SYBASE

Cmpy

Developer Guide: Android Object API
Applications

Sybase Unwired Platform 2.1
ESD #2




DOCUMENT ID: DC01726-01-0212-01

LAST REVISED: February 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.


http://www.sybase.com/detail?id=1011207

Contents

Getting Started with Android Development........................ 1
Object API ApplicationS ........ccoevveiiiieeirieicie e 1
Best Uses for Object API Applications............ccccceeeeeeeenn. 2

Cache Synchronization ...........cccccevvvieeviieiiiiceee. 2
Client Runtime Architecture ...........ccccceevveeeviiinnnnnnn. 3
Documentation Roadmap for Unwired Platform............. 4

Development Task Flow for Object API Applications......... 5

Installing the Android Development Environment........... 6
Installing the Android SDK ... 7
Installing ADT in Unwired WorkSpace.................... 7
Installing X.509 Certificates on Android Devices

and EMUIators ... 7

Creating @ ProjecCt ........uuvvviiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeee 8
Creating a Project in Unwired WorkSpace............. 9
Importing Libraries and Code ...........ccccccceeiiieeenee. 11

Generating Java Object APl Code..........ooeevvvvviivnneennnn. 11
Generating Java Object API Code Using Sybase

Unwired WOrkSpace .........coevvvvvviiiiieeeeeeeeennnn, 12
Generating Java Object APl Code Using the
Code Generation ULtility ...........cccoeevviiiineennennnn. 15
Generated Code Location and Contents............. 15
Validating Generated Code ..........cccccevvvvvciieeeeennn. 16
Development Task Flow for DOE-based Object API
APPHCALIONS coeiiiiiiiiiiiei 17

Installing the Android Development Environment......... 18
Installing the Android SDK ..........coooviiiiiiiieeiineenns 18
Installing X.509 Certificates on Android Devices

and Emulators ..........cccooiiviiiiiiiiin 19

Creating @ ProjecCt ..........uuviiiiiiiiiiiiiiiiieiiiiiiieiiiiiiieees 20
Creating a Project in Unwired WorkSpace........... 20
Importing Libraries and Code ..........cccccccceeiiieeeee. 23

Developer Guide: Android Object APl Applications iii



Contents

Generating Java Object APl Code .......ccooeevvvveeiiiinnennn. 23
Generated Code Location and Contents............. 24
Customizing the Application Using the Object API .......... 25
Initializing an Application ............ccoocovvviiiiiieieeiicie e, 25
Initially Starting an Application ............cccccccveeeeen. 25
Subsequently Starting an Application................... 40
AccesSiNg MBO Data ..........cuvvvveeiiiiiiiiiiiiieeeeeeeeeeeeeee 40
ODbjeCt QUETIES ....vii i 41
Dynamic QUENIES ........cooeieieeeeeeiiiieeeeeeeeeeie 41
MBOs with CompleX TYPeS ......ccoeeevvvvvviiiiiieeeeeenns 42
Relationships ..., 43
Manipulating Data ........cccoeeeeeeiiiieeicie e, 44
Creating, Updating, and Deleting MBOs.............. 44
Other OperationsS ...........ccvvvuviieieeeeeeiiiee e, 45
Using SubmitPending and

SubmitPendingOperations ..............cccevvvvvvvnnnnn. 46
Shutting Down the Application ..................eevvveeeiiiiinnnnn. a7
Closing ConNECtioNS .......ccccvvvviviviieieeeeeeeeeenn a7
Uninstalling the Application ............cccccviiiiiiiiiiiieeeeen. a7

Deleting the Database and Unregistering the
APPIICALION ... a7
Testing APPHICAtIONS ......uuiiiiiiiiiiiiiiieeeee e 49
Testing an Application Using a Emulator ...................... 49
Client-Side Debugging ........cccovvveviiiiiiiieeeeeeeecee e 49
Server-Side Debugging .......ccoovvvviiiiiiiiiiiiie e 51
Localizing Applications ........coooeiiiiiiiiiiiiieeeee e 53
Packaging Applications ........cccoeiiiiiiiiiiiiiie e 55
I (o [ 11 o P 55
Client Object AP USAQe ....coooviviiiiiiieiiieceeeei e, 57
Client Object APl Reference........ccccccceveviieiiiiiiiccieeeen, 57
APPIICAtioN APIS ... 57
JEUNSIANCE ....ceeiiii e 57
setApplicationldentifier ..........cccccocieiis 58
getRegistrationStatus ..........cccceeveeevieiiii e, 58
registerAppliCation ... 59

iv Sybase Unwired Platform



Contents

registerApplication (int timeout) .............cccccceeveees 60
setApplicationCallback ..............ccccoevvviiiiiiiennneen. 62
getApplicationContext ..........cccoeveeviieeeeeeeeeeeeeeeenn 62
setApplicationContext ............ccceevvviiieeeeeeeiiineenn, 63
StartCoNNECHIoN .........cooeviiiiiiiiei e 63
startConnection (int timeout) ..........ccccceeeveeeeeeee... 63
getConnectionStatus ..........ooovveveiieciiiiiiiiiieeeee 64
StOPCONNECLION ......cceeiieeeiiicce e 65
stopConnection (int tiMeout) ............cccceevvvvieeeennn. 65
unregisterApplication ..........cccccoooeeviiiiiiin e, 66
unregisterApplication(int timeout) ........................ 66
(@0] 0] g [=Tox 10T o I AN o] £ 67
ConnectionProfile ... 67
Set Database File Property ........cccovvvvvvvvvicennennn. 69
Synchronization Profile ... 70
Connect the Data Synchronization Channel
Through a Relay Server........cccccccocns 70
Asynchronous Operation Replay .............cccouvun.... 71
Authentication APIS ... 71
(oo T |1 o T o ISR 72
Sample Code ..........uuviiiiiiiiiiiiiiiiiiiiiiie 72
Single Sign-On With X.509 Certificate Related
ODJECt APl ..o 73
Personalization APIS ...........uuuuiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeee 74
Type of Personalization Keys ...........cccccevieeeeeenen. 74
Getting and Setting Personalization Key Values
......................................................................... 75
Synchronization APIS .........uciiiiiiiieeeeeeeeeeee 75
Changing Synchronization Parameters............... 76
Performing Mobile Business Object
Synchronization ... 76
Message-Based Synchronization APIs ............... 77
Push Synchronization Applications....................... 81
Retrieving Information about Synchronization
GIOUPS .ottt 82

Developer Guide: Android Object APl Applications v



Contents

LOg RECOId APIS ..o 82
LOgRECOrd APl ..o o 83
LOGEr APIS ... 84

Change LOg AP ... 84
QEtENLItYTYPE .o 84
getoperationTYPe ......ccvvvieeieeiiie e 85
getROOIENLItY TYPE ... 85
getRootSurrogateKey .......coocvvviviiiiiiiiiinecieen 86
getSuUrrogateKey .........coooeeeiiieiriiiiiiie e 86
Methods in the Generated Database Class......... 86
Code Samples ... 88

SECUNLY APIS .o 89
Encrypt the Database ..............cccccciiiiiiiiiiiiiiiinns 89
End to End Encryption and Compression

SUPPOIt APIS ..o 90
DataVault...........coooeeeiiiiies 91

Callback and Listener APIS ........ccooevviiiiiieiiiiiiiiieeeeee 101
CallbackHandler APl ...........oovvviiiiiiiiiiiiiiiiiiiinnnns 101
ApplicationCallback AP ..., 110
SyncStatusListener APl ..........ccooevvevviiiiiieeeeennnn. 110

QUETY APIS ... 112
Retrieving Data from Mobile Business Objects. 112
Retrieving Relationship Data..................ccceveeenne 121
Back-end Search ........cccccoovviiiiiiis 121

Persistence APIS ... 122
Operations APIS ........uviiiiieceeeeee e 123
Object State APIS ......ooovviiiiiiiiiiiee e 127
Generated Package Database APIs.................. 133
Large Attribute APIS ........oovvviiiiiiiiiiiiiiis 133

MetaData and Object Manager APl ...........cccccoevvevnnnn.. 143
MetaData and Object Manager API ................... 143
DatabaseMetaData ..............cccoovvveeeeieeiiiiiniiinnnnns 143
ClassMetaData ..........ccoevvvvvineeeiieeiiiiiie e 144
AttributeMetaData ............eeeiiiiiiiiiieeeeeeeeeeeeeeee, 144

EXCEPLIONS ... 144

Vi

Sybase Unwired Platform



Contents

Handling EXCepLions .............uviiiiiiieeiiiiiiiiiiiinnns 144
Exception ClasSes ........ccccevvvieeeeiieiiiiiiiiiineee e, 146
INEX 147

Developer Guide: Android Object APl Applications Vi



Contents

viii Sybase Unwired Platform



Getting Started with Android Development

Getting Started with Android Development

Use advanced Sybase® Unwired Platform features to create applications for Android devices.
The audience is advanced developers who may be new to Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object APl documentation.

Companion guides include:

o Sybase Unwired WorkSpace — Mobile Business Object Development

e Troubleshooting for Sybase Unwired Platform.

* A complete Client Object API reference is available in the Unwired Platform installation
directory<Unwi r edPl at f orm_| nst al | Di r >\ Mobi | eSDK\ Cbj ect API
\ api doc\ andr oi d.

e Fundamentals contains high-level mobile computing concepts, and a description of how
Sybase Unwired Platform implements the concepts in your enterprise.

Object API Applications

Object API applications are customized, full-featured mobile applications that use mobile
data model packages, either using mobile business objects (MBOSs) or Data Orchestration
Engine, to facilitate connection with a variety of enterprise systems and leverage
synchronization to support offline capabilities.

The Object API application model enables developers to write custom code — C#, Java, or
Obijective-C, depending on the target device platform — to create device applications.

Development of Object API applications provides the most flexibility in terms of leveraging
platform specific services, but each application must be provisioned individually after being
compiled, even for minor changes or updates.

Development involves both server-side and client-side components. Unwired Server brokers
data synchronization and transaction processing between the server and the client
components.

« Server-side components address the interaction between the enterprise information
system (EIS) data source and the data cache. EIS data subsets and business logic are
encapsulated in artifacts, called mobile business object or DOE packages, that are
deployed to Unwired Server.

Developer Guide: Android Object APl Applications 1



Getting Started with Android Development

« Client-side components are built into the mobile application and address the interaction
between the data cache and the mobile device data store. This can include synchronizing
data with the server, offline data access capabilities, and data change notification.

These applications:

« Allow users to connect to data from a variety of EIS systems, including SAP® systems.

» Build in more complex data handling and logic.

» Leverage data synchronization to optimize and balance device response time and need for
real-time data.

» Ensure secure and reliable transport of data.

Best Uses for Object APl Applications

Synchronization applications provide operation replay between the mobile device, the
middleware, and the back-end system. Custom native applications are designed and built to
suit specific business scenarios from the ground up, or start with a bespoke application and be
adapted with a large degree of customization.

Cache Synchronization

Cache synchronization allows mapping mobile data to SAP Remote Function Calls (RFCs)
using Java Connector (JCO) and to other non-SAP data sources such as databases and Web
services. When Sybase Unwired Platform is used in a stand-alone manner for data
synchronization (without Data Orchestation Engine), it utilizes an efficient bulk transfer and
data insertion technology between the middleware cache and the device database.

In an Unwired Platform standalone deployment, the mobile application is designed such that
the developer specifies how to load data from the back end into the cache and then filters and
downloads cache data using device-supplied parameters. The mobile content model and the
mapping to the back end are directly integrated.

This style of coupling between device and back-end queries implies that the back end must be
able to respond to requests from the middleware based on user-supplied parameters and serve
up mobile data appropriately. Normally, some mabile-specific adaptation is required within
SAP Business Application Programming Interfaces (BAPI). Because of the direct nature of
application parameter mapping and RBS protocol efficiencies, Sybase Unwired Platform
cache synchronization deployment is ideal:

« With large payloads to devices (may be due to mostly disconnected scenarios)
« Where ad hoc data downloads might be expected
» For SAP® or non-SAP back ends

Large payloads, for example, can occur in task worker (service) applications that must access
large product catalogs, or where service occurs in remote locations and workers might
synchronize once a day. While Sybase Unwired Platform synchronization does benefit from

2 Sybase Unwired Platform



Getting Started with Android Development

middleware caching, direct coupling requires the back end to support an adaptation where
mobile user data can be determined.

Client Runtime Architecture

The goal of synchronization is to keep views (that is, the state) of data consistent among
multiple tiers. The assumption is that if data changes on one tier (for example, the enterprise
system of record), all other tiers interested in that data (mobile devices, intermediate staging
areas/caches and so on) are eventually synchronized to have the same data/state on that
system.

The Unwired Server synchronizes data between the device and the back-end by maintaining
records of device synchronization activity in its cache database along with any cached data
that may have been retrieved from the back-end or pushed from the device. The Unwired
Server employs several components in the synchronization chain.

Mobile Channel Interfaces
Mobile channel interfaces provide a conduit for transporting data to and from remote devices.
Two main channel interfaces provide messaging and replication.

» The messaging channel serves as the abstraction to all device-side notifications
(BlackBerry Enterprise Service, Apple Push Notification Service, and others) so that
when changes to back-end data occur, devices can be notified of changes relevant for their
application and configuration. This channel also enables data synchronization on iOS.
The messaging channel sends these types of notifications:

» Change notifications - when Unwired Server detects changes in the back-end EIS,
Unwired Server can send a notification to the device. By default, sending change
notifications is disabled, but you can enable sending change notifications per
synchronization group.

To capture change notifications, you can register an onSynchronize callback. The
synchronization context in the callback has a status you can retrieve.

* When synchronizing, operation replay records are sent to the Unwired Server and the
messaging channel sends a notification of r epl ayFi ni shed. The application must
call another synchronize method to retrieve the result.

« The synchronization channel sends data to keep the Unwired Server and client
synchronized. The synchronization is bi-directional.

Mobile Middleware Services

Mobile middleware services (MMS) arbitrate and manage communications between device
requests from the mobile channel interfaces in the form that is suitable for transformation to a
common MBO service request and a canonical form of enterprise data supplied by the data
services.

Developer Guide: Android Object APl Applications 3



Getting Started with Android Development

Data Services

Data services is the conduit to enterprise data and operations within the firewall or hosted in
the cloud. Data services and mobile middleware services together manage the cache database
(CDB) where data is cached as it is synchronized with client devices.

Once a mobile application model is designed, it can be deployed to the Unwired Server where
it operates as part of a specialized container-managed package interfacing with the mobile
middleware services and data services components. Cache data and messages persist in the
databases in the data tier. Changes made on the device are passed to the mobile middleware
services component as an operation replay and replayed against the data services interfaces
with the back-end. Data that changes on the back- end as a result of device changes, or those
originating elsewhere, are replicated to the device database.

Documentation Roadmap for Unwired Platform

Sybase® Unwired Platform documents are available for administrative and mobile
development user roles. Some administrative documents are also used in the development and
test environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on the Sybase Product Documentation Web site.

Check the Sybase Product Documentation Web site regularly for updates: access Attp.//
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

4 Sybase Unwired Platform


http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Development Task Flow for Object API Applications

Development Task Flow for Object API
Applications

Describes the overall development task flow for Object API applications, and provides
information and procedures for setting up the development environment, and developing
device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated Ul interaction, validation, business
logic, and performance.

Object API Archetype

Device User

Interface Native Code

Business

Logic Native Code

Application Synchronization
Specialization Services

Security

Core
Application
Services Local Persistence and Cache

Supportability and Configuration

Connectivity and Notifications

Object
API

The Object API provides the core application services described in the diagram.
The Authentication APIs provide security by authenticating the client to the Unwired Server.

The Synchronization APIs allow you to synchronize mobile business objects (MBOSs) based
on synchronization parameters, for individual MBOs, or as a group, based on the group's
synchronization policy.

The Application and Connection APIs allow clients to register with and connect to the
Unwired Server. The Callback Handler and Listener APls, and the Target Change Notification
APIs provide notifications to the client on operation success or failure, or changes in data.

With non-DOE-based applicaitons, Connectivity uses the MobiLink channel and
Notifications use the Messaging channel.

1. [Installing the Android Development Environment

Developer Guide: Android Object APl Applications 5



Development Task Flow for Object API Applications

Install the Android development environment, and prepare Android devices for
authentication.

2. Creating a Project
Build a device application project.
3. Generating Java Object API Code

Generate object API code containing mobile business object (MBO) references, which
allows you to use APIs to develop device applications for Android devices. You can
generate code either in Sybase Unwired WorkSpace, or by using a command-line utility
for generating code.

4. Customizing the Application Using the Object API

Use the Object API to customize the application. An application consists of building
blocks which the developer uses to start the application, perform functions needed for the
application, and shutdown and uninstall the application.

5. Testing Applications
Test native applications on a device or simulator.
6. Localizing Applications
Localize an Android application by creating default and alternate resources.
7. Packaging Applications
Package applications according to your security or application distribution requirements.

Installing the Android Development Environment

Install the Android development environment, and prepare Android devices for
authentication.

1. [Installing the Android SDK
Install the Android SDK.
2. Installing ADT in Unwired WorkSpace

You can install the supported version of Android Development Tools (ADT) directly into
the Sybase Unwired WorkSpace Eclipse environment.

3. Installing X.509 Certificates on Android Devices and Emulators

Install the .p12 certificate on the Android device or emulator for authentication. A
certificate provides an additional level of secure access to an application, and may be
required by an organization's security policy.

See also
e Creating a Profecton page 8

6 Sybase Unwired Platform



Development Task Flow for Object API Applications

Installing the Android SDK

Install the Android SDK.

Confirm your system meets the requirements at Attp.//developer.android.com/sak/
requirements.html.

Download and install the SDK starter package from Attp.//developer.android.com/sak/
index.html.

Launch the Android SDK Manager and install the Android SDK tools, platform, and
compatibility package for Android.

Launch the Android Virtual Device Manager, and create an Android virtual device to
use as your simulator.

Installing ADT in Unwired WorkSpace

You can install the supported version of Android Development Tools (ADT) directly in to the
Sybase Unwired WorkSpace Eclipse environment.

© O N Ok~ wWwDNPRE

Download the ADT Plugin for Eclipse at Attp.//dl.google.com/android/ADT-16.0.1.zip.
Start Eclipse, then select Help > Install New Software.

Click Add, in the top-right corner.

In the Add Repository dialog, click Archive.

Select the ADT Plugin for Eclipse zip file.

Enter a Name for the local update site, such as Android Plugin, then click OK.

In the Available Software dialog, select Development Tools, then click Next.

In the next window, a list of downloadable tools, click Next.

Accept the license agreements, then click Finish.

Note: If you get a security warning about the authenticity or validity of the software, click
OK.

10. When the installation completes, restart Unwired WorkSpace.

Installing X.509 Certificates on Android Devices and Emulators

Install the .p12 certificate on the Android device or emulator for authentication. A certificate
provides an additional level of secure access to an application, and may be required by an
organization's security policy.

Prerequisites

Java SE Development Kit (JDK) must be installed.
The Android SDK must be installed.

Developer Guide: Android Object APl Applications 7


http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://dl.google.com/android/ADT-16.0.1.zip

Development Task Flow for Object API Applications

Task

1. Connect the Android device to your computer with the USB cable.
2. Toinstall using Eclipse with the ADT plugin:

Note: USB debugging must be enabled.

a) Open the Windows File Explorer view. From the menu bar, navigate to Window >
Show View > Other.

b) In the Show View dialog, expand the Android folder and select File Explorer.
¢) Expand mnt > sdcard and select the sdcard folder.
d) In the top right of the File Explorer view, click Push a file onto the device.
e) Inthe Put File on Device dialog, select the certificate and click Open.
3. Toinstall using Windows Explorer:

Note: USB debugging must be disabled.

a) Open Windows Explorer

b) Under your computer, click the Android device to expand the folder.
c) Click Device Storage, navigate to and select the certificate.

d) Import the certificate to the Device Storage folder.

4. To install using the Android Debug Bridge (adb):

Note: USB debugging must be enabled. You can enable USB debug mode from the device
menu by selecting Settings > Application > USB Debugging.

a) Open the command line directory to the adb. exe file, for example, C: \ Pr ogr am
Fi | es\ andr oi d- sdk-wi ndows\t ool s,or C.:\ Program Fi | es
\ andr oi d- sdk-wi ndows\ pl atformt ool s

b) Runthe command: adb push %Pat hToCert % MyCert. pl2 /sdcard/
MyCert.pl2

Creating a Project

Build a device application project.

1. Creating a Project in Unwired WorkSpace
Create a project for your Android device application in Sybase Unwired WorkSpace.
2. Importing Libraries and Code

Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

See also
» Installing the Android Development Environment on page 6

8 Sybase Unwired Platform



Development Task Flow for Object API Applications

» Generating Java Object API Code on page 11

Creating a Project in Unwired WorkSpace
Create a project for your Android device application in Sybase Unwired WorkSpace.

1. In Sybase Unwired WorkSpace, select File > New > Project.
2. Select Android > Android Project.
+ i New Project _ O] x|

Select a wizard

Wizards:

[#-1=- General
== android
[—Ig Android Project
JG android Test Project
= CIC++
|-= Eclipse Modeling Framewark,
= lava
|-[= Jawascripk
|-[= Plug-in Developrent
= Sybase
= Weh
= ¥L UPC
|-[= Examples

R E

N e -
I‘-»?/I < Back I Mext = I Firish | Cancel |

3. Inthe New Android Project wizard, enter these values and click Finish:
* Project name: —enter the name of the project
* Package name: —enter the name of the package
* Min SDK Version: —8

Developer Guide: Android Object APl Applications 9



Development Task Flow for Object API Applications

u 4 New Android Project M=l E3

New Android Project

Creates a new Android Project resource,

Project name: | SUPClient

— Conkents
% Create new project in workspace
" Create project from existing source

v Use default lacation

Lacation: | CifSvbase/UnwiredPlatform/Eclipse/SUPClient Browse, ., |

™ Create project From existing sample

Samples: IApiDemos j
r Build Target
Target Mame | Vendar | PlatFarm | AFT ... |
Android 2.2 Android Open Source Project 2.2 8
. Properties

Application name: | SUPClient

Package name: | com.svbase.demo

¥ Create Ackiviby: |5UPCIient.¢\ctivitv

Min SDK Yersion: | &

—Working sets

[~ add project ba working sets

Wiorking sets: j Select, ., |

@j < Back. | Mext = | Finish I Cancel |

4. Add the following user permissions in Andr oi dvani f est . xmi :

<uses-perm ssi on androi d: nane="andr oi d. per mi ssi on. | NTERNET" ></
uses- perm ssi on>

<uses- perm ssi on

andr oi d: name="andr oi d. per mi ssi on. READ_PHONE_STATE" ></ uses-

per m ssi on>

<uses- perm ssi on

andr oi d: name="andr oi d. per m ssi on. ACCESS W FI _STATE" ></ uses-

10 Sybase Unwired Platform



Development Task Flow for Object API Applications

per m ssi on>
<uses- perm ssi on
andr oi d: name="andr oi d. per m ssi on. ACCESS NETWORK_STATE" ></ uses-

perm ssi on>

<uses- perm ssi on
andr oi d: name="andr oi d. per m ssi on. WRI TE_EXTERNAL_ STORAGE" ></ uses-

per m ssi on>

Importing Libraries and Code

Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

1. Inyour Sybase Unwired WorkSpace project, create al i bs directory.

2. Copy the following library and JAR files from <Unwi redPl atform I nstal I Di r>
\ Unwi r edPl at f or Ml Mobi | eSDK\ Obj ect APl \ Andr oi d intothel i bs
directory within your project, using the exact directory structure shown here:

= &" libs
=I-[= armeabi
iy libmlcrsalz.so
sy libultralitej12.so
L&) cliertLib.jar
!ﬂ sup-client, jar
L) UltraliteInT1z. jar

3. Select Project > Properties> JavaBuild Path. On the Librariestab, add the libraries to
the project.

Generating Java Object APl Code

Generate object API code containing mobile business object (MBO) references, which allows
you to use APIs to develop device applications for Android devices. You can generate code
either in Sybase Unwired WorkSpace, or by using acommand-line utility for generating code.

See also
e Creating a Profecton page 8
e Customizing the Application Using the Object AP/ on page 25

Developer Guide: Android Object APl Applications 11



Development Task Flow for Object API Applications

Generating Java Object API Code Using Sybase Unwired WorkSpace

Use Sybase Unwired WorkSpace to generate object APl code containing mobile business
object (MBO) references.

Prerequisites

Develop the MBOs that will be referenced in the device applications you are developing. A
mobile application project must contain at least one non-online MBO. You must have an active
connection to the datasources to which the MBOs are bound.

Task

Unwired Platform provides the Code Generation wizard for generating object API code. Code
generation creates the business logic, attributes, and operations for your mobile business

object.

1. Launch the Code Gener ation wizard.

From

Action

Mobile Application

Right-click within the Mobile Application Diagram and select

Diagram Generate Code.
WorkSpace Right-click the Mobile Application project folder that contains the
Navigator mobile objects for which you are generating API code, and select

Generate Code.

2. (Optional; this page of the code generation wizard is seen only if you are using the
Advanced developer profile) Enter the information for these options, then click Next:

Option

Description

Select code genera-
tion configuration

Select one of:

Continue without a configuration — generate device code without using

a configuration.

Select an existing configuration — either select an existing configura-

tion from which you generate device client code, or create a new con-

figuration. By default, a configuration named M ost recent configu-
ration is available.Selecting this option enables:

» Select code generation configuration — lists any existing configu-
rations, from which you can select and use for this session. You can
also delete any existing saved configurations.

» Create new configuration by clicking the Add button. In the dialog,
enter the Name of the new configuration and provide a description,
and click Create to save the configuration for future sessions.
Select an existing configuration as a starting point for this session
and click Clone to modify the configuration.

12

Sybase Unwired Platform



Development Task Flow for Object API Applications

3. Onthe Select Mobile Objects page, select all the MBOs in the mobile application project
or select MBOs under a specific synchronization group, for which references, metadata,
and dependencies (referenced MBOSs) are included in the generated device code. Then
click Next.

Dependent MBOs are automatically added (or removed) from the Dependencies section
depending on your selections.

Note: Code generation fails if the server-side (runtime) enterprise information system
(EIS) data sources referenced by the MBOs in the project are not running and available to
connect to when you generate object API code.

4. Enter the information for these configuration options:

Option Description

Language Select Java.

Platform Select the platform ( target device) for which
the device client code is intended.
e Android

Unwired Server Specify a default Unwired Server connection
profile to which the generated code connects at
runtime.

Server domain Choose the domain to which the generated code

connects. By default, if you specified an Un-
wired Server to which you previously connec-
ted successfully, the first domain in the list is
chosen. Accept this domain, or enter a different
one.

Note: This field is enabled only when an Un-
wired Server is selected.

Developer Guide: Android Object APl Applications 13



Development Task Flow for Object API Applications

Option

Description

Page size

(Optional) Select the page size for the gener-
ated client code. If you do not set the page size,
the default is at runtime, which is proposed
based on the selected MBO's attributes.

The page size should be larger than the sum of
all attribute lengths (a binary length greater
than 32767 is converted to a binary large object
(BLOB), and is not included in the sum; a string
greater than 8191 is converted to a character
large object (CLOB), and is also not included)
for any MBO that is included. If an MBO at-
tribute's length sum is greater than the page
size, some attributes automatically convert to
BLOB or CLOB, and therefore cannot be put
into a wher e clause.

Note: This field is only enabled when an Un-
wired Server is selected.

Package

Enter a unique name for the Java package. The
default package is the project name.

Destination

Specify the destination of the generated device
clientfiles. Enter (or Browse) to a Project path
or File system path (Mobile Application
project) location, and select Gener at ed
Code as the destination. JAR files are auto-
matically added to the destination project.

Select Clean up destination before code gen-
eration to clean up the destination folder before
generating the device client files.

Third-party jar file

If you select Java as the language, enter, or
browse to the andr oi d. j ar file (for An-
droid), which adds it to the project build path,
and prevents errors after code generation.

. The check box for "Generate metadata classes” is automatically selected as read only for

Android, and the "Including object manager classes” checkbox is de-selected.

code.

. (Optional) Select Generate JavaDoc to generate APl documentation from the source

Note: For Android, this is selected by default.

. Click Finish.

Examine the generated code location and contents.

14

Sybase Unwired Platform



Development Task Flow for Object API Applications

9. Validate the generated code.

Generating Java Object API Code Using the Code Generation Utility

Use the Code Generation Utility to generate object APl code containing mobile business
object (MBO) references. This method of generating code allows you to automate the process
of code generation, for example through the use of scripts.

Prerequisites

Use Unwired WorkSpace to develop and package your mobile business objects. See
Sybase Unwired WorkSpace - Mobile Business Object Development > Develop >
Developing a Mobile Business Object.

Deploy the package to Unwired Server, creating files required for code generation from
the command line. See Sybase Unwired WorkSpace - Mobile Business Object
Development > Develop > Packaging and Deploying Mobile Business Objects

> Automated Deployment of Unwired WorkSpace Projects

Task

1. Locate <domai n name>_package. j ar in your mobile project folder. For the

SUP101 example, the project is deployed to the default domain, and the deploy jar file is in

the following location: SUP101\ Depl oynent\ . pkg. profile

\'My_Unwi red_server\default_package.jar.

Make sure that the JAR file contains this file:

o depl oynent _unit.xmn

Use a utility to extract the depl oynent _uni t. xmi file to another location.

From <Unwi redPl at form_ I nstal | Di r >\ Mbbi | eSDK\ Cbj ect API\ Util s

\ bi n, run the codegen. bat utility, specifying the following parameters:

codegen. bat -java -client -android -ulj deploynment_unit.xm [-

out put <output _dir>] [-doc]

e The - out put parameter allows you to specify an output directory. If you omit this
parameter, the output goes into the <Unwi r edPl atform I nstal | Di r >
\ Mobi | eSDK\ Gbj ect API\ Uti | s\ genfi |l es directory, assuming
codegen.bat is run fromthe <Unwi r edPl at f or m_ | nst al | Di r >\ Mobi | eSDK
\ Obj ect API\ Uti | s\ genfil es directory.

« The- doc parameter specifies that documentation is generated for the generated code.

Ignore these warnings:

| og4j : WARN No appenders could be found for |ogger ...
| 0og4j : WARN Pl ease initialize the | og4j system properly.

Generated Code Location and Contents

If you generated code in Unwired WorkSpace, generated object API code is stored by default
in the "Destination” location you specified during code generation. If you generated code with

Developer Guide: Android Object APl Applications 15



Development Task Flow for Object API Applications

the Code Generation Utility, generateed object API code is stored in the
<Unwi redPl atform I nstall D r>\Unw redPl at f or Ml Mobi | eSDK

\ Obj ect API\ Uti | s\ genfil es folder after you you generate code .

The contents of the folder is determined by the options you selected in the Generate Code
wizard in Unwired WorkSpace, or specified in the Code Generation Utility. The contents
include generated class files that contain:

* MBO - class which handles persistence and operation replay of your MBOs.
e Synchronization parameters — any synchronization parameters for the MBOs.
» Personalization parameters — personalization parameters used by the package.

* Metadata — Metadata class that allow you to query meta data including MBOs, their
attributes, and operations, in a persistent table at runtime..

Validating Generated Code

Validation rules are enforced when generating client code. Define prefix names in the Mobile
Business Object Preferences page of the Code Generation wizard to correct validation errors.

Sybase Unwired WorkSpace validates and enforces identifier rules and checks for keyword
conflicts in generated code, for example, by displaying error messages in the Properties view
or in the wizard. Other than the known name conversion rules (converting '."to '_', removing

white space from names, and so on), there is no other language-specific name conversion. For
example, cust_id is not changed to custld.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

2. Expand Sybase, Inc > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are autogenerated, for example, when you drag and drop a data source onto the
Mobile Application Diagram.

16

Sybase Unwired Platform



Development Task Flow for DOE-based Object API Applications

Development Task Flow for DOE-based Object
APl Applications

Describes the overall development task flow for DOE-based native applications, and provides
information and procedures for setting up the development environment, and developing
DOE-based device applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated Ul interaction, validation, business
logic, and performance.

Object API Archetype

Device User

i - Native Code
Business Native Cod
Logic ative Code
Application Synchronization
Specialization Services
Security
Core Supportability and Configuration
Application -
Services Local Persistence and Cache

Connectivity and Notifications

Object
API

The Object API provides the core application services described in the diagram.
The Authentication APIs provide security by authenticating the client to the Unwired Server.

The Synchronization APIs allow you to synchronize mobile business objects (MBOSs) based
on synchronization parameters, for individual MBOs, or as a group, based on the group's
synchronization policy.

The Application and Connection APIs allow clients to register with and connect to the
Unwired Server. The Callback Handler and Listener APls, and the Target Change Notification
APIs provide notifications to the client on operation success or failure, or changes in data.

With non-DOE-based applicaitons, Connectivity uses the MobiLink channel and
Notifications use the Messaging channel.

1. [Installing the Android Development Environment

Developer Guide: Android Object APl Applications 17



Development Task Flow for DOE-based Object API Applications

Install the Android development environment, and prepare Android devices for
authentication.

2. Creating a Project
Build a device application project.
3. Generating Java Object API Code

Use the Code Generation Utility to generate object API code, which allows you to use
APIs to develop device applications for Android devices.

4. Customizing the Application Using the Object API

Use the Object API to customize the application. An application consists of building
blocks which the developer uses to start the application, perform functions needed for the
application, and shutdown and uninstall the application.

5. Testing Applications
Test native applications on a device or simulator.
6. Localizing Applications
Localize an Android application by creating default and alternate resources.
7. Packaging Applications
Package applications according to your security or application distribution requirements.

Installing the Android Development Environment

Install the Android development environment, and prepare Android devices for
authentication.

1. [Installing the Android SDK
Install the Android SDK.
2. Installing X.509 Certificates on Android Devices and Emulators

Install the .p12 certificate on the Android device or emulator for authentication. A
certificate provides an additional level of secure access to an application, and may be
required by an organization's security policy.

See also
e Creating a Profect on page 20

Installing the Android SDK
Install the Android SDK.

1. Confirm your system meets the requirements at Attp.//developer.android.com/sdk/
requirements.htmi.

18 Sybase Unwired Platform


http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/requirements.html

Development Task Flow for DOE-based Object API Applications

2. Download and install the SDK starter package from Attp.//developer.android.com/sak/
index.html.

3. Launch the Android SDK Manager and install the Android SDK tools, platform, and
compatibility package for Android.

4. Launch the Android Virtual Device Manager, and create an Android virtual device to
use as your simulator.

Installing X.509 Certificates on Android Devices and Emulators
Install the .p12 certificate on the Android device or emulator for authentication. A certificate
provides an additional level of secure access to an application, and may be required by an
organization's security policy.

Prerequisites

» Java SE Development Kit (JDK) must be installed.
* The Android SDK must be installed.

Task

1. Connect the Android device to your computer with the USB cable.
2. To install using Eclipse with the ADT plugin:

Note: USB debugging must be enabled.

a) Open the Windows File Explorer view. From the menu bar, navigate to Window >
Show View > Other.

b) In the Show View dialog, expand the Android folder and select File Explorer.

¢) Expand mnt > sdcard and select the sdcard folder.

d) In the top right of the File Explorer view, click Push a file onto the device.

e) Inthe Put File on Device dialog, select the certificate and click Open.

3. Toinstall using Windows Explorer:

Note: USB debugging must be disabled.

a) Open Windows Explorer

b) Under your computer, click the Android device to expand the folder.
c) Click Device Storage, navigate to and select the certificate.

d) Import the certificate to the Device Storage folder.

4. To install using the Android Debug Bridge (adb):

Note: USB debugging must be enabled. You can enable USB debug mode from the device
menu by selecting Settings > Application > USB Debugging.

Developer Guide: Android Object APl Applications 19


http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Development Task Flow for DOE-based Object API Applications

a) Open the command line directory to the adb. exe file, for example, C. \ Pr ogr am
Fi | es\ andr oi d- sdk-w ndows\t ool s,or C:\ Program Fi | es
\ andr oi d- sdk- wi ndows\ pl atf ormt ool s

b) Runthe command: adb push %Pat hToCert % MyCert.pl2 /sdcard/
MyCert. pl2

Creating a Project

Build a device application project.

1. Creating a Project in Unwired WorkSpace
Create a project for your Android device application in Sybase Unwired WorkSpace.
2. Importing Libraries and Code

Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

See also
 Installing the Android Development Environmenton page 18
e Generating Java Object APl Code on page 23

Creating a Project in Unwired WorkSpace
Create a project for your Android device application in Sybase Unwired WorkSpace.

1. In Sybase Unwired WorkSpace, select File > New > Project.
2. Select Android > Android Project.

20 Sybase Unwired Platform



Development Task Flow for DOE-based Object API Applications

+ i New Project  _ O]

Select a wizard

Wizards:

[#-1=- General
== android
[—Ig Android Project
JG android Test Project
F= CIC++
[#-[=- Eclipse Modeling Framework,
[#H-l=F Java
[#-[=- JawaScript
[#-= Plug-in Development
H-[=- Svbase
F-1= Web
H-[=> XL UPC
[#-= Examples

sy
C?j: < Biack I Mext = I Firish | Cancel |

3. Inthe New Android Project wizard, enter these values and click Finish:
* Project name: —enter the name of the project
* Package name: —enter the name of the package
* Min SDK Version: —8

Developer Guide: Android Object APl Applications 21



Development Task Flow for DOE-based Object API Applications

u 4 New Android Project M=l E3

New Android Project

Creates a new Android Project resource,

Project name: | SUPClient

— Conkents
% Create new project in workspace
" Create project from existing source

v Use default lacation

Lacation: | CifSvbase/UnwiredPlatform/Eclipse/SUPClient Browse, ., |

™ Create project From existing sample

Samples: IApiDemos j
r Build Target
Target Mame | Vendar | PlatFarm | AFT ... |
Android 2.2 Android Open Source Project 2.2 8
. Properties

Application name: | SUPClient

Package name: | com.svbase.demo

¥ Create Ackiviby: |5UPCIient.¢\ctivitv

Min SDK Yersion: | &

—Working sets

[~ add project ba working sets

Wiorking sets: j Select, ., |

@j < Back. | Mext = | Finish I Cancel |

4. Add the following user permissions in Andr oi dvani f est . xmi :

<uses-perm ssi on androi d: nane="andr oi d. per mi ssi on. | NTERNET" ></
uses- perm ssi on>

<uses- perm ssi on

andr oi d: name="andr oi d. per mi ssi on. READ_PHONE_STATE" ></ uses-

per m ssi on>

<uses- perm ssi on

andr oi d: name="andr oi d. per m ssi on. ACCESS W FI _STATE" ></ uses-

22 Sybase Unwired Platform



Development Task Flow for DOE-based Object API Applications

per m ssi on>

<uses- perm ssi on

andr oi d: name="andr oi d. per m ssi on. ACCESS NETWORK_STATE" ></ uses-
perm ssi on>

<uses- perm ssi on

andr oi d: name="andr oi d. per m ssi on. WRI TE_EXTERNAL_ STORAGE" ></ uses-

per m ssi on>

Importing Libraries and Code
Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

1. Inyour Sybase Unwired WorkSpace project, create al i bs directory.

2. Copy the following library and JAR files from <Unwi redPl atform I nstal I Di r>
\ Unwi r edPl at f or Ml Mobi | eSDK\ Obj ect APl \ Andr oi d intothel i bs
directory within your project, using the exact directory structure shown here:
= libs

Bl L= armeabi
wmi libmlcrsal? so
=0 Hbultrafitei12, 50
g Clientlib.jar
E&] sup-client, jar
g8l] UlbraliteINI1Z, jar

3. Select Project > Properties> JavaBuild Path. On the Librariestab, add the libraries to

the project.

Generating Java Object APl Code

Use the Code Generation Utility to generate object API code, which allows you to use APIs to
develop device applications for Android devices.

Prerequisites

» Generate and download the ESDMA bundle for you application.

« Run the ESDMA Converter utility to turn your ESDMA into an Unwired Platform
package.

« Deploy the package to Unwired Server.

Task

1. Locate <domai n nane>_package. j ar in your mobile project folder. For the
SUP101 example, the project is deployed to the default domain, and the deploy jar file is in

Developer Guide: Android Object APl Applications 23



Development Task Flow for DOE-based Object API Applications

the following location: SUP101\ Depl oynent\ . pkg. profil e
\My_Unwi red_server\default_package.jar.

2. Make sure that the JAR file contains this file:
o depl oynent _unit.xmn
3. From<Unwi r edPl at form I nstal | Di r >\ Unwi r edPl at f or Ml Mobi | eSDK
\ Obj ect API\ Uti | s\ bi n, runthe codegen. bat utility, specifying the following
parameters:
codegen -android -client -doe -java -ulj
[-out put <output _dir>] [-doc] <ESDMA dir>\ META- | NF\ sup-db. xmi
e The - out put parameter allows you to specify an output directory. If you omit this
parameter, the output goes into the <Unwi r edPl atform I nstal | Di r >
\ Unwi redPl at f or Ml Mobi | eSDK\ Obj ect API\ Uti | s\genfiles
directory, assuming codegen.bat is run from the
<Unwi redPl atform I nstal | Di r>\ Unwi r edPl at f or Ml Mobi | eSDK
\ Obj ect API'\ Ut i | s\ bi n directory.
» The- doc parameter specifies that documentation is generated for the generated code.
Ignore these warnings:
| og4j : WARN No appenders could be found for |ogger
| 0og4j : WARN Pl ease initialize the | og4j system properly.
See also

Creating a Profect on page 20
Customizing the Application Using the Object APl on page 25

Generated Code Location and Contents

The location of the generated Object API code is the location you specified when you
generated the code using codegen.bat at the command line.

The contents of the folder is determined by the parameters you pass to codegen. bat inthe
command line, and include generated class files that contain:

DatabaseClass — package level class that handles subscription, login, synchronization, and
other operations for the package.

MBO - class which handles persistence and operation replay of your MBOs.
Personalization parameters — personalization parameters used by the package.

Metadata — Metadata class that allows you to query meta data including MBOs, their
attributes, and operations, in a persistent table at runtime..

24

Sybase Unwired Platform



Customizing the Application Using the Object API

Customizing the Application Using the Object
API

Use the Object API to customize the application. An application consists of building blocks
which the developer uses to start the application, perform functions needed for the application,
and shutdown and uninstall the application.

See also

e Generating Java Object APl Code on page 11
o Testing Applications on page 49

» Generating Java Object APl Code on page 23

Initializing an Application

Initialize the application when it starts the first time and subsequently.

« Initially Starting an Application
Starting an application the first time.
o Subsequently Starting an Application
Subsequent start-ups are different from the first start-up.

Initially Starting an Application
Starting an application the first time.

1. Setting Up Application Properties
The Application instance contains the information and authentication credentials needed
to register and connect to the Sybase Unwired Platform server.
2. Registering an Application
Each device must register with the server before establishing a connection.
3. Setting Up the Connection Profile
The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLiteJ
runtime tuning values.
4. Setting Up Connectivity
Store connection information to the Sybase Unwired Server data synchronization channel.
5. Creating and Deleting a Device's Local Database

There are methods in the generated package database class that allow programmers to
delete or create a device's local database. A device local database is automatically created

Developer Guide: Android Object APl Applications 25



Customizing the Application Using the Object API

when needed by the Object API. The application can also create the database
programatically by calling the createDatabase method. The device's local database should
be deleted when uninstalling the application.

6. Logging In

Use online authentication with the server, and offline authentication with the device.
7. Turn Off API Logger

In production environments, turn off the API logger to improve performance.
8. Setting Up Callbacks

When your application starts, it can register database and MBO callback listeners, as well
as synchronization listeners.

9. Connecting to the Device Database
Establish a connection to the database on the device.

10. Synchronizing Applications
Synchronize package data between the device and the server.

11. Specifying Personalization Parameters
Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The
PersonalizationParameters class is within the generated code for your project.

12. Specifying Synchronization Parameters

Use synchronization parameters within the mobile application to download filtered MBO
data.

See also
« Application APIs on page 57
e Connection APIs on page 67

Setting Up Application Properties
The Application instance contains the information and authentication credentials needed to
register and connect to the Sybase Unwired Platform server.

The following code illustrates how to set up the minimum required fields:

/] Initialize Application settings
Application app = Application.getlnstance();

/1 The identifier has to match the application I D depl oyed to the SUP
server

app. set Appl i cationldentifier("SUP101");

/1l Set the android.content.Context for the application

app. set Appl i cati onCont ext (context); // context is the

andr oi d. cont ent . Cont ext

/'l ConnectionProperties has the infomation needed to register
/] and connect to SUP server
Connecti onProperties connProps = app. get Connecti onProperties();

26

Sybase Unwired Platform



Customizing the Application Using the Object API

connProps. set Server Name("supser ver. myconpany. coni') ;

connPr ops. set Port Nunber (5001) ;

/1 Other connection properties need to be set when connecting through
rel ay server

/1 provide user credentials

Logi nCredential s | ogi nCred = new Logi nCredenti al s("supAdni n",
"supPwd") ;

connProps. set Logi nCredenti al s(| ogi nCred);

/1 Initialize generated package database class with this Application
i nst ance
SUP101DB. set Appl i cati on(app);

Note: set Appl i cationl dentifier andset Appl i cati onCont ext must be
called in the user interface thread.

See also
* Application APIs on page 57

Registering an Application
Each device must register with the server before establishing a connection.

To register the device with the server during the initial application startup, use the

regi st er Appl i cati on method inthe com sybase. nobi | e. Appl i cati on
class. You do not need to use the r egi st er Appl i cat i on method for subsequent
application startups.To start the connection to complete the registration process, use the
Appl i cation. start Connecti on method.

Call the generated database's set Appl i cat i on method before starting the connection or
registering the device.

The following code shows how to register the application and device.

/Il Initialize Application settings
Application app = Application.getlnstance();

/1 The identifier has to match the
/1 application ID deployed to the SUP server
app. set Appl i cationldentifier("SUP101");
Appl i cationCal | back appCal | back = new MyAppl i cationCal | back(); //
MyAppl i cati onCal | back i npl ements ApplicationCal | back
app. set Appl i cati onCal | back(appCal | back); // optional
app. set Appl i cati onCont ext (nyAndr oi dContext); // required
/'l use the android.content. Context for the application

/'l set connection properties, login credentials, etc

SUP101DB. set Appl i cati on(app) ;

if (app.getRegistrationStatus() != RegistrationStatus. REG STERED)
{

Developer Guide: Android Object APl Applications 27



Customizing the Application Using the Object API

/1 If the application has not been registered to the server,
/1 register now
app. regi ster Appl i cati on(<ti neout _val ue>);

el se

// start the connection to server
app. st art Connecti on(<ti neout _val ue>);

See also
o Application APIs on page 57

Setting Up the Connection Profile

The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLiteJ
runtime tuning values.

Set up the connection profile before the first database access, and check if the database exists
by calling the dat abaseExi st s method in the generated package database class. Any
settings you establish after the connection has already been established will not go into effect.

The generated database class automatically contains all the default settings for the connection
profile. You may add other settings if necessary. For example, you can set the database to be
stored in an SD card or set the encryption key of the database.

Use the com sybase. per si st ence. Connecti onProfi | e class to set up the
locally generated database:

1. Retrieve the connection profile object using the Sybase Unwired Platform database's
get Connecti onPr of i | e method.

2. Use the connection profile object's save method to set the values once when the
application first starts. On subsequent usage of the application, the connection profile will
contain all the settings from the last save call.

/1 Initialize the device database connection profile (if needed)
ConnectionProfile connProfile = SUP101DB. get Connecti onProfile();

[l Store the database in an SD card

connProfil e.setProperty("databaseFile",

andr oi d. os. Envi ronnent . get Ext er nal St orageDi rectory().getPath() + "/
SUP1011_0.ulj");

/1 encrypt the database
connProfile.setEncryptionkKey("your encryption key"); //Encryption
key can be of arbitary |length, but generally the |onger, the better.

/'l use 100K for cache size
connProfil e. set CacheSi ze(102400) ;

28

Sybase Unwired Platform



Customizing the Application Using the Object API

/] save it
connProfile.save();

You can also automatically generate a encryption key and store it inside a data vault.

See also
e ConnectionProfile on page 67

Setting Up Connectivity
Store connection information to the Sybase Unwired Server data synchronization channel.

See also
e Creating and Deleting a Device's Local Database on page 30

Setting Up the Synchronization Profile

You can set Unwired Server synchronization channel information by calling the
synchronization profile's setter method. By default, this information includes the server host,
port, domain name, certificate and public key that are pushed by the message channel during
the registration process.

Settings are automatically provisioned from the Unwired Server. The values of the settings are
inherited from the application connection template used for the registration of the application
connection (automatic or manual). You must make use of the connection and security settings
that are automatically used by the Object API.

Typically, the application uses the settings as sent from the Unwired Server to connect to the
Unwired Server for synchronization so that the administrator can set those at the application
deployment time based on their deployment topology (for example, using relay server, using
e2ee security, or a certificate used for the intermediary, such as a Relay Server Web server).
See the Applications and Application Connection Templates topics in System
Administration.

When the client registers and starts the application, the certificate is downloaded to the client,
so that the client can be assigned the trusted certificate.

Set up a secured connection using the Connect i onPr of i | e object.

1. Retrieve the synchronization profile object using the Sybase Unwired Platform database's
get Synchroni zat i oni onPr of i | e method.

ConnectionProfile cp = SUP101DB. get Synchroni zati onProfile();
2. Set the connection fields in the Connect i onPr of i | e object.

cp. set Server Name(" SUP_Host ") ;

cp. set Port Nunber (2481) ;

cp. get StreanParans().set Trusted_Certificates(appnane
+" _trustedCertificates.crt");

cp. set Net wor kPr ot ocol ("https");

Developer Guide: Android Object APl Applications 29



Customizing the Application Using the Object API

See also
e Synchronization Profile on page 70

Creating and Deleting a Device's Local Database

There are methods in the generated package database class that allow programmers to delete
or create a device's local database. A device local database is automatically created when
needed by the Object API. The application can also create the database programatically by
calling the cr eat eDat abase method. The device's local database should be deleted when
uninstalling the application.

Check if the locally generated database exists, create the database, or delete the database:

1. Check if an instance of the generated database exists by calling the generated database
instance's dat abaseExi st s method.

2. If an instance of a the generated database does not exist, call the generated database
instance's cr eat eDat abase method.
i f (!SUP101DB. dat abaseExi sts())

SUP101DB. cr eat eDat abase() ;
}
3. Connect to the generated database by calling the generated database instance's
openConnect i on method.

SUP101DB. openConnecti on();

If the database does not already exist, the openConnect i on method creates it.

4. When the local database is no longer needed, delete it by calling the generated database
instance's del et eDat abase method.
SUP101DB. del et eDat abase() ;

See also
» Setting Up Connectivity on page 29

Logging In
Use online authentication with the server, and offline authentication with the device.

1. Normally, the user is authenticated through the r egi st er Appl i cati on and
st art Connect i on methods inthe Appl i cat i on class. Once this is done there is no
need to authenticate again. However, the user can authenticate directly with the server at
any time during the application's execution by calling the generated database instance's
onl i neLogi n method.

2. Authenticate using the last successful credentials on the device by calling the generated
database instance's of f | i neLogi n method.

30

Sybase Unwired Platform



Customizing the Application Using the Object API

Turn Off APl Logger
In production environments, turn off the API logger to improve performance.

SUP101DB. get Logger () . set LogLevel (LogLevel . OFF) ;

Setting Up Callbacks
When your application starts, it can register database and MBO callback listeners, as well as
synchronization listeners.

Callback handler and listener interfaces are provided so your application can monitor changes
and notifications from Sybase Unwired Platform:

< Thecom sybase. nobi | e. Appl i cati onCal | back class is used for monitoring
changes to application settings, messaging connection status, and application registration
status.

* Thecom sybase. persi st ence. Cal | backHandl er interface is used to
monitor notifications and changes related to the database. Register callback handlers at the
package level use the r egi st er Cal | backHandl er method in the generated
database class. To register for a particular MBO, use the
regi st er Cal | backHandl er method in the generated MBO class.

 Thecom sybase. persi st ence. SyncSt at usLi st ener class is used for
debugging and performance measures when monitoring stages of a synchronization
session, and can be used in the user interface to indicate synchronization progress.

See also
e Connecting to the Device Database on page 36
e Callback and Listener APIs on page 101

Setting Up Callback Handlers
Use the callback handlers for event notifications.

Usethecom sybase. per si st ence. Cal | backHandl er API for event notifications
including login for synchronization and replay. If you do not register your own
implementation of the com sybase. per si st ence. Cal | backHandl er interface,
the generated code will regsiter a new default callback handler.

1. The generated database class contains a method called
regi st er Cal | backHandl er . Use this method to install your implementation of
Cal | backHandl er.
For example:
SUP101DB. r egi st er Cal | backHand! er (new MyCal | backHandl er () ) ;

2. Each generated MBO class also has the same method to register your implementation of
the Cal | backHandl er for that particular type. For example, if Cust oner is a
generated MBO class, you can use the following code:

Developer Guide: Android Object APl Applications 31



Customizing the Application Using the Object API

Cust oner . regi st er Cal | backHandl er (new
MyCust oner MBOCal | backHandl er ());

Create a Custom Callback Handler
If an application requires a callback (for example, to allow the client framework to provide
notification of synchronization results) create a custom callback handler.

i mport com sybase. persi st ence. Def aul t Cal | backHandl er;

public class Test
public static void main(String[] args)

SUP101DB. r egi st er Cal | backHand! er (new MyCal | backHandl er () ) ;
Generi cLi st <Synchroni zati onG oup> sgs = new
Generi cLi st <Synchr oni zat i onG oup>() ;
sgs. add( SUP101DB. get Synchr oni zat i onG oup("sgl"));
sgs. add( SUP101DB. get Synchr oni zat i onGr oup("sg2"));
SUP101DB. begi nSynchroni ze(sgs, "ny test synchroni zation
context");

}
cl ass MyCal | backHandl er extends Defaul t Cal | backHandl er

public int onSynchroni ze(Generi cLi st <Synchroni zati onG oup>
groups, Synchroni zati onCont ext context)

if ( context == null )

{
}

if ("my test synchronization context".equal s((String)
(context. getUserContext())))

return Synchroni zati onActi on. CANCEL;

return super.onSynchroni ze(groups, context);

}

switch (context.getStatus())

case Synchroni zati onSt at us. STARTI NG
i f (waitForMreChanges())

return Synchroni zati onActi on. CANCEL;

}
el se
return Synchroni zati onActi on. CONTI NUE;
defaul t:

return Synchroni zati onActi on. CONTI NUE;

32 Sybase Unwired Platform



Customizing the Application Using the Object API

For DOE-based applications, replace onSynchr oni ze in the example below with ,
onRepl aySuccess, or one of the other callback handlers that is designed specifically to
for DOE-based applications. See the CallbackHandler APItopic in the Client Object AP/
Usage section of this document.

Asynchronous Operation Replay
Upload operation replay records asynchronously.

When an application callssubmi t Pendi ng onan MBO on which a create, update, or delete
operation is performed, an operation replay record is created on the device local database.

When synchr oni ze is called, the operation replay records are uploaded to the server. The
method returns without waiting for the backend to replay those records. The synchr oni ze
method downloads all the latest data changes and the results of the previously uploaded
operation replay records that the backend has finished replaying. If you choose to disable
asynchronous operation replay, each synchr oni ze call will wait for the backend to finish
replaying all the current uploaded operation replay records.

For DOE-based application, the operation replay record is sent to server via message channel
when submitPending is called. When operation replay is done on server, one of the callback
methods onReplaySuccess and onReplayFailure will be invoked depends on the result of the

replay.

This feature is enabled by default. You can enable or disable the feature by setting the
asyncRepl ay property in the synchronization profile. The following code shows how to
disable asynchronous replay:

SUP101DB. get Synchroni zati onProfil e(). set AsyncRepl ay(fal se);

When asynchronous replay is enabled and the replay is finished, the onSynchronize callback
method is invoked with a SynchronizationStatus value of

Synchr oni zat i onSt at us. ASYNC_REPLAY_COWPLETED. Use this callback
method to invoke a synchronize call to pull in the results, as shown in the following callback
handler.

public class MyCal |l backHandl er extends Defaul t Cal | backHandl er

public i nt onSynchroni ze( Generi cLi st <Synchroni zati onG oup> groups,
Synchroni zat i onCont ext cont ext)

switch(context. get Status())
{
case Synchroni zati onSt at us. ASYNC_REPLAY_UPLOADED:
LogMessage( " AsyncRepl ay upl oaded");
br eak;
case Synchroni zati onSt at us. ASYNC_REPLAY_COWVPLETED:
/'l operation replay finished, return
Synchroni zati onActi on. CONTI NUE
[l will start a background synchronization to pull in the
resul ts.
LogMessage( " AsyncRepl ay Done");

Developer Guide: Android Object APl Applications 33



Customizing the Application Using the Object API

br eak;
defaul t:
br eak;

}

return Synchroni zati onActi on. CONTI NUE;
}
}

Synchronize Status Listener for NON-DOE-based Applications
Retrieve the synchronization status.

Synchronize Status Listener is mainly for debugging and performance measuring purposes to
monitor stages of a synchronize session. It could also be used in Ul for synchronization
progress status. Below is a sample Synchronize Status Listener.

i nport com sybase. persi st ence. bj ect SyncSt at usDat a;
i mport com sybase. persi stence. SyncSt at usLi st ener;
i mport com sybase. persi stence. SyncSt at usSt at e;

public class MySyncStatusLi stener inplenents SyncStatusLi stener

{

| ong start;
publi ¢ MySyncSt at usLi st ener ()

start = SystemcurrentTineM I 1is();

}

publ i c bool ean obj ect SyncSt at us(Obj ect SyncSt at usDat a st at usDat a)
{

I ong now = SystemcurrentTimeM | lis();

long interval = now - start;

start = now,

String i nfoMessage;

int syncState = statusData. get SyncStatusState();
switch (syncState)

case SyncStatusSt ate. SYNC_STARTI NG
i nfoMessage = "START [" + interval + "]";
br eak;
case SyncStatusStat e. APPLI CATI ON_SYNC_SENDI NG_HEADER:
i nfoMessage = "SENDI NG HEADERS [" + interval + "]";
br eak;
case SyncStatusStat e. APPLI CATI ON_SYNC_SENDI NG_SCHEMA:
i nfoMessage = "SENDI NG SCHEMA [" + interval + "]";
br eak;
case SyncStatusStat e. APPLI CATI ON_DATA_UPLOADI NG
i nfoMessage = "DATA UPLOADING [" + interval + "] "
+ statusData.getCurrent MBQ() + ": (S>"
+ statusDat a. get Sent ByteCount () + ":"
+ st atusDat a. get Sent RowCount () + " R<"
+ st at usDat a. get Recei vedByteCount () + ":"

34

Sybase Unwired Platform



Customizing the Application Using the Object API

+ st at usDat a. get Recei vedRowCount () + ")";

br eak;
case SyncStatusStat e. APPLI CATI ON_SYNC_RECEI VI NG_UPLCAD_ACK:

i nf oMessage = "RECElI VING UPLOAD ACK [" + interval + "]";

br eak;
case SyncStatusSt ate. APPLI CATI ON_DATA UPLOADI NG_DONE:

i nfoMessage = "UPLOAD DONE [" + interval + "1
statusData. getCurrent MBQ() + ": (S>"
st at usDat a. get Sent Byt eCount () + ":"
st at usDat a. get Sent RowCount () + " R<"
st at usDat a. get Recei vedByt eCount () + ":"

+ st atusDat a. get Recei vedRowCount () + ")";

br eak;
case SyncStat usStat e. APPLI CATI ON_DATA_DOMNLOADI NG

i nfoMessage = "DATA DOMNLOADING " + interval + "] "
statusDat a. getCurrent MBQ() + ": (S>"
st at usDat a. get Sent Byt eCount () + ":"
st at usDat a. get Sent RowCount () + " R<"
st at usDat a. get Recei vedByt eCount () + ":"

+ st atusDat a. get Recei vedRowCount () + ")";

br eak;
case SyncStatusStat e. APPLI CATI ON_SYNC_DI SCONNECTI NG

i nfoMessage = "DI SCONNECTING [" + interval + "]";

br eak;
case SyncStatusSt at e. APPLI CATI ON_SYNC_COWM TTI NG_DOWNL QAD:

i nfoMessage = "COW TTI NG DOMNLOAD ["* + interval + "] "
statusDat a. get Current MBQ() + ": (S>"
st at usDat a. get Sent Byt eCount () + ":*"
st at usDat a. get Sent RowCount () + " R<"
st at usDat a. get Recei vedByt eCount () +

+ st at usDat a. get Recei vedRowCount () + ")";

br eak;
case SyncStatusStat e. APPLI CATI ON_SYNC_CANCELLED:

i nfoMessage = "SYNC CANCELED [" + interval + "]";

br eak;
case SyncStatusSt at e. APPLI CATI ON_DATA DOANLOADI NG_DONE:

i nfoMessage = "DATA DOMNLOADI NG DONE [" + interval + "]";

br eak;
case SyncStatusSt at e. SYNC_DONE:

i nfoMessage = "DONE [" + interval + "]";

br eak;
defaul t:

i nfoMessage = "STATE" + syncState + "[" + interval + "]";

br eak;

+

+ + + +

+ + +

+

+ + +

}
LogMessage(i nf oMessage) ;
return fal se;

}
}

The application can pass an instance of an implementation of SyncSt at usLi st ener to

the synchronize API of the generated package database class to monitor the synchronization
status.

SUP101DB. synchr oni ze(new MySyncSt at usLi st ener())

Developer Guide: Android Object APl Applications 35



Customizing the Application Using the Object API

Connecting to the Device Database
Establish a connection to the database on the device.

After completing the device registration, call the generated database's openConnect i on
method to connect to the UltraLite/UltraLiteJ database on the device. If no device database
exists, the openConnect i on method creates one.

See also
o Setting Up Callbacks on page 31

Synchronizing Applications
Synchronize package data between the device and the server.

The generated database provides you with synchronization methods that apply to either all
synchronization groups in the package or a specified list of groups.

For information on synchronizing DOE-based applications, see Message-Based
Synchronization APIs in the Client Object API Usage section of this document.

See also

»  Specifying Personalization Parameters on page 38
e Synchronization APIs on page 75

e Specifying Synchronization Parameters on page 39

Configuring Data Synchronization Using SSL Encryption for Non-DOE-Based

Applications
Enable SSL encryption by configuring the synchronization HTTPS port.

1. Inthe left navigation pane of Sybase Control Center for Unwired Platform, expand the
Serversnode and click the server name.

2. Click Server Configuration.

3. In the right administration pane, click the Replication tab.

4. Select Secure synchronization port 2481 as the protocol used for synchronization, and
configure the certificate properties. In the optional properties section, specify the security

certificate file, the public security certificate file using the fully qualified path to the file,
along with the password you entered during certificate creation.

36 Sybase Unwired Platform



Customizing the Application Using the Object API

Nonblocking Synchronization

An example that illustrates the basic code requirements for connecting to Unwired Server,
updating mobile business object (MBO) data, and synchronizing the device application froma
device application based on the Client Object API.

Subscribe to the package using synchronization APIs in the generated database class, specify
the groups to be synchronized, and invoke the asynchronous synchronization method
(begi nSynchroni ze).

1

If you have not yet synchronized with Unwired Server, perform a synchronization.
SUP101DB. synchr oni ze("syst ent)
Set the synchronization parameters if there are any.

Cust oner Synchr oni zat i onPar anet ers syncParanmeter =
Cust oner . get Synchr oni zat i onPar anet ers() ;

syncPar anet er . set Your Paraneters(...);

syncPar anet er . save() ;

Make a blocking synchronize call to Unwired Server to pull in all MBO data:
SUP101DB. synchr oni ze() ;

List all customer MBO instances from the local database using an object query, such as
Fi ndAl | , which is a predefined object query.

Generi cLi st <Cust onmer> custoners = Custoner.findAl ();

int n = custoners.size();

for (int i =0; i <n; ++ )

{

Cust oner customer = custoners.get(i);
[/ Work on custoner information

}

Find and update a particular MBO instance, and save it to the local database.

Cust oner cust = Customer.findByPrimaryKey(100);

cust.set Address("1 Sybase Dr.");

cust . set Phone("9252360000") ;

cust.save();//or cust.update();

Submit the pending changes. The changes are ready for upload, but have not yet been
uploaded to the Unwired Server.

cust . subni t Pendi ng() ;

Use non-blocking synchronize call to upload the pending changes to the Unwired Server.
The previous replay results and new changes are downloaded to the client device in the

download phase of the synchronization session.

Generi cLi st <Synchroni zati onG oup> sgs = new

CGeneri cLi st <Synchr oni zat i onGr oup>() ;

sgs. add( SUP101DB. get Synchroni zati onG oup("default")); // Custoner

MBO is in "default" sync group
SUP101DB. begi nSynchroni ze(sgs, "nycontext");

Developer Guide: Android Object APl Applications 37



Customizing the Application Using the Object API

Enabling Change Notifications
A synchronization group can enable or disable its change notification.

By default, change notifcations are disabled for synchronization groups. To enable change
notification, call the Synchr oni zat i onG oup object's set Enabl eS| S method.

com sybase. persi st ence. Synchroni zati onG oup sg =
SUP101DB. get Synchr oni zat i onG oup( " PushEnabl ed") ;

if (!sg.getEnableSlS())
{

sg. set Enabl eSI S(true);

sg. setlnterval (2);

sg. save();

SUP101DB. synchr oni ze(" PushEnabl ed") ;

}

Specifying Personalization Parameters

Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The

Per sonal i zat i onPar anet er s class is within the generated code for your project.

1. Toinstantiate a Per sonal i zat i onPar anet er s object, call the generated database
instance's get Per sonal i zat i onPar anmet er s method:

Per sonal i zati onPar ameters pp =
SUP101DB. get Per sonal i zat i onPar anet ers() ;

2. Assign values to the Per sonal i zat i onPar anet er s object:
pp. set PKCi ty( "New York" );

3. Save the Per sonal i zat i onPar anet er s value to the local database:
pp. save();

Note: If you define a default value for a personalization key that value will not take effect,
unless you call pp. save() .

4. Synchronize the Per sonal i zat i onPar aret er s value to the Unwired Server:
SUP101DB. synchr oni ze();

See also
»  Synchronizing Applications on page 36
e Personalization APIson page 74

38 Sybase Unwired Platform



Customizing the Application Using the Object API

Specifying Synchronization Parameters
Use synchronization parameters within the mobile application to download filtered MBO
data.

Assign the synchronization parameters of an MBO before a synchronization session. The next
synchronize sends the updated synchronization parameters to the server. The
Synchr oni zat i onPar anet er s class is within the generated code for your project.

Note: If you do not save the Synchr oni zat i onPar anet er s, no data is downloaded to
the device even if there are default values set for those Synchr oni zat i onPar anet er s.
Call the save method for all Synchr oni zat i onPar amet er s and for all MBOs when
the application is first started. Do this after application registration and the first
synchronization. This only applies to non-DOE-based applications.

1. Retrieve the synchronization parameters object from the MBO instance. For example, if
you have an MBO named Cust oner , the synchronization parameters object is accessed
as a public field and returned as a Cust omrer Synchr oni zat i onPar anet er s
object:

Cust oner Synchroni zat i onParaneters sp =
Cust oner. get Synchroni zat i onPar anet ers() ;

2. Assign values to the synchronization parameter. For example, if the Customer MBO
contains a parameter named ci t ynane, assign the value to the
Cust oner Synchr oni zat i onPar anet er s object's G t ynane field:

sp.setCitynane("Kansas City");
3. Save your changes by calling the synchronization parameters object's save method:
sp. save();

Note: If you defined a default value or bound a PersonalizationParameters in the
Synchr oni zat i onPar anet er s, then that value will not take effect unless you call
sp. save().

After you save the synchonization parameters, call another synchronize() to download the
data.

For DOE-based applications, call SUP101DB. begi nSynchr oni ze() to download
the data.

4. When using synchronization parameters to retrieve data from an MBO during a
synchronization session, clear the previous synchronization parameter values:

Cust oner Synchr oni zat i onPar aneters sp =

Cust oner. get Synchroni zati onPar anet ers() ;

sp.del ete();

sp = Custoner. get Synchroni zati onParanmeters();//Mist re-get
synchroni zati on paraneter instance.

sp.setCitynane("New CGity");

sp. save();

Developer Guide: Android Object APl Applications 39



Customizing the Application Using the Object API

See also
»  Synchronizing Applications on page 36
e Synchronization APIson page 75

Subsequently Starting an Application

Subsequent start-ups are different from the first start-up.
Starting an application on subsequent occasions:

1. Setupthecom sybase. nobi | e. Appl i cat i on instance with the required
com sybase. nobi | e. Connecti onProperti es, including user credentials.

2. Set up the connection profile properties if needed for database location and tuning
parameters.

3. Set up the synchronization profile properties if needed for SSL or a relay server.

4. Start the application connection to the server.

5. Open the database connection.

You can open the database connection in parallel with starting the application connection to
the server.
/] Calls non-bl ocking startConnection

[/ This call will return inmediately.
appl i cation. start Connection();

/'l Open the device database connection while establishing
/1 the messagi ng channel connection in the background
SUP101DB. openConnecti on() ;

/] Once the device database connecti on has been opened, check
/1l whether the nessagi ng channel is connected using the

/1 ApplicationCallback interface or the

Appl i cati on. get Connecti onSt at us() API

See also
» Application APIs on page 57

Accessing MBO Data

Use MBO object queries to retrieve lists of MBO instances, or use dynamic queries that return
results sets or object lists.

See also

e Query APIson page 112

e Object Queries on page 41

e Dynamic Querieson page 41

*  MBOs with Complex Types on page 42

40

Sybase Unwired Platform



Customizing the Application Using the Object API

e Relationships on page 43

Object Queries
Use the generated static methods in the MBO classes to retrieve MBO instances.

1. To find all instances of an MBO, invoke the static f i ndAl | method contained in that
MBO. For example, an MBO named Cust omer contains a method such as publ i ¢
static com sybase. col | ections. Generi cLi st <SUP101. Cust oner >
findAll ().

2. To find a particular instance of an MBO using the primary key, invoke
MBO. fi ndByPri maryKey(...).Forexample, if a Customer has the primary key
"id" as int, the Customer MBO would contain the publ i ¢ static Custoner
fi ndByPri maryKey(int id) method, which performs the equivalent of Sel ect
x.* from Custoner x where x.id = :id.

If the return type is a list, additional methods are generated for you to further process the result,
for example, to use paging. For example, consider this method, which returns a list of MBOs
containing the specified city name:

com sybase. col | ecti ons. Generi cLi st <SUP101. Cust oner >
findByCity(String city, int skip, int take);.Theskip parameter
specifies the number of rows to skip, and the t ak e parameter specifies the maximum number
of rows to return.

See also
» Accessing MBO Dataon page 40
e Query APIson page 112

Dynamic Queries
Build queries based on user input.

Use the com sybase. per si st ence. Query class to retrieve a list of MBOs.

1. Specify the where condition used in the dynamic query.
Query query = new Query();

AttributeTest aTest = new AttributeTest();

aTest.setAttribute("state");

aTest . set Test Val ue("NY");

aTest . set Test Type(Attri buteTest. EQUAL);
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("| nane", Sort Order Type. ASCENDI NG ;

Developer Guide: Android Object APl Applications 41



Customizing the Application Using the Object API

sort.add("fnane", Sort O der Type. ASCENDI NG ;
query.setSortCriteria(sort);

2. Usethefi ndW t hQuery method in the MBO to dynamically retrieve a list of MBOs
acccording to the specified attributes.
Generi cLi st <Cust omer > custoners = Custoner.findWthQuery(query);
int n = custoners.size();
for (int i =0; i <n; ++i)
Custoner c¢ (Custorrer)cust oners. get(l)
Syst em out . pr| ntln("Customer " + i +
+ c.getlname() + ", " + c.get Fname());
}
3. Use the generated database’s execut eQuer y method to query multiple MBOs through
the use of joins.
Query query = new Query();
query. sel ect ("c. fnane, c. | nane, s. order _date,s.id");
query. from("Customer", "c");
query.join("Sal es_order", "s", "s.cust_id", "c.id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("l name");
ts.set Test Val ue("Smth");
ts.setOperator(AttributeTest. EQUAL);
query.setTestCriteria(ts);
QueryResul t Set qrs = SUP101DB. execut eQuery(query);
whil e(grs. next())
{
Systemout. println("order: +
grs.getlint(4) + /Il 4is s.id
grs.getString(l) + /1 1 is c.fname
", " + grs.getString(2) +// 2 is c.lnane
" + qrs.getDate(3)); /1 3 is s.order_date
}
See also

Accessing MBO Data on page 40
Query APIson page 112

MBOs with Complex Types

Mobile business objects are mapped to classes containing data and methods that support
synchronization and data manipulation. You can develop complex types that support
interactions with backend data sources such as SAP® and Web services. When you define an
MBO with complex types, Sybase Unwired Platform generates one class for each complex

type.
Using a complex type to create an MBO instance.

42

Sybase Unwired Platform



Customizing the Application Using the Object API

1. Suppose you have an MBO named Si npl eCaseli st and want to use a complex data
type called Aut hent i cat i onl nf o to its Cr eat e method's parameter. Begin by
creating the complex datatype:

Aut henti cati onl nfo authen = new Aut henticati onlnfo();
aut hen. set User Nane(" Denp") ;

2. Instantiate the MBO object:

Si npl eCaseli st newCase = new Si npl eCaseli st ();
newCase. set Case_Type("Incident");

newCase. set Cat egor y( " Net wor ki ng") ;

newCase. set Cr eat e_Ti ne( new

java.sql . Timestanp(SystemcurrentTineMI1is()));

3. Callthecr eat e method of the SimpleCaseList MBO with the complex type parameter as
well as other parameters, and call subni t Pendi ng() tosubmitthe cr eat e operation
to the operation replay record. Subsequent synchronizations upload the operation replay
record to the Unwired Server and get replayed.
newCase. creat e(aut hen, "Gther", "Qther", "Deno", "false",

"wor kl 0g") ;
newCase. submi t Pendi ng() ;
See also

Accessing MBO Dataon page 40
Query APIson page 112

Relationships

The Object APl supports one-to-one, one-to-many, and many-to-one relationships.

Navigate between MBOs using relationships.

1

Suppose you have one MBO named Cust oner and another MBO named
Sal esOr der . This code illustrates how to navigate from the Cust oner object to its
child Sal esOr der objects:

Custoner cust = Customer.findByld(101);
CGeneri cLi st <Sal es_order> orders = cust.getSal esOrders();

To filter the returned child MBO's list data, use the Query class:

Query query = new Query();

AttributeTest at = AttributeTest.equal ("theAttribute",

"t heTest Val ue");

query. where(at);

orders = cust.get Sal esOrdersFilterBy(query);

For composite relationship, you can call the parent's Submi t Pendi ng method to submit
the entire object tree of the parent and its children. Submitting the child MBO also submits
the parent and the entire object tree. (1f you have only one child instance, it would not make
any difference. To be efficient and get one transaction for all child operations, it is
recommened to submit the parent MBO once, instead of submitting every child).

Developer Guide: Android Object APl Applications 43



Customizing the Application Using the Object API

If the primary key for a parent is assigned by the EIS, you can use a multilevel insert
cascade operation to create the parent and child objects in a single operation without
synchronizing multiple times. The returned primary key for the parent's cr eat e
operation populates the children prior to their own creation.

The following example illustrates how to submit the parent MBO which also submits the
child's operation:

Custoner cust = Customer.findByld(101);
Sal es_order order = new Sal es_order();
order.setld(1001);

order. set Cust oner (cust) ;

order.set Order_date(new Date(SystemcurrentTineMI1lis()));
order.setFin_code_id("r1");

order. set Regi on("Eastern");

order. set Sal es_rep(101);

order.save(); // or order.create();
cust. save();

cust. subm t Pendi ng() ;

See also
» Accessing MBO Data on page 40
*  Query APIson page 112

Manipulating Data

Create, update, and delete instances of generated MBO classes.

You can create a new instance of a generated MBO class, fill in the attributes, and call the
cr eat e method for that MBO instance.

You can modify an object loaded from the database by calling the updat e method for that
MBO instance.

You can load an MBO from the database and call the del et e method for that instance.

See also
* Persistence APIson page 122

Creating, Updating, and Deleting MBOs

Perform create, update, and delete operations on MBO instances.

You can call the cr eat e, updat e, and del et e methods for MBO instances.

Note: For MBOs with custom create or update operations with parameters, you should use the
custom operations, rather than the default cr eat e and updat e operations. See MBOs with
Complex Types.

44

Sybase Unwired Platform



Customizing the Application Using the Object API

1. Suppose you have an MBO named Cust oner . To create an instance within the database,
invoke its cr eat e method, which causes the object to enter a pending state. Then call the
MBO instance's submi t Pendi ng method. Finally, synchronize with the generated
database:

Cust oner newcustomer = new Customer () ;
/1Set the required fields for the custoner
11

newcust oner. create();
newcust omer . submi t Pendi ng() ;
SUP101DB. synchr oni ze();

For DOE-based applications, omit SUP101DB. synchr oni ze; above.

2. To update an existing MBO instance, retrieve the object instance through a query, update
its attributes, and invoke its updat e method, which causes the object to enter a pending
state. Then call the MBO instance'ssubmi t Pendi ng method. Finally, synchronize with
the generated database:

Cust oner customer = Custoner.findByPri maryKey(myCustomerlid); //
find by primry key

custoner.setCity("Dublin"); //update any field to a new val ue
cust oner . updat e() ;

cust oner . subm t Pendi ng() ;

SUP101DB. synchr oni ze();

For DOE-based applications, omit SUP101DB. synchr oni ze; above.

3. To delete an existing MBO instance, retrieve the object instance through a query and
invoke its del et e method, which causes the object to enter a pending state. Then call the
MBO instance's submi t Pendi ng method. Finally, synchronize with the generated
database:

Cust oner custoner = Custoner.findByPri maryKey(myCustomerld); //
find by primary key

cust oner. del ete();

cust oner. subm t Pendi ng() ;

SUP101DB. synchr oni ze() ;

For DOE-based applications, omit SUP101DB. synchr oni ze; above.

See also
» QOperations APIson page 123

Other Operations
Use operations other than create, update, or delete.

In this example, a customized operator is used to perform a sum operation.

1. Suppose you have an MBO named My MBOthat has an operator that generates a customized
sum. Begin by creating an object instance and assigning values to its attributes, specifying
the " Add" operation:

Developer Guide: Android Object APl Applications 45



Customizing the Application Using the Object API

MyMBOAddOper ati on op = new MyMBOAddOper ation(); //Convension is
<MBO Name>+<QOper ati on Name>+"Operation"

op. set Operand1(12);
op. set Oper and2(23) ;
op. set Oper at or (" Add") ;
op. save();

2. Call the MBO instance's submi t Pendi ng method and synchronize with the generated
database:
op. submi t Pendi ng() ;
SUP101DB. synchr oni ze();

With DOE-based applications, omit SUP101DB. Synchr oni ze() ; above.

See also
e Operations APIson page 123

Using SubmitPending and SubmitPendingOperations

You can submit a single pending MBO, all pending MBOs of a single type, or all pending
MBOs in a package. Once those pending changes are submitted to the server, the MBOs enter
a replay pending state.

Note that submitPendingOperations APIs are expensive. Sybase recommends using the
submitPending APl with the MBO instance whenever possible.

Database Classes

Submit pending operations for all entities in the package or synchronization group, cancel all
pending operations that have not been submitted to the server, and check if there are pending
oprations for all entities in the package.

1. Tosubmit pending operations for all pending entities in the package, invoke the generated
database's subni t Pendi ngOper at i ons method.

Note that submitPendingOperations APIs are expensive. Sybase recommends using the
submitPending API with the MBO instance whenever possible.

2. To submit pending operations for all pending entities in the specified synchronization
group, invoke the generated database's submi t Pendi ngOper ati ons (string
synchroni zat i onG oup) method.

3. To cancel all pending operations that have not been submitted to the server, invoke the
generated database's cancel Pendi ngOper at i ons method.

Generated MBOs

Submit pending operations for all entities for a given MBO type or a single instance, and
cancel all pending operations that have not been submitted to the server for the MBO type or a
single entity.

46

Sybase Unwired Platform



Customizing the Application Using the Object API

1. To submit pending operations for all pending entities for a given MBO type, invoke the
MBO class' static submi t Pendi ngQper at i ons method.

Note that submitPendingOperations APIs are expensive. Sybase recommends using the
submitPending API with the MBO instance whenever possible.

2. To submit pending operations for a single MBO instance, invoke the MBO object's
submi t Pendi ng method.

3. To cancel all pending operations that have not been submitted to the server for the MBO
type, invoke the MBO class' static cancel Pendi ngQOper at i ons method.

4. To cancel all pending operations for a single MBO instance, invoke the MBO object's
cancel Pendi ng method.

Shutting Down the Application

Shut down an application and clean up connections.

Closing Connections
Clean up connections from the generated database instance prior to application shutdown.

1. Torelease an opened application connection, stop the messaging channel by invoking the
application instance's st opConnect i on method.

/'l wait the timeout value for the connection to stop
/1 if it is not stopped within the timeout val ue an exception will
be t hrown
app. st opConnecti on(<ti meout _val ue>);

2. Close all connections to device database by calling the cl oseConnect i on method in
the generated package database class. If one application has multiple packages, invoke the
cl oseConnect i on APl in all the packages.

Uninstalling the Application

Uninstall the application and clean up all package- and MBO-level data.

Deleting the Database and Unregistering the Application
Delete the package database, and unregister the application.

1. To delete the package database, call the generated database's del et eDat abase
method.

SUP101DB. del et eDat abase() ;

2. Unregister the application by invoking the Appl i cat i on instance's
unr egi st er Appl i cati on method.

Developer Guide: Android Object APl Applications 47



Customizing the Application Using the Object API

app. unregi sterApplication(<tinme out value>);

48 Sybase Unwired Platform



Testing Applications

Testing Applications

Test native applications on a device or simulator.

See also

Customizing the Application Using the Object APl on page 25
Localizing Applications on page 53

Testing an Application Using a Emulator

Run and test the application on an emulator and verify that the application automatically
registers to Unwired Server using the default application connection template.

Prerequisites

You must have created an Android Virtual Device when you installed the Android SDK in
your Android development environment. The Android Virtual Device (AVD) must use the
same target as the test package.

Task

1

In the Eclipse Package Explorer, right-click the project and select Run As> Android
Application.

The ADT plugin for Eclipse installs your application, starts the emulator automatically,
and launches the application. The application will automatically register with Unwired
Server using the default application connection template.

In Sybase Control Center verify that the application connection was created in
Applications > Application Connections.

When the application has successfully registered, the application connection displays a
value of zero in the Pending Items column.

Test the functionality of the application. Use debug tools as necessary, setting breakpoints
at appropriate places in the application.

Client-Side Debugging

Identify and resolve client-side issues while debugging the application.

Problems on the device client side that may cause client application problems:

Developer Guide: Android Object APl Applications 49



Testing Applications

Unwired Server connection failed - use your device browser to check the connectivity of
your device to the server.

Data does not appear on the client device - check if your synchronization and
personalization parameters are set correctly. If you are using queries, check if your query
conditions are correctly constructed and if the device data match your query conditions.
Physical device problems, such as low memory - implement

Appl i cati onCal | back. onDevi ceCondi t i onChanged to be notified if
device storage gets too low, or recovers from an error.

To find out more information on the device client side:

If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging and review the debugging information. See the API
Reference information about using the Logger class to add logs to the client log record
and synchronize them to the server (viewable in Sybase Control Center).

Check the log record on the device. Use the <PkgName>DB.getLogRecords
(com.sybase.persistence.Query) or Entity.getLogRecords() methods.

This is the log format

| evel , code, ei sCode, message, conponent , enti t yKey, oper ati on, r equest |
d, ti mestanp

This log format generates output similar to:

| evel code ei sCode nessage conponent entityKey operation requestld
ti mest anmp

5,500,'","java.l ang. SecurityException: Aut hori zation fail ed:
Domai n = default Package = end2end.rdb: 1. 0 nboNane =
si npl eCust oner action =
del ete','sinpleCustoner','100001', "' delete','100014',"' 2010- 05-11
14: 45: 59. 710

* | evel —thelog level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.
e code — Unwired Server administration codes.
« Synchronization codes:
e 200 - success.
» 500 - failure.
* ei sCode —maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).
e nmessage - the message content.
e conponent — MBO name.
e entityKey - MBO surrogate key, used to identify and track MBO instances and
data.
e operati on - operation name.

50

Sybase Unwired Platform



Testing Applications

e request | d - operation replay request ID or messaging-based synchronization
message request ID.

e timestanp - message logged time, or operation execution time.

If you have implemented Appl i cat i onCal | back. onConnectionStatusChanged

for synchronization inthe Cal | backHandl er , the connection status between Unwired

Server and the device is reported on the device. See the Cal | backHandl er API

reference information. The device connection status, device connection type, and

connection error message are reported on the device:

* 1 -—current device connection status.

e 2 —current device connection type.

e 3 - connection error message.

For other issues, you can turn on SQLTrace trace on the device side to trace Client Object
API activity. To enable SQLTrace using the ConnectionProfile's enableTrace API:

/1 To enable SQL trace with val ues al so di spl ayed
SUP101DB. get Connecti onProfil e().enabl eTrace(true, true);

Server-Side Debugging

Identify and resolve server-side issues while debugging the application.

Problems on the Unwired Server side may cause device client problems:

The domain or package does not exist. If you create a new domain, with a default status of
disabled, it is unavailable until enabled.

Authentication failed for the application user credentials.

The operation role check failed for the synchronizing user.

Back-end authentication failed.

An operation failed on the remote, replication database back end, for example, a table or
foreign key does not exist.

An operation failed on the Web Service, REST, or SAP® back end.

To find out more information on the Unwired Server side:

Check the Unwired Server log files.

For message-based synchronization mode, you can set the log level to DEBUG to obtain

detailed information in the log files:

1. Setthe log level using Sybase Control Center. See Sybase Control Center for Unwired
Platform > Administer> Server Log > Configuring Server Log Setting.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

Obtain DEBUG information for a specific device:
* Inthe SCC administration console:

Developer Guide: Android Object APl Applications 51



Testing Applications

1. Setthe DEBUG level to a higher value for a specified device:
a. In SCC, select Application Connections, then select Properties... > Device
Advanced.
b. Set the Debug Trace Level value.
2. Set the TRACE file size to be greater than 50KB.
3. View the trace file through SCC.
e Checkthe<server _install _fol der>\Unw redPl atform Servers
\ Messagi ngSer ver\ Dat a\ d i ent Tr ace directory to see the mobile device
client log files for information about a specific device.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

52 Sybase Unwired Platform



Localizing Applications

Localizing Applications

Localize an Android application by creating default and alternate resources.

For information, best practices, and tutorials on localizing Android applications, see Attp.//
developer.android.com/guide/topics/resources/localization. html

See also
« Testing Applications on page 49

Developer Guide: Android Object APl Applications 53


http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html

Localizing Applications

54

Sybase Unwired Platform



Packaging Applications

Packaging Applications

Package applications according to your security or application distribution requirements.

You can package all libraries into one package. This packaging method provide more security
since packaging the entire application as one unit reduces the risk of tampering of individual
libraries.

You may package and install modules separately only if your application distribution strategy
requires sharing libraries between Sybase Unwired Platform applications.

Once you build your application, deploy the Android package (APK) file. For more
information on publishing your Android application, see Attp.//developer.android.com/guide/
publishing/publishing_overview.html.

Signing

Code signing is required for applications to run on physical devices and emulators.

All applications must be signed. The system will not install an application on an emulator or a
device if it is not signed.

To test and debug your application, the build tools sign your application with a special debug
key that is created by the Android SDK build tools.

Developer Guide: Android Object APl Applications 55


http://developer.android.com/guide/publishing/publishing_overview.html
http://developer.android.com/guide/publishing/publishing_overview.html

Packaging Applications

56

Sybase Unwired Platform



Client Object APl Usage

Client Object APl Usage

The Sybase Unwired Platform Client Object API consists of generated business object classes
that represent mobile business objects (MBOs) that are designed and built in the Unwired
WorkSpace development environment. Device applications use the Client Object API to
retrieve data and invoke mobile business object operations.

Refer to these sections for more information on using the APIs described in Developer Guide:
Android Object API Applications > Customizing the Application Using the Object API.

Client Object APl Reference
Use the Sybase Client Object API Javadocs as a Client Object API reference.

Review the reference details in the Client Object APl documentation, located in the Unwired
Platform installation directory <Unwi r edPl at f orm_| nst al | Di r >\ Mobi | eSDK
\ Obj ect API'\ api doc.

There is a subdirectory for andr oi d.

From the i ndex. ht m file, the top-left navigation pane lists all packages installed with
Unwired Platform. The applicable documentation is available with each package. Click this
link and navigate through the Javadoc.

Application APIs

The Appl i cat i on class, in the com sybase. nobi | e Java package, manages mobile
application registrations, connections and context.

Note: Sybase recommends that you use the Application API operations with no timeout
parameter, and register an ApplicationCallback to handle completion of these operations.

See also

« Initially Starting an Application on page 25

» Setting Up Application Properties on page 26

* Registering an Application on page 27

o Subsequently Starting an Application on page 40

getinstance

Retrieves the Appl i cat i on instance for the current mobile application.

Developer Guide: Android Object APl Applications 57



Client Object APl Usage

Syntax
public static Application getlnstance()

Returns

get | nst ance returns a singleton Appl i cat i on object.

Examples
* Get the Application Instance —

Application app = Application. getlnstance();

setApplicationldentifier
Sets the identifier for the current application.

Set the application identifer before calling st ar t Connect i on,
regi sterApplicationorunregisterApplication.

Syntax
public void setApplicationldentifier(java.lang.String val ue)

Parameters

» value—The identifier for the current application.

Examples
* Set the Application I dentifier — Sets the application identifier to SUP101.

Note: The application identifier is case sensitive.

/1 Initialize Application settings
Application app = Application.getlnstance();

[/l The identifier has to match the

/1 application ID depl oyed to the SUP server
app. set Applicationldentifier("SUP101");

Usage
This method must be called in the user interface thread.

getRegistrationStatus
Retrieves the current status of the mobile application registration.

58 Sybase Unwired Platform



Client Object APl Usage

Syntax
public int getRegistrationStatus()

Returns

get Regi strati onSt at us returns one of the values defined in the
Regi st rati onSt at us class.

public class RegistrationStatus {

public static final int REG STERED = 203;

public static final int REA STERI NG = 202;

public static final int REG STRATI ON_ERROR = 201;

public static final int UNREG STERED = 205;
public static final int UNREA STERI NG = 204;

}

Examples
* Get the Registration Status— Registers the application if it is not already registered.

if (app.getRegistrationStatus() != RegistrationStatus. REG STERED)
{

/1 If the application has not been registered to the server,
/'l register now
app. regi sterApplication();

el se

/] start the connection to server
app. st art Connection();

registerApplication
Creates the registration for this application and starts the connection. This method is
equivalent to calling r egi st er Appl i cati on(0), butisa non-blocking call which
returns immediately.

Syntax
public void registerApplication()

Parameters

None.

Examples
* Register an Application — Start registering the application and return at once.

Developer Guide: Android Object APl Applications 59



Client Object APl Usage

app. regi sterApplication();

Usage

You must set up the Connecti onProperti es and Applicationldentifier
before you can invoke r egi st er Appl i cati on.

Application app = Application.getlnstance();
/] set Application ID- need to match as the server side Application
I D

app. set Appl i cationldentifier("SUP101");

app. set Appl i cati onCal | back( new MyAppl i cati onCal | backHandl er());
Connecti onProperti es props = app. get Connecti onProperties();
props. set Ser ver Nane( " supser ver . nyconpany. cont') ;

props. set Port Nunber (5001) ;

Logi nCredential s | ogi nCred = new Logi nCredenti al s("supAdni n",
"supPwd") ;

props. set Logi nCredenti al s(l ogi nCred);

SUP101DB. set Appl i cati on(app) ;
if (app.getRegistrationStatus() != RegistrationStatus. REG STERED)
{

app. regi sterApplication();

registerApplication (int timeout)

Creates the registration for this application and starts the connection. An
Appl i cati onTi meout Except i on is thrown if the method does not succeed within the
number of seconds specified by the timeout.

If a callback handler is registered and network connectivity is available, the sequence of
callbacks as a result of calling r egi st er Appl i cati onis:

onRegi strati onSt at usChanged( Regi strati onStatus. REG STERING 0, "")
onConnect i onSt at usChanged( Connecti onSt at us. CONNECTI NG 0, "")

onConnect i onSt at usChanged( Connecti onSt at us. CONNECTED, O,
onRegi strati onSt at usChanged( Regi strati onSt at us. REG STERED, 0, "")

When the connectionStatus of CONNECTED has been reached and the application's
applicationSettings have been received from the server, the application is now in a suitable
state for database subscriptions and/or synchronization. If a callback handler is registered and
network connectivity is unavailable, the sequence of callbacks as a result of calling
registerApplication is:

onRegi strati onSt at usChanged( Regi strati onStatus. REG STERING 0, "")

onRegi strati onSt at usChanged( Regi strati onSt at us. REG STRATI ON_ERROR,
code, nessage)

In such a case, the registration process has permanently failed and will not continue in the
background. If a callback handler is registered and network connectivity is available for the

60

Sybase Unwired Platform



Client Object APl Usage

start of registration but becomes unavailable before the connection is established, the
sequence of callbacks as a result of calling registerApplication is:

onRegi strati onSt at usChanged( Regi strati onStatus. REG STERING 0, "")
onConnect i onSt at usChanged( Connecti onSt at us. CONNECTI NG, 0, "")
onConnect i onSt at usChanged( Connect i onSt at us. CONNECTI ON_ERROR, code,
nmessage)

In such a case, the registration process has temporarily failed and will continue in the
background when network connectivity is restored.

Syntax
public void registerApplication(int timeout)

Parameters

« timeout —Number of seconds to wait until the registration is created. If the the timeout is
greater than zero and the registration is not created within the timeout period, an
Appl i cati onTi nmeout Except i on is thrown (the operation might still be
completing in a background thread). If the timeout value is less than or equal to 0, then this
method returns immediately without waiting for the registration to finish (a non-blocking
call).

Examples

* Register an Application — Registers the application with a one minute waiting period.
app. regi ster Appl i cati on(60);

Usage

You must set up the Connect i onProperties and Applicationldentifier
before you can invoke r egi st er Appl i cati on.

Application app = Application.getlnstance();
/] set Application ID - need to match as the server side Application
I D

app. set Appl i cationldentifier("SUP101");

app. set Appl i cati onCal | back( new MyAppl i cati onCal | backHandl er());
Connecti onProperties props = app. get Connecti onProperties();
props. set Server Nane( " supserver. myconpany. coni') ;

pr ops. set Port Nurber (5001) ;

Logi nCredentials | ogi nCred = new Logi nCredenti al s("supAdmi n",
"supPwd") ;

props. set Logi nCredenti al s(I ogi nCred);

SUP101DB. set Appl i cati on(app);
if (app.getRegistrationStatus() != RegistrationStatus. REG STERED)
{

app. regi st er Appl i cati on(60);
}

Developer Guide: Android Object APl Applications 61



Client Object APl Usage

setApplicationCallback

Sets the callback for the current application. It is optional, but recommended, to register a
callback so the application can respond to changes in connection status, registration status,
and application settings.

Syntax
public void setApplicationCall back(ApplicationCallback val ue)

Parameters

« value—The mobile application callback handler.

Examples

* Set the Application Callback —

/1 Initialize Application settings
Application app = Application.getlnstance();

/] The identifier has to match the

/1 application ID depl oyed to the SUP server

app. set Appl i cationldentifier("SUP101");

Appl i cationCal | back appCal | back = new MyAppl i cati onCal | back();
app. set Appl i cati onCal | back(appCal | back) ;

getApplicationContext

Returns the Android application context which allows access to application-specific resources
and classes.

Syntax
publ i ¢ androi d. cont ent. Cont ext get Appli cati onCont ext ()
Returns

get Appl i cati onCont ext returns a single Context object.

Examples

* Get the Application Context —
get Appl i cati onCont ext ()

62 Sybase Unwired Platform



Client Object APl Usage

setApplicationContext
Sets the Android application context, which is required before calling
thest art Connecti on, regi st er Appli cati onorunregi sterApplication
methods. This method must be called in an user interface thread, not a background thread.

Syntax
public void set Applicati onCont ext (andr oi d. cont ent. Cont ext cont ext)

Returns

None.

Examples

* Set the Application Context —
set Appl i cati onCont ext (andr oi d. cont ent. Cont ext cont ext)

startConnection
Starts the connection for this application. This method is equivalent to calling
start Connecti on(0), butis a non-blocking call which returns immediately. Use
get Connect i onSt at us or the Appl i cati onCal | back to retrieve the connection
status.

Syntax
public void startConnection()

Returns

None.

Examples

» Start the Application —
start Connecti on()

startConnection (int timeout)
Starts the connection for this application. If the connection was previously started, then this
operation has no effect. You must set the appropriate connect i onPr operti es before
calling this operation. An Appl i cat i onTi meout Except i on is thrown if the method
does not succeed within the number of seconds specified by the timeout.

If connection properties are improperly set, a Connect i onPr opert yExcepti onis
thrown. You can set the appl i cat i onCal | back before calling this operation to receive

Developer Guide: Android Object APl Applications 63



Client Object APl Usage

asynchronous notification of connection status changes. If a callback handler is registered and
network connectivity is available, the sequence of callbacks as a result of calling
start Connectionis:

onConnect i onSt at usChanged( Connecti onSt at us. CONNECTI NG 0, "")
onConnect i onSt at usChanged( Connect i onSt at us. CONNECTED, 0, "")

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling st art Connecti on is:
onConnect i onSt at usChanged( Connecti onSt at us. CONNECTI NG, 0, null)

onConnect i onSt at usChanged( Connect i onSt at us. CONNECTI ON_ERROR, code,
nessage)

After a connection is successfully established, it can transition at any later time to
CONNECTION_ERROR status or NOTIFICATION_WAIT status and subsequently back to
CONNECTING and CONNECTED when connectivity resumes.

Note: The application must have already been registered for the connection to be established.
See registerApplication for details.

Syntax

public void startConnection(int tineout)

Parameters

» timeout — The number of seconds to wait until the connection is started. If the timeout is
greater than zero and the connection is not started within the timeout period, an
Appl i cati onTi neout Except i on isthrown (the operation may still be completing
in a background thread).

Returns

None.

Examples

e Start the Application —
start Connection(int timeout)

getConnectionStatus
Return current status of the mobile application connection.

Syntax
public int getConnectionStatus()

64 Sybase Unwired Platform



Client Object APl Usage

Returns

connect i onSt at us returns one of the Connect i onSt at us class values.

Examples

* Get the Application Connection Status—
get Connect i onSt at us()

stopConnection

Stops the connection for this application. This method is equivalent to calling
stopConnection(0).

Syntax
public void stopConnection()

Returns

None.

Examples

* Stop the Connection for the Application —
st opConnection();

stopConnection (int timeout)

Stop the connection for this application. An Appl i cati onTi neout Excepti onis
thrown if the method does not succeed within the number of seconds specified by the timeout.

If no connection was previously stopped, then this operation has no effect. You can set the
applicationCallback before calling this operation to receive asynchronous notification of
connection status changes.

If a callback handler is registered, the sequence of callbacks as a result of calling
stopConnection is:

« onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, ™)
» onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, ")

Syntax

public void stopConnection(int timnmeout)

Developer Guide: Android Object APl Applications 65



Client Object APl Usage

Parameters

* timeout — The number of seconds to wait until the connection is stopped.

Returns

None.

Examples

» Stop the Application —
st opConnect i on( 60)

unregisterApplication

Delete the registration for this application, and stop the connection. If no registration was
previously created, or a previous registration was already deleted, then this operation has no
effect. This method is equivalent to calling unr egi st er Appl i cati on(0), butisanon-
blocking call which returns immediately. You can set the applicationCallback before calling
this operation to receive asynchronous notification of registration status changes.

Syntax

unr egi st er Appl i cati on()

Parameters
None.

Examples

* Unregister an Application — Unregisters the application.
app. unr egi st er Application();

unregisterApplication(int timeout)

Delete the registration for this application, and stop the connection. If no registration was
previously created, or a previous registration was already deleted, then this operation has no
effect. You can set the applicationCallback before calling this operation to receive
asynchronous notification of registration status changes.

If a callback handler is registered and network connectivity is available, the sequence of
callbacks as a result of calling unregisterApplication should be:

« onConnectionStatusChanged(ConnectionStatus. DISCONNECTING, 0, ")
« onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, ")

« onRegistrationStatusChanged(RegistrationStatus. UNREGISTERING, 0, ")
« onRegistrationStatusChanged(RegistrationStatus. UNREGISTERED, 0, ")

66

Sybase Unwired Platform



Client Object APl Usage

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling unregisterApplication should be:

« onConnectionStatusChanged(ConnectionStatus.DISCONNECTING, 0, ™)
« onConnectionStatusChanged(ConnectionStatus.DISCONNECTED, 0, ")
» onRegistrationStatusChanged(RegistrationStatus. UNREGISTERING, 0, ")

» onRegistrationStatusChanged(RegistrationStatus.REGISTRATION_ERROR, code,
message)

Syntax
unregi sterApplication(int tineout)
Parameters

* timeout — Number of seconds to wait until the application is unregistered.

Examples

* Unregister an Application — Unregisters the application with a one minute waiting
period.

app. unr egi st er Appl i cati on(60);

Connection APIs

The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server, and authenticating.

See also
« Initially Starting an Application on page 25

ConnectionProfile

The Connect i onPr of i | e class manages local database information. Set its properties,
including the encryption key, during application initialization, and before creating or
accessing the local client database.

By default, the database class hame is generated as "packageName"+"DB".

ConnectionProfile profile = SUP101DB. get Connecti onProfile();
profil e.setPageSi ze( 4*1024 );
profile.setEncrypti onKey("Your key of nmore than 16 characters");

You can also generate an encryption key by calling the generated database's

gener at eEncr ypt i onKey method, and then store the key inside a Dat aVaul t object.
The gener at eEncr ypt i onKey method automatically sets the encryption key in the
connection profile.

Developer Guide: Android Object APl Applications 67



Client Object APl Usage

See also
» Setting Up the Connection Profile on page 28

Managing Device Database Connections
Use the openConnecti on() and cl oseConnecti on() methods generated in the
package database class to manage device database connections.

Note: Any database operation triggers the establishment of the database connection. You do
not need to explicitly call the openConnect i on API.

The openConnect i on() method checks that the package database exists, creates it if it
does not, and establishes a connection to the database. This method is useful when first starting
the application: since it takes a few seconds to open the database when creating the first
connection, if the application starts up with a login screen and a background thread that
performs the openConnect i on() method, after logging in, the connection is most likely
already established and is immediately available to the user.

All Connect i onPr of i | e properties should be set before the first access to database,
otherwise they will not take effect.

The cl oseConnect i on() method closes all database connections for this package and
releases all resources allocated for those connections. This is recommended to be part of the
application shutdown process.

Improving Device Application Performance with One Writer Thread and
Multiple Database Access Threads

The maxDbConnect i ons property improves device application performance by allowing
multiple threads to access data concurrently from the same local database.

Connection management allows you to have at most one writer thread concurrent with
multiple reader threads. There can be other reader threads at the same time that the writer
thread is writing to the database. The total number of threads are controlled by the
maxDbConnect i ons property.

In atypical device application such as Sybase Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry appears, and
loads the details for that entry.

Prior to the implementation of maxDbConnect i ons, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) operation waited for any previous operation to finish before the next was
allowed to proceed. In the list view to detail view example, when the background thread is
loading the entire list, and a user selects the details of one entry for display, the loading of
details for that entry must wait until the entire list is loaded, which can be a long while,
depending on the size of the list.

68

Sybase Unwired Platform



Client Object APl Usage

You can specify the number of total threads using nraxDbConnect i ons.

The Connect i onPr of i | e class in the persistence package includes the
maxDbConnect i ons property, which you set before performing any operation in the
application. The default value (maximum number of concurrent read threads) is 2.

ConnectionProfile connectionProfile =
SUP101DB. get Connecti onProfil e();

To allow 6 concurrent threads, set the maxDbConnect i ons property to 6 in
Connect i onPr of i | e before accessing the package database at the beginning of the
application.

connecti onProfil e.set MaxDbConnecti ons(6);

Set Database File Property

You can use set Pr oper t y to specify the database file name on the device, such as the
directory of the running program, a specific directory path, or a secure digital (SD) card.
ConnectionProfile cp = SUP101DB. get Connecti onProfile();

cp. set Property("databaseFile", "SUP101l.ulj");
cp. save();

Examples
If you specify the databaseFilename only, with no path, the databaseFileis created in the path
where the program is running:

mydb. ul j

To store the database on the SD card:

Envi r onnent . get Ext er nal St orageDi rectory(). get Absol utePath() + "/
mydb. ul j "

Note: For the database file path and name, the forward slash (/) is required as the path
delimiter, for example /mnt/sdcard/sup101.ulj.

Usage

« Be sure to call this API before the database is created..
« The database is UltraLiteJ™; use an absolute path to the database file name like /
sdcar d/ nydb. ul j .

« Ifthe device client user changes the file name, he or she must make sure the input file name
is a valid name and path on the client side.

Note: Sybase recommends using industrial grade SD cards using Single Level Cell (SLC)
technology. SD cards that use SLC technology are generally more reliable and faster than
MLC cards, although they may be more limited in size and more expensive per unit of storage.
Not all SD cards perform equally, and it is advised that customers evaluate the benchmarks
available from different suppliers.

Developer Guide: Android Object APl Applications 69



Client Object APl Usage

Synchronization Profile

The Synchronization Profile contains information for establishing a connection with the
Unwired Server's data synchronization channel where the server package has been deployed.
The com sybase. persi st ence. Connecti onProf i | e class manages that
information. By default, this information includes the server host, port, domain name,
certificate and public key that are pushed by the message channel during the registration
process.

Settings are automatically provisioned from the Unwired Server. The values of the settings are
inherited from the application connection template used for the registration of the application
connection (automatic or manual). You must make use of the connection and security settings
that are automatically used by the Object API.

Typically, the application uses the settings as sent from the Unwired Server to connect to the
Unwired Server for synchronization so that the administrator can set those at the application
deployment time based on their deployment topology (for example, using relay server, using
e2ee security, or a certificate used for the intermediary, such as a Relay Server Web server).
See the Applications and Application Connection Templatestopics in System
Administration.

ConnectionProfile profile = SUP101DB. get Synchroni zati onProfil e();
profile.set Domai nName( "default” );

profile.set Server Nane( "sup.sybase.cont );

profile.setPortNunber( 2480 );

profile.set NetworkProtocol ( "http" );

profile.getStreamParans().set Trusted_Certificates( "rsa_public_cert
.crt" )

You can allow clients to compress traffic as they communicate with the Unwired Server by
including "compression=zlib" into the sync parameters:

SUP101DB. get Synchroni zati onProfil e(). get StreanParans() . set Zl i bConpr
ession(true);

See also
» Setting Up the Synchronization Profile on page 29

Connect the Data Synchronization Channel Through a Relay Server

To enable your client application to connect through a relay server, you must make manual
configuration changes in the object API code to provide the relay server properties.

Edit SUP101DB by modifying the values of the relay server properties for your Relay Server
environment.

get Synchroni zati onProfil e(). set Server Name(" exanpl exp-vmL");
get Synchroni zati onProfil e() . set Port Nunber (80);

get Synchroni zati onProfil e().set Net wor kProtocol ("http");

Net wor kSt r eanmPar ans streanPar ans =

70

Sybase Unwired Platform



Client Object APl Usage

get Synchroni zati onProfil e().get StreanParans();
streanParans. set Ul _Suffix("/cli/iarel ayserver/ <Far mName>") ;
get Synchroni zati onProfil e().set Domai nNanme("defaul t");

To update properties for the relay server installed on Internet Information Services (I1S) on
Microsoft Windows:

get Synchroni zati onProfil e(). set Server Name( " exanpl exp-vmL");

get Synchroni zati onProfil e(). set Port Nunber (80);

get Synchroni zati onProfil e().set Net workProtocol ("http");

Net wor kSt r eanPar ans st r eanPar ans =

get Synchroni zati onProfil e().get StreanParans();

streanParans. set Url _Suffix("/ias_relay_server/client/rs_client.dll/
<Far mNanme>") ;

get Synchroni zati onProfil e().set Domai nName("defaul t");

For more information on relay server configuration, see System Administration and Sybase
Control Center for Unwired Server.

Asynchronous Operation Replay

When an application calls submi t Pendi ng onan MBO on which a create, update, or delete
operation is performed, an operation replay record is created on the device local database

When synchr oni ze is called, the operation replay records are uploaded to the server. The
method returns without waiting for the backend to replay those records. The synchr oni ze
method downloads all the latest data changes and the results of the previously uploaded
operation replay records that the backend has finished replaying. If you choose to disable
asynchronous operation replay, each synchr oni ze call will wait for the backend to finish
replaying all the current uploaded operation replay records.

By default, synchronization will not wait for the operations to be replayed on the backend.
When the replay is finished, the onSynchronize callback method will be called with this status
code in the SynchronizeContext:

Synchroni zati onSt at us. ASYNC_REPLAY_COVPLETED

The application can set the following property in the synchronization profile to use the
previous Synchronous Operation Replay behavior.
SUP101DB. get Synchr oni zati onProfil e(). set AsyncRepl ay(fal se);

Authentication APIs

You can log in to the Unwired Server with your user name and credentials and use the X.509
certificate you installed in the task flow for single sign-on.

Developer Guide: Android Object APl Applications 71



Client Object APl Usage

Logging In

The generated package database class provides a default synchronization connection profile
according to the Unwired Server connection profile and server domain selected during code
generation. You can log in to the Unwired Server with your user name and credentials.

The package database class provides methods for logging in to the Unwired Server:

e onlinelLogin(String username, String password) — authenticates
credentials against the Unwired Server.

o offlineLogin(String username, String password) —authenticates
against the most recent successfully authenticated credentials. Once the client connects for
the first time, the server validated user name and password are stored locally.
of f I i neLogi n verifies with the client database if those credentials are valid. The
method returns YES if the user name and password are correct, otherwise the method
returns NO.

There is no communication with Unwired Server in this method. This method is useful if
there is no connection the Unwired Server and you want to access the client application
locally.

Sample Code

Illustrates importing the certificate and setting up login credentials, as well as other APIs
related to certificate handling:

/1] SUP101DB is a generated dat abase cl ass
/l/First install certificates on your sinulator, for exanple
"Sybasel01. p12"

/1 Getting certificate fromcertificate store
CertificateStore nyStore =

CertificateStore.getDefaul t();

String filterl = "Sybase";

StringlList |abels = nyStore.certificatelLabels(filterl, null);
String aLabel = labels.iten(0);

LoginCertificate |c = myStore. get Si gnedCertificate(alLabel,
"password");

/] Save the login certificate to your synchronization profile
SUP101DB. get Synchroni zati onProfile().setCertificate(lc);

/1 Save the login certificate to your data vault

I/ The vault must be unl ocked before saving

/| SybaseDat aProvi der. apk package nust be installed on Androi d device
String vaul t Name = "nyVault";

Dat aVault vault = null;

i f(!DataVaul t. vaul t Exi st s(vaul t Nane))

{

72

Sybase Unwired Platform



Client Object APl Usage

vaul t Dat aVaul t. cr eat eVaul t (vaul t Name, "password", "salt");

}

el se

vaul t Dat aVaul t . get Vaul t (vaul t Nane) ;

vaul t . unl ock(" password", "salt");
| c. save("myLabel ", vault);

// Loadi ng and del eting certificate
Logi nCertificate newlc = LoginCertificate.load("myLabel", vault);
Logi nCertificate.del ete("nmyLabel ", vault);

Single Sign-On With X.509 Certificate Related Object API

Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

« CertificateStore class - wraps platform-specific key/certificate store class, or file
directory

* Logi nCertificat e class - wraps platform-specific X.509 distinguished name and
signed certificate

» ConnectionProfil eclass-includesthe certificate attribute used for Unwired Server
synchronization.

Refer to the API Reference for implementation details.
Importing a Certificate into the Data Vault

Obtain a certificate reference and store it in a password-protected data vault to use for X.509
certificate authentication.

Importing a certificate from a system store is not supported on Android. You can only importa
certificate binary large object (BLOB), which is a digitally signed copy of the public X.509
certificate, from a file directory.

/[l Cbtain a reference to the certificate store
CertificateStore certStore = CertificateStore.getDefault();

/1 Inport a certificate froma file on SDCard
String certFile = "/mt/sdcard/ nycert.pl2";
String password = "ny pl2 password";

Logi nCertificate cert =
certStore. getSignedCertificateFronFile(certFile, password);

/! Lookup or create data vault

String vaul tPassword = ...; // ask user or fromQ S protected storage
String vaultName = "..."; // for exanple, "SAP.CRM CertificateVault"
String vaultSalt ="..."; [/ for exanple, a hard-coded random GU D
Dat aVaul t vaul t;

try

{

Developer Guide: Android Object APl Applications 73



Client Object APl Usage

vault = DataVaul t. get Vaul t (vaul t Nane) ;
vaul t. unl ock(vaul t Password, vaultSalt);

}
catch (DataVaul t Excepti on ex)
{
vault = DataVault.createVault(vaul t Nane, vaul t Password,
vaul t Salt);

/| Save certificate into data vault
cert.save("myCert", vault);

Selecting a Certificate for Unwired Server Connections
Select the X.509 certificate from the data vault for Unwired Server authentication.

LoginCertificate cert = LoginCertificate.load("myCert", vault);
ConnectionProfile syncProfile =

SUP101DB. get Synchr oni zati onProfil e();
syncProfile.setCertificate(cert);

Connecting to Unwired Server with a Certificate
Once the certificate property is set, use the onl i neLogi n() API with no parameters. Do
not use the onl i neLogi n() API with username and password.

SUP101DB. onl i neLogi n() ;

Personalization APIs

Personalization keys allow the application to define certain input parameter values that are
personalized for each mobile user. Personalization parameters provide default values for
synchronization parameters when the synchronization key of the object is mapped to the
personalization key while developing a mobile business object. The Personalization APIs
allow you to manage personalization keys, and get and set personalization key values.

See also
»  Specifying Personalization Parameters on page 38

Type of Personalization Keys

There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
when the device application terminates.

A personalization parameter can be a primitive or complex type.

A personalization key is metadata that enables users to store their search preferences on the
client, the server, or by session. The preferences narrow the focus of data retrieved by the

74

Sybase Unwired Platform



Client Object APl Usage

mobile device (also known as the filtering of data between client and Unwired Server). Often
personalization keys are used to hold backend system credentials, so that they can be
propagated to the EIS. To use a personalization key for filtering, it must be mapped to a
synchronization parameter. The developer can also define personalization keys for the
application, and can use built-in personalization keys available in Unwired Server. Two built-
in (session) personalization keys — username and password — can be used to perform single
sign-on from the device application to the Unwired Server, authentication and authorization
on Unwired Server, as well as connecting to the back-end EIS using the same set of
credentials. The password is never saved on the server.

Getting and Setting Personalization Key Values
The Per sonal i zat i onPar anet er s class is generated automatically for managing
personalization keys. When a personalization parameter value is changed, the call to save
automatically propagates the change to the server.

An operation can have a parameter that is one of the Sybase Unwired Platform list types (such
aslntlList,StringList,orCbjectlList). Thiscode shows how to set a
personalization key, and pass an array of values and an array of objects:

Per sonal i zati onPar aneters pp =

SUP101DB. get Per sonal i zati onPar anet ers() ;
pp. set Myl nt PK(10002) ;

pp. save();

IntList il = new IntList(2);
il.add(10001);

i|.add(10002);

pp. set Myl nt Li st PK(i l);

pp. save();

MyDat aLi st dl = new MyDat aLi st ();
/I MyData is a structure type defined in tooling
M/Data nmd = new MyDat a();

md. set I nt Member (... );
nd. set Stri ngMenber2( ... );
dl . add(nmd);
pp. set MyDat aLi st( dl );
pp. save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Synchronization APIs

You can synchronize mobile business objects (MBQOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Developer Guide: Android Object APl Applications 75



Client Object APl Usage

Note: The | ogi nToSync API is now deprecated. Call synchr oni ze or

begi nSynchr oni ze before saving synchronization parameters. After saving the
synchronization parameters, call synchr oni ze or begi nSynchr oni ze again to
retrieve the new values filtered by those parameters.

See also
»  Synchronizing Applications on page 36
»  Specifying Synchronization Parameters on page 39

Changing Synchronization Parameters

Synchronization parameters let an application change the parameters that retrieve data from
an MBO during a synchronization session.

Note: This topic is not applicable for DOE-based applications.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.

When a synchronization parameter value is changed, the call to save automatically
propagates the change to the Unwired Server.

Cust oner Synchr oni zat i onParaneters sp =

Cust oner. get Synchroni zati onPar anmet ers() ;

sp. set Myi d(10001) ;

sp. save();

Note: The Sybase Unwired Platform server will not send MBO data to a device if an MBO has
synchronization parameters defined, unless the application client code calls the save
method. The next synchronize call will retrieve data from the server. Thisis true even if default
values are defined for its synchronization parameters.

Performing Mobile Business Object Synchronization

A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

This code synchronizes an MBO package using a specified connection:
SUP101DB. synchroni ze (string synchroni zati onG oup)

The package database class includes two synchronization methods. You can synchronize a
specified group of MBOs using the synchronization group name:
SUP101DB. synchroni ze(" my- sync- gr oup");

Or, you can synchronize all synchronization groups:
SUP101DB. synchr oni ze();

76

Sybase Unwired Platform



Client Object APl Usage

There is a default synchronization group within every package. The default synchronization
group includes all MBOs except those already included by other synchronization groups. To
synchronize a default synchronization group call

SUP101DB. begi nSynchroni ze("default"); or

SUP101DB. synchroni ze("defaul t");

If there is no other synchronization group, call SUP101DB. begi nSynchr oni ze(); or
SUP101DB. synchr oni ze() ;

To synchronize a synchronization group asynchronously:

Generi cLi st <Synchroni zati onG oup> syncG oups = new

Generi cLi st <Synchr oni zat i onG oup>() ;

syncG oups. add( SUP101DB. get Synchr oni zat i onG oup( " nmy-sync-group"));
SUP101DB. begi nSynchr oni ze(syncG oups, "");

When an application uses a create, update, or delete operation in an MBO and calls the
submi t Pendi ng metod, an Oper at i onRepl ay object is created for that change. The
application must invoke either the synchr oni ze or begi nSynchr oni ze method to
uploadthe Oper at i onRepl ay object to the server to replay the change on the backend data
source. The i sRepl ayQueueEnpt y API is used to check if there are unsent operation
replay objects and decide whether a synchronize call is needed.

i f (!SUP101DB. i sRepl ayQueueEnpty())

/1l There are QperationReplay not uploaded to server
Generi cLi st <Synchr oni zati onG oup> sgs = new
Generi cLi st <Synchroni zati onG oup>();
sgs. add( SUP101DB. get Synchr oni zati onG oup("systen));
SUP101DB. begi nSynchr oni ze(sgs, "upl oad Operati onRepl ay objects");

}

Message-Based Synchronization APIs
The message-based synchronization APIs enable a user application to subscribe to a server
package, to remove an existing subscription from the Unwired Server, to suspend or resume
requests to the Unwired Server, and to recover data related to the package from the server.

Note: The message-based synchronization APIs are for use with DOE-based applications
only.

beginOnlineLogin
Sends a login message to the Unwired Server with the username and password.

Typically, the generated package database class already has a valid synchronization
connection profile and you can log in to the Unwired Server with your username and
credentials.

beginOnlineLogin sends a message to the Unwired Server with the username and password.
The Unwired Server responds with a message to the client with the login success or failure.

Developer Guide: Android Object APl Applications 77



Client Object APl Usage

Make sure the connection is active before calling begi nOnl i neLogi n, otherwise an
exception may be thrown.

When the login succeeds, the onLogi nSuccess method of the CallbackHandler is
invoked. When the login fails, the onLogi nFai | ur e method of the CallbackHandler is
invoked.

Syntax

public static void begi nOnlineLogi n(String userNane, String
passwor d)

Parameters

e user Name —the user name.
* password —the password.

Returns

None.

Examples

e Begin an Online Login — Start logging in with "supAdminID" for the user name and
"supPass" for the password.
SUP101DB. begi nOnl i neLogi n(" supAdm nl D', "supPwd");

subscribe

Subscribes to a server package. A subscription message is sent to the Unwired Server and the
application receives a subscription request result notification from the Unwired Server. If the
subscription succeeds, the onSubscr i beSuccess method of the ICallbackHandler is
invoked. If the subscription fails, the onSubscr i beFai | ur e method of the
ICallbackHandler is invoked.

Prerequisites for using subscribe:

« The mobile application is compiled with the client framework and deployed to a mobile
device, together with the Sybase Unwired Platform client process.
» The device application has already configured Unwired Server connection information.

« Authentication credentials must also be set, using either the beginOnlineLogin or
offlineLogin APIs.

Syntax

public static void subscribe()

78

Sybase Unwired Platform



Client Object APl Usage

Parameters

* None-subscribe has no parameters.

Returns

None.

Examples

* Subscribeto a Sample Application — Subscribe to SUP101DB.
SUP101DB. subscri be();

unsubscribe

Removes an existing subscription to a server package. An unsubscription message is sent to
the Unwired Server and the application receives a subscription request result notification from
the Unwired Server as a notification. The data on the local database is cleaned. If the
unsubscribe succeeds, the onSubscri beSuccess method of the CallbackHandler is
invoked. If it fails, the onSubscr i beFai | ur e method of the CallbackHandler is invoked.

The device application must already have a subscription with the server.

Syntax

public static void unsubscribe()

Parameters

* None-—unsubscribe has no parameters.

Returns

None.

Examples

* Unsubscribe from a Sample Application — Unsubscribe from SUP101DB.
SUP101DB. unsubscri be();

suspendSubscription

Sends a suspend request to the Unwired Server to notify the server to stop delivering data
changes. A suspend subscription message is sent to the Unwired Server and the application
receives a suspend subscription request result notification from the Unwired Server as a
notification. If the suspend succeeds, the onSuspendSubscri pti onSuccess method
of the CallbackHandler is invoked. If the suspend fails, the

onSuspendSubscri pti onFai | ur e method of the CallbackHandler is invoked.

Developer Guide: Android Object APl Applications 79



Client Object APl Usage

Syntax
public static void suspendScription()

Parameters

* None-suspendSubscription has no parameters.

Returns

None.

Examples

* Suspend a Subscription — Suspend the subscription to SUP101DB.
SUP101DB. suspendScri ption();

beginSynchronize

Sends a message to the Unwired Server to synchronize data between the client and the server.
There are two different beginSynchronize APls, one with no parameters that synchronizes all
the groups, and one that takes a list of groups.

The synchronization completes in the background through an asynchronous message
exchange with the server. If application code needs to know when the synchronization is
complete, a callback handler that implements the onSynchr oni ze method must be
registered with the database class.

Syntax

public static void

begi nSynchr oni ze( Generi cLi st <Synchroni zati onG oup> sgs,
Obj ect context)

Parameters

» gynchronizationGroups — specifies a list of a list of Synchr oni zat i onG oup
objects representing the groups to be synchronized. If omitted, begin synchronizing data
for all groups.

Note: This parameter is not relevant for DOE packages; pass a null value to this parameter.
» context —areference string used when the server responds to the synchronization request.
For more information on the onSynchronize callback handler method, see Callback
Handlers in Developer Guide for Android.
« uploadOnly — If true, the synchronization only uploads data; otherwise, the
synchronization both uploads and downloads data.

Returns
None.

80

Sybase Unwired Platform



Client Object APl Usage

Examples

» SynchronizeDatabetween Client and Server —Synchronize data for SUP101DB for all
synchronization groups.

SUP101DB. begi nSynchroni ze(null, "my context");

resumeSubscription
Sends a resume request to the Unwired Server.

The resume request notifies the Unwired Server to resume sending data changes for the
subscription that had been suspended. On success, onResumeSubscriptionSuccess callback
handler method is called. On failure, onResumeSubscriptionFailure callback handler is
called.

Syntax
public static void resumeSubscription()
Parameters

¢ None-resumeSubscription has no parameters.

Returns

None.

Examples

* Resume a Subscription — Resume the subscription to SUP101DB.
SUP101DB. resuneScri ption();

Push Synchronization Applications

Clients receive device notifications when a data change is detected for any of the MBOs in the
synchronization group to which they are subscribed.

Sybase Unwired Platform uses a messaging channel to send change notifications from the
server to the client device. By default, change notification is disabled. You can enable the
change notification of a synchronization group:

Synchroni zati onG oup sg =
SUP101DB. get Synchr oni zat i onG oup(" TCNEnabl ed") ;

if (!sg.getEnableSIS())
{

sg. set Enabl eSI S(true);
sg.setlnterval (2); // 2 mnutes

sg. save();

SUP101DB. synchr oni ze(" TCNEnabl ed") ;

Developer Guide: Android Object APl Applications 81



Client Object APl Usage

When the server detects changes in an MBO affecting a client device, and the synchronization
group of the MBO has change detection enabled, the server will send a notification to client
device through messaging channel. By default, a background synchronization downloads the
changes for that synchronization group. The application can implement the onSynchronize
callback method to monitor this condition, and either allow or disallow background
synchronization.

public int onSynchroni ze(GenericLi st <Synchroni zati onG oup> groups,
Synchroni zat i onCont ext cont ext)

{
int status = context.getStatus();
if (status == Synchroni zati onSt at us. STARTI NG_ON_NOTI FI CATI ON)
/1l There is changes on the synchronization group
i f (busy)
{
return Synchroni zati onActi on. CANCEL;
}
el se
{ N _
return Synchroni zati onActi on. CONTI NUE;
}
}

/1 return CONTINUE for all other status
return Synchroni zati onActi on. CONTI NUE;
}

Retrieving Information about Synchronization Groups

The package database class provides the following two methods for querying the
synchronized state and the last synchronization time of a certain synchronization group:

/1] Determnes if the synchronization group was synchronized
public static bool ean i sSynchroni zed(j ava.l ang. Stri ng
synchroni zati onG oup)

/1] Retrieves the |ast synchronization time of the synchronization
group

public static java.util.Date
get Last Synchroni zati onTi me(j ava. |l ang. Stri ng synchroni zati onG oup)

Log Record APIs

The Log Record APIs allow you to customize aspects of logging.

* Writing and retrieving log records (successful operations are not logged).
« Configuring log levels for messages reported to the console.

» Enabling the printing of server message headers and message contents, database
exceptions, and LogRecor d objects written for each import.

82 Sybase Unwired Platform



Client Object APl Usage

* Viewing detailed trace information on database calls.

e The change log can be enabled or disabled with the enabl eChangelLog and
di sabl eChangelLog methods. You can retrieve the change log by calling the
get ChangelLogs method.

LogRecord API
LogRecor d stores two types of logs.

« Operation logs on the Unwired Server. These logs can be downloaded to the device.
e Client logs. These logs can be uploaded to the Unwired Server.

This code executes an update operation and examines the log records for the Customer MBO:
int id = 101;

Custoner result = Custoner.findByld(id);

resul t.set Fnane(" newFnanme") ;

result.save();

resul t.subm t Pendi ng();

SUP101DB. synchr oni ze();

result = Custoner.findByld(id);

for(com sybase. persi stence. LogRecord | ogRecord :

resul t.get LogRecords())

{
[/ Working with | ogRecord
}

The code in the log record is an HTTP status code. See Developer Guide: Android Object AP/
Applications > Client Object APl Usage > Exceptions > Handling Exceptions > HTTP Error
Codes.

There is no logRecord generated for a successful operation replay. The Unwired Server only
creates a logRecord when an operation fails.

This sample code shows how to find the corresponding MBO with the LogRecord and to
delete the log record when a record is processed.

private void processLogs()
{
Query query = new Qery();
Generi cLi st <LogRecor d> | ogRecords = SUP101DB. get LogRecor ds( query);
bool ean call Sync = fal se;
for(LogRecord |l og : | ogRecords)

/1 1 og warning nessage
Log. warni ng("log " + | og.get Conponent () + ":" +
| 0g. get Enti t yKey()
+ " code:" + |o0g.getCode()
+ " msg:" + | o0g.get Message());

i f (1 o0g.getConponent().equal s("Custoner"))
| ong surrogateKey = Long. parseLong(l og. getEntityKey());

Custoner ¢ = Custoner.find(surrogateKey);
if (c.isPending())

Developer Guide: Android Object APl Applications 83



Client Object APl Usage

c. cancel Pendi ng() ;

}

/'l delete the LogRecord after it is processed
| og. del ete();
| og. subni t Pendi ng() ;
call Sync = true
}
}

Logger APIs

Use the Logger API to set the log level and create log records on the client.

Each package has a Logger . To obtain the package logger, use the get Logger method in
the generated database class.

Logger | ogger = SUP101DB. get Logger ();

/1 set log |evel to debug
| ogger. set LogLevel (LogLevel . DEBUG) ;

/] create a log record with ERROR | evel and the error nessage
| ogger.error("Some error nessage");

Change Log API

The change log allows a client to retrieve entity changes from the back end. If a client
application already has a list view constructed, it simply needs to add, modify, or delete entries
in the list according to the change logs.

Asingle Changel og is generated for each changed entity. If the changed entity is a child of a
composite relationship, there is also a ChangeLog for its parent root entity.

getEntityType

Returns the entity type.

Syntax
public int getEntityType()

Parameters
None.

Returns
Returns the entity type. The entity type values are defined in the generated java class
EntityType.java for the package.

84

Sybase Unwired Platform



Client Object APl Usage

Examples

* Get the Entity Type—
getEntityType()

getOperationType
Returns the operation type of the MBO.

Syntax
public char get QperationType()

Parameters
None.

Returns
The operation type of the MBO. Possible values are 'U’ for update and insert, and 'D' for
delete.

Examples

* Get the Entity Type—
get Oper ati onType()

getRootENtityType
Returns the name of the root parent entity type

Syntax
public int getRootEntityType()

Parameters
None.

Returns
Returns the root entity type which is the root of the object graph. The entity type values are
defined in the generated java class Ent i t yType. j ava for the package.

Examples

* Get the Entity Type—
get Root Enti tyType()

Developer Guide: Android Object APl Applications 85



Client Object APl Usage

getRootSurrogateKey
Returns the surrogate key of the root parent entity.

Syntax
public | ong get Root Surr ogat eKey()

Parameters
None.

Returns
The surrogateKey of the root entity.

Examples

* Get the Root Surrogate Key —
get Root Sur r ogat eKey()

getSurrogateKey
Returns the surrogate key of the entity.

Syntax
public | ong get Surrogat eKey()

Parameters
None.

Returns
The surrogate key of the affected entity. Note that the change log contains all affected entities,
including children of the object graph.

Examples

* Get the Surrogate Key —
get Surr ogat eKey()

Methods in the Generated Database Class
You can use generated methods in the package database class to manage change logs.

86 Sybase Unwired Platform



Client Object APl Usage

enableChangelLog

By default, Change Log is disabled. To enable the change log, invoke the

enabl eChangelLog API in the generated database class. The next synchronization will
have change logs sent to the client.

Syntax
enabl eChangelLog() ;
Returns

None.

Examples

* EnableChangelLog—
SUP101DB. enabl eChangelLog() ;

getChangelogs
Retrieve a list of change logs.

Syntax

Generi cLi st <com sybase. per si st ence. ChangelLog>
get ChangelLogs(com sybase. persi st ence. Query query);

Returns

Returns a GenericList of type <Change Log>.

Examples

* Get ChangelLogs—

Ceneri cLi st <com sybase. per si st ence. ChangeLog> cl og =
SUP101DB. get ChangelLogs( query) ;

deleteChangelogs

You are recommended to delete all change logs after the application has completed processing
them. Usethe del et eChangelLogs APl inthe generated database classto delete all change
logs on the device.

Syntax
del et eChangelLogs() ;

Developer Guide: Android Object APl Applications 87



Client Object APl Usage

Returns

None.

Examples

* Delete ChangeLogs—
SUP101DB. del et eChangelLogs() ;

Usage

Ensure that when calling del et eChangelLogs() , there are no change logs created from a
background synchronization that are not part of the original change log list returned by a
specific query:

Generi cLi st <ChangelLog> changes = get ChangeLogs(myQuery);

You shouldonly call del et eChangelLogs() intheonSynchr oni ze() callback where
there are no multiple synchronizations occurring simulatenously.

disableChangelog

Creating change logs consumes some processing time, which can impact application
performance. The application may can disable the change log using the

di sabl eChangelLog API.

Syntax
di sabl eChangelog();
Returns

None.

Examples

* DisableChangelLog—
SUP101DB. di sabl eChangelLog() ;

Code Samples

Enable the change log and list all changes, or only the change logs for a particular entity,
Customer.

SUP101DB. enabl eChangelLog() ;
SUP101DB. synchr oni ze();

/!l Retrieve all change | ogs

Generi cLi st <ChangelLog> | ogs = SUP101DB. get ChangeLogs(new Query());
Systemout.println("There are " + logs.size() + " change |ogs");
for (ChangelLog log : | ogs)

88

Sybase Unwired Platform



Client Object APl Usage

{
Systemout. println(log.getEntityType()
+ "(" + | o0g.getSurrogat eKey()
+ "): " + |1o0g.getOperationType());
}

/!l Retrieve only the change | ogs for Custoner:
Query query = new Qery();
AttributeTest at = new AttributeTest("entityType",
new j ava. | ang. | nt eger (SUP101. Enti t yType. Cust oner),
AttributeTest. EQUAL);
query.setTestCriteria(at);
| ogs = SUP101DB. get ChangelLogs(query);
Systemout.println("There are " + |ogs.size() +
Cust oner");
for (ChangeLog log : | ogs)
{

change | ogs for

Systemout. println(log.getEntityType()
+ "(" + | 0g.getSurrogat eKey()
+ "): " + |1o0g.getOperationType());

Security APIs

The security APIs allow you to customize some aspects of connection and database security.

Encrypt the Database

You can set the encryption key of a local database. Set the key during application initialization,
and before creating or accessing the client database.

The length of the encyption key cannot be fewer than 16 characters.

ConnectionProfile profile = SUP101DB. get Connecti onProfile();
profile.setEncrypti onKey("Your key of |length 16 or nore
characters");

You can use the gener at eEncr ypt i onKey() method to encrypt the local database with
a random encryption key.

SUP101DB. gener at eEncrypt i onKey() ;

/] store the encryption key at sonewhere for reuse |ater
ConnectionProfile profile = SUP101DB. get Connecti onProfile();
String key = profile.getEncrypti onKey();

'S.Ui3101DB. cr eat eDat abase() ;

Developer Guide: Android Object APl Applications 89



Client Object APl Usage

End to End Encryption and Compression Support APIs

Use encryption communication parameters to ensure end to end encryption and eliminate any
WAP gap security problems.

You can use the Client Object API to set up end to end encryption, supported by Ultralite, and
HTTPS items in the synchronization profile.

Refer to the following APIs when setting up end to end encryption and compression support:

« com sybase. persi st ence. Connecti onProfil e. get St reanPar ans

« com sybase. persi st ence. Net wor kSt r eanPar ans. get Trust ed_Cert
ificates

e com sybase. persi st ence. Net wor kSt r eanPar ans. set Trust ed_Cert
ificates

« com sybase. persi st ence. Net wor kSt r eanPar ans. get E2ee_Type

« com sybase. persi st ence. Net wor kSt r eanPar ans. set E2ee_Type

« com sybase. persi st ence. Net wor kSt r eanPar ans. get E2ee_Publ i c_
Key

e com sybase. persi st ence. Net wor kSt r eanPar ans. set E2ee_Publ i c_
Key

« com sybase. persi st ence. Net wor kSt r eanPar ans. set Zl i bConpr ess
i on

« com sybase. persi st ence. Net wor kSt r eanPar ans. set Zl i b_Upl oad_
W ndow_Si ze

« com sybase. persi st ence. Net wor kSt r eanPar ans. set Zl i b_Downl oa
d_W ndow _Si ze

e com sybase. persi st ence. Net wor kSt r eanPar ans. get Zl i bConpr ess
i on

« com sybase. persi st ence. Net wor kSt r eanPar ans. get Zl i b_Upl oad_
W ndow_Si ze

« com sybase. persi st ence. Net wor kSt r eanPar ans. get ZI i b_Downl oa
d_W ndow_Si ze

The following code example shows how to set SUP101:

ConnectionProfil e cp=SUP101DB. get Synchr oni zati onProfile();
cp. set Net wor kPr ot ocol ("HTTP") ;

cp. set Por t Nunber (2480) ;

cp. get St reanPar ans() . set E2ee_Type(" RSA") ;

cp. get StreanPar ans() . set E2ee_Publ i c_Key(sdcard directory
+Appl i cati onNanme+" _e2eeKey. key") ;

cp. get St reanPar ans() . set Zl i bConpr essi on(true);

cp. get St reanParans() . set Zl i b_Upl oad_W ndow_Si ze( 12) ;

cp. get St reanPar ans() . set Zl i b_Downl oad_W ndow_Si ze(12);
cp. set User Nane(user Nane) ;

cp. set Passwor d( passwor d) ;

90 Sybase Unwired Platform



Client Object APl Usage

cp. save();
SUP101DB. synchr oni ze() ;

DataVault

The Dat aVaul t class provides encrypted storage of occasionally used, small pieces of data.
All exceptions thrown by Dat aVaul t methods are of type Dat aVaul t Except i on.

If you have installed the SybaseDat aPr ovi der . apk package, you can use the
Dat aVaul t class for on-device persistent storage of certificates, database encryption keys,
passwords, and other sensitive items. Use this class to:

» Create a vault

* Seta vault's properties

» Store objects in a vault

» Retrieve objects from a vault

« Change the password used to access a vault

The contents of the data vault are strongly encrypted using AES-256. The Dat aVaul t class
allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrarily length and can include any characters. The password and salt
together are used to generate the AES key. If the user enters the same password when
unlocking, the contents are decrypted. If the user enters an incorrect password, exceptions will
occur. If the user enters the incorrect password a configurable number of times, the vault is
deleted and any data stored within it becomes unrecoverable. The vault can also re-lock itself
after a configurable amount of time.

Typical usage of the Dat aVaul t would be to implement an application login screen. Upon
application start, the user is prompted for a password, which is then used to unlock the vault. If
the unlock attempt is successful, the user is allowed into the rest of the application. User
credentials needed for synchronization can also be extracted from the vault so the user is not
repeatedly prompted to re-enter passwords.

To install SybaseDat aPr ovi der . apk on an Android device:

1. Connect the Android device to your computer.

2. Open the command line directory to the adb. exe file, for example, C. \ Pr ogr am
Fi | es\ andr oi d- sdk- wi ndows\ t ool s, or C.:\ Program Fi | es\ andr oi d-
sdk-w ndows\ pl at f orm t ool s.

3. Run the command adb.exeinstall <Unwi r edPl at form I nstal | Di r >
\ Unwi r edPl at f or Ml Mobi | eSDK\ Obj ect API'\ Andr oi d
\ SybaseDat aPr ovi der . apk

createVault
Creates a new secure store.

Creates a vault. A unique name is assigned, and after creation, the vault is referenced and
accessed by that name. This method also assigns a password and salt value to the vault. If a

Developer Guide: Android Object APl Applications 91



Client Object APl Usage

vault already exists with the same name, this method throws an exception. When created, the
vault is in the unlocked state.

Syntax

public static DataVault createVault(
String nane,
String password,
String salt

)

Parameters

* name- The vault name.
* password — The password.
» galt — The encryption salt value.

Returns
createVault creates a Dat aVaul t instance.

If a vault already exists with the same name, a Dat aVaul t Except i on is thrown this with
the reason ALREADY_EXI STS.

Examples

* CreateaData Vault — Creates a new data vault called myVaul t .

DataVault vault = null;
if (!DataVault.vaul t Exi sts("nyVault"))

vault = DataVault.createVault("nmyVault", "password", "salt");
}
el se
vault = DataVault.getVault("myVault");
}
vaultExists

Tests whether the specified vault exists.

Syntax

public static bool ean vaul t Exi sts(String name)

Parameters

¢ name- The vault name.

92

Sybase Unwired Platform



Client Object APl Usage

Returns
vaultExists can return the following values:
Returns Indicates
true The vault exists.
false The vault does not exist.
Examples
* Check if a Data Vault Exists— Checks if a data vault called myVaul t exists, and if so,
deletes it.

if (DataVaul t.vaul t Exi sts("nyVault"))

Dat aVaul t . del eteVaul t ("myVaul t");
}

getVault
Retrieves a vault.

Syntax
public static DataVault getVault(String nane)

Parameters

¢ —The vault name.

Returns

getVault returns a Dat aVaul t instance.

If the vault does not exist, a Dat aVaul t Except i on is thrown.
deleteVault

Deletes the specified vault from on-device storage.

Deletes a vault having the specified name. If the vault does not exist, this method throws an
exception. The vault need not be in the unlocked state, and can be deleted even if the password
is unknown.

Syntax
public static void deleteVault(String nane)

Developer Guide: Android Object APl Applications 93



Client Object APl Usage

Parameters

¢ name- The vault name.

Examples

» Deletea Data Vault — Deletes a data vault called myVaul t .
if (DataVault.vaul t Exi sts("nyVault"))

Dat aVaul t. del eteVaul t ("nmyVaul t");
}

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, this method has no effect.

Syntax
public void | ock()

Examples

* Locksthedata vault. —Prevents changing the vaults properties or stored content.
vaul t. | ock();

isLocked
Tests whether the vault is locked.

Syntax
publ i ¢ bool ean isLocked()
Returns
isLocked can return the following values:
Returns Indicates
true The vault is locked.
false The vault is unlocked.
unlock

Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
unlock attempts exceeds the retry limit, the vault is deleted.

94

Sybase Unwired Platform



Client Object APl Usage

Syntax
public void unlock(String password, String salt)

Parameters

* password — The password.
« salt — The encryption salt value.

Returns

If the incorrect password or salt is used, a Dat aVaul t Except i on is thrown this with the
reason | NVALI D_PASSWORD.

Examples

* Unlocksthedatavault. —Once the vault is unlocked you can change the its properties and
stored content.

if (vault.isLocked())
{

}

vaul t . unl ock("password", "salt");

setLockTimeout
Determines how long a vault remains unlocked.

Determines how many seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public void setLockTi neout (i nt tinmeout)
Parameters

¢ —The number of seconds before the lock times out.

Examples

¢ Set theLock Timeout — Sets the lock timeout to 1 hour.
vaul t . set LockTi neout ( 3600 );

getLockTimeout
Retrieves the configured lock timeout period.

Retrieves the number of seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Developer Guide: Android Object APl Applications 95



Client Object APl Usage

Syntax
public int getLockTi neout ()

Returns

getLockTimeout returns an integer value indicating the number of seconds a vault remains
unlocked before itautomatically locks. The default value, 0, indicates that the lock never times
out.

Examples

e Set thelLock Timeout — Retrieves the lock timeout in seconds.
int tineout = vault. getLockTi meout ();

setRetryLimit
Sets the retry limit value for the vault.

Determines how many consecutive unlock attempts (with wrong password) are allowed. If the
retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that an
unlimited number of attempts are permitted. An exception is thrown if the vault is locked when
this method is called.

Syntax
public void setRetryLimt(int limt)
Parameters

* limit — The number of consecutive unlock attempts (with wrong password) are allowed.

Examples

e Set the Retry Limit — Sets the retry limit to 5 attempts.
vault.setRetryLimt( 5 );

getRetryLimit
Retrieves the retry limit value for the vault.

Retrieves the number of consecutive unlock attempts (with wrong password) are allowed. If
the retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that
an unlimited number of attempts are permitted.

Syntax
public int getRetryLimt()

96

Sybase Unwired Platform



Client Object APl Usage

Returns

getRetryLimit returns an integer value indicating the number of consecutive unlock attempts
(with wrong password) are allowed. If the retry limit is exceeded, the vault is automatically
deleted. The default value, 0, means that an unlimited number of attempts are permitted.

Examples

* Set theRetry Limit —Retrieves the number of consecutive unlock attempts (with wrong
password) that are allowed.
int retrylimt = vault.getRetryLimt();

setString
Stores a string object in the vault.

Stores a string under the specified name. An exception is thrown if the vault is locked when
this method is called.

Syntax

Parameters

* name- The name associated with the string object to be stored.
* value—The string object to store in the vault.

Examples

e Set a String Value — Creates a test string, unlocks the vault, and sets a string value
associated with the name "t est St ri ng" inthe vault. The f i nal | y clause in the
t ry/ cat ch block ensure that the vault ends in a secure state even if an exception occurs.
string teststring = "ABCDEFabcdef";
try
{

vaul t . unl ock("password", "salt");
vaul t.setString("testString", teststring);

}
catch (DataVaul t Exception e)

{
Systemout. println("Exception: " + e.toString());
}
finally
{
vaul t. | ock();
}

Developer Guide: Android Object APl Applications 97



Client Object APl Usage

getString
Retrieves a string value from the vault.

Retrieves a string stored under the specified name in the vault. An exception is thrown if the
vault is locked when this method is called.

Syntax
public String getString(String namne)
Parameters

* name-The name associated with the string object to be retrieved.

Returns

getString returns a string data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

* Get a String Value — Unlocks the vault and retrieves a string value associated with the
name "t est String" inthe vault. The fi nal | y clause inthet ry/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.
try

vaul t . unl ock(" password", "salt");
string retrievedstring = vault.getString("testString");

}
catch (DataVaul t Exception e)
System out. println("Exception: " + e.toString());
}
finally

vaul t. | ock();

}

setValue
Stores a binary object in the vault.

Stores a binary object under the specified name. An exception is thrown if the vault is locked
when this method is called.

Syntax

public void set Val ue(
string nane,

98

Sybase Unwired Platform



Client Object APl Usage

byte[] val ue

Parameters

* name-The name associated with the binary object to be stored.
* value—The binary object to store in the vault.

Examples

* SetaBinary Value—Unlocks the vault and stores a binary value associated with the name
"t est Val ue” inthevault. Thefi nal | y clause inthet r y/ cat ch block ensure that
the vault ends in a secure state even if an exception occurs.
try

vaul t . unl ock(" password", "salt");
vaul t. set Val ue("testVal ue", new byte[] { 1, 2, 3, 4, 5});

}
catch (DataVaul t Exception e)
Systemout. println("Exception: " + e.toString());
}
finally

vaul t. | ock();

}

getValue
Retrieves a binary object from the vault.

Retrieves a binary object under the specified name. An exception is thrown if the vault is
locked when this method is called.

Syntax
public byte[] getValue(string nane)
Parameters

* name- The name associated with the binary object to be retrieved.

Returns

getValue returns a binary data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Developer Guide: Android Object APl Applications 99



Client Object APl Usage

Examples

* Get aBinary Value— Unlocks the vault and retrieves a binary value associated with the
name "t est Val ue" inthe vault. The fi nal | y clause inthe t r y/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.

try
{

vaul t . unl ock("password", "salt");
byte[] retrievedval ue = vault. getVal ue("testVal ue");

catch (DataVaul t Exception e)
{
Systemout. println("Exception: " + e.toString());
}
finally
{

vaul t. | ock();

}

changePassword
Changes the password for the vault.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Syntax

Parameters

* newPassword — The new password.
* newsSalt — The new encryption salt value.

Examples

* Changethe Password for a Data Vault — Changes the password to " newPasswor d" .
Thefinal | y clauseinthet ry/ cat ch block ensure that the vault ends in a secure state
even if an exception occurs.

try
vaul t . unl ock(" password", "salt");
vaul t . changePasswor d( " newPasswor d", "newSalt");
}
catch (DataVaul t Exception e)
{
Systemout. println("Exception: " + e.toString());
}
finally
{

100

Sybase Unwired Platform



Client Object APl Usage

vaul t. | ock();

}

Callback and Listener APIs

The callback and listener APIs allow you to optionally register a callback handler and listen
for device events, application connection events, and package synchronize and replay events.

See also
e Setting Up Callbacks on page 31

CallbackHandler API
The CallbackHandler interface is invoked when any database event occurs. A default callback
handler is provided, which basically does nothing. You should implement a custom
Cal | backHandl er to register important events. The callback is invoked on the thread that
is processing the event. To receive callbacks for database changes, you must register a
Cal | BackHandlI er with the generated database class, the entity class, or both. You can
create a handler by extending the Def aul t Cal | backHandl er class or by implementing
the com sybase. persi st ence. Cal | backHandl er interface.

In your handler, override the particular callback that you are interested in (for example, voi d
onRepl ayFai |l ure(java.l ang. Qbj ect entity) ). The callback is executed in
the thread that is performing the action (for example, replay). When you receive the callback,
the particular activity is already complete.

Developer Guide: Android Object APl Applications 101



Client Object APl Usage

Table 1. Callbacks in the Cal | backHandl er

Interface

Callback

Description

voi d onl nport (java. |l ang. Ob-
ject entity)

This method is invoked when an import message
is successfully applied to the local database.
However, it is not committed. One message from
server may have multiple import entities and they
would be committed in one transaction for the
whole message.

Note:

1. Stale data may be read from the database at
this time before commit of the whole mes-
sage. Developers are encouraged to wait until
the next onTr ansact i onCommi t ()
is invoked, then to read from the database to
obtain the updated data.

2. This method is for DOE-based applications
only.

3. Both CallbackHandlers registered for the
MBO class of the entity and Package DB will
be invoked.

Parameters:

e entity —the Mobile Business Object that was
just imported.

voi d onLogi nFai | ure()

This method will be invoked when login failed for
abegi nOnl i neLogi n call.

Note:

1. This method is for DOE-based application
only.

2. Onlythe Cal | backHandl er registered
for package DB will be invoked.

Sybase Unwired Platform



Client Object APl Usage

Callback Description

voi d onLogi nSuccess() This method is invoked when login succeeds for a
begi nOnl i neLogi n call.

Note:

1. Only the CallbackHandler registered for
package DB is invoked.

2. This method is for DOE-based application
only.

voi d onRepl ayFai - This method is invoked when a replay request
lure(java. |l ang. Object entity) | fails.

Note: CallbackHandlers registered for both the
MBO class of the entity and the Package DB are
invoked.

Parameters:

* entity—the Mobile Business Objectto replay.

voi d onRepl aySuc- This method is invoked when a replay request
cess(j ava.l ang. Obj ect entity) | succeeds.

Note: CallbackHandlers registered for both the
MBO class of the entity and the Package DB are
invoked.

Parameters:

* entity—the Mobile Business Object to replay.

voi d onSear chFai - This method is invoked when a back-end search
lure(java.lang. Object entity) | fails.

Note:

1. CallbackHandlers registered for both the
MBO class of the entity and the Package DB
are invoked.

2. This method is for DOE-based application
only.

Parameters:

e entity — the back-end search object.

Developer Guide: Android Object APl Applications 103



Client Object APl Usage

Callback

Description

voi d onSear chSuc-
cess(java.l ang. Object entity)

This method is invoked when a back end search
succeeds.

Note:

1. CallbackHandlers registered for both the
MBO class of the entity and the Package DB
are invoked.

2. This method is for DOE-based application
only.

Parameters:

e entity — the back-end search object.

voi d onSubscri beFail ure()

This method is invoked when subscribe fails.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onSubscri beSuccess()

This method is invoked when subscribe succeeds.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

104

Sybase Unwired Platform




Client Object APl Usage

Callback

Description

i nt onSynchroni ze(CGeneri c-

Li st <Synchroni zati onG oup>
groups, Synchroni zati onCon-
text context)

This method is invoked at different stages of the
synchronization. The status of the synchroniza-
tion context specifies the stage of the synchroni-
zation.

Parameters:

e groups- a list of synchronization groups.
e context — the synchronization context.

Returns: Either Synchr oni zat i onAc-
ti on. CONTI NUE or Synchr oni za-

ti on. CANCEL. If Synchr oni zat i o-
nAct i on. CANCEL is returned, the syn-
chronize is cancelled if the status of the synchro-
nization context is one of the following.

« Synchroni zati onSt a-
t us. STARTI NG
* Synchroni zati onSt a-
t us. ASYNC_REPLAY_COWVPLETED
* Synchroni zati onSt a-
t us. STARTI NG_ON_NOTI FI CA-
TI ON

The return value has no effect if the status is not in
the above list.

voi d onSuspendSubscri pti on-
Fai l ure()

This method is invoked when suspend subscrip-
tion fails.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

Developer Guide: Android Object APl Applications 105



Client Object APl Usage

Callback

Description

voi d onSuspendSubscri pti on-
Success()

This method is invoked when suspend subscrip-
tion succeeds.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onResumeSubscri pti onFai -
lure()

This method is invoked when resume subscrip-
tion fails.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onResuneSubscri pti onSuc-
cess()

This method is invoked when resume subscrip-
tion succeeds.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onUnsubscri beFai | ure()

This method is invoked when unsubscribe fails.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

106

Sybase Unwired Platform




Client Object APl Usage

Callback

Description

voi d onUnsubscri beSuccess()

This method is invoked when unsubscribe suc-
ceeds.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onMessageExcep-
tion(java.l ang. Excepti on ex)

This method is invoked when an exception occurs
in the processing of a message.

Note: In DefaultCallbackHandlers,onMessa-
geExcept i on re-throws the Exception so
that the messaging layer can retry the message.
The application developer has the option to im-
plement a custom CallbackHandler that does not
re-throw the exception, based on exception types
or other conditions, so that the message is not
retried.

Parameters:

e ex-the exception thrown when processing a
message.

voi d onTransacti onCommit ()

This method is invoked after a message is pro-
cessed and committed.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

Developer Guide: Android Object APl Applications 107



Client Object APl Usage

Callback

Description

voi d onTransacti onRol | back()

This method is invoked after a message is rolled
back. It only happens when an Exception was
thrown when processing the message, or from a
custom Callback method.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onReset Success()

This method is invoked when all data is cleared by
the reset.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onRecover Success()

This method is invoked when recover succeeds.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onRecover Fai |l ure()

This method is invoked when recover fails.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

108

Sybase Unwired Platform




Client Object APl Usage

Callback Description

voi d onSubscri pti onEnd() This method is invoked when a subscription is re-
registered or unsubscribed. This method deletes
all MBO data on the device.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d onl nport Success() This method is invoked when all data has been
successfully imported.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

voi d beforelm This method is invoked before importing the
port (java.lang. Obj ect entity) | specified entity.

Note:

1. Only the CallbackHandler registered for the
Package DB is invoked.

2. This method is for DOE-based application
only.

Parameters:

* entity — the Mobile Business Object to be
imported.

This code shows how to create and register a handler to receive callbacks:
public class MyCal | backHandl er extends Defaul t Cal | backHandl er

/'l inplementation

}

Cal | backHandl er handl er = new MyCal | backHandl er () ;
<PkgNanme>DB. r egi st er Cal | backHandl er (handl er) ;

Developer Guide: Android Object APl Applications 109



Client Object APl Usage

ApplicationCallback API

This callback interface is invoked by events of interest to a mobile application.

You must register an Appl i cati onCal | back implementation to your
com.sybase.mobile.Application instance to receive these callbacks.
Table 2. Callbacks in the ApplicationCallback Interface

Callback Description

voi d onApplicationSetting- Invoked when one or more application settings
sChanged(StringLi st nameLi st) | have been changed by the server administration.

voi d onConnecti onSt at u- Invoked when the connection status changes. The
sChanged(i nt connecti onSt a- possible connection status values are defined in
tus, int errorCode, String the Connect i onSt at us class.

error Message)

voi d onDevi ceCondi ti on- Invoked when a condition is detected on the mo-
Changed(i nt condition) bile device that may be of interest to the applica-
tion or the application user. The possible device
condition values are defined in the Devi ce-
Condi ti on class.

voi d onRegi strationSt at u- Invoked when the registration status changes. The
sChanged(int registrationSta- | possible registration status values are defined in
tus, int errorCode, String the Regi strati onSt at us class.

error Message)

SyncStatusListener API

You can implement a synchronization status listener to track synchronization progress.

Note: This topic is not applicable for DOE-based applications.

Create a listener that implements the Sync St at usLi st ener interface.
public interface SyncStatusLi stener

bool ean obj ect SyncSt at us( Obj ect SyncSt at usDat a st atusDat a) ;
}

public class MySyncLi stener inplenents SyncStatusLi stener

/1 inplenentation
}
Pass an instance of the listener to the synchronize methods.

SyncSt atusLi stener |istener = new MySyncLi stener();
SUP101DB. synchr oni ze("sync_group", |istener);

110

Sybase Unwired Platform



Client Object APl Usage

/1 or SUP101DB. synchronize(listener); if we want to synchronize all
/1 synchronization groups

As the application synchronization progresses, the obj ect Sync St at us method defined
by the Sync St at usLi st ener interface is called and is passed an

hj ect SyncSt at usDat a object. The Ohj ect SyncSt at usDat a object contains
information about the MBO being synchronized, the connection to which it is related, and the
current state of the synchronization process. By testing the St at e property of the

hj ect SyncSt at usDat a object and comparing it to the possible values in the
SyncSt at us St at e enumeration, the application can react accordingly to the state of the
synchronization.

Possible uses of obj ect Sync St at us method include changing form elements on the
client screen to show synchronization progress, such as a green image when the
synchronization is in progress, a red image if the synchronization fails, and a gray image when
the synchronization has completed successfully and disconnected from the server.

Note: The obj ect SyncSt at us method of SyncSt at usLi st ener is called and
executed in the data synchronization thread. If a client runs synchronizations in a thread other
than the primary user interface thread, the client cannot update its screen as the status changes.
The client must instruct the primary user interface thread to update the screen regarding the
current synchronization status.

This is an example of Sync St at usLi st ener implementation:
public class SyncListener inplenents SyncStatusLi stener

publ i ¢ bool ean obj ect SyncSt at us( Obj ect SyncSt at usDat a dat a)
{
switch (data.getSyncStatusState()) {
case SyncStatusStat e. APPLI CATI ON_SYNC_DONE:
[/inmplement your own U indicator bar
br eak;
case SyncStatusSt at e. APPLI CATI ON_SYNC_ERROR:
[/inmplement your own U indicator bar
br eak;
case SyncStatusSt at e. SYNC_DONE:
[1inplement your own U indicator bar
br eak;
case SyncStatusSt ate. SYNC_STARTI NG
[/inplement your own U indicator bar
br eak;

return fal se;

Developer Guide: Android Object APl Applications 111



Client Object APl Usage

Query APIs

The Query API allows you to retrieve data from mobile business objects, to page data, and to
retrieve a query result by filtering. You can also use the Query API to filter children MBOs of a
parent MBO in a one to many relationship.

See also

» Accessing MBO Data on page 40

*  Object Queries on page 41

e Dynamic Querieson page 41

*  MBQOs with Complex Types on page 42
»  Relationships on page 43

Retrieving Data from Mobile Business Objects

You can retrieve data from mobile business objects through a variety of queries, including
object queries, arbitrary find, and through filtering query result sets.

Object Queries

To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query names, parameters, and return types
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:

public static com sybase. col | ections. Generi cLi st <Customer> findAll ()
com sybase. col | ecti ons. Generi cLi st <Cust onmer > custonmers =

Custoner. findAll();

This method retrieves all customers in a certain page:

public static com sybase. col | ections. Generi cLi st <Cust onmer >

findAl'l (int skip, int take)

com sybase. col | ecti ons. Generi cLi st <Cust oner > custoners =
Custoner.findAll (10, 5);

Suppose the modeler defined the following Object Query for the Customer MBO in Sybase
Unwired Workspace:

112

Sybase Unwired Platform



Client Object APl Usage

* name —findByFirstName

e parameter — String firstName

e query definition — SELECT x.* FROM Customer x WHERE x.fhame = :firstName
* return type— Sybase.Collections.GenericList

The preceding Object Query results in this generated method:

public static com sybase. col | ections. Generi cLi st <Cust onmer >
findByFirstName(String firstNane)

com sybase. col | ecti ons. Generi cLi st <Cust onmer > custoners =
Cust oner. fi ndByFi r st Name(" f name") ;

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 3. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.
Selectltem Defines the entry of a select query. For example,

"select x.attrl from MBO x", where "X.attr1" rep-
resents one Selectltem.

Column Used in a subquery to reference the outer query's
attribute.

In addition queries support select, where, and join statements.

Arbitrary Find
The arbitrary find method lets custom device applications dynamically build queries based on

user input. The Query. DI STI NCT property lets you exclude duplicate entries from the
result set.

The arbitrary find method also lets the user specify a desired ordering of the results and object
state criteria. A Quer y classisincluded in the client object API. The Quer y classis the single

Developer Guide: Android Object APl Applications 113



Client Object APl Usage

object passed to the arbitrary search methods and consists of search conditions, object/row
state filter conditions, and data ordering information.

Define these conditions by setting properties in a query:

* TestCriteria— criteria used to filter returned data.

* SortCriteria— criteria used to order returned data.

* Skip —an integer specifying how many rows to skip. Used for paging.

* Take—an integer specifying the maximum number of rows to return. Used for paging.

Setthe Query. Di sti nct propertytot r ue to exclude duplicate entries from the result set.
The default value is f al se for entity types, and its usage is optional for all other types.

Query queryl = new Query();
queryl.setDistinct(true);

TestCriteriacanbeanAttri but eTest oraConpositeTest.

TestCriteria

You can construct a query SQL statement to query data from a local database. You can create a
Test Criteri aobject (in thisexample, At t r i but eTest ) to filter results. You can also
query across multiple tables (MBOs) when using the execut eQuer y API.

Query query2 = new Query();

query?2.sel ect("c.fnane, c. | name, s. order _date, s.region");
query2.fron("Custoner", "c");

11

/| Conveni ence method for adding a join to the query
/1 Detailed construction of the join criteria
query2.join("Sal es_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("fnanme");

ts. set Test Val ue("Beth");

query2. where(ts);

QueryResul t Set qrs = SUP101DB. execut eQuery(query2);

Note: You must use explicit column names in select clauses; you cannot use wildcards.

AttributeTest
AnAttribut eTest defines a filter condition using an MBO attribute, and supports
multiple conditions.

 IS_NULL
« NOT_NULL
« EQUAL

« NOT_EQUAL
.« LIKE

« NOT_LIKE
+ LESS_THAN

114

Sybase Unwired Platform



Client Object APl Usage

. LESS_EQUAL
« GREATER_THAN

« GREATER_EQUAL

« CONTAINS

« STARTS_WITH

« ENDS_WITH

« DOES_NOT_START WITH
« DOES_NOT_END_WITH
« DOES_NOT_CONTAIN
<IN

« NOT_IN

« EXISTS

« NOT_EXISTS

For example, the Java code shown below is equivalent to this SQL query:
SELECT * from A where id in [1,2,3]

Query query = new Qery();

AttributeTest test = new AttributeTest();
test.setAttribute("id");

com sybase. col | ections. Obj ectList v = new
com sybase. col | ecti ons. Obj ect Li st();
v.add("1");

v.add("2");

v.add("3");

test. set Val ue(v);
test.setOperator(AttributeTest.IN);
query. where(test);

When using EXISTS and NOT_EXISTS, the attribute name is not required in the
At tri but eTest . The query can reference an attribute value via its alias in the outer scope.
The Java code shown below is equivalent to this SQL query:

SELECT a.id from Al |l Type a where exists (select b.id fromAll Type b
where b.id = a.id)

Query query = new Qery();
query.select("a.id");

query. from("Al | Type", "a");

AttributeTest test = new AttributeTest();

Query existQuery = new Query();

exi st Query.select("b.id");

exi stQuery.from("All Type", "b");

Colum cl = new Col um();
cl.setAlias("a");

cl.setAttribute("id");

AttributeTest testl = new AttributeTest();
testl.setAttribute ("b.id");

testl. setVal ue(cl);

testl.setOperator (AttributeTest. EQUAL);

Developer Guide: Android Object APl Applications 115



Client Object APl Usage

exi st Query. where(testl);

test. set Val ue( exi st Query);

test.set Operator (AttributeTest. EXI STS);

query. where(test);

QueryResul t Set gqs = SUP101DB. execut eQuery(query);

SortCriteria
Sort CriteriadefinesaSort Or der,which contains an attribute name and an order type
(ASCENDING or DESCENDING).

For example,
Query query = new Qery();

query.sel ect("c. | nane, c.fname");
query. from("Customer", "c");

AttributeTest aTest = new AttributeTest();
aTest.setAttribute("state");

aTest . set Test Val ue(" CA");

aTest . set Test Type(Attri buteTest. EQUAL);
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("| nane", Sort Order Type. ASCENDI NG ;
sort.add("fnane", Sort O der Type. ASCENDI NG ;
query.setSortCriteria(sort);

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an Qut Of Menor yExcept i on.

Consider using the Query object to limit the result set:

Query props = new Query();
props. set Ski p(10);
props. set Take(5) ;

Generi cLi st <Cust omer > custoners = Custoner.findWthQuery(props);

Aggregate Functions
You can use aggregate functions in dynamic queries.

When using the Query. sel ect (Stri ng) method, you can use any of these aggregate

functions:
Aggregate Function Supported Datatypes
COUNT integer
MAX string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

116 Sybase Unwired Platform



Client Object APl Usage

Aggregate Function Supported Datatypes

M N string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

SUM byte, short, int, long, integer, decimal, float, dou-
ble

AVG byte, short, int, long, integer, decimal, float, dou-
ble

If you use an unsupported type, a Per si st enceExcept i on is thrown.

Query queryl = new Query();
queryl. sel ect ("MAX(c.id), MN(c.nane) as m nName");

For iOS, we need a code sample equivalent to this WM sample:

Grouping Results
Apply grouping criteria to your results.

To group your results according to specific attributes, use the Query. gr oupBy(Stri ng
groupByl t em) method. For example, to group your results by ID and name, use:

String groupByltem= ("c.id, c.nane");
Query queryl = new Query();

//other code for queryl
queryl. groupBy(groupByltem;

Filtering Results
Specify test criteria for group queries.

You can specify how your results are filtered by using the

Query. havi ng(com sybase. persi stence. Test Cri teria) method for
queries using G- oupBy. For example, limit your AllType MBO's results to c. i d attribute
values that are greater than or equal to 0 using:

Query query2 = new Query();
query2.select("c.id, SUMc.id)");
query2.from("Al | Type", "c");

AttributeTest ts = new AttributeTest();
ts.setAttribute("c.id");

ts.setValue("0");

ts.setQperator (AttributeTest. GREATER_EQUAL) ;
query2. where(ts);

query2.groupBy("c.id");

AttributeTest ts2 = new AttributeTest();
ts2.setAttribute("c.id");

ts2. set Val ue("0");

ts2.set Operator (Attri buteTest. GREATER EQUAL) ;
query2. havi ng(ts2);

Developer Guide: Android Object APl Applications 117



Client Object APl Usage

Concatenating Queries
Concatenate two queries having the same selected items.

The Quer y class methods for concatenating queries are:

e uni on( Query)

e uni onAl | (Query)
« except(Query)

e intersect(Query)

This example obtains the results from one query except for those results appearing in a second
query:

QJery queryl = new Query();
... Illother code for queryl

QJery query2 = new Qery();
... Ilother code for query 2

Query query3 = queryl. except (query2);
SUP101DB. execut eQuery(query3);

Subgueries
Execute subqueries using clauses, selected items, and attribute test values.

You can execute subqueries usingthe Quer y. from( Query query, String ali as)
method. For example, the Java code shown below is equivalent to this SQL query:
SELECT a.id FROM (SELECT b.id FROM Al | Type b) AS a WHERE a.id =

Use this Java code:

Query queryl = new Query();
queryl.select("b.id");

queryl.from("All Type", "b");

Query query2 = new Query();
query2.select("a.id");

query2. fron(queryl "a");
AttributeTest ts = new Attri buteTest();
ts.setAttribute("a.id");

ts.setVal ue(l);

query2. where(ts);

com sybase. persi stence. QueryResul t Set gs =
SUP101DB. execut eQuery(query?2);

You can use a subquery as the selected item of a query. Use the Sel ect | t emto set selected
items directly. For example, the Java code shown below is equivalent to this SQL query:

SELECT ( SELECT count (1) FROM Al l Type ¢ WHERE c.id >= d.id) AScn, id
FROM Al | Type d

Use this Java code:

Query sel Query = new Query();
sel Query. sel ect ("count (1)");

118

Sybase Unwired Platform



Client Object APl Usage

sel Query. fronm("Al'l Type", "c");

AttributeTest ttt = new AttributeTest();
ttt.setAttribute("c.id");
ttt.setOperator(AttributeTest. GREATER EQUAL) ;
Colum cl = new Col um();

cl.setAlias("d");

cl.setAttribute("id");

ttt.setVal ue(cl);

sel Query. where(ttt);

com sybase. col | ecti ons. Generi cLi st <com sybase. persi st ence. Sel ectlte
nm> sel ectltens = new

com sybase. col | ecti ons. Generi cLi st <com sybase. persi stence. Sel ectlte
() ;

Selectltemitem = new Selectlten();

item set Query(sel Query);

itemsetAias("cn");

selectltens. add(item;

item = new Sel ectltenm();

itemsetAttribute("id");

itemsetAias("d");

selectltens. add(item;

Query subQuery2 = new Query();

subQuery?2. set Sel ectltens(sel ectltens);

subQuery2. fron("Al | Type", "d");

com sybase. persi stence. QueryResul t Set gs =

SUP101DB. execut eQuer y(subQuery?2);

CompositeTest
AConposi t eTest combinesmultiple Test Cri t eri a using the logical operators AND,

OR, and NOT to create a compound filter.

Complex Example
This example shows the usage of Conposi t eTest, Sort Criteri a,and Query to
locate all customer objects based on particular criteria.

« FirstName = John AND LastName = Doe AND (State = CA OR State = NY)
e Customer is New OR Updated

e Ordered by LastName ASC, FirstName ASC, Credit DESC

» Skip the first 10 and take 5

Query props = new Qery();

//define the attribute based conditions

[/ Users can pass in a string if they know the attri bute nane. Rl
colum nanme = attribute nane.

Conposi t eTest i nner ConpTest = new ConpositeTest();
i nner ConpTest . set Oper at or (Conposi teTest. OR) ;

i nner ConpTest . add(new Attri buteTest("state", "CA",
AttributeTest. EQUAL));

i nner ConpTest . add(new AttributeTest("state", "NY",
AttributeTest. EQUAL));

Conposi t eTest out er ConpTest = new ConpositeTest();
out er ConpTest . set Oper at or (Conposi teTest. OR) ;

Developer Guide: Android Object APl Applications 119



Client Object APl Usage

out er ConpTest . add(new Attri buteTest ("fnanme", "Jane",
AttributeTest. EQUAL));

out er ConpTest . add(new Attri buteTest ("l name", " Doe",
AttributeTest. EQUAL));

out er ConpTest . add(i nner ConpTest ) ;

//define the ordering

SortCriteria sort = new SortCriteria();

sort.add("fnanme", SortOrder. ASCENDI NG ;

sort.add("| nanme", Sort Order.ASCENDI NG ;

//set the Query object

props.set TestCriteria(outerConpTest);
props.setSortCriteria(sort);

props. set Ski p(10);

props. set Take(5);

com sybase. col | ecti ons. Generi cLi st <Cust omer > custonmers2 =
Cust oner. fi ndW t hQuery(props);

QueryResultSet

The Quer yResul t Set class provides for querying aresult set from the dynamic query API.
Quer yResul t Set is returned as a result of executing a query.

The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a Quer vy, filling in the criteria for the query, and filtering the
query results:

com sybase. persi stence. Query query = new
com sybase. persi stence. Query();
query. sel ect("c.fnane, c.| nane, s. order _date, s.region");
query. from("Customer ", "c");
query.join("Sal esOder ", "s", " s.cust_id ", "c.id");
AttributeTest at = new AttributeTest();
at.setAttribute("l nane");
at . set Test Val ue("Devlin");
query.setTestCriteria(at);
QueryResul t Set gqrs = SUP101DB. execut eQuery(query);
whil e(qgrs. next())
{

System out . pri nt(qrs getStrl ng(1l));

System out . print ("

System out . printl n(qrs get Stri ngByName("c. fnange"));

System out . pri nt(qrs getStrl ng(2));
System out . print ("
System out . printl n(qrs get Stri ngByName("c. | nange"));

System out . pri nt(qrs getStrl ng(3));
System out . print ("
System out . printl n(qrs get Stri ngByNanme("s. order_date"));

System out . pri nt(qrs getStrl ng(4));
System out . print ("
System out . printl n(qrs get Stri ngByName("s.region"));

120

Sybase Unwired Platform



Client Object APl Usage

Retrieving Relationship Data

A relationship between two MBOs allows the parent MBO to access the associated MBO. A
bidirectional relationship also allows the child MBO to access the associated parent MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.

Cust oner customer = Customer.findByld (101);
GenericlLi st <Sal es_order> orders = custoner. get Sal esOrders();

You can also use the Quer y class to filter the return MBO list data.

Query props = new Qery();
/] set query paraneters

CGeneri clLi st <Sal es_order> orders =
cust oner. get Sal esOr der sFi | t er By( props);

Back-end Search

Backend search allows the client to operate on a subset of data, obtained as a result of
executing a specific named query on the server.

Search MBO Create

Consider a named query on the server, BE_SEARCH_GETLI ST. To initiate a back-end
search, the first step is to create a search MBO.

BackendSear ch search = new BackendSearch();

Fill up the required fields for the MBO as follows:

//any nane as desired by the user.
sear ch. set Sear chNanme(" MySear ch") ;

/lentity type for the result set (corresponds to the return type of
the named query )
search. set EntityType("ENTI TY_TYPE_DETAI LS");

//the name of the query to be executed on the server
[search set NanedQuery: [BackendSearch BE_SEARCH CETLI ST]];
sear ch. set NanedQuery ("BE_SEARCH GETLI ST");

For every named query on the server, the generated client code contains a corresponding class
file, with the same name as the query. For example, BE_ SEARCH GETLI ST. j ava. The
attributes of the class represent the parameters for the query and can be set as follows.
//Set up the search paraneters , which will be used as the search
criteria

BE_SEARCH GETLI ST searchParaneters = new BE_SEARCH GETLI ST();
sear chPar anet er s. set NAME_FI RST("John") ;

Developer Guide: Android Object APl Applications 121



Client Object APl Usage

//additional paraneters if required.

[/ Now set the above as searchparaneters in the MBO
sear ch. set Par anet er s(sear chPar anet er s) ;

The search MBO has other optional fields:

sear ch. set Sear chTi me(com sybase. af x. uti | . DateTi neUtil.now));
sear ch. set Take(100) ;

search. set Searchl d(1);

/...

/1 other optional fields of search.

//subnmit search request to the server
sear ch. subm t Pendi ng() ;

After some time the server sends a search failure or success message, and the results of the
query. You can get the search result notification from Cal | backHandl er . The results are
saved into the back-end search results table on the device database. The result data can be
retrieved as follows:

Gerneri cLi st <ENTI TY_TYPE_DETAI LS> searchResults =
ENTI TY_TYPE_DETAI LS. sear chResul t s(search);

Search MBO Update

sear chPar aneters = new BE_SEARCH GETLI ST() ;
sear chPar anet er s. set NAME_FI RST(“Ron”) ;

sear ch. set Par anet er s(sear chPar anet er s) ;
sear ch. update();

search.refresh();

sear ch. subni t Pendi ng() ;

Search MBO Delete

Delete on a search MBO will delete the search entity and result locally in the client database.
Data on the server cannot be deleted using the search MBO and a call to submitPending will
not propagate the delete message to the server.

search. del ete();

Persistence APIs

The persistence APIs include operations and object state APIs.

See also
e Manipulating Data on page 44

122 Sybase Unwired Platform



Client Object APl Usage

Operations APIs
Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create non-static
instances of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the client object API, and are not exposed. Any parameters
not mapped to the object’s attributes are left as parameters in the generated object API. The
code examples for create, update, and delete operations are based on the fill from attribute
being set. Different MBO settings affect the operation methods.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In
other situations, where there are multiple instances of create or update operations, methods
such as Save cannot be automatically generated.

See also
e Creating, Updating, and Deleting MBQOs on page 44
e Other Operations on page 45

Create Operation

The cr eat e operation allows the client to create a new record in the local database. To
execute a create operation on an MBO, create a new MBO instance, and set the MBO
attributes, then call the save() orcr eat e() operation. To propagate the changes to the
server, call subni t Pendi ng.

Cust oner cust = new Custormer();

cust. set Fnane ( "supAdmi n" );

cust. set Conpany_nane( "Sybase" );

cust. set Phone( "777-8888" );

cust.create();// or cust.save();

cust . submi t Pendi ng() ;

SUP101DB. synchr oni ze();

/] or SUP101DB. synchronize (String synchronizati onG oup)

Update Operation

The updat e operation updates a record in the local database on the device. To execute update
operations onan MBO, get an instance of the MBO, set the MBO attributes, then call either the
save() orupdat e() operation. To propagate the changes to the server, call

subni t Pendi ng.

Customer cust = Custoner.findByld(101);

cust. set Fnane(" supAdm n");
cust . set Conpany_nane(" Sybase") ;

Developer Guide: Android Object APl Applications 123



Client Object APl Usage

cust. set Phone("777-8888") ;

cust.save(); // or cust.update();

cust . submi t Pendi ng() ;

SUP101DB. synchr oni ze();

/1 or SUP101DB. synchroni ze (String synchroni zati onG oup)

To update multiple MBOs in a relationship, call submi t Pendi ng() onthe parent MBO, or
call submi t Pendi ng() on the changed child MBO:

Custoner cust = Customer.findByld(101);

com sybase. col | ecti ons. Obj ectLi st orders = cust. get Sal esOrders();

Sal esOrder order = (Sal esOrder)orders. get Byl ndex(0);

order.set Order_date(new Date(SystemcurrentTineMI1lis()));

order. save();

cust . submi t Pendi ng() ;

Delete Operation

The del et e operation allows the client to delete a new record in the local database. To
execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the del et e operation. To propagate the changes to the server, call

submni t Pendi ng.

Custoner cust = Custoner.findByld(101);
cust.del ete();

For MBOs in a relationship, perform a delete as follows:

Cust oner cust = Custormer.findByld(101);

Generi cLi st <Sal es_order> orders = cust.get Sal esOrders();
Sal es_order order = orders.iten{0);

order.del ete();

cust . submi t Pendi ng() ;

SUP101DB. synchr oni ze();

/1 or SUP101DB. synchroni ze (String synchroni zati onG oup)

Save Operation

The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the updat e operation. If a record does not exist, the save operation
creates a new record.

[/ Updat e an exi sting custoner
Custoner cust = Customer.findByld(101);
cust. save();

//lnsert a new custoner
Custoner cust = new Custoner();
cust. save();

124

Sybase Unwired Platform



Client Object APl Usage

Other Operation

Operations other than cr eat e, updat e, or del et e operations are called "other"
operations. An Ot her operation class is generated for each operation in the MBO that isnot a
creat e, updat e, or del et e operation.

Suppose the Customer MBO has an Other operation "other", with parameters "P1" (string),
"P2" (int), and "P3" (date). This results in a Cust orrer &t her Oper at i on class being
generated, with "P1", "P2", and "P3" as its attributes.

To invoke the Other operation, create an instance of Cust omer Gt her Oper at i on, and set
the correct operation parameters for its attributes. For example:

Cust oner & her Oper ati on ot her = new Cust omer & her Operation();
ot her. set P1("soneval ue");

ot her. set P2(2);

ot her. set P3(new Dat e(System currentTimeM | lis()));

ot her. save();

ot her. submi t Pendi ng() ;

SUP101DB. synchroni ze(); // or SUP101DB. synchroni ze (String
synchroni zati onG oup)

Pending Operation
You can manage the pending state.

» cancelPending —cancels the previous cr eat e, updat e, or del et e operations on the
MBO. It cannot cancel submitted operations.

» submitPending —submits the operation so that it can be replayed on the Unwired Server.
A request is sent to the Unwired Server during a synchronization.

* submitPendingOper ations — submits all the pending records for the entity to the
Unwired Server. This method internally invokes the submi t Pendi ng method on each
of the pending records.

» cancelPendingOper ations — cancels all the pending records for the entity. This method
internally invokes the cancel Pendi ng method on each of the pending records.

Cust oner custonmer = Custoner.findByld(101);
i f (errorHappened) {
cust oner . cancel Pendi ng() ;

}
el se {

cust oner. subm t Pendi ng() ;
}

You can group multiple operations into a single transaction for improved performance:

/'l 1oad the customer MBO with customer |ID 100
Cust oner custoner = Custoner.findByPri maryKey(100);

/'l Change phone nunber of that custoner
cust oner . set Phone("8005551212") ;

/] use one transaction to do save and submni t Pendi ng

Developer Guide: Android Object APl Applications 125



Client Object APl Usage

com sybase. persi stence. Local Transaction tx =
SUP101DB. begi nTransacti on() ;

try
{
cust oner. save();

cust oner. submi t Pendi ng() ;
tx.conmit();

}
catch (Exception e)

tx. rol | back();
}

Complex Attribute Types

Some back-end datasources require complex types to be passed in as input parameters. The
input parameters can be any of the allowed attribute types, including primitive lists, objects,
and object lists. The MBO examples have attributes that are primitive types (such asi nt ,

| ong, or st ri ng), and make use of the basic database operations (cr eat e, updat e, and
del et e).

Passing Structures to Operations

An Unwired WorkSpace project includes an example MBO that is bound to a Web service data
source that includes a cr eat e operation that takes a structure as an operation parameter.
MBOs differ depending on the data source, configuration, and so on, but the principles are
similar.

The SimpleCaseList MBO contains a cr eat e operation that has a number of parameters,
including one named HEADER _ that is a structure datatype named
Aut hent i cat i onl nf o, defined as:

Aut henti cati onl nfo
user Nane: String
password: String
aut hentication: String
locale: String
ti meZone: String

Structures are implemented as classes, so the parameter HEADER_is an instance of the
Aut hent i cat i onl nf o class. The generated code for the cr eat e operation is:

public void create(conpl ex.Aut henticationlnfo
_HEADER , java.lang. String escal ated, java.l ang. String
hotlist,java.lang. String orig_Submtter,java.lang. String
pendi ng, j ava. |l ang. Stri ng workLog)

This example demonstrates how to initialize the Aut hent i cat i onl nf o class instance
and pass it, along with the other operation parameters, to the cr eat e operation:

Aut henti cati onl nfo authen = new Aut henticationlnfo();
aut hen. set User Nane(" Denp") ;

aut hen. set Password("");

aut hen. set Aut henti cation("");

aut hen. set Local e("EN_US") ;

126

Sybase Unwired Platform



Client Object APl Usage

aut hen. set Ti neZone(" GMI") ;

Si npl eCaseli st newCase = new Si npl eCaseli st ();

newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.
newCase.

set Case_Type("Ilncident");

set Cat egor y( " Net wor ki ng") ;

set Depart nent (" Mar keti ng");

set Description("A new hel p desk case.");
setlten( " Configuration");

setOXfice("#3 Sybase Drive");

set Subni tted_By(" Denpn") ;

set Phone_Numnber (" #0861023242526") ;
setPriority("H gh");

set Regi on( " USA") ;

set Request _Urgency("Hi gh");

set Request er _Logi n_Name(" Denn") ;

set Request er _Nane(" Denmp") ;

setSite("25 Bay St, Muuntain View, CA");
set Sour ce(" Requester");

set St at us(" Assi gned") ;

set Sunmar y(" Mar kHel | ous was here Fix it.");
set Type("Access to Files/Drives");

newCase. set Cr eat e_Ti ne(new

java. sqgl . Ti mestanp(System currentTineM I 1is()));

newCase. creat e(aut hen, "CGther", "Qther", "Denp", "fal se",
"wor kl 0g") ;

newCase.

subm t Pendi ng() ;

Object State APIs

The object state APIs provide methods for returning information about the state of an entity in
an application.

Entity State Management

The object state APIs provide methods for returning information about entities in the

database.

All entities that support pending state have the following attributes:

Name

Type Description

i sNew

bool ean Returns true if this entity is new, but has not yet been
created in the client database.

Developer Guide: Android Object APl Applications 127



Client Object APl Usage

Name

Type

Description

i sCreated

bool ean

Returns true if this entity has been newly created in the
client database, and one of the following is true:

e The entity has not yet been submitted to the server
with a replay request.

e The entity has been submitted to the server, but the
server has not finished processing the request.

» Theserver rejected the replay request (r epl ay-
Fai | ur e message received).

isDirty

bool ean

Returns true if this entity has been changed in memory,
but the change has not yet been saved to the client
database.

i sDel et ed

bool ean

Returns true if this entity was loaded from the database
and subsequently deleted.

i sUpdat ed

bool ean

Returns true if this entity has been updated or changed
in the database, and one of the following is true:

« The entity has not yet been submitted to the server
with a replay request.

e Theentity has been submitted to the server, but the
server has not finished processing the request.

»  Theserver rejected the replay request (r epl ay-
Fai | ur e message received).

pendi ng

bool ean

Returns true for any row that represents a pending
creat e,updat e,ordel et e operation, orarow
that has cascading children with a pending operation.

pendi ngChange

char

If pending is true, this attribute's value is 'C' (create),
'U' (update), 'D' (delete), or 'P' (to indicate that this
MBO is a parent in a cascading relationship for one or
more pending child objects, but this MBO itself has no
pending create, update or delete operations). If pend-
ing is false, this attribute's value is 'N".

repl ayCount er

long

Returns al ong value that is updated each time a row
is created or modified by the client. This value is a
unique value obtained from Key Gener a-

t or. gener at el Dmethod. Note that the value
increases every time it is retrieved.

128

Sybase Unwired Platform



Client Object APl Usage

Name

Type

Description

r epl ayPendi ng

long

Returns a| ong value. When a pending row is sub-
mitted to the server, the value of r epl ay Count er
is copied to r epl ayPendi ng. This allows the cli-
ent code to detect if a row has been changed since it was
submitted to the server (that is, if the value of r e-

pl ayCount er is greater than r epl ayPend-

i ng).

repl ayFail ure

long

Returnsal ong value. When the server responds with
arepl ayFai | ur e message for a row that was
submitted to the server, the value of r epl ay-
Count er iscopiedtor epl ayFai | ur e, and
repl ayPendi ng is setto 0.

Entity State Example

Shows how the values of the entities that support pending state change at different stages
during the MBO update process. The values that change between different states appear in

bold.

Note these entity behaviors:

e TheisDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

« Therepl ayCount er value that gets sent to the Unwired Server is the value in the
database before you call subni t Pendi ng. After a successful replay, that value is

imported from the Unwired Server.

e The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Developer Guide: Android Object APl Applications 129



Client Object APl Usage

Description Flags/Values

After reading from the database, before any changes | isNew=false
are made. isCreated=false
isDirty=false
isDeleted=false
isUpdated=false
pending=false
pendingChange="N'
replayCounter=33422977
replayPending=0

replayFailure=0

One or more attributes are changed, but changes not | isNew=false
saved. isCreated=false
isDirty=true
isDeleted=false
isUpdated=false
pending=false
pendingChange="N'
replayCounter=33422977
replayPending=0

replayFailure=0

130 Sybase Unwired Platform



Client Object APl Usage

Description

Flags/Values

Afterentity. save()[entity save]
orentity.update()[entity up-
dat e] is called.

isNew=false
isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="U’
replayCounter=33424979
replayPending=0

replayFailure=0

Afterent i ty. subm t Pendi ng()[ en-
tity submt Pendi ng] is called to submit
the MBO to the server.

isNew=false
isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=33424981

replayFailure=0

Developer Guide: Android Object APl Applications

131



Client Object APl Usage

Description Flags/Values

Possible result: the Unwired Server accepts the up- | isNew=false
date, sends an importandar epl ayResul t for
the entity, and then refreshes the entity from the

database. iSDirty:false

isDeleted=false

isCreated=false

isUpdated=false
pending=false
pendingChange="N’
replayCounter=33422977
replayPending=0

replayFailure=0

Possible result: The Unwired Server rejects the up- | isNew=false
date, sends a r epl ayFai | ur e for the entity,
and refreshes the entity from the database

isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=0
replayFailure=33424981

Mobile Business Object States

A mobile business object can be in one of three states.

« Original state — the state before any CUD operation.

« Downloaded state — the state downloaded from the Unwired Server.

« Current state — the state after any CUD operation.

The mobile business object class provides properties for querying the original state and the
downloaded state:

public Custoner getOriginal State();
publ i ¢ Customer get Downl oadState();

Cust oner cust = Customer.findByld(101); /] state 1
cust. set Fnane("first Nane");
cust . set Conpany_nane(" Sybase") ;

132 Sybase Unwired Platform



Client Object APl Usage

cust. set Phone("777-8888") ;

cust. save(); /] state 2
Custoner org = cust.getOriginal State(); /] state 1
[/ suppose there is new downl oad for Customer 101 here

Cust oner downl oad = cust. get Downl oadSt at e() ; /] state 3
cust . cancel Pendi ng() ; /Il state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

For example:

Cust oner cust = Custormer.findByld(101);
cust . set Fnanme(" newNane") ;
cust.refresh();// newName is discarded

Generated Package Database APIs

The generated package database APIs include methods that exist in each generated package
database.

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void createDatabase()
public static void del et eDat abase()
public static bool ean dat abaseExi sts()

Typically, cr eat eDat abase does not need to be called since it is called internally when
necessary. An application may use del et eDat abase when uninstalling the application.

Use the transaction API to group several transactions together for better performance.

public static com sybase. persi stence. Local Transacti on
begi nTransacti on()

Cust oner custoner = Custoner.findByPrimaryKey(101);
/1 Use one transaction to save and submt pending
Local Transacti on tx = SUP101DB. begi nTransacti on();
/1 modify custoner information
cust oner. save();
cust onmer . submi t Pendi ng() ;
tx.commit();

Large Attribute APIs

Use large string and binary attributes.

You can import large messages containing binary objects (BLOBS) to the client, send new or
changed large objects to the server, and efficiently handle large attributes on the client.

Developer Guide: Android Object APl Applications 133



Client Object APl Usage

The large attribute APIs allow clients to import large messages from the server or send a replay
message without using excessive memory and possibly throwing exceptions. Clients can also
access or modify a large attribute without reading the entire attribute into memory. In addition,
clients can execute queries without having large attribute valuies automatically filled in the
returned MBO lists or result sets.

BigBinary
An object that allows access to a persistent binary value that may be too large to fit in available
memory. A streaming API is provided to allow the value to be accessed in chunks.

close
Closes the value stream.

Closes the value stream. Any buffered writes are automatically flushed. Throws a
St r eanNot OpenExcept i on if the stream is not open.

Syntax
public void close()

Examples

e —Writes a binary book cover image and closes the image file.

Book book = Book. fi ndByPri maryKey(bookl D);

com sybase. persi stence. Bi gBi nary i nage = book. get Cover();
i mage. openForWite(0);

1.

i mage. cl ose();

copyFromFile
Overwrites this Bi gBi nar y object with data from the specified file.

Any previous contents of the file will be discarded. Throws an

bj ect Not SavedExcept i on if this Bi gBi nar y object is an attribute of an entity that
has not yet been created in the database. Throws a St r eanNot Cl osedExcept i on if the
object is not closed.

Syntax
public void copyFronFile(java.lang. String fil epath)

Parameters

» filepath — The file containing the data to be copied.

134

Sybase Unwired Platform



Client Object APl Usage

copyToFile

Overwrites the specified file with the contents of this Bi gBi nar y object.

Any previous contents of the file are discarded. Throws an Gbj ect Not SavedExcepti on
if this Bi gBi nar y object is an attribute of an entity that has not yet been created in the
database. Throws a St r eanNot Cl osedExcept i on if the object is not closed.

Syntax
public void copyToFil e(java.lang. String fil epath)

Parameters

« filepath — The file to be overwritten.

flush
Flushes any buffered writes.

Flushes any buffered writes to the database. Throws a St r eaniNot OpenExcept i on if the
stream is not open.

Syntax
public void flush()

openForRead
Opens the value stream for reading.

Has no effect if the stream was already open for reading. If the stream was already open for
writing, it is flushed before being reopened for reading. Throws an

bj ect Not SavedExcept i on if this Bi gBi nar y object is an attribute of an entity that
has not yet been created in the database. Throws an Obj ect Not FoundExcept i on if this
object is null.

Syntax
public void openFor Read()

Examples

* —Opens a binary book image for reading.

Book book = Book. fi ndByPri maryKey(bookl D);
com sybase. persi st ence. Bi gBi nary i nage = book. get Cover () ;
i mage. openFor Read() ;

Developer Guide: Android Object APl Applications 135



Client Object APl Usage

openForWrite
Opens the value stream for writing.

Any previous contents of the value will be discarded. Throws an
bj ect Not SavedExcept i on if this Bi gBi nar y object is an attribute of an entity that
has not yet been created in the database.

Syntax
public void openForWite(l ong newlLengt h)

Parameters

* newLength —The new value length in bytes. This parameter is required for some
platforms, but for Android the parameter value is ignored, and can be specified as 0.

Examples

e —Opens a binary book image for writing.

Book book = Book. fi ndByPri maryKey(bookl D) ;
com sybase. persi stence. Bi gBi nary i nage = book. get Cover ();
i mage. openForWite(0);

read
Reads a chunk of data from the stream.

Reads and returns the specified number of bytes, or fewer if the end of stream is reached.
Throws a St r eanNot QpenExcept i on if the stream is not open for reading.

Syntax
public byte[] read(int |ength)
Parameters

* length — The maximum number of bytes to be read into the chunk.

Returns

r ead returns a chunk of binary data read from the stream, or a null value if the end of the
stream has been reached.

Examples

e —Reads in a binary book image.

Book book = Book. fi ndByPri mar yKey(bookl D) ;
com sybase. persi st ence. Bi gBi nary i nage = book. get Cover () ;

136

Sybase Unwired Platform



Client Object APl Usage

int bufferLength = 1024;

i mage. openFor Read() ;

byte[] binary = inmage.read(bufferlLength);
while (binary !'= null)

{
bi nary = image.read(bufferLength);

i mage. cl ose();
readByte
Reads a single byte from the stream.

Throws a St r eanNot QpenExcept i on if the stream is not open for reading.

Syntax
public int readByte()

Returns

r eadByt e returns a byte of data read from the stream, or -1 if the end of the stream has been
reached.

seek
Changes the stream position.

Throws a St r eanNot QpenExcept i on if the stream is not open for reading.

Syntax

public void seek(long newPosition)

Parameters

* newPasition — The new stream position in bytes. Zero represents the beginning of the
value stream.

write
Writes a chunk of data to the stream.

Writes data to the stream, beginning at the current position. The stream may be buffered, so
use f I ush or cl ose to be certain that any buffered changes have been applied. Throws a
St r eamNot OpenExcept i on if the stream is not open for writing. Throws a

Wit eAppendOnl yExcept i on if the platform only supports appending to the end of a
value and the current stream position precedes the end of the value. Throws a

Wit eOver Lengt hExcept i on if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Developer Guide: Android Object APl Applications 137



Client Object APl Usage

Syntax
public void wite(byte[] data)

Parameters

e data— The data chunk to be written to the stream.

Examples

e —Opens a binary book image for writing.

Book book = Book. fi ndByPri maryKey(bookl D);

com sybase. persi stence. Bi gBi nary i nage = book. get Cover ();

i mage. openForWite(0);

byte[] binary = new byte[] { O, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
i mge. wite(binary);

writeByte
Writes a single byte to the stream.

Writes a byte of data to the stream, beginning at the current position. The stream may be
buffered, souse f | ush or cl ose to be certain that any buffered changes have been applied.
Throws a St r eanNot QpenExcept i on if the stream is not open for writing. Throws a
Wit eAppendOnl yExcept i on if the platform only supports appending to the end of a
value and the current stream position precedes the end of the value. Throws a

Wit eOver Lengt hExcept i on if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Syntax

public void witeByte(byte data)
Parameters

* data—The byte value to be written to the stream.
BigString

Anobject that allows access to a persistent string value that might be too large to fitin available
memory. A streaming API is provided to allow the value to be accessed in chunks.

close
Closes the value stream.

Closes the value stream. Any buffered writes are automatically flushed. Throws a
St r eamNot CpenExcept i on if the stream is not open.

138

Sybase Unwired Platform



Client Object APl Usage

Syntax
public void close()

Examples

* —Writes to the biography file, and closes the file.

Aut hor aut hor = Aut hor. findByPri maryKey(aut horl D);
Bi gString text = author.getBi ography();
text.openForWite(0);

text.write("something");

text.cl ose();

copyFromFile
Overwrites this Bi gSt r i ng object with data from the specified file.

Any previous contents of the value will be discarded. Throws an

hj ect Not SavedExcept i on ifthis Bi gSt r i ng object is an attribute of an entity that
has not yet been created in the database. Throws a St r eanNot Cl osedExcept i on if the
object is not closed.

Syntax

public void copyFronFile(java.lang. String fil epath)
Parameters

» filepath — The file containing the data to be copied.

copyToFile

Overwrites the specified file with the contents of this Bi gSt r i ng object.

Any previous contents of the file are discarded. Throws an Cbj ect Not SavedExcept i on
if this Bi gSt r i ng object is an attribute of an entity that has not yet been created in the
database. Throws a St r eamNot Cl osedExcept i on if the object is not closed.

Syntax

public void copyToFil e(java.lang. String fil epath)
Parameters

» filepath — The file to be overwritten.

flush

Flushes any buffered writes.

Flushes any buffered writes to the database. Throws a St r eanNot OpenExcept i on if the
stream is not open.

Developer Guide: Android Object APl Applications 139



Client Object APl Usage

Syntax
public void flush()

openForRead
Opens the value stream for reading.

Has no effect if the stream was already open for reading. If the stream was already open for
writing, it is flushed before being reopened for reading. Throws an

oj ect Not SavedExcept i onifthis Bi gSt ri ng object is an attribute of an entity that
has not yet been created in the database.

Syntax
public void openFor Read()

Examples

* —Opens the biography file for reading.

Aut hor aut hor = Aut hor. fi ndByPri maryKey(authorl D);
Bi gString text = author.getBi ography();
t ext . openFor Read() ;

openForWrite
Opens the value stream for writing.

Any previous contents of the value will be discarded. Throws an
hj ect Not SavedExcept i onifthis Bi gSt ri ng object is an attribute of an entity that
has not yet been created in the database.

Syntax
public void openForWite(l ong newLengt h)

Parameters

* newLength —The new value length in bytes. Some platforms may allow this parameter to
be specified as 0, with the actual length to be determined later, depending on the amount of
data written to the stream. Other platforms require the total amount of data written to the
stream to match the specified value.

Examples
* —Opens the biography file for writing.

Aut hor aut hor = Aut hor. fi ndByPri maryKey(authorl D);
Bi gString text = author.getBi ography();
text.openForWite(0);

140

Sybase Unwired Platform



Client Object APl Usage

read
Reads a chunk of data from the stream.

Reads and returns the specified number of characters, or fewer if the end of stream is reached.
Throws a St r eanNot OpenExcept i on if the stream is not open for reading.

Syntax
public String read(int |ength)

Parameters

* length — The maximum number of characters to be read into the chunk.

Returns

r ead returns a chunk of string data read from the stream, or a null value if the end of the
stream has been reached.

Examples

* —Reads in the biography file.

Aut hor aut hor = Aut hor. findByPri maryKey(authorl D);
Bi gString text = author.getBi ography();

t ext. openFor Read() ;

int bufferLength = 1024;

String something = text.read(bufferLength); //null if ECF
while (something !'= null)
{
somet hi ng = text.read(bufferLength);
text.close();
readChar
Reads a single character from the stream.

Throws a St r eanNot QpenExcept i on if the stream is not open for reading.

Syntax
public int readChar()

Returns

r eadChar returns a single character read from the stream, or -1 if the end of the stream has
been reached.

Developer Guide: Android Object APl Applications 141



Client Object APl Usage

seek
Changes the stream position.

Throws a St r eanNot QpenExcept i on if the stream is not open for reading.

Syntax
public void seek(long newPosition)

Parameters

¢ newPosition —The new stream position in characters. Zero represents the beginning of the
value stream.

write
Writes a chunk of data to the stream.

Writes data to the stream, beginning at the current position. The stream may be buffered, so
use f | ush or cl ose to be certain that any buffered changes have been applied. Throws a
St r eamNot OpenExcept i on if the stream is not open for writing. Throws a

Wit eAppendOnl yExcept i on if the platform only supports appending to the end of a
value and the current stream position precedes the end of the value. Throws a

Wit eOver Lengt hExcept i on if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Syntax
public void wite(java.lang. String data)

Parameters

e data— The data chunk to be written to the stream.

Examples

* —Writes to the biography file, and closes the file.

Aut hor aut hor = Aut hor. findByPri maryKey(aut horl D);
Bi gString text = author.getBi ography();
text.openForWite(0);

text.write("sonething");

text.cl ose();

writeChar
Writes a single character to the stream.

Writes a character of data to the stream, beginning at the current position. The stream may be
buffered, souse f | ush or cl ose to be certain that any buffered changes have been applied.
Throws a St r eanNot QpenExcept i on if the stream is not open for writing. Throws a

142

Sybase Unwired Platform



Client Object APl Usage

Wit eAppendOnl yExcept i on if the platform only supports appending to the end of a
value and the current stream position precedes the end of the value. Throws a

Wit eOver Lengt hExcept i on if the platform requires the length to be predetermined
before writing and this write would exceed the predetermined length.

Syntax
public void witeChar(char data)

Parameters

e data— The character value to be written to the stream.

MetaData and Object Manager API

The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API

Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations, and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

MetaData classes are generated automatically. However, you must use the - r moption to
generate the object manager class.

DatabaseMetaData

The Dat abaseMet aDat a class holds package-level metadata. You can use it to retrieve
data such as synchronization groups, the default database file, and MBO metadata.

Any entity for which "allow dynamic queries" is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.

Dat abaseMet aDat a dnd = SUP101DB. get Met aDat a() ;

com sybase. col |l ections. StringLi st syncG oups =

dnd. get Synchroni zati onG oups() ;

for(int i=0; i<syncGoups.size(); i++)

{

String syncGoup = syncGoups.item(i);

System out . println(syncG oup);

}

Developer Guide: Android Object APl Applications 143



Client Object APl Usage

ClassMetaData

The O assMet aDat a class holds metadata for the MBO, including attributes and
operations.

AttributeMetaData | name = custoner Met aDat a. get Attri bute("l nane");
Qper ati onMet aDat a save = cust oner Met aDat a. get Oper ati on("save");

AttributeMetaData

The At t ri but eMet aDat a class holds metadata for an attribute such as attribute name,
column name, type, and maxlength.

System out . println(l nanme. get Nane()) ;
System out . printl n(l nanme. get Col um());
System out. printl n(l name. get MaxLengt h());

Exceptions

Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions

The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the Unwired
Server throws an exception.

A server-side exception results in a stack trace in the server log, and a log record
(LogRecor dl npl ) imported to the client with information on the problem.

HTTP Error Codes

Unwired Server examines the EIS code received in a server response message and maps itto a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

These tables list recoverable and unrecoverable error codes. All error codes that are not
explicitly considered recoverable are considered unrecoverable.

144

Sybase Unwired Platform



Client Object APl Usage

Table 4. Recoverable Error Codes

Error Code Probable Cause
409 Backend EIS is deadlocked.
503 Backend EIS is down, or the connection is terminated.

Table 5. Unrecoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. | Change the connection information, or
backend user password.

403 User authorization failed on Un- | N/A
wired Server due to role con-
straints (applicable only for
MBS).

404 Resource (table/Web service/BA- | Restore the EIS configuration.
P1) not found on backend EIS.

405 Invalid license for the client (ap- | N/A
plicable only for MBS).

412 Backend EIS threw a constraint | Delete the conflicting entry in the EIS.
exception.

500 Sybase Unwired Platform internal | N/A
error in modifying the CDB
cache.

Error code 401 is not treated as a simple recoverable error. If the

SupThr owCr edent i al Request On401Er r or context variable is set to true (the
default), error code 401 throws a Cr edent i al Request Except i on, which sends a
credential request notification to the user's inbox. You can change this behavior by modifying
the value of the SupThr owCr edent i al Request On401Er r or context variable in
Sybase Control Center. If SupThr owCr edent i al Request On401Er r or issetto false,
error code 401 is treated as a normal recoverable exception.

Mapping of EIS Codes to Logical HTTP Error Codes
A list of SAP® error codes mapped to HTTP error codes. By default, SAP error codes that are
not listed map to HTTP error code 500.

Note: These JCO error codes are not applicable for DOE-based applications.

Developer Guide: Android Object API Applications 145



Client Object APl Usage

Table 6. Mapping of SAP Error Codes to HTTP Error Codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net- | 503

work problems, such as
connection breakdowns,
gateway problems, or un-
availability of the remote
SAP system.

JCO_ERROR_LOGON_FAILURE Authorization failures dur- | 401

ing login. Usually caused
by unknown user name,
wrong password, or invalid
certificates.

JCO_ERROR_RESOURCE Indicates that JCO has run | 503

out of resources such as
connections in a connec-
tion pool.

JCO_ERROR_STATE_BUSY The remote SAP system is | 503

busy. Try again later.

Client-Side Exceptions

Device applications are responsible for catching and handling exceptions thrown by the client
object API.

Note: See Callback Handlers.

Exception Classes

The Client Object API supports exception classes for queries and for the messaging client.

SynchronizeException —thrown when an error occurs during synchronization.

Per sistenceException — thrown when trying to access the local database.
ObjectNotFoundException —thrown when trying to load an MBO that is not inside the
local database.

NoSuchOperationException — thrown when trying to call a method (using the Object
Manager API) but the method is not defined for the MBO.

NoSuchAttributeException —thrown when trying to access an attribute (using the Object
Manager API) but the attribute is not defined for the MBO.
ApplicationRuntimeException —thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error.
ConnectionPropertyException —thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error in a
connection property value or application identifier.

146

Sybase Unwired Platform



Index

Index
A createDatabase 133
ADT Plugin for Eclipse, installing 7 D
Android Development Tools Plugin for Eclipse
installing 7 data synchronization protocol 3, 4
Android SDK 7, 18 data vault 93
application callback handlers 110 change password 100
application registration 27 creating 91
arblt_rary find method 113, 114, 116, 119 deleting 93
AttributeMetaData 144 exists 92
AttributeTest 114, 119 lock timeout 95
AttributeTest condition 113 locked 94
authentic_ation locking 94
offline 30 retrieve string 98
online 30 retrieve value 99
AVG 116 retry limit 96
set string 97
B set value 98
unlocking 94
back-end search 121 database
beginOnlineLogin 77 client 133
beginSynchronize 80 database connections
BigBinary 134 managing 68
BigString 138 DatabaseMetaData 143
DataVault 91
C DataVaultException 91
debugging 49, 51
callback handlers 31, 101 delete 44
CallbackHandler 49 delete operation 124
callbacks 31 deleteDatabase 133
certificates 7, 19, 67 device database 36
change notification 38 documentation roadmap 4
ClassMetaData 144 dynamic query 40, 41
client database 133
closeConnection 68 E
complex attribute type 126
complex type 42 EIS error codes 144, 145
CompositeTest 119 encryption key 89
CompositeTest condition 113 entity states 127, 129
concatenate queries 118 error codes
connection profile 28, 29 EIS 144, 145
ConnectionProfile 67 HTTP 144, 145
COUNT 116 mapping of SAP error codes 145
create 44 non-recoverable 144
create operation 123 recoverable 144

Developer Guide: Android Object APl Applications 147



Index

EXCEPT 118

exceptions
client-side 146
server-side 144

F

filtering results 117
FROM clause 118

G

generated code contents 15, 24
generated code, location 15, 24
group by 117

H
HTTP error codes 144, 145

I
INTERSECT 118

J

Javadoc 1

Javadocs, opening 57
JDK 7,18
JMSBridge 49

L

listeners 31
LogRecord API 83

M

MAX 116

maxDbConnections 68

MBO 39, 40, 42, 44
MBOLogger 49

messaging protocol 3, 4
MetaData API 143

MIN 116

mobile business object states 132
mobile middleware services 3

N
NoSuchAttributeException 146

NoSuchOperationException 146

O

Object API code

location of generated 15, 24
Object Manager API 143
object query 40, 112
ObjectNotFoundException 146
offlineLogin 72
OnlImportSuccess 76
onLineLogin 72
openConnection 68
other operation 125

P

paging data 113, 116
passing structures to operations 126
pending operation 125
pending state 44
personalization keys 75
types 74

Q

Query class 113
Query object 114, 116, 119
QueryResultSet 120

R

Refresh operation 133
relationships 121
replay 33
resumeSubscription 81

S

save operation 124
Selectltem 118

setting the database file location on the device 69

setting the databaseFile location 69
signing 55

simulator 7, 18

simultaneous synchronization 76
Skip 119

Skip condition 113

148

Sybase Unwired Platform



SortCriteria 116, 119
SortCriteria condition 113
status methods 127, 129
structures
passing to operations 126
subqueries 118
subscribe 78
subscribe() 76
SUM 116
SUPBridge 49
suspendSubscription 79
synchronization 36
MBO package 76
of MBOs 76
replication-based 76
simultaneous 76
synchronization group 38
synchronization parameters 39
synchronization profile 29
SynchronizationProfile 70
SynchronizeException 146

T
TestCriteria 119

TestCriteria condition 113

U

UltraLite 36

UNION 118
UNION_ALL 118
unsubscribe 79
update 44

update operation 123

Vv

virtual devices 7, 18

X

X.509 certificates 7, 19
Xcode 11, 23

Index

Developer Guide: Android Object APl Applications

149



Index

150 Sybase Unwired Platform



	Developer Guide: Android Object API Applications
	Contents
	Getting Started with Android Development
	Object API Applications
	Best Uses for Object API Applications
	Cache Synchronization
	Client Runtime Architecture
	Mobile Channel Interfaces
	Mobile Middleware Services
	Data Services


	Documentation Roadmap for Unwired Platform

	Development Task Flow for Object API Applications
	Installing the Android Development Environment
	Installing the Android SDK
	Installing ADT in Unwired WorkSpace
	Installing X.509 Certificates on Android Devices and Emulators

	Creating a Project
	Creating a Project in Unwired WorkSpace
	Importing Libraries and Code

	Generating Java Object API Code
	Generating Java Object API Code Using Sybase Unwired WorkSpace
	Generating Java Object API Code Using the Code Generation Utility
	Generated Code Location and Contents
	Validating Generated Code


	Development Task Flow for DOE-based Object API Applications
	Installing the Android Development Environment
	Installing the Android SDK
	Installing X.509 Certificates on Android Devices and Emulators

	Creating a Project
	Creating a Project in Unwired WorkSpace
	Importing Libraries and Code

	Generating Java Object API Code
	Generated Code Location and Contents


	Customizing the Application Using the Object API
	Initializing an Application
	Initially Starting an Application
	Setting Up Application Properties
	Registering an Application
	Setting Up the Connection Profile
	Setting Up Connectivity
	Setting Up the Synchronization Profile

	Creating and Deleting a Device's Local Database
	Logging In
	Turn Off API Logger
	Setting Up Callbacks
	Setting Up Callback Handlers
	Create a Custom Callback Handler

	Asynchronous Operation Replay
	Synchronize Status Listener for NON-DOE-based Applications

	Connecting to the Device Database
	Synchronizing Applications
	Configuring Data Synchronization Using SSL Encryption for Non-DOE-Based Applications
	Nonblocking Synchronization
	Enabling Change Notifications

	Specifying Personalization Parameters
	Specifying Synchronization Parameters

	Subsequently Starting an Application

	Accessing MBO Data
	Object Queries
	Dynamic Queries
	MBOs with Complex Types
	Relationships

	Manipulating Data
	Creating, Updating, and Deleting MBOs
	Other Operations
	Using SubmitPending and SubmitPendingOperations
	Database Classes
	Generated MBOs


	Shutting Down the Application
	Closing Connections

	Uninstalling the Application
	Deleting the Database and Unregistering the Application


	Testing Applications
	Testing an Application Using a Emulator
	Client-Side Debugging
	Server-Side Debugging

	Localizing Applications
	Packaging Applications
	Signing

	Client Object API Usage
	Client Object API Reference
	Application APIs
	getInstance
	setApplicationIdentifier
	getRegistrationStatus
	registerApplication
	registerApplication (int timeout)
	setApplicationCallback
	getApplicationContext
	setApplicationContext
	startConnection
	startConnection (int timeout)
	getConnectionStatus
	stopConnection
	stopConnection (int timeout)
	unregisterApplication
	unregisterApplication(int timeout)

	Connection APIs
	ConnectionProfile
	Managing Device Database Connections
	Improving Device Application Performance with One Writer Thread and Multiple Database Access Threads

	Set Database File Property

	Synchronization Profile
	Connect the Data Synchronization Channel Through a Relay Server
	Asynchronous Operation Replay

	Authentication APIs
	Logging In
	Sample Code
	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate into the Data Vault
	Selecting a Certificate for Unwired Server Connections
	Connecting to Unwired Server with a Certificate


	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization
	Message-Based Synchronization APIs
	beginOnlineLogin
	subscribe
	unsubscribe
	suspendSubscription
	beginSynchronize
	resumeSubscription

	Push Synchronization Applications
	Retrieving Information about Synchronization Groups

	Log Record APIs
	LogRecord API
	Logger APIs

	Change Log API
	getEntityType
	getOperationType
	getRootEntityType
	getRootSurrogateKey
	getSurrogateKey
	Methods in the Generated Database Class
	enableChangeLog
	getChangeLogs
	deleteChangeLogs
	disableChangeLog

	Code Samples

	Security APIs
	Encrypt the Database
	End to End Encryption and Compression Support APIs
	DataVault
	createVault
	vaultExists
	getVault
	deleteVault
	lock
	isLocked
	unlock
	setLockTimeout
	getLockTimeout
	setRetryLimit
	getRetryLimit
	setString
	getString
	setValue
	getValue
	changePassword


	Callback and Listener APIs
	CallbackHandler API
	ApplicationCallback API
	SyncStatusListener API

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Queries
	Query and Related Classes
	Arbitrary Find
	TestCriteria
	AttributeTest
	SortCriteria
	Paging Data

	Aggregate Functions
	Grouping Results
	Filtering Results

	Concatenating Queries
	Subqueries
	CompositeTest
	Complex Example
	QueryResultSet


	Retrieving Relationship Data
	Back-end Search

	Persistence APIs
	Operations APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Pending Operation
	Complex Attribute Types

	Object State APIs
	Entity State Management
	Entity State Example

	Mobile Business Object States
	Refresh Operation

	Generated Package Database APIs
	Client Database APIs

	Large Attribute APIs
	BigBinary
	close
	copyFromFile
	copyToFile
	flush
	openForRead
	openForWrite
	read
	readByte
	seek
	write
	writeByte

	BigString
	close
	copyFromFile
	copyToFile
	flush
	openForRead
	openForWrite
	read
	readChar
	seek
	write
	writeChar



	MetaData and Object Manager API
	MetaData and Object Manager API
	DatabaseMetaData
	ClassMetaData
	AttributeMetaData

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes


	Index


