SYBASE

Cmpy

Developer Guide: Android Object API
Applications

Sybase Unwired Platform 2.1
ESD #1

DOCUMENT ID: DC01726-01-0211-01

LAST REVISED: December 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Getting Started with Android Development........................ 1
Object API ApplicationSccoevveiiiieeirieicie e 1
Best Uses for Object API Applications............ccccceeeeeeeenn. 2

Cache Synchronizationcccccevvvieeviieiiiiceee. 2
Client Runtime Architectureccccceevveeeviiinnnnnnn. 3
Documentation Roadmap for Unwired Platform............. 4

Development Task Flow for Native Applications................. 5

Installing the Android Development Environment........... 6
Installing the Android SDK and ADT Plug-in.......... 6
Installing X.509 Certificates on Android Devices

and EmMulatorsoooovviiiiinieeeeeeeen 7

Creating @ ProjecCtcuvviiiiii e 8
Creating a Project in Unwired WorkSpace............. 8
Importing Libraries and Code...............ccovvvveieens 11

Generating Java Object APl Codeccoooevvvveiiiiinnnnnn. 11
Generated Code Location and Contents............. 12
Validating Generated Codecccovvvvvviieieenennn. 12

Customizing the Application Using the Object API 15

Initializing an Application ... 15
Initially Starting an Applicationcccccceeeeeennn.. 15
Subsequently Starting an Application................... 29

Accessing MBO Dataccoovvvviveeiiiiiiiiiiiiie e 29
ODbject QUETIEScooieeiieeeee e 30
Dynamic QUENEScovveeeeieiiiiii e e e 30
MBOs with Complex Typescccvvvvvvvvveviinnnnns 31
Relationshipscvviiiiiiiic e, 32

Manipulating Dataeuveviiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee 33
Creating, Updating, and Deleting MBOs.............. 33
Other Operationsccooveeeeeeeeeiieieeeeeeeeeie 34
Using SubmitPending and

SubmitPendingOperations...............cccoeeeeeeeenn. 35

Developer Guide: Android Object APl Applications iii

Contents

Shutting Down the Applicationeeevveeeieeiiiennnns 36
Closing ConNECLiONScccvvvvviviiiieiee e, 36
Uninstalling the Applicationcccccviiiiiiiiiiiiiiieeeeen. 36
Deleting the Database and Unregistering the
APPIICALION ... 36
Testing APPHICAtIONSuuuiiiiiiiiiiiiiieeee e 37
Testing an Application Using a Emulator 37
Client-Side Debuggingccccvvvvriiiiiiiieeeeeeeecee e 37
Server-Side Debuggingcoovvviiiiiiiiiiiiiiee e 39
Localizing Applicationscoooeiiiiiiiiiiiiieeeee e 41
Packaging Applicationscccoeiiviiiiiiiiiiieece e 43
I (o [11 o P 43
Client Object AP USAQecoooviiiiiiiieeiiie e, 45
Client Object APl Referenceccccccceeiviieiiiieiicceneeen, 45
APPIICAtioN APIS ... 45
JEUNSIANCEceviciii e 45
setApplicationldentifiercccccccieeiies 46
getRegistrationStatuscccvevieeeiiiiii e, 46
registerAppliCation ... a7
setApplicationCallbackcccceevviviiiciinneeeen. 48
getApplicationContextcccceeeeeiieieiiieeeeeeeeeeen 48
setApplicationContextcccevvvviiieeeeeeeniieeenn, 49
StartCoNNECHIONvveiiiii e 49
startConnection (int timeout)ccccceeeevevnnnnn. 49
getConnectionStatusSoovvevveiiieeieiiiee e 50
(@0] 8] g [=Tox 10T g I AN o] £ 51
ConnectionProfileccooovviiiiiiiiiie e, 51
Set Database File Propertyccccoeveevviineeeennnn. 52
Synchronization Profile ... 53
Connect the Data Synchronization Channel
Through a Relay Server..........ccccoviiine 54
Authentication APISuuuuiiiiiiiiiieeeeeeeeeeeei 54
LOQQING IN .o 54
Sample Codeoovvviiiiiiiieeeeee e, 55

iv Sybase Unwired Platform

Contents

Single Sign-On With X.509 Certificate Related

ODJECt APl . 56
Personalization APISccooooiiiiiiiiiiiiiieee e 57
Type of Personalization Keys..........ccccoeevvevvvnnnnnnn. 57
Getting and Setting Personalization Key Values
... 58
Synchronization APIS ... 58
Changing Synchronization Parameters............... 59
Performing Mobile Business Object
Synchronizationcccovvvveiiiiiiiie e, 59
Push Synchronization Applications....................... 60
Retrieving Information about Synchronization
GIOUPS .t 61
LOog ReCOrd APIS ..o 61
LOGRECOIrd AP ... 62
LOgQING APIS ..o 62
Change LOg AP ... 62
enableChangelLogccccvvvvvviiiiiiiiiiii e, 63
0etChangelogscovvvvvvieeeieiiiiie 63
deleteChangeLogscccoeveeeieeeeiiieeeeeeecee e, 63
disableChangeLogccooeeiiiiiiie 64
Code SamPIEScoviiiiiiiece e 64
Security APIS ... 65
Encrypt the Databaseccccccoeeeeviviiiiiiiieeeeeens 65
End to End Encryption and Compression
SUPPOIT APIS .o 66
DataVault..........ooouiiiiiiii e 66
Callback and Listener APIS ..o 76
Callback Handlersuuvieiiiniieieiiieeeeeiiiiinn 76
QUETY APIS e 78
Retrieving Data from Mobile Business Objects ... 79
Retrieving Relationship Data...............cccevveeeens 88
Persistence APIS ... 88
Operations APISooovvviiiiiiiiiee e 88
Object State APIScoooiiiiiiiiieeeee 93

Developer Guide: Android Object APl Applications v

Contents

MetaData and Object Manager APlccccccvvvivinnnnn. 99
MetaData and Object Manager API 99
ObjectManagercoooeeeeeeiiiiieeeees 99
DatabaseMetaDataccccceeuummmmiiniiiiiiiiiiiininnns 99
ClassMetaDatacccevvvvviieeeiieeiiiiiiee e 100
AttributeMetaDataeeeiiiiiiiiiieeeeeeeeeeeeeeee, 100

EXCEPLIONS ... 100
Handling EXceptionsc.ocoovvviiiieeeiiiiiieeeeeen, 100
Exception ClasSesccooovviiiiieieiiiiiiiiiiieiiiiiie 102

10 = PRSPPI 105

Vi Sybase Unwired Platform

Getting Started with Android Development

Getting Started with Android Development

Use advanced Sybase® Unwired Platform features to create applications for Android devices.
The audience is advanced developers who may be new to Sybase Unwired Platform.

This guide describes requirements for developing a device application for the platform, how to
generate application code, and how to customize the generated code using the Client Object
API. Also included are task flows for the development options, procedures for setting up the
development environment, and Client Object APl documentation.

Companion guides include:

o Sybase Unwired WorkSpace — Mobile Business Object Development

e Troubleshooting for Sybase Unwired Platform.

* A complete Client Object API reference is available in the Unwired Platform installation
directory<Unwi r edPl at f orm_| nst al | Di r >\ Mobi | eSDK\ Cbj ect API
\ api doc.

e Fundamentals contains high-level mobile computing concepts, and a description of how
Sybase Unwired Platform implements the concepts in your enterprise.

Object API Applications

Object API applications are customized, full-featured mobile applications that use mobile
business objects (MBOSs) to facilitate connection with a variety of enterprise systems and
leverage synchronization to support offline capabilities.

The Object API application model enables developers to write custom code — C#, Java, or
Obijective-C, depending on the target device platform — to create device applications.

Development of Object API applications provides the most flexibility in terms of leveraging
platform specific services, but each application must be provisioned individually after being
compiled, even for minor changes or updates.

Development involves both server-side (MBO development) and client-side (native
application) components. Unwired Server brokers data synchronization and transaction
processing between the server and the client components.

« Server-side components address the interaction between the enterprise information
system (EIS) data source and the data cache. EIS data subsets and business logic are
encapsulated in artifacts, called mobile business objects, that are packaged and deployed
to Unwired Server.

» Client-side components are built into the mobile application and address the interaction
between the data cache and the mobile device data store. This can include synchronizing
data with server, offline data access capabilities, data change notification.

Developer Guide: Android Object APl Applications 1

Getting Started with Android Development

These applications:

« Allow users to connect to data from a variety of EIS systems, including SAP® systems.
« Build in more complex data handling and logic.

» Leverage data synchronization to optimize and balance device response time and need for
real-time data.

« Ensure secure and reliable transport of data.

Best Uses for Object APl Applications

Synchronization applications provide operation replay between the mobile device, the
middleware, and the back-end system. Custom native applications are designed and built to
suit specific business scenarios from the ground up, or start with a bespoke application and be
adapted with a large degree of customization.

Cache Synchronization

Cache synchronization allows mapping mobile data to SAP Remote Function Calls (RFCs)
using Java Connector (JCO) and to other non-SAP data sources such as databases and Web
services. When Sybase Unwired Platform is used in a stand-alone manner for data
synchronization (without Data Orchestation Engine), it utilizes an efficient bulk transfer and
data insertion technology between the middleware cache and the device database.

In an Unwired Platform standalone deployment, the mobile application is designed such that
the developer specifies how to load data from the back end into the cache and then filters and
downloads cache data using device-supplied parameters. The mobile content model and the
mapping to the back end are directly integrated.

This style of coupling between device and back-end queries implies that the back end must be
able to respond to requests from the middleware based on user-supplied parameters and serve
up mobile data appropriately. Normally, some mabile-specific adaptation is required within
SAP Business Application Programming Interfaces (BAPI). Because of the direct nature of
application parameter mapping and RBS protocol efficiencies, Sybase Unwired Platform
cache synchronization deployment is ideal:

« With large payloads to devices (may be due to mostly disconnected scenarios)
* Where ad hoc data downloads might be expected
» For SAP® or non-SAP back ends

Large payloads, for example, can occur in task worker (service) applications that must access
large product catalogs, or where service occurs in remote locations and workers might
synchronize once a day. While Sybase Unwired Platform synchronization does benefit from
middleware caching, direct coupling requires the back end to support an adaptation where
mobile user data can be determined.

2 Sybase Unwired Platform

Getting Started with Android Development

Client Runtime Architecture

The goal of synchronization is to keep views (that is, the state) of data consistent among
multiple tiers. The assumption is that if data changes on one tier (for example, the enterprise
system of record), all other tiers interested in that data (mobile devices, intermediate staging
areas/caches and so on) are eventually synchronized to have the same data/state on that
system.

The Unwired Server synchronizes data between the device and the back-end by maintaining
records of device synchronization activity in its cache database along with any cached data
that may have been retrieved from the back-end or pushed from the device. The Unwired
Server employs several components in the synchronization chain.

Mobile Channel Interfaces
Mobile channel interfaces provide a conduit for transporting data to and from remote devices.
Two main channel interfaces provide messaging and replication.

» The messaging channel serves as the abstraction to all device-side notifications
(BlackBerry Enterprise Service, Apple Push Notification Service, and others) so that
when changes to back-end data occur, devices can be notified of changes relevant for their
application and configuration. This channel also enables data synchronization on iOS.
The messaging channel sends these types of notifications:

» Change notifications - when Unwired Server detects changes in the back-end EIS,
Unwired Server can send a notification to the device. By default, sending change
notifications is disabled, but you can enable sending change notifications per
synchronization group.

To capture change notifications, you can register an onSynchronize callback. The
synchronization content in the callback has a status you can retrieve.

* When synchronizing, operation replay records are sent to the Unwired Server and the
messaging channel sends a notification of r epl ayFi ni shed. The application must
call another synchronize method to retrieve the result.

» The synchronization channel sends data to keep the Unwired Server and client
synchronized. The synchronization is bi-directional.

Mobile Middleware Services

Mobile middleware services (MMS) arbitrate and manage communications between device
requests from the mobile channel interfaces in the form that is suitable for transformation to a
common MBO service request and a canonical form of enterprise data supplied by the data
services.

Developer Guide: Android Object APl Applications 3

Getting Started with Android Development

Data Services

Data services is the conduit to enterprise data and operations within the firewall or hosted in
the cloud. Data services and mobile middleware services together manage the cache database
(CDB) where data is cached as it is synchronized with client devices.

Once a mobile application model is designed, it can be deployed to the Unwired Server where
it operates as part of a specialized container-managed package interfacing with the mobile
middleware services and data services components. Cache data and messages persist in the
databases in the data tier. Changes made on the device are passed to the mobile middleware
services component as an operation replay and replayed against the data services interfaces
with the back-end. Data that changes on the back- end as a result of device changes, or those
originating elsewhere, are replicated to the device database.

Documentation Roadmap for Unwired Platform

Sybase® Unwired Platform documents are available for administrative and mobile
development user roles. Some administrative documents are also used in the development and
test environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on the Sybase Product Documentation Web site.

Check the Sybase Product Documentation Web site regularly for updates: access Attp.//
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

4 Sybase Unwired Platform

http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

Development Task Flow for Native Applications

Development Task Flow for Native
Applications

Describes the overall development task flow for native applications, and provides information
and procedures for setting up the development environment, and developing device
applications.

This diagram illustrates how you can develop a device application directly from mobile
business objects (MBOs), using the Object API and custom device application coding. This is
how you create device applications with sophisticated Ul interaction, validation, business
logic, and performance.

Mobile Application Archetypes

. 1

1

1

) 1

1

1

Application I
Specialization : OPata Farser

1

Core
Application
Services Local Persistence and Cache

Connectivity and Notifications
1

1
Object L HTMLS/JS
API " Hybrid Apps

(]
O
I
—
o

The Object API provides the core application services described in the diagram.
The Authentication APIs provide security by authenticating he client to the Unwired Server.

The Synchronization APIs allow you to synchronize mobile business objects (MBOSs) based
on synchronization parameters, for individual MBOs, or as a group, based on the group's
synchronization policy.

The Application and Connection APIs allow clients to register with and connect to the
Unwired Server. The Callback Handler and Listener APls, and the Target Change Notification
APIs provide notifications to the client on operation success or failure, or changes in data.

1. [Installing the Android Development Environment

Install the Android development environment, and prepare Android devices for
authentication.

Developer Guide: Android Object APl Applications 5

Development Task Flow for Native Applications

2.

Creating a Project
Build a device application project.
Generating Java Object APl Code

Use the Code Generation Utility to generate object API code, which allows you to use
APIs to develop device applications for Android devices.

Customizing the Application Using the Object AP/

Use the Object API to customize the application. An application consists of building
blocks which the developer uses to start the application, perform functions needed for the
application, and shutdown and uninstall the application.

Testing Applications

Test native applications on a device or simulator.

Localizing Applications

Localize an Android application by creating default and alternate resources.

Packaging Applications

Package applications according to your security or application distribution requirements.

Installing the Android Development Environment

Install the Android development environment, and prepare Android devices for
authentication.

1

Installing the Android SDK and ADT Plug-in

Install the Android SDK and Android Development Tools (ADT) plug-in for use with
Sybase Unwired WorkSpace.

Installing X.509 Certificates on Android Devices and Emulators

Install the .p12 certificate on the Android device or emulator for authentication. A
certificate provides an additional level of secure access to an application, and may be
required by an organization's security policy.

See also

Creating a Project on page 8

Installing the Android SDK and ADT Plug-in

Install the Android SDK and Android Development Tools (ADT) plug-in for use with Sybase
Unwired WorkSpace.

1. Confirm your system meets the requirements at /ttp.//developer.android.com/sak/

requirements.html.

Sybase Unwired Platform

http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/requirements.html

Development Task Flow for Native Applications

2. Download and install the SDK starter package from Attp.//developer.android.com/sak/
index.html.

3. Launchthe Android SDK and AVD Manager, select Available Packages, and install the
Android SDK tools, platform, and compatibility package for Android.

4. Install and configure the ADT plug-in within the Sybase Unwired WorkSpace Eclipse
environment using the steps at Attp.//developer.android.com/sdk/eclipse-adt.html.

5. Inthe Android SDK and AVD Manager, select Virtual Devicesand create a virtual
Android device to use as your simulator.

Installing X.509 Certificates on Android Devices and Emulators
Install the .p12 certificate on the Android device or emulator for authentication. A certificate
provides an additional level of secure access to an application, and may be required by an
organization's security policy.

Prerequisites

« Java SE Development Kit (JDK) must be installed.
e The Android SDK must be installed.

Task

1. Connect the Android device to your computer with the USB cable.
2. Toinstall using Eclipse with the ADT plugin:

Note: USB debugging must be enabled.

a) Open the Windows File Explorer view. From the menu bar, navigate to Window >
Show View > Other.

b) In the Show View dialog, expand the Android folder and select File Explorer.

¢) Expand mnt > sdcard and select the sdcard folder.

d) In the top right of the File Explorer view, click Push a file onto the device.

e) In the Put File on Device dialog, select the certificate and click Open.

3. To install using Windows Explorer:

Note: USB debugging must be disabled.

a) Open Windows Explorer

b) Under your computer, click the Android device to expand the folder.
c) Click Device Storage, navigate to and select the certificate.

d) Import the certificate to the Device Storage folder.

4. To install using the Android Debug Bridge (adb):

Note: USB debugging must be enabled. You can enable USB debug mode from the device
menu by selecting Settings > Application > USB Debugging.

Developer Guide: Android Object APl Applications 7

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html

Development Task Flow for Native Applications

a) Open the command line directory to the adb. exe file, for example, C. \ Pr ogr am
Fi | es\ andr oi d- sdk-w ndows\t ool s,or C:\ Program Fi | es
\ andr oi d- sdk- wi ndows\ pl atf ormt ool s

b) Runthe command: adb push %Pat hToCert % MyCert.pl2 /sdcard/
MyCert. pl2

Creating a Project

Build a device application project.

1. Creating a Project in Unwired WorkSpace
Create a project for your Android device application in Sybase Unwired WorkSpace.
2. Importing Libraries and Code

Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

See also
 Installing the Android Development Environment on page 6
e Generating Java Object APl Code on page 11

Creating a Project in Unwired WorkSpace
Create a project for your Android device application in Sybase Unwired WorkSpace.

1. In Sybase Unwired WorkSpace, select File > New > Project.
2. Select Android > Android Project.

8 Sybase Unwired Platform

Development Task Flow for Native Applications

+ i New Project _ O]

Select a wizard

Wizards:

[#-1=- General
== android
[—Ig Android Project
JG android Test Project
F= CIC++
[#-[=- Eclipse Modeling Framework,
[#H-l=F Java
[#-[=- JawaScript
[#-= Plug-in Development
H-[=- Svbase
F-1= Web
H-[=> XL UPC
[#-= Examples

)
'\Ej < Back I Mext = I Finish | Cancel |

3. Inthe New Android Project wizard, enter these values and click Finish:
e Project name: —SUPCl i ent
e Packagename: —com sybase. deno
* Min SDK Version: —8

Developer Guide: Android Object APl Applications 9

Development Task Flow for Native Applications

u 4 New Android Project M=l E3

New Android Project

Creates a new Android Project resource,

Project name: | SUPClient

— Conkents
% Create new project in workspace
" Create project from existing source

v Use default lacation

Lacation: | CifSvbase/UnwiredPlatform/Eclipse/SUPClient Browse, ., |

™ Create project From existing sample

Samples: IApiDemos j
r Build Target
Target Mame | Vendar | PlatFarm | AFT ... |
Android 2.2 Android Open Source Project 2.2 8
. Properties

Application name: | SUPClient

Package name: | com.svbase.demo

¥ Create Ackiviby: |5UPCIient.¢\ctivitv

Min SDK Yersion: | &

—Working sets

[~ add project ba working sets

Wiorking sets: j Select, ., |

@j < Back. | Mext = | Finish I Cancel |

4. Add the following user permissions in Andr oi dMvani f est. xm :

<uses-perm ssi on androi d: nane="andr oi d. per mi ssi on. | NTERNET" ></
uses- per ni ssi on>

<uses- perm ssi on

andr oi d: nane="andr oi d. per mi ssi on. READ_PHONE_STATE" ></ uses-

per m ssi on>

10 Sybase Unwired Platform

Development Task Flow for Native Applications

Importing Libraries and Code

Create a specific directory structure, within your Eclipse project, containing the library
resources needed to compile your Android client code.

1. Inyour Sybase Unwired WorkSpace project, create al i bs directory.

2. Copy the following library and JAR files from <Unwi redPl atform I nstal | Di r >
\ Unwi r edP! at f or M Mobi | eSDK\ Obj ect APl \ Andr oi d into thel i bs
directory within your project, using the exact directory structure shown here:

-1 libs
=I-[= armeahi
sy libmlcrsal2.so
=i libultralitejlz.so
L) cliertLib.jar
!ﬂ sup-client. jar
| SvbaseDataProvider. apk
] UlraliteINT12 jar

3. Select Project > Properties> JavaBuild Path. On the Librariestab, add the libraries to
the project.

Generating Java Object API Code

Use the Code Generation Utility to generate object API code, which allows you to use APIs to
develop device applications for Android devices.

Prerequisites

« Use Unwired WorkSpace to develop and package your mobile business objects. See
Sybase Unwired WorkSpace - Mobile Business Object Development > Develop >
Developing a Mobile Business Object.

« Deploy the package to Unwired Server, creating files required for code generation from
the command line. See Sybase Unwired WorkSpace - Mobile Business Object
Development > Develop > Packaging and Deploying Mobile Business Objects
> Automated Deployment of Unwired WorkSpace Projects

Task

1. Locate <domai n nane>_package. j ar in your mobile project folder. For the
SUP101 example, the project is deployed to the default domain, and the deploy jar file is in
the following location: SUP101\ Depl oynent\ . pkg. profil e
\My_Unwi red_server\default_package.jar.

2. Make sure that the JAR file contains this file:

Developer Guide: Android Object APl Applications 11

Development Task Flow for Native Applications

o deploynent _unit.xm

3. Use a utility to extract the depl oynent _uni t . xn file to another location.

4, From<Unwi r edPl at form I nstal | Di r >\ Mobi | eSDK\ Obj ect API\ Utils
\ bi n, run the codegen. bat utility, specifying the following parameters:
codegen. bat -java -client -android -ulj deploynment_unit.xm [-
out put <output _dir>] [-doc]

e The - out put parameter allows you to specify an output directory. If you omit this
parameter, the output goes into the <Unwi r edPl atform I nstal | Di r >
\ Mobi | eSDK\ Gbj ect API\ Uti | s\ genfil es directory, assuming
codegen.bat is run fromthe <Unwi r edPl at f or m_ | nst al | Di r >\ Mobi | eSDK
\ Obj ect API\ Uti | s\ genfil es directory.

» The- doc parameter specifies that documentation is generated for the generated code.

Ignore these warnings:

| 0g4j : WARN No appenders could be found for |ogger .
| 0og4j : WARN Pl ease initialize the | og4j system properly.

See also
e Creating a Profect on page 8
e Customizing the Application Using the Object AP/ on page 15

Generated Code Location and Contents

By default, generated object API code is stored in the
<Unwi redPl atform Install D r>\Unw redPl at f or Ml Mobi | eSDK

\ Obj ect API\ Uti | s\ genfil es folder after you you generate code .

The contents of the folder is determined by the options you selected from the Generate Code
wizard, and include generated class files that contain:

« MBO - class which handles persistence and operation replay of your MBOs.

« Synchronization parameters — any synchronization parameters for the MBOs.

» Personalization parameters — personalization parameters used by the package.

* Metadata — Metadata class that allow you to query meta data including MBOs, their
attributes, operations, in a persistent table at runtime..

Validating Generated Code

Validation rules are enforced when generating client code for C# and Java. Define prefix
names in the Mobile Business Object Preferences page of the Code Generation wizard to
correct validation errors.

Sybase Unwired WorkSpace validates and enforces identifier rules and checks for keyword
conflicts in generated Java and C# code, for example, by displaying error messages in the
Properties view or in the wizard. Other than the known name conversion rules (converting . to

12

Sybase Unwired Platform

Development Task Flow for Native Applications

removing white space from names, and so on), there is no other language-specific name

conversion. For example, cust_id is not changed to custld.

You can specify the prefix string for mobile business object, attribute, parameter, or operation
names from the Mobile Business Object Preferences page. This allows you to decide what
prefix to use to correct any errors generated from the name validation.

1
2.
3.
4,

Select Window > Preferences.

Expand Sybase, Inc > M obile Development.

Select Mobile Business Object.

Add or modify the Naming Prefix settings as needed.

The defined prefixes are added to the names (object, attribute, operation, and parameter)
whenever these are autogenerated, for example, when you drag and drop a data source onto the
Mobile Application Diagram.

Developer Guide: Android Object APl Applications 13

Development Task Flow for Native Applications

14 Sybase Unwired Platform

Customizing the Application Using the Object API

Customizing the Application Using the Object

API

Use the Object API to customize the application. An application consists of building blocks
which the developer uses to start the application, perform functions needed for the application,
and shutdown and uninstall the application.

See also

Generating Java Object APl Code on page 11
Testing Applications on page 37

Initializing an Application

Initialize the application when it starts the first time and subsequently.

Initially Starting an Application

Starting an application the first time.

Subsequently Starting an Application

Subsequent start-ups are different from the first start-up.

Initially Starting an Application

Starting an application the first time.

Setting up Application Properties

The Application instance contains the information and authentication credentials needed
to register and connect to the Sybase Unwired Platform server.

Registering an Application
Each device must register with the server before establishing a connection.
Setting Up the Connection Profile

The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraLiteJ
runtime tuning values.

Setting Up Connectivity
Store connection information to the Sybase Unwired Server data synchronization channel.
Creating and Deleting a Device's Local Database

There are methods in the generated package database class that allow programmers to
delete or create a device's local database. A device local database is automatically created

Developer Guide: Android Object APl Applications 15

Customizing the Application Using the Object API

when needed by the Object API. The application can also create the database
programatically by calling the createDatabase method. The device's local database should
be deleted when uninstalling the application.

6. Logging In

Use online authentication with the server, and offline authentication with the device.
7. Turn Off API Logger

In production environments, turn off the API logger to improve performance.
8. Setting Up Callbacks and Listeners

When your application starts, it can register database and MBO callback listeners, as well
as synchronization listeners.

9. Connecting to the Device Database
Establish a connection to the database on the device.

10. Synchronizing
Synchronize package data between the device and the server.

11. Specifying Personalization Parameters
Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The
PersonalizationParameters class is within the generated code for your project.

12. Specifying Synchronization Parameters

Use synchronization parameters within the mobile application to download filtered MBO
data.

See also
» Application APIs on page 45
» Connection APIs on page 51

Setting up Application Properties
The Application instance contains the information and authentication credentials needed to
register and connect to the Sybase Unwired Platform server.

The following code illustrates how to set up the minimum required fields:

/] Initialize Application settings
Application app = Application.getlnstance();

/1 The identifier has to match the application I D depl oyed to the SUP
server

app. set Appl i cationldentifier("SUP101");

/1l Set the android.content.Context for the application

app. set Appl i cati onCont ext (context); // context is the

andr oi d. cont ent . Cont ext

/'l ConnectionProperties has the infomation needed to register
/] and connect to SUP server
Connecti onProperties connProps = app. get Connecti onProperties();

16

Sybase Unwired Platform

Customizing the Application Using the Object API

connProps. set Server Name("supser ver. myconpany. coni') ;

connPr ops. set Port Nunber (5001) ;

/1 Other connection properties need to be set when connecting through
rel ay server

/1 provide user credentials

Logi nCredential s | ogi nCred = new Logi nCredenti al s("supAdni n",
"supPwd") ;

connProps. set Logi nCredenti al s(| ogi nCred);

/1 Initialize generated package database class with this Application
i nst ance
SUP101DB. set Appl i cati on(app);

Note: set Appl i cationl dentifier andset Appl i cati onCont ext must be
called in the user interface thread.

See also
» Application APIs on page 45

Registering an Application
Each device must register with the server before establishing a connection.

To register the device with the server during the initial application startup, use the

regi st er Appl i cati on method inthe com sybase. nobi | e. Appl i cati on
class. You do not need to use the r egi st er Appl i cat i on method for subsequent
application startups.To start the connection to complete the registration process, use the
Appl i cation. start Connecti on method.

Call the generated database's set Appl i cat i on method before starting the connection or
registering the device.

The following code shows how to register the application and device.

/Il Initialize Application settings
Application app = Application.getlnstance();

/1 The identifier has to match the
/1 application ID deployed to the SUP server
app. set Appl i cationldentifier("SUP101");
Appl i cationCal | back appCal | back = new ApplicationCal | back();
app. set Appl i cati onCal | back(appCal | back); // optional
app. set Appl i cati onCont ext (myAndr oi dContext); // required
/1 use the android.content. Context for the application

/'l set connection properties, login credentials, etc

/! Register the application

SUP101DB. set Appl i cati on(app) ;

if (app.getRegistrationStatus() != RegistrationStatus. REGQ STERED)

/1 |f the application has not been registered to the server,

Developer Guide: Android Object APl Applications 17

Customizing the Application Using the Object API

/1 register now
app. regi sterApplication(<timeout_val ue>);

el se

/1 start the connection to server
app. st art Connecti on(<ti neout _val ue>);

See also
« Application APIs on page 45

Setting Up the Connection Profile

The Connection Profile stores information detailing where and how the local database is
stored, including location and page size. The connection profile also contains UltraL.iteJ
runtime tuning values.

Set up the connection profile before the first database access, and check if the database exists
by calling the databaseExistsdat abaseExi st s method in the generated package database
class. Any settings you establish after the connection has already been established will not go
into effect.

The generated database class automatically contains all the default settings for the connection
profile. You may add other settings if necessary. For example, you can set the database to be
stored in an SD card or set the encryption key of the database.

Use the com sybase. per si st ence. Connect i onProfi | e class to set up the
locally generated database:

1. Retrieve the connection profile object using the Sybase Unwired Platform database's
get Connecti onPr of i | e method.

2. Use the connection profile object's save method to set the values once when the
application first starts. On subsequent usage of the application, the connection profile will
contain all the settings from the last save call.

/1 Initialize the device database connection profile (if needed)
ConnectionProfile connProfile = SUP101DB. get Connecti onProfile();

[/l Store the database in an SD card

connProfil e.setProperty("databaseFile",

andr oi d. os. Envi ronnent . get Ext ernal St orageDi rectory().getPath() "/
SUP1011_0.ulj");

/'l encrypt the database
connProfile.setEncrypti onKey("encryption key nust be 16 characters
or |longer");

/'l use 100K for cache size
connProfil e. set CacheSi ze(102400) ;

18

Sybase Unwired Platform

Customizing the Application Using the Object API

/] save it
connProfile.save();

You can also automatically generate a encryption key and store it inside a data vault.

See also
e ConnectionProfile on page 51

Setting Up Connectivity
Store connection information to the Sybase Unwired Server data synchronization channel.

See also
e Creating and Deleting a Device's Local Database on page 19

Synchronization Profile

You can set Unwrired Server synchronization channel information by calling the
synchronization profile's setter method. By default, this information includes the server host,
port, domain name, certificate and public key that are pushed by the message channel during
the registration process. Developers do not need to set these parameters manually. When the
client registers and starts the application, the certificate is downloaded to the client, so that the
client can be assigned the trusted certificate.

Set up a secured connection using the Connect i onPr of i | e object.

1. Retrieve the synchronization profile object using the Sybase Unwired Platform database's
get Synchroni zat i oni onPr of i | e method, which returns a
Connecti onPr of i | e object:

ConnectionProfile cp = SUP101DB. get Synchroni zati onProfil e();
2. Set the connection fields in the Connect i onPr of i | e object:

cp. set Server Name(" SUP_Host ") ;
cp. set Port Nunber (2481) ;
cp.get StreanParans().set Trusted_Certificates("rsa_public_cert.crt

)
cp. set Net wor kPr ot ocol ("https");

See also
» Synchronization Profile on page 53

Creating and Deleting a Device's Local Database

There are methods in the generated package database class that allow programmers to delete
or create a device's local database. A device local database is automatically created when
needed by the Object API. The application can also create the database programatically by
calling the cr eat eDat abase method. The device's local database should be deleted when
uninstalling the application.

Developer Guide: Android Object APl Applications 19

Customizing the Application Using the Object API

Check if the locally generated database exists, create the database, or delete the database:

1. Check if an instance of the generated database exists by calling the generated database
instance's dat abaseExi st s method.

2. If an instance of a the generated database does not exist, call the generated database
instance's cr eat eDat abase method.
i f (!SUP101DB. dat abaseExi sts())

SUP101DB. cr eat eDat abase() ;
}

3. Connect to the generated database by calling the generated database instance's
openConnect i on method.

SUP101DB. openConnecti on();

If the database does not already exist, the openConnect i on method creates it.

4. When the local database is no longer needed, delete it by calling the generated database
instance's del et eDat abase method.
SUP101DB. del et eDat abase() ;

See also
» Setting Up Connectivity on page 19

Logging In
Use online authentication with the server, and offline authentication with the device.

1. Normally, the user is authenticated through the r egi st er Appl i cati on and
st art Connect i on methodsinthe Appl i cat i on class. Once this is done there is no
need to authenticate again. However, the user can authenticate directly with the server at
any time during the application's execution by calling the generated database instance's
onl i neLogi n method.

2. Authenticate using the last successful credentials on the device by calling the generated
database instance's of f | i neLogi n method.

Turn Off API Logger
In production environments, turn off the API logger to improve performance.

SUP101DB. get Logger () . set LogLevel (LogLevel . OFF) ;

Setting Up Callbacks and Listeners
When your application starts, it can register database and MBO callback listeners, as well as
synchronization listeners.

Callback handler and listener interfaces are provided so your application can monitor changes
and notifications from Sybase Unwired Platform:

20

Sybase Unwired Platform

Customizing the Application Using the Object API

< Thecom sybase. nobi | e. Appl i cati onCal | back class is used for monitoring
changes to application settings, messaging connection status, and application registration
status.

» Thecom sybase. persi st ence. Cal | backHandl er interface is used to
monitor notifications and changes related to the database. Register callback handlers at the
package level use the r egi st er Cal | backHandl er method in the generated
database class. To register for a particular MBO, use the
regi st er Cal | backHandl er method in the generated MBO class.

e Thecom sybase. persi st ence. SyncSt at usLi st ener class is used for
debugging and performance measures when monitoring stages of a synchronization
session, and can be used in the user interface to indicate synchronization progress.

See also
e Connecting to the Device Database on page 25
e Callback and Listener APIs on page 76

Setting Up Callback Handlers
Use the callback handlers for event notifications.

Usethecom sybase. persi st ence. Cal | backHandl er API for event notifications
including login for synchronization and replay. If you do not register your own
implementation of the com sybase. per si st ence. Cal | backHandl er interface,
the generated code will regsiter a new default callback handler.

1. The generated database class contains a method called
regi st er Cal | backHandl er . Use this method to install your implementation of
Cal | backHandl er.
For example:
SUP101DB. r egi st er Cal | backHand! er (new MyCal | backHandl er ()) ;

2. Each generated MBO class also has the same method to register your implementation of
the Cal | backHandl er for that particular type. For example, if Cust oner is a
generated MBO class, you can use the following code:

Cust oner. regi st er Cal | backHand! er (new
MyCust onmer MBCCal | backHandl er ()) ;

Create a Custom Callback Handler
If an application requires a callback (for example, to allow the client framework to provide
notification of synchronization results) create a custom callback handler,

i mport com sybase. persi stence. Def aul t Cal | backHandl er;
publ ic class Test
public static void main(String[] args)

SUP101DB. r egi st er Cal | backHandl er (new MyCal | backHandl er ());

Developer Guide: Android Object APl Applications 21

Customizing the Application Using the Object API

Generi cLi st <Synchroni zati onG oup> sgs = new
Generi cLi st <Synchroni zati onG oup>();
sgs. add(SUP101DB. get Synchr oni zat i onG oup("sgl"));
sgs. add(SUP101DB. get Synchr oni zat i onG oup("sg2"));
SUP101DB. begi nSynchroni ze(sgs, "my test synchronization
context");

}
}
cl ass MyCal | backHandl er extends Defaul t Cal | backHandl er

{
public int onSynchroni ze(GenericlLi st groups,
Synchroni zati onCont ext cont ext)

if (context == null)

return Synchroni zati onActi on. CANCEL;
}

if ("my test synchronization context".equal s((String)
(context. get User Context())))

i return super.onSynchroni ze(groups, context);
switch (context.getStatus())
{ case Synchroni zati onSt at us. STARTI NG
i f (waitForMreChanges()
¢ return Synchroni zati onActi on. CANCEL;
LI se
E return Synchroni zati onActi on. CONTI NUE;
def aul t:
| return Synchroni zati onActi on. CONTI NUE;

}
}

Asynchronous Operation Replay
Upload operation replay records asynchronously.

When an application calls submi t Pendi ng onan MBO onwhich a create, update, or delete
operation is performed, an operation replay record is created on the device local database.

When synchr oni ze is called, the operation replay records are uploaded to the server. The
method returns without waiting for the backend to replay those records. The synchr oni ze
method downloads all the latest data changes and the results of the previously uploaded
operation replay records that the backend has finished replaying. If you choose to disable

22 Sybase Unwired Platform

Customizing the Application Using the Object API

asynchronous operation replay, each synchr oni ze call will wait for the backend to finish
replaying all the current uploaded operation replay records.

This feature is enabled by default. You can enable or disable the feature by setting the
asyncRepl ay property in the synchronization profile. The following code shows how to
disable asynchronous replay:

SUP101DB. get Synchroni zati onProfil e(). set AsyncRepl ay(fal se);

When asynchronous replay is enabled and the replay is finished, the onSynchronize callback
method is invoked with a SynchronizationStatus value of

Synchr oni zat i onSt at us. ASYNC_REPLAY_COWPLETED. Use this callback
method to invoke a synchronize call to pull in the results, as shown in the following callback
handler.

public class MyCal |l backHandl er extends Defaul t Cal | backHandl er

public int onSynchroni ze(Qbj ect Li st groups, Synchroni zati onCont ext
cont ext)

switch(context. get Status())
{
case Synchroni zati onSt at us. ASYNC_REPLAY_UPLOADED:
LogMessage(" AsyncRepl ay upl oaded");
br eak;
case Synchroni zati onSt at us. ASYNC_REPLAY_COVPLETED:
/1 operation replay finished, return
Synchroni zati onAct i on. CONTI NUE

[l will start a background synchronization to pull in the
resul ts.
LogMessage(" AsyncRepl ay Done");
br eak;
def aul t:
br eak;
}
return Synchroni zati onActi on. CONTI NUE;
}
}

Synchronize Status Listener
Retrieve the synchronization status.

Synchronize Status Listener is mainly for debugging and performance measuring purposes to
monitor stages of a synchronize session. It could also be used in Ul for synchronization
progress status. Below is a sample Synchronize Status Listener.

i mport com sybase. persi st ence. Cbj ect SyncSt at usDat a;

i mport com sybase. persi stence. SyncSt at usLi st ener;

i nport com sybase. persi stence. SyncSt at usSt at e;

public class MySyncStatusLi stener inplenents SyncStat usLi st ener

| ong start;

Developer Guide: Android Object APl Applications 23

Customizing the Application Using the Object API

publi ¢ MySyncSt at usLi st ener ()

start = SystemcurrentTimeMI1is();
}
publ i ¢ bool ean obj ect SyncSt at us(Cbj ect SyncSt at usDat a st at usDat a)
{

| ong now = SystemcurrentTimeM | lis();
long interval = now - start;

start = now,

String i nfoMessage;

int syncState = statusData. get SyncStatusState();
switch (syncState)

case SyncStatusSt at e. SYNC_STARTI NG
i nfoMessage = "START [" interval "]";
br eak;

case SyncStatusSt at e. APPLI CATI ON_SYNC_SENDI NG_HEADER:
i nf oMessage = "SENDI NG HEADERS [" interval "]";
br eak;

case SyncStatusStat e. APPLI CATI ON_SYNC_SENDI NG_SCHEMA:
i nfoMessage = "SENDI NG SCHEMA [" interval "]";
br eak;

case SyncStatusSt at e. APPLI CATI ON_DATA UPLOADI NG
i nfoMessage = "DATA UPLOADING [" interval "] "

+ statusData.getCurrentMBQ() ": (S>"

+ st atusDat a. get Sent ByteCount () ":"

+ st at usDat a. get Sent RowCount () " R<"

+ st atusDat a. get Recei vedByteCount () ":*"

+ st at usDat a. get Recei vedRowCount () ")";

k

case
SyncSt at usSt at e. APPLI CATI ON_SYNC_RECEI VI NG_UPLOAD_ACK:
i nffoMessage = "RECEI VING UPLOAD ACK [" interval "]";
br eak;
case SyncStatusSt at e. APPLI CATI ON_DATA UPLOADI NG_DONE:

i nfoMessage = "UPLOAD DONE [" interval "] "
statusDat a. get Current MBQ() ": (S>"
st at usDat a. get Sent Byt eCount () ":"
st at usDat a. get Sent RowCount () " R<"
st at usDat a. get Recei vedByt eCount ()

+ st at usDat a. get Recei vedRowCount () ")";
br eak;
case SyncStatusSt at e. APPLI CATI ON_DATA DOANLOADI NG
i nfoMessage = "DATA DOMLOADI N * interval "] *
statusDat a. get Current MBQ() ": (S>"
st at usDat a. get Sent Byt eCount () ":"
st at usDat a. get Sent RowCount () " R<"
st at usDat a. get Recei vedByt eCount ()
+ st at usDat a. get Recei vedRowCount () ")";
br eak;
case SyncStatusSt at e. APPLI CATI ON_SYNC_DI SCONNECTI NG
i nfoMessage = "DI SCONNECTING [" interval "]";

+ + + +

+ + + +

24 Sybase Unwired Platform

Customizing the Application Using the Object API

br eak;
case
SyncSt at usSt at e. APPLI CATI ON_SYNC_CHECKI NG_LAST_UPLQAD:
i nfoMessage = "CHECKI NG LAST UPLCAD [" interval "]";
br eak;
case
SyncSt at usSt at e. APPLI CATI ON_SYNC_COWM TTI NG_DOWNL QAD:
i nfoMessage = "COWM TTI NG DOANLOAD [" interval "]
statusDat a. get Current MBQ() ": (S>"
st at usDat a. get Sent Byt eCount () ":"
st at usDat a. get Sent RowCount () " R<"
st at usDat a. get Recei vedByt eCount ()
+ st atusDat a. get Recei vedRowCount () ")"
br eak;
case SyncStatusSt at e. APPLI CATI ON_SYNC_CANCELLED:
i nf oMessage = "SYNC CANCELED ["+ interval "]";
br eak;
case SyncStat usStat e. APPLI CATI ON_DATA_DOWNLQADI NG_DONE:
i nf oMessage = "DATA DOMWNLOADI NG DONE [" interval "]";
br eak;
case SyncStatusSt at e. SYNC_DONE:

+ + + +

i nf oMessage

br eak;
defaul t:

i nfoMessage = "STATE" syncState "[" interval "]";

br eak;

"DONE [" interval "]";

LogMessage(i nf oMessage) ;
return fal se;

}

Connecting to the Device Database
Establish a connection to the database on the device.

After completing the device registration, call the generated database's openConnect i on
method to connect to the UltraLite/UltraLiteJ database on the device. If no device database
exists, the openConnect i on method creates one.

See also
o Setting Up Callbacks and Listeners on page 20

Synchronizing
Synchronize package data between the device and the server.

The generated database provides you with synchronization methods that apply to either all
synchronization groups in the package or a specified list of groups.

See also
» Specifying Personalization Parameters on page 27
e Synchronization APIson page 58

Developer Guide: Android Object APl Applications 25

Customizing the Application Using the Object API

» Specifying Synchronization Parameters on page 28

Configuring Data Synchronization Using SSL Encryption
Enable SSL encryption by configuring the synchronization HTTPS port.

1. Inthe left navigation pane of Sybase Control Center for Unwired Platform, expand the
Serversnode and click the server name.

2. Click Server Configuration.
3. In the right administration pane, click the Replication tab.

4. Select Secure synchronization port 2481 as the protocol used for synchronization, and
configure the certificate properties. In the optional properties section, specify the security
certificate file, the public security certificate file using the fully qualified path to the file,
along with the password you entered during certificate creation.

Note: In a clustered environment, this fully qualified path must work for all nodes in the
cluster. You can do this via a shared disk, or manually distribute the certificate file to all
nodes.

Nonblocking Synchronization

An example that illustrates the basic code requirements for connecting to Unwired Server,
updating mobile business object (MBO) data, and synchronizing the device application froma
device application based on the Client Object API.

Subscribe to the package using synchronization APIs in the generated database class, specify
the groups to be synchronized, and invoke the asynchronous synchronization method
(begi nSynchroni ze).

1. If you have not yet synchronized with Unwired Server, perform a synchronization.
SUP101DB. synchr oni ze("syst ent)
2. Set the synchronization parameters if there are any.

Cust oner Synchr oni zat i onPar anet ers syncParameter =
Cust oner . get Synchr oni zat i onPar anet er s() ;

syncPar anet er . set Your Paraneters(...);

syncPar anet er . save() ;

3. Make a blocking synchronize call to Unwired Server to pull in all MBO data:
SUP101DB. synchr oni ze();

4, List all customer MBO instances from the local database using an object query, such as
Fi ndAl | , which is a predefined object query.

Generi cLi st <Cust omer > custoners = Custoner.findAll ();
int n = custoners.size();
for (int i =0; i <n; i)
{
Cust oner customer = custoners.get(i);
[/ Work on customer infornmation

}

26

Sybase Unwired Platform

Customizing the Application Using the Object API

5. Find and update a particular MBO instance, and save it to the local database.

Cust oner cust = Custoner.findByPri maryKey(100);
cust.set Address("1 Sybase Dr.");
cust . set Phone("9252360000") ;
cust.save();//or cust.update();
6. Submit the pending changes. The changes are ready for upload, but have not yet been
uploaded to the Unwired Server.

cust . submi t Pendi ng() ;

7. Use non-blocking synchronize call to upload the pending changes to the Unwired Server.
The previous replay results and new changes are downloaded to the client device in the
download phase of the synchronization session.

Generi cLi st <Synchroni zati onG oup> sgs = new

Generi cLi st <Synchroni zat i onG oup>() ;

sgs. add(SUP101DB. get Synchroni zati onG oup(“default")); // Custoner
MBO is in "default" sync group

SUP101DB. begi nSynchroni ze(sgs, "mycontext");

Enabling Change Notifications
A synchronization group can enable or disable its change notification.

By default, change notifcations are disabled for synchronization groups. To enable change
notification, call the Synchr oni zat i onG oup object's set Enabl eS| S method.

com sybase. persi st ence. Synchroni zati onG oup sg =
SUP101DB. get Synchr oni zat i onG oup(" PushEnabl ed") ;

if (!sg.getEnableSlS())
{

sg. set Enabl eSI S(true);
sg.setlnterval (2);

sg. save();

SUP101DB. synchr oni ze(" PushEnabl ed") ;

}

Specifying Personalization Parameters

Use personalization parameters to provide default values used with synchronization,
connections with back-end systems, MBO attributes, or EIS arguments. The

Per sonal i zat i onPar anet er s class is within the generated code for your project.

1. Toinstantiate a Per sonal i zat i onPar anet er s object, call the generated database
instance's get Per sonal i zat i onPar anet er s method:

Per sonal i zati onPar aneters pp =
MyPackageDB. get Per sonal i zat i onPar anet ers() ;

2. Assign values to the Per sonal i zat i onPar anet er s object:
pp. set PKCity("New York");

3. Save the Per sonal i zat i onPar anet er s value to the local database:
pp. save();

Developer Guide: Android Object APl Applications 27

Customizing the Application Using the Object API

Note: If you define a default value for a personalization key that value will take effect,
unless you call pp. save().

4. Synchronize the Per sonal i zat i onPar anet er s value to the Sybase Unwired
Platform:
MyPackageDB. synchroni ze();

See also
e Synchronizing on page 25
» Personalization APIs on page 57

Specifying Synchronization Parameters
Use synchronization parameters within the mobile application to download filtered MBO
data.

Assign the synchronization parameters of an MBO before a synchronization session. The next
synchronize sends the updated synchronization parameters to the server. The
Synchr oni zat i onPar anet er s class is within the generated code for your project.

Note: If you do not save the Synchr oni zat i onPar anet er s, no data is downloaded to
the device even if there are default values set for those Synchr oni zat i onPar anet er s.
Call the save method for all Synchr oni zat i onPar amet er s and for all MBOs when
the application is first started. Do this after application registration and the first
synchronization.

1. Retrieve the synchronization parameters object from the MBO instance. For example, if
you have an MBO named Cust oner , the synchronization parameters object is accessed
as a public field and returned as a Cust orrer Synchr oni zat i onPar anet er s
object:

Cust oner Synchr oni zati onParaneters sp =
Cust oner. get Synchroni zati onPar amet ers() ;

2. Assign values to the synchronization parameter. For example, if the Customer MBO
contains a parameter named ci t ynane, assign the value to the
Cust oner Synchr oni zat i onPar anet er s object's G t ynare field:

sp. set G tynane("Kansas Cty");
3. Save your changes by calling the synchronization parameters object's save method:
sp. save();

Note: If you defined a default value or bound a PersonalizationParameters in the
Synchroni zat i onPar anet er s, then that value will not take effect unless you call
sp. save().

After you save the synchonization parameters, call another synchronize() to download the
data.

28

Sybase Unwired Platform

4.

Customizing the Application Using the Object API

When using synchronization parameters to retrieve data from an MBO during a
synchronization session, clear the previous synchronization parameter values:

Cust oner Synchr oni zati onParaneters sp =

Cust oner. get Synchroni zati onPar amet ers() ;

sp.delete();

sp = Customer. get Synchroni zati onParanmeters();//Mist re-get
synchroni zati on paraneter instance.

sp.setCitynane("New G ty");

sp. save();

See also

Synchronizing on page 25
Synchronization APIs on page 58

Subsequently Starting an Application

Subsequent start-ups are different from the first start-up.

Starting an application on subsequent occasions:

1. Setupthe com sybase. nobi | e. Appl i cati on instance with the required
com sybase. nobi | e. Connecti onProperti es, including user credentials.

2. Set up the connection profile properties if needed for database location and tuning
parameters.

3. Set up the synchronization profile properties if needed for SSL or a relay server.

4. Start the application connection to the server.

5. Open the database connection.
You can do this in parallel with starting the application connection to the server.

See also

Application APIs on page 45

Accessing MBO Data

Use MBO object queries to retrieve lists of MBO instances, or use dynamic queries that return
results sets or object lists.

See also

Query APIson page 78

Object Queries on page 30

Dynamic Queries on page 30

MBOs with Complex Types on page 31
Relationships on page 32

Developer Guide: Android Object APl Applications 29

Customizing the Application Using the Object API

Object Queries
Use the generated static methods in the MBO classes to retrieve MBO instances.

1. To find all instances of an MBO, invoke the static f i ndAl | method contained in that
MBO. For example, an MBO named Cust omer contains a method such as publ i ¢
static com sybase. col | ections. Generi cLi st <SUP101. Cust oner >
findAll ().

2. To find a particular instance of an MBO using the primary key, invoke
MBO. fi ndByPri maryKey(...).Forexample, if a Customer has the primary key
"id" as int, the Customer MBO would contain the publ i ¢ static Custoner
fi ndByPri maryKey(int id) method, which performs the equivalent of Sel ect
x.* from Custoner x where x.id = :id.

If the return type is a list, additional methods are generated for you to further process the result,
for example, to use paging. For example, consider this method, which returns a list of MBOs
containing the specified city name:

com sybase. col | ecti ons. Generi cLi st <SUP101. Cust oner >

findByCity(String city, int skip, int take);.Theskip parameter
specifies the number of rows to skip, and the t ak e parameter specifies the maximum number
of rows to return.

See also
» Accessing MBO Dataon page 29
e Query APIson page 78

Dynamic Queries
Build queries based on user input.

Use the com sybase. per si st ence. Query class to retrieve a list of MBOs.

1. Specify the where condition used in the dynamic query.
Query query = new Query();
AttributeTest aTest = new AttributeTest();

aTest.setAttribute("state");

aTest . set Test Val ue("NY");

aTest . set Test Type(Attri buteTest. EQUAL);
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("| nane", Sort Order Type. ASCENDI NG ;
sort.add("fnane", SortO der Type. ASCENDI NG ;
query.setSortCriteria(sort);

30 Sybase Unwired Platform

Customizing the Application Using the Object API

2. Usethe fi ndW t hQuery method in the MBO to dynamically retrieve a list of MBOs
acccording to the specified attributes.

Generi cLi st <Cust omer > custoners = Custoner.findWthQuery(query);
int n = custoners.count();
for (int i =0; i <n; i)
{
Custoner c¢ = (Custorrer)cust oners. get(l)
Systemout. println("Customer " + i + ":
+ c.getLnane() + ", " + c.get Fname());

}

3. Use the generated database’s execut eQuer y method to query multiple MBOs through
the use of joins.

Query query = new Qery();

query. sel ect("c.fnane, c.| nane, s. order_date,s.id");
query. fron(" Cust omer", " ")
query.join("Sal es_order", "s", "s.cust_id", "c.id");

AttributeTest ts = new AttributeTest();
ts.setAttribute("l name");

ts.set TestVal ue("Smth");
ts.setQperator(AttributeTest. EQUAL);
query.setTestCriteria(ts);

QueryResul t Set gqrs = SUP101DB. execut eQuery(query);

whi l e(grs. next ())
{

Systemout.println("order: "

grs.getlnt(4) + Il 4is s.id
grs.getString(1l) + /1 1 is c.fname
", " + grs.getString(2) +// 2 is c.lname
" " 4+ grs.getDate(3)); I/l 3 is s.order_date
}
See also

» Accessing MBO Data on page 29
e Query APIson page 78

MBOs with Complex Types
Mobile business objects are mapped to classes containing data and methods that support
synchronization and data manipulation. You can develop complex types that support
interactions with backend data sources such as SAP® and Web services. When you define an
MBO with complex types, Sybase Unwired Platform generates one class for each complex
type.

Using a complex type to create an MBO instance.

1. Suppose you have an MBO named Si npl eCaseli st and want to use a complex data
type called Aut hent i cat i onl nf o to its Cr eat e method's parameter. Begin by
creating the complex datatype:

Developer Guide: Android Object APl Applications 31

Customizing the Application Using the Object API

Aut henti cati onl nfo authen = new Aut henticationlnfo();
aut hen. set User Nane(" Denp") ;

2. Instantiate the MBO object:

Si npl eCaseli st newCase = new Si npl eCaseli st ();
newCase. set Case_Type(" I nci dent");

newCase. set Cat egor y(" Net wor ki ng") ;

newCase. set Cr eat e_Ti ne(new

java.sql . Timestanp(SystemcurrentTineMI1is()));

3. Callthecr eat e method of the SimpleCaseList MBO with the complex type parameter as
well as other parameters, and call subni t Pendi ng() tosubmitthe cr eat e operation
to the operation replay record. Subsequent synchronizations upload the operation replay
record to the Unwired Server and get replayed.
newCase. creat e(aut hen, "Gther", "Qher", "Denp", “fal se”,

“wor kl 0g”) ;
newCase. subm t Pendi ng() ;
See also

Accessing MBO Data on page 29
Query APIson page 78

Relationships

The Object API supports one-to-one, one-to-many, and many-to-one relationships.

Navigate between MBOs using relationships.

1

Suppose you have one MBO named Cust oner and another MBO named

Sal esOr der . This code illustrates how to navigate from the Cust oner object to its
child Sal esOr der objects:

Custoner cust = Customer.findByld(101);

com sybase. col | ecti ons. Qbj ectLi st orders =
cust oner. get Sal esOrders();

To filter the returned child MBO's list data, use the Query class:

Query query = new Qery();

AttributeTest at = new AttributeTest("sal es_rep", new

I nteger(129), AttributeTest. EQUAL);

query. where(at);

orders = cust.get Sal esOrdersFilterBy(query);

For composite relationship, you can call the parent's Submi t Pendi ng method to submit
the entire object tree of the parent and its children. Submitting the child MBO also submits
the parent and the entire object tree. (1f you have only one child instance, it would not make
any difference. To be efficient and get one transaction for all child operations, it is
recommened to submit the parent MBO once, instead of submitting every child).

If the primary key for a parent is assigned by the EIS, you can use a multilevel insert
cascade operation to create the parent and child objects in a single operation without

32

Sybase Unwired Platform

Customizing the Application Using the Object API

synchronizing multiple times. The returned primary key for the parent's cr eat e
operation populates the children prior to their own creation.

The following example illustrates how to submit the parent MBO which also submits the
child's operation:

Custoner cust = Customer.findByld(101);
Sal es_order order = new Sal es_order();
order.setld(1001);

order. set Cust oner (cust) ;

order. set Order_date(new Date());
order.setFin_code_id("r1");

order. set Regi on("Eastern");

order. set Sal es_rep(101);

order.save(); // or order.create();
cust. save();

cust . subm t Pendi ng() ;

See also
» Accessing MBO Data on page 29
e Query APIson page 78

Manipulating Data

Create, update, and delete instances of generated MBO classes.

You can create a new instance of a generated MBO class, fill in the attributes, and call the
cr eat e method for that MBO instance.

You can modify an object loaded from the database by calling the updat e method for that
MBO instance.

You can load an MBO from the database and call the del et e method for that instance.

See also
» Persistence APIs on page 88

Creating, Updating, and Deleting MBOs
Perform create, update, and delete operations on MBO instances.

You can call the cr eat e, updat e, and del et e methods for MBO instances.

1. Suppose you have an MBO named Cust oner . To create an instance within the database,
invoke its cr eat e method, which causes the object to enter a pending state. Then call the
MBO instance’'s submi t Pendi ng method. Finally, synchronize with the generated
database:

Cust oner newcustonmer = new Custoner();
/1Set the required fields for the custoner

Developer Guide: Android Object APl Applications 33

Customizing the Application Using the Object API

Il

newcust omer . create();
newcust omer . submi t Pendi ng() ;
SUP101DB. synchr oni ze();

. To update an existing MBO instance, retrieve the object instance through a query, update

its attributes, and invoke its updat e method, which causes the object to enter a pending
state. Then call the MBO instance'ssubmi t Pendi ng method. Finally, synchronize with
the generated database:

Cust oner customer = Custoner.findByPrimary(myCustonerld) //find
by primary key

custoner.setCity("Dublin"); //update any field to a new val ue
cust oner. updat e() ;

cust oner . subm t Pendi ng() ;

SUP101DB. synchroni ze() ;

. To delete an existing MBO instance, retrieve the object instance through a query and

invoke its del et e method, which causes the object to enter a pending state. Then call the
MBO instance's submi t Pendi ng method. Finally, synchronize with the generated
database:

Cust oner customer = Custoner.FindByPrimary(myCustomerld) //find
by primary key

cust oner. del ete();

cust oner. subm t Pendi ng() ;
SUP101DB. synchroni ze();

See also

Operations APIs on page 88

Other Operations

Use operations other than create, update, or delete.

In this example, a customized operator is used to perform a sum operation.

1. Suppose you have an MBO named My MBOthat has an operator that generates a customized

sum. Begin by creating an object instance and assigning values to its attributes, specifying
the " Add" operation:

MyMBO op = new MyMBQ() ;

op. set Operand1(12);
op. set Oper and2(23) ;
op. set Oper at or (" Add") ;
op. save();

. Call the MBO instance's subni t Pendi ng method and synchronize with the generated

database:

op. submi t Pendi ng() ;
SUP101DB. synchr oni ze();

34

Sybase Unwired Platform

Customizing the Application Using the Object API

See also
» QOperations APIson page 88

Using SubmitPending and SubmitPendingOperations
You can submit a single pending MBO, all pending MBOs of a single type, or all pending
MBOs in a package. Once those pending changes are submitted to the server, the MBOs enter
a replay pending state.

Note that submitPendingOperations APIs are expesive. Sybase recommends using the
submitPending API with the MBO instance whenever possible.

Database Classes

Submit pending operations for all entities in the package or synchronization group, cancel all
pending operations that have not been submitted to the server, and check if there are pending
oprations for all entities in the package.

1. Tosubmit pending operations for all pending entities in the package, invoke the generated
database's submi t Pendi ngOper at i ons method.

2. To submit pending operations for all pending entities in the specified synchronization
group, invoke the generated database's submi t Pendi ngQOper ati ons (string
synchroni zat i onG oup) method.

3. To cancel all pending operations that have not been submitted to the server, invoke the
generated database's cancel Pendi ngOper at i ons method.

4. To check if there are pending operations for all entities in the package, invoke the
generated database's hasPendi ngQOper at i ons method.

Generated MBOs

Submit pending operations for all entities for a given MBO type or a single instance, and
cancel all pending operations that have not been submitted to the server for the MBO type or a
single entity.

1. To submit pending operations for all pending entities for a given MBO type, invoke the
MBO class' static submni t Pendi ngQper at i ons method.

2. To submit pending operations for a single MBO instance, invoke the MBO object's
submi t Pendi ng method.

3. To cancel all pending operations that have not been submitted to the server for the MBO
type, invoke the MBO class' static cancel Pendi ngQper at i ons method.

4. To cancel all pending operations for a single MBO instance, invoke the MBO object's
cancel Pendi ng method.

Developer Guide: Android Object APl Applications 35

Customizing the Application Using the Object API

Shutting Down the Application

Shut down an application and clean up connections.

Closing Connections
Clean up connections from the generated database instance prior to application shutdown.

1. Torelease an opened application connection, stop the messaging channel by invoking the
application instance's st opConnect i on method.

app. st opConnecti on(<ti meout _val ue>);

2. Close all connections to device database by calling the cl oseConnect i on method in

the generated package database class. If one application has multiple packages, invoke the
cl oseConnect i on APl in all the packages.

Uninstalling the Application

Uninstall the application and clean up all package- and MBO-level data.

Deleting the Database and Unregistering the Application
Delete the package database, and unregister the application.

1. To delete the package database, call the generated database's del et eDat abase
method.

SUP101DB. del et eDat abase() ;

2. Unregister the application by invoking the Appl i cat i on instance's
unr egi st er Appl i cat i on method.
app. unregi sterAppl i cation(0);

36 Sybase Unwired Platform

Testing Applications

Testing Applications

Test native applications on a device or simulator.

See also

Customizing the Application Using the Object APl on page 15
Localizing Applications on page 41

Testing an Application Using a Emulator

Run and test the application on an emulator and verify that the application automatically
registers to Unwired Server using the default application connection template.

Prerequisites

You must have created an Android Virtual Device when you installed the Android SDK in
your Android development environment. The Android Virtual Device (AVD) must use the
same target as the test package.

Task

1

In the Eclipse Package Explorer, right-click the project and select Run As> Run
Configuration.

The ADT plugin for Eclipse installs your application, starts the emulator automatically,
and launches the application. The application will automatically register with Unwired
Server using the default application connection template. Once you build your application,
deploy the Android package (APK) file. For more information on publishing your Android
application, see http.//developer.android.com/guide/publishing/
publishing_overview.html,

In Sybase Control Center verify that the application connection was created in
Applications > Application Connections.

When the application has successfully registered, the application connection displays a
value of zero in the Pending Items column.

Test the functionality of the application. Use debug tools as necessary, setting breakpoints
at appropriate places in the application.

Client-Side Debugging

Identify and resolve client-side issues while debugging the application.

Problems on the device client side that may cause client application problems:

Developer Guide: Android Object APl Applications 37

http://developer.android.com/guide/publishing/publishing_overview.html
http://developer.android.com/guide/publishing/publishing_overview.html

Testing Applications

Unwired Server connection failed - use your device browser to check the connectivity of
your device to the server.

Data does not appear on the client device - check if your synchronization and
personalization parameters are set correctly. If you are using queries, check if your query
conditions are correctly constructed and if the device data match your query conditions.
Physical device problems, such as low memory - implement

Appl i cati onCal | back. onDevi ceCondi t i onChanged to be notified if
device storage gets too low, or recovers from an error.

Unwired Server connection failed. Use your device browser to check the connectivity of
your device to the server.

Data does not appear on the client device. Check if your synchronization and
personalization parameters are set correctly. If you are using queries, check if your query
conditions are correctly constructed and that the device data matches your query
conditions.

Physical device problems, such as low battery or low memory.

To find out more information on the device client side:

If you have implemented debugging in your generated or custom code (which Sybase
recommends), turn on debugging and review the debugging information. See the API
Reference information about using the Logger class to add logs to the client log record
and synchronize them to the server (viewable in Sybase Control Center).

Check the log record on the device. Use the <PkgName>DB.getLogRecords
(com.sybase.persistence.Query) or Entity.getLogRecords() methods.

This is the log format

| evel , code, ei sCode, nessage, conmponent , enti t yKey, oper ati on, r equest |
d, ti mestanp

This log format generates output similar to:

| evel code ei sCode nessage conponent entityKey operation requestid
ti mest anmp

5,500,"'","java.l ang. SecurityException: Aut hori zation fail ed:
Domai n = default Package = end2end.rdb: 1. 0 nboNane =
si npl eCust omer action =
del ete','sinpl eCustoner',' 100001', "' delete','100014',' 2010- 05- 11
14: 45: 59. 710

e | evel —thelog level currently set. Values include: 1 = TRACE, 2 = DEBUG, 3 =
INFO, 4 = WARN, 5 = ERROR, 6 = FATAL, 7 = OFF.
e code - Unwired Server administration codes.
» Synchronization codes:
e 200 - success.
e 500 - failure.

38

Sybase Unwired Platform

Testing Applications

e ei sCode —maps to HTTP error codes. If no mapping exists, defaults to error code
500 (an unexpected server failure).

e nessage - the message content.

e conponent — MBO name.

e entityKey — MBO surrogate key, used to identify and track MBO instances and
data.

e operati on —operation name.

e request | d - operation replay request ID or messaging-based synchronization
message request ID.

e timestanp - message logged time, or operation execution time.

If you have implemented Appl i cat i onCal | back. onConnectionStatusChanged

for synchronization in the Cal | backHandl er , the connection status between Unwired

Server and the device is reported on the device. See the Cal | backHandl er API

reference information. The device connection status, device connection type, and

connection error message are reported on the device:

e 1 - current device connection status.

e 2 —current device connection type.

e 3 - connection error message.

For other issues, you can turn on SQLTrace trace on the device side to trace Client Object

API activity. To enable SQLTrace using the ConnectionProfile's enableTrace API:

/1 To enable SQL trace with val ues al so di spl ayed
SUP101DB. get Connecti onProfil e().enabl eTrace(true, true);

Server-Side Debugging

Identify and resolve server-side issues while debugging the application.

Problems on the Unwired Server side may cause device client problems:

The domain or package does not exist. If you create a new domain, with a default status of
disabled, it is unavailable until enabled.

Authentication failed for the application user credentials.

The operation role check failed for the synchronizing user.

Back-end authentication failed.

An operation failed on the remote, replication database back end, for example, a table or
foreign key does not exist.

An operation failed on the Web Service, REST, or SAP® back end.

To find out more information on the Unwired Server side:

Check the Unwired Server log files.
For message-based synchronization mode, you can set the log level to DEBUG to obtain
detailed information in the log files:

Developer Guide: Android Object APl Applications 39

Testing Applications

1. Setthe log level using Sybase Control Center. See Sybase Control Center for Unwired
Platform> Administer> Server Log > Configuring Server Log Setting.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

Obtain DEBUG information for a specific device:
e Inthe SCC administration console:
1. Setthe DEBUG level to a higher value for a specified device:
a. In SCC, select Application Connections, then select Properties... > Device
Advanced.
b. Set the Debug Trace Level value.
2. Set the TRACE file size to be greater than 50KB.
3. View the trace file through SCC.
e Checkthe<server install fol der>\Unw redPl atform Servers
\ Messagi ngSer ver\ Dat a\ Cl i ent Tr ace directory to see the mobile device
client log files for information about a specific device.

Note: Return to INFO mode as soon as possible, since DEBUG mode can affect system
performance.

40

Sybase Unwired Platform

Localizing Applications

Localizing Applications

Localize an Android application by creating default and alternate resources.

For information, best practices, and tutorials on localizing Android applications, see Attp.//
developer.android.com/guide/topics/resources/localization. html

See also
« Testing Applications on page 37

Developer Guide: Android Object APl Applications 41

http://developer.android.com/guide/topics/resources/localization.html
http://developer.android.com/guide/topics/resources/localization.html

Localizing Applications

42

Sybase Unwired Platform

Packaging Applications

Packaging Applications

Package applications according to your security or application distribution requirements.

You can package all libraries into one package. This packaging method provide more security
since packaging the entire application as one unit reduces the risk of tampering of individual
libraries.

You may package and install modules separately only if your application distribution strategy
requires sharing libraries between Sybase Unwired Platform applications.

Signing

Code signing is required for applications to run on physical devices and emulators.

All applications must be signed. The system will not install an application on an emulator or a
device if it is not signed.

To test and debug your application, the build tools sign your application with a special debug
key that is created by the Android SDK build tools.

Developer Guide: Android Object APl Applications 43

Packaging Applications

44

Sybase Unwired Platform

Client Object APl Usage

Client Object APl Usage

The Sybase Unwired Platform Client Object API consists of generated business object classes
that represent mobile business objects (MBOs) that are designed and built in the Unwired
WorkSpace development environment. Device applications use the Client Object API to
retrieve data and invoke mobile business object operations.

Refer to these sections for more information on using the APIs described in Developer Guide:
Android Object API Application > Customizing the Application Using the Object API.

Client Object APl Reference
Use the Sybase Client Object API Javadocs as a Client Object API reference.

Review the reference details in the Client Object APl documentation, located in the Unwired
Platform installation directory <Unwi r edPl at f orm_| nst al | Di r >\ Mobi | eSDK
\ Obj ect API'\ api doc.

There is a subdirectory for andr oi d.

From the i ndex. ht m file, the top-left navigation pane lists all packages installed with
Unwired Platform. The applicable documentation is available with each package. Click this
link and navigate through the Javadoc.

Application APIs

The Appl i cat i on class, in the com sybase. nobi | e Java package, manages mobile
application registrations, connections and context.

See also

« Initially Starting an Application on page 15

« Setting up Application Properties on page 16

» Registering an Application on page 17

o Subsequently Starting an Application on page 29

getinstance

Retrieves the Appl i cat i on instance for the current mobile application.

Syntax
public static Application getlnstance()

Developer Guide: Android Object APl Applications 45

Client Object APl Usage

Returns

get | nst ance returns a singleton Appl i cat i on object.
Examples
* Get the Application Instance —

Application app = Application.getlnstance();

setApplicationldentifier
Sets the identifier for the current application.

Set the application identifer before calling st ar t Connect i on,
regi sterApplicationorunregisterApplication.

Syntax
public void setApplicationldentifier(java.lang.String val ue)

Parameters

» value—The identifier for the current application.

Examples

* Set the Application Identifier — Sets the application identifier to SUP101.

/1 Initialize Application settings
Application app = Application. getlnstance();

// The identifier has to match the

/1 application ID depl oyed to the SUP server
app. set Applicationldentifier("SUP101");

Usage
This method must be called in the user interface thread.

getRegistrationStatus
Retrieves the current status of the mobile application registration.

Syntax
public int getRegistrationStatus()

46 Sybase Unwired Platform

Client Object APl Usage

Returns

get Regi strati onSt at us returns one of the values defined in the
Regi strati onSt at us class.

public class RegistrationStatus {

public static final int REG STERED = 203;

public static final int REGA STERI NG = 202;

public static final int REGA STRATI ON_ERROR = 201;

public static final int UNREG STERED = 205;
public static final int UNREQ STERI NG = 204;

}

Examples
* Get the Registration Status— Registers the application if it is not already registered.

if (app.getRegistrationStatus() ==
Regi strati onSt at us. UNREG STERED)

/1 |f the application has not been registered to the server,
/1 register now
app. regi ster Application();

el se

/! start the connection to server
app. st art Connection();

registerApplication
Creates the registration for this application and starts the connection.

Syntax
public void registerApplication(int tinmeout)

Parameters

* timeout — Number of seconds to wait until the registration is created. If the the timeout is
greater than zero and the registration is not created within the timeout period, an
Appl i cati onTi meout Except i on is thrown (the operation might still be
completing in a background thread).

Examples

* Register an Application — Registers the application with a one minute waiting period.
app. regi sterAppl i cati on(60);

Developer Guide: Android Object APl Applications 47

Client Object APl Usage

setApplicationCallback

Sets the callback for the current application. It is optional, but recommended, to register a
callback so the application can respond to changes in connection status, registration status,
and application settings.

Syntax
public void setApplicationCall back(ApplicationCallback val ue)

Parameters

« value—The mobile application callback handler.

Examples

* Set the Application Callback —

/1 Initialize Application settings
Application app = Application.getlnstance();

/] The identifier has to match the

/1 application ID depl oyed to the SUP server

app. set Appl i cationldentifier("SUP101");

Appl i cationCal | back appCal | back = new MyAppl i cati onCal | back();
app. set Appl i cati onCal | back(appCal | back) ;

getApplicationContext

Returns the Android application context which allows access to application-specific resources
and classes.

Syntax
publ i ¢ androi d. cont ent. Cont ext get Appli cati onCont ext ()
Returns

get Appl i cati onCont ext returns a single Context object.

Examples

* Get the Application Context —
get Appl i cati onCont ext ()

48

Sybase Unwired Platform

Client Object APl Usage

setApplicationContext
Sets the Android application context, which is required before calling
thest art Connecti on, regi st er Appli cati onorunregi sterApplication
methods. This method must be called in an user interface thread, not a background thread.

Syntax

public void setApplicati onCont ext (androi d. cont ent. Cont ext cont ext)

Returns

None.

Examples

e Set the Application Context —
set Appl i cati onCont ext (andr oi d. cont ent. Cont ext cont ext)

startConnection

Starts the connection for this application. This method is equivalent to calling

st art Connecti on(0), butis a non-blocking call which returns immediately. Use
get Connecti onSt at us or the Appl i cati onCal | back to retrieve the connection
status.

Syntax
public void startConnection()

Returns

None.

Examples

» Start the Application —
st art Connecti on()

startConnection (int timeout)

Starts the connection for this application. If the connection was previously started, then this
operation has no effect. You must set the appropriate connect i onPr operti es before
calling this operation.

If connection properties are improperly set, a Connect i onPr opert yExcepti onis
thrown. You can set the appl i cat i onCal | back before calling this operation to receive

Developer Guide: Android Object APl Applications 49

Client Object APl Usage

asynchronous notification of connection status changes. If a callback handler is registered and

network connectivity is available, the sequence of callbacks as a result of calling

start Connectionis:

onConnect i onSt at usChanged(Connecti onSt at us. CONNECTI NG 0, "")
onConnect i onSt at usChanged(Connect i onSt at us. CONNECTED, 0, "")

If a callback handler is registered and network connectivity is unavailable, the sequence of
callbacks as a result of calling st art Connecti on is:

onConnect i onSt at usChanged(Connecti onSt at us. CONNECTI NG, 0, null)
onConnect i onSt at usChanged(Connect i onSt at us. CONNECTI ON_ERROR, code,
nessage)

After a connection is successfully established, it can transition at any later time to
CONNECTION_ERROR status or NOTIFICATION_WAIT status and subsequently back to
CONNECTING and CONNECTED when connectivity resumes.

Syntax

public void startConnection(int tineout)

Parameters

* timeout — The number of seconds to wait until the connection is started. If the timeout is
greater than zero and the connection is not started within the timeout period, an
Appl i cati onTi meout Except i on isthrown (the operation may still be completing
in a background thread).

Returns

None.

Examples

e Start the Application —
start Connection(int timeout)

getConnectionStatus

Return current status of the mobile application connection.

Syntax
public int getConnectionStatus()

Returns

get Connect i onSt at us returns one of the Connect i onSt at us class values.

50

Sybase Unwired Platform

Client Object APl Usage

Examples

* Get the Application Context —
get Connect i onSt at us()

Connection APIs

The Connection APIs contain methods for managing local database information, establishing
a connection with the Unwired Server, and authenticating.

See also
 Initially Starting an Application on page 15

ConnectionProfile
The Connect i onPr of i | e class manages local database information. Set its properties,
including the encryption key, during application initialization, and before creating or
accessing the local client database.

By default, the database class hame is generated as "packageName"+"DB".

ConnectionProfile profile = <PkgNane>DB. get Connecti onProfile();
profile.setPageSi ze(4*1024);
profile.set Encrypti onKey("Your key of nore than 16 characters");

You can also generate an encryption key by calling the generated database's

gener at eEncr ypt i onKey method, and then store the key inside a Dat aVaul t object.
The gener at eEncr ypt i onKey method automatically sets the encryption key in the
connection profile.

See also
o Setting Up the Connection Profile on page 18

Managing Device Database Connections
Use the openConnecti on() and cl oseConnecti on() methods generated in the
package database class to manage device database connections.

Note: Any database operation triggers the establishment of the database connection. You do
not need to explicitly call the openConnect i on API.

The openConnect i on() method checks that the package database exists, creates it if it
does not, and establishes a connection to the database. This method is useful when first starting
the application: since it takes a few seconds to open the database when creating the first
connection, if the application starts up with a login screen and a background thread that
performs the openConnect i on() method, after logging in, the connection already exists
and is immediately available to the user.

Developer Guide: Android Object APl Applications 51

Client Object APl Usage

The cl oseConnect i on() method closes the current database connection, and releases it
from the used connection pool.

Improving Device Application Performance with One Writer Thread and
Multiple Database Access Threads

The maxDbConnect i ons property improves device application performance by allowing
multiple threads to access data concurrently from the same local database.

Connection management allows you to have at most one writer thread concurrent with
multiple reader threads. There can be other reader threads at the same time that the writer
thread is writing to the database. The total number of threads are controlled by the
maxDbConnect i ons property.

In atypical device application such as Sybase Mobile CRM, alist view lists all the entities of a
selected type. When pagination is used, background threads load subsequent pages. When the
device application user selects an entry from the list, the detail view of that entry appears, and
loads the details for that entry.

Prior to the implementation of maxDbConnect i ons, access to the package on the local
database was serialized. That is, an MBO database operation, such as, create, read, update, or
delete (CRUD) operation waited for any previous operation to finish before the next was
allowed to proceed. In the list view to detail view example, when the background thread is
loading the entire list, and a user selects the details of one entry for display, the loading of
details for that entry must wait until the entire list is loaded, which can be a long while,
depending on the size of the list.

You can specify the number of total threads using naxDbConnect i ons.

The Connect i onProf i | e class in the persistence package includes the
maxDbConnect i ons property, which you set before performing any operation in the
application. The default value (maximum number of concurrent read threads) is 2.

ConnectionProfile connectionProfile =
MyPackageDB. get Connecti onProfile();

To allow 6 concurrent threads, set the maxDbConnect i ons property to 6 in
Connect i onPr of i | e before accessing the package database at the beginning of the
application.

connecti onProfile. set MaxDbConnecti ons(6);

Set Database File Property

You can use set Pr oper t y to specify the database file name on the device, such as the
directory of the running program, a specific directory path, or a secure digital (SD) card.
ConnectionProfile cp = MyDat abased ass. get Connecti onProfile();

cp. set Property("databaseFil e", "databaseFile");
cp. save();

52

Sybase Unwired Platform

Client Object APl Usage

Examples
If you specify the databaseFilename only, with no path, the databaseFileis created in the path
where the program is running:

/ nydb. udb

The databaseFile is created on an SD card:

Envi r onnent . get Ext er nal St orageDi rectory(). get Absol utePath() + "/
nmydb. udb"

Note: For the database file path and name, the forward slash (/) is required as the path
delimiter, for example / smar t car d/ supprj . udb.

Usage

» Be sure to call this API before the database is created..

« The database is UltraLiteJ™; use an absolute path to the database file name like /
sdcard/ nydb. ul j .

 Ifthe device client user changes the file name, he or she must make sure the input file name
is a valid name and path on the client side.

Synchronization Profile

Before synchronizing with Unwired Server, you must configure a client with information for
establishing a connection with the Unwired Server's data synchronization channel where the
server package has been deployed. The

com sybase. persi st ence. Connect i onPr of i | e class manages that information.

The generated package database class initially has default settings for the synchronization
connection profile. You can modify these setttings if you require different settings than the
generated code, or set certificate settings.

ConnectionProfile profile = <PkgName>DB. get Synchroni zati onProfile();
profil e. set Domai nNane("default");

profile.setServer Name("sup.sybase.com');

profile.setPortNunber(2480);

profile.set Net workProtocol ("http");
profile.getStreanParans().setTrusted_Certificates("rsa_public_cert
.crt")

See also
e Synchronization Profile on page 19

Developer Guide: Android Object APl Applications 53

Client Object APl Usage

Connect the Data Synchronization Channel Through a Relay Server

To enable your client application to connect through a relay server, you must make manual
configuration changes in the object API code to provide the relay server properties.

Edit <package-name>DB by modifying the values of the relay server properties for your
Relay Server environment.

To update properties for the relay server installed on Apache on Linux:

get Synchroni zati onProfil e(). set Server Name(" exanpl exp-vmL");
get Synchroni zati onProfil e(). set Port Nunber (80);

get Synchroni zati onProfil e().set Net workProtocol ("http");

Net wor kSt r eanPar ans st r eanPar ans =

get Synchroni zati onProfil e().get StreanParans();

streanParans. set Ul _Suffix("/cli/iarel ayserver/ <Far mNane>") ;
get Synchroni zati onProfil e(). set Domai nName("defaul t");

To update properties for the relay server installed on Internet Information Services (I1S) on
Microsoft Windows:

get Synchroni zati onProfil e().set Server Name("exanpl exp-vmL");

get Synchroni zati onProfil e().set Port Nunber (2480) ;

get Synchroni zati onProfil e().set Net workProtocol ("http");

Net wor kSt r eanPar ans st reanPar ans =

get Synchroni zati onProfile().getStreanParans();

streanParans. set Url _Suffix("/ias_relay_server/client/rs_client.dll/
<Far mNane>") ;

get Synchroni zati onProfil e(). set Domai nNanme("defaul t");

For more information on relay server configuration, see System Administration and Sybase
Control Center for Unwired Server.

Authentication APIs

You can log in to the Unwired Server with your user name and credentials and use the X.509
certificate you installed in the task flow for single sign-on.

Logging In

The generated package database class provides a default synchronization connection profile
according to the Unwired Server connection profile and server domain selected during code
generation. You can log in to the Unwired Server with your user name and credentials.

The package database class provides these methods for logging in to the Unwired Server:

* onlinelLogin(String username, String password) — authenticates
credentials against the Unwired Server.

o offlineLogin(String username, String password) —authenticates
against the most recent successfully authenticated credentials. Once the client connects for

54

Sybase Unwired Platform

Client Object APl Usage

the first time, the server validated user name and password are stored locally.

of f I i neLogi n verifies with the client database if those credentials are valid. The
method returns YES if the user name and password are correct, otherwise the method
returns NO.

There is no communication with Unwired Server in this method. This method is useful if
there is no connection the the Unwired Server and you want to access the client application
locally.

Sample Code

Ilustrates importing the certificate and setting up login credentials, as well as other APIs
related to certificate handling:

/1] SUP101DB is a generated database cl ass
[I/First install certificates on your sinulator, for exanple
"Sybasel01. p12"

/1Getting certificate fromcertificate store
CertificateStore nyStore =

CertificateStore.getDefaul t();

String filterl = "Sybase";

StringList |abels = nyStore.certificateLabels(filterl, null);

String aLabel = labels.iten(0);
Logi nCertificate | c = nmyStore. get Si gnedCertificate(alLabel,
"password");

/] Save the login certificate to your synchronization profile
SUP101DB. get Synchroni zati onProfile().setCertificate(lc);

/] Login to and synchronize with Unwi red Server
SUP101DB. subscri be() ;
SUP101DB. synchr oni ze();

/] Save the login certificate to your data vault

/1 The vault must be unl ocked before saving

/| SybaseDat aProvi der. apk package nust be installed on Android device
String vaul t Name = "nyVault";

Dat aVault vault = null;

i f(!DataVault.vaul t Exi sts(vaul t Nane))

vault = DataVault.createVault(vaul t Nane, "password", "salt");
}
el se

vault = DataVaul t. get Vaul t (vaul t Nane) ;

vaul t . unl ock(" password”, "salt");
| c. save("myLabel ", vault);

// Loadi ng and del eting certificate

Developer Guide: Android Object APl Applications 55

Client Object APl Usage

Logi nCertificate newc = LoginCertificate.load("nmyLabel", vault);
Logi nCertificate.del ete("myLabel ", vault);

Single Sign-On With X.509 Certificate Related Object API

Use these classes and attributes when developing mobile applications that require X.509
certificate authentication.

« CertificateStore class - wraps platform-specific key/certificate store class, or file
directory

* Logi nCertificat e class - wraps platform-specific X.509 distinguished name and
signed certificate

» ConnectionProfil eclass-includesthe certificate attribute used for Unwired Server
synchronization.

Refer to the API Reference for implementation details.

Importing a Certificate into the Data Vault
Obtain a certificate reference and store it in a password-protected data vault to use for X.509
certificate authentication.

The difference between importing a certificate from a system store or a file directory is
determined by how you obtainthe Cer t i f i cat eSt or e object. In either case, only a label
and password are required to import a certificate blob, which is a digitally signed copy of the
public X.509 certificate.

// Cbtain a reference to the certificate store
CertificateStore certStore = CertificateStore.getDefault();

/] Obtain a list of certificates
StringList |labels = certStore.certificatelLabel s();

Il Inmport a certificate blob fromstore (into nenory)

String label = ...; // ask user to select a |abel

String password = ...; // ask the user for a password

Logi nCertificate cert = certStore. getSignedCertificate(label,
passwor d) ;

/1 Lookup or create data vault

String vaul tPassword = ...; // ask user or fromQ S protected storage
String vaultName = "..."; // e.g. "SAP.CRM CertificateVault"
String vaultSalt ="..."; // e.g. a hard-coded random GU D

Dat aVaul t vaul t;
try

{
vault = DataVaul t. get Vaul t (vaul t Nane) ;

vaul t . unl ock(vaul t Password, vaultSalt);
}
catch (DataVaul t Exception ex)

vault = DataVault.createVault(vaul t Name, vault Password,
vaul tSalt);
}

56

Sybase Unwired Platform

Client Object APl Usage

/| Save certificate into data vault
cert.save("myCert", vault);

Selecting a Certificate for Unwired Server Connections
Select the X.509 certificate from the data vault for Unwired Server authentication.

Logi nCertificate cert = LoginCertificate.load("myCert", vault);
ConnectionProfile syncProfile =

MyDat abase. get Synchroni zati onProfil e();
syncProfile.setCertificate(cert);

Connecting to Unwired Server with a Certificate
Once the certificate property is set, use the onl i neLogi n() API with no parameters. Do
not use the onl i neLogi n() API with username and password.

SUP101DB onl i neLogi n();

Personalization APIs

Personalization keys allow the application to define certain input parameter values that are
personalized for each mobile user. Personalization parameters provide default values for
synchronization parameters when the synchronization key of the object is mapped to the
personalization key while developing a mobile business object. The Personalization APIs
allow you to manage personalization keys, and get and set personalization key values.

See also
» Specifying Personalization Parameters on page 27

Type of Personalization Keys

There are three types of personalization keys: client, server, and transient (or session). Client
personalization keys are persisted in the local database. Server personalization keys are
persisted on the Unwired Server. Session personalization keys are not persisted and are lost
when the device application terminates.

A personalization parameter can be a primitive or complex type.

A personalization key is metadata that enables users to store their search preferences on the
client, the server, or by session. The preferences narrow the focus of data retrieved by the
mobile device (also known as the filtering of data between client and Unwired Server). Often
personalization keys are used to hold backend system credentials, so that they can be
propagated to the EIS. To use a personalization key for filtering, it must be mapped to a
synchronization parameter. The developer can also define personalization keys for the
application, and can use built-in personalization keys available in Unwired Server. Two key

Developer Guide: Android Object APl Applications 57

Client Object APl Usage

built-in personalization keys — username and password — can be used to perform single
sign-on from the device application to the Unwired Server, authentication and authorization
on Unwired Server, as well as connecting to the back-end EIS using the same set of
credentials. The password is never saved on the server.

Getting and Setting Personalization Key Values

The Per sonal i zat i onPar amet er s class is generated automatically for managing
personalization keys. When a personalization parameter value is changed, the call to save
automatically propagates the change to the server.

An operation can have a parameter that is one of the Sybase Unwired Platform list types (such
aslntList,StringList,orCbjectlList). Thiscode shows how to set a
personalization key, and pass an array of values and an array of objects:

Per sonal i zati onPar aneters pp =

SUP101DB. get Per sonal i zati onPar anet ers() ;
pp. set Myl nt PK(10002) ;

pp. save();

IntList il = new IntList(2);
il.add(10001);

il.add(10002);

pp. set Myl nt Li st PK(i l);

pp. save();

MyDat aLi st dl = new MyDat aLi st ();
[/ MyData is a structure type defined in tooling
M/Data nmd = new MyDat a();

md. set I nt Member (...);
nd. set Stri ngMenber2(...);
dl . add(nmd);
pp. set MyDat aLi st(dl);
pp. save();

If a synchronization parameter is personalized, you can overwrite the value of that parameter
with the personalization value.

Note: For a detailed description on personalization key usage, see the Sybase Unwired
Platform online help.

Synchronization APIs

You can synchronize mobile business objects (MBQOs) based on synchronization parameters,
for individual MBOs, or as a group, based on the group's synchronization policy.

Note: The |l ogi nToSync API is now deprecated. For RBS, call synchr oni ze or
begi nSynchr oni ze before saving synchronization parameters. After saving the
synchronization parameters, call synchr oni ze or begi nSynchr oni ze again to

58

Sybase Unwired Platform

Client Object APl Usage

retrieve the new values filtered by those parameters. For MBS, call subscr i be before
saving synchronization parameters.

See also
e Synchronizing on page 25
o Specifying Synchronization Parameters on page 28

Changing Synchronization Parameters

Synchronization parameters let an application change the parameters that retrieve data from
an MBO during a synchronization session.

The primary purpose of synchronization parameters is to partition data. Change the
synchronization parameters to affect the data you are working with (including searches), and
synchronization.

When a synchronization parameter value is changed, the call to save automatically
propagates the change to the Unwired Server.

Cust oner Synchroni zati onParaneters sp =

Cust oner . get Synchr oni zat i onPar anet ers() ;

sp. set Myi d(10001) ;

sp. save();

Note: The Sybase Unwired Platform server will not send MBO data to a device if an MBO has
synchronization parameters defined, unless the application client code calls the save
method. The next synchronize call will retrieve data from the server. This is true even if default
values are defined for its synchronization parameters.

Performing Mobile Business Object Synchronization
A synchronization group is a group of related MBOs. A mobile application can have
predefined synchronization groups. An implicit default synchronization group includes all the
MBOs that are not in any other synchronization group.

This code synchronizes an MBO package using a specified connection:
SUP101DB. synchroni ze (string synchroni zati onG oup)

The package database class includes two synchronization methods. You can synchronize a
specified group of MBOs using the synchronization group name:

SUP101DB. synchr oni ze(" my-sync- group") ;

Or, you can synchronize all synchronization groups:
SUP101DB. synchroni ze() ;

There is a default synchronization group within every package. The default synchronization
group includes all MBOs except those already included by other synchronization groups. To
synchronize a default synchronization group call

DB ass. begi nSynchroni ze("defaul t"); or

DBC ass. synchroni ze("defaul t");

Developer Guide: Android Object APl Applications 59

Client Object APl Usage

If there is no other synchronization group, call DBCl ass. begi nSynchroni ze(); or
DBC ass. synchroni ze();

To synchronize a synchronization group asynchronously:

bj ect Li st syncG oups = new Obj ectList();
syncG oups. add(SUP101DB. get Synchr oni zat i onG oup(" nmy-sync-group”));
Sanpl eAppDB. begi nSynchroni ze(syncG oups, "");

When an application uses a create, update, or delete operation in an MBO and calls the
submi t Pendi ng metod, an Oper at i onRepl ay object is created for that change. The
application must invoke either the synchr oni ze or begi nSynchr oni ze method to
uploadthe Oper at i onRepl ay object to the server to replay the change on the backend data
source. Thei sRepl ayQueueEnpt y API is used to check if there are unsent operation
replay objects and decide whether a synchronize call is needed.

i f (!SUP101DB. i sRepl ayQueueEnpty())

{
/1l There are OperationReplay not uploaded to server
bj ectLi st sgs = new Obj ectList();
sgs. add(MyPackageDB. get Synchr oni zat i onG oup("systeni'));
MyPackageDB. begi nSynchroni ze(sgs, "upl oad Operati onRepl ay
obj ects");
}

Push Synchronization Applications

Clients receive device notifications when a data change is detected for any of the MBOs in the
synchronization group to which they are subscribed.

Sybase Unwired Platform uses a messaging channel to send change notifications from the
server to the client device. By default, change notification is disabled. You can enable the
change notification of a synchronization group:

| Synchroni zati onG oup sg =
MyPackageDB. get Synchroni zat i onG oup(" TCNEnabl ed") ;

i f (!sg. Enabl eSIS)
{

sg. set Enabl eSI S(true);

sg. setlnterval (2);

sg. save();

MyPackageDB. synchroni ze(" TCNEnabl ed") ;

}

When the server detects changes in an MBO affecting a client device, and the synchronization
group of the MBO has the change detection enabled, the server will send a notification to client
device through messaging channel. When the server detects changes in an MBO affecting a
client device, and the synchronization group of the MBO has the change detection enabled, the
server will send a notification to client device through messaging channel. By default, a
background synchronization downloads the changes for that synchronization group. The
application can implement the onSynchronize callback method to monitor this condition, and
either allow or disallow background synchronization.

60

Sybase Unwired Platform

Client Object APl Usage

public int OnSynchroni ze(Generi cLi st <l Synchr oni zati onG oup> groups,
Synchroni zat i onCont ext cont ext)

{
int status = context.getStatus();
if (status == Synchroni zati onSt at us. STARTI NG_ON_NOTI FI CATI ON)
/1l There is changes on the synchronization group
i f (busy)
{
return Synchroni zati onActi on. CANCEL;
}
el se
{ N _
return Synchroni zati onActi on. CONTI NUE;
}
}

/] return CONTINUE for all other status
return Synchroni zati onActi on. CONTI NUE;

}

Retrieving Information about Synchronization Groups

The package database class provides the following two methods for querying the
synchronized state and the last synchronization time of a certain synchronization group:

/1] Determnes if the synchronization group was synchronized
public static bool ean i sSynchroni zed(j ava.l ang. Stri ng
synchroni zati onG oup)

/1] Retrieves the |ast synchronization time of the synchronization
group

public static java.util.Date
get Last Synchroni zati onTi me(j ava. | ang. Stri ng synchroni zati onG oup)

Log Record APIs

The Log Record APIs allow you to customize aspects of logging.

* Writing and retrieving log records (successful operations are not logged).

« Configuring log levels for messages reported to the console.

» Enabling the printing of server message headers and message contents, database
exceptions, and LogRecor d objects written for each import.

* Viewing detailed trace information on database calls.

e The change log can be enabled or disabled with the enabl eChangelLog and
di sabl eChangelLog methods. You can retrieve the change log by calling the
get ChangelLogs method.

Developer Guide: Android Object APl Applications 61

Client Object APl Usage

LogRecord API
LogRecor d stores two types of logs.

e Operation logs on the Unwired Server. These logs can be downloaded to the device.
« Client logs. These logs can be uploaded to the Unwired Server.

This code executes an update operation and examines the log records for the Customer MBO:
int id = 101;

Custoner result = Custoner.findByld(id);

resul t. set Fnane(" newFnane") ;

result.save();

resul t.subm t Pendi ng();

SUP101DB. synchr oni ze();

result = Custoner.findByld(id);

for(com sybase. persi stence. LogRecord | ogRecord :

resul t.get LogRecords())

{
//Working with | ogRecord
}

The code in the log record is an HTTP status code. See Developer Guide: Android Object AP/
Applications > Client Object APl Usage > Exceptions > Handling Exceptions> HTTP Error
Codes.

There is no logRecord generated for a successful operation replay. The Unwired Server only
creates a logRecord when an operation fails.

Logging APIs
Retrieve client log records.

Usethe Logger APItosetthe log level and create log records on the client. Each package has
a Logger . To obtain the package logger, use the get Logger method in the generated
database class.

Logger | ogger = SUP101DB. get Logger ();

/1 set log |evel to debug
| ogger. set LogLevel (LogLevel . DEBUG) ;

/] create a log record with ERROR | evel and the error nessage.
| ogger. Error ("Some error nessage");

Change Log API

The change log allows a client to retrieve a list of changes from a particular MBO, and
reconstruct the list of changes without invoking findAll.

62 Sybase Unwired Platform

Client Object APl Usage

enableChangelog

By default, Change Log is disabled. To enable the change log, invoke the
enabl eChangelLog API in the generated database class. The next synchronization will
have change logs sent to the client.

Syntax
enabl eChangeLog() ;
Returns

None.

Examples

* EnableChangelLog—
SUP101DB. enabl eChangelLog() ;

getChangelLogs
Retrieve a list of change logs.

Syntax

Generi cLi st <com sybase. per si st ence. ChangelLog>
get ChangelLogs(com sybase. persi st ence. Query query);

Returns

Returns a GenericList of type <Change Log>.

Examples

e Get ChangelLogs—

CGeneri cLi st <com sybase. per si st ence. ChangelLog>
get ChangelLogs(query);

deleteChangelLogs

You are recommended to delete all change logs after the application has completed processing
them. Usethe del et eChangelLogs APl inthe generated database classto delete all change
logs on the device.

Syntax
del et eChangelogs() ;

Developer Guide: Android Object APl Applications 63

Client Object APl Usage

Returns

None.

Examples

* Delete Change Logs—
SUP101DB. del et eChangelLogs() ;

Usage

Ensure that when calling del et eChangelLogs() , there are no change logs created from a
background synchronization that are not part of the original change log list returned by a
specific query:

Generi cLi st <ChangelLog> changes = get ChangeLogs(myQuery);

You shouldonly call del et eChangelLogs() intheonSynchr oni ze() callback where
there are no multiple synchronizations occurring simulatenously.

disableChangelLog

Creating change logs consumes some processing time, which can impact application
performance. The application may can disable the change log using the
di sabl eChangelLog API.

Syntax
di sabl eChangeLog();

Returns

get | nst ance returns a singleton Appl i cat i on object.

Examples

* DisableChangelLog—
SUP101DB. di sabl eChangelLog() ;

Code Samples

Enable the change log and list all changes, or only the change logs for a particular entity,
Customer.

SUP101DB. enabl eChangelLog() ;
SUP101DB. synchr oni ze();

/!l Retrieve all change | ogs
Generi cLi st <ChangelLog> | ogs = SUP101DB. get ChangeLogs(new Query());
Systemout.println("There are " + logs.size() + " change |o0gs");

64

Sybase Unwired Platform

Client Object APl Usage

for (ChangelLog log : | ogs)
{

System out . println(log.getEntityType()
+ "(" + | 0g.getSurrogat eKey()
+ "): " + |0g.getOperationType());
}

/'l Retrieve only the change | ogs for Custoner:

Query query = new Qery();

AttributeTest at = new AttributeTest("entityType",
new j ava. | ang. | nt eger (SUP101. Enti t yType. Cust oner),
AttributeTest. EQUAL);

AL);

query.setTestCriteria(at);

| ogs = SUP101DB. get ChangelLogs(query);

Systemout.println("There are " + logs.size() + " change |ogs for

Cust oner");

for (ChangelLog log : | ogs)

Systemout. println(log.getEntityType()

+ "(" + | og.getSurrogat eKey()
+ "): " + |lo0g.getOperationType());

Security APIs

The security APIs allow you to customize some aspects of connection and database security.

Encrypt the Database

You can set the encryption key of a local database. Set the key during application initialization,
and before creating or accessing the client database.

The length of the encyption key cannot be fewer than 16 characters.

ConnectionProfile profile = <PkgNane>DB. get Connecti onProfile();
profile.set Encrypti onKey("Your key of length 16 or nore
characters");

You can use the gener at eEncr ypt i onKey() method to encrypt the local database with
a random encryption key.

SUP101DB. gener at eEncrypt i onKey() ;

/] store the encryption key at somewhere for reuse |ater
ConnectionProfile profile = SUP101DB. get Connecti onProfile();
String key = profile.getEncryptionKey();

SUP101DB. cr eat eDat abase();

Developer Guide: Android Object APl Applications 65

Client Object APl Usage

End to End Encryption and Compression Support APIs

Use encryption communication parameters to ensure end to end encryption and eliminate any
WAP gap security problems.

You can use the Client Object API to set up end to end encryption, supported by Ultralite, and
HTTPS items in the synchronization profile.

Refer to the following APIs when setting up end to end encryption and compression support:

« com sybase. persi st ence. Connecti onProfil e. get St reanPar ans

« com sybase. persi st ence. Net wor kSt r eanPar ans. get Trust ed_Cert
ificates

e com sybase. persi st ence. Net wor kSt r eanPar ans. set Trust ed_Cert
ificates

« com sybase. persi st ence. Net wor kSt r eanPar ans. get E2ee_Type

« com sybase. persi st ence. Net wor kSt r eanPar ans. set E2ee_Type

« com sybase. persi st ence. Net wor kSt r eanPar ans. get E2ee_Publ i c_
Key

e com sybase. persi st ence. Net wor kSt r eanPar ans. set E2ee_Publ i c_
Key

« com sybase. persi st ence. Net wor kSt r eanPar ans. set Zl i bConpr ess
i on

« com sybase. persi st ence. Net wor kSt r eanPar ans. set Zl i b_Upl oad_
W ndow_Si ze

« com sybase. persi st ence. Net wor kSt r eanPar ans. set Zl i b_Downl oa
d_W ndow _Si ze

The following code example shows how to set E2EE:

Connecti onProfil e conn=E2EEDB. get Synchr oni zati onProfile();

conn. set Net wor kPr ot ocol (" HTTP") ;

conn. set Port Nunber (2480) ;

conn. get StreanPar ans() . set E2ee_Type("rsa");

conn. get St reanPar ans() . set E2ee_Publ i c_Key("e2ee_publ i c_key. key");
conn. save();

DataVault

The Dat aVaul t class provides encrypted storage of occasionally used, small pieces of data.
All exceptions thrown by Dat aVaul t methods are of type Dat aVaul t Except i on.

If you have installed the SybaseDat aPr ovi der . apk package, you can use the
Dat aVaul t class for on-device persistent storage of certificates, database encryption keys,
passwords, and other sensitive items. Use this class to:

» Create a vault
e Setavault's properties

66

Sybase Unwired Platform

Client Object APl Usage

« Store objects in a vault
» Retrieve objects from a vault
« Change the password used to access a vault

The contents of the data vault are strongly encrypted using AES-256. The Dat aVaul t class
allows you create a named vault, and specify a password and salt used to unlock it. The
password can be of arbitrarily length and can include any characters. The password and salt
together are used to generate the AES key. If the user enters the same password when
unlocking, the contents are decrypted. If the user enters an incorrect password, exceptions will
occur. If the user enters the incorrect password a configurable number of times, the vault is
deleted and any data stored within it becomes unrecoverable. The vault can also re-lock itself
after a configurable amount of time.

Typical usage of the Dat aVaul t would be to implement an application login screen. Upon
application start, the user is prompted for a password, which is then used to unlock the vault. If
the unlock attempt is successful, the user is allowed into the rest of the application. User
credentials needed for synchronization can also be extracted from the vault so the user is not
repeatedly prompted to re-enter passwords.

createVault
Creates a new secure store.

Creates a vault. A unique name is assigned, and after creation, the vault is referenced and
accessed by that name. This method also assigns a password and salt value to the vault. If a
vault already exists with the same name, this method throws an exception. When created, the
vault is in the unlocked state.

Syntax

public static DataVault createVault(
String nane,
String password,
String salt

)
Parameters

* name— The vault name.
* password — The password.
» salt — The encryption salt value.

Returns
createVault creates a Dat aVaul t instance.

If a vault already exists with the same name, a Dat aVaul t Except i on is thrown this with
the reason ALREADY EXI STS.

Developer Guide: Android Object APl Applications 67

Client Object APl Usage

Examples

* CreateaData Vault — Creates a new data vault called myVaul t .

Dat aVault vault = null;
if (!DataVault.vaul t Exi sts("nyVault"))

vault = DataVault.createVault("nmyVault", "password", "salt");
}
el se
vault = DataVault.getVault("nmyVault");
}
vaultExists

Tests whether the specified vault exists.

Syntax
public static bool ean vaul t Exi sts(String nane)

Parameters

¢ name- The vault name.

Returns

vaultExists can return the following values:

Returns Indicates

true The vault exists.

false The vault does not exist.
Examples

* Check if a Data Vault Exists— Checks if a data vault called myVaul t exists, and if so,
deletes it.
if (DataVaul t.vaul t Exi sts("nyVault"))
{

Dat aVaul t . del eteVaul t ("myVaul t");
}

getVault
Retrieves a vault.

Syntax
public static DataVault getVault(String nane)

68

Sybase Unwired Platform

Client Object APl Usage

Parameters

¢ —The vault name.

Returns

getVault returns a Dat aVaul t instance.

If the vault does not exist, a Dat aVaul t Except i on is thrown.
deleteVault

Deletes the specified vault from on-device storage.

Deletes a vault having the specified name. If the vault does not exist, this method throws an
exception. The vault need not be in the unlocked state, and can be deleted even if the password
is unknown.

Syntax
public static void deleteVault(String nane)
Parameters

¢ name- The vault name.

Examples
» Deletea Data Vault — Deletes a data vault called myVaul t .
if (DataVault.vaul t Exi sts("nyVault"))

Dat aVaul t. del eteVaul t ("nmyVaul t");
}

lock
Locks the vault.

Once a vault is locked, you must unlock it before changing the vault’s properties or storing
anything in it. If the vault is already locked, this method has no effect.

Syntax
public void | ock()

Examples

* Locksthedata vault. —Prevents changing the vaults properties or stored content.
vaul t. | ock();

Developer Guide: Android Object APl Applications 69

Client Object APl Usage

isLocked
Tests whether the vault is locked.

Syntax

publi ¢ bool ean i sLocked()

Returns

isLocked can return the following values:
Returns Indicates
true The vault is locked.
false The vault is unlocked.

unlock

Unlocks the vault.

Unlock the vault before changing the its properties or storing anything in it. If the incorrect
password or salt is used, this method throws an exception. If the number of unsuccessful
unlock attempts exceeds the retry limit, the vault is deleted.

Syntax

public void unlock(String password, String salt)

Parameters

* password — The password.
» salt — The encryption salt value.

Returns

If the incorrect password or salt is used, a Dat aVaul t Except i on is thrown this with the
reason | NVALI D_PASSWORD.

Examples

* Unlocksthedatavault. —Once the vault is unlocked you can change the its properties and
stored content.

if (vault.isLocked())

vaul t . unl ock(" password", "salt");

}

70

Sybase Unwired Platform

Client Object APl Usage

setLockTimeout
Determines how long a vault remains unlocked.

Determines how many seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public void setLockTi neout (int timeout)
Parameters

¢ —The number of seconds before the lock times out.

Examples

e Set thelLock Timeout — Sets the lock timeout to 1 hour.
vaul t . set LockTi neout (3600);

getLockTimeout
Retrieves the configured lock timeout period.

Retrieves the number of seconds a vault remains unlocked before it automatically locks. The
default value, 0, indicates that the lock never times out.

Syntax
public int getLockTi neout ()

Returns

getLockTimeout returns an integer value indicating the number of seconds a vault remains
unlocked before it automatically locks. The default value, 0, indicates that the lock never times
out.

Examples

e Set theLock Timeout — Retrieves the lock timeout in seconds.
int tineout = vault.getLockTi neout();

setRetryLimit
Sets the retry limit value for the vault.

Determines how many consecutive unlock attempts (with wrong password) are allowed. If the
retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that an
unlimited number of attempts are permitted. An exception is thrown if the vault is locked when
this method is called.

Developer Guide: Android Object APl Applications 71

Client Object APl Usage

Syntax
public void setRetryLimt(int limt)
Parameters

* limit — The number of consecutive unlock attempts (with wrong password) are allowed.

Examples

e Set the Retry Limit — Sets the retry limit to 5 attempts.
vault.setRetryLinmit(5);

getRetryLimit
Retrieves the retry limit value for the vault.

Retrieves the number of consecutive unlock attempts (with wrong password) are allowed. If
the retry limit is exceeded, the vault is automatically deleted. The default value, 0, means that
an unlimited number of attempts are permitted.

Syntax
public int getRetryLimt()
Returns

getRetryLimit returns an integer value indicating the number of consecutive unlock attempts
(with wrong password) are allowed. If the retry limit is exceeded, the vault is automatically
deleted. The default value, 0, means that an unlimited number of attempts are permitted.

Examples

* SettheRetry Limit —Retrieves the number of consecutive unlock attempts (with wrong
password) that are allowed.

int retrylimt = vault.getRetryLinmt();

setString
Stores a string object in the vault.

Stores a string under the specified name. An exception is thrown if the vault is locked when
this method is called.

Syntax

Parameters

* name- The name associated with the string object to be stored.

72

Sybase Unwired Platform

Client Object APl Usage
* value—The string object to store in the vault.

Examples

* Set a String Value — Creates a test string, unlocks the vault, and sets a string value
associated with the name "t est St ri ng" inthe vault. The f i nal | y clause in the
t ry/ cat ch block ensure that the vault ends in a secure state even if an exception occurs.
string teststring = "ABCDEFabcdef";
try
{

vaul t . unl ock("password", "salt");
vault.setString("testString", teststring);

}
catch (DataVaul t Exception e)

{
Systemout. println("Exception: " + e.toString());
}
finally
{
vaul t. | ock();
}
getString

Retrieves a string value from the vault.

Retrieves a string stored under the specified name in the vault. An exception is thrown if the
vault is locked when this method is called.

Syntax
public String getString(String namne)
Parameters

* name-The name associated with the string object to be retrieved.

Returns

getString returns a string data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

* Get a String Value — Unlocks the vault and retrieves a string value associated with the
name "t est String" inthe vault. The fi nal | y clause inthe t ry/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.
try
{

vaul t . unl ock("password", "salt");

Developer Guide: Android Object APl Applications 73

Client Object APl Usage

string retrievedstring = vault.getString("testString");
latch (Dat aVaul t Excepti on e)

Systemout. println("Exception: " + e.toString());
%inally

vaul t. | ock();

}
setValue
Stores a binary object in the vault.

Stores a binary object under the specified name. An exception is thrown if the vault is locked
when this method is called.

Syntax

public void setVal ue(
string nane,
byte[] val ue

Parameters

* name-The name associated with the binary object to be stored.
» value—The binary object to store in the vault.

Examples

* SetaBinary Value—Unlocks the vault and stores a binary value associated with the name
"t est Val ue" inthevault. Thefi nal | y clauseinthet ry/ cat ch block ensure that
the vault ends in a secure state even if an exception occurs.
try

vaul t . unl ock("password", "salt");
vaul t . set Val ue("testVal ue", new byte[] { 1, 2, 3, 4, 5});

}
catch (DataVaul t Exception e)

{
Systemout. println("Exception: " + e.toString());
}
finally
vaul t. | ock();
}

74

Sybase Unwired Platform

Client Object APl Usage

getValue
Retrieves a binary object from the vault.

Retrieves a binary object under the specified name. An exception is thrown if the vault is
locked when this method is called.

Syntax
public byte[] getValue(string nane)
Parameters

* name - The name associated with the binary object to be retrieved.

Returns

getValue returns a binary data value, associated with the specified name, from the vault. An
exception is thrown if the vault is locked when this method is called.

Examples

* Get aBinary Value— Unlocks the vault and retrieves a binary value associated with the
name "t est Val ue" inthe vault. The f i nal | y clause inthet ry/ cat ch block
ensure that the vault ends in a secure state even if an exception occurs.
try

vaul t . unl ock(" password", "salt");
byte[] retrievedval ue = vaul t. get Val ue("test Val ue");

}
catch (DataVaul t Exception e)

Systemout. println("Exception: " + e.toString());

3
finally
vaul t. | ock();
}
changePassword

Changes the password for the vault.

Modifies all name/value pairs in the vault to be encrypted with a new password/salt. If the
vault is locked or the new password is empty, an exception is thrown.

Developer Guide: Android Object APl Applications 75

Client Object APl Usage

Syntax

Parameters

newPassword — The new password.
newSalt — The new encryption salt value.

Examples

Changethe Password for a Data Vault — Changes the password to " newPasswor d" .
Thefi nal | yclauseinthet ry/ cat ch block ensure that the vault ends in a secure state
even if an exception occurs.

try
{

vaul t . unl ock(" password", "salt");

vaul t . changePasswor d(" newPassword", "newSalt");
}
catch (DataVaul t Exception e)

Systemout. println("Exception: " + e.toString());
}
finally

vaul t. | ock();

}

Callback and Listener APIs

The callback and listener APIs allow you to optionally register a callback handler and listen
for device events, application connection events, and package synchronize and replay events.

See also

Setting Up Callbacks and Listeners on page 20

Callback Handlers

To receive callbacks, you must register a Cal | BackHandl er with the generated database
class, the entity class, or both. You can create a handler by extending the

Def aul t Cal | backHandl er class or by implementing the

com sybase. persi st ence. Cal | backHandl er interface.

In your handler, override the particular callback that you are interested in (for example, voi d
onRepl ayFai | ure(java. |l ang. Obj ect entity)). The callback isexecuted in
the thread that is performing the action (for example, replay). When you receive the callback,
the particular activity is already complete.

76

Sybase Unwired Platform

Client Object APl Usage

Table 1. Callbacks in the Cal | backHandl er Interface

Callback Description

voi d onRepl ayFai - Replay failure response notification. entity is a
lure(java. |l ang. Obj ect entity) | client MBO instance.

voi d onRepl aySuc- Replay success response notification. entityis a
cess(java.lang. Qbj ect entity) [client MBO instance.

i nt onSynchroni ze(com syb- This method is invoked at the specified status of
ase. col | ecti ons. Obj ect Li st the synchronization.groupsis a list of synchroni-
gr oups, Synchr oni zat i onCont ext zation group names. contextis the synchroniza-
cont ext) tion context.

This method can only be received from the gen-
erated database class.

This code shows how to create and register a handler to receive callbacks:
public class MyCal | backHandl er extends Defaul t Cal | backHandl er

/1 inplenentation

}

Cal | backHandl er handl er = new MyCal | backHandl er () ;
<PkgNanme>DB. r egi st er Cal | backHandl| er (handl er) ;

SyncStatusListener API
You can implement a synchronization status listener to track synchronization progress.

Create a listener that implements the Sync St at usLi st ener interface.
public interface SyncStatusListener

{
}

public class MySyncLi stener extends SyncStat usLi stener

bool ean obj ect SyncSt at us(Obj ect SyncSt at usDat a st at usDat a) ;

/1 inplementation

}

Pass an instance of the listener to the synchronize methods.
MySyncLi stener |istener = new MySyncLi stener();

<PkgNanme>DB. synchr oni ze("sync_group"”, |istener);
/'l or <PkgName>DB. synchroni ze(listener); if we want to synchronize
al |

/'] synchroni zati on groups

As the application synchronization progresses, the obj ect SyncSt at us method defined
by the Sync St at usLi st ener interface is called and is passed an

Developer Guide: Android Object APl Applications 77

Client Object APl Usage

hj ect SyncSt at usDat a object. The hj ect SyncSt at usDat a object contains
information about the MBO being synchronized, the connection to which it is related, and the
current state of the synchronization process. By testing the St at e property of the

hj ect SyncSt at usDat a object and comparing it to the possible values in the
SyncSt at usSt at e enumeration, the application can react accordingly to the state of the
synchronization.

Possible uses of obj ect Sync St at us method include changing form elements on the
client screen to show synchronization progress, such as a green image when the
synchronization is in progress, a red image if the synchronization fails, and a gray image when
the synchronization has completed successfully and disconnected from the server.

Note: The obj ect SyncSt at us method of SyncSt at usLi st ener is called and
executed in the data synchronization thread. If a client runs synchronizations in a thread other
than the primary user interface thread, the client cannot update its screen as the status changes.
The client must instruct the primary user interface thread to update the screen regarding the
current synchronization status.

This is an example of SyncSt at usLi st ener implementation:
public class SyncLi stener extends syncStatusLi st ener

publ i ¢ bool ean obj ect SyncSt at us(Obj ect SyncSt at usDat a dat a)

switch (data.getSyncStatusState()) {

case SyncStatusStat e. APPLI CATI ON_SYNC_DONE:
[1inplement your own U indicator bar
br eak;

case SyncStatusStat e. APPLI CATI ON_SYNC_ERROR:
/1inplenment your own Ul indicator bar
br eak;

case SyncStat usSt at e. SYNC_DONE:
[1inmplement your own U indicator bar
br eak;

case SyncStatusSt at e. SYNC_STARTI NG
//inplement your own U indicator bar
br eak;

return false;

Query APIs

The Query API allows you to retrieve data from mobile business objects, to page data, and to
retrieve a query result by filtering. You can also use the Query API to filter children MBOs of a
parent MBO in a one to many relationship.

78 Sybase Unwired Platform

Client Object APl Usage

See also

* Accessing MBO Data on page 29

e Object Queries on page 30

* Dynamic Queries on page 30

» MBQOs with Complex Types on page 31
» Relationships on page 32

Retrieving Data from Mobile Business Objects

You can retrieve data from mobile business objects through a variety of queries, including
object queries, arbitrary find, and through filtering query result sets.

Object Queries

To retrieve data from a local database, use one of the static Object Query methods in the MBO
class.

Object Query methods are generated based on the object queries defined by the modeler in
Unwired WorkSpace. Object Query methods carry query hames, parameters, and return types
defined in Unwired WorkSpace. Object Query methods return either an object, or a collection
of objects that match the specified search criteria.

The following examples demonstrate how to use the Object Query methods of the Customer
MBO to retrieve data.

This method retrieves all customers:
public static com sybase. col | ections. Generi cLi st <Custoner> findAll ()

com sybase. col | ecti ons. Generi cLi st <Cust onmer> custoners = findAl();

This method retrieves all customers in a certain page:
public static com sybase. col | ections. Generi cLi st <Cust onmer >
findAl'l (int skip, int take)

com sybase. col | ecti ons. Generi cLi st <Cust ormer > custonmers =
Custoner.findAll (10, 5);

Suppose the modeler defined the following Object Query for the Customer MBO in Sybase
Unwired Workspace:

* name- findByFirstName

* parameter — String firstName

e query definition — SELECT x.* FROM Customer x WHERE x.fname = :firstName
* return type — Sybase.Collections.GenericList

The preceding Object Query results in this generated method:

public static com sybase. col | ections. Generi cLi st <Cust oner >
findByFirstNanme(String firstNane)

Developer Guide: Android Object APl Applications 79

Client Object APl Usage

com sybase. col | ecti ons. Generi cLi st <Cust onmer > custoners =
Cust oner. fi ndByFi r st Name(" f name") ;

Query and Related Classes
The following classes define arbitrary search methods and filter conditions, and provide
methods for combining test criteria and dynamically querying result sets.

Table 2. Query and Related Classes

Class Description

Query Defines arbitrary search methods and can be com-
posed of search conditions, object/row state filter
conditions, and data ordering information.

AttributeTest Defines filter conditions for MBO attributes.

CompositeTest Contains a method to combine test criteria using the
logical operators AND, OR, and NOT to create a
compound filter.

QueryResultSet Provides for querying a result set for the dynamic
query API.
Selectltem Defines the entry of a select query. For example,

"select x.attrl from MBO x", where "X.attr1" rep-
resents one Selectltem.

Column Used in a subquery to reference the outer query's
attribute.

In addition queries support select, where, and join statements.

Arbitrary Find
The arbitrary find method lets custom device applications dynamically build queries based on

user input. The Query. DI STI NCT property lets you exclude duplicate entries from the
result set.

The arbitrary find method also lets the user specify a desired ordering of the results and object
state criteria. A Quer y classisincluded in the client object API. The Quer y class is the single
object passed to the arbitrary search methods and consists of search conditions, object/row
state filter conditions, and data ordering information.

Define these conditions by setting properties in a query:

e TestCriteria—criteria used to filter returned data.
e SortCriteria— criteria used to order returned data.
* Skip —an integer specifying how many rows to skip. Used for paging.

80

Sybase Unwired Platform

Client Object APl Usage

* Take—an integer specifying the maximum number of rows to return. Used for paging.

Setthe Query. Di sti nct propertytot r ue toexclude duplicate entries from the result set.
The default value is f al se for entity types, and its usage is optional for all other types.

Query queryl = new Query();
queryl.setDistinct(true);

TestCriteriacanbeanAttri but eTest oraConpositeTest.

TestCriteria

You can construct a query SQL statement to query data from a local database. You can create a
Test Criteri aobject (in thisexample, At t r i but eTest) to filter results. You can also
query across multiple tables (MBOs) when using the execut eQuery API.

Query query2 = new Query();

query2. sel ect ("c. fnane, c. | name, s. order_date, s.regi on");
query2.from("Custoner", "c");

I/

/1 Conveni ence nethod for adding a join to the query
/] Detailed construction of the join criteria
query2.join("Sal es_order", "s", "c.id", "s.cust_id");
AttributeTest ts = new AttributeTest();
ts.setAttribute("fname");

ts. set Test Val ue("Beth");

query2. where(ts);

QueryResul t Set qrs = Sanpl eAppDB. execut eQuery(query?2);

Note: You must use explicit column names in select clauses; you cannot use wildcards.

AttributeTest
AnAttri but eTest defines a filter condition using an MBO attribute, and supports
multiple conditions.

 IS_NULL
« NOT_NULL
« EQUAL

« NOT_EQUAL
 LIKE

« NOT_LIKE
« LESS_THAN

. LESS_EQUAL

+ GREATER_THAN
« GREATER_EQUAL
« CONTAINS

« STARTS_WITH

« ENDS_WITH

Developer Guide: Android Object APl Applications 81

Client Object APl Usage

« DOES_NOT_START WITH
« DOES_NOT_END_WITH
« DOES_NOT_CONTAIN

¢ IN
« NOT_IN
« EXISTS

« NOT_EXISTS

For example, the Java code shown below is equivalent to this SQL query:
SELECT * from A where id in [1,2, 3]

Query query = new Qery();

AttributeTest test = new AttributeTest();
test.setAttribute("id");

com sybase. col | ecti ons. Obj ectLi st v = new
com sybase. col | ecti ons. Obj ect Li st ();
v.add("1");

v.add("2");

v.add("3");

test. set Val ue(v);
test.setQperator(AttributeTest.IN);
query. where(test);

When using EXISTS and NOT_EXISTS, the attribute name is not required in the
Attri but eTest . The query can reference an attribute value via its alias in the outer scope.
The Java code shown below is equivalent to this SQL query:

SELECT a.id from Al |l Type a where exists (select b.id fromAll Type b
where b.id = a.id)

Query query = new Query();
query.select("a.id");

query. fron("Al | Type", "a");

AttributeTest test = new AttributeTest();

Query existQuery = new Query();

exi st Query.select("b.id");

exi stQuery.from"All Type", "b");

Colum cl = new Col um();
cl.setAlias("a");

cl.setAttribute("id");

AttributeTest testl = new AttributeTest();
testl.setAttribute ("b.id");

testl. setVal ue(cl);

testl.setOperator (AttributeTest. EQUAL);

exi st Query. where(testl);

test. set Val ue(exi st Query);

test.set Operator (AttributeTest. EXI STS);
query. where(test);

QueryResul t Set gqs = DsTest DB. execut eQuery(query);

82

Sybase Unwired Platform

Client Object APl Usage

SortCriteria
Sort CriteriadefinesaSort O der,which contains an attribute name and an order type
(ASCENDING or DESCENDING).

For example,
Query query = new Qery();

query.select("c.lnane, c.fnanme");
query. from("Customer", "c");

AttributeTest aTest = new AttributeTest();
aTest.setAttribute("state");

aTest . set Test Val ue(" CA");

aTest . set Test Type(Attri buteTest. EQUAL) ;
query.setTestCriteria(aTest);

SortCriteria sort = new SortCriteria();
sort.add("| nane", Sort Order Type. ASCENDI NG ;
sort.add("fnanme", SortOrder Type. ASCENDI NG ;
query.setSortCriteria(sort);

Paging Data
On low-memory devices, retrieving up to 30,000 records from the database may cause the
custom client to fail and throw an Qut Of Menor yExcept i on.

Consider using the Query object to limit the result set:

Query props = new Qery();
props. set Ski p(10);
props. set Take(5);

com sybase. col | ecti ons. Obj ect Li st customers =
Custoner. fi ndWt hQuery(props);

Aggregate Functions
You can use aggregate functions in dynamic queries.

When using the Query. sel ect (Stri ng) method, you can use any of these aggregate

functions:
Aggregate Function Supported Datatypes
COUNT integer
MAX string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime
M N string, binary, char, byte, short, int, long, integer,
decimal, float, double, date, time, dateTime

Developer Guide: Android Object APl Applications 83

Client Object APl Usage

Aggregate Function Supported Datatypes

SUM byte, short, int, long, integer, decimal, float, dou-
ble

AVG byte, short, int, long, integer, decimal, float, dou-
ble

If you use an unsupported type, a Per si st enceExcept i on is thrown.

Query queryl = new Query();

queryl.select ("MAX(c.id), MN(c.nane) as mi nNanme");

For iOS, we need a code sample equivalent to this WM sample:

Grouping Results
Apply grouping criteria to your results.

To group your results according to specific attributes, use the Query. gr oupBy(Stri ng
groupByl t em) method. For example, to group your results by ID and name, use:

String groupByltem= ("c.id, c.nane");
Query queryl = new Query();

//other code for queryl
queryl. groupBy(groupByltem;

Filtering Results
Specify test criteria for group queries.

You can specify how your results are filtered by using the

Query. havi ng(com sybase. persi stence. Test Cri teria) method for
queries using G- oupBy. For example, limit your AllType MBO's results to c. i d attribute

values that are greater than or equal to 0 using:

Query query2 = new Query();
query2.select("c.id, SUMc.id)");
query2.from("Al | Type", "c");

AttributeTest ts = new AttributeTest();
ts.setAttribute("c.id");

ts.setValue("0");
ts.setQperator(AttributeTest. GREATER_EQUAL) ;
query2. where(ts);

query2.groupBy("c.id");

AttributeTest ts2 = new AttributeTest();
ts2.setAttribute("c.id");
ts2. set Val ue("0");

ts2.set Operator (Attri but eTest. GREATER EQUAL) ;

query2. havi ng(ts2);

84

Sybase Unwired Platform

Client Object APl Usage

Concatenating Queries
Concatenate two queries having the same selected items.

The Quer y class methods for concatenating queries are:

« Uni on(Query)

« Uni onAl |l (Query)
« Except (Query)

« Intersect(Query)

This example obtains the results from one query except for those results appearing in a second
query:

Q.Jery queryl = new Query();
... Ilother code for queryl

QJery query2 = new Query();
... Ilother code for query 2

Query query3 = queryl. except (query2);
Sanpl eAppDB. execut eQuer y(query3);

Subqueries
Execute subqueries using clauses, selected items, and attribute test values.

You can execute subqueries usingthe Quer y. from(Query query, String alias)
method. For example, the Java code shown below is equivalent to this SQL query:
SELECT a.id FROM (SELECT b.id FROM Al |l Type b) AS a WHERE a.id =

Use this Java code:

Query queryl = new Query();
queryl.select("b.id");

queryl.from("All Type", "b");

Query query2 = new Query();
query2.select("a.id");

query2. fron(queryl "a");
AttributeTest ts = new AttributeTest();
ts.setAttribute("a.id");
ts.setValue(l);

query2. where(ts);

com sybase. persi stence. QueryResul t Set gs =
DsTest DB. execut eQuer y(query?2);

You can use a subquery as the selected item of a query. Use the Sel ect | t emto set selected
items directly. For example, the Java code shown below is equivalent to this SQL query:

SELECT (SELECT count (1) FROM Al l Type ¢ WHERE c.id >= d.id) AScn, id
FROM Al | Type d

Use this Java code:

Query sel Query = new Query();
sel Query. sel ect ("count (1)");

Developer Guide: Android Object APl Applications 85

Client Object APl Usage

sel Query. fronm("Al'l Type", "c");

AttributeTest ttt = new AttributeTest();
ttt.setAttribute("c.id");
ttt.setOperator(AttributeTest. GREATER EQUAL) ;
Colum cl = new Col um();

cl.setAlias("d");

cl.setAttribute("id");

ttt.setVal ue(cl);

sel Query. where(ttt);

com sybase. col | ecti ons. Generi cLi st <com sybase. persi st ence. Sel ectlte
nm> sel ectltens = new

com sybase. col | ecti ons. Generi cLi st <com sybase. persi stence. Sel ectlte
() ;

Selectltemitem = new Selectlten();

item set Query(sel Query);

itemsetAias("cn");

selectltens. add(item;

item = new Sel ectltenm();

itemsetAttribute("id");

itemsetAias("d");

selectltens. add(item;

Query subQuery2 = new Query();

subQuery?2. set Sel ectltens(sel ectltens);

subQuery2. fron("Al | Type", "d");

com sybase. persi stence. QueryResul t Set gs =

DsTest DB. execut eQuer y(subQuery?2);

CompositeTest
AConposi t eTest combinesmultiple Test Cri t eri a using the logical operators AND,

OR, and NOT to create a compound filter.

Complex Example
This example shows the usage of Conposi t eTest, Sort Criteri a,and Query to
locate all customer objects based on particular criteria.

« FirstName = John AND LastName = Doe AND (State = CA OR State = NY)
e Customer is New OR Updated

e Ordered by LastName ASC, FirstName ASC, Credit DESC

» Skip the first 10 and take 5

Query props = new Qery();

//define the attribute based conditions

[/ Users can pass in a string if they know the attri bute nane. Rl
colum nanme = attribute nane.

Conposi t eTest i nner ConpTest = new ConpositeTest();
i nner ConpTest . set Oper at or (Conposi teTest. OR) ;

i nner ConpTest . add(new Attri buteTest("state", "CA",
AttributeTest. EQUAL));

i nner ConpTest . add(new AttributeTest("state", "NY",
AttributeTest. EQUAL));

Conposi t eTest out er ConpTest = new ConpositeTest();
out er ConpTest . set Oper at or (Conposi teTest. OR) ;

86 Sybase Unwired Platform

Client Object APl Usage

out er ConpTest . add(new Attri buteTest ("fnanme", "Jane",
AttributeTest. EQUAL));

out er ConpTest . add(new Attri buteTest ("l name", " Doe",
AttributeTest. EQUAL));

out er ConpTest . add(i nner ConpTest) ;

//define the ordering

SortCriteria sort = new SortCriteria();

sort.add("fnanme", SortOrder. ASCENDI NG ;

sort.add("| nanme", Sort Order.ASCENDI NG ;

//set the Query object

props.set TestCriteria(outerConpTest);
props.setSortCriteria(sort);

props. set Ski p(10);

props. set Take(5);

com sybase. col | ecti ons. Generi cLi st <Cust omer > custonmers2 =
Cust oner . Fi ndW t hQuer y(pr ops) ;

QueryResultSet

The Quer yResul t Set class provides for querying aresult set from the dynamic query API.
Quer yResul t Set is returned as a result of executing a query.

The following example shows how to filter a result set and get values by taking data from two
mobile business objects, creating a Quer vy, filling in the criteria for the query, and filtering the
query results:

com sybase. persi stence. Query query = new
com sybase. persi stence. Query();
query. sel ect("c.fnane, c.| nane, s. order _date, s.region");
query. from("Customer ", "c");
query.join("Sal esOder ", "s", " s.cust_id ", "c.id");
AttributeTest at = new AttributeTest();
at.setAttribute("l nane");
at . set Test Val ue("Devlin");
query.setTestCriteria(at);
QueryResul t Set gqrs = Sanpl eAppDB. execut eQuery(query);
whil e(qgrs. next())
{

System out . pri nt(qrs getStrl ng(1l));

System out . print ("

System out . printl n(qrs get Stri ngByName("c. fnange"));

System out . pri nt(qrs getStrl ng(2));
System out . print ("
System out . printl n(qrs get Stri ngByName("c. | nange"));

System out . pri nt(qrs getStrl ng(3));
System out . print ("
System out . printl n(qrs get Stri ngByNanme("s. order_date"));

System out . pri nt(qrs getStrl ng(4));
System out . print ("
System out . printl n(qrs get Stri ngByName("s.region"));

Developer Guide: Android Object APl Applications 87

Client Object APl Usage

Retrieving Relationship Data

A relationship between two MBOs allows the parent MBO to access the associated MBO. A
bidirectional relationship also allows the child MBO to access the associated parent MBO.

Assume there are two MBOs defined in Unwired Server. One MBO is called Customer and
contains a list of customer data records. The second MBO is called SalesOrder and contains
order information. Additionally, assume there is an association between Customers and
Orders on the customer ID column. The Orders application is parameterized to return order
information for the customer ID.

Cust oner customer = Customer.findByld (101);

com sybase. col | ecti ons. Obj ectLi st orders =
cust oner. get Sal esOrders() ;

You can also use the Quer y class to filter the return MBO list data.

Query props = new Query();

/] set query paraneters

com 'sS/base. col l ections. Qbj ectList orders =
cust oner. get Sal esOrdersFi | t er By(props);

Persistence APIs

The persistence APIs include operations and object state APIs.

See also
e Manipulating Data on page 33

Operations APIs

Mobile business object operations are performed on an MBO instance. Operations in the
model that are marked as create, update, or delete (CUD) operations create non-static
instances of operations in the generated client-side objects.

Any parameters in the create, update, or delete operation that are mapped to the object’s
attributes are handled internally by the client object API, and are not exposed. Any parameters
not mapped to the object’s attributes are left as parameters in the generated object API. The
code examples for create, update, and delete operations are based on the fill from attribute
being set. Different MBO settings affect the operation methods.

Note: If the Sybase Unwired Platform object model defines one instance of a create operation
and one instance of an update operation, and all operation parameters are mapped to the
object’s attributes, then a Save method can be automatically generated which, when called
internally, determines whether to insert or update data to the local client-side database. In
other situations, where there are multiple instances of create or update operations, methods
such as Save cannot be automatically generated.

88

Sybase Unwired Platform

Client Object APl Usage

See also
e Creating, Updating, and Deleting MBQOs on page 33
» Other Operations on page 34

Client Database APIs
The generated package database class provides methods for managing the client database.

public static void createDatabase()
public static void del et eDat abase()

Typically, cr eat eDat abase does not need to be called since it is called internally when
necessary. An application may use del et eDat abase when the client database contains
corrupted data and needs to be cleared.

Create Operation

The cr eat e operation allows the client to create a new record in the local database. To
execute a create operation on an MBO, create a new MBO instance, and set the MBO
attributes, then call the save() orcreat e() operation. To propagate the changes to the
server, call submi t Pendi ng.

Custoner cust = new Custoner();

cust.set Fnane ("supAdmin");

cust. set Conpany_nane("Sybase");

cust . set Phone("777-8888");

cust.create();// or cust.save();

cust. subm t Pendi ng() ;

<PkgNanme>DB. synchr oni ze() ;

/1 or <PkgNanme>DB. synchroni ze (String synchronizati onG oup)

Update Operation

The updat e operation updates a record in the local database on the device. To execute update
operations onan MBO, get an instance of the MBO, set the MBO attributes, then call either the
save() orupdat e() operation. To propagate the changes to the server, call

submi t Pendi ng.

Cust oner cust = Custoner.findByld(101);

cust . set Fnanme(" supAdm n") ;

cust . set Conpany_nane(" Sybase") ;

cust . set Phone("777-8888") ;

cust.save(); // or cust.update();

cust . submi t Pendi ng() ;

<PkgNanme>DB. synchr oni ze() ;

/1l or <PkgName>DB. synchroni ze (String synchronizati onG oup)

To update multiple MBOs in arelationship, call submi t Pendi ng() onthe parent MBO, or
call submi t Pendi ng() on the changed child MBO:

Cust oner cust = Custoner.findByld(101);
com sybase. col | ections. bj ectLi st orders = cust.get Sal esOr ders();

Developer Guide: Android Object APl Applications 89

Client Object APl Usage

Sal esOrder order = (Sal esOrder)orders. get Byl ndex(0);
order.setOrder _date(new java.util.Date());

order. save();

cust . submi t Pendi ng() ;

Delete Operation

The del et e operation allows the client to delete a new record in the local database. To
execute delete operations on an MBO, get an instance of the MBO, set the MBO attributes,
then call the del et e operation. To propagate the changes to the server, call

submi t Pendi ng.

Custoner cust = Customer.findByld(101);
cust.del ete();

For MBOs in a relationship, perform a delete as follows:

Cust omer cust = Customer.findByld(101);

com sybase. col |l ecti ons. Obj ectLi st orders =

cust. get Sal esOrders();
Sal esOrder order = (Sal esOrder)orders. get Byl ndex(0);
order.del ete();
cust. subm t Pendi ng() ;

<PkgName>DB. synchr oni ze() ;

/1 or <PkgNanme>DB. synchroni ze (String synchronizati onG oup)

Save Operation

The save operation saves a record to the local database. In the case of an existing record, a
save operation calls the updat e operation. If a record does not exist, the save operation
creates a new record.

[/ Updat e an exi sting custoner
Cust oner cust = Customer.findByld(101);
cust. save();

[/l nsert a new custoner
Cust oner cust = new Custormer();
cust. save();

Other Operation

Operations other than cr eat e, updat e, or del et e operations are called "other"
operations. An Qt her operation class is generated for each operation in the MBO that isnota
creat e, updat e, or del et e operation.

Suppose the Customer MBO has an Other operation "other"”, with parameters "P1" (string),
"P2" (int), and "P3" (date). This results in a Cust orrer &t her Oper at i on class being
generated, with "P1", "P2", and "P3" as its attributes.

To invoke the Other operation, create an instance of Cust oner Gt her Oper at i on, and set
the correct operation parameters for its attributes. For example:

Cust oner O her Oper ati on ot her = new Custoner G her Operati on();
ot her. set P1("soneval ue");

90

Sybase Unwired Platform

Client Object APl Usage

ot her. set P2(2);

ot her. set P3(new Date());

ot her. save();

ot her . subm t Pendi ng() ;

<PkgName>DB. synchroni ze(); // or <PkgNane>DB.synchronize (String
synchroni zati onG oup)

Pending Operation

You can manage the pending state.

» cancelPending —cancels the previous cr eat e, updat e, or del et e operations on the
MBO. It cannot cancel submitted operations.

» submitPending—submits the operation so that it can be replayed on the Unwired Server.
A request is sent to the Unwired Server during a synchronization.

* submitPendingOper ations — submits all the pending records for the entity to the
Unwired Server. This method internally invokes the subni t Pendi ng method on each
of the pending records.

» cancelPendingOper ations — cancels all the pending records for the entity. This method
internally invokes the cancel Pendi ng method on each of the pending records.

Cust oner custoner = Custoner.findByld(101);
i f (errorHappened) {
cust oner . cancel Pendi ng() ;

el se {
cust oner. subm t Pendi ng() ;
}

You can group multiple operations into a single transaction for improved performance:

/1 load the customer MBO with custoner |ID 100
Cust oner custoner = Custoner.findByPri maryKey(100);

[/ Change phone nunber of that custoner
cust oner . set Phone("8005551212") ;

/] use one transaction to do save and submi t Pendi ng
com sybase. persi stence. Local Transaction tx =
MyPackageDB. begi nTransacti on();

try

{

cust oner. save();
cust oner . subm t Pendi ng() ;
tx.conmt();

}
catch (Exception e)

tx. rol |l back();
}

Complex Attribute Types
Some back-end datasources require complex types to be passed in as input parameters. The
input parameters can be any of the allowed attribute types, including primitive lists, objects,

Developer Guide: Android Object APl Applications 91

Client Object APl Usage

and object lists. The MBO examples have attributes that are primitive types (such asi nt ,
| ong, or st ri ng), and make use of the basic database operations (cr eat e, updat e, and
del et e).

Passing Structures to Operations

An Unwired WorkSpace project includes an example MBO that is bound to a Web service data
source that includes a cr eat e operation that takes a structure as an operation parameter.
MBOs differ depending on the data source, configuration, and so on, but the principles are
similar.

The SimpleCaseList MBO contains a cr eat e operation that has a number of parameters,
including one named HEADER _ that is a structure datatype named
Aut hent i cat i onl nf o, defined as:

Aut henti cati onl nfo
user Nane: String
password: String
aut hentication: String
locale: String
ti meZone: String

Structures are implemented as classes, so the parameter HEADER _is an instance of the
Aut hent i cat i onl nf o class. The generated code for the cr eat e operation is:

public void create(conpl ex.Aut henticationlnfo
_HEADER ,java.lang. String escal ated, java.l ang. String
hotlist,java.lang. String orig_Submtter,java.lang. String
pendi ng, j ava. | ang. Stri ng workLog)

This example demonstrates how to initialize the Aut hent i cat i onl nf o class instance
and pass it, along with the other operation parameters, to the cr eat e operation:

Aut henti cati onl nfo authen = new Aut henticationlnfo();
aut hen. set User Nane(" Denp") ;
aut hen. set Password("");
aut hen. set Aut henti cation("");
aut hen. set Local e("EN_US") ;
aut hen. set Ti neZone(" GMI") ;

Si npl eCaselLi st newCase = new Si npl eCaseli st ();
newCase. set Case_Type(" | nci dent");

newCase. set Cat egor y(" Net wor ki ng") ;

newCase. set Depart nent (" Mar keti ng");

newCase. set Descri pti on("A new hel p desk case.");
newCase. set | t en(" Confi guration");

newCase. set O fi ce("#3 Sybase Drive");

newCase. set Submi tt ed_By("Dermp");

newCase. set Phone_Nunber (" #0861023242526") ;
newCase. set Priority("H gh");

newCase. set Regi on(" USA") ;

newCase. set Request _Urgency("Hi gh");

newCase. set Request er _Logi n_Nane(" Denp") ;

newCase. set Request er _Nare(" Denp") ;

newCase. setSite("25 Bay St, Muntain View, CA");

92

Sybase Unwired Platform

newCase.
newCase.
newCase.
newCase.
newCase.

newCase. cr eat e(aut hen,

"wor kl 0g") ;

Client Object APl Usage

set Sour ce(" Requester");

set St at us(" Assi gned") ;

set Sunmar y(" Mar kHel | ous was here Fix it.");
set Type("Access to Files/Drives");

set Creat e_Ti ne(new

java.sql. Timestanp(SystemcurrentTineMI1is()));

"Gther", "Oher", "Denmp", "false",

newCase. subm t Pendi ng() ;

Object State APIs

The object state APIs provide methods for returning information about the state of an entity in

an application.

Entity State Management

The object state APIs provide methods for returning information about entities in the

database.

All entities that support pending state have the following attributes:

Name

Type

Description

i sNew

bool ean

Returns true if this entity is new, but has not yet been
created in the client database.

i sCreated

bool ean

Returns true if this entity has been newly created in the
client database, and one of the following is true:

e The entity has not yet been submitted to the server
with a replay request.

« Theentity has been submitted to the server, but the
server has not finished processing the request.

» Theserver rejected the replay request (r epl ay-
Fai | ur e message received).

isDirty

bool ean

Returns true if this entity has been changed in memory,
but the change has not yet been saved to the client
database.

i sDel et ed

bool ean

Returns true if this entity was loaded from the database
and subsequently deleted.

Developer Guide: Android Object APl Applications 93

Client Object APl Usage

Name

Type

Description

i sUpdat ed

bool ean

Returns true if this entity has been updated or changed
in the database, and one of the following is true:

e The entity has not yet been submitted to the server
with a replay request.

e The entity has been submitted to the server, but the
server has not finished processing the request.

» Theserver rejected the replay request (r epl ay-
Fai | ur e message received).

pendi ng

bool ean

Returns true for any row that represents a pending
creat e,updat e,ordel et e operation, orarow
that has cascading children with a pending operation.

pendi ngChange

char

If pending is true, this attribute's value is 'C' (create),
'U' (update), 'D' (delete), or 'P' (to indicate that this
MBO is a parent in a cascading relationship for one or
more pending child objects, but this MBO itself has no
pending create, update or delete operations). If pend-
ing is false, this attribute's value is 'N'".

repl ayCount er

long

Returns al ong value that is updated each time a row
is created or modified by the client. This value is a
unique value obtained from Key Gener a-

t or. gener at el Dmethod. Note that the value
increases every time it is retrieved.

r epl ayPendi ng

long

Returns a| ong value. When a pending row is sub-
mitted to the server, the value of r epl ay Count er
is copied to r epl ayPendi ng. This allows the cli-
ent code to detect if a row has been changed since it was
submitted to the server (that is, if the value of r e-

pl ayCount er is greater than r epl ayPend-

i ng).

repl ayFail ure

long

Returnsal ong value. When the server responds with
arepl ayFai | ur e message for a row that was
submitted to the server, the value of r epl ay-
Count er iscopiedtor epl ayFai | ur e, and
repl ayPendi ngissetto0

94

Sybase Unwired Platform

Entity State Example

Shows how the values of the entities that support pending state change at different stages

Client Object APl Usage

during the MBO update process. The values that change between different states appear in

bold.

Note these entity behaviors:

e Thei sDirty flag is set if the entity changes in memory but is not yet written to the

database. Once you save the MBO, this flag clears.

* Therepl ayCount er value that gets sent to the Unwired Server is the value in the
database before you call submi t Pendi ng. After a successful replay, that value is

imported from the Unwired Server.

» The last two entries in the table are two possible results from the operation; only one of

these results can occur for a replay request.

Description

Flags/Values

After reading from the database, before any changes
are made.

isNew=false
isCreated=false
isDirty=false
isDeleted=false
isUpdated=false
pending=false
pendingChange='N'
replayCounter=33422977
replayPending=0

replayFailure=0

Developer Guide: Android Object APl Applications

95

Client Object APl Usage

Description Flags/Values

One or more attributes are changed, but changes not | isNew=false
saved. isCreated=false
isDirty=true
isDeleted=false
isUpdated=false
pending=false
pendingChange='N'
replayCounter=33422977
replayPending=0

replayFailure=0

Aftrentity. save()[entity save] | isNew=false
orentity.update()[entity up-
dat e] is called.

isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="U'
replayCounter=33424979
replayPending=0

replayFailure=0

96 Sybase Unwired Platform

Client Object APl Usage

Description

Flags/Values

Afterentity. subm t Pendi ng() [en-
tity subm t Pendi ng] is called to submit
the MBO to the server.

isNew=false
isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=33424981

replayFailure=0

Possible result: the Unwired Server accepts the up-
date, sends animportandar epl ayResul t for
the entity, and then refreshes the entity from the
database.

isNew=false
isCreated=false
isDirty=false
isDeleted=false
isUpdated=false
pending=false
pendingChange="N'
replayCounter=33422977
replayPending=0

replayFailure=0

Developer Guide: Android Object APl Applications

97

Client Object APl Usage

Description Flags/Values

Possible result: The Unwired Server rejects the up- | isNew=false
date, sends ar epl ayFai | ur e for the entity,
and refreshes the entity from the database

isCreated=false
isDirty=false
isDeleted=false
isUpdated=true
pending=true
pendingChange="'U’
replayCounter=33424981
replayPending=0
replayFailure=33424981

Mobile Business Object States
A mobile business object can be in one of three states.

» Original state — the state before any CUD operation.
* Downloaded state — the state downloaded from the Unwired Server.
» Current state — the state after any CUD operation.

The mobile business object class provides properties for querying the original state and the
downloaded state:

public Custoner getOriginal State();
publ i ¢ Custoner get Downl oadState();

Cust oner cust = Custoner.findByld(101); /] state 1
cust. set Fname("first Name");

cust . set Conpany_nane(" Sybase") ;

cust. set Phone("777-8888") ;

cust. save(); /Il state 2
Custoner org = cust.getOriginal State(); /] state 1
[/ suppose there is new downl oad for Custoner 101 here

Cust oner downl oad = cust. get Downl oadSt at e() ; /] state 3
cust . cancel Pendi ng() ; /Il state 3

Using all three states, the application can resolve most conflicts that may occur.

Refresh Operation
The refresh operation of an MBO allows you to refresh the MBO state from the client
database.

For example:

Cust oner cust = Customer.findByld(101);
cust . set Fnane(" newNane") ;
cust.refresh();// newNane is discarded

98 Sybase Unwired Platform

Client Object APl Usage

MetaData and Object Manager API

The MetaData and Object Manager API allows you to access metadata for database, classes,
entities, attributes, operations, and parameters.

MetaData and Object Manager API

Some applications or frameworks can operate against MBOs generically by invoking MBO
operations without prior knowledge of MBO classes. This can be achieved by using the
MetaData and Object Manager APIs.

These APIs allow retrieving the metadata of packages, MBOs, attributes, operations, and
parameters during runtime. The APIs are especially useful for a runtime environment without
a reflection mechanism such as J2ME.

You can generate metadata classes using the —nd code generation option. You can use the—r m
option to generate the object manager class. You can also generate metadata classes by
selecting the option Gener atemetadata classesor Gener atemetadataand object manager
classes option in the code generation wizard in the mobile application project.

ObjectManager

The Obj ect Manager classallows an application to call the Object APl in a reflection style.
The Object Manager is useful for platforms without native reflection support (such as J2ME).
As the Android platform provides its own reflection AP, it is recommended to use platform
native reflection API instead.

Cust oner obj ect = Custoner.findByld(123);

Obj ect Manager rm = new <PkgName>DB RM) ;

Cl assMet aData custonmer =

<PkgNanme>DB. get Met aDat a() . get G ass(" Cust oner");
AttributeMetaData | name = customner.getAttribute("l nane");
Oper ati onMet aDat a save = custoner. get Qperati on("save");
hj ect myMBO = rm newQbj ect (cust omer) ;

rm set Val ue(nmyMBO, | name, "Steve");

rminvoke(object, save, new ObjectList());

DatabaseMetaData

The Dat abaseMet aDat a class holds package-level metadata. You can use it to retrieve
data such as synchronization groups, the default database file, and MBO metadata.

Any entity for which "allow dynamic queries" is enabled generates attribute metadata.
Depending on the options selected in the Eclipse IDE, metadata for attributes and operations
may be generated for all classes and entities.

Dat abaseMet aDat a dnd = <PkgName>DB. get Met aDat a() ;
com sybase. col |l ections. StringLi st syncG oups =

Developer Guide: Android Object APl Applications 99

Client Object APl Usage

dnd. get Synchroni zati onG oups() ;
for(int i=0; i<syncG oups.size(); i++)
{

String syncGoup = syncGoups.iten(i);
System out . println(syncG oup);

}

ClassMetaData

The G assMet aDat a class holds metadata for the MBO, including attributes and
operations.

AttributeMetaData | name = customer Met aDat a. get Attri bute("l name");
Oper ati onMet aDat a save = cust oner Met aDat a. get Qper ati on("save");

AttributeMetaData

The At tri but eMet aDat a class holds metadata for an attribute such as attribute name,
column name, type, and maxlength.

System out. printl n(l name. get Name());
System out . printl n(l name. get Col um());
System out . printl n(l nane. get MaxLengt h());

Exceptions

Reviewing exceptions allows you to identify where an error has occurred during application
execution.

Handling Exceptions
The Client Object API defines server-side and client-side exceptions.

Server-Side Exceptions
A server-side exception occurs when a client tries to update or create a record and the Unwired
Server throws an exception.

A server-side exception results in a stack trace in the server log, and a log record
(LogRecor dl npl) imported to the client with information on the problem.

HTTP Error Codes

Unwired Server examines the EIS code received in a server response message and maps itto a
logical HTTP error code, if a corresponding error code exists. If no corresponding code exists,
the 500 code is assigned to signify either a Sybase Unwired Platform internal error, or an
unrecognized EIS error. The EIS code and HTTP error code values are stored in log records.

100 Sybase Unwired Platform

These tables list recoverable and unrecoverable error codes. All error codes that are not

Client Object APl Usage

explicitly considered recoverable are considered unrecoverable.

Table 3. Recoverable Error Codes

Error Code Probable Cause
409 Backend EIS is deadlocked.
503 Backend EIS is down, or the connection is terminated.
Table 4. Unrecoverable Error Codes
Error Code Probable Cause Manual Recovery Action
401 Backend EIS credentials wrong. | Change the connection information, or
backend user password.
403 User authorization failed on Un- | N/A
wired Server due to role con-
straints (applicable only for
MBS).
404 Resource (table/Web service/BA- | Restore the EIS configuration.
PI1) not found on backend EIS.
405 Invalid license for the client (ap- | N/A
plicable only for MBS).
412 Backend EIS threw a constraint | Delete the conflicting entry in the EIS.
exception.
500 Sybase Unwired Platform internal | N/A
error in modifying the CDB
cache.

Error code 401 is not treated as a simple recoverable error. If the

SupThr owCr edent i al Request On401Er r or context variable is set to true (the

default), error code 401 throws a Cr edent i al Request Except i on, which sends a
credential request notification to the user's inbox. You can change this behavior by modifying
the value of the SupThr owCr edent i al Request On401Er r or context variable in
Sybase Control Center. If SupThr owCr edent i al Request On401Er r or isset to false,
error code 401 is treated as a normal recoverable exception.

Developer Guide: Android Object APl Applications

101

Client Object APl Usage

Mapping of EIS Codes to Logical HTTP Error Codes

A list of SAP® error codes mapped to HTTP error codes. By default, SAP error codes that are
not listed map to HTTP error code 500.

Table 5. Mapping of SAP Error Codes to HTTP Error Codes

Constant Description HTTP Error Code

JCO_ERROR_COMMUNICATION Exception caused by net- | 503
work problems, such as
connection breakdowns,
gateway problems, or un-
availability of the remote
SAP system.

JCO_ERROR_LOGON_FAILURE Authorization failures dur- | 401
ing login. Usually caused
by unknown user name,
wrong password, or invalid
certificates.

JCO_ERROR_RESOURCE Indicates that JCO has run | 503
out of resources such as
connections in a connec-
tion pool.

JCO_ERROR_STATE_BUSY The remote SAP system is | 503
busy. Try again later.

Client-Side Exceptions

Device applications are responsible for catching and handling exceptions thrown by the client
object API.

Note: See Callback Handlers.

Exception Classes

The Client Object API supports exception classes for queries and for the messaging client.

SynchronizeException — thrown when an error occurs during synchronization.

Per sistenceException — thrown when trying to access the local database.
ObjectNotFoundException —thrown when trying to load an MBO that is not inside the
local database.

NoSuchOperationException — thrown when trying to call a method (using the Object
Manager API) but the method is not defined for the MBO.

NoSuchAttributeException —thrown when trying to access an attribute (using the Object
Manager API) but the attribute is not defined for the MBO.

102

Sybase Unwired Platform

Client Object APl Usage

» ApplicationRuntimeException —thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error.

* ConnectionPropertyException —thrown when a call to start the connection, register the
application, or unregister the application cannot be completed due to an error in a
connection property value or application identifier.

Developer Guide: Android Object APl Applications 103

Client Object APl Usage

104 Sybase Unwired Platform

Index
A

ADT plug-in 6
Android SDK 6
application registration 17
arbitrary find method 80, 81, 83, 86
AttributeMetaData 100
AttributeTest 81, 86
AttributeTest condition 80
authentication

offline 20

online 20
AVG 83

C

callback handlers 21, 76
CallbackHandler 37
callbacks 20

certificates 7, 51

change notification 27
ClassMetaData 100
client database 89
closeConnection 51
complex attribute type 91
complex type 31
CompositeTest 86
CompositeTest condition 80
concatenate queries 85
connection profile 18, 19
ConnectionProfile 51
COUNT 83

create 33

create operation 89
createDatabase 89

D

data synchronization protocol 3, 4
data vault 68

change password 75

creating 67

deleting 69

exists 68

lock timeout 71

Index

locked 70
locking 69
retrieve string 73
retrieve value 75
retry limit 71, 72
set string 72
set value 74
unlocking 70
database
client 89
database connections
managing 51
DatabaseMetaData 99
DataVault 66
DataVaultException 66
debugging 37, 39
delete 33
delete operation 90
deleteDatabase 89
device database 25
documentation roadmap 4
dynamic query 29, 30

E

EIS error codes 100, 102
encryption key 65
entity states 93, 95
error codes
EIS 100, 102
HTTP 100, 102
mapping of SAP error codes 102
non-recoverable 100
recoverable 100
EXCEPT 85
exceptions
client-side 102
server-side 100

F

filtering results 84
FROM clause 85

Developer Guide: Android Object APl Applications 105

Index

G

generated code contents 12
generated code, location 12
group by 84

H
HTTP error codes 100, 102

|
INTERSECT 85

J

Javadoc 1

Javadocs, opening 45
JDK 6

JMSBridge 37

L

listeners 20
LogRecord API 62

M

MAX 83

maxDbConnections 52

MBO 28, 29, 31, 33
MBOLogger 37

messaging protocol 3, 4
MetaData API 99

MIN 83

mobile business object states 98
mobile middleware services 3

N

NoSuchAttributeException 102
NoSuchOperationException 102
@)

Object API code
location of generated 12
Object Manager API 99

object query 29, 79
ObjectManager 99
ObjectNotFoundException 102
offlineLogin 54
OnImportSuccess 59
onLineLogin 54
openConnection 51

other operation 90

P

paging data 80, 83
passing structures to operations 91
pending operation 91
pending state 33
personalization keys 58
types 57

Q

Query class 80
Query object 81, 83, 86
QueryResultSet 87

R

Refresh operation 98
relationships 88
replay 22

S

save operation 90
Selectltem 85

setting the database file location on the device 52

setting the databaseFile location 52
signing 43
simulator 6
simultaneous synchronization 59
Skip 86
Skip condition 80
SortCriteria 83, 86
SortCriteria condition 80
status methods 93, 95
structures
passing to operations 91
subqueries 85
subscribe() 59
SUM 83

106

Sybase Unwired Platform

SUPBridge 37
synchronization 25

MBO package 59

of MBOs 59

replication-based 59

simultaneous 59
synchronization group 27
synchronization parameters 28
synchronization profile 19
SynchronizationProfile 53, 54
SynchronizeException 102

T

TestCriteria 86
TestCriteria condition 80

U
UltraLite 25

UNION 85
UNION_ALL 85
update 33

update operation 89

\Y,

virtual devices 6

X

X.509 certificates 7
Xcode 11

Index

Developer Guide: Android Object APl Applications

107

Index

108 Sybase Unwired Platform

	Developer Guide: Android Object API Applications
	Contents
	Getting Started with Android Development
	Object API Applications
	Best Uses for Object API Applications
	Cache Synchronization
	Client Runtime Architecture
	Mobile Channel Interfaces
	Mobile Middleware Services
	Data Services

	Documentation Roadmap for Unwired Platform

	Development Task Flow for Native Applications
	Installing the Android Development Environment
	Installing the Android SDK and ADT Plug-in
	Installing X.509 Certificates on Android Devices and Emulators

	Creating a Project
	Creating a Project in Unwired WorkSpace
	Importing Libraries and Code

	Generating Java Object API Code
	Generated Code Location and Contents
	Validating Generated Code

	Customizing the Application Using the Object API
	Initializing an Application
	Initially Starting an Application
	Setting up Application Properties
	Registering an Application
	Setting Up the Connection Profile
	Setting Up Connectivity
	Synchronization Profile

	Creating and Deleting a Device's Local Database
	Logging In
	Turn Off API Logger
	Setting Up Callbacks and Listeners
	Setting Up Callback Handlers
	Create a Custom Callback Handler

	Asynchronous Operation Replay
	Synchronize Status Listener

	Connecting to the Device Database
	Synchronizing
	Configuring Data Synchronization Using SSL Encryption
	Nonblocking Synchronization
	Enabling Change Notifications

	Specifying Personalization Parameters
	Specifying Synchronization Parameters

	Subsequently Starting an Application

	Accessing MBO Data
	Object Queries
	Dynamic Queries
	MBOs with Complex Types
	Relationships

	Manipulating Data
	Creating, Updating, and Deleting MBOs
	Other Operations
	Using SubmitPending and SubmitPendingOperations
	Database Classes
	Generated MBOs

	Shutting Down the Application
	Closing Connections

	Uninstalling the Application
	Deleting the Database and Unregistering the Application

	Testing Applications
	Testing an Application Using a Emulator
	Client-Side Debugging
	Server-Side Debugging

	Localizing Applications
	Packaging Applications
	Signing

	Client Object API Usage
	Client Object API Reference
	Application APIs
	getInstance
	setApplicationIdentifier
	getRegistrationStatus
	registerApplication
	setApplicationCallback
	getApplicationContext
	setApplicationContext
	startConnection
	startConnection (int timeout)
	getConnectionStatus

	Connection APIs
	ConnectionProfile
	Managing Device Database Connections
	Improving Device Application Performance with One Writer Thread and Multiple Database Access Threads

	Set Database File Property

	Synchronization Profile
	Connect the Data Synchronization Channel Through a Relay Server

	Authentication APIs
	Logging In
	Sample Code
	Single Sign-On With X.509 Certificate Related Object API
	Importing a Certificate into the Data Vault
	Selecting a Certificate for Unwired Server Connections
	Connecting to Unwired Server with a Certificate

	Personalization APIs
	Type of Personalization Keys
	Getting and Setting Personalization Key Values

	Synchronization APIs
	Changing Synchronization Parameters
	Performing Mobile Business Object Synchronization
	Push Synchronization Applications
	Retrieving Information about Synchronization Groups

	Log Record APIs
	LogRecord API
	Logging APIs

	Change Log API
	enableChangeLog
	getChangeLogs
	deleteChangeLogs
	disableChangeLog
	Code Samples

	Security APIs
	Encrypt the Database
	End to End Encryption and Compression Support APIs
	DataVault
	createVault
	vaultExists
	getVault
	deleteVault
	lock
	isLocked
	unlock
	setLockTimeout
	getLockTimeout
	setRetryLimit
	getRetryLimit
	setString
	getString
	setValue
	getValue
	changePassword

	Callback and Listener APIs
	Callback Handlers
	SyncStatusListener API

	Query APIs
	Retrieving Data from Mobile Business Objects
	Object Queries
	Query and Related Classes
	Arbitrary Find
	TestCriteria
	AttributeTest
	SortCriteria
	Paging Data

	Aggregate Functions
	Grouping Results
	Filtering Results

	Concatenating Queries
	Subqueries
	CompositeTest
	Complex Example
	QueryResultSet

	Retrieving Relationship Data

	Persistence APIs
	Operations APIs
	Client Database APIs
	Create Operation
	Update Operation
	Delete Operation
	Save Operation
	Other Operation
	Pending Operation
	Complex Attribute Types

	Object State APIs
	Entity State Management
	Entity State Example

	Mobile Business Object States
	Refresh Operation

	MetaData and Object Manager API
	MetaData and Object Manager API
	ObjectManager
	DatabaseMetaData
	ClassMetaData
	AttributeMetaData

	Exceptions
	Handling Exceptions
	Server-Side Exceptions
	HTTP Error Codes
	Mapping of EIS Codes to Logical HTTP Error Codes
	Client-Side Exceptions

	Exception Classes

	Index

