
Programmers Guide

Adaptive Server® Enterprise
Database Driver for Perl 15.7

SP100

DOCUMENT ID: DC01694-01-1570100-01
LAST REVISED: May 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Adaptive Server Enterprise Database Driver for Perl1
Perl Driver Module ..1
Installing and Configuring the Driver for Perl2
Developing Perl Applications ..2

Support for DSN Style Connection Properties2
Currently Supported Database Handle

Attributes ...5
Perl Supported Datatypes9
Multiple Statements Usage9
Supported Character Lengths11
Configuring Locale and Charsets11
Dynamic SQL Support, Placeholders, and Bind

Parameters ..11
Stored Procedure Support for Placeholders12
Supported Private Driver Methods15
Default Date Conversion and Display Format16
Text and Image Data Handling17
Error Handling ..18
Configuring Security Services19
Examples ...19
Perl Error Messages ..26

Additional Resources ...31
Glossary ...33
Index ..35

Programmers Guide iii

Contents

iv Adaptive Server Enterprise Database Driver for Perl

Adaptive Server Enterprise Database Driver
for Perl

The Adaptive Server® Enterprise database driver for the Perl scripting language allows Perl
developers to connect to an Adaptive Server database and query or change information using a
Perl script.

Perl Driver Module
DBD::SybaseASE is the Adaptive Server database driver for the Perl scripting language.

The DBD::SybaseASE database driver for the Perl scripting language is called through the
generic Perl DBI interface and translates Perl DBI API calls into a form that is understood by
Adaptive Server through the Open Client SDK using CT-Library.

Using DBI and DBD::SybaseASE, your Perl scripts can directly access Adaptive Server
Enterprise database servers.

The generic Perl DBI API specification defines a set of methods that provide a database
interface that is independent of the actual database being used.

The Perl DBI programmable API calls are documented at http://search.cpan.org/~timb/
DBI-1.616/DBI.pm .

Note: The DBD::SybaseASE driver cannot function without the DBI. The DBI contains all
user-visible APIs.

Required Components
Access to an Adaptive Server database using the Perl programming language requires the
following components:

• Perl installation – generic core database API that is database-vendor-agnostic.
• DBD::SybaseASE – database driver for the Perl scripting language.
• CT-Library – (CT-Lib API) is part of the Open Client suite. CT-Library sends commands

to Adaptive Server and processes results.
• Adaptive Server Enterprise
• Perl

Version Requirements
For information about platform support, see the Software Developers Kit and Open Server
Installation Guide for your platform.

• Adaptive Server Enterprise – version 15.7 or later.

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 1

http://search.cpan.org/~timb/DBI-1.616/DBI.pm
http://search.cpan.org/~timb/DBI-1.616/DBI.pm

• Open Client and Open Server – version 15.7 or later.
• Perl – version 5.14.0 or 5.14.1.
• DBD::SybaseASE driver – no specific version requirements.
• CT-Library – (CT-Lib API) version 15.7.
• Perl DBI – version 1.616.

The Sybase
®
 installer does not check for a Perl installation or if the driver dependencies are

installed on the target system.

Note: The build mode of the Perl driver released for your platform also dictates the build mode
of your Perl installation and the DBI. As an example, for Linux the driver is released in 64-bit
mode with threading enabled. This means Perl must be configured in full 64-bit mode with
threading enabled. The build mode requirement also applies to the DBI interface.

Installing and Configuring the Driver for Perl
The database driver for Perl is a component you can install through the Sybase Installer.

The database driver for Perl is an optional installation component when you choose Custom
as the installation type. The driver is installed by default if the installation type you choose is
Typical or Full. For installation and configuration instructions, see the Software Developers
Kit and Open Server Installation Guide for your platform.

Developing Perl Applications
Use the Perl DBI API to develop Perl applications.

Support for DSN Style Connection Properties
The driver uses a DSN mechanism that allows certain attributes to be set at connection time.

The DSN attribute syntax is the same as the Open Source DBD::Sybase driver. Therefore, you
need not change Perl scripts or maintain different versions for DBD::Sybase versus
DBD::SybaseASE. However, DBD::SybaseASE does not support some attributes that are
considered obsolete. See Currently unsupported DSN syntax.

SybaseASE Driver Connect Syntax
The dbi:SybaseASE: section obtains the package name of the driver so it can be loaded in the
following syntax.

DBI->connect("dbi:SybaseASE:attr=value;attr=value", $user_id,
$password, %attrib);

When the DSN is passed into the driver, the system removes this part and the remaining string
holds the key and value pairs to be dissected.

Adaptive Server Enterprise Database Driver for Perl

2 Adaptive Server Enterprise Database Driver for Perl

Note: The $user_id and $password credentials are separate API arguments; they are not part
of the DSN string.

The %attrib argument is an optional, comma-separated chain of key-value pairs that set
options at connection time. They are passed into the driver and handled during a connect()
call. For example:

DBI->connect("dbi:SybaseASE:server=mumbles; user, password,
PrintError => 1, AutoCommit = 0);

Attributes and Methods
The following attributes are currently supported when connecting to a server.

Attributes Description

server Specifies the server to which you are connecting. The driver
currently assumes this option is set. If server is not specified, use
the ENV{"DSQUERY"} mechanism to obtain a server name.

database Specifies which database within the server is the target database
at connect time. If no database is specified, the master database is
used.

hostname Specifies, in the value section, the host name that is stored in the
sysprocesses table for this process. If no hostname is
specified, the host on which the Perl application executes is used.

language Specifies the locale to be used on this connection. If no language
is specified, the internal default locale named CS_LC_ALL is
used.

charset Specifies the charset to be used on this connection. If no charset is
specified, the internal default that is, utf8, is used.

host; port Specifies the combination of host and port to use instead of re-
lying on the interfaces file entries.

Note: In the Perl DSN syntax, host and port are separate options.
An alternative DSN form similar to the following is not currently
supported:

host:port=mumbles:1234
When the host and port DSN options are provided with the intent
of not using the interface file, the host and port must suffice to
connect. If the DSN attribute “server=” is also provided with the
host and port combination, the connection fails.

Therefore, the usage of either host and port must be used to
establish a connection or server alone must be used. The two DSN
attributes (server versus host/port) are mutually exclusive.

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 3

Attributes Description

timeout Specifies the connection timeout value. Set to 0 or a negative
value for no timeout.

loginTimeout Specifies the login timeout value, in seconds. The default value is
60 seconds. Set loginTimeout=value in seconds to enable this
attribute.

tds_keepalive Specifies the KEEP_ALIVE attribute on the connection. Set
tds_keepalive=1 to enable this attribute.

packetSize Specifies the TDS packet size for the connection. By default, the
lower bound, which is set in the driver, is 2048. The maximum
value is determined by the server, and is not set in the driver.

maxConnect Increases or decreases the number of connections allowed. The
range of values is 1 – 128; the default is 25.

encryptPassword Specifies whether to use password encryption. Set encryptPass-

word=1 to enable this attribute.

sslCAFile Specifies an alternate location for the trusted.txt file.
Specify an absolute path of up to 256 characters.

scriptName Specifies the chosen name of the top-level Perl script that drives
the application. This name appears in the sysprocesses
table as the application name. Absence of this value gives a de-
fault application name that is obtained from the Perl internal
environment. This value can be as many as 256 characters.

Note: The application name fed into the SybaseASE Driver is
either set through the DSN scriptName option or is derived from
the Perl internal environment.

interfaces Specifies an alternate location to the Sybase interfaces file. Same
constraints apply to the sslCAFile and scriptName options.

You can repeat attribute values as long as they are recognized by the driver. Illegal attributes
cause the DBI->connect() call to fail.

Note: The attribute names follow the Open Source Sybase Perl driver.

DSN-specific example:

$dbh = DBI->connect("dbi:SybaseASE:server=mumbles", $user, $passwd);

Alternatively, use the DSQUERY environment variable:

my $srv = $ENV{"DSQUERY"};
$dbh = DBI->connect("dbi:SybaseASE:server=$srv", $user, $passwd);
$dbh = DBI-
>connect("dbi:SybaseASE:host=tzedek.sybase.com;port=8100", $user,
$passwd);

Adaptive Server Enterprise Database Driver for Perl

4 Adaptive Server Enterprise Database Driver for Perl

$dbh = DBI->connect("dbi:SybaseASE:maxConnect=100", $user, $passwd);
$dbh = DBI->connect("dbi:SybaseASE:database=sybsystemprocs", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:charset=iso_1", $user, $passwd);
$dbh = DBI->connect("dbi:SybaseASE:language=us_english", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:packetSize=8192", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:interfaces=/opt/sybase/
interfaces", $user, $passwd);
$dbh = DBI->connect("dbi:SybaseASE:loginTimeout=240", $user,
$passwd);
$dbh = DBI->connect("dbi:SybaseASE:timeout=240", $user, $passwd);
$dbh = DBI->connect("dbi:Sybase:scriptName=myScript", $user,
$password);
$dbh = DBI->connect("dbi:SybaseASE:hostname=pedigree", $user,
$password);
$dbh = DBI->connect("dbi:SybaseASE:encryptPassword=1", $user,
$password);
$dbh = DBI>connect("dbi:SybaseASE:sslCAFile=/usr/local/sybase/
trusted.txt", $user, $password,
AutoCommit => 1);

DSN-specific example combination:

$dbh = DBI->connect("dbi:SybaseASE:server=mumbles,
database=tempdb;packetSize=8192;
language=us_english;charset=iso_1;encryptPassword=1", $user, $pwd,
AutoCommit=>1, PrintError => 0);

Currently Unsupported DSN Syntax
The following DSN syntax are not supported currently:

• tdsLevel

• kerberos; for example:
$dbh = DBI->connect("dbi:SybaseASE:kerberos=$serverprincipal",
'', '');

• bulkLogin; for example:
$dbh = DBI->connect("dbi:SybaseASE:bulkLogin=1", $user,
$password);

• serverType

Currently Supported Database Handle Attributes
The table lists currently supported database handle attributes.

Attribute Description Default

dbh->{AutoCommit} = (0|1); Disables or enables AutoCommit. 0 (off)

dbh->{LongTruncOK} = (0|1); Disables or enables truncation of text and
image types.

0

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 5

Attribute Description Default

dbh->{LongReadLen}=(int); Sets the default read chunk size for text and
image data. For example:

dbh->{LongReadLen} = 64000.

32767

dbh->{syb_show_sql} =(0|1); If set, the current statement is included in the
error string returned by the $dbh->errstr mech-
anism.

0

dbh->{syb_show_eed} = (0|1); If set, the extended error information is included
in the error string returned by $dbh->errstr.

0

dbh->{syb_chained_txn} = (0|1); If set, CHAINED transactions are used when
AutoCommit is off.

Use this attribute only during the connect() call:

$dbh = DBI->connect("dbi:Syba-
seASE:", $user, $pwd,
{syb_chained_txn => 1});
Using syb_chained_txn at any time with Auto-
Commit turned off forces a commit on the cur-
rent handle.

When set to 0, an explicit BEGIN TRAN is issued
as needed.

0

dbh->{syb_use_bin_0x} = (0|1); If set, BINARY and VARBINARY values are
prefixed with '0x' in the result string.

0

dbh->{syb_binary_images} = (0|1); If set, image data is returned in raw binary
format. Otherwise, image data is converted
into a hexadecimal string.

0

dbh->{syb_quoted_identifier} =(0|
1);

Allows identifiers that conflict with Sybase re-
served words if they are quoted using "identifi-
er."

0

dbh->{syb_rowcount}=(int); If set to a nonzero value, the number of rows
returned by a SELECT, or affected by an UP-
DATE or DELETE statement are limited to the
rowcount value.

Setting it back to 0 clears the limit.

0

dbh->{syb_flush_finish} = (0|1); If set, the driver drains any results remaining for
the current command by actually fetching them.
This can be used instead of a ct_cancel() com-
mand issued by the driver.

0

Adaptive Server Enterprise Database Driver for Perl

6 Adaptive Server Enterprise Database Driver for Perl

Attribute Description Default

dbh->{syb_date_fmt} = datefmt
string

This private method sets the default date con-
version and display formats. See Default Date
Conversion and Display Format.

dbh->{syb_err_handler} Perl subroutine that can be created to execute an
error handler or report before the regular error
handling takes place. Useful for certain classes
of warnings. See Error Handling.

0 (not
present)

dbh->{syb_failed_db_fatal} = (0|1) If the DSN has a database=mumbles attribute/
value pair and this database does not exist at
connection time, the DBI->connect() call fails.

0

dbh->{syb_no_child_con} =(0|1); If set, the driver disallows multiple active state-
ment handles on the dbh. In this case, a state-
ment can be prepared but must be executed to
completion before another statement prepare is
attempted.

0

dbh->{syb_cancel_re-
quest_on_error}=(0|1);

If set, when a multistatement set is executed and
one statement fails, sth->execute() fails.

1 (on)

dbh->{syb_bind_emp-
ty_string_as_null}= (0|1);

If set, a NULLABLE column attribute returns an
empty string (one space) to represent the NULL
character.

0

dbh->{syb_disconnect_in_child} =
(0|1);

Handles closed connections across a fork. The
DBI causes connections to be closed if a child
dies.

0

dbh->{syb_enable_utf8} = (0|1); If set, UNICHAR, UNIVARCHAR, and UNI-
TEXT are converted to utf8.

0

sth->syb_more_results} = (0|1); See Multiple Result Sets.

sth->{syb_result_type} = (0|1); If set, returns the numeric result number instead
of the symbolic CS_ version.

0

sth->{syb_no_bind_blob} = (0|1); If set, image or text columns are not re-
turned upon sth->{fetch} or other variations. See
Text and Image Data Handling.

0

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 7

Attribute Description Default

sth->{syb_do_proc_status} = (0|
1);

Forces $sth->execute() to fetch the return status
of a stored procedure executed in the SQL
stream.

If the return status is nonzero, $sth->execute()
returns undef (that is, it fails).

Setting this attribute does not affect existing
statement handles. However, it affects those
statement handles that are created after setting
it.

To revert behavior of an existing $sth handle,
execute: $sth->{syb_do_proc_status} = 0;

0

See also
• Error Handling on page 18

• Text and Image Data Handling on page 17

• Default Date Conversion and Display Format on page 16

• Multiple Statements Usage on page 9

Unsupported Database Handle Options
The following database handle options are not supported.

• dbh->{syb_dynamic_supported}

• dbh->{syb_ocs_version}

• dbh->{syb_server_version}

• dbh->{syb_server_version_string}

• dbh->{syb_has_blk}

Note: Perl scripts attempting to use these options generate an error.

Adaptive Server Enterprise Database Driver for Perl

8 Adaptive Server Enterprise Database Driver for Perl

Perl Supported Datatypes
The Perl driver currently supports string, numeric, and date and time datatypes.

String types Numeric types Date and time data-
types

char
varchar
binary
varbinary
text
image
unichar
univarchar

integer
smallint
tinyint
money
smallmoney
float
real
double
numeric
decimal
bit
bigint

datetime
date
time
bigtime
bigdatetime

Note: Perl returns numeric and decimal types as strings. Other datatypes are returned in their
respective formats.

The default time/date format used by the Sybase ASE driver is the short format, for example,
Aug 7 2011 03:05PM.

This format is based on the C (default) locale. See Default Date Conversion and Display
Format for other date and time formats supported.

See also
• Default Date Conversion and Display Format on page 16

Multiple Statements Usage
Adaptive Server can handle multistatement SQL in a single batch.

For example:

my $sth = $dbh->prepare("
 insert into publishers (col1, col2, col3) values (10, 12, 14)
 insert into publishers (col1, col2, col3) values (1, 2, 4)
 insert into publishers (col1, col2, col3) values (11, 13, 15)

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 9

 ");
my $rc = $sth->execute();

If any of these statements fail, sth->execute() returns undef. If AutoCommit is on,
statements that complete successfully may have inserted data in the table, which may not be
the result you expect or want.

Multiple Result Sets
The Perl driver allows you to prepare multiple statements with one call and execute them with
another single call. For example, executing a stored procedure that contains multiple selects
returns multiple result sets.

Results of multiple statements prepared with one call are returned to the client as a single
stream of data. Each distinct set of results is treated as a normal single result set, which means
that the statement handle's fetch() method returns undef at the end of each set.

The CT-Lib API ct_fetch() returns CS_END_RESULTS that the driver converts to undef
after the last rows have been retrieved.

The driver allows the application to obtain the result type by checking sth-
>{syb_result_type}. You can then use the sth->{syb_more_results} statement handle
attribute to determine if there are additional result sets still to be returned. The (numerical)
value returned by sth->{syb_results_type} is one of:

• CS_MSG_RESULT
• CS_PARAM_RESULT
• CS_STATUS_RESULT
• CS_COMPUTE_RESULT
• CS_ROW_RESULT
Example for multiple result sets:

do {
 while($a = $sth->fetch) {
 ..for example, display data..
 }
} while($sth->{syb_more_results});

Sybase recommends that you use this if you expect multiple result sets.

Note: The Perl driver currently does not support cursors using the ct_cursor() API. Therefore,
the driver does not report CS_CURSOR_RESULT.

Multiple Active Statements on a DatabaseHandle (dbh)
There can be multiple active statements on a single database handle by opening a new
connection in the $dbh->prepare() method if there is already an active statement handle on
this $dbh.

Adaptive Server Enterprise Database Driver for Perl

10 Adaptive Server Enterprise Database Driver for Perl

The dbh->{syb_no_child_con} attribute controls whether this feature is on or off. By default,
DatabaseHandle is off, which indicates that multiple statement handles are supported. If it is
on, multiple statements on the same database handle are disabled.

Note: If AutoCommit is off, multiple statement handles on a single $dbh are unsupported.
This avoids deadlock problems that may arise. Also, using multiple statement handles
simultaneously provides no transactional integrity, as different physical connections are used.

Supported Character Lengths
Supported character lengths for different types of identifiers.

The names of Sybase identifiers, such as tables and columns, can exceed 255 characters in
length.

Logins, application names, and password lengths that are subject to TDS protocol limits
cannot exceed 30 characters.

Configuring Locale and Charsets
You can configure the Perl driver of CT-Library locale and charset using the DSN attributes
charset and language.

The driver's default character set is UTF8 and the default locale is CS_LC_ALL.

Dynamic SQL Support, Placeholders, and Bind Parameters
The Perl driver supports dynamic SQL, including parameter usage.

For example:

$sth = $dbh->prepare("select * from employee where empno = ?");

Retrieve rows from employee where empno = 1024:
$sth->execute(1024);
while($data = $sth->fetch) {
 print "@$data\n";
}
Now get rows where empno = 2000:
$sth->execute(2000);
while($data = $sth->fetch) {
 print "@$data\n";
}

Note: The Perl driver supports the '?' style parameter, but not ':1' placeholder types. You
cannot use placeholders to bind a text or image datatype.

DBD::SybaseASE uses the Open Client ct_dynamic() family of APIs for the prepare()
method. See the Sybase Open Client C Programmers guide for information about "?" style
placeholder constraints and general dynamic SQL usage.

This is another example showing dynamic SQL support:

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 11

my $rc;
my $dbh;
my $sth;

call do() method to execute a SQL statement.
#
$rc = $dbh->do("create table tt(string1 varchar(20), date datetime,
 val1 float, val2 numeric(7,2))");

$sth = $dbh->prepare("insert tt values(?, ?, ?, ?)");
$rc = $sth->execute("test12", "Jan 3 2012", 123.4, 222.33);

alternate way, call bind_param() then execute without values in the
execute statement.
$rc = $sth->bind_param(1, "another test");
$rc = $sth->bind_param(2, "Jan 25 2012");
$rc = $sth->bind_param(3, 444512.4);
$rc = $sth->bind_param(4, 2);
$rc = $sth->execute();

and another execute, with args.....
$rc = $sth->execute("test", "Feb 30 2012", 123.4, 222.3334);

Note: The last statement throws an extended error information (EED) as the date is invalid. In
the Perl script, set dbh->{syb_show_eed} = 1 before execution to write the Adaptive Server error
message in the dbh->errstr.

Another example that illustrates the "?" style placeholder:

$sth = $dbh->prepare("select * from tt where date > ? and val1 > ?");
$rc = $sth->execute('Jan 1 2012', 120);

go home....
$dbh->disconnect;
exit(0);

Stored Procedure Support for Placeholders
The Adaptive Server Enterprise database driver for Perl supports stored procedures that
include both input and output parameters.

Stored procedures are handled in the same way as any other Transact-SQL statement.
However, Sybase stored procedures return an extra result set that includes the return status that
corresponds to the return statement in the stored procedure code. This extra result set, named
CS_STATUS_RESULT with numeric value 4043, is a single row and is always returned last.

The driver can process the stored procedure using a special attribute, $sth-
>{syb_do_proc_status}. If this attribute is set, the driver processes the extra result set, and
places the return status value in $sth->{syb_proc_status}. An error is generated if the result
set is a value other than 0.

Adaptive Server Enterprise Database Driver for Perl

12 Adaptive Server Enterprise Database Driver for Perl

Examples

$sth = $dbh->prepare("exec my_proc \@p1 = ?, \@p2 = ?");
 $sth->execute('one', 'two');

This example illustrates the use of positional parameters:
$sth = $dbh->prepare("exec my_proc ?, ?");
 $sth->execute('one', 'two');

You cannot mix positional and named parameters in the same prepare statement; for example,
this statement fails on the first parameter:
$sth = $dbh->prepare("exec my_proc \@p1 = 1, \@p2 = ?");

If the stored procedure returns data using output parameters, you must declare them first:
$sth = $dbh->prepare(qq[declare @name varchar(50) exec getname abcd,
@name output]);

You cannot call stored procedures with bound parameters, as in:
$sth = $dbh->prepare("exec my_proc ?");
 $sth->execute('foo');

This works as follows:
$sth = $dbh->prepare("exec my_proc 'foo'");
 $sth->execute('foo');

Because stored procedures almost always return more than one result set, use a loop until
syb_more_results is 0:
do {
 while($data = $sth->fetch) {
 do something useful...
 }
 } while($sth->{syb_more_results});

Parameter examples

declare @id_value int, @id_name char(10)
 exec my_proc @name = 'a_string', @number = 1234,
 @id = @id_value OUTPUT, @out_name = @id_name OUTPUT

If your stored procedure returns only OUTPUT parameters, you can use:
$sth = $dbh->prepare('select *');
 $sth->execute();
@results = $sth->syb_output_params(); # this method is available in
SybaseASE.pm

This returns an array for all the OUTPUT parameters in the procedure call and ignores any
other results. The array is undefined if there are no OUTPUT parameters or if the stored
procedure fails.

Generic examples

$sth = $dbh->prepare("declare \@id_value int, \@id_name
 OUTPUT, @out_name = @id_name OUTPUT");

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 13

 $sth->execute();
 {
 while($d = $sth->fetch) {
 # 4042 is CS_PARAMS_RESULT
 if ($sth->{syb_result_type} == 4042) {
 $id_value = $d->[0];
 $id_name = $d->[1];
 }
 }
 redo if $sth->{syb_more_results};
}

The OUTPUT parameters are returned as a single row in a special result set.

Parameter Types
The driver does not attempt to determine the correct parameter type for each parameter. The
default for all parameters defaults to the ODBC style SQL_CHAR value, unless you use
bind_param() with a type value set to a supported bind type.

The driver supports these ODBC style bind types:

• SQL_CHAR
• SQL_VARCHAR
• SQL_VARBINARY
• SQL_LONGVARCHAR
• SQL_LONGVARBINARY
• SQL_BINARY
• SQL_DATETIME
• SQL_DATE
• SQL_TIME
• SQL_TIMESTAMP
• SQL_BIT
• SQL_TINYINT
• SQL_SMALLINT
• SQL_INTEGER
• SQL_REAL
• SQL_FLOAT
• SQL_DECIMAL
• SQL_NUMERIC
• SQL_BIGINT
• SQL_WCHAR
• SQL_WLONGVARCHAR

The ODBC types are mapped in the driver to equivalent Adaptive Server datatypes. See the
Adaptive Server Enterprise ODBC Driver by Sybase User Guide 15.7.

Adaptive Server Enterprise Database Driver for Perl

14 Adaptive Server Enterprise Database Driver for Perl

Execute the stored procedure, sp_datatype_info to get a full list of supported types for the
particular Adaptive Server. For example:
$sth = $dbh->prepare("exec my_proc \@p1 = ?, \@p2 = ?");
 $sth->bind_param(1, 'one', SQL_CHAR);
 $sth->bind_param(2, 2.34, SQL_FLOAT);
 $sth->execute;

 $sth->execute('two', 3.456);
 etc...

Note: Once you have set a column type for a parameter, you cannot change it unless you
deallocate and retry the statement handle. When binding SQL_NUMERIC or
SQL_DECIMAL data, you may get fatal conversion errors if the scale or the precision exceeds
the size of the target parameter definition.

For example, consider this stored procedure definition:
declare proc my_proc @p1 numeric(5,2) as...
 $sth = $dbh->prepare("exec my_proc \@p1 = ?");
 $sth->bind_param(1, 3.456, SQL_NUMERIC);

which generates this error:

DBD::SybaseASE::st execute failed: Server message number=241
severity=16 state=2 line=0 procedure=my_proc text=Scale error
during implicit conversion of NUMERIC value '3.456' to a
NUMERIC field.
Set the arithabort option as follows to ignore these errors:

$dbh->do("set arithabort off");

See the Adaptive Server reference documentation.

Supported Private Driver Methods
dbh->syb_isdead() returns a true or false representation of the state of the connection. A false
return value may indicate a specific class or errors on the connection, or that the connection
has failed.

$sth->syb_describe() returns an array that includes the description of each output column of
the current result set. Each element of the array is a reference to a hash that describes the
column.

You can set the description fields such as NAME, TYPE, SYBTYPE, SYBMAXLENGTH,
MAXLENGTH, SCALE, PRECISION, and STATUS, as shown in this example:

$sth = $dbh->prepare("select name, uid from sysusers");
 $sth->execute;
 my @description = $sth->syb_describe;
 print "$description[0]->{NAME}\n"; # prints name
 print "$description[0]->{MAXLENGTH}\n"; # prints 30
 etc, etc.

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 15

 while(my $row = $sth->fetch) {

}

Note: The STATUS field is a string which can be tested for the following values:
CS_CANBENULL, CS_HIDDEN, CS_IDENTITY, CS_KEY, CS_VERSION_KEY,
CS_TIMESTAMP and CS_UPDATABLE, CS_UPDATECOL and CS_RETURN.

See the Open Client documentation.

Default Date Conversion and Display Format
You can set your own default date conversion and display format using the syb_data_fmt()
private method.

Sybase date format depends on the locale settings for the client. The default date format is
based on the 'C' locale, for example, Feb 16 2012 12:07PM.

This same default locale supports several additional input formats:

• 2/16/2012 12:07PM
• 2012/02/16 12:07
• 2012-02-16 12:07
• 20120216 12:07

Use dbh->{syb_date_fmt} with a string as argument, to change the date input and output
format.

Table 1. Supported date/time formats

Date format Example

LONG Nov 15 2011 11:30:11:496AM

SHORT Nov 15 2011 11:30AM

DMY4_YYYY Nov 15 2011

MDY1_YYYY 11/15/2011

DMY1_YYYY 15/11/2011

DMY2_YYYY 15.11.2011

DMY3_YYYY 15-11-2011

DMY4_YYYY 15 November 2011

HMS 11:30:11

LONGMS Nov 15 2011 11:30:33.532315PM

Adaptive Server Enterprise Database Driver for Perl

16 Adaptive Server Enterprise Database Driver for Perl

The Adaptive Server Enterprise database driver for Perl supports all date and time values
supported up to version 15.7.

Text and Image Data Handling
The Adaptive Server Enterprise database driver for Perl supports image and a text type for
LONG/BLOB data. Each type can as much as 2GB of binary data.

The default size limit for text/image data is 32KB. Use the LongReadLen attribute to change
this limit, which is set by a call to the fetch() API.

You cannot use bind parameters to insert text or image data.

When using regular SQL, image data is normally converted to a hex string, but you can use the
syb_binary_images handle attribute to change this behavior. As an alternative, you can use a
Perl function similar to $binary = pack("H*", $hex_string); to perform the conversion.

As the DBI has no API support for handling BLOB style (text/image) types, the
SybaseASE.pm file includes a set of functions you can install, and use in application-level
Perl code to call the Open Client ct_get_data() style calls. The syb_ct_get_data() and
syb_ct_send_data() calls are wrappers to the Open Client functions that transfer text and
image data to and from Adaptive Server.

Example

$sth->syb_ct_get_data($col, $dataref, $numbytes);

You can use the syb_ct_get_data() call to fetch the image/text data in raw format, either in one
piece or in chunks. To enable this call, set the dbh->{syb_no_bind_blob} statement handle to
1.

The syb_ct_get_data() call takes these arguments: the column number (starting at 1) of the
query, a scalar reference, and a byte count. A byte count of 0 reads as many bytes as possible.
The image/text column must be last in the select list for this call to work.

The call sequence is:
$sth = $dbh->prepare("select id, img from a_table where id = 1");
 $sth->{syb_no_bind_blob} = 1;
 $sth->execute;
 while($d = $sth->fetchrow_arrayref) {
 # The data is in the second column
 $len = $sth->syb_ct_get_data(2, \$img, 0);
}

syb_ct_get_data() returns the number of bytes that were fetched, if you are fetching chunks of
data, you can use:
while(1) {
$len = $sth->syb_ct_get_data(2, $imgchunk, 1024);
... do something with the $imgchunk ...
 last if $len != 1024;
}

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 17

Other TEXT/IMAGE APIs
The syb_ct_data_info() API fetches or updates the CS_IODESC structure for the image/text
data item you want to update.

For example:

$stat = syb_ct_data_info($action, $column, $attr)

• $action – CS_SET or CS_GET.
• $column – the column number of the active select statement (ignored for a CS_SET

operation).
• $attr – a hash reference that sets the values in the structure.

You must fist call syb_ct_data_info() with CS_GET to fetch the CS_IODESC structure for the
image/text data item you want to update. Then update the value of the total_txtlen structure
element to the length (in bytes) of the image/text data you are going to insert. Set the
log_on_update to true to enable full logging of the operation.

Calling syb_ct_data_info() with a CS_GET fails if the image/text data for which the
CS_IODESC is being fetched is NULL. Use standard SQL to update the NULL value to non-
NULL value (for example, an empty string) before you retrieve the CS_IODESC entry.

In this example, consider updating the data in the image column where the id column is 1:

1. Find the CS_IODESC data for the data:
$sth = $dbh->prepare("select img from imgtable where id = 1");
 $sth->execute;
 while($sth->fetch) { # don't care about the data!
 $sth->syb_ct_data_info('CS_GET', 1);
 }

2. Update with the CS_IODESC values:
$sth->syb_ct_prepare_send();

3. Set the size of the new data item to be inserted and make the operation unlogged:
$sth->syb_ct_data_info('CS_SET', 1, {total_txtlen
=> length($image), log_on_update => 0});

4. To transfer the data in a single chunk:
$sth->syb_ct_send_data($image, length($image));

5. To commit the operation:
$sth->syb_ct_finish_send();

Error Handling
All errors from the Adaptive Server database driver for Perl and CT-Lib are propagated into
the DBI layer.

Exceptions include errors or warnings that must be reported during driver start-up, when there
is no context available yet.

Adaptive Server Enterprise Database Driver for Perl

18 Adaptive Server Enterprise Database Driver for Perl

The DBI layer performs basic error reporting when the PrintError attribute is enabled. Use
DBI trace method to enable tracing on DBI operations to track program- or system-level
problems.

Examples of adding more detailed error messages (server messages) are as follows:

• Set dbh->{syb_show_sql} = 1 on the active dbh to include the current SQL statement in the
string returned by $dbh->errstr.

• Set dbh->{syb_show_eed} = 1 on the active dbh to add extended error information (EED)
such as duplicate insert failures and invalid date formats to the string returned by $dbh-
>errstr.

• Use the syb_err_handler attribute to set an ad hoc error handler callback (that is, a Perl
subroutine) that gets called before the normal error handler performs its processing. If this
subroutine returns 0, the error is ignored. This is useful for handling PRINT statements in
Transact-SQL, and showplan output and dbcc output.
The subroutine is called with parameters that include the Sybase error number, the
severity, the state, the line number in the SQL batch, the server name (if available), the
stored procedure name (if available), the message text, the SQL text and the strings "client"
or "server" to denote type.

Configuring Security Services
Use the ocs.cfg and libtcl.cfg files to configure security options.

1. For a connection, use ocs.cfg to set directory and security properties.

Note: In the ocs.cfg file, add an entry for the application name so you can set that
driver-specific option.

2. Edit libtcl.cfg to load security and directory service drivers.

3. To encrypt passwords, use the encryptPassword DSN option. For example:
DBI-
>connect("dbi:SybaseASE:server=mumbles;encryptPassword
=1", $user, $pwd);

Examples
Use sample programs to view the basic usage of stored procedure and retrieve rows from the
pubs2 authors table.

Example 1
Use the sample program to view the basic usage of stored procedures in Perl.

This program connects to a server, creates two stored procedures, calls prepare, binds, or
executes the procedures, prints the results to STDOUT, disconnects, and exits the program.

use strict;

use DBI qw(:sql_types);
use DBD::SybaseASE;

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 19

require_version DBI 1.51;

my $uid = "sa";
my $pwd = "";
my $srv = $ENV{"DSQUERY"} || die 'DSQUERY appears not set';
my $dbase = "tempdb";

my $dbh;
my $sth;
my $rc;

my $col1;
my $col2;
my $col3;
my $col4;

Connect to the target server.
#
$dbh = DBI->connect("dbi:SybaseASE:server=$srv;database=$dbase",
 $uid, $pwd, {PrintError => 1});

One way to exit if things fail.
#
if(!$dbh) {
 warn "Connection failed, check if your credentials are set
correctly?\n";
 exit(0);
}

Ignore errors on scale for numeric. There is one marked call below
that will trigger a scale error in ASE. Current settings suppress
this.
#
$dbh->do("set arithabort off")
 || die "ASE response not as expected";

Drop the stored procedures in case they linger in ASE.
#
$dbh->do("if object_id('my_test_proc') != NULL drop proc
my_test_proc")
 || die "Error processing dropping of an object";

$dbh->do("if object_id('my_test_proc_2') != NULL drop proc
my_test_proc_2")
 || die "Error processing dropping of an object";

Create a stored procedure on the fly for this example. This one
takes input args and echo's them back.
#
$dbh->do(qq{
create proc my_test_proc \@col_one varchar(25), \@col_two int,
 \@col_three numeric(5,2), \@col_four date
as
 select \@col_one, \@col_two, \@col_three, \@col_four
}) || die "Could not create proc";

Adaptive Server Enterprise Database Driver for Perl

20 Adaptive Server Enterprise Database Driver for Perl

Create another stored procedure on the fly for this example.
This one takes dumps the pubs2..authors table. Note that the
format used for printing is defined such that only four columns
#appear in the output list.
#
$dbh->do(qq{
create proc my_test_proc_2
as
 select * from pubs2..authors
}) || die "Could not create proc_2";

Call a prepare stmt on the first proc.
#
$sth = $dbh->prepare("exec my_test_proc \@col_one = ?, \@col_two
= ?,
 \@col_three = ?, \@col_four = ?")
 || die "Prepare exec my_test_proc failed";

Bind values to the columns. If SQL type is not given the default
is SQL_CHAR. Param 3 gives scale errors if arithabort is disabled.
#
$sth->bind_param(1, "a_string");
$sth->bind_param(2, 2, SQL_INTEGER);
$sth->bind_param(3, 1.5411111, SQL_DECIMAL);
$sth->bind_param(4, "jan 12 2012", SQL_DATETIME);

Execute the first proc.
#
$rc = $sth->execute || die "Could not execute my_test_proc";

Print the bound args
#
dump_info($sth);

Execute again, using different params.
#
$rc = $sth->execute("one_string", 25, 333.2, "jan 1 2012")
 || die "Could not execute my_test_proc";

dump_info($sth);

Enable retrieving the proc status.
$sth->{syb_do_proc_status} = 1;

$rc = $sth->execute(undef, 0, 3.12345, "jan 2 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute("raisin", 1, 1.78, "jan 3 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute(undef, 0, 3.2233, "jan 4 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 21

$rc = $sth->execute(undef, 0, 3.2234, "jan 5 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute("raisin_2", 1, 3.2235, "jan 6 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

$rc = $sth->execute(undef, 0, 3.2236, "jan 7 2012")
 || die "Could not execute my_test_proc";
dump_info($sth);

End of part one, generate blank line.
#
print "\n";

Undef the handles (not really needed but...).
#
undef $sth;
undef $rc;

Prepare the second stored proc.
#
$sth = $dbh->prepare("exec my_test_proc_2")
 || die "Prepare exec my_test_proc_2 failed";

Execute and print
#
$rc = $sth->execute || die "Could not execute my_test_proc_2";
dump_info($sth);

#
An example of a display/print function.
#
sub dump_info {
 my $sth = shift;
 my @display;

 do {
 while(@display = $sth->fetchrow) {
 foreach (@display) {
 $_ = '' unless defined $_;
 }
 $col1 = $display[0];
 $col2 = $display[1];
 $col3 = $display[2];
 $col4 = $display[3];

 # Proc status is suppressed, assume proc
 # execution was always successful. Enable
 # by changing the write statement.
 #
 #write;
 write unless $col1 eq 0;
 }

Adaptive Server Enterprise Database Driver for Perl

22 Adaptive Server Enterprise Database Driver for Perl

} while($sth->{syb_more_results});
}

#
The FORMAT template for this example.
#
format STDOUT_TOP =

Column1 Column2 Column3 Column4
------ ------ ------ ------
.

Treat all data as left-justified strings
#
format STDOUT =
@<<<<<<<<<<<< @<<<<<<<<<<<< @<<<<<<<<<<<<
@<<<<<<<<<<<<
$col1, $col2, $col3, $col4
.

The End.....
#
$dbh->do("drop proc my_test_proc");
$dbh->do("drop proc my_test_proc_2");
$dbh->disconnect;

Example 2
Use the sample program to retrieve rows from the pubs2 authors table, insert them into
tempdb, and append new rows for batch insert. The program then prints the updated
authors table to STDOUT, disconnects, and exits.

use strict;

use DBI ();
use DBD::SybaseASE ();

require_version DBI 1.51;

trace(n) where n ranges from 0 - 15.
use 2 for sufficient detail.
#DBI->trace(2); # 0 - 15, use 2 for sufficient detail

Login credentials, handles and other variables.
#
my $uid = "sa";
my $pwd = "";
my $srv = $ENV{"DSQUERY"} || die 'DSQUERY appears not set';
my $dbase = "tempdb";
my $temp_table = "$dbase..authors";

my $rows;
my $col1;
my $col2;
my $dbh;

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 23

my $sth;
my $rc;

Connect to the target server:
#
$dbh = DBI->connect("dbi:SybaseASE:server=$srv;database=$dbase",
 $uid, $pwd, {PrintError => 0, AutoCommit => 0})
 || die "Connect failed, did you set correct credentials?";

Switch to the pubs2 database.
#
$rc = $dbh->do("use pubs2") || die "Could not change to pubs2";

Retrieve 2 columns from pubs2..authors table.
#
$sth = $dbh->prepare(
 "select au_lname, city from authors where state = 'CA'")
 || die "Prepare select on authors table failed";

$rc = $sth->execute
 || die "Execution of first select statement failed";

We may have rows now, present them.
#
$rows = dump_info($sth);
print "\nTotal # rows: $rows\n\n";

Switch back to tempdb, we take a copy of pubs2..authors
and insert some rows and present these.
#
$rc = $dbh->do("use $dbase") || die "Could not change to $dbase";

Drop the authors table in tempdb if present
#
$rc = $dbh->do("if object_id('$temp_table') != NULL drop table
$temp_table")
 || die "Could not drop $temp_table";

No need to create a tempdb..authors table as the select into will
do that.

$rc = $dbh->do("select * into $temp_table from pubs2..authors")
 || die "Could not select into table $temp_table";

Example of a batch insert...
#
$sth = $dbh->prepare("
 insert into $temp_table
 (au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
 ('172-39-1177', 'Simpson', 'John', '408 496-7223',
 '10936 Bigger Rd.', 'Menlo Park', 'CA', 'USA', '94025')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values

Adaptive Server Enterprise Database Driver for Perl

24 Adaptive Server Enterprise Database Driver for Perl

('212-49-4921', 'Greener', 'Morgen', '510 986-7020',
 '309 63rd St. #411', 'Oakland', 'CA', 'USA', '94618')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('238-95-4766', 'Karson', 'Chernobyl', '510 548-7723',
 '589 Darwin Ln.', 'Berkeley', 'CA', 'USA', '94705')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('267-41-4394', 'OLeary', 'Mich', '408 286-2428',
 '22 Cleveland Av. #14', 'San Jose', 'CA', 'USA', '95128')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('274-80-4396', 'Straight', 'Shooter', '510 834-2919',
 '5420 College Av.', 'Oakland', 'CA', 'USA', '94609')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('345-22-1785', 'Smiths', 'Neanderthaler', '913 843-0462',
 '15 Mississippi Dr.', 'Lawrence', 'KS', 'USA', '66044')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('405-56-7012', 'Bennetson', 'Abra', '510 658-9932',
 '6223 Bateman St.', 'Berkeley', 'CA', 'USA', '94705')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('427-17-2567', 'Dullest', 'Annie', '620 836-7128',
 '3410 Blonde St.', 'Palo Alto', 'CA', 'USA', '94301')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('527-72-3246', 'Greene', 'Mstar', '615 297-2723',
 '22 Graybar House Rd.', 'Nashville', 'TN', 'USA', '37215')

insert into $temp_table
(au_id, au_lname, au_fname, phone, address, city, state,
 country, postalcode) values
('672-91-3249', 'Yapan', 'Okiko', '925 935-4228',
 '3305 Silver Ct.', 'Walnut Creek', 'CA', 'USA', '94595')
");

$rc = $sth->execute || die "Could not insert row";

Retrieve 2 columns from tempdb..authors table and present these
#

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 25

$sth = $dbh->prepare(
 "select au_lname, city from $temp_table where state = 'CA'")
 || die "Prepare select on $temp_table table failed";

$rc = $sth->execute
 || die "Execution of second select statement failed";

Output
#
$rows = dump_info($sth);
print "\nTotal # rows: $rows";
print "\n";

sub dump_info {
 my $sth = shift;
 my @display;
 my $rows = 0;

while(@display = $sth->fetchrow) {
 $rows++;
 foreach (@display) {
 $_ = '' unless defined $_;
 }
 $col1 = $display[0];
 $col2 = $display[1];
 write;
 }
 $rows;
}

The FORMAT template for this example.
#
format STDOUT_TOP =

Lastname City
-------- -------
.

format STDOUT =

@<<<<<<<<<<<< @<<<<<<<<<<<<
$col1, $col2
.

$dbh->disconnect;

Perl Error Messages
The Perl Driver generates error messages if internal driver APIs or CT-Lib's APIs fail. For
example:

Example 1, message id 3
 OpenClient message: LAYER = (1) ORIGIN = (1) SEVERITY = (1) NUMBER =
(3)

Adaptive Server Enterprise Database Driver for Perl

26 Adaptive Server Enterprise Database Driver for Perl

 Message String: s_command_alloc() : SybaseASE : Internal error:

 The ct_cmd_alloc() api failed.

Example 2, message id 14
 OpenClient message: LAYER = (1) ORIGIN = (1) SEVERITY = (1) NUMBER =
(14)
 Message String: s_db_connect() : SybaseASE : Internal error:
 cannot change to database tempdb.

The following table contains four fields:

• The message ID, which is printed in the NUMBER = (<num>) field
• The message text with parameters substituted at the specific code location in the driver
• The severity, which are either warning or fatal
• A possible fix or explanation

Message
ID

Message Text Severity Fix/Explanation

1 %1! unable to
allocate memo-
ry.

Fatal Check system and memory resources.

%1 can contain function names such as
cs_con_alloc(), ct_conn_alloc(), and
malloc().

2 %1! handle is
null.

Fatal Internal Driver error. The connection or
cmd handle is NULL

3 The %1! api
failed.

Fatal Internal Driver error. Can be caused by
an invalid DSN connection string or in-
ternal CT-Lib. The error string contains
the function name of the failing API.

4 handle is null
for statement
id %1!.

Reserved Reserved

5 failure for
statement id
%1!.

Fatal Internal Error. ct_dynamic() API trying
to de-allocate a statement id that is
failed.

6 send failure
for statement
id %1!.

Reserved Reserved

7 %1! must be > 0. Fatal DSN string validation failed. Check
DSN string for illegal characters.

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 27

Message
ID

Message Text Severity Fix/Explanation

8 %1! must be <=
%2!, setting to
maximum allowed
value.

Warning An attempt was made to configure more
connections than currently allowed
(128).

9 ct_con-
fig(CS_SET,
%1!) failed.
The supplied
option %2! is
illegal or
missing.

Fatal ct_config() API failed because an inva-
lid option was given. Check the DSN
string and the string in the second pa-
rameter.

10 cs_lo-
cale(CS_SET,
%1! %2!)
failed.

Fatal cs_locale() API failed. The error string
indicates where the failure happened.

11 cs_dt_in-
fo(CS_SET,
CS_DT_CONVFMT)
failed.

Fatal Error string will indicate where error
occurred.

12 ct_debug(CS_SET
CS_DBG_PROTO-
COL) failed.

Reserved Reserved

13 ct_con_props(CS
_SET, %1!)
failed. The
supplied option
%2! is illegal
or missing.

Fatal ct_con_props() API failed. The error
string indicates where the failure hap-
pened.

14 cannot change
to database
%1!.

Fatal Driver fails. Check DSN if the given da-
tabase name exists.

15 ct_command()
failed for %1!.

Fatal ct_command() API failed. The error
string indicates what type of CMD
failed.

Adaptive Server Enterprise Database Driver for Perl

28 Adaptive Server Enterprise Database Driver for Perl

Message
ID

Message Text Severity Fix/Explanation

16 ct_send()
failed for %1!.

Fatal The ct_send() API failed. The error
string contained in %1 will give details.

17 ct_describe()
failed for col-
umn %1!.

Fatal ct_describe() API failed. Error string
indicates where error occurred.

18 ct_compute_in-
fo() failed on
column %1! when
describing col-
umn %2!.

Fatal ct_compute_info() API failed. Error
string indicates column number and op-
eration type involved.

19 conversion
failed %1!.

Warning cs_convert() had failures. The error
string indicates where error occurred.

20 ct_param()
failed.

Fatal ct_param() API failed. Error string in-
dicates failure location.

21 ct_command()
%1! failed for
statement %2!.

Fatal ct_command() API failed. The error
string indicates what type of CMD failed
including the statement.

22 ct_results()
failed for %1!.

Fatal ct_results() API failed. The error string
indicates the driver facility and failed
statement.

23 %1! command is
ineffective
with autocommit
enabled.

Warning Error string indicates attempted commit
or rollback that is invalid.

24 ct_dynam-
ic(CS_PREPARE)
failed on
statement %1!.

Fatal Dynamic Prepare failed. Statement
name is supplied in the error string.

25 ct_dynam-
ic(CS_DESCRIBE
INPUT) failed
on statement
%1!.

Fatal Dynamic Describe failed. Statement
name is supplied in the error string.

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 29

Message
ID

Message Text Severity Fix/Explanation

26 ct_dynam-
ic(CS_EXECUTE)
failed on
statement %1!.

Fatal Dynamic Execute failed. Statement
name is supplied in the error string.

27 %1! database
handle is inac-
tive, not con-
nected to serv-
er.

Fatal An attempt was made to connect to a
server with invalid database handle or
inactive connection.

28 sub connections
are not al-
lowed.

Fatal Sub connections not allowed if database
handle active and in use

29 cannot bind
placeholder
%1!.

Fatal Error attempting to bind placeholders.
Error string indicates statement.

30 unexpected can-
cel.

Fatal An unexpected cancel type was encoun-
tered while processing rows.

31 unexpected re-
turn code from
%1!.

Fatal An unexpected return code was encoun-
tered while processing rows.

32 invalid format
%1! provided to
syb_date_fmt.

Fatal Invalid date format was given prior to
date or time conversion.

33 Fatal: multiple
active state-
ment handles on
database handle
without auto-
commit enabled.

Fatal User error where in the user Perl script
more than one active handle is used
without autocommit enabled.

34 Fatal: invalid
or unsupported
DSN option pro-
vided.

Fatal If the Perl script has unsupported or ob-
solete options, DSN parsing fatally fails.

Adaptive Server Enterprise Database Driver for Perl

30 Adaptive Server Enterprise Database Driver for Perl

Additional Resources
Additional information about using the Perl driver.

• Building, testing and installation of the DBI driver:
http://dbi.perl.org/

• The Perl DBI user programmable API calls:
http://search.cpan.org/~timb/DBI-1.616/DBI.pm

• Open Client and Open Server documentation for configuration information:
Open Client and Open Server Configuration Guide for UNIX > Configuration Files

• Initializing an application so that it executes using a specific language and related cultural
conventions from a system configuration perspective:
Open Client and Open Server Configuration Guide for UNIX > Localization

• Platform related issues for all the Open Client and Open Server products:
Open Client and Open Server Programmers Supplement for UNIX

• Using the Open Client and Open Server runtime configuration file:
Open Client Client-Library/C Reference Manual > Using the runtime configuration file >
Open Client and Open Server runtime configuration file syntax

• Enabling an application to support multiple languages and cultural conventions:
Open Client and Open Server International Developers Guide for UNIX > Understanding
Internationalization and Localization

• Platform support:
Software Developer Kit and Open Server Installation Guide for your platform.

Adaptive Server Enterprise Database Driver for Perl

Programmers Guide 31

http://dbi.perl.org/
http://search.cpan.org/~timb/DBI-1.616/DBI.pm

Adaptive Server Enterprise Database Driver for Perl

32 Adaptive Server Enterprise Database Driver for Perl

Glossary

Glossary of term specific to scripting languages.

• Client-Library – part of Open Client, a collection of routines for use in writing client
applications. Client-Library is designed to accommodate cursors and other advanced
features in the Sybase product line.

• CPAN – Comprehensive Perl Archive Network. The Web site that holds a large collection
of Perl software and documentation. See http://www.cpan.org.

• CS-Library – included with both the Open Client and Open Server products, a collection
of utility routines that are useful to both Client-Library and Server-Library applications.

• CT-Library – (CT-Lib API) is part of the Open Client suite and is required to let an
scripting application connect to Adaptive Server.

• DBD – database vendor-specific-driver that translates DBI database API calls into a form
that is understood by the target database SDK.

• DBI – generic core database API that is database-vendor-agnostic and is the current
standard for database access in a Perl application. See http://dbi.perl.org.

• Driver – the collection of Perl and C code that constitutes DBD::SybaseASE.
• Extension or module – the Perl language can be extended by modules that are written in

Perl or a combination of Perl and C. In this document, extension and module denote the
same.

• Perl directory tree – is one of:

• The complete Perl installation that is installed as a binary module when the system is
configured and has its operating system installed. A complete Perl installation is
sometimes called the system (Perl) tree and owned by a system account (root, admin).

• A private Perl (directory) tree, which has been built from source by a user other than the
system account and is usually installed in a different location than the system Perl tree.
This allows for new feature and bug-fix testing without compromising the system tree.
A private directory tree is usually owned by the account that built the tree.

• Perl script – Perl is a scripting language that is widely used in system and database
administration. See http://www.perl.org.

• thread – a path of execution through Open Server application and library code and the
path’s associated stack space, state information, and event handlers.

• Transact-SQL – an enhanced version of the database language SQL. Applications can use
Transact-SQL to communicate with Adaptive Server Enterprise.

Glossary

Programmers Guide 33

http://www.cpan.org.
http://dbi.perl.org
http://www.perl.org

Glossary

34 Adaptive Server Enterprise Database Driver for Perl

Index
A
Adaptive Server Enterprise

Database Driver for Perl 1
additional resources 31
attributes

database handle 3
methods 3

attributes and methods 3

C
component

description 1
required 1

connect syntax 2

G
Glossary 33

I

installation options 2

T

threading 1

V

version requirements 1

Index

Programmers Guide 35

Index

36 Adaptive Server Enterprise Database Driver for Perl

	Programmers Guide
	Contents
	Adaptive Server Enterprise Database Driver for Perl
	Perl Driver Module
	Installing and Configuring the Driver for Perl
	Developing Perl Applications
	Support for DSN Style Connection Properties
	Attributes and Methods

	Currently Supported Database Handle Attributes
	Unsupported Database Handle Options

	Perl Supported Datatypes
	Multiple Statements Usage
	Supported Character Lengths
	Configuring Locale and Charsets
	Dynamic SQL Support, Placeholders, and Bind Parameters
	Stored Procedure Support for Placeholders
	Parameter Types

	Supported Private Driver Methods
	Default Date Conversion and Display Format
	Text and Image Data Handling
	Other TEXT/IMAGE APIs

	Error Handling
	Configuring Security Services
	Examples
	Example 1
	Example 2

	Perl Error Messages

	Additional Resources

	Glossary
	Index

