
Developer Guide: Android Object API
Applications

Sybase Unwired Platform 2.1
ESD #1

DOCUMENT ID: DC01726-01-0211-01
LAST REVISED: December 2011
Copyright © 2011 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Getting Started with Android Development1
Object API Applications ..1
Best Uses for Object API Applications2

Cache Synchronization ..2
Client Runtime Architecture3

Documentation Roadmap for Unwired Platform4
Development Task Flow for Native Applications5

Installing the Android Development Environment6
Installing the Android SDK and ADT Plug-in6
Installing X.509 Certificates on Android Devices

and Emulators ..7
Creating a Project ...8

Creating a Project in Unwired WorkSpace8
Importing Libraries and Code11

Generating Java Object API Code11
Generated Code Location and Contents12
Validating Generated Code12

Customizing the Application Using the Object API15
Initializing an Application ..15

Initially Starting an Application15
Subsequently Starting an Application29

Accessing MBO Data ..29
Object Queries ...30
Dynamic Queries ...30
MBOs with Complex Types31
Relationships ...32

Manipulating Data ...33
Creating, Updating, and Deleting MBOs33
Other Operations ...34
Using SubmitPending and

SubmitPendingOperations35

Developer Guide: Android Object API Applications iii

Shutting Down the Application36
Closing Connections ..36

Uninstalling the Application ...36
Deleting the Database and Unregistering the

Application ...36
Testing Applications ..37

Testing an Application Using a Emulator37
Client-Side Debugging ..37
Server-Side Debugging ..39

Localizing Applications ...41
Packaging Applications ..43

Signing ..43
Client Object API Usage ..45

Client Object API Reference ...45
Application APIs ..45

getInstance ..45
setApplicationIdentifier ...46
getRegistrationStatus ..46
registerApplication ...47
setApplicationCallback ...48
getApplicationContext ..48
setApplicationContext ..49
startConnection ...49
startConnection (int timeout)49
getConnectionStatus ...50

Connection APIs ...51
ConnectionProfile ..51
Set Database File Property52

Synchronization Profile ...53
Connect the Data Synchronization Channel

Through a Relay Server54
Authentication APIs ..54

Logging In ..54
Sample Code ...55

Contents

iv Sybase Unwired Platform

Single Sign-On With X.509 Certificate Related
Object API ...56

Personalization APIs ...57
Type of Personalization Keys57
Getting and Setting Personalization Key Values

...58
Synchronization APIs ..58

Changing Synchronization Parameters 59
Performing Mobile Business Object

Synchronization ...59
Push Synchronization Applications60
Retrieving Information about Synchronization

Groups ...61
Log Record APIs ...61

LogRecord API .. 62
Logging APIs ... 62

Change Log API ... 62
enableChangeLog ... 63
getChangeLogs ... 63
deleteChangeLogs ...63
disableChangeLog ...64
Code Samples ...64

Security APIs ..65
Encrypt the Database ..65
End to End Encryption and Compression

Support APIs ...66
DataVault ...66

Callback and Listener APIs ...76
Callback Handlers ..76

Query APIs ...78
Retrieving Data from Mobile Business Objects ... 79
Retrieving Relationship Data88

Persistence APIs ...88
Operations APIs ...88
Object State APIs .. 93

Contents

Developer Guide: Android Object API Applications v

MetaData and Object Manager API99
MetaData and Object Manager API99
ObjectManager ..99
DatabaseMetaData ..99
ClassMetaData ..100
AttributeMetaData ..100

Exceptions ..100
Handling Exceptions ..100
Exception Classes ...102

Index ..105

Contents

vi Sybase Unwired Platform

Getting Started with Android Development

Use advanced Sybase® Unwired Platform features to create applications for Android devices.
The audience is advanced developers who may be new to Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object API documentation.

Companion guides include:

• Sybase Unwired WorkSpace – Mobile Business Object Development
• Troubleshooting for Sybase Unwired Platform.
• A complete Client Object API reference is available in the Unwired Platform installation

directory <UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI
\apidoc.

• Fundamentals contains high-level mobile computing concepts, and a description of how
Sybase Unwired Platform implements the concepts in your enterprise.

Object API Applications
Object API applications are customized, full-featured mobile applications that use mobile
business objects (MBOs) to facilitate connection with a variety of enterprise systems and
leverage synchronization to support offline capabilities.

The Object API application model enables developers to write custom code — C#, Java, or
Objective-C, depending on the target device platform — to create device applications.

Development of Object API applications provides the most flexibility in terms of leveraging
platform specific services, but each application must be provisioned individually after being
compiled, even for minor changes or updates.

Development involves both server-side (MBO development) and client-side (native
application) components. Unwired Server brokers data synchronization and transaction
processing between the server and the client components.

• Server-side components address the interaction between the enterprise information
system (EIS) data source and the data cache. EIS data subsets and business logic are
encapsulated in artifacts, called mobile business objects, that are packaged and deployed
to Unwired Server.

• Client-side components are built into the mobile application and address the interaction
between the data cache and the mobile device data store. This can include synchronizing
data with server, offline data access capabilities, data change notification.

Getting Started with Android Development

Developer Guide: Android Object API Applications 1

These applications:

• Allow users to connect to data from a variety of EIS systems, including SAP® systems.
• Build in more complex data handling and logic.
• Leverage data synchronization to optimize and balance device response time and need for

real-time data.
• Ensure secure and reliable transport of data.

Best Uses for Object API Applications
Synchronization applications provide operation replay between the mobile device, the
middleware, and the back-end system. Custom native applications are designed and built to
suit specific business scenarios from the ground up, or start with a bespoke application and be
adapted with a large degree of customization.

Cache Synchronization
Cache synchronization allows mapping mobile data to SAP Remote Function Calls (RFCs)
using Java Connector (JCO) and to other non-SAP data sources such as databases and Web
services. When Sybase Unwired Platform is used in a stand-alone manner for data
synchronization (without Data Orchestation Engine), it utilizes an efficient bulk transfer and
data insertion technology between the middleware cache and the device database.

In an Unwired Platform standalone deployment, the mobile application is designed such that
the developer specifies how to load data from the back end into the cache and then filters and
downloads cache data using device-supplied parameters. The mobile content model and the
mapping to the back end are directly integrated.

This style of coupling between device and back-end queries implies that the back end must be
able to respond to requests from the middleware based on user-supplied parameters and serve
up mobile data appropriately. Normally, some mobile-specific adaptation is required within
SAP Business Application Programming Interfaces (BAPI). Because of the direct nature of
application parameter mapping and RBS protocol efficiencies, Sybase Unwired Platform
cache synchronization deployment is ideal:

• With large payloads to devices (may be due to mostly disconnected scenarios)
• Where ad hoc data downloads might be expected
• For SAP® or non-SAP back ends

Large payloads, for example, can occur in task worker (service) applications that must access
large product catalogs, or where service occurs in remote locations and workers might
synchronize once a day. While Sybase Unwired Platform synchronization does benefit from
middleware caching, direct coupling requires the back end to support an adaptation where
mobile user data can be determined.

Getting Started with Android Development

2 Sybase Unwired Platform

Client Runtime Architecture
The goal of synchronization is to keep views (that is, the state) of data consistent among
multiple tiers. The assumption is that if data changes on one tier (for example, the enterprise
system of record), all other tiers interested in that data (mobile devices, intermediate staging
areas/caches and so on) are eventually synchronized to have the same data/state on that
system.

The Unwired Server synchronizes data between the device and the back-end by maintaining
records of device synchronization activity in its cache database along with any cached data
that may have been retrieved from the back-end or pushed from the device. The Unwired
Server employs several components in the synchronization chain.

Mobile Channel Interfaces
Mobile channel interfaces provide a conduit for transporting data to and from remote devices.
Two main channel interfaces provide messaging and replication.

• The messaging channel serves as the abstraction to all device-side notifications
(BlackBerry Enterprise Service, Apple Push Notification Service, and others) so that
when changes to back-end data occur, devices can be notified of changes relevant for their
application and configuration. This channel also enables data synchronization on iOS.
The messaging channel sends these types of notifications:
• Change notifications - when Unwired Server detects changes in the back-end EIS,

Unwired Server can send a notification to the device. By default, sending change
notifications is disabled, but you can enable sending change notifications per
synchronization group.
To capture change notifications, you can register an onSynchronize callback. The
synchronization content in the callback has a status you can retrieve.

• When synchronizing, operation replay records are sent to the Unwired Server and the
messaging channel sends a notification of replayFinished. The application must
call another synchronize method to retrieve the result.

• The synchronization channel sends data to keep the Unwired Server and client
synchronized. The synchronization is bi-directional.

Mobile Middleware Services
Mobile middleware services (MMS) arbitrate and manage communications between device
requests from the mobile channel interfaces in the form that is suitable for transformation to a
common MBO service request and a canonical form of enterprise data supplied by the data
services.

Getting Started with Android Development

Developer Guide: Android Object API Applications 3

Data Services
Data services is the conduit to enterprise data and operations within the firewall or hosted in
the cloud. Data services and mobile middleware services together manage the cache database
(CDB) where data is cached as it is synchronized with client devices.

Once a mobile application model is designed, it can be deployed to the Unwired Server where
it operates as part of a specialized container-managed package interfacing with the mobile
middleware services and data services components. Cache data and messages persist in the
databases in the data tier. Changes made on the device are passed to the mobile middleware
services component as an operation replay and replayed against the data services interfaces
with the back-end. Data that changes on the back- end as a result of device changes, or those
originating elsewhere, are replicated to the device database.

Documentation Roadmap for Unwired Platform
Sybase® Unwired Platform documents are available for administrative and mobile
development user roles. Some administrative documents are also used in the development and
test environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on the Sybase Product Documentation Web site.

Check the Sybase Product Documentation Web site regularly for updates: access http://
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

Getting Started with Android Development

4 Sybase Unwired Platform

http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Development Task Flow for Native
Applications

Describes the overall development task flow for native applications, and provides information
and procedures for setting up the development environment, and developing device
applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated UI interaction, validation, business
logic, and performance.

The Object API provides the core application services described in the diagram.

The Authentication APIs provide security by authenticating he client to the Unwired Server.

The Synchronization APIs allow you to synchronize mobile business objects (MBOs) based
on synchronization parameters, for individual MBOs, or as a group, based on the group's
synchronization policy.

The Application and Connection APIs allow clients to register with and connect to the
Unwired Server. The Callback Handler and Listener APIs, and the Target Change Notification
APIs provide notifications to the client on operation success or failure, or changes in data.

1. Installing the Android Development Environment

Install the Android development environment, and prepare Android devices for
authentication.

Development Task Flow for Native Applications

Developer Guide: Android Object API Applications 5

2. Creating a Project

Build a device application project.

3. Generating Java Object API Code

Use the Code Generation Utility to generate object API code, which allows you to use
APIs to develop device applications for Android devices.

4. Customizing the Application Using the Object API

Use the Object API to customize the application. An application consists of building
blocks which the developer uses to start the application, perform functions needed for the
application, and shutdown and uninstall the application.

5. Testing Applications

Test native applications on a device or simulator.

6. Localizing Applications

Localize an Android application by creating default and alternate resources.

7. Packaging Applications

Package applications according to your security or application distribution requirements.

Installing the Android Development Environment
Install the Android development environment, and prepare Android devices for
authentication.

1. Installing the Android SDK and ADT Plug-in

Install the Android SDK and Android Development Tools (ADT) plug-in for use with
Sybase Unwired WorkSpace.

2. Installing X.509 Certificates on Android Devices and Emulators

Install the .p12 certificate on the Android device or emulator for authentication. A
certificate provides an additional level of secure access to an application, and may be
required by an organization's security policy.

See also
• Creating a Project on page 8

Installing the Android SDK and ADT Plug-in
Install the Android SDK and Android Development Tools (ADT) plug-in for use with Sybase
Unwired WorkSpace.

1. Confirm your system meets the requirements at http://developer.android.com/sdk/
requirements.html.

Development Task Flow for Native Applications

6 Sybase Unwired Platform

http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/requirements.html

2. Download and install the SDK starter package from http://developer.android.com/sdk/
index.html.

3. Launch the Android SDK and AVD Manager, select Available Packages, and install the
Android SDK tools, platform, and compatibility package for Android.

4. Install and configure the ADT plug-in within the Sybase Unwired WorkSpace Eclipse
environment using the steps at http://developer.android.com/sdk/eclipse-adt.html.

5. In the Android SDK and AVD Manager, select Virtual Devices and create a virtual
Android device to use as your simulator.

Installing X.509 Certificates on Android Devices and Emulators
Install the .p12 certificate on the Android device or emulator for authentication. A certificate
provides an additional level of secure access to an application, and may be required by an
organization's security policy.

Prerequisites

• Java SE Development Kit (JDK) must be installed.
• The Android SDK must be installed.

Task

1. Connect the Android device to your computer with the USB cable.

2. To install using Eclipse with the ADT plugin:

Note: USB debugging must be enabled.

a) Open the Windows File Explorer view. From the menu bar, navigate to Window >
Show View > Other.

b) In the Show View dialog, expand the Android folder and select File Explorer.
c) Expand mnt > sdcard and select the sdcard folder.
d) In the top right of the File Explorer view, click Push a file onto the device.
e) In the Put File on Device dialog, select the certificate and click Open.

3. To install using Windows Explorer:

Note: USB debugging must be disabled.

a) Open Windows Explorer
b) Under your computer, click the Android device to expand the folder.
c) Click Device Storage, navigate to and select the certificate.
d) Import the certificate to the Device Storage folder.

4. To install using the Android Debug Bridge (adb):

Note: USB debugging must be enabled. You can enable USB debug mode from the device
menu by selecting Settings > Application > USB Debugging.

Development Task Flow for Native Applications

Developer Guide: Android Object API Applications 7

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html

a) Open the command line directory to the adb.exe file, for example, C:\Program
Files\android-sdk-windows\tools, or C:\Program Files
\android-sdk-windows\platform-tools

b) Run the command: adb push %PathToCert%\MyCert.p12 /sdcard/
MyCert.p12

Creating a Project
Build a device application project.

1. Creating a Project in Unwired WorkSpace

Create a project for your Android device application in Sybase Unwired WorkSpace.

2. Importing Libraries and Code

Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

See also
• Installing the Android Development Environment on page 6

• Generating Java Object API Code on page 11

Creating a Project in Unwired WorkSpace
Create a project for your Android device application in Sybase Unwired WorkSpace.

1. In Sybase Unwired WorkSpace, select File > New > Project.

2. Select Android > Android Project.

Development Task Flow for Native Applications

8 Sybase Unwired Platform

3. In the New Android Project wizard, enter these values and click Finish:

• Project name: – SUPClient
• Package name: – com.sybase.demo
• Min SDK Version: – 8

Development Task Flow for Native Applications

Developer Guide: Android Object API Applications 9

4. Add the following user permissions in AndroidManifest.xml:

<uses-permission android:name="android.permission.INTERNET"></
uses-permission>
<uses-permission
android:name="android.permission.READ_PHONE_STATE"></uses-
permission>

Development Task Flow for Native Applications

10 Sybase Unwired Platform

Importing Libraries and Code
Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

1. In your Sybase Unwired WorkSpace project, create a libs directory.

2. Copy the following library and JAR files from <UnwiredPlatform_InstallDir>
\UnwiredPlatform\MobileSDK\ObjectAPI\Android into the libs
directory within your project, using the exact directory structure shown here:

3. Select Project > Properties > Java Build Path. On the Libraries tab, add the libraries to
the project.

Generating Java Object API Code
Use the Code Generation Utility to generate object API code, which allows you to use APIs to
develop device applications for Android devices.

Prerequisites

• Use Unwired WorkSpace to develop and package your mobile business objects. See
Sybase Unwired WorkSpace - Mobile Business Object Development > Develop >
Developing a Mobile Business Object.

• Deploy the package to Unwired Server, creating files required for code generation from
the command line. See Sybase Unwired WorkSpace - Mobile Business Object
Development > Develop > Packaging and Deploying Mobile Business Objects
>Automated Deployment of Unwired WorkSpace Projects

Task

1. Locate <domain name>_package.jar in your mobile project folder. For the
SUP101 example, the project is deployed to the default domain, and the deploy jar file is in
the following location: SUP101\Deployment\.pkg.profile
\My_Unwired_server\default_package.jar.

2. Make sure that the JAR file contains this file:

Development Task Flow for Native Applications

Developer Guide: Android Object API Applications 11

• deployment_unit.xml

3. Use a utility to extract the deployment_unit.xml file to another location.

4. From <UnwiredPlatform_InstallDir>\MobileSDK\ObjectAPI\Utils
\bin, run the codegen.bat utility, specifying the following parameters:

codegen.bat -java -client -android -ulj deployment_unit.xml [-
output <output_dir>] [-doc]

• The -output parameter allows you to specify an output directory. If you omit this
parameter, the output goes into the <UnwiredPlatform_InstallDir>
\MobileSDK\ObjectAPI\Utils\genfiles directory, assuming
codegen.bat is run from the <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\Utils\genfiles directory.

• The -doc parameter specifies that documentation is generated for the generated code.

Ignore these warnings:
log4j:WARN No appenders could be found for logger ...
log4j:WARN Please initialize the log4j system properly.

See also
• Creating a Project on page 8

• Customizing the Application Using the Object API on page 15

Generated Code Location and Contents
By default, generated object API code is stored in the
<UnwiredPlatform_InstallDir>\UnwiredPlatform\MobileSDK
\ObjectAPI\Utils\genfiles folder after you you generate code .

The contents of the folder is determined by the options you selected from the Generate Code
wizard, and include generated class files that contain:

• MBO – class which handles persistence and operation replay of your MBOs.
• Synchronization parameters – any synchronization parameters for the MBOs.
• Personalization parameters – personalization parameters used by the package.
• Metadata – Metadata class that allow you to query meta data including MBOs, their

attributes, operations, in a persistent table at runtime..

Validating Generated Code
Validation rules are enforced when generating client code for C# and Java. Define prefix
names in the Mobile Business Object Preferences page of the Code Generation wizard to
correct validation errors.

Sybase Unwired WorkSpace validates and enforces identifier rules and checks for keyword
conflicts in generated Java and C# code, for example, by displaying error messages in the
Properties view or in the wizard. Other than the known name conversion rules (converting '.' to

Development Task Flow for Native Applications

12 Sybase Unwired Platform

'_', removing white space from names, and so on), there is no other language-specific name
conversion. For example, cust_id is not changed to custId.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1. Select Window > Preferences.

2. Expand Sybase, Inc > Mobile Development.

3. Select Mobile Business Object.

4. Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are autogenerated, for example, when you drag and drop a data source onto the
Mobile Application Diagram.

Development Task Flow for Native Applications

Developer Guide: Android Object API Applications 13

Development Task Flow for Native Applications

14 Sybase Unwired Platform

Customizing the Application Using the Object
API

Use the Object API to customize the application. An application consists of building blocks
which the developer uses to start the application, perform functions needed for the application,
and shutdown and uninstall the application.

See also
• Generating Java Object API Code on page 11

• Testing Applications on page 37

Initializing an Application
Initialize the application when it starts the first time and subsequently.

• Initially Starting an Application

Starting an application the first time.

• Subsequently Starting an Application

Subsequent start-ups are different from the first start-up.

Initially Starting an Application
Starting an application the first time.

1. Setting up Application Properties

The Application instance contains the information and authentication credentials needed
to register and connect to the Sybase Unwired Platform server.

2. Registering an Application

Each device must register with the server before establishing a connection.

3. Setting Up the Connection Profile

The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLiteJ
runtime tuning values.

4. Setting Up Connectivity

Store connection information to the Sybase Unwired Server data synchronization channel.

5. Creating and Deleting a Device's Local Database

There are methods in the generated package database class that allow programmers to
delete or create a device's local database. A device local database is automatically created

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 15

when needed by the Object API. The application can also create the database
programatically by calling the createDatabase method. The device's local database should
be deleted when uninstalling the application.

6. Logging In
Use online authentication with the server, and offline authentication with the device.

7. Turn Off API Logger
In production environments, turn off the API logger to improve performance.

8. Setting Up Callbacks and Listeners
When your application starts, it can register database and MBO callback listeners, as well
as synchronization listeners.

9. Connecting to the Device Database
Establish a connection to the database on the device.

10. Synchronizing
Synchronize package data between the device and the server.

11. Specifying Personalization Parameters
Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The
PersonalizationParameters class is within the generated code for your project.

12. Specifying Synchronization Parameters
Use synchronization parameters within the mobile application to download filtered MBO
data.

See also
• Application APIs on page 45
• Connection APIs on page 51

Setting up Application Properties
The Application instance contains the information and authentication credentials needed to
register and connect to the Sybase Unwired Platform server.

The following code illustrates how to set up the minimum required fields:
// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the application ID deployed to the SUP
server
app.setApplicationIdentifier("SUP101");
// Set the android.content.Context for the application
app.setApplicationContext(context); // context is the
android.content.Context

// ConnectionProperties has the infomation needed to register
// and connect to SUP server
ConnectionProperties connProps = app.getConnectionProperties();

Customizing the Application Using the Object API

16 Sybase Unwired Platform

connProps.setServerName("supserver.mycompany.com");
connProps.setPortNumber(5001);
// Other connection properties need to be set when connecting through
relay server

// provide user credentials
LoginCredentials loginCred = new LoginCredentials("supAdmin",
"supPwd");
connProps.setLoginCredentials(loginCred);

// Initialize generated package database class with this Application
instance
SUP101DB.setApplication(app);

Note: setApplicationIdentifier and setApplicationContext must be
called in the user interface thread.

See also
• Application APIs on page 45

Registering an Application
Each device must register with the server before establishing a connection.

To register the device with the server during the initial application startup, use the
registerApplication method in the com.sybase.mobile.Application
class. You do not need to use the registerApplication method for subsequent
application startups.To start the connection to complete the registration process, use the
Application.startConnection method.

Call the generated database's setApplication method before starting the connection or
registering the device.

The following code shows how to register the application and device.
// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the
// application ID deployed to the SUP server
app.setApplicationIdentifier("SUP101");
ApplicationCallback appCallback = new ApplicationCallback();
app.setApplicationCallback(appCallback); // optional
app.setApplicationContext(myAndroidContext); // required
 // use the android.content.Context for the application

// set connection properties, login credentials, etc
...

// Register the application
SUP101DB.setApplication(app);
if (app.getRegistrationStatus() != RegistrationStatus.REGISTERED)
{
 // If the application has not been registered to the server,

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 17

 // register now
 app.registerApplication(<timeout_value>);
}
else
{
 // start the connection to server
 app.startConnection(<timeout_value>);
}

See also
• Application APIs on page 45

Setting Up the Connection Profile
The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLiteJ
runtime tuning values.

Set up the connection profile before the first database access, and check if the database exists
by calling the databaseExistsdatabaseExists method in the generated package database
class. Any settings you establish after the connection has already been established will not go
into effect.

The generated database class automatically contains all the default settings for the connection
profile. You may add other settings if necessary. For example, you can set the database to be
stored in an SD card or set the encryption key of the database.

Use the com.sybase.persistence.ConnectionProfile class to set up the
locally generated database:

1. Retrieve the connection profile object using the Sybase Unwired Platform database's
getConnectionProfile method.

2. Use the connection profile object's save method to set the values once when the
application first starts. On subsequent usage of the application, the connection profile will
contain all the settings from the last save call.

// Initialize the device database connection profile (if needed)
ConnectionProfile connProfile = SUP101DB.getConnectionProfile();

// Store the database in an SD card
connProfile.setProperty("databaseFile",
android.os.Environment.getExternalStorageDirectory().getPath() "/
SUP1011_0.ulj");

// encrypt the database
connProfile.setEncryptionKey("encryption key must be 16 characters
or longer");

// use 100K for cache size
connProfile.setCacheSize(102400);

Customizing the Application Using the Object API

18 Sybase Unwired Platform

// save it
connProfile.save();

You can also automatically generate a encryption key and store it inside a data vault.

See also
• ConnectionProfile on page 51

Setting Up Connectivity
Store connection information to the Sybase Unwired Server data synchronization channel.

See also
• Creating and Deleting a Device's Local Database on page 19

Synchronization Profile
You can set Unwrired Server synchronization channel information by calling the
synchronization profile's setter method. By default, this information includes the server host,
port, domain name, certificate and public key that are pushed by the message channel during
the registration process. Developers do not need to set these parameters manually. When the
client registers and starts the application, the certificate is downloaded to the client, so that the
client can be assigned the trusted certificate.

Set up a secured connection using the ConnectionProfile object.

1. Retrieve the synchronization profile object using the Sybase Unwired Platform database's
getSynchronizationionProfile method, which returns a
ConnectionProfile object:

ConnectionProfile cp = SUP101DB.getSynchronizationProfile();

2. Set the connection fields in the ConnectionProfile object:

cp.setServerName("SUP_Host");
cp.setPortNumber(2481);
cp.getStreamParams().setTrusted_Certificates("rsa_public_cert.crt
");
cp.setNetworkProtocol("https");

See also
• Synchronization Profile on page 53

Creating and Deleting a Device's Local Database
There are methods in the generated package database class that allow programmers to delete
or create a device's local database. A device local database is automatically created when
needed by the Object API. The application can also create the database programatically by
calling the createDatabase method. The device's local database should be deleted when
uninstalling the application.

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 19

Check if the locally generated database exists, create the database, or delete the database:

1. Check if an instance of the generated database exists by calling the generated database
instance's databaseExists method.

2. If an instance of a the generated database does not exist, call the generated database
instance's createDatabase method.

if (!SUP101DB.databaseExists())
 {
 SUP101DB.createDatabase();
 }

3. Connect to the generated database by calling the generated database instance's
openConnection method.

SUP101DB.openConnection();

If the database does not already exist, the openConnection method creates it.

4. When the local database is no longer needed, delete it by calling the generated database
instance's deleteDatabase method.

SUP101DB.deleteDatabase();

See also
• Setting Up Connectivity on page 19

Logging In
Use online authentication with the server, and offline authentication with the device.

1. Normally, the user is authenticated through the registerApplication and
startConnection methods in the Application class. Once this is done there is no
need to authenticate again. However, the user can authenticate directly with the server at
any time during the application's execution by calling the generated database instance's
onlineLogin method.

2. Authenticate using the last successful credentials on the device by calling the generated
database instance's offlineLogin method.

Turn Off API Logger
In production environments, turn off the API logger to improve performance.

SUP101DB.getLogger().setLogLevel(LogLevel.OFF);

Setting Up Callbacks and Listeners
When your application starts, it can register database and MBO callback listeners, as well as
synchronization listeners.

Callback handler and listener interfaces are provided so your application can monitor changes
and notifications from Sybase Unwired Platform:

Customizing the Application Using the Object API

20 Sybase Unwired Platform

• The com.sybase.mobile.ApplicationCallback class is used for monitoring
changes to application settings, messaging connection status, and application registration
status.

• The com.sybase.persistence.CallbackHandler interface is used to
monitor notifications and changes related to the database. Register callback handlers at the
package level use the registerCallbackHandler method in the generated
database class. To register for a particular MBO, use the
registerCallbackHandler method in the generated MBO class.

• The com.sybase.persistence.SyncStatusListener class is used for
debugging and performance measures when monitoring stages of a synchronization
session, and can be used in the user interface to indicate synchronization progress.

See also
• Connecting to the Device Database on page 25
• Callback and Listener APIs on page 76

Setting Up Callback Handlers
Use the callback handlers for event notifications.

Use the com.sybase.persistence.CallbackHandler API for event notifications
including login for synchronization and replay. If you do not register your own
implementation of the com.sybase.persistence.CallbackHandler interface,
the generated code will regsiter a new default callback handler.

1. The generated database class contains a method called
registerCallbackHandler. Use this method to install your implementation of
CallbackHandler.
For example:
SUP101DB.registerCallbackHandler(new MyCallbackHandler());

2. Each generated MBO class also has the same method to register your implementation of
the CallbackHandler for that particular type. For example, if Customer is a
generated MBO class, you can use the following code:
Customer.registerCallbackHandler(new
MyCustomerMBOCallbackHandler());

Create a Custom Callback Handler
If an application requires a callback (for example, to allow the client framework to provide
notification of synchronization results) create a custom callback handler.

import com.sybase.persistence.DefaultCallbackHandler;
……
public class Test
{
 public static void main(String[] args)
 {
 SUP101DB.registerCallbackHandler(new MyCallbackHandler());

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 21

 GenericList<SynchronizationGroup> sgs = new
GenericList<SynchronizationGroup>();
 sgs.add(SUP101DB.getSynchronizationGroup("sg1"));
 sgs.add(SUP101DB.getSynchronizationGroup("sg2"));
 SUP101DB.beginSynchronize(sgs, "my test synchronization
context");
 }
}

class MyCallbackHandler extends DefaultCallbackHandler
{
 public int onSynchronize(GenericList groups,
SynchronizationContext context)
 {
 if (context == null)
 {
 return SynchronizationAction.CANCEL;
 }

 if ("my test synchronization context".equals((String)
(context.getUserContext())))
 {
 return super.onSynchronize(groups, context);
 }

 switch (context.getStatus())
 {
 case SynchronizationStatus.STARTING:
 if (waitForMoreChanges()
 {
 return SynchronizationAction.CANCEL;
 }
 else
 {
 return SynchronizationAction.CONTINUE;
 }
 default:
 return SynchronizationAction.CONTINUE;
 }
 }
}

Asynchronous Operation Replay
Upload operation replay records asynchronously.

When an application calls submitPending on an MBO on which a create, update, or delete
operation is performed, an operation replay record is created on the device local database.

When synchronize is called, the operation replay records are uploaded to the server. The
method returns without waiting for the backend to replay those records. The synchronize
method downloads all the latest data changes and the results of the previously uploaded
operation replay records that the backend has finished replaying. If you choose to disable

Customizing the Application Using the Object API

22 Sybase Unwired Platform

asynchronous operation replay, each synchronize call will wait for the backend to finish
replaying all the current uploaded operation replay records.

This feature is enabled by default. You can enable or disable the feature by setting the
asyncReplay property in the synchronization profile. The following code shows how to
disable asynchronous replay:
SUP101DB.getSynchronizationProfile().setAsyncReplay(false);

When asynchronous replay is enabled and the replay is finished, the onSynchronize callback
method is invoked with a SynchronizationStatus value of
SynchronizationStatus.ASYNC_REPLAY_COMPLETED. Use this callback
method to invoke a synchronize call to pull in the results, as shown in the following callback
handler.
public class MyCallbackHandler extends DefaultCallbackHandler
{
 public int onSynchronize(ObjectList groups, SynchronizationContext
context)
 {
 switch(context.getStatus())
 {
 case SynchronizationStatus.ASYNC_REPLAY_UPLOADED:
 LogMessage("AsyncReplay uploaded");
 break;
 case SynchronizationStatus.ASYNC_REPLAY_COMPLETED:
 // operation replay finished, return
SynchronizationAction.CONTINUE
 // will start a background synchronization to pull in the
results.
 LogMessage("AsyncReplay Done");
 break;
 default:
 break;
 }

 return SynchronizationAction.CONTINUE;
 }
}

Synchronize Status Listener
Retrieve the synchronization status.

Synchronize Status Listener is mainly for debugging and performance measuring purposes to
monitor stages of a synchronize session. It could also be used in UI for synchronization
progress status. Below is a sample Synchronize Status Listener.
import com.sybase.persistence.ObjectSyncStatusData;
import com.sybase.persistence.SyncStatusListener;
import com.sybase.persistence.SyncStatusState;

public class MySyncStatusListener implements SyncStatusListener
{
 long start;

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 23

 public MySyncStatusListener()
 {
 start = System.currentTimeMillis();
 }

 public boolean objectSyncStatus(ObjectSyncStatusData statusData)
 {
 long now = System.currentTimeMillis();
 long interval = now - start;
 start = now;
 String infoMessage;

 int syncState = statusData.getSyncStatusState();

 switch (syncState)
 {
 case SyncStatusState.SYNC_STARTING:
 infoMessage = "START [" interval "]";
 break;
 case SyncStatusState.APPLICATION_SYNC_SENDING_HEADER:
 infoMessage = "SENDING HEADERS [" interval "]";
 break;
 case SyncStatusState.APPLICATION_SYNC_SENDING_SCHEMA:
 infoMessage = "SENDING SCHEMA [" interval "]";
 break;
 case SyncStatusState.APPLICATION_DATA_UPLOADING:
 infoMessage = "DATA UPLOADING [" interval "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case
SyncStatusState.APPLICATION_SYNC_RECEIVING_UPLOAD_ACK:
 infoMessage = "RECEIVING UPLOAD ACK [" interval "]";
 break;
 case SyncStatusState.APPLICATION_DATA_UPLOADING_DONE:
 infoMessage = "UPLOAD DONE [" interval "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case SyncStatusState.APPLICATION_DATA_DOWNLOADING:
 infoMessage = "DATA DOWNLOADING[" interval "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case SyncStatusState.APPLICATION_SYNC_DISCONNECTING:
 infoMessage = "DISCONNECTING [" interval "]";

Customizing the Application Using the Object API

24 Sybase Unwired Platform

 break;
 case
SyncStatusState.APPLICATION_SYNC_CHECKING_LAST_UPLOAD:
 infoMessage = "CHECKING LAST UPLOAD [" interval "]";
 break;
 case
SyncStatusState.APPLICATION_SYNC_COMMITTING_DOWNLOAD:
 infoMessage = "COMMITTING DOWNLOAD [" interval "] "
 + statusData.getCurrentMBO() ": (S>"
 + statusData.getSentByteCount() ":"
 + statusData.getSentRowCount() " R<"
 + statusData.getReceivedByteCount() ":"
 + statusData.getReceivedRowCount() ")";
 break;
 case SyncStatusState.APPLICATION_SYNC_CANCELLED:
 infoMessage = "SYNC CANCELED ["+ interval "]";
 break;
 case SyncStatusState.APPLICATION_DATA_DOWNLOADING_DONE:
 infoMessage = "DATA DOWNLOADING DONE [" interval "]";
 break;
 case SyncStatusState.SYNC_DONE:

 infoMessage = "DONE [" interval "]";
 break;
 default:
 infoMessage = "STATE" syncState "[" interval "]";
 break;
 }
 LogMessage(infoMessage);
 return false;
 }
}

Connecting to the Device Database
Establish a connection to the database on the device.

After completing the device registration, call the generated database's openConnection
method to connect to the UltraLite/UltraLiteJ database on the device. If no device database
exists, the openConnection method creates one.

See also
• Setting Up Callbacks and Listeners on page 20

Synchronizing
Synchronize package data between the device and the server.

The generated database provides you with synchronization methods that apply to either all
synchronization groups in the package or a specified list of groups.

See also
• Specifying Personalization Parameters on page 27
• Synchronization APIs on page 58

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 25

• Specifying Synchronization Parameters on page 28

Configuring Data Synchronization Using SSL Encryption
Enable SSL encryption by configuring the synchronization HTTPS port.

1. In the left navigation pane of Sybase Control Center for Unwired Platform, expand the
Servers node and click the server name.

2. Click Server Configuration.

3. In the right administration pane, click the Replication tab.

4. Select Secure synchronization port 2481 as the protocol used for synchronization, and
configure the certificate properties. In the optional properties section, specify the security
certificate file, the public security certificate file using the fully qualified path to the file,
along with the password you entered during certificate creation.

Note: In a clustered environment, this fully qualified path must work for all nodes in the
cluster. You can do this via a shared disk, or manually distribute the certificate file to all
nodes.

Nonblocking Synchronization
An example that illustrates the basic code requirements for connecting to Unwired Server,
updating mobile business object (MBO) data, and synchronizing the device application from a
device application based on the Client Object API.

Subscribe to the package using synchronization APIs in the generated database class, specify
the groups to be synchronized, and invoke the asynchronous synchronization method
(beginSynchronize).

1. If you have not yet synchronized with Unwired Server, perform a synchronization.
SUP101DB.synchronize("system")

2. Set the synchronization parameters if there are any.
CustomerSynchronizationParameters syncParameter =
Customer.getSynchronizationParameters();
syncParameter.setYourParameters(...);
syncParameter.save();

3. Make a blocking synchronize call to Unwired Server to pull in all MBO data:
SUP101DB.synchronize();

4. List all customer MBO instances from the local database using an object query, such as
FindAll, which is a predefined object query.

GenericList<Customer> customers = Customer.findAll();
int n = customers.size();
for (int i = 0; i < n; i)
{
 Customer customer = customers.get(i);
 //Work on customer information
}

Customizing the Application Using the Object API

26 Sybase Unwired Platform

5. Find and update a particular MBO instance, and save it to the local database.
Customer cust = Customer.findByPrimaryKey(100);
cust.setAddress("1 Sybase Dr.");
cust.setPhone("9252360000");
cust.save();//or cust.update();

6. Submit the pending changes. The changes are ready for upload, but have not yet been
uploaded to the Unwired Server.
cust.submitPending();

7. Use non-blocking synchronize call to upload the pending changes to the Unwired Server.
The previous replay results and new changes are downloaded to the client device in the
download phase of the synchronization session.
GenericList<SynchronizationGroup> sgs = new
GenericList<SynchronizationGroup>();
sgs.add(SUP101DB.getSynchronizationGroup("default")); // Customer
MBO is in "default" sync group
SUP101DB.beginSynchronize(sgs, "mycontext");

Enabling Change Notifications
A synchronization group can enable or disable its change notification.

By default, change notifcations are disabled for synchronization groups. To enable change
notification, call the SynchronizationGroup object's setEnableSIS method.

com.sybase.persistence.SynchronizationGroup sg =
SUP101DB.getSynchronizationGroup("PushEnabled");

if (!sg.getEnableSIS())
{
 sg.setEnableSIS(true);
 sg.setInterval(2);
 sg.save();
 SUP101DB.synchronize("PushEnabled");
}

Specifying Personalization Parameters
Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The
PersonalizationParameters class is within the generated code for your project.

1. To instantiate a PersonalizationParameters object, call the generated database
instance's getPersonalizationParameters method:

PersonalizationParameters pp =
MyPackageDB.getPersonalizationParameters();

2. Assign values to the PersonalizationParameters object:

pp.setPKCity("New York");

3. Save the PersonalizationParameters value to the local database:

pp.save();

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 27

Note: If you define a default value for a personalization key that value will take effect,
unless you call pp.save().

4. Synchronize the PersonalizationParameters value to the Sybase Unwired
Platform:
MyPackageDB.synchronize();

See also
• Synchronizing on page 25

• Personalization APIs on page 57

Specifying Synchronization Parameters
Use synchronization parameters within the mobile application to download filtered MBO
data.

Assign the synchronization parameters of an MBO before a synchronization session. The next
synchronize sends the updated synchronization parameters to the server. The
SynchronizationParameters class is within the generated code for your project.

Note: If you do not save the SynchronizationParameters, no data is downloaded to
the device even if there are default values set for those SynchronizationParameters.
Call the save method for all SynchronizationParameters and for all MBOs when
the application is first started. Do this after application registration and the first
synchronization.

1. Retrieve the synchronization parameters object from the MBO instance. For example, if
you have an MBO named Customer, the synchronization parameters object is accessed
as a public field and returned as a CustomerSynchronizationParameters
object:
CustomerSynchronizationParameters sp =
Customer.getSynchronizationParameters();

2. Assign values to the synchronization parameter. For example, if the Customer MBO
contains a parameter named cityname, assign the value to the
CustomerSynchronizationParameters object's Cityname field:

sp.setCityname("Kansas City");

3. Save your changes by calling the synchronization parameters object's save method:

sp.save();

Note: If you defined a default value or bound a PersonalizationParameters in the
SynchronizationParameters, then that value will not take effect unless you call
sp.save().

After you save the synchonization parameters, call another synchronize() to download the
data.

Customizing the Application Using the Object API

28 Sybase Unwired Platform

4. When using synchronization parameters to retrieve data from an MBO during a
synchronization session, clear the previous synchronization parameter values:
CustomerSynchronizationParameters sp =
Customer.getSynchronizationParameters();
sp.delete();
sp = Customer.getSynchronizationParameters();//Must re-get
synchronization parameter instance.
sp.setCityname("New City");
sp.save();

See also
• Synchronizing on page 25

• Synchronization APIs on page 58

Subsequently Starting an Application
Subsequent start-ups are different from the first start-up.

Starting an application on subsequent occasions:

1. Set up the com.sybase.mobile.Application instance with the required
com.sybase.mobile.ConnectionProperties, including user credentials.

2. Set up the connection profile properties if needed for database location and tuning
parameters.

3. Set up the synchronization profile properties if needed for SSL or a relay server.
4. Start the application connection to the server.
5. Open the database connection.

You can do this in parallel with starting the application connection to the server.

See also
• Application APIs on page 45

Accessing MBO Data
Use MBO object queries to retrieve lists of MBO instances, or use dynamic queries that return
results sets or object lists.

See also
• Query APIs on page 78

• Object Queries on page 30

• Dynamic Queries on page 30

• MBOs with Complex Types on page 31

• Relationships on page 32

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 29

Object Queries
Use the generated static methods in the MBO classes to retrieve MBO instances.

1. To find all instances of an MBO, invoke the static findAll method contained in that
MBO. For example, an MBO named Customer contains a method such as public
static com.sybase.collections.GenericList<SUP101.Customer>
findAll().

2. To find a particular instance of an MBO using the primary key, invoke
MBO.findByPrimaryKey(...). For example, if a Customer has the primary key
"id" as int, the Customer MBO would contain the public static Customer
findByPrimaryKey(int id) method, which performs the equivalent of Select
x.* from Customer x where x.id = :id.

If the return type is a list, additional methods are generated for you to further process the result,
for example, to use paging. For example, consider this method, which returns a list of MBOs
containing the specified city name:
com.sybase.collections.GenericList<SUP101.Customer>
findByCity(String city, int skip, int take);. The skip parameter
specifies the number of rows to skip, and the take parameter specifies the maximum number
of rows to return.

See also
• Accessing MBO Data on page 29

• Query APIs on page 78

Dynamic Queries
Build queries based on user input.

Use the com.sybase.persistence.Query class to retrieve a list of MBOs.

1. Specify the where condition used in the dynamic query.
Query query = new Query();

AttributeTest aTest = new AttributeTest();

aTest.setAttribute("state");
aTest.setTestValue("NY");
aTest.setTestType(AttributeTest.EQUAL);
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("lname", SortOrderType.ASCENDING);
sort.add("fname", SortOrderType.ASCENDING);
query.setSortCriteria(sort);

Customizing the Application Using the Object API

30 Sybase Unwired Platform

2. Use the findWithQuery method in the MBO to dynamically retrieve a list of MBOs
acccording to the specified attributes.
GenericList<Customer> customers = Customer.findWithQuery(query);
int n = customers.count();
for (int i = 0; i < n; i)
{
 Customer c = (Customer)customers.get(i);
 System.out.println("Customer " + i + ": "
 + c.getLname() + ", " + c.getFname());
}

3. Use the generated database’s executeQuery method to query multiple MBOs through
the use of joins.
Query query = new Query();

query.select("c.fname,c.lname,s.order_date,s.id");
query.from("Customer", "c");
query.join("Sales_order", "s", "s.cust_id", "c.id");

AttributeTest ts = new AttributeTest();
ts.setAttribute("lname");
ts.setTestValue("Smith");
ts.setOperator(AttributeTest.EQUAL);
query.setTestCriteria(ts);
QueryResultSet qrs = SUP101DB.executeQuery(query);

while(qrs.next())
{
 System.out.println("order: "
 qrs.getInt(4) + // 4 is s.id
 qrs.getString(1) + // 1 is c.fname
 ", " + qrs.getString(2) + // 2 is c.lname
 " " + qrs.getDate(3)); // 3 is s.order_date
}

See also
• Accessing MBO Data on page 29
• Query APIs on page 78

MBOs with Complex Types
Mobile business objects are mapped to classes containing data and methods that support
synchronization and data manipulation. You can develop complex types that support
interactions with backend data sources such as SAP® and Web services. When you define an
MBO with complex types, Sybase Unwired Platform generates one class for each complex
type.

Using a complex type to create an MBO instance.

1. Suppose you have an MBO named SimpleCaseList and want to use a complex data
type called AuthenticationInfo to its Create method's parameter. Begin by
creating the complex datatype:

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 31

AuthenticationInfo authen = new AuthenticationInfo();
authen.setUserName("Demo");

2. Instantiate the MBO object:
SimpleCaseList newCase = new SimpleCaseList();
newCase.setCase_Type("Incident");
newCase.setCategory("Networking");
newCase.setCreate_Time(new
java.sql.Timestamp(System.currentTimeMillis()));

3. Call the create method of the SimpleCaseList MBO with the complex type parameter as
well as other parameters, and call submitPending() to submit the create operation
to the operation replay record. Subsequent synchronizations upload the operation replay
record to the Unwired Server and get replayed.

newCase.create(authen, "Other", "Other", "Demo", “false”,
“worklog”);
newCase.submitPending();

See also
• Accessing MBO Data on page 29
• Query APIs on page 78

Relationships
The Object API supports one-to-one, one-to-many, and many-to-one relationships.

Navigate between MBOs using relationships.

1. Suppose you have one MBO named Customer and another MBO named
SalesOrder. This code illustrates how to navigate from the Customer object to its
child SalesOrder objects:

Customer cust = Customer.findById(101);
com.sybase.collections.ObjectList orders =
customer.getSalesOrders();

2. To filter the returned child MBO's list data, use the Query class:

Query query = new Query();
AttributeTest at = new AttributeTest("sales_rep", new
Integer(129), AttributeTest.EQUAL);
query.where(at);
orders = cust.getSalesOrdersFilterBy(query);

3. For composite relationship, you can call the parent's SubmitPending method to submit
the entire object tree of the parent and its children. Submitting the child MBO also submits
the parent and the entire object tree. (If you have only one child instance, it would not make
any difference. To be efficient and get one transaction for all child operations, it is
recommened to submit the parent MBO once, instead of submitting every child).

If the primary key for a parent is assigned by the EIS, you can use a multilevel insert
cascade operation to create the parent and child objects in a single operation without

Customizing the Application Using the Object API

32 Sybase Unwired Platform

synchronizing multiple times. The returned primary key for the parent's create
operation populates the children prior to their own creation.

The following example illustrates how to submit the parent MBO which also submits the
child's operation:
Customer cust = Customer.findById(101);
Sales_order order = new Sales_order();
order.setId(1001);
order.setCustomer(cust);
order.setOrder_date(new Date());
order.setFin_code_id("r1");
order.setRegion("Eastern");
order.setSales_rep(101);
order.save(); // or order.create();
cust.save();
cust.submitPending();

See also
• Accessing MBO Data on page 29
• Query APIs on page 78

Manipulating Data
Create, update, and delete instances of generated MBO classes.

You can create a new instance of a generated MBO class, fill in the attributes, and call the
create method for that MBO instance.

You can modify an object loaded from the database by calling the update method for that
MBO instance.

You can load an MBO from the database and call the delete method for that instance.

See also
• Persistence APIs on page 88

Creating, Updating, and Deleting MBOs
Perform create, update, and delete operations on MBO instances.

You can call the create, update, and delete methods for MBO instances.

1. Suppose you have an MBO named Customer. To create an instance within the database,
invoke its create method, which causes the object to enter a pending state. Then call the
MBO instance's submitPending method. Finally, synchronize with the generated
database:
Customer newcustomer = new Customer();
//Set the required fields for the customer

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 33

// …

newcustomer.create();
newcustomer.submitPending();
SUP101DB.synchronize();

2. To update an existing MBO instance, retrieve the object instance through a query, update
its attributes, and invoke its update method, which causes the object to enter a pending
state. Then call the MBO instance's submitPending method. Finally, synchronize with
the generated database:
Customer customer = Customer.findByPrimary(myCustomerId) //find
by primary key
customer.setCity("Dublin"); //update any field to a new value
customer.update();
customer.submitPending();
SUP101DB.synchronize();

3. To delete an existing MBO instance, retrieve the object instance through a query and
invoke its delete method, which causes the object to enter a pending state. Then call the
MBO instance's submitPending method. Finally, synchronize with the generated
database:
Customer customer = Customer.FindByPrimary(myCustomerId) //find
by primary key
customer.delete();
customer.submitPending();
SUP101DB.synchronize();

See also
• Operations APIs on page 88

Other Operations
Use operations other than create, update, or delete.

In this example, a customized operator is used to perform a sum operation.

1. Suppose you have an MBO named MyMBO that has an operator that generates a customized
sum. Begin by creating an object instance and assigning values to its attributes, specifying
the "Add" operation:

MyMBO op = new MyMBO();

op.setOperand1(12);
op.setOperand2(23);
op.setOperator("Add");
op.save();

2. Call the MBO instance's submitPending method and synchronize with the generated
database:
op.submitPending();
SUP101DB.synchronize();

Customizing the Application Using the Object API

34 Sybase Unwired Platform

See also
• Operations APIs on page 88

Using SubmitPending and SubmitPendingOperations
You can submit a single pending MBO, all pending MBOs of a single type, or all pending
MBOs in a package. Once those pending changes are submitted to the server, the MBOs enter
a replay pending state.

Note that submitPendingOperations APIs are expesive. Sybase recommends using the
submitPending API with the MBO instance whenever possible.

Database Classes
Submit pending operations for all entities in the package or synchronization group, cancel all
pending operations that have not been submitted to the server, and check if there are pending
oprations for all entities in the package.

1. To submit pending operations for all pending entities in the package, invoke the generated
database's submitPendingOperations method.

2. To submit pending operations for all pending entities in the specified synchronization
group, invoke the generated database's submitPendingOperations (string
synchronizationGroup) method.

3. To cancel all pending operations that have not been submitted to the server, invoke the
generated database's cancelPendingOperations method.

4. To check if there are pending operations for all entities in the package, invoke the
generated database's hasPendingOperations method.

Generated MBOs
Submit pending operations for all entities for a given MBO type or a single instance, and
cancel all pending operations that have not been submitted to the server for the MBO type or a
single entity.

1. To submit pending operations for all pending entities for a given MBO type, invoke the
MBO class' static submitPendingOperations method.

2. To submit pending operations for a single MBO instance, invoke the MBO object's
submitPending method.

3. To cancel all pending operations that have not been submitted to the server for the MBO
type, invoke the MBO class' static cancelPendingOperations method.

4. To cancel all pending operations for a single MBO instance, invoke the MBO object's
cancelPending method.

Customizing the Application Using the Object API

Developer Guide: Android Object API Applications 35

Shutting Down the Application
Shut down an application and clean up connections.

Closing Connections
Clean up connections from the generated database instance prior to application shutdown.

1. To release an opened application connection, stop the messaging channel by invoking the
application instance's stopConnection method.

app.stopConnection(<timeout_value>);

2. Close all connections to device database by calling the closeConnection method in
the generated package database class. If one application has multiple packages, invoke the
closeConnection API in all the packages.

Uninstalling the Application
Uninstall the application and clean up all package- and MBO-level data.

Deleting the Database and Unregistering the Application
Delete the package database, and unregister the application.

1. To delete the package database, call the generated database's deleteDatabase
method.
SUP101DB.deleteDatabase();

2. Unregister the application by invoking the Application instance's
unregisterApplication method.

app.unregisterApplication(0);

Customizing the Application Using the Object API

36 Sybase Unwired Platform

Testing Applications

Test native applications on a device or simulator.

See also
• Customizing the Application Using the Object API on page 15
• Localizing Applications on page 41

Testing an Application Using a Emulator
Run and test the application on an emulator and verify that the application automatically
registers to Unwired Server using the default application connection template.

Prerequisites
You must have created an Android Virtual Device when you installed the Android SDK in
your Android development environment. The Android Virtual Device (AVD) must use the
same target as the test package.

Task

1. In the Eclipse Package Explorer, right-click the project and select Run As > Run
Configuration.
The ADT plugin for Eclipse installs your application, starts the emulator automatically,
and launches the application. The application will automatically register with Unwired
Server using the default application connection template. Once you build your application,
deploy the Android package (APK) file. For more information on publishing your Android
application, see http://developer.android.com/guide/publishing/
publishing_overview.html.

2. In Sybase Control Center verify that the application connection was created in
Applications > Application Connections.
When the application has successfully registered, the application connection displays a
value of zero in the Pending Items column.

3. Test the functionality of the application. Use debug tools as necessary, setting breakpoints
at appropriate places in the application.

Client-Side Debugging
Identify and resolve client-side issues while debugging the application.

Problems on the device client side that may cause client application problems:

Testing Applications

Developer Guide: Android Object API Applications 37

http://developer.android.com/guide/publishing/publishing_overview.html
http://developer.android.com/guide/publishing/publishing_overview.html

• Unwired Server connection failed - use your device browser to check the connectivity of
your device to the server.

• Data does not appear on the client device - check if your synchronization and
personalization parameters are set correctly. If you are using queries, check if your query
conditions are correctly constructed and if the device data match your query conditions.

• Physical device problems, such as low memory - implement
ApplicationCallback.onDeviceConditionChanged to be notified if
device storage gets too low, or recovers from an error.

• Unwired Server connection failed. Use your device browser to check the connectivity of
your device to the server.

• Data does not appear on the client device. Check if your synchronization and
personalization parameters are set correctly. If you are using queries, check if your query
conditions are correctly constructed and that the device data matches your query
conditions.

• Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

• If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging and review the debugging information. See the API
Reference information about using the Logger class to add logs to the client log record
and synchronize them to the server (viewable in Sybase Control Center).

• Check the log record on the device. Use the <PkgName>DB.getLogRecords
(com.sybase.persistence.Query) or Entity.getLogRecords() methods.
This is the log format
level,code,eisCode,message,component,entityKey,operation,requestI
d,timestamp

This log format generates output similar to:
level code eisCode message component entityKey operation requestId
timestamp
 5,500,'','java.lang.SecurityException:Authorization failed:
Domain = default Package = end2end.rdb:1.0 mboName =
simpleCustomer action =
delete','simpleCustomer','100001','delete','100014','2010-05-11
14:45:59.710'

• level – the log level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.

• code – Unwired Server administration codes.

• Synchronization codes:
• 200 – success.
• 500 – failure.

Testing Applications

38 Sybase Unwired Platform

• eisCode – maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).

• message – the message content.

• component – MBO name.

• entityKey – MBO surrogate key, used to identify and track MBO instances and
data.

• operation – operation name.

• requestId – operation replay request ID or messaging-based synchronization
message request ID.

• timestamp – message logged time, or operation execution time.

• If you have implemented ApplicationCallback.onConnectionStatusChanged
for synchronization in the CallbackHandler, the connection status between Unwired
Server and the device is reported on the device. See the CallbackHandler API
reference information. The device connection status, device connection type, and
connection error message are reported on the device:
• 1 – current device connection status.
• 2 – current device connection type.
• 3 – connection error message.

• For other issues, you can turn on SQLTrace trace on the device side to trace Client Object
API activity. To enable SQLTrace using the ConnectionProfile's enableTrace API:
// To enable SQL trace with values also displayed
SUP101DB.getConnectionProfile().enableTrace(true, true);

Server-Side Debugging
Identify and resolve server-side issues while debugging the application.

Problems on the Unwired Server side may cause device client problems:

• The domain or package does not exist. If you create a new domain, with a default status of
disabled, it is unavailable until enabled.

• Authentication failed for the application user credentials.
• The operation role check failed for the synchronizing user.
• Back-end authentication failed.
• An operation failed on the remote, replication database back end, for example, a table or

foreign key does not exist.
• An operation failed on the Web Service, REST, or SAP® back end.

To find out more information on the Unwired Server side:

• Check the Unwired Server log files.
• For message-based synchronization mode, you can set the log level to DEBUG to obtain

detailed information in the log files:

Testing Applications

Developer Guide: Android Object API Applications 39

1. Set the log level using Sybase Control Center. See Sybase Control Center for Unwired
Platform > Administer > Server Log > Configuring Server Log Setting.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

• Obtain DEBUG information for a specific device:
• In the SCC administration console:

1. Set the DEBUG level to a higher value for a specified device:
a. In SCC, select Application Connections, then select Properties... > Device

Advanced.
b. Set the Debug Trace Level value.

2. Set the TRACE file size to be greater than 50KB.
3. View the trace file through SCC.

• Check the <server_install_folder>\UnwiredPlatform\Servers
\MessagingServer\Data\ClientTrace directory to see the mobile device
client log files for information about a specific device.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

Testing Applications

40 Sybase Unwired Platform

Localizing Applications

Localize an Android application by creating default and alternate resources.

For information, best practices, and tutorials on localizing Android applications, see http://
developer.android.com/guide/topics/resources/localization.html

See also
• Testing Applications on page 37

Localizing Applications

Developer Guide: Android Object API Applications 41

http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html

Localizing Applications

42 Sybase Unwired Platform

Packaging Applications

Package applications according to your security or application distribution requirements.

You can package all libraries into one package. This packaging method provide more security
since packaging the entire application as one unit reduces the risk of tampering of individual
libraries.

You may package and install modules separately only if your application distribution strategy
requires sharing libraries between Sybase Unwired Platform applications.

Signing
Code signing is required for applications to run on physical devices and emulators.

All applications must be signed. The system will not install an application on an emulator or a
device if it is not signed.

To test and debug your application, the build tools sign your application with a special debug
key that is created by the Android SDK build tools.

Packaging Applications

Developer Guide: Android Object API Applications 43

Packaging Applications

44 Sybase Unwired Platform

Client Object API Usage

The Sybase Unwired Platform Client Object API consists of generated business object classes
that represent mobile business objects (MBOs) that are designed and built in the Unwired
WorkSpace development environment. Device applications use the Client Object API to
retrieve data and invoke mobile business object operations.

Refer to these sections for more information on using the APIs described in Developer Guide:
Android Object API Application > Customizing the Application Using the Object API.

Client Object API Reference
Use the Sybase Client Object API Javadocs as a Client Object API reference.

Review the reference details in the Client Object API documentation, located in the Unwired
Platform installation directory <UnwiredPlatform_InstallDir>\MobileSDK
\ObjectAPI\apidoc.

There is a subdirectory for android.

From the index.html file, the top-left navigation pane lists all packages installed with
Unwired Platform. The applicable documentation is available with each package. Click this
link and navigate through the Javadoc.

Application APIs
The Application class, in the com.sybase.mobile Java package, manages mobile
application registrations, connections and context.

See also
• Initially Starting an Application on page 15
• Setting up Application Properties on page 16
• Registering an Application on page 17
• Subsequently Starting an Application on page 29

getInstance
Retrieves the Application instance for the current mobile application.

Syntax
public static Application getInstance()

Client Object API Usage

Developer Guide: Android Object API Applications 45

Returns

getInstance returns a singleton Application object.

Examples

• Get the Application Instance –

Application app = Application.getInstance();

setApplicationIdentifier
Sets the identifier for the current application.

Set the application identifer before calling startConnection,
registerApplication or unregisterApplication.

Syntax
public void setApplicationIdentifier(java.lang.String value)

Parameters

• value – The identifier for the current application.

Examples

• Set the Application Identifier – Sets the application identifier to SUP101.

// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the
// application ID deployed to the SUP server
app.setApplicationIdentifier("SUP101");

Usage

This method must be called in the user interface thread.

getRegistrationStatus
Retrieves the current status of the mobile application registration.

Syntax
public int getRegistrationStatus()

Client Object API Usage

46 Sybase Unwired Platform

Returns

getRegistrationStatus returns one of the values defined in the
RegistrationStatus class.

public class RegistrationStatus {

public static final int REGISTERED = 203;
public static final int REGISTERING = 202;
public static final int REGISTRATION_ERROR = 201;
public static final int UNREGISTERED = 205;
public static final int UNREGISTERING = 204;
}

Examples

• Get the Registration Status – Registers the application if it is not already registered.

if (app.getRegistrationStatus() ==
RegistrationStatus.UNREGISTERED)
{
 // If the application has not been registered to the server,
 // register now
 app.registerApplication();
}
else
{
 // start the connection to server
 app.startConnection();
}

registerApplication
Creates the registration for this application and starts the connection.

Syntax
public void registerApplication(int timeout)

Parameters

• timeout – Number of seconds to wait until the registration is created. If the the timeout is
greater than zero and the registration is not created within the timeout period, an
ApplicationTimeoutException is thrown (the operation might still be
completing in a background thread).

Examples

• Register an Application – Registers the application with a one minute waiting period.
app.registerApplication(60);

Client Object API Usage

Developer Guide: Android Object API Applications 47

setApplicationCallback
Sets the callback for the current application. It is optional, but recommended, to register a
callback so the application can respond to changes in connection status, registration status,
and application settings.

Syntax
public void setApplicationCallback(ApplicationCallback value)

Parameters

• value – The mobile application callback handler.

Examples

• Set the Application Callback –
// Initialize Application settings
Application app = Application.getInstance();

// The identifier has to match the
// application ID deployed to the SUP server
app.setApplicationIdentifier("SUP101");
ApplicationCallback appCallback = new MyApplicationCallback();
app.setApplicationCallback(appCallback);

getApplicationContext
Returns the Android application context which allows access to application-specific resources
and classes.

Syntax
public android.content.Context getApplicationContext()

Returns

getApplicationContext returns a single Context object.

Examples

• Get the Application Context –
getApplicationContext()

Client Object API Usage

48 Sybase Unwired Platform

setApplicationContext
Sets the Android application context, which is required before calling
thestartConnection, registerApplication or unregisterApplication
methods. This method must be called in an user interface thread, not a background thread.

Syntax
public void setApplicationContext(android.content.Context context)

Returns

None.

Examples

• Set the Application Context –
setApplicationContext(android.content.Context context)

startConnection
Starts the connection for this application. This method is equivalent to calling
startConnection(0), but is a non-blocking call which returns immediately. Use
getConnectionStatus or the ApplicationCallback to retrieve the connection
status.

Syntax
public void startConnection()

Returns

None.

Examples

• Start the Application –
startConnection()

startConnection (int timeout)
Starts the connection for this application. If the connection was previously started, then this
operation has no effect. You must set the appropriate connectionProperties before
calling this operation.

If connection properties are improperly set, a ConnectionPropertyException is
thrown. You can set the applicationCallback before calling this operation to receive

Client Object API Usage

Developer Guide: Android Object API Applications 49

asynchronous notification of connection status changes. If a callback handler is registered and
network connectivity is available, the sequence of callbacks as a result of calling
startConnection is:

onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, "")
 onConnectionStatusChanged(ConnectionStatus.CONNECTED, 0, "")

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling startConnection is:

onConnectionStatusChanged(ConnectionStatus.CONNECTING, 0, null)
 onConnectionStatusChanged(ConnectionStatus.CONNECTION_ERROR, code,
message)

After a connection is successfully established, it can transition at any later time to
CONNECTION_ERROR status or NOTIFICATION_WAIT status and subsequently back to
CONNECTING and CONNECTED when connectivity resumes.

Syntax
public void startConnection(int timeout)

Parameters

• timeout – The number of seconds to wait until the connection is started. If the timeout is
greater than zero and the connection is not started within the timeout period, an
ApplicationTimeoutException is thrown (the operation may still be completing
in a background thread).

Returns

None.

Examples

• Start the Application –
startConnection(int timeout)

getConnectionStatus
Return current status of the mobile application connection.

Syntax
public int getConnectionStatus()

Returns

getConnectionStatus returns one of the ConnectionStatus class values.

Client Object API Usage

50 Sybase Unwired Platform

Examples

• Get the Application Context –
getConnectionStatus()

Connection APIs
The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server, and authenticating.

See also
• Initially Starting an Application on page 15

ConnectionProfile
The ConnectionProfile class manages local database information. Set its properties,
including the encryption key, during application initialization, and before creating or
accessing the local client database.

By default, the database class name is generated as "packageName"+"DB".
ConnectionProfile profile = <PkgName>DB.getConnectionProfile();
profile.setPageSize(4*1024);
profile.setEncryptionKey("Your key of more than 16 characters");

You can also generate an encryption key by calling the generated database's
generateEncryptionKey method, and then store the key inside a DataVault object.
The generateEncryptionKey method automatically sets the encryption key in the
connection profile.

See also
• Setting Up the Connection Profile on page 18

Managing Device Database Connections
Use the openConnection() and closeConnection() methods generated in the
package database class to manage device database connections.

Note: Any database operation triggers the establishment of the database connection. You do
not need to explicitly call the openConnection API.

The openConnection() method checks that the package database exists, creates it if it
does not, and establishes a connection to the database. This method is useful when first starting
the application: since it takes a few seconds to open the database when creating the first
connection, if the application starts up with a login screen and a background thread that
performs the openConnection() method, after logging in, the connection already exists
and is immediately available to the user.

Client Object API Usage

Developer Guide: Android Object API Applications 51

The closeConnection() method closes the current database connection, and releases it
from the used connection pool.

Improving Device Application Performance with One Writer Thread and
Multiple Database Access Threads
The maxDbConnections property improves device application performance by allowing
multiple threads to access data concurrently from the same local database.

Connection management allows you to have at most one writer thread concurrent with
multiple reader threads. There can be other reader threads at the same time that the writer
thread is writing to the database. The total number of threads are controlled by the
maxDbConnections property.

In a typical device application such as Sybase Mobile CRM, a list view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry appears, and
loads the details for that entry.

Prior to the implementation of maxDbConnections, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) operation waited for any previous operation to finish before the next was
allowed to proceed. In the list view to detail view example, when the background thread is
loading the entire list, and a user selects the details of one entry for display, the loading of
details for that entry must wait until the entire list is loaded, which can be a long while,
depending on the size of the list.

You can specify the number of total threads using maxDbConnections.

The ConnectionProfile class in the persistence package includes the
maxDbConnections property, which you set before performing any operation in the
application. The default value (maximum number of concurrent read threads) is 2.

ConnectionProfile connectionProfile =
MyPackageDB.getConnectionProfile();

To allow 6 concurrent threads, set the maxDbConnections property to 6 in
ConnectionProfile before accessing the package database at the beginning of the
application.
 connectionProfile.setMaxDbConnections(6);

Set Database File Property
You can use setProperty to specify the database file name on the device, such as the
directory of the running program, a specific directory path, or a secure digital (SD) card.

ConnectionProfile cp = MyDatabaseClass.getConnectionProfile();
cp.setProperty("databaseFile", "databaseFile");
cp.save();

Client Object API Usage

52 Sybase Unwired Platform

Examples
If you specify the databaseFile name only, with no path, the databaseFile is created in the path
where the program is running:
/mydb.udb

The databaseFile is created on an SD card:
Environment.getExternalStorageDirectory().getAbsolutePath() + "/
mydb.udb"

Note: For the database file path and name, the forward slash (/) is required as the path
delimiter, for example /smartcard/supprj.udb.

Usage

• Be sure to call this API before the database is created..
• The database is UltraLiteJ™; use an absolute path to the database file name like /

sdcard/mydb.ulj.

• If the device client user changes the file name, he or she must make sure the input file name
is a valid name and path on the client side.

Synchronization Profile
Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server's data synchronization channel where the
server package has been deployed. The
com.sybase.persistence.ConnectionProfile class manages that information.

The generated package database class initially has default settings for the synchronization
connection profile. You can modify these setttings if you require different settings than the
generated code, or set certificate settings.
ConnectionProfile profile = <PkgName>DB.getSynchronizationProfile();
profile.setDomainName("default");
profile.setServerName("sup.sybase.com");
profile.setPortNumber(2480);
profile.setNetworkProtocol("http");
profile.getStreamParams().setTrusted_Certificates("rsa_public_cert
.crt");

See also
• Synchronization Profile on page 19

Client Object API Usage

Developer Guide: Android Object API Applications 53

Connect the Data Synchronization Channel Through a Relay Server
To enable your client application to connect through a relay server, you must make manual
configuration changes in the object API code to provide the relay server properties.

Edit <package-name>DB by modifying the values of the relay server properties for your
Relay Server environment.

To update properties for the relay server installed on Apache on Linux:
getSynchronizationProfile().setServerName("examplexp-vm1");
getSynchronizationProfile().setPortNumber(80);
getSynchronizationProfile().setNetworkProtocol("http");
NetworkStreamParams streamParams =
getSynchronizationProfile().getStreamParams();
streamParams.setUrl_Suffix("/cli/iarelayserver/<FarmName>");
getSynchronizationProfile().setDomainName("default");

To update properties for the relay server installed on Internet Information Services (IIS) on
Microsoft Windows:
getSynchronizationProfile().setServerName("examplexp-vm1");
getSynchronizationProfile().setPortNumber(2480);
getSynchronizationProfile().setNetworkProtocol("http");
NetworkStreamParams streamParams =
getSynchronizationProfile().getStreamParams();
streamParams.setUrl_Suffix("/ias_relay_server/client/rs_client.dll/
<FarmName>");
getSynchronizationProfile().setDomainName("default");

For more information on relay server configuration, see System Administration and Sybase
Control Center for Unwired Server.

Authentication APIs
You can log in to the Unwired Server with your user name and credentials and use the X.509
certificate you installed in the task flow for single sign-on.

Logging In
The generated package database class provides a default synchronization connection profile
according to the Unwired Server connection profile and server domain selected during code
generation. You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

• onlineLogin(String username, String password) – authenticates
credentials against the Unwired Server.

• offlineLogin(String username, String password) – authenticates
against the most recent successfully authenticated credentials. Once the client connects for

Client Object API Usage

54 Sybase Unwired Platform

the first time, the server validated user name and password are stored locally.
offlineLogin verifies with the client database if those credentials are valid. The
method returns YES if the user name and password are correct, otherwise the method
returns NO.

There is no communication with Unwired Server in this method. This method is useful if
there is no connection the the Unwired Server and you want to access the client application
locally.

Sample Code
Illustrates importing the certificate and setting up login credentials, as well as other APIs
related to certificate handling:

/// SUP101DB is a generated database class
///First install certificates on your simulator, for example
"Sybase101.p12"

//Getting certificate from certificate store
CertificateStore myStore =
CertificateStore.getDefault();
String filter1 = "Sybase";
StringList labels = myStore.certificateLabels(filter1, null);
String aLabel = labels.item(0);
LoginCertificate lc = myStore.getSignedCertificate(aLabel,
"password");

// Save the login certificate to your synchronization profile
SUP101DB.getSynchronizationProfile().setCertificate(lc);

// Login to and synchronize with Unwired Server
SUP101DB.subscribe();
SUP101DB.synchronize();

// Save the login certificate to your data vault
// The vault must be unlocked before saving
// SybaseDataProvider.apk package must be installed on Android device
String vaultName = "myVault";
DataVault vault = null;
if(!DataVault.vaultExists(vaultName))
{
 vault = DataVault.createVault(vaultName, "password", "salt");
}
else
{
 vault = DataVault.getVault(vaultName);
}
vault.unlock("password", "salt");
lc.save("myLabel", vault);

//Loading and deleting certificate

Client Object API Usage

Developer Guide: Android Object API Applications 55

LoginCertificate newLc = LoginCertificate.load("myLabel", vault);
LoginCertificate.delete("myLabel", vault);

Single Sign-On With X.509 Certificate Related Object API
Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

• CertificateStore class - wraps platform-specific key/certificate store class, or file
directory

• LoginCertificate class - wraps platform-specific X.509 distinguished name and
signed certificate

• ConnectionProfile class - includes the certificate attribute used for Unwired Server
synchronization.

Refer to the API Reference for implementation details.

Importing a Certificate into the Data Vault
Obtain a certificate reference and store it in a password-protected data vault to use for X.509
certificate authentication.

The difference between importing a certificate from a system store or a file directory is
determined by how you obtain the CertificateStore object. In either case, only a label
and password are required to import a certificate blob, which is a digitally signed copy of the
public X.509 certificate.

// Obtain a reference to the certificate store
CertificateStore certStore = CertificateStore.getDefault();

// Obtain a list of certificates
StringList labels = certStore.certificateLabels();

// Import a certificate blob from store (into memory)
String label = ...; // ask user to select a label
String password = ...; // ask the user for a password
LoginCertificate cert = certStore.getSignedCertificate(label,
password);

// Lookup or create data vault
String vaultPassword = ...; // ask user or from O/S protected storage
String vaultName = "..."; // e.g. "SAP.CRM.CertificateVault"
String vaultSalt = "..."; // e.g. a hard-coded random GUID
DataVault vault;
try
{
 vault = DataVault.getVault(vaultName);
 vault.unlock(vaultPassword, vaultSalt);
}
catch (DataVaultException ex)
{
 vault = DataVault.createVault(vaultName, vaultPassword,
vaultSalt);
}

Client Object API Usage

56 Sybase Unwired Platform

// Save certificate into data vault
cert.save("myCert", vault);

Selecting a Certificate for Unwired Server Connections
Select the X.509 certificate from the data vault for Unwired Server authentication.

LoginCertificate cert = LoginCertificate.load("myCert", vault);
ConnectionProfile syncProfile =
MyDatabase.getSynchronizationProfile();
syncProfile.setCertificate(cert);

Connecting to Unwired Server with a Certificate
Once the certificate property is set, use the onlineLogin() API with no parameters. Do
not use the onlineLogin() API with username and password.

SUP101DB onlineLogin();

Personalization APIs
Personalization keys allow the application to define certain input parameter values that are
personalized for each mobile user. Personalization parameters provide default values for
synchronization parameters when the synchronization key of the object is mapped to the
personalization key while developing a mobile business object. The Personalization APIs
allow you to manage personalization keys, and get and set personalization key values.

See also
• Specifying Personalization Parameters on page 27

Type of Personalization Keys
There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
when the device application terminates.

A personalization parameter can be a primitive or complex type.

A personalization key is metadata that enables users to store their search preferences on the
client, the server, or by session. The preferences narrow the focus of data retrieved by the
mobile device (also known as the filtering of data between client and Unwired Server). Often
personalization keys are used to hold backend system credentials, so that they can be
propagated to the EIS. To use a personalization key for filtering, it must be mapped to a
synchronization parameter. The developer can also define personalization keys for the
application, and can use built-in personalization keys available in Unwired Server. Two key

Client Object API Usage

Developer Guide: Android Object API Applications 57

built-in personalization keys — username and password — can be used to perform single
sign-on from the device application to the Unwired Server, authentication and authorization
on Unwired Server, as well as connecting to the back-end EIS using the same set of
credentials. The password is never saved on the server.

Getting and Setting Personalization Key Values
The PersonalizationParameters class is generated automatically for managing
personalization keys. When a personalization parameter value is changed, the call to save
automatically propagates the change to the server.

An operation can have a parameter that is one of the Sybase Unwired Platform list types (such
as IntList, StringList, or ObjectList). This code shows how to set a
personalization key, and pass an array of values and an array of objects:
PersonalizationParameters pp =
SUP101DB.getPersonalizationParameters();
pp.setMyIntPK(10002);
pp.save();
IntList il = new IntList(2);
il.add(10001);
il.add(10002);
pp.setMyIntListPK(il);
pp.save();

MyDataList dl = new MyDataList();
//MyData is a structure type defined in tooling
MyData md = new MyData();
md.setIntMember(...);
md.setStringMember2(...);
dl.add(md);
pp.setMyDataList(dl);
pp.save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Note: For a detailed description on personalization key usage, see the Sybase Unwired
Platform online help.

Synchronization APIs
You can synchronize mobile business objects (MBOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Note: The loginToSync API is now deprecated. For RBS, call synchronize or
beginSynchronize before saving synchronization parameters. After saving the
synchronization parameters, call synchronize or beginSynchronize again to

Client Object API Usage

58 Sybase Unwired Platform

retrieve the new values filtered by those parameters. For MBS, call subscribe before
saving synchronization parameters.

See also
• Synchronizing on page 25
• Specifying Synchronization Parameters on page 28

Changing Synchronization Parameters
Synchronization parameters let an application change the parameters that retrieve data from
an MBO during a synchronization session.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.

When a synchronization parameter value is changed, the call to save automatically
propagates the change to the Unwired Server.
CustomerSynchronizationParameters sp =
Customer.getSynchronizationParameters();
sp.setMyid(10001);
sp.save();

Note: The Sybase Unwired Platform server will not send MBO data to a device if an MBO has
synchronization parameters defined, unless the application client code calls the save
method. The next synchronize call will retrieve data from the server. This is true even if default
values are defined for its synchronization parameters.

Performing Mobile Business Object Synchronization
A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

This code synchronizes an MBO package using a specified connection:
SUP101DB.synchronize (string synchronizationGroup)

The package database class includes two synchronization methods. You can synchronize a
specified group of MBOs using the synchronization group name:
SUP101DB.synchronize("my-sync-group");

Or, you can synchronize all synchronization groups:
SUP101DB.synchronize();

There is a default synchronization group within every package. The default synchronization
group includes all MBOs except those already included by other synchronization groups. To
synchronize a default synchronization group call
DBClass.beginSynchronize("default"); or
DBClass.synchronize("default");

Client Object API Usage

Developer Guide: Android Object API Applications 59

If there is no other synchronization group, call DBClass.beginSynchronize(); or
DBClass.synchronize();

To synchronize a synchronization group asynchronously:
ObjectList syncGroups = new ObjectList();
syncGroups.add(SUP101DB.getSynchronizationGroup("my-sync-group"));
SampleAppDB.beginSynchronize(syncGroups, "");

When an application uses a create, update, or delete operation in an MBO and calls the
submitPending metod, an OperationReplay object is created for that change. The
application must invoke either the synchronize or beginSynchronize method to
upload the OperationReplay object to the server to replay the change on the backend data
source. The isReplayQueueEmpty API is used to check if there are unsent operation
replay objects and decide whether a synchronize call is needed.
if (!SUP101DB.isReplayQueueEmpty())
{
 // There are OperationReplay not uploaded to server
 ObjectList sgs = new ObjectList();
 sgs.add(MyPackageDB.getSynchronizationGroup("system"));
 MyPackageDB.beginSynchronize(sgs, "upload OperationReplay
objects");
}

Push Synchronization Applications
Clients receive device notifications when a data change is detected for any of the MBOs in the
synchronization group to which they are subscribed.

Sybase Unwired Platform uses a messaging channel to send change notifications from the
server to the client device. By default, change notification is disabled. You can enable the
change notification of a synchronization group:
ISynchronizationGroup sg =
MyPackageDB.getSynchronizationGroup("TCNEnabled");

if (!sg.EnableSIS)
{
 sg.setEnableSIS(true);
 sg.setInterval(2);
 sg.save();
 MyPackageDB.synchronize("TCNEnabled");
}

When the server detects changes in an MBO affecting a client device, and the synchronization
group of the MBO has the change detection enabled, the server will send a notification to client
device through messaging channel. When the server detects changes in an MBO affecting a
client device, and the synchronization group of the MBO has the change detection enabled, the
server will send a notification to client device through messaging channel. By default, a
background synchronization downloads the changes for that synchronization group. The
application can implement the onSynchronize callback method to monitor this condition, and
either allow or disallow background synchronization.

Client Object API Usage

60 Sybase Unwired Platform

public int OnSynchronize(GenericList<ISynchronizationGroup> groups,
SynchronizationContext context)
{
 int status = context.getStatus();
 if (status == SynchronizationStatus.STARTING_ON_NOTIFICATION)
 {
 // There is changes on the synchronization group
 if (busy)
 {
 return SynchronizationAction.CANCEL;
 }
 else
 {
 return SynchronizationAction.CONTINUE;
 }
 }

 // return CONTINUE for all other status
 return SynchronizationAction.CONTINUE;
}

Retrieving Information about Synchronization Groups
The package database class provides the following two methods for querying the
synchronized state and the last synchronization time of a certain synchronization group:

/// Determines if the synchronization group was synchronized
public static boolean isSynchronized(java.lang.String
synchronizationGroup)

/// Retrieves the last synchronization time of the synchronization
group
public static java.util.Date
getLastSynchronizationTime(java.lang.String synchronizationGroup)

Log Record APIs
The Log Record APIs allow you to customize aspects of logging.

• Writing and retrieving log records (successful operations are not logged).
• Configuring log levels for messages reported to the console.
• Enabling the printing of server message headers and message contents, database

exceptions, and LogRecord objects written for each import.

• Viewing detailed trace information on database calls.
• The change log can be enabled or disabled with the enableChangeLog and

disableChangeLog methods. You can retrieve the change log by calling the
getChangeLogs method.

Client Object API Usage

Developer Guide: Android Object API Applications 61

LogRecord API
LogRecord stores two types of logs.

• Operation logs on the Unwired Server. These logs can be downloaded to the device.
• Client logs. These logs can be uploaded to the Unwired Server.

This code executes an update operation and examines the log records for the Customer MBO:
int id = 101;
Customer result = Customer.findById(id);
result.setFname("newFname");
result.save();
result.submitPending();
SUP101DB.synchronize();
result = Customer.findById(id);
for(com.sybase.persistence.LogRecord logRecord :
result.getLogRecords())
{
//Working with logRecord
}

The code in the log record is an HTTP status code. See Developer Guide: Android Object API
Applications >Client Object API Usage >Exceptions > Handling Exceptions > HTTP Error
Codes.

There is no logRecord generated for a successful operation replay. The Unwired Server only
creates a logRecord when an operation fails.

Logging APIs
Retrieve client log records.

Use the Logger API to set the log level and create log records on the client. Each package has
a Logger. To obtain the package logger, use the getLogger method in the generated
database class.
Logger logger = SUP101DB.getLogger();

// set log level to debug
logger.setLogLevel(LogLevel.DEBUG);

// create a log record with ERROR level and the error message.
logger.Error("Some error message");

Change Log API
The change log allows a client to retrieve a list of changes from a particular MBO, and
reconstruct the list of changes without invoking findAll.

Client Object API Usage

62 Sybase Unwired Platform

enableChangeLog
By default, Change Log is disabled. To enable the change log, invoke the
enableChangeLog API in the generated database class. The next synchronization will
have change logs sent to the client.

Syntax
enableChangeLog();

Returns

None.

Examples

• Enable Change Log –
SUP101DB.enableChangeLog();

getChangeLogs
Retrieve a list of change logs.

Syntax
GenericList<com.sybase.persistence.ChangeLog>
getChangeLogs(com.sybase.persistence.Query query);

Returns

Returns a GenericList of type <Change Log>.

Examples

• Get Change Logs –
GenericList<com.sybase.persistence.ChangeLog>
getChangeLogs(query);

deleteChangeLogs
You are recommended to delete all change logs after the application has completed processing
them. Use the deleteChangeLogs API in the generated database class to delete all change
logs on the device.

Syntax
deleteChangeLogs();

Client Object API Usage

Developer Guide: Android Object API Applications 63

Returns

None.

Examples

• Delete Change Logs –
SUP101DB.deleteChangeLogs();

Usage

Ensure that when calling deleteChangeLogs(), there are no change logs created from a
background synchronization that are not part of the original change log list returned by a
specific query:
GenericList<ChangeLog> changes = getChangeLogs(myQuery);

You should only call deleteChangeLogs() in the onSynchronize() callback where
there are no multiple synchronizations occurring simulatenously.

disableChangeLog
Creating change logs consumes some processing time, which can impact application
performance. The application may can disable the change log using the
disableChangeLog API.

Syntax
disableChangeLog();

Returns

getInstance returns a singleton Application object.

Examples

• Disable Change Log –
SUP101DB.disableChangeLog();

Code Samples
Enable the change log and list all changes, or only the change logs for a particular entity,
Customer.

SUP101DB.enableChangeLog();
SUP101DB.synchronize();

// Retrieve all change logs
GenericList<ChangeLog> logs = SUP101DB.getChangeLogs(new Query());
System.out.println("There are " + logs.size() + " change logs");

Client Object API Usage

64 Sybase Unwired Platform

for (ChangeLog log : logs)
{
 System.out.println(log.getEntityType()
 + "(" + log.getSurrogateKey()
 + "): " + log.getOperationType());
}

// Retrieve only the change logs for Customer:
Query query = new Query();
AttributeTest at = new AttributeTest("entityType",
 new java.lang.Integer(SUP101.EntityType.Customer),
 AttributeTest.EQUAL);
 AL);
query.setTestCriteria(at);
logs = SUP101DB.getChangeLogs(query);
System.out.println("There are " + logs.size() + " change logs for
Customer");
for (ChangeLog log : logs)
{
 System.out.println(log.getEntityType()
 + "(" + log.getSurrogateKey()
 + "): " + log.getOperationType());
}

Security APIs
The security APIs allow you to customize some aspects of connection and database security.

Encrypt the Database
You can set the encryption key of a local database. Set the key during application initialization,
and before creating or accessing the client database.

The length of the encyption key cannot be fewer than 16 characters.
ConnectionProfile profile = <PkgName>DB.getConnectionProfile();
profile.setEncryptionKey("Your key of length 16 or more
characters");

You can use the generateEncryptionKey() method to encrypt the local database with
a random encryption key.
SUP101DB.generateEncryptionKey();
// store the encryption key at somewhere for reuse later
ConnectionProfile profile = SUP101DB.getConnectionProfile();
String key = profile.getEncryptionKey();
...
SUP101DB.createDatabase();

Client Object API Usage

Developer Guide: Android Object API Applications 65

End to End Encryption and Compression Support APIs
Use encryption communication parameters to ensure end to end encryption and eliminate any
WAP gap security problems.

You can use the Client Object API to set up end to end encryption, supported by Ultralite, and
HTTPS items in the synchronization profile.

Refer to the following APIs when setting up end to end encryption and compression support:

• com.sybase.persistence.ConnectionProfile.getStreamParams

• com.sybase.persistence.NetworkStreamParams.getTrusted_Cert
ificates

• com.sybase.persistence.NetworkStreamParams.setTrusted_Cert
ificates

• com.sybase.persistence.NetworkStreamParams.getE2ee_Type

• com.sybase.persistence.NetworkStreamParams.setE2ee_Type

• com.sybase.persistence.NetworkStreamParams.getE2ee_Public_
Key

• com.sybase.persistence.NetworkStreamParams.setE2ee_Public_
Key

• com.sybase.persistence.NetworkStreamParams.setZlibCompress
ion

• com.sybase.persistence.NetworkStreamParams.setZlib_Upload_
Window_Size

• com.sybase.persistence.NetworkStreamParams.setZlib_Downloa
d_Window_Size

The following code example shows how to set E2EE:
ConnectionProfile conn=E2EEDB.getSynchronizationProfile();
conn.setNetworkProtocol("HTTP");
conn.setPortNumber(2480);
conn.getStreamParams().setE2ee_Type("rsa");
conn.getStreamParams().setE2ee_Public_Key("e2ee_public_key.key");
conn.save();

DataVault
The DataVault class provides encrypted storage of occasionally used, small pieces of data.
All exceptions thrown by DataVault methods are of type DataVaultException.

If you have installed the SybaseDataProvider.apk package, you can use the
DataVault class for on-device persistent storage of certificates, database encryption keys,
passwords, and other sensitive items. Use this class to:

• Create a vault
• Set a vault's properties

Client Object API Usage

66 Sybase Unwired Platform

• Store objects in a vault
• Retrieve objects from a vault
• Change the password used to access a vault

The contents of the data vault are strongly encrypted using AES-256. The DataVault class
allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrarily length and can include any characters. The password and salt
together are used to generate the AES key. If the user enters the same password when
unlocking, the contents are decrypted. If the user enters an incorrect password, exceptions will
occur. If the user enters the incorrect password a configurable number of times, the vault is
deleted and any data stored within it becomes unrecoverable. The vault can also re-lock itself
after a configurable amount of time.

Typical usage of the DataVault would be to implement an application login screen. Upon
application start, the user is prompted for a password, which is then used to unlock the vault. If
the unlock attempt is successful, the user is allowed into the rest of the application. User
credentials needed for synchronization can also be extracted from the vault so the user is not
repeatedly prompted to re-enter passwords.

createVault
Creates a new secure store.

Creates a vault. A unique name is assigned, and after creation, the vault is referenced and
accessed by that name. This method also assigns a password and salt value to the vault. If a
vault already exists with the same name, this method throws an exception. When created, the
vault is in the unlocked state.

Syntax
public static DataVault createVault(
 String name,
 String password,
 String salt
)

Parameters

• name – The vault name.
• password – The password.
• salt – The encryption salt value.

Returns

createVault creates a DataVault instance.

If a vault already exists with the same name, a DataVaultException is thrown this with
the reason ALREADY_EXISTS.

Client Object API Usage

Developer Guide: Android Object API Applications 67

Examples

• Create a Data Vault – Creates a new data vault called myVault.

DataVault vault = null;
if (!DataVault.vaultExists("myVault"))
{
 vault = DataVault.createVault("myVault", "password", "salt");
}
else
{
 vault = DataVault.getVault("myVault");
}

vaultExists
Tests whether the specified vault exists.

Syntax
public static boolean vaultExists(String name)

Parameters

• name – The vault name.

Returns

vaultExists can return the following values:

Returns Indicates

true The vault exists.

false The vault does not exist.

Examples

• Check if a Data Vault Exists – Checks if a data vault called myVault exists, and if so,
deletes it.
if (DataVault.vaultExists("myVault"))
{
 DataVault.deleteVault("myVault");
}

getVault
Retrieves a vault.

Syntax
public static DataVault getVault(String name)

Client Object API Usage

68 Sybase Unwired Platform

Parameters

• – The vault name.

Returns

getVault returns a DataVault instance.

If the vault does not exist, a DataVaultException is thrown.

deleteVault
Deletes the specified vault from on-device storage.

Deletes a vault having the specified name. If the vault does not exist, this method throws an
exception. The vault need not be in the unlocked state, and can be deleted even if the password
is unknown.

Syntax
public static void deleteVault(String name)

Parameters

• name – The vault name.

Examples

• Delete a Data Vault – Deletes a data vault called myVault.

if (DataVault.vaultExists("myVault"))
{
 DataVault.deleteVault("myVault");
}

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, this method has no effect.

Syntax
public void lock()

Examples

• Locks the data vault. – Prevents changing the vaults properties or stored content.
vault.lock();

Client Object API Usage

Developer Guide: Android Object API Applications 69

isLocked
Tests whether the vault is locked.

Syntax
public boolean isLocked()

Returns

isLocked can return the following values:

Returns Indicates

true The vault is locked.

false The vault is unlocked.

unlock
Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
unlock attempts exceeds the retry limit, the vault is deleted.

Syntax
public void unlock(String password, String salt)

Parameters

• password – The password.
• salt – The encryption salt value.

Returns

If the incorrect password or salt is used, a DataVaultException is thrown this with the
reason INVALID_PASSWORD.

Examples

• Unlocks the data vault. – Once the vault is unlocked you can change the its properties and
stored content.
if (vault.isLocked())
{
 vault.unlock("password", "salt");
}

Client Object API Usage

70 Sybase Unwired Platform

setLockTimeout
Determines how long a vault remains unlocked.

Determines how many seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public void setLockTimeout(int timeout)

Parameters

• – The number of seconds before the lock times out.

Examples

• Set the Lock Timeout – Sets the lock timeout to 1 hour.
vault.setLockTimeout(3600);

getLockTimeout
Retrieves the configured lock timeout period.

Retrieves the number of seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public int getLockTimeout()

Returns

getLockTimeout returns an integer value indicating the number of seconds a vault remains
unlocked before it automatically locks. The default value, 0, indicates that the lock never times
out.

Examples

• Set the Lock Timeout – Retrieves the lock timeout in seconds.
int timeout = vault.getLockTimeout();

setRetryLimit
Sets the retry limit value for the vault.

Determines how many consecutive unlock attempts (with wrong password) are allowed. If the
retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that an
unlimited number of attempts are permitted. An exception is thrown if the vault is locked when
this method is called.

Client Object API Usage

Developer Guide: Android Object API Applications 71

Syntax
public void setRetryLimit(int limit)

Parameters

• limit – The number of consecutive unlock attempts (with wrong password) are allowed.

Examples

• Set the Retry Limit – Sets the retry limit to 5 attempts.
vault.setRetryLimit(5);

getRetryLimit
Retrieves the retry limit value for the vault.

Retrieves the number of consecutive unlock attempts (with wrong password) are allowed. If
the retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that
an unlimited number of attempts are permitted.

Syntax
public int getRetryLimit()

Returns

getRetryLimit returns an integer value indicating the number of consecutive unlock attempts
(with wrong password) are allowed. If the retry limit is exceeded, the vault is automatically
deleted. The default value, 0, means that an unlimited number of attempts are permitted.

Examples

• Set the Retry Limit – Retrieves the number of consecutive unlock attempts (with wrong
password) that are allowed.
int retrylimit = vault.getRetryLimit();

setString
Stores a string object in the vault.

Stores a string under the specified name. An exception is thrown if the vault is locked when
this method is called.

Syntax

Parameters

• name – The name associated with the string object to be stored.

Client Object API Usage

72 Sybase Unwired Platform

• value – The string object to store in the vault.

Examples

• Set a String Value – Creates a test string, unlocks the vault, and sets a string value
associated with the name "testString" in the vault. The finally clause in the
try/catch block ensure that the vault ends in a secure state even if an exception occurs.

string teststring = "ABCDEFabcdef";
try
{
 vault.unlock("password", "salt");
 vault.setString("testString", teststring);
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

getString
Retrieves a string value from the vault.

Retrieves a string stored under the specified name in the vault. An exception is thrown if the
vault is locked when this method is called.

Syntax
public String getString(String name)

Parameters

• name – The name associated with the string object to be retrieved.

Returns

getString returns a string data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

• Get a String Value – Unlocks the vault and retrieves a string value associated with the
name "testString" in the vault. The finally clause in the try/catch block
ensure that the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");

Client Object API Usage

Developer Guide: Android Object API Applications 73

 string retrievedstring = vault.getString("testString");
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

setValue
Stores a binary object in the vault.

Stores a binary object under the specified name. An exception is thrown if the vault is locked
when this method is called.

Syntax
public void setValue(
 string name,
 byte[] value
)

Parameters

• name – The name associated with the binary object to be stored.
• value – The binary object to store in the vault.

Examples

• Set a Binary Value – Unlocks the vault and stores a binary value associated with the name
"testValue" in the vault. The finally clause in the try/catch block ensure that
the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 vault.setValue("testValue", new byte[] { 1, 2, 3, 4, 5});
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

Client Object API Usage

74 Sybase Unwired Platform

getValue
Retrieves a binary object from the vault.

Retrieves a binary object under the specified name. An exception is thrown if the vault is
locked when this method is called.

Syntax
public byte[] getValue(string name)

Parameters

• name – The name associated with the binary object to be retrieved.

Returns

getValue returns a binary data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

• Get a Binary Value – Unlocks the vault and retrieves a binary value associated with the
name "testValue" in the vault. The finally clause in the try/catch block
ensure that the vault ends in a secure state even if an exception occurs.

try
{
 vault.unlock("password", "salt");
 byte[] retrievedvalue = vault.getValue("testValue");
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

changePassword
Changes the password for the vault.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Client Object API Usage

Developer Guide: Android Object API Applications 75

Syntax

Parameters

• newPassword – The new password.
• newSalt – The new encryption salt value.

Examples

• Change the Password for a Data Vault – Changes the password to "newPassword".
The finally clause in the try/catch block ensure that the vault ends in a secure state
even if an exception occurs.
try
{
 vault.unlock("password", "salt");
 vault.changePassword("newPassword", "newSalt");
}
catch (DataVaultException e)
{
 System.out.println("Exception: " + e.toString());
}
finally
{
 vault.lock();
}

Callback and Listener APIs
The callback and listener APIs allow you to optionally register a callback handler and listen
for device events, application connection events, and package synchronize and replay events.

See also
• Setting Up Callbacks and Listeners on page 20

Callback Handlers
To receive callbacks, you must register a CallBackHandler with the generated database
class, the entity class, or both. You can create a handler by extending the
DefaultCallbackHandler class or by implementing the
com.sybase.persistence.CallbackHandler interface.

In your handler, override the particular callback that you are interested in (for example, void
onReplayFailure(java.lang.Object entity)). The callback is executed in
the thread that is performing the action (for example, replay). When you receive the callback,
the particular activity is already complete.

Client Object API Usage

76 Sybase Unwired Platform

Table 1. Callbacks in the CallbackHandler Interface

Callback Description

void onReplayFai-
lure(java.lang.Object entity)

Replay failure response notification. entity is a
client MBO instance.

void onReplaySuc-
cess(java.lang.Object entity)

Replay success response notification. entity is a
client MBO instance.

int onSynchronize(com.syb-
ase.collections.ObjectList
groups,SynchronizationContext
context)

This method is invoked at the specified status of
the synchronization.groups is a list of synchroni-
zation group names. context is the synchroniza-
tion context.

This method can only be received from the gen-
erated database class.

This code shows how to create and register a handler to receive callbacks:
public class MyCallbackHandler extends DefaultCallbackHandler
{
 // implementation
}

CallbackHandler handler = new MyCallbackHandler();
<PkgName>DB.registerCallbackHandler(handler);

SyncStatusListener API
You can implement a synchronization status listener to track synchronization progress.

Create a listener that implements the SyncStatusListener interface.

public interface SyncStatusListener
{
 boolean objectSyncStatus(ObjectSyncStatusData statusData);
}

public class MySyncListener extends SyncStatusListener
{
// implementation
}

Pass an instance of the listener to the synchronize methods.
MySyncListener listener = new MySyncListener();
<PkgName>DB.synchronize("sync_group", listener);
// or <PkgName>DB.synchronize(listener); if we want to synchronize
all
// synchronization groups

As the application synchronization progresses, the objectSyncStatus method defined
by the SyncStatusListener interface is called and is passed an

Client Object API Usage

Developer Guide: Android Object API Applications 77

ObjectSyncStatusData object. The ObjectSyncStatusData object contains
information about the MBO being synchronized, the connection to which it is related, and the
current state of the synchronization process. By testing the State property of the
ObjectSyncStatusData object and comparing it to the possible values in the
SyncStatusState enumeration, the application can react accordingly to the state of the
synchronization.

Possible uses of objectSyncStatus method include changing form elements on the
client screen to show synchronization progress, such as a green image when the
synchronization is in progress, a red image if the synchronization fails, and a gray image when
the synchronization has completed successfully and disconnected from the server.

Note: The objectSyncStatus method of SyncStatusListener is called and
executed in the data synchronization thread. If a client runs synchronizations in a thread other
than the primary user interface thread, the client cannot update its screen as the status changes.
The client must instruct the primary user interface thread to update the screen regarding the
current synchronization status.

This is an example of SyncStatusListener implementation:

public class SyncListener extends syncStatusListener
{
 public boolean objectSyncStatus(ObjectSyncStatusData data)
 {
 switch (data.getSyncStatusState()) {
 case SyncStatusState.APPLICATION_SYNC_DONE:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.APPLICATION_SYNC_ERROR:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.SYNC_DONE:
 //implement your own UI indicator bar
 break;
 case SyncStatusState.SYNC_STARTING:
 //implement your own UI indicator bar
 break;
 ...
 }
 return false;
 }
}

Query APIs
The Query API allows you to retrieve data from mobile business objects, to page data, and to
retrieve a query result by filtering. You can also use the Query API to filter children MBOs of a
parent MBO in a one to many relationship.

Client Object API Usage

78 Sybase Unwired Platform

See also
• Accessing MBO Data on page 29
• Object Queries on page 30
• Dynamic Queries on page 30
• MBOs with Complex Types on page 31
• Relationships on page 32

Retrieving Data from Mobile Business Objects
You can retrieve data from mobile business objects through a variety of queries, including
object queries, arbitrary find, and through filtering query result sets.

Object Queries
To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query names, parameters, and return types
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:
public static com.sybase.collections.GenericList<Customer> findAll()

com.sybase.collections.GenericList<Customer> customers = findAll();

This method retrieves all customers in a certain page:
public static com.sybase.collections.GenericList<Customer>
findAll(int skip, int take)

com.sybase.collections.GenericList<Customer> customers =
Customer.findAll(10, 5);

Suppose the modeler defined the following Object Query for the Customer MBO in Sybase
Unwired Workspace:

• name – findByFirstName
• parameter – String firstName
• query definition – SELECT x.* FROM Customer x WHERE x.fname = :firstName
• return type – Sybase.Collections.GenericList

The preceding Object Query results in this generated method:
public static com.sybase.collections.GenericList<Customer>
findByFirstName(String firstName)

Client Object API Usage

Developer Guide: Android Object API Applications 79

com.sybase.collections.GenericList<Customer> customers =
Customer.findByFirstName("fname");

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 2. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.

SelectItem Defines the entry of a select query. For example,
"select x.attr1 from MBO x", where "X.attr1" rep-
resents one SelectItem.

Column Used in a subquery to reference the outer query's
attribute.

In addition queries support select, where, and join statements.

Arbitrary Find
The arbitrary find method lets custom device applications dynamically build queries based on
user input. The Query.DISTINCT property lets you exclude duplicate entries from the
result set.

The arbitrary find method also lets the user specify a desired ordering of the results and object
state criteria. A Query class is included in the client object API. The Query class is the single
object passed to the arbitrary search methods and consists of search conditions, object/row
state filter conditions, and data ordering information.

Define these conditions by setting properties in a query:

• TestCriteria – criteria used to filter returned data.
• SortCriteria – criteria used to order returned data.
• Skip – an integer specifying how many rows to skip. Used for paging.

Client Object API Usage

80 Sybase Unwired Platform

• Take – an integer specifying the maximum number of rows to return. Used for paging.

Set the Query.Distinct property to true to exclude duplicate entries from the result set.
The default value is false for entity types, and its usage is optional for all other types.

Query query1 = new Query();
query1.setDistinct(true);

TestCriteria can be an AttributeTest or a CompositeTest.

TestCriteria
You can construct a query SQL statement to query data from a local database. You can create a
TestCriteria object (in this example, AttributeTest) to filter results. You can also
query across multiple tables (MBOs) when using the executeQuery API.

Query query2 = new Query();
query2.select("c.fname,c.lname,s.order_date,s.region");
query2.from("Customer", "c");
//
// Convenience method for adding a join to the query
// Detailed construction of the join criteria
query2.join("Sales_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("fname");
ts.setTestValue("Beth");
query2.where(ts);
QueryResultSet qrs = SampleAppDB.executeQuery(query2);

Note: You must use explicit column names in select clauses; you cannot use wildcards.

AttributeTest
An AttributeTest defines a filter condition using an MBO attribute, and supports
multiple conditions.

• IS_NULL
• NOT_NULL
• EQUAL
• NOT_EQUAL
• LIKE
• NOT_LIKE
• LESS_THAN
• LESS_EQUAL
• GREATER_THAN
• GREATER_EQUAL
• CONTAINS
• STARTS_WITH
• ENDS_WITH

Client Object API Usage

Developer Guide: Android Object API Applications 81

• DOES_NOT_START_WITH
• DOES_NOT_END_WITH
• DOES_NOT_CONTAIN
• IN
• NOT_IN
• EXISTS
• NOT_EXISTS

For example, the Java code shown below is equivalent to this SQL query:
SELECT * from A where id in [1,2,3]

Query query = new Query();
AttributeTest test = new AttributeTest();
test.setAttribute("id");
com.sybase.collections.ObjectList v = new
com.sybase.collections.ObjectList();
v.add("1");
v.add("2");
v.add("3");
test.setValue(v);
test.setOperator(AttributeTest.IN);
query.where(test);

When using EXISTS and NOT_EXISTS, the attribute name is not required in the
AttributeTest. The query can reference an attribute value via its alias in the outer scope.
The Java code shown below is equivalent to this SQL query:
SELECT a.id from AllType a where exists (select b.id from AllType b
where b.id = a.id)

Query query = new Query();
query.select("a.id");
query.from("AllType", "a");
AttributeTest test = new AttributeTest();

Query existQuery = new Query();
existQuery.select("b.id");
existQuery.from("AllType", "b");
Column cl = new Column();
cl.setAlias("a");
cl.setAttribute("id");
AttributeTest test1 = new AttributeTest();
test1.setAttribute ("b.id");
test1.setValue(cl);
test1.setOperator(AttributeTest.EQUAL);
existQuery.where(test1);
test.setValue(existQuery);
test.setOperator(AttributeTest.EXISTS);
query.where(test);
QueryResultSet qs = DsTestDB.executeQuery(query);

Client Object API Usage

82 Sybase Unwired Platform

SortCriteria
SortCriteria defines a SortOrder, which contains an attribute name and an order type
(ASCENDING or DESCENDING).

For example,
Query query = new Query();

query.select("c.lname, c.fname");
query.from("Customer", "c");

AttributeTest aTest = new AttributeTest();
aTest.setAttribute("state");
aTest.setTestValue("CA");
aTest.setTestType(AttributeTest.EQUAL);
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("lname", SortOrderType.ASCENDING);
sort.add("fname", SortOrderType.ASCENDING);
query.setSortCriteria(sort);

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an OutOfMemoryException.

Consider using the Query object to limit the result set:
Query props = new Query();
props.setSkip(10);
props.setTake(5);

com.sybase.collections.ObjectList customers =
Customer.findWithQuery(props);

Aggregate Functions
You can use aggregate functions in dynamic queries.

When using the Query.select(String) method, you can use any of these aggregate
functions:

Aggregate Function Supported Datatypes

COUNT integer

MAX string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

MIN string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

Client Object API Usage

Developer Guide: Android Object API Applications 83

Aggregate Function Supported Datatypes

SUM byte, short, int, long, integer, decimal, float, dou-
ble

AVG byte, short, int, long, integer, decimal, float, dou-
ble

If you use an unsupported type, a PersistenceException is thrown.

Query query1 = new Query();
query1.select("MAX(c.id), MIN(c.name) as minName");

For iOS, we need a code sample equivalent to this WM sample:

Grouping Results
Apply grouping criteria to your results.

To group your results according to specific attributes, use the Query.groupBy(String
groupByItem) method. For example, to group your results by ID and name, use:

String groupByItem = ("c.id, c.name");
Query query1 = new Query();

//other code for query1

query1.groupBy(groupByItem);

Filtering Results
Specify test criteria for group queries.

You can specify how your results are filtered by using the
Query.having(com.sybase.persistence.TestCriteria) method for
queries using GroupBy. For example, limit your AllType MBO's results to c.id attribute
values that are greater than or equal to 0 using:
Query query2 = new Query();
query2.select("c.id, SUM(c.id)");
query2.from("AllType", "c");
AttributeTest ts = new AttributeTest();
ts.setAttribute("c.id");
ts.setValue("0");
ts.setOperator(AttributeTest.GREATER_EQUAL);
query2.where(ts);
query2.groupBy("c.id");

AttributeTest ts2 = new AttributeTest();
ts2.setAttribute("c.id");
ts2.setValue("0");
ts2.setOperator(AttributeTest.GREATER_EQUAL);
query2.having(ts2);

Client Object API Usage

84 Sybase Unwired Platform

Concatenating Queries
Concatenate two queries having the same selected items.

The Query class methods for concatenating queries are:

• Union(Query)

• UnionAll(Query)

• Except(Query)

• Intersect(Query)

This example obtains the results from one query except for those results appearing in a second
query:
Query query1 = new Query();
... ... //other code for query1

Query query2 = new Query();
... ... //other code for query 2

Query query3 = query1.except(query2);
SampleAppDB.executeQuery(query3);

Subqueries
Execute subqueries using clauses, selected items, and attribute test values.

You can execute subqueries using the Query.from(Query query, String alias)
method. For example, the Java code shown below is equivalent to this SQL query:
SELECT a.id FROM (SELECT b.id FROM AllType b) AS a WHERE a.id = 1

Use this Java code:

Query query1 = new Query();
query1.select("b.id");
query1.from("AllType", "b");
Query query2 = new Query();
query2.select("a.id");
query2.from(query1, "a");
AttributeTest ts = new AttributeTest();
ts.setAttribute("a.id");
ts.setValue(1);
query2.where(ts);
com.sybase.persistence.QueryResultSet qs =
DsTestDB.executeQuery(query2);

You can use a subquery as the selected item of a query. Use the SelectItem to set selected
items directly. For example, the Java code shown below is equivalent to this SQL query:
SELECT (SELECT count(1) FROM AllType c WHERE c.id >= d.id) AS cn, id
FROM AllType d

Use this Java code:

Query selQuery = new Query();
selQuery.select("count(1)");

Client Object API Usage

Developer Guide: Android Object API Applications 85

selQuery.from("AllType", "c");
AttributeTest ttt = new AttributeTest();
ttt.setAttribute("c.id");
ttt.setOperator(AttributeTest.GREATER_EQUAL);
Column cl = new Column();
cl.setAlias("d");
cl.setAttribute("id");
ttt.setValue(cl);
selQuery.where(ttt);

com.sybase.collections.GenericList<com.sybase.persistence.SelectIte
m> selectItems = new
com.sybase.collections.GenericList<com.sybase.persistence.SelectIte
m>();
SelectItem item = new SelectItem();
item.setQuery(selQuery);
item.setAlias("cn");
selectItems.add(item);
item = new SelectItem();
item.setAttribute("id");
item.setAlias("d");
selectItems.add(item);
Query subQuery2 = new Query();
subQuery2.setSelectItems(selectItems);
subQuery2.from("AllType", "d");
com.sybase.persistence.QueryResultSet qs =
DsTestDB.executeQuery(subQuery2);

CompositeTest
A CompositeTest combines multiple TestCriteria using the logical operators AND,
OR, and NOT to create a compound filter.

Complex Example
This example shows the usage of CompositeTest, SortCriteria, and Query to
locate all customer objects based on particular criteria.

• FirstName = John AND LastName = Doe AND (State = CA OR State = NY)
• Customer is New OR Updated
• Ordered by LastName ASC, FirstName ASC, Credit DESC
• Skip the first 10 and take 5

Query props = new Query();
//define the attribute based conditions
//Users can pass in a string if they know the attribute name. R1
column name = attribute name.
CompositeTest innerCompTest = new CompositeTest();
innerCompTest.setOperator(CompositeTest.OR);
innerCompTest.add(new AttributeTest("state", "CA",
AttributeTest.EQUAL));
innerCompTest.add(new AttributeTest("state", "NY",
AttributeTest.EQUAL));
CompositeTest outerCompTest = new CompositeTest();
outerCompTest.setOperator(CompositeTest.OR);

Client Object API Usage

86 Sybase Unwired Platform

outerCompTest.add(new AttributeTest("fname", "Jane",
AttributeTest.EQUAL));
outerCompTest.add(new AttributeTest("lname", "Doe",
AttributeTest.EQUAL));
outerCompTest.add(innerCompTest);
//define the ordering
SortCriteria sort = new SortCriteria();

sort.add("fname", SortOrder.ASCENDING);
sort.add("lname", SortOrder.ASCENDING);
//set the Query object
props.setTestCriteria(outerCompTest);
props.setSortCriteria(sort);
props.setSkip(10);
props.setTake(5);
com.sybase.collections.GenericList<Customer> customers2 =
Customer.FindWithQuery(props);

QueryResultSet
The QueryResultSet class provides for querying a result set from the dynamic query API.
QueryResultSet is returned as a result of executing a query.

The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a Query, filling in the criteria for the query, and filtering the
query results:
com.sybase.persistence.Query query = new
com.sybase.persistence.Query();
query.select("c.fname,c.lname,s.order_date,s.region");
query.from("Customer ", "c");
query.join("SalesOrder ", "s", " s.cust_id ", "c.id");
AttributeTest at = new AttributeTest();
at.setAttribute("lname");
at.setTestValue("Devlin");
query.setTestCriteria(at);
QueryResultSet qrs = SampleAppDB.executeQuery(query);
while(qrs.next())
{
 System.out.print(qrs.getString(1));
 System.out.print(",");
 System.out.println(qrs.getStringByName("c.fname"));

 System.out.print(qrs.getString(2));
 System.out.print(",");
 System.out.println(qrs.getStringByName("c.lname"));

 System.out.print(qrs.getString(3));
 System.out.print(",");
 System.out.println(qrs.getStringByName("s.order_date"));

 System.out.print(qrs.getString(4));
 System.out.print(",");
 System.out.println(qrs.getStringByName("s.region"));
}

Client Object API Usage

Developer Guide: Android Object API Applications 87

Retrieving Relationship Data
A relationship between two MBOs allows the parent MBO to access the associated MBO. A
bidirectional relationship also allows the child MBO to access the associated parent MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.
Customer customer = Customer.findById (101);
com.sybase.collections.ObjectList orders =
customer.getSalesOrders();

You can also use the Query class to filter the return MBO list data.

Query props = new Query();
// set query parameters
......
com.sybase.collections.ObjectList orders =
customer.getSalesOrdersFilterBy(props);

Persistence APIs
The persistence APIs include operations and object state APIs.

See also
• Manipulating Data on page 33

Operations APIs
Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create non-static
instances of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the client object API, and are not exposed. Any parameters
not mapped to the object’s attributes are left as parameters in the generated object API. The
code examples for create, update, and delete operations are based on the fill from attribute
being set. Different MBO settings affect the operation methods.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In
other situations, where there are multiple instances of create or update operations, methods
such as Save cannot be automatically generated.

Client Object API Usage

88 Sybase Unwired Platform

See also
• Creating, Updating, and Deleting MBOs on page 33

• Other Operations on page 34

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void createDatabase()
public static void deleteDatabase()

Typically, createDatabase does not need to be called since it is called internally when
necessary. An application may use deleteDatabase when the client database contains
corrupted data and needs to be cleared.

Create Operation
The create operation allows the client to create a new record in the local database. To
execute a create operation on an MBO, create a new MBO instance, and set the MBO
attributes, then call the save() or create() operation. To propagate the changes to the
server, call submitPending.

Customer cust = new Customer();
cust.setFname ("supAdmin");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.create();// or cust.save();
cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

Update Operation
The update operation updates a record in the local database on the device. To execute update
operations on an MBO, get an instance of the MBO, set the MBO attributes, then call either the
save() or update() operation. To propagate the changes to the server, call
submitPending.

Customer cust = Customer.findById(101);
cust.setFname("supAdmin");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.save(); // or cust.update();
cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

To update multiple MBOs in a relationship, call submitPending() on the parent MBO, or
call submitPending() on the changed child MBO:

Customer cust = Customer.findById(101);
com.sybase.collections.ObjectList orders = cust.getSalesOrders();

Client Object API Usage

Developer Guide: Android Object API Applications 89

SalesOrder order = (SalesOrder)orders.getByIndex(0);
order.setOrder_date(new java.util.Date());
order.save();
cust.submitPending();

Delete Operation
The delete operation allows the client to delete a new record in the local database. To
execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the delete operation. To propagate the changes to the server, call
submitPending.

Customer cust = Customer.findById(101);
cust.delete();

For MBOs in a relationship, perform a delete as follows:
 Customer cust = Customer.findById(101);
 com.sybase.collections.ObjectList orders =
cust.getSalesOrders();
 SalesOrder order = (SalesOrder)orders.getByIndex(0);
 order.delete();
 cust.submitPending();
<PkgName>DB.synchronize();
// or <PkgName>DB.synchronize (String synchronizationGroup)

Save Operation
The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the update operation. If a record does not exist, the save operation
creates a new record.

//Update an existing customer
Customer cust = Customer.findById(101);
cust.save();

//Insert a new customer
Customer cust = new Customer();
cust.save();

Other Operation
Operations other than create, update, or delete operations are called "other"
operations. An Other operation class is generated for each operation in the MBO that is not a
create, update, or delete operation.

Suppose the Customer MBO has an Other operation "other", with parameters "P1" (string),
"P2" (int), and "P3" (date). This results in a CustomerOtherOperation class being
generated, with "P1", "P2", and "P3" as its attributes.

To invoke the Other operation, create an instance of CustomerOtherOperation, and set
the correct operation parameters for its attributes. For example:
CustomerOtherOperation other = new CustomerOtherOperation();
other.setP1("somevalue");

Client Object API Usage

90 Sybase Unwired Platform

other.setP2(2);
other.setP3(new Date());
other.save();
other.submitPending();
<PkgName>DB.synchronize(); // or <PkgName>DB.synchronize (String
synchronizationGroup)

Pending Operation
You can manage the pending state.
• cancelPending – cancels the previous create, update, or delete operations on the

MBO. It cannot cancel submitted operations.
• submitPending – submits the operation so that it can be replayed on the Unwired Server.

A request is sent to the Unwired Server during a synchronization.
• submitPendingOperations – submits all the pending records for the entity to the

Unwired Server. This method internally invokes the submitPending method on each
of the pending records.

• cancelPendingOperations – cancels all the pending records for the entity. This method
internally invokes the cancelPending method on each of the pending records.

Customer customer = Customer.findById(101);
if (errorHappened) {
 customer.cancelPending();
}
else {
 customer.submitPending();
}

You can group multiple operations into a single transaction for improved performance:
// load the customer MBO with customer ID 100
Customer customer = Customer.findByPrimaryKey(100);

// Change phone number of that customer
customer.setPhone("8005551212");

// use one transaction to do save and submitPending
com.sybase.persistence.LocalTransaction tx =
MyPackageDB.beginTransaction();
try
{
 customer.save();
 customer.submitPending();
 tx.commit();
}
catch (Exception e)
{
 tx.rollback();
}

Complex Attribute Types
Some back-end datasources require complex types to be passed in as input parameters. The
input parameters can be any of the allowed attribute types, including primitive lists, objects,

Client Object API Usage

Developer Guide: Android Object API Applications 91

and object lists. The MBO examples have attributes that are primitive types (such as int,
long, or string), and make use of the basic database operations (create, update, and
delete).

Passing Structures to Operations
An Unwired WorkSpace project includes an example MBO that is bound to a Web service data
source that includes a create operation that takes a structure as an operation parameter.
MBOs differ depending on the data source, configuration, and so on, but the principles are
similar.

The SimpleCaseList MBO contains a create operation that has a number of parameters,
including one named _HEADER_ that is a structure datatype named
AuthenticationInfo, defined as:

AuthenticationInfo
 userName: String
 password: String
 authentication: String
 locale: String
 timeZone: String

Structures are implemented as classes, so the parameter _HEADER_ is an instance of the
AuthenticationInfo class. The generated code for the create operation is:

public void create(complex.AuthenticationInfo
HEADER,java.lang.String escalated,java.lang.String
hotlist,java.lang.String orig_Submitter,java.lang.String
pending,java.lang.String workLog)

This example demonstrates how to initialize the AuthenticationInfo class instance
and pass it, along with the other operation parameters, to the create operation:

AuthenticationInfo authen = new AuthenticationInfo();
 authen.setUserName("Demo");
 authen.setPassword("");
 authen.setAuthentication("");
 authen.setLocale("EN_US");
 authen.setTimeZone("GMT");

 SimpleCaseList newCase = new SimpleCaseList();
 newCase.setCase_Type("Incident");
 newCase.setCategory("Networking");
 newCase.setDepartment("Marketing");
 newCase.setDescription("A new help desk case.");
 newCase.setItem("Configuration");
 newCase.setOffice("#3 Sybase Drive");
 newCase.setSubmitted_By("Demo");
 newCase.setPhone_Number("#0861023242526");
 newCase.setPriority("High");
 newCase.setRegion("USA");
 newCase.setRequest_Urgency("High");
 newCase.setRequester_Login_Name("Demo");
 newCase.setRequester_Name("Demo");
 newCase.setSite("25 Bay St, Mountain View, CA");

Client Object API Usage

92 Sybase Unwired Platform

 newCase.setSource("Requester");
 newCase.setStatus("Assigned");
 newCase.setSummary("MarkHellous was here Fix it.");
 newCase.setType("Access to Files/Drives");
 newCase.setCreate_Time(new
 java.sql.Timestamp(System.currentTimeMillis()));

 newCase.create(authen, "Other", "Other", "Demo", "false",
"worklog");
 newCase.submitPending();

Object State APIs
The object state APIs provide methods for returning information about the state of an entity in
an application.

Entity State Management
The object state APIs provide methods for returning information about entities in the
database.

All entities that support pending state have the following attributes:

Name Type Description

isNew boolean Returns true if this entity is new, but has not yet been
created in the client database.

isCreated boolean Returns true if this entity has been newly created in the
client database, and one of the following is true:

• The entity has not yet been submitted to the server
with a replay request.

• The entity has been submitted to the server, but the
server has not finished processing the request.

• The server rejected the replay request (replay-
Failure message received).

isDirty boolean Returns true if this entity has been changed in memory,
but the change has not yet been saved to the client
database.

isDeleted boolean Returns true if this entity was loaded from the database
and subsequently deleted.

Client Object API Usage

Developer Guide: Android Object API Applications 93

Name Type Description

isUpdated boolean Returns true if this entity has been updated or changed
in the database, and one of the following is true:

• The entity has not yet been submitted to the server
with a replay request.

• The entity has been submitted to the server, but the
server has not finished processing the request.

• The server rejected the replay request (replay-
Failure message received).

pending boolean Returns true for any row that represents a pending
create, update, or delete operation, or a row

that has cascading children with a pending operation.

pendingChange char If pending is true, this attribute's value is 'C' (create),
'U' (update), 'D' (delete), or 'P' (to indicate that this
MBO is a parent in a cascading relationship for one or
more pending child objects, but this MBO itself has no
pending create, update or delete operations). If pend-
ing is false, this attribute's value is 'N'.

replayCounter long Returns a long value that is updated each time a row

is created or modified by the client. This value is a
unique value obtained from KeyGenera-
tor.generateID method. Note that the value

increases every time it is retrieved.

replayPending long Returns a long value. When a pending row is sub-

mitted to the server, the value of replayCounter
is copied to replayPending. This allows the cli-

ent code to detect if a row has been changed since it was
submitted to the server (that is, if the value of re-
playCounter is greater than replayPend-
ing).

replayFailure long Returns a long value. When the server responds with

a replayFailure message for a row that was

submitted to the server, the value of replay-
Counter is copied to replayFailure, and

replayPending is set to 0.

Client Object API Usage

94 Sybase Unwired Platform

Entity State Example
Shows how the values of the entities that support pending state change at different stages
during the MBO update process. The values that change between different states appear in
bold.

Note these entity behaviors:

• The isDirty flag is set if the entity changes in memory but is not yet written to the
database. Once you save the MBO, this flag clears.

• The replayCounter value that gets sent to the Unwired Server is the value in the
database before you call submitPending. After a successful replay, that value is
imported from the Unwired Server.

• The last two entries in the table are two possible results from the operation; only one of
these results can occur for a replay request.

Description Flags/Values

After reading from the database, before any changes
are made.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Client Object API Usage

Developer Guide: Android Object API Applications 95

Description Flags/Values

One or more attributes are changed, but changes not
saved.

isNew=false

isCreated=false

isDirty=true

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

After entity.save()[entity save]
or entity.update()[entity up-
date] is called.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424979

replayPending=0

replayFailure=0

Client Object API Usage

96 Sybase Unwired Platform

Description Flags/Values

After entity.submitPending()[en-
tity submitPending] is called to submit

the MBO to the server.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=33424981

replayFailure=0

Possible result: the Unwired Server accepts the up-
date, sends an import and a replayResult for

the entity, and then refreshes the entity from the
database.

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=false

pending=false

pendingChange='N'

replayCounter=33422977

replayPending=0

replayFailure=0

Client Object API Usage

Developer Guide: Android Object API Applications 97

Description Flags/Values

Possible result: The Unwired Server rejects the up-
date, sends a replayFailure for the entity,

and refreshes the entity from the database

isNew=false

isCreated=false

isDirty=false

isDeleted=false

isUpdated=true

pending=true

pendingChange='U'

replayCounter=33424981

replayPending=0

replayFailure=33424981

Mobile Business Object States
A mobile business object can be in one of three states.

• Original state – the state before any CUD operation.
• Downloaded state – the state downloaded from the Unwired Server.
• Current state – the state after any CUD operation.

The mobile business object class provides properties for querying the original state and the
downloaded state:
public Customer getOriginalState();
public Customer getDownloadState();

Customer cust = Customer.findById(101); // state 1
cust.setFname("firstName");
cust.setCompany_name("Sybase");
cust.setPhone("777-8888");
cust.save(); // state 2
Customer org = cust.getOriginalState(); // state 1
//suppose there is new download for Customer 101 here
Customer download = cust.getDownloadState(); // state 3
cust.cancelPending(); // state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

For example:
Customer cust = Customer.findById(101);
cust.setFname("newName");
cust.refresh();// newName is discarded

Client Object API Usage

98 Sybase Unwired Platform

MetaData and Object Manager API
The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API
Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations, and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the –md code generation option. You can use the –rm
option to generate the object manager class. You can also generate metadata classes by
selecting the option Generate metadata classes or Generate metadata and object manager
classes option in the code generation wizard in the mobile application project.

ObjectManager
The ObjectManager class allows an application to call the Object API in a reflection style.
The Object Manager is useful for platforms without native reflection support (such as J2ME).
As the Android platform provides its own reflection API, it is recommended to use platform
native reflection API instead.

Customer object = Customer.findById(123);
ObjectManager rm = new <PkgName>DB_RM();
ClassMetaData customer =
<PkgName>DB.getMetaData().getClass("Customer");
AttributeMetaData lname = customer.getAttribute("lname");
OperationMetaData save = customer.getOperation("save");
Object myMBO = rm.newObject(customer);
rm.setValue(myMBO, lname, "Steve");
rm.invoke(object, save, new ObjectList());

DatabaseMetaData
The DatabaseMetaData class holds package-level metadata. You can use it to retrieve
data such as synchronization groups, the default database file, and MBO metadata.

Any entity for which "allow dynamic queries" is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.
DatabaseMetaData dmd = <PkgName>DB.getMetaData();
com.sybase.collections.StringList syncGroups =

Client Object API Usage

Developer Guide: Android Object API Applications 99

dmd.getSynchronizationGroups();
for(int i=0; i<syncGroups.size(); i++)
{
String syncGroup = syncGroups.item(i);
System.out.println(syncGroup);
}

ClassMetaData
The ClassMetaData class holds metadata for the MBO, including attributes and
operations.

AttributeMetaData lname = customerMetaData.getAttribute("lname");
OperationMetaData save = customerMetaData.getOperation("save");
...

AttributeMetaData
The AttributeMetaData class holds metadata for an attribute such as attribute name,
column name, type, and maxlength.

System.out.println(lname.getName());
System.out.println(lname.getColumn());
System.out.println(lname.getMaxLength());

Exceptions
Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the Unwired
Server throws an exception.

A server-side exception results in a stack trace in the server log, and a log record
(LogRecordImpl) imported to the client with information on the problem.

HTTP Error Codes
Unwired Server examines the EIS code received in a server response message and maps it to a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

Client Object API Usage

100 Sybase Unwired Platform

These tables list recoverable and unrecoverable error codes. All error codes that are not
explicitly considered recoverable are considered unrecoverable.

Table 3. Recoverable Error Codes

Error Code Probable Cause

409 Backend EIS is deadlocked.

503 Backend EIS is down, or the connection is terminated.

Table 4. Unrecoverable Error Codes

Error Code Probable Cause Manual Recovery Action

401 Backend EIS credentials wrong. Change the connection information, or
backend user password.

403 User authorization failed on Un-
wired Server due to role con-
straints (applicable only for
MBS).

N/A

404 Resource (table/Web service/BA-
PI) not found on backend EIS.

Restore the EIS configuration.

405 Invalid license for the client (ap-
plicable only for MBS).

N/A

412 Backend EIS threw a constraint
exception.

Delete the conflicting entry in the EIS.

500 Sybase Unwired Platform internal
error in modifying the CDB
cache.

N/A

Error code 401 is not treated as a simple recoverable error. If the
SupThrowCredentialRequestOn401Error context variable is set to true (the
default), error code 401 throws a CredentialRequestException, which sends a
credential request notification to the user's inbox. You can change this behavior by modifying
the value of the SupThrowCredentialRequestOn401Error context variable in
Sybase Control Center. If SupThrowCredentialRequestOn401Error is set to false,
error code 401 is treated as a normal recoverable exception.

Client Object API Usage

Developer Guide: Android Object API Applications 101

Mapping of EIS Codes to Logical HTTP Error Codes
A list of SAP® error codes mapped to HTTP error codes. By default, SAP error codes that are
not listed map to HTTP error code 500.

Table 5. Mapping of SAP Error Codes to HTTP Error Codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net-
work problems, such as
connection breakdowns,
gateway problems, or un-
availability of the remote
SAP system.

503

JCO_ERROR_LOGON_FAILURE Authorization failures dur-
ing login. Usually caused
by unknown user name,
wrong password, or invalid
certificates.

401

JCO_ERROR_RESOURCE Indicates that JCO has run
out of resources such as
connections in a connec-
tion pool.

503

JCO_ERROR_STATE_BUSY The remote SAP system is
busy. Try again later.

503

Client-Side Exceptions
Device applications are responsible for catching and handling exceptions thrown by the client
object API.

Note: See Callback Handlers.

Exception Classes
The Client Object API supports exception classes for queries and for the messaging client.

• SynchronizeException – thrown when an error occurs during synchronization.
• PersistenceException – thrown when trying to access the local database.
• ObjectNotFoundException – thrown when trying to load an MBO that is not inside the

local database.
• NoSuchOperationException – thrown when trying to call a method (using the Object

Manager API) but the method is not defined for the MBO.
• NoSuchAttributeException – thrown when trying to access an attribute (using the Object

Manager API) but the attribute is not defined for the MBO.

Client Object API Usage

102 Sybase Unwired Platform

• ApplicationRuntimeException – thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error.

• ConnectionPropertyException – thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error in a
connection property value or application identifier.

Client Object API Usage

Developer Guide: Android Object API Applications 103

Client Object API Usage

104 Sybase Unwired Platform

Index
A

ADT plug-in 6
Android SDK 6
application registration 17
arbitrary find method 80, 81, 83, 86
AttributeMetaData 100
AttributeTest 81, 86
AttributeTest condition 80
authentication

offline 20
online 20

AVG 83

C

callback handlers 21, 76
CallbackHandler 37
callbacks 20
certificates 7, 51
change notification 27
ClassMetaData 100
client database 89
closeConnection 51
complex attribute type 91
complex type 31
CompositeTest 86
CompositeTest condition 80
concatenate queries 85
connection profile 18, 19
ConnectionProfile 51
COUNT 83
create 33
create operation 89
createDatabase 89

D

data synchronization protocol 3, 4
data vault 68

change password 75
creating 67
deleting 69
exists 68
lock timeout 71

locked 70
locking 69
retrieve string 73
retrieve value 75
retry limit 71, 72
set string 72
set value 74
unlocking 70

database
client 89

database connections
managing 51

DatabaseMetaData 99
DataVault 66
DataVaultException 66
debugging 37, 39
delete 33
delete operation 90
deleteDatabase 89
device database 25
documentation roadmap 4
dynamic query 29, 30

E

EIS error codes 100, 102
encryption key 65
entity states 93, 95
error codes

EIS 100, 102
HTTP 100, 102
mapping of SAP error codes 102
non-recoverable 100
recoverable 100

EXCEPT 85
exceptions

client-side 102
server-side 100

F

filtering results 84
FROM clause 85

Index

Developer Guide: Android Object API Applications 105

G

generated code contents 12
generated code, location 12
group by 84

H

HTTP error codes 100, 102

I

INTERSECT 85

J

Javadoc 1
Javadocs, opening 45
JDK 6
JMSBridge 37

L

listeners 20
LogRecord API 62

M

MAX 83
maxDbConnections 52
MBO 28, 29, 31, 33
MBOLogger 37
messaging protocol 3, 4
MetaData API 99
MIN 83
mobile business object states 98
mobile middleware services 3

N

NoSuchAttributeException 102
NoSuchOperationException 102

O

Object API code
location of generated 12

Object Manager API 99

object query 29, 79
ObjectManager 99
ObjectNotFoundException 102
offlineLogin 54
OnImportSuccess 59
onLineLogin 54
openConnection 51
other operation 90

P
paging data 80, 83
passing structures to operations 91
pending operation 91
pending state 33
personalization keys 58

types 57

Q
Query class 80
Query object 81, 83, 86
QueryResultSet 87

R
Refresh operation 98
relationships 88
replay 22

S
save operation 90
SelectItem 85
setting the database file location on the device 52
setting the databaseFile location 52
signing 43
simulator 6
simultaneous synchronization 59
Skip 86
Skip condition 80
SortCriteria 83, 86
SortCriteria condition 80
status methods 93, 95
structures

passing to operations 91
subqueries 85
subscribe() 59
SUM 83

Index

106 Sybase Unwired Platform

SUPBridge 37
synchronization 25

MBO package 59
of MBOs 59
replication-based 59
simultaneous 59

synchronization group 27
synchronization parameters 28
synchronization profile 19
SynchronizationProfile 53, 54
SynchronizeException 102

T
TestCriteria 86
TestCriteria condition 80

U
UltraLite 25

UNION 85
UNION_ALL 85
update 33
update operation 89

V

virtual devices 6

X

X.509 certificates 7
Xcode 11

Index

Developer Guide: Android Object API Applications 107

Index

108 Sybase Unwired Platform

	Developer Guide: Android Object API Applications
	Contents
	Getting Started with Android Development
	Object API Applications
	Best Uses for Object API Applications
	Cache Synchronization
	Client Runtime Architecture
	Mobile Channel Interfaces
	Mobile Middleware Services
	Data Services

	Documentation Roadmap for Unwired Platform

	Development Task Flow for Native Applications
	Installing the Android Development Environment
	Installing the Android SDK and ADT Plug-in
	Installing X.509 Certificates on Android Devices and Emulators

	Creating a Project
	Creating a Project in Unwired WorkSpace
	Importing Libraries and Code

	Generating Java Object API Code
	Generated Code Location and Contents
	Validating Generated Code

	Customizing the Application Using the Object API
	Initializing an Application
	Initially Starting an Application
	Setting up Application Properties
	Registering an Application
	Setting Up the Connection Profile
	Setting Up Connectivity
	Synchronization Profile

	Creating and Deleting a Device's Local Database
	Logging In
	Turn Off API Logger
	Setting Up Callbacks and Listeners
	Setting Up Callback Handlers
	Create a Custom Callback Handler

	Asynchronous Operation Replay
	Synchronize Status Listener

	Connecting to the Device Database
	Synchronizing
	Configuring Data Synchronization Using SSL Encryption
	Nonblocking Synchronization
	Enabling Change Notifications

	Specifying Personalization Parameters
	Specifying Synchronization Parameters

	Subsequently Starting an Application

	Accessing MBO Data
	Object Queries
	Dynamic Queries
	MBOs with Complex Types
	Relationships

	Manipulating Data
	Creating, Updating, and Deleting MBOs
	Other Operations
	Using SubmitPending and SubmitPendingOperations
	Database Classes
	Generated MBOs

	Shutting Down the Application
	Closing Connections

	Uninstalling the Application
	Deleting the Database and Unregistering the Application

	Testing Applications
	Testing an Application Using a Emulator
	Client-Side Debugging
	Server-Side Debugging

	Localizing Applications
	Packaging Applications
	Signing

	Client Object API Usage
	Client Object API Reference
	Application APIs
	getInstance
	setApplicationIdentifier
	getRegistrationStatus
	registerApplication
	setApplicationCallback
	getApplicationContext
	setApplicationContext
	startConnection
	startConnection (int timeout)
	getConnectionStatus

	Connection APIs
	ConnectionProfile
	Managing Device Database Connections
	Improving Device Application Performance with One Writer Thread and Multiple Database Access Threads

	Set Database File Property

	Synchronization Profile
	Connect the Data Synchronization Channel Through a Relay Server

	Authentication APIs
	Logging In
	Sample Code
	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate into the Data Vault
	Selecting a Certificate for Unwired Server Connections
	Connecting to Unwired Server with a Certificate

	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization
	Push Synchronization Applications
	Retrieving Information about Synchronization Groups

	Log Record APIs
	LogRecord API
	Logging APIs

	Change Log API
	enableChangeLog
	getChangeLogs
	deleteChangeLogs
	disableChangeLog
	Code Samples

	Security APIs
	Encrypt the Database
	End to End Encryption and Compression Support APIs
	DataVault
	createVault
	vaultExists
	getVault
	deleteVault
	lock
	isLocked
	unlock
	setLockTimeout
	getLockTimeout
	setRetryLimit
	getRetryLimit
	setString
	getString
	setValue
	getValue
	changePassword

	Callback and Listener APIs
	Callback Handlers
	SyncStatusListener API

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Queries
	Query and Related Classes
	Arbitrary Find
	TestCriteria
	AttributeTest
	SortCriteria
	Paging Data

	Aggregate Functions
	Grouping Results
	Filtering Results

	Concatenating Queries
	Subqueries
	CompositeTest
	Complex Example
	QueryResultSet

	Retrieving Relationship Data

	Persistence APIs
	Operations APIs
	Client Database APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Pending Operation
	Complex Attribute Types

	Object State APIs
	Entity State Management
	Entity State Example

	Mobile Business Object States
	Refresh Operation

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	ClassMetaData
	AttributeMetaData

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	Index

