SYBASE

Cmpy

Developer Guide: OData SDK

Sybase Unwired Platform 2.1
ESD #1



DOCUMENT ID: DC01708-01-0211-01

LAST REVISED: December 2011

Copyright © 2011 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.


http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: OData SDK Overview .........ccccoeeeevevieeeeennnn. 1
OData SDK Components — General Description ............... 2
Documentation Roadmap for Unwired Platform ................. 3

CHAPTER 2: Developing iOS Applications ................... 5
Setting Up the Development Environment ..............ccccee.... 5
Developing Applications in the Xcode IDE ......................... 9

Initializing an Application ............ccooeevvviiiieieiiiiicie e, 10
Setting Connection Profile .........ccccccoiiiiiiiiiiinen, 10
Assigning and Implementing Delegates....................... 11
Manually Registering an Application............ccccceeeeeeeens 11
Automatically Registering an Application using SSO2
COOKIE ... 12
Automatically Registering an Application using HTTP
Authentication Provider ...........ccooovviiiiiineeiiiiiineeeeees 13
Automatically Registering an Application using X.509
CertifiCateS ..o 14
Enabling Online PUSh ..........ooooviiiiiiii e, 14
Storing the Application Credentials Securely ................ 15
Getting Application End-point ............ccccvviiiieeveeiinnnnnn. 16
Getting Push End-point..........ccoooeeviiiiiiiiiiiiee e, 16
Getting Server DetailS .........cccoevvviieeiiiiiiiieece 16
Getting Port NUmMber .........cooiiiiiiiii e, 17
Getting FarmID .........ooiiiiiiieee e 17
Checking the Provisioning Status of the Public Key..... 17
Deleting USEIS .....ocuvveiiei et 18
Getting Application Seed Data from Afaria................... 18
Provisioning Connection Settings from Afaria.............. 18

Developer Guide: OData SDK iii



Contents

Provisioning Certificates Using URLScheme with

ATAIIA .o 19
Provisioning Certificates Using URL with Afaria............ 20
Clearing the Server Verification Key ...........cccooceevvvnnnnnn. 21
Data Vault APl References........ccccceevveeiviiiiiiiieeeeeeeiinnnn, 21

CreatingaVault.............cooooiiiii e, 21
Opening an Existing Vault................ccccociiiiiinnee. 21
Deletinga Vault............ccoeviriiiiiiiiicicii e, 22
Lockinga Vault...........coooviiiiiiiiiii e 22
Unlocking a Vault...........cooovviiiiiiieireicie e, 22
Setting a Binary Value ............ccccooiiiiiiiiiiiiiiiiinins 22
Retrieving a Binary Value .............ccccoooeeevviineenes 23
Setting the Retry Limit Value for a Vault.............. 23
Setting the Lock Timeout Value for a Vault.......... 23
OData SDK Components and APIS .......cccociiviiiiiiicciiieceen, 24
SDMPAISE ... 26
SDMCACKNE ... 33
SDMPEISISIENCE ...cooeeiiieeeeeeees 34
SDMCONNECHVILY ... 35
SDMSupportability ..........ccoovvviiiiiiiiiee e 38
SDMLOQUJET ..o 38
SDMPerfTIMEr .oooeieieeeeeeeeees 40
SAP PasSPOIt......ccooviiiiiiieiiiiiii e 40
Deploying Applications to DeVICES ..........cceviiiiiiiiiiinieeeenn. 40
Apple Push Notification Service Configuration.............. 41
Provisioning an Application for Apple Push

Notification ServiCe ............uuvueeiiiiiiiiieeeeeeeeeeeeeiiiiiians 41
Preparing Applications for Deployment to the

ENLEIPIISE ...t 42
Sample Code to Enable APNS ...........cociiiiiiiieiiie, 43

CHAPTER 3: Developing Android Applications......... 45
Setting Up the Development Environment ...........c............ 45
Setting Up the Android SDK Library in the Plugin......... 46

Sybase Unwired Platform



Contents

Importing Libraries to your Android Application Project

.................................................................................. 46
Online Data Proxy Android APl JAR File Locations...... 47
Developing Applications in the Android Development
ENVIFONMENT L..eeiii a7
Initializing an Application .............cccevvvviiiiiiiic e, 48
Setting Connection Profile ............ccooeiieeiiiiiiiiiiiiiins 48
Manually Registering an Application ..............c.ccccvvvvne. 49
Automatically Registering an Application using SSO2
COOKIE oo 49
Automatically Registering an Application using HTTP
Authentication Provider ...........ccccooeveeiiiiiiiiiiiiiiiine, 50
Automatically Registering an Application using X.509
CertifiCate ......ovviiiiiiiiiiiiiiiiiieeeeeee 50
Storing the Application Credentials Securely ................ 51
Getting Application End-point .............ccccccveeeieevveiinnnn. 52
Getting the Push End-point...........ccoooiiiiiiiiiiiii 52
Getting Server DetailS .........ccooevveiiieeiiiiiiee 52
Getting Port NUMDbEr ........ccooiie 53
Getting FarmID .........ooiiiiiiiic e 53
Checking the Provisioning Status of the Public Key..... 53
Deleting USEIS .....ocoviiiiie e 54
Getting Application Seed Data from Afaria.................... 54
Provisioning Connection Settings from Afaria.............. 54
Provisioning Certificates using Afaria ...........ccccceeveeeeee. 55
Clearing the Server Verification Key ...........cccooeevvvvnnnnnn. 55
Enabling Online Push for Applications..............ccccceee.. 56
Enabling the Listener for Proxy Setting Changes......... 56
Data Vault APl References........ccccceevveeivveiiiiiiieeeeeeiinnnn, 56
CreatingaVault.............cooooiieii i, 56
Opening an Existing Vault................cccccciiiiinnnee. 57
Deletinga Vault............ccoooviriviiiiiiicici e, 57
Lockinga Vault...............euuviiiiiiiiiiiiiiiiiieeeeeeeeeeee 57
Unlocking a Vault...........ccoovviiiiiiiieiieeccie e 58
Setting a Binary Value ............ccccooiiiiiiiiiiiiiiiiniins 58

Developer Guide: OData SDK v



Contents

Retrieving a Binary Value ............cccccon. 58

Setting the Retry Limit Value for a Vault.............. 58

Setting the Lock Timeout Value for a Vault.......... 59

OData SDK Components and APIS ........cccoceevieeviiiiiiineenens 59

SDMPAISE ... 61

SDMECACNE .....ouiiiiiiiiiiie e 63

SDMPEISISIENCE ..vvuiiieeieeeeiiee e 65

SDMCONNECHIVILY ..vvviiiieeeceeece e 66

SDMCONFIQUIALION .....cooviiiiiiiiiiiiiiee e 70

SUPPOrtabIlitY ..oeevveiccee e 72

SDMLOQUJEN ... 72

SAP PasSPOIt.....ccvviiiiiiiiieiiiece e 75

Deploying Applications to DevViCes .........ccceveevviiiiieiiiinneenns 75
Installing Applications on the Device without Using the

Android Market ..........cccoooiiiiiiiiiii e 76

Installing Applications using a URL ...........ccccoeevvivineens 76

Deploying Applications using Afaria..........ccccceeveeeeeneenn. 77

CHAPTER 4: Developing BlackBerry Applications....79

Configuring the BlackBerry Developer Environment....... 80
Installing the BlackBerry Development Environment....80
Installing the BlackBerry Java Plug-in for Eclipse

......................................................................... 80
Downloading the BlackBerry JDE and MDS
SIMUIALOT . 81
Creating Projects and Adding Libraries into the
BlackBerry Development Environment ..............c.......... 81
Adding Required .jar and .cod Files ..........cccccceeeeeeeeen. 81
Consuming Java .JAR files for BlackBerry Projects...... 82

Online Data Proxy BlackBerry APl JAR File Locations....83
Developing Applications in the BlackBerry

Development Environment .........cccooeeiiiiiiiiiineeeeeeeiieee 84
Initializing an Application ...............ccoovviiiiiiiiiiiiie e, 84
Provisioning Connection Settings from Afaria.............. 84

Vi Sybase Unwired Platform



Contents

Manually Registering an Application ..............cccccvveeenn. 85
Automatically Registering an Application using SSO2
COOKIE ... 85
Automatically Registering an Application using HTTP
Authentication Provider ...........ccooovviiiiiiiiiiiiiiiineeeeees 86
Automatically Registering an Application using X.509
CertifiCate .....cvvveie e 86
Storing the Application Credentials Securely ................ 87
Checking for Registered USers .........ccccceeeieevveivininnnnnnn. 88
Deleting USEIS .....ocoviiiiie e 88
Enabling Online PUSh ........ooviiiiiiii e 88
Getting Application End-point ............ccccccceeeeieeiieninnnnnn. 89
Getting Push End-point..........cccccooeiiiiiiiiiiii 89
Getting Server DetailS .........ccooeveeieeieiiiiiiicee 90
Getting Port NUMDbEr ........ccooiie 90
Getting FarmID .........ooiiiiiiiic e 90
Checking the Provisioning Status of the Public Key.....91
Provisioning Certificates using Afaria...........cccccceeveennn. 91
Getting Application Seed Data from Afaria.................... 92
Clearing the Server Verification Key ...........cccceeevvvvnnnnnn. 92
Data Vault APl References........ccccceeveeeieeeiiiiieeeeeeeiinnnn, 92
CreatingaVault.............cooooiieii i, 92
Opening an Existing Vault................ccccociiiiiinnne. 93
Deletinga Vault............cccoovviiiiiiiiiiiicii e, 93
Lockinga Vault...........cooovimiiiiiii e 93
Unlocking a Vault...........ccoovviiiiiiiieiieeccie e 94
Setting a Binary Value ............ccccooiiiiiiiiiiiiiiiiiiinn, 94
Retrieving a Binary Value .............ccccoooeeeviiineenns 94
Setting the Retry Limit Value for a Vault.............. 94
Setting the Lock Timeout Value for a Vault.......... 95
OData SDK Components and APIS .......ccccciiviviiiiicciiieceen, 95
SDMPAISE ... 97
SDMCACKNE ....vviiiiei e 102
SDMPEISISIENCE ... 103
SDMCONNECHVILY ... 107

Developer Guide: OData SDK Vi



Contents

SDMCoNfIQUration ............coooiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee 111
SDMSupportability .......cccooeeeeiiiiiiiieee e, 112
SDMLOQUGEN ... 112

SAP PasSPOIt.....c.ooiiiiiiiiiiiiie e 113
Deploying Applications to DevViCes ........ccccevveveeiiiieeeennnnnn. 113
Y (o [ 11 o P 113
Provisioning Options for BlackBerry Devices.............. 114

BES Provisioning for BlackBerry ..........cccccocevvviiennnnnn. 114
BlackBerry Desktop Manager Provisioning ................ 115

CHAPTER 5: Glossary: Sybase Unwired Platform

P OXY e 129

viii Sybase Unwired Platform



CHAPTER 1 OData SDK Overview

The OData SDK is for building native mobile applications. It consists of a collection of
runtime libraries and classes.

The OData SDK supports Android, BlackBerry and iOS platforms and it is based on the native
device SDKSs of the platforms. There is an implementation for each platform. Native
applications installed on the devices allow the client application to leverage the support
provided by the given platform, for example:

« Adapt to each device’s form factor (for example, automatic layout)

« Exploit different input methods (for example, touch screen, keyboard or trackball)
« Cache data in native device data stores for better performance

« Tightly integrate with the features of the device

The general description of the SDK components follows. For detailed platform specific
descriptions, see the respective chapters on Android, BlackBerry and iOS.

OData for SAP® Products

OData stands for "Open Data Protocol" and is a resource-based web protocol for querying and
updating data. It is released by Microsoft under the Open Specification Promise to allow
anyone to freely interoperate with OData implementations. OData defines operations on
resources using HTTP verbs (GET, PUT, POST, and DELETE), and it identifies those
resources using a standard URI syntax. Data is transferred over HTTP using the Atom or
JSON format.

OData for SAP Products provide SAP Extensions to the OData protocol that enable users to
build user interfaces for accessing the data published via OData. The interfaces require
human-readable, language-dependent labels for all properties and free-text search within
collections of similar entities and across (OpenSearch).

Applications running on mobile devices also require semantic annotations to tell the client
which of the OData properties contain a phone number, a part of a name or address, or
something related to a calendar event, thus seamlessly integrating with the contacts, calendar,
and telephony of the mobile device. The OData standard's metadata document contains
information about the model. It will define what information is searchable, which properties
may be used in filter expressions, and which properties of an entity will always be managed by
the server.

For the sake of simplicity, "OData for SAP" is abbreviated to "OData" throughout this Guide.

Developer Guide: OData SDK 1



CHAPTER 1: OData SDK Overview

OData SDK Components — General Description

The different components of the OData SDK are implemented as static runtime libraries and
each component can be used independently.

The following components are included in the OData SDK. See the detailed platform specific
descriptions in the respective sections.

OData Parser

Parses and generates valid OData Protocol messages to/from native objects. It eliminates the
need for mobile developers to work with the low-level details of the OData protocol directly.
Functionalities supported by this component include:

« Parsing OData XML structures to native OData objects

» Validating OData XML during parsing by checking the existence of mandatory fields and
structures

* Providing easy access to all OData fields and structures via the objects resulting from the
parsing

» Building OData XML structures from native OData objects

Cache Management

The runtime cache is responsible for storing and accessing OData related objects in the
memory of the device for quick and easy access. Functionalities supported by this component
include:

« Storing/accessing OData objects in the memory (both metadata and application data)
« Searching for OData entries in memory using their searchable fields
» Managing the size of the cache

Persistence

Implements a convenient and secure storage of data on the device. Mobile applications can
access the locally stored data even when network connection is unavailable. Functionalities
supported by this component include:

« Storing objects and raw data on the physical storage of the device
« Easy and quick access of the stored objects and raw data
« Data encryption for sensitive data

Supportability
Implements standard SAP logging, tracing and error handling to enable end-to-end
supportability from client to back-end. Functionalities supported by this component include:

» Common exception and error handling

2 Sybase Unwired Platform



CHAPTER 1: OData SDK Overview

» Event logging
e Tracing (SAP Passport)

Connectivity

This network layer handles all network related tasks, hides the complexity of the network
communication, and provides an easy to use API to the applications. For crossing a company
firewall for enterprise use cases, you need to use SUP. Therefore, the connectivity component
in the OData SDK offers a connection to SUP by default. For development and demo
purposes, the SDK also provides a possibility to use HTTP or HTTPS. Functionalities
supported by this component include:

» Synchronous and asynchronous HTTP request handling
» Basic authentication (user/password)

e Timeout handling

e Compressed payload handling

* Request types as supported by OData Protocol

» Connection pools for optimal performance

Documentation Roadmap for Unwired Platform

Sybase® Unwired Platform documents are available for administrative and mobile
development user roles. Some administrative documents are also used in the development and
test environment; some documents are used by all users.

See Documentation Roadmap in Fundamentals for document descriptions by user role.
Fundamentals is available on the Sybase Product Documentation Web site.

Check the Sybase Product Documentation Web site regularly for updates: access Atip.//
sybooks.sybase.com/nav/summary.do?prod=1289, then navigate to the most current version.

Developer Guide: OData SDK 3


http://sybooks.sybase.com/nav/summary.do?prod=1289
http://sybooks.sybase.com/nav/summary.do?prod=1289

CHAPTER 1: OData SDK Overview

4 Sybase Unwired Platform



CHAPTER 2 Developing iOS Applications

Provides information about using advanced Sybase® Unwired Platform features to create
applications for Apple iOS devices. The audience is advanced developers who are familiar
working with APIs, but who may be new to Sybase Unwired Platform.

Describes requirements for developing a device application for the platform. Also included
are task flows for the development options, procedures for setting up the development
environment and API references.

1.

Setting Up the Development Environment
Import the associated iOS libraries into the iOS development environment.
Developing Applications in the Xcode IDE

After you import mobile applications and associated libraries into the iOS development
environment, use the iOS API references to create or customize your device applications.

OData SDK Components and APIs

The iOS OData SDK provides the means to easily build an app which relies on the OData
protocol and the additions made by SAP.

Deploying Applications to Devices
Complete steps required to deploy mobile applications to devices.

Setting Up the Development Environment

Import the associated iOS libraries into the iOS development environment.

Note: For more information on Xcode, refer to the Apple Developer Connection: Attp./
developer.apple.com/tools/Xcode/.

N =

Start Xcode 4.2 and select Create a new Xcode project.
Under iOS, select Applications.
In the right pane, select Empty Application as the project template and click Next.

Enter <Pr 0j ect Nanme> asthe Product Name, <Cor pl D> asthe Company Identifier,
select Universal as the Device Family product, then click Next.

Select a location to save the project and click Create to open it.
Xcode creates a folder, <Pr oj ect Nane>, to contain the project file,

<Pr oj ect Nanme>. xcodepr 0j and another <Pr oj ect Nane> folder, which
contains a number of automatically generated files.

Select the Build Settings tab and scroll to the Architectures section.

Developer Guide: OData SDK 5


http://developer.apple.com/tools/Xcode/
http://developer.apple.com/tools/Xcode/

CHAPTER 2: Developing iOS Applications

7. Set Base SDK for All configurationstoi OS 5. 0.
| Bwew P YN combine JRTT ) -

TARGETS Setting D testx

Ay testx Architectures
= Additional SDKs
testxTests

Architectures Standard (armv6 armv?) *
Base SDK Latest i0S (105 4.3) 3
Build Active Architecture Only No:
Supported Platforms iphonesimulator iphoneos
Valid Architectures armvé armv?

¥ Build Locations
Build Products Path build
Intermediate Build Files Path build

¥ Per-configuration Build Products Path  <Multiple values>

Debug build/Debug-iphoneos
Release build/Release-iphoneos
¥ Per-configuration Intermediate Bulld Fi... <Multple values>
Debug build/testx.build/Debug-Iphoneos
Release build ftestx.build Release-iphoneos
Precompiled Headers Cache Path jvar folders /IR /IRB4kFhQFyWBVEite767Rk + ++T1/-Caches -/ com.apple.Xcode. 501 /SharedPrecompi
Build Options
Build Variants normal
Debug Information Format DWARF with dSYM File
Enable OpenM? Support No:
Generate Profiling Cade No:
Precompiled Header Uses Files From B... Yes ¢
Run Static Analyzer No':
Scan Al Source Files for Includes No :
Validate Built Product No:
Code Signing
Code Signing Entitiements
Code Signing Identity Don't Code Sign *
Debug Don't Code Sign
Any i0S SDK § iPhone Developer (current
Release Don't Code Sign *
Any 105 SDK : iPhone Developer

Code Signing Resource Rules Path
Other Code Signing Flags
7 Compiler Version

8. Select the Valid architecture as ar mv6 ar mv7 , Architectures as Opt i mi zed
(ar mv7) and the Targeted device family asi Phone/ i Pad. This ensures that the build
of the application can run on either iPhone or iPad.

Note: When you migrate an existing project from an older version of Xcode to Xcode 4.2,
you may see a build error: No architectures to conpile for

( ARCHS=i 386, VALI D_ARCHS=ar nv6, ar mv7) . You can resolve this Xcode 4
issue by manually editing "Valid Architectures™ under Targets, to add i 386.

6 Sybase Unwired Platform



| 4 » | [supproxyClient

CHAPTER 2: Developing iOS Applications

PROJECT
[ supproxyClient

TARGETS

Summary Info | Build Settings | Build Phases Build Rules

Basic @D | Levels

&

Setting

e g ¥ Architectures

fiv SUPProxyClient

oMy SUPProxyClientActive

Additional SDKs
Architectures

Base SDK

Build Active Architecture Only
Supported Platforms

Valid Architectures

Optimized (armv7) - $(ARCHS_UNIVERSAL_IPHONE_OS) 3
Latest i05 (i05 4.3) ¢

No ;

iphonesimulator iphoneos

armvé armv?

¥ Build Locations

Build Products Path
Intermediate Build Files Path
¥ Per-configuration Build Products Path
Debug
Release
¥ Per-configuration Intermediate Build Fi

build

build

<Muftiple values>
build/Debug-ipheneos
build/Release-iphoneos
<Muftiple values>

Debug build /SUPProxyClient.build/Debug-iphoneos
Release build/SUPProxyClient.build /Release-iphoneos
Precomplled Headers Cache Path Jvarffolders/kU/kURbSGSwFBOXBSY! 265NrY/ -Caches-/com.apple.Xcode. 1107781497/ SharedPrecompiledHeaders
¥ Build Options
Build Variants normal

» Compiler for CjC-++/Objective-C
Debug Information Format

Apple LLVM compiler 2.1 4
DWARF with dSYM File $

Enable OpenMP Support No ¢
Generate Profiling Code Mo
Precompiled Header Uses Files From B... Yes §
Run Static Analyzer No
Scan All Source Files for Includes No §
¥ Validate Built Product <Multiple values> 3
Debug No §
Release Yes o
v Code Signing

Code Signing Entitlements
¥ Code Signing Identity

Don't Code Sign

Debug Don't Code Sign &
Any i0S SDK % iPhone Developer: AP M (4D5KQFJ4US) 3
Release Don't Code Sign
Any i0S DK * iPhone Developer: AP M (4DSKQFJ4U8)
Fod i B Rules Path

9. Inthe Deployment section, set the iOS Deployment Targettoi OS 4. 3 ori S 4. 2 or
i OS 5. 0, as appropriate for the device version where you will deploy. Earlier SDKs and
deployment targets are not supported.

Developer Guide: OData SDK



CHAPTER 2: Developing iOS Applications

PROJECT | Summary Info Build Settings | Build Phases Build Rules
[ supProxyClient [(Basic @D | Levels a-
TARGETS I Semting oy SUPPraxyClientActive
- SUPProx - | ¥Archltectures
B SUPProxyClient Additional SOs
- | Architectures Standard (armv7) S(ARCHS_STANDARD_32_BIT) =
Base SDK Latest 105 (105 5.0) &
| Build Active Architecture Only No &
Supported Platforms iphonesimulator iphoneas
| Valid Architectures armve armv7
| Build Locations
| I Build Options
I Code Signing
¥ Deployment
Additional Strip Flags
| Aternate Install Group SAP_ALL\domain users
Alrernare Install Owner 057681
| Alrernate Install Permissions UFW,Q0=W,a+rX
Alwernate Permissions Files
| Deplnymern Location Ko ¢
Deployment Postprocessing No 2
Install Cwrner 057681
| Install Permissions LW, g0-w,a+rX
Installation Build Products Location JumpfSUPProxyClient.dst
| Installation Directory {Applications
Mac 05 X Deployment Target Compiler Default ${inherived) §
| Skip Install No 2
¥ Strip Debug Symbols During Copy <Multiple values> %
Debug No o
Release Yes ©
| Strip Linked Product Mo &
Strip Style All Symbaols 3
| Targeted Device Family iPhome ;
Use Separate Strip HNo 2
i05 Deployment Target i06 4.3 &
¥ Kernel Module
Module Identifier
| we 2 e o im

10. Connect to the Microsoft Windows machine where Mobile SDK is installed:

a) From the Apple Finder menu, select Go > Connect to Server.
b) Enter the name or IP address of the machine, for example, snb: / / <machi ne DNS
name>orsnb: // <l P Addr ess>.
You see the shared directory.
11. Navigate to the <Unwi redPl at f or m_ | nst al | Di r >\ Mbbi | eSDK\ CDat a\i CS
\ directory in the Unwired Platform installation directory, and copy the i ncl udes and
I'i brari es folders to the <Pr oj ect Nane>/ <Pr oj ect Name> directory on your
Mac.
12. Right-click the <Pr oj ect Name> folder under the project, select Add Files to
"'<ProjectName>"", navigate to the <Pr oj ect Name/ Pr oj ect Name>/
I'i braries/ Debug-uni versal directory, select all the libraries, unselect Copy
items into destination group's folder (if needed), and click Add.

The libraries are added to the project in the Project Navigator.

13. Click the project root and then, in the middle pane, click the <ProjectName> project.

a) In the right pane click the Build Settings tab, then scroll down to the Search Paths
section.

8 Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

b) Enter the location of your i ncl udes folder (* $SRCROOT/ <Pr oj ect Nane>/
i ncl udes/ public/**") inthe Header Search Paths field.
$SRCROOT is a macro that expands to the directory where the Xcode project file
resides.

14. Set the Other Linker Flagsto - Obj C - al | _I oad for both the release and for the debug
configuration. It is important that the casing of -ObjC is correct (upper case 'O' and upper
case 'C"). Objective-C only generates one symbol per class. You must force the linker to
load the members of the class. You can do this with the help of the -ObjC flag. You must
also force inclusion of all your objects from your static library by adding the linker flag
-all _| oad.

15. Add the following frameworks from the SDK to your project by clicking on the active
target, and selecting Build Phase > Link Binary With Libraries. Click on the + button
and select the following binaries from the list:
« CoreFoundation.framework
e QuartzCore.framework
e Security.framework
 libicucore.A.dylib
 libstdc++.dylib
e libz.1.2.5.dylib
* CFNetwork.framework
» MobileCoreServices.framework
« SystemConfiguration.framework
* MessageUl.framework

16. Select Product > Clean and then Product > Build to test the initial set up of the project. If

you have correctly followed this procedure, you should receive a Build Succeeded
message.

Developing Applications in the Xcode IDE

After you import mobile applications and associated libraries into the iOS development
environment, use the iOS API references to create or customize your device applications.

For a comprehensive list of API references, extract the contents from the following zip files:

e <UnwiredPl atform.Install Di r>\ Mobi | eSDK\ ODat a\ i OS\ docs
\ SUPPr oxyCl i ent - API - Docs. zi p

e <Unwi redPl atform I nstall Di r>\Mbil eSDK\ CDat a\i OS\ docs
\ SDMConnecti vi ty- APl - Docs. zi p

e <UnwiredPl atform I nstall Di r>\Mbil eSDK\ ODat a\i OS\ docs
\ SDMPar ser - APl - Docs. zi p

Developer Guide: OData SDK 9



CHAPTER 2: Developing iOS Applications

e <UnwiredPl atform.Install Di r>\ Mobi | eSDK\ ODat a\ i OS\ docs
\ SDMSupportability-API-Docs. zip

See also
* OData SDK Components and APIson page 24

Initializing an Application

Initialize an application.

Syntax
+(Li t eSUPUser Manager *) getlnstance: (NSString *) applD

Parameters

* applD - Name of the registered application.
Examples
* Initialize an application —

Li t eSUPUser Manager * user Manager = [LiteSUPUser Manager
getlnstance: @APP_ID'];

Setting Connection Profile

Set the server details.

Syntax

-(void) setConnectionProfile: (NSString *) supServerHost
wi t hSupPort: (NSInteger) supPort
wi thServerFarm D: (NSString *) serverFarm D

Parameters

» supServerHost — Corresponds to the IP Address used to identify the SUP Server.
» supPort — Corresponds to the SUP port.
» serverFarmlID - Corresponds to the server farm ID.

Examples

» Set the connection profile —

[ user Manager set ConnectionProfile: @10.53.222.37" w thSupPort:
5001 withServerFarmD: @0"];

10

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Assigning and Implementing Delegates
Assign and implement delegates for synchronous and asynchronous user registration.

Examples

* Register a Delegate —

Li t eSUPUser Manager * user Manager = [LiteSUPUser Manager
getl nstance: @APP_I D'];
[ user Manager setDel egate: sel f];
[ user Manager
set Di dFai | ToRegi sterUser: @el ector(regFailed:)];
[ user Manager
set Di dSuccessf ul User Regi strati on: @el ect or (regSuccess:)];
[ user Manager set ConnectionProfile: @10.53. 222. 37"
wi t hSupPort: 5001 withServerFarm D. @0"];

* Implementation of the Delegate —

-(void)regFail ed: (NSError*)error{

UA ertView alert = [[U Al ertView all oc]
initWthTitle: @Error" nmessage:[error |ocalizedDescription]
del egate: sel f cancel ButtonTitle: @OK' otherButtonTitles:nil];

[alert show;

[alert rel ease];

}

-(voi d) regSuccess: (i d)sender{

UA ertView alert = [[U Al ertView all oc]
initWthTitl e: @Success" nessage: @ User Registration Successful”
del egate: sel f cancel ButtonTitle: @OK' otherButtonTitles:nil];

[alert show;

[alert rel ease];

Manually Registering an Application

Manually register an application synchronously or ansynchronously by using the user name
and activation code of the application registered through the Sybase Control Center.

Syntax
-(void) registerUser : (NSString *) usernane
wi t hActivationCode: (NSString *) activationCode

-(void) registerUserAsynchronousWt hUser Name: (NSString *) usernane
activationCode: (NSSting *) activationCode

Parameters

» username — User name of the user to be registered.

Developer Guide: OData SDK 11



CHAPTER 2: Developing iOS Applications

¢ activationCode — Activation code of the user created in SCC.

Examples

* Synchronous registration of an application using a delegate —

Li t eSUPUser Manager * user Manager = [LiteSUPUser Manager
getl nstance: @APP_I D'];
[ user Manager set Del egate: sel f];
[ user Manager
set Di dFai | ToRegi st erUser: @el ector(regFailed:)];
[ user Manager
set Di dSuccessf ul User Regi strati on: @el ector (regSuccess:)];
[ user Manager set ConnectionProfile: @10.53.222. 37"
wi t hSupPort: 5001 withServerFarm D: @0"];

[ user Manager regi sterUser: @ nanual user"
wi t hActi vati onCode: @ 123"] ;

* Synchronous Registration of an application without a delegate —

Li t eSUPUser Manager * user Manager = [LiteSUPUser Manager
getl nstance: @APP_I D'] ;
[ user Manager set ConnectionProfile: @10.53.222. 37"
wi t hSupPort: 5001 withServerFarm D. @0"];
@ry {
/1 Manual On-boarding
[ user Manager regi sterUser: @nanual user™”

wi t hActi vati onCode: @ 123"];

@at ch (NSException * e)
/] Exception Handling
}

» Asynchronous Registration of an application using a delegate — The user registration
runs as a background process and has to have a delegate registered to provide success/
failure notifications.

Li t eSUPUser Manager * user Manager = [LiteSUPUser Manager
getl nstance: @APP_I D'] ;
[ user Manager set Del egat e: sel f];
[ user Manager
set Di dFai | ToRegi sterUser: @el ector(regFailed:)];
[ user Manager
set Di dSuccessf ul User Regi strati on: @Gel ector (regSuccess:)];
[ user Manager set ConnectionProfile: @10.53.222. 37"
wi t hSupPort: 5001 withServerFarm D: @0"];
[ user Manager regi sterUser AsynchronousW t hUser Nane: @ manual user"”
activati onCode: @123"];

Automatically Registering an Application using SSO2 Cookie

Registering an application automatically using an SSO2 Token Cookie. The token is fetched
from a ticket issuing system and verified by the server.

12 Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Syntax

-(void) registerUser: (NSString *) usernane

wi t hSecurityConfig: (NSString *) securityConfig
wi t hPassword: (NSString *) password

wi t hVaul t Password: (NSString *) vaul t Password

Parameters

* username — User name of the ticket issuing system.

» securityConfig — Security configuration for the registered application provided by the
administrator in the Sybase Control Center

* password — Password used to authenticate the user.
* securityConfig — Password of the vault data store.

Examples

« Automatically registering an application using SSO2 Cookie —

@ry {
[ user Manager regi sterUser: <user nane>
wi t hSecuri t yConfi g: @ SSO2Cooki e" wi t h- Passwor d: <ser ver passwor d>] ;
wi t hVaul t Passwor d: <vaul t passwor d>] ;
@atch (NSException* e) {
/] Exception Handling
}

Automatically Registering an Application using HTTP Authentication
Provider
Registering an application automatically using HTTP Authentication Provider

Syntax

-(void) registerUser: (NSString *) usernane

wi t hSecurityConfig: (NSString *) securityConfig
wi t hPassword: (NSString *) password

wi t hVaul t Password: (NSString *) vaul t Password

Parameters

e username — Valid user name.

» securityConfig — Security configuration of the registered application provided by the
administrator in the Sybase Control Center.

* password — Password used to authenticate the user.
* vaultPassword — Password required to unlock the data vault .

Developer Guide: OData SDK 13



CHAPTER 2: Developing iOS Applications

Examples

» Registering an application using HTTP Authentication Provider —

@ry{

[ user Manager regi sterUser: @user" withSecurityConfig: @sec-
config" withPassword: @ passwor d"

wi t hVaul t Passwor d: @ vaul t passwor d”] ;

@atch (NSException* e) {}

Automatically Registering an Application using X.509 Certificates

Registering a user automatically using an X.509 Certificate. This certificate is fetched from a
certificate authority and verified by the server.

Syntax

-(void) registerUser: (NSString *) usernane

wit hSecurityConfig: (NSString *) securityConfig
wi t hPassword: (NSString *) password

wi t hVaul t Password: (NSString *) vaul t Password

Parameters

* username — User name of the user to be registered.

» securityConfig — Security configuration for the registered application provided by the
administrator in the Sybase Control Center

» password — Contains the Base64 encoded string of the certificate library.

* securityConfig — Password of the vault data store.

Examples

» Automatically registering an application using X.509 certificates —
LiteSUPCertificateStore* store = [LiteSUPCertificateStore
get | nst ance] ;
@ry {
base64cert = [store getSignedCertificateFronServer: <server Nane>
wi t h- Passwor d: <passwor d> wi thCertifi cat ePassword: <cert Pwd>] ;
[ user Manager regi sterUser: <user name>
wi t hSecuri t yConfi g: @ SUPGACCERTConf i g"
wi t hPasswor d: base64cert];// withVaul t Password: @ nobile"];

}
@at ch (NSException * e) {
NSLog(@ %@, [e reason]);

Enabling Online Push

To consume push messages, the application developer implements a delegate method from the
SDMSUPPushDelegate.h header file.

14 Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Syntax
- (void) pushNotificationReceived: (NSDictionary *) data

Examples
¢ Online Push Implementation —

1. Import the header file SDMSUPPushDelegate.h in the header file of the class where
you implement the push delegate. It is recommended to implement this in the App
delegate.

2. The header file should implement the protocol. This is done by including the
<SDMSUPPushDelegate> key to the super class from which the current class inherits
the header file.

@ nterface SUPProxyd i ent AppDel egat e :
NSObj ect <Ul Appl i cati onDel egat e, SDMSUPPushDel egat e>

3. Import the SUPUTtilities.h file in the .m file of the class in which you implement the
delegate.

4. Inany of the startup methods add the following code snippet:
[SUPULilities setDel egate:sel f];
5. Implement the delegate method which receives the data in the gata parameter.

- (void) pushNotificationRecei ved: (NSDi ctionary*)dat af
NSLog( @ %@ , [ dat a obj ect For Key: @ Dat a] ) ;
}

Storing the Application Credentials Securely

Post user registeration, if you want the user credentials to be managed by SDK, you can
provide a data vault password to securely store the data.

Syntax

- (void) setAppCredentials: (NSString *) usernane
wi t hSecurityConfig: (NSString *) securityConfig
wi t hPassword: (NSString *) password

wi t hVaul t Password: (NSString *) vaul t Password

Parameters

» username — Valid user name to be stored.
e securityConfig — Security configuration of the registered application to be stored.

e password — If using certificates, this corresponds to the Base64 encoded string of the
certificate library. If using SSO2 cookie, this corresponds to the passowrd of the ticket
issuing system.

» vaultPassword — Password of the secure store provided by SDK.

Developer Guide: OData SDK 15



CHAPTER 2: Developing iOS Applications

Examples
» Using Data Vault Password —
@ry{ .
[ user Manager set AppCredenti al s: <user nanme>

wi t hSecurityConfig: <security config> wi thPassword: <passwor d>
wi t hVaul t Passwor d: <vaul t password>];

}
@at ch (NSException* e) {

/] Exception Handling
}

Getting Application End-point
Retrieve the application end-point that corresponds to the gateway service document.

Syntax
(NSString*) +get Applicati onEndPoi nt

Examples

* Retrieving application end-point —
NSLog( @ %@, [LiteSUPAppSettings get ApplicationEndPoint]);

Getting Push End-point

Retrieve the push end-point that corresponds to the delivery address that the application uses
in the subscription request for notifications.

Syntax
(NSString*) +get PushEndPoi nt

Examples

* Retrieve the push end-point -
NSLog( @ %@, [LiteSUPAppSettings get PushEndPoint]);

Getting Server Details
Retrieve the server name provisioned in the client repository.

Syntax
+ (NSString *) getServer

Returns

Returns the server name as a string.

16 Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Examples

¢ Retrieve the server details —
AppSet tings. get Server();

Getting Port Number
Retrieve the port number provisioned in the client repository.

Syntax
+ (int) getPortNunber
Returns

Returns the port number as an integer.

Examples

* Retrieve the port number —
[ Li t eSUPAppSetti ngs get Port Nunber] ;

Getting FarmID
Retrieve the farm ID provisioned in the client repository.

Syntax
+ (NSString*) getFarm d
Returns

Returns the farm ID as a string.

Examples

* Retrieve the Farm ID -
[ Li t eSUPAppSettings get Farm d];

Checking the Provisioning Status of the Public Key
Check if the public key is provisioned on the client.

Syntax
+ (BOOL) i sSUPKeyProvi si oned

Developer Guide: OData SDK 17



CHAPTER 2: Developing iOS Applications

Returns
Returns the result as a BOOL.

Examples

* Check the provisioning status of the public key —
[ Li t eSUPAppSetti ngs i sSUPKeyProvi si oned] ;

Deleting Users

Deletes a registered user. If the user credentials are managed by SDK, this API deletes the user
credentials from the vault and deletes the user from the server.

Syntax
-(void) del eteUser

Getting Application Seed Data from Afaria

Get the application seed data from Afaria.

Syntax

- (NSMut abl eDi ctionary *) getSettingsFromAfariaWthUrl: (NSURL *)
configurationUrl

Url Scheme: (NSString *) url Schene

Parameters

» configurationUrl — URL passed by the Afaria client.

» urlScheme—URL scheme of the calling application. Afaria library can use this to passitto
the Afaria client.

Returns

Returns a NSMutableDictionary containing properties that are read from the seed file.

Provisioning Connection Settings from Afaria

Connection Settings for an application can be provisioned using the Afaria client that is
installed on the mobile device.

Syntax
- (NSInteger) setConnectionProfileFromAfaria: (NSURL *) url
appUr| Scheme: (NSString *) url Schene

18

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Parameters

* url - URL generated by Afaria and is specific to the URL scheme.

* urlScheme — URL scheme of the application. This is used by the Afaria library to
communicate with the Afaria client.

Provisioning Certificates Using URLScheme with Afaria
Returns the certificate as a base64 encoded string if the URL Scheme is registered with Afaria.

Syntax

- (NSString *) getSignedCertificateFromAfari aFor URLSchenme: (NSString
*) url Scheme

Wi t hUsernane: (NSString *) username

wi t hPassword: (NSString *) password

Parameters

* urlScheme-URL scheme of the calling application. Afaria library can use this to pass it to
the Afaria client.

« username — Common name used to generate the CSR.
» password — Certificate password.

Returns
Returns a certificate as a base64 encoded string

The application has to implement the standard receiver delegate
appl i cation: appl i cationDi dFi ni shLaunchi ngWthOpti ons:

to handle the URL received from the Afaria client if the Afaria settings are missing.

Examples

» Certificate Provisioning using URLScheme —

@ry {
LiteSUPCertificateStore* store = [LiteSUPCertificateStore
get | nst ance] ;
NSSt ri ng* certBase64 = [store
get Si gnedCerti fi cat eFr omAf ari aFor URLSchene: @ SCHEVE"
wi t hUser nane: @ User Nane" wi t hPasswor d: @ passwor d"] ;
NSLog( @ %@, certBase64);

@at ch (NSException *exception) {
NSLog( @ %@, [exception reason]);

Developer Guide: OData SDK 19



CHAPTER 2: Developing iOS Applications

Provisioning Certificates Using URL with Afaria

Returns the certificate as a base64 encoded string.

Syntax

- (NSString *) getSignedCertificateFromAfariaForURL: (NSSTring *)
url

Wi t hUsernane: (NSString *) username

wi t hPassword: (NSString *) password

Parameters

e url - URL passed by the Afaria client.
e username — Common name used to generate the CSR.
» password — Certificate Authority password that should associate with CSR.

Returns

Returns the certificate as a base64 encoded string.

Examples

e Provisioning Certificates Using URL —

if ([[url absoluteString] length] !'=0) {
@ry {

LiteSUPCertificateStore* store =
[LiteSUPCertificateStore getlnstance];

NSSt ri ng* certBase64 = [store
get Si gnedCertificateFromAfari aFor URL: [url absol uteString]
wi t hUser nane: @ User nane" wit hPasswor d: @ Password"] ;

NSLog( @ %@, certBase64);

}
@at ch (NSException *exception) {NSLog(@ %@, [exception
reason]);

}

Usage

This API has to mandatorily be called in the

- (BOQL) application: (U Application *)application openURL: ( NSURL
*)Jurl sourceApplication: (NSString *)sourceApplication annotation:
(id)annotation

method of your application delegate. The API is called after the Afaria client generates a URL
and forwards it to the application via the delegate. This is required only if the above call is the
first call to Afaria in the application.

20

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Clearing the Server Verification Key

For a device to switch connection between SUP servers, this APl is invoked before registering
a new user. This ensures that the server public keys are removed from the SUP client SDK
which enables connectivity to the new SUP Server.

Syntax
+ (void) clearServerVerificationKey

Examples

* Clear the server verification key —
[ Li t eSUPUser Manager cl ear Server Verificati onKey]

Data Vault APl References

The data vault is a secure storage area provided by the SUP 2.1 SDK client libraries to store
sensitive data such as usernames, passwords, authentication certificates within the
application. Access to the data vault is protected by two levels of passwords and unique salts.

Creating a Vault
Creates an instance of a vault with a set of attributes.

Syntax

+ (LiteSUPDataVault *) createVault: (NSString *) dataVaultlD
wi t hPassword: (NSString *) password
withSalt: (NSString *) salt

Parameters

» dataVaultlD — The vault name.
* password — The vault password
» salt — The salt password

Returns
If successful, creates an instance of LiteSUPDataVault.
Opening an Existing Vault

This API is used to check if a vault exists. If the vault does not exist or has been deleted, this
method throws an exception.

Developer Guide: OData SDK 21



CHAPTER 2: Developing iOS Applications

Syntax
+ (bool) vaultExists: (NSString *) dataVaultlD
Parameters

« dataVaultlD - The vault name.

Returns
If successful, returns 'true’.
Deleting a Vault

Delete the storage for this instance from the persistent storage. Once a vault is deleted, all
current instance references become invalid.

Syntax
+ (void) deleteVault: (NSString *) dataVaultlD

Parameters

¢ dataVaultlD — The vault name.

Locking a Vault
Lock a vault to avoid it from being used. If the vault is locked, this API will have no effect.

Syntax
- (void) lock

Unlocking a Vault
Unlock a vault for use by an application.

Syntax

- (void) unlock: (NSString *) password
withSalt: (NSString *) salt

Parameters
e password — The vault password.
e salt — The vault's salt password.

Setting a Binary Value
Store a value in the vault. To remove a value, provide 'null’ as the second parameter.

22

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Syntax

- (void) setValue: (NSString *) dataKey
with Value: (NSData *) byteVal ue

Parameters
» dataKey — The key used to store the data.
* hbyteValue — The value to be stored in the vault.

Retrieving a Binary Value
Retrieve a value set from the vault.

Syntax
- (NSData *) getValue: (NSString *) dataKey

Parameters

» dataKey — The key in which the data is stored.

Returns

If successful, this returns NSData.

Setting the Retry Limit Value for a Vault
Set the maximum number of consecutive failed attempts to unlock the vault.

Syntax

-(void) setRetryLimit: (int32_t) nunOfAttenpts

Parameters

* numOfAttempts — Maximum failed attempts that is permitted to unlock the vault.
Setting the Lock Timeout Value for a Vault

Set the time until which the vault remains in an unlocked state. Once this time is lapsed, the
vault reverts to the locked state.

Syntax
-(void) setlLockTimeout: (int32_t) nunber Of Seconds

Developer Guide: OData SDK 23



CHAPTER 2: Developing iOS Applications

Parameters

numberOfSeconds — Time in seconds for which the vault is unlocked.

OData SDK Components and APIs

The iOS OData SDK provides the means to easily build an app which relies on the OData
protocol and the additions made by SAP.

Prerequisites for Developing iOS Apps

An Intel based Mac

Official iOS SDK and the development environment, which registered developers can
download for free. Use the latest officially released iOS SDK.

For the supported versions of iPad, iPad 2 iOS, please see Supported Hardware and
Software

For the supported versions of iPod touch and iPhone, please see Supported Hardware and
Software. Previous device models do not have the dedicated cryptographical hardware and
former iOS versions do not have the required security APIs

XCode 3.x - gdb (XCode integrated debugger)

Clang static code analyzer

Instruments — a set of performance tools and profilers (Leaks, CPU Sampler, Activity
Monitor)

OData SDK - iOS
The following figure shows the main components of the OData SDK on iOS.

24

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Configuration ~*------"--""--
Static Content i —

--------- Controllers

111

OData Parser Connectivity Persistence

___________________ e

Sybase Unwired
Platform

I

SAP NetWeaver
Gateway

Supportability

Logging & Tracing

In-Memory
Cache

The iOS version of the OData SDK is presented as static libraries and header files. (Custom
dynamic libraries are not allowed on i0S.)

The OData SDK for iOS includes a set of core iOS libraries acting independently from each
other. Each core library has well-defined responsibilities and provides APIs for OData
parsing, caching, persistence, keychain, certificate management, and so on.

The full list of APIs and their descriptions are available after the installation of Sybase
Unwired Platform at the following location within your installation folder: . . .
\ Unwi r edPl at f or ml Mbbi | eSDK\ ODat a\ i OS\ docs

The libraries are provided in binary form as . a files, along with the public headers containing
the APIs and the input/output structures. As a prerequisite, the public headers and the libraries
must be available as separate binaries for release and debug, or merged using the lipo tool.

See also
«  Developing Applications in the Xcode IDE on page 9
»  Deploying Applications to Devices on page 40

Developer Guide: OData SDK 25



CHAPTER 2: Developing iOS Applications

SDMParser

The SDMParser library provides APIs to convert OData XML payloads to native Objective-C
objects and structures (arrays, dictionaries).

List of Features

e OData XML or OData with SAP extensions XML (including inlined content) parsing and
conversion to Objective-C objects

* URL template retrieval from open search description XMLs

e OData XML composition (create update scenario), also with SAP extensions
» OData error XML parsing

« Function import support

» Generates subscription XMLs

e Media Link Entries

e Convenient C-style APIs

« Action Link Support

SDMParser Public APIs

SDMODat aSer vi ceDocunent * sdnPar seODat aSer vi ceDocunent XM_( NSDat a*
const content_in)

SDMODat aSchenma* sdnPar seODat aSchemaXM_( NSDat a* const content _in,
SDMODat aSer vi ceDocunent * const servi ceDocunent)

NSMut abl eArray* sdnPar seODat aEnt ri esXM_( NSDat a* const content _in,
const SDMODat aEntitySchema* const entitySchema, const

SDMODat aSer vi ceDocunent * const servi ceDocunent)

SDMODat aEr r or * sdmPar seODat aEr r or XML( NSDat a* const content _i n)
NSMut abl eArray* sdmnPar seFuncti onl nport Resul t ( NSDat a* const
content _in, const SDMODat aFunctionlnmport* const functionlnport)
SDMXpenSear chDescri pti on* sdnPar seOpenSear chDescri pti onXM_( NSDat a*
const content_in)

SDMODat aEnt r yXM_* sdnBui | dODat aEnt r yXM_ (const SDMODat aEntry *const
entry, const enum TEN_ENTRY_OPERATI ONS operati on, const

SDMODat aSer vi ceDocunment *const servi ceDocunment, const BOOL
serializelnlinedEntries)

SDMODat aFeedXM.* sdnBui | dODat aFeedXM. (NSArray *const entries, const
enum TEN_ENTRY_OPERATI ONS oper ati on, const SDMODat aSer vi ceDocunent
*const servi ceDocunent, const BOOL serializelnlinedEntries)

Technical Details

The listed C-style parser APIs are provided for convenience. You can choose to instantiate the
dedicated parser classes. As a reference, the following code excerpt shows how the C-style
APIs wrap the parser calls:

/ * %

* Parses the service document XM. and converts it to an Obj-C
servi ce docunent object.

*/

SDMODat aSer vi ceDocunent * sdnPar seODat aSer vi ceDocunment XM_( NSDat a*

26

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

const content_in) {
SDMODat aSer vi ceDocunent Par ser* svcDocParser =

[[[ SDMODat aSer vi ceDocument Parser alloc] init] autorel ease];
[ svcDocParser parse: content_in];

return svcDocParser. servi ceDocunent ;

/**
* Par ses and mat ches the schema with the service docunment and its
coll ections. The function returns the sane
* schema pointer as it can already be found in the servi ceDocunent.
*/
SDMODat aSchenma* sdnPar seODat aSchemaXM_( NSDat a* const content _in,
SDMODat aSer vi ceDocunent * const servi ceDocunent) {
if (!serviceDocunent)
/1 @hrow [[[ SDMPar ser Excepti on al l oc] initWthName:
@ NoSer vi ceDocunent" reason: @No service docunent was provi ded"
userlnfo: nil] autorel ease];
@hrow [[[ SDMPar ser Exception alloc] initWthError:
Par ser NoSer vi ceDocunent detail edError: @No service docunent was
provi ded"] autorel ease];

SDMODat aMet aDocunent Par ser* met aDocPar ser =
[[[ SDMODat aMet aDocunent Par ser al l oc] initWthServi ceDocunent:
servi ceDocunment] aut orel ease];

[ met aDocPar ser parse: content_in];

return servi ceDocunent. schenm;

/**
* Parses a feed or entry XML and returns an array of parsed entry/
entries.
* Any "inlined"entries or feed(s) will be parsed when service
docurent is passed to the function. If "inlined" feed(s) or entries
* shoul d not be returned pass nil in the service docunent paraneter.
*/
NSMut abl eArray* sdnPar seODat aEntri esXM.( NSDat a* const content _in,
const SDMODat aEntitySchema* const entitySchena, const
SDMODat aSer vi ceDocunent * const servi ceDocunent) {
if (!entitySchems)

/1 @hrow [[[ SDMPar ser Excepti on all oc] initWthName:
@ NoEnti tySchema" reason: @No entity schema was provi ded" user| nfo:
nil] autorel ease];

@hrow [[[ SDMPar ser Exception alloc] initWthError:
Par ser NoEnti t ySchema detail edError: @No entity schema was
provi ded"] autorel ease];

SDMODat aDat aPar ser * dat aParser = [[[ SDMODat aDat aPar ser al | oc]
initWthEntitySchema: entitySchema andServi ceDocunent :
servi ceDocunent] autorel ease];

[ dat aPar ser parse: content _in];

Developer Guide: OData SDK 27



CHAPTER 2: Developing iOS Applications

return dataParser.entries;

/**

* Parses an OData error payl oad XM

* @ee SDMODat aError

*/

SDMODat aErr or * sdnPar seODat aEr r or XML( NSDat a* const content_in) {
SDMODat aEr r or XM_Par ser* error Parser = [[[ SDMODat aEr r or XM_Par ser

alloc] init] autorel ease];
[errorParser parse: content_in];

return errorParser.odataError;

}

/**

* Parses the result payload XML of a function inport.

* @eturns Returns an array of entries.

* @emark Even if the result is not a feed or entry XM, the parser
creates an entity schema out of the return type definition, so

* application devel opers can access the returned data in a uniform
way. The supported return types are:

* - none

* - EDMSI npl eType (for exanple: ReturnType="Edm Int32"), the
generated "entity" schema will be "element" with type Edm | nt 32

* - Conpl exType (for exanple:

Ret ur nType="Net f | i xCat al og. Mbdel . BoxArt™")
* - Collection of an EDVSI npl eType (for exanpl e:
Ret ur nType="Col | ecti on(Edm String)")
* - Collection of a Conpl exType (for exanpl e:
Ret urnType="Col | ecti on(Netfl i xCat al og. Model . BoxArt)")
* - Entry (for exanple ReturnType="NetflixCatal og. Model . Title"
EntitySet="Titles")
* - Feed (for exanple
Ret urnType="Col | ecti on(Netfl i xCat al og. Model . Titl e)"
EntitySet="Titles")
*/
NSMut abl eArray* sdmnPar seFuncti onl nmport Resul t ( NSDat a* const
content _in, const SDMODat aFunctionlnmport* const functionlnmport) {
SDMFunct i onl nport Resul t Parser* fi Parser =
[[[ SDMFuncti onl nport Resul t Parser al loc] initWthFunctionl nport:
functionlmport] autorel ease];
[fiParser parse: content_in];

return fiParser.entries;

/**

* Parses an XM. that contains Open Search Description

* The parsed data is returned in an SDMXpenSear chDescri ption typed
obj ect .

*/

SDMOpenSear chDescri pti on* sdnPar seCpenSear chDescri pti onXM_( NSDat a*
const content_in) {

28

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

SDMXpenSear chDescri pti onXM_Par ser* osdParser =
[[[ SDMOpenSear chDescri pti onXM_Parser alloc] init] autorel ease];
[ osdPar ser parse: content _in];

return osdParser.openSear chDescri ption;

}

The SDMParser library communicates error conditions to the client via the dedicated
SDMPar ser Except i on exception class. Whenever a mandatory attribute is missing, the
parser throws an exception.

The caller is responsible for error handling; this includes fetching the details included in the
exception, logging information meant for debugging purposes, displaying a localized alert
message, and providing a resolution or stopping the application flow.

The Service Document Component
Root object. Contains the schema object, the function imports, the document language, base
URL (if any) and the server type.

SDMOdat aSer vi ceDocunent

- (enum TEN_SERVER_TYPES) get Ser ver Type
-(NSString*)get Docunent Language
-(NSString*)get Baselr|

- ( SDMODat aSchema*) get Schena

- (NSMwut abl eDi cti onary*) get Functi onl nports

The Schema Component
The schema contains workspaces and helper methods to work with collections via
workspaces.

SDMODat aSchema

-(NSArray*) getWrkspacesBySemantic: (const enum
TEN_WORKSPACE_SEMANTI CS) wor kspaceSenant i ¢

- (SDMODat aCol | ecti on*) get Col | ecti onByName: (NSSt ri ng*
const)col | ecti onNane

- (SDMODat aCol | ecti on*) get Col | ecti onByNane: (NSStri ng*
const)col | ecti onNane wor kspaceO Col | ecti on:

( SDMVODat aWr kspace**) wor kspaceOf Col | ecti on

The Workspace Component
A workspace can contain 0 up to n collections. Each workspace can have a title and a semantic
value.

SDMODat aWor kspace
- (enum TEN_WORKSPACE_SENMANTI CS) get Sermanti c

-(NSString*) getTitle
- (NSMut abl eDi cti onary*) getCol | ections

Developer Guide: OData SDK 29



CHAPTER 2: Developing iOS Applications

The Collection Component
Represents one parsed collection.

SDMODat aCol | ecti on

-(id) initWthNane: (NSString* const)newNane
-(BOCL) isCreatable

-(BOOL) isUpdatabl e

-(BOAL) isDel etable

-(BOCL) isTopLevel

- (BOCL) doesRequireFilter

-(BOOL) hasMedi a

- (SDMODat aLi nk*) get Subscri ptionLi nk

-(int) getContentVersion

- (enum TEN_COLLECTI ON_SEMANTI CS) get Semanti c
-(uint8_t) getFlags

-(NSString*) getNane

-(NSString*) getTitle

-(NSString*) getMenberTitle

- (NSMut abl eArray*) getlcons

- (NSwut abl eArray*) getLinks

-(int) getDisplayOder

- (SDMODat aEnt i t ySchema*) get EntitySchema

- (SDMOpenSear chDescri pti on*) get OpenSear chDescri pti on

The Entity Schema Component

An instance of the Ent i t ySchena class stores the root of the structure of the given
collection with constraints. The entity schema class also provides helper functions to order the
visible fields of a collection and the navigation map that maps navigation names to collection
names.

SDMODat aEnt i t ySchema

-(id) init

-(int) getContentVersion

-(uint1l6_t) getFl ags

- ( SDMODat aPr opertyl nfo*) get Root

- (NSMut abl eDi cti onary*) get Navi gati onMap
-(NSArray* const) getVisi bl el nLi st Pat hsl nOr der
-(NSArray* const) getVisibl el nDetail Pat hsl nOr der

The Property Info Component
A property info instance stores the name, type and all constraints of a property, but does not
store property values.

SDMODat aPr opertyl nfo

-(id) initWthName: (NSString* const)propNane andPropEdniType: (const
enum TEN_EDM TYPES) pr opEdniTy pe

-(BOCOL) isNullable

-(BOQL) isKey

-(BOAL) isCreatable

30

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

-(BOOL) isUpdatabl e

-(BOOL) isFilterable

-(BOCL) isVisiblelnList

-(BOCL) isVisiblelnDetail

-(BOOL) isSearchable

- (BOQL) isServer Generat ed

-(voi d) addChi |l dPropertyl nfo: (const SDMODat aPropertyl nf o*
const)child

- ( SDMODat aPr opertyl nfo* const) getPropertyl nfoByPath: (NSStri ng*
const) path

-(NSString*) getNane

- (enum TEN_EDM TYPES) get Type

-(uintl1l6_t) getFlags

-(int) getMaxLength

- (enum TEN_PROPERTY_SENMANTI CS) get Sermanti c
-(uint32_t) getSemanticTypes

-(NSString*) getLabel

-(NSString*) getDescription

-(int32_t) getlListDi splayOder

-(int32_t) getDetail D spl ayOrder

-(uint8_t) getScale

-(uint8_t) getPrecision

- (NSMut abl eDi ctionary*) get Children

The Function Import Component

Function imports can be used to execute back-end functionalities that are not related to
collections, or functionalities other than the possible create, update, delete and read operations
for collections. An instance of SMDODat aFunct i onl npor t storesall the information and
has all the methods necessary to execute such a back-end functionality.

SDMODat aFunct i onl mpor t

-(id) initWthNane: (NSString* const)newNane

-(NSString*) getNane

-(NSString*) getHttpMthod

- (NSMut abl eDi cti onary*) get Paraneters

- (SDMODat aEnt i t ySchema*) get Ret ur nTypeSchema

-(uint8_t) getFlags

-(NSString*) getActionFor

- (NSMut abl eDi ctionary*) getWitabl eParaneters

-(NSString*) generateFunctionlnportUrl:(NSString* const)baseUrl
par anet ers: (NSDi cti onary* const) paraneters

The Link Component

The OData SDK provides four types of link classes depending on the usecase:

o SDMODat aLi nk

- SDMODat aRel at edLi nk (this class inherits all the methods mentioned at
SDMODat aLi nk)

« SDMODat aMedi aResour ceLi nk (this class inherits all the methods mentioned at
SDMODat aLi nk)

Developer Guide: OData SDK 31



CHAPTER 2: Developing iOS Applications

- SDMODat aAct i onLi nk(contains the optional parameters of the action and the helper
method to assemble the final URL that is required to execute the action)

SDMODat aLi nk

-(NSString*) getHRef
-(NSString*) getRel

-(NSString*) getType
-(NSString*) getTitle

- (enum TEN_LI NK_SEMANTI CS) get Semanti c

DMODat aRel at edLi nk

-(NSString*) getTargetCollection

SDMODat aMedi aResour ceLi nk

-(NSstring*) getConcurrencyToken

SDMODat aAct i onLi nk

-(NSString*) getHttpMethod;

- (NSMut abl eDi cti onary*) get Def aul t Par anet er Val ues;

-(NSDi cti onary*) get Paraneters;

-(NSString*) createActionLi nkURL: (NSDi cti onary*) par anet er s;

The Open Search Description Component
An SDMXpenSear chDescr i pti on instance stores the parsed short name, description
and the URL templates for searching data.

SDMOpenSear chDescri pti on

-(NSString*) getShort Nane
-(NSString*) getDescription
- (NSMut abl eArray*) get Url Tenpl at es

SDMOpenSear chDescri pti onURLTenpl at e

-(NSString*) getUrl Tenpl ate
-(NSString*) getUrl Type
-(NSString*) createUrl WthParaneters: (NSDi cti onary*) paraneters

The Property Value Objects Component

An instance of the property value object stores a value and its metadata (property info
instance). SDMODat aPr oper t yVal ueObj ect is the base property value class that
provides basic validation and value accessors. Derived classes of this class redefine certain
methods (for example, validation checks) of the base class and provide methods allowing the
library user to access data as typed data instead of string data.

32

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

SDMODat aPr opert yVal uetbj ect (base cl ass)

-(NSString* const) get HTM_EncodedVal ue

-(NSString* const) getDefaultVal ue

-(BOQL) isvalid

-(NSString*) getVal ue

-(void) setValue: (NSString*) val ue

- (enum TEN_EDM TYPES) get EdnTType

-(const SDMODat aPropertyl nfo* const) getPropertylnfo
-(BOAL) isValidationDi sabl ed

-(void) setValidationD sabl ed: (BOOL) val i dati onDi sabl ed

SDMCache

The SDMCache is a programming interface that provides in-memory cache for quick data
access. Its APIs allow adding, removing and searching items stored in the cache. The cache
also acts as a central, shared storage, avoiding the need to pass frequently used data between
view controllers.

List of Features

« In-memory management of SDMOData-related objects
* Quick data filtering
» Prefix matching and regular expression support (default search method is prefix matching)

SDMCache Public APIs

- (void) setCapacity: (unsigned short) val ue

— (unsi gned short) capacity

- (void) clear

- (void) setODataServi ceDocunent: ( SDMODat aSer vi ceDocunent *)

servi ceDocunent _in

- (id) initWthServi ceDocunent: ( SDMODat aSer vi cedocunent *)

servi ceDoc_in

+ (id) cacheWthServiceDoc: (SDMODat aSer vi cedocunment *) servi ceDoc_in
- (NSArray*)filterEntriesOf Col | ection: (NSString*) collectionNanme_in
forSearchText: (NSString*)searchText _in

- ( SDMODat aSer vi ceDocunent *) get ODat aSer vi ceDocunent

- (BOOL) renoveODat aServi ceDocunent

- (void) setODataEntry: (SDMODat aEntry*) entry_in byCollection:
(NSString*) collectionNane_in

- (SDMODat aEnt ry*) get ODat aEnt ryByCol | ecti on: (NSStri ng*)

coll ecti onNane_in andEntryld: (NSString*) entryld_in

- (void) setODataEntries: (NSArray *) entries_in byCollection:
(NSString*) collectionNane_in

- (NSArray*) getODataEntriesByColl ection: (NSString*)

col l ecti onNane_in

- (NSArray*) getColl ecti onsByWr kspace:

( SDVDat aWér kspace*) wor kspace_i n

- (SDMODat aCol | ecti on*) get Col | ecti onByNane:

(NSString*)col | ecti onNarme_i n

- (BOQL) renoveCODat abEntry: (SDMODat aEntry*)entry_in forColl ection:
(NSString*) collectionNane_in

- (BOOL) renpveODat akEntri esForCol | ection: (NSString*)

Developer Guide: OData SDK 33



CHAPTER 2: Developing iOS Applications

coll ecti onNane_in

- (NSArray*) getAl | Wrkspaces

- (NSArray*) getWrkspacesBySenmanti c: (enum TEN_WORKSPACE_SEMANTI CS)
- (void) set Shoul dAut oSaveOnMenor yWar ni ng: (BOOL) f I ag_i n

- (BOOL) shoul dAut oSaveOnMenor yWar ni ng

- (void) setRegexSearchEnabl ed: (BOOL)fl ag_in

- (BOQL) isRegexSearchEnabl ed

Technical Details
The common methods are defined by the SDMCachi ng protocol. (See also: SDMCache
default implementation.)

SDMPersistence

The SDMPersistence library provides APIs to persist data to the device's physical storage.

List of Features

« Protected data storage to the device’s filesystem using iOS 4.0 features
« Configurable storage policy
« Stores and loads NSData, SDMCache and objects adopting the NSCoding protocol

SDMPersistence Public APIs

+ (id) instance

- (void) clear

- (NSString*) storeCache: (i d<SDMCachi ng>)cache_in

- (id<SbMCachi ng>) | oadCache: (NSString*) uid_in

- (NSString*) storeData: (NSData*) data_in withld: (NSString*)uid_in
- (NSData*) | oadData: (NSString*) uid_in

- (NSString*) storeSerializable: (i d<NSCoding>) serializable_in
withld: (NSString*)uid_in

- (1 d<NSCodi ng>) | oadSeri al i zabl e: (NSString*) uid_in

- (StoragePolicy) storagePolicy

- set StoragePolicy: (StoragePolicy)policy_ in

Technical Details

The common methods are defined by the SDMPer si st i ng protocol. For builds targeting
iOS 4.0+ the default is Ful | Pr ot ecti onSt or agePol i cy. (See also:

SDMPer si st ence default implementation.)

Consider using the SDMPersistence default implementation rather than implementing a
custom persistence functionality.

Encryption, Secure Storage

Starting with i0S 4.0 (iOS 4.2 for iPad devices), data can be persisted in secure form. For
builds targeting iOS 4.0+, the default storage policy is fully protected. In older iOS versions,
data can only be persisted in unprotected form.

All data is stored in the app’s dedicated filesystem, the so-called sandbox. The app’s sandbox
can be accessed exclusively by the app it belongs to. As the sandbox is bound to the app,

34

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

deleting the app also removes its persisted data. Accessing data on iOS devices is fast and
reliable, even when encryption is used.

For encryption, we rely on the Security framework and the dedicated cryptographical

hardware available in the supported versions of iPad, iPad 2 and iPhone. Due to the lack of the
cryptographical hardware, former iPhone models are not supported. The RSA keys required
for the asymmetric key algorithm are retrieved from the app’s keychain; if it is not available,
they are generated and stored in the keychain during the first API call requiring the keys. For
RSA key generation and keychain management, the iOS Security framework APIs are used.

A generic approach for secure data storage has been made available with iOS 4.0. Encryption
and decryption of the device’s filesystem is managed automatically by the operating system.
This behavior is disabled by default, but can be enforced via corporate policy. It is possible to
leave out the secure APIs from the library and solely rely on this approach.

Related reading: Attp.//support.apple.com/kb/HT4175
WWNDC video about secure data storage: http.//developer.apple.com/videos/wwdc/2010/

SDMConnectivity

The Connectivity library exposes APIs required to set up and start HT TP requests, and retrieve
the payloads. For crossing a company firewall for enterprise use cases, you need to use SUP.
Therefore, the connectivity component in the OData SDK offers a connection to SUP by
default. For development and demo purposes, the SDK also provides a possibility to use
HTTP or HTTPS.

List of Features

» Synchronous and asynchronous HTTP request handling

« Concurrent request execution

« Continuous downloading and uploading when the app is sent to the background (iOS 4.0+
only)

e Timeout handling

e Supports compressed payload handling

» Notification about various events (failure, completion, authentication requests)

* Runtime switch between SDVHt t pRequest and SUPRequest (SUP libraries are
needed to be linked to the project) through SDVRequest Bui | der

SDMConnectivity Public APIs

Note: The SUP APIs and their descriptions are available after the installation of Sybase
Unwired Platform at the following location within your installation folder: . . .
\ Unwi redPl at form d i ent API \ api doc.

-(id)initWthURL: (NSURL *) newURL
+(id)request Wt hURL: (NSURL *) newURL
-(void) setUserName: (NSStri ng*)user nane
-(void) setPassword: (NSString*)usernane

Developer Guide: OData SDK 35


http://support.apple.com/kb/HT4175
http://developer.apple.com/videos/wwdc/2010/

CHAPTER 2: Developing iOS Applications

-(void) setdientDel egate: (id)clientDel egate

-(void) setDi dFini shSel ector: (SEL)di dFi ni shSel ect or

-(void) setDi dFail Sel ector: (SEL)di dFi ni shSel ect or

-(void) setRequest Met hod: (NSStri ng*) htt pMet hod

-(voi d) startAsynchronous

-(void) startSynchronous

-(voi d) cancel

-(voi d) set Upl oadPr ogressDel egat e

-(voi d) set Downl oadPr ogr essDel egat e

- (voi d) set ShowAccur at eProgress

- (voi d) set MaxConcur r ent HTTPRequest Count : (const unsi gned char) cnt
- (NSI nt eger) get MaxConcur r ent HTTPRequest Count

-(NSString*) responseString

- (NSDat a*) responseDat a

- addRequest Header : (NSSt ri ng*) header val ue: (NSSt ri ng*) val ue

- appendPost Dat a: ( NSDat a*) post Dat a

-(voi d) buil dPost Body

-(void) setCientCertificateldentity: (SecldentityRef)anldentity

Example - Request Initialization

NSSt ri ng* serverUr|l Wt hLanguage = [NSString stringWthFormat: @ %@
sap- | anguage=%@ , [ ConnectivitySettings url],[[ConnectivitySettings
i nstance] currentLanguage]];

[sel f set Request: [ SDMHTTPRequest request Wt hURL: [ NSURL
URLWthString: serverU | WthLanguage]]];

NSSt ri ng* server Ul Wt hLanguage = [NSString stringWthFormat: @ %@
sap- | anguage=%@ , [ ConnectivitySettings url],[[ConnectivitySettings
i nst ance] currentlLanguage]];

m AsynchRequest = [ HTTPRequest request WthURL: [ NSURL URLW t hStri ng:
server Url Wt hLanguage] ] ;

[ m_AsynchRequest
set Di dFi ni shSel ect or: @el ect or (servi ceDocFet chConpl ete:)];

[ m_AsynchRequest
set Di dFai | Sel ect or: @el ect or (servi ceDocFet chFail ed: )] ;

[ m_AsynchRequest set Request Met hod: @ POST” ] ;

Example - Request Execution
[ m_AsynchRequest start Synchronous];

[ m AsynchRequest cancel];

Example - Progress Tracking
[ m_ AsynchRequest set Upl oadPr ogr essDel egat e: m Progresslndi cator];

Example - Request Payload
NSSt ri ng* stringPayl oad = [ m AsynchRequest responseString];

NSDat a* bi naryPayl oad = [ m AsynchRequest responseDat a];

36

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

Example - Request Setup

[ m_ AsynchRequest addRequest Header: @ nyAppl i cati onl d" val ue: kAppl d] ;
[ m_AsynchRequest addRequest Header: @ devi ceType" val ue: @i phone"];

[ m_ AsynchRequest appendPost Dat a: ur | EncDat a] ;
NSDat a* encodedPost Dat a = [ encodedPost Str
dat aUsi ngEncodi ng: NSUTF8St r i ngEncodi ng] ;
[ m_ AsynchRequest appendPost Dat a: encodedPost Dat a] ;
I/ once we have themall, build the POST body

[ m_AsynchRequest bui | dPost Body] ;

[ m_AsynchRequest addRequest Header: @ nmyAppl i cati onl d" val ue: kAppl d] ;
[ m_AsynchRequest addRequest Header: @ devi ceType" val ue: @i phone"];

Technical Details

The SDMConnectivity library wraps internally the socket based CFNetwork APIs and uses
NSOperationQueue to collect and fire asynchronous requests. The number of maximum
concurrent HTTP requests is limited to MAX_CONCURRENT_THREADS (Default: 5).

The SDIVHt t pRequest Del egat e protocol defines default delegate methods for request
status related housekeeping. Client classes can implement this protocol to hook in for
requestStarted / requestFinished / requestFailed default delegates.

In cases when clients prefer to use custom selectors for request notifications, they do not neéed
to adapt the SDVHt t pRequest Del egat e protocol, but rather register themselves as
delegates and set their own selectors as didStartSelector / didFinishSelector / didFailSelector.

The SDVPr ogr essDel egat e defines default delegate methods for upload and download
progress notification. The protocol has to be adapted by client classes to hook in for
didReceiveBytes / didSendBytes / incrementDownloadSizeBy / incrementUploadSizeBy
delegates. You can choose to register a download or upload progress delegate using

SDVHt t pRequest instance methods - set Upl oadPr ogr essDel egat e and -

set Downl oadPr ogr essDel egat e.

The factory method instantiates SUPRequest by default. SUPRequest must be used to
communicate through Online Data Proxy channel; it is part of the ODP SUP libraries, which
have to be linked to the project. However, for development and testing purposes you can use
HTTP requests. The SDMConnectivity library provides the means to transparently choose
between SUPRequest using connections through the Online Data Proxy (ODP) Channel or
SDVHt t pRequest which leverages the usage of classical HTTP/HTTPS connections.

Protocols:
SDVHt t pRequest Del egat e

request St art ed:

r equest Fi ni shed:
request Fai | ed:
request Redi r ect ed:

+ o+ + 4+

Developer Guide: OData SDK 37



CHAPTER 2: Developing iOS Applications

+ request : di dReci eveDat a:
+ aut henti cati onNeededFor Request :
+ proxyAut henti cati onNeededFor Request :

SDIVPr ogr essDel egat e

set Progress:

request : di dRecei veByt es:

request : di dSendByt es:

request : i ncr ement Downl oadSi zeBy:
request : i ncrenent Upl oadSi zeBy:

+ + + + +

SDMSupportability

The SDMSupportability library provides functionality for logging, tracing and performance
measurement.

SDMLogger
The SDMLogger is a programming interface that provides event logging facilities. Its APIs

allow generating, retrieving and displaying log items for a specific application.

List of Features

e Easy-to-use APIs

* Low level system log access (via ASL methods)

« Convenience macros which automatically add additional information such as the
invoker’s file and method name, and line#

« Support for all iOS log levels

e Built-in log viewer

» Export capability via e-mail from the built-in log viewer; users can choose which entries to
send, and the e-mail attachment is compressed

« Globalized resource bundle (to be included by clients): contains all the various labels and
accessibility hints belonging to the LogViewer, translated to English, German, French,
Spanish, Portuguese, Japanese, Russian, and traditional Chinese

Logger Macros

The SDMLOG macros wrap the logger APIs and automatically enhance the log entry with
information such as FILE, FUNCTION and LINE#. The following macros are available
(matching the exposed APISs):

SDMLOGEMERGENCY( nsg)
SDMLOGALERT( nsQg)
SDMLOGCRI TI CAL( nsg)
SDM.OGERROR( n5q)
SDMLOGWARNI NG( B Q)
SDMLOGNOTI CE( s Q)
SDMLOG NFQ( s g)
SDM.OGDEBUG( nsq)

38

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

SDMLogger Public APIs

+ (voi d) enabl eLoggi ng

+ (void) disabl elLogging

-(void) displayLogsWthLevel: (Loggi ngLevel s)l evel _in

-(void) displayLogsWthLevel: (Loggi ngLevel s)level _in
forQueryOperation: (QueryQperations)queryQOperation;

-(NSArray*) retrieveLogsWthLevel : (Loggi ngLevel s)l evel _in;
-(NSArray*) retrieveLogsWthLevel : (Loggi ngLevel s)l evel _in

for QueryQOperation: (QueryQOper ati ons) queryQperati on;

-(void) | ogMessage: (NSString*) nessage_in wthLevel:

(Loggi ngLevel s)l evel _in andl nfo: (NSString*) info_in

-(void) | ogEnergency: (NSString*) message_in wthlnfo:(NSString*)
info_in

-(void) logAlert:(NSString*) nmessage_in w thlnfo: (NSString*) info_in
-(void) logCritical:(NSString*) nmessage_in wthlnfo:(NSString*)
info_in

-(void) logError: (NSString*) message_in withlnfo: (NSString*) info_in
-(void) |ogWarning: (NSString*) nessage_in w thlnfo:(NSString*)

info_in
-(void) logNotice:(NSString*) nmessage_in withlnfo:(NSString*)
info_ in

-(void) loglnfo:(NSString*) message_in withlnfo: (NSString*) info_in
-(void) | ogbebug: (NSString*) nmessage_in withlinfo:(NSString*) info_in

Technical Details
You can enable/disable logging, and display, retrieve and generate logs.

Higher priority log messages are mapped to lower values Mac OS X / iOS system wide (see
asl.h). Therefore, use Less or LessEqual query operation to display more critical logs. For
example, in order to retrieve all log messages including the lowest, Debug level ones, use the
following approach:

[ [ SDM_ogger instance] displayLogsWthLevel : DebugLoggi ngLevel
forQueryOperation: LessEqual ] ;

When generating logs, consider using the SDMLOGxxx macros, because they automatically
enhance the log entry with information such as FILE, FUNCTION and LINE#.

The common methods are defined by the SDM_oggi ng protocol. (See also: SDM_ogger
default implementation.)

The built-in crash log support provided by Apple can be used additionally for supportability
purposes. You can retrieve crash logs either by using iTunes or by using the iPhone
Configuration Utility. Note that Apple imposes restrictions on an application transmitting any
data about the user without the user's prior permission, as described in the App Store review
guidelines at /Attp.//developer.apple.com/appstore/resources/approval/guidelines.html, see
Chapter 17, Privacy.

Developer Guide: OData SDK 39


http://developer.apple.com/appstore/resources/approval/guidelines.html

CHAPTER 2: Developing iOS Applications

SDMPerfTimer

The SDMPerfTimer is a high precision timer class, which uses a high performance timer
providing a nanosecond granularity. This timer class is for accurate performance
measurements.

List of Features

« Easy-to-use, tiny API set
* Provides high precision timer data
* Low initialization overhead

SDMPerfTimer Public APIs

- (uint_64t) getTi neEl apsedlnM I isec
- (void) start
- (void) reset

SAP Passport
For the Single Activity Trace an SAP® Passport has to be issued by the connectivity layer of

the library.

The SAP Passport is transported asan HT TP header in the request. The server handles the SAP
Passport to generate end-to-end Trace.

Deploying Applications to Devices

Complete steps required to deploy mobile applications to devices.

1. Apple Push Notification Service Configuration

The Apple Push Notification Service (APNS) notifies users when information on a server
is ready to be downloaded.

2. Provisioning an Application for Apple Push Notification Service

Use Apple Push Notification Service (APNS) to push notifications from Unwired Server
to the iOS application. Notifications can include badges, sounds, or custom text alerts.
Device users can customize which notifications to receive through Settings, or turn them
off.

3. Preparing Applications for Deployment to the Enterprise

After you have created your client application, you must sign your application with a
certificate from Apple, and deploy it to your enterprise.

4. Sample Code to Enable APNS

Provides a code snippet on how to enable Apple Push Notification Services on your
device.

40

Sybase Unwired Platform



CHAPTER 2: Developing iOS Applications

See also
e OData SDK Components and APIs on page 24

Apple Push Notification Service Configuration

The Apple Push Notification Service (APNS) notifies users when information on a server is
ready to be downloaded.

Apple Push Notification Service (APNS) allows users to receive notifications on iPhones.
APNS:

« Works only with iPhone physical devices

e Is not required for any iOS application

e Cannot be used on an iPhone simulator

e Cannot be used with iPod touch or iPad devices

« Must be set up and configured by an administrator on the server
e Must be enabled by the user on the device

Provisioning an Application for Apple Push Notification Service
Use Apple Push Notification Service (APNS) to push notifications from Unwired Server to
the i0S application. Notifications can include badges, sounds, or custom text alerts. Device
users can customize which notifications to receive through Settings, or turn them off.

Each application that supports Apple Push Notifications must be listed in Sybase Control
Center with its certificate and application name. You must perform this task for each
application.

1. Confirm that the IT department has opened ports 2195 and 2196, by executing:
tel net gat eway. push. appl e. com 2195
tel net feedback. push. appl e. com 2196
If the ports are open, you can connect to the Apple push gateway and receive feedback
from it.

2. Copy the enterprise certificate (* . p12) to the computer on which Sybase Control Center
has been installed. Save the certificate in Unwi redPl at form I nstal I Di r
\ Ser ver s\ Messagi ngServer\ bi n\.

3. In Sybase Control Center, expand the Servers folder and click Server Configuration for
the primary server in the cluster.

4. In the Messaging tab, select Apple Push Configuration, and:

a) Configure Application name with the same name used to configure the product name
in Xcode. If the certificate does not automatically appear, browse to the directory.

b) Change the push gateway information to match that used in the production
environment.

¢) Restart Unwired Server.

Developer Guide: OData SDK 41



CHAPTER 2: Developing iOS Applications

5. Verify that the server environment is set up correctly:

a) OpenUnwi redPl atform I nstallDir\Servers\Unw redServer
\ | ogs\ APNSPr ovi der.
b) Openthe log file that should now appear in this directory. The log file indicates whether
the connection to the push gateway is successful or not.
6. Deploy the application and the enterprise distribution provisioning profile to your users’
computers.
7. Instruct users to use iTunes to install the application and profile, and how to enable
notifications. In particular, device users must:
» Download the Sybase application from the App Store.
* Inthe iPhone Settings app, slide the Notifications control to On.

8. \erify that the APNS-enabled iOS device is set up correctly:

a) Click Device Users.

b) Review the Device ID column. The application name should appear correctly at the
end of the hexadecimal string.

c) Select the Device ID and click Properties.

d) Check that the APNS device token has been passed correctly from the application by
verifying that a value is in the row. A device token appears only after the user is
registered with the application in Sybase Control Center.

9. Testthe environment by initiating an action that results in a new message being sent to the
client.

If you have verified that both device and server can establish a connection to APNS
gateway, the device will receive notifications and messages from the Unwired Server,
including workflow messages, and any other messages that are meant to be delivered to
that device. Allow a few minutes for the delivery or notification mechanism to take effect
and monitor the pending items in the Device Users data to see that the value increases
appropriately for the applications.

10. To troubleshoot APNS, use the Unwi redPl atform I nstal | Dir\ Servers
\Unwi red Server\l og\trace\ APNSPr ovi der log file. You can increase the
trace output by editing <SUP_Hone>\ Ser ver s\ Messagi ngSer ver \ Dat a
\ TraceConfi g. xm and configuring the tracing level for the APNSProvider module
to debug for short periods.

Preparing Applications for Deployment to the Enterprise

After you have created your client application, you must sign your application with a
certificate from Apple, and deploy it to your enterprise.

Note: Developers can review complete details in the /Phone OS Enterprise Deployment Guide
at http.//manuals.info.apple.com/en US/Enterprise_Deployment Guide.pdf.

42 Sybase Unwired Platform


http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf

o ks wDN

CHAPTER 2: Developing iOS Applications

Sign up for the iPhone Developer Program, which gives you access to the Developer
Connection portal. Registering as an enterprise developer gets you the certificate you need
to sign applications.

Create a certificate request on your Mac through Keychain.

Log in to the Developer Connection portal.

Upload your certificate request.

Download the certificate to your Mac. Use this certificate to sign your application.
Create an AppID.

Verify that your i nf 0. pl i st file has the correct ApplID and application name. Also, in

Xcode, right-click Targets < <your_app_target>and select Get Info to verify the AppID
and App name.

Create an enterprise provisioning profile and include the required device IDs with the
enterprise certificate. The provisioning profile authorizes devices to use applications you
have signed.

Create an Xcode project ensuring the bundle identifier corresponds to the bundle identifier
in the specified App ID. Ensure you are informed of the "Product Name" used in this
project.

Sample Code to Enable APNS

Provides a code snippet on how to enable Apple Push Notification Services on your device.

Examples

Enable APNS —

/1 Enabl e APNS

To enabl e APNS, you need to inplenent the following in the

application del egate of the application that has to receive

notifications.

- (BOQL) application: (U Application *)application

di dFi ni shLaunchi ngWt hOp-tions: (NSDi ctionary *)l aunchQOpti ons {
[ Li t eSUPMessagi ngd i ent set upFor Push: application];

}

* Cal | back by the systemwhere the token is provided to the client
application so that this

can be passed on to the provider. In this case,

“devi ceTokenFor Push” and “set upFor Push”

are APls provided by SUP to enabl e APNS and pass the token to SUP
Server

- (void)application: (U Application *)app
di dRegi st er For Renpt eNot i fi cati ons- Wt hDe-vi ceToken: ( NSDat a
*) devi ceToken {
[ Li t eSUPMessagi ngd i ent devi ceTokenFor Push: app
devi ceToken: devi ceToken] ;

* Call back by the systemif registering for renote notification

Developer Guide: OData SDK 43



CHAPTER 2: Developing iOS Applications

failed.
- (void)application: (U Application *)app
di dFai | ToRegi st er For Renot eNot i fica-ti onsW-thError: (NSError *)err

[ Li t eSUPMessagi ngCl i ent pushRegi strati onFail ed: app
errorinfo:err];

/1 You can alternately inplenment the pushRegistrationFailed API:
/1 +(void)pushRegi strationFail ed: (U Application*)application
errorinfo: (NSError *)err
* Cal | back when notification is sent.
- (void)application: (U Application *)application
di dRecei veRenpt eNoti fi ca-tion: (NSDi ctionary *)userlnfo {
[ Li t eSUPMessagi ngCl i ent pushNotification: application
noti fyDat a: user | nf o] ;

44 Sybase Unwired Platform



CHAPTER 3 Developing Android

Applications

Provides information about using advanced Sybase® Unwired Platform features to create
applications for Android devices. The audience is advanced developers who are familiar
working with APIs, but who may be new to Sybase Unwired Platform.

Describes requirements for developing a device application for the platform. Also included
are task flows for the development options, procedures for setting up the development
environment and API references.

1. Setting Up the Development Environment

Set up the Android Development Environment by downloading the required plugins.
Developing Applications in the Android Development Environment

After you import mobile applications and associated libraries into the Android
development environment, use the Android API references to customize your device
applications.

OData SDK Components and APIs

The Android OData SDK provides a set of features that help application developers build
new applications on top of the Android platform. It supports the usage of the OData
protocol with SAP additions (OData for SAP) and provides solutions for the most
common use-cases an application developer meets with.

Deploying Applications to Devices

This section describes how to deploy customized mobile applications to devices.

Setting Up the Development Environment

Set up the Android Development Environment by downloading the required plugins.

Prerequisites

Download the Java Standard Edition (6 Update 24) Development Kit from the following
URL: Attp.//www.oracle.com/technetwork/java/javase/downloads/index.html

Download Eclipse Helios (3.6.2) from the following URL: Attp.//www.eclijpse.org/
downloads/

Developer Guide: OData SDK 45


http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

CHAPTER 3: Developing Android Applications

Task

© © N o

a > e

Start the Eclipse environment.

From the Help menu, select Install New Software.

Click Add.

In the Add Repository dialog, enter a Name for the new plugin.
Enter one of the following for URL:

* https://dl-ssl.google.com/android/eclipse/
 http://dl-ssl.google.com/android/eclipse/

Click OK.

Select the Developer Tools checkbox and click Next.
Review the tools to be downloaded.

Click Next.

10. Read and accept the license agreement and click Finish.
11. Once the installation is complete, restart Eclipse.

See also

Developing Applications in the Android Development Environment on page 47

Setting Up the Android SDK Library in the Plugin

Set up the Android SDK in the ADT Plugin.

> w D

In the Eclipse environment, from the Window menu, select Preferences.

In the left navigation pane, select the Android node.

Click Browse to search for the location where you have stored the Android SDK.
Click Apply and OK.

Importing Libraries to your Android Application Project

Reference the libraries required for the Android application project.

1.

2.

Download the SDK/ ODRP library files to your host development system.
For Online Data Proxy, you need to download the following .jar files from the location
<Unwi redPl atform I nstal | Di r >\ Mbobi | eSDK\ ODat a\ Androi d

\libraries\:

e sup-json.jar

e ClientLib.jar

» SUPProxyClient* jar

Create a new folder, named | i bs, in your Eclipse/Android project.

46

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

3. Rightclick| i bs andchoosel nport -> General -> File Systemthenclick
Next.
4. Browse the file system to find the library's parent directory (where you downloaded it).

5. Click OK, then click the directory name (not the checkbox) in the left pane and check the
relevant JAR in the right pane. This puts the library into your project (physically).

6. Right click on your project, choose Bui | d Path -> Configure Build Path,
then click the Libraries tab, then click Add JARs...

7. Navigate to your new JAR in the libs directory and add it. (This is when your new JAR is
converted for use on Android.)

This procedure includes a Dalvik-converted JAR in your Android project and makes Java
definitions available to Eclipse in order to find the third-party classes when compiling your
project's source code.

Online Data Proxy Android APl JAR File Locations

The Online Data Proxy JAR files and dependencies are installed in the Sybase Unwired
Platform installation directory.

The contents and location of the .jar files:

e <Unwi redPl atform I nstall Di r>\ Mbil eSDK\ ODat a\ Androi d
\libraries\

The API references can be extracted from the following zip files:

e <Unwi redPl atform I nstall Di r>\ Mbi |l eSDK\ ODat a\ Andr oi d\ docs
\ SUPProxyClient-2.1.1-Docs. zip

e <UnwiredPl atformInstall Di r>\ Mobi | eSDK\ ODat a\ Andr oi d\ docs
\ Andr oi dODat aSDK- 1. 1. 0-doc. zi p

Developing Applications in the Android Development
Environment

After you import mobile applications and associated libraries into the Android development
environment, use the Android API references to customize your device applications.

This section provides a quick reference to APIs used for developing Android Applications.
For a comprehensive list of API references, extract the contents from the following zip files:

e <Unwi redPl at form I nstal | Di r>\ Mobi | eSDK\ ODat a\ Andr oi d\ docs
\ SUPProxyd ient-2.1.1-Docs. zi p

e <Unwi redPl atform I nstall Di r>\ Mobi | eSDK\ ODat a\ Andr oi d\ docs
\ Andr oi dODat aSDK- 1. 1. 0- doc. zi p

Developer Guide: OData SDK 47



CHAPTER 3: Developing Android Applications

See also
» Setting Up the Development Environment on page 45
» OData SDK Components and APIs on page 59

Initializing an Application

Initialize an application.

Syntax

public static void initlnstance(android.content.Content context,
String appl D) throws com sybase. nb. Messagi ngCl i ent Excepti on

Parameters

» context — Name of the application context.
* applD - Name of the registered application.

Examples

* Initialize an application —

Li t eUser Manager . i ni t | nstance(get Appl i cati onCont ext (),
" Sanpl eUser Processi ng") ;
Li teUser Manager |urm = LiteUser Manager. getl nstance();

Setting Connection Profile

Set the server details.

Syntax
public void set ConnectionProfile(String host, int port, String
farm D)

Parameters

* host — IP Address of the ODP server.
e port — Port number of the server.
e farmlD - This is the company name/ID.

Examples

« Setting the server details —
| urm set Connecti onProfil e("10.66.148.17", 5001, "0");

48

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Manually Registering an Application

Manually register an application by using the user name and activation code of the application
registered through the Sybase Control Center.

Syntax

Synchronous Registration

public void registerUser(String usernane, String activati onCode)
throws com sybase. nb. Messagi ngCl i ent Excepti on

Asynchronous Registration

public void asyncRegi sterUser (String username, String
activati onCode) throws com sybase. no. Messagi ngCl i ent Excepti on

Parameters

e username — User name specified in SCC
* activationCode — Activation Code specified in SCC

Examples

» Register the application manually —
Li t eUser Manager . regi st er User (user Nane, acti vati onCode);

Automatically Registering an Application using SSO2 Cookie

Registering an application automatically using an SSO2 Token Cookie. This token is fetched
from a ticket issuing system and verified by the server.

Syntax

Synchronous Registration

public void registerUser(String usernane, String securityConfig,
String password, String vault Password) throws

com sybase. no. Messagi ngd i ent Excepti on

Asynchronous Registration

public void asyncRegi sterUser(String username, String
securityConfig, String password, String vaultPassword) throws
com sybase. no. Messagi ngd i ent Excepti on

Parameters

* username — User name of the ticket issuing system.

* securityConfig — Security configuration of the registered application provided by the
administrator in the Sybase Control Center.

Developer Guide: OData SDK 49



CHAPTER 3: Developing Android Applications

* password — Password used to authenticate the user.
* vaultPassword — Password of the vault.

Examples

* Registering a user using SSO2 Cookie —
| urm registerUser("supuser", " SSQ2Cooki e", "s3puser", "dt apass");

Automatically Registering an Application using HTTP Authentication

Provider

Registering an application automatically using the HTTP Authentication Provider.

Syntax

public void registerUser(String usernane, String securityConfig,
String password, String vaultPassword) throws
com sybase. no. Messagi ngd i ent Excepti on

Parameters

¢ username — Valid user name.

* securityConfig — Security configuration of the registered application provided by the
administrator in the Sybase Control Center.

* password — Password used to authenticate the user.
» vaultPassword — Password required to unlock the data vault .

Examples

* Registering an application using HTTP Authentication Provider —

| urmregisterUser("supuser", " SUPGACHt t pAut hConfi g", "s3puser", "dta
pass");

Automatically Registering an Application using X.509 Certificate

Registering an application automatically using an X.509 Certificate. This certificate is fetched
from a Certificate Authority and verified by the server.

Syntax

Synchronous Registration

public void registerUser(String usernane, String securityConfig,
String password) throws com sybase. no. Messagi ngd i ent Excepti on

Asynchronous Registration

50

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

public void asyncRegi sterUser(String username, String
securityConfig, String password) throws
com sybase. no. Messagi ngd i ent Excepti on

Parameters

* username — Valid user name

» securityConfig — Security configuration of the registered application provided by the
administrator in the Sybase Control Center.

» password — Contains the Base64 encoded string of the certificate library.

Examples

* Registering a user using X.509 Certificate —

Li teUser Manager |urm = LiteUser Manager. get | nstance();

| urmregisterUser (" SUPUSERL", " SUPGNCCERTConfi g",
LiteCertificateStore.getlnstance().getSignedCertificateFronFile("
/ dat a/ SUPUSER1. p12", "nmobile");

Storing the Application Credentials Securely

Post user registration, if you want the user credentials to be managed by SDK, you can provide
a data vault password to securely store the data.

Syntax

public void set AppCredential s(String usernane, String
securityConfig, String password, String vaultPassword) throws
Li t eDat aVaul t Excepti on

Parameters

» username — Valid user name to be stored.

» securityConfig — Security configuration of the registered application to be stored.

« password — If using certificates, this corresponds to the Base64 encoded string of the
certificate library. If using SSO2 cookie, this corresponds to the passowrd of the ticket
issuing system.

» vaultPassword — Password of the secure store provided by SDK.

Examples

» Storing the application credentials securely —

| urm set AppCr edenti al s(username, sceurityConfig, password,
vaul t Passwor d)

Developer Guide: OData SDK 51



CHAPTER 3: Developing Android Applications

Getting Application End-point

Retrieve the application end-point that corresponds to the gateway service document.

Syntax
public String getApplicationEndPoint() throws

com sybase. nb. Messagi ngCl i ent Excepti on
Returns

If successful, this function returns the application end-point.

Examples

* Retrieving application end-point —

Li teAppSettings las = new LiteAppSettings();
| as. get Appl i cat i onEndPoi nt ()

Getting the Push End-point

Retrieve the push end-point that corresponds to the delivery address that the application uses
in the subscription request for notifications.

Syntax

public String get PushEndPoi nt () throws
com sybase. nb. Messagi ngCl i ent Excepti on

Examples

* Retrieve the push end-point —

Li teAppSettings las = new LiteAppSettings();
| as. get PushEndPoi nt () ;

Getting Server Details

Retrieve the SUP server host name.

Syntax

public String getServer() throws
com sybase. nb. Messagi ngd i ent Excepti on

Returns

Returns the server name as a string.

52

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Examples

* Retrieve the server details —

Li t eAppSetti ngs appSettings = new LiteAppSettings();
String ServerName = appSettings. get Server();

Getting Port Number
Retrieve the port number provisioned in the client repository.

Syntax
public int getPortNunber() throws

com sybase. no. Messagi ngd i ent Excepti on
Returns

Returns the port number as an integer.

Examples

* Retrieve the port number —

Li t eAppSetti ngs appSettings = new LiteAppSettings();
int PortNo = appSettings. get Port Nurber () ;

Getting FarmID
Retrieve the Farm ID of the SUP Server.

Syntax
public String getFarm D() throws

com sybase. no. Messagi ngd i ent Excepti on
Returns

Returns the Farm ID as a string.

Examples

¢ Retrieve the Farm ID —

Li t eAppSetti ngs appSettings = new LiteAppSettings();
String Farm D = appSettings. get Farm D();

Checking the Provisioning Status of the Public Key
Check if the public key is provisioned on the client.

Developer Guide: OData SDK 53



CHAPTER 3: Developing Android Applications

Syntax
publ i ¢ bool ean | sSUPKeyProvi si oned() throws

cone. sybase. no. Messagi ngCl i ent Excepti on
Returns

If the key is provisioned, the value 'true’ is returned, else ‘false’.

Examples

* Check the provisioning status of the public key —

Li t eAppSetti ngs appSettings = new LiteAppSettings();
i f (appSettings. | sSUPKeyProvi si oned())

Log.i (null, "I sSUPKeyProvi sioned is true");

Deleting Users

Deletes a registered user. If the user credentials are managed by SDK, this API deletes the user
credentials from the vault and deletes the user from the server.

Syntax
public void del eteUser())

Getting Application Seed Data from Afaria
Get the application seed data from Afaria.

Syntax
public static Hashtabl e getSettingsFromAfaria() throws

com sybase. af ari a. SeedDat aAPI . SeedDat aAPI Excepti on, | CExcepti on
Returns

Returns a hashtable containing the settings.

Provisioning Connection Settings from Afaria

Connection Settings for an application can be provisioned using the Afaria client that is
installed on the mobile device.

Syntax

public void set ConnectionProfil eFromAfaria() throws
com sybase. no. Messagi ngd i ent Excepti on

54 Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Examples

* Provisioning the Connection Settings from Afaria —

Li t eUser Manager |urm = LiteUser Manager. getl nstance();
| urm set Connecti onProfil eFromAfaria();

Provisioning Certificates using Afaria
Certificates can be provisioned for Android devices using Afaria.

Syntax

static String getSignedCertificateFromAfaria (String CN, String
chal | engeCode) throws com sybase. persi st ence. SSOCer t Manager Except i on

Parameters

* CN - A character-type column name, variable, or constant expression of char, varchar,
nchar, nvarchar, or unichar type.

» challengeCode — Another character-type column name, variable, or constant expression
of char, varchar, nchar, nvarchar, or unichar type.

Returns

Returns a signed certificate.

Examples

¢ Provisioning Certificates from Afaria —

LiteCertificateStore.getlnstance().getSignedCertificateFromAfaria
("sample","~");

Clearing the Server Verification Key

For a device to switch connection between SUP servers, this API is invoked before registering
a new user. This ensures that the server public keys are removed from the SUP client SDK
which enables connectivity to the new SUP Server.

Syntax

public void clearServerVerificationKey() throws
com sybase. no. Messagi ngd i ent Excepti on

Examples

* Clear the server verification key —
| urm cl ear Server VerificationkKey();

Developer Guide: OData SDK 55



CHAPTER 3: Developing Android Applications

Enabling Online Push for Applications

To consume push messages, the application registers a listener object. The client SDK notifies
this listener object whenever there is a push message from the server. The listener object
should implement the ISDMNetL.istener interface.

Syntax
public void

doPushRegi strati on(com sap. nobi l e. | i b. sdnconnecti vity.| SDMNet Li st en
er push)

Parameters

* push — Object that implements ISDMNetL istener interface.

Enabling the Listener for Proxy Setting Changes

To consume updates when there are changes in the Proxy settings, the application registers a
listener object.The client SDK notifies this listener object whenever there is a settings update
from the server. The listener object should implement the
SUPL.iteConfigurationChangeL.istener interface.

Syntax

public void
addConfi gur ati onChangeli st ener ( SUPLi t eConf i gur ati onChangelLi st ener
oLi stener) throws com sybase. no. Messagi ngC i ent Excepti on

Parameters

« oListener — Object that implements the SUPL iteConfigurationChangeL.istener interface.

Data Vault APl References

The data vault is a secure storage area provided by the SUP 2.1 SDK client libraries to store
sensitive data such as usernames, passwords, authentication certificates within the
application. Access to the data vault is protected by two levels of passwords and unique salts.

Creating a Vault
Creates an instance of a vault with a set of attributes.

Syntax

public static LiteDataVault createVault(String sDataVaultID, String
sPassword, String sSalt) throws LiteDataVaultException

56

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Parameters

» sDataVaultlD — The vault name.
» sPassword — The vault password
* sSalt — The salt password

Returns
If successful, creates an instance of LiteDataVault.
Opening an Existing Vault

Returns the LiteDataVault singleton instance, tied to a particular vault. If the vault does not
exist or has been deleted, this method throws an exception.

There is a singleton instance per data vault 1D.

Syntax

public static LiteDataVault getVault(String sDataVaultlD) throws
Li t eDat aVaul t Excepti on

Parameters

¢ sDataVaultlD — The vault name.

Returns
If successful, returns a singleton instance of the vault..
Deleting a Vault

Delete the storage for this instance from the persistent storage. Once a vault is deleted, all
current instance references become invalid.

Syntax
public static void deleteVault (String sVaultld) throws
Li t eDat aVaul t Excepti on

Parameters

¢ sVaultld — The vault name.

Locking a Vault
Lock a vault to avoid it from being used. If the vault is locked, this API will have no effect.

Syntax
public void | ock() throws LiteDataVaultException

Developer Guide: OData SDK 57



CHAPTER 3: Developing Android Applications

Unlocking a Vault
Unlock a vault for use by an application.

Syntax
public void unlock(String sPassword, String sSalt) throws
Li t eDat aVaul t Excepti on

Parameters
» sPassword — The vault password.
e sSalt — The vault's salt password.

Setting a Binary Value
Store a value in the vault. To remove a value, provide 'null’ as the second parameter.

Syntax
public void setValue(String sNane, byte[] abVal ue) throws
Li t eDat aVaul t Excepti on

Parameters
» sName - The key in which you store the data.
* abValue — The value you want to store.

Retrieving a Binary Value
Retrieve a value set from the vault.

Syntax
public byte[] getValue (String sNanme) throws LiteDataVaultException

Parameters

* sName — The key that contains the data you want to retrieve

Returns

If successful, returns the value stored in the key.

Setting the Retry Limit Value for a Vault
Set the maximum number of consecutive failed attempts to unlock the vault.

58

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Syntax
public void setRetryLimt(int iLimt) throws LiteDataVaultException
Parameters

e iLimit — Maximum failed attempts that is permitted to unlock the vault.

Setting the Lock Timeout Value for a Vault
Set the time until which the vault remains in an unlocked state. Once this time is lapsed, the
vault reverts to the locked state.

Syntax

public void setLockTi neout (int i TimeoutSeconds) throws
Li t eDat aVaul t Excepti on

Parameters

¢ [TimeoutSeconds — Time in seconds for which the vault is unlocked.

OData SDK Components and APIs

The Android OData SDK provides a set of features that help application developers build new
applications on top of the Android platform. It supports the usage of the OData protocol with
SAP additions (OData for SAP) and provides solutions for the most common use-cases an
application developer meets with.

Prerequisites for Developing Android Apps

Download the Android Software Development Kit. The recommended development
environment is Eclipse IDE (version 3.5 and higher). Also download the Android java plug-in
for Eclipse. For more details about Android SDK end Eclipse plug-in installation, see: Atip.//
developer.android.com/sdk/installing. htm/

The Android OData SDK also provides emulator support for testing, however, in Android
platform, debugging and testing on real devices are more effective. To deploy your application
directly to a real device, first install the driver of the device on your computer. For debugging
an application on a real device, change the settings of your device to accept non-market
applications. (You can change the setting at Set ti ngs > Application >

Devel opnent)

Each component of the Android OData SDK can be imported to your project as an external
library. The components are built on top of the Android SDK with API level 8.

Developer Guide: OData SDK 59


http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html

CHAPTER 3: Developing Android Applications

OData SDK - Android

The full list of APIs and their descriptions are available after the installation of Sybase
Unwired Platform at the following location within your installation folder: . . .

\ Unwi r edPl at f or Ml Mobi | eSDK\ ODat a\ Andr oi d\ docs

The following figure shows the main components of the OData SDK on Android.

Application

Configuration Common
Preferences Interfaces

Supportability
Logging & Tracing

Parser Connectivity Persistence Cache

Sybase Unwired
Platform

I

SAP NetWeaver
Gateway

Each component is implemented as a standalone Java project, so they are available for
application developers as separate external libraries (jar files). You also need the
SDMCommon component to be able to reuse any other components from the Android OData
SDK.

SDMCommon

To build an application on the OData SDK, you must first import the SDMCommon
component that contains interfaces and configuration for the components. None of the
components have dependency on each other, but all of them depend on the SDMCommon
component, and all of them have references to interfaces of other components (held by
SDMCommon).

60

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Component Replacements

In your own application, you can replace the implementation behind an interface of an
Android OData SDK component. For example, if you want to add a new functionality to
SDMCache, but keep everything else unchanged (for example, the way it is persisted by
SDMPersistence) you can implement your own solution. The new cache can be either a new
implementation, or a descendant of SDMCache, as long as it implements the ISDMCache
interface from SDMCommon.

See also
« Developing Applications in the Android Development Environment on page 47
»  Deploying Applications to Devices on page 75

SDMParser
The SDMParser component is responsible for transforming between the different
representations of OData structures, for example, parsing from XMLs to a Java Object or
building XMLs from a Java Object.

List of Features

« Parsing OData XML structures to OData Java Objects

* Providing direct access to the most common OData fields and structures in the Java
Objects that are the outcome of parsing

* Providing dynamic access to all OData fields and structures in the Java Objects that are the
outcome of parsing

» Building OData XML structures from OData Java Objects

* Partial validation of OData XMLs

SDMParser Public APIs
| SDMPar ser

| SDMODat aSer vi ceDocunment par seSDMODat aSer vi ceDocurment XM_( St ri ng
servi ceDocument XM.)

| SDMODat aSer vi ceDocunent

par seSDMODat aSer vi ceDocunent XM_( | nput Stream stream

| SDMODat aSchema par seSDMODat aSchemaXM_( St ri ng schemaXM.,

| SDMODat aSer vi ceDocunent servi ceDocunent)

| SDMODat aSchenma par seSDMODat aSchenaXM_( | nput St r eam st ream
| SDMODat aSer vi ceDocunment ser vi ceDocunent)

Li st <I SDMODat aEnt ry> par seSDMODat aEntri esXM_(String entri esXM.,
String collectionld, |SDMODataSchenma schenm)

Li st <| SDMODat aEnt r y> par seSDMODat aEnt ri esXM_( | nput St r eam st ream
String collectionld, |SDMODataSchena schenm)

| SDMODat aOpenSear chDescri pti on

Developer Guide: OData SDK 61



CHAPTER 3: Developing Android Applications

par seSDMODat aOpenSear chDescri pti onXM.(Stri ng

openSear chDescri pti onXM., String collectionld,

| SDMODat aSer vi ceDocunment ser vi ceDocunent)

| SDMODat aOpenSear chDescri pti on

par seSDMODat aOpenSear chDescri pti onXM.(| nput Stream stream String
collectionld, |SDMODataServiceDocunent servi ceDocunent)

| SDMODat aErr or par seSDMODat aError XML(String error XM.)
| SDMODat aEr r or par seSDMODat aEr r or XML( | nput St ream streamn)

Li st <I SDMODat aEnt ry> par seFuncti onl nport Resul t XM_(String xm ,

| SDMODat aFuncti onl nport functionl nport, | SDMODat aSchema schemns)
Li st <I SDMODat aEnt ry> par seFuncti onl nport Resul t XM_( | nput St ream
stream | SDMODat aFuncti onl nport functionlnport, | SDMODat aSchema
schemm)

String buil dSDMODat aEnt r yXM_( | SDMODat aEntry entry)
String buil dSDMODat aDocunent XM_( | SDMPar ser Docunment docunent )

| SDMPar ser Docunent parseXM.(String xm)
| SDMPar ser Docunent par seXM.(| nput Stream stream

Example

try {
//Parsing a feed or a single entry.

/1 Assumi ng that schema and service docunent already parsed
//and col | ection sel ected
Li st <I SDMODat aEntry> entries =
par ser. parseCDat aEntri esXM_(responseXM,, col | ecti onl d, schem) ;
// Assuming there is at |east one entry in the feed.
| SDMODat aEntry entry = entries. get(0);
//Retrieving the valid property meta data fromthe given
SDMXdat aSchena.
Li st <I SDMODat aPr operty> properties = entry. getPropertiesData();
I/ Assuming there is at |east one property for the entry.
| SDMODat aProperty property = properties.get(0);
bool ean vi si bl el nLi st = property.getAttribute("visible-in-
list");
String val ue;
if (visiblelnList) {
val ue = property. getVal ue();
} else {
val ue = "invisible";

}
} catch(SDMPar ser Exception e) {}

Technical Details

The SDMParser component uses javax.xml.parsers.SAXParser as a parser engine, defining its
own extension of or g. xrl . sax. hel pers. Def aul t Handl er class as a handler for
SAXParser.

62

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

The outcome documents of SDMParser are all optimized for persistence using
SDMPersistence, implementing the | SDMPer si st abl e interface.

To support optimized performance and ensure consistent behavior, SDMParser can persist
parsing related data on the device. End users can not delete parser related persisted data, unless
they uninstall the whole application. To set the default folder of SDMParser’s persistence,
change the default value of the appropriate preference:
PARSER_DEFAULTFOLDER_PATH (see more at the section about the SDMConfiguration
component of the Android OData SDK).

Parsing related data is loaded during the initialization of the SDMParser component. This
means that SDMParser must always be initialized before using the SDMParser documents.

As a result of parsing, SDMParser provides Java Object representations of the appropriate
OData structures. Each such SDMOData Java Object is a representation of the appropriate
Data XML and provides dynamic access to all of its elements and attributes. Besides the full
access with the dynamic method, OData Java Objects provide interfaces for amore convenient
access of data used in the most common scenarios.

SDMCache

The SDMCache component is responsible for storing and accessing OData related objects in
the memory of the device.

List of Features

« Storing SDMOData document objects in the memory

* Accessing SDMOData documents in the memory directly by their key

« Searching for SDMODataEntry objects in the memory using tokenized prefix search on
their searchable fields

» Searching for SDMODataEntry objects in the memory using one of the following
predefined algorithm: full term prefix search, tokenized contain search, full term contain
search, tokenized contain-all search and regex search

« Searching for SDMODataEntry objects in the memory using custom search algorithm

« Managing the number of stored SDMOData documents based on the maximum size of the
capacity, removing the least recently used SDMOData document first

» Validating the references between the stored SDMOData Service Document, SDMOData
Schema and the SDMOData Entries

SDMCache Public APIs
| SDMCache

void clear();
voi d set SDMODat aSer vi ceDocunent (| SDMODat aSer vi ceDocunent
servi ceDocunent) ;
voi d set SDMODat aSchema( | SDMODat aSchema schemm) ;
voi d set SDMODat aEntry( | SDMODat aEntry entry, String coll ectionld);
voi d set SDMODat aEnt ri es(Li st <I SDMODat aEntry> entries, String

Developer Guide: OData SDK 63



CHAPTER 3: Developing Android Applications

collectionld);

voi d set SDMODat aDocunent (| SDMPar ser Docunent docunent) ;

| SDMODat aSer vi ceDocunment get SDMODat aSer vi ceDocunent () ;

| SDMODat aSchenma get SDMODat aSchema() ;

| SDMODat aEnt ry get SDMODat aEntry(String key);

Li st <I SDMODat aEnt ry> get SDMODat aEntri es(String col | ectionld);

| SDMPar ser Docunent get SDMODat aDocumnent (St ring key) ;

Li st <I SDMODat aEnt ry> sear chSDMODat aEntri es(String searchTerm
String collectionld);

voi d renoveSDMODat aSer vi ceDocunent () ;

voi d removeSDMODat aSchema() ;

voi d removeSDMODat aDocunent (String key);

voi d renmoveSDMODat aEntri es(String col |l ectionld);

voi d renoveSt or edDocurent s() ;

i nt get SearchAl gorithn();

voi d set SearchAl gorithn{int searchAl gorithm;

voi d set EntrySear ch(| SDVEnt rySearch entrySearch);

Technical Details
For capacity management, SDMCache uses an LRU (least recently used) algorithm that

ensures that the most recently used entries will not be removed first because of reaching the

maximum capacity. Maximum number of capacity can be set using preference with key:

ISDMPreferences.SDM_CACHE_CAPACITY. This setting refers to the maximum number

of cached entities per Collection.

SDMCache supports several predefined search algorithms optimized for performance.

Application developers can also set their own EntrySearch object in order to use a custom

search algorithm.

SDMCache is an implementer of the | SDMPer si st abl e interface, so it can be persisted

with the SDMPersistence component (see more at the section about the SDMPersistence
component of Android OData SDK).

SDMCache validates the incoming SDMOData documents by matching their references to

each other. A single SDMCache object can store only one set of documents (one Service
Document with one related Schema with any number of related Entries).

The SDMOData document created by the SDMParser component automatically sets the

required references to the related objects. All these references are automatically maintained

during persisting or loading the SDMCache using SDMPersistence.

SDMCache depends on the SDMOData specific interfaces of SDMParser, but does not
depend on the real implementation of SDMParser.

64 Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

SDMPersistence

The Persistence component is responsible for storing application specific objects and raw data
in the device’s physical storage.

List of Features

» Storing objects and raw data on the physical storage of the device

» Accessing objects and raw data stored on the physical storage of the device

« Encrypting and storing objects and raw data on the physical storage of the device using the
secret key provided by the application developer

» Generating initial secret key

« Accessing and decrypting objects and raw data stored encrypted on the physical storage of
the device using the secret key provided by the application developer

SDMPersistence Public APIs
| SDVPer si st ence

void clear();

voi d storeCbject(String key, |SDWPersistable object)

<T extends | SDMPer si st abl e> bool ean | oadCbj ect (String key, T
obj ect)

voi d storeRawDat a(String key, byte[] data)

byte[] | oadRawData(String key)

voi d storeDataStrean(String key, |nputStream stream

I nput Stream | oadDat aStrean(Stri ng key)

bool ean | oadSDMCache( | SDMCache cache)

voi d st oreSDMCache(| SDMCache cache)

bool ean renoveData(String key)

bool ean renoveCache()

bool ean i sDat aPersi sted(String key)

voi d set Encrypti onKey(byte[] secretKey, String
secret KeyAl gorithm throws SDMPersi stenceException

Technical Details
SDMPersistence preferences:

SDMPersistence can persist data in secure and non-secure mode, based on the value of
preference PERSISTENCE_SECUREMODE_BOOLEAN. In secure mode, all data stored
by SDMPersistence will be encrypted. Encryption is done using the secret key that is passed to
SDMPersistence during initialization or by using the set Encr ypt i onKey API. If the
Secret Key object is null and the secure mode is turned on for SDMPersistence,
SDMPersistenceException will be thrown during runtime.
PERSISTENCE_SECUREMODE_BOOLEAN is by default true.

A secret key can be generated with the help of the static API of the SDIVPer si st ence class.
Use the SDMPer si st ence. gener at eSecret Key (String

secr et KeyAl gorit hm API The API returns a generated secret key with the given
algorithm in a byte array format.

Developer Guide: OData SDK 65



CHAPTER 3: Developing Android Applications

Important: if PERSISTENCE_SECUREMODE_BOOLEAN preference is changed during
runtime, all previously stored data will be deleted without any notification. It depends on the
application whether it asks for confirmation from the user before changing the value of this
preference.

SDMPersistence by default stores data in the application’s cache folder in the file system on
the physical storage of the device. Stored data is not accessible for any other applications, but
can be wiped out by the user outside of the application using the device’s application settings.
The default folder to store persisted data can be changed by changing the value of
PERSISTENCE_DEFAULTFOLDER_PATH_STRING preference. If the
PERSISTENCE_DEFAULTFOLDER_PATH_STRING preference is changed during
runtime, all previously stored data will be automatically moved to the new folder.

SDMPersistence implementation guarantees the proper concurrent file handling as long as
there are no other non SDMPersistence objects trying to access the persisted data.

| SDVPer si st abl e:

All the objects that are to be persisted with SDMPersistence need to implement the
ISDMPersistable interface. All valid implementations of ISDMPersistable must implement
the declared read and write methods of the interface and must have a public no-arg constructor.
SDMOData objects provided by the Android OData SDK are valid implementations of
ISDMPersistable.

SDMConnectivity

The SDMConnectivity layer hides the complexity of network communication and provides
easy to use APIs to the applications.

List of Features

« Provides interfaces for request handling
« Handles the requests asynchronously
» Can handle the requests by multiple number of threads (configurable)

SDMConnectivity Public APIs

Note: The SUP APIs and their descriptions are available after the installation of Sybase
Unwired Platform at the following location within your installation folder: . . .
\ Unwi redPl at f orml Cl i ent API'\ api doc.

The SDMRequest Manager class implements the ISDMRequestManager interface, which
provides the following methods:
| SDMRequest Manager

voi d makeRequest (fi nal | SDVMRequest aRequest);

voi d makeRequest (fi nal | SDVBundl eRequest aRequest);
Connecti vityParaneters get ConnectivityParaneter();

i nt get QueueSi ze();

66

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Vector get Al | Requests();
Ooj ect get Request () ;
voi d set Mai nHandl er Cl assNane(final String cl assnane);
void term nate();
bool ean hasRequests();
voi d sendOnSuccess(final | SDWNetLi stener |istener, final
| SDMRequest request, finral HttpResponse response);

The number of working threads in the RequestManager class is configurable via the
constructor. The number of threads is maximized by the connectivity layer because of
performance related issues. If the client initializes the layer with more than the allowed
threads, the implementation of the connectivity layer will decrease the thread number to the
max allowed number (4).

Methods defined by the | SDMConnect i vi t yPar anet er s interface:
SDMConnect i vi t yPar aneters

voi d set User Name(final String aUser Nane);
String getUserNane();

voi d set User Password(final String aPassword);
String getUserPassword();

voi d setBaseUrl (final String url);

String getBaseUrl ();

String getLanguage();
voi d set Language(final String |anguage);
voi d setServerCertificate(Certificate certificate) throws
KeySt or eExcepti on;
final TrustManager[] get Trust Managers();

Sending requests with the connectivity layer consists of the following steps:

1. Create the Request Manager class and initialize it with the required parameters.
2. Create the request object. This can be done in the following ways:
¢ Implement the ISDMRequest interface.
« Extend the BaseRequest class, which is the base implementation of the
ISDMRequest interface.
* Whenthe requests’ execution order is important, implement the ISDMBundleRequest,
add the ISDMRequest instances into it, then pass this bundle to the request manager.
Both of them are provided by the connectivity layer.
3. Use the request / request bundle object when making a request to the RequestManager.

SDMBundleRequest is a special set of SDMRequest objects. It provides serial processing of
the requests when the SDMRequestManager is in multithreaded mode. Because the single
SDMRequest objects are processed by multiple threads, the timing of the responses are not
consistent. With SDMBundleRequest, one thread processes the bundled requests,
guaranteeing that the responses are arriving in the same order as the requests are added to the
bundle.

Developer Guide: OData SDK 67



CHAPTER 3: Developing Android Applications

Example

//create and fill parameters for Connectivity library

SDMConnect i vi t yPar anet ers parans = new SDMConnecti vi t yParameters();
par ans. set User Nane("test");

par ans. set User Passwor d("t est pwd") ;

nmLogger = (| SDMLogger) new SDM.ogger () ;

nPr ef erences = new SDVPr ef er ences(get Appl i cati onCont ext (), nlLogger);
//create the Request Manager

nRequest Manager = new SDVRequest Manager (nmlLogger, nPreferences,
parans, 2);

| SDMRequest test Request = new SDMVBaseRequest () ;

test Request . set Request Url ("http://test. de: 8080/testpath");

t est Request . set Request Met hod( | SDMRequest . REQUEST _METHOD _GET) ;

test Request . setPriority(l SDMRequest. PRI ORI TY_NORMAL) ;

//add the request to the connectivity |ayer

nRequest Manager . makeRequest (t est Request) ;

Technical Details
The tasks of the connectivity library have been divided into three main categories:

« Manage the request queues
e Manage the reading writing to the input/output streams
» Manage the platform specific connection creation

The Connectivity component always performs the requests in asynchronous mode. The
application’s role is to handle the requests in sync mode. The component is able to perform
HTTP and HTTPS requests, which you can use for developing and testing purposes, but the
default is SUP Request. The threads in the connectivity library are responsible for taking the
requests from the queue (FIFO - First in first out - algorithm) and performing the requests. The
number of working threads in the connection pool can be configured in the connectivity layer.
The queue is handled by the SDMRequest Manager , and the working threads take the
requests from this queue. Applications are interacting only with the SDMRequest Manager
class; the other components of the connectivity library are not visible to them. The network
component consists of three main parts:

» SDMRequest Manager : responsible for queuing the requests, managing the threads and
keeping the connection with applications

e Abstract Connecti onHandl er : responsible for performing the request

« Connecti onFact or y: responsible for creating and managing platform dependent
connections to the server

An application can have more than one SDMRequest Manager instances, for example,
when connecting to two different servers at the same time. To support this scenario,
SDMVRequest Manager handles Connect i onHandl er as a plugin. This kind of plugin
needs to implement the ISDMConnectionHandler and implement a constructor taking three
parameters: SDMRequestManager, ISDMLogger implementation and ISDMPreferences
implementation.

68

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

The class name with package is set by

SDMVRequest Manager . set Mai nHandl er Cl assNane( St ring), orin
SDMPreferences by the
ISDMPreferences.SDM_CONNECTIVITY_HANDLER_CLASS_NAME preference key.
The default plugin is "com.sybase.mobile.lib.client.IMOConnectionHandler", which handles
connections through SUP.

There is built-in support for setting the timeout for the socket connection: the application can
use the SDMPr ef er ences object to modify the value, using the following keys:

* ISDMPreferences.SDM_CONNECTIVITY_CONNTIMEOUT for connection timeout,
and

« ISDMPreferences.SDM_CONNECTIVITY_SCONNTIMEOUT for socket connection
timeout.

SDMRequest Object

An SDVRequest object wraps all the information needed by the connectivity library to be
able to perform the requests. The connectivity library interacts with the request object to query
the necessary information about the headers, the post data, and so on. The connectivity layer
also uses the request object to notify the application about the result of the request by using the
ISDMNetL.istener interface. The connectivity component provides an interface called
ISDMRequest and a base implementation of it, called SDVBaseRequest . The applications
have to extend this interface when creating new application specific requests.

| SDMRequest

voi d set RequestUrl (String url);

String get RequestUrl ();

voi d set Request Met hod(final int reqType);
i nt get Request Met hod() ;

byte[] getData();

Hasht abl e get Headers();

void setPriority(final int value);

int getPriority();

bool ean useCooki es();

| SDMNet Li st ener get Li stener();

voi d setListener (| SDM\et Li stener |istener);

OO0OO0OO0OO0OO0OOOOOO

The connectivity layer notifies the client about the result of a request by the ISDMNetL.istener
interface. Usage of this feature is not mandatory, but it is recommended to be able to handle
incidental errors. Methods available in the ISDMNetListener interface:

| SDWNet Li st ener

voi d onSuccess(| SDMRequest aRequest, Ht tpResponse aResponse);
voi d onError (| SDVRequest aRequest, HttpResponse aResponse,
SDMRequest St at eEl enent aRequest St at eEl ement ) ;

The role of the SDMRequest St at eEl enent object used by the connectivity library is to
provide the application with more detail on the occurred error. Methods available in
ISDMRequestStateElement interface:

Developer Guide: OData SDK 69



CHAPTER 3: Developing Android Applications

| SDMRequest St at eEl ement

int getHttpStatusCode();

i nt get Error Code();

Excepti on get Exception(); voi d setHit pSt at usCode(final int
htt pSt at us) ;

voi d set ErrorCode(final int code);

voi d set Exception(final Exception aException);

Exanpl e

public void onSuccess(| SDVMRequest aRequest, SDWVHtt pResponse
aResponse) {

Systemout.printIn("Htp response status code:" +
aResponse. get St at usCode()) ;

System out . println("Cookie string:" +
aResponse. get Cooki eString());

byte[] content = aResponse. get Content();

String response = new String(content);

System out . println("Received content:" + response);

[/ get the headers

Hasht abl e headers = aResponse. get Headers();

SDMConfiguration

Each low level API has its own defaults/constants set in the SDMCommon library. Default
values of preferences can be found in the SDMConstants class.

List of Features

* Providing modifiable preferences for SDMComponent libraries

» Persisting modified values of preferences of SDMComponent libraries

» Validating preferences values of SDMComponent libraries

« Providing API for resetting the preferences of SDMComponent libraries to their default
values

« Providing API for creating and handling custom preferences

 Persisting the values of custom preferences

» Notifying subscribed listeners in case of any change in preferences

SDMConfiguration Public APIs
| SDVPr ef er ences

public void setlntPreference(String key, int val ue)

public void setLongPreference(String key, |ong val ue)
public void setFloatPreference(String key, float val ue)
public void setBool eanPreference(String key, bool ean val ue)
public void setStringPreference(String key, String val ue)

public void resetPreference(String key)

70

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

publ i ¢ bool ean contai nsPreference(String key)

public Fl oat getFl oat Preference(String key)
public Integer getlntPreference(String key)
public Long get LongPreference(String key)

publ i ¢ Bool ean get Bool eanPref erence(String key)
public String getStringPreference(String key)

voi d regi sterPreferenceChangelLi stener(String
key, | SDVPr ef er enceChangeli st ener changeli st ener)

voi d unRegi st er Pref er enceChangeli stener (String
key, | SDVPr ef er enceChangeli st ener changeli st ener) ;

public void renovePreference(String key) throws
SDIVPr ef er encesExcepti on;

| SDVPr ef er enceChangeli st ener

voi d onPref erenceChanged(String key, Cbj ect val ue)

Technical Details

Android offers an optimized storage for preferences called SharedPreferences (even with
automatic Preference screen generation from XML). Modified and custom preferences will be
automatically persisted into the default SharedPreferences of the application. Preferences
must not contain any secure information. For this purpose, use SDMPersistence in secure
mode or the Data Vault from SUP.

SDMComponents preferences can be reset to their default values using the
reset Pref erence() method or by removing them from SharedPreferences.

Any changes to the SDMComponents preferences will be automatically validated regardless
whether they are modified by using SDMPreferences or by using the default API of
SharedPreferences. If you change the value of a preference to an invalid value while using the
SharedPreferences API of the OS, the invalid value will automatically be removed at runtime
and the preference will be set to its default value without any notification. Application
developers are encouraged to use the API of ISDMPreferences so they will be notified about
invalid values.

You can register a preference change listener for each preference in SDMPreferences
(including custom preferences) so that you will be notified if the value of a given preference
has changed.

Preference change listener notification and preference validation can only be done after the
initialization of the appropriate component. It is not recommended to change the values of
SDK related preferences outside runtime. For example, if you change the root folder of
persisted data at runtime, the SDMPersistence component will automatically move all the
persisted data. However, changing this value before the initialization of the SDMPersistence
component can result in the loss of persisted data.

Developer Guide: OData SDK 71



CHAPTER 3: Developing Android Applications

The OData SDK provides reusable custom Preference classes as an extension of standard
Preference classes provided by the OS for handling Long, Float, and Integer preferences.
These custom classes can be reused in preference XMLs or in the custom preferences screen
of the application. Custom preference classes can be found in the SDMCommon Component
package of the OData SDK.

Supportability

The OData SDK provides a set of features and concepts for the supportability of the
applications built on top of the SDK.

Exceptions

Every component of the Library has its own root exception, named as <SDM Library
component name>Exception. For instance, in Connectivity, the root exception is
SDMConnectivityException. All component-specific exceptions are extending the
component’s root exception. Besides root exceptions, SDM components can also throw
general exceptions, such as Illegal ArgumentException or IllegalStateException.

SDMLogger
The library supports logging via its ISDMLogger interface and provides SDMLogger as an

implementation of this interface.

List of Features

» Provides a common interface for handling log messages across the library
« Extends Android's standard logging facility, while keeps method signatures compatible
« Provides facility to store log data

« Provides filterable log retrieval by severity, tag, timestamp (from-to), process id and by
correlation id

Technical Details

The interface is similar to Android’s standard logging facility (android.util.Log). Logging
does not support security and handling sensitive data. It is the responsibility of the applications
to handle these requirements. Logging supports retrieving the log data for persistence or other
purposes. SDMLogger also implements the ISDMPersistable interface to make the log data
persistable. A log header can be set by the application including the following fields:

e Operating System version

e App name

e App Version

» 3rd Party product versions (for example, SQLIite)
e Hardware version

e User

* Timezone

72

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

» Language
e SUP/SAP NetWeaver Gateway URL

The SDMConnectivity sets the User, Language and SUP/SAP NetWeaver Gateway URL
fields. SDMLogger stores log entries timestamped, in milliseconds granularity of the time the
log method called by the application/library component. It can also clean out log messages
below a certain level, or clean out the log completely. A preliminary log rotation support is
built in. At every log method call, a check runs and verifies whether the number of messages
reaches 10000. If the number of messages is greater or equal to this threshold, a low priority
background thread is started to clean out the oldest 200 log entries.

SDMLogger provides line-level location logging with the full class name of the logging class.
Location detection is done by call stack evaluation. Therefore, SDMLogger provides location
parameter setting for the logging class, where the class can set the location instead of using the
detection facility. Log messages are stored only above the predefined logging level, which
defaults to ERROR log level.

Log priority constants:

« PERFORMANCE =1
« VERBOSE =2

« DEBUG=3
« INFO=4

* WARN=5

+ ERROR=6
e ASSERT =7
» FATAL=8

Log Methods

public void log(final int level, final String tag, final String nsg,
final Throwable tr, final String |ocation)

Parameters:

|l evel the log |evel

nmsg The message you would |ike | ogged.

tr An exception to |og

|l ocation The line-level |ocation of the | og source (full class nanme
of the class)

public static int d (String tag, String nsg)

public static int d (String tag, String nsg, Throwable tr)

public static int d (String tag, String nsg, Throwable tr, String
| ocati on)

Sends a DEBUG | og nessage and | ogs the exception.

public static int e (String tag, String nsg)

public static int e (String tag, String nmsg, Throwable tr)

public static int e (String tag, String nsg, Throwable tr, String
| ocati on)

Developer Guide: OData SDK 73



CHAPTER 3: Developing Android Applications

Sends an ERROR | og nessage and | ogs the exception.

public static int i (String tag, String nsg)

public static int i (String tag, String nmsg, Throwable tr)

public static int i (String tag, String nsg, Throwable tr, String
| ocati on)

Sends an I NFO | og nmessage and | ogs the exception.

public static int v (String tag, String nsg)

public static int v (String tag, String nsg, Throwable tr)

public static int v (String tag, String nsg, Throwable tr, String
| ocati on)

Sends a VERBOSE | og nessage and | ogs the exception.

public static int w (String tag, Throwable tr)

public static int w (String tag, String nsg)

public static int w(String tag, String nsg, Throwable tr)

public static int w(String tag, String nsg, Throwable tr, String
| ocati on)

Sends a WARN | og nmessage and | ogs the exception.

public static int wf (String tag, Throwable tr)

public static int wf (String tag, String nsg)

public static int wf (String tag, String nsg, Throwable tr)

public static int wtf (String tag, String nmsg, Throwable tr, String
| ocati on)

What a Terrible Failure: Reports a condition that should never
happen. The error will always be | ogged at |evel ASSERT.

SDMLogger (ISDMLogger implementation that the Library provides) also has the following
functionality:

public void cleanUp(final int threshold)
Deletes all log entries weaker than the ‘threshold priority.

public void term nate()
Conpl etely clears the collected | og data.

publ i c Vector<LogEntry> get LogEl ements(final int threshol d)
This nethod returns the | og data, including all |og data with |evel
‘“threshol d’ or above.

publ i ¢ bool ean | ogsToAndr oi d()

public void | ogToAndroi d(final bool ean dolt)

These net hods get and set the property which controls sending the | og
output to the Android |ogging facility.

publ i c bool ean | ogsFul | Locati on()

public void | ogFul |l Locati on(bool ean | ogFul | Locati on)

These nethods get and set the property which if full |ocation should
be | ogged automatically based on the current stack trace.

public synchronized String toString()

Returns all log data — including the header — as String.

Sample:

74

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

Qperating Systemversion: 11

Appl i cation name: M/App

Application version: 1.0.0

3rd-party products: -

Har dwar e version: Gal axy Tab

User nane: DEMO

Ti mezone: CET- DST

Language: en

Base URL: http://ww. sap. com gat eway/ or/ what ever

2011- 06- 28 14: 30: 23. 368 WARN SDIVPr ef er ences

com sap. nobi | e. | i b. sdntonfi gurati on. SDVPr ef er ences. get Pref erence(SD
MPr ef er ences. j ava: 284) Deprecat ed net hod ' get Pref erence' has been
cal | ed.

2011- 06- 28 14:30: 23. 468 | NFO SDIVPr ef er ences

com sap. mobi | e. | i b. sdnconfi gurati on. SDVPr ef erences. set Stri ngPrefere

nce( SDVPr ef er ences. j ava: 244) Pref erence
' SAP_APPLI CATI ONI D HEADER VALUE' (String) has been changed to M/App.
1.0.0.0

publ i ¢ Vector<LogEntry> get LogEl ement sByTag(final String aTag)

publ i ¢ Vect or <LogEnt ry> get LogEl ement sByTi mneSt anp(fi nal |ong start,
final |ong end)

publ i ¢ Vector<LogEntry> get LogEl ement sByPI D(fi nal | ong Pl D)

publ i ¢ Vector<LogEntry> get LogEl ement sByCorrel ati onl d(final String
correl ationld)

These methods return with a Vector of filtered log entries, filtered by TAG, timestamp
(interval), process id and correlation id, respectively.

SAP Passport
For the Single Activity Trace an SAP® Passport has to be issued by the connectivity layer of

the library.

The SAP Passport is transported asan HT TP header in the request. The server handles the SAP
Passport to generate end-to-end Trace. The OData SDK is using JSDR SAP Passport sources
integrated in the library at source level. It can be turned on or off with

| SD\VPr ef er ences. SAPPASSPORT _ENABLED preference key. By default it is turned
off.

Deploying Applications to Devices

This section describes how to deploy customized mobile applications to devices.

1. [Installing Applications on the Device without Using the Android Market

Connect the device to your personal computer and install applications without using the
Android market.

2. Installing Applications using a URL
Install applications on an Android device without using the Android market.

Developer Guide: OData SDK 75



CHAPTER 3: Developing Android Applications

3.

Deploying Applications using Afaria
Deploy Android applications using Afaria.

See also

OData SDK Components and APIs on page 59

Installing Applications on the Device without Using the Android

Market

Connect the device to your personal computer and install applications without using the
Android market.

Prerequisites

Activate the installation of programs on your device that do not originate from the Android
market. Navigate to Settings > Applications > Unknown Sources to allow installation of
these programs.

Task

1.

o g s~ w

Download the driver software and install this on your personal computer.
Example: HTC Sync for all HTC Android Phones and HTC Smart Phones, see http.//
www.htc.com/uk/help.

Connect your device to the personal computer through a USB cable.
The driver software uploads the device software and installs it on the device.

On the device display screen, make the selection to enable to mount the memory card.
Copy the .apk file to the memory card.
Disconnect the USB cable from the device.

Using the file manager on the device, access the .apk file from the memory card and follow
the instructions as displayed.

Installing Applications using a URL

Install applications on an Android device without using the Android market.

Prerequisites

Activate the installation of programs on your device that do not originate from the Android
market. Navigate to Settings > Applications > Unknown Sources to allow installation of
these programs.

You must have the URL where the Android package is available as a resource.

Task

76

Sybase Unwired Platform



CHAPTER 3: Developing Android Applications

1. Enter the URL details in the device browser.
2. Follow the instructions displayed on the browser to install the application.

Deploying Applications using Afaria
Deploy Android applications using Afaria.

See the following sections in System Administration for details on how to perform Android
provisioning and deployment.

»  System Administration > Device and Application Provisioning Overview> Provisioning
with Afaria.

Developer Guide: OData SDK 77



CHAPTER 3: Developing Android Applications

78 Sybase Unwired Platform



CHAPTER 4 Developing BlackBerry

Applications

Provides information about using advanced Sybase® Unwired Platform features to create
applications for RIM BlackBerry devices. The audience is advanced developers who are
familiar working with APIs, but who may be new to Sybase Unwired Platform.

Using Online Data Proxy, you can connect a device to an OData-based back-end system. All
Online Data Proxy client libraries provide secure communication to the SUP server in
addition to parsing, caching, persistence, connectivity, supportability and secure storage.

Describes requirements for developing a device application for the platform. Also included
are task flows for the development options, procedures for setting up the development
environment and API references.

1.

Configuring the BlackBerry Developer Environment

This section describes how to set up your BlackBerry development environment and
provides the location of required JAR files and COD files.

Creating Projects and Adding Libraries into the BlackBerry Development Environment

Set up the BlackBerry project and add required libraries. Use these procedures if you are
developing a device application using the BlackBerry JDE or the BlackBerry Java plug-in
for Eclipse.

Online Data Proxy BlackBerry APl JAR File Locations

The Online Data Proxy JAR files and dependencies are installed in the Sybase Unwired
Platform installation directory. JAR files are used for compilation and COD files for
runtime. Make sure the COD files are deployed to the simulator/device with the device
application.

Developing Applications in the BlackBerry Development Environment

To learn more about the BlackBerry JDE, BlackBerry Java plug-in for Eclipse, or RIM
BlackBerry APIs, go to the BlackBerry Java application development Web site at http://
na.blackberry.com/eng/developers/javaappdev

OData SDK Components and APIs

The OData SDK for BlackBerry provides the means to easily build an application which
relies on the OData protocol and its additions made by SAP.

Deploying Applications to Devices

This section describes how to deploy customized mobile applications to devices.

Developer Guide: OData SDK 79



CHAPTER 4: Developing BlackBerry Applications

Configuring the BlackBerry Developer Environment

This section describes how to set up your BlackBerry development environment and provides
the location of required JAR files and COD files.

See also
 Creating Projects and Adding Libraries into the BlackBerry Development Environmenton
page 81

Installing the BlackBerry Development Environment

Download and install either the BlackBerry JDE or the BlackBerry Java plug-in for Eclipse
(eJDE).

For information on transitioning from the BlackBerry JDE to the eJDE, view the video at the
Research In Motion Developer Video Library Web site: Attp.//supportforums.blackberry.com/
t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

Installing the BlackBerry Java Plug-in for Eclipse
The BlackBerry Java Plug-in for Eclipse is an IDE for developing BlackBerry applications.

Prerequisites
You must have a BlackBerry developer account to download the BlackBerry Java Plug-in for
Eclipse. You may be required to register if you do not already have an account.

Task

Double-click the setup application file.

Click Run.

On the Introduction page, click Next.

Accept the terms of the license agreement and click Next.

Create and select a new, empty folder for the installation directory and click Next.
Review the information on the Pre-installation Summary screen and click Install.

Click Done.

The installation is complete.

8. (Optional). Copy the pl ugi n and f eat ur es folders from the installation to

<Unwi redPl atform I nstal | Di r>\ Unwi redPl at f orm

\ Unwi red_Wor kSpace\ Ecl i pse\ sybase_wor kspace\ nobi | e\ ecl i pse.
This step ensures that Sybase Unwired WorkSpace contains the BlackBerry Java Plug-in
for Eclipse, and that users can directly use it from Sybase Unwired WorkSpace instead of
opening another instance of Eclipse to work with the BlackBerry Java Plug-in for Eclipse.

N o s~ wDd R

80

Sybase Unwired Platform


http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video

CHAPTER 4: Developing BlackBerry Applications

Downloading the BlackBerry JDE and MDS Simulator
To generate and distribute BlackBerry device applications, download the MDS simulator and
the BlackBerry JDE and its prerequisites from the BlackBerry Web site.

Prerequisites

You must have a BlackBerry developer account to download the BlackBerry JDE. You may be
required to register if you do not already have an account. Before you download the JDE,
ensure the 32-bit JDK has already been installed, even for 64-bit operating systems;
otherwise, MDS will not start.

Task
1. Go to the BlackBerry Web site at Attp.//us.blackberry.com/developers/javaappdev/

Javadevenv.fsp to download and install the BlackBerry JDE.

2. Go to http.//us.blackberry.com/developers/browserdev/devioolsdownloads.jsp to
download and install the MDS simulator.

Creating Projects and Adding Libraries into the BlackBerry
Development Environment

Set up the BlackBerry project and add required libraries. Use these procedures if you are
developing a device application using the BlackBerry JDE or the BlackBerry Java plug-in for
Eclipse.

See also
o Configuring the BlackBerry Developer Environment on page 80
e Online Data Proxy BlackBerry API JAR File Locations on page 83

Adding Required .jar and .cod Files

Add the following Online Data Proxy .jar file references to the BlackBerry project's Java build
path.

Copy the following OData .jar files:

e sdntache-1.0.0-preverified.jar —from
<Unwi redPl at form I nstal | Di r >\ Mobi | eSDK\ ODat a\ BB\ | i br ari es\
for the BlackBerry client.

e sdncomon-1.0.0-preverified.jar -from
<Unwi redPl atform I nstal | Di r>\ Mobi | eSDK\ ODat a\ BB\ | i brari es\
for the BlackBerry client.

Developer Guide: OData SDK 81


http://us.blackberry.com/developers/javaappdev/javadevenv.jsp
http://us.blackberry.com/developers/javaappdev/javadevenv.jsp
http://us.blackberry.com/developers/browserdev/devtoolsdownloads.jsp

CHAPTER 4: Developing BlackBerry Applications

e sdntonfiguration-1.0.0-preverified.jar —from
<Unwi redPl atform | nstal | Di r >\ Mobi | eSDK\ ODat a\ BB\ | i br ari es\
for the BlackBerry client.

e sdntonnectivity-1.0.0-preverified.jar —from
<Unwi redPl at form | nstal | Di r >\ Mobi | eSDK\ ODat a\ BB\ | i br ari es\
for the BlackBerry client.

e sdnparser-1.0.0- preverified.jar —from
<Unwi redPl at form I nstal | Di r >\ Mobi | eSDK\ CDat a\ BB\ | i brari es\
for the BlackBerry client.

e sdmpersistence-1.0.0-preverified.jar —from
<Unwi redPl atform I nstall Dir>\NMbil eSDK\ ODat a\ BB\ | i brari es\
for the BlackBerry client.

e sdmsupportability-1.0.0-preverified.jar —from
<Unwi redPl atform I nstal |l Di r>\ Mbil eSDK\ ODat a\ BB\ | i brari es\
for the BlackBerry client.

Copy the following ODP .jar files:

e CommondientLib.jar —from<Unwi redPl atformlInstall D r>
\ Mbbi | eSDK\ ODat a\ BB\ | i br ari es\ for the BlackBerry client.

e« Messagi ngQientlLib.jar —from<Unwi redPl atformlInstall D r>
\ Mobi | eSDK\ ODat a\ BB\ | i br ari es\ for the BlackBerry client.

e McadientLib.jar —from<Unwi redPl atformlInstall D r>
\ Mobi | eSDK\ ODat a\ BB\ | i br ari es\ for the BlackBerry client.

e sup_json.jar —from<Unwi redPl at f orm | nstal | Di r >\ Mobi | eSDK
\ ODat a\ BB\ | i brari es\ for the BlackBerry client.

e SUPProxyCient-1.0.0.jar —from<Unwi redPlatformlInstall D r>
\ Mobi | eSDK\ ODat a\ BB\ | i br ari es\ for the BlackBerry client.

Consuming Java .JAR files for BlackBerry Projects
Add the .jar and .cod files to your BlackBerry project.

Using this procedure, the Java definitions are available in Eclipse in order to find the third-
party classes when compiling your project's source code. After compilation you will have
one . cod file containing the application and the libraries together.

1. Download the library to your host development system.
2. Create a new folder, named | i bs, in your Eclipse/BlackBerry project.

3. Rightclick!l i bs andchoosel nport -> General -> File Systemthenclick
Next.

4. Browse the file system to find the library's parent directory (where you downloaded it).

82 Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

5. Click OK, then click the directory name (nhot the checkbox) in the left pane and check the
relevant JAR in the right pane. This puts the library into your project (physically).

6. Right click on your project, choose Bui | d Path -> Configure Build Pat h,
then click the Libraries tab, then click Add JARs...

7. Navigate to your new JAR in the libs directory and add it.

8. Click on the Order and Export tab. After you added the libraries they should be listed.
Check all the libraries. This way the libraries will be compiled together with the
application and packaged into one . cod file.

Note: The following .jar files should not be marked as 'Exported' in the build path:
« CommondientlLib.jar

« MessagingCientLib.jar

« McaCientLib.jar

e sSup_json.jar

The .cod files corresponding to these .jar files have to be deployed on the device while
installing the application.

Online Data Proxy BlackBerry APl JAR File Locations

The Online Data Proxy JAR files and dependencies are installed in the Sybase Unwired
Platform installation directory. JAR files are used for compilation and COD files for runtime.
Make sure the COD files are deployed to the simulator/device with the device application.

The contents and location of the .jar and .cod files:
o <UnwiredPlatformlInstall Di r>\ Mbil eSDK\ ODat a\ BB\ | i br ari es\

The API references can be extracted from the following zip files:

e <Unwi redPl atform I nstall Di r>\ Mobi | eSDK\ ODat a\ BB\ docs
\ SUPPr oxyd i ent - 2. 1. 1- al pha- 2-docs. zi p

e <Unwi redPl atform I nstall Di r>\ Mobi |l eSDK\ ODat a\ BB\ docs
\ BBODat aSDK- 1. 1. 0-doc. zi p

See also

» Creating Projects and Adding Libraries into the BlackBerry Development Environmenton
page 81

Developer Guide: OData SDK 83



CHAPTER 4: Developing BlackBerry Applications

Developing Applications in the BlackBerry Development
Environment
To learn more about the BlackBerry JDE, BlackBerry Java plug-in for Eclipse, or RIM

BlackBerry APIs, go to the BlackBerry Java application development Web site at Attp.//
na.blackberry.com/eng/developers/javaappdev

To enable mobile devices to install applications and securely communicate in the enterprise
landscape, there are different ways in which you can onboard your mobile device.

This section provides a quick reference to APIs used for developing Android Applications.
For a comprehensive list of API references, extract the contents from the following zip files:

e <UnwiredPl atformInstall Di r>\ Mobi | eSDK\ ODat a\ BB\ docs
\ SUPPr oxyCl i ent-2.1.1-al pha-2-docs. zip

e <Unwi redPl atform I nstall Di r>\ Mbil eSDK\ CDat a\ BB\ docs
\ BBODat aSDK- 1. 1. 0-doc. zi p

See also
e OData SDK Components and APIs on page 95

Initializing an Application
Before you use any of the other BlackBerry ODP APIs, you have to first initialize an
application.

Syntax

public static void initialize(String appl D) throws
com sybase. no. Messagi ngd i ent Excepti on

Parameters

* applD - Name of the registered application.

Examples

* Initialize an application —
User Manager.initialize(applicationlD);

Provisioning Connection Settings from Afaria

Connection Settings for an application can be provisioned using the Afaria client that is
installed on the mobile device..

84 Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

Syntax

public static void setConnectionProfil eFromAfaria() throws
com sybase. no. Messagi ngd i ent Excepti on

Manually Registering an Application

Manually register an application by using the user name and activation code of the application
registered through the Sybase Control Center.

Syntax

Synchronous Registration

public static void registerUser(String username, String
activati onCode) throws User Manager Excepti on,

com sybase. no. Messagi ngd i ent Excepti on

Asynchronous Registration

public static void asyncRegi sterUser(String usernane, String

activati onCode) throws User Manager Excepti on
Parameters

* username — User name specified in SCC
* activationCode — Activation Code specified in SCC

Examples

* Register the application manually —
User Manager . r egi st er User (user Name, acti vati onCode);

Automatically Registering an Application using SSO2 Cookie

Registering an application automatically using an SSO2 Token Cookie. This token is fetched
from a ticket issuing system and verified by the server.

Syntax

Synchronous Registration

public static void registerUser(String username, String
securityConfig, String password, String vaultPassword) throws
User Manager Excepti on, com sybase. no. Messagi ngCl i ent Excepti on,
SUPDat aVaul t Excepti on

Asynchronous Registration

public static void asyncRegi sterUser(String usernane, String
securityConfig, String password, String vaultPassword) throws
User Manager Excepti on

Developer Guide: OData SDK 85



CHAPTER 4: Developing BlackBerry Applications

Parameters

* username — User name of the ticket issuing system.

* securityConfig — Security configuration of the registered application provided by the
administrator in the Sybase Control Center.

* password — Password used to authenticate the user.

» vaultPassword — Password required to unlock the data vault .

Examples

» Registering a user using SSO2 Cookie —

User Manager . r egi st er User (Tl SUser nane, securityConfig,
Tl SPasswor d, vaul t Password) ;

Automatically Registering an Application using HTTP Authentication

Provider

Registering an application automatically using the HTTP Authentication Provider.

Syntax

public static void registerUser (String usernane, String
securityConfig, String password, String vaultPassword) throws
User Namager Excepti on, com sybase. no. Messagi ngd i ent Excepti on,

Parameters

* username — Valid user name

* securityConfig — Security configuration of the registered application provided by the
administrator in the Sybase Control Center.

» password — Password to identify the back-end system.

« vaultPassword — Password required to unlock the data vault .

Examples

* Registering a user using HTTP Authentication Provider. —

User Manager . r egi st er User (User nane, securityConfig, password,
vaul t Passwor d)

Automatically Registering an Application using X.509 Certificate

Registering an application automatically using an X.509 Certificate. This certificate is fetched
from a Certificate Authority and verified by the server.

Syntax
Synchronous Registration

86

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

public static void registerUser(String username, String
securityConfig, String password, String vaultPassword) throws
User Manager Excepti on, com sybase. no. Messagi ngd i ent Excepti on,
SUPDat aVaul t Excepti on

Asynchronous Registration

public static void asyncRegi sterUser(String usernane, String
securityConfig, String password, String vaultPassword) throws
User Manager Except i on

Parameters

» username — Valid user name

» securityConfig — Security configuration of the registered application provided by the
administrator in the Sybase Control Center.

» password — Contains the Base64 encoded string of the certificate library.

* vaultPassword — Password required to unlock the data vault .

Examples

* Registering a user using X.509 Certificate —

User Manager . r egi st er User (backendUser nane, securityConfig,
CertificateStore. getSignedCertificateFronttore(), vaul t Password);

Storing the Application Credentials Securely

Post user registeration, if you want the user credentials to be managed by SDK, you can
provide a data vault password to securely store the data.

Syntax

public static void set AppCredential s(String usernane, String
securityConfig, String password, String vaultPassword) throws
SUPDat aVaul t Excepti on, User Manager Excepti on

Parameters

» username — Valid user name to be stored.

» securityConfig — Security configuration of the registered application to be stored.

» password — If using certificates, this corresponds to the Base64 encoded string of the
certificate library. If using SSO2 cookie, this corresponds to the passowrd of the ticket
issuing system.

» vaultPassword — Password of the secure store provided by SDK.

Examples
» Using data vault to store data securely —

Developer Guide: OData SDK 87



CHAPTER 4: Developing BlackBerry Applications

User Manager . set AppCr edenti al s(User name, securityConfig, Password,
vaul t Passwor d)

Checking for Registered Users

Check if a device user is registered or not.

Syntax

public static bool ean i sRegistered() throws UserManager Excepti on

Returns

If the user is registered, the function returns 'true'. If the user is not registered, the function
returns ‘false’.

Examples

e Check if the user is registered —
bool ean User Manager. i sRegi stered();

Deleting Users

Deregister an application user when you do not need the application on the device.

When you invoke this API, the user, along with all the client data, is deleted.

Syntax

public static void del eteUser() throws UserManager Excepti on,
com sybase. np. Messagi ngCl i ent Excepti on

Examples

* Delete the user —
User Manager . del et eUser () ;

Enabling Online Push

To consume push messages, the application registers a listener object. The client SDK notifies
this listener object whenever there is a push message from the server. The listener object
should implement the ISDMNetL.istener interface.

Syntax

public static void

set PushLi st ener (com sap. nobi | e. | i b. sdntonnecti vi ty. | SDBNet Li st ener
pushLi st er ner)

88

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

Parameters

* pushListener — Object that implements ISDMNetL.istener interface.

Examples

e Listener Object —
User Manager . set PushLi st ener (| i st ener Obj ect Fr omApp) ;
¢ Implementation of APIs in the Listener Object -

| SDIWNet Li st ener. onError (1 SDMRequest, | Htt pResponse,

| SDMRequest St at eEl enent )

| SDWMNet Li st ener. onSuccess( | SDVRequest, | Htt pResponse,
| SDMRequest St at eEl enent)

Getting Application End-point
Retrieve the application end-point that corresponds to the gateway service document.

Syntax
public static String getApplicati onEndPoint () throws

com sybase. nb. Messagi ngQ i ent Excepti on, User Manager Excepti on,
SUPDat aVaul t Excepti on
Returns

If successful, this function returns the application end-point.

Examples
* Retrieving application end-point —
AppSettings. get Appl i cati onEndPoi nt ()

Getting Push End-point

Retrieve the push end-point that corresponds to the delivery address that the application uses
in the subscription request for notifications.

Syntax

public static String get PushEndPoint () throws
com sybase. nb. Messagi ngCl i ent Excepti on, User Manager Excepti on

Returns

If successful, this function returns the push end-point.

Developer Guide: OData SDK 89



CHAPTER 4: Developing BlackBerry Applications

Examples

* Retrieve the push end-point —
AppSet ti ngs. get PushEndPoi nt ()

Getting Server Details
Retrieve the SUP server host name.

Syntax

public static String getServer() throws
com sybase. nb. Messagi ngd i ent Excepti on

Returns

Returns the server name as a string.

Examples

¢ Retrieve the server details —
AppSettings. get Server();

Getting Port Number

Retrieve the port number provisioned in the client repository.

Syntax

public static int getPortNunmber () throws
com sybase. no. Messagi ngd i ent Excepti on

Returns

Returns the port number as an integer.

Examples

e Retrieve the port number -
AppSet ti ngs. get Port Number () ;

Getting FarmID
Retrieve the Farm ID of the SUP Server.

Syntax

public static String getFarm D() throws
com sybase. no. Messagi ngd i ent Excepti on

90

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

Returns

Returns the Farm ID as a string.

Examples

¢ Retrieve the Farm ID —
AppSettings. get Farm () ;

Checking the Provisioning Status of the Public Key
Check if the public key is provisioned on the client.

Syntax

public static bool ean | sSUPKeyProvi si oned() throws
com sybase. no. Messagi ngd i ent Excepti on

Returns

If the key is provisioned, the value 'true' is returned, else ‘false'.

Examples

» Check the provisioning status of the public key —
AppSettings. | sSUPKeyProvi si oned() ;

Provisioning Certificates using Afaria
Certificates can be provisioned for BlackBerry devices using Afaria.

Syntax

public static String getSignedCertificateFromAfaria(String CN,
String chal |l engeCode) throws
com sybase. persi st ence. SSOCer t Manager Excepti on, | OExcepti on

Parameters

e CN - A character-type column name, variable, or constant expression of char, varchar,
nchar, nvarchar, or unichar type. Corresponds to the certificate name.

« challengeCode — Another character-type column name, variable, or constant expression
of char, varchar, nchar, nvarchar, or unichar type.

Returns

Returns the certificate as a base64 encoded string.

Developer Guide: OData SDK 91



CHAPTER 4: Developing BlackBerry Applications

Getting Application Seed Data from Afaria

Get the application seed data from Afaria.

Syntax

public static Hashtabl e getSettingsFromAfaria() throws
com sybase. af ari a. SeedDat aAPI . SeedDat aAPI Excepti on, | CExcepti on

Returns

Returns a hastable containing the settings.

Clearing the Server Verification Key

For a device to switch connection between SUP servers, this APl is invoked before registering
a new user. This ensures that the server public keys are removed from the SUP client SDK
which enables connectivity to the new SUP Server.

Syntax

public static void clearServerVerificationKey() throws
User Manager Excepti on, com sybase. no. Messagi ngC i ent Excepti on

Examples

* Clear the server verification key —
User Manager . cl ear Server Verifi cati onKey();

Data Vault APl References

The data vault is a secure storage area provided by the SUP 2.1 SDK client libraries to store
sensitive data such as usernames, passwords, authentication certificates within the
application. Access to the data vault is protected by two levels of passwords and unique salts.

Creating a Vault
Creates an instance of a vault with a set of attributes.

Syntax

public static SUPDataVault createVault(String sDataVaultlD, String
sPassword, String sSalt) throws SUPDataVaul t Excepti on

Parameters

* sDataVaultlD — The vault name.

92

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

» sPassword — The vault password
» sSalt — The salt password

Returns
If successful, creates an instance of SUPDataVault.
Opening an Existing Vault

Returns the SUPDataVault singleton instance, tied to a particular vault. If the vault does not
exist or has been deleted, this method throws an exception.

There is a singleton instance per data vault ID.

Syntax

public static SUPDataVault getVault(String sDataVaultlD) throws
SUPDat aVaul t Excepti on

Parameters

¢ sDataVaultlD — The vault name.

Returns
If successful, returns a singleton instance of the vault..
Deleting a Vault

Delete the storage for this instance from the persistent storage. Once a vault is deleted, all
current instance references become invalid.

Syntax

public static void deleteVault (String sVaultld) throws
SUPDat aVaul t Excepti on

Parameters

¢ sVaultld — The vault name.

Locking a Vault
Lock a vault to avoid it from being used. If the vault is locked, this API will have no effect.

Syntax
public void | ock() throws SUPDataVaul t Exception

Developer Guide: OData SDK 93



CHAPTER 4: Developing BlackBerry Applications

Unlocking a Vault
Unlock a vault for use by an application.

Syntax
public void unlock(String sPassword, String sSalt) throws
SUPDat aVaul t Excepti on

Parameters
» sPassword — The vault password.
e sSalt — The vault's salt password.

Setting a Binary Value
Store a value in the vault. To remove a value, provide 'null’ as the second parameter.

Syntax
public void setValue(String sNane, byte[] abVal ue) throws
SUPDat aVaul t Excepti on

Parameters
» sName - The key in which you store the data.
* abValue — The value you want to store.

Retrieving a Binary Value
Retrieve a value set from the vault.

Syntax
public byte[] getValue (String sName) throws SUPDat aVaul t Excepti on

Parameters

* sName — The key that contains the data you want to retrieve

Returns

If successful, returns the value stored in the key.

Setting the Retry Limit Value for a Vault
Set the maximum number of consecutive failed attempts to unlock the vault.

94

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

Syntax

public void setRetryLimt(int iLimt) throws SUPDat aVaul t Excepti on
Parameters

e iLimit — Maximum failed attempts that is permitted to unlock the vault.

Setting the Lock Timeout Value for a Vault

Set the time until which the vault remains in an unlocked state. Once this time is lapsed, the
vault reverts to the locked state.

Syntax

public void setLockTi neout (int i TimeoutSeconds) throws
SUPDat aVaul t Excepti on

Parameters

¢ [TimeoutSeconds — Time in seconds for which the vault is unlocked.

OData SDK Components and APIs

The OData SDK for BlackBerry provides the means to easily build an application which relies
on the OData protocol and its additions made by SAP.

Prerequisites
Download the Eclipse IDE and the BlackBerry java plug-in for Eclipse to be able to develop on
BlackBerry platform.

OData SDK - BlackBerry

The full list of APIs and their descriptions are available after the installation of Sybase
Unwired Platform at the following location within your installation folder: . . .

\ Unwi r edPI at f or M Mobi | eSDK\ ODat a\ Bl ackBer r y\ docs.

The following figure shows the main components of the OData SDK on BlackBerry.

Developer Guide: OData SDK 95



CHAPTER 4: Developing BlackBerry Applications

Application
Configuration Common
Preferences Interfaces
Supportabl.llty Parser Connectivity Persistence Cache
Logging & Tracing
Sybase Unwired
Platform
SAP NetWeaver
Gateway
SDMCommon

To build an application on the OData SDK, you must first import the SDMCommon
component that contains interfaces and configuration for the components. None of the
components have dependency on each other, but all of them depend on the SDMCommon
component, and all of them have references to interfaces of other components (held by
SDMCommon).

Component Replacements

In your own application, you can replace the implementation behind an interface of a
BlackBerry OData SDK component. For example, if you want to add a new functionality to
SDMCache, but keep everything else unchanged (for example, the way it is persisted by
SDMPersistence) you can implement your own solution. The new cache can be either a new
implementation, or a descendant of SDMCache, as long as it implements the ISDMCache
interface from SDMCommon.

See also
» Developing Applications in the BlackBerry Development Environment on page 84
»  Deploying Applications to Devices on page 113

96

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

SDMParser

The parser (SDMParser class) is the core component of the package, it is responsible for
processing XMLs. The actual parsing is done by the standard java SAX parser provided by the
BlackBerry platform.

Parsing is generic in the sense that an arbitrary (well-formed) XML can be processed, and the
information content is returned without any loss:
/ * *

* Parses the streamsource of an XM. and converts it to a Java Obj ect

containing all
* the informati on that were contained by the source XM.

*

* @ar am xm

* A byte array that holds a syntactically valid XM.

* @eturn | SDMPar ser Docunent The Cbj ect representation of the parsed
XML.

* @hrows SDMPar ser Exception

If the XML source is invalid.
* @hrows |11 egal Argument Excepti on

If the argunent is null.

*/
public abstract | SDMParser Docunent parseXM.(byte[] xm) throws
SDMPar ser Exception, |11 egal Argunment Excepti on;

The ISDMParserDocument interface provides access to all the data stored in the XML. The
API user constructs the path inside the XML to the given data (attribute or text value), then the
following methods return their value:

/**
* Returns the string value of the sub-docunent contained by this
obj ect and accessible via the
* el ement nanmes provided by the 'route' argunent.
*
* @aramroute
[ "/" separated route that | eads to the object route nust
cont ain i ndexes as wel|.

Route nmust end with the i ndex nunmber which uniquely
identifies an XML el enent.

[ route nust start with "/"

* @eturn The string value of the XML el ement on the route. It
returns null if route

[ does not identify a unique el ement.

*/

public abstract String getValue(String route);

/**
* Returns the string value of the XML attribute of the object

accessible via the el ement nanes

* provided by the 'route' argunent.
*

* @aram route

Developer Guide: OData SDK 97



CHAPTER 4: Developing BlackBerry Applications

[ "/" separated route that |eads to the object route nust
cont ain indexes as well.
Route must end with the index nunber which uniquely

identifies an XM. el enent and
[ after the element the attribute | ocal name (field nane)
rrust be appended with

sl ash Exanpl e route: "/element1/ 1/ el ement 2/ 5/ el ement 3/ 2/
attrl but enane”

* @ar am nanespaceURI

The Namespace URI of the attribute, or the enpty String if
the attribute | ocal
[ nane has no Nanmespace URI.
*
* @eturn The string value of the given attribute on the given route
*/
public abstract String getAttribute(String route, String
nanespaceURI ) throws |11 egal Argunent Excepti on;

However, for applications that communicate with the OData Protocol and that are working
with OData objects, it is more suitable to use parser methods that provide OData objects
(hierarchies).

There are specific parser methods for the document types that come in the OData Protocol
responses. These are the service document, metadata document, open search description,
error message, atom feed and entry:

/ * %

* Parses the SDMOData Service Docunment XML and converts it to an
appropriate Java bject.

*

@ar am xm
The byte array that hol ds SDMODat a Servi ce Docunment XM
* @eturn | SDMODat aSer vi ceDocunent The Cbject representation of
SDMODat a Ser vi ce Docunent .
* @hrows SDMParser Exception

[ If the XML source is invalid.
* @hrows ||l egal Argument Excepti on

[ If the argunent is null.

*/

publ i c abstract | SDMODat aServi ceDocumnent
par seSDMODat aSer vi ceDocunent XM_(byte[] xm ) throws
SDVPar ser Exception, |11 egal Argunment Excepti on;

/**

* Parses the SDMODat a metadata XML and converts it to an appropriate
Java Obj ect.
*

* @aram xm

[ The byte array that hol ds SDMOData Schema XM

* @eturn | SDMODat aSchema The (bj ect representati on of the SDMODat a
Schena.

* @hrows SDMParser Exception

[ If the XML source is invalid.

* @hrows |l egal Argument Excepti on

[ If the argunment is null.

98

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

*/

publi c abstract | SDMODat aMet adat a par seSDMODat aMet adat aXM_( byt e[ ]
xm , | SDMODat aSer vi ceDocurment svDoc) throws SDMParser Excepti on,
I'l'l egal Argunent Excepti on;

The service document XML has to be processed before the metadata, because metadata
parsing needs the service document object.
/ * %

* Parses the SDMOData Open Search Description XM. from stream and
converts it to an *appropriate Java bject.
*
* @ar am xm
[ The byte array that holds the SDMOData Open Search
Description XM.
* @eturn | SDMODat aOpenSear chDescri pti on The Object representation
of the SDMOData Open Search

Descri ption.
* @hrows SDMPar ser Exception

If the XML source is invalid.

* @hrows |l egal Argunment Excepti on
[ If the argument is null.
=]

publ i c abstract | SDMODat aCpenSear chDescri ption
par seSDMODat aOpenSear chDescri pti onXM.(byte[] xm ) throws
SDMPar ser Exception, |11 egal Argunment Excepti on;

/**

* Parses the SDMOData Error XML from stream and converts it to an
appropriate Java oject.
*

* @aram xm
[ The byte array that holds the SDMOData Error XM.
* @eturn | SDMODat aError The Cbj ect representation of the SDMODat a

Error.
* @hrows SDMParser Exception
& If the XML source is invalid.
* @hrows |1l egal Argunment Exceptl on
If the argunent is null.
*/

publ i c abstract | SDMODat aError parseSDMODat aError XM_(byte[] xm)
t hrows SDMPar ser Excepti on;

There are also dedicated methods for feed and parsing, and the parser is also able to process
entry XMLs. Both of them need the entity set object representing the collection container of
the entry, so the parser has access to the metadata of the entry, which is needed for proper data
parsing.

/ * *

* Parses OData XM. structures fromstreamthat represent either a

single SDMOData Entry or a

* feed of several SDMOData entri es.
*

* @aram xm
[ The byte array that holds the XM. source of either a
single SDMOData Entry or a

Developer Guide: OData SDK 99



CHAPTER 4: Developing BlackBerry Applications

g feed of several SDMOData entries.
* @eturn | SDMODat aFeed The vector of the SDMOData Entries contai ned
by the source XM.
* @hrows SDMParser Exception
If the XML source is invalid.

* @hrows |l egal Argument Excepti on
[ If the argunent is null.
*/

publi ¢ abstract | SDMODat aFeed parseSDMODat aEntri esXM_(byte[] xm,
| SDMODat aEnti tySet eSet)
t hrows SDMPar ser Exception, |11 egal Argunment Excepti on;

Parses an entry XM.

[ *

*

*

* @aram xm

[ byte array the data is read from
* @ar am eSet

[ the related entity type
* @eturn | SDMODat aEnt ry

* @hrows SDMParser Exception

* @hrows |l egal Argument Excepti on
*
p
I

I

/
ubl i ¢ | SDMODat aEnt ry par seSDMODat aEnt ryXM_(byte[] xm,
SDMODat aEnt i t ySet eSet) throws SDMParser Excepti on,

I I egal Argunment Excepti on;

All the OData related classes are descendants of the generic SDMPar ser Docunent class,
meaning that its low level data access methods can be applied for the OData classes as well.
This feature is useful when some information from the XML files is not accessible through the
high level interfaces.

The structure of the metadata classes is built according to the OData object hierarchy. The
information is accessed from two XMLs, the service document and the metadata XML. The
service document is parsed first, then the metadata. The ISDMODataMetada object, which is
received from the parser after processing the metadata XML is the root of the hierarchy. From
this starting point, you can browse the whole hierarchy. Furthermore, from each lower level
object, you can access its parent using the public | SDMPar ser Docunent

get Par ent () method. The ISDMParserDocument is the parent of all OData classes, so the
result can be type cast to the proper OData type.

Collections and entity sets are in one-to-one relationship, containing even partially
overlapping meta information about the corresponding atom feeds. This relationship is
implemented through their name attribute, their non-qualified name is the same. However,
used as method parameters, collection name is always without namespace, while entity set
name is prefixed with the corresponding schema namespace.

Parsing is done without any data loss, that is, all the information contained in the XML is
preserved in the resulted data structures. In addition to these data structures, the complete
XML is also preserved. This is useful when the objects are persisted, because it is more

100

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

efficient to persist a simple string instead of a complex data structure. It is also an advantage
when data is stored encrypted.

The only drawback of this solution is when data is restored from the persistent storage, the
stored XMLs are parsed again. So this is an expensive operation and should be done as rarely
as possible. To avoid degrading user experience, application developers should perform this
operation (restore object structure from persistence) in a background thread.

Figure 1: Object Hierarchy

Metadata

!

1 10"

<>

Service_Document — Schema 1.t Association
e

' l 1 1

Collection - ; Entity_Set —1 Entity_Type o —
1] 1.t 1
b Association_Set Property Navigation_Property

— Complex_Type <

— Function_Import

There are certain use cases, where OData entry objects and their XML representations have to
be created on the client side. For this, the SDVDat aEnt r y class provides the public
constructor SDVDat aEnt r y (| SDMODat aEnt i t ySet eSet ), which creates an empty
entry object so that its attributes have to be set one-by-one by calling the corresponding setter
method. Finally, the public St ri ng t oXMLSt ri ng() method generates the XML
representation of the entry object.

Developer Guide: OData SDK 101



CHAPTER 4: Developing BlackBerry Applications

SDMCache

The SDMCache component is responsible for storing and accessing OData related objects in
the memory of the device.

List of Features

« Storing ISDMODataEntry objects in the memory

» Accessing ISDMODataEntry objects in the memory directly by their key

» Searching for ISDMODataEntry objects in the memory using tokenized prefix search on
their searchable fields

« Managing the number of stored ISDMODataEntry objects based on the maximum size of
the capacity, removing the least recently used OData document first

SDMCache Public APIs
| SDMCache

void initialize(l SDVPreferences preferences);
void clear();
voi d set SDMODat aSer vi ceDocunent (| SDMODat aSer vi ceDocunent
servi ceDocunent) ;
voi d set SDMODat aSchema( | SDMODat aSchena schenm) ;
voi d set SDMODat aEnt ry( | SDMODat aEntry entry, String coll ectionld);
voi d set SDMODat aEntri es(Vector entries, String collectionld);
| SDMODat aSer vi ceDocunment get SDMODat aSer vi ceDocunent () ;
| SDMODat aScherma get SDMODat aSchema() ;
| SDMODat aEnt ry get SDMODat aEntry(String key);
Vect or get SDMODat aEntri es(String coll ectionld);
Vect or get St or edDocunent s() ;
Vect or searchSDMODat aEntries(String searchTerm String
coll ectionld);
voi d renmpveSDMODat aSer vi ceDocunent () ;
voi d renmoveSDMODat aSchema() ;
voi d renmpoveSDMODat aEntry(String key);
voi d renmoveSDMODat aEntries(String col |l ectionld);
voi d renmoveSt or edDocunent s() ;
Hasht abl e get St oreStruct ureFor Persi stency();
voi d set StoreStructureForPersi stency(Hasht abl e val ues);

Technical Details

For capacity management, SDMCache uses an LRU (least recently used) algorithm that
ensures that the least recently used entries are removed first because of reaching the maximum
capacity. Maximum number of capacity can be set using preference with key:
ISDMPreferences.CACHE_MAX_ELEMENT _NR. This setting refers to the maximum
number of cached entities per Collection.

SDMCache supports the tokenized prefix search. The gp:use-in-search property tag
determines whether a field is searchable.

102

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

SDMCache depends on OData specific interfaces of SDMParser, but does not depend on the
real implementation of SDMParser.

SDMPersistence
The Persistence layer stores the application’s state and relevant data on the mobile device
using the BlackBerry Persistent Store. The library exposes secure APIs, allowing encrypted
data storage and decryption of data.

List of Features

» Storing and loading general objects from Persistent store

 Storing and loading the SDMCache object

« Storing and loading the SDMCache object in a secured way, which means that all fields of
all objects within the cache will be encrypted/decrypted during the load/store operations.
There is a specific method for the removal of the cache, but for the general objects, just a
generic method is provided, where the persistent object id has to be provided as parameter.

SDMPersistence Public APIs
| SDMPer si st ence

voi d storeCache(final |SDMCache cache)

voi d storeCacheSecured(final |SDMCache cache)

voi d storePreferencesSecured(final | SDVPreferences preferences)
| SDMCache | oadCache(| SDMCache cache, | SDMParser parser)

| SDMCache | oadCacheSecur ed(| SDMCache cache, | SDMParser parser)
voi d | oadPr ef erencesSecur ed(final | SDWVPreferences preferences)
voi d store(hject(final |ong key, final Cbject object)

hj ect | oadhj ect (final |ong key)

voi d cl ear Cache()

voi d cl ear Obj ect (final |ong key)

Technical Details

To persist data on the BlackBerry platform means storing objects in the storage provided by
the platform (Persistent Store). Data is stored as instances of Persistent Objects. A
PersistentObject can be any object that implements the Persistable interface. The Persistent
Store APl allows the implicit persistence of classes, so the following data types automatically
implement the Persistable interface and can also be stored in the persistent store:

e java.lang.Boolean
e java.lang.Byte

» java.lang.Character
» java.lang.Integer

e java.lang.Long

e java.lang.Object

» java.lang.Short

» java.lang.String

Developer Guide: OData SDK 103



CHAPTER 4: Developing BlackBerry Applications

e java.util.Vector
 java.util.Hashtable

The implementation only uses the above standard data types when persisting data. This
approach is used as a custom persistent class cannot be used by two applications on the same
device on the BlackBerry platform, and hence is not suitable for a static library component. In
addition, this also avoids any limits on the number of custom persistent classes supported by
the platform.

The storage for each application is distinct, because each object in the persistent store is
associated with a 64-bit ID (type long). Data is stored in the Persistent Store which is a fast and
optimized storage on the platform. The BlackBerry Persistent Store APIs are designed to
provide a flexible and robust data storage interface. With the BlackBerry Persistent Store
APls, you can save entire Java® objects to the memory without having to serialize the data
first. When the application is started, it can retrieve the Java object from the memory and
process the information. No size limit exists on a persistent store; however, the limit for an
individual object within the store is 64 KB.

When using standard persistent classes, each application must ensure to remove any persisted
objects when the application is removed from the device. The BlackBerry OS does not
automatically remove these objects in the same way as it does for custom persistent classes.

The applications have to implement the CodeMbdul eLi st ener interface, which can react
to module addition and removal events. Register the implementation to the

CodeMbdul eManager withthe public static void

addLi st ener (Application application, CodeMdul eLi stener

| i st ener) method. The first parameter is the application whose event listener thread will
execute the listener’s code. This means that this application process must be running when the
application removal is triggered. This can be achieved by adding an automatically starting
background process to the applications and register the listener there.

An alternate entry point with automatic startup has to be added to the application descriptor:

104

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

BlackBerry Application Descriptor - Alternate Entry Points

Alternate Entry Points Alternate Entry Point Properties
Use this section to specify the alternate entry points Set the properties of the selected entry point
for this application.
T . " Title: Uninstaller
(Uninstaller] | Add..
IF‘E'“W‘,_ Application argument: autostartup
Home screen position: 0

| Auta-run on startup
Startup tier: 7 -

'/ Do not display the application icon on the BlackBer

Locale Resources

Internationalized resource bundle available

Icon Files

Rollover Icon File [ Add...

Add External...

Application | Build | Alternate Entry Points

The main method of the application has to be extended with a branch for the background
process, which registers itself for code module changes:

public static void main(String[] args) {
if (args.length >= 1 && args[0].equal s("autostartup")) {

/| Background startup of the application. This process registers as
the listener for
/1 code nodule life-cycle changes. This will be an always on
background process, which
// will react, when its own nodule is marked for deletion.
Uni nst al | Sanpl eApp theApp = new Uni nst al | Sanpl eApp(fal se);
CodeModul eManager . addLi st ener (t heApp, theApp);

t heApp. request Backgr ound() ;
t heApp. ent er Event Di spat cher () ;

} else {
/1 Normal startup procedure: create a new i nstance of the
application which will run in

/'l the foreground.

Developer Guide: OData SDK 105



CHAPTER 4: Developing BlackBerry Applications

Uni nst al | Sanpl eApp t heApp = new Uni nst al | Sanpl eApp(true);
t heApp. ent er Event Di spat cher () ;

}

The constructor receives a flag indicating whether it is running in the foreground, so the
initialization tasks can be performed according to this information (that is, no Ul is needed for
the background process).

Implement the listener. It is called every time a module is about to be removed or added to the
system, so the events must be filtered according to the module name.
publi ¢ voi d nodul eDel eti onsPendi ng(String[] nodul es) {
String current Modul eNanme =
Appl i cationDescri ptor.current ApplicationDescri ptor().get Modul eNamg(
i
SDMConst ant s constants = SDMConst ants. get | nstance();
for (int i=0; i < nodules.length; i++) {

i f (modul es[i].equal s(current Modul eNane)) {

Per si st ent St or e. dest r oyPer si st ent Obj ect (const ant s. get | d( SDMConst ant
s. SERVI CE_DOC _KEY) ) ;

Per si st ent St or e. dest r oyPer si st ent Obj ect (const ant s. get | d( SDMConst ant
s. METADATA KEY) ) ;

Per si st ent St or e. dest r oyPer si st ent Obj ect (const ant s. get | d( SDMConst ant
s. DATA_ENTRY_KEY) ) ;

Per si st ent St or e. dest r oyPer si st ent Obj ect (const ant s. get | d( SDMConst ant
s. PREFERENCES_KEY) ) ;
br eak;

}
}

This example shows how to remove the persisted cache components and the preferences, but
any persisted application data can be removed the same way.

The BlackBerry Persistent Store APIs do not provide a relational database model. The
application must create an effective object model and manage the relationships between
objects as necessary, using indices and hash tables. The keys used to store/load objects must
always be handled by the applications. Encryption/decryption is performed with the help of
the PersistentContent object. Research In Motion (RIM) must track the use of some sensitive
BlackBerry APIs for security and export control reasons. To load your application on a
BlackBerry smart phone, the application must be signed using a signature key (provided by
RIM). The application owner must order signing keys in order to access the BlackBerry
runtime, application and cryptography APIs.

If your application is only signed by RIM provided keys, your application can use the
Persistent Store, but there will not be any access control to the persisted data. Any kind of
application signed by RIM keys can read and replace your persisted data. If you want to protect
your data from other applications, you have to use the BlackBerry Signing Authority Tool to

106

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

sign the resulting cod file with your private key. If you do not have a private key for signing,
you will also need to use the BlackBerry Signing Authority Admin Tool to create a public/
private key pair. See the BlackBerry Signature Tool Development Guide and the BlackBerry
Signing Authority Tool Administrator Guide for more information. In order for your
application to access protected persistent content, the developer must set the used signerID
in

| SDIVPr ef er ences. PERSI STENCE_ACCESS _CONTROL_SI GNER_| D

preference.

The encryption/decryption in the case of saving a huge number of objects or, for example, a
Vector which contains thousands of items can be slow on BlackBerry phones, because the
operation must be done on each field of each object. For encryption, the library uses the
underlying OS encryption API, no custom API is provided for this purpose. The BlackBerry
API offers the Per si st ent Cont ent class for the applications, which can be used to
encrypt/decrypt Strings and byte arrays.

SDMConnectivity

The Network layer handles all network layer related tasks, hides the complexity of network
communication, and provides easy to use APIs to the applications.

List of Features

« Provides interfaces for request handling
« Handles the requests asynchronously
« Can handle the requests by multiple number of threads (configurable)

Technical Details and SDMConnectivity Public APIs

Note: The SUP APIs and their descriptions are available after the installation of Sybase
Unwired Platform at the following location within your installation folder: . . .
\ Unwi redPl at forml Cl i ent API'\ api doc.

The SDMRequest Manager class implements the ISDMRequestManager interface, which
provides the following methods:
| SDMRequest Manager

voi d makeRequest (final | SDVRequest aRequest);

voi d makeRequest (fi nal | SDVBundl eRequest aBundl eRequest)
| SDMConnecti vi ti yParaneters get Connecti vityParaneters()
Vect or get Al | Request s()

int get QueueSi ze()

byte[] get Root Context| D)

voi d term nate()

voi d pause()

voi d resune()

Developer Guide: OData SDK 107



CHAPTER 4: Developing BlackBerry Applications

The number of working threads in the Request Manager class is configurable via the
initialize(final SDMConnectivityParaneters aParaneters, final
i nt aThreadNunber) method. The number of threads is maximized in four by the
connectivity layer, because of performance related issues. If the client initializes the layer with
more than the allowed threads, the implementation of the connectivity layer will decrease the
thread number to the max allowed number. Methods defined by the

SDMConnect i vi t yPar anet er s class:

| SDMConnect i vi t yPar anet er s

voi d set User Name( Stri ng aUser Nane)
String get User Nane()

voi d set User Password(String aPassword)
String get User Passwor d()

voi d setBaseUr| (String baseUrl)

String getBaseUrl ()

String get Language()

voi d set Language(String | anguage)

Sending requests with the connectivity layer consists of the following steps:

1. Create the Request Manager class and initialize it with the required parameters.

2. Create the request object. This can be done by implementing the ISDMRequest interface
or by extending the SDMBaseRequest class which is the base implementation of the
ISDMRequest interface. Both of them are provided by the connectivity layer.

3. Add the request object to the SDMRequest Manager .

Exanpl e

//create and fill parameters for Connectivity library

SDMConnect i vi t yParanet ers parans = new SDMConnecti vityParameters();
par ans. set User Nanme("test");

par ans. set User Passwor d("t est pwd") ;

par ans. set Logger (Logger . get I nstance()); //get the default Logger

[/ create the Request Manager

SDVRequest Manager reqgManager = new SDMRequest Manager () ;
[linitialize it

regManager.initialize(paranms, 2);//set the paranmeters and the thread
nunmber to be used

//create the request object

| SDMRequest test Request = new SDMVBaseRequest () ;

t est Request . set Request Url ("http://test. de: 8080/ testpath");

t est Request . set Request Met hod( | SDVMRequest . REQUEST _METHOD GET) ;

test Request . setPriority(l SDMRequest. PRI ORI TY_NORMAL) ;

//add the request to the connectivity |ayer

reManager . makeRequest (t est Request ) ;

The tasks of the connectivity library have been divided into three main categories: managing
the request queues, managing reading and writing to the input/output streams, and managing
the platform specific connection creation.

The Connectivity component always performs the requests in asynchronous mode. The
application’s role is to handle the request in sync mode. The component is able to perform

108

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

HTTP and HTTPS requests, which you can use for developing and testing purposes, but the
default is SUP Request. The threads in the connectivity library are responsible for taking the
requests from the queue (FIFO - First in first out - algorithm) and performing the requests.

The number of working threads in the connection pool can be configured in the connectivity
layer. There is only one queue, and this is handled by the SDVMRequest Manager , and the
working threads take the requests from this queue. Applications are interacting only with the
SDMRequest Manager class; the other components of the connectivity library are not
visible to them. The network component consists of three main parts:

« SDMRequest Manager : responsible for queuing the requests, managing the threads and
keeping the connection with applications

e Connecti onHandl er : responsible for performing the request

e Connecti onFact ory: responsible for creating and managing platform dependent
connections to the server

An application can have more than one SDMRequest Manager , for example, when
connecting to two different servers at the same time.

There is built-in support for setting the timeout for the socket connection, the application can
use the SDMConnect i vi t yPar anet er s object to modify the value.

int TIMEQUT = 3500;
| SDVPr ef er ences preferences = new SDVPr ef erences();

pref erences. set Pref erence(| SDVPr ef er ences. CONNECTI ON_TI MEQUT VS,
String. val ueO ( TI MEQUT) ) ;

request Manager = new SDMRequest Manager (| ogger, preferences,
paranmeters, NUM OF HTTP_EXECUTI ON_THREADS) ;

SDMRequest Object

An SDMRequest object wraps all the information which is needed by the connectivity library
to be able to perform the requests. The connectivity library interacts with the request object to
query the necessary information about the headers, the post data, and so on.

The connectivity layer also uses the request object to notify the application about the result of
the request using the ISDMNetL.istener interface. The connectivity component provides an
interface called the ISDMRequest and a base implementation of it called the
SDMBaseRequest. The applications have to extend this base class when creating new
application specific requests. The ISDMRequest interface defines the following public APIs:

| SDMRequest

voi d set RequestUrl (final String aUrl)

String get Request Url ()

voi d set Request Met hod(fi nal int aRequest Met hod)
i nt get Request Met hod()

byte[] getData()

void setPriority(final int aPriority)

int getPriority()

Developer Guide: OData SDK 109



CHAPTER 4: Developing BlackBerry Applications

bool ean useCooki es()

voi d setListener(final |SDWNetListener aListener)

| SDMNet Li st ener get Li st ener ()

bool ean hasPost Dat a()

voi d post Dat a( Qut put Stream os)

voi d set Headers(final Hashtabl e aHasht abl e)

Hasht abl e get Header s()

voi d appendHeader s(fi nal Hashtabl e aHasht abl e)

voi d appendHeader (final String aHeaderNane, final String
aHeader Val ue)

The ISDMNetL.istener interface can be used by the client to be notified by the connectivity
layer about the result of a request. Usage of this feature is not mandatory, however, you can
handle incidental errors with it. Methods available in the ISDMNetL istener interface:

| SDIWMNet Li st ener

voi d onSuccess(| SDVMRequest aRequest, | H t pResponse aResponse)
voi d onError (| SDVRequest aRequest, | HttpResponse aResponse,
| SDMRequest St at eEl ement aRequest St at eEl enent)

The role of the SDVMRequest St at eEl enent object used by the connectivity library is to
provide the application with more detail on the occurred error. Methods available in
SDVRequest St at eEl enent object:

| SDMRequest St at eEl enment

i nt get Error Code()

voi d set Error Code(final int code)

int getHttpStatusCode()

voi d set Htt pSt at usCode(final int httpStatus)
Excepti on get Excepti on()

voi d set Excepti on(final Exception aExcepti on)
String getRedirectLocation()

| Ht t pResponse get Response()

Exanpl e

public void onSuccess(| SDVMRequest aRequest, SDMVHtt pResponse
aResponse) {

Systemout.println("Htp response status code:" +
aResponse. get St at usCode() ) ;

System out . println("Cookie string:" +
aResponse. get Cooki eString());

byte[] content = aResponse. getContent();

String response = new String(content);

System out . printl n("Received content:" + response);

//get the headers

Hasht abl e headers = aResponse. get Headers();

110 Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

SDMConfiguration

Each low level API has its own defaults/constants set in the SDMConfiguration library.
Default values of preferences can be found in the SDMConstants class.

List of Features

« Providing modifiable preferences for SDMComponent libraries

» Encrypting/decrypting values of preferences for persistence

» Providing API for resetting the preferences of SDMComponent libraries to their default
values

« Providing API for creating and handling custom preferences

» Notifying subscribed listeners in case of any change in preferences

SDMConfiguration Public APIs
| SDVPr ef er ences

voi d setPreference(String key, String val ue)
String getPreference(String key)

voi d regi st erPreferenceChangelLi stener(String key,
| SDVPr ef er enceChangeli st ener changeli st ener)

voi d unRegi st er Pref erenceChangelLi stener (String key,
| SDVPr ef er enceChangeli st ener changeli st ener)
Hasht abl e encrypt ()

Hasht abl e decrypt ()

voi d i ni t FronPer si st ence( Hasht abl e prefs)

voi d del etePreference(final String aKey)

voi d reset ()

Technical Details

SDMPreferences object is used for storing configuration key-value pairs. Only the String
representation of the value can be stored. Persistent storage of this object is available from
SDMPersistence. This object calls encr ypt (), decrypt () and

i ni t FronPer si st ence() methods of SDMPreferences, so the applications do not have
to use these methods explicitly.

During instantiation of SDMPreference, the default values needed for other
SDMComponents are filled. SDMComponents preferences can be reset to their default values
using the r eset () method.

You can register a preference change listener for each preference in SDMPreferences
(including custom preferences) so that you will be notified if the value of a given preference
has changed. Preference change listener notification and preference validation can only be
done after the initialization of the appropriate component.

Developer Guide: OData SDK 111



CHAPTER 4: Developing BlackBerry Applications

SDMSupportability

The OData SDK provides a set of features and concepts for the supportability of the
applications built on top of the SDK.

SDMLogger

The SDMLogger architecture follows the logging implementation in Java 1.5 and provides the

same services and structures, but also contains BlackBerry and OData SDK specific
implementations.

The component provides the following features:

 Filtering: the client app can set the log level. Provides filterable log retrieval by component

and by timestamp (from-to).

» Formatting: before the log message is sent to the handler (which performs the logging),

there is a possibility to format the message.
« Handlers: handlers are responsible for logging the messages to the specified place.

Depending on the implementation of the handler, the place can be the memory, a file, or the

message can be sent to the server. Changing the default handlers in the Logger
implementation is invisible for the client.

Current implementation contains implementation for all the interfaces (the IFilter, IHandler

and IFormatter). These classes begin with the “Default” prefix.

SDMLogger Public APIs
| SDM_ogger

| SDVPr ef er ences get Pref erences()

voi d entering(String sourced ass,

void entering(String sourced ass,

par amil)

void entering(String sourced ass,
oj ect[] parans)

exiting(String sourced ass,

exiting(String sourced ass,

voi d
voi d

String sourceMet hod)
String sourceMethod, Object

String sourceMet hod,

String sourceMet hod)

String sourceMethod, Cbject result)

void fine(String nsg)

void finer(String nsg)

void info(String nmsQ)

void log(final int level, String nsg)

void log(final int level, String nsg, final Object paranil)

void log(final int level, String nsg, Object[] parans)

void log(final int level, String nmsg, Throwabl e thrown)

void log(final int level, final String message, final Exception ex)

voi d | ogNest edCbj ects(final int |level, String nessage,
final Qoject[] parans)

voi d set Handl er (I Handl er handl er)

void error(String nmsQ)

void p(final String nmessage, |ong tinestanp)

Vect or get LogRecords()

Vect or get LogRecor sdByConponent Nane(fi nal

String conmponent Nane)

112

Sybase Unwired Platform



CHAPTER 4: Developing BlackBerry Applications

Vect or get LogRecorsdByTi neStanp(final long start, final |ong end)
voi d cl ear LogRecor ds()

i nt get LogNumber ()

String get LogHeader ()

SAP Passport
For the Single Activity Trace an SAP Passport has to be issued by the connectivity layer of the

library.

The SAP Passport is transported as an HT TP header in the request. The server handles the SAP
Passport to generate end-to-end Trace. The OData SDK is using JSDR SAP Passport sources
integrated in the library at source level. It can be turned on or off with

| SDVPr ef er ences. SDM TRACI NG_ENABLED preference key. By default it is turned
off.

Deploying Applications to Devices

This section describes how to deploy customized mobile applications to devices.

1. Signing
Code signing is required for applications to run on physical devices.
2. Provisioning Options for BlackBerry Devices

To provision the application to BlackBerry devices, you can automatically push the
application to the device or send a link to device users so they can install it when desired.
For small deployments or evaluation purposes, device users can install the application
using BlackBerry Desktop Manager.

3. BES Provisioning for BlackBerry

BlackBerry devices that are connected to a production environment using relay server can
use BlackBerry Enterprise Server (BES) to provision supported device types.

4. BlackBerry Desktop Manager Provisioning

You can deploy BlackBerry applications to physical devices through BlackBerry Desktop
Manager.

See also
e OData SDK Components and APIs on page 95

Signing
Code signing is required for applications to run on physical devices.

In general, if your application or library uses an API it must be signed, which occurs in most
cases. You can implement code signing from the BlackBerry JDE:

» BlackBerry JDE — download the Signing Authority Tool from the BlackBerry Web site at
http://na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp. Vliew

Developer Guide: OData SDK 113


http://na.blackberry.com/eng/developers/javaappdev/signingauthority.jsp

CHAPTER 4: Developing BlackBerry Applications

Deploying and Signing Applications in the BlackBerry JDE plug-in for Eclipse at the
Research In Motion Developer Video Library Web site: Attp.//
supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?
labels=video.

Provisioning Options for BlackBerry Devices

To provision the application to BlackBerry devices, you can automatically push the
application to the device or send a link to device users so they can install it when desired. For
small deployments or evaluation purposes, device users can install the application using
BlackBerry Desktop Manager.

Once installed on the device, the application appears in Downloads. However, device users
can move it to a different location. If device users reinstall the application from a link or URL,
or using Desktop Manager, the BlackBerry device remembers the installation location.

Provisioning Meth- [Purpose Description

od

BlackBerry Enterprise Enterprise installa- | When the BlackBerry device activates, it auto-
Server (BES) Over-the-Air | tions matically pairs with the BES and downloads the
(OTA) application.

See http.//www.blackberry.com/btsc/search.do?
cma=displayKC&doc Type=kc&external-
1d=KB03748for step-by-step instructions.

OTA: URL/link to installa- | Enterprise installa- | The administrator stages the OTA files in a Web-

tion files tions accessible location and notifies BlackBerry de-
vice users viaan e-mail message with a link to the
JAD file.
Desktop Manager Personal installa- Installs the application when the BlackBerry de-
tion vice is synced via a computer.

BES Provisioning for BlackBerry

BlackBerry devices that are connected to a production environment using relay server can use
BlackBerry Enterprise Server (BES) to provision supported device types.

See the following sections in System Administration for details on how to perform
BlackBerry provisioning and deployment:

»  System Administration > Device Provisioning > Afaria Provisioning and Mobile Device
Management.

»  System Administration > Device Provisioning > BES Provisioning for BlackBerry
*  Provisioning Prerequisites for BlackBerry

114

Sybase Unwired Platform


http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://supportforums.blackberry.com/t5/Java-Development/tkb-p/java_dev%40tkb?labels=video
http://www.blackberry.com/btsc/search.do?cmd=displayKC&docType=kc&externalId=KB03748
http://www.blackberry.com/btsc/search.do?cmd=displayKC&docType=kc&externalId=KB03748
http://www.blackberry.com/btsc/search.do?cmd=displayKC&docType=kc&externalId=KB03748

CHAPTER 4: Developing BlackBerry Applications

o System Administration > Device Provisioning > Setting up Push Synchronization for
Replication Synchronization Devices

BlackBerry Desktop Manager Provisioning

You can deploy BlackBerry applications to physical devices through BlackBerry Desktop
Manager.

The generated code is compiled against the BlackBerry RAPC compiler to output the
following COD (.cod), Application Loader Files (.alx), and Java Application Descriptor (.jad)
files. File requirements depend on application and installation type:

Required files include:

e CommonClientLib.cod
* MessagingClientLib.cod
e MocaClientLib.cod

e sup_json.cod

Developer Guide: OData SDK 115



CHAPTER 4: Developing BlackBerry Applications

116 Sybase Unwired Platform



CHAPTER 5 Glossary: Sybase Unwired
Platform

Defines terms for all Sybase Unwired Platform components.

administration perspective — Or administration console. The Unwired Platform
administrative perspective is the Flash-based Web application for managing Unwired Server.
See Sybase Control Center.

administrators — Unwired Platform users to which an administration role has been assigned.
A user with the "SUP Administrator" role is called a "platform administrator” and a user with
the "SUP Domain Administrator" role is called a "domain administrator". These
administration roles must also be assigned SCC administration roles to avoid having to
authenticate to Sybase Control Center in addition to Unwired Server:

¢ A domain administrator only requires the "sccUserRole™ role.
e A platform administrator requires both the "sccAdminRole" and "sccUserRole" roles.

Adobe Flash Player — Adobe Flash Player is required to run Sybase Control Center. Because
of this player, you are required to run Sybase Control Center in a 32-bit browser. Adobe does
not support 64-bit browsers.

Advantage Database Server® — A relational database management system that provides the
messaging database for Sybase Unwired Platform. See messaging database.

Afaria® — An enterprise-grade, highly scalable device management solution with advanced
capabilities to ensure that mobile data and devices are up-to-date, reliable, and secure. Afaria
is a separately licensed product that can extend the Unwired Platform in a mobile enterprise.
Afaria includes a server (Afaria Server), a database (Afaria Database), an administration tool
(Afaria Administrator), and other runtime components, depending on the license you
purchase.

application—In Unwired Server (and visible in Sybase Control Center), and application is the
runtime entity that can be directly correlated to a native or mobile workflow application. The
application definition on the server establishes the relationship among packages used in the
application, domain that the application is deployed to, user activation method for the
application, and other application specific settings.

APNS - Apple Push Notification Service.
application connection — A unique connection to the application on a device.

application connection template — a template for application connections that includes
application settings, security configuration, domain details, and so forth.

Developer Guide: OData SDK 117



CHAPTER 5: Glossary: Sybase Unwired Platform

application node — In Sybase Control Center, this is a registered application with a unique ID.
This is the main entity that defines the behavior of device and backend interactions.

application registration — The process of registering an application with Sybase Unwired
Platform. Registration requires a unique identity that defines the properties for the device and
backend interaction with Unwired Server.

artifacts — Artifacts can be client-side or automatically generated files; for
example: . xm , . cs,.java,. cab files.

availability — Indicates that a resource is accessible and responsive.

BAPI - Business Application Programming Interface. A BAPI is a set of interfaces to object-
oriented programming methods that enable a programmer to integrate third-party software
into the proprietary R/3 product from SAP®. For specific business tasks such as uploading
transactional data, BAPIs are implemented and stored in the R/3 system as remote function
call (RFC) modules.

BLOB -Binary Large Object. A BLOB is a collection of binary data stored as a single entity
in a database management system. A BLOB may be text, images, audio, or video.

cache — The virtual tables in the Unwired Server cache database that store synchronization
data. See cache database.

cache group — Defined in Unwired WorkSpace, MBOs are grouped and the same cache
refresh policy is applied to their virtual tables (cache) in the cache database

cache partitions — Partitioning the cache divides it into segments that can be refreshed
individually, which gives better system performance than refreshing the entire cache. Define
cache partitions in Unwired WorkSpace by defining a partition key, which is a load argument
used by the operation to load data into the cache from the enterprise information system
(EIS).

cache database — Cache database. The Unwired Server cache database stores runtime
metadata (for Unwired Platform components) and cache data (for MBOs). See also data tier.
CLI - Command line interface. CLI is the standard term for a command line tool or utility.
client application — See mobile application.

client object API — The client object API is described in the Developer Guide: BlackBerry
Native Applications, Developer Guide: iOS Native Applications, and Developer Guide:
Windows and Windows Mobile Native Applications.

cluster — Also known as a server farm. Typically clusters are setup as either runtime server
clusters or database clusters (also known as a data tier). Clustering is a method of setting up
redundant Unwired Platform components on your network in order to design a highly scalable
and available system architecture.

118

Sybase Unwired Platform



CHAPTER 5: Glossary: Sybase Unwired Platform

cluster database — A data tier component that holds information pertaining to all Unwired
Platform server nodes. Other databases in the Unwired Platform data tier includes the cache,
messaging, and monitoring databases.

connection — Includes the configuration details and credentials required to connect to a
database, Web service, or other EIS.

connection pool — A connection pool is a cache of Enterprise Information System (EIS)
connections maintained by Unwired Server, so that the connections can be reused when
Unwired Server receives future requests for data.

For proxy connections, a connection pool is a collection of proxy connections pooled for their
respective back-ends, such as SAP Gateway.

connection profile — In Unwired WorkSpace, a connection profile includes the configuration
details and credentials required to connect to an EIS.

context variable — In Unwired WorkSpace, these variables are automatically created when a
developer adds reference(s) to an MBO in a mobile application. One table context variable is
created for each MBO attribute. These variables allow mobile application developers to
specify form fields or operation parameters to use the dynamic value of a selected record of an
MBO during runtime.

data change notification (DCN) — Data change notification (DCN) allows an Enterprise
Information System (EIS) to synchronize its data with the cache database through a push
event.

data refresh — A data refresh synchronizes data between the cache database and a back-end
EIS so that data in the cache is updated. See a/so scheduled data refresh.

data source — In Unwired WorkSpace, a data source is the persistent-storage location for the
data that a mobile business object can access.

data tier — The data tier includes Unwired Server data such as cache, cluster information, and
monitoring. The data tier includes the cache database (CDB), cluster, monitoring, and
messaging databases.

data vault — A secure store across the platform that is provided by an SUP client.

deploy — (Unwired Server) Uploading a deployment archive or deployment unit to an
Unwired Server instance. Unwired Server can then make these units accessible to users via a
client application that is installed on a mobile device.

There is a one-to-one mapping between an Unwired WorkSpace project and a server package.
Therefore, all MBOs that you deploy from one project to the same server are deployed to the
same server package.

deployment archive — In Unwired WorkSpace, a deployment archive is created when a
developer creates a package profile and executes the build operation. Building creates an
archive that contains both a deployment unit and a corresponding descriptor file. A

Developer Guide: OData SDK 119



CHAPTER 5: Glossary: Sybase Unwired Platform

deployment archive can be delivered to an administrator for deployment to a production
version of Unwired Server.

deployment descriptor — A deployment descriptor is an XML file that describes how a
deployment unit should be deployed to Unwired Server. A deployment descriptor contains
role-mapping and domain-connection information. You can deliver a deployment descriptor
and a deployment unit—jointly called a deployment archive—to an administrator for
deployment to a production version of Unwired Server.

deployment mode — You can set the mode in which a mobile application project or mobile
deployment package is deployed to the target Unwired Server.

deployment profile — A deployment profile is a named instance of predefined server
connections and role mappings that allows developers to automate deployment of multiple
packages from Sybase Unwired WorkSpace to Unwired Server. Role mappings and
connection mappings are transferred from the deployment profile to the deployment unit and
the deployment descriptor.

deployment unit — The Unwired WorkSpace build process generates a deployment unit. It
enables a mobile application to be effectively installed and used in either a preproduction or
production environment. Once generated, a deployment unit allows anyone to deploy all
required objects, logical roles, personalization keys, and server connection information
together, without requiring access to the whole development project. You can deliver a
deployment unit and a deployment descriptor—jointly called a deployment archive—to an
administrator for deployment to a production version of Unwired Server.

development package — A collection of MBOs that you create in Unwired WorkSpace. You
can deploy the contents of a development package on an instance of Unwired Server.

device application — See also mobile application. A device application is a software
application that runs on a mobile device.

device notification — Replication synchronization clients receive device notifications when a
data change is detected for any of the MBOs in the synchronization group to which they are
subscribed. Both the change detection interval of the synchronization group and the
notification threshold of the subscription determine how often replication clients receive
device notifications. Administrators can use subscription templates to specify the notification
threshold for a particular synchronization group.

device user — The user identity tied to a device.

DML - Data manipulation language. DML is a group of computer languages used to retrieve,
insert, delete, and update data in a database.

DMZ - Demilitarized zone; also known as a perimeter network. The DMZ adds a layer of
security to the local area network (LAN), where computers run behind a firewall. Hosts
running in the DMZ cannot send requests directly to hosts running in the LAN.

120

Sybase Unwired Platform



CHAPTER 5: Glossary: Sybase Unwired Platform

domain administrator — A user to which the platform administrator assigns domain
administration privileges for one or more domain partitions. The domain administrator has a
restricted view in Sybase Control Center, and only features and domains they can manage are
visible.

domains —Domains provide a logical partitioning of a hosting organization's environment, so
that the organization achieves increased flexibility and granularity of control in multitenant
environments. By default, the Unwired Platform installer creates a single domain named
"default”. However the platform administrator can also add more domains as required.

EIS - Enterprise Information System. EIS is a back-end system, such as a database.

Enterprise Explorer — In Unwired WorkSpace, Enterprise Explorer allows you to define data
source and view their metadata (schema objects in case of database, BAPIs for SAP, and so
on).

export — The Unwired Platform administrator can export the mobile objects, then import
them to another server on the network. That server should meet the requirement needed by the
exported MBO.

hostability — See multitenancy.
IDE - Integrated Development Environment.
JDE - BlackBerry Java Development Environment.

key performance indicator (KPI) — Used by Unwired Platform monitoring. KPIs are
monitoring metrics that are made up for an object, using counters, activities, and time which
jointly for the parameters that show the health of the system. KPIs can use current data or
historical data.

keystore — The location in which encryption keys, digital certificates, and other credentials in
either encrypted or unencrypted keystore file types are stored for Unwired Server runtime
components. See also truststore.

LDAP - Lightweight Directory Access Protocol.

local business object — Defined in Unwired WorkSpace, local business objects are not bound
to EIS data sources, so cannot be synchronized. Instead, they are objects that are used as local
data store on device.

logical role — Logical roles are defined in mobile business objects, and mapped to physical
roles when the deployment unit that contain the mobile business objects are deployed to
Unwired Server.

matching rules— A rule that triggers a mobile workflow application. Matching rules are used
by the mobile workflow email listener to identify e-mails that match the rules specified by the
administrator. When emails match the rule, Unwired Server sends the e-mail as a mobile
workflow to the device that matches the rule. A matching rule is configured by the
administrator in Sybase Control Center.

Developer Guide: OData SDK 121



CHAPTER 5: Glossary: Sybase Unwired Platform

MBO - Mobile business object. The fundamental unit of data exchange in Sybase Unwired
Platform. An MBO roughly corresponds to a data set from a back-end data source. The data
can come from a database query, a Web service operation, or SAP. An MBO contains both
concrete implementation-level details and abstract interface-level details. At the
implementation-level, an MBO contains read-only result fields that contain metadata about
the data in the implementation, and parameters that are passed to the back-end data source. At
the interface-level, an MBO contains attributes that map to result fields, which correspond to
client properties. An MBO may have operations, which can also contain parameters that map
to arguments, and which determines how the client passes information to the enterprise
information system (EIS).

You can define relationships between MBOs, and link attributes and parameters in one MBO
to attributes and parameters in another MBO.

MBO attribute — An MBO attribute is a field that can hold data. You can map an MBO
attribute to a result field in a back-end data source; for example, a result field in a database
table.

MBO binding — An MBO binding links MBO attributes and operations to a physical data
source through a connection profile.

MBO operation — An MBO operation can be invoked from a client application to perform a
task; for example, create, delete, or update data in the EIS.

MBO relationship — MBO relationships are analogous to links created by foreign keys in a
relational database. For example, the account MBO has a field called owner /D that maps to
the /Dfield in the owner MBO.

Define MBO relationships to facilitate:

« Data synchronization
« EIS data-refresh policy

messaging based synchronization — A synchronization method where data is delivered
asynchronously using a secure, reliable messaging protocol. This method provides fine-
grained synchronization (synchronization is provided at the data level—each process
communicates only with the process it depends on), and it is therefore assumed that the device
is always connected and available. See also synchronization.

messaging database — The messaging database allows in-flight messages to be stored until
they can be delivered. This database is used in a messaging based synchronization
environment. The messaging database is part of the Unwired Platform data tier, along with the
cache, cluster, and monitoring databases.

mobile application — A Sybase Unwired Platform mobile application is an end-to-end
application, which includes the MBO definition (back-end data connection, attributes,
operations, and relationships), the generated server-side code, and the client-side application
code.

122

Sybase Unwired Platform



CHAPTER 5: Glossary: Sybase Unwired Platform

Mobile Application Diagram — The Mobile Application Diagram is the graphical interface
to create and edit MBOs. By dragging and dropping a data source onto the Mobile Application
Diagram, you can create a mobile business object and generate its attribute mappings
automatically.

Mobile Application Project — A collection of MBOs and client-side, design-time artifacts
that make up a mobile application.

mobile workflow packages — Mobile workflow packages use the messaging synchronization
model. The mobile workflow packages are deployed to Unwired Server, and can be deployed
to mobile devices, via the Unwired Platform administrative perspective in Sybase Control
Center.

monitoring — Monitoring is an Unwired Platform feature available in Sybase Control Center
that allows administrators to identify key areas of weakness or periods of high activity in the
particular area they are monitoring. It can be used for system diagnostic or for
troubleshooting. Monitored operations include replication synchronization, messaging
synchronization, messaging queue, data change notification, device notification, package,
user, and cache activity.

monitoring database — A database that exclusively stores data related to replication and
messaging synchronization, queues status, users, data change notifications, and device
notifications activities. By default, the monitoring database runs in the same data tier as the
cache database, messaging database and cluster database.

monitoring profiles — Monitoring profiles specify a monitoring schedule for a particular
group of packages. These profiles let administrators collect granular data on which to base
domain maintenance and configuration decisions.

multitenancy — The ability to host multiple tenants in one Unwired Cluster. Also known as
hostability. See also domains.

node — A host or server computer upon which one or more runtime components have been
installed.

object query — Defined in Unwired WorkSpace for an MBO and used to filter data that is
downloaded to the device.

onboarding - The enterprise-level activation of an authentic device, a user, and an application
entity as a combination, in Unwired Server.

operation — See MBO operation.

package — A package is a named container for one or more MBOs. On Unwired Server a
package contains MBOs that have been deployed to this instance of the server.

palette — In Unwired WorkSpace, the palette is the graphical interface view from which you
can add MBOs, local business objects, structures, relationships, attributes, and operations to
the Mobile Application Diagram.

Developer Guide: OData SDK 123



CHAPTER 5: Glossary: Sybase Unwired Platform

parameter — A parameter is a value that is passed to an operation/method. The operation uses
the value to determine the output. When you create an MBO, you can map MBO parameters to
data-source arguments. For example, if a data source looks up population based on a state
abbreviation, the MBO gets the state from the user, then passes it (as a parameter/argument) to
the data source to retrieve the information. Parameters can be:

» Synchronization parameters — synchronize a device application based on the value of the
parameter.

* Load arguments — perform a data refresh based on the value of the argument.

» Operation parameters — MBO operations contain parameters that map to data source
arguments. Operation parameters determine how the client passes information to the
enterprise information system (EIS).

personalization key — A personalization key allows a mobile device user to specify attribute
values that are used as parameters for selecting data from a data source. Personalization keys
are also used as operation parameters. Personalization keys are set at the package level. There
are three type of personalization keys: Transient, client, server.

They are most useful when they are used in multiple places within a mobile application, or in
multiple mobile applications on the same server. Personalization keys may include attributes
such as name, address, zip code, currency, location, customer list, and so forth.

perspective — A named tab in Sybase Control Center that contains a collection of managed
resources (such as servers) and a set of views associated with those resources. The views in a
perspective are chosen by users of the perspective. You can create as many perspectives as you
need and customize them to monitor and manage your resources.

Perspectives allow you to group resources ways that make sense in your environment—by
location, department, or project, for example.

physical role — A security provider group or role that is used to control access to Unwired
Server resources.

Problems view — In Eclipse, the Problems view displays errors or warnings for the Mobile
Application Project.

provisioning — The process of setting up a mobile device with required runtimes and device
applications. Depending on the synchronization model used and depending on whether or not
the device is also an Afaria client, the files and data required to provision the device varies.

pull synchronization — Pull synchronization is initiated by a remote client to synchronize the
local database with the cache database. On Windows Mobile, pull synchronization is
supported only in replication applications.

push synchronization — Push is the server-initiated process of downloading data from
Unwired Server to a remote client, at defined intervals, or based upon the occurrence of an
event.

queue — In-flight messages for a messaging application are saved in a queue. A queue is a list
of pending activities. The server then sends messages to specific destinations in the order that

124

Sybase Unwired Platform



CHAPTER 5: Glossary: Sybase Unwired Platform

they appear in the queue. The depth of the queue indicates how many messages are waiting to
be delivered.

relationship — See MBO relationship.
relay server — See also Sybase Hosted Relay Service.
resource — A unique Sybase product component (such as a server) or a subcomponent.

REST web services — Representational State Transfer (REST) is a style of software
architecture for distributed hypermedia systems such as the World Wide Web.

RFC - Remote Function Call. You can use the RFC interface to write applications that
communicate with SAP R/3 applications and databases. An RFC is a standalone function.
Developers use SAP tools to write the Advanced Business Application Programming (ABAP)
code that implements the logic of a function, and then mark it as "remotely callable," which
turns an ABAP function into an RFC.

role — Roles control access to Sybase Unwired Platform resources. See alsological role and
physical role.

role mapping — Maps a physical (server role) to a logical (Unwired Platform role). Role
mappings can be defined by developers, when they deploy an MBO package to a development
Unwired Server, or by platform or domain administrators when they assign a security
configuration to a domain or deploy a package to a production Unwired Server (and thereby
override the domain-wide settings in the security configuration).

RSOE - Relay Server Outbound Enabler. An RSOE is an application that manages
communication between Unwired Server and a relay server.

runtime server — An instance of Unwired Server that is running. Typically, a reference to the
runtime server implies a connection to it.

SAP — SAP is one of the EIS types that Unwired Platform supports.

SCC - Sybase Control Center. A Web-based interface that allows you to administer your
installed Sybase products.

schedule — The definition of a task (such as the collection of a set of statistics) and the time
interval at which the task must execute in Sybase Control Center.

scheduled data refresh — Data is updated in the cache database from a back-end EIS, based on
a scheduled data refresh. Typically, data is retrieved from an EIS (for example, SAP) when a
device user synchronizes. However, if an administrator wants the data to be preloaded for a
mobile business object, a data refresh can be scheduled so that data is saved locally in a cache.
By preloading data with a scheduled refresh, the data is available in the information server
when a user synchronizes data from a device. Scheduled data refresh requires that an
administrator define a cache group as "scheduled" (as opposed to "on-demand").

security configuration — Part of the application user and administration user security. A
security configuration determines the scope of user identity, authentication and authorization

Developer Guide: OData SDK 125



CHAPTER 5: Glossary: Sybase Unwired Platform

checks, and can be assigned to one or more domains by the platform administrator in Sybase
Control Center. A security configuration contains:

« A et of configured security providers (for example LDAP) to which authentication,
authorization, attribution is delegated.
» Role mappings (which can be specified at the domain or package level)

security provider — A security provider and it's repository holds information about the users,
security roles, security policies, and credentials used by some to provide security services to
Unwired Platform. A security provider is part of a security configuration.

security profile — Part of the Unwired Server runtime component security. A security profile
includes encryption metadata to capture certificate alias and the type of authentication used by
server components. By using a security profile, the administrator creates a secured port over
which components communicate.

server connection — The connection between Unwired WorkSpace and a back-end EIS is
called a server connection.

server farm — See also cluster. Is the relay server designation for a cluster.
server-initiated synchronization — See push synchronization.

SOAP - Simple Object Access Protocol. SOAP is an XML-based protocol that enables
applications to exchange information over HTTP. SOAP is used when Unwired Server
communicates with a Web service.

solution — In Visual Studio, a solution is the high-level local workspace that contains the
projects users create.

Solution Explorer — In Visual Studio, the Solution Explorer pane displays the active projects
in a tree view.

SSO - Single sign-on. SSO is a credential-based authentication mechanism.

statistics — In Unwired Platform, the information collected by the monitoring database to
determine if your system is running as efficiently as possible. Statistics can be current or
historical. Current or historical data can be used to determine system availability or
performance. Performance statistics are known as key performance indicators (KPI).

Start Page — In Visual Studio, the Start Page is the first page that displays when you launch the
application.

structured data — Structured data can be displayed in a table with columns and labels.

structure object — Defined in Unwired WorkSpace, structures hold complex datatypes, for
example, a table input to a SAP operation.

subscription — A subscription defines how data is transferred between a user's mobile device
and Unwired Server. Subscriptions are used to notify a device user of data changes, then these
updates are pushed to the user's mobile device.

126

Sybase Unwired Platform



CHAPTER 5: Glossary: Sybase Unwired Platform

Sybase Control Center — Sybase Control Center is the Flash-based Web application that
includes a management framework for multiple Sybase server products, including Unwired
Platform. Using the Unwired Platform administration perspective in Sybase Control Center,
you can register clusters to manage Unwired Server, manage domains, security
configurations, users, devices, connections, as well as monitor the environment. You can also
deploy and MBO or workflow packages, as well as register applications and define templates
for them. Only use the features and documentation for Unwired Platform. Default features and
documentation in Sybase Control Center do not always apply to the Unwired Platform use
case.

Sybase Control Center X.X Service — Provides runtime services to manage, monitor, and
control distributed Sybase resources. The service must be running for Sybase Control Center
to run. Previously called Sybase Unified Agent.

Sybase Hosted Relay Service — The Sybase Hosted Relay Service is a Web-hosted relay
server that enables you to test your Unwired Platform development system.

Sybase Messaging Service — The synchronization service that facilitates communication
with device client applications.

Sybase Unwired Platform — Sybase Unwired Platform is a development and administrative
platform that enables you to mobilize your enterprise. With Unwired Platform, you can
develop mobile business objects in the Unwired WorkSpace development environment,
connect to structured and unstructured data sources, develop mobile applications, deploy
mobile business objects and applications to Unwired Server, which manages messaging and
data services between your data sources and your mobile devices.

Sybase Unwired WorkSpace — Sybase Unwired Platform includes Unwired WorkSpace,
which is a development tool for creating mobile business objects and mobile applications.

synchronization— A synchronization method where data is delivered synchronously using an
upload/download pattern. For push-enabled clients, synchronization uses a "poke-pull”
model, where a notification is pushed to the device (poke), and the device fetches the content
(pull), and is assumed that the device is not always connected to the network and can operate in
a disconnected mode and still be productive. For clients that are not push-enabled, the default
synchronization model is pull. See also messaging based synchronization.

synchronization group — Defined in Unwired WorkSpace, a synchronization group is a
collection of MBOs that are synchronized at the same time.

synchronization parameter — A synchronization parameter isan MBO attribute used to filter
and synchronize data between a mobile device and Unwired Server.

synchronization phase — For replication based synchronization packages, the phase can be
an upload event (from device to the Unwired Server cache database) or download event (from
the cache database to the device).

Developer Guide: OData SDK 127



CHAPTER 5: Glossary: Sybase Unwired Platform

synchronize — See also data refresh. Synchronization is the process by which data
consistency and population is achieved between remote disconnected clients and Unwired
Server.

truststore — The location in which certificate authority (CA) signing certificates are stored.
See also keystore.

undeploy — Running undeploy removes a domain package from an Unwired Server.

Unwired Server — The application server included with the Sybase Unwired Platform
product that manages mobile applications, back-end EIS synchronization, communication,
security, transactions, and scheduling.

user — Sybase Control Center displays the mobile-device users who are registered with the
server.

view — A window in a perspective that displays information about one or more managed
resources. Some views also let you interact with managed resources or with Sybase Control
Center itself. For example, the Perspective Resources view lists all the resources managed by
the current perspective. Other views allow you to configure alerts, view the topology of a
replication environment, and graph performance statistics.

Visual Studio — Microsoft Visual Studio is an integrated development environment product
that you can use to develop device applications from generated Unwired WorkSpace code.

Welcome page — In Eclipse, the first set of pages that display when you launch the application.

workspace — In Eclipse, a workspace is the directory on your local machine where Eclipse
stores the projects that you create.

WorkSpace Navigator — In Eclipse, the tree view that displays your mobile application
projects.

WSDL file — Web Service Definition Language file. The file that describes the Web service
interface that allows clients to communicate with the Web service. When you create a Web
service connection for a mobile business object, you enter the location of a WSDL file in the
URL.

128 Sybase Unwired Platform



CHAPTER 6 Glossary: OData SDK and Online
Data Proxy

Defines terms for OData and Online Data Proxy when used with Sybase Unwired Platform
components.

cache — In the context of OData applications: a memory system component responsible for
storing and accessing OData related objects in the memory of the mobile device for quick
access.

collection — Resource that contains a set of entries which are structured according to the Data
Obiject / Entity Type definition in the respective Data Model. In OData, a Collection is
represented as an Atom Feed or an array of JSON objects.

mobile application — Applications that run on smartphones and other mobile devices. SUP
Mobile applications make SAP content available outside the corporate firewall and connect
users to SAP services that are more commonly accessed on desktop computers.

OData metadata document — OData metadata documents describe the Entity Data Model
(EDM) for a given service, which is the underlying abstract data model used by OData
services to formalize the description of the resources it exposes.

OData (Open Data Protocol) — Web protocol for querying and updating data. It applies and
builds upon Web technologies such as HTTP, Atom Publishing Protocol (AtomPub) and
JSON to provide access to information from a variety of applications.

ODatafor SAP — OData for SAP Products provide SAP Extensions to the OData protocol that
enable users to build user interfaces for accessing the data published via OData. The interfaces
require human-readable, language-dependent labels for all properties and free-text search
within collections of similar entities and across (OpenSearch).

OData Schema — Defines the structure of the xml files in the OData service.

OData Service Document — A document that describes the location and capabilities of one or
more Collections.

Online Data Proxy — A light-weight edition of the Sybase Unwired Platform that provides a
robust mobile infrastructure for enterprise IT organizations to securely roll-out and manage
the deployment of light-weight applications in a controlled and monitored approach.

SAP — SAP Business Suite applications (such as ERP, CRM, SRM, SCM, Industry Solutions
and so on) consist of many technologies and components. Unless stated otherwise, the term
“SAP” means a backend business application that is based on the SAP NetWeaver ABAP
application server, for example ECC 6.0.

Developer Guide: OData SDK 129



CHAPTER 6: Glossary: OData SDK and Online Data Proxy

SAP NetWeaver Gateway — Enables people-centric applications to consume SAP Business
Suite data through popular devices and platforms in an easy and standards-based fashion.

SAP Passport — Medium to transport technical data of a request from the client to the server.
Used for collecting trace and reporting information for chains of requests (RFC, HTTP) across
system borders.

130 Sybase Unwired Platform



Index

.cod files 81
Jar files 47, 81, 83

A

Android 1, 59, 61, 63, 65, 66, 70, 72, 75
APNS 41
Apple Push Notification Service 41
application provisioning

with iPhone mechanisms 41

B

BES provisioning 114

BlackBerry 1, 95, 97, 102, 103, 107, 111-113
provisioning options 114

BlackBerry Developer Environment 80

BlackBerry Java Plug-in for Eclipse 80

BlackBerry JDE, download 81

BlackBerry MDS Simulator, download 81

BlackBerry Simulator 81

C

Cache 2, 33, 63, 102
Configuration 70, 111
Connectivity 2, 35, 66, 107

D

deployment 115
developing blackberry 84
documentation roadmap 3
download 81

G

glossaries
OData SDK terms 129
Online Data Proxy 129
Sybase Unwired Platform terms 117

infrastructure provisioning
with iPhone mechanisms 41

i0S 1, 5, 24, 26, 33-35, 38, 40
iPhone
iTunes provisioning 41
provisioning 41

L

Logger 38, 72, 112

0]
OData for SAP Products 1

Index

OData SDK Components 2, 24, 26, 33-35, 38, 40,
59, 61, 63, 65, 66, 70, 72, 75, 95, 97, 102,

103, 107, 111-113

P

Parser 2, 26, 61, 97
Performance Timer 40
Persistence 2, 34, 65, 103
provisioning

employee iPhone applications 41
provisioning devices

with iPhone mechanisms 41
provisioning options

BlackBerry 114

S

SAP Passport 75, 113
SDMCommon 59, 95
signing 113

Supportability 2, 38, 72, 112

T

terms
OData SDK 129
Online Data Proxy 129
Sybase Unwired Platform 117

Developer Guide: OData SDK

131



Index

X
Xcode 5

132 Sybase Unwired Platform



	Developer Guide: OData SDK
	Contents
	CHAPTER 1: OData SDK Overview
	OData SDK Components — General Description
	Documentation Roadmap for Unwired Platform

	CHAPTER 2: Developing iOS Applications
	Setting Up the Development Environment
	Developing Applications in the Xcode IDE
	Initializing an Application
	Setting Connection Profile
	Assigning and Implementing Delegates
	Manually Registering an Application
	Automatically Registering an Application using SSO2 Cookie
	Automatically Registering an Application using HTTP Authentication Provider
	Automatically Registering an Application using X.509 Certificates
	Enabling Online Push
	Storing the Application Credentials Securely
	Getting Application End-point
	Getting Push End-point
	Getting Server Details
	Getting Port Number
	Getting FarmID
	Checking the Provisioning Status of the Public Key
	Deleting Users
	Getting Application Seed Data from Afaria
	Provisioning Connection Settings from Afaria
	Provisioning Certificates Using URLScheme with Afaria
	Provisioning Certificates Using URL with Afaria
	Clearing the Server Verification Key
	Data Vault API References
	Creating a Vault
	Opening an Existing Vault
	Deleting a Vault
	Locking a Vault
	Unlocking a Vault
	Setting a Binary Value
	Retrieving a Binary Value
	Setting the Retry Limit Value for a Vault
	Setting the Lock Timeout Value for a Vault


	OData SDK Components and APIs
	SDMParser
	SDMCache
	SDMPersistence
	SDMConnectivity
	SDMSupportability
	SDMLogger
	SDMPerfTimer
	SAP Passport


	Deploying Applications to Devices
	Apple Push Notification Service Configuration
	Provisioning an Application for Apple Push Notification Service
	Preparing Applications for Deployment to the Enterprise
	Sample Code to Enable APNS


	CHAPTER 3: Developing Android Applications
	Setting Up the Development Environment
	Setting Up the Android SDK Library in the Plugin
	Importing Libraries to your Android Application Project
	Online Data Proxy Android API JAR File Locations

	Developing Applications in the Android Development Environment
	Initializing an Application
	Setting Connection Profile
	Manually Registering an Application
	Automatically Registering an Application using SSO2 Cookie
	Automatically Registering an Application using HTTP Authentication Provider
	Automatically Registering an Application using X.509 Certificate
	Storing the Application Credentials Securely
	Getting Application End-point
	Getting the Push End-point
	Getting Server Details
	Getting Port Number
	Getting FarmID
	Checking the Provisioning Status of the Public Key
	Deleting Users
	Getting Application Seed Data from Afaria
	Provisioning Connection Settings from Afaria
	Provisioning Certificates using Afaria
	Clearing the Server Verification Key
	Enabling Online Push for Applications
	Enabling the Listener for Proxy Setting Changes
	Data Vault API References
	Creating a Vault
	Opening an Existing Vault
	Deleting a Vault
	Locking a Vault
	Unlocking a Vault
	Setting a Binary Value
	Retrieving a Binary Value
	Setting the Retry Limit Value for a Vault
	Setting the Lock Timeout Value for a Vault


	OData SDK Components and APIs
	SDMParser
	SDMCache
	SDMPersistence
	SDMConnectivity
	SDMConfiguration
	Supportability
	SDMLogger
	SAP Passport


	Deploying Applications to Devices
	Installing Applications on the Device without Using the Android Market
	Installing Applications using a URL
	Deploying Applications using Afaria


	CHAPTER 4: Developing BlackBerry Applications
	Configuring the BlackBerry Developer Environment
	Installing the BlackBerry Development Environment
	Installing the BlackBerry Java Plug-in for Eclipse
	Downloading the BlackBerry JDE and MDS Simulator


	Creating Projects and Adding Libraries into the BlackBerry Development Environment
	Adding Required .jar and .cod Files
	Consuming Java .JAR files for BlackBerry Projects

	Online Data Proxy BlackBerry API JAR File Locations
	Developing Applications in the BlackBerry Development Environment
	Initializing an Application
	Provisioning Connection Settings from Afaria
	Manually Registering an Application
	Automatically Registering an Application using SSO2 Cookie
	Automatically Registering an Application using HTTP Authentication Provider
	Automatically Registering an Application using X.509 Certificate
	Storing the Application Credentials Securely
	Checking for Registered Users
	Deleting Users
	Enabling Online Push
	Getting Application End-point
	Getting Push End-point
	Getting Server Details
	Getting Port Number
	Getting FarmID
	Checking the Provisioning Status of the Public Key
	Provisioning Certificates using Afaria
	Getting Application Seed Data from Afaria
	Clearing the Server Verification Key
	Data Vault API References
	Creating a Vault
	Opening an Existing Vault
	Deleting a Vault
	Locking a Vault
	Unlocking a Vault
	Setting a Binary Value
	Retrieving a Binary Value
	Setting the Retry Limit Value for a Vault
	Setting the Lock Timeout Value for a Vault


	OData SDK Components and APIs
	SDMParser
	SDMCache
	SDMPersistence
	SDMConnectivity
	SDMConfiguration
	SDMSupportability
	SDMLogger
	SAP Passport


	Deploying Applications to Devices
	Signing
	Provisioning Options for BlackBerry Devices
	BES Provisioning for BlackBerry
	BlackBerry Desktop Manager Provisioning


	CHAPTER 5: Glossary: Sybase Unwired Platform
	CHAPTER 6: Glossary: OData SDK and Online Data Proxy
	Index


