
Utilities Guide

Sybase Event Stream Processor
5.1

DOCUMENT ID: DC01688-01-0510-01
LAST REVISED: August 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Overview of Event Stream Processor
Executables ..1

Event Stream Processor Server Executables1
Command and Control Executables1
Publish and Subscribe Executables1
Authoring Executables ..2

CHAPTER 2: Server Executables3
esp_server ..3
esp_cluster_admin ..3

esp_cluster_admin in Command Line Mode6
esp_monitor ...9
esp_playback ...12

CHAPTER 3: Command and Control Executables21
esp_cnc ..21
esp_client ...22

CHAPTER 4: Publish and Subscribe Executables41
esp_convert ..41

Input Formats ..43
esp_kdbin ...44
esp_kdbout ...46
esp_rapexport ..48
esp_subscribe ..49

Extended Opcodes for esp_subscribe52
esp_upload ...53

Utilities Guide iii

CHAPTER 5: Authoring Executables57
esp_compiler ..57
esp_studio ..57

CHAPTER 6: Advanced Debugging59
Introduction ..59

Trace Mode ...59
Step the Event Stream Processor59
Pause the Event Stream Processor61
The Stream Processing Loop61
Breakpoints and Exceptions ...63
Notification of Debugger Events65

Sample Debugging: Pausing the Event Stream
Processor ...65

Sample Debugging: Stepping the Event Stream
Processor ...66

Automatic Stepping ...66
Sample Debugging: Adding Breakpoints66

Sample Debugging: Adding Conditional Breakpoints ...67
Data Examination ...67

Filters ..69
Store Data ...70

Data Manipulation ..70

CHAPTER 7: On-Demand Queries73
SQL Syntax in Event Stream Processor73

ESP JDBC Driver Retrieval ...74
Supported SQL Statements ..74

DELETE Statement ...75
INSERT Statement ..75
SELECT Statement ...76
UPDATE Statement ...78

Contents

iv Sybase Event Stream Processor

Supported SQL92 Expressions78
esp_query ...79

SQL Syntax ...81

Index ... 83

Contents

Utilities Guide v

Contents

vi Sybase Event Stream Processor

CHAPTER 1 Overview of Event Stream
Processor Executables

Sybase® Event Stream Processor provides executables that give you command line control of
your Event Stream Processor projects.

Event Stream Processor Server Executables
There are four Event Stream Processor executables: esp_server, esp_cluster_admin,
esp_monitor, and esp_playback.

• esp_server – initiates the ESP Server.
• esp_cluster_admin – interacts with the cluster manager, in either interactive mode or

command line mode, and sets up your project environment.
• esp_monitor – receives and displays performance data from a running instance of the

Event Stream Processor. The performance data is written to standard output.
• esp_playback – records in-flowing data to a playback file, and plays the captured data

back into a running Event Stream Processor instance.

Command and Control Executables
There are two Command and Control executables: esp_cnc, and esp_client.

• esp_cnc – executes individual control commands. This utility is supplied with the source,
to serve as an example of writing client applications.

• esp_client – queries metadata, injects rows of data, makes stream snapshots, and controls
a running Event Stream Processor Server instance. It also stops the ESP Server, fetches the
list of streams and their definitions, and determines the host and port of the Gateway
interface.

Publish and Subscribe Executables
There are six publisher and subscriber executables: esp_convert , esp_kdbin, esp_kdbout,
esp_rapexport, esp_subscribe, and esp_upload .

• esp_convert – reads XML or delimited records from standard input and produces binary
format records on standard output.

• esp_kdbin – reads data from a KDB database table into an Event Stream Processor stream.

Utilities Guide 1

• esp_kdbout – feeds streaming data from the Event Stream Processor to a KDB database
table.

• esp_rapexport – runs an adapter to publish data from the Event Stream Processor to
Sybase RAP - The Trading Edition.

• esp_subscribe – connects to a running instance of the ESP Server and subscribes to
streaming data. The received records are converted to XML (or optionally delimited
format) and written to standard output.

• esp_upload – reads binary records from standard input and publishes them to a current
instance of the Event Stream Processor through the Gateway interface.

Authoring Executables
There are two authoring executables: esp_compiler and esp_studio.

• esp_compiler – translates a given set of CCL statements to the corresponding CCX
representation to be consumed by the Event Stream Processor. Also, verifies the
correctness of the CCL statements, checks for datatype consistencies, and performs
limited optimization.

• esp_studio – this shell script launches the ESP Studio, a graphical environment you can
use to author Event Stream Processor projects, and start and monitor the ESP Server.

CHAPTER 1: Overview of Event Stream Processor Executables

2 Sybase Event Stream Processor

CHAPTER 2 Server Executables

Use the command-line utilities to start the ESP Server with the desired configuration.

esp_server
A shell script that starts the ESP Server.

Syntax
esp_server [options...]

Options

• -cluster-node<file> – (optional) specifies which node configuration file to use. For
information about configuring cluster nodes, see the Administrators Guide.

• -cluster-log-properties<file> – (optional) specifies the cluster logging
property file to use. For information see the Administrators Guide

• -h or --help – (optional) prints a list of possible options on the screen along with a brief
explanation for each option.

• -v or --version – (optional) prints the esp_server utility version.

Usage
cd $ESP_HOME/cluster/nodes/node1
$ESP_HOME/bin/esp_server --cluster-node node1.xml

esp_cluster_admin
A command line utility you can use to interact with the cluster manager, in either interactive
mode or command line mode.

The esp_cluster_admin utility supports several commands you can use to set up your project
environment, encrypt sensitive data, and deploy a keystore. To access the utility, provide your
user name and password, unless you chose not to set up authentication.

Once you log into the ESP Server, you can run commands on the server side continually until
you exit by executing exit or quit.

Note: In interactive mode, you can log in and execute commands continuously; the utility
maintains the session with the cluster manager. In command line mode, the utility logs you out
after each command is run; you must log in again to perform the next operation.

Utilities Guide 3

By default, the cluster generates TIMEOUT after 20 seconds. You can set timeout in interactive
mode or command line mode to avoid the TIMEOUT option appearing after 20 seconds. The
SDK provides the timeout value (in seconds) for the START PROJECT or STOP PROJECT
commands. If the command returns TIMEOUT, obtain the project status using the GET
PROJECT or GET PROJECTS command.

Syntax

Call esp_cluster_admin:
$ESP_HOME/bin/esp_cluster_admin <uri|help|helpi> [credentials]
[command] [options]

If the cluster node is SSL enabled, call esp_cluster_admin:
esp_cluster_admin --uri=esps://<host>:<port> [...]

To administer clusters with RSA authentication, call the esp_cluster_admin:
esp_cluster_admin --uri=esp://<host>:<port> --key-alias=serverkey --
storepass=<storepass> --keystore=keystore.jks

To administer clusters with Kerberos or LDAP authentication, call the esp_cluster_admin:
esp_cluster_admin --uri=esp://<host>:<port> --user name=<user name>
--password=<password>

Commands
• get managers – lists the cluster managers.
• get controllers – lists the cluster controllers.
• get workspaces – lists all existing workspaces.
• get projects – lists all existing projects independent of a workspace.
• get project <workspace-name>/<project-name> – shows a project within an associated

workspace.

Enter the command followed by the workspace name, a forward slash, and the project
name. Do not use spaces in the variable entries.

For example, to show the project sample from the workspace tradespace, enter:

get project tradespace/sample

• get streams <workspace-name>/<project-name> – shows all streams within a project.

Enter the command followed by the workspace name, a forward slash, and the stream
name. Do not use spaces in the variable entries.

For example, to show the stream tradedata from the workspace tradespace, enter:

get streams tradespace/tradedata

• get schema <workspace-name>/<project-name> <stream-name> – shows the schema of
an associated stream.

Enter the command followed by the workspace name, a forward slash, and the schema
name. Do not use spaces in the variable entries.

CHAPTER 2: Server Executables

4 Sybase Event Stream Processor

For example, to show the schema (dataformat) for tradedata, enter:

get schema tradespace/tradedata/dataformat

• add workspace <workspace-name> – adds a new workspace.

Enter the command followed by the workspace name. Do not use spaces in the variable
entries.

For example, to add the workspace stockspace, enter:

add workspace stockspace

• add project <workspace-name>/<project-name> <ccx> [<ccr>] – adds a project to a
workspace.

Enter the command, followed by the workspace name to which to add the project, a
forward slash, followed by the project name and file name with extension. Do not use
spaces in the variable entries.

For example, to add the project tradeanalysis with the same file name to the
workspace tradespace, enter:

add project tradespace/tradeanalysis tradeanalysis.ccx

The ccr file is the project configuration file for the ccx file.
• remove workspace <workspace-name> – removes a workspace.

Enter the command, followed by the name of the workspace to remove. Do not use spaces
in the variable entries.

For example, to remove the workspace stockspace, enter:

remove workspace stockspace

• remove project <workspace-name>/<project-name> – removes a project.

Enter the command, followed by the name of the project to remove. Do not use spaces in
the variable entries.

For example, to remove the project tradeanalysis from the workspace
tradespace, enter:

remove project tradespace/tradeanalysis

• start project <workspace-name>/<project-name> [timeout(sec)] [<instance-index>] –
starts a project.

Enter the command, followed by the workspace name, a forward slash, and the name of the
project to start. Do not use spaces in the variable entries.

For example, to start the project sample from the workspace tradespace, enter:

start project tradespace/sample

• stop project <workspace-name>/<project-name> [timeout(sec)] [<instance-index>] –
stops a project.

Enter the command, followed by the workspace name, a forward slash, and the name of the
project to stop. Do not use spaces in the variable entries.

CHAPTER 2: Server Executables

Utilities Guide 5

For example, to stop the project sample from the workspace tradespace, enter:

stop project tradespace/sample

• stop node <node-name> – stops a node (controllers or managers, or both).

Enter the command, followed by the node name.

Example
stop node node1

• encrypt <clear-text> – encrypts plain text data.

Enter the command, followed by the sensitive data to encrypt. When you run the
command, the utility produces encrypted text you can use to replace the sensitive data in
the associated file.

For example, to encrypt the password 1234, enter:

encrypt 1234

• deploykey <new-username> <keystore> <storepass> <key-alias> [<store-type>] – adds
a new user by deploying a new user key to the keystore.

Enter the command, followed by the new user name, keystore file path, and storepass key-
alias.

All nodes in a cluster must share the same keystore file path. The node to which the deploy
command is sent updates the keystore and the other nodes then reload that file. To test if the
deploy key is working properly, log in to the cluster with the new key, but through a
different node.

For example, to deploy the new key 123456 under the new user name jdoe, with store
key-alias jdoe, enter:

deploykey jdoe ./mykeystore.jks 123456 jdoe

• reload policy – reloads the policy.xml file in a running cluster.

If you have recently updated the existing policy file, the cluster is reverified against the
new policy configuration upon reload.

• connect – reconnects the utility to the cluster it was started with if the connection has
expired. This command is in interactive mode only.

• quit or exit – logs you out of interactive mode. To reaccess the utility, provide your user
name and password, unless you chose not to set up authentication.

• help – retrieves a plain-text description of utility commands and usage information for
interactive mode.

esp_cluster_admin in Command Line Mode
Run command line operations for the esp_cluster_admin utility supported commands.

Run one command for each instance of the esp_cluster_admin call. Repeat the
esp_cluster_admin call as many times as needed.

CHAPTER 2: Server Executables

6 Sybase Event Stream Processor

Syntax

Run esp_cluster_admin commands for command line mode:
$ESP_HOME/bin/esp_cluster_admin --uri=esp://<host>:<port> --
username=<user-name> --password=<password> --<command> <required-
parameters>

If the cluster node is SSL enabled, call esp_cluster_admin:
$ESP_HOME/bin/esp_cluster_admin --uri=esp://<host>:<port> [...]

To administer clusters with RSA authentication, call esp_cluster_admin:
esp_cluster_admin --uri=esp://<host>:<port> --key-alias=mytest --
storepass=<password> --keystore=<key_store> --<command> [options]

To administer clusters with Kerberos or LDAP authentication, call esp_cluster_admin:
esp_cluster_admin --uri=esp://<host>:<port> --username=<username> --
password=<password>

Options

• --get_managers – lists the cluster managers.
• --get_controllers – lists the cluster controllers.
• --get_workspaces – lists all existing workspaces.
• --get_projects – lists all existing projects independent of a workspace.
• --get_projectdetail – enter the command followed by the workspace name, a forward

slash, and the desired project name.

For example, to show project details of project project1 from workspace ws1, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --get_projectdetail --workspace-name=ws1 --project-
name=project1

• --get_streams – enter the command, followed by the workspace name, then the desired
project name.

For example, to show a stream of project project1 from workspace ws1, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --get_streams --workspace-name=ws1 --project-
name=project1

• --get_schema – enter the command, followed by the workspace name, the project name,
then the stream name.

For example, to show a schema of a streamwin of project project1 from workspace
ws1, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --get_schema --workspace-name=ws1 --project-
name=project1 --stream-name win

• --add_workspace – enter the command, followed by the workspace name.

CHAPTER 2: Server Executables

Utilities Guide 7

For example, to add a workspace ws2, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --add_workspace --workspace-name=ws2

• --add_project – enter the command, followed by the workspace name, the project name,
then the project file name with extension.

For example, to add project project1 to workspace ws2, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --add_project --workspace-name=ws1 --project-
name=project1 --ccx=project1.ccx

• --remove_project – enter the command, followed by the workspace name, then the project
name.

For example, to remove project project1 from workspace ws1, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --remove_project --workspace-name=ws1 --project-
name=project1

• --start_project – enter the command, followed by the workspace name, then the project
name.

For example, to start project project1 in workspace ws1, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --start_project --workspace-name=ws1 --project-
name=project1

• --stop_project – enter the command, followed by the workspace name, then the project
name.

For example, to stop project project1 in workspace ws1, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --stop_project --workspace-name=ws1 --project-
name=project1

• --stop_node – enter the command, followed by the node name.

For example, to stop node node1, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --stop_node --node-name=node1

• --encrypt_text – enter the command, followed by the sensitive data you want to encrypt.

For example, to encrypt text 1234, enter:

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --encrypt_text --text=1234

• --reload_policy – reloads the policy.xml file.

• --deploy_key – enter the command, followed by the new username, keystore filepath, and
storepass key-alias.

For example, to deploy a new storepass key-alias user to keystore mykeystore.jks,
enter:

CHAPTER 2: Server Executables

8 Sybase Event Stream Processor

esp_cluster_admin --uri=esp://localhost:19011 --username=user --
password=pass --deploy_key --new-user=user --
keystore=mykeystore.jks --storepass=123456 --key-alias=user

• --help – retrieves plain-text description of utility commands and usage information.

esp_monitor
Reads performance data from a running instance of Event Stream Processor and prints it out in
XML format on standard output.

Monitoring data is available only if the time granularity option is set in the project
configuration (CCR) file. The time granularity option specifies, in seconds, how often the set
of performance records —one per stream and one per gateway connection— is obtained from
the running Event Stream Processor. The _ESP_Clients_Monitor stream contains basic
information about the connected clients but performance-related fields are populated only
with the monitoring option.

A record in this format is produced for each stream.

<_ESP_Streams_Monitor ESP_OPS="i"
 stream="stream1"
 cpu_pct="0.000000"
 trans_per_sec="0.499451" rows_per_sec="1.098791"
 inc_trans="5" inc_rows="11"
 queue="0"
 store_rows="2"
 last_update="2008-08-26 14:17:14"
 sequence="123"
 posting_to_client="-1"
/>

• ESP_OPS – holds the opcode for the record.
• stream – contains the name of the stream for which statistics are reported.
• cpu_pct – the CPU utilization percentage over the last reporting interval.
• trans_per_sec – the transaction rate for this interval.
• rows_per_sec – the rate of row arrivals for this interval.
• inc_trans – the number of transactions for this interval.
• inc_rows – the number of new rows for this interval.
• queue – the number of records in the queue for the stream.
• store_rows – the number of rows in the table.
• last_update – the date/time of the last update.
• sequence – the sequence number of the update (redundant, since the stream name and

last_update already provide unique identification).
• posting_to_client – the handle of the gateway client where the stream was trying to post

data at the moment, or -1 if none.

A record in this format is produced for each gateway client.

CHAPTER 2: Server Executables

Utilities Guide 9

<_ESP_Clients_Monitor ESP_OPS="i"
 handle="130"
 ip="127.0.0.1"
 host="localhost"
 port="59645"
 login_time="2011-08-11 06:35:27.647137"
/>
<_ESP_Clients_Monitor ESP_OPS="u"
 handle="129" user_name="user" ip="127.0.0.1" host="localhost"
 port="12345" login_time="2008-08-26 12:05:01" conn_tag="rdr"
 cpu_pct="0.000000" last_update="2008-08-26 14:17:14"
 subscribed="1" sub_trans_per_sec="0.499451"
 sub_rows_per_sec="1.098791" sub_inc_trans="5"
 sub_inc_rows="11" sub_total_trans="502" sub_total_rows="1018"
 sub_dropped_rows="0" sub_accum_size="0"
 sub_queue="0" sub_queue_fill_pct="0.000000" sub_work_queue="0"
 pub_trans_per_sec="0.000000" pub_rows_per_sec="0.000000"
 pub_inc_trans="0" pub_inc_rows="0" pub_total_trans="0"
 pub_total_rows="0" pub_stream_id="-1"
 />

• ESP_OPS – the opcode for the record.
• handle – the handle of this gateway client.
• user_name – the user name of this client.
• ip – the address from which this client is connected.
• host – the host name from which this client is connected, if resolvable.
• port – the port from which this client is connected.
• login_time – the timestamp when this client logged in.
• conn_tag – the connection tag, if any.
• cpu_pct – the CPU utilization percentage over the last reporting interval by this client's

gateway thread.
• last_update – the date/time of the last update.
• subscribed – (1) if this client has subscribed or (0) if not.
• sub_trans_per_sec – the subscription transaction rate for this interval; envelopes and

service messages are included in the count.
• sub_rows_per_sec – the subscription row rate for this interval.
• sub_inc_trans – the number of subscription transactions/envelopes/messages for this

interval.
• sub_inc_rows – the number of subscription rows for this interval.
• sub_total_trans – the total number of subscription transactions/envelopes/messages sent.
• sub_total_rows – the total number of subscription rows sent.
• sub_dropped_rows – the number of subscription rows dropped due to the client not

keeping up.
• sub_accum_size – for pulsed subscriptions, the current number of rows collected in the

accumulator, to be sent in the next pulse.

CHAPTER 2: Server Executables

10 Sybase Event Stream Processor

• sub_queue – the number of records in the "proper queue" for this client (the total amount
of data buffered consists of sub_accum_size, sub_queue, and sub_work_queue).

• sub_queue_fill_pct – contains the size of sub_queue in percent relative to its limit.
• sub_work_queue – the number of records being transferred from the queue to the socket

buffer.
• pub_trans_per_sec – the publish transaction rate for this interval; the envelopes and

service messages are also counted equal to transactions.
• pub_rows_per_sec – the publish row rate for this interval.
• pub_inc_trans – the number of publish transactions, envelopes, or messages for this

interval.
• pub_inc_rows – the number of publish rows for this interval.
• pub_total_trans – the total number of publish transactions, envelopes, or messages

received.
• pub_total_rows – the total number of publish rows received.
• pub_stream_id – -1 if the publisher cannot write to the stream to which it is currently

trying to publish, otherwise it is the numeric Id of that stream.

Syntax
esp_monitor -p [<host>:]<port>/workspace-name/project-name -c
user[:password] [OPTION...]

Required Arguments

• -c user[:password] – (required) authenticates with a user ID and, optionally, a password.
If you do not provide either the password or the -k option, the user is prompted for the
password. If Event Stream Processor successfully authenticates with these credentials, the
connection is maintained, otherwise Event Stream Processor immediately closes the
connection.

• -p [<host>:]<port>/workspace-name/project-name – (required) together, the
host:<port>/<workspace name>/ <project name> arguments specify the URI to connect to
the ESP Server (cluster manager). For example, if you have started your ESP cluster server
in the port 19011, the host name is set as localhost, and you are running a project called
prj1 in the default workspace, specify -p as: -p localhost:19011/default/
prj1

Options

• -k privateRsaKeyFile – (optional) performs authentication using the RSA private key file
mechanism instead of password authentication. The privateRsaKeyFile must specify the
pathname of the private RSA key file.

Note: Ensure that the ESP Server has been started with the -k option specifying the directory
in which to store the RSA keys.

CHAPTER 2: Server Executables

Utilities Guide 11

Examples

• Monitoring an Instance of Event Stream Processor – To monitor an instance of the
Event Stream Processor running on the host "myhost.sybase.com" with a Command and
Control port of 31415, use:
esp_monitor -p myhost.sybase.com:31415/workspace-name/project-
name -c user:pass

esp_playback
Loads data into the Event Stream Processor from a variety of sources at the specified rate.

Use esp_playback to test data models. It can send data with a play rate, and upload data to a
server from different sources.

Currently supported formats are ESP XML, comma-separated values, ESP binary, ESP
recorder, KDB, and ODBC sources.

Note: The ODBC driver supports Sybase IQ and ASE databases. You can also connect to other
ODBC-compatible data sources such as Oracle, DB2, and MySQL.

This tool automatically displays updates regarding the status of the data upload into ESP when
the command has been initiated. Each update displays (in order): a time stamp (in square
brackets) in microseconds, the number of events uploaded into ESP, if any errors have
occurred, and the total percentage of events uploaded so far. By default, the esp_playback tool
displays an update every 5 seconds, but you can use the -r option to specify a custom interval.
Below is an example where output is set to report every 2 microseconds:

[1329258744] started
[1329258744] complete: 0 (success) 0 (errors) 0 (%)
[1329258746] complete: 1 (success) 0 (errors) 33 (%)
[1329258748] complete: 2 (success) 0 (errors) 66 (%)
[1329258750] complete: 3 (success) 0 (errors) 100 (%)
[1329258750] stopped

When a timestamp accompanied with a ‘stopped’ output is displayed, the utility has finished
uploading events into ESP. If any errors occur during the upload, an error message indicates
the issue.

You can also slow down or speed up the rate of the playback. Use the -R option to specify the
desired rate, either in rows/millisecond, or at a rate determined by the values in a timestamp/
datetime column in input data. If you use the latter method, you can specify a timescale rate to
speed up or slow down the playback.

Because esp_playback is a testing tool, there are various reasons for slowing down or
speeding up the playback. Typically, you adjust the playback rate to verify your calculations
and collection of data. When you're confident that your project is configured correctly, you can

CHAPTER 2: Server Executables

12 Sybase Event Stream Processor

speed up the playback rate to simulate the anticipated incoming rate of actual data to ensure
your project can handle the throughput.

Note that the input speed may influence your calculations. The example below demonstrates
how modifying input speed can change the results of calculations due to timing discrepancies.
The CCL code below sums the number of shares, numShares, and averages the price,
price, of the input from the cbret_006 window.

create schema sharesSchema (
 tradeId integer,
 symbol string,
 tradeDate date,
 numShares integer,
 price float
);

CREATE MEMORY STORE "store" PROPERTIES INDEXTYPE ='tree',
INDEXSIZEHINT =8;

create input window cbret_006a
 schema sharesSchema
 primary key(tradeId)
 STORE "store"
;
create output window cbret_006
 primary key deduced
 as
 select a.tradeId, a.symbol, a.tradeDate,
 sum(a.numShares) as numShares,
 avg(a.price) as price
 from cbret_006a a
 keep 1 seconds per (symbol)
 group by a.symbol
;

A sample input of three lines of XML records to be read.
<cbret_006a ESP_OPS="i" tradeId="1" symbol="EBAY"
tradeDate="2000-05-04T12:00:01" numShares="500" price="150.0" />
<cbret_006a ESP_OPS="i" tradeId="2" symbol="EBAY"
tradeDate="2000-05-04T12:00:02" numShares="100" price="50.625" />
<cbret_006a ESP_OPS="i" tradeId="3" symbol="EBAY"
tradeDate="2000-05-04T12:00:04" numShares="1000" price="16.875" />

esp_playback is run below without modifying the playrate and the output is written by
executing esp_subscribe connected to the cbret_006 window.

esp_playback -p remoteBox:19011/ws1/project1 -c sybase:sybase -C
espxml:sum/input.xml
esp_subscribe -p remoteBox:19011/ws1/project1 -c sybase:sybase -s
cbret_006:

The output is a single XML record with the correct share sum and average price of the three
input records.

CHAPTER 2: Server Executables

Utilities Guide 13

<cbret_006 ESP_OPS="i" tradeId="3" symbol="EBAY"
tradeDate="2000-05-04 12:00:04" numShares="1600" price="72.500000"/
>

esp_playback is run below with the -R option changing the playrate to 1 record per 4000
milliseconds (4 seconds). The output is written to the standard output by executing
esp_subscribe connected to the cbret_006 window.

esp_playback -p remoteBox:19011/ws1/project1 -c sybase:sybase -C
espxml:sum/input.xml -R 1:4000 -t1
esp_subscribe -p remoteBox:19011/ws1/project1 -c sybase:sybase -s
cbret_006:

The output of this execution of esp_playback is 3 XML records identical to the input file.
<cbret_006 ESP_OPS="i" tradeId="1" symbol="EBAY"
tradeDate="2000-05-04 12:00:01" numShares="500" price="150.000000"/>
<cbret_006 ESP_OPS="i" tradeId="2" symbol="EBAY"
tradeDate="2000-05-04 12:00:02" numShares="100" price="50.625000"/>
<cbret_006 ESP_OPS="i" tradeId="3" symbol="EBAY"
tradeDate="2000-05-04 12:00:04" numShares="1000" price="16.875000"/
>

Note that the server only keeps each symbol for a total of 1 second, as specified in the CCL
code by the line
keep 1 seconds per (symbol)

As a result of slowing down the playrate to 1 record per 4 seconds, the share sum and average
price were calculated incorrectly since the server only ever stored the share sum and average
price of 1 record at a time.

Syntax
esp_playback -p [<host>:]<port>/workspace-name/project-name -c
user[:password] [OPTION...]

Required Arguments

• -c user[:password] – (required) authenticates access to an ESP server with a user ID and,
optionally, a password. If you do not provide either the password or the -k or -G option, you
are prompted for the password. If the Event Stream Processor successfully authenticates
with these credentials, the connection is maintained, otherwise the Event Stream
Processor immediately closes the connection.

Options

• -a – (optional) uses asynchronous publishing. In this mode, the publication does not wait
for ESP Server to acknowledge the received data. The default is synchronous publishing.

• -p [<host>:]<port>/workspace-name/project-name – (required) together, the
host:<port>/<workspace name>/ <project name> arguments specify the URI to connect to
the ESP Server (cluster manager). For example, if you have started your ESP cluster server
in the port 19011, the host name is set as localhost, and you are running a project called

CHAPTER 2: Server Executables

14 Sybase Event Stream Processor

prj1 in the default workspace, specify -p as: -p localhost:19011/default/
prj1

• -D user [:password] – (optional) authenticates access to a database with a userID and,
optionally, a password. This option is only required for ODBC sources.

• -G – (optional) authenticates access to the Event Stream Processor with credentials held
within a Kerberos authentication ticket. Environment variables determine where the
system will look to find authentication tickets (See Administrators Guide > Security in the
Event Stream Processor > Authentication > Setting Environment Variables for Kerberos
for more information). You must use the -c option to specify a user name in order to locate
the proper authentication ticket; if you do not use -c, the client prompts for a user name and
password.

• -h – (optional) prints a list of possible options on the screen along with a brief explanation
for each option.

• -i – (optional) turns on the shine-through flag. In this mode, if there are any missing
columns in an update, they are filled in with the previous values for the updated row. The
default behavior is to fill any missing columns with NULLS.

• -e – (optional) specifies that communications to ESP Server should be encrypted. Note
that Event Stream Processor must be started in encrypted mode for this to work.

• -k privateRsaKeyFile – (optional) authentication is performed using the RSA private key
file mechanism instead of password authentication. The privateRsaKeyFile must specify
the pathname of the private RSA key file.

Note: Ensure that the ESP Server has been started with the -k option specifying the
directory in which to store the RSA keys.

• -L – (optional) resets the server time to match the time of the data source when it was being
recorded. -L must be immediately followed by -RcolumnName, which sets the specified
time at which playback should occur (according to the timestamp column).

Note: If -R is not defined, the -L option does not function and reverts to use the current
server time for playback.

• -C connStr – (dependent required) specifies the connection string for the source. The
connection string varies from source to source.

Supported sources formats include: ODBC, ESP XML, ESP DLM, Binary, Recorder, and
KDB.

The connection string for these are formats are as follows:

• ODBC:odbc:<dsnName>:<sql>|<file>:<fileName>|<query>
• odbc – the ODBC source string identifier. An ODBC 3.0 compliant driver for the

required source must be installed and configured on the machine running this
utility to use this source option.

• dsnName – the ODBC data source name. For a Sybase IQ data source, the data
source name resides in the .odbc.ini file (found in
<homedirectory>/.odbc.ini). For other database sources, the data

CHAPTER 2: Server Executables

Utilities Guide 15

source names reside in the odbc.ini and odbcinst.ini files (Found in an ODBC
folder such as /etc/odbc.ini and /etc/odbcinst.ini). The example below has a
dsnName entry of "SybaseIQ".
[SybaseIQ]
 Description = Sybase IQ database
 ServerName = iqhost_iqdemo
 DatabaseName = iqdemo
 CommLinks = tcpip{host=iqhost;port=2638}
 Driver = /iqhome/IQ-15_1/lib64/libodbc.so

• file|sql – specifies whether the following argument is a file name or a SQL query.
One of these values is required.

• fileName|query – the fileName is the name of the file containing a SQL statement.
The query is the SQL query that needs to be executed to retrieve the data. One of
these values is required.

• ESPXML: espxml:<inputFile>

• espxml – is an identifier for an ESP XML file source.
• inputFile – is the full path and name of the file containing data in ESP XML

format.
For information on how a record in an XML file should be configured, see Publish and
Subscribe Executables > esp_convert > Input Formats.

• ESPDLM: espdlm:<inputFile>[:<delimiter>]

• espdlm – is an identifier for ESP DLM file source.
• inputFile – is the full path and name of the file containing data in ESP DLM

format.
• delimiter – this optional parameter is a single-character field delimiter; the default

is a comma.
For information on how a record in a DLM file should be configured, Publish and
Subscribe Executables > esp_convert > Input Formats.

• Binary: binary:<inputFile>

• binary – is an identifier for an ESP binary file source. The advantage to this format
is that the loads are faster because there is no conversion required because the data
is already in a format that the Event Stream Processor can absorb. The disadvantage
to this format is that it is machine-architecture specific.

One can use esp_convert to convert data from either XML or DML to binary
format.

Note: Binary files recorded in previous releases cannot be played back unless they
are first converted to the new binary format using esp_convert. See Publish and
Subscribe Executables > esp_convert for information on how to to convert binary
files.

• inputFile – is the full path and name of the file containing data in binary format.
• Recorder: recorder:<inputFile>

CHAPTER 2: Server Executables

16 Sybase Event Stream Processor

• recorder – is an identifier for a file generated by the recorder. The recorder can be
started using the ESP Studio or the through the recorder examples in
$ESP_HOME/client/pubsub/ folder.

• inputFile – is the full path and name of the file containing data generated by the
recorder.

• KDB: kdb:<host>:<port>:<sql>|<file>:<filename>|<query>:
[<user>:<password>]

• file|sql – specifies whether the following argument is a file name or a SQL query.
One of these values is required.

• fileName|query – the fileName is the name of the file containing a SQL statement.
The query is the SQL query that needs to be executed to retrieve the data. One of
these values is required.

• -R playRate – specifies how fast/slow the data must be played back. If this parameter is not
supplied, the record plays as fast as possible. The following examples show the two ways
that the playback rate can be supplied.

records:milliseconds

where:

• records – is the number of records to publish in the given number of milliseconds. This
value can be 0 only if the millisecond component is also 0. A value of 0 indicates play
as fast as possible.

• milliseconds – is the number of milliseconds to play back the given number of records.

This property is not supported for the source type recorder.

columnName

where:

• columnName – is the column name in the target stream that controls how fast the
record is played back. The column name is case-sensitive and an error is reported if the
provided column name does not exist in the target stream.

The columnName property is ignored for the source type Recorder and is currently not
supported for binary file sources.

• -T timeScaleRate – specifies a multiplication factor for the delta between the times for
two consecutive records. This is used with the playback rate, when the playback rate is
controlled by a column in the source. It takes an integer value between -N to +M. A
positive value greater than +1 speeds up the time and a negative value less than -1 slows
down the rate. A value of +1 or -1 plays back at the rate specified in the column and a value
of 0 specifies that the column values are ignored. Default value is 1.

CHAPTER 2: Server Executables

Utilities Guide 17

• -r interval – specifies the minimum number of seconds to wait between each reporting of
the published statistics. The default is 5 seconds. A value of 0 indicates no reporting. The
time interval check is triggered when there is a record to be published. This means that
even when the reporting interval has been exceeded the statistics are reported if there are
no records to trigger the check.

• -B bufferSize – specifies the internal read and write buffer sizes. The default buffer size is
32K, which is also the maximum allowed value. Smaller buffer sizes use less memory but
may run slower in some situations.

• -t size – specifies that transaction blocks must be used to publish data to ESP Server, with
each block size large. ESP Server processes data faster if transaction blocks deliver the
data. The performance boost is achieved in two ways: the network is used more efficiently
because a larger number of records are packed into a single network packet; and because
ESP Server treats the records as a single block, which fails or passes in its entirety. This
results in less processing overhead. Depending on the nature of the application, this option
may not be suitable.

• -w size – specifies that envelopes must be used to publish data to the Event Stream
Processor, with each envelope of size size. If neither the -t nor -w option is specified, the
default value is -w64. The value of size must be between 1 and 1024. Using this option
ensures network efficiency in delivering data to ESP Server by modifying it to treat the
records as individual records.

• -s streamName – (required) specifies the target stream name for this utility. This option is
required for ODBC and KDB sources. All other sources have the target stream-name/
stream-ID embedded in them.

Note: XML and delimited sources may require configuration prior to use. See Server
Executables > esp_playback > Input Formats for information on how to configure XML
and delimited sources.

The streamName variable is case-sensitive.
• -S maxStringSize – specifies the maximum string size that can be processed. This option is

used in ODBC sources. The default value is 1024.

This value is global for all strings in the source. Specifying a large value for this option may
result in increased memory usage depending on the number of strings in the record and the
value specified with the -B option.

• -m dateMask – the date mask to use for XML and delimited files. The default is ''%Y-
%m-%dT%H:%M:%S'. The date mask is common for all date columns. This option is
meaningful only for the ESP XML and delimited file sources.

Examples

• Reading and playing back data – To read data from an ODBC source with a DSN name
of 'myODBC_connection' into a stream called 'InputWindow1', using a command line
SQL statement:

esp_playback -D dbuser:dbpassword -p myserver:9786/default/

CHAPTER 2: Server Executables

18 Sybase Event Stream Processor

odbc_playback_test -C ODBC:myODBC_connection:SQL:"select * from
mytable" -s InputWindow1

To read data from an ESP XML source trades.xml, play the data at a rate of 10,000
rows per second, and report the progress every 15 seconds:

esp_playback -c user:pass -p localhost:19022/w1/p1 -C "espxml:/
tmp/trades.xml" -R 10000:1000 -r 15

To read data from an ESP DLM source trades.csv, play the data at a rate of 10,000
rows per second, and report the progress ever 15 seconds.
$ESP_HOME/bin/esp_playback -c user:pass -p localhost:19011/w1/p1
-C "espdlm:qa/trades.csv:," -R 10000:1000 -r 15

CHAPTER 2: Server Executables

Utilities Guide 19

CHAPTER 2: Server Executables

20 Sybase Event Stream Processor

CHAPTER 3 Command and Control
Executables

Use these command-line utilities to connect to and issue commands to Event Stream
Processor.

Each Event Stream Processor instance has a single Command and Control server thread that
handles requests for information (metadata) or instructions to perform tasks such as quiesce
or shutdown.

The esp_cnc and esp_client utilities send directives to Event Stream Processor via this
process. These utilities enable you to control the running Event Stream Processor from the
command-line.

The esp_query On-Demand SQL Query utility uses this process to send requests for
information to Event Stream Processor. See the On-Demand Queries topic for more details.

esp_cnc
Connects to the Event Stream Processor via the Command and Control and Gateway
interfaces, and issues simple command and control commands to the server. It prints the
results on the standard output.

Syntax
esp_cnc -C command -p [host:]port/workspace-name/project-name -c
user[:password] [OPTION]

Required Arguments
• -C command – (required) may be one of these literals: getGateway, getBaseStreams,

getDerivedStreams, getStreamDefinition, getAddressSize, getDateSize,
sendStreamsExit, augmentSubscriber, removeSubscriber, isBigEndian, isQuiesced,
isQuiescedNow, returnWhenQuiesced, setParam, getVersion, getStreamHandle

• -c user[:password] – (required) authenticates with a user ID and, optionally, a password.
If you do not provide either the password or the -k or -G option, the user is prompted for the
password. If the Event Stream Processor successfully authenticates with these credentials,
the connection is maintained, otherwise the Event Stream Processor immediately closes
the connection.

• -p [<host>:]<port>/workspace-name/project-name – (required) together, the
host:<port>/<workspace name>/ <project name> arguments specify the URI to connect to
the ESP Server (cluster manager). For example, if you have started your ESP cluster server
in the port 19011, the host name is set as localhost, and you are running a project called

Utilities Guide 21

prj1 in the default workspace, specify -p as: -p localhost:19011/default/
prj1

Options

• -e – (dependent required) encrypts traffic via openSSL. When this option is not present,
no encryption occurs.

• -G – (optional) authenticates access to the Event Stream Processor with credentials held
within a Kerberos authentication ticket. Environment variables determine where the
system will look to find authentication tickets (See Administrators Guide > Security in the
Event Stream Processor > Authentication > Setting Environment Variables for Kerberos
for more information). If the user name differs from the default principal name in the ticket
cache, specify an alternate user name with the –c option to use the corresponding
authentication ticket.

• -h – (optional) a list of possible options on the screen along with a brief explanation for
each option.

• -H handle – (dependent required) specifies the client handle to direct an
augmentSubscriber or removeSubscriber command. This option is required for those
commands.

• -k privateRsaKeyFile – (optional) performs authentication using the RSA private key file
mechanism instead of password authentication. The privateRsaKeyFile must specify the
pathname of the private RSA key file. This option is required if the ESP Server was started
with the -V rsa option. With this option enabled, the user name must be specified with
the -c option, but the password is not required.

Note: Ensure that the ESP Server has been started with the -k option specifying the
directory in which to store the RSA keys.

• -P name:value – (dependent required) specifies the new value to be associated with a
variable. Required for the setParam option. You cannot set the value of a parameter in a
running project; use the -P option to set new values for variables only.

• -s stream – (dependent required) specifies a single stream. Required for the commands
getStreamDefinition, augmentSubscriber, getStreamHandle and removeSubscriber.

esp_client
Controls and gets information from a running Event Stream Processor instance.

Syntax
esp_client -p [<host>:]<port>/workspace-name/project-name -c
user[:password] [OPTION...] [COMMAND...]

CHAPTER 3: Command and Control Executables

22 Sybase Event Stream Processor

Required Arguments

• -c user[:password] – authenticates with a user ID and, optionally, a password. If you do
not provide either the password or the -k or -G option, you are prompted for the password.
If the Event Stream Processor successfully authenticates with these credentials, the
connection is maintained, otherwise the Event Stream Processor immediately closes the
connection.

Options

• -G – (optional) authenticates access to the Event Stream Processor with credentials held
within a Kerberos authentication ticket. Environment variables determine where the
system will look to find authentication tickets (See Administrators Guide > Security in the
Event Stream Processor > Authentication > Setting Environment Variables for Kerberos
for more information). If the user name differs from the default principal name in the ticket
cache, specify an alternate user name with the –c option to use the corresponding
authentication ticket.

• -h – (optional) prints a list of possible options on the screen along with a brief explanation
for each option.

• -i file – (optional) runs the commands in the given file.

• -k privateRsaKeyFile – (optional) performs authentication using the RSA private key file
mechanism instead of password authentication. Ensure that the privateRsaKeyFile
pathname of the private RSA key file is specified. This option is required if the Event
Stream Processor was started with the -V RSA option. With this option enabled, the user
name must be specified with the -c option, but the password is not required.

Note: Ensure that the ESP Server has been started with the -k option specifying the
directory in which to store the RSA keys.

• -p[<host>:]<port>/workspace-name/project-name – (required) together, the
host:<port>/<workspace name>/ <project name> arguments specify the URI to connect to
the ESP Server (cluster manager). For example, if you have started your ESP cluster server
in the port 19011, the host name is set as localhost, and you are running a project called
prj1 in the default workspace, specify -p as: -p localhost:19011/default/
prj1

• -q – (optional) disables the prompt. This option is useful when reading commands from a
file piped to standard input on Windows.

• -x – (optional) enables echoing of commands before execution. This can also be changed
later with the command echo on|off.

• -v – (optional) prints the esp_client utility version.

CHAPTER 3: Command and Control Executables

Utilities Guide 23

Commands
Enclose arbitrary values that a command takes as parameters in single back quotes(`) for
Windows and curly braces {} for Linux or Solaris. For example, `parameter` or
{parameter}. Separate commands with a semicolon.

Note: Back quotes (`) are used to avoid confusion with the normal single (') and double quotes
(") that are used in the syntax of the shell and SPLASH expressions.

Strings enclosed in back quotes cannot use back quotes within the string itself. You cannot use
double quotes on esp_client commands on the command line, because the UNIX shell
attempts to interpret them. To prevent this, shield back quotes with curly braces ({}). For
example:

esp_client -p localhost:19022/w1/p1
"help;addrsize;streams;endian;datesize;clock;idx {allTypes1};stream
{allTypes2}"
 esp_client -p 10.44.147.231:22555 "history {175}"

The strings enclosed in curly braces ({}) must have a balanced number of braces inside of
them. For example:

{ currow.value = '{a}' }

You cannot use back ticks and curly braces for multiline values. There is another quoting style
that is intended for the large multiline parameters, such as the configuration files. These
parameters start with <<!, then the inline text of the parameter, and finally a line containing
only ! (with no whitespace before or after). This syntax is similar to the shell's "<<" syntax but
the terminating word "!" cannot be changed. The line breaks after the "<<!" and before the
terminating "!" are not part of the parameter, so you can specify single-line values through the
syntax as well. You can specify multiple inline parameters by separating them with lines
containing !<<!. For example:

load_config_inline_conv {nobackup,nocompat} <<!
... text of the model ...
!<<!
... text of the conversion model ...
!

Note: This syntax can be used with any command.

Many commands can redirect output to a file using:

command > `outfile.dat`
command >> `outfile.dat`
command | `filter-program`

The ">" operator overwrites an existing file, and ">>" appends to an existing file. The operator
"|" pipes the output to a UNIX command pipeline. Use either back quotes or braces to quote
the file name or the filter program.

CHAPTER 3: Command and Control Executables

24 Sybase Event Stream Processor

General commands are:

• addrsize – prints the address or pointer size (in bytes) of the connected Event Stream
Processor instance (4 bytes for 32-bit addressing, 8 bytes for 64-bit addressing). This value
reflects how the connected platform instance is compiled (32-bit vs. 64-bit). For example,
a 32-bit platform can be running on a 64-bit host, in which case the addrsize command
returns a value of 4, not 8.

• backup – creates a backup of all the log stores. The backup files are created with the suffix
".bak", so, for example, dynamic.log is backed up into the file dynamic.bak. The
backup files are created with compacted contents.

• clear base stream `stream` – deletes the contents of the specified base stream.
• clock – prints the current state of the Event Stream Processor logical clock. For example:

current time: 1071014401.018 2003-12-10 00:00:01.018
rate: 6.000 real: 0 stop depth: 0 max sleep: 100

The time is printed as both the number of seconds since the UNIX epoch and a user-
readable value. Rate is the clock rate relative to real time: 10 means "10 times faster", 0.1
means "10 times slower". The real flag shows whether the clock matches the system time
of the machine where the Event Stream Processor runs (1), or if the clock has been changed
artificially (0). Stop depth shows how many times the clock has been stopped recursively
(how many times start clock would have to be called to actually resume the flow of time).
When the clock is running, the stop depth is 0. Max sleep is the period of time, in real
milliseconds, that guarantees that all the sleepers discover the changes in the clock rate or
time. Calls that change the clock rate sleep automatically (with the logical clock stopped)
to ensure that their effects have been applied cleanly.

• clock [rate `number`] – changes the rate of the platform clock. Rate is specified as a
floating-point number, the minimum rate is 0.001.

• clock [time `number`] – changes the current time of the platform clock. Time can be
specified as a floating point number of seconds since the UNIX epoch or in the format
year-month-day Thour:min:sec. The same can be done with milliseconds: year-month-
dayThour:min:sec.NNN. The letter "T" is literal, as in the default Event Stream Processor
time format. If the time value is prefixed with add, it specifies a change to the current time.
In this case it must be a floating point number of seconds. Prints the previous state of the
clock as it was before executing the command. See the description in the clock command.

• clock [rate ̀ number`] [time [add] ̀ number`] – changes the current time and/or rate of the
logical clock. Rate is specified as a floating-point number, the minimum rate is 0.001.
Time can be specified as a floating point number of seconds since the UNIX epoch or in the
format year-month-day Thour:min:sec. The same can be done with milliseconds: year-
month-dayThour:min:sec.NNN. The letter "T" is literal, as in the default Event Stream
Processor time format. If the time value is prefixed with add, it specifies a change—
floating point number of seconds—to the current time. Prints the state of the clock as it was
before executing the command. See the description in the clock command.

• clock real – returns the logical clock of the Event Stream Processor to the real time (use the
system clock of the machine where the Event Stream Processor is running). You cannot set

CHAPTER 3: Command and Control Executables

Utilities Guide 25

the clock to real time while it is stopped. Prints the previous state of the clock as it was
before executing the command. See the description in the clock command.

• clock stop on pause [`0|1`] – shows or changes the flag that controls whether the Event
Stream Processor logical clock stops when the Event Stream Processor is paused in trace
mode. Prints the state of the clock as it was before executing the command. See the
description in the clock command.

• datesize – prints the size of a date field (in bytes) of the connected Event Stream Processor
instance (8 bytes for instances using the Win32 filetime, 4 bytes for instances using the
32-bit integer time_t filetime).

• echo `string` – prints the string to standard output.
• echo – enables or disables the printing of commands to standard output before execution.
• endian – prints the endian value ("big" or "little") of the machine on which the connected

Event Stream Processor instance is running.
• fd – displays the field delimiter value.
• fd delimiter – sets a new field delimiter value. Do not quote delimiter. Any non-space

character is taken as the new delimiter. The default delimiter is the pipe (|) character.
• gateway – prints the host and port number of the Gateway interface.
• get_config – gets the current running XML configuration and prints it to standard output

or to a local file by specifying >file after the command.
• help – prints the general help message.
• help flags – prints help for the set of output control flags.
• history ̀ number` [`stream`] – changes the maximum history size of a stream. The history

is collected only with trace mode on. Every time the trace mode is turned off, the history is
discarded. As the history collects, only the last number of input and output transaction
pairs are kept, the older ones are discarded. The default limit on the Event Stream
Processor is 100.

• history ex `stream` – displays the current maximum history size of a stream.
• idx `streamName` – outputs the index for the stream specified.
• immediate stop – stops the Event Stream Processor immediately, without shutting down

any streams.
• immediate pause – forces the Event Stream Processor into a paused state. This is a last-

resort way to examine the Event Stream Processor if it is internally deadlocked or frozen.
This command corrupts the Event Stream Processor state; use it only when the processor is
indefinitely stuck.

• kill `handle` – kills the client connection with the specified handle. The metadata stream
_ESP_Clients contains a list of all open connections.

• kill every `name` – kills all the client connections with the specified tag name. The
metadata stream _ESP_Clients contains a list of all open connections and their tag names.
You can specify tag name using option -m of such commands as esp_subscribe and
esp_upload.

• lock timeout [`seconds`] – shows or changes the value of exclusive lock timeout of the
Event Stream Processor. Most commands (except those that wait for certain events) are

CHAPTER 3: Command and Control Executables

26 Sybase Event Stream Processor

serialized using the lock, with one command executing at a time. The timeout prevents the
subsequent commands from hanging forever waiting for this lock if an error occurs. The
default timeout is 60 seconds.

• loglevel `level` – sets the logging level of the Event Stream Processor. For more
information, see the Administrators Guide.

• moneyprecision – prints the precision of the 'money' datatype (in digits to the right of the
decimal).

• putd ̀ delimited record` – puts a single delimited record (within back quotes or braces) to
the Gateway I/O process. If you do not specify a delimiter using the fd delimiter command,
the default delimiter, |, is assumed. For example, to enter a comma-delimited list
containing an input window name followed by three fields, enter:

esp_client> fd,
esp_client> putd `ExampleInputWindow,i,1,abc`

Without the initial fd command, the correct syntax would be:

esp_client> putd `ExampleInputWindow|i|1|abc`

See Put Command Notes for additional information.
• putx ̀ XML record` – puts a single XML formatted record (within back quotes or braces) to

the Gateway interface. See Put Command Notes.
• quiesced – prints the quiesced state (1 for true or 0 for false). The state is 1 if there are no

publisher connections and all input data has fully propagated through the model.
• quit – exits the esp_client utility.
• refresh_calendars – refreshes calendar data from files; this command does nothing if the

Event Stream Processor has not loaded any calendars via its calendar functions.
• save_config ` remoteFile` – saves the current running XML configuration to this file on

the ESP Server. The file cannot yet exist, and you must quote the file name.
• setparam ̀ variable` ̀ value` – sets the specified variable to a specified value. You cannot

set the value of a parameter in a running project.
• settings – prints the field separator, flag values, and so forth.
• snapshot [`streamName`] – prints the current content of the stream in tabular form, using

the output control flag settings. See Put Command Notes.
• start adapters initial – starts all the adapters as specified in the Event Stream Processor

ADAPTER START statement. Any adapters that are already running continue to run, and
any adapters that are not currently running are restarted. This command waits for all the
started adapters to complete their initial loading.

• start clock – resumes the logical clock of the Event Stream Processor. Prints the state of the
clock as it was before executing the command. See the description in the clock command.

• start adapter `adapter-or-group` – starts a named adapter, or all adapters from a named
group, from the ADAPTER START statement. For the adapters that are already running,
this command has no effect. This command does not wait for the full start of the adapters,

CHAPTER 3: Command and Control Executables

Utilities Guide 27

but returns immediately. Use wait connector initial to wait for completion of initial
loading.

• stop – issues exit streams command to the Event Stream Processor Command and
Control interface, causing the Event Stream Processor engine to exit.

• stop clock – stops the logical clock of the Event Stream Processor. Records continue
processing, but timestamps do not change and timer events do not occur. While the clock is
stopped, you can change the time and rate but cannot change the clock to real time. You
may call stop clock multiple times; however, you must also then call start clock an equal
number of times to resume flow. The Event Stream Processor may internally stop and
resume the clock; however, you should resume only if they initiated the stop. Prints the
state of the clock as it was before executing the command. See the description in the clock
command.

• stop adapter `adapter-or-group` – stops a named adapter, or all adapters from a named
group, from the ADAPTER START statement. For the adapters that are not running, this
command has no effect. The output adapters are allowed to complete the processing of
their output queue before they stop (however, no new commands are added to the queue).
This command does not wait for the adapters to be stopped, but returns immediately. Use
wait connector to wait for completion of the adapters.

• stop adapter immediate ̀ adapter-or-group` – stops a named adapter, or all adapters from
a named group, from the ADAPTER START statement. Similar to stop adapter but the
output queue from output adapters is discarded and the adapters are requested to stop
immediately. For input adapters, stop adapter and stop adapter immediate are equivalent
because these adapters have no output queue. This command does not wait for the adapters
to stop. Use wait adapter to wait for completion of the adapters.

• stream `streamName` – prints the definition of the specified stream, using the hdr and
sphdr output control flags. See Output Control Flags.

• streams – prints the list of base and derived streams.
• throttle `number` [`stream`] – changes the input queue throttle value for one or all

streams. Any writes to the stream's input queue are blocked when the queue size reaches
double the throttle value. The throttle value cannot be increased beyond the default value
(it can only be reduced). Reducing this value may be useful for tracing records during
debugging.

• throttle ex `stream` – displays the current throttle value of a stream.
• trace_mode [on|off] – changes or gets the current state of the trace mode. Without any

argument, this command prints the current state; on enables the trace mode and off disables
it. The trace mode is a prerequisite for the commands that relate to single-stepping,
breakpoints, and examining debugging information.

• wait adapter `adapter-or-group` – waits for a named adapter, or for all adapters from a
named group, from the ADAPTER START statement to terminate. They may terminate
naturally (running out of data in the data source) or as a result of stop adapter.

• wait adapter initial `adapter-or-group` – waits for a named adapter, or for all adapters
from a named group, from the ADAPTER START statement to complete the initial loading.
This command waits for the adapter state to change to something other than "initial".

CHAPTER 3: Command and Control Executables

28 Sybase Event Stream Processor

• wait quiesced – waits until all input fully propagates through the model. Input received
after this command is buffered until the propagation of the previous data completes. Then
the Event Stream Processor resumes normal operation.

• wait quiesced gateway – waits until all publishing clients disconnect and all input fully
propagates through the model. This command waits for the condition when the command
quiesced returns 1. If any new clients connect while this command is waiting for the data
to propagate, the data from these clients is buffered until the wait completes.

Commands Requiring Trace Mode

• pause – pauses the Event Stream Processor execution. Returns after the pause begins. All
data examination and single-stepping commands require the Event Stream Processor to be
paused first, explicitly with this command, or on a breakpoint or exception on bad data. If
the Event Stream Processor is already paused, this command returns success immediately.

• check_pause – shows whether or not the Event Stream Processor is currently paused.
• wait_pause – waits until the Event Stream Processor is paused by a breakpoint or from

another instance of esp_client. The wait cannot be interrupted (other than by ending
esp_client).

• run – continues the normal Event Stream Processor execution.
• step [`stream`] – executes a single step when the Event Stream Processor is paused. If a

stream name is given as an argument, a single step is executed on this stream. Otherwise, a
stream to be stepped through is picked at random among the streams ready to process data.
If no streams are ready to process (all are waiting for input or output), this command is not
performed and returns success immediately.

• step timeout [`number`] – sets the timeout in milliseconds for the automatic stepping. The
default timeout is 0.3s. Using a negative or zero value resets the timeout to default.

• step trans ̀ stream` [`limit`] – automatically steps the stream at least once, and then to just
before the end of transaction (the "PUT" location on the stream state diagram). Specify the
second argument to limit the number of steps to be made, to limit the running time of large
transactions. The default limit is 10000. If the stream has no input pending, or if it blocks
on the output for more than timeout, the stepping also stops and returns an error.

• step quiesce stream `stream` [`limit`] – automatically steps the stream and all its
descendants until all their input queues are empty. The first stream in this command is a
literal and the second one represents a parameter—the stream name. Specify the second
argument to limit the number of steps to be made, to limit the running time of large
amounts of data collected in the queues. The default limit is 100000. If the stream is a base
stream, and the input on it comes quickly, the call returns only when the limit of steps is
achieved. This is not an issue for derived streams; since the Event Stream Processor is
paused when stepping, any inputs to this stream are also paused. If a derived stream's input
queue is full, and inputs are waiting to deposit their already processed data on it, the
waiting inputs add their transactions as the input queue is processed. If none of the streams
has input pending, or if they all block on the output longer than the timeout, stepping also
stops and returns an error.

CHAPTER 3: Command and Control Executables

Utilities Guide 29

• step quiesce downstream ̀ stream` [`limit`] – similar to step quiesce stream, except the
stream itself is not stepped through; only its descendants are. This command is useful for
clearing out descendant streams' input queues. When the argument stream produces its
output, the data progression through the descendant streams can be easily traced.

• step quiesce from base [`limit`] – automatically steps all derived (non-base) streams until
their input queues are empty. Specify this argument to limit the number of steps to be
made, to limit the running time for large amounts of data in the queues. The default limit is
100000. If none of the streams has input pending, or if all of them block on the output for
more than the timeout value, the stepping also stops and returns an error. This command
may be useful for cleaning out the queues of derived streams before processing an
inconsistent record through the base stream. You can easily watch the progression of data
through the derived streams.

• dump ̀ filePrefix` [`stream`] – dumps the contents of each stream, or one specific stream,
to a file. Each file is named filePrefixdump_streamName.xml

• bp add `stream` `inputStream` [`condition`] – adds a breakpoint on a stream, before it
begins processing an input record from another stream (inputStream). Optionally, use a
SPLASH expression to specify a condition to trigger the breakpoint. The breakpoint is
only triggered when the condition evaluated on the input record is true. The expression
may refer to either or both of these predefined variables:

• currow – the current input record.
• oldrow – the previous value of the record with this key, that is being updated or deleted.

The condition may refer to the fields in the records, "row.field". The stream's local and
global variables may be used as well. This command prints the ID of the newly created
breakpoint.

• bp add `stream` any – adds a breakpoint on a stream, before it starts processing an input
record from any stream. You cannot specify the condition.

This command prints the ID of the newly created breakpoint.
• bp add ̀ stream` out [`condition`] – adds a breakpoint on a stream, after it has processed an

input record and produced some (possibly empty) output. Optionally, use a SPLASH
expression to specify a condition to trigger the breakpoint. The breakpoint is only
triggered when the condition evaluated on the input record is true. The expression may
refer to one predefined variable, currow, which is the current output record. Since one
input record may produce multiple output records, the condition is evaluated for each of
them sequentially. If there is no output produced, the condition still evaluates once with
currow set to NULL. The condition may refer to the fields in the records, "row.field".

This command prints the ID of the newly created breakpoint.
• bp del `id` – deletes the breakpoint with the specified ID (as returned from bp add or

reported by bp list).
• bp del all – deletes all the breakpoints.
• bp on|off `id` – enables or disables the breakpoint with specified ID.

CHAPTER 3: Command and Control Executables

30 Sybase Event Stream Processor

• bp on|off all – enables or disable all the breakpoints.
• bp every `count` `id` – makes the breakpoint with a specified ID trigger on every nth

occasion. For example, to make the breakpoint with ID 8 trigger on every 100th record, use
"bp every `100` `8`". Setting the count to 1 triggers the breakpoint one every record.

• bp every `count` all – triggers all breakpoints on every Nth occasion.
• bp list – lists the breakpoints. an alternative for "ex `breakpoints`".
• ex ̀ kind` [`stream` [`object`]] – examines data in the Event Stream Processor. ex takes the

name of the kind of data, of the stream to which it belongs, and of the particular object. For
some kinds of data, the stream and object arguments may not be applicable. The data is
printed in XML format, with the element name for most data kinds set to "row". If the data
represents a transaction, it is enclosed in a <trans> element. If the data represents an update
pair, it is enclosed in a <pair> element. The exact fields depend on the data being
examined.

When you examine the input data kinds (input queue, current input transactions and row,
input history), the data may be a mix of rows of different types, produced by different
streams. The name of the XML element is set to the name of the stream that produced it (for
base streams, this is the name of the base stream itself).

Kinds of data currently supported are:

• `pause` – state of the user streams when paused. The fields are:

• name – name of the stream.
• loc – location where the stream is paused.
• onbp – if on a triggered breakpoint, the ID of that breakpoint. Otherwise, onbp is

set to 0. If multiple breakpoints are triggered simultaneously, onbp contains the ID
of one of them.

• throttle – the input queue throttle value.
• history – maximum size of the kept history.
• postSeq – count of transactions posted to the input queue.
• inSeq – count of transactions ever read from the input queue.
• outSeq – count of transactions processed to the output (including the empty

transactions that get discarded, and the expiry transactions).
• stepSeq – the count of steps (as defined by the step command) made in trace mode.

This includes both single-stepping and running. Use the changes in this count to
determine which streams have changed state.

• `pauseall` – same as pause but includes the metadata streams as well.
• `breakpoints` – information about all currently registered breakpoints. The fields are:

• id – ID of the breakpoint. Does not change throughout the breakpoint's life.
• stream – name of the stream on which the breakpoint is defined.

CHAPTER 3: Command and Control Executables

Utilities Guide 31

• origin – contains the name of the input stream for a breakpoint on a particular input
stream. Use "*" for a breakpoint on input from any stream, and "" (empty) for a
breakpoint on output.

• expr – conditional expression.
• enabledEvery – n to trigger the breakpoint on every nth matching record. See bp

every.
• leftToTrigger – the number of matches that are currently left for the breakpoint until

triggering.
• onit – set to 1 if the breakpoint is currently triggered, otherwise set to 0.

• `var``` ̀ var-name` – contents of a global variable (one defined in the global DECLARE
block). The fields depend on the type of variable. The indexes in the arrays are shown
as ESP_Index. The keys in the dictionaries are shown as ESP_Key_<field-name>. The
values of records are shown with fields as in the record definition. The simple variables
are represented with the ESP_Value field. For structured values, this command may
return multiple rows. If a variable is NULL, nothing is returned. For an array, only the
elements with non-NULL values are shown.

• `listVar` – the list of all global variable names.

• name – name of the variable.
• type – type of the variable.

• `store``stream` – contents of a stream's store. The fields are as in the stream's row
definition.

• `outTrans` `stream` – the current output transaction as it is being built. The fields are
the same as in the stream's row definition.

• `outRow``stream` – output produced from processing the previous input row. May
contain multiple or no rows. The fields are the same as in the stream's row definition.

• `badRows``stream` – when the Event Stream Processor is paused on a bad rows
exception, contains these bad rows. The fields are the same as in the row definition of
the stream that produced the data (or, for a base stream, of the current stream).

• `badRowsReason``stream` – for each bad row reported by badRows, this data
contains an error message explaining why it is bad. The message is in the reason field.

• `outHist``stream` – the output transactions from the stream's history. The empty
transactions are returned as records with all fields containing NULL. There is one-to-
one match between the transactions returned by ex ̀ outHist` and ex ̀ inHist`. The fields
are the same as in the stream's row definition.

• `lastOutTrans``stream` – the newest output transaction in the stream's history. Similar
to " ex ̀ outHistLatest` ̀ stream` ̀ 0`", but if the history is empty, returns a success with
no rows, while outHistLatest returns an error. The fields are the same as in the stream's
row definition.

• `outHistEarliest``stream` `index` – selects an individual output transaction from the
stream's history. The index is a number, 0 selecting the earliest transaction saved in the
history, and increasing index numbers indicate later transactions. If there is no

CHAPTER 3: Command and Control Executables

32 Sybase Event Stream Processor

transaction with such an index, returns the "No such object" error. The fields are the
same as in the stream's row definition.

• `outHistLatest``stream` `index` – select an individual output transaction from the
stream's history. The index is a number, 0 selecting the latest transaction saved in the
history, and increasing index numbers indicate earlier transactions. If there is no
transaction with such an index, returns the "No such object" error. The fields are the
same as in the stream's row definition.

• `var` `stream` `var-name` – contents of a stream's local variables. You can examine
only the local variables (those defined in the stream's local DECLARE block). Local
variables include the variables of array, dictionary, and eventCache. The variables
defined inside the SPLASH blocks exist only when the appropriate methods run, and
cannot be examined. The fields depend on the type of variable. The indexes in the
arrays and eventCaches are shown as ESP_Index. The keys in the dictionaries and
eventCaches are shown as ESP_Key_<field-name>. The values of records are shown
with fields as in the record definition. The simple variables are represented with the
ESP_Value field. For structured values, var may return multiple rows. If a variable is
NULL, nothing is returned. For an array only the elements with non- NULL values are
shown. You cannot access global variables this way; instead, use the empty stream
name to access them.

• `listVar` `stream` – the list of all variable names defined on this stream. Applicable
only to the streams that are allowed to have the local DECLARE block. Does not include
the global variables.

• name – name of the variable.
• type – type of the variable.

• `queue` ̀ stream` – an input data kind. Contents of the stream's input queue. The fields
are the same as in the row definition of the stream that produced the data (or, for a base
stream, of the current stream).

• `inTrans` `stream` – an input data kind. The current input transaction that is being
processed. The fields are the same as in the row definition of the stream that produced
the data (or, for a base stream, of the current stream).

• `inRow` `stream` – an input data kind. The current input row that is being processed.
The fields are the same as in the row definition of the stream that produced the data (or,
for a base stream, of the current stream).

• `queueHead` `stream` `index` – an input data kind. Select an individual transaction
from the stream's input queue. The index is a number, 0 selecting the transaction at the
head of the queue, increasing index numbers indicating following transactions. If there
is no transaction with such an index, returns the "No such object" error. The fields are
the same as in the row definition of the stream that produced the data (or, for a base
stream, of the current stream).

• `queueTail` ̀ stream` ̀ index` – an input data kind. Select an individual transaction from
the stream's input queue. The index is a number, 0 selecting the last transaction at the
tail of the queue, increasing index numbers indicating previous transactions. If there is
no transaction with such an index, returns the "No such object" error. The fields are the

CHAPTER 3: Command and Control Executables

Utilities Guide 33

same as in the row definition of the stream that produced the data (or, for a base stream,
of the current stream).

• `inHist` ̀ stream` – an input data kind. The input transaction from the stream's history.
There is a one-to-one match between the transactions returned by ex `outHist` and ex
`inHist`. The fields are as in the row definition of the stream that produced the data (or,
for a base stream, of the current stream).

• `lastInTrans` ̀ stream` – an input data kind. The newest input transaction in the stream's
history. Similar to "`inHistLatest` `stream` `0`", but if the history is empty, returns a
success with no rows, while ̀ inHistLatest returns an error. The fields are the same as in
the row definition of the stream that produced the data (or, for a base stream, of the
current stream).

• `inHistEarliest` `stream` `index` – an input data kind. Select an individual input
transaction from the stream's history. The index is a number, 0 selecting the earliest
transaction saved in the history, increasing index numbers indicating later transactions.
If there is no transaction with such an index, returns the "No such object" error. The
fields are as in the row definition of the stream that produced the data (or, for a base
stream, of the current stream).

• `inHistLatest` `stream` `index` – an input data kind. Select an individual input
transaction from the stream's history. The index is a number, 0 selecting the latest
transaction saved in the history, increasing index numbers indicating earlier
transactions. If there is no transaction with such an index, returns the "No such object"
error. The fields are the same as in the row definition of the stream that produced the
data (or, for a base stream, of the current stream).

• `hist` `stream` – a mixed representation of history, including both input and output
data. Each input transaction is followed by its matching output transaction. The rows in
the input transactions are marked with the XML tag of their origin stream name, while
the rows in the output transaction are marked with the XML tag "row".

• `lastTrans` `stream` – a mixed input-and-output data kind. See `hist`. The newest
input and output transactions in the stream's history.

• `histEarliest` ̀ stream` ̀ index` – a mixed input-and-output data kind. See ̀ hist`. Select
an individual transaction pair from the stream's history. The index is a number, 0
selecting the earliest transaction saved in the history, increasing index numbers
indicating later transactions. If there is no transaction with such an index, returns the
"No such object" error.

• `histLatest` `stream` `index` – a mixed input-and-output data kind. See `hist`. Select
an individual transaction pair from the stream's history. The index is a number, 0
selecting the latest transaction saved in the history, increasing index numbers
indicating earlier transactions. If there is no transaction with such an index, returns the
"No such object" error.

• `aggrGroup` `aggregationStream` – the internal state of an aggregation stream, from
its group index. Works only for aggregation streams that are not optimized to use
additive aggregations. The value fields have names from the input stream row
definition. The key fields have the same name as in this stream's row definition but with

CHAPTER 3: Command and Control Executables

34 Sybase Event Stream Processor

ESP_Key_ prefixed to them. The index of the record in the aggregation bucket is in the
ESP_Indexfield.

• `states` `patternStream` [`patternNum`] – states of the automatons in a pattern
stream. Initially, a pattern stream has one automaton per defined pattern. As data is
received and matched by patterns, a new automaton is cloned for each sequence of
events that may match the pattern. As complete patterns are found, or the sequences of
events are found to not match the patterns, automatons are destroyed.

If the optional parameter patternNum is present, states shows only the automatons for
that pattern. The fields are:

• pnum – number, starting with 0, of the pattern being parsed by this automaton.
• instance – instance number of the automaton. As new automatons are cloned, each

receives a unique instance number. The instance number is never repeated (unless
the Event Stream Processor is restarted). The pair (pnum, instance) identifies an
automaton during its execution.

• state – a number identifying the current state of the automaton. Automatons are
linear; they have no loops in their logic, and may visit a state only once. If the state
has not changed since last examination, it indicates that the automaton has not
matched any new data. The numbers used for states are not sequential.

• timed – if set to 1, an expiration timer attaches to this automaton. If the timer
expires, its pattern match is considered failed and the automaton is destroyed. If set
to 0, the automaton does not expire. The untimed automaton is the very initial
automaton of a pattern, used to clone all others.

• time_left – the time, in seconds, until expiration for a timed automaton. For an
untimed automaton, this is always 0. By default, when the Event Stream Processor
is paused, the platform logical clock stops. However, if the clock is set to not stop on
pause, the timers do not stop. A value of 0 or negative means that the automaton
expires when the Event Stream Processor execution resumes.

• `bindings` `patternStream` [`patternNum`] – the pattern variable bindings that are
caused by the data parsed so far, for each automaton in patternStream. If the optional
parameter patternNum is present, shows only the data for that pattern. The fields are:

• pnum – number, starting from 0, of the pattern being parsed by this automaton.
• instance – instance number of the automaton. As new automatons are cloned, each

receives a unique instance number. The instance number is never repeated, unless
the Event Stream Processor is restarted. pnum, instance identifies an automaton
during its execution.

• var – name of the bound variable. Besides these variables, bound events and
constants are listed as well. The constants appear with unique compiler-generated
names.

• value – value of the bound variable, in string format. The values of bound events are
reported here as NULL. Examines the events data kind to see the contents of the
event rows.

CHAPTER 3: Command and Control Executables

Utilities Guide 35

• `events` `patternStream` [`patternNum`] – the events that have been parsed by the
automaton so far, for each automaton in a pattern stream. This data kind returns a mix
of records of different types. Record types are named after the input streams where they
flow from.

If the optional parameter patternNum is present, shows only the data for that pattern.
The fields are:

• ESP_Pnum – number, starting from 0, of the pattern being parsed by this
automaton.

• ESP_Instance – instance number of the automaton. As new automatons are cloned,
each receives a unique instance number. The instance number is not repeated,
unless the Event Stream Processor is restarted. pnum, instance identifies an
automaton during its execution.

• ESP_Var – name of the event variable.
• as in input stream – the rest of the fields keep the names as in the row type of the

input stream that they are from.
• `expect` `patternStream` [`patternNum`] – the expected records that would advance

the automaton to the next state, for each automaton in a pattern stream. This data kind
returns a mix of records of different types. Record types are named after the input
streams that they flow from.

If the optional parameter patternNum is present, shows only the data for that pattern.
The fields are:

• ESP_Pnum – number, starting from 0, of the pattern being parsed by this
automaton.

• ESP_Instance – instance number of the automaton. As new automatons are cloned,
each receives a unique instance number. The instance number is not repeated,
unless the Event Stream Processor is restarted. pnum, instance identifies an
automaton during its execution.

• ESP_Var – name of the event variable. If preceded by a "!", receiving such a record
causes a pattern mismatch. Otherwise, it advances the automaton to the next state.

• as in input stream – the rest of the fields keep the names as in the row type of the
input stream that they are from. Only the fields that are bound to values are shown,
the rest are shown as NULL.

• exf `kind` [`stream` [`object`]] `filter` – similar to ex, but specifies a filter SPLASH
expression to be evaluated on the Event Stream Processor. Only records for which the
filter evaluates to a true (non-zero, non- NULL) value are returned. With filters, any
transaction and update pair boundaries are lost; each record returns by itself.

The filter may refer to predefined variables with names matching the XML tags of the
rows when printed. For most data kinds, the variable row contains the current record to
be filtered. For the input data kinds multiple variables are defined, each is named after
an input stream of the target stream. In this case when evaluating a record, the variable
matching the stream of its origin contains the record, and all other variables are set to

CHAPTER 3: Command and Control Executables

36 Sybase Event Stream Processor

NULL. The condition may refer to the fields in the records as usual, for example
"currow.field".

• eval ̀ stream` ̀ block` – evaluate a SPLASH statement (not expression) on a stream, to
change the contents of the local variables (those defined in the local DECLARE block or
global DECLARE block) of the stream. The variables that are defined inside the
SPLASH blocks of a stream exist only when the appropriate methods run, and cannot
be modified. Evaluation in context of any computational stream is used to modify the
global variables.

The SPLASH statement must be either a simple statement terminated by ";" or a block
enclosed in braces "{}". Multiple statements must always be enclosed in a block. If you
use braces to quote the block argument, the outside braces do not count as the block
delimiters (they are just esp_client quotes).

Correct Example:

`a := 1;`
 {a := 1;}
 `{ typeof(input) r := [a=9; |
 b= 's1'; c=1.; d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r); }`
 {{ typeof(input) r := [a=9; |
 b= 's1'; c=1.; d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r); }}

Incorrect Example:

`a := 1`
 {a := 1}
 `typeof(input) r := [a=9; |
 b= 's1'; c=1.; d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r);`
 { typeof(input) r := [a=9; |
 b= 's1'; c=1.; d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r); }

All the usual SPLASH syntax applies, including that for defining the temporary variables
in the block. All of the stream's variables and global variables are visible and may be read
or changed in the statement. No streams or stream iterators are visible in the statement.

You cannot use back quotes and curly braces when entering multiline statements. In the
previous examples, splitting the lines represents the wrapping of the line on the terminal.
In many cases, the multiline quoting format would be more convenient:

eval {stream} <<!
 { typeof(input) r := [a=9; |
 b= 's1'; c=1.; d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r); }
!

Operations on eventCaches require special preparation. Normally, the key of the
eventCache is determined by the current input record. In the current example, there is no
input record, so the key is not set and operations on eventCaches have no effect. For

CHAPTER 3: Command and Control Executables

Utilities Guide 37

operations to work, you must manually set the key using the operator keyCache(ec-
variable, record), before performing any aggregation operations on the eventCache.

Output Control Flags

• hdr [on|off] – without an argument, displays the state of the "include column name header
line" flag, otherwise enables or disables the "include column name header line" flag. When
hdr is enabled, the column name heading prints before the tabular data. For snapshots, the
field position, name, and field type appear. If the field is a key field, the field name is
prefixed with an asterisk ("*").

• sphdr [on|off] – without an argument, displays the state of the "include header/data prefix"
flag, otherwise enables or disables "include header/data prefix" flag. When sphdr is
enabled, the StreamName and opcode values prefix each line of the tabular snapshot data.
In addition, if the hdr flag is enabled, the header line includes the Event Stream Processor
StreamName and opcode field names. The Event Stream Processor header/prefix are the
putd and putx esp_client commands.

• txb [on|off] – without an argument, displays the state of the "include TRANSACTION
BLOCK content" flag, otherwise enables or disables the "include TRANSACTION
BLOCK content" flag. When txb is enabled, the output produced by the snapshot
command includes all messages contained within the Gateway I/O TRANSACTION
blocks. If txb is disabled, the tabular snapshot output is generated using only the INSERT
messages from the TRANSACTION blocks.

• verbose [on|off] – without an argument, displays the state of the "verbose" output flag,
otherwise enables or disables the "verbose" output flag. When verbose is enabled, this flag
produces additional output when processing the snapshot commands. In particular,
start_sync, end_sync, TRANSACTION block indicators, final snapshot, and record/row
count are produced.

• xml [on|off] – without an argument, displays the state of the "XML" output flag, otherwise
enables or disables the "XML" output flag. When xml is enabled, the output that is
produced by the snapshot command is in the ESP XML record format. The XML format is
used by the putx command.

Put Command Notes
The putd and putx commands use the sphdr StreamName and OpCode prefix. The date
strings are in the format:

%Y-%m-%dT%H%M%S

The TZ environment variable is set to "UTC" before the record is uploaded to the Gateway
interface.

Usage Notes
In console mode, you can issue commands from the console, which allows for command-line
editing and command history retrieval. Enter this mode using the following command:

esp_client -p localhost:19011/default/prj1 -c user:password

CHAPTER 3: Command and Control Executables

38 Sybase Event Stream Processor

In command-string mode, feed in a double-quoted string containing one or more commands.
If you specify multiple commands in the double-quoted string, terminate each command with
a semicolon character. When setting the field separator from the command line, enclose the
new field separator character within single quotes, and place a space character between the
ending single quote and the semicolon.

CHAPTER 3: Command and Control Executables

Utilities Guide 39

CHAPTER 3: Command and Control Executables

40 Sybase Event Stream Processor

CHAPTER 4 Publish and Subscribe
Executables

Use the command-line utilities to subscribe to, convert, and publish data from Event Stream
Processor.

esp_convert
Converts XML and delimited records into 32-bit binary records compatible with Event Stream
Processor. The metadata describing the streams is obtained either from a connection to a
running instance of the Event Stream Processor (via the Command and Control interface) or
via an Event Stream Processor compatible configuration file.

Syntax
esp_convert -f configFile -p [host:]port -c user[:password]
[OPTION...]

Required Arguments

• -c user[:password] – (required) authenticates with a user ID and, optionally, a password.
If you do not provide either the password or the -k or -G option, you are prompted for the
password. If the Event Stream Processor successfully authenticates with these credentials,
the connection is maintained, otherwise the Event Stream Processor immediately closes
the connection.

• -f configFile – (dependent required) specifies the XML style configuration file that
describes the data to be converted to Event Stream Processor format.

• -p [<host>:]<port>/workspace-name/project-name – (required) together, the
host:<port>/<workspace name>/ <project name> arguments specify the URI to connect to
the ESP Server (cluster manager). For example, if you have started your ESP cluster server
in the port 19011, the host name is set as localhost, and you are running a project called
prj1 in the default workspace, specify -p as: -p localhost:19011/default/
prj1

Options

• -b – (optional) indicates that the machine architecture on which the server (that is
consuming data) is running has the reverse byte order of the machine architecture on which
esp_convert is running.

Utilities Guide 41

• -d separator – (optional) reads and converts delimited records from standard input
instead of the default XML format.

• -e – (optional) encrypts traffic with the Event Stream Processor via openSSL sockets.

Note: Ensure that the Event Stream Processor is started in encrypted mode to use this
option.

• -f configfile – (dependent required) specifies the CCX configuration file that describes
the location of data that is read via standard input.

• -F path – (optional) specifies the full pathname of the XML Schema file (default is
$ESP_HOME/etc/Platform.xsd).

• -G – (optional) authenticates access to the Event Stream Processor with credentials held
within a Kerberos authentication ticket. Environment variables determine where the
system will look to find authentication tickets (See Administrators Guide > Security in the
Event Stream Processor > Authentication > Setting Environment Variables for Kerberos
for more information). If the user name differs from the default principal name in the ticket
cache, specify an alternate user name with the –c option to use the corresponding
authentication ticket.

• -h – (optional) prints a list of possible options on the screen along with a brief explanation
for each option.

• -k privateRsaKeyFile – (optional) performs authentication using the RSA private key file
mechanism instead of password authentication. The privateRsaKeyFile must specify the
pathname of the private RSA key file.

Note: Ensure that the ESP Server has been started with the -k option specifying the
directory in which to store the RSA keys.

• -m datetimemask – (optional) specifies the format string for date values (in strptime
format). Default value is "%Y-%m-%dT%H:%M:%S".

• -v – (optional) prints the esp_convert utility version.

Examples

• Converting Records to Binary Format – Convert records from XML or a comma
separated value (CSV) file.

To convert all XML records in file foo.xml to native binary format, and post them to a
running instance of the Event Stream Processor, use:

cat foo.xml | esp_convert -p localhost:19011/default/prj1 |
esp_upload -p localhost:19011/default/prj1

To convert all comma-separated records in file foo.csv to native binary format, and post
them to a running instance of the Event Stream Processor, use:

cat foo.csv | esp_convert -d "," -p localhost:19011/default/prj1 |

CHAPTER 4: Publish and Subscribe Executables

42 Sybase Event Stream Processor

esp_upload -p localhost:19011/default/prj1

To convert all XML records in file foo.xml to native binary format, and post them to a
running instance of the Event Stream Processor on a target machine HOST that has a
differing byte order than the machine on which esp_upload is running, use:

cat foo.xml | esp_convert -b -p localhost:19011/default/prj1 |
esp_upload -b -p localhost:19011/default/prj1

To convert all XML records in file foo.xml to native binary format and post them to
standard output without a running instance of ESP, use the -f option and provide the CCX
configuration file used to start the server.

cat foo.xml | $ESP_HOME/bin/esp_convert -f test.ccx

Input Formats
Records in a delimited or XML format.

This is a record in a delimited format.

StreamName<sep>Operation<sep>column_1..<sep>column_n

All columns must be present in the delimited form and the row must end with a line feed
character. Operation is a single character, {i|u|d|s|p} for insert, update, delete, safe delete
(delete only if the record exists), and upsert respectively.

This is a record in an XML format.

<StreamName [ESP_OPS="i|u|d|s|p"] [ESP_FLAGS="s"]
 column_name="value" ... column_name="value" />

If ESP_OPS is not present, operation is taken as an upsert. There is no requirement on the
number of columns present. Those that are missing are taken to have null values. If
ESP_FLAGS is present, it can only have the value "s" indicating that the SHINE flag should be
set for the record.

CHAPTER 4: Publish and Subscribe Executables

Utilities Guide 43

esp_kdbin
Reads data from a KDB database table into an Event Stream Processor stream.

The esp_kdbin adapter reads data from a KDB database into a stream in the Event Stream
Processor. You can configure the adapter to read either queried or streaming data, based on a
configuration parameter.

By default, the adapter matches the field names (in a case-insensitive manner) to decide the
mapping between the source KDB table and the target stream. You also have the option of
explicitly specifying the mapping.

Syntax
esp_kdbin -H [kdbhost:]kdbport -p [host:]port -q source -s stream -c
user[:password] [OPTION...]

Required Arguments

• -c user[:password] – Passes authentication credentials to the Event Stream Processor. If
you do not provide either the password or the -k option, you are prompted for the password.
If the Event Stream Processor successfully authenticates with these credentials, the
connection is maintained, otherwise the Event Stream Processor will immediately close
the connection.

• -H kdbhost:kdbport – Specifies the port number, or the host name and port number, on
which KDB is listening. The default value is localhost:5001.

• -p [<host>:]<port>/workspace-name/project-name – Together, the host:<port>/
<workspace name>/ <project name> arguments specify the URI to connect to the ESP
Server (cluster manager). For example, if you have started your ESP cluster server in the
port 19011, the host name is set as localhost, and you are running a project called prj1 in
the default workspace, specify -p as: -p localhost:19011/default/prj1

• -q source – Specifies the KDB table when running in streaming mode. When running in
non-streaming mode, specifies a valid query string.

• -s stream – Specifies the target stream: the stream to which the data being read is
published.

Options

• -a – Uses asynchronous mode transmission; where the adapter does not wait for
acknowledgment from the Event Stream Processor that it received the data. This option is
necessary when using a hot spare configuration to ensure that both the primary and the hot
spare receive the data. The default value is 'non async'.

CHAPTER 4: Publish and Subscribe Executables

44 Sybase Event Stream Processor

• -b blocksize – Specifies how many records to put in a block of data for transmission. A
higher value may increase throughput but it will also increase latency. A block may contain
fewer records than specified if there is not enough data available. The default value is 64.

• -d – Outputs debug messages.
• -e – Uses encrypted OpenSSL sockets for all communications between the adapter and

the Event Stream Processor (which requires that it be started in encrypted mode). When
this option is not present, no encryption occurs. The default is not encrypted.

• -g gatewayhost – Uses the specified gateway host. Ignore the host name returned by the
Event Stream Processor.

• -h – Prints detailed help.
• -k privateRsaKeyFile – Performs authentication using the RSA private key file

mechanism instead of password authentication. The privateRsaKeyFile must specify the
pathname of the private RSA key file.

Note: Ensure that the ESP Server has been started with the -k option specifying the
directory in which to store the RSA keys.

• -I interval – Specifies the number of seconds to wait before running the supplied query
again when running in nonstreaming mode. A value of 0 indicates that the query should
only be run once; no polling is performed. The default value is 0.

• -M mapping – Specifies a mapping between the column name in the target stream and the
column name in the KDB database table. The mapping is a colon-separated series of
SPColumn=KDBColumn statements. If this parameter is not provided, the connector
absorbs data only for those columns where the target stream column name matches the
source table column name (in case-insensitive manner).

• -m – If this option is not specified, the adapter connects to a KDB database and reads in
streaming data. If it is specified, the adapter executes the supplied database query and
feeds the result to the Event Stream Processor. The default is to use streaming mode.

• -T attempts – Specifies the number of times to attempt to reconnect to the KDB database if
the connection breaks during operation. The default value is 1.

• -t – Uses transaction blocks. This improves performance, but causes all records in a block
to be rejected when one record fails. The default is to use envelopes.

• -u user:password – Passes authentication credentials to the KDB database.

Examples
Execute a basic streaming mode query that reads data from a KdbTrades table in a KDB
database on the server myServer, where KDB is listening on port 9200, and writes it to the
SpTrades stream in the Event Stream Processor on the local server where the Command and
Control interface is on port 1190, use:

esp_kdbin -p 1190 -H myServer:9200 -q KdbTrades -s SpTrades

To execute the same query, explicitly mapping fields in the KDB database to columns in the
Event Stream Processor stream, use:

CHAPTER 4: Publish and Subscribe Executables

Utilities Guide 45

esp_kdbin -p 1190 -H myServer:9200 -q KdbTrades -s SpTrades \
-M SpId=KId:SpSymbol=KSymbol:SpPrice=KPrice:SpCount=KCount

To execute a pull mode operation that issues the specified query every 5 seconds to a KDB
database on the server myServer, where KDB is listening on port 9200, and writes data to the
Event Stream Processor, on the server outputServer, where the Command and Control
interface is on port 1221, use:
esp_kdbin -p outputServer:1221 -H myServer:9200 -q 'select Id,
Symbol, Price, Count from KdbTrades' \
-s SpTrades -m -I 5

esp_kdbout
Feeds streaming data from the Event Stream Processor to a KDB database table.

By default, the adapter matches the field names (in a case-insensitive manner) to determine the
mapping between and the Event Stream Processor stream and the KDB table. You can also
explicitly specify the mapping.

Syntax
esp_kdbout -H [kdbhost:]kdbport -p [host:]port -q source -s table -c
user[:password] [OPTION...]

Required Arguments

• -c <user:password> – Passes authentication credentials to the Event Stream Processor. If
you do not provide either the password or the -k option, you are prompted for the password.
If the Event Stream Processor successfully authenticates with these credentials, the
connection is maintained, otherwise, the Event Stream Processor immediately closes the
connection.

• -p [<host>:]<port>/workspace-name/project-name – Together, the host:<port>/
<workspace name>/ <project name> arguments specify the URI to connect to the ESP
server (cluster manager). For example, if you have started your ESP cluster server in the
port 19011, the host name is set as localhost, and you are running a project called prj1 in
the default workspace, specify -p as: -p localhost:19011/default/prj1

• -H kdbhost:kdbport – Specifies the port number, or the host name and port number, on
which KDB is listening. The default host name is localhost.

• -q <query> – Specifies either the name of a stream on the Event Stream Processor or a
valid SQL query to retrieve the data to write to the KDB table.

• -s <stream> – Specifies the name of the KDB table to which the data will be written.

CHAPTER 4: Publish and Subscribe Executables

46 Sybase Event Stream Processor

Options

• -a – Uses asynchronous mode transmission; where the adapter does not wait for
acknowledgment from Event Stream Processor that it received the data.

• -B – Uses droppable subscriptions. Event Stream Processor drops the subscription if the
adapter cannot keep up with the data.

• -b <blocksize> – Allows you to set the maximum number of records to include in a single
batch write to KDB table. The default is 5000.

• -d – Logs debug messages.

• -e – Uses encrypted OpenSSL sockets for all communications between the adapter and
the Event Stream Processor (which requires that it be started in encrypted mode). When
this option is not present, no encryption occurs.

• -h – Prints a list of possible options on the screen along with a brief explanation for each
option.

• -I – Specifies a comma-separated list of KDB field names whose values will be ignored.
These fields are included in the message, but are always populated with NULL.

• -k <privateRsaKeyFile> – Authenticates using the RSA private key file mechanism
instead of a password. The privateRsaKeyFile must specify the pathname of the private
RSA key file. With this option enabled, the user name must be specified with the -c
option, but the password is not required. In addition, the ESP Server must have been started
with the -k option specifying the directory in which to store the RSA keys.

• -L <interval> – Uses pulsed subscribe when connecting to the Event Stream Processor.
The pulse interval is specified in seconds.

• -l – Uses “lossy” subscribe.

• -M <permutation> – Specifies a mapping between the column name in the target stream
and the column name in the KDB database table. The mapping is a colon-separated series
of SPColumn=KDBColumn statements. If this parameter is not provided, the connector
absorbs data only for those columns where the target stream column name matches the
source table column name (in a case-insensitive manner).

• -m – Writes the data to the table using the “upsert” operation. If this option is not used, the
adapter works in streaming mode and uses the u.upd operation to write data to the KDB
database.

• -n – Transactions only, no base data is received. Default value is false.

• -O – Specifies a comma-separated list of KDB field names to omit from the message.
Unlike ignored fields which are part of the message but always NULL, these fields are not
included in the message.

• -Q – Runs in quiet mode, no messages will be displayed.

• -R – Subscribes with shine through (if possible) so that previously received information is
retained for any fields for which the update contains no new data.

CHAPTER 4: Publish and Subscribe Executables

Utilities Guide 47

• -T <numtries> – Specifies the number of times to attempt to reconnect to the KDB
database if the connection breaks during operation. The default is 1.

• -t – Targets KDB table.

• -u <user:password> – Passes authentication credentials to the KDB database.

• -v – Prints the esp_kdbout utility version.

Examples
To subscribe to the SpTrades stream of project default/prj1 in the Event Stream
Processor on the server myserver, where the cluster manager is on port 1221, and stream the
data out to KdbTrades in the KDB database on the server outputserver, where KDB is
listening on port 9200, use:

esp_kdbout -p myserver:1221/default/prj1 -H outputserver:9200 -q
SpTrades -s KdbTrades

To populate fields XXX and YYY in a KDB table may with NULL (because they have no
corresponding data in the Event Stream Processor), use:

esp_kdbout -p myserver:1221/default/prj1 -H outputserver:9200 -q
SpTrades -s KdbTrades -I XXX,YYY

Sometimes a table in KDB may compute fields (for example, XXX and YYY) which should
not be specified in the data update message. Doing so usually results in a length error in the
database. To omit these fields from the update message altogether, use:

esp_kdbout -p myserver:1221/default/prj1 -H outputserver:9200 -q
SpTrades -s KdbTrades -O XXX,YYY

esp_rapexport
Functions as an adapter to modify data output by the Event Stream Processor so that it can be
accepted as input by RAP - The Trading Edition. Since RAP can only handle inserts, deletes
are dropped and updates are converted to inserts.

Syntax
esp_rapexport -f configFile -t templateDir -p publisherConfigDir

Required Arguments

• -f config_file – Specifies the full pathname of the file containing information about
which streams on the Event Stream Processor are providing the data to RAP.

CHAPTER 4: Publish and Subscribe Executables

48 Sybase Event Stream Processor

• -p Dir – Specifies the full pathname of the directory containing the publisher file, which
defines the multicast address used by the RAP subscriber.

• -t Dir – Specifies the full pathname of the directory containing RDS templates which
map the columns in the streams on the Event Stream Processor to the appropriate database
table and columns.

Examples
Shows how to run an adapter with a configuration file named config.xml and
templates and publish subdirectories all under a home directory whose full path is
contained in the RAP_HOME environment variable:

esp_rapexport -f $RAP_HOME/config.xml -t $RAP_HOME/templates
-p $RAP_HOME/publish

esp_subscribe
Connects to an instance of the Event Stream Processor via the Command and Control and
Gateway interfaces and subscribes to transaction streaming data. The received records are
converted to XML (or optionally delimited format) and written to the standard output.

Syntax
esp_subscribe -p host:port/workspace/project -c user[:password]
[OPTION...]

Required Arguments

• -c user[:password] – Authenticates with a user ID and, optionally, a password. If you do
not provide either the password or the -k or -G option, you are prompted for the password.
If the Event Stream Processor successfully authenticates with these credentials, the
connection is maintained, otherwise, the Event Stream Processor immediately closes the
connection.

• -p host:port/workspace/project – Together, the host:port/workspace/project arguments
specify the URI to connect to the ESP Server (cluster manager). For example, if you have
started your ESP cluster server on port 19011 of your local machine, and you are running a
project called prj1 in the default workspace, specify -p as: -p localhost:19011/
default/prj1

Options

• -A – Adds subscriptions to this conn_handle connection handle. esp_subscribe exits
after processing the request.

CHAPTER 4: Publish and Subscribe Executables

Utilities Guide 49

• -b – Connects to the server in reverse byte order of the machine architecture on which
esp_subscribe is running.

• -B – Drops the connection if it supplies data faster than esp_subscribe can absorb it.

• -d separator – Puts the subscribe client into delimited output mode and uses the specified
separator as the delimiting character.

• -D conn_handle – Deletes subscriptions to this conn_handle connection handle. This
esp_subscribe exits after processing the request.

• -e – Encrypts traffic with the Event Stream Processor via openSSL sockets.

Note: Ensure that the Event Stream Processor is started in encrypted mode to use this
option.

• -f configfile – Specifies the CCX configuration file that describes the location data that
will be read via standard input.

• -F schemafile – Sets the XML schema file. The default schema file is $ESP_HOME/
etc/Platform.xsd.

• -g gateway_host – Uses the specified gateway host rather than the host returned from the
get_gateway() call.

• -G – (optional) authenticates access to the Event Stream Processor with credentials held
within a Kerberos authentication ticket. Environment variables determine where the
system will look to find authentication tickets (See Administrators Guide > Security in the
Event Stream Processor > Authentication > Setting Environment Variables for Kerberos
for more information). If the user name differs from the default principal name in the ticket
cache, specify an alternate user name with the –c option to use the corresponding
authentication ticket.

• -h – Prints a list of possible options on the screen along with a brief explanation for each
option.

• -H – Subscribes to the Event Stream Processor heartbeat messages, (sID,Qd), ... (sID,qD).

• -i streamId[,...] – Specifies one or more streams to subscribe to, using each stream's
integer handle.

• -k privateRsaKeyFile – Performs authentication by using the RSA private key file
mechanism instead of password authentication. The privateRsaKeyFile must specify the
pathname of the private RSA key file.

Note: Ensure that the ESP Server has been started with the -k option specifying the
directory in which to store the RSA keys.

• -l – Puts the subscribe client into lossy mode, where data is shed (lost) if the subscribe
client cannot keep up with the streaming data produced by the Event Stream Processor.

• -L N – Specifies a pulsed subscription, where records are collected, and delivered every N
seconds.

• -m conn_name – Sets a symbolic tag name for the connection. This allows esp_subscribe
to look up the connection easily in the _ESP_Clients metadata stream. The tag is stored in

CHAPTER 4: Publish and Subscribe Executables

50 Sybase Event Stream Processor

the conn_tag field. To kill the connections by tag name, use the esp_client to input the
kill every command.

• -M number – Specifies the number of multiple connections to establish (all for the same
streams).

• -P precision – Sets the number of decimal places in output for FLOAT. Default value is 6
decimal places.

• -Q SQL statement – Specifies an SQL select statement to apply to outbound records.

The outbound records are marked with insert, update, and delete, even when the SQL
statement might not include the key columns of the stream. To give insert/update/delete
meaning in these cases, you can specify a special column ESP_SEQNO. For example, the
statement select *, ESP_SEQNO from Vwap order by Price
automatically fills in values for the ESP_SEQNO column. With order by, the
ESP_SEQNO reflects the ordering of the rows in the output set.

• -R – Subscribes with shine through (if possible) so that when an update contains no new
data for previously received fields, information for those fields is retained.

• -s stream_1 [,...,stream_N] – Specifies one or more streams using the logical name of
each stream, to subscribe to snapshot the table, (exit after the SYNC records are received).

• -S – Takes a snapshot of the table: receive the initial state of the stream and exit
immediately afterward.

• -t – Puts the subscribe client into transaction-only mode, so it receives transactional
updates to streams upon connection to the Event Stream Processor, rather than the initial
state of the streams.

• -T – Prints out transaction block begin <block>, and transaction block end </block>
markers.

• -v – Reports special events (start synchronization, end synchronization, or stream exit).
• -W baseDrainTimeout – Sets the time limit, in milliseconds, that this client has to read all

base data from the subscribe stream before being dropped. When this parameter is not
specified, the default value is 8,000 milliseconds or 8 seconds.

• -X – Exits the process after all the subscriptions exit, even if the Event Stream Processor
does not drop the connection.

• -z queueSize – Sets the subscriber queue size to queueSize, of the output gateway
connection. This queue front ends the connected socket, buffering data to be delivered to
the client. The minimum value for the queueSize is 1000 records. The default value is 8192
records.

• -V – Prints the esp_subscribe utility version.

Examples
to subscribe to two streams named PreprocessorTransactions and DebitMovements, of
default/prj1 project running on a cluster manager on localhost:11180, printing all stream data
in XML format on standard output:
esp_subscribe -c user:pass -s
PreprocessorTransactions,DebitMovements -p localhost:11180/default/

CHAPTER 4: Publish and Subscribe Executables

Utilities Guide 51

prj1

To subscribe to two streams named PreprocessorTransactions and DebitMovements, printing
all stream data in pipe-separated format on standard output:
esp_subscribe -c user:pass -d "|" -s
PreprocessorTransactions,DebitMovements -p localhost:11180/default/
prj1

To subscribe to one stream named PreprocessorTransactions that has data generated by a
server running on a machine named HOST (which has differing byte order than the machine
that subscribe is running on) and print all stream data in pipe-separated format on standard
output:
esp_subscribe -c user:pass -d "|" -s PreprocessorTransactions -p
localhost:11180/default/prj1

To subscribe to one stream named baseInput and apply a SQL statement:
esp_subscribe -c user:pass -Q "select intData_1,
10*intData_1+dblData_1 from baseInput where intData_1 > 20" -p
localhost:11180/default/prj1

To subscribe to an error stream, named ErrorStream:
esp_subscribe -p localhost:11180/default/prj1 -Q "select e.*,
recordDataToString(e.sourceStreamName, e.errorRecord) errorRecord
from ErrorStream e"

Extended Opcodes for esp_subscribe
Extended operations codes (opcodes) appear in the output when using esp_subscribe in
verbose mode.

All extended opcode letters are preceded by ESP_OPS. Below is an example of the
ESP_START_SYNC extended opcode:
ESP_OPS="s"

ESP_START_SYNC

• An extended opcode visible when using the subscribe tool with the '-v' option.
• Indicates that the base data (data in the window available when the subscription starts) is

about to be delivered.
• Represented as the letter 's' when subscribing to Streams, Windows, and Delta Streams.

ESP_END_SYNC

• An extended opcode visible when using the subscribe tool with the '-v' option.
• Indicates that the base data (data in the window available when the subscription starts) has

been delivered.
• Represented as the letter 'e' when subscribing to Streams, Windows, and Delta Streams.

ESP_WIPEOUT

CHAPTER 4: Publish and Subscribe Executables

52 Sybase Event Stream Processor

• An extended opcode visible when using the subscribe tool with the '-v' option.
• This opcode is received when running in High Availability mode and the primary server

goes down; and you are going to receive a fresh set of base data from the secondary server.
• Represented as the letter 'w' when subscribing to Streams, Windows, and Delta Streams.

ESP_STREAM_EXIT

• An extended opcode visible when using the subscribe tool with the '-v' option.
• This opcode is received when the stream that is being subscribed to has exited. You will no

longer receive more data from this Stream/Window/Delta Stream.
• Represented as the letter 'X' when subscribing to Streams, Windows, and Delta Streams.

ESP_DATA_LOST

• An extended opcode visible when using the subscribe tool with the '-v' option.
• This opcode is received when subscribing to data in lossy mode. The server purges some

data because the subscribe tool is not able to keep up with the server.
• Represented as the letter 'l' (lowercase L) when subscribing to Streams, Windows, and

Delta Streams.

esp_upload
Records binary records from the standard input and forwards them to a running instance of the
Event Stream Processor via the Gateway interface.

The format of the data is zero or more occurrences of <Stream Handle><Raw Binary
Record>. <Stream Handle> is an uint32_t indicating the destination stream for the
record. This tool is typically used at the end of a pipeline with the esp_convert tool.

Syntax
esp_upload -p [<host>:]<port>/workspace-name/project-name -c
user[:password] [OPTION...]

Required Arguments

• -c user[:password] – Authenticates with a user ID and, optionally, a password. If you do
not provide either the password or the -k or -G option, you are prompted for the password.
If the Event Stream Processor successfully authenticates with these credentials, the
connection is maintained, otherwise the Event Stream Processor immediately closes the
connection.

Options

• -b – Sets byteswap mode. The raw records fed into esp_upload (via esp_convert -b) and
the server to which esp_upload is sending data have different byte orders than the

CHAPTER 4: Publish and Subscribe Executables

Utilities Guide 53

architecture on which the esp_upload client is running (the byte order of the data must
always match the byte order of the server).

• -d N – Inserts a delay of N microseconds between records or transaction blocks.

• -e – Encrypts traffic with the Event Stream Processor via openSSL sockets.

Note: Ensure that the Event Stream Processor is started in encrypted mode to use this
option.

• -f timeout:finalizer – Sets a finalizer to be run. The ESP Server runs the SQL finalizer
statement (a combination of insert, update, or delete statements, separated by semicolons)
if no message is received from esp_upload within timeout milliseconds. The SQL
statement is also run when esp_upload stops.

• -G – (optional) authenticates access to the Event Stream Processor with credentials held
within a Kerberos authentication ticket. Environment variables determine where the
system will look to find authentication tickets (See Administrators Guide > Security in the
Event Stream Processor > Authentication > Setting Environment Variables for Kerberos
for more information). If the user name differs from the default principal name in the ticket
cache, specify an alternate user name with the –c option to use the corresponding
authentication ticket.

• -h – Prints a list of possible options on the screen along with a brief explanation for each
option.

• -k privateRsaKeyFile – Performs authentication by using the RSA private key file
mechanism instead of password authentication. The privateRsaKeyFile must specify the
pathname of the private RSA key file. Ensure that the ESP Server has been started with the
-k option specifying the directory in which to store the RSA keys.

Note: With this option enabled, the user name must be specified with the -c option, but the
password is not required.

• -m conn_name – Sets a symbolic tag name for the connection. This allows the
esp_upload to look up the connection easily in the _ESP_Clients metadata stream. To kill
the connections by tag name, use the esp_client command.

• -p [<host>:]<port>/workspace-name/project-name – (required) Together, the
host:<port>/<workspace name>/ <project name> arguments specify the URI to connect to
the ESP Server (cluster manager). For example, if you have started your ESP cluster server
in the port 19011, the host name is set as localhost, and you are running a project called
prj1 in the default workspace, specify -p as: -p localhost:19011/default/
prj1

• -r N – Uploads records or transaction blocks at a rate of N per second. The default is to
upload as fast as the server can absorb the data.

• -s N – Synchronizes the source streams every N records or transaction blocks. This
guarantees that the records have been absorbed by the source streams. By default, source
streams are not synchronized.

• -t size – Runs in transaction mode. Each record that esp_upload reads is buffered on a
per-stream basis. When a buffer reaches the indicated number of records, it is wrapped as a

CHAPTER 4: Publish and Subscribe Executables

54 Sybase Event Stream Processor

single transaction and sent to the Event Stream Processor. If all records read are from one
stream, this effectively buffers the stream into size record chunks and commits them as
transactions. Any buffered records are sent as a single transaction per stream when an EOF
is read.

• -w size – Runs in envelope mode. Each record that esp_upload reads is buffered on a
per-stream basis. When a buffer reaches the indicated number of records, it is wrapped in a
single envelope and sent to the Event Stream Processor. If all records read are from one
stream, this effectively buffers the stream into size record chunks. Any buffered records
are sent as a single envelope per stream when an EOF is read.

• -x – Upon receiving an EOF on the standard input, sends an <END OF STREAM> marker
to each stream for which data has been uploaded. If all source streams of the Event Stream
Processor receive an <END OF STREAM> marker, the Event Stream Processor shuts
down and exits.

• -X – Forces the Event Stream Processor to exit when upload completes.

• -Y <beat> – Forces the Event Stream Processor to exit if no data is received in <beat>
microseconds.

• -v – Prints the esp_upload utility version.

Examples
For a description of the format of the CSV and XML input files, see esp_convert.

To convert all XML records in file foo.xml to native binary format and post them to a
running instance of the Event Stream Processor:

cat foo.xml | esp_convert -p localhost:11180/default/prj1 |
esp_upload -c user:pass -p localhost:11180/default/prj1

To convert all comma-separated records in the foo.csv file to native binary format and post
them to a running instance of the Event Stream Processor:

cat foo.csv | esp_convert -d "," -p localhost:11180/default/prj1 |
esp_upload -c user:pass -p localhost:11180/default/prj1

To convert all XML records in the foo.xml file to native binary format and post them to a
running instance of the Event Stream Processor on a target machine HOST which has a
differing byte order than the machine on which esp_upload is running:

cat foo.xml | esp_convert -b -p localhost:11180/default/prj1 |
esp_upload -c user:pass -b -p localhost:11180/default/prj1

CHAPTER 4: Publish and Subscribe Executables

Utilities Guide 55

CHAPTER 4: Publish and Subscribe Executables

56 Sybase Event Stream Processor

CHAPTER 5 Authoring Executables

esp_compiler
Translates a given set of CCL statements to the corresponding CCX representation to be
consumed by the Event Stream Processor. Also, verifies the correctness of the CCL
statements, checks for datatype consistencies, and performs limited optimization.

Syntax
esp_compiler -i<CCL File> -o<CCX File>

Required Arguments

• -i CCL File – Uses the specified file as the input, which translates to CCX.

Options

• -o CCX File – Writes the CCX output to the named file; this overwrites the file if it already
exists. If not specified, by default, the CCX is written to standard output.

• -v – Prints the esp_compiler utility version.

esp_studio
Starts the ESP Studio. Use Studio to visually author projects (in other words, continuous
queries) and to kick off and monitor ESP Server execution of those services.

Note: To find version information on esp_studio, launch the ESP Studio and access the
About dialog. The -v option, used with other utilities, is not available with esp_studio.

Syntax
esp_studio

Utilities Guide 57

CHAPTER 5: Authoring Executables

58 Sybase Event Stream Processor

CHAPTER 6 Advanced Debugging

Introduction
The Sybase Event Stream Processor includes debugging features for locating and fixing
problems in your projects.

These features are available through two interfaces: the Event Stream Processor Studio and
the esp_client command-line utility. Use the debugging tools during project development, not
while the Event Stream Processor is in production mode. The debugging tools are normally
disabled since they place a substantial overhead on the Event Stream Processor.

To enable the debugging tools, run the Event Stream Processor in trace mode.

Trace Mode
In trace mode, the Event Stream Processor performs extra checks for possible debugging
operations and breakpoints, and collects extra information about execution history.

Use the esp_client utility to enable, disable, and the check the status of trace mode.

For example, in an instance of esp_client, check the status of trace mode, turn it on, check the
status again, then turn it off:

For example, in an instance of esp_client, check the status of Trace Mode, turn it on, check the
status again, then turn it off:
esp_client> trace_mode
trace mode is off
esp_client> trace_mode on
esp_client> trace_mode
trace mode is on
esp_client>trace_mode off
esp_client>trace_mode
trace mode is off

Trace mode is not associated with any instance of esp_client: you can turn on trace mode and
exit esp_client; the Event Stream Processor remains in trace mode until you turn it off in
another instance of esp_client.

Step the Event Stream Processor
Stepping lets you advance the state of the Event Stream Processor when the system is paused.

You can advance a stream by a single step or multiple steps. To produce substantial changes, a
stream may require multiple steps, so users may allow the system to run an entire transaction

Utilities Guide 59

or run until the streams are quiesced. Users may also choose to run the system again, which
runs normally until another breakpoint is triggered.

Automatic Single-Stepping
Automatic stepping does not function with breakpoints or bad row exceptions; any
encountered breakpoints or bad row exceptions will be reported to Studio, but this will not stop
the stepping.

The first auto step command, step trans, steps to the end of a transaction. This command does
at least one common step, and then continues stepping as long as the stream stays in the
COMPUTE location. The stream stops when it moves into the PUT or BAD_ROW location
and allows users to examine the transaction's effect before committing or discarding it. Call
step trans repeatedly to step past transactions.

If the execution blocks the INPUT or OUTPUT location for longer than 0.3 second, step trans
stops.

The other auto-stepping commands are related to the concept of quiescence (running the
streams until they have processed all the available input). These commands are:

Command Function

step quiesce stream {streamName} Automatically steps the stream and all of its direct and in-
direct descendants until they are quiesced (until all their
input queues are empty).

step quiesce downstream {stream-
Name}

Only the stream's descendants are stepped: the stream itself
is not. Use this command to clear out the descendant streams'
input queues. When the argument stream produces its out-
put, the progression of the data through the descendant
streams can be easily traced.

step quiesce from base Automatically steps all derived (nonsource) streams until
their input queues are empty. Use this command to clean out
the queues of derived streams before processing an incon-
sistent record through the source stream.

Note: If you exit esp_client or Studio while the Event Stream Processor is paused, it remains
paused. When you connect with another instance of esp_client, it still remains paused. If you
leave the Event Stream Processor in trace mode, it remains in that mode: if it encounters a
breakpoint or exception, it pauses, and stops all processing until unpaused.

You can stop the Event Stream Processor from esp_client even when it is paused. The
esp_client utility will unpause the Event Stream Processor and disable trace mode before
stopping it.

Disabling trace mode also unpauses the Event Stream Processor.

CHAPTER 6: Advanced Debugging

60 Sybase Event Stream Processor

Pause the Event Stream Processor
While in trace mode, you can issue a pause command to pause the stream processing loop.
Pausing the loop allows you to examine the stream in a static state.

While the Event Stream Processor is in trace mode, the stream processing mechanism checks
for a pause request as it enters each processing group location. Once you issue a pause
command, the stream pauses and the does not resume the loop until you allow it to continue.
When the Event Stream Processor is paused, no calculations happen. Any transactions in the
streams' output buffers are still consumable by subscribers. Publishing to the paused stream
continues until the stream's input buffers are full.

If the stream is engaged in actual processing when the pause is requested, processing
continues until it enters the next location.

Streams are not affected by a pause request when in an I/O location. For example, the stream
pauses automatically in the INPUT location if there are no transactions in the input queue and
in the OUTPUT location if the output queue is full.

The stream may move between the I/O locations to a processing location even when it is
paused. If there is a slow subscriber on a stream, the stream's output fills up, and the stream
remains in the OUTPUT location, until the buffer space becomes available. If the stream in
this location receives a pause request, the request is ignored. If the stream's subscriber takes a
transaction off the output buffer after this request, the stream deposits its current output
transaction on the buffer and goes to the INPUT location. At this point, after entering the
INPUT location, the stream recognizes the pause request. No new data is processed after the
pause request, but the stream does change its location.

Pause metadata streams like any other stream. No updates should come from these streams
while the Event Stream Processor is paused, except for _ESP_RunUpdates.

Use the esp_client command-line utility to check the pause status of the Event Stream
Processor, to pause, and to unpause:
esp_client> check_pause
Sybase Event Stream Processor is not paused
esp_client> pause
esp_client> check_pause
PAUSED
esp_client> run
esp_client> check_pause
Sybase Event Stream Processor is not paused

The Stream Processing Loop
The internal logic of a stream in the Event Stream Processor can be represented as a loop with
states that correspond to ways the Event Stream Processor handles data.

A normal processing sequence proceeds as follows:

1. INPUT

CHAPTER 6: Advanced Debugging

Utilities Guide 61

The stream waits for the input queue to become non-empty, then picks a transaction from
the head of the input queue. The transaction is visible as inTrans, the current input
transaction. The transaction is processed row-by-row.
The current output transaction is set to be empty, prepared to collect the results of
processing.

2. COMPUTE
The next record is selected from the current input transaction. It becomes visible as inRow,
the current input row. In some cases, the current input record may actually be two records,
combined into an UPDATE_BLOCK.
If this is not the first iteration of the loop, the records produced from processing the
previous input record are still visible as outRow.
If there are any input breakpoints defined on the stream, they are evaluated against the
current input record, which may trigger an Event Stream Processor pause.
The check as to whether the Event Stream Processor is paused is performed. If paused, the
stream pauses here and waits for permission to continue.
Finally, the actual computation is performed on the current input record. It produces zero
or more output records. These records become visible as outRow, and are also appended to
the end of outTrans. These records follow certain internal rules, and are not exactly the
same as when they are published externally. For example, the update records at this point
usually have the operation type UPSERT, and the delete records are SAFEDELETE.
Any output breakpoints defined on the stream are evaluated against the current input
record, which may trigger an Event Stream Processor pause.
If there are more records left in the input transaction, the compute loop continues;
otherwise, the stream proceeds to put the calculated data into the store, unless an exception
such as division by zero has happened, in which case it proceeds to the BAD_ROW
processing.

3. PUT
The Event Stream Processor is checked to see whether paused. If so, the stream pauses
here and waits for permission to continue.
The new result is placed into the stream's store. This is not a simple process, as the result
transaction gets cleaned and transformed according to the information already in the store.
Because of this, the current output transaction is invisible after this point. There is no
current output row either. Some of these transformations are:
• SAFEDELETEs: are either thrown away (if there was no such record in the store) or

converted to DELETEs (filled with all the data that they had in the store before being
deleted).

• UPSERTs: They are transformed into either INSERTS or UPDATE_BLOCKs. Any
remaining UPDATEs are converted to UPDATE_BLOCKs , or may be discarded if no
data is changed in the record from its previous state. An UPDATE_BLOCK is a pair of
records; the first one has the operation type UPDATE_BLOCK and contains the new
values, while the second one has the operation type DELETE and contains the old
values. When an UPDATE_BLOCK is published to outside the Event Stream

CHAPTER 6: Advanced Debugging

62 Sybase Event Stream Processor

Processor, the second record is discarded and the first one is converted to an UPDATE.
Inside the Event Stream Processor, the entire update block is visible.

The PUT may trigger an exception too, for example, when trying to insert a record with a
key that is already in the store. In this case, the entire transaction is aborted and the stream
moves to the BAD_ROW location.
The current input transaction and current output transaction (already transformed) are
inserted into the stream's history. The input transaction is added to the end of inHist, the
output transaction appended to the end of outHist. Since the processing is done now,
inTrans and inRow become invisible, outTrans and outRow are already invisible by this
time.

4. OUTPUT
The result transaction is queued to be published to the clients. If some clients are too slow
and the output buffer fills, the stream waits for buffer space to become available.
The result transaction is delivered to any streams that have this stream as their input.
Again, if any of their input queues become full, this stream waits for them to become
available.
The stream then goes to INPUT the next transaction.

Besides this main loop, there are side branches. For the streams with expiry, the following side
branch occurs every second:

• EXPIRY

Breakpoints and Exceptions
The breakpoint function pauses Event Stream Processor if there is a problem with the data
model. A breakpoint stops Event Stream Processor and allows the user to troubleshoot the
problem.

There are two options for pausing the system: sending an explicit pause command or setting a
breakpoint on a stream or window (this includes local streams). You can set breakpoints on a
stream's input or output; there is no limit to the number of breakpoints you can add. When an
event hits a breakpoint, the execution is paused.

You can set specific conditions on a stream or window breakpoint. For example, you can place
a filter on a breakpoint so only certain records trigger the pause. You can also set a time
condition, which allows the user to trigger the breakpoint after a specified number of records.

There are two kinds of breakpoints for streams:

• On Input – these breakpoints are checked when a row is taken from the input transaction
for processing, before any computation is performed. Event Stream Processor is paused in
the COMPUTE location.
• On any input – checked for input from any stream.
• On a particular stream – checked only when the input transaction is coming from a

particular stream.

CHAPTER 6: Advanced Debugging

Utilities Guide 63

• On Output – these breakpoints are checked after a row has been processed. Event Stream
Processor is paused in the next location (COMPUTE for the next input row, PUT or
BAD_ROW).

Unconditional Breakpoints and Exceptions
A simple breakpoint is unconditional: once the stream is in the right location, the breakpoint is
triggered and the Event Stream Processor is paused. You can trigger more than one breakpoint
simultaneously. Multiple breakpoints can be defined in the exact same location. The Event
Stream Processor can tell one breakpoint from another by the unique ID assigned when the
breakpoint is created. If you create two breakpoints that are the same, Event Stream Processor
gives each one a separate ID, allowing both breakpoints to be triggered at the same time.

Once a breakpoint is created, you can enable it, disable it, or alter some of its information. The
breakpoint cannot be moved to another location or have its conditional expression changed. To
make major changes, you must delete the breakpoint and create a new one.

You may pause the Event Stream Processor at any record. For example, if a bug surfaces on the
1000th record passing though a stream, you can let 999 records pass, then pause and single-
step from that point. To do this, configure a breakpoint to trigger on every nth row. If you
restart the Event Stream Processor, the breakpoint triggers on the 2000th row next. In bp
list, the field enabledEvery shows the breakpoint number as N, and leftToTrigger
shows how many records remain to be seen before the breakpoint is triggered. Every time the
breakpoint is triggered, leftToTrigger is reset to the original value of enabledEvery.
By default, when you create a breakpoint, enabledEvery is set to 1, to trigger on each row.
It can be changed with the esp_client command bp every.

Users can disable a breakpoint temporarily by configuring the breakpoint to trigger on every
0th record or by using the bp on command, which triggers the breakpoint on each record.

Conditional Breakpoints and Exceptions
Use conditional breakpoints to see a record with certain contents pass through a stream.

You can apply conditional breakpoints on Event Stream Processor by specifying a filter
expression for a breakpoint. The filter expression is evaluated first and if it results in a false (0
or NULL) value, the breakpoint is skipped. The breakpoint is triggered only if the expression
results in a true value (or its leftToTrigger count is reduced).

The filter expression is standard in SPLASH. It uses the data from two pre-defined record
variables: currow and oldrow. The variable currow contains the current record;
oldrow is defined only for the breakpoints on input. For INSERT and a plain UPDATE the
value of oldrow is NULL. For UPDATE_ BLOCK oldrow contains the second record of
the block, the old data that is being replaced. For DELETE and SAFEDELETE oldrow
contains the same data as currow. A particular field can be accessed using the usual
currow.field syntax. You can obtain the row operation code using
getOpcode(currow) .

CHAPTER 6: Advanced Debugging

64 Sybase Event Stream Processor

The row definition that provides these predefined variables changes with different types of
breakpoints.

For a breakpoint on output, the breakpoint is defined on the Row Definition. The expression is
evaluated on the output rows produced during the preceding COMPUTE. Since multiple rows
can be produced, the expression is evaluated on each. If no rows are produced, the expression
is evaluated once with currow set to NULL. In this case, oldrow is not available because
the UPDATE_ BLOCK is not produced on output of COMPUTE.

For a breakpoint on input from a specific stream, the breakpoint is defined on the Row
Definition of that input stream. The expression is evaluated on the record or update block that
is about to be computed. Filter expressions are not permitted for this kind of breakpoint.

A source stream receives data from outside of the Event Stream Processor instead of other
streams. To add a conditional breakpoint on the input of a source stream, use the source
stream's own name for the input stream with bp add {filterInput} {filterInput}.

Notification of Debugger Events
You can receive notifications as the Event Stream Processor changes between running and
pausing, single-steps, and when it hits breakpoints and exceptions.

To receive these updates, you can subscribe to the _ESP_RunUpdates stream. This stream
does not retain any content; notifications bypass the stream's store, and always have the
operations type UPDATE. See CCL Reference Guide for more details.

Sample Debugging: Pausing the Event Stream Processor
Use the esp_client command-line utility to check the pause status of the Event Stream
Processor, to pause, and to unpause.

1. To pause the Event Stream Processor, use:

esp_client> pause

2. To run the Event Stream Processor and continue execution, use:

esp_client> run

3. To check if the Event Stream Processor is paused, use:

esp_client> check_pause

The Event Stream Processor notifies the user of whether it is paused or not. If it is not
paused, you see Sybase Event Stream Processor is not paused. If it is
paused, you see PAUSED.

CHAPTER 6: Advanced Debugging

Utilities Guide 65

Sample Debugging: Stepping the Event Stream Processor
Use the esp_client command-line utility to advance a stream by a single step.
Advance a stream by a single step using:

esp_client> step [`stream`]

Let the Event Stream Processor pick a stream that requires processing using:

esp_client> step

Automatic Stepping
The esp_client command line utility offers many options for automatic stepping. These
commands eliminate the need for continuous single-stepping.

1. Advance a stream to the end of a transaction using:

esp_client> step trans [`stream`]

2. Step a stream and all of its direct and indirect descendants until all of their input queues are
empty using:

esp_client> step quiesce stream {streamName}

3. Step only the stream's descendants until their input queues are empty using:

esp_client> step quiesce downstream {streamName}

4. Step all derived streams until their input queues are empty using:

esp_client> step quiesce from base

Sample Debugging: Adding Breakpoints
Use the esp_client command-line utility to add or delete breakpoints from a stream or
window. Pause the Event Stream Processor before adding a breakpoint.

1. Add a breakpoint on a stream, before it starts processing an input record from any stream
using:

bp add `stream` any

2. Delete the breakpoint with specified ID using:

bp del `id`

The ID of a breakpoint is given by using either the bp add or bp list commands.

3. Delete all breakpoints using:

bp del all

4. Enable or disable a breakpoint with specified ID using:

CHAPTER 6: Advanced Debugging

66 Sybase Event Stream Processor

bp on|off `id`

5. Enable or disable all breakpoints using:

bp on|off all

6. Make the breakpoint with specified ID trigger on every nth occasion.

bp every `count` `id`

7. Make all the breakpoints trigger on every nth occasion using:

bp every `count` all

8. List all created breakpoints using:

bp list

Sample Debugging: Adding Conditional Breakpoints
The esp_client command-line utility provides options for adding conditions to a breakpoint.
These breakpoints trigger only when the condition evaluates at true.

1. Add a breakpoint on a stream, before it begins processing an input record from another
stream using:

bp add `stream` `inputStream` [`condition`]

2. Add a breakpoint on a stream, after it has processed an input record and produced an output
using:

bp add `stream` out [`condition`]

Data Examination
The examine command lets you view different data types produced by various streams.

The examination commands, which work only when Event Stream Processor is paused, lets
you view different datatypes produced by various streams.

The examination commands return the records in the same format used to send updates to
common subscribers. The esp_client command generates records in XML format. The
operation types that occur in examined data include the standard types seen by the normal
subscribers, and the types that are used exclusively inside Event Stream Processor.

There are two ways in which records returned by the examination commands may be grouped:

• Two records can be grouped into an update block. These are printed by esp_client within
an XML element named <pair>.

• Multiple records and update blocks can be grouped into a transaction. These transactions
are printed by esp_client within an XML element <trans>. If a transaction contains only
one record, it is printed as a single record, without the <trans> wrapping.

If a stream employs an input window, as this windows fills, it begins generating
SAFEDELETEs for the earlier records. To distinguish these records from the DELETEs sent

CHAPTER 6: Advanced Debugging

Utilities Guide 67

by the input streams, esp_client includes the pseudo-field ESP_RETENTION=1 in each
record.

These arguments choose the data to be examined:

Argument Function

kind Determines the kind of data to be examined.

stream Specifies the stream from which the data is taken. To receive data from
all streams, leave this field empty.

object Selects the particular data unit. Use this if there are many units of this
kind of data (for example, variables).

Either the stream, data, or both can be left empty or omitted if it is not applicable to the kind of
data requested in the examine command. The kind and stream must match: you cannot request
data across the Event Stream Processor from a stream, and you cannot request per-stream data
unless you specify a stream.

Some kinds of data are only available from certain streams. For example, the pattern state can
be read only from a pattern stream. If the requested kind of data is not available for a certain
stream, the error No such kind of data is returned, even if that kind of data is
supported for other streams.

Some kinds of data can be used both with and without the stream argument. For example, you
can use “var” without a stream to examine global variables, and with a stream to examine that
stream's variables.

The groups of data related to the input queues are heterogeneous. Each record receives a tag
matching the name of the stream that produced it (records produced from source streams
receive tags with the name of the source stream itself). These include: queue, inTrans,
inRow, queueHead, queueTail, inHist, lastInTrans, inHistEarliest, and
inHistLatest.

There are also groupings of historic data that contain a mix of input and output data. Each of
these groups contains one or more pairs of transactions: the first record in each pair is an input
transaction, and the second record is the matching output transaction. Each input transaction
record is tagged with the name of the stream that produced it; each output transaction record
gets the tag currow. If any input stream records are also tagged with row, you can distinguish
by looking at the order in which they appear.

Certain kinds of data deal with history, such as the input transactions processed and outputs
produced. You can obtain these data sets separately (as input history and output history) or in a
combined data set. When the input and output history are examined separately, the
transactions are matched by their index: the first input transaction matches the first output
transaction, and so on.

The amount of historical data kept for a stream is determined by the stream's history size
setting. This setting can be set globally for all streams, or set for individual streams, using the

CHAPTER 6: Advanced Debugging

68 Sybase Event Stream Processor

esp_client command history. The default history size limit is 100 transactions. Using large
history limits increases the memory usage of the Event Stream Processor.

If trace mode is off, all history is discarded, but the limit is kept. The next time trace mode is
enabled, the history begins collecting again.

A record returned by the examine command should be stored in an empty placeholder. If there
is no ambiguity with transaction boundaries (such as with outTrans), esp_client returns no
data. In other cases, such as hist, a placeholder shows that the transaction occurred, but
produced no output. A placeholder record includes all fields, including the key fields; the
value of each is set to NULL.

Some types of data records use natural field names. Records, such as "pause", return metadata:
the field names in this type of record are defined in the Event Stream Processor. Other types
contain a mix of fields defined by the user and added by Event Stream Processor. In this type of
record, the fields added by Event Stream Processor have the prefix ESP_. Do not use this
prefix for user-defined fields.

Filters
Use filters to examine specific rows in a large volume of data. The data that is returned by the
debugging commands can be refined to select only the relevant data.

Data is filtered in the Event Stream Processor, before it is sent out.

The esp_client command exf performs filtering as follows:
exf {kind} [{stream} [{object}]] {expr}

The names of the stream and object are optional, similar to the command ex. There is an added
argument containing the filter expression. The filter expression references a pre-defined
variable, similar to the breakpoint filter expressions containing the current row. This
expression compares the row with the expression and decides if the row should be returned.
Whenever the filter expression returns true (non-0, non-NULL), the record is
returned to the user and displays.

The rules for the defined variables are:

• If all rows in the returned data set are of the same type, they are wrapped in a single variable
row.

• If the data kind contains rows of mixed types (the input or history data), multiple variables
are defined, with names matching the XML tags printed for these records. Only one
variable, matching the type of the current record, contains a value. All others are set to
NULL.

CHAPTER 6: Advanced Debugging

Utilities Guide 69

Store Data
Place store data into a file using the debugging tools on the Event Stream Processor.

This process is similar to the attribute ofile in the stream's element which causes the
stream's contents to be dumped to a file when the Event Stream Processor exits.

To dump stored data, use:

dump { FileName} {streamName}

Data Manipulation
In esp_client, the eval command allows the debugging interface to change data within the
Event Stream Processor. The contents of global and stream local variables (including event-
Cache) can be changed using this functionality.

Data manipulation functionality works only when the Event Stream Processor is in trace mode
and paused.

The eval command changes data by evaluating a SPLASH statement (or block) in the stream.
Only the variables are visible, not the streams or stream iterators. Any SPLASH statements are
permissible, including branching and loops, but writing an infinite loop indefinitely stops the
Event Stream Processor. Temporary variables are also permissible inside the SPLASH block.

In most situations the key of the eventCache is determined by the current input record. There is
no input record, so the key is not set and any operations on eventCaches have no effect. This
requires the key to be set manually using the operator keyCache(ec-variable, record). Ensure
that you set this operator before performing any operations on eventCache. You may change
the key more than once, even in a loop, allowing you to perform operations on multiple keys.

You may only modify the stream's local variables (those defined in the local DECLARE block)
and global variables with the eval command. Variables defined inside the SPLASH blocks of a
stream exist only when the appropriate methods are run. These variables cannot be modified.

If it is possible to evaluate a unit of code, then it is not an expression but a SPLASH statement.
A SPLASH statement must either be a simple statement terminated by ";" or a block enclosed
in braces "{}". Multiple statements must always be enclosed in a block. If braces are used to
quote the block argument, the outside quotes do not function as the block delimiters: they are
just esp_client quotation marks.

The following are examples of correct and incorrect blocking:

Correct Blocking
eval `stream` `a := 1;`

eval {a := 1;}

CHAPTER 6: Advanced Debugging

70 Sybase Event Stream Processor

eval `stream` `{ typeof(input) r := [a=9; | b= 's1'; c=1.;
d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r); }`

eval {stream} {{ typeof(input) r := [a=9; | b= 's1'; c=1.;
d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r); }}

Incorrect Blocking
eval `stream` `a := 1`

eval {a := 1}

eval `stream` `typeof(input) r := [a=9; | b= 's1'; c=1.;
d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r);`

eval {stream} { typeof(input) r := [a=9; | b= 's1'; c=1.;
d=intDate(0);];
 keyCache(s0, r); insertCache(s0, r); }

CHAPTER 6: Advanced Debugging

Utilities Guide 71

CHAPTER 6: Advanced Debugging

72 Sybase Event Stream Processor

CHAPTER 7 On-Demand Queries

Each Event Stream Processor instance has a single Command and Control server thread that
handles requests for information (metadata) or instructions to perform tasks such as quiesce
or shutdown.

The esp_query On-Demand SQL Query utility uses this process to send requests for
information to Event Stream Processor.

The esp_cnc and esp_client utilities send directives to Event Stream Processor via this
process. See the Command and Control Executables topic for more details.

SQL Syntax in Event Stream Processor
The ESP On-Demand Query interface allows you to query active windows in a running ESP
project using the esp_query tool.

These SQL queries can be run at any time, are ad hoc (for example, you do not need to define
them in advance), and they return a snapshot based on the contents of the window at the time of
the query. This is an important distinction: SQL queries submitted via the On-Demand Query
interface are snapshot queries, unlike CCL queries which are continuous queries.

The On-Demand Query interface is suited for loading data slowly by running infrequent ad-
hoc queries. It is not suited for inserting large amounts of data since it does not sustain high
data throughput. As a result, it does not support high performance insertion techniques such as
batch insertion. Instead, use one of the Publisher APIs (C, Java, or .NET) for high performance
insertion.

Note that you can query input and output windows in a running ESP project. Streams and delta
streams cannot be queried in on-demand queries since they do not have state, and local
windows cannot be queried since they are internal to a project and not visible outside the
project.

Use esp_query to query an ESP project as well as the SQL syntax that is supported for on-
demand queries.

In order to make SQL queries to a model from your application, you must retrieve and use the
ESP JDBC driver. The ESP JDBC driver allows your java client code to make SQL queries
through the On-Demand SQL Interface.

Utilities Guide 73

ESP JDBC Driver Retrieval
In order to use the ESP JDBC driver, you must connect to a cluster, retrieve a session ID from
ESP, and use it as the argument for the JDBC user connection parameter. The code sample
below demonstrates this procedure.

// Create a URI and credentials to connect to the cluster.
Uri serverURI = new Uri.Builder("esp://nstackxp2:9786/default/
csv_poll_test").create();
Credentials creds = new
Credentials.Builder(Credentials.Type.NONE).create();

System.out.println(serverURI);

// Connect to the cluster
Project project = s_sdk.getProject(serverURI, creds);
project.connect(WAIT_TIME_60000_MS);

// Get the session ID after connecting.
String theSessionID = SDK.getSessionId(serverURI, creds);
System.out.println("The Session ID: " + theSessionID);

// Query the cluster for the project host and port.
Deployment dep = project.getCurrentDeployment();
int sqlPort = dep.getSqlPort();
String host = dep.getHost();
System.out.println("SqlPort = " + sqlPort);

//Server server = s_sdk.getServer(serverURI , creds);
//server.connect();

Jdbc3SimpleDataSource source = new Jdbc3SimpleDataSource();
source.setServerName("localhost");
source.setDatabaseName("database");
source.setUser(theSessionID);
source.setPassword("");
source.setPortNumber(sqlPort);

Connection con = null;
try {
 con = source.getConnection();
 // Use the connection.
} catch (SQLException e) {
 // Log any errors.
}

Supported SQL Statements
Syntax for SQL statements supported for on-demand queries.

CHAPTER 7: On-Demand Queries

74 Sybase Event Stream Processor

DELETE Statement
Deletes specified rows from an input window.

Syntax
DELETE FROM window [WHERE whereclause]

Components

window An input window.

whereclause An expression resulting in a 1 for true, or a 0 for false.

Usage
The DELETE statement removes specified rows from an INPUT window. It cannot be used
with streams. The WHERE clause acts a filter which limits which rows are deleted. If a WHERE
clause is not provided all rows in the input window are deleted.

Note that you cannot use esp_query to run concurrent DELETE statements on the same
window or stream.

Example
DELETE Trades WHERE Shares < 100 and Symbol = 'SAP';

INSERT Statement
Creates one or more rows, and inserts them into a specified stream or window.

Syntax
INSERT INTO StreamWindow (column [,...]) VALUES (value [,...])

Components

StreamWindow The name of an input stream or window.

column The name of a column in a specified stream or window.

value The corresponding value to insert. There must be as many values
as there are specified columns.

Usage
The INSERT statement produces rows of data and publishes them to a destination stream or
window. Rows are published to the specified destination any time the statement executes and
produces output. To control when the statement executes, an optional OUTPUT clause can be
added.

The INSERT statement explicitly indicates the columns to which data should be published,
from left to right. The number and data types of the columns specified in the INSERT INTO

CHAPTER 7: On-Demand Queries

Utilities Guide 75

clause must correspond to the number of items and data types of the column expressions in the
VALUES clause.

If the destination stream or window includes more columns than you specify, unlisted columns
are set to NULL when rows are published.

Note that you cannot use esp_query to run concurrent INSERT statements on the same window
or stream.

Example
INSERT INTO Trades (TradeId, Symbol, Shares, Price) VALUES (1000,
'SAP', 100, 75.50)

SELECT Statement
Queries the contents of an input or output window. This syntax is for querying the contents of a
running project. It is not valid syntax for building a project.

A SELECT statement must include at least one SELECT clause and at least one FROM clause,
but may contain other optional clauses, such as WHERE, GROUP BY, and ORDER BY clauses.

Syntax
SELECT { TOP N { col1[,...] | * } } | {[DISTINCT] { expression [[AS]
alias] } [, ...]}
FROM { out_window }
[WHERE expression]
[GROUP BY expression [, ...]]
[ORDER BY column [ASC[ENDING] | DESC[ENDING]] [, ...]]

Components

N The number of rows.

expression A SQL-92 expression specifying selection, grouping, or filtering
conditions, as appropriate. See Usage for more information.

out_window The name of an input/output window. Identify any submodules in
the path to the module containing the window, by name and sepa-
rated by dots. For example: module1.out_window1.

column The name of the column the GROUP BY clause will use to organize
the output.

Usage
The SELECT statement queries the current contents of INPUT/OUTPUT windows listed in
the FROM clause and generates result rows, each of which has a fixed number of columns.
Rows from the INPUT/OUTPUT window listed in the FROM clause are passed to the SELECT
clause, after being filtered by the query's WHERE clause, if one is specified. These results are
processed by any other clauses in the query.

CHAPTER 7: On-Demand Queries

76 Sybase Event Stream Processor

The SELECT statement contains the following clauses:

• SELECT clause
• FROM clause
• (optional) WHERE clause
• (optional) GROUP BY clause

SELECT Clause
Every SELECT statement must contain one SELECT clause. The SELECT clause specifies a
select-list, which is then used to generate results in a query. A select-list has a number of
different features, including:

• The number of items in the simple SELECT statement's select-lists determines the number
of columns in the result.

• A select-list expression can refer to column names of the OUTPUT windows specified in
the SELECT statement's FROM clause.

• The asterisk (*) character can be used to select all columns from the INPUT/OUTPUT
window specified in the FROM clause.

• The select-list can be prefaced by a DISTINCT keyword, which makes each row included
in the result unique. If two or more rows contain the same values in all queried columns, the
DISTINCT keyword causes only one of the rows to be included in the result. Otherwise, all
rows that fit the criteria will be included in the results.

You can also include a rowtime or rowid in the SELECT clause to display the rowtime and
the rowid in the output, if required.

FROM Clause
The FROM clause specifies the data source for the SELECT statement's query. The data source
must be an OUTPUT window. The OUTPUT window can be referred to by its defined name
from a CREATE WINDOW statement.

WHERE Clause
The optional WHERE clause can be used to specify selection conditions. As a selection
condition, the WHERE clause filters rows from the data source before they are passed to the
SELECT clause. Expressions in the WHERE clause cannot have aggregate functions.

GROUP BY Clause
The optional GROUP BY clause causes one or more rows of the result to be combined into a
single row of output. A GROUP BY clause is often used when the query result contains
aggregate functions. The clause can contain expressions using constants or expressions from
the input window or stream, but it cannot contain expressions that have aggregate functions.

Examples
This example selects all trades with the symbol 'SAP' from Trades:

CHAPTER 7: On-Demand Queries

Utilities Guide 77

SELECT TradeId, Symbol, Shares
FROM Trades
WHERE Symbol = 'SAP'

This example selects all trades with the symbol 'SAP', groups them by symbol then by price:
SELECT Symbol, Price, sum(Shares)
From Trades
where Symbol = 'SAP'
GROUP BY Symbol, Price

UPDATE Statement
Updates existing rows in an input window.

Syntax
UPDATE window SET { column=value [,...] } [WHERE whereclause]

Components

window An input window.

whereclause An expression resulting in 1 for true, or 0 for false.

value An expression that evaluates to a value of the same data type as the
specified column.

column The name of a destination column to which value is published.

Usage
The UPDATE statement updates existing rows in an INPUT window. It cannot be used with
streams. The UPDATE statement updates the rows identified by the WHERE clause if one is
provided or updates all the rows if one is not provided. Any columns that are not specified in
the UPDATE statement are automatically set to NULL.

Note that you cannot use esp_query to run concurrent UPDATE statements on the same
window or stream.

Example
UPDATE Trades SET Price = 0.0 WHERE Symbol <> 'SAP'

Supported SQL92 Expressions
Supported syntax for SQL references to expression.

SQL references to expression refer to the following syntax, unless indicated otherwise:

{expression binary expression} |{expression [NOT] LIKE expression}|
{unary expression} |(expression) |column |pub.column | literal |
parameter |
{function (expression | *) } |{ expression { IS NULL | IS NOT
NULL } } |

CHAPTER 7: On-Demand Queries

78 Sybase Event Stream Processor

{expression [NOT] IN (values)} |
{CASE [expression] { WHEN expression THEN expression } [...] [ELSE
expression] END}|

Binary
 | * | / | % | + | - | | | < | <= | >= | = | <> | IN | AND | OR

Unary
- | + | NOT

esp_query
Executes an SQL statement, supplied by standard input or the -Q option, on the server and
prints the results to the standard output.

Syntax
esp_query -p host:port/workspace/project -c user[:password]
[OPTION...]

Required Arguments

• -c user[:password] – authenticates access to an ESP server with a user ID and, optionally,
a password. If you do not provide either the password or the -k or -G option, you are
prompted for the password. If the Event Stream Processor successfully authenticates with
these credentials, the connection is maintained, otherwise the Event Stream Processor
immediately closes the connection.

• -p host:port/workspace/project – Together, the host:port/workspace/project arguments
specify the URI to connect to the ESP Server (cluster manager). For example, if you have
started your ESP cluster server on port 19011 of your local machine, and you are running a
project called prj1 in the default workspace, specify -p as: -p localhost:19011/
default/prj1

Options

• -e – Specifies that an encrypted SSL connection to the Event Stream Processor should be
used.

• -G – (optional) authenticates access to the Event Stream Processor with credentials held
within a Kerberos authentication ticket. Environment variables determine where the
system will look to find authentication tickets (See Administrators Guide > Security in the
Event Stream Processor > Authentication > Setting Environment Variables for Kerberos
for more information). If the user name differs from the default principal name in the ticket
cache, specify an alternate user name with the –c option to use the corresponding
authentication ticket.

CHAPTER 7: On-Demand Queries

Utilities Guide 79

• -h – Prints a list of possible options on the screen along with a brief explanation for each
option.

• -k <path> – Performs authentication by using the RSA private key file mechanism instead
of password authentication. The privateRsaKeyFile must specify the pathname of the
private RSA key file. Ensure that the ESP Server has been started with the -k option
specifying the directory in which to store the RSA keys.

Note: With this option enabled, the user name must be specified with the -c option, but the
password is not required.

• -m <date format> – Sets the format for date values using strptime format. The default
is "%Y-%m-%d %H:%M:%S+00".

• -P <precision> – Specifies the number of decimal places in output (default 2).

• -Q <query> – Specifies the query to execute (if not provided via stdin).

• -q hostname:port – Specifies the port, or both the hostname and port, of the SQL Listener
of the target ESP Server. The default host is "localhost" and the default port is "22200".

• -t <table name> – Specifies the name of the table for the XML output. The default name
is "Result".

• -v – Prints the esp_query utility version.

Usage
esp_query accepts an SQL query on the standard input and forwards it to a running instance of
the Event Stream Processor. It then prints the results of the query on the standard output.

From a UNIX or Linux command line prompt, or the Query panel in the ESP Studio, the SQL
query must be enclosed in double quotes. From a DOS command line prompt, double quotes
must not enclose the SQL query.

Querying streams doesn't make sense, but the esp_query can be used to obtain information
from an error stream if a downstream window is defined to retain the state of the error stream.

Examples
To print the contents of stream Emp, on a UNIX machine named myhost, using SQL port
11100:
echo "select * from Emp" | ./esp_query -p myhost:11100/workspace/
project -c user:password

If myhost is a Windows machine, the esp_query syntax is the same, but the query must not be
in quotes:
echo select * from Emp | esp_query -p myhost:11100/workspace/project
-c user:password

To delete an entry from the Dept stream and update the Emp stream accordingly:
echo "delete from Dept where dn='SWP'; update Emp set dn='' where
dn='SWP'" | ./esp_query -p myhost:11100/workspace/project -c
user:password

CHAPTER 7: On-Demand Queries

80 Sybase Event Stream Processor

To query a window, named ErrorState, that retains the state of an error stream named
ErrorStream:
echo "select e.*, recordDataToString(e.sourceStreamName,
e.errorRecord) errorRecord from errorState e" |esp_query -p myhost:
11100/workspace/project -c user:password

SQL Syntax
The Event Stream Processor accepts a subset of SQL92 statements.

The SQL92 statements that Event Stream Processor accepts are select, insert, update, and
delete statements.

Queries using select are limited to single streams, with no joins or subqueries, but may use
where, group by, and order by clauses. The insert, update, and delete statements are
restricted to source streams. You can put these modification statements in sequence with a
semicolon. You cannot run insert, update, or delete statements concurrently on the same
window or stream.

CHAPTER 7: On-Demand Queries

Utilities Guide 81

CHAPTER 7: On-Demand Queries

82 Sybase Event Stream Processor

Index
B

breakpoints
conditional 63, 67
examples 66, 67
unconditional 63

D

data manipulation
eval command 70

debugging
automatic stepping 66
breakpoints 63
data manipulation 70
event notifications 65
examination commands 67
filtering data 69
pausing 65
pausing stream processing 61
single stepping 66
SPLASH code 70
trace mode 59

DELETE statement 75

E

esp_client 22
esp_cluster_admin

command line mode 6
commands 3
interactive mode 3

esp_cnc 21
esp_compiler 57
esp_convert 41
esp_kdbin 44
esp_kdbout 46
esp_monitor 9
ESP_OPS

extended opcodes 52
esp_playback 12
esp_query 73, 79
esp_rapexport 48
esp_server 3
esp_studio 57

esp_subscribe 49
extended opcodes 52

esp_upload 53
event notifications

receiving 65
examination commands 67

F

filters 69

I

input formats 43
INSERT statement 75

J

JDBC Driver 74

O

On-Demand Query interface 73, 74
opcodes

extended 52
operation codes

extended 52

P

pausing
examples 65

pausing stream processing
in trace mode 61

Q

queries
ad hoc 73

querying 74

S

SELECT statement 76

Index

Utilities Guide 83

SPLASH code
debugging 70

SQL
statements supported 74

SQL Query port 74
SQL92

expressions supported 78
statements supported 81

stepping
automatic 66
single 66

store data
dumping to a file 70

stream processing
stepping 59

stream processing loop
pausing 61
states 61

T

trace mode 59
pausing stream processing 61

U

UPDATE statement 78

Index

84 Sybase Event Stream Processor

	Utilities Guide
	Contents
	CHAPTER 1: Overview of Event Stream Processor Executables
	Event Stream Processor Server Executables
	Command and Control Executables
	Publish and Subscribe Executables
	Authoring Executables

	CHAPTER 2: Server Executables
	esp_server
	esp_cluster_admin
	esp_cluster_admin in Command Line Mode

	esp_monitor
	esp_playback

	CHAPTER 3: Command and Control Executables
	esp_cnc
	esp_client

	CHAPTER 4: Publish and Subscribe Executables
	esp_convert
	Input Formats

	esp_kdbin
	esp_kdbout
	esp_rapexport
	esp_subscribe
	Extended Opcodes for esp_subscribe

	esp_upload

	CHAPTER 5: Authoring Executables
	esp_compiler
	esp_studio

	CHAPTER 6: Advanced Debugging
	Introduction
	Trace Mode
	Step the Event Stream Processor
	Pause the Event Stream Processor
	The Stream Processing Loop
	Breakpoints and Exceptions
	Notification of Debugger Events

	Sample Debugging: Pausing the Event Stream Processor
	Sample Debugging: Stepping the Event Stream Processor
	Automatic Stepping

	Sample Debugging: Adding Breakpoints
	Sample Debugging: Adding Conditional Breakpoints

	Data Examination
	Filters
	Store Data

	Data Manipulation

	CHAPTER 7: On-Demand Queries
	SQL Syntax in Event Stream Processor
	ESP JDBC Driver Retrieval
	Supported SQL Statements
	DELETE Statement
	INSERT Statement
	SELECT Statement
	UPDATE Statement

	Supported SQL92 Expressions

	esp_query
	SQL Syntax

	Index

