same database connection
instantiated by the old SessionID.

The following conditions are applied when deleting or changing an HTTP session:

• The behavior differs depending on whether the current request had inherited a session
whereby a database connection belonging to a session was acquired, or whether a session-
less request had instantiated a new session. If the request began as session-less, then the act
of creating or deleting a session occurs immediately. If the request has inherited a session,
then a change in the session state, such as deleting the session or changing the SessionID,
only occurs after the request terminates and its changes have been committed. The
difference in behavior addresses processing anomalies that may occur if a client makes
simultaneous requests using the same SessionID.

• Changing a session to a SessionID of the current session (has no pending session) is not an
error and has no substantial effect.

• Changing a session to a SessionID in use by another HTTP request is an error.
• Changing a session when a change is already pending results in the pending session being

deleted and new pending session being created. The pending session is only activated once
the request successfully terminates.

• Changing a session with a pending session back to its original SessionID results in the
pending session being deleted without any change to the current session.

HTTP Web Services

650 SAP Sybase IQ

HTTP Session Administration
A session created by an HTTP request is immediately instantiated so that any subsequent
HTTP requests requiring that session context is queued by the session.

In this example, a local host client can access the session with the specified session ID,
session_63315422814117, running within the database, dbname, running the service
session_service with the following URL once the session is created on the server with the
sa_set_http_option procedure.
http://localhost/dbname/session_service?
sessionid=session_63315422814117

A web application can require a means to track active session usage within the HTTP web
server. Session data can be found using the NEXT_CONNECTION function call to iterate
through the active database connections and checking for session related properties such as
SessionID.

The following SQL statements illustrate how to track an active session:
CREATE VARIABLE conn_id LONG VARCHAR;
CREATE VARIABLE the_sessionID LONG VARCHAR;
SELECT NEXT_CONNECTION(NULL, NULL) INTO conn_id;
conn_loop:
 LOOP
 IF conn_id IS NULL THEN
 LEAVE conn_loop;
 END IF;
 SELECT CONNECTION_PROPERTY('SessionID', conn_id)
 INTO the_sessionID;
 IF the_sessionID != '' THEN
 PRINT 'conn_id = %1!, SessionID = %2!', conn_id,
the_sessionID;
 ELSE
 PRINT 'conn_id = %1!', conn_id;
 END IF;
 SELECT NEXT_CONNECTION(conn_id, NULL) INTO conn_id;
 END LOOP conn_loop;
 PRINT '\n';

If you examine the database server messages window, you see data that is similar to the
following output:
conn_id = 30
conn_id = 29, SessionID = session_63315442223323
conn_id = 28, SessionID = session_63315442220088
conn_id = 25, SessionID = session_63315441867629

Explicitly dropping a connection that belongs to a session causes the connection to be closed
and the session to be deleted. If the connection being dropped is currently active in servicing
an HTTP request, the request is marked for deletion and the connection is sent a cancel signal
to terminate the request. When the request terminates, the session is deleted and the

HTTP Web Services

Programming 651

connection closed. Deleting the session causes any pending requests on that session's queue to
be re-queued.

In the event the connection is currently inactive, the session is marked for deletion and re-
queued to the beginning of the session timeout queue. The session and the connection are
deleted in the next timeout cycle (normally within 5 seconds). Any session marked for
deletion cannot be used by a new HTTP request.

All sessions are lost when the database is stopped.

HTTP Session Error Codes
The 503 Service Unavailable error occurs when a new request tries to access a
session where more than 16 requests are pending on that session, or an error occurred while
queuing the session.

The 403 Forbidden error occurs when the client IP address or host name does not match
that of the creator of the session.

A request stipulating a session that does not exist does not implicitly generate an error. It is up
to the web application to detect this condition (by checking SessionID, SessionCreateTime, or
SessionLastTime connection properties) and do the appropriate action.

Character Set Conversion Considerations
Character-set conversion is performed automatically on outgoing result sets of text types by
default. Result sets of other types, such as binary objects, are not affected. The character set of
the request is converted to the HTTP web server character set, and the result set is converted to
the client application character set. The server uses the first suitable character set listed in the
request when multiple sets are listed.

Character-set conversion can be enabled or disabled by setting the HTTP option
'CharsetConversion' option of the sa_set_http_option system procedure.

The following example illustrates how to turn off automatic character-set conversion:
CALL sa_set_http_option('CharsetConversion', 'OFF');

You can use the 'AcceptCharset' option of the sa_set_http_option system procedure to specify
the character-set encoding preference when character-set conversion is enabled.

The following example illustrates how to specify the web service character set encoding
preference to ISO-8859-5, if supported; otherwise, set it to UTF-8:
CALL sa_set_http_option('AcceptCharset', 'iso-8859-5, utf-8');

Character sets are prioritized by server preference but the selection also considers the client's
Accept-Charset criteria. The most favored character set according to the client that is also
specified by this option is used.

HTTP Web Services

652 SAP Sybase IQ

Cross Site Scripting Considerations
When developing your web application, you should ensure that it is not vulnerable to cross-
site scripting (XSS). This type of vulnerability occurs when an attacker attempts to inject a
script into your web page.

It is highly recommended that application developers and database administrators review their
web application code for possible security vulnerabilities before it is put into production. The
Open Web Application Security Project (https://www.owasp.org) contains more information
about how to secure your web application.

Web Services System Procedures
The following system procedures are for use with web services:

sa_http_header_info system procedure
sa_http_php_page system procedure
sa_http_php_page_interpreted system procedure
sa_http_variable_info system procedure
sa_set_http_header system procedure
sa_set_http_option system procedure
sa_set_soap_header system procedure

Web Services Functions
Web service functions assist the handling of HTTP and SOAP requests within web services.

The following functions are available:

HTML_DECODE function [Miscellaneous]
HTML_ENCODE function [Miscellaneous]
HTTP_BODY function [Web service]
HTTP_DECODE function [Web service]
HTTP_ENCODE function [Web service]
HTTP_HEADER function [Web service]
HTTP_RESPONSE_HEADER function [Web service]
HTTP_VARIABLE function [Web service]
NEXT_HTTP_HEADER function [Web service]
NEXT_HTTP_RESPONSE_HEADER function [Web service]
NEXT_HTTP_VARIABLE function [Web service]
NEXT_SOAP_HEADER function [SOAP]
SOAP_HEADER function [SOAP]

There are also many system procedures available for web services.

HTTP Web Services

Programming 653

https://www.owasp.org

Web Services Connection Properties
Web service connection properties can be database properties that are accessible using the
CONNECTION_PROPERTY function.

Use the following syntax to store a connection property value from the HTTP server to a local
variable in a SQL function or procedure:
SELECT CONNECTION_PROPERTY('connection-property-name') INTO
variable_name;

The following is a list of useful runtime HTTP request connection properties that are
commonly used for web service applications:

• HttpServiceName – Returns the service name origin for a web application.
• AuthType – Returns the type of authentication used when connecting.
• ServerPort – Returns the database server's TCP/IP port number or 0.
• ClientNodeAddress – Returns the node for the client in a client/server connection.
• ServerNodeAddress – Returns the node for the server in a client/server connection.
• BytesReceived – Returns the number of bytes received during client/server

communications.

Web Services Options
Web service options control various aspects of HTTP server behavior.

Use the following syntax to set a public option in an HTTP server:
SET TEMPORARY OPTION PUBLIC.http_session_timeout=100;

The following is a list of options that are commonly used in HTTP servers for application
configuration:

• http_connection_pool_basesize – Specifies the nominal threshold size of database
connections.

• http_connection_pool_timeout – Specifies the maximum duration that an unused
connection can be retained in the connection pool.

• http_session_timeout – Specifies the default timeout duration, in minutes, that the HTTP
session persists during inactivity.

• request_timeout – Controls the maximum time a single request can run.
• webservice_namespace_host – Specifies the hostname to be used as the XML

namespace within specification for DISH services.

How to Browse the SAP Sybase IQ HTTP Web Server
Available URL names are defined by how your web services are named and designed. Each
web service provides its own set of web content. This content is typically generated by custom

HTTP Web Services

654 SAP Sybase IQ

functions and procedures in your database, but content can also be generated with a URL that
specifies a SQL statement.

lternatively, or in conjunction, you can define the root web service, which processes all
HTTP requests that are not processed by a dedicated service. The root web service would
typically inspect the request URL and headers to determine how to process the request.

URLs uniquely specify resources such as html content available through HTTP or secured
HTTPS requests. This section explains how to format the URL syntax in your web browser so
that you can access the web services defined on your SAP Sybase IQ HTTP web server.

Note: The information in this section applies to HTTP web servers that use general HTTP web
service types, such as RAW, XML, and HTML, and DISH services. You cannot use a browser
to issue SOAP requests. JSON services return result sets for consumption by web service
applications using AJAX.

Syntax
{http|https}://host-name[:port-number][/dbn]/service-name[/path-
name|?url-query]

Parameters

• host-name and port-number – Specifies the location of the web server and, optionally,
the port number if it is not defined as the default HTTP or HTTPS port numbers. The
host-name can be the IP address of the computer running the web server. The port-number
must match the port number used when you started the web server.

• dbn – Specifies the name of a database. This database must be running on the web server
and contain web services.

You do not need to specify dbn if the web server is running only one database or if the
database name was specified for the given HTTP/HTTPS listener of the protocol option.

• service-name – Specifies the name of the web service to access. This web service must
exist in the database specified by dbn. Slash characters (/) are permitted when you create
or alter a web service, so you can use them as part of the service-name. SAP Sybase IQ
matches the remainder of the URL with the defined services.

The client request is processed if a service-name is not specified and the root web service
is defined. A 404 Not Found error is returned if the server cannot identify an
applicable service to process the request. As a side-effect, if the root web service does
exist and cannot process the request based on the URL criteria, then it is responsible for
generating the 404 Not Found error.

• path-name – After resolving the service name, the remaining slash delimited path can be
accessed by a web service procedure. If the service was created with URL ON, then the
whole path is accessible using a designated URL HTTP variable. If the service was created
with URL ELEMENTS, then each path element can be accessed using designated HTTP
variables URL1 to URL10.

HTTP Web Services

Programming 655

Path element variables can be defined as host variables within the parameter declaration of
the service statement definition. Alternatively, or additionally, HTTP variables can be
accessed from within a stored procedure using the HTTP_VARIABLE function call.

The following example illustrates the SQL statement used to create a web service where
the URL clause is set to ELEMENTS:
CREATE SERVICE TestWebService
 TYPE 'HTML'
 URL ELEMENTS
 AUTHORIZATION OFF
 USER DBA
 AS CALL TestProcedure (:url1, :url2);

This TestWebService web service calls a procedure that explicitly references the
url1 and url2 host variables.

You can access this web service using the following URL, assuming that
TestWebService is running on the demo database from localhost through the
default port:
http://localhost/demo/TestWebService/Assignment1/Assignment2/
Assignment3

This URL accesses TestWebService, which runs TestProcedure and assigns the
Assignment1 value to url1, and the Assignment2 value to url2. Optionally,
TestProcedure can access other path elements using the HTTP_VARIABLE
function. For example, the HTTP_VARIABLE('url3') function call returns
Assignment3.

• url-query – An HTTP GET request may follow a path with a query component that
specifies HTTP variables. Similarly, the body of a POST request using a standard
application/x-www-form-urlencoded Content-Type can pass HTTP variables within the
request body. In either case, HTTP variables are passed as name/value pairs where the
variable name is delimited from its value with an equals signs. Variables are delimited with
an ampersand.

HTTP variables can be explicitly declared as host variables within the parameter list of the
service-statement, or accessed using the HTTP_VARIABLE function from within the
stored procedure of the service statement.

For example, the following SQL statement creates a web service that requires two host
variables. Host variables are identified with a colon (:) prefix.
CREATE SERVICE ShowSalesOrderDetail
 TYPE 'HTML'
 URL OFF
 AUTHORIZATION OFF
 USER DBA
 AS CALL ShowSalesOrderDetail(:customer_id, :product_id);

HTTP Web Services

656 SAP Sybase IQ

Assuming that ShowSalesOrderDetail is running on the demonstration database
from localhost through the default port, you can access the web service using the
following URL:
http://localhost/demo/ShowSalesOrderDetail?
customer_id=101&product_id=300

This URL accesses ShowSalesOrderDetail and assigns a value of 101 to
customer_id, and a value of 300 to product_id. The resultant output is displayed in
your web browser in HTML format.

Remarks
The web browser prompts for user name and password when required to connect to the server.
The browser then base64 encodes the user input within an Authorization request header and
resends the request.

If your web service URL clause is set to ON or ELEMENTS, the URL syntax properties of
path-name and url-query can be used simultaneously so that the web service is accessible
using one of several different formatting options. When using these syntax properties
simultaneously, the path-name format must be used first followed by the url-query format.

In the following example, this SQL statement creates a web service where the URL clause is
set to ON, which defines the url variable:

CREATE SERVICE ShowSalesOrderDetail
 TYPE 'HTML'
 URL ON
 AUTHORIZATION OFF
 USER DBA
 AS CALL ShowSalesOrderDetail(:product_id, :url);

The following is a sample list of acceptable URLs that assign a url value of 101 and a
product_id value of 300:

http://localhost:80/demo/ShowSalesOrderDetail2/101?
product_id=300
http://localhost:80/demo/ShowSalesOrderDetail2?
url=101&product_id=300
http://localhost:80/demo/ShowSalesOrderDetail2?
product_id=300&url=101

When a host variable name is assigned more than once in the context of path-name and url-
query, the last assignment always takes precedence. For example, the following sample URLs
assign a url value of 101 and a product_id value of 300:

http://localhost:80/demo/ShowSalesOrderDetail2/302?
url=101&product_id=300
http://localhost:80/demo/ShowSalesOrderDetail2/String?
product_id=300&url=101

HTTP Web Services

Programming 657

Example

The following URL syntax is used to access a web service named gallery_image that is
running in a database named demo on a local HTTP server through the default port, assuming
that the gallery_image service is defined with URL ON:

http://localhost/demo/gallery_image/sunset.jpg

The URL appears to request a graphic file in a directory from a traditional web server, but it
accesses the gallery_image service with sunset.jpg specified as an input parameter
for an HTTP web server.

The following SQL statement illustrates how the gallery service could be defined on the HTTP
server to accomplish this behavior:
CREATE SERVICE gallery_image
 TYPE 'RAW'
 URL ON
 AUTHORIZATION OFF
 USER DBA
 AS CALL gallery_image (:url);

The gallery_image service calls a procedure with the same name, passing the client-
supplied URL. For a sample implementation of a gallery_image procedure that can be
accessed by this web service definitions, see %ALLUSERSPROFILE%\SybaseIQ
\samples\SQLAnywhere\HTTP\gallery.sql.

Access to Web Services Using Web Clients
SAP Sybase IQ can be used as a web client to access web services hosted by an SAP Sybase IQ
web server or third party web servers such as Apache or IIS.

In addition to using SAP Sybase IQ as a web client, SAP Sybase IQ web services provide
client applications with an alternative to traditional interfaces, such as JDBC and ODBC. They
are easily deployed because additional components are not needed, and can be accessed from
multi-platform client applications written in a variety of languages, including scripting
languages — such as Perl and Python.

Quick Start to Using SAP Sybase IQ As a Web Client
This section illustrates how to use SAP Sybase IQ as a web client application to connect to an
SAP Sybase IQ HTTP server and access a general HTTP web service. It does not illustrate
SAP Sybase IQ web client capabilities to a full extent. Many SAP Sybase IQ web client
features are available that are beyond the scope of this topic.

You can develop SAP Sybase IQ web client applications that connect to any type of online web
server, but this section assumes that you have started a local SAP Sybase IQ HTTP server on
port 8082 and want to connect to a web service named SampleHTMLService, created with
the following SQL statements:

HTTP Web Services

658 SAP Sybase IQ

CREATE SERVICE SampleHTMLService
 TYPE 'HTML'
 USER DBA
 AUTHORIZATION OFF
 AS CALL sp_echo(:i, :f, :s);

CREATE PROCEDURE sp_echo(i INTEGER, f REAL, s LONG VARCHAR)
RESULT(ret_i INTEGER, ret_f REAL, ret_s LONG VARCHAR)
BEGIN
 SELECT i, f, s;
END;

Perform the following tasks to create an SAP Sybase IQ web client application:

1. Run the following command to create an SAP Sybase IQ client database if one does not
already exist:
iqinit -dba DBA,sql client-database-name

Replace client-database-name with a new name for your client database.
2. Run the following command to start the client database:

iqsrv16 client-database-name.db
3. Run the following command to connect to the client database through Interactive SQL:

dbisql -c "UID=DBA;PWD=sql;SERVER=client-database-name"
4. Create a new client procedure that connects to the SampleHTMLService web service

using the following SQL statement:
CREATE PROCEDURE client_post(f REAL, i INTEGER, s VARCHAR(16), x
VARCHAR(16))
 URL 'http://localhost:8082/SampleHTMLService'
 TYPE 'HTTP:POST'
 HEADER 'User-Agent:SATest';

5. Execute the following SQL statement to call the client procedure and send an HTTP
request to the web server:
CALL client_post(3.14, 9, 's varchar', 'x varchar');

The HTTP POST request created by client_post looks similar to the following output:

POST /SampleHTMLService HTTP/1.0
ASA-Id: ea1746b01cd0472eb4f0729948db60a2
User-Agent: SATest
Accept-Charset: windows-1252, UTF-8, *
Date: Wed, 9 Jun 2010 21:55:01 GMT
Host: localhost:8082
Connection: close
Content-Type: application/x-www-form-urlencoded;
charset=windows-1252
Content-Length: 58

&f=3.1400001049041748&i=9&s=s%20varchar&x=x%20varchar

The web service SampleHTMLService running on the web server extracts the parameter
values for i, f, and s from the POST request and passes them as parameters to the sp_echo
procedure. Parameter value x is ignored. The sp_echo procedure creates a result set which is

HTTP Web Services

Programming 659

returned to the web service. Agreement in parameter names between the client and the web
server is essential for proper mapping.

The web service creates the response which is sent back to the client. The output displayed in
Interactive SQL should be similar to the following output:

Attribute Value

Status HTTP/1.1 200 OK

Body <html>
<head>
<title>/SampleHTMLService</ti-
tle></head>
<body>
<h3>/SampleHTMLService</h3>
<table border=1>
<tr class="head-
er"><th>ret_i</th>
<th>ret_f</th>
<th>ret_s</th>
</tr>
<tr><td>9</
td><td>3.1400001049041748</
td><td>s varchar</td>

Date Wed, 09 Jun 2010 21:55:01 GMT

Connection close

Expires Wed, 09 Jun 2010 21:55:01 GMT

Content-Type text/html; charset=windows-1252

Server Sybase IQ/16.0.0

Quick Start to Accessing an SAP Sybase IQ HTTP Web Server
This section illustrates how to access an SAP Sybase IQ HTTP web server using two different
types of client application — Python and C#. It does not illustrate SAP Sybase IQ web service
application capabilities to a full extent. Many SAP Sybase IQ web service features are
available that are beyond the scope of this topic.

You can develop SAP Sybase IQ web client applications that connect to any type of online web
server, but this guide assumes that you have started a local SAP Sybase IQ HTTP server on
port 8082 and want to connect to a web service named SampleXMLService, created with
the following SQL statements:
CREATE SERVICE SampleXMLService
 TYPE 'XML'
 USER DBA
 AUTHORIZATION OFF
 AS CALL sp_echo2(:i, :f, :s);

HTTP Web Services

660 SAP Sybase IQ

CREATE PROCEDURE sp_echo2(i INTEGER, f NUMERIC(6,2), s LONG VARCHAR)
RESULT(ret_i INTEGER, ret_f NUMERIC(6,2), ret_s LONG VARCHAR)
BEGIN
 SELECT i, f, s;
END;

Perform the following tasks to access an XML web service using C# or Python:

1. Create a procedure that connects to a web service on an HTTP server.
Write code that accesses the SampleXMLService web service.
• For C#, use the following code:

using System;
using System.Xml;

public class WebClient
{
 static void Main(string[] args)
 {
 XmlTextReader reader = new XmlTextReader(
 "http://localhost:8082/SampleXMLService?
i=5&f=3.14&s=hello");
 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.Element:
 if (reader.Name == "row")
 {
 Console.Write(reader.GetAttribute("ret_i")
+ " ");
 Console.Write(reader.GetAttribute("ret_s")
+ " ");

Console.WriteLine(reader.GetAttribute("ret_f"));
 }
 break;
 }
 }
 reader.Close();
 }
}

Save the code to a file named DocHandler.cs.
To compile the program, run the following command at a command prompt:
csc /out:DocHandler.exe DocHandler.cs

• For Python, use the following code:
import xml.sax

class DocHandler(xml.sax.ContentHandler):
 def startElement(self, name, attrs):
 if name == 'row':
 table_int = attrs.getValue('ret_i')
 table_string = attrs.getValue('ret_s')
 table_numeric = attrs.getValue('ret_f')

HTTP Web Services

Programming 661

 print('%s %s %s' % (table_int, table_string,
table_numeric))

parser = xml.sax.make_parser()
parser.setContentHandler(DocHandler())
parser.parse('http://localhost:8082/SampleXMLService?
i=5&f=3.14&s=hello')

Save the code to a file named DocHandler.py.

2. Perform operations on the result set sent by the HTTP server.
• For C#, run the following command:

DocHandler
• For Python, run the following command:

python DocHandler.py

The application displays the following output:
5 hello 3.14

Web Client Application Development
SAP Sybase IQ databases can act as web client applications to access SAP Sybase IQ hosted
web services or web services hosted on third party web servers. SAP Sybase IQ web client
applications are created by writing stored procedures and functions using configuration
clauses, such as the URL clause that specifies the web service target endpoint. Web client
procedures do not have a body, but in every other way are used as any other stored procedure.
When called, a web client procedure makes an outbound HTTP or SOAP request. A web client
procedure is restricted from making an outbound HTTP request to itself; it cannot call a
localhost SAP Sybase IQ web service running on the same database.

For detailed examples of web service applications, see the %ALLUSERSPROFILE%
\SybaseIQ\samples\SQLAnywhere\HTTP directory.

Web Client Function and Procedure Requirements and Recommendations
Web service client procedures and functions require the definition of a URL clause to identify
the web service endpoint. A web service client procedure or function has specialized clauses
for configuration but is used like any other stored procedure or function in every other respect.

You can use the CREATE PROCEDURE and CREATE FUNCTION statements to create web
client functions and procedures to send SOAP or HTTP requests to a web server.

The following list outlines the requirements and recommendations for creating or altering web
client functions and procedures. You can specify the following information when creating or
altering a web client function or procedure:

• The URL clause, which requires an absolute URL specifying the web service endpoint.
(Required)

• The TYPE clause to specify whether the request is HTTP or SOAP over HTTP.
(Recommended)

HTTP Web Services

662 SAP Sybase IQ

• Ports that are accessible to the client application. (Optional)
• The HEADER clause to specify HTTP request headers. (Optional)
• The SOAPHEADER clause to specify SOAP header criteria within the SOAP request

envelope. (Optional. For SOAP requests only)
• The namespace URI. (For SOAP requests only)

Web Client URL Clause
You must specify the location of the web service endpoint to make it accessible to your web
client function or procedure. The URL clause of the CREATE PROCEDURE and CREATE
FUNCTION statements provides the web service URL that you want to access.

Specifying an HTTP service URL
Specifying an HTTP scheme within the URL clause configures the procedure or function for
non-secure communication using an HTTP protocol.

The following statement illustrates how to create a procedure that sends requests to a web
service named SampleHTMLService that resides in a database named dbname hosted by
an HTTP web server located at localhost on port 8082:

CREATE PROCEDURE client_sender(f REAL, i INTEGER, s VARCHAR(16))
 URL 'http://localhost:8082/dbname/SampleHTMLService'
 TYPE 'HTTP:POST'
 HEADER 'User-Agent:SATest';

The database name is only required if the HTTP server hosts more than one database. You can
substitute localhost with the host name or the IP address of the HTTP server.

Specifying an HTTPS service URL
Specifying an HTTPS scheme within the URL clause configures the procedure or function for
secure communication over Secure Socket Layer (SSL).

Your web client application must have access to an RSA server certificate or the certificate that
signed the server certificate to issue a secure HTTPS request. The certificate is required for the
client procedure to authenticate the server to prevent man-in-the-middle exploits.

Use the CERTIFICATE clause of the CREATE PROCEDURE and CREATE FUNCTION
statements to authenticate the server and establish a secure data channel. You can either place
the certificate in a file and provide the file name, or provide the entire certificate as a string
value; you cannot do both.

The following statement demonstrates how to create a procedure that sends requests to a web
service named SecureHTMLService that resides in a database named dbname in an
HTTPS server located at localhost on the port 8082:

CREATE PROCEDURE client_sender(f REAL, i INTEGER, s VARCHAR(16))
 URL 'HTTPS://localhost:8082/dbname/SecureHTMLService'
 CERTIFICATE 'file=%ALLUSERSPROFILE%/SybaseIQ/demo\\Certificates\
\rsaroot.crt'
 TYPE 'HTTP:POST'
 HEADER 'User-Agent:SATest';

HTTP Web Services

Programming 663

The CERTIFICATE clause in this example indicates that the RSA server certificate is located
in the %ALLUSERSPROFILE%\SybaseIQ\samples\Certificates
\rsaroot.crt file.

Note: Specifying HTTPS_FIPS forces the system to use the FIPS libraries. If HTTPS_FIPS is
specified, but no FIPS libraries are present, non-FIPS libraries are used instead.

Specifying a proxy server URL
Some requests need to be sent through a proxy server. Use the PROXY clause of the CREATE
PROCEDURE and CREATE FUNCTION statements to specify the proxy server URL and
redirect requests to that URL. The proxy server forwards the request to the final destination,
obtains the response, and forwards the response back to SAP Sybase IQ.

Web Service Request Types
You can specify the type of client requests to send to the web server when creating a web client
function or procedure. The TYPE clause of the CREATE PROCEDURE and CREATE
FUNCTION statements formats requests before sending them to the web server.

Specifying an HTTP request format
Web client functions and procedures send HTTP requests when the specified format in the
TYPE clause begins with an HTTP prefix.

For example, execute the following SQL statement in the web client database to create an
HTTP procedure named PostOperation that sends HTTP requests to the specified URL:

CREATE PROCEDURE PostOperation(a INTEGER, b CHAR(128))
 URL 'HTTP://localhost:8082/dbname/SampleWebService'
 TYPE 'HTTP:POST';

In this example, requests are formatted as HTTP:POST requests, which would produce a
request similar to the following:
POST /dbname/SampleWebService HTTP/1.0
ASA-Id: e88a416e24154682bf81694feaf03052
User-Agent: SQLAnywhere/16.0.0.3600
Accept-Charset: windows-1252, UTF-8, *
Date: Fri, 03 Feb 2012 15:02:49 GMT
Host: localhost:8082
Connection: close
Content-Type: application/x-www-form-urlencoded;
charset=windows-1252
Content-Length: 12

a=123&b=data

Specifying a SOAP request format
Web client functions and procedures send HTTP requests when the specified format in the
TYPE clause begins with a SOAP prefix.

HTTP Web Services

664 SAP Sybase IQ

For example, execute the following statement in the web client database to create a SOAP
procedure named SoapOperation that sends SOAP requests to the specified URL:

CREATE PROCEDURE SoapOperation(intVariable INTEGER, charVariable
CHAR(128))
 URL 'HTTP://localhost:8082/dbname/SampleSoapService'
 TYPE 'SOAP:DOC';

In this example, a SOAP:DOC request is sent to the URL when you call this procedure, which
would produce a request similar to the following:
POST /dbname/SampleSoapService HTTP/1.0
ASA-Id: e88a416e24154682bf81694feaf03052
User-Agent: SQLAnywhere/16.0.0.3600
Accept-Charset: windows-1252, UTF-8, *
Date: Fri, 03 Feb 2012 15:05:13 GMT
Host: localhost:8082
Connection: close
Content-Type: text/xml; charset=windows-1252
Content-Length: 428
SOAPAction: "HTTP://localhost:8082/SoapOperation"

<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="HTTP://localhost:8082">
 <SOAP-ENV:Body>
 <m:SoapOperation>
 <m:intVariable>123</m:intVariable>
 <m:charVariable>data</m:charVariable>
 </m:SoapOperation>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The procedure name appears in the <m:SoapOperation> tag within the body. The two
parameters to the procedure, intVariable and charVariable, become
<m:intVariable> and <m:charVariable>, respectively.

By default, the stored procedure name is used as the SOAP operation name when building a
SOAP request. Parameter names appear in SOAP envelope tagnames. You must reference
these names correctly when defining a SOAP stored procedure since the server expects these
names in the SOAP request. The SET clause can be used to specify an alternate SOAP
operation name for the given procedure. WSDLC can be used to read a WSDL from a file or
URL specification and generate SQL stub functions or procedures. For all but the simplest
cases (for example, a SOAP RPC call returning a single string value), it is recommended that
function definitions be used rather than procedures. A SOAP function returns the full SOAP
response envelope which can be parsed using OPENXML.

HTTP Web Services

Programming 665

Web Client Ports
It is sometimes necessary to indicate which ports to use when opening a server connection
through a firewall. You can use the CLIENTPORT clause of the CREATE PROCEDURE and
CREATE FUNCTION statements to designate port numbers on which the client application
communicates using TCP/IP. It is recommended that you not use this feature unless your
firewall restricts access to a particular range of ports.

For example, execute the following SQL statement in the web client database to create a
procedure named SomeOperation that sends requests to the specified URL using one of
the ports in the range 5050-5060, or port 5070:
CREATE PROCEDURE SomeOperation()
 URL 'HTTP://localhost:8082/dbname/SampleWebService'
 CLIENTPORT '5050-5060,5070';

It is recommended that you specify a range of port numbers when required. Only one
connection is maintained at a time when you specify a single port number; the client
application attempts to access all specified port numbers until it finds one to bind to. After
closing the connection, a timeout period of several minutes is initiated so that no new
connection can be made to the same server and port.

This feature is similar to setting the ClientPort network protocol option.

HTTP Request Header Management
HTTP request headers can be added, changed, or removed with the HEADER clause of the
CREATE PROCEDURE and CREATE FUNCTION statements. You suppress an HTTP
request header by referencing the name. You add or change an HTTP request header value by
placing a colon after the header name following by the value. Header value specifications are
optional.

For example, execute the following SQL statement in the web client database to create a
procedure named SomeOperation2 that sends requests to the specified URL that puts
restrictions on HTTP request headers:
CREATE PROCEDURE SomeOperation2()
 URL 'HTTP://localhost:8082/dbname/SampleWebService'
 TYPE 'HTTP:GET'
 HEADER 'SOAPAction\nDate\nFrom:\nCustomAlias:John Doe';

In this example, the Date header, which is automatically generated by SAP Sybase IQ, is
suppressed. The From header is included but is not assigned a value. A new header named
CustomAlias is included in the HTTP request and is assigned the value of John Doe. The
GET request looks similar to the following:
GET /dbname/SampleWebService HTTP/1.0
ASA-Id: e88a416e24154682bf81694feaf03052
User-Agent: SybaseIQ/16.0.0.3600
Accept-Charset: windows-1252, UTF-8, *
From:
Host: localhost:8082

HTTP Web Services

666 SAP Sybase IQ

Connection: close
CustomAlias: John Doe

Folding of long header values is supported, provided that one or more white spaces
immediately follow the \n.

The following example illustrates long header value support:
CREATE PROCEDURE SomeOperation3()
 URL 'HTTP://localhost:8082/dbname/SampleWebService'
 TYPE 'HTTP:POST'
 HEADER 'heading1: This long value\n is really long for a header.
\n
 heading2:shortvalue';

The POST request looks similar to the following:
POST /dbname/SampleWebService HTTP/1.0
ASA-Id: e88a416e24154682bf81694feaf03052
User-Agent: SybaseIQ/16.0.0.3600
Accept-Charset: windows-1252, UTF-8, *
Date: Fri, 03 Feb 2012 15:26:04 GMT
heading1: This long value is really long for a header.
heading2:shortvalue
Host: localhost:8082
Connection: close
Content-Type: application/x-www-form-urlencoded;
charset=windows-1252
Content-Length: 0

Note: You must set the SOAPAction HTTP request header to the given SOAP service URI
as specified in the WSDL when creating a SOAP function or procedure.

Automatically generated HTTP request headers
Modifying automatically generated headers can have unexpected results. The following
HTTP request headers should not be modified without precaution:

HTTP header Description

Accept-Charset Always automatically generated. Changing or
deleting this header may result in unexpected data
conversion errors.

ASA-Id Always automatically generated. This header en-
sures that the client application does not connect
to itself to prevent deadlock.

HTTP Web Services

Programming 667

HTTP header Description

Authorization Automatically generated when URL contains
credentials. Changing or deleting this header may
result in failure of the request. Only BASIC au-
thorization is supported. User and password in-
formation should only be included when con-
necting via HTTPS.

Connection Connection: close, is always automatically gen-
erated. Client applications do not support persis-
tent connections. The connection could hang if
changed.

Host Always automatically generated. HTTP/1.1 serv-
ers are required to respond with 400 Bad Request
if an HTTP/1.1 client does not provide a Host
header.

Transfer-Encoding Automatically generated when posting a request
in chunk mode. Removing this header or deleting
the chunked value will result in failure when the
client is using CHUNK mode.

Content-Length Automatically generated when posting a request
and not in chunk mode. This header is required to
tell the server the content length of the body. If the
content length is wrong the connection may hang
or data loss could occur.

SOAP Request Header Management
A SOAP request header is an XML fragment within a SOAP envelope. While the SOAP
operation and its parameters can be thought of as an RPC (Remote Procedure Call), a SOAP
request header can be used to transfer meta information within a specific request or response.
SOAP request headers transport application metadata such as authorization or session criteria.

The value of a SOAPHEADER clause must be a valid XML fragment that conforms to a
SOAP request header entry. Multiple SOAP request header entries can be specified. The
stored procedure or function automatically injects the SOAP request header entries within a
SOAP header element (SOAP-ENV:Header). SOAPHEADER values specify SOAP
headers that can be declared as a static constant, or dynamically set using the parameter
substitution mechanism. The following is a fragment from a sample SOAP request. It contains
two XML headers called Authentication and Session respectively.

<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

HTTP Web Services

668 SAP Sybase IQ

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="HTTP://localhost:8082">
 <SOAP-ENV:Header>
 <Authentication xmlns="CustomerOrderURN">
 <userName pwd="none" mustUnderstand="1">
 <first>John</first>
 <last>Smith</last>
 </userName>
 </Authentication>
 <Session xmlns="SomeSession">123456789</Session>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:SoapOperation>
 <m:intVariable>123</m:intVariable>
 <m:charVariable>data</m:charVariable>
 </m:SoapOperation>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Processing SOAP response headers (returned by the SOAP call) differs for functions and
procedures. When using a function, which is the most flexible and recommended approach,
the entire SOAP response envelope is received. The response envelope can then be processed
using the OPENXML operator to extract SOAP header and SOAP body data. When using a
procedure, SOAP response headers can only be extracted through the use of a substitution
parameter that maps to an IN or INOUT variable. A SOAP procedure allows for a maximum of
one IN or INOUT parameter.

A web service function must parse the response SOAP envelope to obtain the header entries.

Examples

The following examples illustrate how to create SOAP procedures and functions that send
parameters and SOAP headers. Wrapper procedures are used to populate the web service
procedure calls and process the responses. The soapAddItemProc procedure illustrates
the use of a SOAP web service procedure, the soapAddItemFunc function illustrates the
use of a SOAP web service function, and the httpAddItemFunc function illustrates how a
SOAP payload may be passed to an HTTP web service procedure.

The following example illustrates a SOAP client procedure that uses substitution parameters
to send SOAP headers. A single INOUT parameter is used to receive SOAP headers. A
wrapper stored procedure addItemProcWrapper that calls soapAddItemProc
demonstrates how to send and receive soap headers including parameters.
CREATE PROCEDURE soapAddItemProc(amount INT, item LONG VARCHAR,
 INOUT inoutheader LONG VARCHAR, IN inheader LONG VARCHAR)
 URL 'http://localhost:8082/itemStore'
 SET 'SOAP(OP=addItems)'
 TYPE 'SOAP:DOC'
 SOAPHEADER '!inoutheader!inheader';

CREATE PROCEDURE addItemProcWrapper(amount INT, item LONG VARCHAR,
 first_name LONG VARCHAR, last_name LONG VARCHAR)

HTTP Web Services

Programming 669

BEGIN
 DECLARE io_header LONG VARCHAR; // inout (write/read) soap
header
 DECLARE resxml LONG VARCHAR;
 DECLARE soap_header_sent LONG VARCHAR;
 DECLARE i_header LONG VARCHAR; // in (write) only soap header
 DECLARE err int;
 DECLARE crsr CURSOR FOR
 CALL soapAddItemProc(amount, item, io_header, i_header);

 SET io_header = XMLELEMENT('Authentication',
 XMLATTRIBUTES('CustomerOrderURN' as xmlns),
 XMLELEMENT('userName', XMLATTRIBUTES(
 'none' as pwd,
 '1' as mustUnderstand),
 XMLELEMENT('first', first_name),
 XMLELEMENT('last', last_name)));
 SET i_header = '<Session xmlns="SomeSession">123456789</
Session>';
 SET soap_header_sent = io_header || i_header;
 OPEN crsr;
 FETCH crsr INTO resxml, err;
 CLOSE crsr;

 SELECT resxml, err, soap_header_sent, io_header AS
soap_header_received;
END;

/* example call to addItemProcWrapper */
CALL addItemProcWrapper(5, 'shirt', 'John', 'Smith');

The following example illustrates a SOAP client function that uses substitution parameters to
send SOAP headers. An entire SOAP response envelope is returned. SOAP headers can be
parsed using the OPENXML operator. A wrapper function addItemFuncWrapper that
calls soapAddItemFunc demonstrates how to send and receive soap headers including
parameters. It also shows how to process the response using the OPENXML operator.
CREATE FUNCTION soapAddItemFunc(amount INT, item LONG VARCHAR,
 IN inheader1 LONG VARCHAR, IN inheader2 LONG VARCHAR)
 RETURNS XML
 URL 'http://localhost:8082/itemStore'
 SET 'SOAP(OP=addItems)'
 TYPE 'SOAP:DOC'
 SOAPHEADER '!inheader1!inheader2';

CREATE PROCEDURE addItemFuncWrapper(amount INT, item LONG VARCHAR,
 first_name LONG VARCHAR, last_name LONG VARCHAR)
BEGIN
 DECLARE i_header1 LONG VARCHAR;
 DECLARE i_header2 LONG VARCHAR;
 DECLARE res LONG VARCHAR;
 DECLARE ns LONG VARCHAR;
 DECLARE xpath LONG VARCHAR;
 DECLARE header_entry LONG VARCHAR;
 DECLARE localname LONG VARCHAR;

HTTP Web Services

670 SAP Sybase IQ

 DECLARE namespaceuri LONG VARCHAR;
 DECLARE r_quantity int;
 DECLARE r_item LONG VARCHAR;
 DECLARE r_status LONG VARCHAR;

 SET i_header1 = XMLELEMENT('Authentication',
 XMLATTRIBUTES('CustomerOrderURN' as xmlns),
 XMLELEMENT('userName', XMLATTRIBUTES(
 'none' as pwd,
 '1' as mustUnderstand),
 XMLELEMENT('first', first_name),
 XMLELEMENT('last', last_name)));
 SET i_header2 = '<Session xmlns="SessionURN">123456789</
Session>';

 SET res = soapAddItemFunc(amount, item, i_header1, i_header2);

 SET ns = '<ns xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/
envelope/"'
 || ' xmlns:mp="urn:ianywhere-com:sa-xpath-metaprop"'
 || ' xmlns:customer="CustomerOrderURN"'
 || ' xmlns:session="SessionURN"'
 || ' xmlns:tns="http://localhost:8082"></ns>';

 // Process headers...
 SET xpath = '//SOAP-ENV:Header/*';
 BEGIN
 DECLARE crsr CURSOR FOR SELECT * FROM
 OPENXML(res, xpath, 1, ns)
 WITH ("header_entry" LONG VARCHAR '@mp:xmltext',
 "localname" LONG VARCHAR
'@mp:localname',
 "namespaceuri" LONG VARCHAR
'@mp:namespaceuri');
 OPEN crsr;
 FETCH crsr INTO "header_entry", "localname", "namespaceuri";
 CLOSE crsr;
 END;

 // Process body...
 SET xpath = '//tns:row';
 BEGIN
 DECLARE crsr1 CURSOR FOR SELECT * FROM
 OPENXML(res, xpath, 1, ns)
 WITH ("r_quantity" INT 'tns:quantity/text()',
 "r_item" LONG VARCHAR 'tns:item/
text()',
 "r_status" LONG VARCHAR 'tns:status/
text()');
 OPEN crsr1;
 FETCH crsr1 INTO "r_quantity", "r_item", "r_status";
 CLOSE crsr1;
 END;

 SELECT r_item, r_quantity, r_status, header_entry, localname,
namespaceuri;

HTTP Web Services

Programming 671

END;

/* example call to addItemFuncWrapper */
CALL addItemFuncWrapper(6, 'shorts', 'Jack', 'Smith');

The following example demonstrates how an HTTP:POST can be used as a transport for an
entire SOAP payload. Rather than creating a webservice client SOAP procedure, this
approach creates a webservice HTTP procedure that transports the SOAP payload. A wrapper
procedure addItemHttpWrapper calls httpAddItemFunc to demonstrate the use of
the POST function. It shows how to send and receive soap headers including parameters and
how to accept the response.
CREATE FUNCTION httpAddItemFunc(soapPayload XML)
 RETURNS XML
 URL 'http://localhost:8082/itemStore'
 TYPE 'HTTP:POST:text/xml'
 HEADER 'SOAPAction: "http://localhost:8082/addItems"';

CREATE PROCEDURE addItemHttpWrapper(amount INT, item LONG VARCHAR)
RESULT(response XML)
BEGIN
 DECLARE payload XML;
 DECLARE response XML;

 SET payload =
'<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://localhost:8082">
 <SOAP-ENV:Body>
 <m:addItems>
 <m:amount>' || amount || '</m:amount>
 <m:item>' || item || '</m:item>
 </m:addItems>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>';

 SET response = httpAddItemFunc(payload);
 /* process response as demonstrated in addItemFuncWrapper */
 SELECT response;
END;

/* example call to addItemHttpWrapper */
CALL addItemHttpWrapper(7, 'socks');

Limitations

Server side SOAP services cannot currently define input and output SOAP header
requirements. Therefore SOAP header metadata is not available in the WSDL output of a
DISH service. A SOAP client toolkit cannot automatically generate SOAP header
interfaces for an SAP Sybase IQ SOAP service endpoint.

HTTP Web Services

672 SAP Sybase IQ

Soap header faults are not supported.

SOAP Namespace URI Requirement
The namespace URI specifies the XML namespace used to compose the SOAP request
envelope for the given SOAP operation. The domain component from URL clause is used
when the namespace URI is not defined.

The server-side SOAP processor uses this URI to understand the names of the various entities
in the message body of the request. The NAMESPACE clause of the CREATE PROCEDURE
and CREATE FUNCTION statements specifies the namespace URI.

You may be required to specify a namespace URI before procedure calls succeed. This
information is usually explained the public web server documentation, but you can obtain the
required namespace URI from the WSDL available from the web server. You can generate a
WSDL by accessing the DISH service if you are trying to communicate with an SAP Sybase
IQ web server.

Generally, the NAMESPACE can be copied from the targetNamespace attribute
specified at the beginning of the WSDL document within the wsdl:definition element.
Be careful when including any trailing '/', as they are significant. Secondly, check for a
soapAction attribute for the given SOAP operation. It should correspond to the
SOAPAction HTTP header that would be generated as explained in the following
paragraphs.

The NAMESPACE clause fulfills two functions. It specifies the namespace for the body of the
SOAP envelope, and, if the procedure has TYPE 'SOAP:DOC' specified, it is used as the
domain component of the SOAPAction HTTP header.

The following example illustrates the use of the NAMESPACE clause:
CREATE FUNCTION an_operation(a_parameter LONG VARCHAR)
 RETURNS LONG VARCHAR
 URL 'http://wsdl.domain.com/fictitious.asmx'
 TYPE 'SOAP:DOC'
 NAMESPACE 'http://wsdl.domain.com/'

Execute the following SQL statement in Interactive SQL:
SELECT an_operation('a_value');

The statement generates a SOAP request similar to the following output:
POST /fictitious.asmx HTTP/1.0
SOAPAction: "http://wsdl.domain.com/an_operation"
Host: wsdl.domain.com
Content-Type: text/xml
Content-Length: 387
Connection: close

<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

HTTP Web Services

Programming 673

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://wsdl.domain.com/">
 <SOAP-ENV:Body>
 <m:an_operation>
 <m:a_parameter>a_value</m:a_parameter>
 </m:an_operation>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The namespace for the prefix 'm' is set to http://wsdl.domain.com/ and the
SOAPAction HTTP header specifies a fully qualified URL for the SOAP operation.

The trailing slash is not a requirement for correct operation of SAP Sybase IQ but it can cause a
response failure that is difficult to diagnose. The SOAPAction HTTP header is correctly
generated regardless of the trailing slash.

When a NAMESPACE is not specified, the domain component from the URL clause is used as
the namespace for the SOAP body, and if the procedure is of TYPE 'SOAP:DOC', it is used to
generate the HTTP SOAPAction HTTP header. If in the above example the NAMESPACE
clause is omitted, then http://wsdl.domain.com is used as the namespace. The subtle
difference is that a trailing slash '/' is not present. Every other aspect of the SOAP request,
including the SOAPAction HTTP header would be identical to the above example.

The NAMESPACE clause is used to specify the namespace for the SOAP body as described
for the SOAP:DOC case above. However, the SOAPAction HTTP header is generated with
an empty value: SOAPAction: ""

When using the SOAP:DOC request type, the namespace is also used to compose the
SOAPAction HTTP header.

Web Client SQL Statements
The following SQL statements are available to assist with web client development:

Web client related SQL statements Description

CREATE FUNCTION statement [Web service] Creates a web client function that makes an HTTP
or SOAP over HTTP request.

ALTER FUNCTION statement Modifies a function.

CREATE PROCEDURE statement [Web serv-
ice]

Creates a user-defined web client procedure that
makes HTTP or SOAP requests to an HTTP serv-
er.

ALTER PROCEDURE statement Modifies a procedure.

HTTP Web Services

674 SAP Sybase IQ

Variables Supplied to Web Services
Variables can be supplied to a web service in various ways depending on the web service
type.

Web client applications can supply variables to general HTTP web services using any of the
following approaches:

The suffix of the URL
The body of an HTTP request

Variables can be supplied to the SOAP service type by including them as part of a standard
SOAP envelope.

Variables Supplied in the URLs to Web Services
The HTTP web server can manage variables supplied in the URL by web browsers. These
variables can be expressed in any of the following conventions:

• Appending them to the end of the URL while dividing each parameter value with a slash
(/), such as in the following example:
http://localhost/database-name/param1/param2/param3

• Defining them explicitly in a URL parameter list, such as in the following example:
http://localhost/database-name/?
arg1=param1&arg2=param2&arg3=param3

• A combination of appending them to the URL and defining them in a parameter list, such
as in the following example:
http://localhost/database-name/param4/param5?
arg1=param1&arg2=param2&arg3=param3

The web server interpretation of the URL depends on how the web service URL clause is
specified.

Variables Supplied in the Body HTTP Requests
You can supply variables in the body of an HTTP request by specifying HTTP:POST in the
TYPE clause in a web client function or procedure.

By default TYPE HTTP:POST uses application/x-www-form-urlencoded mime type. All
parameters are urlencoded and passed within the body of the request. Optionally, if a media
type is provided, the request Content-Type header is automatically adjusted to the provided
media type and a single parameter value is uploaded within the body of the request.

Example

The following example assumes that a web service named XMLService exists on a
localhost web server. Set up an SAP Sybase IQ client database, connect to it through
Interactive SQL, and execute the following SQL statement:

HTTP Web Services

Programming 675

CREATE PROCEDURE SendXMLContent(xmlcode LONG VARCHAR)
 URL 'http://localhost/XMLService'
 TYPE 'HTTP:POST:text/xml';

The statement creates a procedure that allows you to send a variable in the body of an HTTP
request in text/xml format.

Execute the following SQL statement in Interactive SQL to send an HTTP request to the
XMLService web service:

CALL SendXMLContent('<title>Hello World!</title>');

The procedure call assigns a value to the xmlcode parameter and sends it to web service.

Variables Supplied in SOAP Envelopes
You can supply variables in a SOAP envelope using the SET SOAP option of a web client
function or procedure to set a SOAP operation.

The following code illustrates how to set a SOAP operation in a web client function:
CREATE FUNCTION soapAddItemFunc(amount INT, item LONG VARCHAR)
 RETURNS XML
 URL 'http://localhost:8082/itemStore'
 SET 'SOAP(OP=addItems)'
 TYPE 'SOAP:DOC';

In this example, the addItems is the SOAP operation that contains the amount and item
values, which are passed as parameters to the soapAddItemFunc function.

You can send a request by running the following sample script:
SELECT soapAddItemFunc(5, 'shirt');

A call to the soapAddItemFunc function call generates a SOAP envelope that looks
similar to the following:
<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://localhost:8082">
 <SOAP-ENV:Body>
 <m:addItems>
 <m:amount>5</m:amount>
 <m:item>shirt</m:item>
 </m:addItems>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

As an alternative to the previous approach, you can create your own SOAP payload and send it
to the server in an HTTP wrapper.

Variables to SOAP services must be included as part of a standard SOAP request. Values
supplied using other methods are ignored.

HTTP Web Services

676 SAP Sybase IQ

The following code illustrates how to create an HTTP wrapper procedure that builds a
customized SOAP envelope:
CREATE PROCEDURE addItemHttpWrapper(amount INT, item LONG VARCHAR)
RESULT(response XML)
BEGIN
 DECLARE payload XML;
 DECLARE response XML;

 SET payload =
'<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://localhost:8082">
 <SOAP-ENV:Body>
 <m:addItems>
 <m:amount>' || amount || '</m:amount>
 <m:item>' || item || '</m:item>
 </m:addItems>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>';

 SET response = httpAddItemFunc(payload);
 /* process response as demonstrated in addItemFuncWrapper */
 SELECT response;
END;

The following code illustrates the web client function used to send the request:
CREATE FUNCTION httpAddItemFunc(soapPayload XML)
 RETURNS XML
 URL 'http://localhost:8082/itemStore'
 TYPE 'HTTP:POST:text/xml'
 HEADER 'SOAPAction: "http://localhost:8082/addItems"';

You can send a request by running the following sample script:
CALL addItemHttpWrapper(7, 'socks');

Variables Accessed from Result Sets
Web service client calls can be made with stored functions or procedures. If made from a
function, the return type must be of a character data type, such as CHAR, VARCHAR, or
LONG VARCHAR. The body of the HTTP response is the returned value. No header
information is included. Additional information about the request, including the HTTP status
information, is returned by procedures. So, procedures are preferred when access to additional
information is desired.

SOAP procedures
The response from a SOAP function is an XML document that contains the SOAP response.

SOAP responses are structured XML documents, so SAP Sybase IQ, by default, attempts to
exploit this information and construct a more useful result set. Each of the top-level tags within

HTTP Web Services

Programming 677

the returned response document is extracted and used as a column name. The contents below
each of these tags in the subtree is used as the row value for that column.

For example, SAP Sybase IQ would construct the shown data set given the following SOAP
response:
<SOAP-ENV:Envelope
 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <ElizaResponse xmlns:SOAPSDK4="SoapInterop">
 <Eliza>Hi, I'm Eliza. Nice to meet you.</Eliza>
 <ElizaResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Eliza

Hi, I'm Eliza. Nice to meet you.

In this example, the response document is delimited by the <ElizaResponse> tags that appear
within the <SOAP-ENV:Body> tags.

Result sets have as many columns as there are top-level tags. This result set only has one
column because there is only one top-level tag in the SOAP response. This single top-level tag,
Eliza, becomes the name of the column.

XML processing facilities
Information within XML result sets, including SOAP responses, can be accessed using the
OPENXML procedure.

The following example uses the OPENXML procedure to extract portions of a SOAP
response. This example uses a web service to expose the contents of the SYSWEBSERVICE
table as a SOAP service:
CREATE SERVICE get_webservices
 TYPE 'SOAP'
 AUTHORIZATION OFF
 USER DBA
 AS SELECT * FROM SYSWEBSERVICE;

The following web client function, which must be created in a second SAP Sybase IQ
database, issues a call to this web service. The return value of this function is the entire SOAP
response document. The response is in the .NET DataSet format because DNET is the
default SOAP service format.
CREATE FUNCTION get_webservices()
 RETURNS LONG VARCHAR
 URL 'HTTP://localhost/get_webservices'
 TYPE 'SOAP:DOC';

HTTP Web Services

678 SAP Sybase IQ

The following statement illustrates how you can use the OPENXML procedure to extract two
columns of the result set. The service_name and secure_required columns indicate
which SOAP services are secure and where HTTPS is required.
SELECT *
FROM OPENXML(get_webservices(), '//row')
WITH ("Name" CHAR(128) 'service_name',
 "Secure?" CHAR(1) 'secure_required');

This statement works by selecting the decedents of the row node. The WITH clause
constructs the result set based on the two elements of interest. Assuming only the
get_webservices web service exists, this function returns the following result set:

Name Secure?

get_webservices N

Result Set Retrieval from a Web Service
Web service procedures of type HTTP return all the information about a response in a two-
column result set. This result set includes the response status, header information and body.
The first column, is named Attribute and the second is named Value. Both are of data
type LONG VARCHAR.

The result set has one row for each of the response header fields, and a row for the HTTP status
line (Status attribute) and a row for the response body (Body attribute).

The following example represents a typical response:

Attribute Value

Status HTTP /1.0 200 OK

Body <!DOCTYPE HTML ... ><HTML> ... </HTML>

Content-Type text/html

Server GWS/2.1

Content-Length 2234

Date Mon, 18 Oct 2004, 16:00:00 GMT

Create the following web service stored procedure to use as an example.
CREATE OR REPLACE PROCEDURE SybaseWebPage()
URL 'http://www.sybase.com/mobilize'
TYPE 'HTTP';

Execute the following SELECT query to obtain the response from the web service as a result
set.
SELECT * FROM SybaseWebPage()
 WITH (Attribute LONG VARCHAR, Value LONG VARCHAR);

HTTP Web Services

Programming 679

Because the web service procedure does not describe the shape of the result set, the WITH
clause is required to define a temporary view.

The results of a query can be stored in a table. Execute the following SQL statement to create a
table to contain the values of the result set.
CREATE TABLE StoredResults(
 Attribute LONG VARCHAR,
 Value LONG VARCHAR
);

The result set can be inserted into the StoredResults table as follows:

INSERT INTO StoredResults
 SELECT * FROM SybaseWebPage()
 WITH (Attribute LONG VARCHAR, Value LONG VARCHAR);

You can add clauses according to the usual syntax of the SELECT statement. For example, if
you want only a specific row of the result set you can add a WHERE clause to limit the results
of the SELECT to only one row.
SELECT * FROM SybaseWebPage()
 WITH (Attribute LONG VARCHAR, Value LONG VARCHAR)
 WHERE Attribute = 'Status';

This SELECT statement retrieves only the status information from the result set. It can be used
to verify that the call was successful.

SOAP Data Types
By default, the XML encoding of parameter input is string and the result set output for SOAP
service formats contains no information that specifically describes the data type of the
columns in the result set. For all formats, parameter data types are string. For the DNET
format, within the schema section of the response, all columns are typed as string.
CONCRETE and XML formats contain no data type information in the response. This default
behavior can be manipulated using the DATATYPE clause.

SAP Sybase IQ enables data typing using the DATATYPE clause. Data type information can
be included in the XML encoding of parameter input and result set output or responses for all
SOAP service formats. This simplifies parameter passing from SOAP toolkits by not
requiring client code to explicitly convert parameters to Strings. For example, an integer can
be passed as an int. XML encoded data types enable a SOAP toolkit to parse and cast the data
to the appropriate type.

When using string data types exclusively, the application needs to implicitly know the data
type for every column within the result set. This is not necessary when data typing is requested
of the web server. To control whether data type information is included, the DATATYPE
clause can be used when the web service is defined.

Here is an example of a web service definition that enlists data typing for the result set
response.

HTTP Web Services

680 SAP Sybase IQ

CREATE SERVICE "SASoapTest/EmployeeList"
 TYPE 'SOAP'
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA
 DATATYPE OUT
 AS SELECT * FROM Employees;

In this example, data type information is requested for result set responses only since this
service does not have parameters.

Data typing is applicable to all SAP Sybase IQ web services defined as type 'SOAP'.

Data typing of input parameters
Data typing of input parameters is supported by simply exposing the parameter data types as
their true data types in the WSDL generated by the DISH service.

A typical string parameter definition (or a non-typed parameter) would look like the
following:
<s:element minOccurs="0" maxOccurs="1" name="a_varchar"
nillable="true" type="s:string" />

The String parameter may be nillable, that is, it may or may not occur.

For a typed parameter such as an integer, the parameter must occur and is not nillable. The
following is an example.
<s:element minOccurs="1" maxOccurs="1" name="an_int"
nillable="false" type="s:int" />

Data typing of output parameters
All SAP Sybase IQ web services of type 'SOAP' may expose data type information within the
response data. The data types are exposed as attributes within the rowset column element.

The following is an example of a typed SimpleDataSet response from a SOAP FORMAT
'CONCRETE' web service.
<SOAP-ENV:Body>
 <tns:test_types_concrete_onResponse>
 <tns:test_types_concrete_onResult xsi:type='tns:SimpleDataset'>
 <tns:rowset>
 <tns:row>
 <tns:lvc xsi:type="xsd:string">Hello World</tns:lvc>
 <tns:i xsi:type="xsd:int">99</tns:i>
 <tns:ii xsi:type="xsd:long">99999999</tns:ii>
 <tns:f xsi:type="xsd:float">3.25</tns:f>
 <tns:d xsi:type="xsd:double">.555555555555555582</tns:d>
 <tns:bin xsi:type="xsd:base64Binary">AAAAZg==</tns:bin>
 <tns:date xsi:type="xsd:date">2006-05-29-04:00</tns:date>
 </tns:row>
 </tns:rowset>
 </tns:test_types_concrete_onResult>
 <tns:sqlcode>0</tns:sqlcode>

HTTP Web Services

Programming 681

 </tns:test_types_concrete_onResponse>
</SOAP-ENV:Body>

The following is an example of a response from a SOAP FORMAT 'XML' web service
returning the XML data as a string. The interior rowset consists of encoded XML and is
presented here in its decoded form for legibility.
<SOAP-ENV:Body>
 <tns:test_types_XML_onResponse>
 <tns:test_types_XML_onResult xsi:type='xsd:string'>
 <tns:rowset
 xmlns:tns="http://localhost/satest/dish"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <tns:row>
 <tns:lvc xsi:type="xsd:string">Hello World</tns:lvc>
 <tns:i xsi:type="xsd:int">99</tns:i>
 <tns:ii xsi:type="xsd:long">99999999</tns:ii>
 <tns:f xsi:type="xsd:float">3.25</tns:f>
 <tns:d xsi:type="xsd:double">.555555555555555582</tns:d>
 <tns:bin xsi:type="xsd:base64Binary">AAAAZg==</tns:bin>
 <tns:date xsi:type="xsd:date">2006-05-29-04:00</tns:date>
 </tns:row>
 </tns:rowset>
 </tns:test_types_XML_onResult>
 <tns:sqlcode>0</tns:sqlcode>
 </tns:test_types_XML_onResponse>
</SOAP-ENV:Body>

In addition to the data type information, the namespace for the elements and the XML schema
provides all the information necessary for post processing by an XML parser. When no data
type information exists in the result set (DATATYPE OFF or IN) then the xsi:type and the
XML schema namespace declarations are omitted.

An example of a SOAP FORMAT 'DNET' web service returning a typed SimpleDataSet
follows:
<SOAP-ENV:Body>
 <tns:test_types_dnet_outResponse>
 <tns:test_types_dnet_outResult
xsi:type='sqlresultstream:SqlRowSet'>
 <xsd:schema id='Schema2'
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:msdata='urn:schemas-microsoft.com:xml-msdata'>
 <xsd:element name='rowset' msdata:IsDataSet='true'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name='row' minOccurs='0' maxOccurs='unbounded'>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name='lvc' minOccurs='0' type='xsd:string' />
 <xsd:element name='ub' minOccurs='0'
type='xsd:unsignedByte' />
 <xsd:element name='s' minOccurs='0' type='xsd:short' />
 <xsd:element name='us' minOccurs='0'

HTTP Web Services

682 SAP Sybase IQ

type='xsd:unsignedShort' />
 <xsd:element name='i' minOccurs='0' type='xsd:int' />
 <xsd:element name='ui' minOccurs='0'
type='xsd:unsignedInt' />
 <xsd:element name='l' minOccurs='0' type='xsd:long' />
 <xsd:element name='ul' minOccurs='0'
type='xsd:unsignedLong' />
 <xsd:element name='f' minOccurs='0' type='xsd:float' />
 <xsd:element name='d' minOccurs='0' type='xsd:double' />
 <xsd:element name='bin' minOccurs='0'
type='xsd:base64Binary' />
 <xsd:element name='bool' minOccurs='0'
type='xsd:boolean' />
 <xsd:element name='num' minOccurs='0' type='xsd:decimal' />
 <xsd:element name='dc' minOccurs='0' type='xsd:decimal' />
 <xsd:element name='date' minOccurs='0' type='xsd:date' />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <diffgr:diffgram xmlns:msdata='urn:schemas-microsoft-com:xml-
msdata' xmlns:diffgr='urn:schemas-microsoft-com:xml-diffgram-v1'>
 <rowset>
 <row>
 <lvc>Hello World</lvc>
 <ub>128</ub>
 <s>-99</s>
 <us>33000</us>
 <i>-2147483640</i>
 <ui>4294967295</ui>
 <l>-9223372036854775807</l>
 18446744073709551615
 <f>3.25</f>
 <d>.555555555555555582</d>
 <bin>QUJD</bin>
 <bool>1</bool>
 <num>123456.123457</num>
 <dc>-1.756000</dc>
 <date>2006-05-29-04:00</date>
 </row>
 </rowset>
 </diffgr:diffgram>
 </tns:test_types_dnet_outResult>
 <tns:sqlcode>0</tns:sqlcode>
 </tns:test_types_dnet_outResponse>
</SOAP-ENV:Body>

Mapping SAP Sybase IQ types to XML schema types

SAP Sybase IQ type XML schema type XML example

CHAR string Hello World

HTTP Web Services

Programming 683

SAP Sybase IQ type XML schema type XML example

VARCHAR string Hello World

LONG VARCHAR string Hello World

TEXT string Hello World

NCHAR string Hello World

NVARCHAR string Hello World

LONG NVARCHAR string Hello World

NTEXT string Hello World

UNIQUEIDENTIFIER string 12345678-1234-5678-9012-12
3456789012

UNIQUEIDENTIFIERSTR string 12345678-1234-5678-9012-12
3456789012

XML This is user defined. A parame-
ter is assumed to be valid XML
representing a complex type
(for example, base64Binary,
SOAP array, struct).

<inputHexBinary
xsi:type="xsd:hexBinary">
414243 </inputHexBinary>

(interpreted as 'ABC')

BIGINT long -9223372036854775807

UNSIGNED BIGINT unsignedLong 18446744073709551615

BIT boolean 1

VARBIT string 11111111

LONG VARBIT string 0000000000000000100000000
0000000

DECIMAL decimal -1.756000

DOUBLE double .555555555555555582

FLOAT float 12.3456792831420898

INTEGER int -2147483640

UNSIGNED INTEGER unsignedInt 4294967295

NUMERIC decimal 123456.123457

REAL float 3.25

HTTP Web Services

684 SAP Sybase IQ

SAP Sybase IQ type XML schema type XML example

SMALLINT short -99

UNSIGNED SMALLINT unsignedShort 33000

TINYINT unsignedByte 128

MONEY decimal 12345678.9900

SMALLMONEY decimal 12.3400

DATE date 2006-11-21-05:00

DATETIME dateTime 2006-05-21T09:00:00.000-08:
00

SMALLDATETIME dateTime 2007-01-15T09:00:00.000-08:
00

TIME time 14:14:48.980-05:00

TIMESTAMP dateTime 2007-01-12T21:02:14.420-06:
00

TIMESTAMP WITH TIME
ZONE

dateTime 2007-01-12T21:02:14.420-06:
00

BINARY base64Binary AAAAZg==

IMAGE base64Binary AAAAZg==

LONG BINARY base64Binary AAAAZg==

VARBINARY base64Binary AAAAZg==

When one or more parameters are of type NCHAR, NVARCHAR, LONG NVARCHAR, or
NTEXT then the response output is in UTF8. If the client database uses the UTF-8 character
encoding, there is no change in behavior (since NCHAR and CHAR data types are the same).
However, if the database does not use the UTF-8 character encoding, then all parameters that
are not an NCHAR data type are converted to UTF8. The value of the XML declaration
encoding and Content-Type HTTP header will correspond to the character encoding used.

Mapping XML schema types to Java types

XML schema type Java data type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

HTTP Web Services

Programming 685

XML schema type Java data type

xsd:int int

xsd:long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime javax.xml.datatype.XMLGregorianCalendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time javax.xml.datatype.XMLGregorianCalendar

xsd:date javax.xml.datatype.XMLGregorianCalendar

xsd:g javax.xml.datatype.XMLGregorianCalendar

xsd:anySimpleType java.lang.Object

xsd:anySimpleType java.lang.String

xsd:duration javax.xml.datatype.Duration

xsd:NOTATION javax.xml.namespace.QName

SOAP Structured Data Types
The SAP Sybase IQ server as a web service client may interface to a web service using a
function or a procedure.

XML Return Values
A string representation within a result set may suffice for simple return data types. The use of a
stored procedure may be warranted in this case.

HTTP Web Services

686 SAP Sybase IQ

The use of web service functions are a better choice when returning complex data such as
arrays or structures. For function declarations, the RETURN clause can specify an XML data
type. The returned XML can be parsed using OPENXML to extract the elements of interest.

A return of XML data such as dateTime is rendered within the result set verbatim. For
example, if a TIMESTAMP column was included within a result set, it would be formatted as
an XML dateTime string (2006-12-25T12:00:00.000-05:00) not as a string (2006-12-25
12:00:00.000).

XML Parameter Values
The SAP Sybase IQ XML data type is supported for use as a parameter within web service
functions and procedures. For simple types, the parameter element is automatically
constructed when generating the SOAP request body. However, for XML parameter types,
this cannot be done since the XML representation of the element may require attributes that
provide additional data. Therefore, when generating the XML for a parameter whose data type
is XML, the root element name must correspond to the parameter name.
<inputHexBinary xsi:type="xsd:hexBinary">414243</inputHexBinary>

The XML type demonstrates how to send a parameter as a hexBinary XML type. The SOAP
endpoint expects that the parameter name (or in XML terms, the root element name) is
"inputHexBinary".

Cookbook Constants
Knowledge of how SAP Sybase IQ references namespaces is required to construct complex
structures and arrays. The prefixes listed here correspond to the namespace declarations
generated for an SAP Sybase IQ SOAP request envelope.

SAP Sybase IQ XML Prefix Namespace

xsd http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

SOAP-ENC http://schemas.xmlsoap.org/soap/encoding/

m namespace as defined in the NAMESPACE
clause

Complex Data Type Examples
The following three examples demonstrate how to create web service client functions taking
parameters that represent an array, a structure, and an array of structures. The web service
functions will communicate to SOAP operations (or RPC function names) named
echoFloatArray, echoStruct, and echoStructArray respectively. The common namespace used
for Interoperability testing is http://soapinterop.org/, allowing a given function to test against
alternative Interoperability servers simply by changing the URL clause to the chosen SOAP
endpoint.

HTTP Web Services

Programming 687

The examples are designed to issue requests to the Microsoft SOAP ToolKit 3.0 Round 2
Interoperability test server at http://mssoapinterop.org/stkV3.

All the examples use a table to generate the XML data. The following shows how to set up that
table.
CREATE LOCAL TEMPORARY TABLE SoapData
(
 seqno INT DEFAULT AUTOINCREMENT,
 i INT,
 f FLOAT,
 s LONG VARCHAR
) ON COMMIT PRESERVE ROWS;

INSERT INTO SoapData (i,f,s)
VALUES (99,99.999,'Ninety-Nine');

INSERT INTO SoapData (i,f,s)
VALUES (199,199.999,'Hundred and Ninety-Nine');

The following three functions send SOAP requests to the Interoperability server. This sample
issues requests to the Microsoft Interop server:
CREATE FUNCTION echoFloatArray(inputFloatArray XML)
RETURNS XML
URL 'http://mssoapinterop.org/stkV3/Interop.wsdl'
HEADER 'SOAPAction:"http://soapinterop.org/"'
NAMESPACE 'http://soapinterop.org/';

CREATE FUNCTION echoStruct(inputStruct XML)
RETURNS XML
URL 'http://mssoapinterop.org/stkV3/Interop.wsdl'
HEADER 'SOAPAction:"http://soapinterop.org/"'
NAMESPACE 'http://soapinterop.org/';

CREATE FUNCTION echoStructArray(inputStructArray XML)
RETURNS XML
URL 'http://mssoapinterop.org/stkV3/Interop.wsdl'
HEADER 'SOAPAction:"http://soapinterop.org/"'
NAMESPACE 'http://soapinterop.org/';

Finally, the three example statements along with the XML representation of their parameters
are presented:

1. The parameters in the following example represent an array.
SELECT echoFloatArray(
 XMLELEMENT('inputFloatArray',
 XMLATTRIBUTES('xsd:float[2]' as "SOAP-ENC:arrayType"),
 (
 SELECT XMLAGG(XMLELEMENT('number', f) ORDER BY seqno)
 FROM SoapData
)
)
);

HTTP Web Services

688 SAP Sybase IQ

http://mssoapinterop.org/stkV3

The stored procedure echoFloatArray will send the following XML to the Interoperability
server.
<inputFloatArray SOAP-ENC:arrayType="xsd:float[2]">
<number>99.9990005493164</number>
<number>199.998992919922</number>
</inputFloatArray>

The response from the Interoperability server is shown below.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
 <SOAPSDK4:echoFloatArrayResponse
 xmlns:SOAPSDK4="http://soapinterop.org/">
 <Result SOAPSDK3:arrayType="SOAPSDK1:float[2]"
 SOAPSDK3:offset="[0]"
 SOAPSDK2:type="SOAPSDK3:Array">
 <SOAPSDK3:float>99.9990005493164</SOAPSDK3:float>
 <SOAPSDK3:float>199.998992919922</SOAPSDK3:float>
 </Result>
 </SOAPSDK4:echoFloatArrayResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If the response was stored in a variable, then it can be parsed using OPENXML.
SELECT * FROM OPENXML(resp,'//*:Result/*')
WITH (varFloat FLOAT 'text()');

varFloat

99.9990005493

199.9989929199

2. The parameters in the following example represent a structure.
SELECT echoStruct(
 XMLELEMENT('inputStruct',
 (
 SELECT XMLFOREST(s as varString,
 i as varInt,
 f as varFloat)
 FROM SoapData
 WHERE seqno=1
)
)
);

HTTP Web Services

Programming 689

The stored procedure echoStruct will send the following XML to the Interoperability
server.
<inputStruct>
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>
</inputStruct>

The response from the Interoperability server is shown below.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
 <SOAPSDK4:echoStructResponse
 xmlns:SOAPSDK4="http://soapinterop.org/">
 <Result href="#id1"/>
 </SOAPSDK4:echoStructResponse>
 <SOAPSDK5:SOAPStruct
 xmlns:SOAPSDK5="http://soapinterop.org/xsd"
 id="id1"
 SOAPSDK3:root="0"
 SOAPSDK2:type="SOAPSDK5:SOAPStruct">
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>
 </SOAPSDK5:SOAPStruct>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If the response was stored in a variable, then it can be parsed using OPENXML.
SELECT * FROM OPENXML(resp,'//*:Body/*:SOAPStruct')
WITH (
varString LONG VARCHAR 'varString',
varInt INT 'varInt',
varFloat FLOAT 'varFloat');

varString varInt varFloat

Ninety-Nine 99 99.9990005493

3. The parameters in the following example represent an array of structures.
SELECT echoStructArray(
 XMLELEMENT('inputStructArray',
 XMLATTRIBUTES('http://soapinterop.org/xsd' AS "xmlns:q2",
 'q2:SOAPStruct[2]' AS "SOAP-ENC:arrayType"),
 (
 SELECT XMLAGG(
 XMLElement('q2:SOAPStruct',

HTTP Web Services

690 SAP Sybase IQ

 XMLFOREST(s as varString,
 i as varInt,
 f as varFloat)
)
 ORDER BY seqno
)
 FROM SoapData
)
)
);

The stored procedure echoFloatArray will send the following XML to the Interoperability
server.
<inputStructArray xmlns:q2="http://soapinterop.org/xsd"
 SOAP-ENC:arrayType="q2:SOAPStruct[2]">
 <q2:SOAPStruct>
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>
 </q2:SOAPStruct>
 <q2:SOAPStruct>
 <varString>Hundred and Ninety-Nine</varString>
 <varInt>199</varInt>
 <varFloat>199.998992919922</varFloat>
 </q2:SOAPStruct>
</inputStructArray>

The response from the Interoperability server is shown below.
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SOAP-ENV:Envelope
 xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
 xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/">
 <SOAPSDK4:echoStructArrayResponse
 xmlns:SOAPSDK4="http://soapinterop.org/">
 <Result xmlns:SOAPSDK5="http://soapinterop.org/xsd"
 SOAPSDK3:arrayType="SOAPSDK5:SOAPStruct[2]"
 SOAPSDK3:offset="[0]" SOAPSDK2:type="SOAPSDK3:Array">
 <SOAPSDK5:SOAPStruct href="#id1"/>
 <SOAPSDK5:SOAPStruct href="#id2"/>
 </Result>
 </SOAPSDK4:echoStructArrayResponse>
 <SOAPSDK6:SOAPStruct
 xmlns:SOAPSDK6="http://soapinterop.org/xsd"
 id="id1"
 SOAPSDK3:root="0"
 SOAPSDK2:type="SOAPSDK6:SOAPStruct">
 <varString>Ninety-Nine</varString>
 <varInt>99</varInt>
 <varFloat>99.9990005493164</varFloat>
 </SOAPSDK6:SOAPStruct>

HTTP Web Services

Programming 691

 <SOAPSDK7:SOAPStruct
 xmlns:SOAPSDK7="http://soapinterop.org/xsd"
 id="id2"
 SOAPSDK3:root="0"
 SOAPSDK2:type="SOAPSDK7:SOAPStruct">
 <varString>Hundred and Ninety-Nine</varString>
 <varInt>199</varInt>
 <varFloat>199.998992919922</varFloat>
 </SOAPSDK7:SOAPStruct>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If the response was stored in a variable, then it can be parsed using OPENXML.
SELECT * FROM OPENXML(resp,'//*:Body/*:SOAPStruct')
WITH (
varString LONG VARCHAR 'varString',
varInt INT 'varInt',
varFloat FLOAT 'varFloat');

varString varInt varFloat

Ninety-Nine 99 99.9990005493

Hundred and Ninety-Nine 199 199.9989929199

Substitution Parameters Used for Clause Values
Declared parameters to a stored procedure or function are automatically substituted for
placeholders within a clause definition each time the stored procedure or function is run.
Substitution parameters allow the creation of general web service procedures that
dynamically configure clauses at run time. Any substrings that contain an exclamation mark '!'
followed by the name of one of the declared parameters is replaced by that parameter's value.
In this way one or more parameter values may be substituted to derive one or more clause
values at runtime.

Parameter substitution requires adherence to the following rules:

• All parameters used for substitution must be alphanumeric. Underscores are not allowed.
• A substitution parameter must be followed immediately by a non-alphanumeric character

or termination. For example, !sizeXL is not substituted with the value of a parameter
named size because X is alphanumeric.

• A substitution parameter that is not matched to a parameter name is ignored.
• An exclamation mark (!) can be escaped with another exclamation mark.

For example, the following procedure illustrates the use of parameter substitution. URL and
HTTP header definitions must be passed as parameters.
CREATE PROCEDURE test(uid CHAR(128), pwd CHAR(128), headers LONG
VARCHAR)
 URL 'http://!uid:!pwd@localhost/myservice'
 HEADER '!headers';

HTTP Web Services

692 SAP Sybase IQ

You can then use the following statement to call the test procedure and initiate an HTTP
request:
CALL test('dba', 'sql', 'NewHeader1:value1\nNewHeader2:value2');

Different values can be used each time this procedure is called.

Encryption certificate example
You can use parameter substitution to pass encryption certificates from a file and pass them to
a stored procedure or stored function.

The following example illustrates how to pass a certificate as a substitution string:
CREATE PROCEDURE secure(cert LONG VARCHAR)
URL 'https://localhost/secure'
TYPE 'HTTP:GET'
CERTIFICATE 'cert=!cert;company=test;unit=test;name=RSA Root';

The certificate is read from a file and passed to secure in the following call.

CALL secure(xp_read_file('%ALLUSERSPROFILE%/SybaseIQ/demo\
\Certificates\\rsaroot.crt));

This example is for illustration only. The certificate can be read directly from a file using the
file= keyword for the CERTIFICATE clause.

No matching parameter name example
Placeholders with no matching parameter name are automatically deleted.

For example, the parameter size would not be substituted for the placeholder in the following
procedure:
CREATE PROCEDURE orderitem (size CHAR(18))
 URL 'HTTP://localhost/salesserver/order?size=!sizeXL'
 TYPE 'SOAP:RPC';

In this example, !sizeXL is always deleted because it is a placeholder for which there is no
matching parameter.

Parameters can be used to replace placeholders within the body of the stored function or stored
procedure at the time the function or procedure is called. If placeholders for a particular
variable do not exist, the parameter and its value are passed as part of the request. Parameters
and values used for substitution in this manner are not passed as part of the request.

HTTP and SOAP Request Structures
All parameters to a function or procedure, unless used during parameter substitution, are
passed as part of the web service request. The format in which they are passed depends on the
type of the web service request.

Parameter values that are not of character or binary data types are converted to a string
representation before being added to the request. This process is equivalent to casting the
value to a character type. The conversion is done in accordance with the data type formatting

HTTP Web Services

Programming 693

option settings at the time the function or procedure is invoked. In particular, the conversion
can be affected by such options as precision, scale, and timestamp_format.

HTTP request structures
Parameters for type HTTP:GET are URL encoded and placed within the URL. Parameter
names are used verbatim as the name for HTTP variables. For example, the following
procedure declares two parameters:
CREATE PROCEDURE test(a INTEGER, b CHAR(128))
 URL 'HTTP://localhost/myservice'
 TYPE 'HTTP:GET';

If this procedure is invoked with the two values 123 and 'xyz', then the URL used for the
request is equivalent to that shown below:
HTTP://localhost/myservice?a=123&b=xyz

If the type is HTTP:POST, the parameters and their values are URL encoded and placed within
the body of the request. After the headers, the following text appears in the body of the HTTP
request for the two parameter and values:
a=123&b=xyz

SOAP request structures
Parameters passed to SOAP requests are bundled as part of the request body, as required by the
SOAP specification:
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://localhost:8082">
 <SOAP-ENV:Body>
 <m:test>
 <m:a>123</m:a>
 <m:b>abc</m:b>
 </m:test>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

How to Log Web Client Requests
Web service client information, including HTTP requests and transport data, can be logged to
the web service client log file. The web service client log file can be specified with the -zoc
server option or by using the sa_server_option system procedure:
CALL sa_server_option('WebClientLogFile', 'clientinfo.txt');

Logging is enabled automatically when you specify the -zoc server option. You can enable and
disable logging to this file using the sa_server_option system procedure:
CALL sa_server_option('WebClientLogging', 'ON');

HTTP Web Services

694 SAP Sybase IQ

Web Services References
This section provides information about web service references.

Web Service Error Code Reference
The HTTP server generates standard web service errors when requests fail. These errors are
assigned numbers consistent with protocol standards.

The following are some typical errors that you may encounter:

Number Name SOAP fault Description

301 Moved permanently Server The requested page has
been permanently
moved. The server au-
tomatically redirects
the request to the new
location.

304 Not Modified Server The server has decided,
based on information
in the request, that the
requested data has not
been modified since the
last request and so it
does not need to be sent
again.

307 Temporary Redirect Server The requested page has
been moved, but this
change may not be per-
manent. The server au-
tomatically redirects
the request to the new
location.

400 Bad Request Client.BadRequest The HTTP request is
incomplete or mal-
formed.

HTTP Web Services

Programming 695

Number Name SOAP fault Description

401 Authorization Re-
quired

Client.Authorization Authorization is re-
quired to use the serv-
ice, but a valid user
name and password
were not supplied.

403 Forbidden Client.Forbidden You do not have per-
mission to access the
database.

404 Not Found Client.NotFound The named database is
not running on the serv-
er, or the named web
service does not exist.

408 Request Timeout Server.RequestTime-
out

The maximum connec-
tion idle time was ex-
ceeded while receiving
the request.

411 HTTP Length Re-
quired

Client.LengthRequired The server requires that
the client include a
Content-Length speci-
fication in the request.
This typically occurs
when uploading data to
the server.

413 Entity Too Large Server The request exceeds
the maximum permit-
ted size.

414 URI Too Large Server The length of the URI
exceeds the maximum
allowed length.

500 Internal Server Error Server An internal error occur-
red. The request could
not be processed.

501 Not Implemented Server The HTTP request
method is not GET,
HEAD, or POST.

HTTP Web Services

696 SAP Sybase IQ

Number Name SOAP fault Description

502 Bad Gateway Server The document reques-
ted resides on a third-
party server and the
server received an error
from the third-party
server.

503 Service Unavailable Server The number of connec-
tions exceeds the al-
lowed maximum.

Faults are returned to the client as SOAP faults as defined by the following the SOAP version
1.1 standards when a SOAP service fails:

• When an error in the application handling the request generates a SQLCODE, a SOAP
Fault is returned with a faultcode of Client, possibly with a sub-category, such as
Procedure. The faultstring element within the SOAP Fault is set to a detailed explanation
of the error and a detail element contains the numeric SQLCODE value.

• In the event of a transport protocol error, the faultcode is set to either Client or Server,
depending on the error, faultstring is set to the HTTP transport message, such as 404 Not
Found, and the detail element contains the numeric HTTP error value.

• SOAP Fault messages generated due to application errors that return a SQLCODE value
are returned with an HTTP status of 200 OK.

The appropriate HTTP error is returned in a generated HTML document if the client cannot be
identified as a SOAP client.

HTTP Web Service Examples
Several sample implementations of web services are located in the %ALLUSERSPROFILE
%\SybaseIQ\samples\SQLAnywhere\HTTP directory. For more information about
the samples, see %ALLUSERSPROFILE%\SybaseIQ\samples\SQLAnywhere
\HTTP\readme.txt.

Tutorial: Create a Web Server and Access It from a Web Client
This tutorial illustrates how to create a web server using a SQL Anywhere database server and
then send requests to it from a web client database server.

Required Software

• SAP Sybase IQ

HTTP Web Services

Programming 697

Competencies and Experience

• Familiarity with XML
• Familiarity with MIME (Multipurpose Internet Mail Extensions) types
• Basic knowledge of SAP Sybase IQ web services

Goals

• Create and start a new SAP Sybase IQ web server database.
• Create a web service.
• Set up a procedure that returns the information contained in HTTP requests.
• Create and start a new SAP Sybase IQ web client database.
• Send HTTP:POST requests from the web client to the database server.
• Send an HTTP responses from the web server to the web client.

Privileges
The following privileges are required to perform the lessons in this tutorial.

• CREATE ANY OBJECT
• MANAGE ANY WEB SERVICE

Lesson 1: Setting Up a Web Server to Receive Requests and Send Responses
The goal of this lesson is to set up an SAP Sybase IQ web server running a web service.

Prerequisites

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Create a web server and access it from a web client.

Task

1. Create an SAP Sybase IQ database that will be used to contain web service definitions.
iqinit -dba <user_id>,<password> echo

2. Start a network database server using this database. This server will act as a web server.
iqsrv16 -xs http(port=8082) -n echo echo.db

The HTTP web server is set to listen on port 8082 for requests. Use a different port number
if 8082 is disallowed on your network.

3. Connect to the database server with Interactive SQL.
dbisql -c "UID=<user_id>;PWD=<password>;SERVER=echo"

4. Create a new web service to accept incoming requests.
CREATE SERVICE EchoService
TYPE 'RAW'
USER DBA

HTTP Web Services

698 SAP Sybase IQ

AUTHORIZATION OFF
SECURE OFF
AS CALL Echo();

This statement creates a new service named EchoService that calls a stored procedure
named Echo when a web client sends a request to the service. It generates an HTTP
response body without any formatting (RAW) for the web client.

5. Create the Echo procedure to handle incoming requests.

CREATE OR REPLACE PROCEDURE Echo()
BEGIN
 DECLARE request_body LONG VARCHAR;
 DECLARE request_mimetype LONG VARCHAR;

 SET request_mimetype = http_header('Content-Type');
 SET request_body = isnull(http_variable('text'),
http_variable('body'));
 IF request_body IS NULL THEN
 CALL sa_set_http_header('Content-Type', 'text/plain');
 SELECT 'failed'
 ELSE
 CALL sa_set_http_header('Content-Type',
request_mimetype);
 SELECT request_body;
 END IF;
END

This procedure formats the Content-Type header and the body of the response that is
sent to the web client.

A web server is set up to receive requests and send responses.

Next

Proceed to Lesson 2: Sending requests from a web client and receiving responses.

Lesson 2: Sending Requests from a Web Client and Receiving Responses
In this lesson, you set up a database client to send requests to a web server using the POST
method and to receive the web server's responses.

Prerequisites

This lesson assumes that you have set up a web server as instructed in Lesson 1.

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Create a web server and access it from a web client.

Task

This lesson contains several references to localhost. Use the host name or IP address of
the web server from Lesson 1 instead of localhost if you are not running the web client on
the same computer as the web server.

HTTP Web Services

Programming 699

1. Create an SAP Sybase IQ database that will be used to contain web client procedures.
iqinit -dba <user_id>,<password> echo_client

2. Start a network database server using this database. This server will act as a web client.
iqsrv16 echo_client.db

3. Connect to the database server with Interactive SQL.
dbisql -c "UID=<user_id>;PWD=<password>;SERVER=echo_client"

4. Create a new stored procedure to send requests to a web service.
CREATE OR REPLACE PROCEDURE SendWithMimeType(
 value LONG VARCHAR,
 mimeType LONG VARCHAR,
 urlSpec LONG VARCHAR
)
URL '!urlSpec'
TYPE 'HTTP:POST:!mimeType';

The SendWithMimeType procedure has three parameters. The value parameter
represents the body of the request that should be sent to the web service. The urlSpec
parameter indicates the URL to use to connect to the web service. The mimeType
indicates which MIME type to use for the HTTP:POST.

5. Send a request to the web server and obtain the response.
CALL SendWithMimeType('<hello>this is xml</hello>',
 'text/xml',
 'http://localhost:8082/EchoService'
);

The http://localhost:8082/EchoService string indicates that the web server
runs on localhost and listens on port 8082. The desired web service is named
EchoService.

6. Try a different MIME type and observe the response.
CALL SendWithMimeType('{"menu": { "id": "file", "value": "File",
"popup": {
 "menuitem": [{"value": "New", "onclick": "CreateNew()"},
 {"value": "Open", "onclick": "Open()"},
 {"value": "Close", "onclick": "Close()"}] } } }',
 'application/json',
 'http://localhost:8082/EchoService'
);

A web client is set up to send HTTP requests to a web server using the POST method and
receive the web server's response.

HTTP Web Services

700 SAP Sybase IQ

Tutorial: Using SAP Sybase IQ to Access a SOAP/DISH Service
This tutorial illustrates how to create a SOAP server that converts a web client-supplied
Fahrenheit temperature value to Celsius.

Required Software

• SAP Sybase IQ

Competencies and Experience

• Familiarity with SOAP
• Basic knowledge of SAP Sybase IQ web services

Goals

• Create and start a new SAP Sybase IQ web server database.
• Create a SOAP web service.
• Set up a procedure that converts a client-supplied Fahrenheit value to a Celsius value.
• Create and start a newSAP Sybase IQ web client database.
• Send a SOAP request from the web client to the database server.
• Send a SOAP response from the database server to the web client.

Privileges
The following privileges are required to perform the lessons in this tutorial.

• CREATE ANY OBJECT
• MANAGE ANY WEB SERVICE

Lesson 1: Setting Up a Web Server to Receive SOAP Requests and Send SOAP
Responses
In this lesson, you set up a new database server and create a SOAP service to handle incoming
SOAP requests. The server anticipates SOAP requests that provide a Fahrenheit temperature
value that is converted to the equivalent Celsius degrees.

Prerequisites

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using SAP Sybase IQ to access a SOAP/DISH service.

Task

1. Create an SAP Sybase IQ database that will be used to contain web service definitions.
iqinit -dba <user_id>,<password> ftc

HTTP Web Services

Programming 701

2. Start a database server using this database. This server will act as a web server.
iqsrv16 -xs http(port=8082) -n ftc ftc.db

The HTTP web server is set to listen on port 8082 for requests. Use a different port number
if 8082 is disallowed on your network.

3. Connect to the database server with Interactive SQL.
dbisql -c "UID=<user_id>;PWD=<password>;SERVER=ftc"

4. Create a new DISH service to accept incoming requests.
CREATE SERVICE soap_endpoint
 TYPE 'DISH'
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA;

This statement creates a new DISH service named soap_endpoint that handles
incoming SOAP service requests.

5. Create a new SOAP service to handle Fahrenheit to Celsius conversions.
CREATE SERVICE FtoCService
 TYPE 'SOAP'
 FORMAT 'XML'
 AUTHORIZATION OFF
 USER DBA
 AS CALL FToCConverter(:fahrenheit);

This statement creates a new SOAP service named FtoCService that generates XML-
formatted strings as output. It calls a stored procedure named FToCConverter when a
web client sends a SOAP request to the service.

6. Create the FToCConverter procedure to handle incoming SOAP requests. This
procedure performs the necessary calculations to convert a client-supplied Fahrenheit
temperature value to the equivalent Celsius temperature value.
CREATE OR REPLACE PROCEDURE FToCConverter(temperature FLOAT)
BEGIN
 DECLARE hd_key LONG VARCHAR;
 DECLARE hd_entry LONG VARCHAR;
 DECLARE alias LONG VARCHAR;
 DECLARE first_name LONG VARCHAR;
 DECLARE last_name LONG VARCHAR;
 DECLARE xpath LONG VARCHAR;
 DECLARE authinfo LONG VARCHAR;
 DECLARE namespace LONG VARCHAR;
 DECLARE mustUnderstand LONG VARCHAR;
header_loop:
 LOOP
 SET hd_key = NEXT_SOAP_HEADER(hd_key);
 IF hd_key IS NULL THEN
 -- no more header entries
 LEAVE header_loop;
 END IF;
 IF hd_key = 'Authentication' THEN
 SET hd_entry = SOAP_HEADER(hd_key);

HTTP Web Services

702 SAP Sybase IQ

 SET xpath = '/*:' || hd_key || '/*:userName';
 SET namespace = SOAP_HEADER(hd_key, 1, '@namespace');
 SET mustUnderstand = SOAP_HEADER(hd_key, 1,
'mustUnderstand');
 BEGIN
 -- parse the XML returned in the SOAP header
 DECLARE crsr CURSOR FOR
 SELECT * FROM OPENXML(hd_entry, xpath)
 WITH (alias LONG VARCHAR '@*:alias',
 first_name LONG VARCHAR '*:first/text()',
 last_name LONG VARCHAR '*:last/text()');
 OPEN crsr;
 FETCH crsr INTO alias, first_name, last_name;
 CLOSE crsr;
 END;

 -- build a response header
 -- based on the pieces from the request header
 SET authinfo =
 XMLELEMENT('Authentication',
 XMLATTRIBUTES(
 namespace as xmlns,
 alias,
 mustUnderstand),
 XMLELEMENT('first', first_name),
 XMLELEMENT('last', last_name));
 CALL SA_SET_SOAP_HEADER('authinfo', authinfo);
 END IF;
 END LOOP header_loop;
 SELECT ROUND((temperature - 32.0) * 5.0 / 9.0, 5) AS answer;
END;

The NEXT_SOAP_HEADER function is used in a LOOP structure to iterate through all
the header names in a SOAP request, and exits the loop when the
NEXT_SOAP_HEADER function returns NULL.

Note: This function does not necessarily iterate through the headers in the order that they
appear in the SOAP request.

The SOAP_HEADER function returns the header value or NULL when the header name
does not exist. The FToCConverter procedure searches for a header named
Authentication and extracts the header structure, including the @namespace and
mustUnderstand attributes. The @namespace header attribute is a special SAP
Sybase IQ attribute used to access the namespace (xmlns) of the given header entry.

The following is an XML string representation of a possible Authentication header
structure, where the @namespace attribute has a value of "SecretAgent", and
mustUnderstand has a value of 1:

<Authentication xmlns="SecretAgent" mustUnderstand="1">
 <userName alias="99">
 <first>Susan</first>
 <last>Hilton</last>

HTTP Web Services

Programming 703

 </userName>
</Authentication>

The OPENXML system procedure in the SELECT statement parses the XML header
using the XPath string "/*:Authentication/*:userName" to extract the alias
attribute value and the contents of the first and last tags. The result set is processed
using a cursor to fetch the three column values.

At this point, you have all the information of interest that was passed to the web service.
You have the temperature in Fahrenheit degrees and you have some additional attributes
that were passed to the web service in a SOAP header. You could look up the name and
alias that were provided to see if the person is authorized to use the web service. However,
this exercise is not shown in the example.

The SET statement is used to build a SOAP response in XML format to send to the client.
The following is an XML string representation of a possible SOAP response. It is based on
the above Authentication header structure example.

<Authentication xmlns="SecretAgent" alias="99"
mustUnderstand="1">
 <first>Susan</first>
 <last>Hilton</last>
</Authentication>

The SA_SET_SOAP_HEADER system procedure is used to set the SOAP response
header that will be sent to the client.

The final SELECT statement is used to convert the supplied Fahrenheit value to a Celsius
value. This information is relayed back to the client.

At this point, you now have a running SQL Anywhere web server that provides a service for
converting temperatures from degrees Fahrenheit to degrees Celsius. This service processes a
SOAP header from the client and sends a SOAP response back to the client.

Next

In the next lesson, you develop an example of a client that can send SOAP requests to the web
server and receive SOAP responses from the web server.

Lesson 2: Setting Up a Web Client to Send SOAP Requests and Receive SOAP
Responses
In this lesson, you set up a web client that sends SOAP requests and receives SOAP responses.

Prerequisites

This lesson assumes that you have set up a web server as instructed in the previous lesson.

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using SAP Sybase IQ to access a SOAP/DISH service.

HTTP Web Services

704 SAP Sybase IQ

Task

This lesson contains several references to localhost. Use the host name or IP address of
the web server from lesson 1 instead of localhost if you are not running the web client on
the same computer as the web server.

1. Run the following command to create an SAP Sybase IQdatabase:
iqinit -dba <user_id>,<password> ftc_client

2. Start the database client using the following command:
iqsrv16 ftc_client.db

3. Connect to the database in Interactive SQL using the following command:
dbisql -c "UID=<user_id>;PWD=<password>;SERVER=ftc_client"

4. Create a new stored procedure to send SOAP requests to a DISH service.

Execute the following SQL statement in Interactive SQL:
CREATE OR REPLACE PROCEDURE FtoC(fahrenheit FLOAT,
 INOUT inoutheader LONG VARCHAR,
 IN inheader LONG VARCHAR)
 URL 'http://localhost:8082/soap_endpoint'
 SET 'SOAP(OP=FtoCService)'
 TYPE 'SOAP:DOC'
 SOAPHEADER '!inoutheader!inheader';

The http://localhost:8082/soap_endpoint string in the URL clause
indicates that the web server runs on localhost and listens on port 8082. The desired
DISH web service is named soap_endpoint, which serves as a SOAP endpoint.

The SET clause specifies the name of the SOAP operation or service FtoCService that
is to be called.

The default format used when making a web service request is 'SOAP:RPC'. The format
chosen in this example is 'SOAP:DOC', which is similar to 'SOAP:RPC' but allows for a
richer set of data types. SOAP requests are always sent as XML documents. The
mechanism for sending SOAP requests is 'HTTP:POST'.

The substitution variables (inoutheader, inheader) in a web service client
procedure like FtoC must be alpha-numeric. If the web service client is declared as a
function, all its parameters are IN mode only (they cannot be assigned by the called
function). Therefore, OPENXML or other string functions would have to be used to
extract the SOAP response header information.

5. Create a wrapper procedure that builds two special SOAP request header entries, passes
them to the FtoC procedure, and processes server responses.

Execute the following SQL statements in Interactive SQL:
CREATE OR REPLACE PROCEDURE FahrenheitToCelsius(Fahrenheit
FLOAT)
BEGIN
 DECLARE io_header LONG VARCHAR;
 DECLARE in_header LONG VARCHAR;

HTTP Web Services

Programming 705

 DECLARE result LONG VARCHAR;
 DECLARE err INTEGER;
 DECLARE crsr CURSOR FOR
 CALL FtoC(Fahrenheit io_header, in_header);
 SET io_header =
 '<Authentication xmlns="SecretAgent" ' ||
 'mustUnderstand="1">' ||
 '<userName alias="99">' ||
 '<first>Susan</first><last>Hilton</last>' ||
 '</userName>' ||
 '</Authentication>';
 SET in_header =
 '<Session xmlns="SomeSession">' ||
 '123456789' ||
 '</Session>';

 MESSAGE 'send, soapheader=' || io_header || in_header;
 OPEN crsr;
 FETCH crsr INTO result, err;
 CLOSE crsr;
 MESSAGE 'receive, soapheader=' || io_header;
 SELECT Fahrenheit, Celsius
 FROM OPENXML(result, '//tns:answer', 1, result)
 WITH ("Celsius" FLOAT 'text()');
END;

The first SET statement creates the XML representation of a SOAP header entry to inform
the web server of user credentials:
<Authentication xmlns="SecretAgent" mustUnderstand="1">
 <userName alias="99">
 <first>Susan</first>
 <last>Hilton</last>
 </userName>
</Authentication>

The second SET statement creates the XML representation of a SOAP header entry to
track the client session ID:
<Session xmlns="SomeSession">123456789</Session>

6. The OPEN statement causes the FtoC procedure to be called which sends a SOAP request
to the web server and then processes the response from the web server. The response
includes a header which is returned in inoutheader.

At this point, you now have a client that can send SOAP requests to the web server and receive
SOAP responses from the web server.

Lesson 3: Sending a SOAP Request and Receiving a SOAP Response
In this lesson, you call the wrapper procedure created in the previous lesson, which sends a
SOAP request to the web server that you created in lesson one.

Prerequisites

This lesson assumes that you have set up a web server as instructed in lesson 1.

HTTP Web Services

706 SAP Sybase IQ

This lesson assumes that you have set up a web client as instructed in lesson 2.

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using SAP Sybase IQ to access a SOAP/DISH service.

Task

1. Connect to the client database in Interactive SQL if it is not already open from lesson two.
dbisql -c "UID=<user_id>;PWD=<password>;SERVER=ftc_client"

2. Enable logging of SOAP requests and responses.

Execute the following SQL statements in Interactive SQL:
CALL sa_server_option('WebClientLogFile', 'soap.txt');
CALL sa_server_option('WebClientLogging', 'ON');

These calls allow you to examine the content of the SOAP request and response. The
requests and responses are logged to a file called soap.txt.

3. Call the wrapper procedure to send a SOAP request and receive the SOAP response.

Execute the following SQL statement in Interactive SQL:
CALL FahrenheitToCelsius(212);

This call passes a Fahrenheit value of 212 to the FahrenheitToCelsius procedure,
which passes the value along with two customized SOAP headers to the FToC procedure.
Both client-side procedures are created in the previous lesson.

The FToC web service procedure sends the Fahrenheit value and the SOAP headers to the web
server. The SOAP request contains the following.
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:m="http://localhost:8082">
 <SOAP-ENV:Header>
 <Authentication xmlns="SecretAgent" mustUnderstand="1">
 <userName alias="99">
 <first>Susan</first>
 <last>Hilton</last>
 </userName>
 </Authentication>
 <Session xmlns="SomeSession">123456789</Session>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <m:FtoCService>
 <m:fahrenheit>212</m:fahrenheit>
 </m:FtoCService>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The FtoC procedure then receives the response from the web server which includes a result set
based on the Fahrenheit value. The SOAP response contains the following.

HTTP Web Services

Programming 707

<SOAP-ENV:Envelope
 xmlns:xsd='http://www.w3.org/2001/XMLSchema'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:tns='http://localhost:8082'>
 <SOAP-ENV:Header>
 <Authentication xmlns="SecretAgent" alias="99"
mustUnderstand="1">
 <first>Susan</first>
 <last>Hilton</last>
 </Authentication>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <tns:FtoCServiceResponse>
 <tns:FtoCServiceResult xsi:type='xsd:string'>
 <tns:rowset xmlns:tns="http://localhost:8082/
ftc">

 <tns:row>

 <tns:answer>100
 </tns:answer>

 </tns:row>

 </tns:rowset>

 </tns:FtoCServiceResult>
 <tns:sqlcode>0</tns:sqlcode>
 </tns:FtoCServiceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The content of <SOAP-ENV:Header> is returned in inoutheader.

If you examine the SOAP response, you can see that the result set was encoded in the response
by the FToCService web service. The result set is decoded and returned to the
FahrenheitToCelsius procedure. The result set looks like the following when a
Fahrenheit value of 212 is passed to the web server:
<tns:rowset xmlns:tns="http://localhost:8082/ftc">
 <tns:row>
 <tns:answer>100
 </tns:answer>
 </tns:row>
</tns:rowset>

The SELECT statement in the FahrenheitToCelsius procedure uses the OPENXML
function to parse the SOAP response, extracting the Celsius value defined by the
tns:answer structure.

The following result set is generated in Interactive SQL:
Fahrenheit Celsius
 212 100

HTTP Web Services

708 SAP Sybase IQ

Tutorial: Using Visual C# to Access a SOAP/DISH Web Service
This tutorial illustrates how to create a Visual C# client application to access SOAP/DISH
services on an SAP Sybase IQ web server.

Required Software

• SAP Sybase IQ
• Visual Studio

Competencies and Experience

• Familiarity with SOAP
• Familiarity with .NET framework
• Basic knowledge of SQL Anywhere web services

Goals

• Create and start a new SAP Sybase IQ web server database.
• Create a SOAP web service.
• Set up a procedure that returns the information contained in a SOAP request.
• Create a DISH web service that provides WSDL documents and acts as a proxy.
• Set up Visual C# on the client computer and import a WSDL document from the web

server.
• Create a Java client application to retrieve information from the SOAP service using the

WSDL document information.

Privileges
The following privileges are required to perform the lessons in this tutorial.

• CREATE ANY OBJECT
• MANAGE ANY WEB SERVICE

Lesson 1: Setting Up a Web Server to Receive SOAP Requests and Send SOAP
Responses
In this lesson, you set up an SAP Sybase IQ web server running SOAP and DISH web services
that handles Visual C# client application requests.

Prerequisites

A recent version of Visual Studio is required.

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using Visual C# to access a SOAP/DISH web service.

HTTP Web Services

Programming 709

Task

1. Start the SAP Sybase IQ demonstration database using the following command:
iqsrv16 -xs http(port=8082) iqdemo.db

This command indicates that the HTTP web server should listen on port 8082 for requests.
Use a different port number if 8082 is disallowed on your network.

2. Connect to the database server in Interactive SQL using the following command:
dbisql -c "UID=<user_id>;PWD=<password>;SERVER=demo"

3. Create a new SOAP service to accept incoming requests.

Execute the following SQL statement in Interactive SQL:
CREATE SERVICE "SASoapTest/EmployeeList"
 TYPE 'SOAP'
 DATATYPE ON
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA
 AS SELECT * FROM Employees;

This statement creates a new SOAP web service named SASoapTest/
EmployeeList that generates a SOAP type as output. It selects all columns from the
Employees table and returns the result set to the client. The service name is surrounded
by quotation marks because of the slash character (/) that appears in the service name.

DATATYPE ON indicates that explicit data type information is generated in the XML
result set response and the input parameters. This option does not affect the WSDL
document that is generated.

The FORMAT clause is not specified so the SOAP service format is dictated by the
associated DISH service format which is declared in the next step.

4. Create a new DISH service to act as a proxy for the SOAP service and to generate the
WSDL document.

Execute the following SQL statement in Interactive SQL:
CREATE SERVICE SASoapTest_DNET
 TYPE 'DISH'
 GROUP SASoapTest
 FORMAT 'DNET'
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA;

DISH web services accessed from .NET should be declared with the FORMAT 'DNET'
clause. The GROUP clause identifies the SOAP services that should be handled by the
DISH service. The EmployeeList service created in the previous step is part of the
GROUP SASoapTest because it is declared as SASoapTest/EmployeeList.

5. Verify that the DISH web service is functional by accessing the associated WSDL
document through a web browser.

HTTP Web Services

710 SAP Sybase IQ

Open your web browser and go to http://localhost:8082/demo/SASoapTest_DNET.

The DISH service automatically generates a WSDL document that appears in the browser
window.

You have set up an SAP Sybase IQ web server running SOAP and DISH web services that can
handle Visual C# client application requests.

Next

In the next lesson, you create a Visual C# application to communicate with the web server.

Lesson 2: Creating a Visual C# Application to Communicate with the Web
Server
In this lesson, you create a Visual C# application to communicate with the web server.

Prerequisites

This lesson assumes that you have set up a web server as instructed in lesson 1.

A recent version of Visual Studio is required to complete this lesson.

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using Visual C# to access a SOAP/DISH web service.

Task

This lesson contains several references to localhost. Use the host name or IP address of
the web server from lesson 1 instead of localhost if you are not running the web client on
the same computer as the web server.

This example uses functions from the .NET Framework 2.0.

1. Start Visual Studio.

2. Create a new Visual C# Windows Forms Application project.

An empty form appears.

3. Add a web reference to the project.

a. Click Project » Add Service Reference.
b. In the Add Service Reference window, click Advanced.
c. In the Service Reference Settings window, click Add Web Reference.
d. In the Add Web Reference window, type http://localhost:8082/demo/

SASoapTest_DNET in the URL field.

e. Click Go (or the green arrow).
Visual Studio lists the EmployeeList method available from the SASoapTest_DNET
service.

HTTP Web Services

Programming 711

http://localhost:8082/demo/SASoapTest_DNET

f. Click Add Reference.
Visual Studio adds localhost to the project Web References in the Solution
Explorer pane.

4. Populate the empty form with the desired objects for web client application.

From the Toolbox pane, drag ListBox and Button objects onto the form and update the text
attributes so that the form looks similar to the following diagram:

5. Write a procedure that accesses the web reference and uses the available methods.

Double-click the Employee List button and add the following code for the button
click event:
int sqlCode;

listBox1.Items.Clear();

localhost.SASoapTest_DNET proxy = new
localhost.SASoapTest_DNET();

DataSet results = proxy.EmployeeList(out sqlCode);
DataTableReader dr = results.CreateDataReader();
while (dr.Read())
{
 for (int i = 0; i < dr.FieldCount; i++)
 {
 string columnName = "(" + dr.GetDataTypeName(i)
 + ")"
 + dr.GetName(i);
 if (dr.IsDBNull(i))
 {
 listBox1.Items.Add(columnName + "=(null)");
 }
 else {
 System.TypeCode typeCode =

HTTP Web Services

712 SAP Sybase IQ

 System.Type.GetTypeCode(dr.GetFieldType(i));
 switch (typeCode)
 {
 case System.TypeCode.Int32:
 Int32 intValue = dr.GetInt32(i);
 listBox1.Items.Add(columnName + "="
 + intValue);
 break;
 case System.TypeCode.Decimal:
 Decimal decValue = dr.GetDecimal(i);
 listBox1.Items.Add(columnName + "="
 + decValue.ToString("c"));
 break;
 case System.TypeCode.String:
 string stringValue = dr.GetString(i);
 listBox1.Items.Add(columnName + "="
 + stringValue);
 break;
 case System.TypeCode.DateTime:
 DateTime dateValue = dr.GetDateTime(i);
 listBox1.Items.Add(columnName + "="
 + dateValue);
 break;
 case System.TypeCode.Boolean:
 Boolean boolValue = dr.GetBoolean(i);
 listBox1.Items.Add(columnName + "="
 + boolValue);
 break;
 case System.TypeCode.DBNull:
 listBox1.Items.Add(columnName
 + "=(null)");
 break;
 default:
 listBox1.Items.Add(columnName
 + "=(unsupported)");
 break;
 }
 }
 }
 listBox1.Items.Add("");
}
dr.Close();

6. Run the application.

Click Debug » Start Debugging.

7. Communicate with the web database server.

Click Employee List.

The ListBox object displays the EmployeeList result set as (type)name=value pairs.
The following output illustrates how an entry appears in the ListBox object:

(Int32)EmployeeID=102
(Int32)ManagerID=501
(String)Surname=Whitney

HTTP Web Services

Programming 713

(String)GivenName=Fran
(Int32)DepartmentID=100
(String)Street=9 East Washington Street
(String)City=Cornwall
(String)State=New York
(String)Country=USA
(String)PostalCode=02192
(String)Phone=6175553985
(String)Status=A
(String)SocialSecurityNumber=017349033
(String)Salary=$45,700.00
(DateTime)StartDate=28/08/1984 0:00:00 AM
(DateTime)TerminationDate=(null)
(DateTime)BirthDate=05/06/1958 0:00:00 AM
(Boolean)BenefitHealthInsurance=True
(Boolean)BenefitLifeInsurance=True
(Boolean)BenefitDayCare=False
(String)Sex=F

The Salary amount is converted to the client's currency format.

Values that contain null are returned as DBNull. Values that contain a date with no time are
assigned a time of 00:00:00 or midnight.

The XML response from the web server includes a formatted result set. All column data is
converted to a string representation of the data. The following result set illustrates how result
sets are formatted when they are sent to the client:
<row>
 <EmployeeID>102</EmployeeID>
 <ManagerID>501</ManagerID>
 <Surname>Whitney</Surname>
 <GivenName>Fran</GivenName>
 <DepartmentID>100</DepartmentID>
 <Street>9 East Washington Street</Street>
 <City>Cornwall</City>
 <State>NY</State>
 <Country>USA</Country>
 <PostalCode>02192</PostalCode>
 <Phone>6175553985</Phone>
 <Status>A</Status>
 <SocialSecurityNumber>017349033</SocialSecurityNumber>
 <Salary>45700.000</Salary>
 <StartDate>1984-08-28-05:00</StartDate>
 <TerminationDate xsi:nil="true" />
 <BirthDate>1958-06-05-05:00</BirthDate>
 <BenefitHealthInsurance>1</BenefitHealthInsurance>
 <BenefitLifeInsurance>1</BenefitLifeInsurance>
 <BenefitDayCare>0</BenefitDayCare>
 <Sex>F</Sex>
 </row>

Columns containing date or time information include the offset from UTC of the web server.
In the above result set, the offset is -05:00 which is 5 hours to the west of UTC (North
American Eastern Standard Time).

HTTP Web Services

714 SAP Sybase IQ

Columns containing only the date are formatted as yyyy-mm-dd-HH:MM or yyyy-mm-
dd+HH:MM. A zone offset (-HH:MM or +HH:MM) is suffixed to the string.

Columns containing only the time are formatted as hh:mm:ss.nnn-HH:MM or
hh:mm:ss.nnn+HH:MM. A zone offset (-HH:MM or +HH:MM) is suffixed to the string.

Columns containing both date and time are formatted as yyyy-mm-ddThh:mm:ss.nnn-
HH:MM or yyyy-mm-ddThh:mm:ss.nnn+HH:MM. The date is separated from the time
using the letter 'T'. A zone offset (-HH:MM or +HH:MM) is suffixed to the string.

The DATATYPE ON clause was specified in the previous lesson to generate data type
information in the XML result set response. A fragment of the response from the web server is
shown below. The type information matches the data type of the database columns.
<xsd:element name='EmployeeID' minOccurs='0' type='xsd:int' />
<xsd:element name='ManagerID' minOccurs='0' type='xsd:int' />
<xsd:element name='Surname' minOccurs='0' type='xsd:string' />
<xsd:element name='GivenName' minOccurs='0' type='xsd:string' />
<xsd:element name='DepartmentID' minOccurs='0' type='xsd:int' />
<xsd:element name='Street' minOccurs='0' type='xsd:string' />
<xsd:element name='City' minOccurs='0' type='xsd:string' />
<xsd:element name='State' minOccurs='0' type='xsd:string' />
<xsd:element name='Country' minOccurs='0' type='xsd:string' />
<xsd:element name='PostalCode' minOccurs='0' type='xsd:string' />
<xsd:element name='Phone' minOccurs='0' type='xsd:string' />
<xsd:element name='Status' minOccurs='0' type='xsd:string' />
<xsd:element name='SocialSecurityNumber' minOccurs='0'
type='xsd:string' />
<xsd:element name='Salary' minOccurs='0' type='xsd:decimal' />
<xsd:element name='StartDate' minOccurs='0' type='xsd:date' />
<xsd:element name='TerminationDate' minOccurs='0' type='xsd:date' />
<xsd:element name='BirthDate' minOccurs='0' type='xsd:date' />
<xsd:element name='BenefitHealthInsurance' minOccurs='0'
type='xsd:boolean' />
<xsd:element name='BenefitLifeInsurance' minOccurs='0'
type='xsd:boolean' />
<xsd:element name='BenefitDayCare' minOccurs='0'
type='xsd:boolean' />
<xsd:element name='Sex' minOccurs='0' type='xsd:string' />

Tutorial: Using JAX-WS to Access a SOAP/DISH Web Service
This tutorial illustrates how to create a Java API for XML Web Services (JAX-WS) client
application to access SOAP/DISH services on a SQL Anywhere web server.

Required Software

• SAP Sybase IQ
• JDK 1.7.0
• JAX-WS 2.2.7 or later version

HTTP Web Services

Programming 715

Competencies and Experience

• Familiarity with SOAP
• Familiarity with Java and JAX-WS
• Basic knowledge of SAP Sybase IQ web services

Goals

• Create and start a new SAP Sybase IQ web server database.
• Create a SOAP web service.
• Set up a procedure that returns the information contained in a SOAP request.
• Create a DISH web service that provides WSDL documents and acts as a proxy.
• Use JAX-WS on the client computer to process a WSDL document from the web server.
• Create a Java client application to retrieve information from the SOAP service using the

WSDL document information.

Privileges
The following privileges are required to perform the lessons in this tutorial.

• CREATE ANY OBJECT
• MANAGE ANY WEB SERVICE

Lesson 1: Setting Up a Web Server to Receive SOAP Requests and Send SOAP
Responses
In this lesson, you set up an SAP Sybase IQ web server running SOAP and DISH web services
that handles JAX-WS client application requests.

Prerequisites

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using JAX-WS to access a SOAP/DISH web service.

Task

This lesson sets up the web server and a simple web service that you will use in the next lesson.
It can be instructional to use proxy software to observe the XML message traffic. The proxy
inserts itself between your client application and the web server.

1. Start the SAP Sybase IQ demonstration database using the following command:
iqsrv16 -xs http(port=8082) iqdemo.db

This command indicates that the HTTP web server should listen on port 8082 for requests.
Use a different port number if 8082 is disallowed on your network.

2. Connect to the database server with Interactive SQL using the following command:

HTTP Web Services

716 SAP Sybase IQ

dbisql -c "UID=<user_id>;PWD=<password>;SERVER=demo"
3. Create a stored procedure that lists Employees table columns.

Execute the following SQL statements in Interactive SQL:
CREATE OR REPLACE PROCEDURE ListEmployees()
RESULT (
 EmployeeID INTEGER,
 Surname CHAR(20),
 GivenName CHAR(20),
 StartDate DATE,
 TerminationDate DATE)
BEGIN
 SELECT EmployeeID, Surname, GivenName, StartDate,
TerminationDate
 FROM Employees;
END;

These statements create a new procedure named ListEmployees that defines the
structure of the result set output, and selects certain columns from the Employees table.

4. Create a new SOAP service to accept incoming requests.

Execute the following SQL statement in Interactive SQL:
CREATE SERVICE "WS/EmployeeList"
 TYPE 'SOAP'
 FORMAT 'CONCRETE' EXPLICIT ON
 DATATYPE ON
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA
 AS CALL ListEmployees();

This statement creates a new SOAP web service named WS/EmployeeList that
generates a SOAP type as output. It calls the ListEmployees procedure when a web
client sends a request to the service. The service name is surrounded by quotation marks
because of the slash character (/) that appears in the service name.

SOAP web services accessed from JAX-WS should be declared with the FORMAT
'CONCRETE' clause. The EXPLICIT ON clause indicates that the corresponding DISH
service should generate XML Schema that describes an explicit dataset object based on the
result set of the ListEmployees procedure. The EXPLICIT clause only affects the
generated WSDL document.

DATATYPE ON indicates that explicit data type information is generated in the XML
result set response and the input parameters. This option does not affect the WSDL
document that is generated.

5. Create a new DISH service to act as a proxy for the SOAP service and to generate the
WSDL document.

Execute the following SQL statement in Interactive SQL:

HTTP Web Services

Programming 717

CREATE SERVICE WSDish
 TYPE 'DISH'
 FORMAT 'CONCRETE'
 GROUP WS
 AUTHORIZATION OFF
 SECURE OFF
 USER DBA;

DISH web services accessed from JAX-WS should be declared with the FORMAT
'CONCRETE' clause. The GROUP clause identifies the SOAP services that should be
handled by the DISH service. The EmployeeList service created in the previous step is part
of the GROUP WS because it is declared as WS/EmployeeList.

6. Verify that the DISH web service is functional by accessing the associated WSDL
document through a web browser.

Open your web browser and go to http://localhost:8082/demo/WSDish.

The DISH service automatically generates a WSDL document that appears in the browser
window. Examine the EmployeeListDataset object, which looks similar to the
following output:

<s:complexType name="EmployeeListDataset">
<s:sequence>
<s:element name="rowset">
 <s:complexType>
 <s:sequence>
 <s:element name="row" minOccurs="0" maxOccurs="unbounded">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="EmployeeID"
nillable="true" type="s:int" />
 <s:element minOccurs="0" maxOccurs="1" name="Surname"
nillable="true" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="GivenName"
nillable="true" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="StartDate"
nillable="true" type="s:date" />
 <s:element minOccurs="0" maxOccurs="1" name="TerminationDate"
nillable="true" type="s:date" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:sequence>
 </s:complexType>
</s:element>
</s:sequence>
</s:complexType>

EmployeeListDataset is the explicit object generated by the FORMAT
'CONCRETE' and EXPLICIT ON clauses in the EmployeeList SOAP service. In a
later lesson, the wsimport application uses this information to generate a SOAP 1.1 client
interface for this service.

HTTP Web Services

718 SAP Sybase IQ

http://localhost:8082/demo/WSDish

You have set up an SAP Sybase IQ web server running SOAP and DISH web services that can
handle JAX-WS client application requests.

Next

In the next lesson, you create a Java application to communicate with the web server.

Lesson 2: Creating a Java Application to Communicate with the Web Server
In this lesson, you process the WSDL document generated from the DISH service and create a
Java application to access table data based on the schema defined in the WSDL document.

Prerequisites

This lesson depends on the steps carried out in lesson 1.

This lesson assumes that you have the roles and privileges listed in the Privileges section at the
start of this tutorial: Tutorial: Using JAX-WS to access a SOAP/DISH web service.

Task

At the time of writing, JAX-WS is included in JDK 1.7.0 and the most recent version of JAX-
WS was 2.2.7. The steps that follow are based on that version. To determine if JAX-WS is
present in your JDK, check for the wsimport application in the JDK bin directory. If it is
not there then go to http://jax-ws.java.net/ to download and install the latest version of JAX-
WS.

This lesson contains several references to localhost. Use the host name or IP address of
the web server from lesson 1 instead of localhost if you are not running the web client on
the same computer as the web server.

1. At a command prompt, create a new working directory for your Java code and generated
files. Change to this new directory.

2. Generate the interface that calls the DISH web service and imports the WSDL document
using the following command:
wsimport -keep "http://localhost:8082/demo/WSDish"

The wsimport application retrieves the WSDL document from the given URL. It
generates .java files to create an interface for it, then compiles them into .class files.

The keep option indicates that the .java files should not be deleted after generating the
class files. The generated Java source code allows you to understand the generated class
files.

The wsimport application creates a new subdirectory structure named localhost
_8082\demo\ws in your current working directory. The following is a list of the
contents of directory ws:

HTTP Web Services

Programming 719

http://jax-ws.java.net/

• EmployeeList.class
• EmployeeList.java
• EmployeeListDataset$Rowset$Row.class
• EmployeeListDataset$Rowset.class
• EmployeeListDataset.class
• EmployeeListDataset.java
• EmployeeListResponse.class
• EmployeeListResponse.java
• FaultMessage.class
• FaultMessage.java
• ObjectFactory.class
• ObjectFactory.java
• package-info.class
• package-info.java
• WSDish.class
• WSDish.java
• WSDishSoapPort.class
• WSDishSoapPort.java

3. Write a Java application that accesses table data from the database server based on the
dataset object schema defined in the generated source code.

The following is a sample Java application that does this. Save the source code as
SASoapDemo.java in the current working directory. Your current working directory
must be the directory containing the localhost subdirectory.

// SASoapDemo.java illustrates a web service client that
// calls the WSDish service and prints out the data.

import java.util.*;
import javax.xml.ws.*;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import javax.xml.datatype.*;
import localhost._8082.demo.ws.*;

public class SASoapDemo
{
 public static void main(String[] args)
 {
 try {
 WSDish service = new WSDish();

 Holder<EmployeeListDataset> response =
 new Holder<EmployeeListDataset>();
 Holder<Integer> sqlcode = new Holder<Integer>();

 WSDishSoapPort port = service.getWSDishSoap();

HTTP Web Services

720 SAP Sybase IQ

 // This is the SOAP service call to EmployeeList
 port.employeeList(response, sqlcode);

 EmployeeListDataset result = response.value;
 EmployeeListDataset.Rowset rowset = result.getRowset();

 List<EmployeeListDataset.Rowset.Row> rows = rowset.getRow();

 String fieldType;
 String fieldName;
 String fieldValue;
 Integer fieldInt;
 XMLGregorianCalendar fieldDate;

 for (int i = 0; i < rows.size(); i++) {
 EmployeeListDataset.Rowset.Row row = rows.get(i);

 fieldType =
row.getEmployeeID().getDeclaredType().getSimpleName();
 fieldName = row.getEmployeeID().getName().getLocalPart();
 fieldInt = row.getEmployeeID().getValue();
 System.out.println("(" + fieldType + ")" + fieldName +
 "=" + fieldInt);

 fieldType =
row.getSurname().getDeclaredType().getSimpleName();
 fieldName = row.getSurname().getName().getLocalPart();
 fieldValue = row.getSurname().getValue();
 System.out.println("(" + fieldType + ")" + fieldName +
 "=" + fieldValue);

 fieldType =
row.getGivenName().getDeclaredType().getSimpleName();
 fieldName = row.getGivenName().getName().getLocalPart();
 fieldValue = row.getGivenName().getValue();
 System.out.println("(" + fieldType + ")" + fieldName +
 "=" + fieldValue);

 fieldType =
row.getStartDate().getDeclaredType().getSimpleName();
 fieldName = row.getStartDate().getName().getLocalPart();
 fieldDate = row.getStartDate().getValue();
 System.out.println("(" + fieldType + ")" + fieldName +
 "=" + fieldDate);

 if (row.getTerminationDate() == null) {
 fieldType = "unknown";
 fieldName = "TerminationDate";
 fieldDate = null;
 } else {
 fieldType =

row.getTerminationDate().getDeclaredType().getSimpleName();
 fieldName =
row.getTerminationDate().getName().getLocalPart();
 fieldDate = row.getTerminationDate().getValue();

HTTP Web Services

Programming 721

 }
 System.out.println("(" + fieldType + ")" + fieldName +
 "=" + fieldDate);
 System.out.println();
 }
 }
 catch (Exception x) {
 x.printStackTrace();
 }
 }
}

This application prints all server-provided column data to the standard system output.

Note: This application assumes that your SAP Sybase IQ web server is listening on port
8082, as instructed in lesson one. Replace the 8082 portion of the import
localhost._8082.demo.ws.* code line with the port number you specified when
you started the SAP Sybase IQ web server.

For more information about the Java methods used in this application, see the
javax.xml.bind.JAXBElement class API documentation at http://docs.oracle.com/
javase/.

4. Compile your Java application using the following command:
javac SASoapDemo.java

5. Execute the application using the following command:
java SASoapDemo

6. The application sends its request to the web server. It receives an XML result set response
that consists of an EmployeeListResult with a rowset containing several row
entries.

The following is an example of the output from running SASoapDemo:
(Integer)EmployeeID=102
(String)Surname=Whitney
(String)GivenName=Fran
(XMLGregorianCalendar)StartDate=1984-08-28
(unknown)TerminationDate=null

(Integer)EmployeeID=105
(String)Surname=Cobb
(String)GivenName=Matthew
(XMLGregorianCalendar)StartDate=1985-01-01
(unknown)TerminationDate=null
.
.
.
(Integer)EmployeeID=1740
(String)Surname=Nielsen
(String)GivenName=Robert
(XMLGregorianCalendar)StartDate=1994-06-24
(unknown)TerminationDate=null

HTTP Web Services

722 SAP Sybase IQ

http://docs.oracle.com/javase/
http://docs.oracle.com/javase/

(Integer)EmployeeID=1751
(String)Surname=Ahmed
(String)GivenName=Alex
(XMLGregorianCalendar)StartDate=1994-07-12
(XMLGregorianCalendar)TerminationDate=2008-04-18

The TerminationDate column is only sent when its value is not NULL. The Java
application is designed to detect when the TerminationDate column is not present. For
this example, the last row in the Employees table was altered such that a non-NULL
termination date was set.

The following is an example of a SOAP response from the web server. The SQLCODE result
from executing the query is included in the response.
<tns:EmployeeListResponse>
 <tns:EmployeeListResult xsi:type='tns:EmployeeListDataset'>
 <tns:rowset>
 <tns:row> ... </tns:row>
 .
 .
 .
 <tns:row>
 <tns:EmployeeID xsi:type="xsd:int">1751</tns:EmployeeID>
 <tns:Surname xsi:type="xsd:string">Ahmed</tns:Surname>
 <tns:GivenName xsi:type="xsd:string">Alex</tns:GivenName>
 <tns:StartDate xsi:type="xsd:dateTime">1994-07-12</
tns:StartDate>
 <tns:TerminationDate xsi:type="xsd:dateTime">2010-03-22</
tns:TerminationDate>
 </tns:row>
 </tns:rowset>
 </tns:EmployeeListResult>
 <tns:sqlcode>0</tns:sqlcode>
</tns:EmployeeListResponse>

Column names and data types are included in each rowset.

HTTP Web Services

Programming 723

HTTP Web Services

724 SAP Sybase IQ

Three-Tier Computing and Distributed
Transactions

You can use SAP Sybase IQas a database server or resource manager, participating in
distributed transactions coordinated by a transaction server.

A three-tier environment, where an application server sits between client applications and a
set of resource managers, is a common distributed-transaction environment. Sybase EAServer
and some other application servers are also transaction servers.

Sybase EAServer and Microsoft Transaction Server both use the Microsoft Distributed
Transaction Coordinator (DTC) to coordinate transactions. SAP Sybase IQ provides support
for distributed transactions controlled by the DTC service, so you can use SAP Sybase IQ with
either of these application servers, or any other product based on the DTC model.

When integrating SAP Sybase IQ into a three-tier environment, most of the work needs to be
done from the application server. This section provides an introduction to the concepts and
architecture of three-tier computing, and an overview of relevant SAP Sybase IQ features. It
does not describe how to configure your application server to work with SAP Sybase IQ. For
more information, see your application server documentation.

Three-Tier Computing Architecture
In three-tier computing, application logic is held in an application server, such as Sybase
EAServer, which sits between the resource manager and the client applications. In many
situations, a single application server may access multiple resource managers. In the Internet
case, client applications are browser-based, and the application server is generally a web
server extension.

Three-Tier Computing and Distributed Transactions

Programming 725

Sybase EAServer stores application logic in the form of components, and makes these
components available to client applications. The components may be PowerBuilder®

components, JavaBeans, or COM components.

For more information, see your Sybase EAServer documentation.

Distributed Transactions in Three-Tier Computing
When client applications or application servers work with a single transaction processing
database, such as SAP Sybase IQ, there is no need for transaction logic outside the database
itself, but when working with multiple resource managers, transaction control must span the
resources involved in the transaction. Application servers provide transaction logic to their
client applications—guaranteeing that sets of operations are executed atomically.

Many transaction servers, including Sybase EAServer, use the Microsoft Distributed
Transaction Coordinator (DTC) to provide transaction services to their client applications.
DTC uses OLE transactions, which in turn use the two-phase commit protocol to coordinate
transactions involving multiple resource managers. You must have DTC installed to use the
features described in this section.

SAP Sybase IQ in Distributed Transactions
SAP Sybase IQ can take part in transactions coordinated by DTC, which means that you can
use SAP Sybase IQ databases in distributed transactions using a transaction server such as
Sybase EAServer or Microsoft Transaction Server. You can also use DTC directly in your
applications to coordinate transactions across multiple resource managers.

Three-Tier Computing and Distributed Transactions

726 SAP Sybase IQ

The Vocabulary of Distributed Transactions
This section assumes some familiarity with distributed transactions. For information, see your
transaction server documentation. This section describes some commonly used terms.

• Resource managers are those services that manage the data involved in the transaction.
The SAP Sybase IQdatabase server can act as a resource manager in a distributed
transaction when accessed through ADO.NET, OLE DB, or ODBC. The SAP Sybase
IQ .NET Data Provider, OLE DB provider, and ODBC driver act as resource manager
proxies on the client computer. The SAP Sybase IQ .NET Data Provider supports
distributed transactions using DbProviderFactory and TransactionScope.

• Instead of communicating directly with the resource manager, application components
can communicate with resource dispensers, which in turn manage connections or pools of
connections to the resource managers.
SAP Sybase IQ supports two resource dispensers: the ODBC driver manager and OLE
DB.

• When a transactional component requests a database connection (using a resource
manager), the application server enlists each database connection that takes part in the
transaction. DTC and the resource dispenser perform the enlistment process.

Two-Phase Commit
Distributed transactions are managed using two-phase commit. When the work of the
transaction is complete, the transaction manager (DTC) asks all the resource managers
enlisted in the transaction whether they are ready to commit the transaction. This phase is
called preparing to commit.

If all the resource managers respond that they are prepared to commit, DTC sends a commit
request to each resource manager, and responds to its client that the transaction is completed.
If one or more resource manager does not respond, or responds that it cannot commit the
transaction, all the work of the transaction is rolled back across all resource managers.

How Application Servers Use DTC
Sybase EAServer and Microsoft Transaction Server are both component servers. The
application logic is held in the form of components, and made available to client applications.

Each component has a transaction attribute that indicates how the component participates in
transactions. When building the component, you must program the work of the transaction
into the component—the resource manager connections, the operations on the data for which
each resource manager is responsible. However, you do not need to add transaction
management logic to the component. Once the transaction attribute is set, to indicate that the
component needs transaction management, EAServer uses DTC to enlist the transaction and
manage the two-phase commit process.

Three-Tier Computing and Distributed Transactions

Programming 727

Distributed Transaction Architecture
The following diagram illustrates the architecture of distributed transactions. In this case, the
resource manager proxy is either ADO.NET, OLE DB, or ODBC.

In this case, a single resource dispenser is used. The application server asks DTC to prepare a
transaction. DTC and the resource dispenser enlist each connection in the transaction. Each
resource manager must be in contact with both the DTC and the database, so the work can be
performed and the DTC can be notified of its transaction status when required.

A Distributed Transaction Coordinator (DTC) service must be running on each computer to
operate distributed transactions. You can start or stop DTC from the Microsoft Windows
Services window; the DTC service task is named MSDTC.

For more information, see your DTC or EAServer documentation.

Distributed Transactions
While SAP Sybase IQ is enlisted in a distributed transaction, it hands transaction control over
to the transaction server, and SAP Sybase IQ ensures that it does not perform any implicit
transaction management. The following conditions are imposed automatically by SAP Sybase
IQ when it participates in distributed transactions:

• Autocommit is automatically turned off, if it is in use.
• Data definition statements (which commit as a side effect) are disallowed during

distributed transactions.

Three-Tier Computing and Distributed Transactions

728 SAP Sybase IQ

• An explicit COMMIT or ROLLBACK issued by the application directly to SAP Sybase
IQ, instead of through the transaction coordinator, generates an error. The transaction is
not aborted, however.

• A connection can participate in only a single distributed transaction at a time.
• There must be no uncommitted operations at the time the connection is enlisted in a

distributed transaction.

DTC Isolation Levels
DTC has a set of isolation levels, which the application server specifies. These isolation levels
map to SAP Sybase IQisolation levels as follows:

DTC isolation level SAP Sybase IQ isolation level

ISOLATIONLEVEL_UNSPECIFIED 0

ISOLATIONLEVEL_CHAOS 0

ISOLATIONLEVEL_READUNCOMMITTED 0

ISOLATIONLEVEL_BROWSE 0

ISOLATIONLEVEL_CURSORSTABILITY 1

ISOLATIONLEVEL_READCOMMITTED 1

ISOLATIONLEVEL_REPEATABLEREAD 2

ISOLATIONLEVEL_SERIALIZABLE 3

ISOLATIONLEVEL_ISOLATED 3

Recovery From Distributed Transactions
If the database server faults while uncommitted operations are pending, it must either rollback
or commit those operations on startup to preserve the atomic nature of the transaction.

If uncommitted operations from a distributed transaction are found during recovery, the
database server attempts to connect to DTC and requests that it be re-enlisted in the pending or
in-doubt transactions. Once the re-enlistment is complete, DTC instructs the database server
to roll back or commit the outstanding operations.

If the reenlistment process fails, SAP Sybase IQ has no way of knowing whether the in-doubt
operations should be committed or rolled back, and recovery fails. If you want the database in
such a state to recover, regardless of the uncertain state of the data, you can force recovery
using the following database server options:

• -tmf – If DTC cannot be located, the outstanding operations are rolled back and recovery
continues.

• -tmt – If re-enlistment is not achieved before the specified time, the outstanding operations
are rolled back and recovery continues.

Three-Tier Computing and Distributed Transactions

Programming 729

Three-Tier Computing and Distributed Transactions

730 SAP Sybase IQ

Database Tools Interface (DBTools)

SAP Sybase IQ includes Sybase Control Center and a set of utilities for managing databases.
These database management utilities perform tasks such as backing up databases, creating
databases, translating transaction logs to SQL, and so on.

Supported Platforms
All the database management utilities use a shared library called the database tools library. It is
supplied for Windows operating systems and for Linux, and Unix. For Windows, the name of
this library is dbtool16.dll. For Linux and Unix, the name of this library is
libdbtool16_r.so.

You can develop your own database management utilities or incorporate database
management features into your applications by calling the database tools library. This section
describes the interface to the database tools library. This section assumes you are familiar with
how to call library routines from the development environment you are using.

The database tools library has functions, or entry points, for each of the database management
utilities. In addition, functions must be called before use of other database tools functions and
when you have finished using other database tools functions.

The dbtools.h Header File
The dbtools header file lists the entry points to the DBTools library and also the structures used
to pass information to and from the library. The dbtools.h file is installed into the SDK
\Include subdirectory under your SAP Sybase IQ installation directory. You should
consult the dbtools.h file for the latest information about the entry points and structure
members.

The dbtools.h header file includes other files such as:

• sqlca.h – This is included for resolution of various macros, not for the SQLCA itself.

• dllapi.h – Defines preprocessor macros for operating-system dependent and
language-dependent macros.

• dbtlvers.h – Defines the DB_TOOLS_VERSION_NUMBER preprocessor macro
and other version specific macros.

The sqldef.h Header File
The sqldef.h header file includes error return values.

The dbrmt.h Header File
The dbrmt.h header file included with SAP Sybase IQ describes the DBRemoteSQL entry
point in the DBTools library and also the structure used to pass information to and from the
DBRemoteSQL entry point. The dbrmt.h file is installed into the SDK\Include

Database Tools Interface (DBTools)

Programming 731

subdirectory under your SAP Sybase IQ installation directory. You should consult the
dbrmt.h file for the latest information about the DBRemoteSQL entry point and structure
members.

DBTools Import Libraries
To use the DBTools functions, you must link your application against a DBTools import
library that contains the required function definitions.

For Unix systems, no import library is required. Link directly against libdbtool16.so
(non-threaded) or libdbtool16_r.so (threaded).

Import libraries
Import libraries for the DBTools interface are provided with SAP Sybase IQ for Windows. For
Windows, they can be found in the SDK\Lib\x86 and SDK\Lib\x64 subdirectories
under your SAP Sybase IQ installation directory. The provided DBTools import libraries are
as follows:

Compiler Library

Microsoft Windows dbtlstm.lib

DBTools Library Initialization and Finalization
Before using any other DBTools functions, you must call DBToolsInit. When you are finished
using the DBTools library, you must call DBToolsFini.

The primary purpose of the DBToolsInit and DBToolsFini functions is to allow the DBTools
library to load and unload the SAP Sybase IQ message library. The message library contains
localized versions of all error messages and prompts that DBTools uses internally. If
DBToolsFini is not called, the reference count of the messages library is not decremented and
it will not be unloaded, so be careful to ensure there is a matched pair of DBToolsInit/
DBToolsFini calls.

The following code fragment illustrates how to initialize and finalize DBTools:
// Declarations
a_dbtools_info info;
short ret;

//Initialize the a_dbtools_info structure
memset(&info, 0, sizeof(a_dbtools_info));
info.errorrtn = (MSG_CALLBACK)MyErrorRtn;

// initialize the DBTools library
ret = DBToolsInit(&info);
if(ret != EXIT_OKAY) {

Database Tools Interface (DBTools)

732 SAP Sybase IQ

 // library initialization failed
 ...
}
// call some DBTools routines ...
...
// finalize the DBTools library
DBToolsFini(&info);

DBTools Function Calls
All the tools are run by first filling out a structure, and then calling a function (or entry point) in
the DBTools library. Each entry point takes a pointer to a single structure as argument.

The following example shows how to use the DBBackup function on a Windows operating
system.
// Initialize the structure
a_backup_db backup_info;
memset(&backup_info, 0, sizeof(backup_info));

// Fill out the structure
backup_info.version = DB_TOOLS_VERSION_NUMBER;
backup_info.output_dir = "c:\\backup";
backup_info.connectparms
="UID=<user_id>;PWD=<password>;DBF=iqdemo.db";

backup_info.confirmrtn = (MSG_CALLBACK) ConfirmRtn ;
backup_info.errorrtn = (MSG_CALLBACK) ErrorRtn ;
backup_info.msgrtn = (MSG_CALLBACK) MessageRtn ;
backup_info.statusrtn = (MSG_CALLBACK) StatusRtn ;
backup_info.backup_database = TRUE;

// start the backup
DBBackup(&backup_info);

Callback Functions
Several elements in DBTools structures are of type MSG_CALLBACK. These are pointers to
callback functions.

Uses of Callback Functions
Callback functions allow DBTools functions to return control of operation to the user's calling
application. The DBTools library uses callback functions to handle messages sent to the user
by the DBTools functions for four purposes:

• Confirmation – Called when an action needs to be confirmed by the user. For example, if
the backup directory does not exist, the tools library asks if it needs to be created.

• Error message – Called to handle a message when an error occurs, such as when an
operation is out of disk space.

Database Tools Interface (DBTools)

Programming 733

• Information message – Called for the tools to display some message to the user (such as
the name of the current table being unloaded).

• Status information – Called for the tools to display the status of an operation (such as the
percentage done when unloading a table).

Assigning a Callback Function to a Structure
You can directly assign a callback routine to the structure. The following statement is an
example using a backup structure:
backup_info.errorrtn = (MSG_CALLBACK) MyFunction

MSG_CALLBACK is defined in the dllapi.h header file supplied with SAP Sybase IQ.
Tools routines can call back to the calling application with messages that should appear in the
appropriate user interface, whether that be a windowing environment, standard output on a
character-based system, or other user interface.

Confirmation Callback Function Example
The following example confirmation routine asks the user to answer YES or NO to a prompt
and returns the user's selection:
extern short _callback ConfirmRtn(
 char * question)
{
 int ret = IDNO;
 if(question != NULL) {
 ret = MessageBox(HwndParent, question,
 "Confirm", MB_ICONEXCLAMATION|MB_YESNO);
 }
 return(ret == IDYES);
}

Error Callback Function Example
The following is an example of an error message handling routine, which displays the error
message in a window.
extern short _callback ErrorRtn(
 char * errorstr)
{
 if(errorstr != NULL) {
 MessageBox(HwndParent, errorstr, "Backup Error",
MB_ICONSTOP|MB_OK);
 }
 return(0);
}

Message callback function example
A common implementation of a message callback function outputs the message to the screen:
extern short _callback MessageRtn(
 char * messagestr)
{
 if(messagestr != NULL) {

Database Tools Interface (DBTools)

734 SAP Sybase IQ

 OutputMessageToWindow(messagestr);
 }
 return(0);
}

Status Callback Function Example
A status callback routine is called when a tool needs to display the status of an operation (like
the percentage done unloading a table). A common implementation would just output the
message to the screen:
extern short _callback StatusRtn(
 char * statusstr)
{
 if(statusstr != NULL) {
 OutputMessageToWindow(statusstr);
 return(0);
}

Version Numbers and Compatibility
Each structure has a member that indicates the version number. You should set the version
field to the version number of the DBTools library that your application was developed against
before calling any DBTools function. The current version of the DBTools library is defined
when you include the dbtools.h header file.

The following example assigns the current version to an instance of the a_backup_db
structure:
backup_info.version = DB_TOOLS_VERSION_NUMBER;

The version number allows your application to continue working with newer versions of the
DBTools library. The DBTools functions use the version number supplied by your application
to allow the application to work, even if new members have been added to the DBTools
structure.

When any of the DBTools structures are updated, or when a newer version of the software is
released, the version number is augmented. If you use DB_TOOLS_VERSION_NUMBER
and you rebuild your application with a new version of the DBTools header file, then you must
deploy a new version of the DBTools library.

Bit Fields
Many of the DBTools structures use bit fields to hold Boolean information in a compact
manner. For example, the backup structure includes the following bit fields:
a_bit_field backup_database : 1;
a_bit_field backup_logfile : 1;
a_bit_field no_confirm : 1;
a_bit_field quiet : 1;

Database Tools Interface (DBTools)

Programming 735

a_bit_field rename_log : 1;
a_bit_field truncate_log : 1;
a_bit_field rename_local_log: 1;
a_bit_field server_backup : 1;

Each bit field is one bit long, indicated by the 1 to the right of the colon in the structure
declaration. The specific data type used depends on the value assigned to a_bit_field, which is
set at the top of dbtools.h, and is operating system-dependent.

You assign a value of 0 or 1 to a bit field to pass Boolean information in the structure.

A DBTools Example
You can find this sample and instructions for compiling it in the %ALLUSERSPROFILE%
\SybaseIQ\samples\SQLAnywhere\DBTools directory. The sample program itself
is in main.cpp. The sample illustrates how to use the DBTools library to perform a backup
of a database.

#define WIN32

#include <stdio.h>
#include <string.h>
#include "windows.h"
#include "sqldef.h"
#include "dbtools.h"
extern short _callback ConfirmCallBack(char * str)
{
 if(MessageBox(NULL, str, "Backup",
 MB_YESNO|MB_ICONQUESTION) == IDYES)
 {
 return 1;
 }
 return 0;
}
extern short _callback MessageCallBack(char * str)
{
 if(str != NULL)
 {
 fprintf(stdout, "%s\n", str);
 }
 return 0;
}
extern short _callback StatusCallBack(char * str)
{
 if(str != NULL)
 {
 fprintf(stdout, "%s\n", str);
 }
 return 0;
}
extern short _callback ErrorCallBack(char * str)
{

Database Tools Interface (DBTools)

736 SAP Sybase IQ

 if(str != NULL)
 {
 fprintf(stdout, "%s\n", str);
 }
 return 0;
}
typedef void (CALLBACK *DBTOOLSPROC)(void *);
typedef short (CALLBACK *DBTOOLSFUNC)(void *);

// Main entry point into the program.
int main(int argc, char * argv[])
{
 a_dbtools_info dbt_info;
 a_backup_db backup_info;
 char dir_name[_MAX_PATH + 1];
 char connect[256];
 HINSTANCE hinst;
 DBTOOLSFUNC dbbackup;
 DBTOOLSFUNC dbtoolsinit;
 DBTOOLSPROC dbtoolsfini;
 short ret_code;

 // Always initialize to 0 so new versions
 // of the structure will be compatible.
 memset(&dbt_info, 0, sizeof(a_dbtools_info));
 dbt_info.errorrtn = (MSG_CALLBACK)MessageCallBack;;

 memset(&backup_info, 0, sizeof(a_backup_db));
 backup_info.version = DB_TOOLS_VERSION_NUMBER;
 backup_info.quiet = 0;
 backup_info.no_confirm = 0;
 backup_info.confirmrtn = (MSG_CALLBACK)ConfirmCallBack;
 backup_info.errorrtn = (MSG_CALLBACK)ErrorCallBack;
 backup_info.msgrtn = (MSG_CALLBACK)MessageCallBack;
 backup_info.statusrtn = (MSG_CALLBACK)StatusCallBack;
 if(argc > 1)
 {
 strncpy(dir_name, argv[1], _MAX_PATH);
 }
 else
 {
 // DBTools does not expect (or like) a trailing slash
 strcpy(dir_name, "c:\\temp");
 }
 backup_info.output_dir = dir_name;
 if(argc > 2)
 {
 strncpy(connect, argv[2], 255);
 }
 else
 {
 strcpy(connect, "DSN=Sybase IQ Demo");
 }
 backup_info.connectparms = connect;
 backup_info.quiet = 0;
 backup_info.no_confirm = 0;

Database Tools Interface (DBTools)

Programming 737

 backup_info.backup_database = 1;
 backup_info.backup_logfile = 1;
 backup_info.rename_log = 0;
 backup_info.truncate_log = 0;
 hinst = LoadLibrary("dbtool16.dll");
 if(hinst == NULL)
 {
 // Failed
 return EXIT_FAIL;
 }
 dbbackup = (DBTOOLSFUNC) GetProcAddress((HMODULE)hinst,
 "_DBBackup@4");
 dbtoolsinit = (DBTOOLSFUNC) GetProcAddress((HMODULE)hinst,
 "_DBToolsInit@4");
 dbtoolsfini = (DBTOOLSPROC) GetProcAddress((HMODULE)hinst,
 "_DBToolsFini@4");
 ret_code = (*dbtoolsinit)(&dbt_info);
 if(ret_code != EXIT_OKAY) {
 return ret_code;
 }
 ret_code = (*dbbackup)(&backup_info);
 (*dbtoolsfini)(&dbt_info);
 FreeLibrary(hinst);
 return ret_code;
}

Software Component Exit Codes
All database tools library entry points use the following exit codes. The SAP Sybase IQ
utilities also use these exit codes.

Code Status Explanation

0 EXIT_OKAY Success

1 EXIT_FAIL General failure

2 EXIT_BAD_DATA Invalid file format

3 EXIT_FILE_ERROR File not found, unable to open

4 EXIT_OUT_OF_MEMORY Out of memory

5 EXIT_BREAK Terminated by the user

6 EXIT_COMMUNICA-
TIONS_FAIL

Failed communications

7 EXIT_MISSING_DATABASE Missing a required database
name

Database Tools Interface (DBTools)

738 SAP Sybase IQ

Code Status Explanation

8 EXIT_PROTOCOL_MIS-
MATCH

Client/server protocol mis-
match

9 EXIT_UNABLE_TO_CON-
NECT

Unable to connect to the data-
base server

10 EXIT_ENGINE_NOT_RUN-
NING

Database server not running

11 EXIT_SERV-
ER_NOT_FOUND

Database server not found

12 EXIT_BAD_ENCRYPT_KEY Missing or bad encryption key

13 EXIT_DB_VER_NEWER Server must be upgraded to run
database

14 EXIT_FILE_INVALID_DB File is not a database

15 EXIT_LOG_FILE_ERROR Log file was missing or other
error

16 EXIT_FILE_IN_USE File in use

17 EXIT_FATAL_ERROR Fatal error occurred

18 EXIT_MISSING_LI-
CENSE_FILE

Missing server license file

19 EXIT_BACK-
GROUND_SYNC_ABORTED

Background synchronization
aborted to allow higher priority
operations proceed

20 EXIT_FILE_ACCESS_DE-
NIED

Database cannot be started be-
cause access is denied

255 EXIT_USAGE Invalid parameters on the com-
mand line

21 EXIT_SERV-
ER_NAME_IN_USE

Another server with the same
name is currently running.

These exit codes are defined in the %IQDIR16%\sdk\include\sqldef.h file.

Database Tools C API Reference
The header files are dbtools.h and dbrmt.h.

Database Tools Interface (DBTools)

Programming 739

DBBackup(const a_backup_db *) method
Backs up a database.

Syntax
_crtn short _entry DBBackup(const a_backup_db * pdb)

Parameters

• pdb – Pointer to a properly initialized a_backup_db structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbbackup utility.

The DBBackup function manages all client-side database backup tasks. For a description of
these tasks, see Backup utility (dbbackup).

To perform a server-side backup, use the BACKUP DATABASE statement.

DBChangeLogName(const a_change_log *) method
Changes the name of the transaction log file.

Syntax
_crtn short _entry DBChangeLogName(const a_change_log * pcl)

Parameters

• pcl – Pointer to a properly initialized a_change_log structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dblog utility.

The -t option of the Transaction Log utility (dblog) changes the name of the transaction log.
DBChangeLogName provides a programmatic interface to this function.

Database Tools Interface (DBTools)

740 SAP Sybase IQ

DBCreate(a_create_db *) method
Creates a database.

Syntax
_crtn short _entry DBCreate(a_create_db * pcdb)

Parameters

• pcdb – Pointer to a properly initialized a_create_db structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbinit utility.

DBCreatedVersion(a_db_version_info *) method
Determines the version of SQL Anywhere that was used to create a database file, without
attempting to start the database.

Syntax
_crtn short _entry DBCreatedVersion(a_db_version_info * pdvi)

Parameters

• pdvi – Pointer to a properly initialized a_db_version_info structure.

Returns
Return code, as listed in Software component exit codes.

Usage

Currently, this function only differentiates between databases built with version 9 or earlier
and those built with version 10 or later.

Version information is not set if a failing code is returned.

DBErase(const an_erase_db *) method
Erases a database file and/or transaction log file.

Syntax
_crtn short _entry DBErase(const an_erase_db * pedb)

Database Tools Interface (DBTools)

Programming 741

Parameters

• pedb – Pointer to a properly initialized an_erase_db structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dberase utility.

DBInfo(a_db_info *) method
Returns information about a database file.

Syntax
_crtn short _entry DBInfo(a_db_info * pdbi)

Parameters

• pdbi – Pointer to a properly initialized a_db_info structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbinfo utility.

DBInfoDump(a_db_info *) method
Returns information about a database file.

Syntax
_crtn short _entry DBInfoDump(a_db_info * pdbi)

Parameters

• pdbi – Pointer to a properly initialized a_db_info structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbinfo utility when the -u option is used.

Database Tools Interface (DBTools)

742 SAP Sybase IQ

DBInfoFree(a_db_info *) method
Frees resources after the DBInfoDump function is called.

Syntax
_crtn short _entry DBInfoFree(a_db_info * pdbi)

Parameters

• pdbi – Pointer to a properly initialized a_db_info structure.

Returns
Return code, as listed in Software component exit codes.

DBLicense(const a_dblic_info *) method
Modifies or reports the licensing information of the database server.

Syntax
_crtn short _entry DBLicense(const a_dblic_info * pdi)

Parameters

• pdi – Pointer to a properly initialized a_dblic_info structure.

Returns
Return code, as listed in Software component exit codes.

DBLogFileInfo(const a_log_file_info *) method
Returns the log file and mirror log file paths of a non-running database file.

Syntax
_crtn short _entry DBLogFileInfo(const a_log_file_info * plfi)

Parameters

• plfi – Pointer to a properly initialized a_log_file_info structure.

Returns
Return code, as listed in Software component exit codes.

Database Tools Interface (DBTools)

Programming 743

Usage

Note that this function will only work for databases that have been created with SQL
Anywhere 10.0.0 and up.

DBRemoteSQL(a_remote_sql *) method
Accesses the SQL Remote Message Agent.

Syntax
_crtn short _entry DBRemoteSQL(a_remote_sql * prs)

Parameters

• prs – Pointer to a properly initialized a_remote_sql structure.

Returns
Return code, as listed in Software component exit codes.

Usage

For information about the features you can access, see SQL Remote Message Agent utility
(dbremote).

DBSynchronizeLog(const a_sync_db *) method
Synchronize a database with a MobiLink server.

Syntax
_crtn short _entry DBSynchronizeLog(const a_sync_db * psdb)

Parameters

• psdb – Pointer to a properly initialized a_sync_db structure.

Returns
Return code, as listed in Software component exit codes.

DBToolsFini(const a_dbtools_info *) method
Decrements a reference counter and frees resources when an application is finished with the
DBTools library.

Syntax
_crtn short _entry DBToolsFini(const a_dbtools_info * pdi)

Database Tools Interface (DBTools)

744 SAP Sybase IQ

Parameters

• pdi – Pointer to a properly initialized a_dbtools_info structure.

Returns
Return code, as listed in Software component exit codes.

Usage

The DBToolsFini function must be called at the end of any application that uses the DBTools
interface. Failure to do so can lead to lost memory resources.

DBToolsInit(const a_dbtools_info *) method
Prepares the DBTools library for use.

Syntax
_crtn short _entry DBToolsInit(const a_dbtools_info * pdi)

Parameters

• pdi – Pointer to a properly initialized a_dbtools_info structure.

Returns
Return code, as listed in Software component exit codes.

Usage

The primary purpose of the DBToolsInit function is to load the SQL Anywhere messages
library. The messages library contains localized versions of error messages and prompts used
by the functions in the DBTools library.

The DBToolsInit function must be called at the start of any application that uses the DBTools
interface, before any other DBTools functions.

DBToolsVersion(void) method
Returns the version number of the DBTools library.

Syntax
_crtn short _entry DBToolsVersion(void)

Usage

Use the DBToolsVersion function to check that the DBTools library is not older than one
against which your application is developed. While applications can run against newer
versions of DBTools, they cannot run against older versions.

Database Tools Interface (DBTools)

Programming 745

DBTranslateLog(const a_translate_log *) method
Translates a transaction log file to SQL.

Syntax
_crtn short _entry DBTranslateLog(const a_translate_log * ptl)

Parameters

• ptl – Pointer to a properly initialized a_translate_log structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbtran utility.

DBTruncateLog(const a_truncate_log *) method
Truncates a transaction log file.

Syntax
_crtn short _entry DBTruncateLog(const a_truncate_log * ptl)

Parameters

• ptl – Pointer to a properly initialized a_truncate_log structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbbackup utility.

DBUnload(an_unload_db *) method
Unloads a database.

Syntax
_crtn short _entry DBUnload(an_unload_db * pudb)

Database Tools Interface (DBTools)

746 SAP Sybase IQ

Parameters

• pudb – Pointer to a properly initialized an_unload_db structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbunload and dbxtract utilities.

DBUpgrade(const an_upgrade_db *) method
Upgrades a database file.

Syntax
_crtn short _entry DBUpgrade(const an_upgrade_db * pudb)

Parameters

• pudb – Pointer to a properly initialized an_upgrade_db structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbupgrad utility.

DBValidate(const a_validate_db *) method
Validates all or part of a database.

Syntax
_crtn short _entry DBValidate(const a_validate_db * pvdb)

Parameters

• pvdb – Pointer to a properly initialized a_validate_db structure.

Returns
Return code, as listed in Software component exit codes.

Usage

This function is used by the dbvalid utility.

Database Tools Interface (DBTools)

Programming 747

Caution: Validating a table or an entire database should be performed while no connections are
making changes to the database; otherwise, spurious errors may be reported indicating some
form of database corruption even though no corruption actually exists.

Autotune() enumeration
Used in the a_backup_db structure to control auto tuning of writers.

Enum Constant Summary

• BACKUP_AUTO_TUNE_UNSPECIFIED – Use to leave AUTO TUNE WRITERS
clause unspecified.

• BACKUP_AUTO_TUNE_ON – Use to generate AUTO TUNE WRITERS ON clause.
• BACKUP_AUTO_TUNE_OFF – Use to generate AUTO TUNE WRITERS OFF

clause.

Checkpoint() enumeration
Used in the a_backup_db structure to control copying of the checkpoint log.

Enum Constant Summary

• BACKUP_CHKPT_LOG_COPY – Use to generate WITH CHECKPOINT LOG
COPY clause.

• BACKUP_CHKPT_LOG_NOCOPY – Use to generate WITH CHECKPOINT LOG
NOCOPY clause.

• BACKUP_CHKPT_LOG_RECOVER – Use to generate WITH CHECKPOINT LOG
RECOVER clause.

• BACKUP_CHKPT_LOG_AUTO – Use to generate WITH CHECKPOINT LOG
AUTO clause.

• BACKUP_CHKPT_LOG_DEFAULT – Use to omit WITH CHECKPOINT clause.

History() enumeration
Used in the a_backup_db structure to control enabling of backup history.

Enum Constant Summary

• BACKUP_HISTORY_UNSPECIFIED – Use to leave HISTORY clause unspecified.
• BACKUP_HISTORY_ON – Use to generate HISTORY ON clause.
• BACKUP_HISTORY_OFF – Use to generate HISTORY OFF clause.

Database Tools Interface (DBTools)

748 SAP Sybase IQ

Padding() enumeration
Blank padding enumeration specifies the blank_pad setting in a_create_db.

Enum Constant Summary

• NO_BLANK_PADDING – Does not use blank padding.
• BLANK_PADDING – Uses blank padding.

Unit() enumeration
Used in the a_create_db structure, to specify the value of db_size_unit.

Enum Constant Summary

• DBSP_UNIT_NONE – Units not specified.
• DBSP_UNIT_PAGES – Size is specified in pages.
• DBSP_UNIT_BYTES – Size is specified in bytes.
• DBSP_UNIT_KILOBYTES – Size is specified in kilobytes.
• DBSP_UNIT_MEGABYTES – Size is specified in megabytes.
• DBSP_UNIT_GIGABYTES – Size is specified in gigabytes.
• DBSP_UNIT_TERABYTES – Size is specified in terabytes.

Unload() enumeration
The type of unload being performed, as used by the an_unload_db structure.

Enum Constant Summary

• UNLOAD_ALL – Unload both data and schema.
• UNLOAD_DATA_ONLY – Unload data. Do not unload schema. Equivalent to dbunload

-d option.
• UNLOAD_NO_DATA – No data. Unload schema only. Equivalent to dbunload -n

option.
• UNLOAD_NO_DATA_FULL_SCRIPT – No data. Include LOAD/INPUT statements

in reload script. Equivalent to dbunload -nl option.
• UNLOAD_NO_DATA_NAME_ORDER – No data. Objects will be output ordered by

name.

UserList() enumeration
The type of a user list, as used by an a_translate_log structure.

Enum Constant Summary

• DBTRAN_INCLUDE_ALL – Include operations from all users.

Database Tools Interface (DBTools)

Programming 749

• DBTRAN_INCLUDE_SOME – Include operations only from the users listed in the
supplied user list.

• DBTRAN_EXCLUDE_SOME – Exclude operations from the users listed in the
supplied user list.

Validation() enumeration
The type of validation being performed, as used by the a_validate_db structure.

Enum Constant Summary

• VALIDATE_NORMAL – Validate with the default check only.
• VALIDATE_DATA – (obsolete)
• VALIDATE_INDEX – (obsolete)
• VALIDATE_EXPRESS – Validate with express check. Equivalent to dbvalid -fx option.
• VALIDATE_FULL – (obsolete)
• VALIDATE_CHECKSUM – Validate database checksums. Equivalent to dbvalid -s

option.
• VALIDATE_DATABASE – Validate database. Equivalent to dbvalid -d option.
• VALIDATE_COMPLETE – Perform all possible validation activities.

Verbosity() enumeration
Verbosity enumeration specifies the volume of output.

Enum Constant Summary

• VB_QUIET – No output.
• VB_NORMAL – Normal amount of output.
• VB_VERBOSE – Verbose output, useful for debugging.

Version() enumeration
Used in the a_db_version_info structure, to indicate the version of SQL Anywhere that
initially created the database.

Enum Constant Summary

• VERSION_UNKNOWN – Unable to determine the version of SQL Anywhere that
created the database.

• VERSION_PRE_10 – Database was created using SQL Anywhere version 9 or earlier.
• VERSION_10 – Database was created using SQL Anywhere version 10.
• VERSION_11 – Database was created using SQL Anywhere version 11.
• VERSION_12 – Database was created using SQL Anywhere version 12.
• VERSION_16 – Database was created using SQL Anywhere version 16.

Database Tools Interface (DBTools)

750 SAP Sybase IQ

a_backup_db structure
Holds the information needed to perform backup tasks using the DBTools library.

Syntax
typedef struct a_backup_db

auto_tune_writers char
Enable/disable auto tune writers.

Syntax
public char auto_tune_writers;

Remarks
Must be one of BACKUP_AUTO_TUNE_UNSPECIFIED, BACKUP_AUTO_TUNE_ON,
or BACKUP_AUTO_TUNE_OFF. Use to generate AUTO TUNE WRITERS OFF clause. Set
by dbbackup -aw[-] option

backup_comment const char *
Comment used for the WITH COMMENT clause.

Syntax
public const char * backup_comment;

backup_database a_bit_field
Back up the database file.

Syntax
public a_bit_field backup_database;

Remarks
Set TRUE by dbbackup -d option.

backup_history char
Backup history.

Syntax
public char backup_history;

Remarks
Must be one of BACKUP_HISTORY_UNSPECIFIED, BACKUP_HISTORY_ON, or
BACKUP_HISTORY_OFF. Set by dbbackup -h[-] option

Database Tools Interface (DBTools)

Programming 751

backup_interrupted char
Indicates that the operation was interrupted when non-zero.

Syntax
public char backup_interrupted;

backup_logfile a_bit_field
Back up the transaction log file.

Syntax
public a_bit_field backup_logfile;

Remarks
Set TRUE by dbbackup -t option.

chkpt_log_type char
Control copying of checkpoint log.

Syntax
public char chkpt_log_type;

Remarks
Must be one of BACKUP_CHKPT_LOG_COPY, BACKUP_CHKPT_LOG_NOCOPY,
BACKUP_CHKPT_LOG_RECOVER, BACKUP_CHKPT_LOG_AUTO, or
BACKUP_CHKPT_LOG_DEFAULT. Set by dbbackup -k option.

confirmrtn MSG_CALLBACK
Address of a confirmation request callback routine or NULL.

Syntax
public MSG_CALLBACK confirmrtn;

connectparms const char *
Parameters needed to connect to the database.

Syntax
public const char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

Database Tools Interface (DBTools)

752 SAP Sybase IQ

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

hotlog_filename const char *
File name for the live backup file.

Syntax
public const char * hotlog_filename;

Remarks
Set by dbbackup -l option.

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

no_confirm a_bit_field
Operate without confirmation.

Syntax
public a_bit_field no_confirm;

Remarks
Set TRUE by dbbackup -y option.

output_dir const char *
Path to the output directory for backups, for example: "c:\backup".

Syntax
public const char * output_dir;

Database Tools Interface (DBTools)

Programming 753

page_blocksize a_sql_uint32
Number of pages in data blocks.

Syntax
public a_sql_uint32 page_blocksize;

Remarks
If set to 0, then the default is 128. Set by dbbackup -b option.

progress_messages a_bit_field
Display progress messages.

Syntax
public a_bit_field progress_messages;

Remarks
Set TRUE by dbbackup -p option.

quiet a_bit_field
Operate without printing messages.

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dbbackup -q option.

rename_local_log a_bit_field
Rename the local backup of the transaction log.

Syntax
public a_bit_field rename_local_log;

Remarks
Set TRUE by dbbackup -n option.

rename_log a_bit_field
Rename the transaction log.

Syntax
public a_bit_field rename_log;

Database Tools Interface (DBTools)

754 SAP Sybase IQ

Remarks
Set TRUE by dbbackup -r option.

server_backup a_bit_field
Perform backup on server using BACKUP DATABASE.

Syntax
public a_bit_field server_backup;

Remarks
Set TRUE by dbbackup -s option.

statusrtn MSG_CALLBACK
Address of a status message callback routine or NULL.

Syntax
public MSG_CALLBACK statusrtn;

truncate_log a_bit_field
Delete the transaction log.

Syntax
public a_bit_field truncate_log;

Remarks
Set TRUE by dbbackup -x option.

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

wait_after_end a_bit_field
Wait after end.

Syntax
public a_bit_field wait_after_end;

Remarks
Set TRUE by dbbackup -wa option.

Database Tools Interface (DBTools)

Programming 755

wait_before_start a_bit_field
Wait before start.

Syntax
public a_bit_field wait_before_start;

Remarks
Set TRUE by dbbackup -wb option.

a_change_log structure
Holds the information needed to perform dblog tasks using the DBTools library.

Syntax
typedef struct a_change_log

change_logname a_bit_field
Set TRUE to permit changing of the transaction log name.

Syntax
public a_bit_field change_logname;

Remarks
Set TRUE by dblog -n or -t option.

change_mirrorname a_bit_field
Set TRUE to permit changing of the mirror log name.

Syntax
public a_bit_field change_mirrorname;

Remarks
Set TRUE by dblog -m, -n, or -r option.

dbname const char *
Database file name.

Syntax
public const char * dbname;

Database Tools Interface (DBTools)

756 SAP Sybase IQ

encryption_key char *
The encryption key for the database file. Equivalent to dblog -ek or -ep option.

Syntax
public char * encryption_key;

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

generation_number unsigned short
The new generation number. Reserved, use zero.

Syntax
public unsigned short generation_number;

ignore_dbsync_trunc a_bit_field
When using dbmlsync, resets the offset kept for the delete_old_logs option, allowing
transaction logs to be deleted when they are no longer needed.

Syntax
public a_bit_field ignore_dbsync_trunc;

Remarks
Set TRUE by dblog -is option.

ignore_ltm_trunc a_bit_field
Reserved, use FALSE.

Syntax
public a_bit_field ignore_ltm_trunc;

ignore_remote_trunc a_bit_field
For SQL Remote.

Syntax
public a_bit_field ignore_remote_trunc;

Remarks
Resets the offset kept for the delete_old_logs option, allowing transaction logs to be deleted
when they are no longer needed. Set TRUE by dblog -ir option.

Database Tools Interface (DBTools)

Programming 757

logname const char *
Transaction log file name, or NULL if there is no log.

Syntax
public const char * logname;

mirrorname const char *
The new name of the transaction log mirror file. Equivalent to dblog -m option.

Syntax
public const char * mirrorname;

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

query_only a_bit_field
If 1, just display the name of the transaction log. If 0, permit changing of the log name.

Syntax
public a_bit_field query_only;

quiet a_bit_field
Operate without printing messages.

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dblog -q option.

set_generation_number a_bit_field
Reserved. Use FALSE.

Syntax
public a_bit_field set_generation_number;

Database Tools Interface (DBTools)

758 SAP Sybase IQ

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

zap_current_offset char *
Change the current offset to the specified value.

Syntax
public char * zap_current_offset;

Remarks
This is for use only in resetting a transaction log after an unload and reload to match dbremote
or dbmlsync settings. Equivalent to dblog -x option.

zap_starting_offset char *
Change the starting offset to the specified value.

Syntax
public char * zap_starting_offset;

Remarks
This is for use only in resetting a transaction log after an unload and reload to match dbremote
or dbmlsync settings. Equivalent to dblog -z option.

a_create_db structure
Holds the information needed to create a database using the DBTools library.

Syntax
typedef struct a_create_db

accent_sensitivity char
One of 'y', 'n', or 'f' (yes, no, French).

Syntax
public char accent_sensitivity;

Remarks
Generates one of the ACCENT RESPECT, ACCENT IGNORE or ACCENT FRENCH
clauses.

Database Tools Interface (DBTools)

Programming 759

avoid_view_collisions a_bit_field
Set TRUE to omit the generation of Watcom SQL compatibility views SYS.SYSCOLUMNS
and SYS.SYSINDEXES.

Syntax
public a_bit_field avoid_view_collisions;

Remarks
Set TRUE by dbinit -k option.

blank_pad a_bit_field
Must be one of NO_BLANK_PADDING or BLANK_PADDING.

Syntax
public a_bit_field blank_pad;

Remarks
Treat blanks as significant in string comparisons and hold index information to reflect this. See
Blank padding enumeration. Equivalent to dbinit -b option.

case_sensitivity_use_default a_bit_field
Set TRUE to use the default case sensitivity for the locale.

Syntax
public a_bit_field case_sensitivity_use_default;

Remarks
This only affects UCA. If set TRUE then we do not add the CASE RESPECT clause to the
CREATE DATABASE statement.

checksum a_bit_field
Set to TRUE for ON or FALSE for OFF.

Syntax
public a_bit_field checksum;

Remarks
Generates one of CHECKSUM ON or CHECKSUM OFF clauses. Set TRUE by dbinit -s
option.

Database Tools Interface (DBTools)

760 SAP Sybase IQ

data_store_type const char *
Reserved. Use NULL.

Syntax
public const char * data_store_type;

db_size unsigned int
When not 0, generates the DATABASE SIZE clause. Equivalent to dbinit -dbs option.

Syntax
public unsigned int db_size;

db_size_unit int
Used with db_size, must be one of DBSP_UNIT_NONE, DBSP_UNIT_PAGES,
DBSP_UNIT_BYTES, DBSP_UNIT_KILOBYTES, DBSP_UNIT_MEGABYTES,
DBSP_UNIT_GIGABYTES, or DBSP_UNIT_TERABYTES.

Syntax
public int db_size_unit;

Remarks
When not DBSP_UNIT_NONE, it generates the corresponding keyword (for example,
DATABASE SIZE 10 MB is generated when db_size is 10 and db_size_unit is
DBSP_UNIT_MEGABYTES). See Database size unit enumeration.

dba_pwd char *
When not NULL, generates the DBA PASSWORD xxx clause. Equivalent to dbinit -dba
option.

Syntax
public char * dba_pwd;

dba_uid char *
When not NULL, generates the DBA USER xxx clause. Equivalent to dbinit -dba option.

Syntax
public char * dba_uid;

dbname const char *
Database file name.

Syntax
public const char * dbname;

Database Tools Interface (DBTools)

Programming 761

default_collation const char *
The collation for the database. Equivalent to dbinit -z option.

Syntax
public const char * default_collation;

encoding const char *
The character set encoding. Equivalent to dbinit -ze option.

Syntax
public const char * encoding;

encrypt a_bit_field
Set TRUE to generate the ENCRYPTED ON clause or, when encrypted_tables is also set, the
ENCRYPTED TABLES ON clause.

Syntax
public a_bit_field encrypt;

Remarks
Set TRUE by dbinit -e? options.

encrypted_tables a_bit_field
Set TRUE to encrypt tables.

Syntax
public a_bit_field encrypted_tables;

Remarks
Used with encrypt, it generates the ENCRYPTED TABLE ON clause instead of the
ENCRYPTED ON clause. Set TRUE by dbinit -et option.

encryption_algorithm const char *
The encryption algorithm (AES, AES256, AES_FIPS, or AES256_FIPS).

Syntax
public const char * encryption_algorithm;

Remarks
Used with encrypt and encryption_key, it generates the ALGORITHM clause. Equivalent to
dbinit -ea option.

Database Tools Interface (DBTools)

762 SAP Sybase IQ

encryption_key const char *
The encryption key for the database file.

Syntax
public const char * encryption_key;

Remarks
Used with encrypt, it generates the KEY clause. Equivalent to dbinit -ek option.

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

iq_params void *
Reserved. Use NULL.

Syntax
public void * iq_params;

jconnect a_bit_field
Set TRUE to include system procedures needed for jConnect.

Syntax
public a_bit_field jconnect;

Remarks
Set FALSE by dbinit -i option.

logname const char *
New transaction log name. Equivalent to dbinit -t option.

Syntax
public const char * logname;

mirrorname const char *
Transaction log mirror name. Equivalent to dbinit -m option.

Syntax
public const char * mirrorname;

Database Tools Interface (DBTools)

Programming 763

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

nchar_collation const char *
The NCHAR COLLATION for the database when not NULL. Equivalent to dbinit -zn option.

Syntax
public const char * nchar_collation;

page_size unsigned short
The page size of the database. Equivalent to dbinit -p option.

Syntax
public unsigned short page_size;

respect_case a_bit_field
Make string comparisons case sensitive and hold index information to reflect this.

Syntax
public a_bit_field respect_case;

Remarks
Set TRUE by dbinit -c option.

startline const char *
The command line used to start the database server.

Syntax
public const char * startline;

Remarks
For example: "c:\SQLAny16\bin32\dbsrv16.exe". If NULL, the default START parameter is
"dbeng16 -gp <page_size> -c 10M" for SQL Anywhere where page_size is specified below.
Note that "-c 10M" is appended if page_size >= 2048.

Database Tools Interface (DBTools)

764 SAP Sybase IQ

sys_proc_definer a_bit_field
Set TRUE to retain the SQL SECURITY Model for version 12.0.1 or earlier system stored
procedures.

Syntax
public a_bit_field sys_proc_definer;

Remarks
Set TRUE by dbinit -pd option.

verbose char
See Verbosity enumeration (VB_QUIET, VB_NORMAL, VB_VERBOSE).

Syntax
public char verbose;

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

a_db_info structure
Holds the information needed to return DBInfo information using the DBTools library.

Syntax
typedef struct a_db_info

bit_map_pages a_sql_uint32
Number of bitmap pages in the database.

Syntax
public a_sql_uint32 bit_map_pages;

charcollationspecbuffer char *
Pointer to the char collation string buffer.

Syntax
public char * charcollationspecbuffer;

Database Tools Interface (DBTools)

Programming 765

charcollationspecbufsize unsigned short
Size of charcollationspecbuffer (at least 256+1).

Syntax
public unsigned short charcollationspecbufsize;

charencodingbuffer char *
Pointer to the char encoding string buffer.

Syntax
public char * charencodingbuffer;

charencodingbufsize unsigned short
Size of charencodingbuffer (at least 50+1).

Syntax
public unsigned short charencodingbufsize;

checksum a_bit_field
If set TRUE, global checksums are enabled (a checksum on every database page).

Syntax
public a_bit_field checksum;

connectparms const char *
Parameters needed to connect to the database.

Syntax
public const char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

Database Tools Interface (DBTools)

766 SAP Sybase IQ

dbbufsize unsigned short
Size of dbnamebuffer (for example, _MAX_PATH).

Syntax
public unsigned short dbbufsize;

dbnamebuffer char *
Pointer to the database file name buffer.

Syntax
public char * dbnamebuffer;

encrypted_tables a_bit_field
If set TRUE, encrypted tables are supported.

Syntax
public a_bit_field encrypted_tables;

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

file_size a_sql_uint32
Size of database file (in pages).

Syntax
public a_sql_uint32 file_size;

free_pages a_sql_uint32
Number of free pages.

Syntax
public a_sql_uint32 free_pages;

logbufsize unsigned short
Size of lognamebuffer (for example, _MAX_PATH).

Syntax
public unsigned short logbufsize;

Database Tools Interface (DBTools)

Programming 767

lognamebuffer char *
Pointer to the transaction log file name buffer.

Syntax
public char * lognamebuffer;

mirrorbufsize unsigned short
Size of mirrornamebuffer (for example, _MAX_PATH).

Syntax
public unsigned short mirrorbufsize;

mirrornamebuffer char *
Pointer to the mirror file name buffer.

Syntax
public char * mirrornamebuffer;

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

ncharcollationspecbuffer char *
Pointer to the nchar collation string buffer.

Syntax
public char * ncharcollationspecbuffer;

ncharcollationspecbufsize unsigned short
Size of ncharcollationspecbuffer (at least 256+1).

Syntax
public unsigned short ncharcollationspecbufsize;

ncharencodingbuffer char *
Pointer to the nchar encoding string buffer.

Syntax
public char * ncharencodingbuffer;

Database Tools Interface (DBTools)

768 SAP Sybase IQ

ncharencodingbufsize unsigned short
Size of ncharencodingbuffer (at least 50+1).

Syntax
public unsigned short ncharencodingbufsize;

other_pages a_sql_uint32
Number of pages that are not table pages, index pages, free pages, or bitmap pages.

Syntax
public a_sql_uint32 other_pages;

page_usage a_bit_field
Set TRUE to report page usage statistics, otherwise FALSE.

Syntax
public a_bit_field page_usage;

Remarks
Set TRUE by dbinfo -u option.

quiet a_bit_field
Set TRUE to operate without confirming messages.

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dbinfo -q option.

statusrtn MSG_CALLBACK
Address of a status message callback routine or NULL.

Syntax
public MSG_CALLBACK statusrtn;

sysinfo a_sysinfo
Inline a_sysinfo structure.

Syntax
public a_sysinfo sysinfo;

Database Tools Interface (DBTools)

Programming 769

totals a_table_info *
Pointer to a_table_info structure.

Syntax
public a_table_info * totals;

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

a_db_version_info structure
Holds information regarding which version of SQL Anywhere was used to create the
database.

Syntax
typedef struct a_db_version_info

created_version char
Set to one of VERSION_UNKNOWN, VERSION_PRE_10, etc.

Syntax
public char created_version;

Remarks
indicating the server version that created the database file.

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

filename const char *
Name of the database file to check.

Syntax
public const char * filename;

Database Tools Interface (DBTools)

770 SAP Sybase IQ

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

a_dblic_info structure
Holds information containing licensing information.

Syntax
typedef struct a_dblic_info

Remarks
You must use this information only in a manner consistent with your license agreement.

compname char *
Company name for licensing.

Syntax
public char * compname;

conncount a_sql_int32
Maximum number of connections licensed.

Syntax
public a_sql_int32 conncount;

Remarks
To set, use 1000000L for default.

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

Database Tools Interface (DBTools)

Programming 771

exename char *
Name of the server executable or license file.

Syntax
public char * exename;

installkey char *
Reserved; set NULL.

Syntax
public char * installkey;

Remarks
Set by dblic -k option.

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

nodecount a_sql_int32
Number of nodes licensed.

Syntax
public a_sql_int32 nodecount;

query_only a_bit_field
Set TRUE to just display the license information.

Syntax
public a_bit_field query_only;

Remarks
Set FALSE to permit changing the information.

quiet a_bit_field
Set TRUE to operate without printing messages.

Syntax
public a_bit_field quiet;

Database Tools Interface (DBTools)

772 SAP Sybase IQ

Remarks
Set TRUE by dblic -q option.

type a_license_type
See lictype.h for values.

Syntax
public a_license_type type;

Remarks
One of LICENSE_TYPE_PERSEAT, LICENSE_TYPE_CONCURRENT, or
LICENSE_TYPE_PERCPU.

username char *
User name for licensing.

Syntax
public char * username;

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

a_dbtools_info structure
DBTools information callback used to initialize and finalize the DBTools library calls.

Syntax
typedef struct a_dbtools_info

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

a_log_file_info structure
Used to obtain the log file and mirror log file information of a non-running database.

Syntax
typedef struct a_log_file_info

Database Tools Interface (DBTools)

Programming 773

dbname const char *
Database file name.

Syntax
public const char * dbname;

encryption_key const char *
The encryption key for the database file.

Syntax
public const char * encryption_key;

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

logname char *
Buffer for transaction log file name, or NULL.

Syntax
public char * logname;

logname_size size_t
Size of buffer for transaction log file name, or zero.

Syntax
public size_t logname_size;

mirrorname char *
Buffer for mirror log file name, or NULL.

Syntax
public char * mirrorname;

mirrorname_size size_t
Size of buffer for mirror log file name, or zero.

Syntax
public size_t mirrorname_size;

Database Tools Interface (DBTools)

774 SAP Sybase IQ

reserved void *
Reserved for internal use and must set to NULL.

Syntax
public void * reserved;

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

a_name structure
Specifies a variable list of names.

Syntax
typedef struct a_name

name char
One or more bytes comprising the name.

Syntax
public char name;

next struct a_name *
Pointer to the next name in the list or NULL.

Syntax
public struct a_name * next;

a_remote_sql structure
Holds information needed for the dbremote utility using the DBTools library.

Syntax
typedef struct a_remote_sql

Remarks
The dbremote utility sets the following defaults before processing any command-line options:

• version = DB_TOOLS_VERSION_NUMBER
• argv = (argument vector passed to application)
• deleted = TRUE

Database Tools Interface (DBTools)

Programming 775

• apply = TRUE
• more = TRUE
• link_debug = FALSE
• max_length = 50000
• memory = 2 * 1024 * 1024
• frequency = 1
• threads = 0
• receive_delay = 60
• send_delay = 0
• log_size = 0
• patience_retry = 1
• resend_urgency = 0
• log_file_name = (set from command line)
• truncate_remote_output_file = FALSE
• remote_output_file_name = NULL
• no_user_interaction = TRUE (if user interface is not available)
• errorrtn = (address of an appropriate routine)
• msgrtn = (address of an appropriate routine)
• confirmrtn = (address of an appropriate routine)
• msgqueuertn = (address of an appropriate routine)
• logrtn = (address of an appropriate routine)
• warningrtn = (address of an appropriate routine)
• set_window_title_rtn = (address of an appropriate routine)
• progress_msg_rtn = (address of an appropriate routine)
• progress_index_rtn = (address of an appropriate routine)

apply a_bit_field
Normally set TRUE.

Syntax
public a_bit_field apply;

Remarks
When not set, messages are scanned but not applied. Corresponds to dbremote -a option.

argv char **
Pointer to a parsed command line (a vector of pointers to strings).

Syntax
public char ** argv;

Database Tools Interface (DBTools)

776 SAP Sybase IQ

Remarks
If not NULL, then DBRemoteSQL will call a message routine to display each command line
argument except those prefixed with -c, -cq, or -ek.

batch a_bit_field
When set TRUE, force exit after applying message and scanning log (this is the same as at least
one user having 'always' send time).

Syntax
public a_bit_field batch;

Remarks
When cleared, allow run mode to be determined by remote users send times.

confirmrtn MSG_CALLBACK
Address of a confirmation request callback routine or NULL.

Syntax
public MSG_CALLBACK confirmrtn;

connectparms char *
Parameters needed to connect to the database.

Syntax
public char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbeng16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbeng16.exe".

debug a_bit_field
When set TRUE, debug output is included.

Syntax
public a_bit_field debug;

Database Tools Interface (DBTools)

Programming 777

debug_dump_size a_sql_uint32
Reserved for internal use and must set to 0.

Syntax
public a_sql_uint32 debug_dump_size;

debug_page_offsets a_bit_field
Reserved for internal use and must set to FALSE.

Syntax
public a_bit_field debug_page_offsets;

default_window_title char *
A pointer to the default window title string.

Syntax
public char * default_window_title;

deleted a_bit_field
Normally set TRUE.

Syntax
public a_bit_field deleted;

Remarks
When not set, messages are not deleted after they are applied. Corresponds to dbremote -p
option.

encryption_key char *
Pointer to an encryption key. Corresponds to the dbremote -ek option.

Syntax
public char * encryption_key;

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

Database Tools Interface (DBTools)

778 SAP Sybase IQ

frequency a_sql_uint32
Reserved for internal use and must set to 0.

Syntax
public a_sql_uint32 frequency;

full_q_scan a_bit_field
Reserved for internal use and must set to FALSE.

Syntax
public a_bit_field full_q_scan;

include_scan_range char *
Reserved for internal use and must set to NULL.

Syntax
public char * include_scan_range;

latest_backup a_bit_field
When set TRUE, only logs that are backed up are processed.

Syntax
public a_bit_field latest_backup;

Remarks
Don't send operations from a live log. Corresponds to the dbremote -u option.

link_debug a_bit_field
When set TRUE, debugging will be turned on for links.

Syntax
public a_bit_field link_debug;

locale char *
Reserved for internal use and must set to NULL.

Syntax
public char * locale;

Database Tools Interface (DBTools)

Programming 779

log_file_name const char *
Pointer to the name of the DBRemoteSQL output log to which the message callbacks print
their output.

Syntax
public const char * log_file_name;

Remarks
If send is TRUE, the error log is sent to the consolidated (unless this pointer is NULL).

log_size a_sql_uint32
DBRemoteSQL renames and restarts the online transaction log when the size of the online
transaction log is greater than this value.

Syntax
public a_sql_uint32 log_size;

Remarks
Corresponds to the dbremote -x option.

logrtn MSG_CALLBACK
Pointer to a function that prints the given message to a log file.

Syntax
public MSG_CALLBACK logrtn;

Remarks
These messages do not need to be seen by the user.

max_length a_sql_uint32
Set to the maximum length (in bytes) a message can have.

Syntax
public a_sql_uint32 max_length;

Remarks
This affects sending and receiving. The recommended value is 50000. Corresponds to the
dbremote -l option.

Database Tools Interface (DBTools)

780 SAP Sybase IQ

memory a_sql_uint32
Set to the maximum size (in bytes) of memory buffers to use while building messages to send.

Syntax
public a_sql_uint32 memory;

Remarks
The recommended value is at least 2 * 1024 * 1024. Corresponds to the dbremote -m option.

mirror_logs char *
Pointer to the name of the directory containing offline mirror transaction logs.

Syntax
public char * mirror_logs;

Remarks
Corresponds to the dbremote -ml option.

more a_bit_field
This should be set to TRUE.

Syntax
public a_bit_field more;

msgqueuertn MSG_QUEUE_CALLBACK
Function called by DBRemoteSQL when it wants to sleep.

Syntax
public MSG_QUEUE_CALLBACK msgqueuertn;

Remarks
The parameter specifies the sleep period in milliseconds. The function should return the
following, as defined in dllapi.h.

• MSGQ_SLEEP_THROUGH indicates that the routine slept for the requested number of
milliseconds. This is usually the value you should return.

• MSGQ_SHUTDOWN_REQUESTED indicates that you would like the synchronization
to terminate as soon as possible.

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

Database Tools Interface (DBTools)

Programming 781

no_user_interaction a_bit_field
When set TRUE, no user interaction is requested.

Syntax
public a_bit_field no_user_interaction;

operations a_sql_uint32
This value is used when applying messages.

Syntax
public a_sql_uint32 operations;

Remarks
Commits are ignored until DBRemoteSQL has at least this number of operations(inserts,
deletes, updates) that are uncommitted. Corresponds to the dbremote -g option.

patience_retry a_sql_uint32
Set this to the number of polls for incoming messages that DBRemoteSQL should wait before
assuming that a message it is expecting is lost.

Syntax
public a_sql_uint32 patience_retry;

Remarks
For example, if patience_retry is 3 then DBRemoteSQL tries up to three times to receive the
missing message. Afterward, it sends a resend request. The recommended value is 1.
Corresponds to the dbremote -rp option.

progress_index_rtn SET_PROGRESS_CALLBACK
Pointer to a function that updates the state of the progress bar.

Syntax
public SET_PROGRESS_CALLBACK progress_index_rtn;

Remarks
This function takes two unsigned integer arguments index and max. On the first call, the values
are the minimum and maximum values (for example, 0, 100). On subsequent calls, the first
argument is the current index value (for example, between 0 and 100) and the second argument
is always 0.

Database Tools Interface (DBTools)

782 SAP Sybase IQ

progress_msg_rtn MSG_CALLBACK
Pointer to a function that displays a progress message.

Syntax
public MSG_CALLBACK progress_msg_rtn;

queueparms char *
Reserved for internal use and must set to NULL.

Syntax
public char * queueparms;

receive a_bit_field
When set TRUE, messages are received.

Syntax
public a_bit_field receive;

Remarks
If receive and send are both FALSE then both are assumed TRUE. It is recommended to set
receive and send FALSE. Corresponds to the dbremote -r option.

receive_delay a_sql_uint32
Set this to the time (in seconds) to wait between polls for new incoming messages.

Syntax
public a_sql_uint32 receive_delay;

Remarks
The recommended value is 60. Corresponds to the dbremote -rd option.

remote_output_file_name char *
Pointer to the name of the DBRemoteSQL remote output file.

Syntax
public char * remote_output_file_name;

Remarks
Corresponds to the dbremote -ro or -rt option.

Database Tools Interface (DBTools)

Programming 783

rename_log a_bit_field
When set TRUE, logs are renamed and restarted (DBRemoteSQL only).

Syntax
public a_bit_field rename_log;

resend_urgency a_sql_uint32
Set the time (in seconds) that DBRemoteSQL waits after seeing that a user needs a rescan
before performing a full scan of the log.

Syntax
public a_sql_uint32 resend_urgency;

Remarks
Set to zero to allow DBRemoteSQL to choose a good value based on user send times and other
information it has collected. Corresponds to the dbremote -ru option.

scan_log a_bit_field
Reserved for internal use and must set to FALSE.

Syntax
public a_bit_field scan_log;

send a_bit_field
When set TRUE, messages are sent.

Syntax
public a_bit_field send;

Remarks
If receive and send are both FALSE then both are assumed TRUE. It is recommended to set
receive and send FALSE. Corresponds to the dbremote -s option.

send_delay a_sql_uint32
Set the time (in seconds) between scans of the log file for new operations to send.

Syntax
public a_sql_uint32 send_delay;

Remarks
Set to zero to allow DBRemoteSQL to choose a good value based on user send times.
Corresponds to the dbremote -sd option.

Database Tools Interface (DBTools)

784 SAP Sybase IQ

set_window_title_rtn SET_WINDOW_TITLE_CALLBACK
Pointer to a function that resets the title of the window (Windows only).

Syntax
public SET_WINDOW_TITLE_CALLBACK set_window_title_rtn;

Remarks
The title could be "database_name (receiving, scanning, or sending) - default_window_title".

threads a_sql_uint32
Set the number of worker threads that should be used to apply messages.

Syntax
public a_sql_uint32 threads;

Remarks
This value must not exceed 50. Corresponds to the dbremote -w option.

transaction_logs char *
Should identify the directory with offline transaction logs (DBRemoteSQL only).

Syntax
public char * transaction_logs;

Remarks
Corresponds to the transaction_logs_directory argument of dbremote.

triggers a_bit_field
This should usually be cleared (FALSE) in most cases.

Syntax
public a_bit_field triggers;

Remarks
When set TRUE, trigger actions are replicated. Care should be exercised.

truncate_remote_output_file a_bit_field
When set TRUE, the remote output file is truncated rather than appended to.

Syntax
public a_bit_field truncate_remote_output_file;

Database Tools Interface (DBTools)

Programming 785

Remarks
Corresponds to the dbremote -rt option.

unused a_bit_field
Reserved for internal use and must set to FALSE.

Syntax
public a_bit_field unused;

use_hex_offsets a_bit_field
When set TRUE, log offsets are shown in hexadecimal notation; otherwise decimal notation is
used.

Syntax
public a_bit_field use_hex_offsets;

use_relative_offsets a_bit_field
When set TRUE, log offsets are displayed as relative to the start of the current log file.

Syntax
public a_bit_field use_relative_offsets;

Remarks
When set FALSE, log offsets from the beginning of time are displayed.

verbose a_bit_field
When set, extra information is produced.

Syntax
public a_bit_field verbose;

Remarks
Corresponds to the dbremote -v option.

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

Database Tools Interface (DBTools)

786 SAP Sybase IQ

warningrtn MSG_CALLBACK
Pointer to a function that displays the given warning message.

Syntax
public MSG_CALLBACK warningrtn;

Remarks
If NULL, the errorrtn function is called instead.

a_sync_db structure
Holds information needed for the dbmlsync utility using the DBTools library.

Syntax
typedef struct a_sync_db

Remarks
Some members correspond to features accessible from the dbmlsync command line utility.
Unused members should be assigned the value 0, FALSE, or NULL, depending on data type.

allow_outside_connect a_bit_field
Reserved; use 0.

Syntax
public a_bit_field allow_outside_connect;

allow_schema_change a_bit_field
Set TRUE to check for schema changes between synchronizations.

Syntax
public a_bit_field allow_schema_change;

Remarks
Equivalent to the dbmlsync -sc option.

apply_dnld_file const char *
Name of download file to apply.

Syntax
public const char * apply_dnld_file;

Remarks
Equivalent to dbmlsync -ba option or NULL if option not specified.

Database Tools Interface (DBTools)

Programming 787

argv char **
The argv array for this run, the last element of the array must be NULL.

Syntax
public char ** argv;

autoclose a_bit_field
Set TRUE to close window on completion.

Syntax
public a_bit_field autoclose;

Remarks
Equivalent to the dbmlsync -qc option.

background_retry a_sql_int32
Number of times to retry an interrupted background synchronization.

Syntax
public a_sql_int32 background_retry;

Remarks
Equivalent to the dbmlsync -bkr option.

background_sync a_bit_field
Set TRUE to do a background synchronization.

Syntax
public a_bit_field background_sync;

Remarks
Equivalent to the dbmlsync -bk option.

cache_verbosity a_bit_field
Reserved; use 0.

Syntax
public a_bit_field cache_verbosity;

Database Tools Interface (DBTools)

788 SAP Sybase IQ

ce_argv char **
Reserved; use NULL.

Syntax
public char ** ce_argv;

ce_reproc_argv char **
Reserved; use NULL.

Syntax
public char ** ce_reproc_argv;

changing_pwd a_bit_field
Set TRUE when setting a new MobiLink password.

Syntax
public a_bit_field changing_pwd;

Remarks
See new_mlpassword field. Equivalent to the dbmlsync -mn option.

confirmrtn MSG_CALLBACK
Address of a confirmation request callback routine or NULL.

Syntax
public MSG_CALLBACK confirmrtn;

connectparms char *
Parameters needed to connect to the database.

Syntax
public char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

Database Tools Interface (DBTools)

Programming 789

connectparms_allocated a_bit_field
Reserved; use 0.

Syntax
public a_bit_field connectparms_allocated;

continue_download a_bit_field
Set TRUE to continue a previously failed download.

Syntax
public a_bit_field continue_download;

Remarks
Equivalent to the dbmlsync -dc option.

create_dnld_file const char *
Name of download file to create.

Syntax
public const char * create_dnld_file;

Remarks
Equivalent to dbmlsync -bc option or NULL if option not specified.

debug a_bit_field
Reserved; use 0.

Syntax
public a_bit_field debug;

debug_dump_char a_bit_field
Reserved; use 0.

Syntax
public a_bit_field debug_dump_char;

debug_dump_hex a_bit_field
Reserved; use 0.

Syntax
public a_bit_field debug_dump_hex;

Database Tools Interface (DBTools)

790 SAP Sybase IQ

debug_dump_size a_sql_uint32
Reserved; use 0.

Syntax
public a_sql_uint32 debug_dump_size;

debug_page_offsets a_bit_field
Reserved; use 0.

Syntax
public a_bit_field debug_page_offsets;

default_window_title char *
Name of the program to display in the window caption (for example, DBMLSync).

Syntax
public char * default_window_title;

dl_insert_width a_sql_uint32
Reserved; use 0.

Syntax
public a_sql_uint32 dl_insert_width;

dl_use_put a_bit_field
Reserved; use 0.

Syntax
public a_bit_field dl_use_put;

dlg_info_msg a_sql_uint32
Reserved; use 0.

Syntax
public a_sql_uint32 dlg_info_msg;

dnld_fail_len a_sql_uint32
Reserved; use 0.

Syntax
public a_sql_uint32 dnld_fail_len;

Database Tools Interface (DBTools)

Programming 791

dnld_file_extra const char *
Specify extra string to include in download file.

Syntax
public const char * dnld_file_extra;

Remarks
Equivalent to dbmlsync -be option.

dnld_gen_num a_bit_field
Set TRUE to update generation number when download file is applied.

Syntax
public a_bit_field dnld_gen_num;

Remarks
Equivalent to the dbmlsync -bg option.

dnld_read_size a_sql_uint32
Set the download read size.

Syntax
public a_sql_uint32 dnld_read_size;

Remarks
Equivalent to the dbmlsync -drs option.

download_only a_bit_field
Set TRUE to perform download-only synchronization.

Syntax
public a_bit_field download_only;

Remarks
Equivalent to the dbmlsync -ds option.

encrypted_stream_opts const char *
Reserved; use NULL.

Syntax
public const char * encrypted_stream_opts;

Database Tools Interface (DBTools)

792 SAP Sybase IQ

encryption_key char *
The encryption key for the database file.

Syntax
public char * encryption_key;

Remarks
Equivalent to the dbmlsync -ek option.

entered_dialog a_bit_field
Reserved; use 0.

Syntax
public a_bit_field entered_dialog;

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

est_upld_row_cnt a_sql_uint32
Set the estimated upload row count (for optimization).

Syntax
public a_sql_uint32 est_upld_row_cnt;

Remarks
Equivalent to the dbmlsync -urc option.

extended_options char *
Extended options in the form "keyword=value;...".

Syntax
public char * extended_options;

Remarks
Equivalent to dbmlsync -e option.

Database Tools Interface (DBTools)

Programming 793

hide_conn_str a_bit_field
Set FALSE to show connect string, TRUE to hide the connect string.

Syntax
public a_bit_field hide_conn_str;

Remarks
Equivalent to the dbmlsync -vc option.

hide_ml_pwd a_bit_field
Set FALSE to show MobiLink password, TRUE to hide the MobiLink password.

Syntax
public a_bit_field hide_ml_pwd;

Remarks
Equivalent to the dbmlsync -vp option.

hovering_frequency a_sql_uint32
Set the logscan polling period in seconds.

Syntax
public a_sql_uint32 hovering_frequency;

Remarks
Usually 60. Equivalent to the dbmlsync -pp option.

ignore_debug_interrupt a_bit_field
Reserved; use 0.

Syntax
public a_bit_field ignore_debug_interrupt;

ignore_hook_errors a_bit_field
Set TRUE to ignore errors that occur in hook functions.

Syntax
public a_bit_field ignore_hook_errors;

Remarks
Equivalent to the dbmlsync -eh option.

Database Tools Interface (DBTools)

794 SAP Sybase IQ

ignore_hovering a_bit_field
Set TRUE to disable logscan polling.

Syntax
public a_bit_field ignore_hovering;

Remarks
Equivalent to the dbmlsync -p option.

ignore_scheduling a_bit_field
Set TRUE to ignore scheduling.

Syntax
public a_bit_field ignore_scheduling;

Remarks
Equivalent to the dbmlsync -is option.

include_scan_range const char *
Reserved; use NULL.

Syntax
public const char * include_scan_range;

init_cache a_sql_uint32
Initial size for cache.

Syntax
public a_sql_uint32 init_cache;

Remarks
Equivalent to the dbmlsync -ci option.

init_cache_suffix char
Suffix for initial cache size ('B' for bytes, 'P' for percentage, or 0 if not specified.

Syntax
public char init_cache_suffix;

Database Tools Interface (DBTools)

Programming 795

kill_other_connections a_bit_field
Set TRUE to drop connections with locks on tables being synchronized.

Syntax
public a_bit_field kill_other_connections;

Remarks
Equivalent to the dbmlsync -d option.

last_upload_def a_syncpub *
Reserved; use NULL.

Syntax
public a_syncpub * last_upload_def;

lite_blob_handling a_bit_field
Reserved; use 0.

Syntax
public a_bit_field lite_blob_handling;

log_file_name const char *
Database server message log file name.

Syntax
public const char * log_file_name;

Remarks
Equivalent to dbmlsync -o or -ot option.

log_size a_sql_uint32
Size in bytes of log file when renaming and restarting the transaction log.

Syntax
public a_sql_uint32 log_size;

Remarks
Specify 0 for unspecified size. Equivalent to the dbmlsync -x option.

Database Tools Interface (DBTools)

796 SAP Sybase IQ

logrtn MSG_CALLBACK
Address of a logging callback routine to write messages only to a log file or NULL.

Syntax
public MSG_CALLBACK logrtn;

max_cache a_sql_uint32
Maximum size for cache.

Syntax
public a_sql_uint32 max_cache;

Remarks
Equivalent to the dbmlsync -cm option.

max_cache_suffix char
Suffix for maximum cache size ('B' for bytes, 'P' for percentage, or 0 if not specified.

Syntax
public char max_cache_suffix;

min_cache a_sql_uint32
Minimum size for cache.

Syntax
public a_sql_uint32 min_cache;

Remarks
Equivalent to the dbmlsync -cl option.

min_cache_suffix char
Suffix for minimum cache size ('B' for bytes, 'P' for percentage, or 0 if not specified.

Syntax
public char min_cache_suffix;

mlpassword char *
The MobiLink password or NULL, if the option is not specified.

Syntax
public char * mlpassword;

Database Tools Interface (DBTools)

Programming 797

Remarks
Equivalent to the dbmlsync -mp option.

msgqueuertn MSG_QUEUE_CALLBACK
Function called by DBMLSync when it wants to sleep.

Syntax
public MSG_QUEUE_CALLBACK msgqueuertn;

Remarks
The parameter specifies the sleep period in milliseconds. The function should return the
following, as defined in dllapi.h.

• MSGQ_SLEEP_THROUGH indicates that the routine slept for the requested number of
milliseconds. This is usually the value you should return.

• MSGQ_SHUTDOWN_REQUESTED indicates that you would like the synchronization
to terminate as soon as possible.

• MSGQ_SYNC_REQUESTED indicates that the routine slept for less than the requested
number of milliseconds and that the next synchronization should begin immediately if a
synchronization is not currently in progress.

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

new_mlpassword char *
The new MobiLink password or NULL, if the option is not specified.

Syntax
public char * new_mlpassword;

Remarks
Equivalent to the dbmlsync -mn option.

no_offline_logscan a_sql_uint32
Set TRUE to disable offline logscan (cannot use with -x).

Syntax
public a_sql_uint32 no_offline_logscan;

Remarks
Equivalent to the dbmlsync -do option.

Database Tools Interface (DBTools)

798 SAP Sybase IQ

no_schema_cache a_bit_field
Reserved; use 0.

Syntax
public a_bit_field no_schema_cache;

no_stream_compress a_bit_field
Reserved; use 0.

Syntax
public a_bit_field no_stream_compress;

offline_dir const char *
Transaction logs directory.

Syntax
public const char * offline_dir;

Remarks
Last item specified on dbmlsync command line.

output_to_file a_bit_field
Reserved; use 0.

Syntax
public a_bit_field output_to_file;

output_to_mobile_link a_bit_field
Reserved; use 1.

Syntax
public a_bit_field output_to_mobile_link;

persist_connection a_bit_field
Set TRUE to persist the MobiLink connection between synchronizations.

Syntax
public a_bit_field persist_connection;

Remarks
Set FALSE to close the MobiLink connection between synchronizations. Equivalent to the
dbmlsync -pc{+|-} option.

Database Tools Interface (DBTools)

Programming 799

ping a_bit_field
Set TRUE to ping MobiLink server.

Syntax
public a_bit_field ping;

Remarks
Equivalent to the dbmlsync -pi option.

preload_dlls char *
Reserved; use NULL.

Syntax
public char * preload_dlls;

progress_index_rtn SET_PROGRESS_CALLBACK
Function called to update the state of the progress bar.

Syntax
public SET_PROGRESS_CALLBACK progress_index_rtn;

progress_msg_rtn MSG_CALLBACK
Function called to change the text in the status window, above the progress bar.

Syntax
public MSG_CALLBACK progress_msg_rtn;

prompt_again a_bit_field
Reserved; use 0.

Syntax
public a_bit_field prompt_again;

prompt_for_encrypt_key a_bit_field
Reserved; use 0.

Syntax
public a_bit_field prompt_for_encrypt_key;

Database Tools Interface (DBTools)

800 SAP Sybase IQ

protocol_add_cli_bit_to_cli_both a_bit_field
Reserved; use 0.

Syntax
public a_bit_field protocol_add_cli_bit_to_cli_both;

protocol_add_cli_bit_to_cli_max a_bit_field
Reserved; use 0.

Syntax
public a_bit_field protocol_add_cli_bit_to_cli_max;

protocol_add_serv_bit_to_cli_both a_bit_field
Reserved; use 0.

Syntax
public a_bit_field protocol_add_serv_bit_to_cli_both;

protocol_add_serv_bit_to_cli_max a_bit_field
Reserved; use 0.

Syntax
public a_bit_field protocol_add_serv_bit_to_cli_max;

protocol_add_serv_bit_to_serv_both a_bit_field
Reserved; use 0.

Syntax
public a_bit_field protocol_add_serv_bit_to_serv_both;

protocol_add_serv_bit_to_serv_max a_bit_field
Reserved; use 0.

Syntax
public a_bit_field protocol_add_serv_bit_to_serv_max;

raw_file const char *
Reserved; use NULL.

Syntax
public const char * raw_file;

Database Tools Interface (DBTools)

Programming 801

rename_log a_bit_field
Set TRUE to rename and restart the transaction log.

Syntax
public a_bit_field rename_log;

Remarks
See log_size field. Equivalent to the dbmlsync -x option.

reserved a_bit_field
Reserved; use 0.

Syntax
public a_bit_field reserved;

retry_remote_ahead a_bit_field
Set TRUE to resend upload using remote offset on progress mismatch when remote offset is
greater than consolidated offset.

Syntax
public a_bit_field retry_remote_ahead;

Remarks
Equivalent to the dbmlsync -ra option.

retry_remote_behind a_bit_field
Set TRUE to resend upload using remote offset on progress mismatch.

Syntax
public a_bit_field retry_remote_behind;

Remarks
when remote offset is less than consolidated offset. Equivalent to the dbmlsync -r or -rb option.

server_mode a_bit_field
Set TRUE to run in server mode.

Syntax
public a_bit_field server_mode;

Remarks
Equivalent to the dbmlsync -sm option.

Database Tools Interface (DBTools)

802 SAP Sybase IQ

server_port a_sql_uint32
Set communication port when running in server mode.

Syntax
public a_sql_uint32 server_port;

Remarks
Equivalent to the dbmlsync -po option.

set_window_title_rtn SET_WINDOW_TITLE_CALLBACK
Function to call to change the title of the dbmlsync window (Windows only).

Syntax
public SET_WINDOW_TITLE_CALLBACK set_window_title_rtn;

status_rtn STATUS_CALLBACK
Reserved; use NULL.

Syntax
public STATUS_CALLBACK status_rtn;

strictly_free_memory a_bit_field
Reserved; use 0.

Syntax
public a_bit_field strictly_free_memory;

strictly_ignore_trigger_ops a_bit_field
Reserved; use 0.

Syntax
public a_bit_field strictly_ignore_trigger_ops;

sync_opt char *
Reserved; use NULL.

Syntax
public char * sync_opt;

Database Tools Interface (DBTools)

Programming 803

sync_params char *
User authentication parameters.

Syntax
public char * sync_params;

Remarks
Equivalent to the dbmlsync -ap option.

sync_profile char *
Synchronization profile to execute.

Syntax
public char * sync_profile;

Remarks
Equivalent to the dbmlsync -sp option.

trans_upload a_bit_field
Set TRUE to upload each database transaction separately.

Syntax
public a_bit_field trans_upload;

Remarks
Equivalent to the dbmlsync -tu option.

upld_fail_len a_sql_uint32
Reserved; use 0.

Syntax
public a_sql_uint32 upld_fail_len;

upload_defs a_syncpub *
Linked list of publications/subscriptions to synchronize.

Syntax
public a_syncpub * upload_defs;

Database Tools Interface (DBTools)

804 SAP Sybase IQ

upload_only a_bit_field
Set TRUE to perform upload-only synchronization.

Syntax
public a_bit_field upload_only;

Remarks
Equivalent to the dbmlsync -uo option.

usage_rtn USAGE_CALLBACK
Reserved; use NULL.

Syntax
public USAGE_CALLBACK usage_rtn;

use_fixed_cache a_bit_field
Reserved; use 0.

Syntax
public a_bit_field use_fixed_cache;

use_hex_offsets a_bit_field
Reserved; use 0.

Syntax
public a_bit_field use_hex_offsets;

use_relative_offsets a_bit_field
Reserved; use 0.

Syntax
public a_bit_field use_relative_offsets;

used_dialog_allocation a_bit_field
Reserved; use 0.

Syntax
public a_bit_field used_dialog_allocation;

Database Tools Interface (DBTools)

Programming 805

user_name char *
The MobiLink user to synchronize (deprecated).

Syntax
public char * user_name;

Remarks
Equivalent to the dbmlsync -u option.

verbose a_bit_field
Reserved; use 0.

Syntax
public a_bit_field verbose;

verbose_download a_bit_field
Reserved; use 0.

Syntax
public a_bit_field verbose_download;

verbose_download_data a_bit_field
Reserved; use 0.

Syntax
public a_bit_field verbose_download_data;

verbose_hook a_bit_field
Set TRUE to show hook script information.

Syntax
public a_bit_field verbose_hook;

Remarks
Equivalent to the dbmlsync -vs option.

verbose_minimum a_bit_field
Set TRUE to set verbosity at a minimum.

Syntax
public a_bit_field verbose_minimum;

Database Tools Interface (DBTools)

806 SAP Sybase IQ

Remarks
Equivalent to the dbmlsync -v option.

verbose_msgid a_bit_field
Set TRUE to show message IDs.

Syntax
public a_bit_field verbose_msgid;

Remarks
Equivalent to the dbmlsync -vi option.

verbose_option_info a_bit_field
Set TRUE to show command line and extended options.

Syntax
public a_bit_field verbose_option_info;

Remarks
Equivalent to the dbmlsync -vo option.

verbose_protocol a_bit_field
Reserved; use 0.

Syntax
public a_bit_field verbose_protocol;

verbose_row_cnts a_bit_field
Set TRUE to show upload/download row counts.

Syntax
public a_bit_field verbose_row_cnts;

Remarks
Equivalent to the dbmlsync -vn option.

verbose_row_data a_bit_field
Set TRUE to show upload/download row values.

Syntax
public a_bit_field verbose_row_data;

Database Tools Interface (DBTools)

Programming 807

Remarks
Equivalent to the dbmlsync -vr option.

verbose_server a_bit_field
Reserved; use 0.

Syntax
public a_bit_field verbose_server;

verbose_upload a_bit_field
Set TRUE to show upload stream information.

Syntax
public a_bit_field verbose_upload;

Remarks
Equivalent to the dbmlsync -vu option.

verbose_upload_data a_bit_field
Reserved; use 0.

Syntax
public a_bit_field verbose_upload_data;

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

warningrtn MSG_CALLBACK
Function called to display warning messages.

Syntax
public MSG_CALLBACK warningrtn;

a_syncpub structure
Holds information needed for the dbmlsync utility.

Syntax
typedef struct a_syncpub

Database Tools Interface (DBTools)

808 SAP Sybase IQ

ext_opt char *
Extended options in the form "keyword=value;...".

Syntax
public char * ext_opt;

Remarks
These are the same options the would follow the dbmlsync -eu option.

next struct a_syncpub *
Pointer to the next node in the list, NULL for the last node.

Syntax
public struct a_syncpub * next;

pub_name char *
Publication name(s) separated by commas (deprecated).

Syntax
public char * pub_name;

Remarks
This is the same string that would follow the dbmlsync -n option. Only 1 of pub_name and
subscription may be non-NULL.

subscription char *
Subscription name(s) separated by commas.

Syntax
public char * subscription;

Remarks
This is the same string the would follow the dbmlsync -s option. Only 1 of pub_name and
subscription may be non-NULL.

a_sysinfo structure
Holds information needed for dbinfo and dbunload utilities using the DBTools library.

Syntax
typedef struct a_sysinfo

Database Tools Interface (DBTools)

Programming 809

blank_padding a_bit_field
1 if blank padding is used in this database, 0 otherwise.

Syntax
public a_bit_field blank_padding;

case_sensitivity a_bit_field
1 if the database is case sensitive, 0 otherwise.

Syntax
public a_bit_field case_sensitivity;

default_collation char
The collation sequence for the database.

Syntax
public char default_collation;

encryption a_bit_field
1 if the database is encrypted, 0 otherwise.

Syntax
public a_bit_field encryption;

page_size unsigned short
The page size for the database.

Syntax
public unsigned short page_size;

valid_data a_bit_field
1 to indicate that the other bit fields are valid.

Syntax
public a_bit_field valid_data;

a_table_info structure
Holds information about a table needed as part of the a_db_info structure.

Syntax
typedef struct a_table_info

Database Tools Interface (DBTools)

810 SAP Sybase IQ

index_pages a_sql_uint32
Number of index pages.

Syntax
public a_sql_uint32 index_pages;

index_used a_sql_uint32
Number of bytes used in index pages.

Syntax
public a_sql_uint32 index_used;

index_used_pct a_sql_uint32
Index space utilization as a percentage.

Syntax
public a_sql_uint32 index_used_pct;

next struct a_table_info *
Next table in the list.

Syntax
public struct a_table_info * next;

table_id a_sql_uint32
ID number for this table.

Syntax
public a_sql_uint32 table_id;

table_name char *
Name of the table.

Syntax
public char * table_name;

table_pages a_sql_uint32
Number of table pages.

Syntax
public a_sql_uint32 table_pages;

Database Tools Interface (DBTools)

Programming 811

table_used a_sql_uint32
Number of bytes used in table pages.

Syntax
public a_sql_uint32 table_used;

table_used_pct a_sql_uint32
Table space utilization as a percentage.

Syntax
public a_sql_uint32 table_used_pct;

a_translate_log structure
Holds information needed for transaction log translation using the DBTools library.

Syntax
typedef struct a_translate_log

ansi_sql a_bit_field
Set TRUE to produce ANSI standard SQL transactions.

Syntax
public a_bit_field ansi_sql;

Remarks
Set TRUE by dbtran -s option.

chronological_order a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field chronological_order;

comment_trigger_trans a_bit_field
Set TRUE to include trigger-generated transactions as comments.

Syntax
public a_bit_field comment_trigger_trans;

Remarks
Set TRUE by dbtran -z option.

Database Tools Interface (DBTools)

812 SAP Sybase IQ

confirmrtn MSG_CALLBACK
Address of a confirmation request callback routine or NULL.

Syntax
public MSG_CALLBACK confirmrtn;

connectparms const char *
Parameters needed to connect to the database.

Syntax
public const char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

debug a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field debug;

debug_dump_char a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field debug_dump_char;

debug_dump_hex a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field debug_dump_hex;

Database Tools Interface (DBTools)

Programming 813

debug_dump_size a_sql_uint32
Reserved, use 0.

Syntax
public a_sql_uint32 debug_dump_size;

debug_page_offsets a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field debug_page_offsets;

debug_sql_remote a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field debug_sql_remote;

encryption_key const char *
The encryption key for the database file. Equivalent to dbtran -ek option.

Syntax
public const char * encryption_key;

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

extra_audit a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field extra_audit;

force_chaining a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field force_chaining;

Database Tools Interface (DBTools)

814 SAP Sybase IQ

force_recovery a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field force_recovery;

generate_reciprocals a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field generate_reciprocals;

include_audit a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field include_audit;

include_destination_sets const char *
Reserved, use NULL.

Syntax
public const char * include_destination_sets;

include_publications const char *
Reserved, use NULL.

Syntax
public const char * include_publications;

include_scan_range const char *
Reserved, use NULL.

Syntax
public const char * include_scan_range;

include_source_sets const char *
Reserved, use NULL.

Syntax
public const char * include_source_sets;

Database Tools Interface (DBTools)

Programming 815

include_subsets a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field include_subsets;

include_tables const char *
Reserved, use NULL.

Syntax
public const char * include_tables;

include_trigger_trans a_bit_field
Set TRUE to include trigger-generated transactions.

Syntax
public a_bit_field include_trigger_trans;

Remarks
Set TRUE by dbtran -t, -g and -sr options.

leave_output_on_error a_bit_field
Set TRUE to leave the generated SQL file if log error detected.

Syntax
public a_bit_field leave_output_on_error;

Remarks
Set TRUE by dbtran -k option.

logname const char *
Name of the transaction log file. If NULL, there is no log.

Syntax
public const char * logname;

logrtn MSG_CALLBACK
Address of a logging callback routine to write messages only to a log file or NULL.

Syntax
public MSG_CALLBACK logrtn;

Database Tools Interface (DBTools)

816 SAP Sybase IQ

logs_dir const char *
Transaction logs directory.

Syntax
public const char * logs_dir;

Remarks
Equivalent to dbtran -m option. The sqlname pointer must be set and connectparms must be
NULL.

match_mode a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field match_mode;

match_pos const char *
Reserved, use NULL.

Syntax
public const char * match_pos;

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

omit_comments a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field omit_comments;

queueparms const char *
Reserved, use NULL.

Syntax
public const char * queueparms;

Database Tools Interface (DBTools)

Programming 817

quiet a_bit_field
Set to TRUE to operate without printing messages.

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dbtran -q option.

recovery_bytes a_sql_uint32
Reserved, use 0.

Syntax
public a_sql_uint32 recovery_bytes;

recovery_ops a_sql_uint32
Reserved, use 0.

Syntax
public a_sql_uint32 recovery_ops;

remove_rollback a_bit_field
Set to FALSE if you want to include rollback transactions in output.

Syntax
public a_bit_field remove_rollback;

Remarks
Set FALSE by dbtran -a option.

replace a_bit_field
Set TRUE to replace the SQL file without a confirmation.

Syntax
public a_bit_field replace;

Remarks
Set TRUE by dbtran -y option.

Database Tools Interface (DBTools)

818 SAP Sybase IQ

repserver_users const char *
Reserved, use NULL.

Syntax
public const char * repserver_users;

show_undo a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field show_undo;

since_checkpoint a_bit_field
Set TRUE for output from most recent checkpoint.

Syntax
public a_bit_field since_checkpoint;

Remarks
Set TRUE by dbtran -f option.

since_time a_sql_uint32
Output from most recent checkpoint before time.

Syntax
public a_sql_uint32 since_time;

Remarks
The number of minutes since January 1, 0001. Equivalent to dbtran -j option.

sqlname const char *
Name of the SQL output file.

Syntax
public const char * sqlname;

Remarks
If NULL, then the name is based on the transaction log file name. Equivalent to dbtran -n
option.

Database Tools Interface (DBTools)

Programming 819

statusrtn MSG_CALLBACK
Address of a status message callback routine or NULL.

Syntax
public MSG_CALLBACK statusrtn;

use_hex_offsets a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field use_hex_offsets;

use_relative_offsets a_bit_field
Reserved; set to FALSE.

Syntax
public a_bit_field use_relative_offsets;

userlist p_name
A linked list of user names.

Syntax
public p_name userlist;

Remarks
Equivalent to dbtran -u user1,... or -x user1,... Select or omit transactions for listed users.

userlisttype char
Set to DBTRAN_INCLUDE_ALL unless you want to include or exclude a list of users.

Syntax
public char userlisttype;

Remarks
DBTRAN_INCLUDE_SOME for -u, or DBTRAN_EXCLUDE_SOME for -x.

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

Database Tools Interface (DBTools)

820 SAP Sybase IQ

a_truncate_log structure
Holds information needed for transaction log truncation using the DBTools library.

Syntax
typedef struct a_truncate_log

connectparms const char *
Parameters needed to connect to the database.

Syntax
public const char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

quiet a_bit_field
Set TRUE to operate without printing messages.

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dbbackup -q option.

Database Tools Interface (DBTools)

Programming 821

server_backup a_bit_field
Set TRUE to indicate backup on server using BACKUP DATABASE.

Syntax
public a_bit_field server_backup;

Remarks
Set TRUE by dbbackup -s option when dbbackup -x option is specified.

truncate_interrupted char
Truncate was interrupted if non-zero.

Syntax
public char truncate_interrupted;

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

a_validate_db structure
Holds information needed for database validation using the DBTools library.

Syntax
typedef struct a_validate_db

connectparms const char *
Parameters needed to connect to the database.

Syntax
public const char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

Database Tools Interface (DBTools)

822 SAP Sybase IQ

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

index a_bit_field
Set TRUE to validate indexes.

Syntax
public a_bit_field index;

Remarks
The tables field points to a list of indexes. Set TRUE by dbvalid -i option. Set FALSE by
dbvalid -t option.

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

quiet a_bit_field
Set TRUE to operate without printing messages.

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dbvalid -q option.

statusrtn MSG_CALLBACK
Address of a status message callback routine or NULL.

Syntax
public MSG_CALLBACK statusrtn;

tables p_name
Pointer to a linked list of table names or index names (when the index field is set TRUE).

Syntax
public p_name tables;

Database Tools Interface (DBTools)

Programming 823

Remarks
This is set by the dbvalid object-name-list argument.

type char
The type of validation to perform.

Syntax
public char type;

Remarks
One of VALIDATE_NORMAL, VALIDATE_EXPRESS, VALIDATE_CHECKSUM, etc.
See Validation enumeration.

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

an_erase_db structure
Holds information needed to erase a database using the DBTools library.

Syntax
typedef struct an_erase_db

confirmrtn MSG_CALLBACK
Address of a confirmation request callback routine or NULL.

Syntax
public MSG_CALLBACK confirmrtn;

dbname const char *
Database file name.

Syntax
public const char * dbname;

encryption_key const char *
The encryption key for the database file.

Syntax
public const char * encryption_key;

Database Tools Interface (DBTools)

824 SAP Sybase IQ

Remarks
Equivalent to dberase -ek or -ep options.

erase a_bit_field
Erase without confirmation (1) or with confirmation (0).

Syntax
public a_bit_field erase;

Remarks
Set TRUE by dberase -y option.

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

quiet a_bit_field
Operate without printing messages (1), or print messages (0).

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dberase -q option.

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

Database Tools Interface (DBTools)

Programming 825

an_unload_db structure
Holds information needed to unload a database using the DBTools library or extract a remote
database for SQL Remote.

Syntax
typedef struct an_unload_db

Remarks
Those fields used by the dbxtract SQL Remote Extraction utility are indicated.

compress_output a_bit_field
Set TRUE to compress table data files.

Syntax
public a_bit_field compress_output;

Remarks
Set TRUE by dbunload -cp option.

confirmrtn MSG_CALLBACK
Address of a confirmation request callback routine or NULL.

Syntax
public MSG_CALLBACK confirmrtn;

connectparms const char *
Parameters needed to connect to the database.

Syntax
public const char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

Database Tools Interface (DBTools)

826 SAP Sybase IQ

debug a_bit_field
Reserved; set FALSE.

Syntax
public a_bit_field debug;

display_create a_bit_field
Set TRUE to display database creation command (sql or dbinit).

Syntax
public a_bit_field display_create;

Remarks
Set TRUE by dbunload -cm sql or -cm dbinit option.

display_create_dbinit a_bit_field
Set TRUE to display dbinit database creation command.

Syntax
public a_bit_field display_create_dbinit;

Remarks
Set TRUE by dbunload -cm dbinit option.

encrypted_tables a_bit_field
Set TRUE to enable encrypted tables in new database (with -an or -ar).

Syntax
public a_bit_field encrypted_tables;

Remarks
Set TRUE by dbunload/dbxtract -et option.

encryption_algorithm const char *
The encryption algorithm which may be "simple", "aes", "aes256", "aes_fips", "aes256_fips",
or NULL for none.

Syntax
public const char * encryption_algorithm;

Remarks
Set by dbunload/dbxtract -ea option.

Database Tools Interface (DBTools)

Programming 827

encryption_key const char *
The encryption key for the database file.

Syntax
public const char * encryption_key;

Remarks
Set by dbunload/dbxtract -ek or -ep option.

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

escape_char char
The escape character (normally, "\").

Syntax
public char escape_char;

Remarks
Used when escape_char_present is TRUE. Set TRUE by dbunload/dbxtract -p option.

escape_char_present a_bit_field
Set TRUE to indicate that the escape character in escape_char is defined.

Syntax
public a_bit_field escape_char_present;

Remarks
Set TRUE by dbunload/dbxtract -p option.

exclude_foreign_keys a_bit_field
Set TRUE to exclude foreign keys.

Syntax
public a_bit_field exclude_foreign_keys;

Remarks
Set TRUE by dbxtract -xf option.

Database Tools Interface (DBTools)

828 SAP Sybase IQ

exclude_hooks a_bit_field
Set TRUE to exclude procedure hooks.

Syntax
public a_bit_field exclude_hooks;

Remarks
Set TRUE by dbxtract -xh option.

exclude_procedures a_bit_field
Set TRUE to exclude stored procedures.

Syntax
public a_bit_field exclude_procedures;

Remarks
Set TRUE by dbxtract -xp option.

exclude_tables a_bit_field
Set FALSE to indicate that the list contains tables to be included.

Syntax
public a_bit_field exclude_tables;

Remarks
Set TRUE to indicate that the list contains tables to be excluded. Set TRUE by dbunload -e
option.

exclude_triggers a_bit_field
Set TRUE to exclude triggers.

Syntax
public a_bit_field exclude_triggers;

Remarks
Set TRUE by dbxtract -xt option.

exclude_views a_bit_field
Set TRUE to exclude views.

Syntax
public a_bit_field exclude_views;

Database Tools Interface (DBTools)

Programming 829

Remarks
Set TRUE by dbxtract -xv option.

extract a_bit_field
Set TRUE if performing a remote database extraction.

Syntax
public a_bit_field extract;

Remarks
Set FALSE by dbunload. Set TRUE by dbxtract.

genscript a_bit_field
Reserved; set FALSE.

Syntax
public a_bit_field genscript;

include_where_subscribe a_bit_field
Set TRUE to extract fully qualified publications.

Syntax
public a_bit_field include_where_subscribe;

Remarks
Set TRUE by dbxtract -f option.

isolation_level unsigned short
The isolation level at which to operate.

Syntax
public unsigned short isolation_level;

Remarks
Set by dbxtract -l option.

isolation_set a_bit_field
Set TRUE to indicate that isolation_level has been set for all extraction operations.

Syntax
public a_bit_field isolation_set;

Database Tools Interface (DBTools)

830 SAP Sybase IQ

Remarks
Set TRUE by dbxtract -l option.

locale const char *
Reserved; use NULL.

Syntax
public const char * locale;

make_auxiliary a_bit_field
Set TRUE to make auxiliary catalog (for use with diagnostic tracing).

Syntax
public a_bit_field make_auxiliary;

Remarks
Set TRUE by dbunload -k option.

ms_filename const char *
Reserved; use NULL.

Syntax
public const char * ms_filename;

ms_reserve int
Reserved; use 0.

Syntax
public int ms_reserve;

ms_size int
Reserved; use 0.

Syntax
public int ms_size;

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

Database Tools Interface (DBTools)

Programming 831

no_confirm a_bit_field
Set TRUE to replace an existing SQL script file without confirmation.

Syntax
public a_bit_field no_confirm;

Remarks
Set by dbunload/dbxtract -y option.

no_reload_status a_bit_field
Set TRUE to suppress reload status messages for tables and indexes.

Syntax
public a_bit_field no_reload_status;

Remarks
Set TRUE by dbunload -qr option.

notemp_size long
Reserved; use 0.

Syntax
public long notemp_size;

preserve_identity_values a_bit_field
Set TRUE to preserve identity values for AUTOINCREMENT columns.

Syntax
public a_bit_field preserve_identity_values;

Remarks
Set TRUE by dbunload -l option.

preserve_ids a_bit_field
Set TRUE to preserve user IDs.

Syntax
public a_bit_field preserve_ids;

Remarks
This is the normal setting. Set FALSE by dbunload -e option.

Database Tools Interface (DBTools)

832 SAP Sybase IQ

profiling_uses_single_dbspace a_bit_field
Set TRUE to collapse to a single dbspace file (for use with diagnostic tracing).

Syntax
public a_bit_field profiling_uses_single_dbspace;

Remarks
Set TRUE by dbunload -kd option.

recompute a_bit_field
Set TRUE to redo computed columns.

Syntax
public a_bit_field recompute;

Remarks
Set TRUE by dbunload -dc option.

refresh_mat_view a_bit_field
Set TRUE to generate statements to refresh text indexes and valid materialized views.

Syntax
public a_bit_field refresh_mat_view;

Remarks
Set TRUE by dbunload/dbxtract -g option.

reload_connectparms char *
Connection parameters such as user ID, password, and database for the reload database.

Syntax
public char * reload_connectparms;

Remarks
Set by dbunload/dbxtract -ac option.

reload_db_filename char *
Name of the new database file to create and reload.

Syntax
public char * reload_db_filename;

Database Tools Interface (DBTools)

Programming 833

Remarks
Set by dbunload/dbxtract -an option.

reload_db_logname char *
Filename of the new database transaction log or NULL.

Syntax
public char * reload_db_logname;

Remarks
Set by dbxtract -al option.

reload_filename const char *
Name to use for the reload SQL script file (for example, reload.sql).

Syntax
public const char * reload_filename;

Remarks
Set by dbunload -r option.

reload_page_size unsigned short
The reloaded database page size.

Syntax
public unsigned short reload_page_size;

Remarks
Set by dbunload -ap option.

remote_dir const char *
Like temp_dir but for internal unloads on server side.

Syntax
public const char * remote_dir;

remove_encrypted_tables a_bit_field
Set TRUE to remove encryption from encrypted tables.

Syntax
public a_bit_field remove_encrypted_tables;

Database Tools Interface (DBTools)

834 SAP Sybase IQ

Remarks
Set TRUE by dbunload/dbxtract -er option.

replace_db a_bit_field
Set TRUE to replace the database.

Syntax
public a_bit_field replace_db;

Remarks
Set TRUE by dbunload -ar option.

runscript a_bit_field
Reserved; set FALSE.

Syntax
public a_bit_field runscript;

schema_reload a_bit_field
Reserved; set FALSE.

Syntax
public a_bit_field schema_reload;

site_name const char *
The site name to be used by dbxtract. NULL otherwise.

Syntax
public const char * site_name;

start_subscriptions a_bit_field
Set TRUE to start subscriptions.

Syntax
public a_bit_field start_subscriptions;

Remarks
This is the default for dbxtract. Set FALSE by dbxtract -b option.

Database Tools Interface (DBTools)

Programming 835

startline const char *
Reserved; use NULL.

Syntax
public const char * startline;

startline_name a_bit_field
Reserved; set FALSE.

Syntax
public a_bit_field startline_name;

startline_old const char *
Reserved; use NULL.

Syntax
public const char * startline_old;

statusrtn MSG_CALLBACK
Address of a status message callback routine or NULL.

Syntax
public MSG_CALLBACK statusrtn;

subscriber_username const char *
The subscriber name to be used by dbxtract. NULL otherwise.

Syntax
public const char * subscriber_username;

suppress_statistics a_bit_field
Set TRUE to suppress inclusion of column statistics.

Syntax
public a_bit_field suppress_statistics;

Remarks
Set TRUE by dbunload -ss option.

Database Tools Interface (DBTools)

836 SAP Sybase IQ

sysinfo a_sysinfo
Reserved; use NULL.

Syntax
public a_sysinfo sysinfo;

table_list p_name
Selective table list.

Syntax
public p_name table_list;

Remarks
Set by dbunload -e and -t options.

table_list_provided a_bit_field
Set TRUE to indicate that a list of tables has been provided.

Syntax
public a_bit_field table_list_provided;

Remarks
See table_list field. Set TRUE by dbunload -e or -t options.

temp_dir const char *
Directory for unloading data files.

Syntax
public const char * temp_dir;

template_name const char *
The template name to be used by dbxtract. NULL otherwise.

Syntax
public const char * template_name;

unload_interrupted char
Reserved; set to 0.

Syntax
public char unload_interrupted;

Database Tools Interface (DBTools)

Programming 837

unload_type char
Set Unload enumeration (UNLOAD_ALL and so on).

Syntax
public char unload_type;

Remarks
Set by dbunload/dbxtract -d, -k, -n options.

unordered a_bit_field
Set TRUE for unordered data.

Syntax
public a_bit_field unordered;

Remarks
Indexes will not be used to unload data. Set by dbunload/dbxtract -u option.

use_internal_reload a_bit_field
Set TRUE to perform an internal reload.

Syntax
public a_bit_field use_internal_reload;

Remarks
This is the normal setting. Set TRUE by dbunload/dbxtract -ii and -xi option. Set FALSE by
dbunload/dbxtract -ix and -xx option.

use_internal_unload a_bit_field
Set TRUE to Perform an internal unload.

Syntax
public a_bit_field use_internal_unload;

Remarks
Set TRUE by dbunload/dbxtract -i? option. Set FALSE by dbunload/dbxtract -x? option.

verbose char
See Verbosity enumeration (VB_QUIET, VB_NORMAL, VB_VERBOSE).

Syntax
public char verbose;

Database Tools Interface (DBTools)

838 SAP Sybase IQ

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

an_upgrade_db structure
Holds information needed to upgrade a database using the DBTools library.

Syntax
typedef struct an_upgrade_db

connectparms const char *
Parameters needed to connect to the database.

Syntax
public const char * connectparms;

Remarks
They take the form of connection strings, such as the following:
"UID=DBA;PWD=sql;DBF=demo.db".

The database server would be started by the connection string START parameter. For
example: "START=c:\SQLAny16\bin32\dbsrv16.exe".

A full example connection string including the START parameter:
"UID=DBA;PWD=sql;DBF=demo.db;START=c:\SQLAny16\bin32\dbsrv16.exe".

errorrtn MSG_CALLBACK
Address of an error message callback routine or NULL.

Syntax
public MSG_CALLBACK errorrtn;

jconnect a_bit_field
Set TRUE to upgrade the database to include jConnect procedures.

Syntax
public a_bit_field jconnect;

Remarks
Set FALSE by dbupgrad -i option.

Database Tools Interface (DBTools)

Programming 839

msgrtn MSG_CALLBACK
Address of an information message callback routine or NULL.

Syntax
public MSG_CALLBACK msgrtn;

quiet a_bit_field
Set TRUE to operate without printing messages.

Syntax
public a_bit_field quiet;

Remarks
Set TRUE by dbupgrad -q option.

restart a_bit_field
Set TRUE to restart the database after the upgrade.

Syntax
public a_bit_field restart;

Remarks
Set FALSE by the dbupgrad -nrs option.

statusrtn MSG_CALLBACK
Address of a status message callback routine or NULL.

Syntax
public MSG_CALLBACK statusrtn;

sys_proc_definer unsigned short
Assign 0 to upgrade the database to have the pre-16.0 SQL SECURITY model for legacy
system stored procedures when upgrading from pre-16.0 releases.

Syntax
public unsigned short sys_proc_definer;

Remarks
When upgrading from a version 16.0 or later database retain the current SQL SECURITY
model (same as not specifying -pd).

Assign 1 to upgrade the database to have the pre-16.0 SQL SECURITY model for legacy
system stored procedures (same as -pd y)

Database Tools Interface (DBTools)

840 SAP Sybase IQ

Assign 2 to upgrade the database to have the pre-16.0 SQL SECURITY model for legacy
system stored procedures (same as -pd n).

version unsigned short
DBTools version number (DB_TOOLS_VERSION_NUMBER).

Syntax
public unsigned short version;

Database Tools Interface (DBTools)

Programming 841

Database Tools Interface (DBTools)

842 SAP Sybase IQ

Appendix: Using OLAP

OLAP (online analytical processing) is an efficient method of data analysis of information
stored in a relational database.

Using OLAP you can analyze data on different dimensions, acquire result sets with subtotaled
rows, and organize data into multidimensional cubes, all in a single SQL query. You can also
use filters to drill down into the data, returning result sets quickly. This chapter describes the
SQL/OLAP functionality that SAP Sybase IQ supports.

Note: The tables shown in OLAP examples are available in the iqdemo database.

About OLAP
The analytic functions, which offer the ability to perform complex data analysis within a
single SQL statement, are facilitated by a category of software technology named online
analytical processing (OLAP). Its functions are shown in the following list:

• GROUP BY clause extensions – CUBE and ROLLUP

• Analytical functions:
• Simple aggregates – AVG, COUNT, MAX, MIN, and SUM, STDDEV and VARIANCE

Note: You can use simple aggregate functions, except Grouping(), with an OLAP
windowed function.

• Window functions:
• Windowing aggregates – AVG, COUNT, MAX, MIN, and SUM

• Ranking functions – RANK, DENSE_RANK, PERCENT_RANK, and NTILE

• Statistical functions – STDDEV, STDDEV_SAMP, STDDEV_POP, VARIANCE,
VAR_POP, VAR_SAMP, REGR_AVGX, REGR_AVGY, REGR_COUNT,
REGR_INTERCEPT, REGR_R2, REGR_SLOPE, REGR_SXX, REGR_SXY,
REGR_SYY, CORR, COVAR_POP, COVAR_SAMP, CUME_DIST,
EXP_WEIGHTED_AVG, and WEIGHTED_AVG.

• Distribution functions – PERCENTILE_CONT and PERCENTILE_DISC

• Numeric functions – WIDTH_BUCKET, CEIL, and LN, EXP, POWER, SQRT, and
FLOOR

Extensions to the ANSI SQL standard to include complex data analysis were introduced as an
amendment to the 1999 SQL standard. SAP Sybase IQ SQL enhancements support these
extensions.

Some database products provide a separate OLAP module that requires you to move data from
the database into the OLAP module before analyzing it. By contrast, SAP Sybase IQ builds

Appendix: Using OLAP

Programming 843

OLAP features into the database itself, making deployment and integration with other
database features, such as stored procedures, easy and seamless.

OLAP Benefits
OLAP functions, when combined with the GROUPING, CUBE, and ROLLUP extensions,
provide two primary benefits.

First, they let you perform multidimensional data analysis, data mining, time series analyses,
trend analysis, cost allocations, goal seeking, ad hoc multidimensional structural changes,
nonprocedural modeling, and exception alerting, often with a single SQL statement. Second,
the window and reporting aggregate functions use a relational operator, called a window that
can be executed more efficiently than semantically equivalent queries that use self-joins or
correlated subqueries. The result sets you obtain using OLAP can have subtotal rows and can
be organized into multidimensional cubes.

Moving averages and moving sums can be calculated over various intervals; aggregations and
ranks can be reset as selected column values change; and complex ratios can be expressed in
simple terms. Within the scope of a single query expression, you can define several different
OLAP functions, each with its own partitioning rules.

OLAP Evaluation
OLAP evaluation can be conceptualized as several phases of query execution that contribute
to the final result.

You can identify OLAP phases of execution by the relevant clause in the query. For example, if
a SQL query specification contains window functions, the WHERE, JOIN, GROUP BY, and
HAVING clauses are processed first. Partitions are created after the groups defined in the
GROUP BY clause and before the evaluation of the final SELECT list in the query’s ORDER BY
clause.

For the purpose of grouping, all NULL values are considered to be in the same group, even
though NULL values are not equal to one another.

The HAVING clause acts as a filter, much like the WHERE clause, on the results of the GROUP
BY clause.

Consider the semantics of a simple query specification involving the SQL statements and
clauses, SELECT, FROM, WHERE, GROUP BY, and HAVING from the ANSI SQL standard:

1. The query produces a set of rows that satisfy the table expressions present in the FROM
clause.

2. Predicates from the WHERE clause are applied to rows from the table. Rows that fail to
satisfy the WHERE clause conditions (do not equal true) are rejected.

3. Except for aggregate functions, expressions from the SELECT list and in the list and
GROUP BY clause are evaluated for every remaining row.

Appendix: Using OLAP

844 SAP Sybase IQ

4. The resulting rows are grouped together based on distinct values of the expressions in the
GROUP BY clause, treating NULL as a special value in each domain. The expressions in
the GROUP BY clause serve as partition keys if a PARTITION BY clause is present.

5. For each partition, the aggregate functions present in the SELECT list or HAVING clause
are evaluated. Once aggregated, individual table rows are no longer present in the
intermediate result set. The new result set consists of the GROUP BY expressions and the
values of the aggregate functions computed for each partition.

6. Conditions from the HAVING clause are applied to result groups. Groups are eliminated
that do not satisfy the HAVING clause.

7. Results are partitioned on boundaries defined in the PARTITION BY clause. OLAP
windows functions (rank and aggregates) are computed for result windows.

Figure 1: SQL processing for OLAP

GROUP BY Clause Extensions
Extensions to the GROUP BY clause let application developers write complex SQL statements
that:

• Partition the input rows in multiple dimensions and combine multiple subsets of result
groups.

• Create a “data cube,” providing a sparse, multi dimensional result set for data mining
analyses.

• Create a result set that includes the original groups, and optionally includes a subtotal and
grand-total row.

OLAP Grouping() operations, such as ROLLUP and CUBE, can be conceptualized as prefixes
and subtotal rows.

Prefixes
A list of prefixes is constructed for any query that contains a GROUP BY clause. A prefix is a
subset of the items in the GROUP BY clause and is constructed by excluding one or more of the
rightmost items from those in the query’s GROUP BY clause. The remaining columns are
called the prefix columns.

ROLLUP example 1—In the following ROLLUP example query, the GROUP BY list includes
two variables, Year and Quarter:

SELECT year (OrderDate) AS Year, quarter(OrderDate)
 AS Quarter, COUNT(*) Orders
FROM SalesOrders

Appendix: Using OLAP

Programming 845

GROUP BY ROLLUP(Year, Quarter)
ORDER BY Year, Quarter

The query’s two prefixes are:

• Exclude Quarter – the set of prefix columns contains the single column Year.

• Exclude both Quarter and Year – there are no prefix columns.

Note: The GROUP BY list contains the same number of prefixes as items.

Group by ROLLUP and CUBE
ROLLUP and CUBE are syntactic shortcuts that specify common grouping prefixes.

Group by ROLLUP
The ROLLUP operator requires an ordered list of grouping expressions to be supplied as
arguments.

ROLLUP syntax.

SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [, …]
| ROLLUP (expression [, …])]

GROUPING takes a column name as a parameter and returns a Boolean value as listed in the
following table:

Table 1. Values returned by GROUPING with the ROLLUP operator

If the value of the result is GROUPING returns

NULL created by a ROLLUP operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a ROLLUP operation 0 (FALSE)

A stored NULL 0 (FALSE)

ROLLUP first calculates the standard aggregate values specified in the GROUP BY clause.
Then ROLLUP moves from right to left through the list of grouping columns and creates

Appendix: Using OLAP

846 SAP Sybase IQ

progressively higher-level subtotals. A grand total is created at the end. If n is the number of
grouping columns, then ROLLUP creates n+1 levels of subtotals.

This SQL Syntax... Defines the Following Sets...

GROUP BY ROLLUP (A, B, C); (A, B, C)

(A, B)

(A)

()

ROLLUP and subtotal rows
ROLLUP is equivalent to a UNION of a set of GROUP BY queries. The result sets of the
following queries are identical. The result set of GROUP BY (A, B) consists of subtotals over
all those rows in which A and B are held constant. To make a union possible, column C is
assigned NULL.

This ROLLUP Query... Is Equivalent to This Query Without ROLLUP...

select year(order-
date) as year, quar-
ter(orderdate) as
Quarter, count(*) Or-
dersfrom SalesOr-
dersgroup by Rollup
(year, quarter)order
by year, quarter

Select null,null, count(*) Orders
from SalesOrdersunion allSELECT
year(orderdate) AS YEAR, NULL,
count(*) Orders from SalesOr-
dersGROUP BY year(orderdate) union
allSELECT year(orderdate) as YEAR,
quarter(orderdate) as QUATER,
count(*) Orders from SalesOr-
dersGROUP BY year(orderdate), quar-
ter(orderdate)

Subtotal rows can help you analyze data, especially if there are large amounts of data, different
dimensions to the data, data contained in different tables, or even different databases
altogether. For example, a sales manager might find reports on sales figures broken down by
sales representative, region, and quarter to be useful in understanding patterns in sales.
Subtotals for the data give the sales manager a picture of overall sales from different
perspectives. Analyzing this data is easier when summary information is provided based on
the criteria that the sales manager wants to compare.

With OLAP, the procedure for analyzing and computing row and column subtotals is invisible
to users.

Appendix: Using OLAP

Programming 847

Figure 2: Subtotals

1. This step yields an intermediate result set that has not yet considered the ROLLUP.
2. Subtotals are evaluated and attached to the result set.
3. The rows are arranged according to the ORDER BY clause in the query.

NULL values and subtotal rows
When rows in the input to a GROUP BY operation contain NULL, there is the possibility of
confusion between subtotal rows added by the ROLLUP or CUBE operations and rows that
contain NULL values that are part of the original input data.

The Grouping() function distinguishes subtotal rows from others by taking a column in the
GROUP BY list as its argument, and returning 1 if the column is NULL because the row is a
subtotal row, and 0 otherwise.

The following example includes Grouping() columns in the result set. Rows are highlighted
that contain NULL as a result of the input data, not because they are subtotal rows. The
Grouping() columns are highlighted. The query is an outer join between the Employees
table and the SalesOrders table. The query selects female employees who live in Texas,
New York, or California. NULL appears in the columns corresponding to those female
employees who are not sales representatives (and therefore have no sales).

Note: For examples, use the SAP Sybase IQ demo database iqdemo.db.

SELECT Employees.EmployeeID as EMP, year(OrderDate) as
 YEAR, count(*) as ORDERS, grouping(EMP) as
 GE, grouping(YEAR) as GY
 FROM Employees LEFT OUTER JOIN SalesOrders on
 Employees.EmployeeID = SalesOrders.SalesRepresentative
 WHERE Employees.Sex IN ('F') AND Employees.State
 IN ('TX', 'CA', 'NY')
GROUP BY ROLLUP (YEAR, EMP)
ORDER BY YEAR, EMP

The preceding query returns:

EMP YEAR ORDERS GE GY
------ ---- ------ -- --
NULL NULL 5 1 0
NULL NULL 169 1 1
 102 NULL 1 0 0
 309 NULL 1 0 0
1062 NULL 1 0 0
1090 NULL 1 0 0
1507 NULL 1 0 0
NULL 2000 98 1 0

Appendix: Using OLAP

848 SAP Sybase IQ

 667 2000 34 0 0
 949 2000 31 0 0
1142 2000 33 0 0
NULL 2001 66 1 0
 667 2001 20 0 0
949 2001 22 0 0
1142 2001 24 0 0

For each prefix, a subtotal row is constructed that corresponds to all rows in which the prefix
columns have the same value.

To demonstrate ROLLUP results, examine the example query again:

SELECT year (OrderDate) AS Year, quarter
 (OrderDate) AS Quarter, COUNT (*) Orders
FROM SalesOrders
 GROUP BY ROLLUP (Year, Quarter)
 ORDER BY Year, Quarter

In this query, the prefix containing the Year column leads to a summary row for Year=2000
and a summary row for Year=2001. A single summary row for the prefix has no columns,
which is a subtotal over all rows in the intermediate result set.

The value of each column in a subtotal row is as follows:

• Column included in the prefix – the value of the column. For example, in the preceding
query, the value of the Year column for the subtotal over rows with Year=2000 is 2000.

• Column excluded from the prefix – NULL. For example, the Quarter column has a
value of NULL for the subtotal rows generated by the prefix consisting of the Year column.

• Aggregate function – an aggregate over the values of the excluded columns.
Subtotal values are computed over the rows in the underlying data, not over the aggregated
rows. In many cases, such as SUM or COUNT, the result is the same, but the distinction is
important in the case of statistical functions such as AVG, STDDEV, and VARIANCE, for
which the result differs.

Restrictions on the ROLLUP operator are:

• The ROLLUP operator supports all of the aggregate functions available to the GROUP BY
clause except COUNT DISTINCT and SUM DISTINCT.

• ROLLUP can only be used in the SELECT statement; you cannot use ROLLUP in a
subquery.

• A grouping specification that combines multiple ROLLUP, CUBE, and GROUP BY
columns in the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

ROLLUP example 2—The following example illustrates the use of ROLLUP and GROUPING
and displays a set of mask columns created by GROUPING. The digits 0 and 1 displayed in
columns S, N, and C are the values returned by GROUPING to represent the value of the
ROLLUP result. A program can analyze the results of this query by using a mask of “011” to
identify subtotal rows and “111” to identify the row of overall totals.

Appendix: Using OLAP

Programming 849

SELECT size, name, color, SUM(quantity),
 GROUPING(size) AS S,
 GROUPING(name) AS N,
 GROUPING(color) AS C
FROM Products
GROUP BY ROLLUP(size, name, color) HAVING (S=1 or N=1 or C=1)
ORDER BY size, name, color;

The preceding query returns:

size name color SUM S N C
---- ----- ------ --- - - -
(NULL) (NULL) (NULL) 496 1 1 1
Large (NULL) (NULL) 71 0 1 1
Large Sweatshirt (NULL) 71 0 0 1
Medium (NULL) (NULL) 134 0 1 1
Medium Shorts (NULL) 80 0 0 1
Medium Tee Shirt (NULL) 54 0 0 1
One size fits all (NULL) (NULL) 263 0 1 1
One size fits all Baseball Cap (NULL) 124 0 0 1
One size fits all Tee Shirt (NULL) 75 0 0 1
One size fits all Visor (NULL) 64 0 0 1
Small (NULL) (NULL) 28 0 1 1
Small Tee Shirt (NULL) 28 0 0 1

Note: In the Rollup Example 2 results, the SUM column displays as
SUM(products.quantity).

ROLLUP example 3—The following example illustrates the use of GROUPING to distinguish
stored NULL values and “NULL” values created by the ROLLUP operation. Stored NULL
values are then displayed as [NULL] in column prod_id, and “NULL” values created by
ROLLUP are replaced with ALL in column PROD_IDS, as specified in the query.

SELECT year(ShipDate) AS Year,
 ProductID, SUM(quantity)AS OSum,
CASE
 WHEN GROUPING(Year) = 1
 THEN 'ALL'
 ELSE
 CAST(Year AS char(8))
END,
CASE
 WHEN GROUPING(ProductID) = 1
 THEN 'ALL'
 ELSE
 CAST(ProductID as char(8))
END
FROM SalesOrderItems
GROUP BY ROLLUP(Year, ProductID) HAVING OSum > 36
ORDER BY Year, ProductID;

The preceding query returns:

Year ProductID OSum ...(Year)... ...(ProductID)...
--------- ------- --- ---------- --------

Appendix: Using OLAP

850 SAP Sybase IQ

NULL NULL 28359 ALL ALL
2000 NULL 17642 2000 ALL
2000 300 1476 2000 300
2000 301 1440 2000 301
2000 302 1152 2000 302
2000 400 1946 2000 400
2000 401 1596 2000 401
2000 500 1704 2000 500
2000 501 1572 2000 501
2000 600 2124 2000 600
2000 601 1932 2000 601
2000 700 2700 2000 700
2001 NULL 10717 2001 ALL
2001 300 888 2001 300
2001 301 948 2001 301
2001 302 996 2001 302
2001 400 1332 2001 400
2001 401 1105 2001 401
2001 500 948 2001 500
2001 501 936 2001 501
2001 600 936 2001 600
2001 601 792 2001 601
2001 700 1836 2001 700

ROLLUP example 4—The next example query returns data that summarizes the number of
sales orders by year and quarter.

SELECT year (OrderDate) AS Year,
quarter(OrderDate) AS Quarter, COUNT (*) Orders
FROM SalesOrders
GROUP BY ROLLUP (Year, Quarter)
ORDER BY Year, Quarter

The following figure illustrates the query results with subtotal rows highlighted in the result
set. Each subtotal row contains a NULL value in the column or columns over which the
subtotal is computed.

Appendix: Using OLAP

Programming 851

Row [1] represents the total number of orders across both years (2000, 2001) and all quarters.
This row contains NULL in both the Year and Quarter columns and is the row where all
columns were excluded from the prefix.

Note: Every ROLLUP operation returns a result set with one row where NULL appears in each
column except for the aggregate column. This row represents the summary of each column to
the aggregate function. For example, if SUM were the aggregate function in question, this row
would represent the grand total of all values.

Row [2] represent the total number of orders in the years 2000 and 2001, respectively. Both
rows contain NULL in the Quarter column because the values in that column are rolled up
to give a subtotal for Year. The number of rows like this in your result set depends on the
number of variables that appear in your ROLLUP query.

The remaining rows marked [3] provide summary information by giving the total number of
orders for each quarter in both years.

ROLLUP example 5—This example of the ROLLUP operation returns a slightly more
complicated result set, which summarizes the number of sales orders by year, quarter, and
region. In this example, only the first and second quarters and two selected regions (Canada
and the Eastern region) are examined.

SELECT year(OrderDate) AS Year, quarter(OrderDate)AS Quarter,
region, COUNT(*) AS Orders
FROM SalesOrders WHERE region IN ('Canada','Eastern') AND quarter IN
(1, 2)
GROUP BY ROLLUP (Year, Quarter, Region)ORDER BY Year, Quarter, Region

The following figure illustrates the result set from the above query. Each subtotal row contains
a NULL in the column or columns over which the subtotal is computed.

Appendix: Using OLAP

852 SAP Sybase IQ

Row [1] is an aggregate over all rows and contains NULL in the Year, Quarter, and
Region columns. The value in the Orders column of this row represents the total number of
orders in Canada and the Eastern region in quarters 1 and 2 in the years 2000 and 2001.

The rows marked [2] represent the total number of sales orders in each year (2000) and (2001)
in quarters 1 and 2 in Canada and the Eastern region. The values of these rows [2] are equal to
the grand total represented in row [1].

The rows marked [3] provide data about the total number of orders for the given year and
quarter by region.

Appendix: Using OLAP

Programming 853

The rows marked [4] provide data about the total number of orders for each year, each quarter,
and each region in the result set.

Appendix: Using OLAP

854 SAP Sybase IQ

Group by CUBE
The CUBE operator in the GROUP BY clause analyzes data by forming the data into groups in
more than one dimension (grouping expression).

CUBE requires an ordered list of dimensions as arguments and enables the SELECT statement
to calculate subtotals for all possible combinations of the group of dimensions that you specify
in the query and generates a result set that shows aggregates for all combinations of values in
selected columns.

CUBE syntax:
SELECT … [GROUPING (column-name) …] …
GROUP BY [expression [,…]
| CUBE (expression [,…])]

GROUPING takes a column name as a parameter, and returns a Boolean value as listed in the
following table:

Table 2. Values returned by GROUPING with the CUBE operator

If the value of the result is GROUPING returns

NULL created by a CUBE operation 1 (TRUE)

NULL indicating the row is a subtotal 1 (TRUE)

Not created by a CUBE operation 0 (FALSE)

A stored NULL 0 (FALSE)

CUBE is particularly useful when your dimensions are not a part of the same hierarchy.

This SQL syntax... Defines the following sets...

GROUP BY CUBE (A, B, C); (A, B, C)

(A, B)

(A, C)

(A)

(B, C)

(B)

(C)

()

Restrictions on the CUBE operator are:

• The CUBE operator supports all of the aggregate functions available to the GROUP BY
clause, but CUBE is currently not supported with COUNT DISTINCT or SUM DISTINCT.

Appendix: Using OLAP

Programming 855

• CUBE is currently not supported with the inverse distribution analytical functions,
PERCENTILE_CONT and PERCENTILE_DISC.

• CUBE can only be used in the SELECT statement; you cannot use CUBE in a SELECT
subquery.

• A GROUPING specification that combines ROLLUP, CUBE, and GROUP BY columns in
the same GROUP BY clause is not currently supported.

• Constant expressions as GROUP BY keys are not supported.

Note: CUBE performance diminishes if the size of the cube exceeds the size of the temp
cache.

GROUPING can be used with the CUBE operator to distinguish between stored NULL values
and NULL values in query results created by CUBE.

See the examples in the description of the ROLLUP operator for illustrations of the use of the
GROUPING function to interpret results.

All CUBE operations return result sets with at least one row where NULL appears in each
column except for the aggregate columns. This row represents the summary of each column to
the aggregate function.

CUBE example 1—The following queries use data from a census, including the state
(geographic location), gender, education level, and income of people. The first query contains
a GROUP BY clause that organizes the results of the query into groups of rows, according to
the values of the columns state, gender, and education in the table census and
computes the average income and the total counts of each group. This query uses only the
GROUP BY clause without the CUBE operator to group the rows.

SELECT State, Sex as gender, DepartmentID,
COUNT(*),CAST(ROUND(AVG(Salary),2) AS NUMERIC(18,2))AS AVERAGEFROM
employees WHERE state IN ('MA' , 'CA')GROUP BY State, Sex,
DepartmentIDORDER BY 1,2;

The results from the above query:

state gender DepartmentID COUNT() AVERAGE
----- ------ ------- -------- --------
CA F 200 2 58650.00
CA M 200 1 39300.00

Use the CUBE extension of the GROUP BY clause, if you want to compute the average income
in the entire census of state, gender, and education and compute the average income in all
possible combinations of the columns state, gender, and education, while making
only a single pass through the census data. For example, use the CUBE operator if you want to
compute the average income of all females in all states, or compute the average income of all
people in the census according to their education and geographic location.

When CUBE calculates a group, a NULL value is generated for the columns whose group is
calculated. The GROUPING function must be used to distinguish whether a NULL is a NULL
stored in the database or a NULL resulting from CUBE. The GROUPING function returns 1 if
the designated column has been merged to a higher level group.

Appendix: Using OLAP

856 SAP Sybase IQ

CUBE example 2—The following query illustrates the use of the GROUPING function with
GROUP BY CUBE.

SELECT case grouping(State) WHEN 1 THEN 'ALL' ELSE StateEND AS
c_state, case grouping(sex) WHEN 1 THEN 'ALL'ELSE Sex end AS
c_gender, case grouping(DepartmentID)WHEN 1 THEN 'ALL' ELSE
cast(DepartmentID as char(4)) endAS c_dept, COUNT(*),
CAST(ROUND(AVG(salary),2) ASNUMERIC(18,2))AS AVERAGEFROM employees
WHERE state IN ('MA' , 'CA')GROUP BY CUBE(state, sex,
DepartmentID)ORDER BY 1,2,3;

The results of this query are shown below. The NULLs generated by CUBE to indicate a
subtotal row are replaced with ALL in the subtotal rows, as specified in the query.

c_state c_gender c_dept COUNT() AVERAGE
------- -------- ------- ----- --------
ALL ALL 200 3 52200.00
ALL ALL ALL 3 52200.00
ALL F 200 2 58650.00
ALL F ALL 2 58650.00
ALL M 200 1 39300.00
ALL M ALL 1 39300.00
CA ALL 200 3 52200.00
CA ALL ALL 3 52200.00
CA F 200 2 58650.00
CA F ALL 2 58650.00
CA M 200 1 39300.00
CA M ALL 1 39300.00

CUBE example 3—In this example, the query returns a result set that summarizes the total
number of orders and then calculates subtotals for the number of orders by year and quarter.

Note: As the number of variables that you want to compare increases, the cost of computing
the cube increases exponentially.

SELECT year (OrderDate) AS Year, quarter(OrderDate) AS Quarter, COUNT
(*) OrdersFROM SalesOrdersGROUP BY CUBE (Year, Quarter)ORDER BY Year,
Quarter

The figure that follows represents the result set from the query. The subtotal rows are
highlighted in the result set. Each subtotal row has a NULL in the column or columns over
which the subtotal is computed.

Appendix: Using OLAP

Programming 857

The first highlighted row [1] represents the total number of orders across both years and all
quarters. The value in the Orders column is the sum of the values in each of the rows marked
[3]. It is also the sum of the four values in the rows marked [2].

The next set of highlighted rows [2] represents the total number of orders by quarter across
both years. The two rows marked by [3] represent the total number of orders across all quarters
for the years 2000 and 2001, respectively.

Analytical Functions
SAP Sybase IQ offers both simple and windowed aggregation functions that offer the ability to
perform complex data analysis within a single SQL statement.

You can use these functions to compute results for queries such as “What is the quarterly
moving average of the Dow Jones Industrial average,” or “List all employees and their
cumulative salaries for each department.” Moving averages and cumulative sums can be
calculated over various intervals, and aggregations and ranks can be partitioned, so aggregate
calculation is reset when partition values change. Within the scope of a single query
expression, you can define several different OLAP functions, each with its own arbitrary
partitioning rules. Analytical functions can be broken into two categories:

• Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM summarize data
over a group of rows from the database. The groups are formed using the GROUP BY
clause of the SELECT statement.

• Unary statistical aggregate functions that take one argument include STDDEV,
STDDEV_SAMP, STDDEV_POP, VARIANCE, VAR_SAMP, and VAR_POP.

Appendix: Using OLAP

858 SAP Sybase IQ

Both the simple and unary categories of aggregates summarize data over a group of rows from
the database and can be used with a window specification to compute a moving window over a
result set as it is processed.

Note: The aggregate functions AVG, SUM, STDDEV, STDDEV_POP, STDDEV_SAMP,
VAR_POP, VAR_SAMP, and VARIANCE do not support binary data types BINARY and
VARBINARY.

Simple Aggregate Functions
Simple aggregate functions, such as AVG, COUNT, MAX, MIN, and SUM summarize data over a
group of rows from the database.

The groups are formed using the GROUP BY clause of the SELECT statement. These
aggregates are allowed only in the select list and in the HAVING and ORDER BY clauses of a
SELECT statement.

Note: With the exception of Grouping() functions, both the simple and unary aggregates can
be used in a windowing function that incorporates a <window clause> in a SQL query
specification (a window) that conceptually creates a moving window over a result set as it is
processed.

Windowing
A major feature of the ANSI SQL extensions for OLAP is a construct called a window. This
windowing extension lets users divide result sets of a query (or a logical partition of a query)
into groups of rows called partitions and determine subsets of rows to aggregate with respect
to the current row.

You can use three classes of window functions with a window: ranking functions, the row
numbering function, and window aggregate functions.

<WINDOWED TABLE FUNCTION TYPE> ::=
 <RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
 | ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
 | <WINDOW AGGREGATE FUNCTION>

Windowing extensions specify a window function type over a window name or specification
and are applied to partitioned result sets within the scope of a single query expression. A
window partition is a subset of rows returned by a query, as defined by one or more columns in
a special OVER clause:

olap_function() OVER (PARTITION BY col1, col2...)

Windowing operations let you establish information such as the ranking of each row within its
partition, the distribution of values in rows within a partition, and similar operations.
Windowing also lets you compute moving averages and sums on your data, enhancing the
ability to evaluate your data and its impact on your operations.

Appendix: Using OLAP

Programming 859

An OLAP window’s three essential parts
The OLAP windows comprise three essential aspects: window partitioning, window ordering,
and window framing. Each has a significant impact on the specific rows of data visible in a
window at any point in time. Meanwhile, the OLAP OVER clause differentiates OLAP
functions from other analytic or reporting functions with three distinct capabilities:

• Defining window partitions (PARTITION BY clause).
• Ordering rows within partitions (ORDER BY clause).
• Defining window frames (ROWS/RANGE specification).

To specify multiple windows functions, and to avoid redundant window definitions, you can
specify a name for an OLAP window specifications. In this usage, the keyword, WINDOW, is
followed by at least one window definition, separated by commas. A window definition
includes the name by which the window is known in the query and the details from the
windows specification, which lets you to define window partitioning, ordering, and framing:

<WINDOW CLAUSE> ::= <WINDOW DEFINITION LIST>
<WINDOW DEFINITION LIST> ::=
 <WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
 } . . .]
<WINDOW DEFINITION> ::=
 <NEW WINDOW NAME> AS <WINDOW SPECIFICATION>
<WINDOW SPECIFICATION DETAILS> ::=
 [<EXISTING WINDOW NAME>]
 [<WINDOW PARTITION CLAUSE>]
 [<WINDOW ORDER CLAUSE>]
 [<WINDOW FRAME CLAUSE>]

For each row in a window partition, users can define a window frame, which may vary the
specific range of rows used to perform any computation on the current row of the partition. The
current row provides the reference point for determining the start and end points of the
window frame.

Window specifications can be based on either a physical number of rows using a window
specification that defines a window frame unit of ROWS or a logical interval of a numeric
value, using a window specification that defines a window frame unit of RANGE.

Within OLAP windowing operations, you can use the following functional categories:

• Ranking functions
• Windowing aggregate functions
• Statistical aggregate functions
• Distribution functions

Appendix: Using OLAP

860 SAP Sybase IQ

Window Partitioning
Window partitioning is the division of user-specified result sets (input rows) using a
PARTITION BY clause.

A partition is defined by one or more value expressions separated by commas. Partitioned data
is also implicitly sorted and the default sort order is ascending (ASC).

<WINDOW PARTITION CLAUSE> ::=
 PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

If a window partition clause is not specified, then the input is treated as single partition.

Note: The term partition as used with analytic functions, refers only to dividing the set of
result rows using a PARTITION BY clause.

A window partition can be defined based on an arbitrary expression. Also, because window
partitioning occurs after GROUPING (if a GROUP BY clause is specified), the result of any
aggregate function, such as SUM, AVG, and VARIANCE, can be used in a partitioning
expression. Therefore, partitions provide another opportunity to perform grouping and
ordering operations in addition to the GROUP BY and ORDER BY clauses; for example, you
can construct queries that compute aggregate functions over aggregate functions, such as the
maximum SUM of a particular quantity.

You can specify a PARTITION BY clause, even if there is no GROUP BY clause.

Window Ordering
Window ordering is the arrangement of results (rows) within each window partition using a
window order clause, which contains one or more value expressions separated by commas.

If a window order clause is not specified, the input rows could be processed in an arbitrary
order.

<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

The OLAP window order clause is different from the ORDER BY clause that can be appended
to a nonwindowed query expression.

The ORDER BY clause in an OLAP function, for example, typically defines the expressions
for sorting rows within window partitions; however, you can use the ORDER BY clause
without a PARTITION BY clause, in which case the sort specification ensures that the OLAP
function is applied to a meaningful (and intended) ordering of the intermediate result set.

An order specification is a prerequisite for the ranking family of OLAP functions; it is the
ORDER BY clause, not an argument to the function itself, that identifies the measures for the
ranking values. In the case of OLAP aggregates, the ORDER BY clause is not required in
general, but it is a prerequisite to defining a window frame. This is because the partitioned
rows must be sorted before the appropriate aggregate values can be computed for each frame.

Appendix: Using OLAP

Programming 861

The ORDER BY clause includes semantics for defining ascending and descending sorts, as
well as rules for the treatment of NULL values. By default, OLAP functions assume an
ascending order, where the lowest measured value is ranked 1.

Although this behavior is consistent with the default behavior of the ORDER BY clause that
ends a SELECT statement, it is counterintuitive for most sequential calculations. OLAP
calculations often require a descending order, where the highest measured value is ranked 1;
this requirement must be explicitly stated in the ORDER BY clause with the DESC keyword.

Note: Ranking functions require a <window order clause> because they are defined only over
sorted input. As with an <order by clause> in a <query specification>, the default sort
sequence is ascending.

The use of a <window frame unit> of RANGE also requires the existence of a <window order
clause>. In the case of RANGE, the <window order clause> may only consist of a single
expression.

Window Framing
For nonranking aggregate OLAP functions, you can define a window frame with a window
frame clause, which specifies the beginning and end of the window relative to the current
row.

<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

This OLAP function is computed with respect to the contents of a moving frame rather than
the fixed contents of the whole partition. Depending on its definition, the partition has a start
row and an end row, and the window frame slides from the starting point to the end of the
partition.

Appendix: Using OLAP

862 SAP Sybase IQ

Figure 3: Three-row moving window with partitioned input

UNBOUNDED PRECEDING and FOLLOWING
Window frames can be defined by an unbounded aggregation group that either extends back to
the beginning of the partition (UNBOUNDED PRECEDING) or extends to the end of the
partition (UNBOUNDED FOLLOWING), or both.

UNBOUNDED PRECEDING includes all rows within the partition preceding the current
row, which can be specified with either ROWS or RANGE. UNBOUNDED FOLLOWING
includes all rows within the partition following the current row, which can be specified with
either ROWS or RANGE.

The value FOLLOWING specifies either the range or number of rows following the current
row. If ROWS is specified, then the value is a positive integer indicating a number of rows. If
RANGE is specified, the window includes any rows that are less than the current row plus the

Appendix: Using OLAP

Programming 863

specified numeric value. For the RANGE case, the data type of the windowed value must be
comparable to the type of the sort key expression of the ORDER BY clause. There can be only
one sort key expression, and the data type of the sort key expression must allow addition.

The value PRECEDING specifies either the range or number of rows preceding the current
row. If ROWS is specified, then the value is a positive integer indicating a number of rows. If
RANGE is specified, the window includes any rows that are less than the current row minus
the specified numeric value. For the RANGE case, the data type of the windowed value must
be comparable to the type of the sort key expression of the ORDER BY clause. There can be
only one sort key expression, and the data type of the sort key expression must allow
subtraction. This clause cannot be specified in second bound group if the first bound group is
CURRENT ROW or value FOLLOWING.

The combination BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING provides an aggregate over an entire partition, without the need to construct a
join to a grouped query. An aggregate over an entire partition is also known as a reporting
aggregate.

CURRENT ROW concept
In physical aggregation groups, rows are included or excluded based on their position relative
to the current row, by counting adjacent rows. The current row is simply a reference to the next
row in a query’s intermediate results. As the current row advances, the window is reevaluated
based on the new set of rows that lie within the window. There is no requirement that the
current row be included in a window.

If a window frame clause is not specified, the default window frame depends on whether or not
a window order clause is specified:

• If the window specification contains a window order clause, the window’s start point is
UNBOUNDED PRECEDING, and the end point is CURRENT ROW, thus defining a varying-
size window suitable for computing cumulative values.

• If the window specification does not contain a window order clause, the window’s start
point is UNBOUNDED PRECEDING, and the end point is UNBOUNDED FOLLOWING, thus
defining a window of fixed size, regardless of the current row.

Note: A window frame clause cannot be used with a ranking function.

You can also define a window by specifying a window frame unit that is row-based (rows
specification) or value-based (range specification).

<WINDOW FRAME UNIT> ::= ROWS | RANGE
<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW FRAME
BETWEEN>

When a window frame extent specifies BETWEEN, it explicitly provides the beginning and
end of a window frame.

If the window frame extent specifies only one of these two values then the other value defaults
to CURRENT ROW.

Appendix: Using OLAP

864 SAP Sybase IQ

Row-based window frames—In the example rows [1] through [5] represent a partition; each
row becomes the current row as the OLAP window frame slides forward. The frame is defined
as Between Current Row And 2 Following, so each frame includes a maximum of three rows
and a minimum of one row. When the frame reaches the end of the partition, only the current
row is included. The shaded areas indicate which rows are excluded from the frame at each
step.

Figure 4: Row-based window frames

The window frame imposes the following rules:

• When row [1] is the current row, rows [4] and [5] are excluded.
• When row [2] is the current row, rows [5] and [1] are excluded.
• When row [3] is the current row, rows [1] and [2] are excluded.
• When row [4] is the current row, rows [1], [2], and [3] are excluded.
• When row [5] is the current row, rows [1], [2], [3], and [4] are excluded.

The following diagram applies these rules to a specific set of values, showing the OLAP AVG
function that would be calculated for each row. The sliding calculations produce a moving
average with an interval of three rows or fewer, depending on which row is the current row:

The following example demonstrates a sliding window:

SELECT dimension, measure,
 AVG(measure) OVER(partition BY dimension
 ORDER BY measure
 ROWS BETWEEN CURRENT ROW and 2 FOLLOWING)
 AS olap_avg
FROM ...

The averages are computed as follows:

• Row [1] = (10 + 50 + 100)/3

Appendix: Using OLAP

Programming 865

• Row [2] = (50+ 100 + 120)/3
• Row [3] = (100 + 120 + 500)/3
• Row [4] = (120 + 500 + NULL)/3
• Row [5] = (500 + NULL + NULL)/3

Similar calculations would be computed for all subsequent partitions in the result set (such as,
B, C, and so on).

If there are no rows in the current window, the result is NULL, except for COUNT.

ROWS
The window frame unit ROWS defines a window in the specified number of rows before or
after the current row, which serves as the reference point that determines the start and end of a
window.

Each analytical calculation is based on the current row within a partition. To produce
determinative results for a window expressed in rows, the ordering expression should be
unique.

The reference point for all window frames is the current row. The SQL/OLAP syntax provides
mechanisms for defining a row-based window frame as any number of rows preceding or
following the current row or preceding and following the current row.

The following list illustrates common examples of a window frame unit:

• Rows between unbounded preceding and current row – specifies a window whose start
point is the beginning of each partition and the end point is the current row and is often used
to construct windows that compute cumulative results, such as cumulative sums.

• Rows between unbounded preceding and unbounded following – specifies a fixed
window, regardless of the current row, over the entire partition. The value of a window
aggregate function is, therefore, identical in each row of the partition.

• Rows between 1 preceding and 1 following – specifies a fixed-sized moving window over
three adjacent rows, one each before and after the current row. You can use this window
frame unit to compute, for example, a 3-day or 3-month moving average.
Be aware of meaningless results that may be generated by gaps in the windowed values
when using ROWS. If the set of values is not continuous, consider using RANGE instead
of ROWS, because a window definition based on RANGE automatically handles adjacent
rows with duplicate values and does not include other rows when there are gaps in the
range.

Note: In the case of a moving window, it is assumed that rows containing NULL values
exist before the first row, and after the last row, in the input. This means that in a 3-row
moving window, the computation for the last row in the input—the current row— includes
the immediately preceding row and a NULL value.

• Rows between current row and current row – restricts the window to the current row only.
• Rows between 1 preceding and 1 preceding – specifies a single row window consisting

only of the preceding row, with respect to the current row. In combination with another

Appendix: Using OLAP

866 SAP Sybase IQ

window function that computes a value based on the current row only, this construction
makes it possible to easily compute deltas, or differences in value, between adjacent rows.

RANGE
Range-based window frames—The SQL/OLAP syntax supports another kind of window
frame whose limits are defined in terms of a value-based—or range-based—set of rows, rather
than a specific sequence of rows.

Value-based window frames define rows within a window partition that contain a specific
range of numeric values. The OLAP function’s ORDER BY clause defines the numeric column
to which the range specification is applied, relative to the current row’s value for that column.
The range specification uses the same syntax as the rows specification, but the syntax is
interpreted in a different way.

The window frame unit, RANGE, defines a window frame whose contents are determined by
finding rows in which the ordering column has values within the specified range of value
relative to the current row. This is called a logical offset of a window frame, which you can
specify with constants, such as “3 preceding,” or any expression that can be evaluated to a
numeric constant. When using a window defined with RANGE, there can be only a single
numeric expression in the ORDER BY clause.

Note: ORDER BY key must be a numeric data in RANGE window frame

For example, a frame can be defined as the set of rows with year values some number of years
preceding or following the current row’s year:

 ORDER BY year ASC range BETWEEN 1 PRECEDING AND CURRENT ROW

The phrase 1 PRECEDING means the current row’s year value minus 1.

This kind of range specification is inclusive. If the current row’s year value is 2000, all rows in
the window partition with year values 2000 and 1999 qualify for the frame, regardless of the
physical position of those rows in the partition. The rules for including and excluding value-
based rows are quite different from the rules applied to row-based frames, which depend
entirely on the physical sequence of rows.

Put in the context of an OLAP AVG() calculation, the following partial result set further
demonstrates the concept of a value-based window frame. Again, the frame consists of rows
that:

• Have the same year as the current row
• Have the same year as the current row minus 1

The following query demonstrates a range-based window definition:

Appendix: Using OLAP

Programming 867

SELECT dimension, year, measure,
 AVG(measure) OVER(PARTITION BY dimension
 ORDER BY year ASC
 range BETWEEN CURRENT ROW and 1 PRECEDING)
 as olap_avg
FROM ...

The averages are computed as follows:

• Row [1] = 1999; rows [2] through [5] are excluded; AVG = 10,000/1
• Row [2] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2
• Row [3] = 2001; rows [1], [4], and [5] are excluded; AVG = 6,000/2
• Row [4] = 2002; row [1] is excluded; AVG = 21,000/4
• Row [5] = 2002; row [1] is excluded; AVG = 21,000/4

Ascending and descending order for value -based frames—The ORDER BY clause for an
OLAP function with a value-based window frame not only identifies the numeric column on
which the range specification is based; it also declares the sort order for the ORDER BY values.
The following specification is subject to the sort order that precedes it (ASC or DESC):

RANGE BETWEEN CURRENT ROW AND n FOLLOWING

The specification n FOLLOWING means:

• Plus n if the partition is sorted in default ascending order (ASC)
• Minus n if the partition is sorted in descending order (DESC)

For example, assume that the year column contains four distinct values, from 1999 to 2002.
The following table shows the default ascending order of these values on the left and the
descending order on the right:

If the current row is 1999 and the frame is specified as follows, rows that contain the values
1999 and 1998 (which does not exist in the table) are included in the frame:

ORDER BY year DESC range BETWEEN CURRENT ROW and 1 FOLLOWING

Note: The sort order of the ORDER BY values is a critical part of the test for qualifying rows in
a value-based frame; the numeric values alone do not determine exclusion or inclusion.

Using an unbounded window—The following query produces a result set consisting of all of
the products accompanied by the total quantity of all products:

SELECT id, description, quantity,
 SUM(quantity) OVER () AS total
FROM products;

Appendix: Using OLAP

868 SAP Sybase IQ

Computing deltas between adjacent rows—Using two windows—one over the current row
and the other over the previous row—provides a direct way of computing deltas, or changes,
between adjacent rows.

SELECT EmployeeID, Surname, SUM(salary)
OVER(ORDER BY BirthDate rows between current row and current row)
AS curr, SUM(Salary)
OVER(ORDER BY BirthDate rows between 1 preceding and 1 preceding)
AS prev, (curr-prev) as delta
FROM Employees
WHERE State IN ('MA', 'AZ', 'CA', 'CO') AND DepartmentID>10
ORDER BY EmployeeID, Surname;

The results from the query:

EmployeeID Surname curr prev delta
--------- --------- -------- --------- -----
148 Jordan 51432.000191
209 Bertrand 29800.000
39300.000 -9500.000278
225 Melkisetian 48500.000 42300.000
6200.000299
657 Overbey 39300.000
41700.750 -2400.750318
902 Crow 41700.750
45000.000 -3299.250586
949 Coleman 42300.000
46200.000 -3900.000690
1053 Poitras 46200.000
29800.000 16400.000703
1090 Martinez 55500.800 51432.000
4068.800949
1154 Savarino 72300.000
55500.800 16799.2001101
1420 Preston 37803.000 48500.000
-10697.0001142
1507 Clark 45000.000 72300.000
-27300.000

Although the window function SUM() is used, the sum contains only the salary value of either
the current or previous row because of the way the window is specified. Also, the prev value
of the first row in the result is NULL because it has no predecessor; therefore, the delta is
NULL as well.

In each of the examples above, the function used with the OVER() clause is the SUM()
aggregate function.

Explicit and Inline Window Clauses
SQL OLAP provides two ways of specifying a window in a query:

• The explicit window clause lets you define a window that follows a HAVING clause. You
reference windows defined with those window clauses by specifying their names when
you invoke an OLAP function, such as:

Appendix: Using OLAP

Programming 869

SUM (...) OVER w2
• The inline window specification lets you define a window in the SELECT list of a query

expression. This capability lets you define your windows in a window clause that follows
the HAVING clause and then reference them by name from your window function
invocations, or to define them along with the function invocations.

Note: If you use an inline window specification, you cannot name the window. Two or
more window function invocations in a single SELECT list that use identical windows
must either reference a named window defined in a window clause or they must define
their inline windows redundantly.

Window function example—The following example shows a window function. The query
returns a result set that partitions the data by department and then provides a cumulative
summary of employees’ salaries, starting with the employee who has been at the company the
longest. The result set includes only those employees who reside in Massachusetts. The
column sum_salary provides the cumulative total of employees’ salaries.

SELECT DepartmentID, Surname, StartDate, Salary, SUM(Salary) OVER
(PARTITION BY DepartmentID ORDER BY startdate
rows between unbounded preceding and current row)
AS sum_salary FROM Employees
WHERE State IN ('CA') AND DepartmentID IN (100, 200)
ORDER BY DepartmentID;

The following result set is partitioned by department.

DepartmentID Surname start_date salary sum_salary
------------ -------- ---------- --------- ----------
200 Overbey 1987-02-19 39300.000 39300.000
200 Savarino 1989-11-07 72300.000 111600.000
200 Clark 1990-07-21 45000.000 156600.000

Ranking Functions
Ranking functions let you compile a list of values from the data set in ranked order, as well as
compose single-statement SQL queries that fulfil requests such as, “Name the top 10 products
shipped this year by total sales,” or “Give the top 5% of salespersons who sold orders to at least
15 different companies.”

SQL/OLAP defines five functions that are categorized as ranking functions:

<RANK FUNCTION TYPE> ::=
 RANK | DENSE_RANK | PERCENT_RANK | ROW_NUMBER | NTILE

Ranking functions let you compute a rank value for each row in a result set based on the order
specified in the query. For example, a sales manager might need to identify the top or bottom
sales people in the company, the highest- or lowest-performing sales region, or the best- or
worst-selling products. Ranking functions can provide this information.

Appendix: Using OLAP

870 SAP Sybase IQ

RANK
The RANK function returns a number that indicates the rank of the current row among the rows
in the row’s partition, as defined by the ORDER BY clause.

The first row in a partition has a rank of 1, and the last rank in a partition containing 25 rows is
25. RANK is specified as a syntax transformation, which means that an implementation can
choose to actually transform RANK into its equivalent, or it can merely return a result
equivalent to the result that transformation would return.

In the following example, ws1 indicates the window specification that defines the window
named w1.

RANK() OVER ws

is equivalent to:

(COUNT (*) OVER (ws RANGE UNBOUNDED PRECEDING)
- COUNT (*) OVER (ws RANGE CURRENT ROW) + 1)

The transformation of the RANK function uses logical aggregation (RANGE). As a result, two
or more records that are tied—or have equal values in the ordering column—have the same
rank.The next group in the partition that has a different value has a rank that is more than one
greater than the rank of the tied rows. For example, if there are rows whose ordering column
values are 10, 20, 20, 20, 30, the rank of the first row is 1 and the rank of the second row is 2.
The rank of the third and fourth row is also 2, but the rank of the fifth row is 5. There are no
rows whose rank is 3 or 4. This algorithm is sometimes known as sparse ranking.

RANK Function [Analytical]
Ranks items in a group.

Syntax
RANK () OVER ([PARTITION BY] ORDER BY expression [ASC | DESC])

Parameters

Parameter Description

expression A sort specification that can be any valid expres-
sion involving a column reference, aggregates, or
expressions invoking these items.

Returns
INTEGER

Remarks
RANK is a rank analytical function. The rank of row R is defined as the number of rows that
precede R and are not peers of R. If two or more rows are not distinct within the groups

Appendix: Using OLAP

Programming 871

specified in the OVER clause or distinct over the entire result set, then there are one or more
gaps in the sequential rank numbering. The difference between RANK and DENSE_RANK is
that DENSE_RANK leaves no gap in the ranking sequence when there is a tie. RANK leaves a
gap when there is a tie.

RANK requires an OVER (ORDER BY) clause. The ORDER BY clause specifies the parameter
on which ranking is performed and the order in which the rows are sorted in each group. This
ORDER BY clause is used only within the OVER clause and is not an ORDER BY for the
SELECT. No aggregation functions in the rank query are allowed to specify DISTINCT.

The PARTITION BY window partitioning clause in the OVER (ORDER BY) clause is optional.

The ASC or DESC parameter specifies the ordering sequence ascending or descending.
Ascending order is the default.

The OVER clause indicates that the function operates on a query result set. The result set is the
rows that are returned after the FROM, WHERE, GROUP BY, and HAVING clauses have all
been evaluated. The OVER clause defines the data set of the rows to include in the computation
of the rank analytical function.

RANK is allowed only in the select list of a SELECT or INSERT statement or in the ORDER BY
clause of the SELECT statement. RANK can be in a view or a union. The RANK function cannot
be used in a subquery, a HAVING clause, or in the select list of an UPDATE or DELETE
statement. Only one rank analytical function is allowed per query.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server or SQL Anywhere.

Example
This statement illustrates the use of the RANK function:

SELECT Surname, Sex, Salary, RANK() OVER (PARTITION BY Sex
ORDER BY Salary DESC) AS RANK FROM Employees
WHERE State IN ('CA', 'AZ') AND DepartmentID IN (200, 300)
ORDER BY Sex, Salary DESC;

The results from the above query:

Surname Sex Salary RANK
------- --- ------ ----
Savarino F 72300.000 1
Jordan F 51432.000 2
Clark F 45000.000 3
Coleman M 42300.000 1
Overbey M 39300.000 2

Appendix: Using OLAP

872 SAP Sybase IQ

DENSE_RANK
DENSE_RANK returns ranking values without gaps.

The values for rows with ties are still equal, but the ranking of the rows represents the positions
of the clusters of rows having equal values in the ordering column, rather than the positions of
the individual rows. As in the RANK example, where rows ordering column values are 10, 20,
20, 20, 30, the rank of the first row is still 1 and the rank of the second row is still 2, as are the
ranks of the third and fourth rows. The last row, however, is 3, not 5.

DENSE_RANK is computed through a syntax transformation, as well.

DENSE_RANK() OVER ws

is equivalent to:

COUNT (DISTINCT ROW (expr_1, . . ., expr_n))
 OVER (ws RANGE UNBOUNDED PRECEDING)

In the above example, expr_1 through expr_n represent the list of value expressions in the sort
specification list of window w1.

DENSE_RANK Function [Analytical]
Ranks items in a group.

Syntax
DENSE_RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters
Table 3. Parameters

Parameter Description

expression A sort specification that can be any valid expres-
sion involving a column reference, aggregates, or
expressions invoking these items.

Returns
INTEGER

Remarks
DENSE_RANK is a rank analytical function. The dense rank of row R is defined as the number
of rows preceding and including R that are distinct within the groups specified in the OVER
clause or distinct over the entire result set. The difference between DENSE_RANK and RANK
is that DENSE_RANK leaves no gap in the ranking sequence when there is a tie. RANK leaves a
gap when there is a tie.

DENSE_RANK requires an OVER (ORDER BY) clause. The ORDER BY clause specifies the
parameter on which ranking is performed and the order in which the rows are sorted in each

Appendix: Using OLAP

Programming 873

group. This ORDER BY clause is used only within the OVER clause and is not an ORDER BY
for the SELECT. No aggregation functions in the rank query are allowed to specify
DISTINCT.

The OVER clause indicates that the function operates on a query result set. The result set is the
rows that are returned after the FROM, WHERE, GROUP BY, and HAVING clauses have all
been evaluated. The OVER clause defines the data set of the rows to include in the computation
of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or descending.
Ascending order is the default.

DENSE_RANK is allowed only in the select list of a SELECT or INSERT statement or in the
ORDER BY clause of the SELECT statement. DENSE_RANK can be in a view or a union. The
DENSE_RANK function cannot be used in a subquery, a HAVING clause, or in the select list of
an UPDATE or DELETE statement. Only one rank analytical function is allowed per query.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server or SQL Anywhere.

Example
The following statement illustrates the use of the DENSE_RANK function:

SELECT s_suppkey, DENSE_RANK()
OVER (ORDER BY (SUM(s_acctBal) DESC)
AS rank_dense FROM supplier GROUP BY s_suppkey;

s_suppkey sum_acctBal rank_dense
supplier#011 200,000 1
supplier#002 200,000 1
supplier#013 123,000 2
supplier#004 110,000 3
supplier#035 110,000 3
supplier#006 50,000 4
supplier#021 10,000 5

PERCENT_RANK
The PERCENT_RANK function calculates a percentage for the rank, rather than a fractional
amount, and returns a decimal value between 0 and 1.

PERCENT_RANK returns the relative rank of a row, which is a number that indicates the
relative position of the current row within the window partition in which it appears. For
example, in a partition that contains 10 rows having different values in the ordering columns,
the third row is given a PERCENT_RANK value of 0.222 …, because you have covered 2/9
(22.222...%) of rows following the first row of the partition. PERCENT_RANK of a row is
defined as one less than the RANK of the row divided by one less than the number of rows in the
partition, as seen in the following example (where “ANT” stands for an approximate numeric
type, such as REAL or DOUBLE PRECISION).

Appendix: Using OLAP

874 SAP Sybase IQ

PERCENT_RANK() OVER ws

is equivalent to:

CASE
 WHEN COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING) = 1
 THEN CAST (0 AS ANT)
 ELSE
 (CAST (RANK () OVER (ws) AS ANT) -1 /
 (COUNT (*) OVER (ws RANGE BETWEEN UNBOUNDED
 PRECEDING AND UNBOUNDED FOLLOWING) - 1)
END

PERCENT_RANK Function [Analytical]
Computes the (fractional) position of one row returned from a query with respect to the other
rows returned by the query, as defined by the ORDER BY clause.

Returns a decimal value between 0 and 1.

Syntax
PERCENT_RANK () OVER (ORDER BY expression [ASC | DESC])

Parameters

Parameter Description

expression A sort specification that can be any valid expres-
sion involving a column reference, aggregates, or
expressions invoking these items.

Returns
The PERCENT_RANK function returns a DOUBLE value between 0 and 1.

Remarks
PERCENT_RANK is a rank analytical function. The percent rank of a row R is defined as the
rank of a row in the groups specified in the OVER clause minus one divided by the number of
total rows in the groups specified in the OVER clause minus one. PERCENT_RANK returns a
value between 0 and 1. The first row has a percent rank of zero.

The PERCENT_RANK of a row is calculated as
(Rx - 1) / (NtotalRow - 1)

where Rx is the rank position of a row in the group and NtotalRow is the total number of rows
in the group specified by the OVER clause.

PERCENT_RANK requires an OVER (ORDER BY) clause. The ORDER BY clause specifies the
parameter on which ranking is performed and the order in which the rows are sorted in each
group. This ORDER BY clause is used only within the OVER clause and is not an ORDER BY

Appendix: Using OLAP

Programming 875

for the SELECT. No aggregation functions in the rank query are allowed to specify
DISTINCT.

The OVER clause indicates that the function operates on a query result set. The result set is the
rows that are returned after the FROM, WHERE, GROUP BY, and HAVING clauses have all
been evaluated. The OVER clause defines the data set of the rows to include in the computation
of the rank analytical function.

The ASC or DESC parameter specifies the ordering sequence ascending or descending.
Ascending order is the default.

PERCENT_RANK is allowed only in the select list of a SELECT or INSERT statement or in the
ORDER BY clause of the SELECT statement. PERCENT_RANK can be in a view or a union.
The PERCENT_RANK function cannot be used in a subquery, a HAVING clause, or in the select
list of an UPDATE or DELETE statement. Only one rank analytical function is allowed per
query.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server or SQL Anywhere.

Example
The following statement illustrates the use of the PERCENT_RANK function:

SELECT s_suppkey, SUM(s_acctBal) AS sum_acctBal,
PERCENT_RANK() OVER (ORDER BY SUM(s_acctBal) DESC)
AS percent_rank_all FROM supplier GROUP BY s_suppkey;

s_suppkey sum_acctBal percent_rank_all
supplier#011 200000 0
supplier#002 200000 0
supplier#013 123000 0.3333
supplier#004 110000 0.5
supplier#035 110000 0.5
supplier#006 50000 0.8333
supplier#021 10000 1

ROW_NUMBER
The ROW_NUMBER function returns a unique row number for each row.

If you define window partitions, ROW_NUMBER starts the row numbering in each partition at
1, and increments each row by 1. If you do not specify a window partition, ROW_NUMBER
numbers the complete result set from 1 to the total cardinality of the table.

The ROW_NUMBER function syntax is:

ROW_NUMBER() OVER ([PARTITION BY window partition] ORDER BY window
ordering)

ROW_NUMBER does not require an argument, but you must specify the parentheses.

Appendix: Using OLAP

876 SAP Sybase IQ

The PARTITION BY clause is optional. The OVER (ORDER_BY) clause cannot contain a
window frame ROWS/RANGE specification.

ROW_NUMBER Function [Analytical]
A ranking function that returns a unique row number for each row in a window partition,
restarting the row numbering at the start of every window partition.

If no window partitions exist, the function numbers the rows in the result set from 1 to the
cardinality of the table.

Syntax
ROW_NUMBER() OVER ([PARTITION BY window partition] ORDER BY window
ordering)

Parameters

Parameter Description

window partition (Optional) One or more value expressions sepa-
rated by commas indicating how you want to di-
vide the set of result rows.

window ordering Defines the expressions for sorting rows within
window partitions, if specified, or within the re-
sult set if you did not specify a window partition.

Remarks
The ROW_NUMBER function requires an OVER (ORDER_BY) window specification. The
window partitioning clause in the OVER (ORDER_BY) clause is optional. The OVER
(ORDER_BY) clause must not contain a window frame ROWS/RANGE specification.

Standards and Compatibility

• SQL—ISO/ANSI SQL compliant. SQL/OLAP feature T611.

Example
The following example returns salary data from the Employees table, partitions the result set
by department ID, and orders the data according to employee start date. The ROW_NUMBER
function assigns each row a row number, and restarts the row numbering for each window
partition:

SELECT DepartmentID dID, StartDate, Salary,
ROW_NUMBER()OVER(PARTITION BY dID ORDER BY StartDate) FROM Employees
ORDER BY 1,2;

The returned result set is:

dID StartDate Salary Row_number()
========= =========== ========== =============

Appendix: Using OLAP

Programming 877

100 1986-10-14 42,998.000 1
100 1987-07-23 39,875.500 2
100 1988-03-23 37,400.000 3
100 1989-04-20 42,500.000 4
100 1990-01-15 42,100.000 5
200 1985-02-03 38,500.000 1
200 1987-02-19 39,300.000 2
200 1988-11-22 39,800.000 3
200 1989-06-01 34,892.000 4
200 1990-05-13 33,890.000 5
200 1990-07-11 37,803.000 6

Ranking Examples
These are some of the ranking functions examples:

Ranking example 1—The SQL query that follows finds the male and female employees from
California, and ranks them in descending order according to salary.

SELECT Surname, Sex, Salary, RANK() OVER (
ORDER BY Salary DESC) as RANK FROM Employees
WHERE State IN ('CA') AND DepartmentID =200
ORDER BY Salary DESC;

The results from the above query:

Surname Sex Salary RANK
------- --- ------ ----
Savarino F 72300.000 1
Clark F 45000.000 2
Overbey M 39300.000 3

Ranking example 2—Using the query from the previous example, you can change the data by
partitioning it by gender. The following example ranks employees in descending order by
salary and partitions by gender:

SELECT Surname, Sex, Salary, RANK() OVER (PARTITION BY Sex
ORDER BY Salary DESC) AS RANK FROM Employees
WHERE State IN ('CA', 'AZ') AND DepartmentID IN (200, 300)
ORDER BY Sex, Salary DESC;

The results from the above query:

Surname Sex Salary RANK
------- --- --------- ----
Savarino F 72300.000 1
Jordan F 51432.000 2
Clark F 45000.000 3
Coleman M 42300.000 1
Overbey M 39300.000 2

Ranking example 3—This example ranks a list of female employees in California and Texas in
descending order according to salary. The PERCENT_RANK function provides the cumulative
total in descending order.

Appendix: Using OLAP

878 SAP Sybase IQ

SELECT Surname, Salary, Sex, CAST(PERCENT_RANK() OVER
(ORDER BY Salary DESC) AS numeric (4, 2)) AS RANK
FROM Employees WHERE State IN ('CA', 'TX') AND Sex ='F'
ORDER BY Salary DESC;

The results from the above query:

Surname salary sex RANK
--------- --------- --- ----------
Savarino 72300.000 F 0.00
Smith 51411.000 F 0.33
Clark 45000.000 F 0.66
Garcia 39800.000 F 1.00

Ranking example 4—You can use the PERCENT_RANK function to find the top or bottom
percentiles in the data set. This query returns male employees whose salary is in the top five
percent of the data set.

SELECT * FROM (SELECT Surname, Salary, Sex,
CAST(PERCENT_RANK() OVER (ORDER BY salary DESC) as
numeric (4, 2)) AS percent
FROM Employees WHERE State IN ('CA') AND sex ='F') AS
DT where percent > 0.5
ORDER BY Salary DESC;

The results from the above query:

Surname salary sex percent
--------- ---------- --- ---------
Clark 45000.000 F 1.00

Ranking example 5—This example uses the ROW_NUMBER function to return row numbers
for each row in all window partitions. The query partitions the Employees table by
department ID, and orders the rows in each partition by start date.

SELECT DepartmentID dID, StartDate, Salary ,
ROW_NUMBER()OVER(PARTITION BY dID ORDER BY StartDate)
FROM Employees ORDER BY 1,2;

The results from the above query are:

dID StartDate Salary Row_number()
======== =========== ========== =============
 100 1984-08-28 47500.000 1
 100 1985-01-01 62000.500 2
 100 1985-06-17 57490.000 3
 100 1986-06-07 72995.000 4
 100 1986-07-01 48023.690 5

 200 1985-02-03 38500.000 1
 200 1985-12-06 54800.000 2
 200 1987-02-19 39300.000 3
 200 1987-07-10 49500.000 4

 500 1994-02-27 24903.000 9

Appendix: Using OLAP

Programming 879

Windowing Aggregate Functions
Windowing aggregate functions let you manipulate multiple levels of aggregation in the same
query.

For example, you can list all quarters during which expenses are less than the average. You can
use aggregate functions, including the simple aggregate functions AVG, COUNT, MAX, MIN,
and SUM, to place results—possibly computed at different levels in the statement—on the
same row. This placement provides a means to compare aggregate values with detail rows
within a group, avoiding the need for a join or a correlated subquery.

These functions also let you compare nonaggregate values to aggregate values. For example, a
salesperson might need to compile a list of all customers who ordered more than the average
number of a product in a specified year, or a manager might want to compare an employee’s
salary against the average salary of the department.

If a query specifies DISTINCT in the SELECT statement, then the DISTINCT operation is
applied after the window operator. A window operator is computed after processing the
GROUP BY clause and before the evaluation of the SELECT list items and a query’s ORDER
BY clause.

Windowing aggregate example 1—This query returns a result set, partitioned by year, that
shows a list of the products that sold higher-than-average sales.

SELECT * FROM (SELECT Surname AS E_name, DepartmentID AS
 Dept, CAST(Salary AS numeric(10,2)) AS Sal,
 CAST(AVG(Sal) OVER(PARTITION BY DepartmentID) AS
 numeric(10, 2)) AS Average, CAST(STDDEV_POP(Sal)
 OVER(PARTITION BY DepartmentID) AS numeric(10,2)) AS
 STD_DEV
FROM Employees
GROUP BY Dept, E_name, Sal) AS derived_table WHERE
 Sal> (Average+STD_DEV)
ORDER BY Dept, Sal, E_name;

The results from the query:

E_name Dept Sal Average STD_DEV
-------- ---- -------- ------- --------
Lull 100 87900.00 58736.28 16829.59
Sheffield 100 87900.00 58736.28 16829.59
Scott 100 96300.00 58736.28 16829.59
Sterling 200 64900.00 48390.94 13869.59
Savarino 200 72300.00 48390.94 13869.59
Kelly 200 87500.00 48390.94 13869.59
Shea 300 138948.00 59500.00 30752.39
Blaikie 400 54900.00 43640.67 11194.02
Morris 400 61300.00 43640.67 11194.02
Evans 400 68940.00 43640.67 11194.02
Martinez 500 55500.80 33752.20 9084.49

Appendix: Using OLAP

880 SAP Sybase IQ

For the year 2000, the average number of orders was 1,787. Four products (700, 601, 600, and
400) sold higher than that amount. In 2001, the average number of orders was 1,048 and 3
products exceeded that amount.

Windowing aggregate example 2—This query returns a result set that shows the employees
whose salary is one standard deviation greater than the average salary of their department.
Standard deviation is a measure of how much the data varies from the mean.

SELECT * FROM (SELECT Surname AS E_name, DepartmentID AS
 Dept, CAST(Salary AS numeric(10,2)) AS Sal,
 CAST(AVG(Sal) OVER(PARTITION BY dept) AS
 numeric(10, 2)) AS Average, CAST(STDDEV_POP(Sal)
 OVER(PARTITION BY dept) AS numeric(10,2)) AS
 STD_DEV
FROM Employees
GROUP BY Dept, E_name, Sal) AS derived_table WHERE
 Sal> (Average+STD_DEV)
ORDER BY Dept, Sal, E_name;

Every department has at least one employee whose salary significantly deviates from the
mean, as shown in these results:

E_name Dept Sal Average STD_DEV
-------- ---- -------- -------- --------
Lull 100 87900.00 58736.28 16829.59
Sheffield 100 87900.00 58736.28 16829.59
Scott 100 96300.00 58736.28 16829.59
Sterling 200 64900.00 48390.94 13869.59
Savarino 200 72300.00 48390.94 13869.59
Kelly 200 87500.00 48390.94 13869.59
Shea 300 138948.00 59500.00 30752.39
Blaikie 400 54900.00 43640.67 11194.02
Morris 400 61300.00 43640.67 11194.02
Evans 400 68940.00 43640.67 11194.02
Martinez 500 55500.80 33752.20 9084.49

Employee Scott earns $96,300.00, while the average salary for department 100 is $58,736.28.
The standard deviation for department 100 is 16,829.00, which means that salaries less than
$75,565.88 (58736.28 + 16829.60 = 75565.88) fall within one standard deviation of the mean.

Statistical Aggregate Functions
The ANSI SQL/OLAP extensions provide a number of additional aggregate functions that
permit statistical analysis of numeric data. This support includes functions to compute
variance, standard deviation, correlation, and linear regression.

Standard deviation and variance
The SQL/OLAP general set functions that take one argument include those appearing in bold
in this syntax statement:

<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
 <BASIC AGGREGATE FUNCTION TYPE>

Appendix: Using OLAP

Programming 881

 | STDDEV | STDDEV_POP | STDDEV_SAMP
 | VARIANCE | VARIANCE_POP | VARIANCE_SAMP

• STDDEV_POP – computes the population standard deviation of the provided value
expression evaluated for each row of the group or partition (if DISTINCT is specified, each
row that remains after duplicates are eliminated), defined as the square root of the
population variance.

• STDDEV_SAMP – computes the population standard deviation of the provided value
expression evaluated for each row of the group or partition (if DISTINCT is specified, each
row that remains after duplicates are eliminated), defined as the square root of the sample
variance.

• VAR_POP – computes the population variance of value expression evaluated for each row
of the group or partition (if DISTINCT is specified, each row that remains after duplicates
are eliminated), defined as the sum of squares of the difference of value expression from
the mean of value expression, divided by the number of rows (remaining) in the group or
partition.

• VAR_SAMP – computes the sample variance of value expression evaluated for each row of
the group or partition (if DISTINCT is specified, each row that remains after duplicates are
eliminated), defined as the sum of squares of the difference of value expression, divided by
one less than the number of rows (remaining) in the group or partition.

These functions, including STDDEV and VARIANCE, are true aggregate functions in that they
can compute values for a partition of rows as determined by the query’s ORDER BY clause. As
with other basic aggregate functions such as MAX or MIN, their computation ignores NULL
values in the input. Also, regardless of the domain of the expression being analyzed, all
variance and standard deviation computation uses IEEE double-precision floating point. If the
input to any variance or standard deviation function is the empty set, then each function returns
NULL as its result. If VAR_SAMP is computed for a single row, it returns NULL, while
VAR_POP returns the value 0.

Correlation
The SQL/OLAP function that computes a correlation coefficient is:

• CORR – returns the correlation coefficient of a set of number pairs.

You can use the CORR function either as a windowing aggregate function (where you specify
a window function type over a window name or specification) or as a simple aggregate
function with no OVER clause.

Covariance
The SQL/OLAP functions that compute covariances include:

• COVAR_POP – returns the population covariance of a set of number pairs.
• COVAR_SAMP – returns the sample covariance of a set of number pairs.

The covariance functions eliminate all pairs where expression1 or expression2 has a null
value.

Appendix: Using OLAP

882 SAP Sybase IQ

You can use the covariance functions either as windowing aggregate functions (where you
specify a window function type over a window name or specification) or as simple aggregate
functions with no OVER clause.

Cumulative distribution
The SQL/OLAP function that calculates the relative position of a single value among a group
of rows is CUME_DIST.

The window specification must contain an ORDER_BY clause.

Composite sort keys are not allowed in the CUME_DIST function.

Regression analysis
The regression analysis functions calculate the relationship between an independent variable
and a dependent variable using a linear regression equation. The SQL/OLAP linear regression
functions include:

• REGR_AVGX – computes the average of the independent variable of the regression line.
• REGR_AVGY – computes the average of the dependent variable of the regression line.
• REGR_COUNT – returns an integer representing the number of nonnull number pairs used

to fit the regression line.
• REGR_INTERCEPT – computes the y-intercept of the regression line that best fits the

dependent and independent variables.
• REGR_R2 – computes the coefficient of determination (the goodness-of-fir statistic) for

the regression line.
• REGR_SLOPE – computes the slope of the linear regression line fitted to nonnull pairs.
• REGR_SXX – returns the sum of squares of the independent expressions used in a linear

regression model. Use this function to evaluate the statistical validity of the regression
model.

• REGR_SXY – returns the sum of products of the dependent and independent variables. Use
this function to evaluate the statistical validity of the regression model.

• REGR_SYY – returns values that can evaluate the statistical validity of a regression model.

You can use the regression analysis functions either as windowing aggregate functions (where
you specify a window function type over a window name or specification) or as simple
aggregate functions with no OVER clause.

Weighted OLAP aggregates
The weighted OLAP aggregate functions calculate weighted moving averages:

• EXP_WEIGHTED_AVG – calculates an exponentially weighted moving average.
Weightings determine the relative importance of each quantity comprising the average.
Weights in EXP_WEIGHTED_AVG decrease exponentially. Exponential weighting applies
more weight to the most recent values and decreases the weight for older values, while still
applying some weight

Appendix: Using OLAP

Programming 883

• WEIGHTED_AVG – calculates a linearly weighted moving average where weights
decrease arithmetically over time. Weights decrease from the highest weight for the most
recent data points, down to zero for the oldest data point.

The window specification must contain an ORDER_BY clause.

Nonstandard database industry extensions
Non-ANSI SQL/OLAP aggregate function extensions used in the database industry include
FIRST_VALUE, MEDIAN, and LAST_VALUE.

• FIRST_VALUE – returns the first value from a set of values.
• MEDIAN – returns the median from an expression.
• LAST_VALUE – returns the last value from a set of values.

The FIRST_VALUE and LAST_VALUE functions require a window specification. You can use
the MEDIAN function either as windowing aggregate function (where you specify a window
function type over a window name or specification) or as a simple aggregate function with no
OVER clause.

Inter-Row Functions
The inter-row functions, LAG and LEAD, provide access to previous or subsequent values in a
data series, or to multiple rows in a table.

Inter-row functions also partition simultaneously without a self-join. LAG provides access to
a row at a given physical offset prior to the CURRENT ROW in the table or partition. LEAD
provides access to a row at a given physical offset after the CURRENT ROW in the table or
partition.

LAG and LEAD syntax is identical. Both functions require an OVER (ORDER_BY) window
specification. For example:

LAG (value_expr) [, offset [, default]]) OVER ([PARTITION BY window
partition] ORDER BY window ordering)

and:
LEAD (value_expr) [, offset [, default]]) OVER ([PARTITION BY window
partition] ORDER BY window ordering)

The PARTITION BY clause in the OVER (ORDER_BY) clause is optional. The OVER
(ORDER_BY) clause cannot contain a window frame ROWS/RANGE specification.

value_expr is a table column or expression that defines the offset data to return from the table.
You can define other functions in the value_expr, with the exception of analytic functions.

For both functions, specify the target row by entering a physical offset. The offset value is the
number of rows above or below the current row. Enter a nonnegative numeric data type
(entering a negative value generates an error). If you enter 0, SAP Sybase IQ returns the
current row.

The optional default value defines the value to return if the offset value goes beyond the scope
of the table. The default value of default is NULL. The data type of default must be implicitly

Appendix: Using OLAP

884 SAP Sybase IQ

convertible to the data type of the value_expr value, or SAP Sybase IQ generates a conversion
error.

LAG example 1—The inter-row functions are useful in financial services applications that
perform calculations on data streams, such as stock transactions. This example uses the LAG
function to calculate the percentage change in the trading price of a particular stock. Consider
the following trading data from a fictional table called stock_trades:

traded at symbol price
------------------- ------ ------
2009-07-13 06:07:12 SQL 15.84
2009-07-13 06:07:13 TST 5.75
2009-07-13 06:07:14 TST 5.80
2009-07-13 06:07:15 SQL 15.86
2009-07-13 06:07:16 TST 5.90
2009-07-13 06:07:17 SQL 15.86

Note: The fictional stock_trades table is not available in the iqdemo database.

The query partitions the trades by stock symbol, orders them by time of trade, and uses the
LAG function to calculate the percentage increase or decrease in trade price between the
current trade and the previous trade:

select stock_symbol as 'Stock',
 traded_at as 'Date/Time of Trade',
 trade_price as 'Price/Share',
 cast ((((trade_price
 - (lag(trade_price, 1)
 over (partition by stock_symbol
 order by traded_at)))
 / trade_price)
 * 100.0) as numeric(5, 2))
 as '% Price Change vs Previous Price'
from stock_trades
order by 1, 2

The query returns these results:

Stock Date/Time of Trade Price/ % Price Change_vs
symbol Share Previous Price
------ ------------------- ----- -----------------
SQL 2009-07-13 06:07:12 15.84 NULL
SQL 2009-07-13 06:07:15 15.86 0.13
SQL 2009-07-13 06:07:17 15.86 0.00
TST 2009-07-13 06:07:13 5.75 NULL
TST 2009-07-13 06:07:14 5.80 0.87
TST 2009-07-13 06:07:16 5.90 1.72

The NULL result in the first and fourth output rows indicates that the LAG function is out of
scope for the first row in each of the two partitions. Since there is no previous row to compare
to, SAP Sybase IQ returns NULL as specified by the default variable.

Appendix: Using OLAP

Programming 885

Distribution Functions
SQL/OLAP defines several functions that deal with ordered sets.

The two inverse distribution functions are PERCENTILE_CONT and PERCENTILE_DISC.
These analytical functions take a percentile value as the function argument and operate on a
group of data specified in the WITHIN GROUP clause or operate on the entire data set.

These functions return one value per group. For PERCENTILE_DISC (discrete), the data type
of the results is the same as the data type of its ORDER BY item specified in the WITHIN
GROUP clause. For PERCENTILE_CONT (continuous), the data type of the results is either
numeric, if the ORDER BY item in the WITHIN GROUP clause is a numeric, or double, if the
ORDER BY item is an integer or floating point.

The inverse distribution analytical functions require a WITHIN GROUP (ORDER BY) clause.
For example:

PERCENTILE_CONT (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

The value of expression1 must be a constant of numeric data type and range from 0 to 1
(inclusive). If the argument is NULL, then a “wrong argument for percentile” error is returned.
If the argument value is less than 0, or greater than 1, then a “data value out of range” error is
returned.

The ORDER BY clause, which must be present, specifies the expression on which the
percentile function is performed and the order in which the rows are sorted in each group. This
ORDER BY clause is used only within the WITHIN GROUP clause and is not an ORDER BY for
the SELECT statement.

The WITHIN GROUP clause distributes the query result into an ordered data set from which the
function calculates a result.

The value expression2 is a sort specification that must be a single expression involving a
column reference. Multiple expressions are not allowed and no rank analytical functions, set
functions, or subqueries are allowed in this sort expression.

The ASC or DESC parameter specifies the ordering sequence as ascending or descending.
Ascending order is the default.

Inverse distribution analytical functions are allowed in a subquery, a HAVING clause, a view, or
a union. The inverse distribution functions can be used anywhere the simple nonanalytical
aggregate functions are used. The inverse distribution functions ignore the NULL value in the
data set.

PERCENTILE_CONT example—This example uses the PERCENTILE_CONT function to
determine the 10th percentile value for car sales in a region using the following data set:

sales region dealer_name
----- --------- -----------
900 Northeast Boston

Appendix: Using OLAP

886 SAP Sybase IQ

800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following example query, the SELECT statement contains the PERCENTILE_CONT
function:

SELECT region, PERCENTILE_CONT(0.1) WITHIN GROUP
 (ORDER BY ProductID DESC)
FROM ViewSalesOrdersSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales in a region:

region percentile_cont
--------- ---------------
Canada 601.0
Central 700.0
Eastern 700.0
South 700.0
Western 700.0

PERCENTILE_DISC example—This example uses the PERCENTILE_DISC function to
determine the 10th percentile value for car sales in a region, using the following data set:

sales region dealer_name
----- --------- -----------
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

In the following query, the SELECT statement contains the PERCENTILE_DISC function:

Appendix: Using OLAP

Programming 887

SELECT region, PERCENTILE_DISC(0.1) WITHIN GROUP
 (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales in each region:
region percentile_cont
--------- ---------------
Northeast 900
Northwest 800
South 500

PERCENTILE_CONT Function [Analytical]
Given a percentile, returns the value that corresponds to that percentile. Assumes a continuous
distribution data model.

Note: If you are simply trying to compute a percentile, use the NTILE function instead, with a
value of 100.

Syntax
PERCENTILE_CONT (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

Parameters

Parameter Description

expression1 A constant of numeric data type and range from 0
to 1 (inclusive). If the argument is NULL, a
“wrong argument for percentile” error is re-
turned. If the argument value is less than 0 or
greater than 1, a “data value out of range” error is
returned

expression2 A sort specification that must be a single expres-
sion involving a column reference. Multiple ex-
pressions are not allowed and no rank analytical
functions, set functions, or subqueries are al-
lowed in this sort expression.

Remarks
The inverse distribution analytical functions return a k-th percentile value, which can be used
to help establish a threshold acceptance value for a set of data. The function
PERCENTILE_CONT takes a percentile value as the function argument, and operates on a
group of data specified in the WITHIN GROUP clause, or operates on the entire data set. The
function returns one value per group. If the GROUP BY column from the query is not present,
the result is a single row. The data type of the results is the same as the data type of its ORDER

Appendix: Using OLAP

888 SAP Sybase IQ

BY item specified in the WITHIN GROUP clause. The data type of the ORDER BY expression
for PERCENTILE_CONT must be numeric.

PERCENTILE_CONT requires a WITHIN GROUP (ORDER BY) clause.

The ORDER BY clause, which must be present, specifies the expression on which the
percentile function is performed and the order in which the rows are sorted in each group. For
the PERCENTILE_CONT function, the data type of this expression must be numeric. This
ORDER BY clause is used only within the WITHIN GROUP clause and is not an ORDER BY for
the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set from which the
function calculates a result. The WITHIN GROUP clause must contain a single sort item. If the
WITHIN GROUP clause contains more or less than one sort item, an error is reported.

The ASC or DESC parameter specifies the ordering sequence ascending or descending.
Ascending order is the default.

The PERCENTILE_CONT function is allowed in a subquery, a HAVING clause, a view, or a
union. PERCENTILE_CONT can be used anywhere the simple nonanalytical aggregate
functions are used. The PERCENTILE_CONT function ignores the NULL value in the data
set.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server or SQL Anywhere.

Example
The following example uses the PERCENTILE_CONT function to determine the 10th
percentile value for car sales in a region.

The following data set is used in the example:
sales region dealer_name
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

The following SELECT statement contains the PERCENTILE_CONT function:

Appendix: Using OLAP

Programming 889

SELECT region, PERCENTILE_CONT(0.1)
WITHIN GROUP (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales in a region:
region percentile_cont
Northeast 840
Northwest 740
South 470

PERCENTILE_DISC Function [Analytical]
Given a percentile, returns the value that corresponds to that percentile. Assumes a discrete
distribution data model.

Note: If you are simply trying to compute a percentile, use the NTILE function instead, with a
value of 100.

Syntax
PERCENTILE_DISC (expression1)
WITHIN GROUP (ORDER BY expression2 [ASC | DESC])

Parameters

Parameter Description

expression1 A constant of numeric data type and range from 0
to 1 (inclusive). If the argument is NULL, then a
“wrong argument for percentile” error is re-
turned. If the argument value is less than 0 or
greater than 1, then a “data value out of range”
error is returned.

expression2 A sort specification that must be a single expres-
sion involving a column reference. Multiple ex-
pressions are not allowed and no rank analytical
functions, set functions, or subqueries are al-
lowed in this sort expression.

Remarks
The inverse distribution analytical functions return a k-th percentile value, which can be used
to help establish a threshold acceptance value for a set of data. The function
PERCENTILE_DISC takes a percentile value as the function argument and operates on a group
of data specified in the WITHIN GROUP clause or operates on the entire data set. The function
returns one value per group. If the GROUP BY column from the query is not present, the result
is a single row. The data type of the results is the same as the data type of its ORDER BY item
specified in the WITHIN GROUP clause. PERCENTILE_DISC supports all data types that can
be sorted in SAP Sybase IQ.

Appendix: Using OLAP

890 SAP Sybase IQ

PERCENTILE_DISC requires a WITHIN GROUP (ORDER BY) clause.

The ORDER BY clause, which must be present, specifies the expression on which the
percentile function is performed and the order in which the rows are sorted in each group. This
ORDER BY clause is used only within the WITHIN GROUP clause and is not an ORDER BY for
the SELECT.

The WITHIN GROUP clause distributes the query result into an ordered data set from which the
function calculates a result. The WITHIN GROUP clause must contain a single sort item. If the
WITHIN GROUP clause contains more or less than one sort item, an error is reported.

The ASC or DESC parameter specifies the ordering sequence ascending or descending.
Ascending order is the default.

The PERCENTILE_DISC function is allowed in a subquery, a HAVING clause, a view, or a
union. PERCENTILE_DISC can be used anywhere the simple nonanalytical aggregate
functions are used. The PERCENTILE_DISC function ignores the NULL value in the data set.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server or SQL Anywhere.

Example
The following example uses the PERCENTILE_DISC function to determine the 10th percentile
value for car sales in a region.

The following data set is used in the example:
sales region dealer_name
900 Northeast Boston
800 Northeast Worcester
800 Northeast Providence
700 Northeast Lowell
540 Northeast Natick
500 Northeast New Haven
450 Northeast Hartford
800 Northwest SF
600 Northwest Seattle
500 Northwest Portland
400 Northwest Dublin
500 South Houston
400 South Austin
300 South Dallas
200 South Dover

The following SELECT statement contains the PERCENTILE_DISC function:
SELECT region, PERCENTILE_DISC(0.1)
WITHIN GROUP (ORDER BY sales DESC)
FROM carSales GROUP BY region;

The result of the SELECT statement lists the 10th percentile value for car sales in a region:

Appendix: Using OLAP

Programming 891

region percentile_cont
Northeast 900
Northwest 800
South 500

Numeric Functions
OLAP numeric functions supported by SAP Sybase IQ include CEILING (CEIL is an alias),
EXP (EXPONENTIAL is an alias), FLOOR, LN (LOG is an alias), SQRT, and
WIDTH_BUCKET.

<numeric value function> :: =
 <natural logarithm>
| <exponential function>
| <power function>
| <square root>
| <floor function>
| <ceiling function>
| <width bucket function>

Table 4. Numeric value functions and syntax

Numeric value function Syntax

Natural logarithm LN (numeric-expression)

Exponential function EXP (numeric-expression)

Power function POWER (numeric-expression1, numeric-expression2)

Square root SQRT (numeric-expression)

Floor function FLOOR (numeric-expression)

Ceiling function CEILING (numeric-expression)

Width bucket function WIDTH_BUCKET (expression, min_value, max_value,
num_buckets)

The semantics of the numeric value functions are:

• LN – returns the natural logarithm of the argument value. Raises an error condition if the
argument value is 0 or negative. LN is a synonym for LOG.

• EXP – returns the value computed by raising the value of e (the base of natural logarithms)
to the power specified by the value of the argument.

• POWER – returns the value computed by raising the value of the first argument to the
power specified by the value of the second argument. If the first argument is 0 and the
second is 0, returns one. If the first argument is 0 and the second is positive, returns 0. If the
first argument is 0 and the second argument is negative, raises an exception. If the first
argument is negative and the second is not an integer, raises an exception.

• SQRT – returns the square root of the argument value, defined by syntax transformation to
“POWER (expression, 0.5).”

Appendix: Using OLAP

892 SAP Sybase IQ

• FLOOR – returns the integer value nearest to positive infinity that is not greater than the
value of the argument.

• CEILING – returns the integer value nearest to negative infinity that is not less than the
value of the argument. CEIL is a synonym for CEILING.

WIDTH_BUCKET function
The WIDTH_BUCKET function is somewhat more complicated than the other numeric value
functions. It accepts four arguments: “live value,” two range boundaries, and the number of
equal-sized (or as nearly so as possible) partitions into which the range indicated by the
boundaries is to be divided. WIDTH_BUCKET returns a number indicating the partition into
which the live value should be placed, based on its value as a percentage of the difference
between the higher range boundary and the lower boundary. The first partition is partition
number one.

To avoid errors when the live value is outside the range of boundaries, live values that are less
than the smaller range boundary are placed into an additional first bucket, bucket zero, and live
values that are greater than the larger range boundary are placed into an additional last bucket,
bucket N+1.

For example, WIDTH_BUCKET (14, 5, 30, 5) returns 2 because:

• (30-5)/5 is 5, so the range is divided into 5 partitions, each 5 units wide.
• The first bucket represents values from 0.00% to 19.999 …%; the second represents values

from 20.00% to 39.999 …%; and the fifth bucket represents values from 80.00% to
100.00%.

• The bucket chosen is determined by computing (5*(14-5)/(30-5)) + 1 — one more than the
number of buckets times the ratio of the offset of the specified value from the lower value to
the range of possible values, which is (5*0/25) + 1, which is 2.8. This value is the range of
values for bucket number 2 (2.0 through 2.999 …), so bucket number 2 is chosen.

WIDTH_BUCKET example
The following example creates a ten-bucket histogram on the credit_limit column for
customers in Massachusetts in the sample table and returns the bucket number (“Credit
Group”) for each customer. Customers with credit limits greater than the maximum value are
assigned to the overflow bucket, 11:

Appendix: Using OLAP

Programming 893

Note: This example is for illustration purposes only and was not generated using the iqdemo
database.

SELECT customer_id, cust_last_name, credit_limit,
 WIDTH_BUCKET(credit_limit, 100, 5000, 10) "Credit
 Group"
 FROM customers WHERE territory = 'MA'
 ORDER BY "Credit Group";
CUSTOMER_ID CUST_LAST_NAME CREDIT_LIMIT Credit Group
----------- -------------- ------------ ------------
825 Dreyfuss 500 1
826 Barkin 500 1
853 Palin 400 1
827 Siegel 500 1
843 Oates 700 2
844 Julius 700 2
835 Eastwood 1200 3
840 Elliott 1400 3
842 Stern 1400 3
841 Boyer 1400 3
837 Stanton 1200 3
836 Berenger 1200 3
848 Olmos 1800 4
847 Streep 5000 11

When the bounds are reversed, the buckets are open-closed intervals. For example:
WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket number 1 is (4000, 5000],
bucket number 2 is (3000, 4000], and bucket number 5 is (0, 1000]. The overflow bucket is
numbered 0 (5000, +infinity), and the underflow bucket is numbered 6 (-infinity, 0].

BIT_LENGTH Function [String]
Returns an unsigned 64-bit value containing the bit length of the column parameter.

Syntax
BIT_LENGTH(column-name)

Parameters

Parameter Description

column-name The name of a column

Returns
INT

Remarks
The return value of a NULL argument is NULL.

The BIT_LENGTH function supports all SAP Sybase IQ data types.

Appendix: Using OLAP

894 SAP Sybase IQ

If you are licensed to use the Unstructured Data Analytics functionality, you can use this
function with large object data.

See Function Support in Unstructured Data Analytics.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by SQL Anywhere or Adaptive Server.

CEIL Function [Numeric]
Returns the smallest integer greater than or equal to the specified expression.

CEIL is as synonym for CEILING.

Syntax
CEIL (numeric-expression)

Parameters

Parameters Description

expression A column, variable, or expression with a data type
that is either exact numeric, approximate numer-
ic, money, or any type that can be implicitly con-
verted to one of these types. For other data types,
CEIL generates an error. The return value has the
same data type as the value supplied.

Remarks
For a given expression, the CEIL function takes one argument. For example, CEIL (-123.45)
returns -123. CEIL (123.45) returns 124.

Standards and Compatibility

• SQL—ISO/ANSI SQL compliant.
• Sybase—Compatible with Adaptive Server Enterprise.

CEILING Function [Numeric]
Returns the ceiling (smallest integer not less than) of a number.

CEIL is as synonym for CEILING.

Syntax
CEILING (numeric-expression)

Appendix: Using OLAP

Programming 895

Parameters

Parameter Description

numeric-expression The number whose ceiling is to be calculated.

Returns
DOUBLE

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Compatible with Adaptive Server.

Example
The following statement returns the value 60.00000:

SELECT CEILING(59.84567) FROM iq_dummy

The following statement returns the value 123:

SELECT CEILING(123) FROM iq_dummy

The following statement returns the value 124.00:

SELECT CEILING(123.45) FROM iq_dummy

The following statement returns the value -123.00:

SELECT CEILING(-123.45) FROM iq_dummy

EXP Function [Numeric]
Returns the exponential function, e to the power of a number.

Syntax
EXP (numeric-expression)

Parameters

Table 5. Parameters

Parameter Description

numeric-expression The exponent.

Returns
DOUBLE

Appendix: Using OLAP

896 SAP Sybase IQ

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Compatible with Adaptive Server Enterprise.

Example
The following statement returns the value 3269017.3724721107:

SELECT EXP(15) FROM iq_dummy

FLOOR Function [Numeric]
Returns the floor of (largest integer not greater than) a number.

Syntax
FLOOR (numeric-expression)

Parameters

Table 6. Parameters

Parameter Description

numeric-expression The number, usually a float.

Returns
DOUBLE

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Compatible with Adaptive Server Enterprise.

Example
The following statement returns the value 123.00:

SELECT FLOOR (123) FROM iq_dummy

The following statement returns the value 123:

SELECT FLOOR (123.45) FROM iq_dummy

The following statement returns the value -124.00.

SELECT FLOOR (-123.45) FROM iq_dummy

Appendix: Using OLAP

Programming 897

LN Function [Numeric]
Returns the natural logarithm of the specified expression.

Syntax
LN (numeric-expression)

Parameters

Parameter Description

expression Is a column, variable, or expression with a data
type that is either exact numeric, approximate
numeric, money, or any type that can be implicitly
converted to one of these types. For other data
types, the LN function generates an error. The
return value is of DOUBLE data type.

Remarks
LN takes one argument. For example, LN (20) returns 2.995732.

The LN function is an alias of the LOG function.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Not supported by Adaptive Server Enterprise. Use the LOG function instead.

POWER Function [Numeric]
Calculates one number raised to the power of another.

Syntax
POWER (numeric-expression1, numeric-expression2)

Parameters

Parameter Description

numeric-expression1 The base.

numeric-expression2 The exponent.

Returns
DOUBLE

Remarks
Raises numeric-expression1 to the power numeric-expresson2.

Appendix: Using OLAP

898 SAP Sybase IQ

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Compatible with Adaptive Server Enterprise.

Example
The following statement returns the value 64:

SELECT Power(2, 6) FROM iq_dummy

SQRT Function [Numeric]
Returns the square root of a number.

Syntax
SQRT (numeric-expression)

Parameters

Parameter Description

numeric-expression The number for which the square root is to be
calculated.

Returns
DOUBLE

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• Sybase—Compatible with Adaptive Server Enterprise.

Example
The following statement returns the value 3:

SELECT SQRT(9) FROM iq_dummy

WIDTH_BUCKET Function [Numerical]
For a given expression, the WIDTH_BUCKET function returns the bucket number that the
result of this expression will be assigned after it is evaluated.

Syntax
WIDTH_BUCKET (expression, min_value, max_value, num_buckets)

Appendix: Using OLAP

Programming 899

Parameters

Parameter Description

expression The expression for which the histogram is being
created. This expression must evaluate to a nu-
meric or datetime value or to a value that can be
implicitly converted to a numeric or datetime
value. If expr evaluates to null, then the expres-
sion returns null.

min_value An expression that resolves to the end points of
the acceptable range for expr. Must also evaluate
to numeric or datetime values and cannot evaluate
to null.

max_value An expression that resolves to the end points of
the acceptable range for expr. Must also evaluate
to numeric or datetime values and cannot evaluate
to null.

num_buckets Is an expression that resolves to a constant indi-
cating the number of buckets. This expression
must evaluate to a positive integer.

Remarks
You can generate equiwidth histograms with the WIDTH_BUCKET function. Equiwidth
histograms divide data sets into buckets whose interval size (highest value to lowest value) is
equal. The number of rows held by each bucket will vary. A related function, NTILE, creates
equiheight buckets.

Equiwidth histograms can be generated only for numeric, date or datetime data types;
therefore, the first three parameters should be all numeric expressions or all date expressions.
Other types of expressions are not allowed. If the first parameter is NULL, the result is NULL.
If the second or the third parameter is NULL, an error message is returned, as a NULL value
cannot denote any end point (or any point) for a range in a date or numeric value dimension.
The last parameter (number of buckets) should be a numeric expression that evaluates to a
positive integer value; 0, NULL, or a negative value will result in an error.

Buckets are numbered from 0 to (n+1). Bucket 0 holds the count of values less than the
minimum. Bucket(n+1) holds the count of values greater than or equal to the maximum
specified value.

Standards and Compatibility

• SQL—Vendor extension to ISO/ANSI SQL grammar.

Appendix: Using OLAP

900 SAP Sybase IQ

• Sybase—Not supported by Adaptive Server Enterprise.

Example
The following example creates a ten-bucket histogram on the credit_limit column for
customers in Massachusetts in the sample table and returns the bucket number (“Credit
Group”) for each customer. Customers with credit limits greater than the maximum value are
assigned to the overflow bucket, 11:

select EmployeeID, Surname, Salary, WIDTH_BUCKET(Salary, 29000,
60000, 4) "Wages" from Employees where State = 'FL' order by "Wages"
EMPLOYEEID SURNAME SALARY Wages
---------- ------- ------ -----
888 Charlton 28300.000 0
1390 Litton 58930.000 4
207 Francis 53870.000 4
266 Gowda 59840.000 4
445 Lull 87900.000 5
1021 Sterling 64900.000 5
902 Kelly 87500.000 5
1576 Evans 68940.000 5

When the bounds are reversed, the buckets are open-closed intervals. For example:
WIDTH_BUCKET (credit_limit, 5000, 0, 5). In this example, bucket number 1 is (4000, 5000],
bucket number 2 is (3000, 4000], and bucket number 5 is (0, 1000]. The overflow bucket is
numbered 0 (5000, +infinity), and the underflow bucket is numbered 6 (-infinity, 0].

OLAP Rules and Restrictions
The following provides an overview for the rules and restrictions that govern OLAP
functionality.

OLAP Functions Can be Used
SAP Sybase IQ provides SQL OLAP functions with rules, restrictions and limitations.

• In the SELECT list
• In expressions
• As arguments of scalar functions
• In the final ORDER BY clause (by using aliases or positional references to OLAP functions

elsewhere in the query)

OLAP Functions Cannot be Used
OLAP functions cannot be used under these conditions:

• In subqueries.
• In the search condition of a WHERE clause.
• As arguments for SET (aggregate) functions. For example, the following expression is

invalid:

Appendix: Using OLAP

Programming 901

SUM(RANK() OVER(ORDER BY dollars))
• A windowed aggregate cannot be an argument to argument to another unless the inner one

was generated within a view or derived table. The same applies to ranking functions.
• Window aggregate and RANK functions are not allowed in a HAVING clause.
• Window aggregate functions should not specify DISTINCT.
• Window function cannot be nested inside of other window functions.
• Inverse distribution functions are not supported with the OVER clause.
• Outer references are not allowed in a window definition clause.
• Correlation references are allowed within OLAP functions, but correlated column aliases

are not allowed.

Columns referenced by an OLAP function must be grouping columns or aggregate functions
from the same query block in which the OLAP function and the GROUP BY clause appear.
OLAP processing occurs after the grouping and aggregation operations and before the final
ORDER BY clause is applied; therefore, it must be possible to derive the OLAP expressions
from those intermediate results. If there is no GROUP BY clause in a query block, OLAP
functions can reference other columns in the select list.

SAP Sybase IQ Limitations
The SAP Sybase IQ limitations with SQL OLAP functions are:

• User-defined functions in a window frame definition are not supported.
• The constants used in a window frame definition must be unsigned numeric value and

should not exceed the value of maximum BIG INT 263-1.

• Window aggregate functions and RANK functions cannot be used in DELETE and UPDATE
statements.

• Window aggregate and RANK functions are not allowed in subqueries.
• CUME_DIST is currently not supported.
• Grouping sets are currently not supported.
• Correlation and linear regression functions are currently not supported.

Additional OLAP Examples
This section provides additional examples using the OLAP functions.

Both start and end points of a window may vary as intermediate result rows are processed. For
example, computing a cumulative sum involves a window with the start point fixed at the first
row of each partition and an end point that slides along the rows of the partition to include the
current row.

As another example, both the start and end points of the window can be variable yet define a
constant number of rows for the entire partition. Such a construction lets users compose
queries that compute moving averages; for example, a SQL query that returns a moving three-
day average stock price.

Appendix: Using OLAP

902 SAP Sybase IQ

Example: Window Functions in Queries
This query lists all products shipped in July and August 2005 and the cumulative shipped
quantity by shipping date:

SELECT p.id, p.description, s.quantity, s.shipdate,
SUM(s.quantity) OVER (PARTITION BY productid ORDER BY s.shipdate rows
between unbounded preceding and current row)FROM SalesOrderItems s
JOIN Products p on(s.ProductID =p.id) WHERE s.ShipDate BETWEEN
'2001-05-01' and '2001-08-31' AND s.quantity > 40 ORDER BY p.id;
ID description quantity ship_date sum quantity
--- ----------- -------- --------- ------------
302 Crew Neck 60 2001-07-02 60
400 Cotton Cap 60 2001-05-26 60
400 Cotton Cap 48 2001-07-05 108
401 Wool cap 48 2001-06-02 48
401 Wool cap 60 2001-06-30 108
401 Wool cap 48 2001-07-09 156
500 Cloth Visor 48 2001-06-21 48
501 Plastic Visor 60 2001-05-03 60
501 Plastic Visor 48 2001-05-18 108
501 Plastic Visor 48 2001-05-25 156
501 Plastic Visor 60 2001-07-07 216
601 Zipped Sweatshirt 60 2001-07-19 60
700 Cotton Shorts 72 2001-05-18 72
700 Cotton Shorts 48 2001-05-31 120

In this example, the computation of the SUM window function occurs after the join of the two
tables and the application of the query’s WHERE clause. The query uses an inline window
specification that specifies that the input rows from the join is processed as follows:

1. Partition (group) the input rows based on the value of the prod_id attribute.

2. Within each partition, sort the rows by the ship_date attribute.

3. For each row in the partition, evaluate the SUM() function over the quantity attribute, using
a sliding window consisting of the first (sorted) row of each partition, up to and including
the current row.

An alternative construction for the query is to specify the window separate from the functions
that use it. This is useful when more than one window function is specified that are based on
the same window. In the case of the query using window functions, a construction that uses the
window clause (declaring a window identified by cumulative) is as follows:

SELECT p.id, p.description, s.quantity, s.shipdate, SUM(s.quantity)
OVER(cumulative ROWS BETWEEN UNBOUNDED PRECEDING and CURRENT ROW)
cumulative FROM SalesOrderItems s JOIN Products p On (s.ProductID
=p.id)WHERE s.shipdate BETWEEN ‘2001-07-01’ and ‘2001-08-31’Window
cumulative as (PARTITION BY s.productid ORDER BY s.shipdate)ORDER BY
p.id;

The window clause appears before the ORDER BY clause in the query specification. When
using a window clause, the following restrictions apply:

Appendix: Using OLAP

Programming 903

• The inline window specification cannot contain a PARTITION BY clause.
• The window specified within the window clause cannot contain a window frame clause.

<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

• Either the inline window specification, or the window specification specified in the
window clause, can contain a window order clause, but not both.
<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Example: Window With Multiple Functions
This query defines a single (named) window and computes multiple function results over it:

SELECT p.ID, p.Description, s.quantity, s.ShipDate, SUM(s.Quantity)
 OVER ws1, MIN(s.quantity) OVER ws1
FROM SalesOrderItems s
JOIN Products p ON (s.ProductID =p.ID)
 WHERE s.ShipDate BETWEEN '2000-01-09' AND'2000-01-17'
 AND s.Quantity > 40 window ws1
 AS(PARTITION BY productid
 ORDER BY shipdate rows between unbounded preceding and current row)
ORDER BY p.id;
ID Description quantity shipDate SUM MIN
--- ----------- -------- ----------- --- ---
400 Cotton Cap 48 2000-01-09 48 48
401 Wool cap 48 2000-01-09 48 48
500 Cloth Visor 60 2000-01-14 60 60
500 Cloth Visor 60 2000-01-15 120 60
501 Plastic Visor 60 2000-01-14 60 60

Example: Calculate Cumulative Sum
This query calculates a cumulative sum of salary per department and ORDER BY
start_date.

SELECT dept_id, start_date, name, salary,
 SUM(salary) OVER (PARTITION BY dept_id ORDER BY
 start_date ROWS BETWEEN UNBOUNDED PRECEDING AND
 CURRENT ROW)
FROM emp1
ORDER BY dept_id, start_date;
DepartmentID start_date name salary sum(salary)
-------- ---------- ---- ------ -----
100 1996-01-01 Anna 18000 18000
100 1997-01-01 Mike 28000 46000
100 1998-01-01 Scott 29000 75000
100 1998-02-01 Antonia 22000 97000
100 1998-03-12 Adam 25000 122000
100 1998-12-01 Amy 18000 140000
200 1998-01-01 Jeff 18000 18000
200 1998-01-20 Tim 29000 47000

Appendix: Using OLAP

904 SAP Sybase IQ

200 1998-02-01 Jim 22000 69000
200 1999-01-10 Tom 28000 97000
300 1998-03-12 Sandy 55000 55000
300 1998-12-01 Lisa 38000 93000
300 1999-01-10 Peter 48000 141000

Example: Calculate Moving Average
This query generates the moving average of sales in three consecutive months. The size of the
window frame is three rows: two preceding rows plus the current row. The window slides from
the beginning to the end of the partition.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN 2 PRECEDING AND CURRENT ROW)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;
prod_id month_num sales avg(sales)
------- --------- ------ ----------
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00
20 1 20 20.00
20 2 30 25.00
20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00

Example: ORDER BY Results
In this example, the top ORDER BY clause of a query is applied to the final results of a window
function. The ORDER BY in a window clause is applied to the input data of a window function.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN 2 PRECEDING AND CURRENT ROW)
FROM sale WHERE rep_id = 1
ORDER BY prod_id desc, month_num;
prod_id month_num sales avg(sales)
------- --------- ----- ----------
30 1 10 10.00
30 2 11 10.50
30 3 12 11.00
30 4 1 8.00
20 1 20 20.00
20 2 30 25.00

Appendix: Using OLAP

Programming 905

20 3 25 25.00
20 4 30 28.33
20 5 31 28.66
20 6 20 27.00
10 1 100 100.00
10 2 120 110.00
10 3 100 106.66
10 4 130 116.66
10 5 120 116.66
10 6 110 120.00

Example: Multiple Aggregate Functions in a Query
This example calculates aggregate values against different windows in a query.

SELECT prod_id, month_num, sales, AVG(sales) OVER
 (WS1 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS
 CAvg, SUM(sales) OVER(WS1 ROWS BETWEEN UNBOUNDED
 PRECEDING AND CURRENT ROW) AS CSum
FROM sale WHERE rep_id = 1 WINDOW WS1 AS (PARTITION BY
 prod_id
ORDER BY month_num)
ORDER BY prod_id, month_num;
prod_id month_num sales CAvg CSum
------- --------- ----- ---- ----
10 1 100 110.00 100
10 2 120 106.66 220
10 3 100 116.66 320
10 4 130 116.66 450
10 5 120 120.00 570
10 6 110 115.00 680
20 1 20 25.00 20
20 2 30 25.00 50
20 3 25 28.33 75
20 4 30 28.66 105
20 5 31 27.00 136
20 6 20 25.50 156
30 1 10 10.50 10
30 2 11 11.00 21
30 3 12 8.00 33
30 4 1 6.50 34

Example: Window Frame Comparing ROWS and RANGE
This query compares ROWS and RANGE. The data contain duplicate ROWS per the ORDER
BY clause.

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (ws1 RANGE BETWEEN 2 PRECEDING AND CURRENT ROW) AS
 Range_sum, SUM(sales) OVER
 (ws1 ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) AS
 Row_sum
FROM sale window ws1 AS (PARTITION BY prod_id ORDER BY
 month_num)
ORDER BY prod_id, month_num;

Appendix: Using OLAP

906 SAP Sybase IQ

prod_id month_num sales Range_sum Row_sum
------- --------- ----- ---------- -------
10 1 100 250 100
10 1 150 250 250
10 2 120 370 370
10 3 100 470 370
10 4 130 350 350
10 5 120 381 350
10 5 31 381 281
10 6 110 391 261
20 1 20 20 20
20 2 30 50 50
20 3 25 75 75
20 4 30 85 85
20 5 31 86 86
20 6 20 81 81
30 1 10 10 10
30 2 11 21 21
30 3 12 33 33
30 4 1 25 24
30 4 1 25 14

Example: Window Frame Excludes Current Row
In this example, you can define the window frame to exclude the current row. The query
calculates the sum over four rows, excluding the current row.

SELECT prod_id, month_num, sales, sum(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN 6 PRECEDING AND 2 PRECEDING)
FROM sale
ORDER BY prod_id, month_num;
prod_id month_num sales sum(sales)
------- --------- ----- ----------
10 1 100 (NULL)
10 1 150 (NULL)
10 2 120 (NULL)
10 3 100 250
10 4 130 370
10 5 120 470
10 5 31 470
10 6 110 600
20 1 20 (NULL)
20 2 30 (NULL)
20 3 25 20
20 4 30 50
20 5 31 75
20 6 20 105
30 1 10 (NULL)
30 2 11 (NULL)
30 3 12 10
30 4 1 21
30 4 1 21

Appendix: Using OLAP

Programming 907

Example: Window Frame for RANGE
This query illustrates the RANGE window frame. The number of rows used in the summation
is variable.

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN 1 FOLLOWING AND 3 FOLLOWING)
FROM sale
ORDER BY prod_id, month_num;
prod_id month_num sales sum(sales)
------- --------- ----- ----------
10 1 100 350
10 1 150 350
10 2 120 381
10 3 100 391
10 4 130 261
10 5 120 110
10 5 31 110
10 6 110 (NULL)
20 1 20 85
20 2 30 86
20 3 25 81
20 4 30 51
20 5 31 20
20 6 20 (NULL)
30 1 10 25
30 2 11 14
30 3 12 2
30 4 1 (NULL)
30 4 1 (NULL)

Example: Unbounded Preceding and Unbounded Following
In this example, the window frame can include all rows in the partition. The query calculates
max(sales) sale over the entire partition (no duplicate rows in a month).

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num ROWS
 BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;
prod_id month_num sales SUM(sales)
------- --------- ----- ----------
10 1 100 680
10 2 120 680
10 3 100 680
10 4 130 680
10 5 120 680
10 6 110 680
20 1 20 156
20 2 30 156
20 3 25 156

Appendix: Using OLAP

908 SAP Sybase IQ

20 4 30 156
20 5 31 156
20 6 20 156
30 1 10 34
30 2 11 34
30 3 12 34
30 4 1 34

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id)
FROM sale WHERE rep_id = 1
ORDER BY prod_id, month_num;

Example: Default Window Frame for RANGE
This query illustrates the default window frame for RANGE:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num)
FROM sale
ORDER BY prod_id, month_num;
prod_id month_num sales SUM(sales)
------- --------- ----- ----------
10 1 100 250
10 1 150 250
10 2 120 370
10 3 100 470
10 4 130 600
10 5 120 751
10 5 31 751
10 6 110 861
20 1 20 20
20 2 30 50
20 3 25 75
20 4 30 105
20 5 31 136
20 6 20 156
30 1 10 10
30 2 11 21
30 3 12 33
30 4 1 35
30 4 1 35

The query in this example is equivalent to:

SELECT prod_id, month_num, sales, SUM(sales) OVER
 (PARTITION BY prod_id ORDER BY month_num RANGE
 BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW)
FROM sale
ORDER BY prod_id, month_num;

Appendix: Using OLAP

Programming 909

BNF Grammar for OLAP Functions
The Backus-Naur Form grammar outlines the specific syntactic support for the various ANSI
SQL analytic functions, many of which are implemented in SAP Sybase IQ.

Grammar Rule 1
<SELECT LIST EXPRESSION> ::=
 <EXPRESSION>
 | <GROUP BY EXPRESSION>
 | <AGGREGATE FUNCTION>
 | <GROUPING FUNCTION>
 | <TABLE COLUMN>
 | <WINDOWED TABLE FUNCTION>

Grammar Rule 2
<QUERY SPECIFICATION> ::=
 <FROM CLAUSE>
 [<WHERE CLAUSE>]
 [<GROUP BY CLAUSE>]
 [<HAVING CLAUSE>]
 [<WINDOW CLAUSE>]
[<ORDER BY CLAUSE>]

Grammar Rule 3
<ORDER BY CLAUSE> ::= <ORDER SPECIFICATION>

Grammar Rule 4
<GROUPING FUNCTION> ::=
 GROUPING <LEFT PAREN> <GROUP BY EXPRESSION>
 <RIGHT PAREN>

Grammar Rule 5
<WINDOWED TABLE FUNCTION> ::=
 <WINDOWED TABLE FUNCTION TYPE> OVER <WINDOW NAME OR
 SPECIFICATION>

Grammar Rule 6
<WINDOWED TABLE FUNCTION TYPE> ::=
 <RANK FUNCTION TYPE> <LEFT PAREN> <RIGHT PAREN>
 | ROW_NUMBER <LEFT PAREN> <RIGHT PAREN>
 | <WINDOW AGGREGATE FUNCTION>

Grammar Rule 7
<RANK FUNCTION TYPE> ::=
 RANK | DENSE RANK | PERCENT RANK | CUME_DIST

Appendix: Using OLAP

910 SAP Sybase IQ

Grammar Rule 8
<WINDOW AGGREGATE FUNCTION> ::=
 <SIMPLE WINDOW AGGREGATE FUNCTION>
 | <STATISTICAL AGGREGATE FUNCTION>

Grammar Rule 9
<AGGREGATE FUNCTION> ::=
 <DISTINCT AGGREGATE FUNCTION>
 | <SIMPLE AGGREGATE FUNCTION>
 | <STATISTICAL AGGREGATE FUNCTION>

Grammar Rule 10
<DISTINCT AGGREGATE FUNCTION> ::=
 <BASIC AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <DISTINCT> <EXPRESSION> <RIGHT PAREN>
 | LIST <LEFT PAREN> DISTINCT <EXPRESSION>
 [<COMMA> <DELIMITER>]
 [<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar Rule 11
<BASIC AGGREGATE FUNCTION TYPE> ::=
 SUM | MAX | MIN | AVG | COUNT

Grammar Rule 12
<SIMPLE AGGREGATE FUNCTION> ::=
 <SIMPLE AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <EXPRESSION> <RIGHT PAREN>
 | LIST <LEFT PAREN> <EXPRESSION> [<COMMA>
 <DELIMITER>]
 [<ORDER SPECIFICATION>] <RIGHT PAREN>

Grammar Rule 13
<SIMPLE AGGREGATE FUNCTION TYPE> ::= <SIMPLE WINDOW AGGREGATE
FUNCTION TYPE>

Grammar Rule 14
<SIMPLE WINDOW AGGREGATE FUNCTION> ::=
 <SIMPLE WINDOW AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <EXPRESSION> <RIGHT PAREN>
| GROUPING FUNCTION

Grammar Rule 15
<SIMPLE WINDOW AGGREGATE FUNCTION TYPE> ::=
 <BASIC AGGREGATE FUNCTION TYPE>
 | STDDEV | STDDEV_POP | STDDEV_SAMP
 | VARIANCE | VARIANCE_POP | VARIANCE_SAMP

Appendix: Using OLAP

Programming 911

Grammar Rule 16
<STATISTICAL AGGREGATE FUNCTION> ::=
 <STATISTICAL AGGREGATE FUNCTION TYPE> <LEFT PAREN>
 <DEPENDENT EXPRESSION> <COMMA> <INDEPENDENT
 EXPRESSION> <RIGHT PAREN>

Grammar Rule 17
<STATISTICAL AGGREGATE FUNCTION TYPE> ::=
 CORR | COVAR_POP | COVAR_SAMP | REGR_R2 |
 REGR_INTERCEPT | REGR_COUNT | REGR_SLOPE |
 REGR_SXX | REGR_SXY | REGR_SYY | REGR_AVGY |
 REGR_AVGX

Grammar Rule 18
<WINDOW NAME OR SPECIFICATION> ::=
 <WINDOW NAME> | <IN-LINE WINDOW SPECIFICATION>

Grammar Rule 19
<WINDOW NAME> ::= <IDENTIFIER>

Grammar Rule 20
<IN-LINE WINDOW SPECIFICATION> ::= <WINDOW SPECIFICATION>

Grammar Rule 21
<WINDOW CLAUSE> ::= <WINDOW WINDOW DEFINITION LIST>

Grammar Rule 22
<WINDOW DEFINITION LIST> ::=
 <WINDOW DEFINITION> [{ <COMMA> <WINDOW DEFINITION>
 } . . .]

Grammar Rule 23
<WINDOW DEFINITION> ::=
 <NEW WINDOW NAME> AS <WINDOW SPECIFICATION>

Grammar Rule 24
<NEW WINDOW NAME> ::= <WINDOW NAME>

Grammar Rule 25
<WINDOW SPECIFICATION> ::=
 <LEFT PAREN> <WINDOW SPECIFICATION> <DETAILS> <RIGHT
 PAREN>

Appendix: Using OLAP

912 SAP Sybase IQ

Grammar Rule 26
<WINDOW SPECIFICATION DETAILS> ::=
 [<EXISTING WINDOW NAME>]
 [<WINDOW PARTITION CLAUSE>]
 [<WINDOW ORDER CLAUSE>]
 [<WINDOW FRAME CLAUSE>]

Grammar Rule 27
<EXISTING WINDOW NAME> ::= <WINDOW NAME>

Grammar Rule 28
<WINDOW PARTITION CLAUSE> ::=
 PARTITION BY <WINDOW PARTITION EXPRESSION LIST>

Grammar Rule 29
<WINDOW PARTITION EXPRESSION LIST> ::=
 <WINDOW PARTITION EXPRESSION>
 [{ <COMMA> <WINDOW PARTITION EXPRESSION> } . . .]

Grammar Rule 30
<WINDOW PARTITION EXPRESSION> ::= <EXPRESSION>

Grammar Rule 31
<WINDOW ORDER CLAUSE> ::= <ORDER SPECIFICATION>

Grammar Rule 32
<WINDOW FRAME CLAUSE> ::=
 <WINDOW FRAME UNIT>
 <WINDOW FRAME EXTENT>

Grammar Rule 33
<WINDOW FRAME UNIT> ::= ROWS | RANGE

Grammar Rule 34
<WINDOW FRAME EXTENT> ::= <WINDOW FRAME START> | <WINDOW FRAME
BETWEEN>

Grammar Rule 35
<WINDOW FRAME START> ::=
 UNBOUNDED PRECEDING
 | <WINDOW FRAME PRECEDING>
 | CURRENT ROW

Appendix: Using OLAP

Programming 913

Grammar Rule 36
<WINDOW FRAME PRECEDING> ::= <UNSIGNED VALUE SPECIFICATION>
PRECEDING

Grammar Rule 37
<WINDOW FRAME BETWEEN> ::=
 BETWEEN <WINDOW FRAME BOUND 1> AND <WINDOW FRAME
 BOUND 2>

Grammar Rule 38
<WINDOW FRAME BOUND 1> ::= <WINDOW FRAME BOUND>

Grammar Rule 39
<WINDOW FRAME BOUND 2> ::= <WINDOW FRAME BOUND>

Grammar Rule 40
<WINDOW FRAME BOUND> ::=
 <WINDOW FRAME START>
 | UNBOUNDED FOLLOWING
 | <WINDOW FRAME FOLLOWING>

Grammar Rule 41
<WINDOW FRAME FOLLOWING> ::= <UNSIGNED VALUE SPECIFICATION>
FOLLOWING

Grammar Rule 42
<GROUP BY EXPRESSION> ::= <EXPRESSION>

Grammar Rule 43
<SIMPLE GROUP BY TERM> ::=
 <GROUP BY EXPRESSION>
 | <LEFT PAREN> <GROUP BY EXPRESSION> <RIGHT PAREN>
 | <LEFT PAREN> <RIGHT PAREN>

Grammar Rule 44
<SIMPLE GROUP BY TERM LIST> ::=
 <SIMPLE GROUP BY TERM> [{ <COMMA> <SIMPLE GROUP BY
 TERM> } . . .]

Grammar Rule 45
<COMPOSITE GROUP BY TERM> ::=
 <LEFT PAREN> <SIMPLE GROUP BY TERM>
 [{ <COMMA> <SIMPLE GROUP BY TERM> } . . .]
 <RIGHT PAREN>

Appendix: Using OLAP

914 SAP Sybase IQ

Grammar Rule 46
<ROLLUP TERM> ::= ROLLUP <COMPOSITE GROUP BY TERM>

Grammar Rule 47
<CUBE TERM> ::= CUBE <COMPOSITE GROUP BY TERM>

Grammar Rule 48
<GROUP BY TERM> ::=
 <SIMPLE GROUP BY TERM>
 | <COMPOSITE GROUP BY TERM>
 | <ROLLUP TERM>
 | <CUBE TERM>

Grammar Rule 49
<GROUP BY TERM LIST> ::=
 <GROUP BY TERM> [{ <COMMA> <GROUP BY TERM> } …]

Grammar Rule 50
<GROUP BY CLAUSE> ::= GROUP BY <GROUPING SPECIFICATION>

Grammar Rule 51
<GROUPING SPECIFICATION> ::=
 <GROUP BY TERM LIST>
 | <SIMPLE GROUP BY TERM LIST> WITH ROLLUP
 | <SIMPLE GROUP BY TERM LIST> WITH CUBE

Grammar Rule 52
Not supported.

Grammar Rule 53
<ORDER SPECIFICATION> ::= ORDER BY <SORT SPECIFICATION LIST>
 <SORT SPECIFICATION LIST> ::= <SORT SPECIFICATION>
 [{ <COMMA> <SORT SPECIFICATION> } . . .]
 <SORT SPECIFICATION> ::= <SORT KEY>
 [<ORDERING SPECIFICATION>] [<NULL ORDERING>]
 <SORT KEY> ::= <VALUE EXPRESSION>
 <ORDERING SPECIFICATION> ::= ASC | DESC
 <NULL ORDERING> := NULLS FIRST | NULLS LAST

Appendix: Using OLAP

Programming 915

Appendix: Using OLAP

916 SAP Sybase IQ

Appendix: Accessing Remote Data

SAP Sybase IQ can access data located on separate servers, both SAP Sybase and non-SAP
Sybase, as if the data were stored on the local server.

You can use this feature to migrate data into an SAP Sybase IQ database or to query data across
databases.

SAP Sybase IQ and Remote Data
SAP Sybase IQ remote data access gives you access to data in other data sources. You can use
this feature to migrate data into a SQL Anywhere database or query data across databases.

Characteristics of Sybase Open Client and jConnect connections
When SAP Sybase IQ is serving applications over TDS, it automatically sets relevant database
options to values compatible with Adaptive Server default behavior. These options are set
temporarily, for the duration of the connection only. The client application can override them
at any time.

Default settings
The database options set on connection using TDS include:

Option Set to

allow_nulls_by_default Off

ansinull Off

chained Off

close_on_endtrans Off

date_format YYYY-MM-DD

date_order MDY

escape_character Off

isolation_level 1

on_tsql_error Continue

quoted_identifier Off

time_format HH:NN:SS.SSS

Appendix: Accessing Remote Data

Programming 917

Option Set to

timestamp_format YYYY-MM-DD HH:NN:SS.SSS

tsql_variables On

How the startup options are set
The default database options are set for TDS connections using a system procedure named
sp_tsql_environment. This procedure sets the following options:
SET TEMPORARY OPTION allow_nulls_by_default='Off';
SET TEMPORARY OPTION ansinull='Off';
SET TEMPORARY OPTION chained='Off';
SET TEMPORARY OPTION close_on_endtrans='Off';
SET TEMPORARY OPTION date_format='YYYY-MM-DD';
SET TEMPORARY OPTION date_order='MDY';
SET TEMPORARY OPTION escape_character='Off';
SET TEMPORARY OPTION isolation_level='1';
SET TEMPORARY OPTION on_tsql_error='Continue';
SET TEMPORARY OPTION quoted_identifier='Off';
SET TEMPORARY OPTION time_format='HH:NN:SS.SSS';
SET TEMPORARY OPTION timestamp_format='YYYY-MM-DD HH:NN:SS.SSS';
SET TEMPORARY OPTION tsql_variables='On';

Note: Do not alter the sp_tsql_environment procedure. It is for system use only.

The procedure sets options only for connections that use the TDS communications protocol.
This includes Sybase Open Client and JDBC connections using jConnect. Other connections
(ODBC and embedded SQL) have the default settings for the database.

Although SAP Sybase IQ allows longer user names and passwords, TDS client names and
passwords cannot exceed 30 bytes. If your password or user ID is longer than 30 bytes,
attempts to connect over TDS (for example, using jConnect) return an invalid user or password
error.

Changing the option settings for TDS connections
When SAP Sybase IQ is serving applications over TDS, it automatically sets relevant database
options to values compatible with Adaptive Server default behavior. You can change the
options for TDS connections at any time.

Changing the option settings for TDS connections
When SAP Sybase IQ is serving applications over TDS, it automatically sets relevant database
options to values compatible with Adaptive Server default behavior. You can change the
options for TDS connections at any time.

1. Create a procedure that sets the database options you want.

2. Set the login_procedure option to the name of the new procedure.

Future connections use the procedure. You can configure the procedure differently for
different user IDs.

Appendix: Accessing Remote Data

918 SAP Sybase IQ

Requirements for Accessing Remote Data
There are several basic elements required to access remote data.

Remote table mappings
SAP Sybase IQ presents tables to a client application as if all the data in the tables were stored
in the database to which the application is connected. Internally, when a query involving
remote tables is executed, the storage location is determined, and the remote location is
accessed so that data can be retrieved.

To access data in a remote table, you must set up the following.

1. You must define the remote server where the remote data is located. This includes the class
of server and location of the remote server. The CREATE SERVER statement is used to do
this.

2. You must define remote server user login information if the credentials required to access
the database on the remote server are different from the database to which you are
connected. The CREATE EXTERNLOGIN statement is used to do this.

3. You must create a proxy table definition. This specifies the mapping of a local proxy table
to a remote table. This includes the server where the remote table is located, the database
name, owner name, table name, and column names of the remote table. The CREATE
EXISTING TABLE statement is used to do this. Also, the CREATE TABLE statement can
be used to create new tables at the remote server.

To manage remote server definitions, external logins, and proxy table mappings, you can use a
tool such as Interactive SQL to execute SQL statements.

Warning! Some remote servers, such as Microsoft Access, Microsoft SQL Server, and
Sybase Adaptive Server Enterprise do not preserve cursors across COMMITs and
ROLLBACKs. However, you can still use Interactive SQL to view and edit the data in these
proxy tables as long as autocommit is turned off (this is the default behavior in Interactive
SQL). Other RDBMSs, including Oracle Database, IBM DB2, and SAP Sybase IQ do not
have this limitation.

Server classes for remote data access
The server class you specify in the CREATE SERVER statement determines the behavior of a
remote connection. The server classes give SAP Sybase IQ detailed server capability
information. SAP Sybase IQ formats SQL statements specific to a server's capabilities.

All server classes are ODBC-based. Each server class has a set of unique characteristics that
you need to know to configure the server for remote data access. You should refer to
information generic to the server class category and also to the information specific to the
individual server class.

The server classes include:

Appendix: Accessing Remote Data

Programming 919

SAODBC
ULODBC
ADSODBC
ASEODBC
DB2ODBC
HANAODBC
IQODBC
MSACCESSODBC
MSSODBC
MYSQLODBC
ODBC
ORAODBC

Note: When using remote data access, if you use an ODBC driver that does not support
Unicode, then character set conversion is not performed on data coming from that ODBC
driver.

ODBC external server definitions
The most common way of defining an ODBC-based remote server is to base it on an ODBC
data source. To do this, you can create a data source using the ODBC Data Source
Administrator.

Once you have defined the data source, the USING clause in the CREATE SERVER statement
should refer to the ODBC Data Source Name (DSN).

For example, to configure an IBM DB2 server named mydb2 whose data source name is also
mydb2, use:
CREATE SERVER mydb2
CLASS 'DB2ODBC'
USING 'mydb2';

The driver used must match the bitness of the database server.

On Windows, you must also define a System Data Source Name (System DSN) with a bitness
matching the database server. For example, use the 32-bit ODBC Data Source Administrator
to create a 32-bit System DSN. A User DSN does not have bitness.

Using connection strings instead of data sources
An alternative, which avoids using data source names, is to supply a connection string in the
USING clause of the CREATE SERVER statement. To do this, you must know the connection
parameters for the ODBC driver you are using. For example, a connection to an SAP Sybase
IQ database server may be as follows:
CREATE SERVER TestSA
CLASS 'SAODBC'
USING 'DRIVER=Sybase IQ;HOST=myhost;Server=TestSA;DBN=sample';

Appendix: Accessing Remote Data

920 SAP Sybase IQ

This defines a connection to a database server named TestSA, running on a computer called
myhost, and a database named sample using the TCP/IP protocol.

USING clause in the CREATE SERVER statement
You must issue a separate CREATE SERVER statement for each remote SAP Sybase IQ
database you intend to access. For example, if an SAP Sybase IQ server named TestSA is
running on the computer Banana and owns three databases (db1, db2, db3), you would set up
the remote servers similar to this:
CREATE SERVER TestSAdb1
CLASS 'SAODBC'
USING 'DRIVER=Sybase IQ;HOST=Banana;Server=TestSA;DBN=db1';

CREATE SERVER TestSAdb2
CLASS 'SAODBC'
USING 'DRIVER=Sybase IQ;HOST=Banana;Server=TestSA;DBN=db2';

CREATE SERVER TestSAdb3
CLASS 'SAODBC'
USING 'DRIVER=Sybase IQ;HOST=Banana;Server=TestSA;DBN=db3';

If you do not specify a database name, the remote connection uses the remote SAP Sybase IQ
server default database.

Server class SAODBC
A remote server with server class SAODBC is an SAP Sybase IQ database server. No special
requirements exist for the configuration of an SAP Sybase IQ data source.

To access SAP Sybase IQ database servers that support multiple databases, create an ODBC
data source name defining a connection to each database. Execute a CREATE SERVER
statement for each of these ODBC data source names.

Example

Supply a connection string in the USING clause of the CREATE SERVER statement to
connect to an SAP Sybase IQ database.
CREATE SERVER TestSA
CLASS 'SAODBC'
USING 'DRIVER=Sybase IQ;HOST=myhost;Server=TestSA;DBN=sample';

Server class ADSODBC
When you execute a CREATE TABLE statement, SAP Sybase IQ automatically converts the
data types to the corresponding Advantage Database Server data types using the following
data type conversions.

SAP Sybase IQ
data type

ADS default data
type

BIT Logical

Appendix: Accessing Remote Data

Programming 921

SAP Sybase IQ
data type

ADS default data
type

VARBIT(n) Binary(n)

LONG VARBIT Binary(2G)

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Numeric(32)

UNSIGNED TI-
NYINT

Numeric(11)

UNSIGNED SMALL-
INT

Numeric(11)

UNSIGNED INTE-
GER

Numeric(11)

UNSIGNED BIGINT Numeric(32)

CHAR(n) Character(n)

VARCHAR(n) VarChar(n)

LONG VARCHAR VarChar(65000)

NCHAR(n) NChar(n)

NVARCHAR(n) NVarChar(n)

LONG NVARCHAR NVarChar(32500)

BINARY(n) Binary(n)

VARBINARY(n) Binary(n)

LONG BINARY Binary(2G)

DECIMAL(precision,
scale)

Numeric(precision+3)

NUMERIC(precision,
scale)

Numeric(precision+3)

SMALLMONEY Money

MONEY Money

REAL Double

DOUBLE Double

Appendix: Accessing Remote Data

922 SAP Sybase IQ

SAP Sybase IQ
data type

ADS default data
type

FLOAT(n) Double

DATE Date

TIME Time

TIMESTAMP TimeStamp

TIMESTAMP WITH
TIMEZONE

Char(254)

BIGDATE datetime

BIGDATETIME datetime

XML Binary(2G)

ST_GEOMETRY Binary(2G)

UNIQUEIDENTIFI-
ER

Binary(2G)

Server class ASEODBC
A remote server with server class ASEODBC is an Adaptive Server Enterprise (version 10 and
later) database server. SAP Sybase IQ requires the installation of the Adaptive Server
Enterprise ODBC driver and Open Client connectivity libraries to connect to a remote
Adaptive Server Enterprise database server with class ASEODBC.

Notes

• Open Client should be version 11.1.1, EBF 7886 or later. Install Open Client and verify
connectivity to the Adaptive Server Enterprise server before you install ODBC and
configure SAP Sybase IQ. The Sybase ODBC driver should be version 11.1.1, EBF 7911
or later.

• The local setting of the quoted_identifier option controls the use of quoted identifiers for
Adaptive Server Enterprise. For example, if you set the quoted_identifier option to Off
locally, then quoted identifiers are turned off for Adaptive Server Enterprise.

• Configure a user data source in the Configuration Manager with the following attributes:
• General tab – Type any value for Data Source Name. This value is used in the USING

clause of the CREATE SERVER statement.

The server name should match the name of the server in the Sybase interfaces file.
• Advanced tab – Click the Application Using Threads and Enable Quoted

Identifiers options.
• Connection tab – Set the charset field to match your SAP Sybase IQ character set.

Appendix: Accessing Remote Data

Programming 923

Set the language field to your preferred language for error messages.
• Performance tab – Set the Prepare Method to 2-Full.

Set the Fetch Array Size as large as possible for the best performance. This increases
memory requirements since this is the number of rows that must be cached in memory.
Adaptive Server Enterprise recommends using a value of 100.

Set Select Method to 0-Cursor.

Set Packet Size to as large a value as possible. Adaptive Server Enterprise
recommends using a value of -1.

Set Connection Cache to 1.

Data type conversions: ODBC and Adaptive Server Enterprise
When you execute a CREATE TABLE statement, SAP Sybase IQ automatically converts the
data types to the corresponding Adaptive Server Enterprise data types. The following table
describes the SAP Sybase IQ to Adaptive Server Enterprise data type conversions.

SAP Sybase IQ data type Adaptive Server Enterprise default
data type

BIT bit

VARBIT(n) if (n <= 255) varbinary(n) else image

LONG VARBIT image

TINYINT tinyint

SMALLINT smallint

INT, INTEGER int

BIGINT numeric(20,0)

UNSIGNED TINYINT tinyint

UNSIGNED SMALLINT int

UNSIGNED INTEGER numeric(11,0)

UNSIGNED BIGINT numeric(20,0)

CHAR(n) if (n <= 255) char(n) else text

VARCHAR(n) if (n <= 255) varchar(n) else text

LONG VARCHAR text

NCHAR(n) if (n <= 255) nchar(n) else ntext

NVARCHAR(n) if (n <= 255) nvarchar(n) else ntext

Appendix: Accessing Remote Data

924 SAP Sybase IQ

SAP Sybase IQ data type Adaptive Server Enterprise default
data type

LONG NVARCHAR ntext

BINARY(n) if (n <= 255) binary(n) else image

VARBINARY(n) if (n <= 255) varbinary(n) else image

LONG BINARY image

DECIMAL(prec,scale) decimal(prec,scale)

NUMERIC(prec,scale) numeric(prec,scale)

SMALLMONEY numeric(10,4)

MONEY numeric(19,4)

REAL real

DOUBLE float

FLOAT(n) float(n)

DATE datetime

TIME datetime

SMALLDATETIME smalldatetime

TIMESTAMP datetime

TIMESTAMP WITH TIMEZONE varchar(254)

XML text

ST_GEOMETRY image

UNIQUEIDENTIFIER binary(16)

Example

Supply a connection string in the USING clause of the CREATE SERVER statement to
connect to an Adaptive Server Enterprise database.
CREATE SERVER TestASE
CLASS 'ASEODBC'
USING 'DRIVER=SYBASE ASE ODBC
Driver;Server=TestASE;Port=5000;Database=testdb;UID=username;PWD=pa
ssword'

Appendix: Accessing Remote Data

Programming 925

Server class DB2ODBC
A remote server with server class DB2ODBC is an IBM DB2 database server.

Notes

• Sybase certifies the use of IBM's DB2 Connect version 5, with fix pack WR09044.
Configure and test your ODBC configuration using the instructions for that product. SAP
Sybase IQ has no specific requirements for the configuration of IBM DB2 data sources.

• The following is an example of a CREATE EXISTING TABLE statement for an IBM DB2
server with an ODBC data source named mydb2:
CREATE EXISTING TABLE ibmcol
AT 'mydb2..sysibm.syscolumns';

Data type conversions: IBM DB2
When you execute a CREATE TABLE statement, SAP Sybase IQ automatically converts the
data types to the corresponding IBM DB2 data types. The following table describes the SAP
Sybase IQ to IBM DB2 data type conversions.

SAP Sybase IQ data type IBM DB2 default data type

BIT smallint

VARBIT(n) if (n <= 4000) varchar(n) for bit data else long
varchar for bit data

LONG VARBIT long varchar for bit data

TINYINT smallint

SMALLINT smallint

INTEGER int

BIGINT decimal(20,0)

UNSIGNED TINYINT int

UNSIGNED SMALLINT int

UNSIGNED INTEGER decimal(11,0)

UNSIGNED BIGINT decimal(20,0)

CHAR(n) if (n < 255) char(n) else if (n <= 4000) varchar(n)
else long varchar

VARCHAR(n) if (n <= 4000) varchar(n) else long varchar

LONG VARCHAR long varchar

Appendix: Accessing Remote Data

926 SAP Sybase IQ

SAP Sybase IQ data type IBM DB2 default data type

NCHAR(n) Not supported

NVARCHAR(n) Not supported

LONG NVARCHAR Not supported

BINARY(n) if (n <= 4000) varchar(n) for bit data else long
varchar for bit data

VARBINARY(n) if (n <= 4000) varchar(n) for bit data else long
varchar for bit data

LONG BINARY long varchar for bit data

DECIMAL(prec,scale) decimal(prec,scale)

NUMERIC(prec,scale) decimal(prec,scale)

SMALLMONEY decimal(10,4)

MONEY decimal(19,4)

REAL real

DOUBLE float

FLOAT(n) float(n)

DATE date

TIME time

TIMESTAMP timestamp

TIMESTAMP WITH TIMEZONE varchar(254)

XML long varchar for bit data

ST_GEOMETRY long varchar for bit data

UNIQUEIDENTIFIER varchar(16) for bit data

Server class HANAODBC
A remote server with server class HANAODBC is an SAP HANA database server.

Notes

• The following is an example of a CREATE EXISTING TABLE statement for an SAP
HANA database server with an ODBC data source named mySAPHANA:

Appendix: Accessing Remote Data

Programming 927

CREATE EXISTING TABLE hanatable
AT 'mySAPHANA..dbo.hanatable';

Data type conversions: SAP HANA
When you execute a CREATE TABLE statement, SAP Sybase IQ automatically converts the
data types to the corresponding SAP HANA data types. The following table describes the SAP
Sybase IQ to SAP HANA data type conversions.

SAP Sybase IQ data type SAP HANA default data type

BIT TINYINT

VARBIT(n) if (n <= 5000) VARBINARY(n) else BLOB

LONG VARBIT BLOB

TINYINT TINYINT

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT BIGINT

UNSIGNED TINYINT TINYINT

UNSIGNED SMALLINT INTEGER

UNSIGNED INTEGER BIGINT

UNSIGNED BIGINT DECIMAL(20,0)

CHAR(n) if (n <= 5000) VARCHAR(n) else CLOB

VARCHAR(n if (n <= 5000) VARCHAR(n) else CLOB

LONG VARCHAR CLOB

NCHAR(n) if (n <= 5000) NVARCHAR(n) else NCLOB

NVARCHAR(n) if (n <= 5000) NVARCHAR(n) else NCLOB

LONG NVARCHAR NCLOB

BINARY(n) if (n <= 5000) VARBINARY(n) else BLOB

VARBINARY(n) if (n <= 5000) VARBINARY(n) else BLOB

LONG BINARY BLOB

DECIMAL(precision, scale) DECIMAL(precision, scale)

NUMERIC(precision, scale) DECIMAL(precision, scale)

Appendix: Accessing Remote Data

928 SAP Sybase IQ

SAP Sybase IQ data type SAP HANA default data type

SMALLMONEY DECIMAL(13,4)

MONEY DECIMAL(19,4)

REAL REAL

DOUBLE FLOAT

FLOAT(n) FLOAT

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIMEZONE VARCHAR(254)

XML BLOB

ST_GEOMETRY BLOB

UNIQUEIDENTIFIER VARBINARY(16)

Server class IQODBC
A remote server with server class IQODBC is an SAP Sybase IQ database server. No special
requirements exist for the configuration of an SAP Sybase IQ data source.

To access SAP Sybase IQ database servers that support multiple databases, create an ODBC
data source name defining a connection to each database. Execute a CREATE SERVER
statement for each of these ODBC data source names.

Server class MSACCESSODBC
Access databases are stored in a .mdb file. Using the ODBC manager, create an ODBC data
source and map it to one of these files. A new .mdb file can be created through the ODBC
manager. This database file becomes the default if you don't specify a different default when
you create a table through SAP Sybase IQ.

Assuming an ODBC data source named access, you can use any of the following statements to
access data:

• CREATE TABLE tab1 (a int, b char(10))
AT 'access...tab1';

• CREATE TABLE tab1 (a int, b char(10))
AT 'access;d:\\pcdb\\data.mdb;;tab1';

• CREATE EXISTING TABLE tab1
AT 'access;d:\\pcdb\\data.mdb;;tab1';

Access does not support the owner name qualification; leave it empty.

Appendix: Accessing Remote Data

Programming 929

Data type conversions: Microsoft Access

SAP Sybase IQ data type Microsoft Access default data type

BIT TINYINT

VARBIT(n) if (n <= 4000) BINARY(n) else IMAGE

LONG VARBIT IMAGE

TINYINT TINYINT

SMALLINT SMALLINT

INTEGER INTEGER

BIGINT DECIMAL(19,0)

UNSIGNED TINYINT TINYINT

UNSIGNED SMALLINT INTEGER

UNSIGNED INTEGER DECIMAL(11,0)

UNSIGNED BIGINT DECIMAL(20,0)

CHAR(n) if (n < 255) CHARACTER(n) else TEXT

VARCHAR(n) if (n < 255) CHARACTER(n) else TEXT

LONG VARCHAR TEXT

NCHAR(n) Not supported

NVARCHAR(n) Not supported

LONG NVARCHAR Not supported

BINARY(n) if (n <= 4000) BINARY(n) else IMAGE

VARBINARY(n) if (n <= 4000) BINARY(n) else IMAGE

LONG BINARY IMAGE

DECIMAL(precision, scale) DECIMAL(precision, scale)

NUMERIC(precision, scale) DECIMAL(precision, scale)

SMALLMONEY MONEY

MONEY MONEY

REAL REAL

Appendix: Accessing Remote Data

930 SAP Sybase IQ

SAP Sybase IQ data type Microsoft Access default data type

DOUBLE FLOAT

FLOAT(n) FLOAT

DATE DATETIME

TIME DATETIME

TIMESTAMP DATETIME

TIMESTAMP WITH TIMEZONE CHARACTER(254)

XML XML

ST_GEOMETRY IMAGE

UNIQUEIDENTIFIER BINARY(16)

Server class MSSODBC
The server class MSSODBC is used to access Microsoft SQL Server through one of its ODBC
drivers.

Notes

• Versions of Microsoft SQL Server ODBC drivers that have been used are:
• Microsoft SQL Server ODBC Driver Version 06.01.7601
• Microsoft SQL Server Native Client Version 10.00.1600

• The following is an example for Microsoft SQL Server:
CREATE SERVER mysqlserver
CLASS 'MSSODBC'
USING 'DSN=MSSODBC_cli';

CREATE EXISTING TABLE accounts
AT 'mysqlserver.master.dbo.accounts';

• The local setting of the quoted_identifier option controls the use of quoted identifiers for
Microsoft SQL Server. For example, if you set the quoted_identifier option to Off locally,
then quoted identifiers are turned off for Microsoft SQL Server.

Data type conversions: Microsoft SQL Server
When you execute a CREATE TABLE statement, SAP Sybase IQ automatically converts the
data types to the corresponding Microsoft SQL Server data types using the following data type
conversions.

SAP Sybase IQ data type Microsoft SQL Server default data
type

BIT bit

Appendix: Accessing Remote Data

Programming 931

SAP Sybase IQ data type Microsoft SQL Server default data
type

VARBIT(n) if (n <= 255) varbinary(n) else image

LONG VARBIT image

TINYINT tinyint

SMALLINT smallint

INTEGER int

BIGINT numeric(20,0)

UNSIGNED TINYINT tinyint

UNSIGNED SMALLINT int

UNSIGNED INTEGER numeric(11,0)

UNSIGNED BIGINT numeric(20,0)

CHAR(n) if (n <= 255) char(n) else text

VARCHAR(n) if (n <= 255) varchar(n) else text

LONG VARCHAR text

NCHAR(n) if (n <= 4000) nchar(n) else ntext

NVARCHAR(n) if (n <= 4000) nvarchar(n) else ntext

LONG NVARCHAR ntext

BINARY(n) if (n <= 255) binary(n) else image

VARBINARY(n) if (n <= 255) varbinary(n) else image

LONG BINARY image

DECIMAL(precision, scale) decimal(precision, scale)

NUMERIC(precision, scale) numeric(precision, scale)

SMALLMONEY smallmoney

MONEY money

REAL real

DOUBLE float

FLOAT(n) float(n)

Appendix: Accessing Remote Data

932 SAP Sybase IQ

SAP Sybase IQ data type Microsoft SQL Server default data
type

DATE datetime

TIME datetime

SMALLDATETIME smalldatetime

DATETIME datetime

TIMESTAMP datetime

TIMESTAMP WITH TIMEZONE varchar(254)

XML xml

ST_GEOMETRY image

UNIQUEIDENTIFIER binary(16)

Server class MYSQLODBC
When you execute a CREATE TABLE statement, SAP Sybase IQ automatically converts the
data types to the corresponding MySQL data types using the following data type conversions.

SAP Sybase IQ
data type

MySQL default
data type

BIT bit(1)

VARBIT(n) if (n <= 4000) varbina-
ry(n) else longblob

LONG VARBIT longblob

TINYINT tinyint unsigned

SMALLINT smallint

INTEGER int

BIGINT bigint

UNSIGNED TI-
NYINT

tinyint unsigned

UNSIGNED SMALL-
INT

int

UNSIGNED INTE-
GER

bigint

UNSIGNED BIGINT decimal(20,0)

Appendix: Accessing Remote Data

Programming 933

SAP Sybase IQ
data type

MySQL default
data type

CHAR(n) if (n < 255) char(n) else
if (n <= 4000) var-
char(n) else longtext

VARCHAR(n) if (n <= 4000) var-
char(n) else longtext

LONG VARCHAR longtext

NCHAR(n) if (n < 255) national
character(n) else if (n
<= 4000) national char-
acter varying(n) else
longtext

NVARCHAR(n) if (n <= 4000) national
character varying(n)
else longtext

LONG NVARCHAR longtext

BINARY(n) if (n <= 4000) varbina-
ry(n) else longblob

VARBINARY(n) if (n <= 4000) varbina-
ry(n) else longblob

LONG BINARY longblob

DECIMAL(precision,
scale)

decimal(precision,
scale)

NUMERIC(precision,
scale)

decimal(precision,
scale)

SMALLMONEY decimal(10,4)

MONEY decimal(19,4)

REAL real

DOUBLE float

FLOAT(n) float(n)

DATE date

TIME time

TIMESTAMP datetime

Appendix: Accessing Remote Data

934 SAP Sybase IQ

SAP Sybase IQ
data type

MySQL default
data type

TIMESTAMP WITH
TIMEZONE

varchar(254)

XML longblob

ST_GEOMETRY longblob

UNIQUEIDENTIFI-
ER

varbinary(16)

Example

Supply a connection string in the USING clause of the CREATE SERVER statement to
connect to a MySQL database.
CREATE SERVER TestMySQL
CLASS 'MYSQLODBC'
USING 'DRIVER=MySQL ODBC 5.1
Driver;DATABASE=mydatabase;SERVER=mySQLHost;UID=me;PWD=secret'

Server class ODBC
ODBC data sources that do not have their own server class use server class ODBC. You can use
any ODBC driver. Sybase certifies the following ODBC data sources:

Microsoft Excel (Microsoft 3.51.171300)
Microsoft FoxPro (Microsoft 3.51.171300)
Lotus Notes SQL

The latest versions of Microsoft ODBC drivers can be obtained through the Microsoft Data
Access Components (MDAC) distribution found at the Microsoft Download Center. The
Microsoft driver versions listed above are part of MDAC 2.0.

Microsoft Excel (Microsoft 3.51.171300)

With Excel, each Excel workbook is logically considered to be a database holding several
tables. Tables are mapped to sheets in a workbook. When you configure an ODBC data source
name in the ODBC driver manager, you specify a default workbook name associated with that
data source. However, when you execute a CREATE TABLE statement, you can override the
default and specify a workbook name in the location string. This allows you to use a single
ODBC DSN to access all of your Excel workbooks.

Create a remote server named excel that connects to the Microsoft Excel ODBC driver.
CREATE SERVER excel
CLASS 'ODBC'
USING 'DRIVER=Microsoft Excel Driver (*.xls);DBQ=d:\
\work1.xls;READONLY=0;DriverID=790'

To create a workbook named work1.xls with a sheet (table) called mywork:

Appendix: Accessing Remote Data

Programming 935

CREATE TABLE mywork (a int, b char(20))
AT 'excel;d:\\work1.xls;;mywork';

To create a second sheet (or table) execute a statement such as:
CREATE TABLE mywork2 (x float, y int)
AT 'excel;d:\\work1.xls;;mywork2';

You can import existing sheets into SAP Sybase IQ using CREATE EXISTING, under the
assumption that the first row of your sheet contains column names.
CREATE EXISTING TABLE mywork
AT'excel;d:\\work1;;mywork';

If SAP Sybase IQ reports that the table is not found, you may need to explicitly state the
column and row range you want to map to. For example:
CREATE EXISTING TABLE mywork
AT 'excel;d:\\work1;;mywork$';

Adding the $ to the sheet name indicates that the entire worksheet should be selected.

Note in the location string specified by AT that a semicolon is used instead of a period for field
separators. This is because periods occur in the file names. Excel does not support the owner
name field so leave this blank.

Deletes are not supported. Also some updates may not be possible since the Excel driver does
not support positioned updates.

Example

The following statements create a database server called TestExcel that uses an ODBC DSN to
access the Excel workbook LogFile.xlsx and import its sheet it into SAP Sybase IQ.

CREATE SERVER TestExcel
CLASS 'ODBC'
USING 'DRIVER=Microsoft Excel Driver (*.xls);DBQ=c:\\temp\
\LogFile.xlsx;READONLY=0;DriverID=790'

CREATE EXISTING TABLE MyWorkbook
AT 'TestExcel;c:\\temp\\LogFile.xlsx;;Logfile$';

SELECT * FROM MyWorkbook;

Microsoft FoxPro (Microsoft 3.51.171300)
You can store FoxPro tables together inside a single FoxPro database file (.dbc), or, you can
store each table in its own separate .dbf file. When using .dbf files, be sure the file name is
filled into the location string; otherwise the directory that SAP Sybase IQ was started in is
used.
CREATE TABLE fox1 (a int, b char(20))
AT 'foxpro;d:\\pcdb;;fox1';

This statement creates a file named d:\pcdb\fox1.dbf when you choose the Free Table
Directory option in the ODBC Driver Manager.

Appendix: Accessing Remote Data

936 SAP Sybase IQ

Lotus Notes SQL

To obtain this driver, go to the Lotus NotesSQL web site at http://www.ibm.com/
developerworks/lotus/products/notesdomino/notessql/. Read the documentation that is
included with it for an explanation of how Notes data maps to relational tables. You can easily
map SAP Sybase IQ tables to Notes forms.

Here is how to set up SAP Sybase IQ to access your Lotus Notes contacts.

• Make sure that the Lotus Notes program folder is in your path (for example, C:\Program
Files (x86)\IBM\Lotus\Notes).

• Create a 32-bit ODBC data source using the NotesSQL ODBC driver. Use the
names.nsf database for this example. The Map Special Characters option should be
turned on. For this example, the Data Source Name is my_notes_dsn.

• Create a remote data access server using Interactive SQL connected to a 32-bit database
server. Here is an example:
CREATE SERVER NotesContacts
CLASS 'ODBC'
USING 'my_notes_dsn';

• Create an external login for the Lotus Notes server. Here is an example:
CREATE EXTERNLOGIN "DBA" TO "NotesContacts"
REMOTE LOGIN 'John Doe/SYBASE' IDENTIFIED BY 'MyNotesPassword';

• Map some columns of the Person form into an SAP Sybase IQ table:
CREATE EXISTING TABLE PersonDetails
(DisplayName CHAR(254),
 DisplayMailAddress CHAR(254),
 JobTitle CHAR(254),
 CompanyName CHAR(254),
 Department CHAR(254),
 Location CHAR(254),
 OfficePhoneNumber CHAR(254))
AT 'NotesContacts...Person';

• Query the table:
SELECT * FROM PersonDetails
WHERE Location LIKE 'Waterloo%';

Server class ORAODBC
A remote server with server class ORAODBC is an Oracle Database version 8.0 or later.

Notes

• Sybase certifies the use of the Oracle Database version 8.0.03 ODBC driver. Configure
and test your ODBC configuration using the instructions for that product.

• The following is an example of a CREATE EXISTING TABLE statement for an Oracle
Database server named myora:

Appendix: Accessing Remote Data

Programming 937

http://www.ibm.com/developerworks/lotus/products/notesdomino/notessql/
http://www.ibm.com/developerworks/lotus/products/notesdomino/notessql/

CREATE EXISTING TABLE employees
AT 'myora.database.owner.employees';

Data type conversions: Oracle Database
When you execute a CREATE TABLE statement, SAP Sybase IQ automatically converts the
data types to the corresponding Oracle Database data types using the following data type
conversions.

SAP Sybase IQ
data type

Oracle Database
data type

BIT number(1,0)

VARBIT(n) if (n <= 255) raw(n)
else long raw

LONG VARBIT long raw

TINYINT number(3,0)

SMALLINT number(5,0)

INTEGER number(11,0)

BIGINT number(20,0)

UNSIGNED TI-
NYINT

number(3,0)

UNSIGNED SMALL-
INT

number(5,0)

UNSIGNED INTE-
GER

number(11,0)

UNSIGNED BIGINT number(20,0)

CHAR(n) if (n <= 255) char(n)
else long

VARCHAR(n) if (n <= 2000) var-
char(n) else long

LONG VARCHAR long

NCHAR(n) if (n <= 255) nchar(n)
else nclob

NVARCHAR(n) if (n <= 2000) nvarch-
ar(n) else nclob

LONG NVARCHAR nclob

Appendix: Accessing Remote Data

938 SAP Sybase IQ

SAP Sybase IQ
data type

Oracle Database
data type

BINARY(n) if (n > 255) long raw
else raw(n)

VARBINARY(n) if (n > 255) long raw
else raw(n)

LONG BINARY long raw

DECIMAL(precision,
scale)

number(precision,
scale)

NUMERIC(precision,
scale)

number(precision,
scale)

SMALLMONEY numeric(13,4)

MONEY number(19,4)

REAL real

DOUBLE float

FLOAT(n) float

DATE date

TIME date

TIMESTAMP date

TIMESTAMP WITH
TIMEZONE

varchar(254)

XML long raw

ST_GEOMETRY long raw

UNIQUEIDENTIFI-
ER

raw(16)

Example

Supply a connection string in the USING clause of the CREATE SERVER statement to
connect to an Oracle database.
CREATE SERVER TestOracle
CLASS 'ORAODBC'
USING 'DRIVER=Oracle ODBC
Driver;DBQ=mydatabase;UID=username;PWD=password'

Appendix: Accessing Remote Data

Programming 939

Remote Servers
Before remote objects can be mapped to a local proxy table, define the remote server where the
remote object is located.

Create Remote Servers
Use the CREATE SERVER statement to set up remote server definitions.

For some systems, including SAP Sybase IQ and SQL Anywhere, each data source describes a
database, so a separate remote server definition is needed for each database.

See also
• CREATE SERVER Statement on page 966

Before You Access Remote Oracle Data
To access remote Oracle data, configure your system with the prerequisite software.

1. Check for Prerequisites

Check your system for the software components required to access Oracle data using
Component Integration Services (CIS).

2. Create an Oracle Data Source Name

Use the iqdsn utility to create an entry in the .odbc.ini file.

3. Set Environment Variables for Oracle Data Access

Before starting the SAP Sybase IQ server to access Oracle data, you must set certain
environment variables.

4. Start the SAP Sybase IQ Server

Start the SAP Sybase IQ server that you will use as a front end to access Oracle data.

Check for Prerequisites
Check your system for the software components required to access Oracle data using
Component Integration Services (CIS).

Prerequisites are:

• An Oracle database
• Oracle client software (basic package), including a network/admin/

tnsnames.ora file.

• A platform-specific driver (installed with SAP Sybase IQ):

Platform File

AIX 64 $IQDIR16/libxx/libdbor-
aodbc12_r.so

Appendix: Accessing Remote Data

940 SAP Sybase IQ

Platform File

HPiUX $IQDIR16/libxx/libdbor-
aodbc12_r.so.1

Linux64 $IQDIR16/libxx/libdbor-
aodbc12_r.so.1

SunOS64 $IQDIR16/libxx/libdbor-
aodbc12_r.so.1

WinAMD64 %$IQDIR16%\bin64\dbor-
aodbc12.dll

Create an Oracle Data Source Name
Use the iqdsn utility to create an entry in the .odbc.ini file.

1. Display Oracle connection keywords:

% iqdsn -cl -or
Driver
UserID UID
Password PWD
SID SID
Encrypted Password ENP
ProcResults PROC
ArraySize SIZE
EnableMSDTC EDTC
ProcOwner POWNER

2. Create an .odbc.ini file entry:

% iqdsn -or -y -w "MyOra2" -c
"UID=system;PWD=manager;SID=QAORA"
[MyOra2]
Driver=/Sybase/IQ-16_0/lib64/libdboraodbc12_r.so
UserID=system
Password=manager
SID=QAORA

Set Environment Variables for Oracle Data Access
Before starting the SAP Sybase IQ server to access Oracle data, you must set certain
environment variables.

Set these variables for Oracle access:

• ORACLE_HOME
setenv ORACLE_HOME

• ODBCINI

Appendix: Accessing Remote Data

Programming 941

setenv ODBCINI <location of .odbc.ini file with Oracle
entry>

• The library path variable for your platform

Platform Command

AIX setenv LIBPATH <path to
platform-specific Oracle
client directory> $LIBPATH

Other UNIX platforms setenv LD_LIBRARY_PATH <path
to platform-specific Oracle
client directory;$LD_LI-
BRARY_PATH

Start the SAP Sybase IQ Server
Start the SAP Sybase IQ server that you will use as a front end to access Oracle data.

start_iq -n myserver

Connecting to an Oracle Database
Connect SAP Sybase IQ to remote Oracle data via Component Integration Services.

Prerequisites

Log in to dbisql or iqisql.

Task

1. Create a server using the data source name from the .odbc.ini file:

CREATE SERVER myora CLASS 'oraodbc' USING 'MyOra2'
2. Create an external login:

CREATE EXTERNLOGIN DBA TO myora REMOTE LOGIN system
IDENTIFIED BY manager

3. Confirm the connection:

sp_remote_tables myora
4. Create a table of Oracle data:

CREATE EXISTING TABLE my_oratable at
'myora..system.oratable'

5. Verify that the connection works by selecting data:

SELECT * FROM my_oratable

Appendix: Accessing Remote Data

942 SAP Sybase IQ

Troubleshoot Oracle Database Access
If Oracle data access returns errors, check the appropriate configuration component.

1. Error Loading Driver

A driver load error may indicate a problem with an environment variable or the
configuration information file.

2. Error Resolving Connect Identifier

An error resolving the connect identifier may be a problem with the Oracle definition, an
environment variable, or the configuration information file.

Error Loading Driver
A driver load error may indicate a problem with an environment variable or the configuration
information file.

If you receive a Can't load driver error:

• Check that the .odbc.ini entry lists the correct driver.

• Check that the Oracle client software is added to the LD_LIBRARY_PATH definition.

Error Resolving Connect Identifier
An error resolving the connect identifier may be a problem with the Oracle definition, an
environment variable, or the configuration information file.

If you see the error ORA-12154: TNS:could not resolve the connect
identifier:

• Check that the Oracle definition is correct.
• Check that ORACLE_HOME is set correctly.
• Check that the gateway system identifier (SID) entered in .odbc.ini is correct.

Loading Remote Data Without Native Classes
Load data by using DirectConnect™.

Native classes use DirectConnect to access remote data sources:

• On 64-bit UNIX platforms
• On 32-bit platforms where no ODBC driver is available (for example, Microsoft SQL

Server)

Loading MS SQL Server Data into an SAP Sybase IQ Server on UNIX
This remote data example loads MS SQL Server data into an SAP Sybase IQ server on UNIX.

For this example, assume that:

Appendix: Accessing Remote Data

Programming 943

• An Enterprise Connect Data Access (ECDA) server named mssql exists on UNIX host
myhostname, port 12530.

• The data is to be retrieved from an MS SQL server named 2000 on host myhostname, port
1433.

1. Using DirectConnect documentation, configure DirectConnect for your data source.

2. Make sure that ECDA server (mssql) is listed in the SAP Sybase IQ interfaces file:

mssql
master tcp ether myhostname 12530
query tcp ether myhostname 12530

3. Add a new user, using the user ID and password for server mssql:

isql -Udba -Psql -Stst_iqdemo
grant connect to chill identified by chill
grant dba to chill

4. Log in as the new user to create a local table on SAP Sybase IQ:

isql -Uchill -Pchill -Stst_iqdemo
create table billing(status char(1), name varchar(20), telno int)

5. Insert data:

insert into billing location ‘mssql.pubs’ { select * from
billing }

Querying Data Without Native Classes
Follow these guidelines to query data without native classes.

1. Configure ASE/CIS with a remote server and proxy to connect via DirectConnect. For
example, use DirectConnect for Oracle to the Oracle server.

2. Configure SAP Sybase IQ with a remote server using the ASEJDBC class to the Adaptive
Server server. (The ASEODBC class is unavailable because there is no 64-bit Unix ODBC
driver for Adaptive Server.)

3. Use the CREATE EXISTING TABLE statement to create proxy tables pointing to the proxy
tables in ASE which in turn point to Oracle.

Querying Remote Data Using DirectConnect and Proxy Table from UNIX
Query data using DirectConnect.

This example shows how to access MS SQL Server data. For this example, assume the
following:

• An SAP Sybase IQ server on host myhostname, port 7594.
• An Adaptive Server server on host myhostname, port 4101.
• An Enterprise Connect Data Access (ECDA) server exists named mssql on host

myhostname, port 12530.
• The data is to be retrieved from an MS SQL server named 2000 on host myhostname, port

1433.

Appendix: Accessing Remote Data

944 SAP Sybase IQ

Setting Up Adaptive Server to Query MS SQL Server
Set up Adaptive Server and Component Integration Services (CIS) to query MS SQL Server
through DirectConnect.

For this example, assume that the server name is jones_1207.

1. Add an entry to the Adaptive Server interfaces file to connect to mssql:

mssql
master tcp ether hostname 12530
query tcp ether hostname 12530

2. Enable CIS and remote procedure call handling from the ASE server. For example, if CIS
is already enabled as the default:

sp_configure 'enable cis'
Parameter Name Default Memory Used Config Value Run Value
enable cis 1 0
1 1
(1 row affected)
(return status=0)
sp_configure 'cis rpc handling', 1
Parameter Name Default Memory Used Config Value Run Value
enable cis 0 0
0 1
(1 row affected)
Configuration option changed. The SQL Server need not be restarted
since the option is dynamic.

3. Add the DirectConnect server to the Adaptive Server server’s SYSSERVERS system
table.

sp_addserver mssql, direct_connect, mssql
Adding server 'mssql', physical name 'mssql'
Server added.
(Return status=0)

4. Create the user in Adaptive Server that will be used in SAP Sybase IQ to connect to
Adaptive Server.
sp_addlogin tst, tsttst
Password correctly set.
Account unlocked. New login created.
(return status = 0)
grant role sa_role to tst
use tst_db
sp_adduser tst

Appendix: Accessing Remote Data

Programming 945

New user added.
(return status = 0)

5. Add an external login from the master database:
use master
sp_addexternlogin mssql, tst, chill, chill
User 'tst' will be known as 'chill' in remote server 'mssql'.
(return status = 0)

6. Create an ASE proxy table as the added user from the desired database:
isql -Utst -Ttsttst
use test_db
create proxy_table billing_tst at 'mssql.pubs..billing'
select * from billing_tst
status name telno
------ ----------- -----
D BOTANICALLY 1
B BOTANICALL 2
(2 rows affected)

Setting up SAP Sybase IQ to Connect to the Adaptive Server Server
Follow these steps to query Adaptive Server data.

1. Add an entry to the SAP Sybase IQ interfaces file:

jones_1207
master tcp ether jones 4101
query tcp ether jones 4101

2. Create the user to connect to Adaptive Server:

GRANT CONNECT TO tst IDENTIFIED BY tsttst
GRANT dba TO tst

3. Log in as the added user to create the 'asejdbc' server class and add external login:

isql -Utst -Ptsttst -Stst_iqdemo
CREATE SERVER jones_1207 CLASS 'asejdbc' USING 'jones:4101/tst_db'
CREATE EXISTING TABLE billing_iq AT
'jones_1207.tst_db..billing_txt'
SELECT * from billing_iq
status name telno
------ ----------- -----
D BOTANICALLY 1
B BOTANICALL 2
(2 rows affected)

Delete Remote Servers
Use the DROP SERVER statement to delete a remote server from the ISYSSERVER system
table.

All remote tables defined on that server must already be dropped for this action to succeed.

Appendix: Accessing Remote Data

946 SAP Sybase IQ

Example
This statement drops the server named RemoteSA:
DROP SERVER RemoteSA;

See also
• DROP SERVER Statement on page 985

Alter Remote Servers
Use the ALTER SERVER statement to modify the attributes of a server. These changes do not
take effect until the next connection to the remote server.

Execute an ALTER SERVER statement.

The following statement changes the server class of the server named RemoteASE to aseodbc.
In this example, the Data Source Name for the server is RemoteASE
ALTER SERVER RemoteASE
CLASS 'aseodbc';

See also
• ALTER SERVER Statement on page 961

Listing the tables on a remote server (SQL)
You can view a limited or comprehensive list of all the tables on a remote server using a system
procedure.

Prerequisites

None.

Task
Call the sp_remote_tables system procedure to return a list of the tables on a remote server.

If you specify @table_name or @table_owner, the list of tables is limited to only those that
match.

A list of all the tables, or a limited list of tables, is returned.

Remote server capabilities
The sp_servercaps system procedure displays information about a remote server's
capabilities. SAP Sybase IQ uses this capability information to determine how much of a SQL
statement can be passed to a remote server.

You can also view capability information for remote servers by querying the
SYSCAPABILITY and SYSCAPABILITYNAME system views. These system views are
empty until after SAP Sybase IQ first connects to a remote server.

Appendix: Accessing Remote Data

Programming 947

When using the sp_servercaps system procedure, the server-name specified must be the same
server-name used in the CREATE SERVER statement.

Execute the stored procedure sp_servercaps as follows:
CALL sp_servercaps('server-name');

External Logins
SAP Sybase IQ uses the names and passwords of its clients when it connects to a remote server
on behalf of those clients. However, this behavior can be overridden by creating external
logins.

External logins are alternate login names and passwords that are used when communicating
with a remote server.

When SAP Sybase IQ connects to the remote server, INSERT...LOCATION uses the remote
login for the user ID of the current connection, if a remote login has been created with CREATE
EXTERNLOGIN and the remote server has been defined with a CREATE SERVER statement.

If the remote server is not defined, or a remote login has not been created for the user ID of the
current connection, SAP Sybase IQ connects using the user ID and password of the current
connection.

Note: If you rely on the default user ID and password, and a user changes the password, you
must stop and restart the server before the new password takes effect on the remote server.
Remote logins created with CREATE EXTERNLOGIN are unaffected by changes to the
password for the default user ID.

If you use an integrated login, the SAP Sybase IQ name and password of the SAP Sybase IQ
client is the same as the database login ID and password that the SAP Sybase IQ userid maps to
in syslogins.

Proxy tables
Location transparency of remote data is enabled by creating a local proxy table that maps to
the remote object. You can use a proxy table to access any object (including tables, views, and
materialized views) that the remote database exports as a candidate for a proxy table. Use one
of the following statements to create a proxy table:

• If the table already exists at the remote storage location, use the CREATE EXISTING
TABLE statement. This statement defines the proxy table for an existing table on the
remote server.

• If the table does not exist at the remote storage location, use the CREATE TABLE
statement. This statement creates a new table on the remote server, and also defines the
proxy table for that table.

Note: You cannot modify data in a proxy table when you are within a savepoint.

When a trigger is fired on a proxy table, the permissions used are those of the user who caused
the trigger to fire, not those of the proxy table owner.

Appendix: Accessing Remote Data

948 SAP Sybase IQ

Proxy table locations
The AT keyword is used with both the CREATE TABLE and the CREATE EXISTING
TABLE statements to define the location of an existing object. This location string has four
components, each separated by either a period or a semicolon. The semicolon delimiter allows
file names and extensions to be used in the database and owner fields.

The syntax of the AT clause is:
... AT 'server.database.owner.table-name'

• server – This is the name by which the server is known in the current database, as specified
in the CREATE SERVER statement. This field is mandatory for all remote data sources.

• database – The meaning of the database field depends on the data source. Sometimes this
field does not apply and should be left empty. The delimiter is still required, however.

If the data source is Adaptive Server Enterprise, database specifies the database where the
table exists. For example master or pubs2.

If the data source is SAP Sybase IQ, this field does not apply; leave it empty.

If the data source is Excel, Lotus Notes, or Access, you must include the name of the file
containing the table. If the file name includes a period, use the semicolon delimiter.

• owner – If the database supports the concept of ownership, this field represents the owner
name. This field is only required when several owners have tables with the same name.

• table-name – This field specifies the name of the table. For an Excel spreadsheet, this is
the name of the sheet in the workbook. If table-name is left empty, the remote table name is
assumed to be the same as the local proxy table name.

Examples

The following examples illustrate the use of location strings:

• SAP Sybase IQ:

'RemoteSA..GROUPO.Employees'

• Adaptive Server Enterprise:

'RemoteASE.pubs2.dbo.publishers'

• Excel:

'RemoteExcel;d:\pcdb\quarter3.xls;;sheet1$'

• Access:

'RemoteAccessDB;\\server1\production\inventory.mdb;;parts'

Appendix: Accessing Remote Data

Programming 949

Creating proxy tables (SQL)
You can create proxy tables in Interactive SQL using either the CREATE TABLE or CREATE
EXISTING TABLE statement.

Prerequisites

You must have the CREATE PROXY TABLE system privilege to create proxy tables owned
by you. You must have the CREATE ANY TABLE or CREATE ANY OBJECT system
privilege to create proxy tables owned by others.

Task

The CREATE TABLE statement creates a new table on the remote server, and defines the
proxy table for that table when you use the AT clause. Columns are defined using SAP Sybase
IQ data types. SAP Sybase IQ automatically converts the data into the remote server's native
types.

If you use the CREATE TABLE statement to create both a local and remote table, and then
subsequently use the DROP TABLE statement to drop the proxy table, the remote table is also
dropped. You can, however, use the DROP TABLE statement to drop a proxy table created
using the CREATE EXISTING TABLE statement. In this case, the remote table is not
dropped.

The CREATE EXISTING TABLE statement creates a proxy table that maps to an existing
table on the remote server. SAP Sybase IQ derives the column attributes and index information
from the object at the remote location.

1. Connect to the host database.

2. Execute a CREATE EXISTING TABLE statement.

The proxy table is created.

Note: Before using a new proxy table on a multiplex secondary server, disconnect and
reconnect to the server.

See also
• CREATE EXISTING TABLE Statement on page 964

• CREATE TABLE Statement on page 968

List the columns on a remote table
Before you execute a CREATE EXISTING TABLE statement, it may be helpful to get a list of
the columns that are available on a remote table. The sp_remote_columns system procedure

Appendix: Accessing Remote Data

950 SAP Sybase IQ

produces a list of the columns on a remote table and a description of those data types. The
following is the syntax for the sp_remote_columns system procedure:
CALL sp_remote_columns(@server_name, @table_name [, @table_owner [,
@table_qualifier]])

If a table name, owner, or database name is given, the list of columns is limited to only those
that match.

For example, the following returns a list of the columns in the sysobjects table in the
production database on an Adaptive Server Enterprise server named asetest:
CALL sp_remote_columns('asetest, 'sysobjects', null, 'production');

Joins between remote tables
The following figure illustrates proxy tables on a local database server that are mapped to the
remote tables Employees and Departments of the SAP Sybase IQ sample database on the
remote server RemoteSA.

You can use joins between tables on different SAP Sybase IQ databases. The following
example is a simple case using just one database to illustrate the principles.

Example

Perform a join between two remote tables:

1. Create a new database named empty.db.

This database holds no data. It is used only to define the remote objects, and to access the
SAP Sybase IQ sample database.

2. Start a database server running the empty.db. You can do this by running the following
command:
iqsrv16 empty

3. From Interactive SQL, connect to empty.db as user DBA.

4. In the new database, create a remote server named RemoteSA. Its server class is SAODBC,
and the connection string refers to the SAP Sybase IQ 16 Demo ODBC data source:

Appendix: Accessing Remote Data

Programming 951

CREATE SERVER RemoteSA
CLASS 'SAODBC'
USING 'SAP Sybase IQ 16 Demo';

5. In this example, you use the same user ID and password on the remote database as on the
local database, so no external logins are needed.
Sometimes you must provide a user ID and password when connecting to the database at
the remote server. In the new database, you could create an external login to the remote
server. For simplicity in this example, the local login name and the remote user ID are both
DBA:
CREATE EXTERNLOGIN DBA
TO RemoteSA
REMOTE LOGIN DBA
IDENTIFIED BY sql;

6. Define the p_Employees proxy table:
CREATE EXISTING TABLE p_Employees
AT 'RemoteSA..GROUPO.Employees';

7. Define the p_Departments proxy table:
CREATE EXISTING TABLE p_Departments
AT 'RemoteSA..GROUPO.Departments';

8. Use the proxy tables in the SELECT statement to perform the join.
SELECT GivenName, Surname, DepartmentName
FROM p_Employees JOIN p_Departments
ON p_Employees.DepartmentID = p_Departments.DepartmentID
ORDER BY Surname;

Joins between tables from multiple local databases
An SAP Sybase IQ server may have several local databases running at one time. By defining
tables in other local SAP Sybase IQ databases as remote tables, you can perform cross-
database joins.

Example

Suppose you are using database db1, and you want to access data in tables in database db2.
You need to set up proxy table definitions that point to the tables in database db2. For example,
on an SAP Sybase IQ server named RemoteSA, you might have three databases available:
db1, db2, and db3.

1. If you are using ODBC, create an ODBC data source name for each database you will be
accessing.

2. Connect to the database from which you will be performing the join. For example, connect
to db1.

3. Perform a CREATE SERVER statement for each other local database you will be
accessing. This sets up a loopback connection to your SAP Sybase IQ server.
CREATE SERVER remote_db2
CLASS 'SAODBC'
USING 'RemoteSA_db2';
CREATE SERVER remote_db3

Appendix: Accessing Remote Data

952 SAP Sybase IQ

CLASS 'SAODBC'
USING 'RemoteSA_db3';

4. Create proxy table definitions by executing CREATE EXISTING TABLE statements for
the tables in the other databases you want to access.
CREATE EXISTING TABLE Employees
AT 'remote_db2...Employees';

Native statements and remote servers
Use the FORWARD TO statement to send one or more statements to the remote server in its
native syntax. This statement can be used in two ways:

• To send a statement to a remote server.
• To place SAP Sybase IQ into passthrough mode for sending a series of statements to a

remote server.

The FORWARD TO statement can be used to verify that a server is configured correctly. If you
send a statement to the remote server and SAP Sybase IQ does not return an error message, the
remote server is configured correctly.

The FORWARD TO statement cannot be used within procedures or batches.

If a connection cannot be made to the specified server, a message is returned to the user. If a
connection is made, any results are converted into a form that can be recognized by the client
program.

Example 1

The following statement verifies connectivity to the server named RemoteASE by selecting
the version string:
FORWARD TO RemoteASE {SELECT @@version};

Example 2

The following statements show a passthrough session with the server named RemoteASE:
FORWARD TO RemoteASE;
 SELECT * FROM titles;
 SELECT * FROM authors;
FORWARD TO;

Remote Procedure Calls (RPCs)
SAP Sybase IQ users can issue procedure calls to remote servers that support the feature.

SAP Sybase IQ, SQL Anywhere, and Adaptive Server, as well as Oracle and DB2, support this
feature. Issuing a remote procedure call is similar to using a local procedure call.

Appendix: Accessing Remote Data

Programming 953

Creating Remote Procedures
Administrators can create remote procedures in Interactive SQL.

Prerequisites

You must have the MANAGE REPLICATION system privilege.

Task

If a remote procedure can return a result set, even if it does not always return one, then the local
procedure definition must contain a RESULT clause.

1. Connect to the host database.

2. Execute a statement to define the procedure. For example:
CREATE PROCEDURE RemoteWho()
AT 'bostonase.master.dbo.sp_who'

This example specifies a parameter when calling a remote procedure:
CREATE PROCEDURE RemoteUser (IN username CHAR(30))
AT 'bostonase.master.dbo.sp_helpuser';
CALL RemoteUser('joe');

Remote Transactions
Transaction management involving remote servers uses a two-phase commit protocol.

SAP Sybase IQ implements a strategy that ensures transaction integrity for most scenarios.

Remote transaction management
The method for managing transactions involving remote servers uses a two-phase commit
protocol. SAP Sybase IQ implements a strategy that ensures transaction integrity for most
scenarios. However, when more than one remote server is invoked in a transaction, there is still
a chance that a distributed unit of work will be left in an undetermined state. Even though
two-phase commit protocol is used, no recovery process is included.

The general logic for managing a user transaction is as follows:

1. SAP Sybase IQ prefaces work to a remote server with a BEGIN TRANSACTION
notification.

2. When the transaction is ready to be committed, SAP Sybase IQ sends a PREPARE
TRANSACTION notification to each remote server that has been part of the transaction.
This ensures that the remote server is ready to commit the transaction.

3. If a PREPARE TRANSACTION request fails, all remote servers are instructed to roll back
the current transaction.

Appendix: Accessing Remote Data

954 SAP Sybase IQ

If all PREPARE TRANSACTION requests are successful, the server sends a COMMIT
TRANSACTION request to each remote server involved with the transaction.

Any statement preceded by BEGIN TRANSACTION can begin a transaction. Other
statements are sent to a remote server to be executed as a single, remote unit of work.

Remote Transaction Restrictions
Remote transaction management has savepoints and nested statement restrictions.

Restrictions on transaction management include:

• Savepoints are not propagated to remote servers.
• If nested BEGIN TRANSACTION and COMMIT TRANSACTION statements are included in

a transaction that involves remote servers, only the outermost set of statements is
processed. The inconsistent set, containing the BEGIN TRANSACTION and COMMIT
TRANSACTION statements, is not transmitted to remote servers.

Internal Operations
This section describes the underlying steps that SAP Sybase IQ performs on remote servers on
behalf of client applications.

Query Parsing
When a statement is received from a client, the database server parses it. The database server
raises an error if the statement is not a valid SQL Anywhere SQL statement.

Query Normalization
In query normalization, referenced objects are verified and data type compatibility is checked.

For example, consider this query:

SELECT *
FROM t1
WHERE c1 = 10

The query normalization stage verifies that table t1 with a column c1 exists in the system
tables. It also verifies that the data type of column c1 is compatible with the value 10. If the
column's data type is DATETIME, for example, this statement is rejected.

Query preprocessing
Query preprocessing prepares the query for optimization. It may change the representation of
a statement so that the SQL statement that SAP Sybase IQ generates for passing to a remote

Appendix: Accessing Remote Data

Programming 955

server is syntactically different from the original statement, even though it is semantically
equivalent.

Preprocessing performs view expansion so that a query can operate on tables referenced by the
view. Expressions may be reordered and subqueries may be transformed to improve
processing efficiency. For example, some subqueries may be converted into joins.

Complete passthrough of the statement
For efficiency, SAP Sybase IQ passes off as much of the statement as possible to the remote
server. Often, this is the complete statement originally given to SAP Sybase IQ.

SAP Sybase IQ hands off the complete statement when:

• Every table in the statement resides on the same remote server.
• The remote server can process all of the syntax in the statement.

In rare conditions, it may actually be more efficient to let SAP Sybase IQ do some of the work
instead of the remote server doing it. For example, SAP Sybase IQ may have a better sorting
algorithm. In this case, you may consider altering the capabilities of a remote server using the
ALTER SERVER statement.

Partial passthrough of the statement
If a statement contains references to multiple servers, or uses SQL features not supported by a
remote server, the query is decomposed into simpler parts.

SELECT
SELECT statements are broken down by removing portions that cannot be passed on and
letting SAP Sybase IQ perform the work. For example, suppose a remote server cannot
process the ATAN2 function in the following statement:
SELECT a,b,c
WHERE ATAN2(b, 10) > 3
AND c = 10;

The statement sent to the remote server would be converted to:
SELECT a,b,c WHERE c = 10;

Then, SAP Sybase IQ locally applies WHERE ATAN2(b, 10) > 3 to the intermediate
result set.

Joins
When a statement contains joins between tables in multiple locations, IQ will attempt to push
joins of collocated tables to the server on which they reside. The results of that join will then be
joined by IQ with results from other remote tables or local tables. IQ will always prefer to push
as much join work as is possible to remote servers. When IQ joins remote tables with local IQ
tables, IQ may choose to use any join algorithm it supports.

Appendix: Accessing Remote Data

956 SAP Sybase IQ

The choice of algorithm is based on cost estimates. These algorithms can include nested loop,
hash, or sort-merge joins.

When a nested loop join is chosen between an IQ and a remote table, every effort is made to
make the remote table the outermost table in the join. This is due to the high cost of network
I/O that makes look-ups against a remote table usually much higher than a local table.

UPDATE and DELETE
When a qualifying row is found, if SAP Sybase IQ cannot pass off an UPDATE or DELETE
statement entirely to a remote server, it must change the statement into a table scan containing
as much of the original WHERE clause as possible, followed by a positioned UPDATE or
DELETE statement that specifies WHERE CURRENT OF cursor-name.

For example, when the function ATAN2 is not supported by a remote server:
UPDATE t1
SET a = atan2(b, 10)
WHERE b > 5;

Would be converted to the following:
SELECT a,b
FROM t1
WHERE b > 5;

Each time a row is found, SAP Sybase IQ would calculate the new value of a and execute:
UPDATE t1
SET a = 'new value'
WHERE CURRENT OF CURSOR;

If a already has a value that equals the new value, a positioned UPDATE would not be
necessary, and would not be sent remotely.

To process an UPDATE or DELETE statement that requires a table scan, the remote data
source must support the ability to perform a positioned UPDATE or DELETE (WHERE
CURRENT OF cursor-name). Some data sources do not support this capability.

Note: Temporary tables cannot be updated

An UPDATE or DELETE cannot be performed if an intermediate temporary table is required.
This occurs in queries with ORDER BY and some queries with subqueries.

Remote Data Access Troubleshooting
This section provides some suggestions for troubleshooting access to remote servers.

Appendix: Accessing Remote Data

Programming 957

Features not supported for remote data
The following SAP Sybase IQ features are not supported on remote data:

• ALTER TABLE statement on remote tables.
• triggers defined on proxy tables.
• foreign keys that refer to remote tables.
• READTEXT, WRITETEXT, and TEXTPTR functions.
• positioned UPDATE and DELETE statements.
• UPDATE and DELETE statements requiring an intermediate temporary table.
• backward scrolling on cursors opened against remote data. Fetch statements must be

NEXT or RELATIVE 1.
• calls to functions that contain an expression that references a proxy table.
• If a column on a remote table has a name that is a keyword on the remote server, you cannot

access data in that column. You can execute a CREATE EXISTING TABLE statement,
and import the definition but you cannot select that column.

Case sensitivity
The case sensitivity setting of your SAP Sybase IQ database should match the settings used by
any remote servers accessed.

SAP Sybase IQ databases are created case insensitive by default. With this configuration,
unpredictable results may occur when selecting from a case-sensitive database. Different
results will occur depending on whether ORDER BY or string comparisons are pushed off to a
remote server, or evaluated by the local SAP Sybase IQ server.

Connectivity tests
Take the following steps to ensure that you can connect to a remote server:

• Make sure that you can connect to a remote server using a client tool such as Interactive
SQL before configuring SAP Sybase IQ.

• Perform a simple passthrough statement to a remote server to check your connectivity and
remote login configuration. For example:
FORWARD TO RemoteSA {SELECT @@version};

• Turn on remote tracing for a trace of the interactions with remote servers. For example:
SET OPTION cis_option = 7;

Once you have turned on remote tracing, the tracing information appears in the database
server messages window. You can log this output to a file by specifying the -o server option
when you start the database server.

Appendix: Accessing Remote Data

958 SAP Sybase IQ

Remote data access connections via ODBC
If you access remote databases via ODBC, the connection to the remote server is given a name.
You can use the name to drop the connection to cancel a remote request.

The connections are named ASACIS_conn-name, where conn-name is the connection ID of
the local connection. The connection ID can be obtained from the sa_conn_info stored
procedure.

Remote data access on multiplex servers
When you access a new proxy server on a secondary server, a timing problem may cause
emergency server shutdown.

If emergency server shutdown occurs, reconnect to the server, or wait for some time and start a
new transaction before trying to use the new proxy table.

Appendix: Accessing Remote Data

Programming 959

Appendix: Accessing Remote Data

960 SAP Sybase IQ

Appendix: SQL Reference

Reference material for the SQL statements used in tasks in this document.

ALTER SERVER Statement
Modifies the attributes of a remote server. Changes made by ALTER SERVER do not take
effect until the next connection to the remote server.

Quick Links:

Go to Parameters on page 961

Go to Examples on page 963

Go to Usage on page 963

Go to Standards on page 963

Go to Permissions on page 963

Syntax
ALTER SERVER server-name
 [CLASS 'server-class']
 [USING 'connection-info']
 [CAPABILITY 'cap-name' { ON | OFF }]
 [CONNECTION CLOSE [CURRENT | ALL | connection-id]]

server-class - (back to Syntax)
 { ASAJDBC
 | ASEJDBC
 | SAODBC
 | ASEODBC
 | DB2ODBC
 | MSSODBC
 | ORAODBC
 | ODBC }

connection-info - (back to Syntax)
 { machine-name:port-number [/dbname] | data-source-name }

Parameters

(back to top) on page 961

• cap-name – the name of a server capability

• CLASS – changes the server class.

Appendix: SQL Reference

Programming 961

• USING – if a JDBC-based server class is used, the USING clause is hostname:port-
number [/dbname] where:

• hostname – the machine on which the remote server runs.
• portnumber – the TCP/IP port number on which the remote server listens. The default

port number for SAP Sybase IQ and SAP Sybase SQL Anywhere® is 2638.
• dbname – for SQL Anywhere remote servers, if you do not specify a dbname, the

default database is used. For Adaptive Server, the default is the master database, and an
alternative to using dbname is to another database by some other means (for example,
in the FORWARD TO statement).

If an ODBC-based server class is used, the USING clause is the data-source-name, which
is the ODBC Data Source Name.

• CAPABILITY – turns a server capability ON or OFF. Server capabilities are stored in the
system table SYSCAPABILITY. The names of these capabilities are stored in the system
table SYSCAPABILITYNAME. The SYSCAPABILITY table contains no entries for a
remote server until the first connection is made to that server. At the first connection, SAP
Sybase IQ interrogates the server about its capabilities and then populates
SYSCAPABILITY. For subsequent connections, the server’s capabilities are obtained
from this table.

In general, you need not alter a server’s capabilities. It might be necessary to alter
capabilities of a generic server of class ODBC.

• CONNECTION CLOSE – when a user creates a connection to a remote server, the
remote connection is not closed until the user disconnects from the local database. The
CONNECTION CLOSE clause allows you to explicitly close connections to a remote
server. You may find this useful when a remote connection becomes inactive or is no longer
needed.

These SQL statements are equivalent and close the current connection to the remote
server:

ALTER SERVER server-name CONNECTION CLOSE
ALTER SERVER server-name CONNECTION CLOSE CURRENT

You can close both ODBC and JDBC connections to a remote server using this syntax. You
do not need the SERVER OPERATOR system privilege to execute either of these
statements.

You can also disconnect a specific remote ODBC connection by specifying a connection
ID, or disconnect all remote ODBC connections by specifying the ALL keyword. If you
attempt to close a JDBC connection by specifying the connection ID or the ALL keyword,
an error occurs. When the connection identified by connection-id is not the current local
connection, the user must have the SERVER OPERATOR system privilege to be able to
close the connection.

Appendix: SQL Reference

962 SAP Sybase IQ

Examples

(back to top) on page 961

• Example 1 – changes the server class of the Adaptive Server server named ase_prod so
its connection to SAP Sybase IQ is ODBC-based. The Data Source Name is
ase_prod.

ALTER SERVER ase_prod
CLASS 'ASEODBC'
USING 'ase_prod'

• Example 2 – changes a capability of server infodc:

ALTER SERVER infodc
CAPABILITY 'insert select' OFF

• Example 3 – closes all connections to the remote server named rem_test:

ALTER SERVER rem_test
CONNECTION CLOSE ALL

• Example 4 – closes the connection to the remote server named rem_test that has the
connection ID 142536:

ALTER SERVER rem_test
CONNECTION CLOSE 142536

Usage

(back to top) on page 961

Side effects:

• Automatic commit

Standards

(back to top) on page 961

• SQL—Vendor extension to ISO/ANSI SQL grammar.
• SAP Sybase Database product—Supported by Open Client/Open Server.

Permissions

(back to top) on page 961

Requires the SERVER OPERATOR system privilege.

Appendix: SQL Reference

Programming 963

CREATE EXISTING TABLE Statement
Creates a new proxy table that represents an existing table on a remote server.

Quick Links:

Go to Parameters on page 964

Go to Examples on page 965

Go to Usage on page 965

Go to Standards on page 966

Go to Permissions on page 966

Syntax
CREATE EXISTING TABLE [owner.]table_name
 [(column-definition, …)]
 AT 'location-string'

column-definition - (back to Syntax)
 column-name data-type [NOT NULL]

location-string - (back to Syntax)
 remote-server-name.[db-name].[owner].object-name | remote-server-
name;[db-name];[owner];object-name

Parameters

(back to top) on page 964

• column-definition – if you do not specify column definitions, SAP Sybase IQ derives the
column list from the metadata it obtains from the remote table. If you do specify column
definitions, SAP Sybase IQ verifies them. When SAP Sybase IQ checks column names,
data types, lengths, and null properties:

• Column names must match identically (although case is ignored).
• Data types in CREATE EXISTING TABLE must match or be convertible to the data types

of the column on the remote location. For example, a local column data type is defined
as NUMERIC, whereas the remote column data type is MONEY. You may encounter
some errors, if you select from a table in which the data types do not match or other
inconsistencies exist.

• Each column’s NULL property is checked. If the local column’s NULL property is not
identical to the remote column’s NULL property, a warning message is issued, but the
statement is not aborted.

• Each column’s length is checked. If the lengths of CHAR, VARCHAR, BINARY,
DECIMAL, and NUMERIC columns do not match, a warning message is issued, but the

Appendix: SQL Reference

964 SAP Sybase IQ

command is not aborted. You might choose to include only a subset of the actual
remote column list in your CREATE EXISTING statement.

• AT – specifies the location of the remote object. The AT clause supports the semicolon (;)
as a delimiter. If a semicolon is present anywhere in the location string, the semicolon is the
field delimiter. If no semicolon is present, a period is the field delimiter. This allows you to
use file names and extensions in the database and owner fields. Semicolon field delimiters
are used primarily with server classes that are not currently supported; however, you can
also use them where a period would also work as a field delimiter.

For example, this statement maps the table proxy_a1 to the SQL Anywhere database
mydb on the remote server myasa:

CREATE EXISTING TABLE
proxy_a1
AT 'myasa;mydb;;a1'

Examples

(back to top) on page 964

• Example 1 – create a proxy table named nation for the nation table at the remote
server server_a:

CREATE EXISTING TABLE nation
(n_nationkey int,
 n_name char(25),
 n_regionkey int,
 n_comment char(152))
AT 'server_a.db1.joe.nation'

• Example 2 – create a proxy table named blurbs for the blurbs table at the remote
server server_a. SAP Sybase IQ derives the column list from the metadata it obtains
from the remote table:

CREATE EXISTING TABLE blurbs
AT 'server_a.db1.joe.blurbs'

• Example 3 – create a proxy table named rda_employee for the Employees table at
the SAP Sybase IQ remote server remote_iqdemo_srv:

CREATE EXISTING TABLE rda_employee
AT 'remote_iqdemo_srv..dba.Employees'

Usage

(back to top) on page 964

CREATE EXISTING TABLE is a variant of the CREATE TABLE statement. The EXISTING
keyword is used with CREATE TABLE to specify that a table already exists remotely, and that
its metadata is to be imported into SAP Sybase IQ. This establishes the remote table as a

Appendix: SQL Reference

Programming 965

visible entity to its users. SAP Sybase IQ verifies that the table exists at the external location
before it creates the table.

Tables used as proxy tables cannot have names longer than 30 characters.

If the object does not exist (either as a host data file or remote server object), the statement is
rejected with an error message.

Index information from the host data file or remote server table is extracted and used to create
rows for the system table sysindexes. This defines indexes and keys in server terms and
enables the query optimizer to consider any indexes that might exist on this table.

Referential constraints are passed to the remote location when appropriate.

In a simplex environment, you cannot create a proxy table that refers to a remote table on the
same node. In a multiplex environment, you cannot create a proxy table that refers to the
remote table defined within the multiplex.

For example, in a simplex environment, if you try to create proxy table proxy_e, which
refers to base table Employees defined on the same node, the CREATE EXISTING TABLE
statement is rejected with an error message. In a multiplex environment, the CREATE
EXISTING TABLE statement is rejected if you create proxy table proxy_e from any node
(coordinator or secondary) that refers to remote table Employees defined within a
multiplex.

Standards

(back to top) on page 964

• SQL—ISO/ANSI SQL compliant.
• SAP Sybase Database product—Supported by Open Client/Open Server.

Permissions

(back to top) on page 964

For table to be owned by self – Requires one of:

• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

For table to be owned by any user – Requires the CREATE ANY TABLE system privilege.

CREATE SERVER Statement
Adds a server to the ISYSSERVER table.

Quick Links:

Go to Parameters on page 967

Appendix: SQL Reference

966 SAP Sybase IQ

Go to Examples on page 967

Go to Usage on page 968

Go to Standards on page 968

Go to Permissions on page 968

Syntax
CREATE SERVER server-name
 CLASS 'server-class'
 USING 'connection-info'
 [READ ONLY]

server-class - (back to Syntax)
 { ASAJDBC
 | ASEJDBC
 | SAODBC
 | ASEODBC
 | DB2ODBC
 | MSSODBC
 | ORAODBC
 | ODBC }

connection-info - (back to Syntax)
 { machine-name:port-number [/dbname] | data-source-name }

Parameters

(back to top) on page 966

• USING – if a JDBC-based server class is used, the USING clause is hostname:port-
number [/dbname] where:

• hostname – the machine on which the remote server runs.
• portnumber – the TCP/IP port number on which the remote server listens. The default

port number for SAP Sybase IQ and SAP Sybase SQL Anywhere® is 2638.
• dbname – for SQL Anywhere remote servers, if you do not specify a dbname, the

default database is used. For Adaptive Server, the default is the master database, and an
alternative to using dbname is to another database by some other means (for example,
in the FORWARD TO statement).

If an ODBC-based server class is used, the USING clause is the data-source-name, which
is the ODBC Data Source Name.

• READ ONLY – specifies that the remote server is a read-only data source. Any update
request is rejected by SAP Sybase IQ.

Examples

(back to top) on page 966

Appendix: SQL Reference

Programming 967

• Example 1 – create a remote server for the JDBC-based Adaptive Server server named
ase_prod. Its machine name is “banana” and port number is 3025.

CREATE SERVER ase_prod
CLASS 'asejdbc'
USING 'banana:3025'

• Example 2 – create an SQL Anywhere remote server named testasa on the machine
“apple” with listening on port number 2638:

CREATE SERVER testasa
CLASS 'asajdbc'
USING 'apple:2638'

• Example 3 – create a remote server for the Oracle server named oracle723. Its ODBC
Data Source Name is “oracle723”:

CREATE SERVER oracle723
CLASS 'oraodbc'
USING 'oracle723'

Usage

(back to top) on page 966

CREATE SERVER defines a remote server from the SAP Sybase IQ catalogs.

Side Effects

• Automatic commit

Standards

(back to top) on page 966

• SQL—ISO/ANSI SQL compliant.
• SAP Sybase Database product—Supported by Open Client/Open Server.

Permissions

(back to top) on page 966

Requires the SERVER OPERATOR system privilege.

CREATE TABLE Statement
Creates a new table in the database or on a remote server.

Quick Links:

Go to Parameters on page 970

Go to Examples on page 980

Appendix: SQL Reference

968 SAP Sybase IQ

Go to Usage on page 982

Go to Standards on page 984

Go to Permissions on page 984

Syntax
CREATE [{ GLOBAL | LOCAL } TEMPORARY] TABLE
 [IF NOT EXISTS] [owner.]table-name
 … (column-definition [column-constraint] …
 [, column-definition [column-constraint] …]
 [, table-constraint] …)
 |{ ENABLE | DISABLE } RLV STORE

 …[IN dbspace-name]
 …[ON COMMIT { DELETE | PRESERVE } ROWS]
 [AT location-string]
 [PARTITION BY
 range-partitioning-scheme
 | hash-partitioning-scheme
 | composite-partitioning-scheme]

column-definition - (back to Syntax)
 column-name data-type
 [[NOT] NULL]
 [DEFAULT default-value | IDENTITY]
 [PARTITION | SUBPARTITION (partition-name IN dbspace-name
[, ...])]

default-value - (back to column-definition)
 special-value
 | string
 | global variable
 | [-] number
 | (constant-expression)
 | built-in-function(constant-expression)
 | AUTOINCREMENT
 | CURRENT DATABASE
 | CURRENT REMOTE USER
 | NULL
 | TIMESTAMP
 | LAST USER

special-value - (back to default value)
 CURRENT
 { DATE
 | TIME
 | TIMESTAMP
 | USER
 | PUBLISHER }
 | USER

column-constraint - (back to Syntax)
 [CONSTRAINT constraint-name] {
 { UNIQUE

Appendix: SQL Reference

Programming 969

 | PRIMARY KEY
 | REFERENCES table-name [(column-name)] [action]
 }
 [IN dbspace-name]
 | CHECK (condition)
 | IQ UNIQUE (integer)
 }

table-constraint - (back to Syntax)
 [CONSTRAINT constraint-name]
 { { UNIQUE (column-name [, column-name] …)
 | PRIMARY KEY (column-name [, column-name] …)
 }
 [IN dbspace-name]
 | foreign-key-constraint
 | CHECK (condition)
 | IQ UNIQUE (integer)
 }

foreign-key-constraint - (back to table-constraint)
 FOREIGN KEY [role-name] [(column-name [, column-name] …)]
 …REFERENCES table-name [(column-name [, column-name] …)]
 …[actions] [IN dbspace-name]

actions - (back to foreign-key-constraint)
 [ON { UPDATE | DELETE } RESTRICT]

location-string - (back to Syntax) or (back to composite-partitioning-
scheme)
 { remote-server-name. [db-name].[owner].object-name
 | remote-server-name; [db-name]; [owner];object-name }

range-partitioning-scheme - (back to Syntax)
 RANGE (partition-key) (range-partition-decl [,range-partition-decl ...])

partition-key - (back to range-partitioning-scheme) or (back to hash-
partitioning-scheme)
 column-name

range-partition-decl - (back to range-partitioning-scheme)
 VALUES <= ({constant-expr
 | MAX } [, { constant-expr
 | MAX }]...)
 [IN dbspace-name]

hash-partitioning-scheme - (back to Syntax) or (back to composite-
partitioning-scheme)
 HASH (partition-key [, partition-key, …])

composite-partitioning-scheme - (back to Syntax)
 hash-partitioning-scheme SUBPARTITION range-partitioning-scheme

Parameters

(back to top) on page 968

Appendix: SQL Reference

970 SAP Sybase IQ

• IN – used in the column-definition, column-constraint, table-constraint, foreign-key, and
partition-decl clauses to specify the dbspace where the object is to be created. If the IN
clause is omitted, SAP Sybase IQ creates the object in the dbspace where the table is
assigned.

Specify SYSTEM with this clause to put either a permanent or temporary table in the
catalog store. Specify IQ_SYSTEM_TEMP to store temporary user objects (tables,
partitions, or table indexes) in IQ_SYSTEM_TEMP or, if the
TEMP_DATA_IN_SHARED_TEMP option is set 'ON', and the IQ_SHARED_TEMP
dbspace contains RW files, in IQ_SHARED_TEMP. (You cannot specify the IN clause
with IQ_SHARED_TEMP.) All other use of the IN clause is ignored. By default, all
permanent tables are placed in the main IQ store, and all temporary tables are placed in the
temporary IQ store. Global temporary and local temporary tables can never be in the IQ
store.

The following syntax is unsupported:
CREATE LOCAL TEMPORARY TABLE tab1(c1 int) IN IQ_SHARED_TEMP

A BIT data type column cannot be explicitly placed in a dbspace. The following is not
supported for BIT data types:
CREATE TABLE t1(c1_bit bit IN iq_main);

• ON COMMIT – allowed for temporary tables only. By default, the rows of a temporary
table are deleted on COMMIT.

• AT – creates a proxy table that maps to a remote location specified by the location-string
clause. Proxy table names must be 30 characters or less. The AT clause supports semicolon
(;) delimiters. If a semicolon is present anywhere in the location-string clause, the
semicolon is the field delimiter. If no semicolon is present, a period is the field delimiter.
This allows file names and extensions to be used in the database and owner fields.

Semicolon field delimiters are used primarily with server classes not currently supported;
however, you can also use them in situations where a period would also work as a field
delimiter. For example, this statement maps the table proxy_a to the SQL Anywhere
database mydb on the remote server myasa:

CREATE TABLE proxy_a1
AT 'myasa;mydb;;a1'

Foreign-key definitions are ignored on remote tables. Foreign-key definitions on local
tables that refer to remote tables are also ignored. Primary key definitions are sent to the
remote server if the server supports primary keys.

In a simplex environment, you cannot create a proxy table that refers to a remote table on
the same node. In a multiplex environment, you cannot create a proxy table that refers to
the remote table defined within the multiplex.

Appendix: SQL Reference

Programming 971

• IF NOT EXISTS – if the named object already exists, no changes are made and an error is
not returned.

• { ENABLE | DISABLE } RLV STORE – registers this table with the RLV store for real-
time in-memory updates. Not supported for IQ temporary tables. This value overrides the
value of the database option BASE_TABLES_IN_RLV. Requires the CREATE TABLE
system privilege and CREATE permissions on the RLV store dbspace to set this value to
ENABLE.

• column-definition – defines a table column. Allowable data types are described in
Reference: Building Blocks, Tables, and Procedures >SQL Data Types. Two columns in
the same table cannot have the same name. You can create up to 45,000 columns; however,
there might be performance penalties in tables with more than 10,000 columns.

• [NOT] NULL] – includes or excludes NULL values. If NOT NULL is specified, or if
the column is in a UNIQUE or PRIMARY KEY constraint, the column cannot contain
any NULL values. The limit on the number of columns per table that allow NULLs is
approximately 8*(database-page-size - 30).

• DEFAULT default-value – specify a default column value with the DEFAULT
keyword in the CREATE TABLE (and ALTER TABLE) statement. A DEFAULT value
is used as the value of the column in any INSERT (or LOAD) statement that does not
specify a column value.

• DEFAULT AUTOINCREMENT – the value of the DEFAULT AUTOINCREMENT
column uniquely identifies every row in a table. Columns of this type are also known as
IDENTITY columns, for compatibility with Adaptive Server. The IDENTITY/
DEFAULT AUTOINCREMENT column stores sequential numbers that are
automatically generated during inserts and updates. When using IDENTITY or
DEFAULT AUTOINCREMENT, the column must be one of the integer data types, or
an exact numeric type, with scale 0. The column value might also be NULL. You must
qualify the specified table name with the owner name.

ON inserts into the table. If a value is not specified for the IDENTITY/DEFAULT
AUTOINCREMENT column, a unique value larger than any other value in the column
is generated. If an INSERT specifies a value for the column, it is used; if the specified
value is not larger than the current maximum value for the column, that value is used as
a starting point for subsequent inserts.

Deleting rows does not decrement the IDENTITY/AUTOINCREMENT counter.
Gaps created by deleting rows can only be filled by explicit assignment when using an
insert. The database option IDENTITY_INSERT must be set to the table name to
perform an insert into an IDENTITY/AUTOINCREMENT column.

For example, this creates a table with an IDENTITY column and explicitly adds some
data to it:

CREATE TABLE mytable(c1 INT IDENTITY);
SET TEMPORARY OPTION IDENTITY_INSERT = "DBA".mytable;
INSERT INTO mytable VALUES(5);

Appendix: SQL Reference

972 SAP Sybase IQ

After an explicit insert of a row number less than the maximum, subsequent rows
without explicit assignment are still automatically incremented with a value of one
greater than the previous maximum.

You can find the most recently inserted value of the column by inspecting the
@@identity global variable.

• IDENTITY – a Transact-SQL® -compatible alternative to using the
AUTOINCREMENT default. In SAP Sybase IQ, the identity column may be created
using either the IDENTITY or the DEFAULT AUTOINCREMENT clause.

• table-constraint – helps ensure the integrity of data in the database. There are four types
of integrity constraints:

• UNIQUE – identifies one or more columns that uniquely identify each row in the table.
No two rows in the table can have the same values in all the named columns. A table
may have more than one unique constraint.

• PRIMARY KEY – the same as a UNIQUE constraint except that a table can have only
one primary-key constraint. You cannot specify the PRIMARY KEY and UNIQUE
constraints for the same column. The primary key usually identifies the best identifier
for a row. For example, the customer number might be the primary key for the customer
table.

• FOREIGN KEY – restricts the values for a set of columns to match the values in a
primary key or uniqueness constraint of another table. For example, a foreign-key
constraint could be used to ensure that a customer number in an invoice table
corresponds to a customer number in the customer table.

You cannot create foreign-key constraints on local temporary tables. Global temporary
tables must be created with ON COMMIT PRESERVE ROWS.

• CHECK – allows arbitrary conditions to be verified. For example, a check constraint
could be used to ensure that a column called Gender contains only the values male or
female. No row in a table is allowed to violate a constraint. If an INSERT or UPDATE
statement would cause a row to violate a constraint, the operation is not permitted and
the effects of the statement are undone.

Column identifiers in column check constraints that start with the symbol ‘@’ are
placeholders for the actual column name. A statement of the form:

CREATE TABLE t1(c1 INTEGER CHECK (@foo < 5))

is exactly the same as this statement:

CREATE TABLE t1(c1 INTEGER CHECK (c1 < 5))

Column identifiers appearing in table check constraints that start with the symbol
‘@’are not placeholders.

If a statement would cause changes to the database that violate an integrity constraint, the
statement is effectively not executed and an error is reported. (Effectively means that any
changes made by the statement before the error was detected are undone.)

Appendix: SQL Reference

Programming 973

SAP Sybase IQ enforces single-column UNIQUE constraints by creating an HG index for
that column.

Note: You cannot define a column with a BIT data type as a UNIQUE or PRIMARY KEY
constraint. Also, the default for columns of BIT data type is to not allow NULL values; you
can change this by explicitly defining the column as allowing NULL values.

• column-constraint – restricts the values the column can hold. Column and table
constraints help ensure the integrity of data in the database. If a statement would cause a
violation of a constraint, execution of the statement does not complete, any changes made
by the statement before error detection are undone, and an error is reported. Column
constraints are abbreviations for the corresponding table constraints. For example, these
are equivalent:

CREATE TABLE Products (
 product_num integer UNIQUE
)
CREATE TABLE Products (
 product_num integer,
 UNIQUE (product_num)
)

Column constraints are normally used unless the constraint references more than one
column in the table. In these cases, a table constraint must be used.

• IQ UNIQUE – defines the expected cardinality of a column and determines whether
the column loads as Flat FP or NBit FP. An IQ UNIQUE(n) value explicitly set to 0
loads the column as Flat FP. Columns without an IQ UNIQUE constraint implicitly
load as NBit up to the limits defined by the FP_NBIT_AUTOSIZE_LIMIT,
FP_NBIT_LOOKUP_MB, and FP_NBIT_ROLLOVER_MAX_MB options:

• FP_NBIT_AUTOSIZE_LIMIT limits the number of distinct values that load as
NBit

• FP_NBIT_LOOKUP_MB sets a threshold for the total NBit dictionary size
• FP_NBIT_ROLLOVER_MAX_MB sets the dictionary size for implicit NBit

rollovers from NBit to Flat FP
• FP_NBIT_ENFORCE_LIMITS enforces NBit dictionary sizing limits. This

option is OFF by default

Using IQ UNIQUE with an n value less than the FP_NBIT_AUTOSIZE_LIMIT is not
necessary. Auto-size functionality automatically sizes all low or medium cardinality
columns as NBit. Use IQ UNIQUE in cases where you want to load the column as Flat
FP or when you want to load a column as NBit when the number of distinct values
exceeds the FP_NBIT_AUTOSIZE_LIMIT.

Note:

• Consider memory usage when specifying high IQ UNIQUE values. If machine
resources are limited, avoid loads with FP_NBIT_ENFORCE_LIMITS='OFF'
(default).

Appendix: SQL Reference

974 SAP Sybase IQ

Prior to SAP Sybase IQ 16.0, an IQ UNIQUE n value > 16777216 would rollover to
Flat FP. In 16.0, larger IQ UNIQUE values are supported for tokenization, but may
require significant memory resource requirements depending on cardinality and
column width.

• BIT, BLOB,and CLOB data types do not support NBit dictionary compression. If
FP_NBIT_IQ15_COMPATIBILITY=’OFF’, a non-zero IQ UNIQUE column
specification in a CREATE TABLE or ALTER TABLE statement that includes these
data types returns an error.

• column-constraint and table-constraint clauses – column and table constraints help
ensure the integrity of data in the database.

• PRIMARY KEY or PRIMARY KEY (column-name, …) – the primary key for the
table consists of the listed columns, and none of the named columns can contain any
NULL values. SAP Sybase IQ ensures that each row in the table has a unique primary
key value. A table can have only one PRIMARY KEY.

When the second form is used (PRIMARY KEY followed by a list of columns), the
primary key is created including the columns in the order in which they are defined, not
the order in which they are listed.

When a column is designated as PRIMARY KEY, FOREIGN KEY, or UNIQUE, SAP
Sybase IQ creates a High_Group index for it automatically. For multicolumn primary
keys, this index is on the primary key, not the individual columns. For best
performance, you should also index each column with a HG or LF index separately.

• REFERENCES primary-table-name [(primary-column-name)] – defines the
column as a foreign key for a primary key or a unique constraint of a primary table.
Normally, a foreign key would be for a primary key rather than an unique constraint. If
a primary column name is specified, it must match a column in the primary table which
is subject to a unique constraint or primary key constraint, and that constraint must
consist of only that one column. Otherwise the foreign key references the primary key
of the second table. Primary key and foreign key must have the same data type and the
same precision, scale, and sign. Only a non unique single-column HG index is created
for a single-column foreign key. For a multicolumn foreign key, SAP Sybase IQ creates
a non unique composite HG index. The maximum width of a multicolumn composite
key for a unique or non unique HG index is 1KB.

A temporary table cannot have a foreign key that references a base table and a base
table cannot have a foreign key that references a temporary table. Local temporary
tables cannot have or be referenced by a foreign key.

• FOREIGN KEY [role-name] [(...)] REFERENCES primary-table-name [(...)] –
defines foreign-key references to a primary key or a unique constraint in another table.
Normally, a foreign key would be for a primary key rather than an unique constraint.
(In this description, this other table is called the primary table.)

If the primary table column names are not specified, the primary table columns are the
columns in the table's primary key. If foreign key column names are not specified, the

Appendix: SQL Reference

Programming 975

foreign-key columns have the same names as the columns in the primary table. If
foreign-key column names are specified, then the primary key column names must be
specified, and the column names are paired according to position in the lists.

If the primary table is not the same as the foreign-key table, either the unique or
primary key constraint must have been defined on the referenced key. Both referenced
key and foreign key must have the same number of columns, of identical data type with
the same sign, precision, and scale.

The value of the row's foreign key must appear as a candidate key value in one of the
primary table's rows unless one or more of the columns in the foreign key contains nulls
in a null allows foreign key column.

Any foreign-key column not explicitly defined is automatically created with the same
data type as the corresponding column in the primary table. These automatically
created columns cannot be part of the primary key of the foreign table. Thus, a column
used in both a primary key and foreign key must be explicitly created.

role-name is the name of the foreign key. The main function of role-name is to
distinguish two foreign keys to the same table. If no role-name is specified, the role
name is assigned as follows:

1. If there is no foreign key with a role-name the same as the table name, the table
name is assigned as the role-name.

2. If the table name is already taken, the role-name is the table name concatenated
with a zero-padded 3-digit number unique to the table.

The referential integrity action defines the action to be taken to maintain foreign-key
relationships in the database. Whenever a primary key value is changed or deleted from
a database table, there may be corresponding foreign key values in other tables that
should be modified in some way. You can specify an ON DELETE clause, followed by
the RESTRICT clause.

• RESTRICT – generates an error if you try to update or delete a primary key value
while there are corresponding foreign keys elsewhere in the database. Generates an
error if you try to update a foreign key so that you create new values unmatched by a
candidate key. This is the default action, unless you specify that LOAD optionally
reject rows that violate referential integrity. This enforces referential integrity at the
statement level.

If you use CHECK ON COMMIT without specifying any actions, then RESTRICT is
implied as an action for DELETE. SAP Sybase IQ does not support CHECK ON
COMMIT.

a global temporary table cannot have a foreign key that references a base table and a
base table cannot have a foreign key that references a global temporary table. Local
temporary tables cannot have or be referenced by a foreign key.

Appendix: SQL Reference

976 SAP Sybase IQ

• CHECK (condition) – no row is allowed to fail the condition. If an INSERT
statement would cause a row to fail the condition, the operation is not permitted and the
effects of the statement are undone.

The change is rejected only if the condition is FALSE; in particular, the change is
allowed if the condition is UNKNOWN. CHECK condition is not enforced by SAP
Sybase IQ.

Note: If possible, do not define referential integrity foreign key-primary key
relationships in SAP Sybase IQ unless you are certain there are no orphan foreign
keys.

• Remote Tables – foreign-key definitions are ignored on remote tables. Foreign-key
definitions on local tables that refer to remote tables are also ignored. Primary-key
definitions are sent to the remote server if the server supports it.

• PARTITION BY – divides large tables into smaller, more manageable storage objects.
Partitions share the same logical attributes of the parent table, but can be placed in separate
dbspaces and managed individually. SAP Sybase IQ supports several table partitioning
schemes:

• hash-partitions
• range-partitions
• composite-partitions

A partition-key is the column or columns that contain the table partitioning keys. Partition
keys can contain NULL and DEFAULT values, but cannot contain:

• LOB (BLOB or CLOB) columns
• BINARY, or VARBINARY columns
• CHAR or VARCHAR columns whose length is over 255 bytes
• BIT columns
• FLOAT/DOUBLE/REAL columns

• PARTITION BY RANGE – partitions rows by a range of values in the partitioning
column. Range partitioning is restricted to a single partition key column and a maximum
of 1024 partitions. In a range-partitioning-scheme, the partition-key is the column that
contains the table partitioning keys:

range-partition-decl:
 partition-name VALUES <= ({constant-expr | MAX } [,
{ constant-expr | MAX }]...)
 [IN dbspace-name]

The partition-name is the name of a new partition on which table rows are stored. Partition
names must be unique within the set of partitions on a table. The partition-name is
required.

• VALUE – specifies the inclusive upper bound for each partition (in ascending order).
The user must specify the partitioning criteria for each range partition to guarantee that

Appendix: SQL Reference

Programming 977

each row is distributed to only one partition. NULLs are allowed for the partition
column and rows with NULL as partition key value belong to the first table partition.
However, NULL cannot be the bound value.

There is no lower bound (MIN value) for the first partition. Rows of NULL cells in the
first column of the partition key will go to the first partition. For the last partition, you
can either specify an inclusive upper bound or MAX. If the upper bound value for the
last partition is not MAX, loading or inserting any row with partition key value larger
than the upper bound value of the last partition generates an error.

• Max – denotes the infinite upper bound and can only be specified for the last partition.
• IN – specifies the dbspace in the partition-decl on which rows of the partition should

reside.

These restrictions affect partitions keys and bound values for range partitioned tables:

• Partition bounds must be constants, not constant expressions.
• Partition bounds must be in ascending order according to the order in which the

partitions were created. That is, the upper bound for the second partition must be higher
than for the first partition, and so on.
In addition, partition bound values must be compatible with the corresponding
partition-key column data type. For example, VARCHAR is compatible with CHAR.

• If a bound value has a different data type than that of its corresponding partition key
column, SAP Sybase IQ converts the bound value to the data type of the partition key
column, with these exceptions:

• Explicit conversions are not allowed. This example attempts an explicit conversion
from INT to VARCHAR and generates an error:
CREATE TABLE Employees(emp_name VARCHAR(20))
PARTITION BY RANGE(emp_name)
(p1 VALUES <=(CAST (1 AS VARCHAR(20))),
p2 VALUES <= (CAST (10 AS VARCHAR(20)))

• Implicit conversions that result in data loss are not allowed. In this example, the
partition bounds are not compatible with the partition key type. Rounding assumptions
may lead to data loss and an error is generated:
CREATE TABLE emp_id (id INT) PARTITION BY RANGE(id) (p1 VALUES
<= (10.5), p2 VALUES <= (100.5))

• In this example, the partition bounds and the partition key data type are compatible.
The bound values are directly converted to float values. No rounding is required, and
conversion is supported:
CREATE TABLE id_emp (id FLOAT)
PARTITION BY RANGE(id) (p1 VALUES <= (10),
p2 VALUES <= (100))

• Conversions from non-binary data types to binary data types are not allowed. For
example, this conversion is not allowed and returns an error:
CREATE TABLE newemp (name BINARY)
PARTITION BY RANGE(name)

Appendix: SQL Reference

978 SAP Sybase IQ

(p1 VALUES <= ("Maarten"),
p2 VALUES <= ("Zymmerman")

• NULL cannot be used as a boundary in a range-partitioned table.
• The row will be in the first partition if the cell value of the 1st column of the partition

key evaluated to be NULL. SAP Sybase IQ supports only single column partition keys,
so any NULL in the partition key distributes the row to the first partition.

• PARTITION BY HASH – maps data to partitions based on partition-key values
processed by an internal hashing function. Hash partition keys are restricted to a maximum
of eight columns with a combined declared column width of 5300 bytes or less. For hash
partitions, the table creator determines only the partition key columns; the number and
location of the partitions are determined internally.

In a hash-partitioning declaration, the partition-key is a column or group of columns,
whose composite value determines the partition where each row of data is stored:
hash-partitioning-scheme:
 HASH (partition-key [, partition-key, …])

• Restrictions –

• You can only hash partition a base table. Attempting to partitioning a global
temporary table or a local temporary table raises an error.

• You cannot add, drop, merge, or split a hash partition.
• You cannot add or drop a column from a hash partition key.

• PARTITION BY HASH RANGE – subpartitions a hash-partitioned table by range. In a
hash-range-partitioning-scheme declaration, a SUBPARTITION BY RANGE clause adds
a new range subpartition to an existing hash-range partitioned table:
hash-range-partitioning-scheme:
PARTITION BY HASH (partition-key [, partition-key, …])
 [SUBPARTITION BY RANGE (range-partition-decl [, range-
partition-decl ...])]

The hash partition specifies how the data is logically distributed and colocated; the range
subpartition specifies how the data is physically placed. The new range subpartition is
logically partitioned by hash with the same hash partition keys as the existing hash-range
partitioned table. The range subpartition key is restricted to one column.

• Restrictions –

• You can only hash partition a base table. Attempting to partitioning a global
temporary table or a local temporary table raises an error.

• You cannot add, drop, merge, or split a hash partition.
• You cannot add or drop a column from a hash partition key.

Note: Range-partitions and composite partitioning schemes, like hash-range
partitions, require the separately licensed VLDB Management option.

Appendix: SQL Reference

Programming 979

Examples

(back to top) on page 968

• Example 1 – create a table named SalesOrders2 with five columns. Data pages for
columns FinancialCode, OrderDate, and ID are in dbspace Dsp3. Data pages for
integer column CustomerID are in dbspace Dsp1. Data pages for CLOB column
History are in dbspace Dsp2. Data pages for the primary key, HG for ID, are in dbspace
Dsp4:

CREATE TABLE SalesOrders2 (
FinancialCode CHAR(2),
CustomerID int IN Dsp1,
History CLOB IN Dsp2,
OrderDate TIMESTAMP,
ID BIGINT,
PRIMARY KEY(ID) IN Dsp4
) IN Dsp3

• Example 2 – create a table fin_code2 with four columns. Data pages for columns
code, type, and id are in the default dbspace, which is determined by the value of the
database option DEFAULT_DBSPACE. Data pages for CLOB column description
are in dbspace Dsp2. Data pages from foreign key fk1, HG for c1 are in dbspace Dsp4:

CREATE TABLE fin_code2 (
code INT,
type CHAR(10),
description CLOB IN Dsp2,
id BIGINT,
FOREIGN KEY fk1(id) REFERENCES SalesOrders(ID) IN Dsp4
)

• Example 3 – create a table t1 where partition p1 is adjacent to p2 and partition p2 is
adjacent to p3:

CREATE TABLE t1 (c1 INT, c2 INT)
PARTITION BY RANGE(c1)
(p1 VALUES <= (0), p2 VALUES <= (10), p3 VALUES <= (100))

• Example 4 – create a RANGE partitioned table bar with six columns and three partitions,
mapping data to partitions based on dates:

CREATE TABLE bar (
 c1 INT IQ UNIQUE(65500),
 c2 VARCHAR(20),
 c3 CLOB PARTITION (P1 IN Dsp11, P2 IN Dsp12,
 P3 IN Dsp13),
 c4 DATE,
 c5 BIGINT,
 c6 VARCHAR(500) PARTITION (P1 IN Dsp21,
 P2 IN Dsp22),
 PRIMARY KEY (c5) IN Dsp2) IN Dsp1
 PARTITION BY RANGE (c4)
 (P1 VALUES <= ('2006/03/31') IN Dsp31,
 P2 VALUES <= ('2006/06/30') IN Dsp32,

Appendix: SQL Reference

980 SAP Sybase IQ

 P3 VALUES <= ('2006/09/30') IN Dsp33
) ;

Data page allocation for each partition:

Partition Dbspa-
ces

Columns

P1 Dsp31 c1, c2, c4, c5

P1 Dsp11 c3

P1 Dsp21 c6

P2 Dsp32 c1, c2, c4, c5

P2 Dsp12 c3

P2 Dsp22 c6

P3 Dsp33 c1, c2, c4, c5, c6

P3 Dsp13 c3

P1, P2, P3 Dsp1 lookup store of c1 and other shared data

P1, P2, P3 Dsp2 primary key (HG for c5)

• Example 5 – create a HASH partitioned (table tbl42) that includes a PRIMARY KEY
(column c1) and a HASH PARTITION KEY (columns c4 and c3).

CREATE TABLE tbl42 (
 c1 BIGINT NOT NULL,
 c2 CHAR(2) IQ UNIQUE(50),
 c3 DATE IQ UNIQUE(36524),
 c4 VARCHAR(200),
 PRIMARY KEY (c1)
)
 PARTITION BY HASH (c4, c3)

• Example 6 – create a hash-ranged partitioned table with a PRIMARY KEY (column c1), a
hash partition key (columns c4 and c2) and a range subpartition key (column c3).

CREATE TABLE tbl42 (
 c1 BIGINT NOT NULL,
 c2 CHAR(2) IQ UNIQUE(50),
 c3 DATE,
 c4 VARCHAR(200),
 PRIMARY KEY (c1)) IN Dsp1

 PARTITION BY HASH (c4, c2)
 SUBPARTITION BY RANGE (c3)
 (P1 VALUES <= (2011/03/31) IN Dsp31,

Appendix: SQL Reference

Programming 981

 P2 VALUES <= (2011/06/30) IN Dsp32,
 P3 VALUES <= (2011/09/30) IN Dsp33) ;

• Example 7 – create a table for a library database to hold information on borrowed books:

CREATE TABLE borrowed_book (
date_borrowed DATE NOT NULL,
date_returned DATE,
book CHAR(20)
 REFERENCES library_books (isbn),
CHECK(date_returned >= date_borrowed)
)

• Example 8 – create table t1 at the remote server SERVER_A and create a proxy table
named t1 that is mapped to the remote table:

CREATE TABLE t1
(a INT,
 b CHAR(10))
AT 'SERVER_A.db1.joe.t1'

• Example 9 – create table tab1 that contains a column c1 with a default value of the
special constant LAST USER:

CREATE TABLE tab1(c1 CHAR(20) DEFAULT LAST USER)
• Example 10 – create a local temporary table tab1 that contains a column c1:

CREATE LOCAL TEMPORARY TABLE tab1(c1 int) IN IQ_SYSTEM_TEMP

The example creates tab1 in the IQ_SYSTEM_TEMP dbspace in the following cases:

• DQP_ENABLED logical server policy option is set ON but there are no read-write files
in IQ_SHARED_TEMP

• DQP_ENABLED option is OFF, TEMP_DATA_IN_SHARED_TEMP logical server
policy option is ON, but there are no read-write files in IQ_SHARED_TEMP

• Both the DQP_ENABLED option and the TEMP_DATA_IN_SHARED_TEMP option
are set OFF

The example creates the same table tab1 in the IQ_SHARED_TEMP dbspace in the
following cases:

• DQP_ENABLED is ON and there are read-write files in IQ_SHARED_TEMP

• DQP_ENABLED is OFF, TEMP_DATA_IN_SHARED_TEMP is ON, and there are
read-write files in IQ_SHARED_TEMP

• Example 11 – create a table tab1 that is enabled to use row-level versioning, and real-
time storage in the in-memory RLV store.

CREATE TABLE tab1 (c1 INT, c2 CHAR(25)) ENABLE RLV STORE

Usage

(back to top) on page 968

Appendix: SQL Reference

982 SAP Sybase IQ

You can create a table for another user by specifying an owner name. If GLOBAL
TEMPORARY or LOCAL TEMPORARY is not specified, the table is referred to as a base
table. Otherwise, the table is a temporary table.

A created global temporary table exists in the database like a base table and remains in the
database until it is explicitly removed by a DROP TABLE statement. The rows in a temporary
table are visible only to the connection that inserted the rows. Multiple connections from the
same or different applications can use the same temporary table at the same time and each
connection sees only its own rows. A given connection inherits the schema of a global
temporary table as it exists when the connection first refers to the table. The rows of a
temporary table are deleted when the connection ends.

When you create a local temporary table, omit the owner specification. If you specify an owner
when creating a temporary table, for example, CREATE TABLE dbo.#temp(col1
int), a base table is incorrectly created.

An attempt to create a base table or a global temporary table will fail, if a local temporary table
of the same name exists on that connection, as the new table cannot be uniquely identified by
owner.table.

You can, however, create a local temporary table with the same name as an existing base table
or global temporary table. References to the table name access the local temporary table, as
local temporary tables are resolved first.

For example, consider this sequence:

CREATE TABLE t1 (c1 int);
INSERT t1 VALUES (9);

CREATE LOCAL TEMPORARY TABLE t1 (c1 int);
INSERT t1 VALUES (8);

SELECT * FROM t1;

The result returned is 8. Any reference to t1 refers to the local temporary table t1 until the
local temporary table is dropped by the connection.

In a procedure, use the CREATE LOCAL TEMPORARY TABLE statement, instead of the
DECLARE LOCAL TEMPORARY TABLE statement, when you want to create a table that
persists after the procedure completes. Local temporary tables created using the CREATE
LOCAL TEMPORARY TABLE statement remain until they are either explicitly dropped, or
until the connection closes.

Local temporary tables created in IF statements using CREATE LOCAL TEMPORARY
TABLE also persist after the IF statement completes.

SAP Sybase IQ does not support the CREATE TABLE ENCRYPTED clause for table-level
encryption of SAP Sybase IQ tables. However, the CREATE TABLE ENCRYPTED clause is
supported for SQL Anywhere tables in an SAP Sybase IQ database.

Side Effects

Appendix: SQL Reference

Programming 983

• Automatic commit

Standards

(back to top) on page 968

• SQL–Vendor extension to ISO/ANSI SQL grammar.

These are vendor extensions:
• The { IN | ON } dbspace-name clause
• The ON COMMIT clause
• Some of the default values

• SAP Sybase Database product–Supported by Adaptive Server, with some differences.
• Temporary tables – you can create a temporary table by preceding the table name in a

CREATE TABLE statement with a pound sign (#). These temporary tables are SAP
Sybase IQ declared temporary tables, which are available only in the current
connection. For information about declared temporary tables, see DECLARE LOCAL
TEMPORARY TABLE Statement.

• Physical placement – physical placement of a table is carried out differently in SAP
Sybase IQ and in Adaptive Server. The ON segment-name clause supported by
Adaptive Server is supported in SAP Sybase IQ, but segment-name refers to an IQ
dbspace.

• Constraints – SAP Sybase IQ does not support named constraints or named defaults,
but does support user-defined data types that allow constraint and default definitions to
be encapsulated in the data type definition. It also supports explicit defaults and
CHECK conditions in the CREATE TABLE statement.

• NULL – (default) by default, columns in Adaptive Server default to NOT NULL,
whereas in SAP Sybase IQ the default setting is NULL, to allow NULL values. This
setting can be controlled using the ALLOW_NULLS_BY_DEFAULT option. See
ALLOW_NULLS_BY_DEFAULT Option [TSQL]. To make your data definition
statements transferable, explicitly specify NULL or NOT NULL.

Permissions

(back to top) on page 968

Appendix: SQL Reference

984 SAP Sybase IQ

Table Type Privileges Required

Base table in the IQ main store Table owned by self – Requires CREATE privilege on
the dbspace where the table is created. Also requires one
of:

• CREATE TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Table owned by any user – Requires CREATE privilege
on the dbspace where the table is created. Also requires
one of:

• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Global temporary table Table owned by self – Requires one of:

• CREATE TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Table owned by any user – Requires one of:

• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Proxy table Table owned by self – Requires one of:

• CREATE PROXY TABLE system privilege.
• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

Table owned by any user – Requires one of:

• CREATE ANY TABLE system privilege.
• CREATE ANY OBJECT system privilege.

DROP SERVER Statement
Drops a remote server from the SAP Sybase IQ system tables.

Quick Links:

Go to Examples on page 986

Go to Usage on page 986

Go to Standards on page 986

Go to Permissions on page 986

Appendix: SQL Reference

Programming 985

Syntax
DROP SERVER server-name

Examples

(back to top) on page 985

• Example 1 – this example drops the server IQ_prod:

DROP SERVER iq_prod

Usage

(back to top) on page 985

Before DROP SERVER succeeds, you must drop all the proxy tables that have been defined for
the remote server.

Side Effects

• Automatic commit

Standards

(back to top) on page 985

• SQL—ISO/ANSI SQL compliant.
• SAP Sybase Database product—Supported by Open Client/Open Server.

Permissions

(back to top) on page 985

Requites the SERVER OPERATOR system privilege.

Appendix: SQL Reference

986 SAP Sybase IQ

Index
_close_extfn

v4 API method 128
_describe_extfn 25, 99
_enter_state_extfn 99
_fetch_block_extfn

v4 API method 127
_fetch_into_extfn

v4 API method 126
_finish_extfn 98
_leave_state_extfn 99
_open_extfn

v4 API method 126
_rewind_extfn

v4 API method 128
_start_extfn 97
-d option

SQL preprocessor utility (iqsqlpp) 411
-e option

SQL preprocessor utility (iqsqlpp) 411
-gn option

threads 372
-h option

SQL preprocessor utility (iqsqlpp) 411
-k option

SQL preprocessor utility (iqsqlpp) 411
-m option

SQL preprocessor utility (iqsqlpp) 411
-n option

SQL preprocessor utility (iqsqlpp) 411
-o option

SQL preprocessor utility (iqsqlpp) 411
-q option

SQL preprocessor utility (iqsqlpp) 411
-r option

SQL preprocessor utility (iqsqlpp) 411
-s option

SQL preprocessor utility (iqsqlpp) 411
-u option

SQL preprocessor utility (iqsqlpp) 411
-w option

SQL preprocessor utility (iqsqlpp) 411
-x option

SQL preprocessor utility (iqsqlpp) 411
-z option

SQL preprocessor utility (iqsqlpp) 411

.NET
data control 203
using theSAP Sybase IQ .NET Data Provider

165
.NET API 211

about 165
.NET Data Provider

about 165
accessing data 170
adding a reference 167
connecting to a database 168
connection pooling 169
dbdata.dll 195
deleting data 170
deploying 194
Entity Framework support 188
error handling 187
exception handling 187
executing stored procedures 185
features 166
files required for deployment 194
iAnywhere.Data.SQLAnywhere provider 166
inserting data 170
obtaining time values 184
POOLING option 169
referencing the provider classes in your source

code 167
registering 195
running the sample projects 167
supported languages 165
system requirements 194
tracing support 196
transaction processing 186
updating data 170
using the Simple code sample 200
using the Table Viewer code sample 201
versions supported 165

.NET database programming interfaces
tutorial 203

[database tools API] Autotune() enumeration 748
[database tools API] Checkpoint() enumeration

748
[database tools API] History() enumeration 748
[database tools API] Padding() enumeration 749
[database tools API] Unit() enumeration 749

Index

Programming 987

[database tools API] Unload() enumeration 749
[database tools API] UserList() enumeration 749
[database tools API] Validation() enumeration 750
[database tools API] Verbosity() enumeration 750
[database tools API] Version() enumeration 750
[SQL Anywhere .NET API] SABulkCopyOptions()

enumeration 212
[SQL Anywhere .NET API] SAIsolationLevel()

enumeration 213
[SQL Anywhere C API] a_sqlany_data_direction()

enumeration 518
[SQL Anywhere C API] a_sqlany_data_type()

enumeration 518
[SQL Anywhere C API] a_sqlany_native_type()

enumeration 519
[SQL Anywhere C API] SACAPI_ERROR_SIZE

variable 520
[SQL Anywhere C API]

SQLANY_API_VERSION_1 variable
520

[SQL Anywhere C API]
SQLANY_API_VERSION_2 variable
520

@HttpMethod
accessing HTTP headers 641

@HttpQueryString
accessing HTTP headers 641

@HttpStatus
accessing HTTP headers 641

@HttpURI
accessing HTTP headers 641

@HttpVersion
accessing HTTP headers 641

A
a_backup_db structure [database tools API]

auto_tune_writers char 751
a_backup_db structure [database tools API]

backup_comment const char * 751
a_backup_db structure [database tools API]

backup_database a_bit_field 751
a_backup_db structure [database tools API]

backup_history char 751
a_backup_db structure [database tools API]

backup_interrupted char 752
a_backup_db structure [database tools API]

backup_logfile a_bit_field 752
a_backup_db structure [database tools API]

chkpt_log_type char 752

a_backup_db structure [database tools API]
confirmrtn MSG_CALLBACK 752

a_backup_db structure [database tools API]
connectparms const char * 752

a_backup_db structure [database tools API]
description 751

a_backup_db structure [database tools API] errorrtn
MSG_CALLBACK 753

a_backup_db structure [database tools API]
hotlog_filename const char * 753

a_backup_db structure [database tools API] msgrtn
MSG_CALLBACK 753

a_backup_db structure [database tools API]
no_confirm a_bit_field 753

a_backup_db structure [database tools API]
output_dir const char * 753

a_backup_db structure [database tools API]
page_blocksize a_sql_uint32 754

a_backup_db structure [database tools API]
progress_messages a_bit_field 754

a_backup_db structure [database tools API] quiet
a_bit_field 754

a_backup_db structure [database tools API]
rename_local_log a_bit_field 754

a_backup_db structure [database tools API]
rename_log a_bit_field 754

a_backup_db structure [database tools API]
server_backup a_bit_field 755

a_backup_db structure [database tools API]
statusrtn MSG_CALLBACK 755

a_backup_db structure [database tools API]
truncate_log a_bit_field 755

a_backup_db structure [database tools API] version
unsigned short 755

a_backup_db structure [database tools API]
wait_after_end a_bit_field 755

a_backup_db structure [database tools API]
wait_before_start a_bit_field 756

a_change_log structure [database tools API]
change_logname a_bit_field 756

a_change_log structure [database tools API]
change_mirrorname a_bit_field 756

a_change_log structure [database tools API]
dbname const char * 756

a_change_log structure [database tools API]
description 756

a_change_log structure [database tools API]
encryption_key char * 757

Index

988 SAP Sybase IQ

a_change_log structure [database tools API]
errorrtn MSG_CALLBACK 757

a_change_log structure [database tools API]
generation_number unsigned short 757

a_change_log structure [database tools API]
ignore_dbsync_trunc a_bit_field 757

a_change_log structure [database tools API]
ignore_ltm_trunc a_bit_field 757

a_change_log structure [database tools API]
ignore_remote_trunc a_bit_field 757

a_change_log structure [database tools API]
logname const char * 758

a_change_log structure [database tools API]
mirrorname const char * 758

a_change_log structure [database tools API] msgrtn
MSG_CALLBACK 758

a_change_log structure [database tools API]
query_only a_bit_field 758

a_change_log structure [database tools API] quiet
a_bit_field 758

a_change_log structure [database tools API]
set_generation_number a_bit_field 758

a_change_log structure [database tools API] version
unsigned short 759

a_change_log structure [database tools API]
zap_current_offset char * 759

a_change_log structure [database tools API]
zap_starting_offset char * 759

a_create_db structure [database tools API]
accent_sensitivity char 759

a_create_db structure [database tools API]
avoid_view_collisions a_bit_field 760

a_create_db structure [database tools API]
blank_pad a_bit_field 760

a_create_db structure [database tools API]
case_sensitivity_use_default a_bit_field
760

a_create_db structure [database tools API]
checksum a_bit_field 760

a_create_db structure [database tools API]
data_store_type const char * 761

a_create_db structure [database tools API] db_size
unsigned int 761

a_create_db structure [database tools API]
db_size_unit int 761

a_create_db structure [database tools API] dba_pwd
char * 761

a_create_db structure [database tools API] dba_uid
char * 761

a_create_db structure [database tools API] dbname
const char * 761

a_create_db structure [database tools API]
default_collation const char * 762

a_create_db structure [database tools API]
description 759

a_create_db structure [database tools API] encoding
const char * 762

a_create_db structure [database tools API] encrypt
a_bit_field 762

a_create_db structure [database tools API]
encrypted_tables a_bit_field 762

a_create_db structure [database tools API]
encryption_algorithm const char * 762

a_create_db structure [database tools API]
encryption_key const char * 763

a_create_db structure [database tools API] errorrtn
MSG_CALLBACK 763

a_create_db structure [database tools API]
iq_params void * 763

a_create_db structure [database tools API] jconnect
a_bit_field 763

a_create_db structure [database tools API] logname
const char * 763

a_create_db structure [database tools API]
mirrorname const char * 763

a_create_db structure [database tools API] msgrtn
MSG_CALLBACK 764

a_create_db structure [database tools API]
nchar_collation const char * 764

a_create_db structure [database tools API]
page_size unsigned short 764

a_create_db structure [database tools API]
respect_case a_bit_field 764

a_create_db structure [database tools API] startline
const char * 764

a_create_db structure [database tools API]
sys_proc_definer a_bit_field 765

a_create_db structure [database tools API] verbose
char 765

a_create_db structure [database tools API] version
unsigned short 765

a_db_info structure [database tools API]
bit_map_pages a_sql_uint32 765

a_db_info structure [database tools API]
charcollationspecbuffer char * 765

a_db_info structure [database tools API]
charcollationspecbufsize unsigned short
766

Index

Programming 989

a_db_info structure [database tools API]
charencodingbuffer char * 766

a_db_info structure [database tools API]
charencodingbufsize unsigned short 766

a_db_info structure [database tools API] checksum
a_bit_field 766

a_db_info structure [database tools API]
connectparms const char * 766

a_db_info structure [database tools API] dbbufsize
unsigned short 767

a_db_info structure [database tools API]
dbnamebuffer char * 767

a_db_info structure [database tools API] description
765

a_db_info structure [database tools API]
encrypted_tables a_bit_field 767

a_db_info structure [database tools API] errorrtn
MSG_CALLBACK 767

a_db_info structure [database tools API] file_size
a_sql_uint32 767

a_db_info structure [database tools API] free_pages
a_sql_uint32 767

a_db_info structure [database tools API] logbufsize
unsigned short 767

a_db_info structure [database tools API]
lognamebuffer char * 768

a_db_info structure [database tools API]
mirrorbufsize unsigned short 768

a_db_info structure [database tools API]
mirrornamebuffer char * 768

a_db_info structure [database tools API] msgrtn
MSG_CALLBACK 768

a_db_info structure [database tools API]
ncharcollationspecbuffer char * 768

a_db_info structure [database tools API]
ncharcollationspecbufsize unsigned short
768

a_db_info structure [database tools API]
ncharencodingbuffer char * 768

a_db_info structure [database tools API]
ncharencodingbufsize unsigned short
769

a_db_info structure [database tools API]
other_pages a_sql_uint32 769

a_db_info structure [database tools API]
page_usage a_bit_field 769

a_db_info structure [database tools API] quiet
a_bit_field 769

a_db_info structure [database tools API] statusrtn
MSG_CALLBACK 769

a_db_info structure [database tools API] sysinfo
a_sysinfo 769

a_db_info structure [database tools API] totals
a_table_info * 770

a_db_info structure [database tools API] version
unsigned short 770

a_db_version_info structure [database tools API]
created_version char 770

a_db_version_info structure [database tools API]
description 770

a_db_version_info structure [database tools API]
errorrtn MSG_CALLBACK 770

a_db_version_info structure [database tools API]
filename const char * 770

a_db_version_info structure [database tools API]
msgrtn MSG_CALLBACK 771

a_db_version_info structure [database tools API]
version unsigned short 771

a_dblic_info structure [database tools API]
compname char * 771

a_dblic_info structure [database tools API]
conncount a_sql_int32 771

a_dblic_info structure [database tools API]
description 771

a_dblic_info structure [database tools API] errorrtn
MSG_CALLBACK 771

a_dblic_info structure [database tools API]
exename char * 772

a_dblic_info structure [database tools API]
installkey char * 772

a_dblic_info structure [database tools API] msgrtn
MSG_CALLBACK 772

a_dblic_info structure [database tools API]
nodecount a_sql_int32 772

a_dblic_info structure [database tools API]
query_only a_bit_field 772

a_dblic_info structure [database tools API] quiet
a_bit_field 772

a_dblic_info structure [database tools API] type
a_license_type 773

a_dblic_info structure [database tools API]
username char * 773

a_dblic_info structure [database tools API] version
unsigned short 773

a_dbtools_info structure [database tools API]
description 773

Index

990 SAP Sybase IQ

a_dbtools_info structure [database tools API]
errorrtn MSG_CALLBACK 773

a_log_file_info structure [database tools API]
dbname const char * 774

a_log_file_info structure [database tools API]
description 773

a_log_file_info structure [database tools API]
encryption_key const char * 774

a_log_file_info structure [database tools API]
errorrtn MSG_CALLBACK 774

a_log_file_info structure [database tools API]
logname char * 774

a_log_file_info structure [database tools API]
logname_size size_t 774

a_log_file_info structure [database tools API]
mirrorname char * 774

a_log_file_info structure [database tools API]
mirrorname_size size_t 774

a_log_file_info structure [database tools API]
reserved void * 775

a_log_file_info structure [database tools API]
version unsigned short 775

a_name structure [database tools API] description
775

a_name structure [database tools API] name char
775

a_name structure [database tools API] next struct
a_name * 775

a_remote_sql structure [database tools API] apply
a_bit_field 776

a_remote_sql structure [database tools API] argv
char ** 776

a_remote_sql structure [database tools API] batch
a_bit_field 777

a_remote_sql structure [database tools API]
confirmrtn MSG_CALLBACK 777

a_remote_sql structure [database tools API]
connectparms char * 777

a_remote_sql structure [database tools API] debug
a_bit_field 777

a_remote_sql structure [database tools API]
debug_dump_size a_sql_uint32 778

a_remote_sql structure [database tools API]
debug_page_offsets a_bit_field 778

a_remote_sql structure [database tools API]
default_window_title char * 778

a_remote_sql structure [database tools API] deleted
a_bit_field 778

a_remote_sql structure [database tools API]
description 775

a_remote_sql structure [database tools API]
encryption_key char * 778

a_remote_sql structure [database tools API] errorrtn
MSG_CALLBACK 778

a_remote_sql structure [database tools API]
frequency a_sql_uint32 779

a_remote_sql structure [database tools API]
full_q_scan a_bit_field 779

a_remote_sql structure [database tools API]
include_scan_range char * 779

a_remote_sql structure [database tools API]
latest_backup a_bit_field 779

a_remote_sql structure [database tools API]
link_debug a_bit_field 779

a_remote_sql structure [database tools API] locale
char * 779

a_remote_sql structure [database tools API]
log_file_name const char * 780

a_remote_sql structure [database tools API]
log_size a_sql_uint32 780

a_remote_sql structure [database tools API] logrtn
MSG_CALLBACK 780

a_remote_sql structure [database tools API]
max_length a_sql_uint32 780

a_remote_sql structure [database tools API]
memory a_sql_uint32 781

a_remote_sql structure [database tools API]
mirror_logs char * 781

a_remote_sql structure [database tools API] more
a_bit_field 781

a_remote_sql structure [database tools API]
msgqueuertn
MSG_QUEUE_CALLBACK 781

a_remote_sql structure [database tools API] msgrtn
MSG_CALLBACK 781

a_remote_sql structure [database tools API]
no_user_interaction a_bit_field 782

a_remote_sql structure [database tools API]
operations a_sql_uint32 782

a_remote_sql structure [database tools API]
patience_retry a_sql_uint32 782

a_remote_sql structure [database tools API]
progress_index_rtn
SET_PROGRESS_CALLBACK 782

a_remote_sql structure [database tools API]
progress_msg_rtn MSG_CALLBACK
783

Index

Programming 991

a_remote_sql structure [database tools API]
queueparms char * 783

a_remote_sql structure [database tools API] receive
a_bit_field 783

a_remote_sql structure [database tools API]
receive_delay a_sql_uint32 783

a_remote_sql structure [database tools API]
remote_output_file_name char * 783

a_remote_sql structure [database tools API]
rename_log a_bit_field 784

a_remote_sql structure [database tools API]
resend_urgency a_sql_uint32 784

a_remote_sql structure [database tools API]
scan_log a_bit_field 784

a_remote_sql structure [database tools API] send
a_bit_field 784

a_remote_sql structure [database tools API]
send_delay a_sql_uint32 784

a_remote_sql structure [database tools API]
set_window_title_rtn
SET_WINDOW_TITLE_CALLBACK
785

a_remote_sql structure [database tools API] threads
a_sql_uint32 785

a_remote_sql structure [database tools API]
transaction_logs char * 785

a_remote_sql structure [database tools API] triggers
a_bit_field 785

a_remote_sql structure [database tools API]
truncate_remote_output_file a_bit_field
785

a_remote_sql structure [database tools API] unused
a_bit_field 786

a_remote_sql structure [database tools API]
use_hex_offsets a_bit_field 786

a_remote_sql structure [database tools API]
use_relative_offsets a_bit_field 786

a_remote_sql structure [database tools API] verbose
a_bit_field 786

a_remote_sql structure [database tools API] version
unsigned short 786

a_remote_sql structure [database tools API]
warningrtn MSG_CALLBACK 787

a_sqlany_bind_param structure [SQL Anywhere C
API] description 528

a_sqlany_bind_param structure [SQL Anywhere C
API] direction a_sqlany_data_direction
528

a_sqlany_bind_param structure [SQL Anywhere C
API] name char * 528

a_sqlany_bind_param structure [SQL Anywhere C
API] value a_sqlany_data_value 528

a_sqlany_bind_param_info structure [SQL
Anywhere C API] description 528

a_sqlany_bind_param_info structure [SQL
Anywhere C API] direction
a_sqlany_data_direction 529

a_sqlany_bind_param_info structure [SQL
Anywhere C API] input_value
a_sqlany_data_value 529

a_sqlany_bind_param_info structure [SQL
Anywhere C API] name char * 529

a_sqlany_bind_param_info structure [SQL
Anywhere C API] output_value
a_sqlany_data_value 529

a_sqlany_column_info structure [SQL Anywhere C
API] description 529

a_sqlany_column_info structure [SQL Anywhere C
API] max_size size_t 530

a_sqlany_column_info structure [SQL Anywhere C
API] name char * 530

a_sqlany_column_info structure [SQL Anywhere C
API] native_type a_sqlany_native_type
530

a_sqlany_column_info structure [SQL Anywhere C
API] nullable sacapi_bool 530

a_sqlany_column_info structure [SQL Anywhere C
API] precision unsigned short 530

a_sqlany_column_info structure [SQL Anywhere C
API] scale unsigned short 531

a_sqlany_column_info structure [SQL Anywhere C
API] type a_sqlany_data_type 531

a_sqlany_data_direction() enumeration [SQL
Anywhere C API] 518

a_sqlany_data_info structure [SQL Anywhere C
API] data_size size_t 531

a_sqlany_data_info structure [SQL Anywhere C
API] description 531

a_sqlany_data_info structure [SQL Anywhere C
API] is_null sacapi_bool 531

a_sqlany_data_info structure [SQL Anywhere C
API] type a_sqlany_data_type 532

a_sqlany_data_type() enumeration [SQL Anywhere
C API] 518

a_sqlany_data_value structure [SQL Anywhere C
API] buffer char * 532

Index

992 SAP Sybase IQ

a_sqlany_data_value structure [SQL Anywhere C
API] buffer_size size_t 532

a_sqlany_data_value structure [SQL Anywhere C
API] description 532

a_sqlany_data_value structure [SQL Anywhere C
API] is_null sacapi_bool * 533

a_sqlany_data_value structure [SQL Anywhere C
API] length size_t * 533

a_sqlany_data_value structure [SQL Anywhere C
API] type a_sqlany_data_type 533

a_sqlany_native_type() enumeration [SQL
Anywhere C API] 519

a_sync_db structure [database tools API]
allow_outside_connect a_bit_field 787

a_sync_db structure [database tools API]
allow_schema_change a_bit_field 787

a_sync_db structure [database tools API]
apply_dnld_file const char * 787

a_sync_db structure [database tools API] argv char
** 788

a_sync_db structure [database tools API] autoclose
a_bit_field 788

a_sync_db structure [database tools API]
background_retry a_sql_int32 788

a_sync_db structure [database tools API]
background_sync a_bit_field 788

a_sync_db structure [database tools API]
cache_verbosity a_bit_field 788

a_sync_db structure [database tools API] ce_argv
char ** 789

a_sync_db structure [database tools API]
ce_reproc_argv char ** 789

a_sync_db structure [database tools API]
changing_pwd a_bit_field 789

a_sync_db structure [database tools API] confirmrtn
MSG_CALLBACK 789

a_sync_db structure [database tools API]
connectparms char * 789

a_sync_db structure [database tools API]
connectparms_allocated a_bit_field 790

a_sync_db structure [database tools API]
continue_download a_bit_field 790

a_sync_db structure [database tools API]
create_dnld_file const char * 790

a_sync_db structure [database tools API] debug
a_bit_field 790

a_sync_db structure [database tools API]
debug_dump_char a_bit_field 790

a_sync_db structure [database tools API]
debug_dump_hex a_bit_field 790

a_sync_db structure [database tools API]
debug_dump_size a_sql_uint32 791

a_sync_db structure [database tools API]
debug_page_offsets a_bit_field 791

a_sync_db structure [database tools API]
default_window_title char * 791

a_sync_db structure [database tools API]
description 787

a_sync_db structure [database tools API]
dl_insert_width a_sql_uint32 791

a_sync_db structure [database tools API]
dl_use_put a_bit_field 791

a_sync_db structure [database tools API]
dlg_info_msg a_sql_uint32 791

a_sync_db structure [database tools API]
dnld_fail_len a_sql_uint32 791

a_sync_db structure [database tools API]
dnld_file_extra const char * 792

a_sync_db structure [database tools API]
dnld_gen_num a_bit_field 792

a_sync_db structure [database tools API]
dnld_read_size a_sql_uint32 792

a_sync_db structure [database tools API]
download_only a_bit_field 792

a_sync_db structure [database tools API]
encrypted_stream_opts const char * 792

a_sync_db structure [database tools API]
encryption_key char * 793

a_sync_db structure [database tools API]
entered_dialog a_bit_field 793

a_sync_db structure [database tools API] errorrtn
MSG_CALLBACK 793

a_sync_db structure [database tools API]
est_upld_row_cnt a_sql_uint32 793

a_sync_db structure [database tools API]
extended_options char * 793

a_sync_db structure [database tools API]
hide_conn_str a_bit_field 794

a_sync_db structure [database tools API]
hide_ml_pwd a_bit_field 794

a_sync_db structure [database tools API]
hovering_frequency a_sql_uint32 794

a_sync_db structure [database tools API]
ignore_debug_interrupt a_bit_field 794

a_sync_db structure [database tools API]
ignore_hook_errors a_bit_field 794

Index

Programming 993

a_sync_db structure [database tools API]
ignore_hovering a_bit_field 795

a_sync_db structure [database tools API]
ignore_scheduling a_bit_field 795

a_sync_db structure [database tools API]
include_scan_range const char * 795

a_sync_db structure [database tools API] init_cache
a_sql_uint32 795

a_sync_db structure [database tools API]
init_cache_suffix char 795

a_sync_db structure [database tools API]
kill_other_connections a_bit_field 796

a_sync_db structure [database tools API]
last_upload_def a_syncpub * 796

a_sync_db structure [database tools API]
lite_blob_handling a_bit_field 796

a_sync_db structure [database tools API]
log_file_name const char * 796

a_sync_db structure [database tools API] log_size
a_sql_uint32 796

a_sync_db structure [database tools API] logrtn
MSG_CALLBACK 797

a_sync_db structure [database tools API]
max_cache a_sql_uint32 797

a_sync_db structure [database tools API]
max_cache_suffix char 797

a_sync_db structure [database tools API]
min_cache a_sql_uint32 797

a_sync_db structure [database tools API]
min_cache_suffix char 797

a_sync_db structure [database tools API]
mlpassword char * 797

a_sync_db structure [database tools API]
msgqueuertn
MSG_QUEUE_CALLBACK 798

a_sync_db structure [database tools API] msgrtn
MSG_CALLBACK 798

a_sync_db structure [database tools API]
new_mlpassword char * 798

a_sync_db structure [database tools API]
no_offline_logscan a_sql_uint32 798

a_sync_db structure [database tools API]
no_schema_cache a_bit_field 799

a_sync_db structure [database tools API]
no_stream_compress a_bit_field 799

a_sync_db structure [database tools API] offline_dir
const char * 799

a_sync_db structure [database tools API]
output_to_file a_bit_field 799

a_sync_db structure [database tools API]
output_to_mobile_link a_bit_field 799

a_sync_db structure [database tools API]
persist_connection a_bit_field 799

a_sync_db structure [database tools API] ping
a_bit_field 800

a_sync_db structure [database tools API]
preload_dlls char * 800

a_sync_db structure [database tools API]
progress_index_rtn
SET_PROGRESS_CALLBACK 800

a_sync_db structure [database tools API]
progress_msg_rtn MSG_CALLBACK
800

a_sync_db structure [database tools API]
prompt_again a_bit_field 800

a_sync_db structure [database tools API]
prompt_for_encrypt_key a_bit_field 800

a_sync_db structure [database tools API]
protocol_add_cli_bit_to_cli_both
a_bit_field 801

a_sync_db structure [database tools API]
protocol_add_cli_bit_to_cli_max
a_bit_field 801

a_sync_db structure [database tools API]
protocol_add_serv_bit_to_cli_both
a_bit_field 801

a_sync_db structure [database tools API]
protocol_add_serv_bit_to_cli_max
a_bit_field 801

a_sync_db structure [database tools API]
protocol_add_serv_bit_to_serv_both
a_bit_field 801

a_sync_db structure [database tools API]
protocol_add_serv_bit_to_serv_max
a_bit_field 801

a_sync_db structure [database tools API] raw_file
const char * 801

a_sync_db structure [database tools API]
rename_log a_bit_field 802

a_sync_db structure [database tools API] reserved
a_bit_field 802

a_sync_db structure [database tools API]
retry_remote_ahead a_bit_field 802

a_sync_db structure [database tools API]
retry_remote_behind a_bit_field 802

a_sync_db structure [database tools API]
server_mode a_bit_field 802

Index

994 SAP Sybase IQ

a_sync_db structure [database tools API]
server_port a_sql_uint32 803

a_sync_db structure [database tools API]
set_window_title_rtn
SET_WINDOW_TITLE_CALLBACK
803

a_sync_db structure [database tools API] status_rtn
STATUS_CALLBACK 803

a_sync_db structure [database tools API]
strictly_free_memory a_bit_field 803

a_sync_db structure [database tools API]
strictly_ignore_trigger_ops a_bit_field
803

a_sync_db structure [database tools API] sync_opt
char * 803

a_sync_db structure [database tools API]
sync_params char * 804

a_sync_db structure [database tools API]
sync_profile char * 804

a_sync_db structure [database tools API]
trans_upload a_bit_field 804

a_sync_db structure [database tools API]
upld_fail_len a_sql_uint32 804

a_sync_db structure [database tools API]
upload_defs a_syncpub * 804

a_sync_db structure [database tools API]
upload_only a_bit_field 805

a_sync_db structure [database tools API] usage_rtn
USAGE_CALLBACK 805

a_sync_db structure [database tools API]
use_fixed_cache a_bit_field 805

a_sync_db structure [database tools API]
use_hex_offsets a_bit_field 805

a_sync_db structure [database tools API]
use_relative_offsets a_bit_field 805

a_sync_db structure [database tools API]
used_dialog_allocation a_bit_field 805

a_sync_db structure [database tools API]
user_name char * 806

a_sync_db structure [database tools API] verbose
a_bit_field 806

a_sync_db structure [database tools API]
verbose_download a_bit_field 806

a_sync_db structure [database tools API]
verbose_download_data a_bit_field 806

a_sync_db structure [database tools API]
verbose_hook a_bit_field 806

a_sync_db structure [database tools API]
verbose_minimum a_bit_field 806

a_sync_db structure [database tools API]
verbose_msgid a_bit_field 807

a_sync_db structure [database tools API]
verbose_option_info a_bit_field 807

a_sync_db structure [database tools API]
verbose_protocol a_bit_field 807

a_sync_db structure [database tools API]
verbose_row_cnts a_bit_field 807

a_sync_db structure [database tools API]
verbose_row_data a_bit_field 807

a_sync_db structure [database tools API]
verbose_server a_bit_field 808

a_sync_db structure [database tools API]
verbose_upload a_bit_field 808

a_sync_db structure [database tools API]
verbose_upload_data a_bit_field 808

a_sync_db structure [database tools API] version
unsigned short 808

a_sync_db structure [database tools API]
warningrtn MSG_CALLBACK 808

a_syncpub structure [database tools API]
description 808

a_syncpub structure [database tools API] ext_opt
char * 809

a_syncpub structure [database tools API] next struct
a_syncpub * 809

a_syncpub structure [database tools API] pub_name
char * 809

a_syncpub structure [database tools API]
subscription char * 809

a_sysinfo structure [database tools API]
blank_padding a_bit_field 810

a_sysinfo structure [database tools API]
case_sensitivity a_bit_field 810

a_sysinfo structure [database tools API]
default_collation char 810

a_sysinfo structure [database tools API] description
809

a_sysinfo structure [database tools API] encryption
a_bit_field 810

a_sysinfo structure [database tools API] page_size
unsigned short 810

a_sysinfo structure [database tools API] valid_data
a_bit_field 810

a_table_info structure [database tools API]
description 810

a_table_info structure [database tools API]
index_pages a_sql_uint32 811

Index

Programming 995

a_table_info structure [database tools API]
index_used a_sql_uint32 811

a_table_info structure [database tools API]
index_used_pct a_sql_uint32 811

a_table_info structure [database tools API] next
struct a_table_info * 811

a_table_info structure [database tools API] table_id
a_sql_uint32 811

a_table_info structure [database tools API]
table_name char * 811

a_table_info structure [database tools API]
table_pages a_sql_uint32 811

a_table_info structure [database tools API]
table_used a_sql_uint32 812

a_table_info structure [database tools API]
table_used_pct a_sql_uint32 812

a_translate_log structure [database tools API]
ansi_sql a_bit_field 812

a_translate_log structure [database tools API]
chronological_order a_bit_field 812

a_translate_log structure [database tools API]
comment_trigger_trans a_bit_field 812

a_translate_log structure [database tools API]
confirmrtn MSG_CALLBACK 813

a_translate_log structure [database tools API]
connectparms const char * 813

a_translate_log structure [database tools API] debug
a_bit_field 813

a_translate_log structure [database tools API]
debug_dump_char a_bit_field 813

a_translate_log structure [database tools API]
debug_dump_hex a_bit_field 813

a_translate_log structure [database tools API]
debug_dump_size a_sql_uint32 814

a_translate_log structure [database tools API]
debug_page_offsets a_bit_field 814

a_translate_log structure [database tools API]
debug_sql_remote a_bit_field 814

a_translate_log structure [database tools API]
description 812

a_translate_log structure [database tools API]
encryption_key const char * 814

a_translate_log structure [database tools API]
errorrtn MSG_CALLBACK 814

a_translate_log structure [database tools API]
extra_audit a_bit_field 814

a_translate_log structure [database tools API]
force_chaining a_bit_field 814

a_translate_log structure [database tools API]
force_recovery a_bit_field 815

a_translate_log structure [database tools API]
generate_reciprocals a_bit_field 815

a_translate_log structure [database tools API]
include_audit a_bit_field 815

a_translate_log structure [database tools API]
include_destination_sets const char *
815

a_translate_log structure [database tools API]
include_publications const char * 815

a_translate_log structure [database tools API]
include_scan_range const char * 815

a_translate_log structure [database tools API]
include_source_sets const char * 815

a_translate_log structure [database tools API]
include_subsets a_bit_field 816

a_translate_log structure [database tools API]
include_tables const char * 816

a_translate_log structure [database tools API]
include_trigger_trans a_bit_field 816

a_translate_log structure [database tools API]
leave_output_on_error a_bit_field 816

a_translate_log structure [database tools API]
logname const char * 816

a_translate_log structure [database tools API] logrtn
MSG_CALLBACK 816

a_translate_log structure [database tools API]
logs_dir const char * 817

a_translate_log structure [database tools API]
match_mode a_bit_field 817

a_translate_log structure [database tools API]
match_pos const char * 817

a_translate_log structure [database tools API]
msgrtn MSG_CALLBACK 817

a_translate_log structure [database tools API]
omit_comments a_bit_field 817

a_translate_log structure [database tools API]
queueparms const char * 817

a_translate_log structure [database tools API] quiet
a_bit_field 818

a_translate_log structure [database tools API]
recovery_bytes a_sql_uint32 818

a_translate_log structure [database tools API]
recovery_ops a_sql_uint32 818

a_translate_log structure [database tools API]
remove_rollback a_bit_field 818

a_translate_log structure [database tools API]
replace a_bit_field 818

Index

996 SAP Sybase IQ

a_translate_log structure [database tools API]
repserver_users const char * 819

a_translate_log structure [database tools API]
show_undo a_bit_field 819

a_translate_log structure [database tools API]
since_checkpoint a_bit_field 819

a_translate_log structure [database tools API]
since_time a_sql_uint32 819

a_translate_log structure [database tools API]
sqlname const char * 819

a_translate_log structure [database tools API]
statusrtn MSG_CALLBACK 820

a_translate_log structure [database tools API]
use_hex_offsets a_bit_field 820

a_translate_log structure [database tools API]
use_relative_offsets a_bit_field 820

a_translate_log structure [database tools API]
userlist p_name 820

a_translate_log structure [database tools API]
userlisttype char 820

a_translate_log structure [database tools API]
version unsigned short 820

a_truncate_log structure [database tools API]
connectparms const char * 821

a_truncate_log structure [database tools API]
description 821

a_truncate_log structure [database tools API]
errorrtn MSG_CALLBACK 821

a_truncate_log structure [database tools API]
msgrtn MSG_CALLBACK 821

a_truncate_log structure [database tools API] quiet
a_bit_field 821

a_truncate_log structure [database tools API]
server_backup a_bit_field 822

a_truncate_log structure [database tools API]
truncate_interrupted char 822

a_truncate_log structure [database tools API]
version unsigned short 822

a_v4_extfn_blob
blob 17
blob_length 18
close_istream 19
open_istream 19
release 20
structure 17

a_v4_extfn_blob_istream
blob input stream 21
get 21
structure 21

a_v4_extfn_col_subset_of_input
column values subset 25
structure 25

a_v4_extfn_column_data
column data 22
structure 22

a_v4_extfn_column_list
column list 23
structure 23

a_v4_extfn_describe_col_type enumerator 90
a_v4_extfn_describe_parm_type enumerator 91
a_v4_extfn_describe_return enumerator 93
a_v4_extfn_describe_udf_type enumerator 95
a_v4_extfn_estimate

optimizer estimate 113
structure 113

a_v4_extfn_license_info 112
a_v4_extfn_order_el

column order 24
structure 24

a_v4_extfn_orderby_list
order by list 113
structure 113

a_v4_extfn_partitionby_col_num enumerator 114
a_v4_extfn_proc

external function 97
structure 97

a_v4_extfn_proc_context
convert_value method 107
external procedure context 100
get_blob method 111
get_is_cancelled method 105
get_value method 102
get_value_is_constant method 104
log_message method 107
set_error method 106
set_value method 104
structure 100

a_v4_extfn_row 115
a_v4_extfn_row_block 116
a_v4_extfn_state enumerator 95
a_v4_extfn_table

structure 116
table 116

a_v4_extfn_table_context
get_blob method 124
structure 117
table context 117

Index

Programming 997

a_v4_extfn_table_func
structure 124
table functions 124

a_validate_db structure [database tools API]
connectparms const char * 822

a_validate_db structure [database tools API]
description 822

a_validate_db structure [database tools API]
errorrtn MSG_CALLBACK 823

a_validate_db structure [database tools API] index
a_bit_field 823

a_validate_db structure [database tools API] msgrtn
MSG_CALLBACK 823

a_validate_db structure [database tools API] quiet
a_bit_field 823

a_validate_db structure [database tools API]
statusrtn MSG_CALLBACK 823

a_validate_db structure [database tools API] tables
p_name 823

a_validate_db structure [database tools API] type
char 824

a_validate_db structure [database tools API] version
unsigned short 824

Abort propertySARowsCopiedEventArgs class
[SQL Anywhere .NET API] 307

about 423–426, 435, 436, 481, 482
accent_sensitivity chara_create_db structure

[database tools API] 759
Accept

accessing HTTP headers 641
Accept-Charset

accessing HTTP headers 641
Accept-Encoding

accessing HTTP headers 641
Accept-Language

accessing HTTP headers 641
AcceptCharset option

example 652
ActiveX Data Objects

about 320
Adaptive Server server 946
Adaptive Server servers 944
addBatch

PreparedStatement class 398
Statement class 393

addShutdownHook
Java VM shutdown hooks 374

administration tools
dbtools 731

ADO
about 320
Command object 322
commands 322
Connection object 321
connections 321
cursor types 142
cursors 158
introduction to programming 319
queries 323
Recordset object 323
Recordset object and cursor types 324
transactions 326
updates 325
updating data through a cursor 325
using SQL statements in applications 131

ADO.NET
about 165
autocommit mode 161
controlling autocommit behavior 161
cursor support 158
prepared statements 133
using SQL statements in applications 131

ADO.NET API
about 165

aggregate functions 859
statistical 881
STDDEV_POP 882
STDDEV_SAMP 882
VAR_POP 882
VAR_SAMP 882

All propertySACommLinksOptionsBuilder class
[SQL Anywhere .NET API] 224

alloc
v4 API method 109

alloc_sqlda function
about 467

alloc_sqlda_noind function
about 468

ALLOW_NULLS_BY_DEFAULT option
Open Client 6

allow_outside_connect a_bit_fielda_sync_db
structure [database tools API] 787

allow_schema_change a_bit_fielda_sync_db
structure [database tools API] 787

ALTER SERVER statement
syntax 961

altering
web services 631

Index

998 SAP Sybase IQ

an_erase_db structure [database tools API]
confirmrtn MSG_CALLBACK 824

an_erase_db structure [database tools API] dbname
const char * 824

an_erase_db structure [database tools API]
description 824

an_erase_db structure [database tools API]
encryption_key const char * 824

an_erase_db structure [database tools API] erase
a_bit_field 825

an_erase_db structure [database tools API] errorrtn
MSG_CALLBACK 825

an_erase_db structure [database tools API] msgrtn
MSG_CALLBACK 825

an_erase_db structure [database tools API] quiet
a_bit_field 825

an_erase_db structure [database tools API] version
unsigned short 825

an_unload_db structure [database tools API]
compress_output a_bit_field 826

an_unload_db structure [database tools API]
confirmrtn MSG_CALLBACK 826

an_unload_db structure [database tools API]
connectparms const char * 826

an_unload_db structure [database tools API] debug
a_bit_field 827

an_unload_db structure [database tools API]
description 826

an_unload_db structure [database tools API]
display_create a_bit_field 827

an_unload_db structure [database tools API]
display_create_dbinit a_bit_field 827

an_unload_db structure [database tools API]
encrypted_tables a_bit_field 827

an_unload_db structure [database tools API]
encryption_algorithm const char * 827

an_unload_db structure [database tools API]
encryption_key const char * 828

an_unload_db structure [database tools API]
errorrtn MSG_CALLBACK 828

an_unload_db structure [database tools API]
escape_char char 828

an_unload_db structure [database tools API]
escape_char_present a_bit_field 828

an_unload_db structure [database tools API]
exclude_foreign_keys a_bit_field 828

an_unload_db structure [database tools API]
exclude_hooks a_bit_field 829

an_unload_db structure [database tools API]
exclude_procedures a_bit_field 829

an_unload_db structure [database tools API]
exclude_tables a_bit_field 829

an_unload_db structure [database tools API]
exclude_triggers a_bit_field 829

an_unload_db structure [database tools API]
exclude_views a_bit_field 829

an_unload_db structure [database tools API] extract
a_bit_field 830

an_unload_db structure [database tools API]
genscript a_bit_field 830

an_unload_db structure [database tools API]
include_where_subscribe a_bit_field 830

an_unload_db structure [database tools API]
isolation_level unsigned short 830

an_unload_db structure [database tools API]
isolation_set a_bit_field 830

an_unload_db structure [database tools API] locale
const char * 831

an_unload_db structure [database tools API]
make_auxiliary a_bit_field 831

an_unload_db structure [database tools API]
ms_filename const char * 831

an_unload_db structure [database tools API]
ms_reserve int 831

an_unload_db structure [database tools API]
ms_size int 831

an_unload_db structure [database tools API] msgrtn
MSG_CALLBACK 831

an_unload_db structure [database tools API]
no_confirm a_bit_field 832

an_unload_db structure [database tools API]
no_reload_status a_bit_field 832

an_unload_db structure [database tools API]
notemp_size long 832

an_unload_db structure [database tools API]
preserve_identity_values a_bit_field 832

an_unload_db structure [database tools API]
preserve_ids a_bit_field 832

an_unload_db structure [database tools API]
profiling_uses_single_dbspace
a_bit_field 833

an_unload_db structure [database tools API]
recompute a_bit_field 833

an_unload_db structure [database tools API]
refresh_mat_view a_bit_field 833

an_unload_db structure [database tools API]
reload_connectparms char * 833

Index

Programming 999

an_unload_db structure [database tools API]
reload_db_filename char * 833

an_unload_db structure [database tools API]
reload_db_logname char * 834

an_unload_db structure [database tools API]
reload_filename const char * 834

an_unload_db structure [database tools API]
reload_page_size unsigned short 834

an_unload_db structure [database tools API]
remote_dir const char * 834

an_unload_db structure [database tools API]
remove_encrypted_tables a_bit_field
834

an_unload_db structure [database tools API]
replace_db a_bit_field 835

an_unload_db structure [database tools API]
runscript a_bit_field 835

an_unload_db structure [database tools API]
schema_reload a_bit_field 835

an_unload_db structure [database tools API]
site_name const char * 835

an_unload_db structure [database tools API]
start_subscriptions a_bit_field 835

an_unload_db structure [database tools API]
startline const char * 836

an_unload_db structure [database tools API]
startline_name a_bit_field 836

an_unload_db structure [database tools API]
startline_old const char * 836

an_unload_db structure [database tools API]
statusrtn MSG_CALLBACK 836

an_unload_db structure [database tools API]
subscriber_username const char * 836

an_unload_db structure [database tools API]
suppress_statistics a_bit_field 836

an_unload_db structure [database tools API] sysinfo
a_sysinfo 837

an_unload_db structure [database tools API]
table_list p_name 837

an_unload_db structure [database tools API]
table_list_provided a_bit_field 837

an_unload_db structure [database tools API]
temp_dir const char * 837

an_unload_db structure [database tools API]
template_name const char * 837

an_unload_db structure [database tools API]
unload_interrupted char 837

an_unload_db structure [database tools API]
unload_type char 838

an_unload_db structure [database tools API]
unordered a_bit_field 838

an_unload_db structure [database tools API]
use_internal_reload a_bit_field 838

an_unload_db structure [database tools API]
use_internal_unload a_bit_field 838

an_unload_db structure [database tools API]
verbose char 838

an_unload_db structure [database tools API]
version unsigned short 839

an_upgrade_db structure [database tools API]
connectparms const char * 839

an_upgrade_db structure [database tools API]
description 839

an_upgrade_db structure [database tools API]
errorrtn MSG_CALLBACK 839

an_upgrade_db structure [database tools API]
jconnect a_bit_field 839

an_upgrade_db structure [database tools API]
msgrtn MSG_CALLBACK 840

an_upgrade_db structure [database tools API] quiet
a_bit_field 840

an_upgrade_db structure [database tools API]
restart a_bit_field 840

an_upgrade_db structure [database tools API]
statusrtn MSG_CALLBACK 840

an_upgrade_db structure [database tools API]
sys_proc_definer unsigned short 840

an_upgrade_db structure [database tools API]
version unsigned short 841

analytic functions
DENSE_RANK 873
PERCENT_RANK 875
PERCENTILE_CONT 888
PERCENTILE_DISC 890
RANK 871

analytical functions 843
ansi_sql a_bit_fielda_translate_log structure

[database tools API] 812
APIs

ADO API 319
ADO.NET 165
JDBC API 377
OLE DB API 319
Perl DBD::SQLAnywhere API 535
PHP 566
Python Database API 545
Ruby APIs 591
Sybase Open Client API 617

Index

1000 SAP Sybase IQ

AppInfo propertySAConnectionStringBuilder class
[SQL Anywhere .NET API] 247

applications
SQL 131

apply a_bit_fielda_remote_sql structure [database
tools API] 776

apply_dnld_file const char *a_sync_db structure
[database tools API] 787

argv char **a_remote_sql structure [database tools
API] 776

argv char **a_sync_db structure [database tools
API] 788

ARRAY clause
using the FETCH statement 456

array fetches
about 456
ESQL 456

ascending order 868
ASEJDBC class 944
asensitive cursors

about 150
delete example 145
introduction 144
update example 146

AT clause
CREATE EXISTING TABLE 964

auto_tune_writers chara_backup_db structure
[database tools API] 751

autoclose a_bit_fielda_sync_db structure [database
tools API] 788

autocommit
controlling 161
implementation 162
JDBC 390
setting for transactions 161

AUTOINCREMENT
finding most recent row inserted 140

AUTOINCREMENT column default 968
AutoStart propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 247
AutoStop propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 247
Autotune() enumeration [database tools API] 748
avoid_view_collisions a_bit_fielda_create_db

structure [database tools API] 760

B
background processing

callback functions 466

background_retry a_sql_int32a_sync_db structure
[database tools API] 788

background_sync a_bit_fielda_sync_db structure
[database tools API] 788

backup_comment const char *a_backup_db
structure [database tools API] 751

backup_database a_bit_fielda_backup_db structure
[database tools API] 751

backup_history chara_backup_db structure
[database tools API] 751

backup_interrupted chara_backup_db structure
[database tools API] 752

backup_logfile a_bit_fielda_backup_db structure
[database tools API] 752

backups
DBTools example 736
embedded SQL functions 467

batch a_bit_fielda_remote_sql structure [database
tools API] 777

batch inserts
JDBC 398

BatchSize propertySABulkCopy class [SQL
Anywhere .NET API] 214

BatchUpdateException
JDBC 393

BEGIN TRANSACTION statement
remote data access 954

BIGINT data type
embedded SQL 427

binary data types
embedded SQL 427

bind parameters
prepared statements 133

bind variables
about 440

BIT data type
embedded SQL 427

bit fields
using 735

bit length 894
BIT_LENGTH function 894
bit_map_pages a_sql_uint32a_db_info structure

[database tools API] 765
blank padding 424
blank padding of DT_NSTRING 424
blank padding of DT_STRING 424
blank_pad a_bit_fielda_create_db structure

[database tools API] 760

Index

Programming 1001

blank_padding a_bit_fielda_sysinfo structure
[database tools API] 810

blob
a_v4_extfn_blob 17

blob input stream
a_v4_extfn_blob_istream 21

BLOBs
embedded SQL 460
retrieving in embedded SQL 461, 462
sending in embedded SQL 462, 463

block cursors
about 139
ODBC 143

bookmarks
about 143

bound parameters
prepared statements 133

Broadcast propertySATcpOptionsBuilder class
[SQL Anywhere .NET API] 311

BroadcastListener propertySATcpOptionsBuilder
class [SQL Anywhere .NET API] 311

buffer char *a_sqlany_data_value structure [SQL
Anywhere C API] 532

buffer_size size_ta_sqlany_data_value structure
[SQL Anywhere C API] 532

Bulk-Library
about 617

BulkCopyTimeout propertySABulkCopy class
[SQL Anywhere .NET API] 214

byte code
Java classes 369

C
C API 495
C programming language

data types 427
embedded SQL applications 409

C#
support in .NET Data Provider 165

C++ API 495
C++ applications

dbtools 731
embedded SQL 409

cache_verbosity a_bit_fielda_sync_db structure
[database tools API] 788

CALL statement
embedded SQL 463

callback 482
JDBC 401

callback functions
embedded SQL 466
registering 480

callbacks 481, 482
canceling requests

embedded SQL 466
CanCreateDataSourceEnumerator

propertySAFactory class [SQL
Anywhere .NET API] 282

case_sensitivity a_bit_fielda_sysinfo structure
[database tools API] 810

case_sensitivity_use_default
a_bit_fielda_create_db structure
[database tools API] 760

ce_argv char **a_sync_db structure [database tools
API] 789

ce_reproc_argv char **a_sync_db structure
[database tools API] 789

CEIL function 895
CEILING function 895
certification

partner 1
platform 3

chained mode
controlling 161
implementation 162
transactions 161

chained option
JDBC 390

CHAINED option
Open Client 6

change_logname a_bit_fielda_change_log structure
[database tools API] 756

change_mirrorname a_bit_fielda_change_log
structure [database tools API] 756

changing_pwd a_bit_fielda_sync_db structure
[database tools API] 789

character data
character sets in Embedded SQL 430
length in Embedded SQL 430

character sets
setting CHAR character set 473
setting NCHAR character set 474
web services 652

character strings
embedded SQL 411

charcollationspecbuffer char *a_db_info structure
[database tools API] 765

Index

1002 SAP Sybase IQ

charcollationspecbufsize unsigned shorta_db_info
structure [database tools API] 766

charencodingbuffer char *a_db_info structure
[database tools API] 766

charencodingbufsize unsigned shorta_db_info
structure [database tools API] 766

Charset propertySAConnectionStringBuilder class
[SQL Anywhere .NET API] 247

CharsetConversion option
example 652

CHECK conditions
about 968

CHECK ON COMMIT clause
referential integrity 968

Checkpoint() enumeration [database tools API]
748

checksum a_bit_fielda_create_db structure
[database tools API] 760

checksum a_bit_fielda_db_info structure [database
tools API] 766

chkpt_log_type chara_backup_db structure
[database tools API] 752

chronological_order a_bit_fielda_translate_log
structure [database tools API] 812

CIS (Component Integration Services) 5
Class.forName method

loading iAnywhere JDBC 4.0 driver 381
classes

creating 371
installing 371

CLASSPATH environment variable
jConnect 382
setting 387

clauses
WITH HOLD 138

clearBatch
Statement class 393

client
time change 488

client connections
OLE DB 320

client files
ESQL client API callback function 480

client side autocommit
about 162

Client-Library
Sybase Open Client 617

CLIENTPORT clause
specifying 666

ClientPort propertySATcpOptionsBuilder class
[SQL Anywhere .NET API] 312

clients
web 658

close method
Python 548

CLOSE statement
using cursors in embedded SQL 453

close_result_set
v4 API method 110

CodeXchange
samples 626

column data
a_v4_extfn_column_data 22

column list
a_v4_extfn_column_list 23

column number
partition by 114

column order
a_v4_extfn_order_el 24

column subset
a_v4_extfn_col_subset_of_input 25

ColumnMappings propertySABulkCopy class
[SQL Anywhere .NET API] 215

columns
constraints 968

Columns fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 284

Command ADO object
ADO 322

command line utilities
SQL preprocessor (iqsqlpp) syntax 411

Command propertySARowUpdatedEventArgs
class [SQL Anywhere .NET API] 305

Command propertySARowUpdatingEventArgs
class [SQL Anywhere .NET API] 306

commands
ADO Command object 322

CommandText propertySACommand class [SQL
Anywhere .NET API] 234

CommandTimeout propertySACommand class
[SQL Anywhere .NET API] 235

CommandType propertySACommand class [SQL
Anywhere .NET API] 235

CommBufferSize
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 247

comment_trigger_trans a_bit_fielda_translate_log
structure [database tools API] 812

Index

Programming 1003

commenting
web services 634

commit method
Python 549

COMMIT statement
cursors 163
JDBC 390
remote data access 954

CommitTrans ADO method
ADO programming 326
updating data 326

CommLinks propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 248

compile and link process
about 410

compilers
used with sqlpp 415

compname char *a_dblic_info structure [database
tools API] 771

Component Integration Services 945
Compress propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 248
compress_output a_bit_fieldan_unload_db

structure [database tools API] 826
CompressionThreshold

propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 248

computing deltas between adjacent rows 869
confirmrtn MSG_CALLBACKa_backup_db

structure [database tools API] 752
confirmrtn MSG_CALLBACKa_remote_sql

structure [database tools API] 777
confirmrtn MSG_CALLBACKa_sync_db structure

[database tools API] 789
confirmrtn MSG_CALLBACKa_translate_log

structure [database tools API] 813
confirmrtn MSG_CALLBACKan_erase_db

structure [database tools API] 824
confirmrtn MSG_CALLBACKan_unload_db

structure [database tools API] 826
conncount a_sql_int32a_dblic_info structure

[database tools API] 771
connect identifier

resolving 943
connect method

Python 548
connecting

OLE DB 320

Connection
accessing HTTP headers 641

Connection ADO object
ADO 321
ADO programming 326

connection defaults 390
connection parameters

OLE DB 327
connection pooling

.NET Data Provider 169
OLE DB 329
web services 637

connection properties
web services 654

Connection propertySACommand class [SQL
Anywhere .NET API] 236

Connection propertySATransaction class [SQL
Anywhere .NET API] 316

connection state
.NET Data Provider 170

CONNECTION_PROPERTY function
example 651

ConnectionLifetime
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 248

ConnectionName
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 249

ConnectionPool
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 249

ConnectionReset
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 249

connections 390
ADO Connection object 321
connecting to a database using the .NET Data

Provider 168
functions 486
jConnect 384
jConnect URL 383
JDBC 380
JDBC client applications 384
JDBC example 384
JDBC in the server 388
JDBC server-side example 388
licensing web applications 646
ODBC functions 346
ODBC programming 347

Index

1004 SAP Sybase IQ

remote 954
SQL Anywhere 16 JDBC driver URL 381

ConnectionString
propertySACommLinksOptionsBuilder
class [SQL Anywhere .NET API] 225

ConnectionTimeout
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 249

connectparms char *a_remote_sql structure
[database tools API] 777

connectparms char *a_sync_db structure [database
tools API] 789

connectparms const char *a_backup_db structure
[database tools API] 752

connectparms const char *a_db_info structure
[database tools API] 766

connectparms const char *a_translate_log structure
[database tools API] 813

connectparms const char *a_truncate_log structure
[database tools API] 821

connectparms const char *a_validate_db structure
[database tools API] 822

connectparms const char *an_unload_db structure
[database tools API] 826

connectparms const char *an_upgrade_db structure
[database tools API] 839

connectparms_allocated a_bit_fielda_sync_db
structure [database tools API] 790

CONTINUE_AFTER_RAISERROR option
Open Client 6

continue_download a_bit_fielda_sync_db structure
[database tools API] 790

conversion
data types 434

convert_value method
a_v4_extfn_proc_context 107

cookies
creating 647
session management 648

Count propertySAErrorCollection class [SQL
Anywhere .NET API] 276

Count propertySAParameterCollection class [SQL
Anywhere .NET API] 299

CREATE EXISTING TABLE statement 944
proxy tables 964

CREATE PROCEDURE statement
embedded SQL 463

CREATE SERVER statement
syntax 966

CREATE TABLE statement
syntax 968

create_dnld_file const char *a_sync_db structure
[database tools API] 790

created_version chara_db_version_info structure
[database tools API] 770

CreateParameter method
using 133

creating
proxy tables 964
web services 631

cross site scripting
web services 653

CS-Library
about 617

ct_command function
describing results in Open Client 622
executing statements in Open Client 620

ct_cursor function
Open Client 621

ct_dynamic function
Open Client 621

ct_results function
Open Client 622

ct_send function
Open Client 622

CUBE operation 845, 846, 855
example 857
NULL 848
SELECT statement 855

Current propertyDREnumerator class [SQL
Anywhere .NET API] 271

current row 866
CURRENT ROW 863, 864
cursor positioning

troubleshooting 138
cursor sensitivity and performance

about 153
cursors

about 135
ADO 158
ADO.NET 158
asensitive 150
availability 142
benefits 136
block cursors 143
canceling 142
db_cancel_request function 473
delete 622

Index

Programming 1005

describing result sets 160
determining what cursors exist for a connection

135
dynamic 149
DYNAMIC SCROLL and asensitive cursors

150
DYNAMIC SCROLL and cursor positioning

138
embedded SQL supported types 159
embedded SQL usage 453
example C code 419
fat 139
fetching multiple rows 139
fetching rows 138
insensitive 148
inserting multiple rows 140
inserting rows 140
internals 143
isolation level 138
keyset-driven 151
limitations 138
membership 144
ODBC and SAP Sybase IQ types 158
OLE DB 158
Open Client 621
order 144
platforms 142
positioning 138
prefetch performance 154
prepared statements 137
properties 142
Python 548
read-only 148
requesting 158
result sets 135
savepoints 164
SCROLL 151
scrollability 142
scrollable 139
sensitive 149
sensitivity 142
sensitivity and deletion example 145
sensitivity and isolation levels 157
sensitivity and performance 153
sensitivity and update example 146
sensitivity in SAP Sybase IQ 143
sensitivity overview 144
static 148
stored procedures 464

transactions 163
uniqueness 142
unspecified sensitivity 150
updatability 142
update 622
updating 325
updating and deleting rows 140
uses 135
using 137
value-sensitive 151
values 144
viewing contents of cursors for a connection

135
visible changes 144
work tables 153

cursors and bookmarks
about 143

D
data

accessing with the .NET Data Provider 170
manipulating with the .NET Data Provider

170
data access

OLE DB 320
data connection

Visual Studio 203
data type conversions

indicator variables 434
data types

C data types 427
dynamic SQL 443
embedded SQL 423
host variables 427
in web services handlers 680
Open Client mapping 619
Open Client ranges 619
SQLDA 445

data_size size_ta_sqlany_data_info structure [SQL
Anywhere C API] 531

data_store_type const char *a_create_db structure
[database tools API] 761

DataAdapter
about 170
deleting data 175
inserting data 175
obtaining primary key values 182
retrieving data 177, 178
updating data 175

Index

1006 SAP Sybase IQ

DataAdapter propertySACommandBuilder class
[SQL Anywhere .NET API] 243

database management
dbtools 731

database options
Open Client 6
set for jConnect 384

database properties
db_get_property function 476

database servers
functions 486

database tools API a_backup_db structure 751
database tools API a_change_log structure 756
database tools API a_create_db structure 759
database tools API a_db_info structure 765
database tools API a_db_version_info structure

770
database tools API a_dblic_info structure 771
database tools API a_dbtools_info structure 773
database tools API a_log_file_info structure 773
database tools API a_name structure 775
database tools API a_remote_sql structure 775
database tools API a_sync_db structure 787
database tools API a_syncpub structure 808
database tools API a_sysinfo structure 809
database tools API a_table_info structure 810
database tools API a_translate_log structure 812
database tools API a_truncate_log structure 821
database tools API a_validate_db structure 822
database tools API an_erase_db structure 824
database tools API an_unload_db structure 826
database tools API an_upgrade_db structure 839
Database Tools C API 739
database tools interface

about 731
database tools library

about 731
DatabaseFile propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 250
DatabaseKey propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 250
DatabaseName

propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 250

databases
installing jConnect metadata support 382
multiple on server 9
proxy 5
storing Java classes 369

URL 383
DatabaseSwitches

propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 250

datagrid control
Visual Studio 207

DataSet
SAP Sybase IQ .NET Data Provider 175

DataSourceInformation
fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 285

DataSourceName
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 250

DataTypes fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 285

DATETIME data type
embedded SQL 427
Open client conversion 619

DB_ACTIVE_CONNECTION
db_find_engine function 475

db_backup function
about 468
dbbackup utility 467

DB_BACKUP_CLOSE_FILE parameter
about 468

DB_BACKUP_END parameter
about 468

DB_BACKUP_INFO parameter
about 468

DB_BACKUP_INFO_CHKPT_LOG parameter
about 468

DB_BACKUP_INFO_PAGES_IN_BLOCK
parameter

about 468
DB_BACKUP_OPEN_FILE parameter

about 468
DB_BACKUP_PARALLEL_READ parameter

about 468
DB_BACKUP_PARALLEL_START parameter

about 468
DB_BACKUP_READ_PAGE parameter

about 468
DB_BACKUP_READ_RENAME_LOG

parameter
about 468

DB_BACKUP_START parameter
about 468

DB_CALLBACK_CONN_DROPPED 481

Index

Programming 1007

DB_CALLBACK_CONN_DROPPED callback
parameter 481

DB_CALLBACK_DEBUG_MESSAGE 481
DB_CALLBACK_DEBUG_MESSAGE callback

parameter 481
DB_CALLBACK_FINISH 481
DB_CALLBACK_FINISH callback parameter

481
DB_CALLBACK_MESSAGE 482
DB_CALLBACK_MESSAGE callback parameter

482
DB_CALLBACK_START 481
DB_CALLBACK_START callback parameter 481
DB_CALLBACK_VALIDATE_FILE_TRANSFE

R 482
DB_CALLBACK_VALIDATE_FILE_TRANSFE

R callback parameter 482
DB_CALLBACK_WAIT 481
DB_CALLBACK_WAIT callback parameter 481
DB_CAN_MULTI_CONNECT

db_find_engine function 475
DB_CAN_MULTI_DB_NAME

db_find_engine function 475
db_cancel_request function

about 473
request management 466

db_change_char_charset function
about 473

db_change_nchar_charset function
about 474

DB_CLIENT
db_find_engine function 475

DB_CONNECTION_DIRTY
db_find_engine function 475

DB_DATABASE_SPECIFIED
db_find_engine function 475

DB_ENGINE
db_find_engine function 475

db_find_engine function
about 475

db_fini function
about 475

db_fini_dll
calling 418

db_get_property function
about 476

db_init function
about 477

db_init_dll
calling 418

db_is_working function
about 477
request management 466

db_locate_servers function
about 478

db_locate_servers_ex function
about 479

DB_LOOKUP_FLAG_ADDRESS_INCLUDES_
PORT

about 479
DB_LOOKUP_FLAG_DATABASES

about 479
DB_LOOKUP_FLAG_NUMERIC

about 479
DB_NO_DATABASES

db_find_engine function 475
DB_PROP_CLIENT_CHARSET

usage 476
DB_PROP_DBLIB_VERSION

usage 476
DB_PROP_SERVER_ADDRESS

usage 476
db_register_a_callback function

about 480
request management 466

db_size unsigned inta_create_db structure [database
tools API] 761

db_size_unit inta_create_db structure [database
tools API] 761

db_start_database function
about 483

db_start_engine function
about 484

db_stop_database function
about 485

db_stop_engine function
about 485

db_string_connect function
about 486

db_string_disconnect function
about 487

db_string_ping_server function
about 487

db_time_change function
about 488

DB-Library
about 617

Index

1008 SAP Sybase IQ

dba_pwd char *a_create_db structure [database
tools API] 761

dba_uid char *a_create_db structure [database tools
API] 761

dbbufsize unsigned shorta_db_info structure
[database tools API] 767

DbConnection propertySACommand class [SQL
Anywhere .NET API] 236

DbConnection propertySATransaction class [SQL
Anywhere .NET API] 316

DBD::SQLAnywhere
about 535
connecting to a database 539
executing SQL statements 540
handling multiple result sets 541
inserting rows 542
writing Perl scripts 538

dbdata.dll
SAP Sybase IQ .NET Data Provider 195

DBLIB
dynamic loading 418
interface library 409

dbname const char *a_change_log structure
[database tools API] 756

dbname const char *a_create_db structure [database
tools API] 761

dbname const char *a_log_file_info structure
[database tools API] 774

dbname const char *an_erase_db structure
[database tools API] 824

dbnamebuffer char *a_db_info structure [database
tools API] 767

dbodbc16.dll
linking 340

DbParameterCollection propertySACommand class
[SQL Anywhere .NET API] 236

DbProviderFactory
registering 195

dbtool16.dll
about 731

DBTools interface
about 731
calling DBTools functions 733
example program 736
finalizing 732
finishing 732
initializing 732
introduction 731
return codes 738

starting 732
using 731

DbTransaction propertySACommand class [SQL
Anywhere .NET API] 237

DbType propertySAParameter class [SQL
Anywhere .NET API] 290

dbupgrad utility
installing jConnect metadata support 382

debug a_bit_fielda_remote_sql structure [database
tools API] 777

debug a_bit_fielda_sync_db structure [database
tools API] 790

debug a_bit_fielda_translate_log structure
[database tools API] 813

debug a_bit_fieldan_unload_db structure [database
tools API] 827

debug_dump_char a_bit_fielda_sync_db structure
[database tools API] 790

debug_dump_char a_bit_fielda_translate_log
structure [database tools API] 813

debug_dump_hex a_bit_fielda_sync_db structure
[database tools API] 790

debug_dump_hex a_bit_fielda_translate_log
structure [database tools API] 813

debug_dump_size a_sql_uint32a_remote_sql
structure [database tools API] 778

debug_dump_size a_sql_uint32a_sync_db
structure [database tools API] 791

debug_dump_size a_sql_uint32a_translate_log
structure [database tools API] 814

debug_page_offsets a_bit_fielda_remote_sql
structure [database tools API] 778

debug_page_offsets a_bit_fielda_sync_db structure
[database tools API] 791

debug_page_offsets a_bit_fielda_translate_log
structure [database tools API] 814

debug_sql_remote a_bit_fielda_translate_log
structure [database tools API] 814

DECIMAL data type
embedded SQL 427

DECL_BIGINT macro
about 427

DECL_BINARY macro
about 427

DECL_BIT macro
about 427

DECL_DATETIME macro
about 427

Index

Programming 1009

DECL_DECIMAL macro
about 427

DECL_FIXCHAR macro
about 427

DECL_LONGBINARY macro
about 427

DECL_LONGNVARCHAR macro
about 427

DECL_LONGVARCHAR macro
about 427

DECL_NCHAR macro
about 427

DECL_NFIXCHAR macro
about 427

DECL_NVARCHAR macro
about 427

DECL_UNSIGNED_BIGINT macro
about 427

DECL_VARCHAR macro
about 427

declaration section
about 427

DECLARE section
about 427

DECLARE statement
using cursors in embedded SQL 453

declaring
embedded SQL data types 423
host variables 427

default_collation chara_sysinfo structure [database
tools API] 810

default_collation const char *a_create_db structure
[database tools API] 762

default_window_title char *a_remote_sql structure
[database tools API] 778

default_window_title char *a_sync_db structure
[database tools API] 791

DELETE statement
JDBC 393
positioned 140

DeleteCommand propertySADataAdapter class
[SQL Anywhere .NET API] 266

deleted a_bit_fielda_remote_sql structure [database
tools API] 778

DeleteDynamic method
JDBCExample 397

DeleteStatic method
JDBCExample 394

deltas between adjacent rows, computing 869

DENSE_RANK function 873
deploying

SAP Sybase IQ .NET Data Provider
applications 194

deploying the SAP Sybase IQ .NET Data Provider
about 194

descending order 868
describe

return value 93
DESCRIBE SELECT LIST statement

dynamic SELECT statement 442
DESCRIBE statement 445

multiple result sets 466
SQLDA fields 445
sqllen field 446
sqltype field 446
used in dynamic SELECT statements 442

describe_column_get 26
attributes 26

describe_column_set 40
attributes 41

describe_parameter_get 55
describe_parameter_set 72
describe_udf_get 86

attributes 87
describe_udf_set 88
describing

NCHAR columns in Embedded SQL 446
result sets 160

descriptors
describing result sets 160

DesignTimeVisible propertySACommand class
[SQL Anywhere .NET API] 237

DestinationColumn
propertySABulkCopyColumnMapping
class [SQL Anywhere .NET API] 217

DestinationOrdinal
propertySABulkCopyColumnMapping
class [SQL Anywhere .NET API] 217

DestinationOrdinalComparer class [SQL
Anywhere .NET API] description 219,
222

DestinationTableName propertySABulkCopy class
[SQL Anywhere .NET API] 215

developing applications with the .NET Data
Provider

about 165
DirectConnect 943, 945
DirectConnect for Oracle 944

Index

1010 SAP Sybase IQ

direction
a_sqlany_data_directiona_sqlany_bind_
param structure [SQL Anywhere C API]
528

direction
a_sqlany_data_directiona_sqlany_bind_
param_info structure [SQL Anywhere C
API] 529

Direction propertySAParameter class [SQL
Anywhere .NET API] 291

DisableMultiRowFetch
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 251

DISH services
.NET tutorial 709
about 629
commenting 634
creating 633
dropping 634
homogeneous 634
JAX-WS tutorial 715
SAP Sybase IQ web client tutorial 701

display_create a_bit_fieldan_unload_db structure
[database tools API] 827

display_create_dbinit a_bit_fieldan_unload_db
structure [database tools API] 827

Distributed Transaction Coordinator
three-tier computing 727

distributed transaction processing
using the SAP Sybase IQ .NET Data Provider

186
distributed transactions

about 725
architecture 728
enlistment 727
recovery 729
restrictions 728
three-tier computing 726

distribution functions 843, 860, 886
dl_insert_width a_sql_uint32a_sync_db structure

[database tools API] 791
dl_use_put a_bit_fielda_sync_db structure

[database tools API] 791
dlg_info_msg a_sql_uint32a_sync_db structure

[database tools API] 791
DLL entry points

about 467
dll_handle void *SQLAnywhereInterface structure

[SQL Anywhere C API] 521

DllMain
calling db_fini 475

DLLs
multiple SQLCAs 439

dnld_fail_len a_sql_uint32a_sync_db structure
[database tools API] 791

dnld_file_extra const char *a_sync_db structure
[database tools API] 792

dnld_gen_num a_bit_fielda_sync_db structure
[database tools API] 792

dnld_read_size a_sql_uint32a_sync_db structure
[database tools API] 792

DoBroadcast propertySATcpOptionsBuilder class
[SQL Anywhere .NET API] 312

download_only a_bit_fielda_sync_db structure
[database tools API] 792

DREnumerator class [SQL Anywhere .NET API]
Current property 271

DREnumerator class [SQL Anywhere .NET API]
description 270

driver load error 943
drivers

jConnect JDBC driver 378
linking the SAP Sybase IQ ODBC driver on

Windows 340
SQL Anywhere JDBC driver 378

DROP SERVER statement
syntax 985

dropping
web services 634

DT_BIGINT embedded SQL data type 423
DT_BINARY embedded SQL data type 425
DT_BIT embedded SQL data type 423
DT_DATE embedded SQL data type 424
DT_DECIMAL embedded SQL data type 424
DT_DOUBLE embedded SQL data type 423
DT_FIXCHAR embedded SQL data type 424
DT_FLOAT embedded SQL data type 423
DT_HAS_USERTYPE_INFO 445
DT_INT embedded SQL data type 423
DT_LONGBINARY embedded SQL data type

425
DT_LONGNVARCHAR embedded SQL data type

425
DT_LONGVARCHAR embedded SQL data type

424
DT_NFIXCHAR embedded SQL data type 424
DT_NSTRING embedded SQL data type 424
DT_NVARCHAR embedded SQL data type 424

Index

Programming 1011

DT_PROCEDURE_IN
using 466

DT_PROCEDURE_OUT
using 466

DT_SMALLINT embedded SQL data type 423
DT_STRING embedded SQL data type 424
DT_TIME embedded SQL data type 424
DT_TIMESTAMP embedded SQL data type 424
DT_TIMESTAMP_STRUCT embedded SQL data

type 425
DT_TINYINT embedded SQL data type 423
DT_UNSBIGINT embedded SQL data type 423
DT_UNSINT embedded SQL data type 423
DT_UNSSMALLINT embedded SQL data type

423
DT_VARCHAR embedded SQL data type 424
DT_VARIABLE embedded SQL data type 426
DTC

isolation levels 729
three-tier computing 727

DTC isolation levels
about 729

dynamic cursors
about 149
ODBC 158
sample 421

DYNAMIC SCROLL cursors
asensitive cursors 150
embedded SQL 159
troubleshooting 138

dynamic SELECT statement
DESCRIBE SELECT LIST statement 442

dynamic SQL
about 440
SQLDA 443

E
EAServer

three-tier computing 727
Elevate propertySAConnectionStringBuilder class

[SQL Anywhere .NET API] 251
embedded SQL

about 409
authorization 411
autocommit mode 161
calling db_fini from DllMain 475
character strings 411
compile and link process 410
controlling autocommit behavior 161

cursor examples 419
cursor types 142
cursors 159
development 409
dynamic cursors 421
dynamic statements 440
example program 417
FETCH FOR UPDATE 155
fetching data 452
functions 467
header files 416
host variables 426
import libraries 416
line numbers 411
SQL statements 131
statement summary 493
static statements 440
using cursors 453

embedded SQL data type 424
emergency server shutdown 959
encoding const char *a_create_db structure

[database tools API] 762
encrypt a_bit_fielda_create_db structure [database

tools API] 762
encrypted_stream_opts const char *a_sync_db

structure [database tools API] 792
encrypted_tables a_bit_fielda_create_db structure

[database tools API] 762
encrypted_tables a_bit_fielda_db_info structure

[database tools API] 767
encrypted_tables a_bit_fieldan_unload_db

structure [database tools API] 827
EncryptedPassword

propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 251

encryption a_bit_fielda_sysinfo structure [database
tools API] 810

Encryption propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 251

encryption_algorithm const char *a_create_db
structure [database tools API] 762

encryption_algorithm const char *an_unload_db
structure [database tools API] 827

encryption_key char *a_change_log structure
[database tools API] 757

encryption_key char *a_remote_sql structure
[database tools API] 778

encryption_key char *a_sync_db structure
[database tools API] 793

Index

1012 SAP Sybase IQ

encryption_key const char *a_create_db structure
[database tools API] 763

encryption_key const char *a_log_file_info
structure [database tools API] 774

encryption_key const char *a_translate_log
structure [database tools API] 814

encryption_key const char *an_erase_db structure
[database tools API] 824

encryption_key const char *an_unload_db structure
[database tools API] 828

Enlist propertySAConnectionStringBuilder class
[SQL Anywhere .NET API] 252

enlistment
distributed transactions 727

entered_dialog a_bit_fielda_sync_db structure
[database tools API] 793

Enterprise Connect Data Access 943, 944
Entity Framework

using 188
Entity Framework support

iAnywhere.Data.SQLAnywhere provider 166
entry points

calling DBTools functions 733
enumerated type

a_v4_extfn_describe_col_type 90
a_v4_extfn_describe_parm_type 91
a_v4_extfn_describe_return 93
a_v4_extfn_describe_udf_type 95
a_v4_extfn_partitionby_col_num 114
a_v4_extfn_state 95

erase a_bit_fieldan_erase_db structure [database
tools API] 825

error codes
SAP Sybase IQ exit codes 738

error handling
Java 370
SAP Sybase IQ .NET Data Provider 187

error messages
embedded SQL function 493

errorrtn MSG_CALLBACKa_backup_db structure
[database tools API] 753

errorrtn MSG_CALLBACKa_change_log structure
[database tools API] 757

errorrtn MSG_CALLBACKa_create_db structure
[database tools API] 763

errorrtn MSG_CALLBACKa_db_info structure
[database tools API] 767

errorrtn MSG_CALLBACKa_db_version_info
structure [database tools API] 770

errorrtn MSG_CALLBACKa_dblic_info structure
[database tools API] 771

errorrtn MSG_CALLBACKa_dbtools_info
structure [database tools API] 773

errorrtn MSG_CALLBACKa_log_file_info
structure [database tools API] 774

errorrtn MSG_CALLBACKa_remote_sql structure
[database tools API] 778

errorrtn MSG_CALLBACKa_sync_db structure
[database tools API] 793

errorrtn MSG_CALLBACKa_translate_log
structure [database tools API] 814

errorrtn MSG_CALLBACKa_truncate_log
structure [database tools API] 821

errorrtn MSG_CALLBACKa_validate_db structure
[database tools API] 823

errorrtn MSG_CALLBACKan_erase_db structure
[database tools API] 825

errorrtn MSG_CALLBACKan_unload_db
structure [database tools API] 828

errorrtn MSG_CALLBACKan_upgrade_db
structure [database tools API] 839

errors 435
HTTP codes 695
SOAP faults 695

Errors propertySAException class [SQL
Anywhere .NET API] 277

Errors propertySAInfoMessageEventArgs class
[SQL Anywhere .NET API] 283

escape syntax
Interactive SQL 405

escape_char charan_unload_db structure [database
tools API] 828

escape_char_present a_bit_fieldan_unload_db
structure [database tools API] 828

esqldll.c
about 418

est_upld_row_cnt a_sql_uint32a_sync_db structure
[database tools API] 793

evaluate_extfn 98
examples

OLAP 902
exceptions

Java 370
SAP Sybase IQ .NET Data Provider 187

exclude_foreign_keys a_bit_fieldan_unload_db
structure [database tools API] 828

exclude_hooks a_bit_fieldan_unload_db structure
[database tools API] 829

Index

Programming 1013

exclude_procedures a_bit_fieldan_unload_db
structure [database tools API] 829

exclude_tables a_bit_fieldan_unload_db structure
[database tools API] 829

exclude_triggers a_bit_fieldan_unload_db structure
[database tools API] 829

exclude_views a_bit_fieldan_unload_db structure
[database tools API] 829

EXEC SQL
embedded SQL development 418

execute method
Python 548

EXECUTE statement
stored procedures in embedded SQL 463
using 440

executeBatch
PreparedStatement class 398
Statement class 393

executemany method
Python 549

ExecuteNonQuery method
using SACommand 172

ExecuteReader method
ADO.NET prepared statements 133
using SACommand 171

ExecuteScalar method
using SACommand 171

executeUpdate
Statement class 393

executeUpdate JDBC method
using 134

executing SQL statements
in applications 131

execution phase
a_v4_extfn_state enumerator 95

exename char *a_dblic_info structure [database
tools API] 772

exit codes
about 738

EXP function 896
exponential function 896
exports file

dblib.def 416
ext_opt char *a_syncpub structure [database tools

API] 809
extended_options char *a_sync_db structure

[database tools API] 793
extensions to GROUP BY clause 843, 845

external function
a_v4_extfn_proc 97

external logins
about 948

external procedure context
a_v4_extfn_proc_context 100
alloc method 109
close_result_set method 110
get_option method 108
open_result_set method 110
set_cannot_be_distributed 112

EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NU
LL

get 30
set 45

EXTFNAPIV4_DESCRIBE_COL_CONSTANT_
VALUE

get 34
set 48

EXTFNAPIV4_DESCRIBE_COL_DISTINCT_V
ALUES

set 30, 46
EXTFNAPIV4_DESCRIBE_COL_IS_CONSTAN

T
get 33
set 48

EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE
get 32
set 47

EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY
_CONSUMER

get 35
set 49

EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_
VALUE

get 38
set 52

EXTFNAPIV4_DESCRIBE_COL_MINIMUM_V
ALUE

get 36
set 50

EXTFNAPIV4_DESCRIBE_COL_NAME
set 27, 41

EXTFNAPIV4_DESCRIBE_COL_SCALE
get 29
set 44

EXTFNAPIV4_DESCRIBE_COL_TYPE
get 27
set 42

Index

1014 SAP Sybase IQ

EXTFNAPIV4_DESCRIBE_COL_VALUES_SU
BSET_OF_INPUT

get 40
set 54

EXTFNAPIV4_DESCRIBE_COL_WIDTH
set 28, 43

EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_N
ULL

get 60, 61
set 77

EXTFNAPIV4_DESCRIBE_PARM_CONSTANT
_VALUE

get 65
set 78

EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_
VALUES

get 62
set 77

EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTA
NT

get 64
set 78

EXTFNAPIV4_DESCRIBE_PARM_NAME
get 56
set 74

EXTFNAPIV4_DESCRIBE_PARM_SCALE
get 59
set 76

EXTFNAPIV4_DESCRIBE_PARM_TABLE_HA
S_REWIND

get 70
set 84

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NU
M_COLUMNS

get 66
set 79

EXTFNAPIV4_DESCRIBE_PARM_TABLE_NU
M_ROWS

get 66
set 80

EXTFNAPIV4_DESCRIBE_PARM_TABLE_OR
DERBY

get 67
set 81

EXTFNAPIV4_DESCRIBE_PARM_TABLE_PA
RTITIONBY

get 68
set 82

EXTFNAPIV4_DESCRIBE_PARM_TABLE_RE
QUEST_REWIND

get 70
set 83

EXTFNAPIV4_DESCRIBE_PARM_TABLE_UN
USED_COLUMNS

get 71
set 85

EXTFNAPIV4_DESCRIBE_PARM_TYPE
get 57
set 74

EXTFNAPIV4_DESCRIBE_PARM_WIDTH
get 57
set 75

EXTFNAPIV4_DESCRIBE_UDF_NUM_PARM
S

get 87
set 89

extra_audit a_bit_fielda_translate_log structure
[database tools API] 814

extract a_bit_fieldan_unload_db structure [database
tools API] 830

F

fat cursors
about 139

FETCH FOR UPDATE
embedded SQL 155
ODBC 155

fetch operation
cursors 138
multiple rows 139
scrollable cursors 139

FETCH statement
dynamic queries 442
multi-row 456
using 452
using cursors in embedded SQL 453
wide 456

fetch_block
v4 API method 121

fetch_into
v4 API method 119

fetchall method
Python 548

fetches
array fetches 456
wide fetches 456

Index

Programming 1015

fetching
embedded SQL 452
limits 138

file transfer 482
file_size a_sql_uint32a_db_info structure [database

tools API] 767
FileDataSourceName

propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 252

filename const char *a_db_version_info structure
[database tools API] 770

fill_s_sqlda function
about 488

fill_sqlda function
about 489

fill_sqlda_ex function
about 489

FLOOR function 897
force_chaining a_bit_fielda_translate_log structure

[database tools API] 814
force_recovery a_bit_fielda_translate_log structure

[database tools API] 815
ForceStart connection parameter

db_start_engine 484
ForceStart propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 252
foreign keys

integrity constraints 968
unnamed 968

ForeignKeys fieldSAMetaDataCollectionNames
class [SQL Anywhere .NET API] 285

free_filled_sqlda function
about 490

free_pages a_sql_uint32a_db_info structure
[database tools API] 767

free_sqlda function
about 491

free_sqlda_noind function
about 491

frequency a_sql_uint32a_remote_sql structure
[database tools API] 779

full_q_scan a_bit_fielda_remote_sql structure
[database tools API] 779

functions
aggregate 859
analytical 843, 858
BIT_LENGTH function 894
calling DBTools functions 733
CEIL function 895

CEILING function 895
correlation 882
covariance 882, 883
DENSE_RANK function 873
distribution 843, 886
embedded SQL 467
EXP function 896
FLOOR function 897
inverse distribution 886
LENGTH function 898
numeric 843
numerical 892
ordered sets 886
PERCENT_RANK function 875
PERCENTILE_CONT function 886, 888
PERCENTILE_DISC function 886, 890
POWER function 898
RANK function 871
ranking 843, 870
reporting 880
requirements for web clients 662
SAP Sybase IQ PHP module 566
simple aggregate 859
SQRT function 899
standard deviation 881
statistical 843
statistical aggregate 881
STDDEV_POP function 882
STDDEV_SAMP function 882
VAR_POP function 882
VAR_SAMP function 882
variance 881
web clients 662
WIDTH_BUCKET function 899
window 844, 880
windowing 859
windowing aggregate 843, 880

G

generate_reciprocals a_bit_fielda_translate_log
structure [database tools API] 815

generation_number unsigned shorta_change_log
structure [database tools API] 757

genscript a_bit_fieldan_unload_db structure
[database tools API] 830

get_blob method
a_v4_extfn_proc_context 111
a_v4_extfn_table_context 124

Index

1016 SAP Sybase IQ

get_is_cancelled method
a_v4_extfn_proc_context 105

get_option
v4 API method 108

get_value method
a_v4_extfn_proc_context 102

get_value_is_constant method
a_v4_extfn_proc_context 104

getAutoCommit method 390
GetBytes method

using 184
GetChars method

using 184
getConnection method 390
GetSchemaTable method

using SADataReader 172
GetTimeSpan method

using 184
getUpdateCounts

BatchUpdateException 393
GNU compiler

embedded SQL support 415
GRANT statement

JDBC 400
GROUP BY

clause extensions 845
CUBE 846
ROLLUP 846

GROUP BY clause extensions 845
GROUPING function

NULL 848
ROLLUP operation 848

H
Hadoop 13
HEADER clause

managing 666
header files

embedded SQL 416
headers

accessing in HTTP web services 639
in SOAP web services 643

hide_conn_str a_bit_fielda_sync_db structure
[database tools API] 794

hide_ml_pwd a_bit_fielda_sync_db structure
[database tools API] 794

History() enumeration [database tools API] 748
Host

accessing HTTP headers 641

Host propertySAConnectionStringBuilder class
[SQL Anywhere .NET API] 252

Host propertySATcpOptionsBuilder class [SQL
Anywhere .NET API] 312

host variables
about 426
data types 427
declaring 427
example 640
not supported in batches 426
SQLDA 445
uses 431

hotlog_filename const char *a_backup_db structure
[database tools API] 753

hovering_frequency a_sql_uint32a_sync_db
structure [database tools API] 794

HTML services
about 629
commenting 634
creating 631
dropping 634
quick start 660
quick start for web clients 658
quick start for web servers 625

HTTP headers
accessing 641

HTTP protocol
configuring 627
enabling 626

HTTP request headers
accessing 641
management 666

HTTP requests
structures 693

HTTP system procedures
alphabetical list 653

HTTP_HEADER function
example 640

HTTP_VARIABLE function
example 640

HttpMethod
accessing HTTP headers 641

HttpQueryString
accessing HTTP headers 641

HTTPS protocol
configuring 627
enabling 626

HttpStatus
accessing HTTP headers 641

Index

Programming 1017

HttpURI
accessing HTTP headers 641

HttpVersion
accessing HTTP headers 641

I
iAnywhere.Data.SQLAnywhere

Entity Framework support 166
identifiers

needing quotes 491
IdleTimeout propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 252
ignore_dbsync_trunc a_bit_fielda_change_log

structure [database tools API] 757
ignore_debug_interrupt a_bit_fielda_sync_db

structure [database tools API] 794
ignore_hook_errors a_bit_fielda_sync_db structure

[database tools API] 794
ignore_hovering a_bit_fielda_sync_db structure

[database tools API] 795
ignore_ltm_trunc a_bit_fielda_change_log

structure [database tools API] 757
ignore_remote_trunc a_bit_fielda_change_log

structure [database tools API] 757
ignore_scheduling a_bit_fielda_sync_db structure

[database tools API] 795
import libraries

alternatives 418
DBTools 732
embedded SQL 416
introduction 410
ODBC 340

import statement
jConnect 382

INCLUDE statement
SQLCA 435

include_audit a_bit_fielda_translate_log structure
[database tools API] 815

include_destination_sets const char
*a_translate_log structure [database tools
API] 815

include_publications const char *a_translate_log
structure [database tools API] 815

include_scan_range char *a_remote_sql structure
[database tools API] 779

include_scan_range const char *a_sync_db
structure [database tools API] 795

include_scan_range const char *a_translate_log
structure [database tools API] 815

include_source_sets const char *a_translate_log
structure [database tools API] 815

include_subsets a_bit_fielda_translate_log
structure [database tools API] 816

include_tables const char *a_translate_log structure
[database tools API] 816

include_trigger_trans a_bit_fielda_translate_log
structure [database tools API] 816

include_where_subscribe a_bit_fieldan_unload_db
structure [database tools API] 830

index a_bit_fielda_validate_db structure [database
tools API] 823

index_pages a_sql_uint32a_table_info structure
[database tools API] 811

index_used a_sql_uint32a_table_info structure
[database tools API] 811

index_used_pct a_sql_uint32a_table_info structure
[database tools API] 811

IndexColumns fieldSAMetaDataCollectionNames
class [SQL Anywhere .NET API] 286

Indexes fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 286

indicator
wide fetch 456

indicator variables
about 432
data type conversion 434
NULL 433
SQLDA 445
summary of values 434
truncation 434

init_cache a_sql_uint32a_sync_db structure
[database tools API] 795

init_cache_suffix chara_sync_db structure
[database tools API] 795

initialized intSQLAnywhereInterface structure
[SQL Anywhere C API] 521

InitString propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 253

INOUT parameters
Java in the database 373

Inprocess option
Linked Server 330, 332

input_value
a_sqlany_data_valuea_sqlany_bind_para
m_info structure [SQL Anywhere C API]
529

insensitive cursors
about 148

Index

1018 SAP Sybase IQ

cursor properties 142
delete example 145
embedded SQL 159
introduction 144
update example 146

INSERT statement
JDBC 393
performance 132
writing Python scripts 549

InsertCommand propertySADataAdapter class
[SQL Anywhere .NET API] 267

InsertDynamic method
JDBCExample 395, 397

inserting data
multi-row 456
wide inserts 456

inserts
JDBC 398

InsertStatic method
JDBCExample 393, 394

installing
Java classes into a database 371
jConnect metadata support 382

installkey char *a_dblic_info structure [database
tools API] 772

Instance fieldSAFactory class [SQL
Anywhere .NET API] 282

Instance propertySADataSourceEnumerator class
[SQL Anywhere .NET API] 272

instances 390
Integrated propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 253
Interactive SQL

JDBC escape syntax 405
interface libraries

DBLIB 409
dynamic loading 418

interfaces
SAP Sybase IQ embedded SQL 409

interfaces file 945, 946
Interop

web services 687
inverse distribution functions 886
IPV6 propertySATcpOptionsBuilder class [SQL

Anywhere .NET API] 312
iq_params void *a_create_db structure [database

tools API] 763
iqsqlpp utility

about 411

preprocessor options 411
syntax 411

is_null sacapi_bool *a_sqlany_data_value structure
[SQL Anywhere C API] 533

is_null sacapi_boola_sqlany_data_info structure
[SQL Anywhere C API] 531

IsFixedSize propertySAParameterCollection class
[SQL Anywhere .NET API] 299

IsNullable propertySAParameter class [SQL
Anywhere .NET API] 291

isolation level 390
readonly-statement-snapshot 164
snapshot 164
statement-snapshot 164

isolation levels
ADO programming 326
applications 163
cursor sensitivity 157
cursors 138
DTC 729
lost updates 155
setting for the SATransaction object 186

ISOLATION_LEVEL option
Open Client 6

isolation_level unsigned shortan_unload_db
structure [database tools API] 830

isolation_set a_bit_fieldan_unload_db structure
[database tools API] 830

IsolationLevel propertySATransaction class [SQL
Anywhere .NET API] 317

ISOLATIONLEVEL_BROWSE
about 729

ISOLATIONLEVEL_CHAOS
about 729

ISOLATIONLEVEL_CURSORSTABILITY
about 729

ISOLATIONLEVEL_ISOLATED
about 729

ISOLATIONLEVEL_READCOMMITTED
about 729

ISOLATIONLEVEL_READUNCOMMITTED
about 729

ISOLATIONLEVEL_REPEATABLEREAD
about 729

ISOLATIONLEVEL_SERIALIZABLE
about 729

ISOLATIONLEVEL_UNSPECIFIED
about 729

Index

Programming 1019

IsReadOnly propertySAParameterCollection class
[SQL Anywhere .NET API] 300

IsSynchronized propertySAParameterCollection
class [SQL Anywhere .NET API] 300

isysserver system table
remote servers for Component Integration

Services 966

J
JAR files

installing 371
Java

in the database 369
JDBC 377

Java class creation wizard
using 389

Java in the database
about 369
error handling 370
installing classes 371
Java VM 370
key features 369
main method 371
NoSuchMethodException 372
returning result sets 372
security management 374
starting the VM 374
stopping the VM 374
storing classes 369
VM shutdown hooks 374

Java stored procedures
about 372
example 372

Java UDF 11, 12
Java VM

shutdown hooks 374
starting 374
stopping 374

JAX-WS
installing 719
tutorial 715
versions 719

jconn4.jar
loading jConnect 383
loading jConnect JDBC driver 387

jConnect
about 382
choosing a JDBC driver 378
CLASSPATH environment variable 382

connecting 383
database setup 382
download 382
external connections 384
installing metadata support 382
loading 383
packages 382
server-side connections 388
system objects 382
URL 383
versions supplied 382

jconnect a_bit_fielda_create_db structure [database
tools API] 763

jconnect a_bit_fieldan_upgrade_db structure
[database tools API] 839

JDBC 390
about 377
applications overview 379
autocommit 390
autocommit mode 161
batched inserts 394
batched inserts example 398
client connections 384
client-side 380
connecting to a database 383
connection code 385
connections 380
controlling autocommit behavior 161
cursor types 142
data access 392
DELETE statement 393
escape syntax in Interactive SQL 405
example connection 384
example source code 378
INSERT statement 393
introduction to programming 377
jConnect 382
prepared statements 395
privileges 400
requirements 378
result sets 399
server-side 380
server-side connections 388
SQL Anywhere JDBC driver 380
SQL statements 131
UPDATE statement 393
ways to use 378

JDBC callback
example 401

Index

1020 SAP Sybase IQ

JDBC defaults 390
JDBC drivers

choosing 378
compatibility 378
OSGi bundle 378
performance 378

JDBC escape syntax
using in Interactive SQL 405

JDBC transaction isolation level 390
JDBC-ODBC bridge

SQL Anywhere JDBC driver 378
JDBCExample class

about 392
JDBCExample.java

about 392
JSON services

about 629
commenting 634
creating 631
dropping 634
quick start 660
quick start for web clients 658
quick start for web servers 625

K

Kerberos propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 253

Keys propertySAConnectionStringBuilderBase
class [SQL Anywhere .NET API] 253,
261, 312

keyset-driven cursors
ODBC 158
value-sensitive 151

kill_other_connections a_bit_fielda_sync_db
structure [database tools API] 796

L

Language propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 254

last_upload_def a_syncpub *a_sync_db structure
[database tools API] 796

latest_backup a_bit_fielda_remote_sql structure
[database tools API] 779

LazyClose propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 254

LDAP propertySATcpOptionsBuilder class [SQL
Anywhere .NET API] 313

leave_output_on_error a_bit_fielda_translate_log
structure [database tools API] 816

LENGTH function 898
length of 435
length size_t *a_sqlany_data_value structure [SQL

Anywhere C API] 533
length SQLDA field

about 445
values 446

libdbtool16_r
about 731

libraries
dbtlstm.lib 732
dbtool16.lib 732
embedded SQL 416
using the import libraries 732

library
dblib16.lib 416
dblibtm.lib 416
libdblib16_r.so 416
libdblib16.so 416
libdbtasks16_r.so 416
libdbtasks16.so 416

library functions
embedded SQL 467

licensing
web clients 646

line length
SQL preprocessor output 411

line numbers
SQL preprocessor utility (iqsqlpp) 411

link_debug a_bit_fielda_remote_sql structure
[database tools API] 779

Linked Servers
4-part syntax 329
four-part syntax 329
Inprocess option 330, 332
OLE DB 329
openquery 329
RPC option 330, 332
RPC Out option 330, 332
security context 330, 332

LINQ support
.NET data provider features 166
LinqSample, .NET Data Provider sample

project 167
LinqSample

.NET Data Provider sample project 167

Index

Programming 1021

lite_blob_handling a_bit_fielda_sync_db structure
[database tools API] 796

liveness 481
LivenessTimeout

propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 254

locale char *a_remote_sql structure [database tools
API] 779

locale const char *an_unload_db structure [database
tools API] 831

LocalOnly propertySATcpOptionsBuilder class
[SQL Anywhere .NET API] 313

log_file_name const char *a_remote_sql structure
[database tools API] 780

log_file_name const char *a_sync_db structure
[database tools API] 796

log_message method
a_v4_extfn_proc_context 107

log_size a_sql_uint32a_remote_sql structure
[database tools API] 780

log_size a_sql_uint32a_sync_db structure
[database tools API] 796

logbufsize unsigned shorta_db_info structure
[database tools API] 767

LogFile propertySAConnectionStringBuilder class
[SQL Anywhere .NET API] 254

logging
web services client information 694

logical offset of a window frame 867
logname char *a_log_file_info structure [database

tools API] 774
logname const char *a_change_log structure

[database tools API] 758
logname const char *a_create_db structure

[database tools API] 763
logname const char *a_translate_log structure

[database tools API] 816
logname_size size_ta_log_file_info structure

[database tools API] 774
lognamebuffer char *a_db_info structure [database

tools API] 768
logrtn MSG_CALLBACKa_remote_sql structure

[database tools API] 780
logrtn MSG_CALLBACKa_sync_db structure

[database tools API] 797
logrtn MSG_CALLBACKa_translate_log structure

[database tools API] 816
logs_dir const char *a_translate_log structure

[database tools API] 817

LONG BINARY data type
embedded SQL 460
retrieving in embedded SQL 461, 462
sending in embedded SQL 462, 463

LONG NVARCHAR data type
embedded SQL 460
retrieving in embedded SQL 461, 462
sending in embedded SQL 462, 463

LONG VARCHAR data type
embedded SQL 460
retrieving in embedded SQL 461, 462
sending in embedded SQL 462, 463

LONGBINARY data type
embedded SQL 427

LONGNVARCHAR data type
embedded SQL 427

LONGVARCHAR data type
embedded SQL 427

lost updates
about 155

M
macros

_SQL_OS_WINDOWS 418
main method

Java in the database 371
make_auxiliary a_bit_fieldan_unload_db structure

[database tools API] 831
management tools

dbtools 731
managing

transactions 955
manual commit mode

controlling 161
implementation 162
transactions 161

MapReduce 13
match_mode a_bit_fielda_translate_log structure

[database tools API] 817
match_pos const char *a_translate_log structure

[database tools API] 817
max_cache a_sql_uint32a_sync_db structure

[database tools API] 797
max_cache_suffix chara_sync_db structure

[database tools API] 797
max_length a_sql_uint32a_remote_sql structure

[database tools API] 780
max_size size_ta_sqlany_column_info structure

[SQL Anywhere C API] 530

Index

1022 SAP Sybase IQ

MaxPoolSize propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 254

membership
result sets 144

memory a_sql_uint32a_remote_sql structure
[database tools API] 781

Message propertySAError class [SQL
Anywhere .NET API] 274

Message propertySAException class [SQL
Anywhere .NET API] 277

Message propertySAInfoMessageEventArgs class
[SQL Anywhere .NET API] 283

messages 482
MessageType propertySAInfoMessageEventArgs

class [SQL Anywhere .NET API] 283
metadata support

installing for jConnect 382
MetaDataCollections

fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 286

Microsoft SQL Server Management Studio
Linked Server 330, 332

Microsoft Transaction Server
three-tier computing 727

Microsoft Visual C++
embedded SQL support 415

MIME
setting types 638

MIME types
web services tutorial 697

min_cache a_sql_uint32a_sync_db structure
[database tools API] 797

min_cache_suffix chara_sync_db structure
[database tools API] 797

MinPoolSize propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 255

mirror_logs char *a_remote_sql structure [database
tools API] 781

mirrorbufsize unsigned shorta_db_info structure
[database tools API] 768

mirrorname char *a_log_file_info structure
[database tools API] 774

mirrorname const char *a_change_log structure
[database tools API] 758

mirrorname const char *a_create_db structure
[database tools API] 763

mirrorname_size size_ta_log_file_info structure
[database tools API] 774

mirrornamebuffer char *a_db_info structure
[database tools API] 768

mixed cursors
ODBC 158

mlpassword char *a_sync_db structure [database
tools API] 797

MONEY data type
Open client conversion 619

more a_bit_fielda_remote_sql structure [database
tools API] 781

MS SQL 943
MS SQL Server 944, 945
ms_filename const char *an_unload_db structure

[database tools API] 831
ms_reserve intan_unload_db structure [database

tools API] 831
ms_size intan_unload_db structure [database tools

API] 831
MSDASQL

OLE DB provider 319
msgqueuertn

MSG_QUEUE_CALLBACKa_remote_s
ql structure [database tools API] 781

msgqueuertn
MSG_QUEUE_CALLBACKa_sync_db
structure [database tools API] 798

msgrtn MSG_CALLBACKa_backup_db structure
[database tools API] 753

msgrtn MSG_CALLBACKa_change_log structure
[database tools API] 758

msgrtn MSG_CALLBACKa_create_db structure
[database tools API] 764

msgrtn MSG_CALLBACKa_db_info structure
[database tools API] 768

msgrtn MSG_CALLBACKa_db_version_info
structure [database tools API] 771

msgrtn MSG_CALLBACKa_dblic_info structure
[database tools API] 772

msgrtn MSG_CALLBACKa_remote_sql structure
[database tools API] 781

msgrtn MSG_CALLBACKa_sync_db structure
[database tools API] 798

msgrtn MSG_CALLBACKa_translate_log
structure [database tools API] 817

msgrtn MSG_CALLBACKa_truncate_log
structure [database tools API] 821

msgrtn MSG_CALLBACKa_validate_db structure
[database tools API] 823

Index

Programming 1023

msgrtn MSG_CALLBACKan_erase_db structure
[database tools API] 825

msgrtn MSG_CALLBACKan_unload_db structure
[database tools API] 831

msgrtn MSG_CALLBACKan_upgrade_db
structure [database tools API] 840

multi-row fetches
ESQL 456

multi-row inserts
ESQL 456

multi-row puts
ESQL 456

multi-row queries
cursors 453

multiple result sets
DESCRIBE statement 466

multithreaded applications
embedded SQL 437
Java in the database 372
multiple SQLCAs in embedded SQL 439

MyIP propertySATcpOptionsBuilder class [SQL
Anywhere .NET API] 313

N
name char *a_sqlany_bind_param structure [SQL

Anywhere C API] 528
name char *a_sqlany_bind_param_info structure

[SQL Anywhere C API] 529
name char *a_sqlany_column_info structure [SQL

Anywhere C API] 530
name chara_name structure [database tools API]

775
name SQLDA field

about 445
NAMESPACE clause

managing 673
namespaces

web services 687
native_type

a_sqlany_native_typea_sqlany_column_
info structure [SQL Anywhere C API]
530

NativeError propertySAError class [SQL
Anywhere .NET API] 274

NativeError propertySAException class [SQL
Anywhere .NET API] 278

NativeError propertySAInfoMessageEventArgs
class [SQL Anywhere .NET API] 284

NCHAR data type
embedded SQL 427

nchar_collation const char *a_create_db structure
[database tools API] 764

ncharcollationspecbuffer char *a_db_info structure
[database tools API] 768

ncharcollationspecbufsize unsigned shorta_db_info
structure [database tools API] 768

ncharencodingbuffer char *a_db_info structure
[database tools API] 768

ncharencodingbufsize unsigned shorta_db_info
structure [database tools API] 769

Network Service
OLE DB 329

new_mlpassword char *a_sync_db structure
[database tools API] 798

NewPassword
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 255

next struct a_name *a_name structure [database
tools API] 775

next struct a_syncpub *a_syncpub structure
[database tools API] 809

next struct a_table_info *a_table_info structure
[database tools API] 811

NEXT_CONNECTION function
example 651

NEXT_HTTP_HEADER function
example 640

NEXT_HTTP_VARIABLE function
example 640

NO SCROLL cursors
about 148
embedded SQL 159

no_confirm a_bit_fielda_backup_db structure
[database tools API] 753

no_confirm a_bit_fieldan_unload_db structure
[database tools API] 832

no_offline_logscan a_sql_uint32a_sync_db
structure [database tools API] 798

no_reload_status a_bit_fieldan_unload_db
structure [database tools API] 832

no_schema_cache a_bit_fielda_sync_db structure
[database tools API] 799

no_stream_compress a_bit_fielda_sync_db
structure [database tools API] 799

no_user_interaction a_bit_fielda_remote_sql
structure [database tools API] 782

nodecount a_sql_int32a_dblic_info structure
[database tools API] 772

Index

1024 SAP Sybase IQ

NodeType propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 255

notemp_size longan_unload_db structure [database
tools API] 832

NotifyAfter propertySABulkCopy class [SQL
Anywhere .NET API] 216

NuGet
Entity Framework 4 188

NULL
CUBE operation 848
dynamic SQL 443
indicator variables 432
ROLLUP operation 848

NULL values
example 848

NULL values and subtotal rows 848
null-terminated string 424
nullable sacapi_boola_sqlany_column_info

structure [SQL Anywhere C API] 530
numeric functions 843

CEIL 895
CEILING 895
EXP 896
FLOOR 897
POWER 898
SQRT 899
WIDTH_BUCKET 899

NVARCHAR data type
embedded SQL 427

O
obtaining time values

about 184
ODBC

autocommit mode 161
controlling autocommit behavior 161
cursor types 142
cursors 158
driver name for SAP Sybase IQ 346
FETCH FOR UPDATE 155
import libraries 340
linking 340
sample program 343
SQL statements 131

offline_dir const char *a_sync_db structure
[database tools API] 799

Offset propertySAParameter class [SQL
Anywhere .NET API] 291

OLAP 11, 860
about 843

aggregate functions 859
analytical functions 843, 858
benefits 844
CUBE operation 855
current row 866
DENSE_RANK function 873
distribution functions 843, 860
extensions to GROUP BY clause 843
functionality 843
Grouping() 845
NULL values 848
numeric functions 843
ORDER BY clause 861
PARTITION BY clause 861
PERCENT_RANK function 875
PERCENTILE_CONT function 888
PERCENTILE_DISC function 890
range 867
RANGE 860
RANK function 871
ranking functions 843, 860
ROLLUP operator 846
rows 866
ROWS 860
semantic phases of execution 844
statistical aggregate functions 843
statistical functions 860
subtotal rows 847
using 844
window concept 860
window framing 860
window functions 844
window ordering 860
window partitioning 860, 861
window sizes 860
windowing extensions 859
windows aggregate functions 843

OLAP examples 902
ascending and descending order for value-

based frames 868
calculate cumulative sum 904
calculate moving average 905
computing deltas between adjacent rows 869
default window frame for RANGE 909
default window frame for ROW 908
multiple aggregate functions in a query 906
ORDER BY results 905
range-based window frames 867
row-based window frames 865

Index

Programming 1025

unbounded preceding and unbounded
following 908

unbounded window 868
using a window with multiple functions 904
window frame excludes current row 907
window frame with ROWS vs. RANGE 906
window functions 870
window functions in queries 903

OLAP functions
distribution 886
inter-row functions 884
numerical functions 892
ordered sets 886
ranking functions 870
statistical aggregate 881
windowing 859
windowing:aggregate functions 880

OLE DB 320
about 319
autocommit mode 161
connection parameters 327
connection pooling 329
controlling autocommit behavior 161
cursor types 142
cursors 158
Microsoft Linked Server setup 329
ODBC and 319
supported interfaces 333
supported platforms 320
updates 325
updating data through a cursor 325

OLE DB and ADO development
about 319

OLE DB and ADO programming interface
about 319
introduction 319

OLE transactions
three-tier computing 726
three-tier computing terminology 727

omit_comments a_bit_fielda_translate_log
structure [database tools API] 817

OmniConnect 5
online analytical processing

CUBE operator 855
functionality 843
NULL values 848
ROLLUP operator 846
subtotal rows 847

online backups
embedded SQL 467

Open Client
architecture 617
autocommit mode 161
controlling autocommit behavior 161
cursor types 142
data type compatibility 619
data type ranges 619
interface 617
introduction 617
limitations 623
requirements 618
SAP Sybase IQ limitations 623
SQL 620
SQL statements 131

OPEN statement
using cursors in embedded SQL 453

open_result_set
v4 API method 110

openquery
Linked Server 329

operations a_sql_uint32a_remote_sql structure
[database tools API] 782

optimization
defining existing tables and 964

optimizer estimate
a_v4_extfn_estimate 113

options
Open Client 6
web services 654

Oracle data
data source names 941
environment variables 941

Oracle data access
prerequisites 940

ORDER BY clause 861, 862
sort order 868

order by list
a_v4_extfn_orderby_list 113

ordered set functions 886
PERCENTILE_CONT 886
PERCENTILE_DISC 886

OSGi deployment bundle
JDBC 4.0 driver 378

other_pages a_sql_uint32a_db_info structure
[database tools API] 769

OUT parameters
Java in the database 373

Index

1026 SAP Sybase IQ

output_dir const char *a_backup_db structure
[database tools API] 753

output_to_file a_bit_fielda_sync_db structure
[database tools API] 799

output_to_mobile_link a_bit_fielda_sync_db
structure [database tools API] 799

output_value
a_sqlany_data_valuea_sqlany_bind_para
m_info structure [SQL Anywhere C API]
529

OVER clause 860
overflow errors

Open Client data type conversion 619
OWASP

web services 653

P
packages

jConnect 382
Padding() enumeration [database tools API] 749
page_blocksize a_sql_uint32a_backup_db structure

[database tools API] 754
page_size unsigned shorta_create_db structure

[database tools API] 764
page_size unsigned shorta_sysinfo structure

[database tools API] 810
page_usage a_bit_fielda_db_info structure

[database tools API] 769
parallel backups

db_backup function 468
parameter type

a_v4_extfn_describe_parm_type 91
ParameterName propertySAParameter class [SQL

Anywhere .NET API] 292
parameters

substitution 692
Parameters propertySACommand class [SQL

Anywhere .NET API] 237
partition by

column number 114
PARTITION BY clause 861
partner certification 1
Password propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 255
passwords

encrypting in jConnect 382
patience_retry a_sql_uint32a_remote_sql structure

[database tools API] 782
PERCENT_RANK function 875

PERCENTILE_CONT function 886, 888
PERCENTILE_DISC function 886, 890
performance

cursors 153
cursors and prefetched rows 154
JDBC 395
JDBC drivers 378
prepared statements 132

Perl
connecting to a database 539
DBD::SQLAnywhere 535
executing SQL statements 540
handling multiple result sets 541
inserting rows 542
installing Perl/DBI support on Unix 537
installing Perl/DBI support on Windows 535
writing DBD::SQLAnywhere scripts 538

Perl DBD::SQLAnywhere
about 535
introduction to programming 535

Perl DBI module
about 535

persist_connection a_bit_fielda_sync_db structure
[database tools API] 799

PersistSecurityInfo
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 256

phases of execution 844
PHP

about 553
API reference 566
data access 553
extension 553
running PHP scripts in web pages 554
writing scripts 556

PHP extension
introduction to programming 553
testing 553

PHP functions
sasql_affected_rows 566
sasql_close 567
sasql_commit 567
sasql_connect 567
sasql_data_seek 568
sasql_disconnect 568
sasql_error 568
sasql_errorcode 569
sasql_escape_string 569
sasql_fetch_array 570

Index

Programming 1027

sasql_fetch_assoc 570
sasql_fetch_field 571
sasql_fetch_object 571
sasql_fetch_row 572
sasql_field_count 572
sasql_field_seek 572
sasql_free_result 573
sasql_get_client_info 573
sasql_insert_id 573
sasql_message 574
sasql_multi_query 574
sasql_next_result 575
sasql_num_fields 575
sasql_num_rows 575
sasql_pconnect 576
sasql_prepare 576
sasql_query 576
sasql_real_escape_string 577
sasql_real_query 577
sasql_result_all 578
sasql_rollback 579
sasql_set_option 579
sasql_sqlstate 588
sasql_stmt_affected_rows 580
sasql_stmt_bind_param 580
sasql_stmt_bind_param_ex 581
sasql_stmt_bind_result 582
sasql_stmt_close 582
sasql_stmt_data_seek 582
sasql_stmt_errno 583
sasql_stmt_error 583
sasql_stmt_execute 583
sasql_stmt_fetch 584
sasql_stmt_field_count 584
sasql_stmt_free_result 584
sasql_stmt_insert_id 585
sasql_stmt_next_result 585
sasql_stmt_num_rows 586
sasql_stmt_param_count 586
sasql_stmt_reset 586
sasql_stmt_result_metadata 587
sasql_stmt_send_long_data 587
sasql_stmt_store_result 587
sasql_store_result 588
sasql_use_result 589

PHP hypertext preprocessor
about 553

physical offset of a window frame 866

ping a_bit_fielda_sync_db structure [database tools
API] 800

placeholders
dynamic SQL 440

platform certification 3
platforms

cursors 142
plug-in 11
pooling

connections with .NET Data Provider 169
web services 637

POOLING option
.NET Data Provider 169

Pooling propertySAConnectionStringBuilder class
[SQL Anywhere .NET API] 256

population variance function 882
positioned DELETE statement

about 140
positioned UPDATE statement

about 140
positioned updates

about 138
POWER function 898
Precision propertySAParameter class [SQL

Anywhere .NET API] 292
precision unsigned shorta_sqlany_column_info

structure [SQL Anywhere C API] 530
prefetch

cursor performance 153
cursors 154
fetching multiple rows 139

prefetch option
cursors 154

PrefetchBuffer
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 256

PrefetchRows propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 256

prefixes 845
ROLLUP operation 847
subtotal rows 847

preload_dlls char *a_sync_db structure [database
tools API] 800

Prepare method
using 133

PREPARE statement
remote data access 954
using 440

Index

1028 SAP Sybase IQ

PREPARE TRANSACTION statement
and Open Client 623

prepared statements
ADO.NET overview 133
bind parameters 133
cursors 137
dropping 133
JDBC 395
Open Client 621
using 132

PreparedStatement interface
about 395

prepareStatement method
JDBC 134

preparing
statements 132
to commit 727

preprocessor
about 409
running 411

preserve_identity_values a_bit_fieldan_unload_db
structure [database tools API] 832

preserve_ids a_bit_fieldan_unload_db structure
[database tools API] 832

primary keys
retrieving with SACommand 174
retrieving with SADataAdapter 182

privileges
JDBC 400

ProcedureParameters
fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 287

procedures
embedded SQL 463
requirements for web clients 662
result sets in ESQL 464
web clients 662

Procedures fieldSAMetaDataCollectionNames
class [SQL Anywhere .NET API] 287

profiling_uses_single_dbspace
a_bit_fieldan_unload_db structure
[database tools API] 833

program structure
embedded SQL 418

programming interfaces
JDBC API 377
Perl DBD::SQLAnywhere API 535
Python Database API 545
Ruby APIs 591

SAP Sybase IQ .NET API 165
SAP Sybase IQ embedded SQL 409
SAP Sybase IQ OLE DB and ADO APIs 319
SAP Sybase IQ PHP DBI 553
Sybase Open Client API 617

progress_index_rtn
SET_PROGRESS_CALLBACKa_remot
e_sql structure [database tools API] 782

progress_index_rtn
SET_PROGRESS_CALLBACKa_sync_
db structure [database tools API] 800

progress_messages a_bit_fielda_backup_db
structure [database tools API] 754

progress_msg_rtn
MSG_CALLBACKa_remote_sql
structure [database tools API] 783

progress_msg_rtn MSG_CALLBACKa_sync_db
structure [database tools API] 800

prompt_again a_bit_fielda_sync_db structure
[database tools API] 800

prompt_for_encrypt_key a_bit_fielda_sync_db
structure [database tools API] 800

properties
db_get_property function 476

protocol_add_cli_bit_to_cli_both
a_bit_fielda_sync_db structure [database
tools API] 801

protocol_add_cli_bit_to_cli_max
a_bit_fielda_sync_db structure [database
tools API] 801

protocol_add_serv_bit_to_cli_both
a_bit_fielda_sync_db structure [database
tools API] 801

protocol_add_serv_bit_to_cli_max
a_bit_fielda_sync_db structure [database
tools API] 801

protocol_add_serv_bit_to_serv_both
a_bit_fielda_sync_db structure [database
tools API] 801

protocol_add_serv_bit_to_serv_max
a_bit_fielda_sync_db structure [database
tools API] 801

protocols
configuring web services 627
enabling web services 626

providers
supported in .NET 166

proxy databases 5
proxy tables 944

Index

Programming 1029

pub_name char *a_syncpub structure [database
tools API] 809

PUT statement
modifying rows through a cursor 140
multi-row 456
wide 456

Python
closing connections 548
commit method 549
control over type conversion 550
creating connections 548
creating cursors 548
database types 550
executing SQL statements 548
inserting into tables 549
installing Python support on Unix 546
installing Python support on Windows 546
multiple inserts 549
sqlanydb 545
writing sqlanydb scripts 547

Python Database API
introduction to programming 545

Python Database support
about 545

Q
queries

ADO Recordset object 323
ADO Recordset object and cursors 324
prefixes 845
single-row 452
subtotal rows 847

query processing phases
annotation 95
execution 95
optimization 95
plan building 95

query_only a_bit_fielda_change_log structure
[database tools API] 758

query_only a_bit_fielda_dblic_info structure
[database tools API] 772

queueparms char *a_remote_sql structure [database
tools API] 783

queueparms const char *a_translate_log structure
[database tools API] 817

quick start
accessing SAP Sybase IQ web server 660
SAP Sybase IQ web client 658
SAP Sybase IQ web server 625

quiet a_bit_fielda_backup_db structure [database
tools API] 754

quiet a_bit_fielda_change_log structure [database
tools API] 758

quiet a_bit_fielda_db_info structure [database tools
API] 769

quiet a_bit_fielda_dblic_info structure [database
tools API] 772

quiet a_bit_fielda_translate_log structure [database
tools API] 818

quiet a_bit_fielda_truncate_log structure [database
tools API] 821

quiet a_bit_fielda_validate_db structure [database
tools API] 823

quiet a_bit_fieldan_erase_db structure [database
tools API] 825

quiet a_bit_fieldan_upgrade_db structure [database
tools API] 840

quoted identifiers
sql_needs_quotes function 491

QUOTED_IDENTIFIER option
Open Client 6

R

Rails
about 591
installing ActiveRecord adapter 591

range 867
logical offset of a window frame 867
window frame unit 862
window order clause 862

RANGE 860
range specification 864, 867
range-based window frames 867, 868
RANK function 871
rank functions

example 878, 879
ranking functions 843, 860

requirements with OLAP 862
window order clause 862

RAW services
about 629
commenting 634
creating 631
dropping 634
quick start 660
quick start for web clients 658
quick start for web servers 625

Index

1030 SAP Sybase IQ

raw_file const char *a_sync_db structure [database
tools API] 801

READ_CLIENT_FILE function
ESQL client API callback function 480

read-only cursors
about 142

receive a_bit_fielda_remote_sql structure [database
tools API] 783

receive_delay a_sql_uint32a_remote_sql structure
[database tools API] 783

ReceiveBufferSize propertySATcpOptionsBuilder
class [SQL Anywhere .NET API] 313

recompute a_bit_fieldan_unload_db structure
[database tools API] 833

record sets
ADO programming 325

RecordsAffected
propertySARowUpdatedEventArgs class
[SQL Anywhere .NET API] 305

Recordset ADO object
ADO 323
ADO programming 326
updating data 325

Recordset object
ADO 324

recovery
distributed transactions 729

recovery_bytes a_sql_uint32a_translate_log
structure [database tools API] 818

recovery_ops a_sql_uint32a_translate_log structure
[database tools API] 818

reentrant code
multithreaded embedded SQL example 437

refresh_mat_view a_bit_fieldan_unload_db
structure [database tools API] 833

registering
SAP Sybase IQ .NET Data Provider 195

reload_connectparms char *an_unload_db structure
[database tools API] 833

reload_db_filename char *an_unload_db structure
[database tools API] 833

reload_db_logname char *an_unload_db structure
[database tools API] 834

reload_filename const char *an_unload_db
structure [database tools API] 834

reload_page_size unsigned shortan_unload_db
structure [database tools API] 834

remote data 943

remote data access 5, 961
internal operations 955
remote servers 940
troubleshooting 957

remote procedure calls
about 953

remote servers
about 940
altering 947
creating 940
deleting 946
external logins 948
transaction management 954

remote_dir const char *an_unload_db structure
[database tools API] 834

remote_output_file_name char *a_remote_sql
structure [database tools API] 783

REMOTEPWD
using 384

remove_encrypted_tables a_bit_fieldan_unload_db
structure [database tools API] 834

remove_rollback a_bit_fielda_translate_log
structure [database tools API] 818

removeShutdownHook
Java VM shutdown hooks 374

rename_local_log a_bit_fielda_backup_db
structure [database tools API] 754

rename_log a_bit_fielda_backup_db structure
[database tools API] 754

rename_log a_bit_fielda_remote_sql structure
[database tools API] 784

rename_log a_bit_fielda_sync_db structure
[database tools API] 802

replace a_bit_fielda_translate_log structure
[database tools API] 818

replace_db a_bit_fieldan_unload_db structure
[database tools API] 835

reporting functions 880
example 880, 881

repserver_users const char *a_translate_log
structure [database tools API] 819

request processing
embedded SQL 466

requests
aborting 473

requirements
Open Client applications 618

resend_urgency a_sql_uint32a_remote_sql
structure [database tools API] 784

Index

Programming 1031

reserved a_bit_fielda_sync_db structure [database
tools API] 802

reserved void *a_log_file_info structure [database
tools API] 775

ReservedWords fieldSAMetaDataCollectionNames
class [SQL Anywhere .NET API] 287

resource dispensers
three-tier computing 727

resource managers
about 725
three-tier computing 727

respect_case a_bit_fielda_create_db structure
[database tools API] 764

restart a_bit_fieldan_upgrade_db structure
[database tools API] 840

RESTRICT action 968
Restrictions fieldSAMetaDataCollectionNames

class [SQL Anywhere .NET API] 288
result sets

about ADO Recordset object 323
accessing from a web client 677
cursors 135
Java in the database stored procedures 372
JDBC 399
metadata 160
Open Client 622
retrieving from a web service 679
stored procedures 464
using 137
using ADO Recordset object 324

Results method
JDBCExample 399

retrieving
SQLDA 451

retry_remote_ahead a_bit_fielda_sync_db structure
[database tools API] 802

retry_remote_behind a_bit_fielda_sync_db
structure [database tools API] 802

RetryConnectionTimeout
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 257

return codes
about 738

return value
describe 93

return values
web clients 677

rewind
v4 API method 123

ROLLBACK statement
cursors 163

ROLLBACK TO SAVEPOINT statement
cursors 164

RollbackTrans ADO method
ADO programming 326
updating data 326

ROLLUP operation 845, 846
example 852
NULL 848
SELECT statement 846
subtotal rows 847

ROLLUP operator 846
root web services

about 635
web browsing 654

row block 116
row specification 864
row-based window frames 865
rows 866

physical offset of a window frame 866
rows between 1 preceding and 1 following

866
rows between 1 preceding and 1 preceding

866
rows between current row and current row

866
rows between unbounded preceding and

current row 866
rows between unbounded preceding and

unbounded following 866
specification 867
subtotal rows 847

ROWS 860
RowsCopied propertySARowsCopiedEventArgs

class [SQL Anywhere .NET API] 307
RPC option

Linked Server 330, 332
RPC Out option

Linked Server 330, 332
Ruby

about 591
installing ActiveRecord adapter 591
installing native Ruby driver 591
installing Ruby/DBI support 592

Ruby API
about 599
sqlany_affected_rows function 600
sqlany_bind_param function 600

Index

1032 SAP Sybase IQ

sqlany_clear_error function 601
sqlany_client_version function 601
sqlany_commit function 601
sqlany_connect function 602
sqlany_describe_bind_param function 602
sqlany_disconnect function 603
sqlany_error function 603
sqlany_execute function 604
sqlany_execute_direct function 604
sqlany_execute_immediate function 605
sqlany_fetch_absolute function 605
sqlany_fetch_next function 606
sqlany_fini function 607
sqlany_free_connection function 607
sqlany_free_stmt function 608
sqlany_get_bind_param_info function 608
sqlany_get_column function 609
sqlany_get_column_info function 609
sqlany_get_next_result function 610
sqlany_init function 611
sqlany_new_connection function 611
sqlany_num_cols function 612
sqlany_num_params function 612
sqlany_num_rows function 612
sqlany_prepare function 613
sqlany_rollback function 614
sqlany_sqlstate function 614

Ruby APIs
introduction to programming 591

Ruby DBI
about 595
connection examples 595
installing dbd-sqlanywhere 592

Ruby on Rails
about 591
installing ActiveRecord adapter 591

RubyGems
installing 591

runscript a_bit_fieldan_unload_db structure
[database tools API] 835

S
sa_set_http_header system procedure

example 638
SA_TRANSACTION_SNAPSHOT 390
SA_TRANSACTION_STATEMENT_READONL

Y_SNAPSHOT 390
SA_TRANSACTION_STATEMENT_SNAPSHO

T 390

SABulkCopy class [SQL Anywhere .NET API]
BatchSize property 214

SABulkCopy class [SQL Anywhere .NET API]
BulkCopyTimeout property 214

SABulkCopy class [SQL Anywhere .NET API]
ColumnMappings property 215

SABulkCopy class [SQL Anywhere .NET API]
description 213

SABulkCopy class [SQL Anywhere .NET API]
DestinationTableName property 215

SABulkCopy class [SQL Anywhere .NET API]
NotifyAfter property 216

SABulkCopyColumnMapping class [SQL
Anywhere .NET API] description 216

SABulkCopyColumnMapping class [SQL
Anywhere .NET API]
DestinationColumn property 217

SABulkCopyColumnMapping class [SQL
Anywhere .NET API] DestinationOrdinal
property 217

SABulkCopyColumnMapping class [SQL
Anywhere .NET API] SourceColumn
property 218

SABulkCopyColumnMapping class [SQL
Anywhere .NET API] SourceOrdinal
property 218

SABulkCopyColumnMappingCollection class
[SQL Anywhere .NET API] description
219

SABulkCopyColumnMappingCollection class
[SQL Anywhere .NET API] this property
222

SABulkCopyOptions() enumeration [SQL
Anywhere .NET API] 212

SACAPI_ERROR_SIZE variable [SQL Anywhere
C API] 520

SACommand
obtaining primary key values 174

SACommand class
about 170
deleting data 172
inserting data 172
retrieving data 171
updating data 172
using prepared statements 133

SACommand class [SQL Anywhere .NET API]
CommandText property 234

SACommand class [SQL Anywhere .NET API]
CommandTimeout property 235

Index

Programming 1033

SACommand class [SQL Anywhere .NET API]
CommandType property 235

SACommand class [SQL Anywhere .NET API]
Connection property 236

SACommand class [SQL Anywhere .NET API]
DbConnection property 236

SACommand class [SQL Anywhere .NET API]
DbParameterCollection property 236

SACommand class [SQL Anywhere .NET API]
DbTransaction property 237

SACommand class [SQL Anywhere .NET API]
description 226

SACommand class [SQL Anywhere .NET API]
DesignTimeVisible property 237

SACommand class [SQL Anywhere .NET API]
Parameters property 237

SACommand class [SQL Anywhere .NET API]
Transaction property 238

SACommand class [SQL Anywhere .NET API]
UpdatedRowSource property 238

SACommandBuilder class [SQL Anywhere .NET
API] DataAdapter property 243

SACommandBuilder class [SQL Anywhere .NET
API] description 239

SACommLinksOptionsBuilder class [SQL
Anywhere .NET API] All property 224

SACommLinksOptionsBuilder class [SQL
Anywhere .NET API] ConnectionString
property 225

SACommLinksOptionsBuilder class [SQL
Anywhere .NET API] description 223

SACommLinksOptionsBuilder class [SQL
Anywhere .NET API] SharedMemory
property 225

SACommLinksOptionsBuilder class [SQL
Anywhere .NET API] TcpOptionsBuilder
property 225

SACommLinksOptionsBuilder class [SQL
Anywhere .NET API] TcpOptionsString
property 225

SAConnection class
connecting to a database 168

SAConnectionStringBuilder class [SQL
Anywhere .NET API] AppInfo property
247

SAConnectionStringBuilder class [SQL
Anywhere .NET API] AutoStart property
247

SAConnectionStringBuilder class [SQL
Anywhere .NET API] AutoStop property
247

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Charset property
247

SAConnectionStringBuilder class [SQL
Anywhere .NET API] CommBufferSize
property 247

SAConnectionStringBuilder class [SQL
Anywhere .NET API] CommLinks
property 248

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Compress property
248

SAConnectionStringBuilder class [SQL
Anywhere .NET API]
CompressionThreshold property 248

SAConnectionStringBuilder class [SQL
Anywhere .NET API]
ConnectionLifetime property 248

SAConnectionStringBuilder class [SQL
Anywhere .NET API] ConnectionName
property 249

SAConnectionStringBuilder class [SQL
Anywhere .NET API] ConnectionPool
property 249

SAConnectionStringBuilder class [SQL
Anywhere .NET API] ConnectionReset
property 249

SAConnectionStringBuilder class [SQL
Anywhere .NET API]
ConnectionTimeout property 249

SAConnectionStringBuilder class [SQL
Anywhere .NET API] DatabaseFile
property 250

SAConnectionStringBuilder class [SQL
Anywhere .NET API] DatabaseKey
property 250

SAConnectionStringBuilder class [SQL
Anywhere .NET API] DatabaseName
property 250

SAConnectionStringBuilder class [SQL
Anywhere .NET API] DatabaseSwitches
property 250

SAConnectionStringBuilder class [SQL
Anywhere .NET API] DataSourceName
property 250

Index

1034 SAP Sybase IQ

SAConnectionStringBuilder class [SQL
Anywhere .NET API] description 243

SAConnectionStringBuilder class [SQL
Anywhere .NET API]
DisableMultiRowFetch property 251

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Elevate property
251

SAConnectionStringBuilder class [SQL
Anywhere .NET API]
EncryptedPassword property 251

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Encryption
property 251

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Enlist property
252

SAConnectionStringBuilder class [SQL
Anywhere .NET API]
FileDataSourceName property 252

SAConnectionStringBuilder class [SQL
Anywhere .NET API] ForceStart property
252

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Host property 252

SAConnectionStringBuilder class [SQL
Anywhere .NET API] IdleTimeout
property 252

SAConnectionStringBuilder class [SQL
Anywhere .NET API] InitString property
253

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Integrated property
253

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Kerberos property
253

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Language property
254

SAConnectionStringBuilder class [SQL
Anywhere .NET API] LazyClose
property 254

SAConnectionStringBuilder class [SQL
Anywhere .NET API] LivenessTimeout
property 254

SAConnectionStringBuilder class [SQL
Anywhere .NET API] LogFile property
254

SAConnectionStringBuilder class [SQL
Anywhere .NET API] MaxPoolSize
property 254

SAConnectionStringBuilder class [SQL
Anywhere .NET API] MinPoolSize
property 255

SAConnectionStringBuilder class [SQL
Anywhere .NET API] NewPassword
property 255

SAConnectionStringBuilder class [SQL
Anywhere .NET API] NodeType property
255

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Password property
255

SAConnectionStringBuilder class [SQL
Anywhere .NET API] PersistSecurityInfo
property 256

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Pooling property
256

SAConnectionStringBuilder class [SQL
Anywhere .NET API] PrefetchBuffer
property 256

SAConnectionStringBuilder class [SQL
Anywhere .NET API] PrefetchRows
property 256

SAConnectionStringBuilder class [SQL
Anywhere .NET API]
RetryConnectionTimeout property 257

SAConnectionStringBuilder class [SQL
Anywhere .NET API] ServerName
property 257

SAConnectionStringBuilder class [SQL
Anywhere .NET API] StartLine property
257

SAConnectionStringBuilder class [SQL
Anywhere .NET API] Unconditional
property 258

SAConnectionStringBuilder class [SQL
Anywhere .NET API] UserID property
258

SAConnectionStringBuilderBase class [SQL
Anywhere .NET API] description 258

SAConnectionStringBuilderBase class [SQL
Anywhere .NET API] Keys property 253,
261, 312

Index

Programming 1035

SAConnectionStringBuilderBase class [SQL
Anywhere .NET API] this property 257,
261, 314

SADataAdapter
obtaining primary key values 182

SADataAdapter class
about 170
deleting data 175
inserting data 175
retrieving data 177, 178
updating data 175

SADataAdapter class [SQL Anywhere .NET API]
DeleteCommand property 266

SADataAdapter class [SQL Anywhere .NET API]
description 262

SADataAdapter class [SQL Anywhere .NET API]
InsertCommand property 267

SADataAdapter class [SQL Anywhere .NET API]
SelectCommand property 267

SADataAdapter class [SQL Anywhere .NET API]
TableMappings property 268

SADataAdapter class [SQL Anywhere .NET API]
UpdateBatchSize property 268

SADataAdapter class [SQL Anywhere .NET API]
UpdateCommand property 269

SADataReader class
using 171

SADataSourceEnumerator class [SQL
Anywhere .NET API] description 271

SADataSourceEnumerator class [SQL
Anywhere .NET API] Instance property
272

SADBParametersEditor class [SQL
Anywhere .NET API] description 296,
301

SADbType propertySAParameter class [SQL
Anywhere .NET API] 292

SADefault class [SQL Anywhere .NET API]
description 272

SADefault class [SQL Anywhere .NET API] Value
field 273

SAError class [SQL Anywhere .NET API]
description 273

SAError class [SQL Anywhere .NET API] Message
property 274

SAError class [SQL Anywhere .NET API]
NativeError property 274

SAError class [SQL Anywhere .NET API] Source
property 274

SAError class [SQL Anywhere .NET API] SqlState
property 274

SAErrorCollection class [SQL Anywhere .NET
API] Count property 276

SAErrorCollection class [SQL Anywhere .NET
API] description 275

SAErrorCollection class [SQL Anywhere .NET
API] this property 276

SAException class [SQL Anywhere .NET API]
description 276

SAException class [SQL Anywhere .NET API]
Errors property 277

SAException class [SQL Anywhere .NET API]
Message property 277

SAException class [SQL Anywhere .NET API]
NativeError property 278

SAException class [SQL Anywhere .NET API]
Source property 278

SAFactory class [SQL Anywhere .NET API]
CanCreateDataSourceEnumerator
property 282

SAFactory class [SQL Anywhere .NET API]
description 278

SAFactory class [SQL Anywhere .NET API]
Instance field 282

SAInfoMessageEventArgs class [SQL
Anywhere .NET API] description 282

SAInfoMessageEventArgs class [SQL
Anywhere .NET API] Errors property
283

SAInfoMessageEventArgs class [SQL
Anywhere .NET API] Message property
283

SAInfoMessageEventArgs class [SQL
Anywhere .NET API] MessageType
property 283

SAInfoMessageEventArgs class [SQL
Anywhere .NET API] NativeError
property 284

SAInfoMessageEventArgs class [SQL
Anywhere .NET API] Source property
284

SAIsolationLevel propertySATransaction class
[SQL Anywhere .NET API] 317

SAIsolationLevel() enumeration [SQL
Anywhere .NET API] 213

sajdbc4.jar
loading SQL Anywhere JDBC driver 387

Index

1036 SAP Sybase IQ

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] Columns field 284

SAMetaDataCollectionNames class [SQL
Anywhere .NET API]
DataSourceInformation field 285

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] DataTypes field
285

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] description 284

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] ForeignKeys field
285

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] IndexColumns
field 286

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] Indexes field 286

SAMetaDataCollectionNames class [SQL
Anywhere .NET API]
MetaDataCollections field 286

SAMetaDataCollectionNames class [SQL
Anywhere .NET API]
ProcedureParameters field 287

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] Procedures field
287

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] ReservedWords
field 287

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] Restrictions field
288

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] Tables field 288

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] UserDefinedTypes
field 288

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] Users field 289

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] ViewColumns field
289

SAMetaDataCollectionNames class [SQL
Anywhere .NET API] Views field 289

sample variance function 882
samples

.NET Data Provider 200
DBTools program 736

dynamic cursors in embedded SQL 421
embedded SQL 420, 422
embedded SQL applications 419
ODBC 343
SimpleViewer 203
static cursors in embedded SQL 420

SAOLEDB
OLE DB provider 319

SAP Sybase IQ .NET API
about 165

SAP Sybase IQ .NET Data Provider
about 165
samples 200

SAP Sybase IQ ODBC driver
linking on Windows 340

SAP Sybase IQ Perl DBD::SQLAnywhere DBI
module

about 535
SAP Sybase IQ PHP API

about 566
SAP Sybase IQ PHP extension

about 553
SAP Sybase IQ PHP module

API reference 566
SAP Sybase IQ Python Database support

about 545
SAP Sybase IQ Ruby API

functions 599
SAP Sybase IQ web services

about 625
SAParameter class [SQL Anywhere .NET API]

DbType property 290
SAParameter class [SQL Anywhere .NET API]

description 290
SAParameter class [SQL Anywhere .NET API]

Direction property 291
SAParameter class [SQL Anywhere .NET API]

IsNullable property 291
SAParameter class [SQL Anywhere .NET API]

Offset property 291
SAParameter class [SQL Anywhere .NET API]

ParameterName property 292
SAParameter class [SQL Anywhere .NET API]

Precision property 292
SAParameter class [SQL Anywhere .NET API]

SADbType property 292
SAParameter class [SQL Anywhere .NET API]

Scale property 293

Index

Programming 1037

SAParameter class [SQL Anywhere .NET API] Size
property 293

SAParameter class [SQL Anywhere .NET API]
SourceColumn property 294

SAParameter class [SQL Anywhere .NET API]
SourceColumnNullMapping property
294

SAParameter class [SQL Anywhere .NET API]
SourceVersion property 294

SAParameter class [SQL Anywhere .NET API]
Value property 295

SAParameterCollection class [SQL
Anywhere .NET API] Count property
299

SAParameterCollection class [SQL
Anywhere .NET API] description 295

SAParameterCollection class [SQL
Anywhere .NET API] IsFixedSize
property 299

SAParameterCollection class [SQL
Anywhere .NET API] IsReadOnly
property 300

SAParameterCollection class [SQL
Anywhere .NET API] IsSynchronized
property 300

SAParameterCollection class [SQL
Anywhere .NET API] SyncRoot property
300

SAParameterCollection class [SQL
Anywhere .NET API] this property 300

SAPermission class [SQL Anywhere .NET API]
description 302

SAPermissionAttribute class [SQL Anywhere .NET
API] description 303

SARowsCopiedEventArgs class [SQL
Anywhere .NET API] Abort property
307

SARowsCopiedEventArgs class [SQL
Anywhere .NET API] description 306

SARowsCopiedEventArgs class [SQL
Anywhere .NET API] RowsCopied
property 307

SARowUpdatedEventArgs class [SQL
Anywhere .NET API] Command property
305

SARowUpdatedEventArgs class [SQL
Anywhere .NET API] description 304

SARowUpdatedEventArgs class [SQL
Anywhere .NET API] RecordsAffected
property 305

SARowUpdatingEventArgs class [SQL
Anywhere .NET API] Command property
306

SARowUpdatingEventArgs class [SQL
Anywhere .NET API] description 305

sasql_affected_rows function (PHP)
syntax 566

sasql_close function (PHP)
syntax 567

sasql_commit function (PHP)
syntax 567

sasql_connect function (PHP)
syntax 567

sasql_data_seek function (PHP)
syntax 568

sasql_disconnect function (PHP)
syntax 568

sasql_error function (PHP)
syntax 568

sasql_errorcode function (PHP)
syntax 569

sasql_escape_string function (PHP)
syntax 569

sasql_fetch_array function (PHP)
syntax 570

sasql_fetch_assoc function (PHP)
syntax 570

sasql_fetch_field function (PHP)
syntax 571

sasql_fetch_object function (PHP)
syntax 571

sasql_fetch_row function (PHP)
syntax 572

sasql_field_count function (PHP)
syntax 572

sasql_field_seek function (PHP)
syntax 572

sasql_free_result function (PHP)
syntax 573

sasql_get_client_info function (PHP)
syntax 573

sasql_insert_id function (PHP)
syntax 573

sasql_message function (PHP)
syntax 574

Index

1038 SAP Sybase IQ

sasql_multi_query function (PHP)
syntax 574

sasql_next_result function (PHP)
syntax 575

sasql_num_fields function (PHP)
syntax 575

sasql_num_rows function (PHP)
syntax 575

sasql_pconnect function (PHP)
syntax 576

sasql_prepare function (PHP)
syntax 576

sasql_query function (PHP)
syntax 576

sasql_real_escape_string function (PHP)
syntax 577

sasql_real_query function (PHP)
syntax 577

sasql_result_all function (PHP)
syntax 578

sasql_rollback function (PHP)
syntax 579

sasql_set_option function (PHP)
syntax 579

sasql_sqlstate function (PHP)
syntax 588

sasql_stmt_affected_rows function (PHP)
syntax 580

sasql_stmt_bind_param function (PHP)
syntax 580

sasql_stmt_bind_param_ex function (PHP)
syntax 581

sasql_stmt_bind_result function (PHP)
syntax 582

sasql_stmt_close function (PHP)
syntax 582

sasql_stmt_data_seek function (PHP)
syntax 582

sasql_stmt_errno function (PHP)
syntax 583

sasql_stmt_error function (PHP)
syntax 583

sasql_stmt_execute function (PHP)
syntax 583

sasql_stmt_fetch function (PHP)
syntax 584

sasql_stmt_field_count function (PHP)
syntax 584

sasql_stmt_free_result function (PHP)
syntax 584

sasql_stmt_insert_id function (PHP)
syntax 585

sasql_stmt_next_result function (PHP)
syntax 585

sasql_stmt_num_rows function (PHP)
syntax 586

sasql_stmt_param_count function (PHP)
syntax 586

sasql_stmt_reset function (PHP)
syntax 586

sasql_stmt_result_metadata function (PHP)
syntax 587

sasql_stmt_send_long_data function (PHP)
syntax 587

sasql_stmt_store_result function (PHP)
syntax 587

sasql_store_result function (PHP)
syntax 588

sasql_use_result function (PHP)
syntax 589

SATcpOptionsBuilder class [SQL Anywhere .NET
API] Broadcast property 311

SATcpOptionsBuilder class [SQL Anywhere .NET
API] BroadcastListener property 311

SATcpOptionsBuilder class [SQL Anywhere .NET
API] ClientPort property 312

SATcpOptionsBuilder class [SQL Anywhere .NET
API] description 308

SATcpOptionsBuilder class [SQL Anywhere .NET
API] DoBroadcast property 312

SATcpOptionsBuilder class [SQL Anywhere .NET
API] Host property 312

SATcpOptionsBuilder class [SQL Anywhere .NET
API] IPV6 property 312

SATcpOptionsBuilder class [SQL Anywhere .NET
API] LDAP property 313

SATcpOptionsBuilder class [SQL Anywhere .NET
API] LocalOnly property 313

SATcpOptionsBuilder class [SQL Anywhere .NET
API] MyIP property 313

SATcpOptionsBuilder class [SQL Anywhere .NET
API] ReceiveBufferSize property 313

SATcpOptionsBuilder class [SQL Anywhere .NET
API] SendBufferSize property 314

SATcpOptionsBuilder class [SQL Anywhere .NET
API] ServerPort property 314

Index

Programming 1039

SATcpOptionsBuilder class [SQL Anywhere .NET
API] TDS property 314

SATcpOptionsBuilder class [SQL Anywhere .NET
API] Timeout property 315

SATcpOptionsBuilder class [SQL Anywhere .NET
API] VerifyServerName property 315

SATransaction class
using 186

SATransaction class [SQL Anywhere .NET API]
Connection property 316

SATransaction class [SQL Anywhere .NET API]
DbConnection property 316

SATransaction class [SQL Anywhere .NET API]
description 315

SATransaction class [SQL Anywhere .NET API]
IsolationLevel property 317

SATransaction class [SQL Anywhere .NET API]
SAIsolationLevel property 317

savepoints
cursors 164

Scale propertySAParameter class [SQL
Anywhere .NET API] 293

scale unsigned shorta_sqlany_column_info
structure [SQL Anywhere C API] 531

scan_log a_bit_fielda_remote_sql structure
[database tools API] 784

schema_reload a_bit_fieldan_unload_db structure
[database tools API] 835

SCROLL cursors
embedded SQL 159
value-sensitive 151

scrollable cursors
about 139
JDBC support 378

security
Java in the database 374

security context
Linked Server 330, 332

security manager
about 374

SELECT statement
single row 452
using dynamic SELECT statements 442

SelectCommand propertySADataAdapter class
[SQL Anywhere .NET API] 267

semantic phases of execution 844
send a_bit_fielda_remote_sql structure [database

tools API] 784

send_delay a_sql_uint32a_remote_sql structure
[database tools API] 784

SendBufferSize propertySATcpOptionsBuilder
class [SQL Anywhere .NET API] 314

sensitive cursors
about 149
cursor properties 142
delete example 145
embedded SQL 159
introduction 144
update example 146

sensitivity
cursors 144
delete example 145
isolation levels 157
SAP Sybase IQ cursors 143
update example 146

server 482
server address

embedded SQL function 476
Server Explorer

Visual Studio 203
server side autocommit

about 162
server_backup a_bit_fielda_backup_db structure

[database tools API] 755
server_backup a_bit_fielda_truncate_log structure

[database tools API] 822
server_mode a_bit_fielda_sync_db structure

[database tools API] 802
server_port a_sql_uint32a_sync_db structure

[database tools API] 803
ServerName propertySAConnectionStringBuilder

class [SQL Anywhere .NET API] 257
ServerPort propertySATcpOptionsBuilder class

[SQL Anywhere .NET API] 314
servers

creating 966
locating from ESQL 487
multiple databases on 9
web 625

services
data types 680
web 625

SessionCreateTime property
about 649

SessionID property
example 647

Index

1040 SAP Sybase IQ

SessionLastTime property
about 649

sessions
about 646
administering 651
creating 647
deleting 650
detecting 649
errors 652

set_cannot_be_distributed
v4 API method 112

set_error method
a_v4_extfn_proc_context 106

set_generation_number a_bit_fielda_change_log
structure [database tools API] 758

set_value method
a_v4_extfn_proc_context 104

set_window_title_rtn
SET_WINDOW_TITLE_CALLBACKa
_remote_sql structure [database tools
API] 785

set_window_title_rtn
SET_WINDOW_TITLE_CALLBACKa
_sync_db structure [database tools API]
803

setAutoCommit method
about 390

setting
values using the SQLDA 449

setTransactionIsolation method 390
SharedMemory

propertySACommLinksOptionsBuilder
class [SQL Anywhere .NET API] 225

show_undo a_bit_fielda_translate_log structure
[database tools API] 819

simple aggregate functions 859
SimpleViewer

.NET Data Provider sample project 167

.NET project 203
SimpleWin32

.NET Data Provider sample project 167
SimpleXML

.NET Data Provider sample project 167
since_checkpoint a_bit_fielda_translate_log

structure [database tools API] 819
since_time a_sql_uint32a_translate_log structure

[database tools API] 819
site_name const char *an_unload_db structure

[database tools API] 835

Size propertySAParameter class [SQL
Anywhere .NET API] 293

SMALLDATETIME data type
Open client conversion 619

SMALLMONEY data type
Open client conversion 619

snapshot isolation
lost updates 155
SQL Anywhere .NET Data Provider 186

SOAP
supplying variables in an envelope 676

SOAP headers
management 668

SOAP namespace
management 673

SOAP requests
structures 693

SOAP services
.NET tutorial 709
about 629
commenting 634
creating 632
data types 680
dropping 634
faults 695
JAX-WS tutorial 715
SAP Sybase IQ web client tutorial 701

SOAP system procedures
alphabetical list 653

SOAPHEADER clause
managing 668

software
return codes 738

sort order of ORDER BY in range-based frames
868

Source propertySAError class [SQL
Anywhere .NET API] 274

Source propertySAException class [SQL
Anywhere .NET API] 278

Source propertySAInfoMessageEventArgs class
[SQL Anywhere .NET API] 284

SourceColumn
propertySABulkCopyColumnMapping
class [SQL Anywhere .NET API] 218

SourceColumn propertySAParameter class [SQL
Anywhere .NET API] 294

SourceColumnNullMapping propertySAParameter
class [SQL Anywhere .NET API] 294

Index

Programming 1041

SourceOrdinal
propertySABulkCopyColumnMapping
class [SQL Anywhere .NET API] 218

SourceVersion propertySAParameter class [SQL
Anywhere .NET API] 294

sp_tsql_environment system procedure
setting options for jConnect 384

SQL
ADO applications 131
applications 131
embedded SQL applications 131
JDBC applications 131
ODBC applications 131
Open Client applications 131

SQL Anywhere .NET API
DestinationOrdinalComparer class 219,
222

SQL Anywhere .NET API DREnumerator class
270

SQL Anywhere .NET API SABulkCopy class 213
SQL Anywhere .NET API

SABulkCopyColumnMapping class 216
SQL Anywhere .NET API

SABulkCopyColumnMappingCollection
class 219

SQL Anywhere .NET API SACommand class 226
SQL Anywhere .NET API SACommandBuilder

class 239
SQL Anywhere .NET API

SACommLinksOptionsBuilder class 223
SQL Anywhere .NET API

SAConnectionStringBuilder class 243
SQL Anywhere .NET API

SAConnectionStringBuilderBase class
258

SQL Anywhere .NET API SADataAdapter class
262

SQL Anywhere .NET API
SADataSourceEnumerator class 271

SQL Anywhere .NET API SADBParametersEditor
class 296, 301

SQL Anywhere .NET API SADefault class 272
SQL Anywhere .NET API SAError class 273
SQL Anywhere .NET API SAErrorCollection class

275
SQL Anywhere .NET API SAException class 276
SQL Anywhere .NET API SAFactory class 278
SQL Anywhere .NET API

SAInfoMessageEventArgs class 282

SQL Anywhere .NET API
SAMetaDataCollectionNames class 284

SQL Anywhere .NET API SAParameter class 290
SQL Anywhere .NET API SAParameterCollection

class 295
SQL Anywhere .NET API SAPermission class

302
SQL Anywhere .NET API SAPermissionAttribute

class 303
SQL Anywhere .NET API

SARowsCopiedEventArgs class 306
SQL Anywhere .NET API

SARowUpdatedEventArgs class 304
SQL Anywhere .NET API

SARowUpdatingEventArgs class 305
SQL Anywhere .NET API SATcpOptionsBuilder

class 308
SQL Anywhere .NET API SATransaction class

315
SQL Anywhere 16 JDBC driver

connecting 381
URL 381

SQL Anywhere C API a_sqlany_bind_param
structure 528

SQL Anywhere C API a_sqlany_bind_param_info
structure 528

SQL Anywhere C API a_sqlany_column_info
structure 529

SQL Anywhere C API a_sqlany_data_info structure
531

SQL Anywhere C API a_sqlany_data_value
structure 532

SQL Anywhere C API SQLAnywhereInterface
structure 520

SQL Anywhere JDBC driver
about 377
choosing a JDBC driver 378
loading 4.0 driver 381
required files 380
using 380

SQL applications
executing SQL statements 131

SQL Communications Area
about 435

SQL preprocessor utility (iqsqlpp)
about 411
running 411
syntax 411

Index

1042 SAP Sybase IQ

SQL statements
executing 620
web clients 674
web services 636

SQL_ATTR_KEYSET_SIZE
ODBC attribute 158

SQL_ATTR_ROW_ARRAY_SIZE
fetching multiple rows 139
ODBC attribute 158

SQL_CALLBACK type declaration
about 480

SQL_CALLBACK_PARM type declaration
about 480

SQL_CURSOR_KEYSET_DRIVEN
ODBC cursor attribute 158

sql_needs_quotes function
about 491

SQL_ROWSET_SIZE
fetching multiple rows 139

SQL/1992
SQL preprocessor utility (iqsqlpp) 411

SQL/1999
SQL preprocessor utility (iqsqlpp) 411

SQL/2003
SQL preprocessor utility (iqsqlpp) 411

SQL/2008
SQL preprocessor utility (iqsqlpp) 411

sqlany_affected_rows function [Ruby API]
description 600

sqlany_affected_rows void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 521

SQLANY_API_VERSION_1 variable [SQL
Anywhere C API] 520

SQLANY_API_VERSION_2 variable [SQL
Anywhere C API] 520

sqlany_bind_param function [Ruby API]
description 600

sqlany_bind_param void *SQLAnywhereInterface
structure [SQL Anywhere C API] 521

sqlany_cancel void *SQLAnywhereInterface
structure [SQL Anywhere C API] 521

sqlany_clear_error function [Ruby API]
description 601

sqlany_clear_error void *SQLAnywhereInterface
structure [SQL Anywhere C API] 521

sqlany_client_version function [Ruby API]
description 601

sqlany_client_version void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 522

sqlany_client_version_ex void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 522

sqlany_commit function [Ruby API]
description 601

sqlany_commit void *SQLAnywhereInterface
structure [SQL Anywhere C API] 522

sqlany_connect function [Ruby API]
description 602

sqlany_connect void *SQLAnywhereInterface
structure [SQL Anywhere C API] 522

sqlany_describe_bind_param function [Ruby API]
description 602

sqlany_describe_bind_param void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 522

sqlany_disconnect function [Ruby API]
description 603

sqlany_disconnect void *SQLAnywhereInterface
structure [SQL Anywhere C API] 522

sqlany_error function [Ruby API]
description 603

sqlany_error void *SQLAnywhereInterface
structure [SQL Anywhere C API] 523

sqlany_execute function [Ruby API]
description 604

sqlany_execute void *SQLAnywhereInterface
structure [SQL Anywhere C API] 523

sqlany_execute_direct function [Ruby API]
description 604

sqlany_execute_direct void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 523

sqlany_execute_immediate function [Ruby API]
description 605

sqlany_execute_immediate void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 523

sqlany_fetch_absolute function [Ruby API]
description 605

sqlany_fetch_absolute void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 523

sqlany_fetch_next function
about 606

Index

Programming 1043

sqlany_fetch_next void *SQLAnywhereInterface
structure [SQL Anywhere C API] 523

sqlany_fini function [Ruby API]
description 607

sqlany_fini void *SQLAnywhereInterface structure
[SQL Anywhere C API] 524

sqlany_fini_ex void *SQLAnywhereInterface
structure [SQL Anywhere C API] 524

sqlany_free_connection function [Ruby API]
description 607

sqlany_free_connection void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 524

sqlany_free_stmt function [Ruby API]
description 608

sqlany_free_stmt void *SQLAnywhereInterface
structure [SQL Anywhere C API] 524

sqlany_get_bind_param_info function [Ruby API]
description 608

sqlany_get_bind_param_info void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 524

sqlany_get_column function [Ruby API]
description 609

sqlany_get_column void *SQLAnywhereInterface
structure [SQL Anywhere C API] 524

sqlany_get_column_info function [Ruby API]
description 609

sqlany_get_column_info void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 525

sqlany_get_data void *SQLAnywhereInterface
structure [SQL Anywhere C API] 525

sqlany_get_data_info void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 525

sqlany_get_next_result function [Ruby API]
description 610

sqlany_get_next_result void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 525

sqlany_init function [Ruby API]
description 611

sqlany_init void *SQLAnywhereInterface structure
[SQL Anywhere C API] 525

sqlany_init_ex void *SQLAnywhereInterface
structure [SQL Anywhere C API] 525

sqlany_make_connection void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 526

sqlany_make_connection_ex void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 526

sqlany_new_connection function [Ruby API]
description 611

sqlany_new_connection void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 526

sqlany_new_connection_ex void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 526

sqlany_num_cols function [Ruby API]
description 612

sqlany_num_cols void *SQLAnywhereInterface
structure [SQL Anywhere C API] 526

sqlany_num_params function [Ruby API]
description 612

sqlany_num_params void *SQLAnywhereInterface
structure [SQL Anywhere C API] 526

sqlany_num_rows function [Ruby API]
description 612

sqlany_num_rows void *SQLAnywhereInterface
structure [SQL Anywhere C API] 527

sqlany_prepare function [Ruby API]
description 613

sqlany_prepare void *SQLAnywhereInterface
structure [SQL Anywhere C API] 527

sqlany_reset void *SQLAnywhereInterface
structure [SQL Anywhere C API] 527

sqlany_rollback function [Ruby API]
description 614

sqlany_rollback void *SQLAnywhereInterface
structure [SQL Anywhere C API] 527

sqlany_send_param_data void
*SQLAnywhereInterface structure [SQL
Anywhere C API] 527

sqlany_sqlstate function [Ruby API]
description 614

sqlany_sqlstate void *SQLAnywhereInterface
structure [SQL Anywhere C API] 527

sqlanydb
about 545
installing on Unix 546
installing on Windows 546
Python Database API 545
writing Python scripts 547

Index

1044 SAP Sybase IQ

SQLAnywhereInterface structure [SQL Anywhere
C API] description 520

SQLAnywhereInterface structure [SQL Anywhere
C API] dll_handle void * 521

SQLAnywhereInterface structure [SQL Anywhere
C API] initialized int 521

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_affected_rows void * 521

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_bind_param void * 521

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_cancel void * 521

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_clear_error void * 521

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_client_version void * 522

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_client_version_ex void *
522

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_commit void * 522

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_connect void * 522

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_describe_bind_param
void * 522

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_disconnect void * 522

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_error void * 523

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_execute void * 523

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_execute_direct void *
523

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_execute_immediate void *
523

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_fetch_absolute void *
523

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_fetch_next void * 523

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_fini void * 524

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_fini_ex void * 524

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_free_connection void *
524

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_free_stmt void * 524

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_get_bind_param_info
void * 524

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_get_column void * 524

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_get_column_info void *
525

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_get_data void * 525

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_get_data_info void * 525

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_get_next_result void *
525

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_init void * 525

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_init_ex void * 525

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_make_connection void *
526

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_make_connection_ex void
* 526

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_new_connection void *
526

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_new_connection_ex void
* 526

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_num_cols void * 526

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_num_params void * 526

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_num_rows void * 527

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_prepare void * 527

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_reset void * 527

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_rollback void * 527

Index

Programming 1045

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_send_param_data void *
527

SQLAnywhereInterface structure [SQL Anywhere
C API] sqlany_sqlstate void * 527

SQLBindParameter function
ODBC prepared statements 134

SQLBrowseConnect ODBC function
about 346

SQLBulkOperations
ODBC function 140

SQLCA 435
about 435
changing 437
fields 435
managing multiple 439
threads 437

sqlcabc SQLCA field 435
sqlcaid SQLCA field 435
sqlcode SQLCA field 435
SQLConnect ODBC function

about 346
SQLCOUNT 436
sqld SQLDA field

about 444
SQLDA

about 443
allocating 467
descriptors 160
dynamic SQL 440
fields 444
filling using fill_sqlda 489
filling using fill_sqlda_ex 489
freeing 488
host variables 445
sqllen field 446
strings and fill_sqlda 489
strings and fill_sqlda_ex 489

sqlda_storage function
about 492

sqlda_string_length function
about 492

sqldabc SQLDA field
about 444

sqldaid SQLDA field
about 444

sqldata SQLDA field
about 445

SQLDATETIME data type
embedded SQL 427

sqldef.h
data types 423
software exit codes location 738

SQLDriverConnect ODBC function
about 346

sqlerrd SQLCA field 436
sqlerrmc SQLCA field 435
sqlerrml SQLCA field 435
sqlerror SQLCA field 436, 437

elements 435
SQLIOCOUNT 436

sqlerror SQLCA field element 436, 437
sqlerror_message function

about 493
sqlerrp SQLCA field 436
SQLExecute function

ODBC prepared statements 134
SQLExtendedFetch

fetching multiple rows 139
ODBC function 138

SQLFetch
ODBC function 138

SQLFetchScroll
fetching multiple rows 139
ODBC function 138

SQLFreeStmt function
ODBC prepared statements 134

sqlind SQLDA field
about 445

SQLIOCOUNT
sqlerror SQLCA field element 436

SQLIOESTIMATE 437
SQLJ standard

about 369
sqllen SQLDA field

about 445
DESCRIBE statement 446
describing values 446
retrieving values 451
sending values 449
values 446

sqlname const char *a_translate_log structure
[database tools API] 819

sqlname SQLDA field
about 445

sqlpp utility
supported compilers 415

Index

1046 SAP Sybase IQ

SQLPrepare function
ODBC prepared statements 134

SqlState propertySAError class [SQL
Anywhere .NET API] 274

sqlstate SQLCA field 436
sqltype SQLDA field

about 445
DESCRIBE statement 446

sqlvar SQLDA field
about 444
contents 445

sqlwarn SQLCA field 436
SQRT function 899
square root function 899
standard deviation

functions 881
population function 882
sample function 882

standards
SQLJ 369

start_subscriptions a_bit_fieldan_unload_db
structure [database tools API] 835

starting
databases using jConnect 384

startline const char *a_create_db structure [database
tools API] 764

startline const char *an_unload_db structure
[database tools API] 836

StartLine propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 257

startline_name a_bit_fieldan_unload_db structure
[database tools API] 836

startline_old const char *an_unload_db structure
[database tools API] 836

State property
.NET Data Provider 170

statements
insert 132

static cursors
about 148
ODBC 158

static SQL
about 440

statistical aggregate functions 881
statistical functions 860

aggregate 843
status_rtn STATUS_CALLBACKa_sync_db

structure [database tools API] 803

statusrtn MSG_CALLBACKa_backup_db
structure [database tools API] 755

statusrtn MSG_CALLBACKa_db_info structure
[database tools API] 769

statusrtn MSG_CALLBACKa_translate_log
structure [database tools API] 820

statusrtn MSG_CALLBACKa_validate_db
structure [database tools API] 823

statusrtn MSG_CALLBACKan_unload_db
structure [database tools API] 836

statusrtn MSG_CALLBACKan_upgrade_db
structure [database tools API] 840

STDDEV_POP function 882
STDDEV_SAMP function 882
stored procedures

creating in embedded SQL 463
executing in embedded SQL 463
INOUT parameters and Java 373
Java in the database 372
OUT parameters and Java 373
result sets in ESQL 464
SAP Sybase IQ .NET Data Provider 185

strictly_free_memory a_bit_fielda_sync_db
structure [database tools API] 803

strictly_ignore_trigger_ops a_bit_fielda_sync_db
structure [database tools API] 803

string
data type 492

string functions
BIT_LENGTH 894
LENGTH 898

strings 424
determining length 898

strings in embedded SQL 424
structure

a_v4_extfn_blob 17
a_v4_extfn_blob_istream 21
a_v4_extfn_col_subset_of_input 25
a_v4_extfn_column_data 22
a_v4_extfn_column_list 23
a_v4_extfn_estimate 113
a_v4_extfn_order_el 24
a_v4_extfn_orderby_list 113
a_v4_extfn_proc 97
a_v4_extfn_proc_context 100
a_v4_extfn_table 116
a_v4_extfn_table_context 117
a_v4_extfn_table_func 124

Index

Programming 1047

structure packing
header files 416

subscriber_username const char *an_unload_db
structure [database tools API] 836

subscription char *a_syncpub structure [database
tools API] 809

subtotal rows 847
construction 847
definition 846, 855
NULL values 848
ROLLUP operation 847

summary information
CUBE operator 855

summary rows
ROLLUP operation 847

supported platforms
OLE DB 320

suppress_statistics a_bit_fieldan_unload_db
structure [database tools API] 836

Sybase IQ ODBC driver
driver name 346

Sybase Open Client support
about 617

sync_opt char *a_sync_db structure [database tools
API] 803

sync_params char *a_sync_db structure [database
tools API] 804

sync_profile char *a_sync_db structure [database
tools API] 804

SyncRoot propertySAParameterCollection class
[SQL Anywhere .NET API] 300

sys_proc_definer a_bit_fielda_create_db structure
[database tools API] 765

sys_proc_definer unsigned shortan_upgrade_db
structure [database tools API] 840

sysinfo a_sysinfoa_db_info structure [database
tools API] 769

sysinfo a_sysinfoan_unload_db structure [database
tools API] 837

sysservers system table
remote servers 940

system procedures
HTTP 653
SOAP 653

system requirements
SAP Sybase IQ .NET Data Provider 194

System.Transactions
using 186

T
table

a_v4_extfn_table 116
table adapter

Visual Studio 207
table constraints 968
table context

a_v4_extfn_table_context 117
fetch_block method 121
fetch_into method 119
rewind method 123

table functions
_close_extfn method 128
_fetch_block_extfn method 127
_fetch_into_extfn method 126
_open_extfn method 126
_rewind_extfn method 128
a_v4_extfn_table_func 124

table parameterized function 11, 12
table UDF 11, 12
Table UDF 13
table_id a_sql_uint32a_table_info structure

[database tools API] 811
table_list p_namean_unload_db structure [database

tools API] 837
table_list_provided a_bit_fieldan_unload_db

structure [database tools API] 837
table_name char *a_table_info structure [database

tools API] 811
table_pages a_sql_uint32a_table_info structure

[database tools API] 811
table_used a_sql_uint32a_table_info structure

[database tools API] 812
table_used_pct a_sql_uint32a_table_info structure

[database tools API] 812
TableMappings propertySADataAdapter class

[SQL Anywhere .NET API] 268
tables

creating 968
creating proxy 964
GLOBAL TEMPORARY 968
remote access 919
temporary 968

Tables fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 288

tables p_namea_validate_db structure [database
tools API] 823

TableViewer
.NET Data Provider sample project 167

Index

1048 SAP Sybase IQ

TcpOptionsBuilder
propertySACommLinksOptionsBuilder
class [SQL Anywhere .NET API] 225

TcpOptionsString
propertySACommLinksOptionsBuilder
class [SQL Anywhere .NET API] 225

TDS propertySATcpOptionsBuilder class [SQL
Anywhere .NET API] 314

temp_dir const char *an_unload_db structure
[database tools API] 837

template_name const char *an_unload_db structure
[database tools API] 837

temporary tables 968
creating 968

this
propertySABulkCopyColumnMappingC
ollection class [SQL Anywhere .NET
API] 222

this propertySAConnectionStringBuilderBase class
[SQL Anywhere .NET API] 257, 261,
314

this propertySAErrorCollection class [SQL
Anywhere .NET API] 276

this propertySAParameterCollection class [SQL
Anywhere .NET API] 300

threads
Java in the database 372
multiple SQLCAs 439
multiple thread management in embedded SQL

437
threads a_sql_uint32a_remote_sql structure

[database tools API] 785
three-tier computing

about 725
architecture 725
Distributed Transaction Coordinator 727
distributed transactions 726
EAServer 727
Microsoft Transaction Server 727
resource dispensers 727
resource managers 727

Time structure
time values in .NET Data Provider 184

timeout callback 481
Timeout propertySATcpOptionsBuilder class [SQL

Anywhere .NET API] 315
times

obtaining with .NET Data Provider 184

TimeSpan
SAP Sybase IQ .NET Data Provider 184

TIMESTAMP data type
Open client conversion 619

totals a_table_info *a_db_info structure [database
tools API] 770

TPF 11–13
tracing

.NET support 196
trans_upload a_bit_fielda_sync_db structure

[database tools API] 804
transaction isolation level 390
transaction management 954
transaction processing

using the SAP Sybase IQ .NET Data Provider
186

Transaction propertySACommand class [SQL
Anywhere .NET API] 238

transaction_logs char *a_remote_sql structure
[database tools API] 785

transactions
ADO 326
application development 161
autocommit mode 161
controlling autocommit behavior 161
cursors 163
distributed 725
isolation level 163
managing 955
OLE DB 326
remote data access 954
using distributed 728

TransactionScope class
using 186

triggers a_bit_fielda_remote_sql structure
[database tools API] 785

troubleshooting
cursor positioning 138
Java in the database methods 372
remote data access 957

truncate_interrupted chara_truncate_log structure
[database tools API] 822

truncate_log a_bit_fielda_backup_db structure
[database tools API] 755

truncate_remote_output_file
a_bit_fielda_remote_sql structure
[database tools API] 785

truncation
FETCH statement 434

Index

Programming 1049

indicator variables 434
on FETCH 433

TSQL_HEX_CONSTANT option
Open Client 6

TSQL_VARIABLES option
Open Client 6

tutorials
Create a web server and access it from a web

client 697
developing a simple .NET database application

203
using JAX-WS to access a SOAP/DISH web

service 715
using SAP Sybase IQ to access a SOAP service

701
using the .NET Data Provider Simple code

sample 200
using the .NET Data Provider Table Viewer

code sample 201
using Visual C# to access a SOAP/DISH web

service 709
two-phase commit

and Open Client 623
managing distributed transactions 727
three-tier computing 726

type a_license_typea_dblic_info structure [database
tools API] 773

type a_sqlany_data_typea_sqlany_column_info
structure [SQL Anywhere C API] 531

type a_sqlany_data_typea_sqlany_data_info
structure [SQL Anywhere C API] 532

type a_sqlany_data_typea_sqlany_data_value
structure [SQL Anywhere C API] 533

type chara_validate_db structure [database tools
API] 824

TYPE clause
example 675
specifying 664

U
UDF 13
UNBOUNDED FOLLOWING 863, 864
UNBOUNDED PRECEDING 863
UNBOUNDED PREDEDING 864
unbounded window, using 868
unchained mode

controlling 161
implementation 162
transactions 161

Unconditional
propertySAConnectionStringBuilder
class [SQL Anywhere .NET API] 258

unique
constraint 968

unique cursors
about 142

Unit() enumeration [database tools API] 749
unload_interrupted charan_unload_db structure

[database tools API] 837
unload_type charan_unload_db structure [database

tools API] 838
Unload() enumeration [database tools API] 749
unmanaged code

dbdata.dll 195
unordered a_bit_fieldan_unload_db structure

[database tools API] 838
UNSIGNED BIGINT data type

embedded SQL 427
unused a_bit_fielda_remote_sql structure [database

tools API] 786
UPDATE statement

JDBC 393
positioned 140

UpdateBatch ADO method
ADO programming 326
updating data 326

UpdateBatchSize propertySADataAdapter class
[SQL Anywhere .NET API] 268

UpdateCommand propertySADataAdapter class
[SQL Anywhere .NET API] 269

UpdatedRowSource propertySACommand class
[SQL Anywhere .NET API] 238

updates
cursor 325

upgrade database wizard
installing jConnect metadata support 382

upgrade utility (dbupgrad)
installing jConnect metadata support 382

upld_fail_len a_sql_uint32a_sync_db structure
[database tools API] 804

upload_defs a_syncpub *a_sync_db structure
[database tools API] 804

upload_only a_bit_fielda_sync_db structure
[database tools API] 805

URL clause
specifying 663

URLs
database 383

Index

1050 SAP Sybase IQ

interpreting 654
jConnect 383
session management 648
SQL Anywhere16 JDBC driver 381
supplying variables 675

usage_rtn USAGE_CALLBACKa_sync_db
structure [database tools API] 805

use_fixed_cache a_bit_fielda_sync_db structure
[database tools API] 805

use_hex_offsets a_bit_fielda_remote_sql structure
[database tools API] 786

use_hex_offsets a_bit_fielda_sync_db structure
[database tools API] 805

use_hex_offsets a_bit_fielda_translate_log
structure [database tools API] 820

use_internal_reload a_bit_fieldan_unload_db
structure [database tools API] 838

use_internal_unload a_bit_fieldan_unload_db
structure [database tools API] 838

use_relative_offsets a_bit_fielda_remote_sql
structure [database tools API] 786

use_relative_offsets a_bit_fielda_sync_db structure
[database tools API] 805

use_relative_offsets a_bit_fielda_translate_log
structure [database tools API] 820

used_dialog_allocation a_bit_fielda_sync_db
structure [database tools API] 805

user_name char *a_sync_db structure [database
tools API] 806

User-Agent
accessing HTTP headers 641

UserDefinedTypes
fieldSAMetaDataCollectionNames class
[SQL Anywhere .NET API] 288

UserID propertySAConnectionStringBuilder class
[SQL Anywhere .NET API] 258

userlist p_namea_translate_log structure [database
tools API] 820

UserList() enumeration [database tools API] 749
userlisttype chara_translate_log structure [database

tools API] 820
username char *a_dblic_info structure [database

tools API] 773
Users fieldSAMetaDataCollectionNames class

[SQL Anywhere .NET API] 289
using unbounded windows 868
utilities

return codes 738
SQL preprocessor (iqsqlpp) syntax 411

V
v4 API

_close_extfn method 128
_fetch_block_extfn method 127
_fetch_into_extfn method 126
_open_extfn method 126
_rewind_extfn method 128
alloc method 109
close_result_set method 110
fetch_block method 121
fetch_into method 119
get_option method 108
open_result_set method 110
rewind method 123
set_cannot_be_distributed method 112

valid_data a_bit_fielda_sysinfo structure [database
tools API] 810

Validation() enumeration [database tools API] 750
value a_sqlany_data_valuea_sqlany_bind_param

structure [SQL Anywhere C API] 528
Value fieldSADefault class [SQL Anywhere .NET

API] 273
Value propertySAParameter class [SQL

Anywhere .NET API] 295
value-based window frames 867

ascending and descending order 868
ORDER BY clause 868

value-sensitive cursors
about 151
delete example 145
introduction 144
update example 146

VAR_POP function 882
VAR_SAMP function 882
VARCHAR data type

embedded SQL 427
variables

accessing in HTTP web services 639
in SOAP web services 643
supplying to HTTP web services 675

variance functions 881
verbose a_bit_fielda_remote_sql structure

[database tools API] 786
verbose a_bit_fielda_sync_db structure [database

tools API] 806
verbose chara_create_db structure [database tools

API] 765
verbose charan_unload_db structure [database tools

API] 838

Index

Programming 1051

verbose_download a_bit_fielda_sync_db structure
[database tools API] 806

verbose_download_data a_bit_fielda_sync_db
structure [database tools API] 806

verbose_hook a_bit_fielda_sync_db structure
[database tools API] 806

verbose_minimum a_bit_fielda_sync_db structure
[database tools API] 806

verbose_msgid a_bit_fielda_sync_db structure
[database tools API] 807

verbose_option_info a_bit_fielda_sync_db
structure [database tools API] 807

verbose_protocol a_bit_fielda_sync_db structure
[database tools API] 807

verbose_row_cnts a_bit_fielda_sync_db structure
[database tools API] 807

verbose_row_data a_bit_fielda_sync_db structure
[database tools API] 807

verbose_server a_bit_fielda_sync_db structure
[database tools API] 808

verbose_upload a_bit_fielda_sync_db structure
[database tools API] 808

verbose_upload_data a_bit_fielda_sync_db
structure [database tools API] 808

Verbosity() enumeration [database tools API] 750
VerifyServerName propertySATcpOptionsBuilder

class [SQL Anywhere .NET API] 315
version unsigned shorta_backup_db structure

[database tools API] 755
version unsigned shorta_change_log structure

[database tools API] 759
version unsigned shorta_create_db structure

[database tools API] 765
version unsigned shorta_db_info structure [database

tools API] 770
version unsigned shorta_db_version_info structure

[database tools API] 771
version unsigned shorta_dblic_info structure

[database tools API] 773
version unsigned shorta_log_file_info structure

[database tools API] 775
version unsigned shorta_remote_sql structure

[database tools API] 786
version unsigned shorta_sync_db structure

[database tools API] 808
version unsigned shorta_translate_log structure

[database tools API] 820
version unsigned shorta_truncate_log structure

[database tools API] 822

version unsigned shorta_validate_db structure
[database tools API] 824

version unsigned shortan_erase_db structure
[database tools API] 825

version unsigned shortan_unload_db structure
[database tools API] 839

version unsigned shortan_upgrade_db structure
[database tools API] 841

Version() enumeration [database tools API] 750
ViewColumns fieldSAMetaDataCollectionNames

class [SQL Anywhere .NET API] 289
Views fieldSAMetaDataCollectionNames class

[SQL Anywhere .NET API] 289
visible changes

cursors 144
Visual Basic

support in .NET Data Provider 165
tutorial 203

Visual C#
tutorial 203

Visual C++
embedded SQL support 415

VM
Java VM 370
shutdown hooks 374
starting Java 374
stopping Java 374

W
wait_after_end a_bit_fielda_backup_db structure

[database tools API] 755
wait_before_start a_bit_fielda_backup_db structure

[database tools API] 756
warningrtn MSG_CALLBACKa_remote_sql

structure [database tools API] 787
warningrtn MSG_CALLBACKa_sync_db structure

[database tools API] 808
web clients

about 658
accessing result sets 677
function and procedure requirements 662
functions and procedures 662
managing HTTP request headers 666
managing SOAP headers 668
managing SOAP namespace 673
quick start 658
retrieving result sets 679
specifying ports 666
specifying request types 664

Index

1052 SAP Sybase IQ

SQL statements 674
substitution parameters 692
supplying variables 675
URL clause 663

web pages
customizing 638
running PHP scripts in 554

web servers
about 625
application development 638
configuring protocols 627
enabling protocols 626
PHP API 553
quick start 625
starting multiple 628

web services
about 625
accessing 658
accessing HTTP variables and headers 639
accessing result sets 677
accessing SOAP headers 643
alphabetical list of system procedures 653
altering 631
array types 687
character sets 652
client log file, about 694
commenting 634
configuring protocols 627
connection properties 654
creating 631
cross site scripting 653
data types 680
developing 638
dropping 634
enabling protocols 626
errors 695
host variables 640
HTTP_HEADER example 640
HTTP_VARIABLE example 640
interpreting URLs 654
list of web services-related system procedures

653
logging 694
maintaining 631
managing 629
managing sessions 646
MIME types tutorial 697
NEXT_HTTP_HEADER example 640
NEXT_HTTP_VARIABLE example 640

options 654
pooling 637
references 695
retrieving result sets 679
root 635
SOAP data types 686
SOAP/DISH tutorial 701
SQL statements 636
structure types 687
types 629

WebClientLogFile property
server option 694

WebClientLogging property
server option 694

wide fetches
about 139, 456
ESQL 456

wide inserts
ESQL 456
JDBC 398

wide puts
ESQL 456

WIDTH_BUCKET function 899
window

frame clause 862
operator 859
order clause 861, 862
ordering 860, 861

window frame unit 862, 866, 867
range 867
rows 866

window frames 860, 862
range based 867, 868
row based 865

window functions
aggregate 843, 860
distribution 860
framing 862
ordering 861
OVER clause 860
partitioning 861
ranking 860
statistical 860
window function type 859
window name or specification 859
window partition 859

window partitioning 860, 861
clause 861
GROUP BY operator 861

Index

Programming 1053

window sizes
RANGE 860
ROWS 860

windowing
aggregate functions 860, 880
extensions 859
functions 860
partitions 859

Windows
OLE DB support 319

Windows Mobile
OLE DB support 319

WITH HOLD clause
cursors 138

work tables
cursor performance 153

WRITE_CLIENT_FILE function
ESQL client API callback function 480

wsimport
JAX-WS and web services 719

X
XML services

about 629

commenting 634
creating 631
dropping 634
quick start 660
quick start for web clients 658
quick start for web servers 625

XMLCONCAT function
example 639

XMLELEMENT function
example 639

XSS
web services 653

Z

zap_current_offset char *a_change_log structure
[database tools API] 759

zap_starting_offset char *a_change_log structure
[database tools API] 759

Index

1054 SAP Sybase IQ

	Programming
	Contents
	Partner Certifications
	Platform Certifications
	SAP Sybase IQ as a Data Server for Client Applications
	Open Client Architecture
	DB-Library and Client Library
	Network Services

	Open Client and jConnect Connections
	login_procedure option
	Servers with Multiple Databases

	Using In-Database Analytics in Applications
	Scalar C or C++ UDF
	Aggregate C or C++ UDF
	Java UDFs
	Java Scalar UDF
	Java Table UDF

	Table UDFs
	TPFs
	Hadoop Integration
	Integrating SAP Sybase IQ with a Hadoop Distributed File System
	Reading a File in a Hadoop Distributed File System as an In-Memory Table
	Starting an External Hadoop MapReduce Job and Using Results in a Query

	API Reference for a_v4_extfn
	Blob (a_v4_extfn_blob)
	blob_length
	open_istream
	close_istream
	release

	Blob Input Stream (a_v4_extfn_blob_istream)
	get

	Column Data (a_v4_extfn_column_data)
	Column List (a_v4_extfn_column_list)
	Column Order (a_v4_extfn_order_el)
	Column Subset (a_v4_extfn_col_subset_of_input)
	Describe API
	*describe_column_get
	Attributes for *describe_column_get
	EXTFNAPIV4_DESCRIBE_COL_NAME (Get)
	EXTFNAPIV4_DESCRIBE_COL_TYPE (Get)
	EXTFNAPIV4_DESCRIBE_COL_WIDTH (Get)
	EXTFNAPIV4_DESCRIBE_COL_SCALE (Get)
	EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL (Get)
	EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES (Get)
	EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT (Get)
	EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER (Get)
	EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE (Get)
	EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT (Get)

	*describe_column_set
	Attributes for *describe_column_set
	EXTFNAPIV4_DESCRIBE_COL_NAME (Set)
	EXTFNAPIV4_DESCRIBE_COL_TYPE (Set)
	EXTFNAPIV4_DESCRIBE_COL_WIDTH (Set)
	EXTFNAPIV4_DESCRIBE_COL_SCALE (Set)
	EXTFNAPIV4_DESCRIBE_COL_CAN_BE_NULL (Set)
	EXTFNAPIV4_DESCRIBE_COL_DISTINCT_VALUES (Set)
	EXTFNAPIV4_DESCRIBE_COL_IS_UNIQUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_IS_CONSTANT (Set)
	EXTFNAPIV4_DESCRIBE_COL_CONSTANT_VALUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_IS_USED_BY_CONSUMER (Set)
	EXTFNAPIV4_DESCRIBE_COL_MINIMUM_VALUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_MAXIMUM_VALUE (Set)
	EXTFNAPIV4_DESCRIBE_COL_VALUES_SUBSET_OF_INPUT (Set)

	*describe_parameter_get
	Attributes for *describe_parameter_get
	EXTFNAPIV4_DESCRIBE_PARM_NAME Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_WIDTH Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_SCALE Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL Attribute (Get)
	Examples: EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL (Get)

	EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND Attribute (Get)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS Attribute (Get)

	*describe_parameter_set
	Attributes for *describe_parameter_set
	EXTFNAPIV4_DESCRIBE_PARM_NAME Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TYPE Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_WIDTH Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_SCALE Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_CAN_BE_NULL Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_DISTINCT_VALUES Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_IS_CONSTANT Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_CONSTANT_VALUE Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_COLUMNS Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_NUM_ROWS Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_ORDERBY Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_PARTITIONBY (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_REQUEST_REWIND Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_HAS_REWIND Attribute (Set)
	EXTFNAPIV4_DESCRIBE_PARM_TABLE_UNUSED_COLUMNS Attribute (Set)

	*describe_udf_get
	Attributes for *describe_udf_get
	EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS Attribute (Get)

	*describe_udf_set
	Attributes for *describe_udf_set
	EXTFNAPIV4_DESCRIBE_UDF_NUM_PARMS Attribute (Set)

	Describe Column Type (a_v4_extfn_describe_col_type)
	Describe Parameter Type (a_v4_extfn_describe_parm_type)
	Describe Return (a_v4_extfn_describe_return)
	Describe UDF Type (a_v4_extfn_describe_udf_type)
	Execution State (a_v4_extfn_state)
	External Function (a_v4_extfn_proc)
	_start_extfn
	_finish_extfn
	_evaluate_extfn
	_describe_extfn
	_enter_state_extfn
	_leave_state_extfn

	External Procedure Context (a_v4_extfn_proc_context)
	get_value
	get_value_is_constant
	set_value
	get_is_cancelled
	set_error
	log_message
	convert_value
	get_option
	alloc
	free
	open_result_set
	close_result_set
	get_blob
	set_cannot_be_distributed

	License Information (a_v4_extfn_license_info)
	Optimizer Estimate (a_v4_extfn_estimate)
	Order By List (a_v4_extfn_orderby_list)
	Partition By Column Number (a_v4_extfn_partitionby_col_num)
	Row (a_v4_extfn_row)
	Row Block (a_v4_extfn_row_block)
	Table (a_v4_extfn_table)
	Table Context (a_v4_extfn_table_context)
	fetch_into
	fetch_block
	rewind
	get_blob

	Table Functions (a_v4_extfn_table_func)
	_open_extfn
	_fetch_into_extfn
	_fetch_block_extfn
	_rewind_extfn
	_close_extfn

	Using SQL in Applications
	SQL statement execution in applications
	Prepared statements
	Prepared Statements Overview

	Cursor usage
	Cursors
	Benefits of using cursors

	Cursor principles
	Cursor positioning
	Cursor behavior when opening cursors
	Row fetching through a cursor
	Multiple-row fetching
	Scrollable cursors
	Cursors used to modify rows
	Updatable statements
	Cursor operations that are canceled

	Cursor types
	Availability of cursors
	Cursor properties
	Bookmarks and cursors
	Block cursors

	SAP Sybase IQ Catalog Store Cursors
	Catalog Store Cursor Sensitivity
	Cursor sensitivity example: A deleted row
	Cursor sensitivity example: An updated row

	Catalog Store Insensitive Cursors
	Catalog Store Sensitive Cursors
	Catalog Store Asensitive Cursors
	Catalog Store Value-Sensitive Cursors
	Catalog Store Cursor Sensitivity and Performance
	Prefetches
	Lost updates

	Catalog Store Cursor Sensitivity and Isolation Levels
	Requests for SAP Sybase IQ Catalog Store Cursors
	ADO.NET
	ADO/OLE DB and ODBC
	JDBC
	Embedded SQL
	Open Client

	Result set descriptors
	Transactions in applications
	Autocommit and manual commit mode
	How to control autocommit behavior
	Autocommit implementation details

	Isolation level settings
	Cursors and transactions

	.NET Application Programming
	SAP Sybase IQ .NET Data Provider
	SAP Sybase IQ .NET Support
	SAP Sybase IQ .NET Data Provider Features
	.NET Sample Projects
	Using the .NET Data Provider in a Visual Studio Project
	.NET Database Connection Examples
	Connection Pooling
	Connection State

	Data Access and Manipulation
	SACommand: Fetch Data Using ExecuteReader and ExecuteScalar
	SACommand: Fetch Result Set Schema Using GetSchemaTable
	SACommand: Insert, Delete, and Update Rows Using ExecuteNonQuery
	SACommand: Retrieve Primary Key Values for Newly Inserted Rows
	SADataAdapter: Overview
	SADataAdapter: Fetch Data into a DataTable Using Fill
	SADataAdapter: Format a DataTable Using FillSchema
	SADataAdapter: Insert Rows using Update
	SADataAdapter: Delete Rows Using Update
	SADataAdapter: Update Rows using Update
	SADataAdapter: Retrieve Primary Key Values for Newly Inserted Rows
	BLOBs
	Time Values

	Stored Procedures
	Transaction Processing
	Error handling
	Entity Framework Support
	SAP Sybase IQ .NET Data Provider Deployment
	SAP Sybase IQ .NET Data Provider System Requirements
	SAP Sybase IQ .NET Data Provider Required Files
	The SAP Sybase IQ .NET Data Provider dbdata DLL
	SAP Sybase IQ .NET Data Provider DLL Registration

	.NET Tracing Support
	Configuring a Windows Application for Tracing

	.NET Data Provider Tutorials
	Tutorial: Using the Simple Code Sample
	Tutorial: Using the Table Viewer Code Sample
	Tutorial: Developing a Simple .NET Database Application with Visual Studio
	Lesson 1: Creating a Table Viewer
	Lesson 2: Adding a Synchronizing Data Control

	.NET API Reference
	SAInfoMessageEventHandler(object, SAInfoMessageEventArgs) delegate
	SARowsCopiedEventHandler(object, SARowsCopiedEventArgs) delegate
	SARowUpdatedEventHandler(object, SARowUpdatedEventArgs) delegate
	SARowUpdatingEventHandler(object, SARowUpdatingEventArgs) delegate
	SABulkCopyOptions() enumeration
	SAIsolationLevel() enumeration
	SABulkCopy class
	Close() method
	BatchSize property
	BulkCopyTimeout property
	ColumnMappings property
	DestinationTableName property
	NotifyAfter property
	SARowsCopied() event

	SABulkCopyColumnMapping class
	DestinationColumn property
	DestinationOrdinal property
	SourceColumn property
	SourceOrdinal property

	SABulkCopyColumnMappingCollection class
	DestinationOrdinalComparer class
	DestinationOrdinalComparer() constructor
	Compare(object, object) method

	Contains(SABulkCopyColumnMapping) method
	CopyTo(SABulkCopyColumnMapping[], int) method
	IndexOf(SABulkCopyColumnMapping) method
	Remove(SABulkCopyColumnMapping) method
	RemoveAt(int) method
	this property

	DestinationOrdinalComparer class
	DestinationOrdinalComparer() constructor
	Compare(object, object) method

	SACommLinksOptionsBuilder class
	GetUseLongNameAsKeyword() method
	SetUseLongNameAsKeyword(bool) method
	ToString() method
	All property
	ConnectionString property
	SharedMemory property
	TcpOptionsBuilder property
	TcpOptionsString property

	SACommand class
	Cancel() method
	CreateDbParameter() method
	CreateParameter() method
	Dispose(bool) method
	EndExecuteNonQuery(IAsyncResult) method
	EndExecuteReader(IAsyncResult) method
	ExecuteDbDataReader(CommandBehavior) method
	ExecuteNonQuery() method
	ExecuteScalar() method
	Prepare() method
	ResetCommandTimeout() method
	CommandText property
	CommandTimeout property
	CommandType property
	Connection property
	DbConnection property
	DbParameterCollection property
	DbTransaction property
	DesignTimeVisible property
	Parameters property
	Transaction property
	UpdatedRowSource property

	SACommandBuilder class
	ApplyParameterInfo(DbParameter , DataRow, StatementType, bool) method
	DeriveParameters(SACommand) method
	GetParameterPlaceholder(int) method
	GetSchemaTable(DbCommand) method
	InitializeCommand(DbCommand) method
	QuoteIdentifier(string) method
	SetRowUpdatingHandler(DbDataAdapter) method
	UnquoteIdentifier(string) method
	DataAdapter property

	SAConnectionStringBuilder class
	ContainsKey(string) method
	GetUseLongNameAsKeyword() method
	Remove(string) method
	SetUseLongNameAsKeyword(bool) method
	ShouldSerialize(string) method
	TryGetValue(string, out object) method
	AppInfo property
	AutoStart property
	AutoStop property
	Charset property
	CommBufferSize property
	CommLinks property
	Compress property
	CompressionThreshold property
	ConnectionLifetime property
	ConnectionName property
	ConnectionPool property
	ConnectionReset property
	ConnectionTimeout property
	DatabaseFile property
	DatabaseKey property
	DatabaseName property
	DatabaseSwitches property
	DataSourceName property
	DisableMultiRowFetch property
	Elevate property
	EncryptedPassword property
	Encryption property
	Enlist property
	FileDataSourceName property
	ForceStart property
	Host property
	IdleTimeout property
	InitString property
	Integrated property
	Kerberos property
	Keys property
	Language property
	LazyClose property
	LivenessTimeout property
	LogFile property
	MaxPoolSize property
	MinPoolSize property
	NewPassword property
	NodeType property
	Password property
	PersistSecurityInfo property
	Pooling property
	PrefetchBuffer property
	PrefetchRows property
	RetryConnectionTimeout property
	ServerName property
	StartLine property
	this property
	Unconditional property
	UserID property

	SAConnectionStringBuilderBase class
	ContainsKey(string) method
	GetUseLongNameAsKeyword() method
	Remove(string) method
	SetUseLongNameAsKeyword(bool) method
	ShouldSerialize(string) method
	TryGetValue(string, out object) method
	Keys property
	this property

	SADataAdapter class
	ClearBatch() method
	CreateRowUpdatedEvent(DataRow, IDbCommand, StatementType, DataTableMapping) method
	CreateRowUpdatingEvent(DataRow, IDbCommand, StatementType, DataTableMapping) method
	Dispose(bool) method
	GetFillParameters() method
	InitializeBatching() method
	OnRowUpdated(RowUpdatedEventArgs) method
	OnRowUpdating(RowUpdatingEventArgs) method
	TerminateBatching() method
	Update(DataRow[], DataTableMapping) method
	DeleteCommand property
	InsertCommand property
	SelectCommand property
	TableMappings property
	UpdateBatchSize property
	UpdateCommand property
	RowUpdated() event
	RowUpdating() event

	DREnumerator class
	DREnumerator(SADataReader) constructor
	MoveNext() method
	Reset() method
	Current property

	SADataSourceEnumerator class
	GetDataSources() method
	Instance property

	SADefault class
	Value field

	SAError class
	ToString() method
	Message property
	NativeError property
	Source property
	SqlState property

	SAErrorCollection class
	CopyTo(Array, int) method
	GetEnumerator() method
	Count property
	this property

	SAException class
	GetObjectData(SerializationInfo, StreamingContext) method
	Errors property
	Message property
	NativeError property
	Source property

	SAFactory class
	CreateCommand() method
	CreateCommandBuilder() method
	CreateConnection() method
	CreateConnectionStringBuilder() method
	CreateDataAdapter() method
	CreateDataSourceEnumerator() method
	CreateParameter() method
	CreatePermission(PermissionState) method
	CanCreateDataSourceEnumerator property
	Instance field

	SAInfoMessageEventArgs class
	ToString() method
	Errors property
	Message property
	MessageType property
	NativeError property
	Source property

	SAMetaDataCollectionNames class
	Columns field
	DataSourceInformation field
	DataTypes field
	ForeignKeys field
	IndexColumns field
	Indexes field
	MetaDataCollections field
	ProcedureParameters field
	Procedures field
	ReservedWords field
	Restrictions field
	Tables field
	UserDefinedTypes field
	Users field
	ViewColumns field
	Views field

	SAParameter class
	ResetDbType() method
	ToString() method
	DbType property
	Direction property
	IsNullable property
	Offset property
	ParameterName property
	Precision property
	SADbType property
	Scale property
	Size property
	SourceColumn property
	SourceColumnNullMapping property
	SourceVersion property
	Value property

	SAParameterCollection class
	SADBParametersEditor class
	SADBParametersEditor(Type) constructor
	CanSelectMultipleInstances() method
	CreateInstance(Type) method
	EditValue(ITypeDescriptorContext, IServiceProvider, object) method
	GetEditStyle(ITypeDescriptorContext) method

	AddWithValue(string, object) method
	Clear() method
	CopyTo(Array, int) method
	GetEnumerator() method
	Insert(int, object) method
	Remove(object) method
	Count property
	IsFixedSize property
	IsReadOnly property
	IsSynchronized property
	SyncRoot property
	this property

	SADBParametersEditor class
	SADBParametersEditor(Type) constructor
	CanSelectMultipleInstances() method
	CreateInstance(Type) method
	EditValue(ITypeDescriptorContext, IServiceProvider, object) method
	GetEditStyle(ITypeDescriptorContext) method

	SAPermission class
	SAPermission(PermissionState) constructor
	CreateInstance() method

	SAPermissionAttribute class
	SAPermissionAttribute(SecurityAction) constructor
	CreatePermission() method

	SARowUpdatedEventArgs class
	SARowUpdatedEventArgs(DataRow, IDbCommand, StatementType, DataTableMapping) constructor
	Command property
	RecordsAffected property

	SARowUpdatingEventArgs class
	SARowUpdatingEventArgs(DataRow, IDbCommand, StatementType, DataTableMapping) constructor
	Command property

	SARowsCopiedEventArgs class
	SARowsCopiedEventArgs(long) constructor
	Abort property
	RowsCopied property

	SATcpOptionsBuilder class
	ContainsKey(string) method
	GetUseLongNameAsKeyword() method
	Remove(string) method
	SetUseLongNameAsKeyword(bool) method
	ShouldSerialize(string) method
	ToString() method
	TryGetValue(string, out object) method
	Broadcast property
	BroadcastListener property
	ClientPort property
	DoBroadcast property
	Host property
	IPV6 property
	Keys property
	LDAP property
	LocalOnly property
	MyIP property
	ReceiveBufferSize property
	SendBufferSize property
	ServerPort property
	TDS property
	this property
	Timeout property
	VerifyServerName property

	SATransaction class
	Commit() method
	Save(string) method
	Connection property
	DbConnection property
	IsolationLevel property
	SAIsolationLevel property

	OLE DB and ADO Development
	OLE DB
	Connecting Using OLE DB
	Supported Platforms
	Distributed Transactions in OLE DB

	ADO Programming with SAP Sybase IQ
	How to Connect to a Database Using the Connection Object
	How to Execute Statements Using the Command Object
	How to Obtain Result Sets Using the Recordset Object
	The Recordset Object
	Row Updates Through a Cursor Using the Recordset Object
	ADO Transactions

	OLE DB Connection Parameters
	OLE DB Connection Pooling
	Microsoft Linked Servers
	Setting up a Linked Server Using an Interactive Application
	Setting up a Linked Server Using a Script

	Supported OLE DB Interfaces
	OLE DB Provider Registration

	ODBC CLI
	ODBC conformance
	ODBC application development
	ODBC Applications on Windows
	ODBC applications on Unix
	The unixODBC driver manager
	UTF-32 ODBC driver managers for Unix

	ODBC Samples
	Building the Sample ODBC Program for Windows
	Building the Sample ODBC Program for Unix
	ODBC Sample Programs

	ODBC handles
	How to allocate ODBC handles
	ODBC example

	ODBC Connection Functions
	Establishing an ODBC Connection

	Server options changed by ODBC
	SQLSetConnectAttr extended connection attributes
	64-bit ODBC considerations
	Data alignment requirements
	Result sets in ODBC applications
	ODBC transaction isolation levels
	ODBC cursor characteristics
	Data retrieval
	Row updates and deletes through a cursor
	Bookmarks

	Stored procedure considerations
	ODBC escape syntax
	Error handling in ODBC

	Java in the Database
	Java in the Database FAQ
	What Are the Key Features of Java in the Database?
	How Can I Use My Own Java Classes in Databases?
	How Does Java Get Executed in a Database?

	Java Error Handling
	How to Install Java Classes into a Database
	Class File Creation

	Special Features of Java Classes in the Database
	How to Call the Main Method
	Threads in Java Applications
	No Such Method Exception
	How to Return Result Sets from Java Methods
	Values Returned from Java Via Stored Procedures
	Security Management for Java

	How to Start and Stop the Java VM
	Shutdown Hooks in the Java VM

	JDBC CLI
	JDBC Applications
	JDBC Drivers
	JDBC Program Structure
	Differences Between Client- and Server-Side JDBC Connections
	SQL Anywhere JDBC Drivers
	How to Load the SQL Anywhere JDBC 4.0 Driver
	SQL Anywhere 16 JDBC Driver Connection Strings

	The jConnect JDBC Driver
	Installing jConnect System Objects into a Database
	How to Load the jConnect Driver
	jConnect Driver Connection Strings
	How to Specify a Database with a jConnect Connection String
	Database Options Set for jConnect Connections

	Connections from a JDBC Client Application
	How the Connection Example Works
	Running the Connection Example

	How to Establish a Connection from a Server-Side JDBC Class
	Server-Side Connection Example Code
	How the Server-Side Connection Example Differs
	Running the Server-Side Connection Example

	Notes on JDBC Connections
	Data Access Using JDBC
	Preparing for the JDBC Examples
	Inserts, Updates, and Deletes Using JDBC
	Using Static INSERT and DELETE Statements from JDBC
	How to Use Prepared Statements for More Efficient Access
	Using Prepared INSERT and DELETE Statements from JDBC
	JDBC Batch Methods
	How to Return Result Sets from Java
	Returning Result Sets from JDBC
	JDBC Notes

	JDBC Callbacks
	JDBC Escape Syntax
	JDBC 4.0 API Support

	Embedded SQL
	Development Process Overview
	The SQL Preprocessor
	Supported Compilers
	Embedded SQL Header Files
	Import Libraries
	Sample Embedded SQL Program
	Structure of Embedded SQL Programs
	Loading DBLIB Dynamically Under Windows
	Sample Embedded SQL Programs
	Static Cursor Sample
	Running the Static Cursor Sample Program
	Dynamic Cursor Sample
	Running the Dynamic Cursor Sample Program

	Embedded SQL Data Types
	Host Variables in Embedded SQL
	Host Variable Declaration
	C Host Variable Types
	Host Variable Usage
	Indicator Variables
	Indicator Variables: The SQL NULL Value
	Indicator Variables: Truncated Values
	Indicator Variables: Conversion Errors
	Summary of Indicator Variable Values

	The SQL Communication Area (SQLCA)
	SQLCA Fields
	SQLCA Management for Multithreaded or Reentrant Code
	Multiple SQLCAs

	Static and Dynamic SQL
	Static SQL Statements
	Dynamic SQL Statements
	Dynamic SELECT Statement

	The SQL Descriptor Area (SQLDA)
	The SQLDA Header File
	SQLDA Fields
	SQLDA Host Variable Descriptions
	SQLDA sqllen Field Values
	SQLDA sqllen Field Values After a DESCRIBE
	SQLDA sqllen Field Values when Sending Values
	SQLDA sqllen Field Values when Retrieving Data

	How to Fetch Data Using Embedded SQL
	SELECT Statements That Return at Most One Row
	Cursors in Embedded SQL
	Wide Fetches or Array Fetches

	How to Send and Retrieve Long Values Using Embedded SQL
	Retrieving LONG Data Using Static SQL
	Retrieving LONG Data Using Dynamic SQL
	Sending LONG Data Using Static SQL
	Sending LONG Data Using Dynamic SQL

	Simple Stored Procedures in Embedded SQL
	Stored Procedures with Result Sets

	Request Management with Embedded SQL
	Database Backup with Embedded SQL
	Library Function Reference
	alloc_sqlda Function
	alloc_sqlda_noind Function
	db_backup Function
	db_cancel_request Function
	db_change_char_charset Function
	db_change_nchar_charset Function
	db_find_engine Function
	db_fini Function
	db_get_property Function
	db_init Function
	db_is_working Function
	db_locate_servers Function
	db_locate_servers_ex Function
	db_register_a_callback Function
	db_start_database Function
	db_start_engine Function
	db_stop_database Function
	db_stop_engine Function
	db_string_connect Function
	db_string_disconnect Function
	db_string_ping_server Function
	db_time_change Function
	fill_s_sqlda Function
	fill_sqlda Function
	fill_sqlda_ex Function
	free_filled_sqlda Function
	free_sqlda Function
	free_sqlda_noind Function
	sql_needs_quotes Function
	sqlda_storage Function
	sqlda_string_length Function
	sqlerror_message Function

	Embedded SQL Statement Summary

	SAP Sybase IQ Database API for C/C++
	sqlany_affected_rows(a_sqlany_stmt *) method
	sqlany_bind_param(a_sqlany_stmt *, sacapi_u32 , a_sqlany_bind_param *) method
	sqlany_cancel(a_sqlany_connection *) method
	sqlany_clear_error(a_sqlany_connection *) method
	sqlany_client_version(char *, size_t) method
	sqlany_client_version_ex(a_sqlany_interface_context *, char *, size_t) method
	sqlany_commit(a_sqlany_connection *) method
	sqlany_connect(a_sqlany_connection *, const char *) method
	sqlany_describe_bind_param(a_sqlany_stmt *, sacapi_u32 , a_sqlany_bind_param *) method
	sqlany_disconnect(a_sqlany_connection *) method
	sqlany_error(a_sqlany_connection *, char *, size_t) method
	sqlany_execute(a_sqlany_stmt *) method
	sqlany_execute_direct(a_sqlany_connection *, const char *) method
	sqlany_execute_immediate(a_sqlany_connection *, const char *) method
	sqlany_fetch_absolute(a_sqlany_stmt *, sacapi_i32) method
	sqlany_fetch_next(a_sqlany_stmt *) method
	sqlany_finalize_interface(SQLAnywhereInterface *) method
	sqlany_fini() method
	sqlany_fini_ex(a_sqlany_interface_context *) method
	sqlany_free_connection(a_sqlany_connection *) method
	sqlany_free_stmt(a_sqlany_stmt *) method
	sqlany_get_bind_param_info(a_sqlany_stmt *, sacapi_u32 , a_sqlany_bind_param_info *) method
	sqlany_get_column(a_sqlany_stmt *, sacapi_u32 , a_sqlany_data_value *) method
	sqlany_get_column_info(a_sqlany_stmt *, sacapi_u32 , a_sqlany_column_info *) method
	sqlany_get_data(a_sqlany_stmt *, sacapi_u32 , size_t, void *, size_t) method
	sqlany_get_data_info(a_sqlany_stmt *, sacapi_u32 , a_sqlany_data_info *) method
	sqlany_get_next_result(a_sqlany_stmt *) method
	sqlany_init(const char *, sacapi_u32 , sacapi_u32 *) method
	sqlany_init_ex(const char *, sacapi_u32 , sacapi_u32 *) method
	sqlany_initialize_interface(SQLAnywhereInterface *, const char *) method
	sqlany_make_connection(void *) method
	sqlany_make_connection_ex(a_sqlany_interface_context *, void *) method
	sqlany_new_connection(void) method
	sqlany_new_connection_ex(a_sqlany_interface_context *) method
	sqlany_num_cols(a_sqlany_stmt *) method
	sqlany_num_params(a_sqlany_stmt *) method
	sqlany_num_rows(a_sqlany_stmt *) method
	sqlany_prepare(a_sqlany_connection *, const char *) method
	sqlany_reset(a_sqlany_stmt *) method
	sqlany_rollback(a_sqlany_connection *) method
	sqlany_send_param_data(a_sqlany_stmt *, sacapi_u32 , char *, size_t) method
	sqlany_sqlstate(a_sqlany_connection *, char *, size_t) method
	a_sqlany_data_direction() enumeration
	a_sqlany_data_type() enumeration
	a_sqlany_native_type() enumeration
	SACAPI_ERROR_SIZE variable
	SQLANY_API_VERSION_1 variable
	SQLANY_API_VERSION_2 variable
	SQLAnywhereInterface structure
	dll_handle void *
	initialized int
	sqlany_affected_rows void *
	sqlany_bind_param void *
	sqlany_cancel void *
	sqlany_clear_error void *
	sqlany_client_version void *
	sqlany_client_version_ex void *
	sqlany_commit void *
	sqlany_connect void *
	sqlany_describe_bind_param void *
	sqlany_disconnect void *
	sqlany_error void *
	sqlany_execute void *
	sqlany_execute_direct void *
	sqlany_execute_immediate void *
	sqlany_fetch_absolute void *
	sqlany_fetch_next void *
	sqlany_fini void *
	sqlany_fini_ex void *
	sqlany_free_connection void *
	sqlany_free_stmt void *
	sqlany_get_bind_param_info void *
	sqlany_get_column void *
	sqlany_get_column_info void *
	sqlany_get_data void *
	sqlany_get_data_info void *
	sqlany_get_next_result void *
	sqlany_init void *
	sqlany_init_ex void *
	sqlany_make_connection void *
	sqlany_make_connection_ex void *
	sqlany_new_connection void *
	sqlany_new_connection_ex void *
	sqlany_num_cols void *
	sqlany_num_params void *
	sqlany_num_rows void *
	sqlany_prepare void *
	sqlany_reset void *
	sqlany_rollback void *
	sqlany_send_param_data void *
	sqlany_sqlstate void *

	a_sqlany_bind_param structure
	direction a_sqlany_data_direction
	name char *
	value a_sqlany_data_value

	a_sqlany_bind_param_info structure
	direction a_sqlany_data_direction
	input_value a_sqlany_data_value
	name char *
	output_value a_sqlany_data_value

	a_sqlany_column_info structure
	max_size size_t
	name char *
	native_type a_sqlany_native_type
	nullable sacapi_bool
	precision unsigned short
	scale unsigned short
	type a_sqlany_data_type

	a_sqlany_data_info structure
	data_size size_t
	is_null sacapi_bool
	type a_sqlany_data_type

	a_sqlany_data_value structure
	buffer char *
	buffer_size size_t
	is_null sacapi_bool *
	length size_t *
	type a_sqlany_data_type

	Perl DBI Support
	DBD::SQLAnywhere
	Installing DBD::SQLAnywhere on Windows
	Installing DBD::SQLAnywhere on Unix
	Perl Scripts That Use DBD::SQLAnywhere
	The DBI Module
	How to Open and Close a Database Connection Using Perl DBI
	How to Obtain Result Sets Using Perl DBI
	How to Process Multiple Result Sets Using Perl DBI
	How to Insert Rows Using Perl DBI

	Python Support
	sqlanydb
	Installing Python Support on Windows
	Installing Python Support on Unix
	Python Scripts That Use sqlanydb
	The sqlanydb Module
	How to Open and Close a Database Connection Using Python
	How to Obtain Result Sets Using Python
	How to Insert Rows Using Python
	Database Type Conversion

	PHP Support
	SAP Sybase IQ PHP Extension
	Testing the PHP Extension
	Creating and Running PHP Test Pages
	PHP Script Development
	How to Connect to a Database Using PHP
	How to Retrieve Data from a Database Using PHP
	Web Forms
	BLOBs in PHP Applications

	How to Build the SAP Sybase IQ PHP Extension on Unix
	Adding the SAP Sybase IQ PHP Extension Files to the PHP Source Tree on Unix
	How to Compile Apache and PHP
	Compiling PHP As an Apache Module
	Compiling PHP as a CGI Executable

	SAP Sybase IQ PHP API Reference
	sasql_affected_rows
	sasql_commit
	sasql_close
	sasql_connect
	sasql_data_seek
	sasql_disconnect
	sasql_error
	sasql_errorcode
	sasql_escape_string
	sasql_fetch_array
	sasql_fetch_assoc
	sasql_fetch_field
	sasql_fetch_object
	sasql_fetch_row
	sasql_field_count
	sasql_field_seek
	sasql_free_result
	sasql_get_client_info
	sasql_insert_id
	sasql_message
	sasql_multi_query
	sasql_next_result
	sasql_num_fields
	sasql_num_rows
	sasql_pconnect
	sasql_prepare
	sasql_query
	sasql_real_escape_string
	sasql_real_query
	sasql_result_all
	sasql_rollback
	sasql_set_option
	sasql_stmt_affected_rows
	sasql_stmt_bind_param
	sasql_stmt_bind_param_ex
	sasql_stmt_bind_result
	sasql_stmt_close
	sasql_stmt_data_seek
	sasql_stmt_errno
	sasql_stmt_error
	sasql_stmt_execute
	sasql_stmt_fetch
	sasql_stmt_field_count
	sasql_stmt_free_result
	sasql_stmt_insert_id
	sasql_stmt_next_result
	sasql_stmt_num_rows
	sasql_stmt_param_count
	sasql_stmt_reset
	sasql_stmt_result_metadata
	sasql_stmt_send_long_data
	sasql_stmt_store_result
	sasql_store_result
	sasql_sqlstate
	sasql_use_result

	Ruby Support
	Ruby API Support
	Configuring Rails Support in SAP Sybase IQ
	Ruby-DBI Driver

	SAP Sybase IQ Ruby API Reference
	sqlany_affected_rows
	sqlany_bind_param Function
	sqlany_clear_error Function
	sqlany_client_version Function
	sqlany_commit Function
	sqlany_connect Function
	sqlany_describe_bind_param Function
	sqlany_disconnect Function
	sqlany_error Function
	sqlany_execute Function
	sqlany_execute_direct Function
	sqlany_execute_immediate Function
	sqlany_fetch_absolute Function
	sqlany_fetch_next Function
	sqlany_fini Function
	sqlany_free_connection Function
	sqlany_free_stmt Function
	sqlany_get_bind_param_info Function
	sqlany_get_column Function
	sqlany_get_column_info Function
	sqlany_get_next_result Function
	sqlany_init Function
	sqlany_new_connection Function
	sqlany_num_cols Function
	sqlany_num_params Function
	sqlany_num_rows Function
	sqlany_prepare Function
	sqlany_rollback Function
	sqlany_sqlstate Function
	Column Types
	Native Column Types

	Sybase Open Client Support
	Open Client Architecture
	What You Need to Build Open Client Applications
	Open Client Data Type Mappings
	Range Limitations in Open Client Data Type Mapping

	SQL in Open Client Applications
	Open Client SQL Statement Execution
	Open Client Prepared Statements
	Open Client Cursor Management
	Open Client Row Modification Through a Cursor

	Open Client Result Sets

	Known Open Client Limitations of SAP Sybase IQ

	HTTP Web Services
	SAP Sybase IQ As an HTTP Web Server
	Quick Start to Using SAP Sybase IQ As an HTTP Web Server
	How to Start an HTTP Web Server
	Configuration of Network Protocol Options
	How to Start Multiple HTTP Web Servers

	What Are Web Services
	Web Service Types
	Web Service Maintenance
	How to Create or Alter a Web Service
	How to Create HTTP Web Services
	How to Create SOAP Over HTTP Services
	How to Create DISH Services

	How to Drop a Web Service
	How to Comment a Web Service
	How to Create and Customize a Root Web Service
	Web Service SQL Statements

	Connection Pooling for Web Services

	How to Develop Web Service Applications in an HTTP Web Server
	How to Customize Web Pages
	How to Access Client-Supplied HTTP Variables and Headers
	How to Access HTTP Variables Using Host Parameters
	How to Access HTTP Variables and Headers Using Web Service Functions

	How to Access Client-Supplied SOAP Request Headers
	HTTP Session Management on an HTTP Server
	How to Create an HTTP Session
	How to Use the URL to Manage a Session
	How to Use Cookies to Manage a Session

	How to Detect an Inactive HTTP Session
	How to Delete an HTTP Session or Change the Session ID
	HTTP Session Administration
	HTTP Session Error Codes

	Character Set Conversion Considerations
	Cross Site Scripting Considerations
	Web Services System Procedures
	Web Services Functions
	Web Services Connection Properties
	Web Services Options

	How to Browse the SAP Sybase IQ HTTP Web Server

	Access to Web Services Using Web Clients
	Quick Start to Using SAP Sybase IQ As a Web Client
	Quick Start to Accessing an SAP Sybase IQ HTTP Web Server
	Web Client Application Development
	Web Client Function and Procedure Requirements and Recommendations
	Web Client URL Clause
	Web Service Request Types
	Web Client Ports
	HTTP Request Header Management
	SOAP Request Header Management
	SOAP Namespace URI Requirement
	Web Client SQL Statements

	Variables Supplied to Web Services
	Variables Supplied in the URLs to Web Services
	Variables Supplied in the Body HTTP Requests
	Variables Supplied in SOAP Envelopes

	Variables Accessed from Result Sets
	Result Set Retrieval from a Web Service
	SOAP Data Types
	SOAP Structured Data Types

	Substitution Parameters Used for Clause Values

	HTTP and SOAP Request Structures
	How to Log Web Client Requests

	Web Services References
	Web Service Error Code Reference

	HTTP Web Service Examples
	Tutorial: Create a Web Server and Access It from a Web Client
	Lesson 1: Setting Up a Web Server to Receive Requests and Send Responses
	Lesson 2: Sending Requests from a Web Client and Receiving Responses

	Tutorial: Using SAP Sybase IQ to Access a SOAP/DISH Service
	Lesson 1: Setting Up a Web Server to Receive SOAP Requests and Send SOAP Responses
	Lesson 2: Setting Up a Web Client to Send SOAP Requests and Receive SOAP Responses
	Lesson 3: Sending a SOAP Request and Receiving a SOAP Response

	Tutorial: Using Visual C# to Access a SOAP/DISH Web Service
	Lesson 1: Setting Up a Web Server to Receive SOAP Requests and Send SOAP Responses
	Lesson 2: Creating a Visual C# Application to Communicate with the Web Server

	Tutorial: Using JAX-WS to Access a SOAP/DISH Web Service
	Lesson 1: Setting Up a Web Server to Receive SOAP Requests and Send SOAP Responses
	Lesson 2: Creating a Java Application to Communicate with the Web Server

	Three-Tier Computing and Distributed Transactions
	Three-Tier Computing Architecture
	Distributed Transactions in Three-Tier Computing
	The Vocabulary of Distributed Transactions
	How Application Servers Use DTC
	Distributed Transaction Architecture

	Distributed Transactions
	DTC Isolation Levels
	Recovery From Distributed Transactions

	Database Tools Interface (DBTools)
	DBTools Import Libraries
	DBTools Library Initialization and Finalization
	DBTools Function Calls
	Callback Functions
	Version Numbers and Compatibility
	Bit Fields
	A DBTools Example
	Software Component Exit Codes
	Database Tools C API Reference
	DBBackup(const a_backup_db *) method
	DBChangeLogName(const a_change_log *) method
	DBCreate(a_create_db *) method
	DBCreatedVersion(a_db_version_info *) method
	DBErase(const an_erase_db *) method
	DBInfo(a_db_info *) method
	DBInfoDump(a_db_info *) method
	DBInfoFree(a_db_info *) method
	DBLicense(const a_dblic_info *) method
	DBLogFileInfo(const a_log_file_info *) method
	DBRemoteSQL(a_remote_sql *) method
	DBSynchronizeLog(const a_sync_db *) method
	DBToolsFini(const a_dbtools_info *) method
	DBToolsInit(const a_dbtools_info *) method
	DBToolsVersion(void) method
	DBTranslateLog(const a_translate_log *) method
	DBTruncateLog(const a_truncate_log *) method
	DBUnload(an_unload_db *) method
	DBUpgrade(const an_upgrade_db *) method
	DBValidate(const a_validate_db *) method
	Autotune() enumeration
	Checkpoint() enumeration
	History() enumeration
	Padding() enumeration
	Unit() enumeration
	Unload() enumeration
	UserList() enumeration
	Validation() enumeration
	Verbosity() enumeration
	Version() enumeration
	a_backup_db structure
	auto_tune_writers char
	backup_comment const char *
	backup_database a_bit_field
	backup_history char
	backup_interrupted char
	backup_logfile a_bit_field
	chkpt_log_type char
	confirmrtn MSG_CALLBACK
	connectparms const char *
	errorrtn MSG_CALLBACK
	hotlog_filename const char *
	msgrtn MSG_CALLBACK
	no_confirm a_bit_field
	output_dir const char *
	page_blocksize a_sql_uint32
	progress_messages a_bit_field
	quiet a_bit_field
	rename_local_log a_bit_field
	rename_log a_bit_field
	server_backup a_bit_field
	statusrtn MSG_CALLBACK
	truncate_log a_bit_field
	version unsigned short
	wait_after_end a_bit_field
	wait_before_start a_bit_field

	a_change_log structure
	change_logname a_bit_field
	change_mirrorname a_bit_field
	dbname const char *
	encryption_key char *
	errorrtn MSG_CALLBACK
	generation_number unsigned short
	ignore_dbsync_trunc a_bit_field
	ignore_ltm_trunc a_bit_field
	ignore_remote_trunc a_bit_field
	logname const char *
	mirrorname const char *
	msgrtn MSG_CALLBACK
	query_only a_bit_field
	quiet a_bit_field
	set_generation_number a_bit_field
	version unsigned short
	zap_current_offset char *
	zap_starting_offset char *

	a_create_db structure
	accent_sensitivity char
	avoid_view_collisions a_bit_field
	blank_pad a_bit_field
	case_sensitivity_use_default a_bit_field
	checksum a_bit_field
	data_store_type const char *
	db_size unsigned int
	db_size_unit int
	dba_pwd char *
	dba_uid char *
	dbname const char *
	default_collation const char *
	encoding const char *
	encrypt a_bit_field
	encrypted_tables a_bit_field
	encryption_algorithm const char *
	encryption_key const char *
	errorrtn MSG_CALLBACK
	iq_params void *
	jconnect a_bit_field
	logname const char *
	mirrorname const char *
	msgrtn MSG_CALLBACK
	nchar_collation const char *
	page_size unsigned short
	respect_case a_bit_field
	startline const char *
	sys_proc_definer a_bit_field
	verbose char
	version unsigned short

	a_db_info structure
	bit_map_pages a_sql_uint32
	charcollationspecbuffer char *
	charcollationspecbufsize unsigned short
	charencodingbuffer char *
	charencodingbufsize unsigned short
	checksum a_bit_field
	connectparms const char *
	dbbufsize unsigned short
	dbnamebuffer char *
	encrypted_tables a_bit_field
	errorrtn MSG_CALLBACK
	file_size a_sql_uint32
	free_pages a_sql_uint32
	logbufsize unsigned short
	lognamebuffer char *
	mirrorbufsize unsigned short
	mirrornamebuffer char *
	msgrtn MSG_CALLBACK
	ncharcollationspecbuffer char *
	ncharcollationspecbufsize unsigned short
	ncharencodingbuffer char *
	ncharencodingbufsize unsigned short
	other_pages a_sql_uint32
	page_usage a_bit_field
	quiet a_bit_field
	statusrtn MSG_CALLBACK
	sysinfo a_sysinfo
	totals a_table_info *
	version unsigned short

	a_db_version_info structure
	created_version char
	errorrtn MSG_CALLBACK
	filename const char *
	msgrtn MSG_CALLBACK
	version unsigned short

	a_dblic_info structure
	compname char *
	conncount a_sql_int32
	errorrtn MSG_CALLBACK
	exename char *
	installkey char *
	msgrtn MSG_CALLBACK
	nodecount a_sql_int32
	query_only a_bit_field
	quiet a_bit_field
	type a_license_type
	username char *
	version unsigned short

	a_dbtools_info structure
	errorrtn MSG_CALLBACK

	a_log_file_info structure
	dbname const char *
	encryption_key const char *
	errorrtn MSG_CALLBACK
	logname char *
	logname_size size_t
	mirrorname char *
	mirrorname_size size_t
	reserved void *
	version unsigned short

	a_name structure
	name char
	next struct a_name *

	a_remote_sql structure
	apply a_bit_field
	argv char **
	batch a_bit_field
	confirmrtn MSG_CALLBACK
	connectparms char *
	debug a_bit_field
	debug_dump_size a_sql_uint32
	debug_page_offsets a_bit_field
	default_window_title char *
	deleted a_bit_field
	encryption_key char *
	errorrtn MSG_CALLBACK
	frequency a_sql_uint32
	full_q_scan a_bit_field
	include_scan_range char *
	latest_backup a_bit_field
	link_debug a_bit_field
	locale char *
	log_file_name const char *
	log_size a_sql_uint32
	logrtn MSG_CALLBACK
	max_length a_sql_uint32
	memory a_sql_uint32
	mirror_logs char *
	more a_bit_field
	msgqueuertn MSG_QUEUE_CALLBACK
	msgrtn MSG_CALLBACK
	no_user_interaction a_bit_field
	operations a_sql_uint32
	patience_retry a_sql_uint32
	progress_index_rtn SET_PROGRESS_CALLBACK
	progress_msg_rtn MSG_CALLBACK
	queueparms char *
	receive a_bit_field
	receive_delay a_sql_uint32
	remote_output_file_name char *
	rename_log a_bit_field
	resend_urgency a_sql_uint32
	scan_log a_bit_field
	send a_bit_field
	send_delay a_sql_uint32
	set_window_title_rtn SET_WINDOW_TITLE_CALLBACK
	threads a_sql_uint32
	transaction_logs char *
	triggers a_bit_field
	truncate_remote_output_file a_bit_field
	unused a_bit_field
	use_hex_offsets a_bit_field
	use_relative_offsets a_bit_field
	verbose a_bit_field
	version unsigned short
	warningrtn MSG_CALLBACK

	a_sync_db structure
	allow_outside_connect a_bit_field
	allow_schema_change a_bit_field
	apply_dnld_file const char *
	argv char **
	autoclose a_bit_field
	background_retry a_sql_int32
	background_sync a_bit_field
	cache_verbosity a_bit_field
	ce_argv char **
	ce_reproc_argv char **
	changing_pwd a_bit_field
	confirmrtn MSG_CALLBACK
	connectparms char *
	connectparms_allocated a_bit_field
	continue_download a_bit_field
	create_dnld_file const char *
	debug a_bit_field
	debug_dump_char a_bit_field
	debug_dump_hex a_bit_field
	debug_dump_size a_sql_uint32
	debug_page_offsets a_bit_field
	default_window_title char *
	dl_insert_width a_sql_uint32
	dl_use_put a_bit_field
	dlg_info_msg a_sql_uint32
	dnld_fail_len a_sql_uint32
	dnld_file_extra const char *
	dnld_gen_num a_bit_field
	dnld_read_size a_sql_uint32
	download_only a_bit_field
	encrypted_stream_opts const char *
	encryption_key char *
	entered_dialog a_bit_field
	errorrtn MSG_CALLBACK
	est_upld_row_cnt a_sql_uint32
	extended_options char *
	hide_conn_str a_bit_field
	hide_ml_pwd a_bit_field
	hovering_frequency a_sql_uint32
	ignore_debug_interrupt a_bit_field
	ignore_hook_errors a_bit_field
	ignore_hovering a_bit_field
	ignore_scheduling a_bit_field
	include_scan_range const char *
	init_cache a_sql_uint32
	init_cache_suffix char
	kill_other_connections a_bit_field
	last_upload_def a_syncpub *
	lite_blob_handling a_bit_field
	log_file_name const char *
	log_size a_sql_uint32
	logrtn MSG_CALLBACK
	max_cache a_sql_uint32
	max_cache_suffix char
	min_cache a_sql_uint32
	min_cache_suffix char
	mlpassword char *
	msgqueuertn MSG_QUEUE_CALLBACK
	msgrtn MSG_CALLBACK
	new_mlpassword char *
	no_offline_logscan a_sql_uint32
	no_schema_cache a_bit_field
	no_stream_compress a_bit_field
	offline_dir const char *
	output_to_file a_bit_field
	output_to_mobile_link a_bit_field
	persist_connection a_bit_field
	ping a_bit_field
	preload_dlls char *
	progress_index_rtn SET_PROGRESS_CALLBACK
	progress_msg_rtn MSG_CALLBACK
	prompt_again a_bit_field
	prompt_for_encrypt_key a_bit_field
	protocol_add_cli_bit_to_cli_both a_bit_field
	protocol_add_cli_bit_to_cli_max a_bit_field
	protocol_add_serv_bit_to_cli_both a_bit_field
	protocol_add_serv_bit_to_cli_max a_bit_field
	protocol_add_serv_bit_to_serv_both a_bit_field
	protocol_add_serv_bit_to_serv_max a_bit_field
	raw_file const char *
	rename_log a_bit_field
	reserved a_bit_field
	retry_remote_ahead a_bit_field
	retry_remote_behind a_bit_field
	server_mode a_bit_field
	server_port a_sql_uint32
	set_window_title_rtn SET_WINDOW_TITLE_CALLBACK
	status_rtn STATUS_CALLBACK
	strictly_free_memory a_bit_field
	strictly_ignore_trigger_ops a_bit_field
	sync_opt char *
	sync_params char *
	sync_profile char *
	trans_upload a_bit_field
	upld_fail_len a_sql_uint32
	upload_defs a_syncpub *
	upload_only a_bit_field
	usage_rtn USAGE_CALLBACK
	use_fixed_cache a_bit_field
	use_hex_offsets a_bit_field
	use_relative_offsets a_bit_field
	used_dialog_allocation a_bit_field
	user_name char *
	verbose a_bit_field
	verbose_download a_bit_field
	verbose_download_data a_bit_field
	verbose_hook a_bit_field
	verbose_minimum a_bit_field
	verbose_msgid a_bit_field
	verbose_option_info a_bit_field
	verbose_protocol a_bit_field
	verbose_row_cnts a_bit_field
	verbose_row_data a_bit_field
	verbose_server a_bit_field
	verbose_upload a_bit_field
	verbose_upload_data a_bit_field
	version unsigned short
	warningrtn MSG_CALLBACK

	a_syncpub structure
	ext_opt char *
	next struct a_syncpub *
	pub_name char *
	subscription char *

	a_sysinfo structure
	blank_padding a_bit_field
	case_sensitivity a_bit_field
	default_collation char
	encryption a_bit_field
	page_size unsigned short
	valid_data a_bit_field

	a_table_info structure
	index_pages a_sql_uint32
	index_used a_sql_uint32
	index_used_pct a_sql_uint32
	next struct a_table_info *
	table_id a_sql_uint32
	table_name char *
	table_pages a_sql_uint32
	table_used a_sql_uint32
	table_used_pct a_sql_uint32

	a_translate_log structure
	ansi_sql a_bit_field
	chronological_order a_bit_field
	comment_trigger_trans a_bit_field
	confirmrtn MSG_CALLBACK
	connectparms const char *
	debug a_bit_field
	debug_dump_char a_bit_field
	debug_dump_hex a_bit_field
	debug_dump_size a_sql_uint32
	debug_page_offsets a_bit_field
	debug_sql_remote a_bit_field
	encryption_key const char *
	errorrtn MSG_CALLBACK
	extra_audit a_bit_field
	force_chaining a_bit_field
	force_recovery a_bit_field
	generate_reciprocals a_bit_field
	include_audit a_bit_field
	include_destination_sets const char *
	include_publications const char *
	include_scan_range const char *
	include_source_sets const char *
	include_subsets a_bit_field
	include_tables const char *
	include_trigger_trans a_bit_field
	leave_output_on_error a_bit_field
	logname const char *
	logrtn MSG_CALLBACK
	logs_dir const char *
	match_mode a_bit_field
	match_pos const char *
	msgrtn MSG_CALLBACK
	omit_comments a_bit_field
	queueparms const char *
	quiet a_bit_field
	recovery_bytes a_sql_uint32
	recovery_ops a_sql_uint32
	remove_rollback a_bit_field
	replace a_bit_field
	repserver_users const char *
	show_undo a_bit_field
	since_checkpoint a_bit_field
	since_time a_sql_uint32
	sqlname const char *
	statusrtn MSG_CALLBACK
	use_hex_offsets a_bit_field
	use_relative_offsets a_bit_field
	userlist p_name
	userlisttype char
	version unsigned short

	a_truncate_log structure
	connectparms const char *
	errorrtn MSG_CALLBACK
	msgrtn MSG_CALLBACK
	quiet a_bit_field
	server_backup a_bit_field
	truncate_interrupted char
	version unsigned short

	a_validate_db structure
	connectparms const char *
	errorrtn MSG_CALLBACK
	index a_bit_field
	msgrtn MSG_CALLBACK
	quiet a_bit_field
	statusrtn MSG_CALLBACK
	tables p_name
	type char
	version unsigned short

	an_erase_db structure
	confirmrtn MSG_CALLBACK
	dbname const char *
	encryption_key const char *
	erase a_bit_field
	errorrtn MSG_CALLBACK
	msgrtn MSG_CALLBACK
	quiet a_bit_field
	version unsigned short

	an_unload_db structure
	compress_output a_bit_field
	confirmrtn MSG_CALLBACK
	connectparms const char *
	debug a_bit_field
	display_create a_bit_field
	display_create_dbinit a_bit_field
	encrypted_tables a_bit_field
	encryption_algorithm const char *
	encryption_key const char *
	errorrtn MSG_CALLBACK
	escape_char char
	escape_char_present a_bit_field
	exclude_foreign_keys a_bit_field
	exclude_hooks a_bit_field
	exclude_procedures a_bit_field
	exclude_tables a_bit_field
	exclude_triggers a_bit_field
	exclude_views a_bit_field
	extract a_bit_field
	genscript a_bit_field
	include_where_subscribe a_bit_field
	isolation_level unsigned short
	isolation_set a_bit_field
	locale const char *
	make_auxiliary a_bit_field
	ms_filename const char *
	ms_reserve int
	ms_size int
	msgrtn MSG_CALLBACK
	no_confirm a_bit_field
	no_reload_status a_bit_field
	notemp_size long
	preserve_identity_values a_bit_field
	preserve_ids a_bit_field
	profiling_uses_single_dbspace a_bit_field
	recompute a_bit_field
	refresh_mat_view a_bit_field
	reload_connectparms char *
	reload_db_filename char *
	reload_db_logname char *
	reload_filename const char *
	reload_page_size unsigned short
	remote_dir const char *
	remove_encrypted_tables a_bit_field
	replace_db a_bit_field
	runscript a_bit_field
	schema_reload a_bit_field
	site_name const char *
	start_subscriptions a_bit_field
	startline const char *
	startline_name a_bit_field
	startline_old const char *
	statusrtn MSG_CALLBACK
	subscriber_username const char *
	suppress_statistics a_bit_field
	sysinfo a_sysinfo
	table_list p_name
	table_list_provided a_bit_field
	temp_dir const char *
	template_name const char *
	unload_interrupted char
	unload_type char
	unordered a_bit_field
	use_internal_reload a_bit_field
	use_internal_unload a_bit_field
	verbose char
	version unsigned short

	an_upgrade_db structure
	connectparms const char *
	errorrtn MSG_CALLBACK
	jconnect a_bit_field
	msgrtn MSG_CALLBACK
	quiet a_bit_field
	restart a_bit_field
	statusrtn MSG_CALLBACK
	sys_proc_definer unsigned short
	version unsigned short

	Appendix: Using OLAP
	About OLAP
	OLAP Benefits
	OLAP Evaluation

	GROUP BY Clause Extensions
	Group by ROLLUP and CUBE
	Group by ROLLUP
	Group by CUBE

	Analytical Functions
	Simple Aggregate Functions
	Windowing
	Window Partitioning
	Window Ordering
	Window Framing
	ROWS
	RANGE
	Explicit and Inline Window Clauses
	Ranking Functions
	RANK
	RANK Function [Analytical]

	DENSE_RANK
	DENSE_RANK Function [Analytical]

	PERCENT_RANK
	PERCENT_RANK Function [Analytical]

	ROW_NUMBER
	ROW_NUMBER Function [Analytical]

	Ranking Examples
	Windowing Aggregate Functions
	Statistical Aggregate Functions
	Inter-Row Functions
	Distribution Functions
	PERCENTILE_CONT Function [Analytical]
	PERCENTILE_DISC Function [Analytical]

	Numeric Functions
	BIT_LENGTH Function [String]
	CEIL Function [Numeric]
	CEILING Function [Numeric]
	EXP Function [Numeric]
	FLOOR Function [Numeric]
	LN Function [Numeric]
	POWER Function [Numeric]
	SQRT Function [Numeric]
	WIDTH_BUCKET Function [Numerical]

	OLAP Rules and Restrictions
	Additional OLAP Examples
	Example: Window Functions in Queries
	Example: Window With Multiple Functions
	Example: Calculate Cumulative Sum
	Example: Calculate Moving Average
	Example: ORDER BY Results
	Example: Multiple Aggregate Functions in a Query
	Example: Window Frame Comparing ROWS and RANGE
	Example: Window Frame Excludes Current Row
	Example: Window Frame for RANGE
	Example: Unbounded Preceding and Unbounded Following
	Example: Default Window Frame for RANGE

	BNF Grammar for OLAP Functions

	Appendix: Accessing Remote Data
	SAP Sybase IQ and Remote Data
	Characteristics of Sybase Open Client and jConnect connections
	Changing the option settings for TDS connections
	Changing the option settings for TDS connections

	Requirements for Accessing Remote Data
	Remote table mappings
	Server classes for remote data access
	ODBC external server definitions
	USING clause in the CREATE SERVER statement
	Server class SAODBC
	Server class ADSODBC
	Server class ASEODBC
	Server class DB2ODBC
	Server class HANAODBC
	Server class IQODBC
	Server class MSACCESSODBC
	Server class MSSODBC
	Server class MYSQLODBC
	Server class ODBC
	Microsoft Excel (Microsoft 3.51.171300)
	Microsoft FoxPro (Microsoft 3.51.171300)
	Lotus Notes SQL

	Server class ORAODBC

	Remote Servers
	Create Remote Servers
	Before You Access Remote Oracle Data
	Check for Prerequisites
	Create an Oracle Data Source Name
	Set Environment Variables for Oracle Data Access
	Start the SAP Sybase IQ Server

	Connecting to an Oracle Database
	Troubleshoot Oracle Database Access
	Error Loading Driver
	Error Resolving Connect Identifier

	Loading Remote Data Without Native Classes
	Loading MS SQL Server Data into an SAP Sybase IQ Server on UNIX

	Querying Data Without Native Classes
	Querying Remote Data Using DirectConnect and Proxy Table from UNIX
	Setting Up Adaptive Server to Query MS SQL Server
	Setting up SAP Sybase IQ to Connect to the Adaptive Server Server

	Delete Remote Servers
	Alter Remote Servers
	Listing the tables on a remote server (SQL)
	Remote server capabilities

	External Logins
	Proxy tables
	Proxy table locations
	Creating proxy tables (SQL)
	List the columns on a remote table

	Joins between remote tables
	Joins between tables from multiple local databases
	Native statements and remote servers
	Remote Procedure Calls (RPCs)
	Creating Remote Procedures

	Remote Transactions
	Remote transaction management
	Remote Transaction Restrictions

	Internal Operations
	Query Parsing
	Query Normalization
	Query preprocessing
	Complete passthrough of the statement
	Partial passthrough of the statement

	Remote Data Access Troubleshooting
	Features not supported for remote data
	Case sensitivity
	Connectivity tests
	Remote data access connections via ODBC
	Remote data access on multiplex servers

	Appendix: SQL Reference
	ALTER SERVER Statement
	CREATE EXISTING TABLE Statement
	CREATE SERVER Statement
	CREATE TABLE Statement
	DROP SERVER Statement

	Index

