
Developer Guide

Sybase Brand Mobiliser 1.3

DOCUMENT ID: DC01690-01-0130-02
LAST REVISED: June 2013
Copyright © 2013 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Developing Brand Mobiliser Applications1
Advanced Interactive Messaging Server1
Application States ...2

Base States ...3
Subscriber States ..3
USSD States ..4
Custom States ...4
Input and Output Parameters4
State Machine ..5

Application Composer ...5
State Transitions ..6
Controlling State Transitions with Regular

Expressions ...7
Testing Regular Expressions8
State Editor ..9
Adding States to Applications10
Editing State Properties10
Removing States ...11
Removing State Transitions11

Developing Interactive Applications11
Adding Keywords to Applications12
Searching for a Keyword13
Designing Application Task Flows13
Short Codes, Long Codes, and Keywords14

Developing Event Applications15
Events ..16
Creating Events ...17
Creating One-Time Event Windows17
Creating Recurring Event Windows18
Assigning Events to Applications19

Activation ..19

Developer Guide iii

Application Mode Transitions20
Activating Applications ...21
Activating Events ...21
Deactivating Applications22
Deactivating Events ...22

Testing Applications ..22
Testing Interactive Applications23
Testing Event Applications25

Importing Applications ..26
Importing Application XML Files26
Creating Applications from Templates27

Exporting Applications ..27
Exporting a Single Application28
Exporting a Group of Applications28

Sample Applications ...28
Cash-Out Interactive Application28
Mobiliser Counter Interactive Application30
Utility Notification Event Application31

Developing Custom Application States33
Application Life Cycle ...33
Developing and Deploying Custom States35

Extending the SmappStatePlugin Class35
Extending the AbstractDynamicMenu Class39
Implementing State Logic41
Custom State Information43
Custom State Variables45
Setting Up Apache Maven53
Custom State Bundles ...56

Custom State Samples ...78
Sample GetMyWeather State78
Sample Custom State ..80
Sample Custom-Menu State82

State SDK Core Components84
States Catalog ..87

Add Subscriber State ..87

Contents

iv Sybase Brand Mobiliser

Application Call State ..89
Application Call Return State ..92
Compare Typed Variables State94
Compare Variables State ..96
Copy Variables State .. 98
Counter State ..100
Get Subscriber State ..101
Goto Application State ..104
Process Subscriber State ...106
Send SMS State ...109
Send USSD Input State ..111
Send USSD Menu State ...112

Sample USSD Menu Code116
Send USSD Text State ...118
Set Variable State ...120
Start Application State ..122
Update Subscriber State ..124

Index ..127

Contents

Developer Guide v

Contents

vi Sybase Brand Mobiliser

Developing Brand Mobiliser Applications

In Sybase® Brand Mobiliser, states are basic building blocks that you can link sequentially to
model application task flows. Applications are executed by the Brand Mobiliser Processing
Engine at runtime.

Two application types, interactive and event, differ by both how they are invoked and how they
perform. Interactive applications provide rich, user-interactive mobile services, and are
typically invoked when mobile customers send a keyword to a preassigned short or long code.
Event applications work non-interactively, such as batch processes that send campaign
messages, and are typically invoked by events, such as scheduled times or triggers.

You can create applications:

• From scratch
• Using provided application templates
• By importing application files from another computer

Brand Mobiliser provides tools that let you visually compose a mobile-messaging application,
test it using a built-in simulator, and deploy it, ready to be used by mobile consumers.

Advanced Interactive Messaging Server
The core of Sybase® Brand Mobiliser is the Advanced Interactive Messaging Server (AIMS),
also known as the messaging server.

The server components include:

• Brand Mobiliser Processing Engine (processing engine) – manages application life cycles,
and provides the runtime environment.

• Event engine – invokes applications based on scheduled events.
• Session manager – tracks active sessions and terminates expired sessions.
• Channel manager – manages incoming and outgoing communication channels.

Developing Brand Mobiliser Applications

Developer Guide 1

Application States
In Brand Mobiliser, states are basic building blocks that you can link sequentially to model
application-process flows.

Brand Mobiliser states are either:

• Standalone – implemented natively.
• Service – proxy to a Web service or aggregated Web services that are exposed through the

service-oriented architecture (SOA) layer.

Brand Mobiliser provides:

• Base states – for composing task flows.
• Subscriber states – for performing operations on subscriber storage.

Developing Brand Mobiliser Applications

2 Sybase Brand Mobiliser

You can meet customer requirements by developing custom states using the Brand Mobiliser
State SDK. You can add custom states dynamically using the plug-in mechanism that is
enabled by the OSGi services registry.

Create Brand Mobiliser applications using the Application Composer Web tool. Application
types include:

• Interactive – provide a user-interactive mobile service; typically invoked when mobile
consumers send a keyword to a preassigned short code.

• Event – designed for batch processing; invoked by events, such as scheduled times, system
triggers, or external triggers.

Most states can be used in either application type. However, there are a few states that are
available only to a specific application type. For example, you can use the Process Subscriber
state only in event applications, because it relies on the callback mechanism provided by the
processing engine. You can use Application Call and Application Call Return states only for
interactive applications, because these states do not support the callback mechanism.
Application Composer prevents you from adding invalid states to an application.

Base States
Brand Mobiliser base states provide standalone functionality, without dependency on or
interaction with external services. You commonly use base states to construct process flows.

Base states perform functions such as calling applications, comparing and copying variables,
incrementing counters, sending SMS messages, and setting session variable values.

See also
• Application Call State on page 89
• Application Call Return State on page 92
• Compare Typed Variables State on page 94
• Compare Variables State on page 96
• Copy Variables State on page 98
• Counter State on page 100
• Goto Application State on page 104
• Send SMS State on page 109
• Set Variable State on page 120
• Start Application State on page 122

Subscriber States
Applications that contain subscriber states have access to subscriber storage, which stores
attributes that are useful in push campaigns.

Subscriber storage is nondurable storage for staging, or in-transit storage, pending batch
transfer to the system of record. The database schema is designed to be generic, and is not fully
optimized for large scale or more domain-specific purposes.

Developing Brand Mobiliser Applications

Developer Guide 3

See also
• Add Subscriber State on page 87

• Get Subscriber State on page 101

• Process Subscriber State on page 106

• Update Subscriber State on page 124

USSD States
Brand Mobiliser delivers Unstructured Supplementary Service Data (USSD) states via Java
Messaging Service (JMS) to external USSD channels.

Brand Mobiliser USSD states prompt subscribers for input, send text notifications and menu-
based requests.

See also
• Send USSD Input State on page 111

• Send USSD Menu State on page 112

• Send USSD Text State on page 118

Custom States
You can develop custom application states to extend the functionality of Brand Mobiliser, and
to meet client-specific requirements.

Custom states are typically developed by:

• SAP® personnel to implement client-specific requirements.
• Third parties for plug-in applications to meet client requirements.

To integrate new custom states, develop Java components using the provided APIs, and
customize the product by installing custom-state bundles.

Input and Output Parameters
Application states can have input and output parameters. Input parameters allow states to
receive input from consumers, other states, and applications. Output parameters allow states
to save values in session variables that can be used by other states or applications.

Input parameters contain the information a state requires to perform its task. Input parameters
can be constant values, or values copied from a variable in the current user session.

Output parameters allow states to return values. All output parameters are available as
variables.

See also
• Custom State Variables on page 45

• Defining Input Variables on page 47

Developing Brand Mobiliser Applications

4 Sybase Brand Mobiliser

• Defining Output Variables on page 49

• Accessing Input Variables on page 50

• List Variables on page 51

State Machine
A state machine defines an application process flow at runtime. During development, you can
compose an application task flow visually using the Application Composer. When you
activate the application, the process flow is converted to a state machine.

States are elements of a state-machine system. An application usually has many states, and can
include different types of states. Each state has a previous state and a following state, unless it
is the initial state or the final state. There can be only one initial state, but, depending on user
interaction, there can be many final states.

An initial state is the first state in an application, and only handles state transitions to follow-up
states, based on transition rules. The initial-state, which is a base state, is Start Application.
The initial state is created automatically when you create an application, and cannot be
deleted. By default, the name of the initial state is the same as the name of the application.

Application Composer
To visually develop applications, use the Application Composer.

The Application Composer state layout view lets you visualize the processing steps of the
application task flow. You can create states and draw transitions between them. The
Application Composer enables application developers to:

• Visualize states in the application using an automatic layout
• Drag and drop states to rearrange the layout
• Highlight the context, dependencies, and transitions of states
• Zoom in and out to see a complete or partial application layout
• Set the grid line type

Developing Brand Mobiliser Applications

Developer Guide 5

The Layout Canvas shows the application flow, from left to right, on a grid line background.
The flow consists of states (shown in boxes) and transitions that connect two states (depicted
as lines with arrows). State boxes include the name of the state instance, the type, and a
watermark pattern that define the state type. In complex applications, transition lines may
overlap.

When you highlight a state, all of its transition lines and states they connect to are highlighted.
To highlight a state, move the cursor over the state icon and left-click. The dependent states
and transition lines display in different colors:
• The selected state displays a dark gray border; for example, the Validate FI Code Format

state in the screen above. When you select a state, the text at the bottom of the state icon
changes to Delete.

• States that transition to the highlighted state display a blue border and a blue transition
line.

• States to which the highlighted state transitions display an orange border and an orange
transition line.

• States that transition both to and from the highlighted state have borders that are half blue
and half orange (dual mode); for example, the Invalid FI Code Format state in the screen
above.

State Transitions
Some state transitions are determined by matching regular expressions with text supplied by
consumers. Other states have specific transitions that define follow-up states, which state
developers define in the code.

The OK and Fail transitions do not use pattern matching; such transitions are based on states'
code, and validation provided by, or events in, back-end systems. Some states do not require
OK or Fail transitions. If a state does require one of these transitions, and you do not specify a
follow-up state, the application terminates.

Developing Brand Mobiliser Applications

6 Sybase Brand Mobiliser

For dynamic transitions, a state's code has the option to return an expression, which provides
the input to the pattern-matching mechanism. Dynamic transitions also provide a way to
transition to success or failure outcomes, and may replace the OK and Fail transitions.
Dynamic transitions can communicate information back to applications about certain
validation problems.

This example includes an OK transition, a Fail transition, and a dynamic transition that uses
the expression MIN|MAX.

See also
• Controlling State Transitions with Regular Expressions on page 7

Controlling State Transitions with Regular Expressions
You can control state transitions by defining regular expressions. When expressions match
user-input strings, the state transitions to the follow-up state.

Some states expect user input to control the transition to follow-up states. Input can be
provided either by consumers in response to the Send SMS state, or as dynamic output from
either a Brand Mobiliser state, or a third-party custom state. Dynamic values allow external
systems to communicate specific context information back to the application.

A regular expression can contain any combination of characters. The Brand Mobiliser
expression tester enables you to test regular expressions during application development.
Sample regular expressions are:

Regular Expression Matches

.* Any value in the Expression field.

(.*) Any value in the Expression field; assigns the expression to a session
variable.

Developing Brand Mobiliser Applications

Developer Guide 7

In more complex cases, you can break a regular expression into multiple regular-expression
groups and assign them to separate session variables.

For a complete description of regular expressions, see: http://java.sun.com/j2se/1.5.0/docs/
api/java/util/regex/Pattern.html.

In the state editor, Target identifies the state that follows the current state if its Expression
value matches the input. If the input matches more than one Expression value, a list of matches
is created. The first entry in the list is the first matching pattern, continuing with other states in
the order in which they appear in the state editor. For example, if the input is 0, the follow-up
state is Goto Application Main Menu, even though 0 also matches the second expression. If
the input is anything other than 0, it matches the second expression, and the value is assigned
to the session variable AGENT_CODE, because the value of Expression is surrounded by
parentheses. To move an expression up or down in the Follow-up States list, use the arrows on
the left side of the editor.

Testing Regular Expressions
As you develop applications in the Application Composer, you can test regular expressions to
determine whether they match alphanumeric strings.

1. In the Application Composer, select a state.

2. Click the ? icon to the right of the Assign To field for a follow-up state.

The expression tester opens and populates Expression and Assign To fields with follow-up
state values from the state editor.

3. Enter the value to test in the Text to Test field, and click Test.

The result is either:

• Match – value in Expression field matches the value in Text to Test field.

Developing Brand Mobiliser Applications

8 Sybase Brand Mobiliser

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html

• No Match – expression value does not match Text to Test value.

State Editor
In the state editor, you can edit state properties, define follow-up states, test regular
expressions for follow-up transitions, and detach the current state from follow-up states.

The state editor window opens automatically when you select a state in the Application
Composer. Depending on the state type, the state editor displays various options, context-
sensitive links, and entry fields.

State editor fields and controls are:

1. Entry Nodes – identify links to other states that transitions to this state. If you click an entry
node, a state editor opens for the corresponding state. If you hover over an entry node, you
see the state name with which it is associated.

2. State Type Watermark and Icon – icon associated with the state type. The watermark
allows you to quickly recognize state types in the editor and in the layout view.

3. Pop-up Drag Area – you can move the state editor anywhere within the Application
Composer by clicking the header and dragging.

4. Encryption – encrypts incoming and outgoing messages, which are saved in message logs.
5. Editor Closer – closes the state editor. If you have pending changes that have not been

saved, you are prompted to either save or discard these changes.

Developing Brand Mobiliser Applications

Developer Guide 9

6. State Type Notes – to view or edit notes that describe a state's function, input and output
variables, and follow-up state transitions, click the down arrow.

7. State Collapser – shrink or enlarge the state editor.
8. Inputs Section – input variable names and values. Click the down arrow to close this

section.
9. Variables Paging for Inputs Section – if a state contains more than five input variables, you

can page through the others by selecting the relevant page set. To display all input
variables, click All.

10. Outputs Section – output variable names and values. Click the down arrow to close this
section.

11. Variables Paging for Outputs Section – if a state contains more than five output variables,
you can page through the others by selecting the relevant page set. To display all output
variables, click All.

12. Follow-up Section – configure, change, and test follow-up states. To collapse this section,
click the down arrow.

13. Follow-up Paging – three follow-up states appear on each page. To see more follow-up
states, select the relevant page set.

14. Exit Nodes – identify links to other states that this state transitions to. If you select an exit
node, a state editor opens for the next state. If you hover over an exit node, you see the state
name with which it is associated.

15. Follow-up Selector – select the follow-up state. All states, except the Goto Application
state, allow you to add a follow-up state.

16. State Actions – Add Follow-up State and Save.

Adding States to Applications
You can add new states in the Application Composer. When you create a new application, a
Start Application state is created automatically, as the initial application state.

1. In the Application Composer, select an existing state.

2. In the state editor, expand the list of follow-up states, and select a state.

3. Click Add Follow-up.
The new state appears in the Application Composer. A transition line connects the current
state to the new state.

A new state is automatically assigned the name New State Type State. Change the name,
because state names must be unique.

Editing State Properties
You can edit state properties and state transitions in the Application Composer.

1. In the Application Composer, select the state you want to edit.

2. In the state editor, configure state properties.

These changes are immediately saved to the database:

Developing Brand Mobiliser Applications

10 Sybase Brand Mobiliser

• Adding a new follow-up state
• Adding a transition to an existing state
• Removing a transition from an existing state
• Moving a transition up or down in the list of follow-up states

3. For other changes, click Save.

Removing States
In the Application Composer, you can remove states from an application. Removing a state
permanently deletes the state and transition lines that are connected to it from the application.

1. In the Application Composer, select the state to remove.

2. Click Delete.

If you remove a state that has follow-up states, these states may be orphaned.

Removing State Transitions
Removing a state transition permanently deletes the transition, but does not remove any
follow-up states to which it is connected.

1. In the Application Composer, select the state with the follow-up transition you want to
delete.

2. In the state editor, to the right of the Target State field, click the asterisk-arrowhead icon:

Next
To reattach orphaned states, add a new transition using the follow-up selector.

Developing Interactive Applications
Brand Mobiliser interactive applications provide rich, user-interactive mobile services, and
are typically invoked when mobile customers send a keyword to a preassigned short or long
code.

1. In the Dashboard screen, at the bottom of the My Applications module, select Create
Interactive Application.

2. On the Application Details tab, enter:

• Name – the main identifier for an application. SAP recommends that you do not use
duplicate names within a workspace.

• Category – (optional) select the application category from the list. You can use
categories to group applications together for managing and reporting.

Developing Brand Mobiliser Applications

Developer Guide 11

• Active From – the date and time the application becomes active, based on the server
date and time.

• Active To – the date and time the application ceases to be active, based on the server
date and time.

• Timeout (secs) – an interactive application establishes conversations with mobile
subscribers. When a conversation starts, a unique session is established for the
conversation. The session terminates (or times out) when there is no conversation for
more than the number of seconds you enter here. The default value is 450 seconds (7
minutes and 30 seconds).

• Session Limit Response – the message that is sent to mobile subscribers when the
application cannot start or carry on a conversation for various reasons; the most
common reason being too many conversations are already taking place, exceeding the
system capacity. In this case, the default message is sent to mobile subscribers. For
example, the message may say “Service busy, try again in few minutes.”

3. Click Save.

4. (Optional) To save the application to the local file system, click Export.
The application is exported to a Brand Mobiliser application XML file. You can transfer
the XML file to other Brand Mobiliser workspaces or instances. You can also use the file to
back up the application, or store it in the source control management system.

Note: The Export button is disabled until you save an application the first time.

5. Add a keyword to the application.

6. Design the application task flow.

7. Activate the application.

8. Test the application.

See also
• Activating Applications on page 21

• Testing Interactive Applications on page 23

Adding Keywords to Applications
A keyword identifies an application within a workspace. Create at least one keyword for each
interactive application.

1. Select the Keywords tab, and enter values for these fields.

• Add New Keyword – enter plain text or regular expressions. SAP recommends that a
keyword be unique for each application in the same workspace.

• Active From – the date and time the keyword becomes active, based on the server date
and time.

• Active To – the date and time the keyword ceases to be active, based on the server date
and time.

Developing Brand Mobiliser Applications

12 Sybase Brand Mobiliser

2. To save the keyword, click the diskette icon.

After you save a keyword, another Add New Keyword field appears, allowing you to add
another keyword.

See also
• Searching for a Keyword on page 13

• Short Codes, Long Codes, and Keywords on page 14

Searching for a Keyword
Keywords should be unique within a Brand Mobiliser workspace. The keyword-search tool
enables application developers to see if a keyword is assigned to any applications.

If you use a regular expression to define a keyword, the keyword search tool cannot detect
duplicates.

1. In the Interactive Applications window, select the Keywords tab.

2. Enter the keyword for which to search, and click Search.

If any applications in the workspace already use the keyword, this information appears on the
screen:

• Used by – the application name.
• Approved – indicates whether the application is active. False means that either the

application is inactive, or the application has never been activated, so the status is draft.

See also
• Adding Keywords to Applications on page 12

• Short Codes, Long Codes, and Keywords on page 14

Designing Application Task Flows
The key to effective application development is defining the task flows involved in modeling
business processes. In the Application Composer, you can graphically design an application
task flow.

The first time you open the Application Composer, you see the Start Application state. If you
select the state, the state editor opens, which allows you to add follow-up states.

You can rearrange a layout by dragging and dropping state icons. To get a better view of state
transitions, you may want to rearrange the layout, particularly when transition lines overlap.
You can drag and drop state icons into fixed-grid positions on the canvas. The canvas does not
allow free-form positions. Transition lines are automatically positioned, and you cannot move
them.

• To move a state, select it, and drag it to an alternate grid position.

Developing Brand Mobiliser Applications

Developer Guide 13

While moving, the state icon appears transparent, and the target grid positions are
highlighted when the mouse enters the grid area.

• To delete a state, select the state, and click Delete.

When you delete a state, all transitions to and from other states are deleted. However,
corresponding states and all of their downstream flows are not deleted. States that are not
connected to other states become orphans, but they are still accessible from the follow-up
state list, and you can connect them to other states.

• To save a rearranged layout to the database, click Save Layout.
• To revert the application layout to the last one saved in the database, click Revert

Layout.
• To change the grid lines, expand the Gridlines list, and select All, Partial, or None.
• To zoom in or out, expand the Zoom list, and select the magnification you want to see,

relative to the initial display.

If you zoom out from the default 100% view, you must reset the zoom level back to 100%
before you can make any layout changes.

See also
• Developing Event Applications on page 15

• Activating Applications on page 21

• Creating Events on page 17

• Assigning Events to Applications on page 19

• Activating Events on page 21

• Testing Event Applications on page 25

Short Codes, Long Codes, and Keywords
A short code or long code plus a keyword identifies an interactive application within a Brand
Mobiliser workspace.

Each Brand Mobiliser workspace has a unique short or long code. For incoming messages, the
processing engine compares the destination MSISDN with the short or long code list to find a
matching workspace. Once a matching workspace is identified, the processing engine
compares the message content with keywords assigned to applications in the workspace. A
workspace can contain many applications, which should all have unique keywords. At
runtime, the processing engine stops when it finds the first matching keyword, and calls the
corresponding application.

A short code is a special telephone number, significantly shorter than a full telephone number
that can be used to address SMS and MMS messages from some mobile phones or fixed
phones, and is limited to national borders. A long code is a longer number and is available
internationally.

Brand Mobiliser uses short codes and long codes differently from how they are used in the
mobile-operator world. Short codes are often associated with mobile services, such as Brand

Developing Brand Mobiliser Applications

14 Sybase Brand Mobiliser

Mobiliser interactive applications, and they are assigned by the mobile operator to the owner
of the service.

For example, company XYZ wants to provide a mobile service for paying street-parking fines
in the financial district of San Francisco. XYZ applies for an assigned short code from a
mobile operator. Typically, the short code (9999) is advertised on billboards in the financial
district area: “To pay parking fines with your mobile phone, text “SFpay to 9999.” When a
mobile subscriber texts SFpay to 9999, the message first reaches the mobile operator. The
operator, in turn, routes it to Brand Mobiliser. When Brand Mobiliser receives the message,
the Brand Mobiliser Processing Engine maps the destination MSISDN (9999) to a workspace.
Once the workspace is identified, the engine looks at the keyword SFpay and maps it to the
corresponding interactive application in that workspace. The first matching application is
chosen.

A keyword can be a simple string like “coupon,” or a regular expression. Optionally, you can
associate a date range with a keyword, which controls the length of time a keyword remains
active. A keyword's date range takes precedence over an application's date range: if an
application's date range expires, but the keyword date range is still active, the application
remains active until the keyword dates expire. When keyword dates are empty, the application
defines the date range.

Best practices:

• Verify that an interactive application acting as an entry point has at least one assigned
keyword.

• Use the keyword-search tool to verify that a keyword is assigned to only one application in
the workspace.

• If you define a regular expression as a keyword, verify that the regular expression does not
overlap with keywords that are already in use by other applications. The keyword-search
tool does not work for regular expressions.

See also
• Adding Keywords to Applications on page 12

• Searching for a Keyword on page 13

Developing Event Applications
Event applications work non-interactively, such as batch processes that send campaign
messages, and are typically invoked by events, such as scheduled times, system triggers, or
external triggers. An event application can send outbound messages but has no user-
interactive capability.

After you create and activate an event application, you can assign an event to it. You can assign
an event to only one event application.

Developing Brand Mobiliser Applications

Developer Guide 15

1. On the Dashboard screen, at the bottom of the My Applications module, select Create
Event Application.

2. On the Application Details tab, enter:

• Name – the main identifier for an application. SAP recommends that you do not use
duplicate names within a workspace.

• Category – (optional) select the application category from the list. You can use
categories to group applications together for managing and reporting.

• Active From – the date and time the application becomes active, based on the server
date and time.

• Active To – the date and time the application ceases to be active, based on the server
date and time.

3. To save the application, expand Advanced Settings, and click Save.

4. Select the Application Composer tab, and define the application states and the task flow.

5. Activate the application.

6. Create an event and assign it to the application.

7. Activate the event.

8. Test the application.

9. (Optional) To export the application, expand Advanced Settings, and click Export.

Note: The Export button is disabled until you save an application the first time.

The application is exported to a Brand Mobiliser application XML file, and saved to the
local file system. You can transfer the XML file to other Brand Mobiliser workspaces or
instances. You can also use the file to back up the application, or store the XML in the
source control management system.

See also
• Designing Application Task Flows on page 13
• Activating Applications on page 21
• Creating Events on page 17
• Assigning Events to Applications on page 19
• Activating Events on page 21
• Testing Event Applications on page 25

Events
A Brand Mobiliser event triggers an event application. Event applications are designed for
batch processing, and are triggered by events, such as scheduled times.

You assign an event to an event application, so that when the event occurs, the application is
invoked. For example, you can create a promotional event that is scheduled between
November 1 and November 30. Within this event runtime, you can define event windows that
specify when to invoke the event application. You can define event windows by setting start

Developing Brand Mobiliser Applications

16 Sybase Brand Mobiliser

and stop dates and times. You can also define recurring windows, for example, to occur daily,
by setting start and stop times.

The event model is a container for storing configuration details and relationships, including
active runtime, event windows (manual or recurring), the event application to trigger when an
event window is current, and all related interactive applications.

If you assign an event to an interactive application, no one can delete the application.

Creating Events
Create an event to trigger an event application.

1. In the Dashboard screen, at the bottom of the My Events module, select Create New
Event.

2. On the Event Details tab, enter:

• Name – the main identifier for an event. Duplicate names within a workspace are
allowed, but not recommended.

• Category – (optional) select a category from the list. You can use categories to filter
events.

• Runtime From – the date and time the event becomes active, based on the server date
and time.

• Runtime To – the date and time the event ceases to be active, based on the server date
and time.

• Description – (optional) a description of the event's purpose.

3. Click Save.

Next

1. Set up event windows.
2. Assign the event to an active event application.
3. Activate the event.

See also
• Developing Event Applications on page 15
• Designing Application Task Flows on page 13
• Activating Applications on page 21
• Assigning Events to Applications on page 19
• Activating Events on page 21
• Testing Event Applications on page 25

Creating One-Time Event Windows
Create a one-time event window to define when to start and stop time an event application. At
the event-window start time, the event starts its corresponding event application; the event

Developing Brand Mobiliser Applications

Developer Guide 17

application stops either when it has finished processing its data, or at the event-window stop
time, whichever comes first.

1. On the Events screen, select the Event Windows tab.

2. Click Add New Window, and enter:

• Start date and time – time and date at which to start the event application.
• Stop date and time – time and date at which to stop the event application.
• Limit – maximum number of loopbacks to process. When used with a throttle, specify

as a multiple of throttle. For example, if throttle = 60 messages per minute, specify a
limit of 60, 120, or 180.

• Throttle – maximum processing rate: number of messages per minute.
• Resume – select to resume from the last processed item; leave unselected to restart

from the beginning of the list. This is useful for states that process lists, such as the
Process Subscriber state.

3. Save your settings.

4. (Optional) Create another event window, if necessary.

Creating Recurring Event Windows
Create recurring event windows to start event applications at the same time every day, week, or
month.

1. On the Events screen, select the Event Windows tab.

2. Click Add New Window.

3. Select Switch to Recurring Mode, and select:

• Recurring Start Date – the date at which to start the event application.
• Recurring Interval – the frequency at which to start the application: Daily, Weekly, or

Monthly.

4. Click Add New Window, and enter:

• Start time – time at which to start the event application.
• Stop time – time at which to stop the event application.
• Limit – maximum number of loopbacks to process. When used with a throttle, specify

as a multiple of throttle. For example, if throttle = 60 messages per minute, specify a
limit of 60, 120, or 180.

• Throttle – maximum processing rate: number of messages per minute.
• Resume – select to resume from the last processed item; leave unselected to restart

from the beginning of the list.

5. Save your settings.

6. (Optional) Define additional recurring event windows, if required.

Developing Brand Mobiliser Applications

18 Sybase Brand Mobiliser

Assigning Events to Applications
Assign an event to an event application. The event invokes the event application.

Prerequisites
Activate the event application.

Task

1. In the main Brand UI window, select Events.

2. Select the event, then select either the Event Applications tab or the Interactive
Applications tab.

Note: You can assign an event to only one event application. If an assignment already
exists, you can remove it. If you assign an event to an interactive application, it prevents it
from being inadvertently deleted. You can assign an event to an unlimited number of
interactive applications.

3. Click Assign Applications.

4. To narrow the list of applications that appear, do one of the following, and click Search:

• Select Event Applications or Interactive Applications.
• Enter the application name.
• Expand the Advanced list, and select a category.

5. Select the application to assign to the event.

6. To save the assignment, select:

• Add to Event – remains on the current screen.
• Add and Return to Event – returns to the Events screen, and displays the Event

Applications tab.

See also
• Developing Event Applications on page 15
• Designing Application Task Flows on page 13
• Activating Applications on page 21
• Creating Events on page 17
• Activating Events on page 21
• Testing Event Applications on page 25

Activation
Before you can run Brand Mobiliser applications and events, you must activate them.

The processing engine executes applications and events when they are in active mode. If you
edit the active version of an application or an event in the Brand UI, changes are saved to an

Developing Brand Mobiliser Applications

Developer Guide 19

in-review version. Changing an in-review version does not impact the active version, until you
reactivate the application or event.

Initially, the mode of activated applications and events is on-deck, and changes to active when
the active from-date and time are the same as the current-date and time. Artifacts in active
mode are rolled back to on-deck mode, if the active from-date and time are moved into the
future.

To run some newly created artifacts—default menus, applications, and events—you must
activate them. If you make any changes to one of these artifacts, you must reactivate them.

Once artifacts are activated, changes are committed and cannot be rolled back. If applications
or events contain mistakes, deactivate them. For information about default menus, see Brand
Mobiliser System Administration.

Application Mode Transitions
After you create an application, it transitions through a series of modes. A running application
is in active mode.

Initial Mode Event/Condition New Mode

None Create an application Draft

Draft • Activate the application

• Start date is earlier than current date

Active

Draft • Activate the application

• Start date is later than current date

On-deck

On-deck Start date is earlier than current date Active

On-deck Modify the application On-deck

On-deck • Modify the application

• Start date is earlier than current date

Active in-review

Active Modify the application Active in-review

Active End date is earlier than current date Ended

Active In-Review End date is earlier than current date Ended

Developing Brand Mobiliser Applications

20 Sybase Brand Mobiliser

Activating Applications
You must activate applications before you can test or run them. If you modify an active
application and save changes, you must reactivate the application before changes are applied
to the active version.

Applications that are currently running are in active mode. If you activate an application, but
its active start time is in the future, the application mode is on-deck, and cannot be tested.

1. On the Brand UI navigation bar, select Assets.

2. On the Assets screen, select Activate Applications.

3. Click Load Applications for Activation.

Applications that are in-review appear.

4. Choose either:

• To activate a single application, select Actions > Activate.
• To activate all in-review applications, select Activate All.

See also
• Developing Event Applications on page 15
• Designing Application Task Flows on page 13
• Creating Events on page 17
• Assigning Events to Applications on page 19
• Activating Events on page 21
• Testing Event Applications on page 25
• Developing Interactive Applications on page 11
• Testing Interactive Applications on page 23

Activating Events
Activate an event to trigger an event application.

Prerequisites
Assign the event to an active event application.

Task

1. In the Brand UI navigation bar, select Events.

2. For the event you want to activate, select Actions > Activate.

See also
• Developing Event Applications on page 15
• Designing Application Task Flows on page 13

Developing Brand Mobiliser Applications

Developer Guide 21

• Activating Applications on page 21

• Creating Events on page 17

• Assigning Events to Applications on page 19

• Testing Event Applications on page 25

Deactivating Applications
If necessary, you can deactivate or delete an application.

• To deactivate the application until a specified future date, change the active from-date to a
future date, and reactivate.

• (Interactive applications only) To prevent an application from being invoked, remove the
keywords, and reactivate.

• To delete an application:

a) Export the application.
b) Delete the application.

Deactivating Events
If necessary, you can deactivate an event. If the event has a current event window, change the
window start date to a future date, before deactivating the event.

1. In the Brand UI navigation bar, select Events.

2. Select the event you want to deactivate.

3. On the Event Details tab, change the active from-date to a future date.

4. (If necessary) Reset the event window start date and time.

5. Save your changes and reactivate the event.

The event remains inactive until the specified future date.

Testing Applications
Test Brand Mobiliser applications using the built-in application simulator.

To access the Simulation page, expand the Actions list on the right side of the navigation bar,
and select Simulate Application. You can test interactive applications and event applications.
Select the tab that corresponds to the application type you want to test.

You can also test applications using either a Short Message Peer-to-Peer (SMPP) test harness
or a Java Message Service (JMS) test harness; these methods are typically used by custom-
state developers and advanced system administrators.

Developing Brand Mobiliser Applications

22 Sybase Brand Mobiliser

Testing Interactive Applications
Test an interactive application in the current workspace by simulating incoming and outgoing
messages.

Prerequisites
Activate the application.

Task

1. On the Interactive Application tab of the Simulation page, enter:

• Customer MSISDN – numeric value. Brand Mobiliser uses the MSISDN to either
create a new session or find the existing session. If the application being tested has
states that interface with a back-end system, such as Money Mobiliser, enter an
MSISDN that identifies a customer in that system.

• Workspace Short | Long Code – select from the list.
• Message Encoding – accept the default, or select Unicode.
• Message Text – a valid keyword for the application.

2. Click Send to Brand Mobiliser.

3. To see Brand Mobiliser responses, click Reload Message Log.

If the application calls an external Web service, responses may take longer than the page-
refresh time.

See also
• Developing Interactive Applications on page 11

• Activating Applications on page 21

Developing Brand Mobiliser Applications

Developer Guide 23

Sample Interactive Message Log
An interactive-application message log shows a sequence of consumer interactions with
Brand Mobiliser.

For each message, the logs displays:

• Send Date – the date and time the message was sent.
• ACK and ACK Date – whether an acknowledgment is requested from the short message

service center (SMSC) or the SMS gateway, and the date and time the acknowledgment
was received.

• Direction – message direction, IN or OUT; IN messages come from customers; OUT
messages are Brand Mobiliser responses.

• Sender – sender's identification number. For IN messages, the number is the customer's
MSISDN; for OUT messages, it is the workspace short or long code.

• Application – name of the application that processed the message. A Brand Mobiliser
application can call other applications, which are identified in the log.

• Receiver – receiver's identification number. For IN messages, the number is the workspace
short or long code; for OUT messages, it is the customer's MSISDN.

Developing Brand Mobiliser Applications

24 Sybase Brand Mobiliser

Testing Event Applications
To test event applications, invoke the triggering event. Event applications are linked to events
that occur at times defined by their event windows.

1. On the Simulation page, select the Event Application tab:

• Event Name – select from the list.
• Resume From Last – accept the default value, false. If set to true, and if the previous test

did not exhaust the subscriber list, the application resumes from the last subscriber.
• Throttle – enter the maximum processing rate: number of messages per minute.
• Limit – enter the maximum number of loopbacks to process. When used with a throttle,

specify as a multiple of throttle. For example, if throttle = 60 messages per minute,
specify a limit of 60, 120, or 180.

• Event Threads – specify the number of threads to use to run the simulation. Change this
value to test performance with different numbers of threads.

• End Date – specify to keep the application from overrunning.

2. Click Simulate Event.

3. To see messages, click Reload Message Log.

Depending on the number of subscribers, you may need to reload the log multiple times to
see all the messages.

See also
• Developing Event Applications on page 15

• Designing Application Task Flows on page 13

• Activating Applications on page 21

• Creating Events on page 17

• Assigning Events to Applications on page 19

• Activating Events on page 21

Developing Brand Mobiliser Applications

Developer Guide 25

Sample Event Message Log
The Utility Notification event application generates messages that appear in the message log.

See also
• Utility Notification Event Application on page 31

Importing Applications
You can import application XML files that were previously exported from Brand Mobiliser,
and you can create applications from Quick-Start template files that are installed with Brand
Mobiliser.

See also
• Exporting Applications on page 27

Importing Application XML Files
Import a Brand Mobiliser application by uploading the XML file that contains the application
configuration. XML configuration files are created when you export applications from Brand
Mobiliser.

If you import a single application that links to other applications, create the linked-to
applications before you import. If you import a single application that contains circular
references, which are common in menu-based systems, you must manually relink applications
before you can run them.

Developing Brand Mobiliser Applications

26 Sybase Brand Mobiliser

To import a group of dependent applications, first export them as a group, so all the dependent
applications are in one export file. When you import a group of applications from a single
export file, all interdependent links and references are maintained.

1. In the Brand UI, select Assets, then select Create Asset.

2. Under Upload Applications From Existing Files, click Browse, and select the application
file.

3. Enter a name for the application.

• If the file contains a single application, the application name is replaced.
• If the file contains more than one application, the new application name is prepended to

all applications. For example, if the file contains two applications, Test1 and Test2, and
you enter NewName as the new application name, the uploaded applications are named
 NewName-Test1 and NewName-Test2.

4. Click Upload.

5. To edit application details, select View Application Details.

Creating Applications from Templates
Brand Mobiliser includes a set of application templates that you can upload and run.

1. In the Brand UI navigation bar, select Assets.

2. Select Create Asset.

3. Choose a template from the list, and click Create.
The template is installed, and names of the template applications appear.

4. Select Application Details.

After you create an application, you can run it or modify its details.

See also
• Developing Quick-Start Templates on page 75

Exporting Applications
You can export applications to make backup copies, or to move applications to other Brand
Mobiliser installations. If you export an application, it is saved in an XML file.

See also
• Importing Applications on page 26

Developing Brand Mobiliser Applications

Developer Guide 27

Exporting a Single Application
Exporting a single application creates an XML file that contains the application configuration.

1. In the Brand UI, navigate to the Application Details tab for the application you want to
export.

2. Click Export.
The application is exported to a file called appFlow.xml in the Downloads directory.

If the application you export contains references to other applications through either the Goto
Application state or the Application Call state, details of the called applications are included in
appFlow.xml; however, interapplication links may not be reestablished when you import
the file. To maintain links and dependencies between applications, export them as a group.

Exporting a Group of Applications
Exporting a group of applications maintains links and dependencies between applications.

1. In the Brand UI, navigate to the Assets page.

2. Select the check box to the left of each application you want to export.

3. Click Group Export Applications.
A file called groupedFlow.xml, which contains all the exported application
configurations is created in the Downloads directory.

Sample Applications
Mobiliser Platform offers a customizable way to more efficiently manage financial services. It
allows customers to redeem vouchers on any phone, remit money domestically, pay bills
automatically, and manage their accounts remotely.

Cash-Out Interactive Application
Use SMS to interact with the Cash-Out application. Brand Mobiliser manages a unique user
session that maintains the context of the conversation between the user and the application.

The Cash-Out application comprises multiple interactive applications. The applications are
linked by either Goto Application states, in which control is passed to referenced applications,
or Application Call states, in which case control moves temporarily to the referenced
application, before returning to the application that called it.

A complete mobile service is created from multiple interactive applications that are validated
with a customer's MSISDN. Although there is no Brand Mobiliser internal customer list,
back-end systems—such as Money Mobiliser—can validate customers. The Cash-Out
application assumes a valid customer session exists.

Developing Brand Mobiliser Applications

28 Sybase Brand Mobiliser

Once an application has validated a customer, it is typical to offer a series of SMS menus, from
which customers can select. By default, the Cash-Out application contains one menu option
that is related to the mobile financial services that are offered to customers.

The Cash-Out application:

1. Requests the account from which to withdraw cash.
2. Requests the code of the customer support agent with whom to perform the transaction.
3. Requests the transaction amount.
4. Validates and preauthorizes the transaction by verifying sufficient funds in the account,

amount limits, and the agent's SVA.
5. Requests an account PIN, or transaction confirmation.
6. Sends money to the agent.
7. If a transaction fails, requests a solution to validation problems.

Cash-Out Application State Editor
In the Cash-Out application, the Get Wallet Menu state sends a menu to customers via SMS.

Developing Brand Mobiliser Applications

Developer Guide 29

Mobiliser Counter Interactive Application
The Mobiliser Counter sample application increments a session variable, displays the value,
then either increments the value again, or exits.

You can develop the Mobiliser Counter application in the Application Composer.

The session variable INDEX is used as the counter variable. This variable is dynamically
substituted into the text sent to mobile consumers.

If consumers respond with the keyword "again," the application loops back to the Mobiliser
Counter state. Any other input causes the application to exit.

Developing Brand Mobiliser Applications

30 Sybase Brand Mobiliser

Utility Notification Event Application
Event applications are designed for task flow or batch processing, and are typically invoked by
events, such as scheduled times, system triggers, or external triggers.

For example, Brand Mobiliser applications can provide end-to-end solutions for utility
companies. A common use case includes:

• Self-registration – register telephone numbers using SMS; for customers who did not
provide their number when signing up with the company.

• Self-services – such as looking up usage history and status of move-in activation, reporting
issues, and finding offices.

• Notifications – set up notifications for overdue payments, high usage, service-outage
alerts, summer-savings awareness, and so on.

• Engagement – enables customers who receive notifications to reply. For example, if
customers respond to overdue-payment notifications, they automatically receive 1–2 days
extension; they can also authorize automatic payments.

In this example, the company's customer relationship management (CRM) system generates a
list of subscribers who have opted to receive outage notifications. The list contains customer
telephone numbers (MSISDNs) and cities for which an outage-notification service is
provided. This list is uploaded to Brand Mobiliser subscriber storage. When a service outage
is planned for the city of Dublin, the Process Subscriber state retrieves subscribers from the
list. For each subscriber:

1. Get Subscriber Details retrieves subscriber attributes (city).
2. Check City=Dublin filters out customers who are not in Dublin.
3. Send SMS Outage Message sends a message to Dublin customers.

Developing Brand Mobiliser Applications

Developer Guide 31

Invoke the application, by assigning it to an active event, and creating an event window. Event
windows can be one-time or recurring. This application has a one-time event window.

An alternative to manually uploading subscribers to the database is to use an event application
to fetch subscribers from the system of record, and use batch processing to upload and store
them in the database.

See also
• Sample Event Message Log on page 26

Developing Brand Mobiliser Applications

32 Sybase Brand Mobiliser

Developing Custom Application States

Custom state development using the State SDK is a Java development task you can perform
with or without a development IDE, such as Eclipse or NetBeans. After you develop and
deploy custom states, you can use them to develop applications.

Before proceeding with custom state development, verify that:

• The development environment meets system requirements in the Brand Mobiliser Release
Bulletin.

• Brand Mobiliser is installed on the development machine. Brand Mobiliser is required to
access State SDK bundles for custom state development, and to deploy and test custom
states through the development process.

Third-party software mechanisms that custom states can use include:

• Spring Framework – for application context and dependency injection.
• Spring Dynamic Modules (Spring DM) – for abstracting OSGi mechanisms.
• OSGi Services – for software-service publication and consumption.
• OSGi Configuration Admin – for container-based configuration of services and

components.

Application Life Cycle
Applications run in the Brand Mobiliser Processing Engine (processing engine) runtime
container and are managed by the processing engine. Once deployed to the runtime container,
applications can be invoked by either incoming messages or events. Events can be generated
by the system, a scheduled time, or a call from an external Web service.

Starting or Restarting an Application
For a newly started application, a new session is created, and the Application Start state is
executed. Sessions are based on a consumer's MSISDN, which is typically the mobile
telephone number from which the message is sent. The Application Start state is created
automatically for new applications, and cannot be removed. This state performs initialization
prior to executing the application. The Application Start state is typically followed by at least
one state. For example, if an interactive application is invoked by an incoming message, the
Application Start state processes the incoming message, and routes it to the appropriate
follow-up state, based on the message value. The Application Start state can also filter
messages, and save incoming message values in session attributes.

If you restart an application, the existing session is reactivated, and all session attributes are
available to the application. The application continues from the last active state.

Developing Custom Application States

Developer Guide 33

Executing the Current Application State
The processing engine executes the current application state, calling either
processMessage or processState; these methods contain state-specific logic.

The processing engine calls:

• processMessage to reactivate a state, when an external event occurs for which the
state is waiting.

• processState when another state activates the current state through a follow-up
transition.

Processing an Incoming Message
If a state is reactivated by a call to its processMessage method, the state processes the
incoming message.

For example, State 1 —> Send SMS state —> State 3. When the flow reaches the Send SMS
state, a message is sent out and the flow waits for a response. When the response arrives, the
processing engine calls the Send SMS state's processMessage method to reactivate the
state. The state processes the message, finds the follow-up transition that matches the
incoming message, and returns the follow-up transition state. For example, if the follow-up
state is State 3, the processing engine sets the current state to State 3, and begins executing
it.

Processing State Logic
When a state is activated by a follow-up transition, the processing engine calls the
processState method, which contains the core logic of the state. If the state needs to call
an external Web service, you implement the call in the processState method.

States do not return objects from the processState method. Instead, they set flags using
the helper object SmappStateProcessingAction, which is an input parameter to the
method. For example, if the state-logic processing is successful, the state calls
continueProcessing(followUpState), passing the name of the follow-up state as
followUpState.

The processing engine sets the current state to the value of followUpState, and executes the
current state.

To determine the follow-up state, you can call either of two methods provided by the utility
class StateUtils, which is included in the State SDK:

• determineFollowingSmappStateFromPattern
• determineFollowingSmappStateFromTransitionType
In addition to calling continueProcessing, states can call:

Developing Custom Application States

34 Sybase Brand Mobiliser

• terminateProcessing – if a severe error occurs and the application must be
terminated.

• waitForMessage – if the state sends a message and must wait for the response.

Terminating Conditions
The processing engine continues through the application flow until it meets one of these
terminating conditions:

• No follow-up transition
• Call to terminateProcessing
• Call to waitForMessage
The first two conditions terminate the application. A call to waitForMessage pauses the
application until a response is received, and the session hibernates. When the response
message arrives, the life cycle restarts.

For event applications, if the processing engine encounters no follow-up transition, it checks
the preconfigured terminating criteria to determine whether to stop, or keep the session alive
and generate a callback to repeat from the Application Start state.

Developing and Deploying Custom States
Develop and deploy custom states to extend the functionality of Brand Mobiliser, and to meet
client-specific requirements.

1. Develop a custom state by extending either:

• SmappStatePlugin class – for most states.

• AbstractDynamicMenu class – for menu states.

2. (Classes that extend SmappStatePlugin only) Implement the state logic.

3. Add custom state information.

4. Define custom state variables.

5. Set up Apache Maven.

6. Build and deploy a custom state bundle.

Extending the SmappStatePlugin Class
You can simplify custom-state development by extending the SmappStatePlugin class.

If you develop a custom state by extending the SmappStatePlugin class, you must:

• Implement the state logic.
• Provide the state information: ID, name, revision number, and usage notes.
• Specify the input attributes.

Developing Custom Application States

Developer Guide 35

• Specify the output attributes.
• Customize the state follow-up transitions, if they are different from the default transitions.

See also
• Sample Custom State on page 80

• Sample GetMyWeather State on page 78

• Implementing State Logic on page 41

StatePlugin Interface
You can use the StatePlugin interface to develop Brand Mobiliser application states.

The SmappStatePlugin class is a base abstract class that implements the
StatePlugin interface. Most custom states should extend SmappStatePlugin, which
provides basic implementations that are common to most custom states, as well as helper
methods that are commonly used in state implementations.

Two important methods in the StatePlugin interface are processMessage and
processState, which are integral parts of application life cycles. Some of the methods in
the StatePlugin interface customize the state editor, for example,
supportsOkTransition and getStateNotes.

If a custom state extends the SmappStatePlugin class, implementing the class is
simplified significantly. Instead of implementing both processMessage and
processState methods, you can focus on adding business logic to the
processStateLogic method. This is sufficient in most custom-state implementations.

Note: Do not extend the abstract class Plugin. Instead, extend SmappStatePlugin.

Developing Custom Application States

36 Sybase Brand Mobiliser

Developing Custom Application States

Developer Guide 37

PluginInterface Interface
If you develop a custom state by extending the SmappStatePlugin class, it implements
the PluginInterface interface.

Plug-in components must have at least one class that implements the PluginInterface.
Components that implement PluginInterface are automatically loaded into the
messaging server and started. During start-up, the server calls the startup method of the
implementing class, which allows the class to perform any necessary setup.

PluginInterface methods are:

• getInstanceName():String
• setInstanceName(String):void
• getRevisedString():String
• shutdown():void
• startup(HashMap<String,String>):void
The shutdown method is called when the server is shutting down, giving the implementation
a chance to perform housecleaning, such as persisting cache data.

getInstanceName, setInstanceName, and getRevisedString are
placeholders only. The component must implement the appropriate functionality.

StatePlugin and ChannelPlugin implementations extend PluginInterface and
define their specific interfaces. You can use StatePlugin APIs to develop custom states.
The ChannelPlugin interface is reserved for SAP internal development only.

Developing Custom Application States

38 Sybase Brand Mobiliser

Extending the AbstractDynamicMenu Class
Many SMS and Unstructured Supplementary Service Data (USSD) applications rely on
menus to receive consumer responses. Menus reduce the potential for response errors,
because they are numbered lists.

The AbstractDynamicMenu class simplifies the development of custom-menu states that
extend the class, because they inherit:

• A list of menu items
• Menus and indexes that are generated automatically and recalculated on each page
• Methods to send menus as SMS messages
• These variables:

• Show Exit Menu – an input variable that specifies whether to allow recipients to exit the
menu.

• Variable Name of the Selected Key – an output variable representing the menu
selection, which is stored as a key-value pair object. Key is the unique key of the menu
item, which may be used later in the application.

• Variable Name of the Selected Value – an output variable that represents the value of
the selected key.

Developing Custom Application States

Developer Guide 39

Custom states that extend the AbstractDynamicMenu class must implement these
methods:

• constructMenuList() – gets the menu list.

• init() – initializes the state.

• getStateAttributeList() – gets the list of attributes.

• saveSessionVariables() – explicitly saves session variables.

Message recipients can select from lists, and reply using index numbers. If a menu has more
than four items, it includes a pagination option, which displays the next four items in the list.
On the last page, selecting the pagination option returns to the first page. Selecting the exit
option abandons a list without a response; the application task flow determines the follow-up
transition. To force recipients to choose an item from the list, you can disable the exit option.

In a typical custom-state implementation that extends the SmappStatePlugin class, you
implement state logic in the processStateLogic method. However, when you extend the
AbstractDynamicMenu class, both processStateLogic and
processMessageLogic methods are implemented by the abstract class. These methods
contain the menu processing logic, and are declared as final, so they cannot be overridden.

See also
• List Variables on page 51

• Sample Custom-Menu State on page 82

AbstractDynamicMenu Life Cycle
The life cycle of the AbstractDynamicMenu class is based on the life cycle of the
SmappStatePlugin class; however, there are slight differences in menu functionality.

If you extend the AbstractDynamicMenu class, it implements the
processMessageLogic method and the processStateLogic method.

1. The processStateLogic method calls the init method.

2. processStateLogic calls both the constructMenuList and
saveSessionVariables methods.

3. The SmappStatePlugin::getStateAttributes method calls
getStateAttributeList, which aggregates the attributes returned by the method
with attributes defined in the AbstractDynamicMenu class, such as the input exit-
menu item and the output key-value pair.

4. An AbstractDynamicMenu state is initially activated as a follow-up transition from a
previous state, so the processing engine calls its processStateLogic method. The
init and constructMenuList methods are called sequentially to initialize and
construct the menu. Eventually, the menu is sent as an SMS message, and the processing
engine waits for the response. The consumer selects a menu item.

Developing Custom Application States

40 Sybase Brand Mobiliser

5. If constructMenuList returns only a single item, the state immediately calls
saveSessionVariables, and proceeds with the default dynamic follow-up
transition. You can customize the state's default behavior by overriding the
continueWhenSingleEntry method.

6. When a response arrives, the processing engine calls the state's
processMessageLogic method, which calls constructMenuList to assemble
the menu and interpret the selected menu item. If the selection is a valid menu item,
saveSessionVariables is called. The state prepares the selected-item details for
output, and proceeds with the follow-up transition, as returned by the
saveSessionVariables method. If null is returned, the default OK follow-up
transition is used.

Implementing State Logic
If you extend the SmappStatePlugin class, implement state logic in the
processStateLogic method. If you extend the AbstractDynamicMenu class, the
abstract class implements the state logic.

At runtime, the processing engine calls a state's processState method, which in turn calls
processStateLogic. The processState method is implemented by the
SmappStatePlugin abstract class.

The processStateLogic method signature is:

protected SmappState processStateLogic(
 SmappStateProcessingContext context,
 SmappStateProcessingAction action)
 throws MwizProcessingException, DBException;

The processStateLogic input parameters are:

• SmappStateProcessingContext – provides access to resources, such as data-
access objects for session variables.

• SmappStateProcessingAction – signals to the processing engine that there is to
be additional processing.

See also
• Extending the SmappStatePlugin Class on page 35

SmappStateProcessingContext
The processing engine SmappStateProcessingContext provides access to resources,
such as session variables and the subscribers data store.

You can use the SmappStateProcessingContext to share resources between the
processing engine and the state; however, in most state implementations, this is unnecessary.

Note: Do not alter SmappStateProcessingContext.

Developing Custom Application States

Developer Guide 41

You can use these SmappStateProcessingContext methods:

• getStateDao – inserts, updates, or deletes session variables.

• getSubscriberDao – accesses the subscribers data store. Also used by some Brand
Mobiliser built-in states.

• isAckMessageRequested – queries whether an acknowledgment is requested.

• setAckMessageRequest – specifies whether an acknowledgment is requested.

• isCurrentStateEncrypted – queries whether state data is encrypted.

The following resources are available for read-only access, and include no API support. Do
not access these resources directly, or make any changes. If you have special requirements,
consult with SAP support services.

• client
• session
• clientMsisdn
• currentState
• customer
• langDefault
• matchingPattern
• mr
• msg
• newSession
Do not use the following methods or resources; doing so may result in errors or unexpected
application behavior:

• getlangRequest
• updateSession
• cacheMgr
• outgoingQueue

SmappStateProcessingAction
The SmappStateProcessingAction class controls state and application processing.
Use it to signal the processing engine that further processing is intended.

The processing engine recognizes three signaling actions: continue, wait, and terminate,
which you can send by calling:

• continueProcessing (SmappState) – continues execution to the specified
follow-up state. Causes an infinite loop if the follow-up state is the same as the calling
state. Termination must be handled within the state.

• waitForMessage() – pauses execution and waits for a response, then continues
execution to the specified follow-up state.

Developing Custom Application States

42 Sybase Brand Mobiliser

• terminateProcessing () – terminates the application.

States that extend the SmappStatePlugin class, implementing logic inside the
processStateLogic method need not explicitly call continueProcessing or
terminateProcessing. The same functionality is accomplished by returning the
follow-up state from the processStateLogic method. For example, instead of calling
continueProcessing, return the follow-up state using one of the helper methods:

• continueOk()
• continueFail()
• continueDyn()
To terminate processing, states should call continueFail, and let the state-editor
configuration determine what to do. If the state is not configured to forward continueFail
calls to a follow-up state, the application automatically terminates.

Note: If a state calls waitForMessage before it returns null from the
processStateLogic method, the application does not terminate, because the state is
waiting for a response. For this reason, SAP recommends that you do not let states return
null.

To enable states to send messages and wait for replies before they continue processing, call
waitForMessage.

To display a message control in the state editor, call supportsSendSmsMessage.

Custom State Information
State information includes an ID, a name, a revision number, and usage notes. The name and
usage notes are metadata that the state editor shows in the Application Composer.

For a custom state, you can explain its purpose and functionality as state notes, which appear
in the state editor.

@Override
public String getStateNotes() {
 StringBuilder sb = new StringBuilder();
 sb.append("A sample state. When executed, it checks for ");
 sb.append("an entered Postal/ZIP Code, and returns the ");
 sb.append("weather report for that area.\n\n);
 sb.append("Use the following follow up states:\n ");
 sb.append("- OK: Weather report for the area was found\n ");
 sb.append("- FAIL: Unexpected error\n ");
 sb.append("- Dyn -1: Area code entered was not valid\n ");
 sb.append("- Dyn -2: No weather report for the area\n ");
 return sb.toString();
}

Developing Custom Application States

Developer Guide 43

The revision number is a prerequisite for any plug-in component, as specified in the
PluginInterface class. It identifies a version, and sets the plug-in number.
getRevisionString() can return any String value.

@Override
public String getRevisionString() {
 return "1.0.0";
}

The state ID is a unique identifier for the state. Each state must have a unique ID stored in the
database for each installation in which the state is used. This unique value allows the state to be
resolved to the same type across installations.
private static long STATE_ID = 600000L;

@Override
public long getStateId() {
 return STATE_ID;
}

For custom states, assign unique ID values between 600,000 and 999,999. Values between 0
and 599,999 are reserved for Brand Mobiliser use.

Developing Custom Application States

44 Sybase Brand Mobiliser

Custom State Variables
You can define input and output variables for custom states. Variables are used as both
metadata in the state editor, and as runtime objects for storing session variables.

In the GetMyWeather sample custom state, one input variable (Zip or Postal Code) and one
output variable (Your Weather Synopsis) are defined in the code, and appear in the state editor
view.

// Define input variable

private static final TextBoxAttribute inPostCode =
 new TextBoxAttribute("POSTCODE", "Zip or Postal Code", false);

// Define output variable

private static final OutputAttribute outWeather =
 new OutputAttribute("WEATHER", "Your Weather Synopsis");

private static Attribute[] stateAttr;

static {
 stateAttr = new Attribute[] {inPostCode, outWeather};
}

@Override
protected Attribute[] getStateAttributes() {
 return stateAttr.clone();
}

Developing Custom Application States

Developer Guide 45

getStateAttributes is an abstract helper method that the SmappStatePlugin
class implements. It aggregates both input and output variables. The base class derives the
required getInputAttributes and getOutputAttributes methods from
getStateAttributes, based on the attribute-type class. The state editor uses the
attribute array that the getStateAttributes method returns to render input and output
variables. The saveOutputAttributes method saves output attributes from the
attribute array.

All variables (input and output) have input controls that appear on the state editor. The
public String getText() method returns the text from input controls.

See also
• Input and Output Parameters on page 4
• Defining Input Variables on page 47
• Defining Output Variables on page 49
• Accessing Input Variables on page 50
• List Variables on page 51
• Sample GetMyWeather State on page 78

Variables for Troubleshooting
When you develop custom states, include error output variables that can help you troubleshoot
problems in the production environment.

To facilitate debugging, include output variables in the state code for an error message, a
unique error ID, and a service code. If the state calls an external Web service, for example, the
Web service can return a code in the service-code output variable.

// Define output variables

private static final OutputAttribute outErrMsg =
 new OutputAttribute("ERR_MSG", "Error Message");
private static final OutputAttribute outErrUUID =
 new OutputAttribute("ERR_UUID", "Error Unique ID");

private static final OutputAttribute outSvcCode =
 new OutputAttribute("SVC_CODE", "Service Code");

// some code omitted here…

@Override
protected SmappState processStateLogic(…)
{
 // Logic implementation

 try {
 // Reset the error output variable
 outErrMsg.setHoldValue("");
 outErrUUID.setHoldValue("");
 saveOutputAttributes();

Developing Custom Application States

46 Sybase Brand Mobiliser

 return continueOk();
 }
 catch (Exception ex) {
 String uuid = UUID.randomUUID().toString();
 log.error(ex.getMessage()+ " [UUID={}]", uuid);
 outErrMsg.setHoldValue(message);
 outErrUUID.setHoldValue(uuid);
 saveOutputAttributes();
 return continueFail();
 }
}

UUID is a unique user ID that you can use to report errors. For example, if an error occurs, an
SMS message can be sent to the consumer, who is identified by the UUID. Consumers can call
customer support to report issues, using their UUID. UUIDs are logged so they can be
correlated with reported issues.

Defining Input Variables
States use input variables to get input values, either from a session variable or as a constant.
You can configure the behavior in the state editor. The InputAttribute class manages
input variables.

In addition to the basic properties, input variables have an isOptional property. If set to true,
the input variable is optional; false indicates it is mandatory.

The input variable constructor is:
InputAttribute (String id, String description, boolean isOptional)

Two types of input variables exist, text box input controls and selection input controls.

Text Box Input Controls
Text boxes manage either a single constant value or a value that is accessed from a session
variable.

You can create the input variable in the example above using this constructor:
TextBoxAttribute(" POSTCODE " , " Zip or Postal Code " , false);

By default, the variable ID is automatically assigned to the TextBoxAttribute control. In
this case, the ID is POSTCODE. The description, Zip or Postal Code, appears to the
right. The red dot indicates that the input variable is mandatory.

Note: If input is mandatory and a session variable name is specified, a runtime error is thrown
if the session variable does not exist. The processing engine terminates the application, unless

Developing Custom Application States

Developer Guide 47

the state implementation handles RequiredParameterMissingException, with
either continueFail or continueDyn follow-up transitions.

The state of the check box tells the processing engine how to process an input variable:

• Selected – retrieve the value from the named session variable.
• Not selected – use the constant value.

If you use a state twice in the same application, and if the state saves a value in a session
variable, change the session-variable name in the second instance, so it does not overwrite the
value.

To find the session-variable name, hover the mouse over the description text; pop-up text
includes the variable description and the variable name.

Selection Input Controls
Selection input controls manage constant values that are selected from a list of options. Lists
are populated in the state code.

Unique IDs are automatically assigned as the session-variable name; you cannot change them,
and they do not appear in the state editor. To find the session-variable name, hover the mouse
over the description text; pop-up text includes the variable description and the variable name.

To use a state twice in the same application, and save the value of the session variable, you can
call the Copy Variables state to copy the session variable to another variable.

The check box performs the same function as it does for text box controls. The red dot
indicates that an input selection is mandatory.

See also
• Input and Output Parameters on page 4

• Custom State Variables on page 45

• Defining Output Variables on page 49

• Accessing Input Variables on page 50

• List Variables on page 51

Developing Custom Application States

48 Sybase Brand Mobiliser

Defining Output Variables
States return results as output variables, which are always session variables. Only states can
set output variables, and only at runtime. Output-variable check boxes are always selected and
cannot be modified.

To create an output variable, use the OutputAttribute constructor:

OutputAttribute("WEATHER", "Your Weather Synopsis")

By default, output session-variable names are not set, so text boxes are empty. You can set
values by calling either of these two methods:

• setValue – creates a session variable (if none exists), and saves the value immediately
in the database, or,

• setHoldValue – temporarily holds the value in the cache, until you explicitly call the
SmappStatePlugin::saveOutputAttributes method.

The saveOutputAttributes method saves multiple session variables with a single
database connection. If the state has only a few output variables, call the setValue method.
If there are many output variables, call setHoldValue; this may impact the efficiency of
the state at runtime.

To set output variables, call one of the methods in the OutputAttribute class:

• public void setValue (String val)
• public void setValue (Long val)
• public void setValue (Integer val)
• public void setValue (Boolean val)
• public void setHoldValue (String val)
• public void setHoldValue (Long val)
• public void setHoldValue (Integer val)
• public void setHoldValue (Boolean val)

See also
• Input and Output Parameters on page 4
• Custom State Variables on page 45
• Defining Input Variables on page 47
• Accessing Input Variables on page 50

Developing Custom Application States

Developer Guide 49

• List Variables on page 51

Accessing Input Variables
You can access input variables that are in a custom state using either the getInputValue
method or the getInputValueWithWarning method.

The signatures of the methods you can call to access input variables are:
public InputValue getInputValue()
 throws DBException;
public InputValue getInputValueWithWarning()
 throws DBException, RequiredParameterMissingException;

To retrieve optional input variables, call getInputValue. A null value is returned if either
an input variable is not provided, or if the session variable that the input variable is assigned to
does not exist.
InputValue iv = optionalVar.getInputValue();

if (iv != null) {
 retrieve the value
}

To retrieve mandatory input variables, call getInputValueWithWarning. The
exception RequiredParameterMissingException is raised if either an input
variable is not provided, or if the session variable that the input variable is assigned to does not
exist. You can retrieve all mandatory input variables in the same try/catch block.

try {
 Long id = mandatoryIdVar.getInputValueWithWarning().getLong();
 Integer count =
mandatoryCountVar.getInputValueWithWarning().getInt();
}
catch (RequiredParameterMissingException rex) {
 log.error(rex.getMessage());
 return continueFail();
}

Note: The RequiredParameterMissingException::getMessage method
indicates the mandatory variable that is missing.

Both methods that access input variables return the InputValue class. InputValue
methods return values that you enter in the state editor when you configure an input attribute;
return values can be either constants or session-variable names:

• InputValue.getString();
• InputValue.getString(int size);
• InputValue.getLong();
• InputValue.getInt();
• InputValue.getBoolean();
• InputValue.getDouble();

Developing Custom Application States

50 Sybase Brand Mobiliser

• InputValue.getMsisdn();

See also
• Input and Output Parameters on page 4
• Custom State Variables on page 45
• Defining Input Variables on page 47
• Defining Output Variables on page 49
• List Variables on page 51

List Variables
List variables do not appear in the state editor. You can use list variables to save lists of the
BeanConverterInterface type to session variables.

As an example, the AbstractDynamicMenu class uses a list variable to persist an SMS
menu. The BeanConverterInterface specifies that a bean must provide string
serialization and deserialization logic. Each BeanConverterInterface item is saved as
a session variable with a unique name.

package com.sybase365.mobiliser.brand.plugins.smapp.beans;
public interface BeanConverterInterface<T> {
 T convert(String value);
 String convert(T object);
}

Note: Strings returned by the convert(T object) method must be less than 1000
characters.

The SessionVariableAttribute class has two methods: getList and setList.
The getList method retrieves a list from the database. When setList is called, the list is
saved to a session variable, which requires a database connection.

Note: Lists are saved outside of transactions. Therefore, if an exception occurs, the method
throws a DBException, and a partial list may be saved. It is up to the state implementation
that uses this attribute to retry.

Most state implementations do not need list variables. They are needed only if a state can
transition into an internal waiting condition by calling waitForMessage. For example, list
variables are most commonly used when sending SMS messages. Calling
waitForMessage causes the application to hibernate until the response arrives. The list
variable is saved to a session variable, so it is available when the application is reactivated.

See also
• Input and Output Parameters on page 4
• Custom State Variables on page 45
• Defining Input Variables on page 47
• Defining Output Variables on page 49

Developing Custom Application States

Developer Guide 51

• Accessing Input Variables on page 50

• Extending the AbstractDynamicMenu Class on page 39

State Attributes Class Hierarchy
All state variables that are derived from the Attribute class are identified by an ID and a
description, which are defined in the constructor Attribute(String ID, String
Description). ID is a unique identifier of the attribute; for InputAttribute, ID
defaults to the session variable name. The value of the Description variable appears in the
Application Composer.

The diagram below illustrates the attribute class hierarchy.

These methods are reserved for use by the processing engine:

• public void setContext(SmappStateProcessingContext context)
• protected SmappStateProcessingContext getContext()

Developing Custom Application States

52 Sybase Brand Mobiliser

SmappStateProcessingContext is the running context of the application, set by the
processing engine using the setContext method.
SmappStateProcessingContext provides access to the data source that stores session
variables.

Setting Up Apache Maven
Apache Maven is a software project management tool that is based on a project object model
(POM). You can use Maven to manage a project's build, reporting, and documentation from a
central piece of information.

Install and configure Apache Maven, and deploy the State SDK bundles, so you can build
custom-state bundles and deploy them to Brand Mobiliser.

Installing Apache Maven
You can download Apache Maven from the Apache Maven Project Web site. Apache Maven
version 3.0.4 has been tested and certified with Brand Mobiliser.

1. Navigate to http://maven.apache.org/download.cgi, and download Apache Maven.

2. To verify that your Apache Maven installation is successful, on the command line, run:

mvn -version

The output looks similar to:
Apache Maven 3.0.4 (r1232337; 2012-01-17 00:44:56-0800)
Maven home: C:\ZPrograms\apache-maven-3.0.4 Java version: 1.6.0_35,
vendor: Sun Microsystems Inc.
Java home: C:\Program Files\Java\jdk1.6.0_35\jre
Default locale: en_US, platform encoding: Cp1252
OS name: "windows 7", version: "6.1", arch: "amd64", family: "windows"

Next
Configure Apache Maven.

Configuring Apache Maven
You can customize where Maven looks for dependencies by editing the Maven configuration
file.

Prerequisites
Install Apache Maven.

Task

By default, Maven looks for dependencies in its central repository; however, in some cases, it
may need additional repositories. For example, some companies have their own internal
Maven repositories, and you, as a developer, must find these dependencies. The central Maven
repository is open to the public, and its libraries are either open source or available for public

Developing Custom Application States

Developer Guide 53

http://maven.apache.org/download.cgi

use. Brand Mobiliser SDK libraries are not hosted in the central Maven repository, nor in any
publicly accessible Maven repository.

1. Navigate to your Apache Maven installation directory, and open the conf
\setting.xml file.

2. Enter these lines:
<settings>

 <profiles>
 <profile>
 <id>brand_state_development</id>
 <repositories>
 <repository>
 <id>EclipseLink</id>
 <name>Eclipse Link</name>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo</url>
 </repository>
 </repositories>
 </profile>
 </profiles>

 <activeProfiles>
 <activeProfile>brand_state_development</activeProfile>
 </activeProfiles>

</settings>

3. To add a Maven dependency location, between the <repositories></
repositories> elements, add a <repository></repository> element pair.

4. For the new repository, define:

• id – repository ID.

• name – name of the repository.

• url – Internet location of the repository.

Maven creates a default-user local cache repository in ${user.home}/.m2/
repository, where user.home depends on the operating system. For example, on a
Windows 7 machine, the user.home location is C:\Users\userName. During the build
process, this is the first location Maven searches for dependency libraries. Initially, the local
repository is empty. During the first build, Maven does not find libraries in the local repository,
so it looks in the Maven central repository, which is, by default, http://search.maven.org/
#browse. Maven downloads any dependency libraries to the local repository, then uses them in
the build. Subsequent builds are faster, because dependency libraries have been downloaded
to the local repository.

Next
Deploy State SDK bundles to Maven repositories.

Developing Custom Application States

54 Sybase Brand Mobiliser

http://search.maven.org/#browse
http://search.maven.org/#browse

Deploying State SDK Bundles to a Maven Repository
You can deploy State SDK bundles to the local Maven repository (also known as the .m2).
Deploy bundles to local repositories on each development machine.

Prerequisites
Install and configure Apache Maven.

Task

In Brand Mobiliser version 1.3, the State SDK consists of five bundles:

• mobiliser-brandplugin-api-1.3.1.jar
• mobiliser-brandstate-sdk-1.3.1.jar
• mobiliser-brandplugin-security-1.3.1.jar
• mobiliser-brandplugin-core-1.3.1.jar
• mobiliser-brandplugin-jpa-1.3.1.jar
Deploy these bundles to the Maven repository so they are accessible as dependencies to state-
development projects. Bundles are in the BRAND_HOME\bundle\application
directory. To deploy the bundles, run a script for each bundle, or copy all five scripts to a single
script file, and run it once.

Note: Scripts are for Windows only; to run on Linux, modify the -Dfile path.

1. Change to the BRAND_HOME directory.

2. Run:
mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
plugin-api-1.3.1.jar
-DgroupId=com.sybase365.mobiliser.brand.plugins -DartifactId=mobiliser-
brand-plugin-api
-Dversion=1.3.1 -Dpackaging=jar

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
state-sdk-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.plugins -DartifactId=mobiliser-
brand-state-sdk
 -Dversion=1.3.1 -Dpackaging=jar

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
security-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.security -
DartifactId=mobiliser-brand-security
 -Dversion=1.3.1 -Dpackaging=jar

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
core-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.core -DartifactId=mobiliser-
brand-core -Dversion=1.3.1
 -Dpackaging=jar

Developing Custom Application States

Developer Guide 55

mvn install:install-file -Dfile=bundle\application\mobiliser-brand-
jpa-1.3.1.jar
 -DgroupId=com.sybase365.mobiliser.brand.database -
DartifactId=mobiliser-brand-jpa
 -Dversion=1.3.1 -Dpackaging=jar

Custom State Bundles
Package custom states as OSGi bundles, which you can deploy to Brand Mobiliser.

An OSGi bundle is a JAR file with extra manifest headers that can be deployed in the OSGi
container. A custom-state bundle can contain one or more custom states, and it must be
packaged as an OSGi bundle before you can deploy it to Brand Mobiliser.

Building Custom State Bundles
After you develop custom states, and set up Apache Maven, build OSGi bundles that you can
deploy to Brand Mobiliser.

1. Creating Maven Projects

The main artifacts of a Maven project are the project object model (POM) file, and folders
that contain source-code files.

2. Customizing Maven POM Files

Customize a Maven project object model (POM) file to create and build custom-state
OSGi bundles to deploy to Brand Mobiliser.

3. Creating Maven Project Artifacts

After you create a Maven project, create project artifacts to use in a custom-state bundle.

4. Building Maven Projects

You can build Maven projects on the command line, or you can use Maven build and unit
test projects in an IDE.

5. Declaring States as Spring Beans

Developing a custom-state bundle requires that you declare each state as a Spring
Framework bean in the beans-context.xml file. A state is any Java class that either directly
or indirectly extends the SmappStatePlugin abstract class.

6. Configuring Bean Properties

The bean properties file, properties-context.xml, declares all properties that must be
retrieved from the OSGi configuration administration service during runtime; properties
are stored in the service so they can be configured dynamically at runtime.

7. Registering States as OSGi Services

To enable Brand Mobiliser to discover states at runtime, register them as OSGi services, by
declaring them in the services-context.xml file.

Developing Custom Application States

56 Sybase Brand Mobiliser

Creating Maven Projects
The main artifacts of a Maven project are the project object model (POM) file, and folders that
contain source-code files.

You can create a new Maven project on the command line, or in any IDE that supports Maven.
To create a Maven project on the command line:

mvn archetype:create -DgroupId=com.sap.example -DartifactId=customState

where:
• groupId – names the package.
• artifactId – names the project and the project folder.

As the project is created, you see progress messages. For example:
[INFO] Scanning for projects...
Downloading: http://repo.maven.apache.org/maven2/org/apache/maven/
plugins/
maven-clean-plugin/2.4.1/maven-clean-plugin-2.4.1.pom
Downloaded: http://repo.maven.apache.org/maven2/org/apache/maven/
plugins/
maven-clean-plugin/2.4.1/maven-clean-plugin-2.4.1.pom (5 KB at 6.8 KB/
sec)
[...]
[INFO]
[INFO]--

[INFO] Building Maven Stub Project (No POM) 1
[INFO]--

[INFO]
[INFO] --- maven-archetype-plugin:2.2:create (default-cli) @ standalone-
pom ---
[...]
[INFO]--

[INFO] BUILD SUCCESS
[INFO]--

[INFO] Total time: 41.155s
[INFO] Finished at: Mon Oct 22 17:00:49 PDT 2012
[INFO] Final Memory: 8M/245M

See also
• Creating Maven Project Artifacts on page 63

• Sample Maven POM File on page 60

• Maven Project Structure on page 58

• Customizing Maven POM Files on page 59

Developing Custom Application States

Developer Guide 57

Maven Project Structure
When you create a Maven project, the directory structure that is created includes the project
object model (POM) file.

In this sample project, the groupId is set to com.sap.example. This directory structure is
created automatically for a new project:

Two Java files, App.java and AppTest.java, are created in the example folders, under
main and test, respectively. The POM file, which contains the initial project configuration,
is created in the customState folder. You can use this POM file as a starting point for
custom-state development.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.sap.example</groupId>
 <artifactId>customState</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>customState</name>
 <url>http://maven.apache.org</url>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

Developing Custom Application States

58 Sybase Brand Mobiliser

 </properties>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

You can open or import a newly created Maven project into your IDE. Eclipse and NetBeans
both support Maven. The image below shows the sample project structure in Eclipse.

Once you are familiar with the structure and the content of POM files, you can create them
manually. You can also create a new project in any IDE that supports Maven.

See also
• Sample Maven POM File on page 60

• Creating Maven Projects on page 57

• Creating Maven Project Artifacts on page 63

Customizing Maven POM Files
Customize a Maven project object model (POM) file to create and build custom-state OSGi
bundles to deploy to Brand Mobiliser.
Edit the Maven pom.xml file for your project to define:

• groupId – package name.

Developing Custom Application States

Developer Guide 59

• artifactId – name of the project.

• version – version number of the project.

• packaging – bundle.

• name – name of the state.

For example:
<groupId>com.sap.example</groupId>
<artifactId>customState</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>bundle</packaging>
<name>Custom State</name>

See also
• Creating Maven Projects on page 57
• Creating Maven Project Artifacts on page 63

Sample Maven POM File
A Maven project object model (POM) file contains all the required information for Maven to
create and build OSGi bundles that you can deploy to Brand Mobiliser.

This POM file (pom.xml) illustrates the basic configuration for a custom-state bundle. The
state implementation does not need libraries other than those provided by the SDK. The SDK
libraries are shown as dependencies. The contents of the original POM are shown in bold:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.sap.example</groupId>
<artifactId>customState</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>bundle</packaging>
<name>Custom State</name>
<url>http://www.sap.com</url>

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <bundle.namespace>${project.groupId}</bundle.namespace>
 <bundle.symbolicName>${bundle.namespace}.${project.artifactId}</
bundle.symbolicName>
 <brand.version>1.3.1</brand.version>
</properties>

<build>
 <defaultGoal>install</defaultGoal>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.3.2</version>

Developing Custom Application States

60 Sybase Brand Mobiliser

 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>

 <!-- Create an OSGi Bundle Manifest -->
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.3.7</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <manifestLocation>META-INF</manifestLocation>
 <Bundle-Category>object</Bundle-Category>
 <Bundle-SymbolicName>${bundle.symbolicName}</Bundle-SymbolicName>

 <Bundle-Version>${project.version}</Bundle-Version>
 <Embed-Dependency></Embed-Dependency>

 <!--
 Note: When you develop additional classes within this object
 bundle, include the package names of the classes in either the
 Export-Package, or the Private-Package, otherwise it will not
 be included in the bundle.
 -->

 <Export-Package>
 </Export-Package>

 <Private-Package>
 com.sap.example
 </Private-Package>

 <DynamicImport-Package>
 </DynamicImport-Package>

 <!--
 Note: If you use other only referenced from spring context then
 include them in the Import-Package instruction here. The *
 instruction ensures that any directly imported packages in
 supporting classes are included automatically, but the Spring
 context referenced ones need explicit reference.
 -->
 <Import-Package>
 *
 </Import-Package>

 <!--
 Each module can override these defaults in an
 optional osgi.bnd file
 -->
 <_include>-osgi.bnd</_include>

 <!--

Developing Custom Application States

Developer Guide 61

 Enable viewing of the properties file content from telnet console
 -->
 <ARF-Bundle-Template>/META-INF/config</ARF-Bundle-Template>

 </instructions>
 <obrRepository>NONE</obrRepository>
 </configuration>
 </plugin>
 </plugins>
</build>

<dependencies>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.plugins</groupId>
 <artifactId>mobiliser-brand-plugin-api</artifactId>
 <version>${brand.version}</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.plugins</groupId>
 <artifactId>mobiliser-brand-state-sdk</artifactId>
 <version>${brand.version}</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.security</groupId>
 <artifactId>mobiliser-brand-security</artifactId>
 <version>1.3.1</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.core</groupId>
 <artifactId>mobiliser-brand-core</artifactId>
 <version>${brand.version}</version>
 </dependency>
 <dependency>
 <groupId>com.sybase365.mobiliser.brand.database</groupId>
 <artifactId>mobiliser-brand-jpa</artifactId>
 <version>${brand.version}</version>
 </dependency>

 <!-- Logging -->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.6.6</version>
 </dependency>

 <!-- Optional for Unit Test -->
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
</dependencies>

 <!--

Developing Custom Application States

62 Sybase Brand Mobiliser

 Required Javax Persistence dependencies not available
 from Maven central repository
 -->
 <profiles>
 <profile>
 <activation>
 <jdk>[1.5, 1.7)</jdk>
 </activation>
 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.0.4.v201112161009</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>EclipseLink</id>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo</url>
 </repository>
 </repositories>
 </profile>
 </profiles>
</project>

See also
• Maven Project Structure on page 58

• Creating Maven Projects on page 57

• Creating Maven Project Artifacts on page 63

Creating Maven Project Artifacts
After you create a Maven project, create project artifacts to use in a custom-state bundle.

Prerequisites
Create a Maven project.

Task

1. In the example subdirectory under main, delete the App.java file.

2. In the example subdirectory, under test, delete the AppTest.java file.

3. In the main directory, create a subdirectory called resources.

The resources directory stores configuration files that Brand Mobiliser needs when it
loads state bundles.

4. In the resources directory, create these subdirectories:

• META-INF – contents are packaged in the state bundle.

Developing Custom Application States

Developer Guide 63

• META-INF/spring – stores a configuration file that the Spring Framework uses.

• META-INF/sample/conf – stores sample configuration property files; if you
copy these files to BRAND_HOME/conf/cfgload, Brand Mobiliser can load
them dynamically.

Configuration files are specific to a bundle. They tell Brand Mobiliser what states and
configurations to load, and how to link them together.

5. In the test directory, create these subdirectories:

• java
• resources

See also
• Creating Maven Projects on page 57
• Sample Maven POM File on page 60
• Maven Project Structure on page 58
• Customizing Maven POM Files on page 59

Building Maven Projects
You can build Maven projects on the command line, or you can use Maven build and unit test
projects in an IDE.

For information about building projects using Maven in the Eclipse IDE, see http://
maven.apache.org/eclipse-plugin.html.

On the command line, run:
mvn clean install

As the project builds, you see progress messages:
[INFO] Scanning for projects...
Downloading: http://repo.maven.apache.org/maven2/org/apache/felix/maven-
bundle-plugin/
2.3.7/maven-bundle-plugin-2.3.7.pom
Downloaded: http://repo.maven.apache.org/maven2/org/apache/felix/maven-
bundle-plugin/
2.3.7/maven-bundle-plugin-2.3.7.pom
(4 KB at 15.0 KB/sec)
[…]
 [INFO] Installing C:\ZMobiliser\customStateExample\customState\target
\customState-1.0-SNAPSHOT.jar
to C:\Users\I824993\.\m2\repository\com\sap\example\customState\1.0-
SNAPSHOT\customState-1.0-SNAPSHOT.jar
[INFO] Installing C:\ZMobiliser\customStateExample\customState\pom.xml
to
C:\Users\I824993\.m2\repository\com\sap\example\customState\1.0-SNAPSHOT
\customState-1.0-SNAPSHOT.pom
[INFO]
[INFO] --- maven-bundle-plugin:2.3.7:install (default-install) @
customState ---
[INFO] Local OBR update disabled (enable with -DobrRepository)

Developing Custom Application States

64 Sybase Brand Mobiliser

http://maven.apache.org/eclipse-plugin.html
http://maven.apache.org/eclipse-plugin.html

[INFO]
--

[INFO] BUILD SUCCESS
[INFO]
--

[INFO] Total time: 36.332s
[INFO] Finished at: Mon Oct 29 10:48:50 PDT 2012
[INFO] Final Memory: 11M/242M
[INFO]
--

The bundle JAR file is saved in the /className/target directory; its name is derived from
the Maven project artifactId and version. For this example, the filename is
customState-1.0-SNAPSHOT.jar.

Declaring States as Spring Beans
Developing a custom-state bundle requires that you declare each state as a Spring Framework
bean in the beans-context.xml file. A state is any Java class that either directly or
indirectly extends the SmappStatePlugin abstract class.

You can configure Spring beans by setting properties, or by creating other beans that support
state operations.

1. Edit the beans-context.xml file to add a <bean> element for each state. Define:

• id – name of the state.
• class – name of the Java class that implements the state.
For example:

 <bean id="SampleState" class="com.sap.example.SampleState">
 <property name="country" value="${sample.country}"/>
 </bean>
...

2. (Optional) Declare state properties, and assign either constant values or references to the
values that are defined in the properties-context.xml file.

The value of the country property is a reference to the sample.country property defined in
properties-context.xml.

Configuring Bean Properties
The bean properties file, properties-context.xml, declares all properties that must
be retrieved from the OSGi configuration administration service during runtime; properties
are stored in the service so they can be configured dynamically at runtime.

You can reconfigure states at runtime, without reloading state bundles or restarting Brand
Mobiliser. However, state developers must implement dynamic reconfiguration, by defining
state properties in the code.

Edit the properties-context.xml file to configure bean properties:

Developing Custom Application States

Developer Guide 65

a) Set osgix:cm-properties id to the name of the OSGi configuration
administration service property that is identified by the value of persistent-id.

Brand Mobiliser initializes the property, and loads the property file identified by the value
of persistent-id.

b) For each property, enter a <prop key> element and default value.

Properties are initialized with values from the OSGi configuration administration service.
If a property does not exist in the service, the default value is used.

c) Set the value of ctx:property-placeholder properties-ref to the value of
osgix:cm-properties id.

The value identifies a list of properties that are available for the Spring Framework to use
during state initialization.

For example:
<osgix:cm-properties id="sampleState-cfg" persistent-
id="service.sampleState">
 <prop key="sample.country">US</prop>
</osgix:cm-properties>

<ctx:property-placeholder properties-ref="sampleState-cfg"/>

Note: SAP recommends that you store a copy of the properties-context.xml file in
the META-INF/sample/conf directory.

Registering States as OSGi Services
To enable Brand Mobiliser to discover states at runtime, register them as OSGi services, by
declaring them in the services-context.xml file.

Registered states are discoverable by the StatePlugin interface:

com.sybase365.mobiliser.brand.plugins.api.smapp.StatePlugin

Edit services-context.xml, and set OSGi service properties:

• id – name of the service.

• ref – name of the state.

• interface – name of the class that implements the StatePlugin interface.

For example:

<osgi:service id="SampleStateService" ref="SampleState"

interface="com.sybase365.mobiliser.brand.plugins.api.smapp.StatePlugin"/
>

Developing Custom Application States

66 Sybase Brand Mobiliser

Deploying State Bundles
To deploy custom-state bundles, make the files available to Brand Mobiliser at runtime, and
configure the states to start automatically.

1. Copy the bundle .jar files to BRAND_HOME/bundle/application.

This directory contains all the bundles that are deployed to the Brand Mobiliser runtime
environment.

Note: Brand Mobiliser system bundles are installed in BRAND_HOME/bundle.

2. Edit the BRAND_HOME/conf/config.properties file to add the new custom-
state file to the list of bundles that are started automatically.

felix.auto.start.15 = ${aims.app.dir}/customState-1.0-SNAPSHOT.jar

All state bundles are listed in the config.properties file. Brand Mobiliser
reinitializes its bundle cache each time it starts.

3. Restart the Brand Mobiliser server.

To verify that no errors occurred, check these log files:
• brand.log
• felix.log
• spring.log
• persist.log
If there are errors, check the Spring configuration and the import/private/
dynamic package specifications.

Next
To verify that bundles resolve and start, use either Telnet or the AIMS System Web console
(both require access to localhost).

Verifying Deployment Using Telnet
Use Telnet to verify that custom-state bundles resolve and start. The Telnet interface listens
only on the localhost port, which ensures runtime environment security.

1. On the command line, run:
telnet localhost 5365

2. At the Telnet prompt, run:
felix:lb

You see output similar to the following; the state of the bundle, in this case
customState, is Active:

START LEVEL 20
ID|State | Level|Name
 0|Active | 0|System Bundle (4.0.3)
 1|Active | 14|activemq-core (5.5.1)

Developing Custom Application States

Developer Guide 67

 2|Active | 14|activemq-pool (5.5.1)
 3|Active | 14|activemq-ra (5.5.1)
 4|Active | 14|activemq-spring (5.5.1)
 5|Active | 14|ARF :: System :: arf-sys (0.3.4)
 6|Active | 14|ARF :: System :: arf-util-commands (0.3.2)
 7|Active | 14|ARF :: System :: cm-bridge (0.3.4)
 8|Active | 14|Java Activation API (1.1.1)
 9|Active | 14|Java Messaging System API (1.1.0)
10|Active | 14|CGLIB Code Generation Library (2.2.0)
11|Active | 14|AOP Alliance API (1.0.0)
12|Active | 14|Commons Pool (1.5.6)
 ...
108|Active | 1|ARF :: System :: cm-loader (0.3.4)
109|Resolved | 1|AIMS :: Object :: Brand Mobiliser Felix JRE
System Package Support (1.3.1)
110|Installed | 10|AIMS :: Object :: Brand Mobiliser Quartz OSGi
Support (1.3.1)
111|Active | 17|Restlet API (2.0.13.0)
112|Active | 17|Restlet Extension - Servlet (2.0.13.0)
113|Active | 17|Restlet Extension - Spring Framework (2.0.13.0)

114|Active | 17|Restlet Extension - JSON (2.0.13.0)
115|Active | 17|AIMS :: Service :: Brand Mobiliser Core REST
Services (1.3.1)
116|Active | 16|AIMS :: Object :: Web Core (0.1.9)
117|Active | 16|AIMS :: Object :: Web API and Model (0.1.9)
118|Active | 16|AIMS :: Process :: Brand Mobiliser Webadmin UI
(1.3.1)
119|Active | 15|customState (1.0.0.SNAPSHOT)

Verifying Deployment Using the AIMS Web Console
In a development environment, you can use the AIMS System Web console to verify that
custom-state bundles resolve and start. To ensure runtime environment security, the console
restricts access, based on a list of allowable IP addresses. By default, only localhost is
accessible.

Prerequisites
Enable the AIMS System Web console.

Task

1. (Optional) To add IP addresses that the console can access:

a) Edit the
org.apache.felix.webconsole.internal.servlet.OsgiManager
.properties file.

b) Add IP addresses to the allowed.ip.list, as a comma-separated list.

2. In a Web browser, connect to http://localhost:8080/system/console.

If you added other IP addresses, you can connect using one of them.

Developing Custom Application States

68 Sybase Brand Mobiliser

3. In the AIMS System Web console, enter these credentials:

• User name – sybase365
• Password – fr4nt1c
The Bundles tab lists all installed bundles. The Status of the customState bundle is
Active.

4. To view details about a bundle, click the bundle name.

The console displays metadata, created by the Maven Bundle Plug-in (from the bundle's
manifest file), package wiring, and services information.

Enabling the AIMS System Web Console
During development, you can use the AIMS System Web console to inspect deployed bundles,
registered configurations, and the OSGi container. By default, the Web console is disabled.

1. Edit the BRAND_HOME/conf/config.properties file, and uncomment these
lines:
Uncomment to aid in debugging container issues.
#felix.auto.start.6 = \
#${aims.app.dir}/aims-felix-webconsole-1.0.2.jar \
#${aims.app.dir}/event-webconsole-1.0.3-SNAPSHOT.jar

2. Copy the
org.apache.felix.webconsole.internal.servlet.OsgiManager.p
roperties file to the conf/cfgbackup folder.

Next
See http://felix.apache.org/site/apache-felix-web-console.html.

Configuring State Bundles
You can configure state bundles in the service.bundle.properties file, where bundle
is the name of the state bundle.

Prerequisites
Deploy the state bundle.

Developing Custom Application States

Developer Guide 69

http://felix.apache.org/site/apache-felix-web-console.html

Task

1. Edit the service.bundle.properties file.

2. Copy the file to the BRAND_HOME/conf/cfgload directory.
When the Brand Mobiliser server restarts, the files in the /conf/cfgload directory are
moved to /conf/cfgbackup, and all properties are reconfigured.

Next
Verify the new configuration using either Telnet or the AIMS Web System console.

Verifying Bundle Configuration Using Telnet
You can use Telnet to verify that state bundle configuration changes are in effect.

1. On the command line, run:
telnet localhost 5365

2. At the Telnet prompt, run:
aims:cmlist

You see:
Configuration list:
org.apache.felix.webconsole.internal.servlet.OsgiManager
 file:bundle/application/aims-felix-webconsole-1.0.2.jar
service.event.quartz
 file:bundle/application/event-scheduler-quartz-1.0.3.jar
org.ops4j.pax.logging
 file:bin/pax-logging-service-1.6.9.jar
service.webui.security
 file:bundle/application/web-core-0.1.9.jar
service.sampleState
 file:bundle/application/customState-1.0-SNAPSHOT.jar
service.brand_webapp
 file:bundle/application/mobiliser-brand-webadmin-ui-1.3.1.war
service.mobiliserCustomer.states.plugin null
service.mobiliserCustomer.client.plugin null
service.dsprovider
 file:bundle/application/dbcp-osgi-service-1.3.1.jar
service.coreprocessing
 file:bundle/application/mobiliser-brand-processing-1.3.1.jar
org.ops4j.pax.web
 file:bundle/application/pax-web-jetty-bundle-1.1.4.jar
service.event.core
 file:bundle/application/event-core-1.0.3.jar

In the output above, the service process ID (PID) for the customState-1.0-
SNAPSHOT.jar is service.sampleState.

3. To see the customState-1.0-SNAPSHOT.jar configuration, run:

aims:cmget service.sampleState

You see:

Developing Custom Application States

70 Sybase Brand Mobiliser

Configuration for service (pid) "service.sampleState"
(bundle location = file:bundle/application/customState-1.0-
SNAPSHOT.jar)

key value
------ ------
service.pid service.sampleState
sample.country US
arf.filename service.sampleState.properties

If you set the <ARF-Bundle-Template> property in the Maven POM file, you can view the
sample properties file that is packaged in the state bundle. Sample property files generally
contain documentation for each property.

4. To find all state bundles that have sample property templates, run:
aims:template

You see:
Bundles with configuration templates:
ID: 39 Bundle:com.sybase365.mobiliser.thirdparty.smppapi
ID: 49 Bundle:com.sybase365.mobiliser.brand.processing.mobiliser-brand-
processing
ID: 51 Bundle:com.sybase365.mobiliser.brand.database.mobiliser-brand-
jpa
ID: 52 Bundle:com.sybase365.mobiliser.brand.database.mobiliser-brand-
jpa-eclipselink
ID: 56 Bundle:com.sybase365.mobiliser.framework.event-store-db-
provider
ID: 57 Bundle:com.sybase365.mobiliser.framework.event-store-jpa
ID: 58 Bundle:com.sybase365.mobiliser.framework.event-store-
eclipselink
ID: 60 Bundle:com.sybase365.mobiliser.brand.osgi.dbcp-osgi-service
ID: 117 Bundle:com.sybase365.mobiliser.brand.service.mobiliser-brand-
rest-core
ID: 118 Bundle:com.sybase365.aims.webui.web-core
ID: 120 Bundle:com.sybase365.mobiliser.brand.webadmin.mobiliser-brand-
webadmin-ui
ID: 121 Bundle:com.sap.example.customState

5. To see more information about the com.sap.example.customState bundle, run:

aims:template 121

Verifying Bundle Configuration Using the AIMS Web Console
You can use the AIMS System Web console to verify that state bundle configuration changes
are in effect.

Prerequisites
Enable the AIMS System Web console.

Developing Custom Application States

Developer Guide 71

Task

1. In a Web browser, connect to http://localhost:8080/system/console.

2. In the AIMS System Web console, enter these credentials:

• User name – sybase365
• Password – fr4nt1c

3. Select the Configuration Status tab, then select the Configuration tab.

You see all state-bundle configurations.

Custom State Bundle Samples
Many custom-state implementations are based on a service-oriented architecture, in which the
custom states consume existing Web services, either SOAP or Representational State Transfer
(REST)ful types. States can either get results from one Web service, or they can aggregate
results from multiple Web service calls.

Consuming SOAP Web Service Sample
A custom state can consume an external SOAP Web service.

The Web service provider in this sample is the United States Consumer Product Safety
Commission. The WSDL file (CPSCUpcSvc.wsdl) is embedded with the bundle.
Alternately, you can retrieve the WSDL file in real time using the <wsdlUrls>
configuration. The JAX-WS Maven plug-in reads the WSDL file and generates all the
required artifacts for Web service development, deployment, and invocation.

pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<build>
[…]
 <!-- Create an OSGi Bundle Manifest -->
 <plugins>
 <plugin>
 […]
 <configuration>
 […]
 <Private-Package>
 com.sap.example
 ,org.tempuri
 </Private-Package>
 […]
 </configuration>
 </plugin>
 </plugins>
</build>

<profiles>

Developing Custom Application States

72 Sybase Brand Mobiliser

<!-- Required Javax Persistence dependency -->
 <profile>
 <activation>
 <jdk>[1.5, 1.7)</jdk>
 </activation>
 <dependencies>
 <dependency>
 <groupId>org.eclipse.persistence</groupId>
 <artifactId>javax.persistence</artifactId>
 <version>2.0.4.v201112161009</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <repositories>
 <repository>
 <id>EclipseLink</id>
 <url>http://download.eclipse.org/rt/eclipselink/maven.repo</url>

 </repository>
 </repositories>
 </profile>

<!-- Required SOAP Web Service JAX-WS only on JDK 6 -->
 <profile>
 <id>jdk6</id>
 <activation>
 <jdk>1.6</jdk>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.jvnet.jax-ws-commons</groupId>
 <artifactId>jaxws-maven-plugin</artifactId>
 <version>2.1</version>
 <executions>
 <execution>
 <id>import-wsdld</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>wsimport</goal>
 </goals>
 <configuration>
 <wsdlFiles>
 <wsdlFile>CPSCUpcSvc.wsdl</wsdlFile>
 </wsdlFiles>
 <extension>true</extension>
 <xdebug>true</xdebug>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>

Developing Custom Application States

Developer Guide 73

<!-- Required SOAP Web Service JAX-WS only on JDK 7 -->
 <profile>
 <id>jdk7</id>
 <activation>
 <jdk>1.7</jdk>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.jvnet.jax-ws-commons</groupId>
 <artifactId>jaxws-maven-plugin</artifactId>
 <version>2.2</version>
 <executions>
 <execution>
 <id>import-wsdld</id>
 <phase>generate-sources</phase>
 <goals>
 <goal>wsimport</goal>
 </goals>
 <configuration>
 <wsdlFiles>
 <wsdlFile>CPSCUpcSvc.wsdl</wsdlFile>
 </wsdlFiles>
 <extension>true</extension>
 <xdebug>true</xdebug>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>
</project>

SampleSOAPState.java
package com.sap.example;
[…]
import org.tempuri.CPSCUpcSvc;
import org.tempuri.GetRecallByWordResponse.GetRecallByWordResult;

public class SampleSOAPState extends SmappStatePlugin {

 @Override
 protected SmappState processStateLogic(SmappStateProcessingContext
context,
 SmappStateProcessingAction action)

 throws MwizProcessingException, DBException {
 CPSCUpcSvc recallService = null;
 String serviceUrl = "http://www.cpsc.gov/cgibin/CPSCUpcWS/
CPSCUpcSvc.asmx?WSDL";
 try {
 recallService = new CPSCUpcSvc(new URL(serviceUrl),

Developing Custom Application States

74 Sybase Brand Mobiliser

 new QName("http://tempuri.org/", "CPSCUpcSvc"));
 } catch (MalformedURLException mfue) {
 […]
 }
 if (null == recallService) {
 return continueFail();
 }
 String keyword = "booster";
 GetRecallByWordResult recallServiceResult =

recallService.getCPSCUpcSvcSoap12().getRecallByWord(keyword, "", "");

 if (null == recallServiceResult) {
 return continueDyn(1);
 }
 return continueOk();
 }
}

Consuming RESTful Services
Custom states that consume external RESTful Web services can use the Restlet API.

These Restlet bundles are included with Brand Mobiliser, so you need not copy them when
you install bundles. For information about using the Restlet API, see www.restlet.org.

org.restlet-2.10.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet</artifactId>
<version>2.0.13</version>

org.restlet.ext.servlet-2.0.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.servlet</artifactId>
<version>2.0.13</version>

org.restlet.ext.spring-2.0.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.spring</artifactId>
<version>2.0.13</version>

org.restlet.ext.json-2.0.13.jar
<groupId>org.restlet.jee</groupId>
<artifactId>org.restlet.ext.json</artifactId>
<version>2.0.13</version>

Developing Quick-Start Templates
You can develop custom states to enhance application capabilities, such as integration with
existing enterprise systems or cloud services. To demonstrate functionality, include sample

Developing Custom Application States

Developer Guide 75

http://www.restlet.org

applications in state bundles, which appear in the Brand UI as quick-start templates that you
can import into Brand Mobiliser.

Prerequisites

1. Develop custom states and deploy them to Brand Mobiliser.
2. Develop one or more sample applications that use the custom states.
3. Export applications to an XML file. An XML file can contain multiple applications.

Note: Each XML file creates one quick-start template. Each custom-state bundle can contain
multiple quick-start templates.

Task

Quick-start templates provide commonly used applications that you can customize to meet
specific customer needs. You can also create a quick-start template that includes a group of
applications to meet a specific functionality, for example, Mobile Wallet.

1. Copy application XML files to META-INF/sample/template.

2. For each XML file, create a dynamic template plug-in.

3. Redeploy the custom-states bundle to Brand Mobiliser.

The Quick-Start Templates component appears on the Brand Mobiliser Web UI Dashboard.

See also
• Creating Applications from Templates on page 27

Creating Dynamic Template Plug-Ins
To create a dynamic template that you can plug in to a custom-state bundle, configure the State
SDK SmappTemplateProvider class as a Spring bean.

This example configures the SmappTemplateProvider class for the GetDate.xml
file, which contains an application that demonstrates how to use the custom state Get Date. To
configure the SmappTemplateProvider class, edit both the beans-context.xml
and the services-context.xml files.

beans-context.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

<!--

Developing Custom Application States

76 Sybase Brand Mobiliser

 Beans Configuration

-->
 <bean id="SampleState" class="com.sap.example.SampleState">
 <property name="country" value="${sample.country}"/>
 </bean>

 <!-- Template -->
 <bean id="SampleApplication" class=

"com.sybase365.mobiliser.brand.template.SmappTemplateProvider">
 <property name="name" value="Sample Get Date Application" />
 <property name="description" value="Type: Training.
 A sample application to demonstrate the Get Date
state." />
 <property name="resource" value="classpath:META-INF/template/
GetDate.xml" />
 </bean>
</beans>

services-context.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns=http://www.springframework.org/schema/beans
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.eclipse.org/gemini/blueprint/schema/
blueprint"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd

 http://www.eclipse.org/gemini/blueprint/schema/blueprint
 http://www.eclipse.org/gemini/blueprint/schema/blueprint/gemini-
blueprint-1.0.xsd">

 <!--

 Register state as OSGi Service

 -->
 <osgi:service id="SampleStateService"
 ref="SampleState"
 interface=

"com.sybase365.mobiliser.brand.plugins.api.smapp.StatePlugin"/>

 <!--
 Template Service
 -->
 <osgi:service id="SampleApplicationService"
 ref="SampleApplication"
 interface=

"com.sybase365.mobiliser.brand.plugins.api.smapp.SmappTemplate"
 context-class-loader="service-provider"/>
</beans>

Developing Custom Application States

Developer Guide 77

Custom State Samples
Custom state samples illustrate how to implement a service state, a standalone state, and a
menu state.

Sample GetMyWeather State
The GetMyWeather sample illustrates a typical custom-state implementation. This type of
state is called a service state, because its function is to call a specific Web service (in this case a
weather service), and store the results for the application to use. This type of state is commonly
integrated with enterprise systems.

public class GetMyWeather extends SmappStatePlugin {
 private static final Logger LOG =
 LoggerFactory.getLogger(GetMyWeather.class);

 // Define Input attributes

 private static final TextBoxAttribute inPostCode =
 new TextBoxAttribute("POSTCODE", "Zip or Postal Code", false);

 // Define Output attributes

 private static final OutputAttribute outWeather =
 new OutputAttribute("WEATHER", "Your Weather Synopsis");

 private static Attribute[] stateAttr;

 static {
 stateAttr = new Attribute[] {inPostCode, outWeather};
 }
 private static long STATE_ID = 600000L;

 @Override
 public long getStateId() {
 return STATE_ID;
 }

 @Override
 public String getStateName() {
 return "Example - Get My Weather";
 }

 @Override
 public String getRevisionString() {
 return "1.0.0";
 }

 @Override

Developing Custom Application States

78 Sybase Brand Mobiliser

 public String getStateNotes() {
 StringBuilder sb = new StringBuilder();
 sb.append("A sample state. When executed, it checks for a ");
 sb.append("Postal/ZIP Code, and returns the weather report for ");
 sb.append(" that area.\n\n Use the following follow up states:\n ");
 sb.append("- OK: Weather report for the area was found\n ");
 sb.append("- FAIL: Unexpected error\n ");
 sb.append("- Dyn -1: Area code entered was not valid\n ");
 sb.append("- Dyn -2: No weather report for the area\n ");
 return sb.toString();
 }

 @Override
 public boolean supportsFailTransition() {
 return true;
 }

 @Override
 protected Attribute[] getStateAttributes() {
 return stateAttr.clone();
 }

 @Override
 protected SmappState processStateLogic(
 SmappStateProcessingContext context,
 SmappStateProcessingAction action)
 throws MwizProcessingException, DBException {

 WeatherResult result = null;

 try {
 // Call the weather Web service
 // Details are Web service specific and therefore
 // are encapsulated in the callWeatherService method

 result = callWeatherService();

 if (result == null)
 return continueFail();

 if (result.status == -1)
 return continueDyn(-1);

 if (result.status == -2)
 return continueDyn(-2);

 // Output attribute

 outWeather.setValue(result.text);
 return continueOk();
 }
 catch (DBException dbex) {
 // Database exception can occur while saving session attributes
 LOG.error("error");
 return continueFail();

Developing Custom Application States

Developer Guide 79

 }
 }
}

See also
• Sample Custom State on page 80
• Extending the SmappStatePlugin Class on page 35
• Custom State Variables on page 45

Sample Custom State
A simple custom state, named SampleState, formats the current date.

You can modify the date format in the properties-context.xml file. The formatted
date is stored in an output variable.

SampleState.java
package com.sap.example;
import java.text.Format;
import java.text.SimpleDateFormat;
import java.util.Date;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.sybase365.mobiliser.brand.dao.DBException;
import com.sybase365.mobiliser.brand.jpa.SmappState;
import
com.sybase365.mobiliser.brand.plugins.api.smapp.SmappStateProcessingActi
on;
import
com.sybase365.mobiliser.brand.plugins.api.smapp.SmappStateProcessingCont
ext;
import
com.sybase365.mobiliser.brand.plugins.smapp.controls.Attribute;
import
com.sybase365.mobiliser.brand.plugins.smapp.controls.OutputAttribute;
import
com.sybase365.mobiliser.brand.plugins.smapp.state.SmappStatePlugin;
import
com.sybase365.mobiliser.brand.processing.exceptions.MwizProcessingExcept
ion;

public class SampleState extends SmappStatePlugin {
 private static final Logger LOG =
 LoggerFactory.getLogger(SampleState.class);
 protected static final OutputAttribute outDate =
 new OutputAttribute("DATE", "Current Date");
 private static Attribute[] stateAttr;
 private String country = "";

 public void setCountry(String value) {
 LOG.debug("Country = " + value);
 this.country = value;
 }

Developing Custom Application States

80 Sybase Brand Mobiliser

 static {
 stateAttr = new Attribute[] {outDate};
 }

 private static long STATE_ID = 600000L;

 @Override
 public String getStateNotes() {
 return "A sample state. When executed, it returns the current \n"

 + " date in the format of the configured country.\n\n"
 + "Use the following follow up states:\n"
 + "- OK: date and time in the output variable.\n"
 + "- FAIL: If an error occurs during processing.\n";
 }

 @Override
 public boolean supportsFailTransition() {
 return true;
 }

 @Override
 protected Attribute[] getStateAttributes() {
 return stateAttr.clone();
 }

 public String getRevisionString() {
 return "1.0.0";
 }

 public long getStateId() {
 return STATE_ID;
 }

 public String getStateName() {
 return "Example - Get Date";
 }

 @Override
 protected SmappState processStateLogic(
 SmappStateProcessingContext context,
 SmappStateProcessingAction action)
 throws MwizProcessingException, DBException {

 Format formatter = new SimpleDateFormat("MM dd yyyy");

 if (!country.equalsIgnoreCase("US"))
 formatter = new SimpleDateFormat("dd MM yyyy");

 outDate.setValue(formatter.format(new Date()));
 return continueOk();
 }
}

Developing Custom Application States

Developer Guide 81

See also
• Sample GetMyWeather State on page 78
• Extending the SmappStatePlugin Class on page 35

Sample Custom-Menu State
The contents of SendSampleMenu.java and SampleBean.java illustrate how to
create a custom-menu state.

SendSampleMenu.java
Some details from this sample have been omitted, because they are similar to those in
nonmenu custom-state implementations.

// Package name and imports have been omitted for clarity

public class SendSampleMenu extends AbstractStateMenuImpl {

 // Other omissions include input and output variable declarations,
 // getRevisionString, getStateId, getStateName, and getStateNotes

 @Override
 protected int getMaxMenuItems () {
 return 4;
 }

 // Similar implementation as getStateAttributes

 @Override
 protected Attribute[] getStateAttributeList() {

 // Assume stateAttr has been defined
 return stateAttr.clone();
 }

 @Override
 protected SmappState init(SmappStateProcessingAction action)
 throws DBException {
 try {
 // Get the menu list from the source: database or service
 // Convert it to the SampleBean list
 // See SampleBean class below

 List<SampleBean> sampleList = getSampleMenuList();

 // Store the list in the session variable
 setMenuListToSession(sampleList);
 }
 catch (DBException dbex) {
 return continueFail();
 }
 catch (Exception ex) {
 return continueFail();
 }
 return null;

Developing Custom Application States

82 Sybase Brand Mobiliser

 }

 @Override
 protected List<KeyValuePair<String, String>> constructMenuList()
 throws DBException {
 List<KeyValuePair<String, String>> menuList =
 new ArrayList<KeyValuePair<String, String>>();

 for (SampleBean sb : getMenuListFromSession(new SampleBean()))
{
 keyValuePair = new KeyValuePair<String, String>();
 keyValuePair.setKey(sb.getId());
 keyValuePair.setValue(sb.getStatus());
 menuList.add(keyValuePair);
 }
 return menuList;
 }

 @Override
 protected SmappState saveSessionVariables(String key, String value)
 throws DBException {
 int selectedKey = Integer.parseInt(key);

 }

SampleBean.java
// Package name and imports have been omitted for clarity

public class SampleBean implements BeanConverterInterface<SampleBean> {

 protected String id;
 protected String status;

 public static SampleBean parse (String id, String status) {
 SampleBean sb = new SampleBean();
 sb.id = id;
 sb.status = status;
 }

 @Override
 public String convert(SampleBean sb) {
 StringBuilder sb = new StringBuilder();
 sb.append(sb.getId());
 sb.append("|");
 sb.append(sb.getStatus());
 return sb.toString();
 }

 @Override
 public SampleBean convert(String value) {
 String[] values = value.split("\\|");
 Return SampleBean.parse(values[0], values[1]);
 }

 public String getId() {

Developing Custom Application States

Developer Guide 83

 return id;
 }

 public String getStatus() {
 return status;
 }
}

See also
• Extending the AbstractDynamicMenu Class on page 39

State SDK Core Components
You can use State SDK core components when developing custom states. Each component is
an OSGi bundle. These components are deployed with Brand Mobiliser, so you need not
redeploy them with custom-state components.

Plug-in APIs
The Plug-in APIs include APIs for states, state attributes, and data access objects.

Apache Maven:
<groupId>com.sybase365.mobiliser.brand.plugins</groupId>
<artifactId> mobiliser-brand-plugin-api</artifactId>
<name>AIMS :: Object :: Brand Mobiliser Plugin - API</name>

File name: mobiliser-brand-plugin-api-1.3.1.jar

State SDK
The State SDK contains state implementation base classes, state input and output controls, and
helper classes.

Apache Maven:
<groupId>com.sybase365.mobiliser.brand.plugins</groupId>
<artifactId> mobiliser-brand-state-sdk</artifactId>
<name>AIMS :: Object :: Brand Mobiliser Plugin - State SDK</name>

File name: mobiliser-brand-state-sdk-1.3.1.jar

Security
The Security APIs support encryption functionality that states use.

Apache Maven:
<groupId>com com.sybase365.mobiliser.brand.security</groupId>
<artifactId> mobiliser-brand-security</artifactId>
<name>AIMS :: Object :: Brand Mobiliser Security</name>

File name: mobiliser-brand-security-1.3.1.jar

Developing Custom Application States

84 Sybase Brand Mobiliser

Core Objects
Apache Maven:

<groupId>com.sybase365.mobiliser.brand.core</groupId>
<artifactId> mobiliser-brand-core</artifactId>
<name>AIMS :: Object :: Brand Mobiliser Core Objects</name>

File name: mobiliser-brand-core-1.3.1.jar

Persistence APIs and Models
Apache Maven:

<groupId>com.sybase365.mobiliser.brand.database</groupId>
<artifactId> mobiliser-brand-jpa</artifactId>
<name>AIMS :: Object :: Brand Mobiliser Persistence</name>

File name: mobiliser-brand-jpa-1.3.1.jar

Developing Custom Application States

Developer Guide 85

Developing Custom Application States

86 Sybase Brand Mobiliser

States Catalog

You can use predefined Brand Mobiliser states to build interactive and event applications.

Each state definition includes:

• Input variables – constant values, or values copied from a variable in the current user
session.

• Output variables – allow states to return values.
• Follow-up state OK – the condition that constitutes success.
• Follow-up state OK – the condition that constitutes failure, and possible reasons for the

failure.
• Follow-up state dynamic – dynamic conditions that transition to follow-up states.
• State editor – example of the state configuration.
• Notes – additional information about the state.
• Usage – Application Composer screen shot that contains the state.

Add Subscriber State
Adds a subscriber and attributes to the selected subscriber list. You can retrieve a subscriber's
MSISDN from a session variable, and set as many as 20 attributes.

Input Variables

• Subscriber Set – select a subscriber set from a list.
• Subscriber MSISDN – unique key for retrieving a subscriber's attributes.
• Attribute 1, Attribute 2, ... Attribute 20 – subscriber attributes.

Output Variables
SUBSCRIBER_COUNT – total number of subscribers in the subscriber set, after adding the
current one.

Follow-up State – OK
Subscriber was added successfully.

Follow-up State – Fail
Error while adding the subscriber, possibly because:

• MSISDN already exists
• Unrecoverable system error, such as a database-connection failure

States Catalog

Developer Guide 87

Follow-up State – Dynamic
Not applicable.

State Editor
In this example, the New Add Subscriber state adds a subscriber to the testList subscriber
set.

Usage
A common use for the Add Subscriber state is to store subscribers who opt to receive messages
or coupons. For example, in the More Info application, a message is sent to subscribers, and
the message contains a reply keyword for interested subscribers. When a subscriber replies

States Catalog

88 Sybase Brand Mobiliser

with the keyword, the application retrieves the subscriber's information from the list used in
the campaign (Get Subscriber Information state), adds the subscriber to the Opt-In list (Add
Subscriber state), and sends a discount coupon to the subscriber.

See also
• Get Subscriber State on page 101

• Process Subscriber State on page 106

• Update Subscriber State on page 124

Application Call State
Calls another application as a subroutine. The called application has access to session
variables, and returns control to the current (calling) application.

Input Variables
Application – select an application in the list. All applications in the list are active in the
current workspace.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Uses the return value from the Application Call Return state to select which transition to
follow.

State Editor
The return value from the called application determines the follow-up state. In the example
below:

States Catalog

Developer Guide 89

• SUCCESS calls Get Agent Information.
• FAILURE calls Invalid Agent Code Format.

Notes
Interactive applications only.

Usage
In this example, customers enter a 6-digit code that identifies an agent, and the code is
validated. Because this is a common task, you may want to write the validation procedure as a
separate application that returns a status code. Using multiple follow-up states, you can link
the return value to the appropriate follow-up state.

States Catalog

90 Sybase Brand Mobiliser

States Catalog

Developer Guide 91

See also
• Application Call Return State on page 92
• Goto Application State on page 104

Application Call Return State
The final state of applications that are called by other applications. This state returns a value to
the calling application.

Input Variables
Return Value – value returned to the calling application.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

States Catalog

92 Sybase Brand Mobiliser

Follow-up State – Dynamic
Not applicable.

State Editor
This state returns the constant value SUCCESS to the calling application.

Notes
Interactive applications only.

Usage
This application attempts to validate an agent code, and returns three possible values to the
calling application.

See also
• Application Call State on page 89

States Catalog

Developer Guide 93

Compare Typed Variables State
Compares two variables of the same type: text, integer, double, or date.

Input Variables

• Variable Type – type to compare: text, integer, double, or date.
• Text Case Sensitive – whether text comparison is case-sensitive, yes or no; the default is

no.
• Left Variable – name of the variable on left side of operator. If the corresponding check box

is selected, the application assumes Left Variable is the name of a session variable;
otherwise, the application assumes Left Variable is a constant.

• Operator – comparison operator; variable type determines valid operators:

Variable Type Valid Operators

text =, !=, =REGEX

If =REGEX is selected, enter the regular expression as the Right

Variable.

integer, double, or date =, !=, <=. <, >=, >

• Right Variable – name of variable on right side of operator (or regular expression). If the
corresponding check box is selected, the application assumes Right Variable is the name of
a session variable, otherwise, a constant.

Note: If you enter the name of a session variable that does not exist, the state fails.

Output Variables
None.

Follow-up State – OK
Left Variable equals Right Variable.

Follow-up State – Fail

• The values of Left Variable and Right Variable are not equal, or
• Either Left Variable or Right Variable is the name of a session variable that does not exist.

Follow-up State – Dynamic
Not applicable.

States Catalog

94 Sybase Brand Mobiliser

State Editor
In this example, a case-sensitive text comparison is performed for the session variables TEMP
and VAR2. If equal, the follow-up state is Send Variable Values - Equal; if unequal, or either
session variable does not exist, the follow-up state is Send Variable Values - Not Equal.

Usage
A common use of the Compare Typed Variables state is in an application that prompts for a
PIN, and limits the number of incorrect entries.

States Catalog

Developer Guide 95

See also
• Compare Variables State on page 96

Compare Variables State
Compares the values of two variables, for string equality.

Input Variables
For both input variables, if the corresponding check box is selected, the application assumes
the value is the name of a session variable; otherwise, the value is treated as a constant.

• Variable 1 – name of a session variable, or a constant value.
• Variable 2 – name of a session variable, or a constant value.

Output Variables
None.

Follow-up State – OK
The values of Variable 1 and Variable 2 are equal.

Follow-up State – Fail

• The values of Variable 1 and Variable 2 are not equal, or
• Either Variable 1 or Variable 2 is the name of a session variable that does not exist.

Follow-up State – Dynamic
Not applicable.

State Editor
In this example, if the values of TEMP and VAR2 are equal, the application proceeds to the
Send Variable Values - Equal state; if unequal, or either session variable does not exist,
proceeds to the Send Variable Values - Not Equal state.

States Catalog

96 Sybase Brand Mobiliser

Notes
This state compares only for string equality. For comparing other types, use the Compare
Typed Variables state.

Usage
The sample application below compares the session variable ACCOUNT to a constant value. If
the two values are unequal, the Validate Account Using Copy Variable state is called to copy
the ACCOUNT session variable to a dummy session variable. If copying fails, the ACCOUNT
session variable does not exist.

States Catalog

Developer Guide 97

See also
• Compare Typed Variables State on page 94

Copy Variables State
Copies a constant or the value of a source variable to a session variable.

Input Variables
Source – the source from which to copy. If source is the name of a session variable, select the
check box. Otherwise, the application assumes the value of source is a constant.

Note: If you specify a session variable that does not exist, the state fails.

Output Variables
Destination – name of the destination session variable. If the session variable does not already
exist, it is created.

Follow-up State – OK
Successfully copied the source to the destination variable.

States Catalog

98 Sybase Brand Mobiliser

Follow-up State – Fail
Failed to copy the source to the destination variable, usually because the source variable does
not exist.

Follow-up State – Dynamic
Not applicable.

State Editor
This example copies the value of the session variable CUST_BALANCE into the session
variable PRE_REMIT_BALANCE.

Notes
Session variables are also set in these circumstances:

• If you specify a value surrounded by parentheses in the Expression field for a follow-up
state, and specify the session variable name in the Assign To field.

• If a state returns values, they are copied to session variables, so they are accessible by
follow-up states.

Usage
In the sample application below, the customer balance is retrieved twice, before and after
calling the transaction. The customer balance is stored in a session variable called Balance. To

States Catalog

Developer Guide 99

prevent overwriting the pretransaction balance with the posttransaction balance, the
application copies the pre-transaction balance into another session variable before calling Get
New Balance. If Copy Customer Balance fails, Get Customer Balance is called again.

See also
• Set Variable State on page 120

Counter State
Creates a variable that is incremented by one each time the state is called.

Input Variables
Variable Name – name of the session variable to increment. You must select the corresponding
check box, or the state fails.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Fails if variable check box is not selected.

Follow-up State – Dynamic
Determined by the integer N, the updated counter.

State Editor
In this example, the Counter state increments the INDEX session variable.

States Catalog

100 Sybase Brand Mobiliser

Notes
The Counter state increments session variables only.

Usage
You can use the Counter state as an index in a loop; commonly used to allow customers a
limited number of retry attempts.

Get Subscriber State
Gets subscriber information from a selected subscriber list. The subscriber's MSISDN is
retrieved from the session variable MSISDN. Up to 20 subscriber attributes can be retrieved
and assigned to session variables.

Input Variables

• Subscriber Set – select a subscriber set from a list.
• Subscriber MSISDN – unique key for retrieving a subscriber's attributes.

Output Variables
Attribute 1, Attribute 2, ... Attribute 20 – up to 20 subscriber attributes can be assigned to these
session variables.

Follow-up State – OK
Subscriber attributes successfully retrieved.

States Catalog

Developer Guide 101

Follow-up State – Fail
Error while retrieving attributes, possibly because:

• MSISDN does not exist.
• Unrecoverable system error, such as database-connection failure.

Follow-up State – Dynamic
Not applicable.

State Editor
This Get Subscriber state retrieves the attributes for the subscriber identified by MSISDN,
from the testList subscriber set, and saves attribute values in the output variables.

States Catalog

102 Sybase Brand Mobiliser

Usage
The Get Subscriber state is typically used with the Process Subscriber state.

States Catalog

Developer Guide 103

See also
• Add Subscriber State on page 87

• Process Subscriber State on page 106

• Update Subscriber State on page 124

Goto Application State
The final state of an application that transfers control to another application. Session variables
are available to the next application.

Input Variables
Application – select an application from the list. All applications in the list are active in the
current workspace.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Not applicable.

State Editor
This Goto Application state calls the Pay Parking application.

States Catalog

104 Sybase Brand Mobiliser

Notes
The called (Goto) application must be in the same workspace as the calling application.

In event applications, the Goto Application state cannot follow the Process Subscriber state,
because the Goto Application state discontinues the loopback mechanism provided by the
engine.

Usage
In this example, the Send SMS state sends a menu to customers, whose selections determine
the next (Goto) application.

States Catalog

Developer Guide 105

See also
• Application Call State on page 89

Process Subscriber State
In event applications, the Process Subscriber state typically retrieves a subscriber from a
subscriber set, passes the subscriber information to the Send SMS state, then either returns to
get the next subscriber, or ends the application.

Input Variables
Subscriber Set – select a subscriber set from the list.

Output Variables
None.

Follow-up State – OK
A subscriber is available to process.

Follow-up State – Fail
The event-window processing terminates, because of database connection errors, or other
unexpected errors.

Follow-up State – Dynamic

• END – the end date for the event window has been reached.
• FINISH – processing terminates because the event window ends.
• COMPLETE – no unprocessed subscribers remain in the list.

Note: If the state does not handle END, FINISH, and COMPLETE dynamic transitions, the
follow-up state is the same as OK.

State Editor
This sample state processes subscribers in the testList subscriber set. When it successfully
retrieves a subscriber from the set, it calls Send Event Message.

States Catalog

106 Sybase Brand Mobiliser

Notes
Event applications only.

Usage
This example shows how a simple static-message push campaign gets a subscriber from a set,
and sends a message.

States Catalog

Developer Guide 107

See also
• Add Subscriber State on page 87

• Get Subscriber State on page 101

• Update Subscriber State on page 124

States Catalog

108 Sybase Brand Mobiliser

Send SMS State
Sends short message service (SMS) messages to mobile subscribers. If there is at least one
follow-up state, the application waits for a subscriber response; otherwise, the application
terminates.

Input Variables
Message – text to send via SMS. If the text is more than 160 characters, the text is divided and
sent in multiple messages.

To embed the value of a session variable into the text, enter the name of the variable,
surrounded by curly braces. For example, if you enter {INDEX}, it is replaced by the value of
the session variable INDEX. If no such variable exists, {INDEX} is sent as a literal.

In event applications, the Request SMPP Acknowledgement flag appears in the
message, requesting acknowledgement from the short message peer-to-peer (SMPP) gateway.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Continue the application when a response is received. To determine the follow-up state,
compare the response to the values of Expression for follow-up states.

State Editor
This example specifies one follow-up state, the Mobiliser Change Credential state. The value
of Expression matches any response, and assigns the response to the NEW_CRED session
variable, which can be used later in the task flow.

States Catalog

Developer Guide 109

Notes
If session variables are embedded in a message, it may be impossible to determine the number
of characters in the message prior to runtime.

At runtime, the Send SMS state temporarily suspends the application flow and waits for a
response. By default, the wait (also known as session timeout) lasts 7.5 minutes (450 seconds).
Once a session times out, responses are ignored. Depending on the setup, subscribers may
receive a guidance message or a menu. You can alter the length of the session timeout for each
application, on the Application Details screen.

Usage
In the scenario illustrated below, the Send SMS state sends a message asking for the
subscriber's PIN.

States Catalog

110 Sybase Brand Mobiliser

Send USSD Input State
Sends a prompt for input to subscribers using Unstructured Supplementary Service Data
(USSD).

Input Variables
All input variables are optional.

• Input Validation String – value that can validate expected response values.
• Input Validation Handler URL – URL to validate expected response values.
• Mask the Response – select Yes or No to mask input on the telephone.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
If an internal problem occurs formatting the state text.

Follow-up State – Dynamic
Continue the application when a response is received. To determine the follow-up state,
compare the response to the values of Expression for follow-up states.

State Editor
This example specifies two follow-up states; if the input value is 0, the Send Response state is
called; if the input value is anything else, the Send USSD Input state is called again.

States Catalog

Developer Guide 111

See also
• Send USSD Menu State on page 112

• Send USSD Text State on page 118

Send USSD Menu State
Sends a menu to subscribers via Unstructured Supplementary Service Data (USSD), and
expects menu-option responses. This is an abstract state type, which you can extend to develop
dynamic menus.

Input Variables
Show Exit Menu Item – enter:

• 1 for yes; this is the default.

• 0 for no.

Output Variables

• Variable for selected key – name of the session variable in which to store the selected
option key.

States Catalog

112 Sybase Brand Mobiliser

• Variable for selected value – name of the session variable in which to store the selected
option value.

Follow-up State – OK
Typically used when the menu is created successfully, and the user sends a valid response.

Follow-up State – Fail
Used only if there is an internal error processing the dynamic menu.

Follow-up State – Dynamic
To process dynamic transitions, they must be implemented in the state’s code.

State Editor
In this example, if users send a valid response, another application is called to process the
response. If an error occurs, control is passed to an application that terminates processing. The
selected option key is stored in the session variable VAR_KEY, and the selected option value is
stored in the session variable VAR_VALUE.

States Catalog

Developer Guide 113

Notes
This state enables you to create a dynamic menu, and present the menu to subscribers as a
series of options with relevant responses. The menu items are:

States Catalog

114 Sybase Brand Mobiliser

• Header text – enter in the Message input field, as the message header.
• Options – provided programmatically in instances of this state type, by a state developer.
• Paging Options – this state type automatically adds Next and Previous options to a menu

list if there are more options than fit on a single page.
• End Option – an option that you can add to end or exit the menu.

Usage
To implement a dynamic menu, create a subclass that extends this abstract class:

com.sybase365.mobiliser.brand.plugins.ussd.impl.AbstractDynamicUssdMenu

This abstract superclass creates and structures messages. Subclasses must override and
implement abstract methods to provide the required functionality.

/* The state attribute list is already set */
protected abstract Attribute[] getStateAttributeList();

/*
* Initialize the dynamic list, possibly based on subscriber information

*/
protected abstract SmappState init(SmappStateProcessingAction action)

 throws MwizProcessingException, DBException, JAXBException,
IOException,
 ServiceException, RequiredParameterMissingException;

/*
* Return the list of options in a format [[key,text],...]
*/
protected abstract List<KeyValuePair<String, String>> getMenuList()

 throws NumberFormatException, DBException,
RequiredParameterMissingException;

/*
* Allow the branching of processes based on selected key.
* If you want to use the configured dynamic follow-up
* transitions, override this method and return continueDyn(key);
* otherwise, override this method and return null to follow the
* OK transition when the user selects an option.
*/
protected abstract SmappState
saveSessionVariables(SmappStateProcessingContext context,
 String key, String value)
 throws MwizProcessingException, DBException,
RequiredParameterMissingException;
...

See also
• Send USSD Input State on page 111

• Send USSD Text State on page 118

States Catalog

Developer Guide 115

Sample USSD Menu Code
The code for a sample implementation of the Send USSD Menu state produces a menu with
four options: Option 1, Option 2, Option 3, and Option 4.

The SmappStateSendUssdMenu class implements the sample USSD menu. The fully
qualified class name is:

com.sybase365.mobiliser.brand.plugins.ussd.impl.SmappStateSendUssdMenu

SmappStateSendUssdMenu is a subclass of the AbstractDynamicUssdMenu
abstract class.

package com.sybase365.mobiliser.brand.plugins.ussd.impl;

import com.sybase365.mobiliser.brand.dao.DBException;
import com.sybase365.mobiliser.brand.jpa.SmappState;
import
com.sybase365.mobiliser.brand.plugins.api.smapp.SmappStateProcessingActi
on;
import
com.sybase365.mobiliser.brand.plugins.smapp.controls.Attribute;
import com.sybase365.mobiliser.brand.plugins.useful.KeyValuePair;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
* Loads all available languages and puts them into a menu
*
*/
public class SmappStateSendUssdMenu extends AbstractDynamicUssdMenu
{
 protected static final Logger LOG =
 LoggerFactory.getLogger(SmappStateSendUssdMenu.class);

 private static final String[] OPTIONS =
 { "Option 1", "Option 2", "Option 3", "Option 4" };

 private List<String> listOfOptions = Arrays.asList(OPTIONS);

 private static Attribute[] stateAttr;

 static {
 stateAttr = new Attribute[]{};
 }

 @Override
 protected Attribute[] getStateAttributeList() {
 return stateAttr.clone();
 }

States Catalog

116 Sybase Brand Mobiliser

 @Override
 public long getStateId() {
 return 485002;
 }

 @Override
 public String getStateName() {
 return "Send USSD Menu";
 }

 @Override
 public String getStateNotes() {
 return "This state generates a sample USSD Menu.\n" +
 "Use these follow-up states:\n" +
 "- OK: If user selected a menu item.\n" +
 "- FAIL: If an error occurs.";
 }

 @Override
 public boolean supportsOkTransition() {
 return true;
 }

 @Override
 public String getRevisionString() {
 return "$Revision:28128 $";
 }

 @Override
 protected SmappState init(SmappStateProcessingAction action)
 throws DBException {

 if (listOfOptions == null) {
 return continueFail();
 }

 return null;
 }

 @Override
 protected int getMaxMenuItems() {
 return this.listOfOptions.size();
 }

 @Override
 protected List<KeyValuePair<String, String>> constructMenuList()
 throws DBException {

 List<KeyValuePair<String, String>> list =
 new ArrayList<KeyValuePair<String, String>>();

 int optionNumber = 1;

 for (String option : listOfOptions) {
 KeyValuePair<String, String> keyVal = new KeyValuePair<String,
String>();

States Catalog

Developer Guide 117

 keyVal.setKey(Integer.toString(optionNumber));
 keyVal.setValue(option);
 list.add(keyVal);
 optionNumber++;
 }

 return list;
 }

 @Override
 protected SmappState saveSessionVariables(SmappStateProcessingContext
context,
 String key, String value)
 throws MwizProcessingException, DBException,
RequiredParameterMissingException {
 return null;
 }
}

Send USSD Text State
Sends a text notification to subscribers via Unstructured Supplementary Service Data
(USSD). When subscribers send confirmations, the channel manager passes the messages to
the processing engine.

Input Variables
USSD Session Handling – select how USSD sessions are managed by the channel manager.

Note: This option is relevant only when the channel manager is configured to manage USSD
session information.

The session handling options are:

• None – used when no other option is selected; no specific handling is performed.
• Default – session handling is based on the follow-up state transitions.
• Continue – overrides the default behavior; the channel manager instructs the USSD

Gateway with which it is interfacing to continue the USSD session for this user, regardless
of whether there are follow-up transitions.

• End – overrides the default behavior; the channel manager instructs the USSD Gateway
with which it is interfacing to terminate the USSD session for this user, regardless of
whether there are follow-up transitions.

Output Variables
None.

Follow-up State – OK
Not applicable.

States Catalog

118 Sybase Brand Mobiliser

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
To determine the follow-up state, compare responses to values of Expression for follow-up
states.

State Editor
In this example, you specify the text to send to subscribers in the Message field. Notes describe
the state functionality and how to use it.

Notes
To tell the channel manager to end the USSD session, the state appends [$[End]$] to the
message text. The channel manager strips off this text before sending the message to the USSD
Gateway.

States Catalog

Developer Guide 119

See also
• Send USSD Input State on page 111

• Send USSD Menu State on page 112

Set Variable State
Sets a session variable with a specified string value. If you specify a numeric value, it is saved
as a string.

Input Variables

• Variable – name of the session variable to set.
• Value – value to save in the session variable. To set Variable with the value of another

session variable, specify the session variable name as {sessionVariable} where
sessionVariable contains the value to copy.

Output Variables
None.

Follow-up State – OK
The name of the follow-up state after successful processing.

This process always succeeds and moves to the next state.

Note: This state performs no error checking. Even if the input variables are empty, it proceeds
to the follow-up state. SAP recommends that you use the Copy Variables state to set session
variables, because it performs input validations, and uses the Fail follow-up state for error
handling and debugging.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Not applicable.

State Editor
This example sets the session variable CREDIT to 1000. The variable can be accessed by any
state in the application.

States Catalog

120 Sybase Brand Mobiliser

Notes
Session variables are also set in these circumstances:

• If you specify a value surrounded by parentheses in the Expression field for a follow-up
state, and specify the session variable name in the Assign To field.

• If a state returns values, they are copied to session variables, so they are accessible by
follow-up states.

Note: Setting session variables overwrites any values that are already set for them. For
example, if a state returns a value in the session variable X, and the follow-up state also sets
variable X, the return value is lost. To avoid this issue, use the Copy Variables state, instead of
Set Variable.

Usage
This example sets the session variable ALERT_MESSAGE with a message sent by the Send
SMS state.

States Catalog

Developer Guide 121

See also
• Copy Variables State on page 98

Start Application State
The Start Application state is the initial state in applications. It is created automatically, and
cannot be deleted.

Input Variables
None.

Output Variables
None.

Follow-up State – OK
Not applicable.

Follow-up State – Fail
Not applicable.

Follow-up State – Dynamic
Keywords sent by subscribers initiate applications. An application can have multiple
keywords. Dynamic transitions enable custom flows, and are based on incoming keywords.

State Editor
A Start Application state with a single follow-up state, Send SMS: Welcome and Menu.

States Catalog

122 Sybase Brand Mobiliser

Notes
At least one follow-up state is required.

Usage
In this example, the Start Application state processes multiple keywords using different task
flows.

States Catalog

Developer Guide 123

Update Subscriber State
Updates subscriber attributes in the selected subscriber set. Gets the subscriber's MSISDN
from a session variable, and updates as many as 20 attributes.

Input Variables

• Subscriber Set – select a subscriber set from a list.
• Subscriber MSISDN – unique key for retrieving a subscriber's attributes.
• Attribute 1, Attribute 2, ... Attribute 20 – subscriber attributes.

Output Variables
None.

Follow-up State – OK
Subscriber updated successfully.

Follow-up State – Fail
Error while updating the subscriber, possibly because:

• MSISDN already exists.
• Unrecoverable system error, such as database-connection failure.

Follow-up State – Dynamic
Not applicable.

State Editor
In this example, the Update Subscriber state updates attributes for subscribers in the testList
subscriber set.

States Catalog

124 Sybase Brand Mobiliser

Notes
None.

Usage
One possible use for the Update Subscriber state is a voting application, in which a voter is
added to the Voting Results list, and subsequently, the Update Subscriber state can insert
information in other fields.

See also
• Add Subscriber State on page 87

• Get Subscriber State on page 101

• Process Subscriber State on page 106

States Catalog

Developer Guide 125

States Catalog

126 Sybase Brand Mobiliser

Index
A
AbstractDynamicMenu class 39

life cycle 40
AbstractDynamicUssdMenu class 116
AbstractStateMenuImpl class, extending 82
accessing input variables 50
activating

applications 21
events 21

activation 19
Add Subscriber state 87
adding

states to applications 10
advanced interactive messaging server 1
AIMS 1
AIMS System Web console

enabling 69
Apache Maven

configuring 53
creating a project 57
customizing POM files 59
installing 53
project artifacts, creating 63
project structure 58
projects, building 64
sample POM file 60
setting up 53

Application Call Return state 92
Application Call state 89
Application Composer 5
application states 2

adding 10
base 3
configuring in Application Composer 5
custom, developing 33
custom, developing and deploying 35
developing with PluginInterface 38
developing with StatePlugin interface 36
dynamic menu 39
editing 9
editing properties 10
extending SmappStatePlugin 35
implementing state logic 41
removing 11
Send SMS 109

Send USSD Input 111
Send USSD Menu 112
Send USSD Text 118
transitions, removing 11
troubleshooting, variables for 46

applications
activating 21
adding keywords to 12
assigning events to 19
Cash-Out interactive sample 28
deactivating 22
deleting 22
designing task flows 13
event, developing 15
event, testing 25
exporting 27, 28
exporting a group 28
importing 26
importing XML files 26
interactive, developing 11
interactive, testing 23
life cycle 33
mode transitions 20
samples 28
testing 22
uploading templates 27

applications, samples
Utility Notification event 31

assigning events to applications 19
Attribute class hierarchy 52

B
base states 2, 3

Application Call 89
Application Call Return 92
Compare Typed Variables 94
Compare Variables 96
Copy Variables 98
Counter 100
Goto Application 104
Send SMS 109
Set Variable 120
Start Application 122

bean properties
configuring 65

Index

Developer Guide 127

BeanConverterInterface 51
beans-context.xml 65
Brand Mobiliser

overview 1
building

custom-state bundles 56
Maven projects 64

bundles
custom states 56
verify deployment using Telnet 67
verify deployment using Web console 68
verifying configuration using Web console 71

C
Cash-Out interactive application 28

state editor 29
channel manager 1
ChannelPlugin interface 38
class hierarchy, Attribute 52
classes

AbstractDynamicMenu 39, 51
AbstractDynamicUssdMenu 116
AbstractStateMenuImpl 82
InputAttribute 47
OutputAttribute 45, 49
SampleSOAPState 72
SampleState 80
SendSampleMenu 82
SessionVariableAttribute 51
SmappStatePlugin 35, 36, 41, 80
SmappStateProcessingAction 42
SmappStateSendUssdMenu 116
SmappTemplateProvider 76
StateUtils 33
TextBoxAttribute 45, 47

code samples
USSD menu 116

Compare Typed Variables state 94
Compare Variables state 96
components

custom states 56
State SDK 84

configuring
Apache Maven 53
bean properties 65
custom-state bundles 69
Spring beans 65

constructMenuList method 39, 40
consuming RESTful Web services 75

consuming SOAP Web services 72
continueProcessing method 42
continueWhenSingleEntry method 40
controlling state transitions 7
Copy Variables state 98
Counter state 100
creating

Apache Maven project 57
applications from templates 27
custom-state bundles 56
event applications 15
events 17
interactive applications 11
Maven project artifacts 63

creating applications
Application Composer 5

custom application states, developing 33
custom state information 43
custom states 4

developing and deploying 35
dynamic menu 39
GetMyWeather 78
implementing logic 41
variables 45

custom-menu state, sample 82
custom-state bundles 56

adding quick-start templates to 75
building 56
configuring 69
deploying 67
verifying configuration using Telnet 70

customizing
Maven POM files 59

D
deactivating

applications 22
events 22

defining
input variables 47
output variables 49
state variables 45

deploying
custom-state bundles 67
State SDK bundles to Maven repository 55

developing
applications, overview 1
custom application states 33
custom states with PluginInterface 38

Index

128 Sybase Brand Mobiliser

custom states, troubleshooting variables 46
event applications 15
interactive applications 11
states by extending SmappStatePlugin 35
states with StatePlugin interface 36

developing and deploying custom states 35
dynamic menu state 39
dynamic template plug-ins

creating 76

E

editing
state properties 10
states 9

enabling
AIMS System Web console 69

event applications
developing 15
sample message log 26
testing 25
Utility Notification sample 31

event engine 1
event windows

one time 17
recurring 18

events 16
activating 21
assigning to applications 19
creating 17
deactivating 22

exporting
applications 27
group of applications 28
single application 28

extending SmappStatePlugin class 35

G

Get Subscriber state 101
getInputValue method 50
getInputValueWithWarning method 50
getList method 51
GetMyWeather sample state 78
getStateAttributeList method 39, 40
getStateAttributes method 40
getStateDao method 41
getSubscriberDao method 41
Goto Application state 104

I
implementing state logic 41

SmappStateProcessingAction 42
SmappStateProcessingContext 41

importing
application XML files 26
applications 26

init method 39
input parameters 4
input variables

accessing 50
defining 47

InputAttribute class 47
installing

Apache Maven 53
interactive applications

Cash-Out sample 28
developing 11
initial state 122
Mobiliser Counter sample 30
sample message log 24
testing 23

interfaces
BeanConverterInterface 51
ChannelPlugin interface 38
PluginInterface 38
StatePlugin 36
StatePlugin interface 38

isAckMessageRequested method 41
isCurrentStateEncrypted method 41

K
keywords 14

adding to applications 12
searching for 13

L
life cycle, application 33
list variables 51
long codes 14

M
Maven

configuring 53

Index

Developer Guide 129

customizing POM files 59
project artifacts, creating 63
projects, building 64
sample POM file 60

Maven projects
structure 58

Maven repository
deploying State SDK bundles to 55

messaging server 1
methods

constructMenuList 39, 40
continueProcessing 42
continueWhenSingleEntry 40
getInputValue 50
getInputValueWithWarning 50
getList 51
getStateAttributeList 39, 40
getStateAttributes 40
getStateDao 41
getSubscriberDao 41
init 39
isAckMessageRequested 41
isCurrentStateEncrypted 41
processMessage 33, 36
processMessageLogic 40
processState 33, 36, 41
processStateLogic 36, 40–42
saveOutputAttributes 49
saveSessionVariables 39, 40
setHoldValue 49
setList 51
setValue 49
supportsSendSmsMessage 42
terminateProcessing 33, 42
waitForMessage 33, 42, 51

Mobiliser Counter sample application
testing 30

mode transitions 20

O
OSGi services

registering states as 66
output parameters 4
output variables 49
OutputAttribute class 49
OutputAttribute class, example 45

P
parameters 4

PluginInterface 38
POM file, sample 60
Process Subscriber state 106
processMessage method 33, 36
processMessageLogic method 40
processState method 33, 36, 41
processStateLogic method 36, 40–42
properties-context.xml 65

Q

quick-start templates 27
adding to custom-state bundles 75

R

registering states
as OSGi services 66

regular expressions
controlling state transitions 7
testing 8

removing
state transitions 11
states from applications 11

repositories, Maven 53

S

sample applications 28
Cash-Out interactive 28
event message log 26
interactive message log 24
Mobiliser Counter 30
Utility Notification event 31

samples
custom-menu state 82
date formatter 80
GetMyWeather state 78
Maven POM file 60
SOAP Web service 72
USSD menu code 116

SampleSOAPState class 72
SampleState.java 80
saveOutputAttributes method 49
saveSessionVariables method 39, 40
searching for keywords 13
Send SMS state 109
Send USSD Input state 111
Send USSD Menu state 112

Index

130 Sybase Brand Mobiliser

Send USSD Text state 118
SendSampleMenu class, sample 82
service states 2
services-context.xml 66
session manager 1
SessionVariableAttribute class 51
Set Variable state 120
setHoldValue method 49
setList method 51
settings.xml file 53
setValue method 49
short codes 14
SmappStatePlugin abstract class 41
SmappStatePlugin class 35

extending 78
SmappStateProcessingAction 42
SmappStateProcessingAction class 42
SmappStateProcessingContext 41
SmappStateSendUssdMenu class 116
SmappTemplateProvider class

configuring as a Spring bean 76
SOAP Web service sample 72
Spring beans

configuring 65
SmappTemplateProvider class 76

standalone states
base states 2
subscriber states 2

Start Application state 122
state attributes

class heirarchy 52
state bundle samples 72

RESTful Web service 75
SOAP Web service 72

state editor 9
state machine 5
State SDK bundles

deploying to Maven repository 55
State SDK core components 84
state transitions 6

controlling with regular expressions 7
state variables

defining 45
StatePlugin interface 36, 38
states

Add Subscriber 87
adding to applications 10
application 2
Application Call 89

Application Call Return 92
base 3
Compare Typed Variables 94
Compare Variables 96
Copy Variables 98
Counter 100
custom 4
defining 43
Get Subscriber 101
Goto Application 104
Process Subscriber 106
properties, editing 10
removing from an application 11
Send SMS 109
Send USSD Input 111
Send USSD Menu 112
Send USSD Text 118
service 2
Set Variable 120
standalone 2
Start Application 122
subscriber 3
transitions, removing 11
Update Subscriber 124
USSD 2, 4

StateUtils class 33
subscriber states 2, 3

Add Subscriber 87
Get Subscriber 101
Process Subscriber 106
Update Subscriber 124

supportsSendSmsMessage method 42

T

task flows
applications, designing 13

templates, quick start 27
terminateProcessing method 33, 42
testing

applications 22
event applications 25
interactive applications 23
regular expressions 8

TextBoxAttribute class, sample 45, 47
transitions

application modes 20

Index

Developer Guide 131

U
Update Subscriber state 124
uploading application templates 27
USSD menu

sample code 116
USSD states 2, 4

Send USSD Input 111
Send USSD Menu 112
Send USSD Text 118

Utility Notification event application 31

V
variables

input, accessing 50
input, defining 47

list 51
output, defining 49

variables for troubleshooting 46
verifying

bundle configuration using Telnet 70
bundle configuration using Web console 71
deployment using Telnet 67
deployment using Web console 68

W

waitForMessage method 33, 42, 51
windows, event

one time 17
recurring 18

Index

132 Sybase Brand Mobiliser

	Developer Guide
	Contents
	Developing Brand Mobiliser Applications
	Advanced Interactive Messaging Server
	Application States
	Base States
	Subscriber States
	USSD States
	Custom States
	Input and Output Parameters
	State Machine

	Application Composer
	State Transitions
	Controlling State Transitions with Regular Expressions
	Testing Regular Expressions
	State Editor
	Adding States to Applications
	Editing State Properties
	Removing States
	Removing State Transitions

	Developing Interactive Applications
	Adding Keywords to Applications
	Searching for a Keyword
	Designing Application Task Flows
	Short Codes, Long Codes, and Keywords

	Developing Event Applications
	Events
	Creating Events
	Creating One-Time Event Windows
	Creating Recurring Event Windows
	Assigning Events to Applications

	Activation
	Application Mode Transitions
	Activating Applications
	Activating Events
	Deactivating Applications
	Deactivating Events

	Testing Applications
	Testing Interactive Applications
	Sample Interactive Message Log

	Testing Event Applications
	Sample Event Message Log

	Importing Applications
	Importing Application XML Files
	Creating Applications from Templates

	Exporting Applications
	Exporting a Single Application
	Exporting a Group of Applications

	Sample Applications
	Cash-Out Interactive Application
	Cash-Out Application State Editor

	Mobiliser Counter Interactive Application
	Utility Notification Event Application

	Developing Custom Application States
	Application Life Cycle
	Developing and Deploying Custom States
	Extending the SmappStatePlugin Class
	StatePlugin Interface
	PluginInterface Interface

	Extending the AbstractDynamicMenu Class
	AbstractDynamicMenu Life Cycle

	Implementing State Logic
	SmappStateProcessingContext
	SmappStateProcessingAction

	Custom State Information
	Custom State Variables
	Variables for Troubleshooting
	Defining Input Variables
	Defining Output Variables
	Accessing Input Variables
	List Variables
	State Attributes Class Hierarchy

	Setting Up Apache Maven
	Installing Apache Maven
	Configuring Apache Maven
	Deploying State SDK Bundles to a Maven Repository

	Custom State Bundles
	Building Custom State Bundles
	Creating Maven Projects
	Maven Project Structure

	Customizing Maven POM Files
	Sample Maven POM File

	Creating Maven Project Artifacts
	Building Maven Projects
	Declaring States as Spring Beans
	Configuring Bean Properties
	Registering States as OSGi Services
	Deploying State Bundles
	Verifying Deployment Using Telnet
	Verifying Deployment Using the AIMS Web Console
	Enabling the AIMS System Web Console

	Configuring State Bundles
	Verifying Bundle Configuration Using Telnet
	Verifying Bundle Configuration Using the AIMS Web Console

	Custom State Bundle Samples
	Consuming SOAP Web Service Sample
	Consuming RESTful Services

	Developing Quick-Start Templates
	Creating Dynamic Template Plug-Ins

	Custom State Samples
	Sample GetMyWeather State
	Sample Custom State
	Sample Custom-Menu State

	State SDK Core Components

	States Catalog
	Add Subscriber State
	Application Call State
	Application Call Return State
	Compare Typed Variables State
	Compare Variables State
	Copy Variables State
	Counter State
	Get Subscriber State
	Goto Application State
	Process Subscriber State
	Send SMS State
	Send USSD Input State
	Send USSD Menu State
	Sample USSD Menu Code

	Send USSD Text State
	Set Variable State
	Start Application State
	Update Subscriber State

	Index

