
Examples Guide

Sybase Event Stream Processor
5.1 SP01

DOCUMENT ID: DC01683-01-0511-01
LAST REVISED: November 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Learning CCL by Example1

CHAPTER 2: Adapters Examples3
ATTACH ADAPTER Statement ..3
ADAPTER START GROUPS Statement4
Schema Inheritance ...4
Adapter Data with Opcodes ..5
File CSV Output Adapter ...6
Database Input Adapter ..7
Database Output Adapter ...8
Database Input Adapter with Polling9

CHAPTER 3: Stream and Window Examples13
Streams ...13
Local Windows and Output Windows14
Delta Stream ...14
Join Windows ..15
Join Streams ..16
Outer Join ...17
Union Streams ...18
Jumping Windows ...19
Splitter ..20

CHAPTER 4: Function Examples23
CREATE LIBRARY statement ...23
Aggregate Functions ...24
Bitwise Functions ..24
Data Aggregation ...25

Examples Guide iii

CHAPTER 5: Store Examples27
STORES ..27
Prepay Biller ...27

CHAPTER 6: Flex Examples ...31
Data Management with Flex Streams31
Multiple Inputs ...32
Average Trade Price with Timer ...33
Variables in the DECLARE Block34
Event Cache ...35
SPLASH with if/then/else ..36
SPLASH with getOpcode ..37

CHAPTER 7: DECLARE Block Examples39
CCL Function ...39
Parameter Declaration ...40

CHAPTER 8: Data Selection Examples41
AGING Column ...41
AGING Column with Time Option42
Data Aggregation ...42
Data Aggregation with Filter ...43
GROUP BY Clause with last() Function43
KEEP Clause ..45
KEEP Clause with AGING Clause45
KEEP ALL Clause ..46
KEEP LAST clause ..46
KEEP PER Clause ..47
KEEP UNTIL Clause ...48
Filter with WHERE Clause ...49
MATCHING clause ..49

Contents

iv Sybase Event Stream Processor

Matching a Sequence of Events ...50
Matching Non-Events ..51
Row Time ..51
AUTOGENERATE Clause ..52

CHAPTER 9: Module Examples55
CREATE MODULE ..55
Load Module ...56

CHAPTER 10: Advanced Examples57
Portfolio Valuation ...57
Trades Log ..58
Vectors and Dictionaries ...61

Index ... 63

Contents

Examples Guide v

Contents

vi Sybase Event Stream Processor

CHAPTER 1 Learning CCL by Example

This guide is intended as a companion reference to the CCL examples included with Sybase®

Event Stream Processor.

This guide describes the sequence of CCL elements used to achieve specific tasks within
projects, using sample code to highlight the most relevant pieces of code to the task. By
default, example files and the data files they read from are in C:\<installation
directory>\ESP-5_1\studio\learning directory. You can configure this
directory during installation.

There are examples of simple projects available in ESP Studio that are not described in this
guide. You can load and run them from the Learning perspective.

Examples Guide 1

CHAPTER 1: Learning CCL by Example

2 Sybase Event Stream Processor

CHAPTER 2 Adapters Examples

Event Stream Processor includes several adapter-related CCL examples that demonstrate a
range of functionality, including how to attach an adapter and perform schema inheritance.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

ATTACH ADAPTER Statement
Use the ATTACH ADAPTER statement to attach a File CSV Input adapter to a window.

The example creates a schema named TradeSchema and an input window named
TradeWindow that references the schema.

The example then attaches the File CSV Input adapter to TradeWindow.

This ATTACH ADAPTER instance is named csvInConn1, but you can assign it any name.
The TYPE requirement refers to the adapter ID, which is unique to the adapter. The ID for the
File CSV Input adapter is dsv_in. The example defines values for adapter parameters, either
maintaining the default values or modifying them as needed. You can find the adapter type or
ID and a list of parameters for each adapter in the Adapters Guide.

 ATTACH INPUT ADAPTER csvInConn1
 TYPE dsv_in
 TO TradeWindow
 PROPERTIES
 blockSize=1,
 dateFormat='%Y/%m/%d %H:%M:%S',
 delimiter=',',
 dir='$ProjectFolder/../data',
 expectStreamNameOpcode=false,
 fieldCount=0,
 file='stock-trades.csv',
 filePattern='*.csv',
 hasHeader=true,
 safeOps=false,
 skipDels=false,
 timestampFormat= '%Y/%m/%d %H:%M:%S';

Examples Guide 3

ADAPTER START GROUPS Statement
Use the ADAPTER START GROUPS statement to specify a start order for adapters in a project.

The example creates schemas named TradeSchema, CompanySchema, and
JoinSchema inherits its schema from TradeSchema. The text in parentheses tells the
project server to extend TradeSchema by adding another column named Company.

Create Schema JoinSchema
 inherits TradeSchema (Company String);

The example creates an input window named TradeWindow that references
TradeSchema, and another input window named CompanyInfo that references
CompanySchema. An output join window that uses the structure defined in JoinSchema
is created to join the TradeWindow and CompanyInfo input windows using their symbol
and timestamp values.

CREATE OUTPUT WINDOW Join1
 SCHEMA JoinSchema Primary Key deduced
 AS
 SELECT t.Ts as Ts, c.StockSymbol as Symbol ,
 t.Price as Price , t.Volume as Volume, c.Company as Company
 FROM TradeWindow t join CompanyInfo c
 on t.Symbol = c.StockSymbol
 group by t.Ts
 ;

The example attaches a File CSV Input adapter named csvTradesIn2 to TradeWindow,
and another File CSV Input adapter named csvCompanyIn to CompanyInfo. The
adapter instance named csvTradesIn2 is assigned to RunGroup0, and the adapter
instance named csvCompanyIn is assigned to RunGroup1.

The ADAPTER START GROUPS statement uses these adapter group assignments when
specifying the order in which adapters start. In this example, the project server starts
RunGroup1 adapters first, followed by RunGroup0 adapters.

ADAPTER START GROUPS RunGroup1, RunGroup0 ;

Schema Inheritance
Tell a new schema to inherit the structure of an existing schema.

The example creates a schema named TradeSchema.

CREATE SCHEMA TradeSchema (Ts bigdatetime, Symbol STRING, Price
MONEY(4), Volume INTEGER);

CHAPTER 2: Adapters Examples

4 Sybase Event Stream Processor

The example then creates the schema VTradeSchema, and uses the INHERITS syntax to
extend VTradeSchema by incorporating TradeSchema column values.

CREATE SCHEMA VTradeSchema INHERITS TradeSchema (vwap money(4));

The example creates an input window named TradeWindow, to which it attaches the File
CSV Input adapter.

Finally, the example creates an aggregate output window named VwapWindow, in which the
volume-weighted average price is returned for TradeWindow data. The return values are
grouped by Symbol.

CREATE OUTPUT WINDOW VwapWindow
 SCHEMA VTradeSchema
 PRIMARY KEY DEDUCED
AS
 SELECT TradeWindow.Ts Ts,
 TradeWindow.Symbol AS Symbol,
 TradeWindow.Price Price,
 TradeWindow.Volume Volume,
 ((SUM(TradeWindow.Price*TradeWindow.Volume)) /
(SUM(TradeWindow.Volume))) AS vwap
 FROM TradeWindow
 GROUP BY TradeWindow.Symbol;

Adapter Data with Opcodes
Use the expectStreamNameOpcode adapter property for the File CSV Input adapter.

The example uses the following data set:

win1,i,1,abc, row1
win1,i,2,zzzz, row2
win1,i,3,dfp, row3
win1,d,1,abc, row1
win1,u,3,dfp12, row3a

The i, d, and u values in the data are opcodes for inserting, deleting, and updating data,
respectively.

The example creates an input window for the data named win1, to which it attaches the File
CSV Input adapter.

The adapter property expectStreamNameOpcode is set to true so that the project server
knows there are opcodes in the incoming data that it must execute.

Input Window
CREATE INPUT WINDOW win1
 SCHEMA (
 a integer,

CHAPTER 2: Adapters Examples

Examples Guide 5

 b string ,
 c string)
 PRIMARY KEY (a);

Input Adapter
ATTACH INPUT ADAPTER csvInConn1
 TYPE dsv_in
 TO win1
 PROPERTIES expectStreamNameOpcode = TRUE ,
 dir='../exampledata',
 file = 'input1.csv' ;

File CSV Output Adapter
Use the File CSV Output adapter to send data to an external destination.

The example creates a schema named TradeSchema that is referenced by an input window
named InTrades. The example attaches a File CSV Output adapter named csvOut and a
File CSV Input adapter named InConn to InTrades.

ATTACH OUTPUT ADAPTER csvOut
 TYPE dsv_out
 TO InTrades
 PROPERTIES prependStreamNameOpcode = FALSE ,
 dir = '../exampleoutput' , file = 'csvoutput.csv' ,
 outputBase = FALSE , delimiter = ',' , hasHeader = FALSE ,
filePattern = '*.csv' ,
 onlyBase = FALSE , dateFormat = '%Y-%m-%dT%H:%M:%S' ,
 timestampFormat = '%Y-%m-%dT%H:%M:%S' ;

ATTACH INPUT ADAPTER InConn
 TYPE dsv_in
 TO InTrades
 PROPERTIES expectStreamNameOpcode = FALSE ,
 fieldCount =0 ,
 dir = '../exampledata' ,
 file = 'stock-trades.csv' ,
 repeatCount =0 , repeatField = '-' ,
 delimiter = ',' , hasHeader = FALSE ,
 filePattern = '*.csv' , pollperiod =0 ,
 safeOps = FALSE , skipDels = FALSE , dateFormat = '%Y/%m/%d
%H:%M:%S' ,
 timestampFormat = '%Y/%m/%d %H:%M:%S' ,
 blockSize =1 ;

CHAPTER 2: Adapters Examples

6 Sybase Event Stream Processor

Database Input Adapter
Use the Database Input adapter to connect to a database.

Prerequisites
To run this example, create a Trades table in your database using the supported syntax. The
table should include these values:

Column Datatype Value

Ts datetime not null

Symbol char(4) not null

Price money not null

Volume int not null

You must also create a unique index named ind1 on Trades (Ts) and grant all permissions
on Trades to public.

Finally, configure the services.xml file in <ESP_HOME>/bin using this example as a
model:

<Service Name="dbExample" Type="DB">

 <Parameter
Name="DriverLibrary">esp_db_jdbc_sybase_lib</Parameter>
 <Parameter Name="Host">mydbserver</Parameter>
 <Parameter Name="Port">5000</Parameter>
 <Parameter Name="User">test4</Parameter>
 <Parameter Name="Password">password</Parameter>
 <Parameter Name="Database">interpubs</Parameter>
 <Parameter Name="ConnectString"></Parameter>
 <Parameter Name="ConnectionPoolSize">-1</Parameter>
 </Service>

Populate the table with data before running the example.

Example
The example creates a schema named TradeSchema, followed by an input window named
TradeWindow and an output window named TradeOutWindow that each reference
TradeSchema. SELECT all (*) syntax tells the project server to output all data processed by
TradeWindow to TradeOutWindow.

The example attaches a Database Input adapter to TradeWindow to read data from the
database you set up as a prerequisite.

CHAPTER 2: Adapters Examples

Examples Guide 7

ATTACH INPUT ADAPTER dbInConn1
 TYPE db_in
 TO TradeWindow
 PROPERTIES service = 'dbExample' ,
 query = 'Select * from Trades' ,
 table = 'Trades' ,
 pollperiod =0 ,
 dateFormat = '%Y-%m-%d %H:%M:%S' , timestampFormat = '%Y-%m-%d %H:
%M:%S' ;

Database Output Adapter
Use a Database Output adapter to send data to an external database.

Prerequisites
To run this example, create a VwapWindow table in your database using the supported syntax.
The table should include these values:

Column Datatype Value

Symbol char(4) not null

Price money not null

You must also create a unique index named ind1 on Trades (Ts) and grant all permissions
on VwapWindow to public.

Finally, configure the services.xml file in <ESP_HOME>/bin using the following
example as a model for configuration:

<Service Name="dbExample" Type="DB">

 <Parameter
Name="DriverLibrary">esp_db_jdbc_sybase_lib</Parameter>
 <Parameter Name="Host">mydbserver</Parameter>
 <Parameter Name="Port">5000</Parameter>
 <Parameter Name="User">test4</Parameter>
 <Parameter Name="Password">password</Parameter>
 <Parameter Name="Database">interpubs</Parameter>
 <Parameter Name="ConnectString"></Parameter>
 <Parameter Name="ConnectionPoolSize">-1</Parameter>
 </Service>

The table is automatically populated with data from the File CSV Input adapter.

Example
The example creates a schema named TradeSchema, followed by an input window named
TradeWindow that references TradeSchema.

CHAPTER 2: Adapters Examples

8 Sybase Event Stream Processor

The example creates an aggregate output window named VwapWindow, in which the volume
weighted average price is returned for TradeWindow data. The return values are grouped by
Symbol.

CREATE output WINDOW VwapWindow
SCHEMA (Symbol STRING, vwap MONEY(2))
 PRIMARY KEY DEDUCED
 AS
SELECT TradeWindow.Symbol AS Symbol,
((SUM(TradeWindow.Price * TradeWindow.Volume)) /
(SUM(TradeWindow.Volume))) AS vwap
FROM TradeWindow
GROUP BY TradeWindow.Symbol;

The example attaches a Database Output adapter to VwapWindow. The project server
processes date values in date format, which means date values are truncated.

ATTACH OUTPUT ADAPTER dbOutConn1 TYPE db_out TO VwapWindow
PROPERTIES service = 'dbExample' ,
 table = 'VwapWindow' , outputBase = FALSE , truncateTable = TRUE ,
dateFormat = '%Y-%m-%d %H:%M:%S' ,timestampFormat = '%Y-%m-%d %H:%M:
%S' , onlyBase = FALSE , batchLimit =1 ;

The example attaches a File CSV Input adapter to TradeWindow to read data from an
external source and populate the database you set up as a prerequisite.

 ATTACH INPUT ADAPTER csvInConn1
 TYPE dsv_in
 TO TradeWindow
 PROPERTIES
blockSize=1,
dateFormat='%Y/%m/%d %H:%M:%S',
delimiter=',',
dir='../exampledata',
expectStreamNameOpcode=false,
fieldCount=0,
file='stock-trades.csv',
filePattern='*.csv',
hasHeader=true,
safeOps=false,
skipDels=false,
timestampFormat= '%Y/%m/%d %H:%M:%S';

Database Input Adapter with Polling
Use a Database Input adapter to connect to and poll a database.

Prerequisites

To run this example, create a Trades table in your database using the supported syntax. The
table should include these values:

CHAPTER 2: Adapters Examples

Examples Guide 9

Column Datatype Value

Ts datetime not null

Symbol char(4) not null

Price money not null

Volume int not null

You also need to create a unique non-clustered index called ind1 on Trades (Ts), and grant
all permissions on Trades to public.

Finally, configure the services.xml file in <ESP_HOME>/bin using the following
example as a model for configuration:

<Service Name="dbExample" Type="DB">

 <Parameter
Name="DriverLibrary">esp_db_jdbc_sybase_lib</Parameter>
 <Parameter Name="Host">mydbserver</Parameter>
 <Parameter Name="Port">5000</Parameter>
 <Parameter Name="User">test4</Parameter>
 <Parameter Name="Password">password</Parameter>
 <Parameter Name="Database">interpubs</Parameter>
 <Parameter Name="ConnectString"></Parameter>
 <Parameter Name="ConnectionPoolSize">-1</Parameter>
 </Service>

Populate the table with data, then run the example.

Example
The example creates a schema named TradeSchema, followed by an input window named
TradeWindow and output window named TradeOutWindow that each reference
TradeSchema. SELECT all (*) syntax outputs all data processed by TradeWindow to
TradeOutWindow.

The example attaches a Database Input adapter to TradeWindow to read data from the
database you set up as a prerequisite. A poll period of 10 for this adapter instance means that
the database is polled for new content every 10 seconds.

ATTACH INPUT ADAPTER dbInConn1
 TYPE db_in
 TO TradeWindow
 PROPERTIES service = 'dbExample' ,
 query = 'Select * from Trades' ,
 table = 'Trades' ,
 pollperiod =0 ,

CHAPTER 2: Adapters Examples

10 Sybase Event Stream Processor

 dateFormat = '%Y-%m-%d %H:%M:%S' , timestampFormat = '%Y-%m-%d %H:
%M:%S' ;

CHAPTER 2: Adapters Examples

Examples Guide 11

CHAPTER 2: Adapters Examples

12 Sybase Event Stream Processor

CHAPTER 3 Stream and Window Examples

Event Stream Processor includes several stream and window examples that demonstrate a
range of functionality, including how to use delta streams, make joins and unions, and split
streams.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

Streams
Create input and local streams.

The example creates an input stream named TradeStream and a local stream named
TradeLocalStream. The local stream uses SELECT all (*) syntax to retrieve all data
columns from TradeStream.

CREATE LOCAL STREAM TradeLocalStream
 SCHEMA (Ts BIGDATETIME, Symbol STRING, Price MONEY(2), Volume
INTEGER)

AS
SELECT * from TradeStream;
ATTACH INPUT ADAPTER csvInConn1
TYPE dsv_in
TO TradeStream
PROPERTIES
 blockSize=1,
 dateFormat='%Y/%m/%d %H:%M:%S',
 delimiter=',',
 dir='../exampledata',
 expectStreamNameOpcode=false,
 fieldCount=0,
 file='stock-trades.csv',
 filePattern='*.csv',
 hasHeader=true,
 safeOps=false,
 skipDels=false,
 timestampFormat= '%Y/%m/%d %H:%M:%S';

The example attaches the File CSV Input adapter to TradeStream, then creates an output
stream named TradeOutStream.

CREATE OUTPUT STREAM TradeOutStream
AS
 SELECT * FROM TradeLocalStream ;

Examples Guide 13

TradeOutStream retrieves all the data columns from TradeLocalStream using
SELECT all syntax, and outputs them using the File CSV Output adapter.

ATTACH OUTPUT ADAPTER Adapter1
 TYPE dsv_out
 TO TradeOutStream
 PROPERTIES
 dir = '../output' , file = 'streams.csv' , outputBase = TRUE ,
hasHeader = TRUE ;

Local Windows and Output Windows
Compare streams with windows and observe the differences between local and output
windows.

The example creates a schema named TradeSchema, then an input window named
TradeWindow that references TradeSchema. The File CSV Input adapter is attached to
TradeWindow.

The example then creates a series of local and output streams and windows. The output stream
and window are public; they communicate with external data sources using adapters. Local
streams and windows are viewed only internally and cannot have adapters attached to them.

CREATE LOCAL STREAM LocalStream
 AS SELECT * FROM TradeWindow ;

CREATE OUTPUT STREAM OutputStream
 AS SELECT * FROM TradeWindow ;

CREATE LOCAL WINDOW LocalWindow
 PRIMARY KEY DEDUCED
 AS SELECT * FROM TradeWindow ;

CREATE OUTPUT WINDOW OutputWindow
 PRIMARY KEY DEDUCED
 AS SELECT * FROM TradeWindow ;

Delta Stream
A delta stream incorporates the getrowid and now functions.

The example creates an input window named TradesWindow, to which it attaches the File
CSV Input adapter.

The example then creates a delta stream named DeltaTrades and uses the SELECT clause
to apply the getrowid and now functions to TradesWindow.

CHAPTER 3: Stream and Window Examples

14 Sybase Event Stream Processor

The getrowid function retrieves the sequence number of the rows for share symbol,
timestamp, price, and value in the input window. The now function publishes the process date
in bidgatetime format.

CREATE LOCAL DELTA STREAM DeltaTrades
 SCHEMA (
 RowId long,
 Symbol STRING,
 Ts bigdatetime,
 Price MONEY(2),
 Volume INTEGER,
 ProcessDate bigdatetime)
 PRIMARY KEY (Ts)
AS
 SELECT getrowid (TradesWindow) RowId,
 TradesWindow.Symbol,
 TradesWindow.Ts Ts,
 TradesWindow.Price,
 TradesWindow.Volume,
 now() ProcessDate
 FROM TradesWindow

The example creates an output window named TradesOut for viewing the results.

Join Windows
Use the FROM clause with ANSI JOIN syntax to join two windows.

The example creates two schemas named StocksSchema and OptionsSchema, and an
output schema named OutSchema.

The example then creates two input windows named InStocks and InOptions, which
use the structures defined in StocksSchema and OptionsSchema, respectively.

Finally, the example creates an output join window that uses the structure defined in
OutSchema to join the InStocks and InOptions input windows using their symbol and
timestamp values.

CREATE Output Window OutStockOption SCHEMA OutSchema
 Primary Key (Ts)
 KEEP ALL
AS
 SELECT InStocks.Ts Ts ,
 InStocks.Symbol Symbol ,
 InStocks.Price StockPrice ,
 InStocks.Volume StockVolume ,
 InOptions.StockSymbol StockSymbol ,
 InOptions.OptionSymbol OptionSymbol ,
 InOptions.Price OptionPrice,

CHAPTER 3: Stream and Window Examples

Examples Guide 15

 InOptions.Volume OptionVolume
 FROM InStocks JOIN InOptions
 on
 InStocks.Symbol = InOptions.StockSymbol and InStocks.Ts =
InOptions.Ts ;

Join Streams
Join two windows into a stream.

The example creates two schemas named StocksSchema and OptionsSchema,
followed by an input window named InStocks that references StocksSchema, and an
input window named InOptions that references OptionsSchema.

The example creates an output join stream named OutStockOption that joins the
InStocks and InOptions input windows using their symbol values.

CREATE OUTPUT STREAM OutStockOption AS
 SELECT InStocks.Ts Ts ,
 InStocks.Symbol Symbol ,
 InStocks.Price StockPrice ,
 InStocks.Volume StockVolume ,
 InOptions.StockSymbol OptionStockSymbol ,
InOptions.OptionSymbol OptionSymbol ,
 InOptions.Price OptionPrice,
 InOptions.Volume OptionVolume
 FROM InStocks JOIN InOptions
 on InStocks.Symbol = InOptions.StockSymbol
;

The example creates two ATTACH ADAPTER instances named csvInConn1 and
csvInOptions. A File CSV Input adapter is attached to the InStocks window in one
instance, and the InOptions window in another instance.

Finally, the example attaches a File CSV Output adapter named Adapter1 to
OutStockOptions to publish the results of the join stream.

ATTACH OUTPUT ADAPTER Adapter1
 TYPE dsv_out
 TO OutStockOption
 PROPERTIES
 dir='../exampleoutput',
 file = 'joinstream.csv' ,
 outputBase =TRUE ,
 hasHeader = TRUE
 ;

CHAPTER 3: Stream and Window Examples

16 Sybase Event Stream Processor

Outer Join
Create left, right, and full joins between input windows.

The example creates two schemas named StocksSchema and OptionsSchema. It then
creates an input window named InStocks that references StocksSchema, and another
input window named InOptions that references OptionsSchema.

The example creates an output window named OutStockOptionFOJ that creates a full
join between InStocks and InOptions using their timestamp values.

CREATE OUTPUT WINDOW OutStockOptionFOJ
 PRIMARY KEY (Ts)
AS
 SELECT InStocks.Ts Ts , InStocks.Symbol Symbol , InStocks.Price
StockPrice ,
 InStocks.Volume StockVolume , InOptions.StockSymbol
OptionStockSymbol ,
 InOptions.OptionSymbol OptionSymbol , InOptions.Price
OptionPrice,
 InOptions.Volume OptionVolume
 FROM InStocks FULL JOIN InOptions
 ON
 InStocks.Ts = InOptions.Ts;

The example creates an output window named OutStockOptionLOJ that creates a left
outer join between InStocks and InOptions using their timestamp values.

CREATE OUTPUT WINDOW OutStockOptionLOJ
 Primary Key (Ts)
AS
SELECT InStocks.Ts Ts , InStocks.Symbol Symbol ,
 InStocks.Price StockPrice , InStocks.Volume StockVolume ,
 InOptions.StockSymbol OptionStockSymbol ,
 InOptions.OptionSymbol OptionSymbol , InOptions.Price
OptionPrice,
 InOptions.Volume OptionVolume
FROM InStocks JOIN InOptions
 ON
 InStocks.Ts = InOptions.Ts ;
 Primary Key (Ts)
AS
SELECT InStocks.Ts Ts , InStocks.Symbol Symbol ,
 InStocks.Price StockPrice , InStocks.Volume StockVolume ,
 InOptions.StockSymbol OptionStockSymbol ,
 InOptions.OptionSymbol OptionSymbol , InOptions.Price
OptionPrice,
 InOptions.Volume OptionVolume
FROM InStocks JOIN InOptions
 on
 InStocks.Ts = InOptions.Ts ;

CHAPTER 3: Stream and Window Examples

Examples Guide 17

The example creates an output window named OutStockOptionROJ that creates a right
outer join between InStocks and InOptions using their timestamp values.

CREATE OUTPUT WINDOW OutStockOptionROJ
 PRIMARY KEY (Ts)
AS
SELECT InOptions.Ts Ts , InStocks.Symbol Symbol ,
 InStocks.Price StockPrice , InStocks.Volume StockVolume ,
 InOptions.StockSymbol OptionStockSymbol ,
 InOptions.OptionSymbol OptionSymbol , InOptions.Price
OptionPrice,
 InOptions.Volume OptionVolume
FROM InStocks RIGHT JOIN InOptions
 on
 InStocks.Ts = InOptions.Ts ;

The example attaches a File CSV Input adapter named csvInStocks to InStocks, and a
File CSV Input adapter named csvInOptions to InOptions.

Union Streams
Create a simple union between two windows.

The example creates two schemas named StocksSchema and OptionsSchema which
define the structure for two input windows named InStocks and InOptions,
respectively.

The example then creates an output window named Union1 that creates a union between the
InStocks and InOptions input windows.

CREATE output Window Union1
 SCHEMA OptionsSchema
 PRIMARY KEY DEDUCED
AS
 SELECT s.Ts as Ts, s.Symbol as StockSymbol,
 Null as OptionSymbol, s.Price as Price, s.Volume as
Volume
 FROM InStocks s
UNION
 SELECT s.Ts as Ts, s.StockSymbol as StockSymbol,
 s.OptionSymbol as OptionSymbol, s.Price as Price,
 s.Volume as Volume
 FROM InOptions s
;

The example concludes by creating two ATTACH ADAPTER instances named csvInConn1
and csvInConn2. A File CSV Input adapter is attached to the InStocks window in one
instance, and the InOptions window in another instance.

CHAPTER 3: Stream and Window Examples

18 Sybase Event Stream Processor

Jumping Windows
Jumping Windows retain data for a specified interval of time or for a specified number of rows
and delete all retained rows when the specified interval of time expires, or the specified
number of rows is exceeded.

Jumping Windows are specified by the KEEP EVERY clause. A retention policy can be
directly specified on a Window and indirectly specified on Windows and Delta Streams (using
unnamed windows).

Note: Retention cannot be specified directly or indirectly on a Stream.

Tuples are the sets of data that are retained in the Window. Insert tuples affect retention, yet the
arrival of update and/or delete tuples does not trigger the retention mechanism.

Example
The example creates a schema named TradesSchema and applies that schema to the input
window Trades.

CREATE SCHEMA TradesSchema (
 Id integer,
 Symbol string,
 Price float,
 Volume integer
) ;
CREATE INPUT WINDOW Trades
 SCHEMA TradesSchema
 PRIMARY KEY (Id) ;

The example then creates various types of Jumping Windows.

This creates a Jumping Window named Every5Rows from the source stream Trades. This
window retains a maximum of five rows then deletes all five retained rows on the arrival of a
new row.

CREATE OUTPUT WINDOW Every5Rows
PRIMARY KEY DEDUCED
KEEP EVERY 5 ROWS
AS SELECT * FROM Trades ;

This creates a Jumping Window named Every5Seconds from the source stream Trades.
This window retains rows for a maximum of five seconds then deletes all retained rows when
the time interval expires.

CREATE OUTPUT WINDOW Every5Seconds
PRIMARY KEY DEDUCED
KEEP EVERY 5 SECONDS
AS SELECT * FROM Trades ;

CHAPTER 3: Stream and Window Examples

Examples Guide 19

This creates an unnamed Jumping Window from the source stream Trades. This window
retains a maximum of five rows for each unique value of Symbol then deletes all five retained
rows upon the arrival of a sixth row with the same Symbol value.

CREATE OUTPUT WINDOW Every5RowsPerSymbol
PRIMARY KEY DEDUCED
AS SELECT * FROM Trades KEEP EVERY 5 ROWS PER(Symbol)

The example concludes by attaching the XML Input Adapter to Trades to process the
incoming stream data.

ATTACH INPUT ADAPTER xmlInConn1
 TYPE xml_in
 TO Trades
 PROPERTIES
 blockSize=1,
 dir='../exampledata',
 file='Trades.xml',
 filePattern='*.xml',
 safeOps=false,
 skipDels=false ;

Splitter
Use the splitter feature to route data from one stream to multiple streams.

The example creates a schema named TradeSchema and applies that schema to the input
window Trades. IBM_MSFT_Splitter evaluates and routes data to one of three output
windows. IBM_MSFT_Tradeswin retains data with the symbols IBM or MSFT.
Large_TradesWin retains all data where the product of trw.Price * trw.Volume
is greater than 25,000. Other_Trades retains all data sets that do not meet the conditions
placed on the two previous output windows.
CREATE SCHEMA TradeSchema (
 Id long,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER,
 TradeTime DATE
) ;

CREATE INPUT WINDOW Trades
SCHEMA TradeSchema
PRIMARY KEY (Id) ;

CREATE SPLITTER IBM_MSFT_Splitter
 AS
 WHEN trw.Symbol IN ('IBM', 'MSFT') THEN IBM_MSFT_Trades
 WHEN trw.Price * trw.Volume > 25000 THEN Large_Trades
 ELSE Other_Trades
 SELECT trw. * FROM Trades trw ;

CHAPTER 3: Stream and Window Examples

20 Sybase Event Stream Processor

CREATE OUTPUT WINDOW IBM_MSFT_TradesWin
 PRIMARY KEY DEDUCED
 AS SELECT * FROM IBM_MSFT_Trades ;

CREATE OUTPUT WINDOW Large_TradesWin
 PRIMARY KEY DEDUCED
 AS SELECT * FROM Large_Trades ;

CREATE OUTPUT WINDOW Other_TradesWin
 PRIMARY KEY DEDUCED
 AS SELECT * FROM Other_Trades ;

The example concludes by attaching the XML Input Adapter to Trades to process the
incoming stream data.

ATTACH INPUT ADAPTER xmlInConn1
 TYPE xml_in
 TO Trades
 PROPERTIES
 blockSize=1,
 dir='../exampledata',
 file='Trades.xml',
 filePattern='*.xml',
 safeOps=false,
 skipDels=false

CHAPTER 3: Stream and Window Examples

Examples Guide 21

CHAPTER 3: Stream and Window Examples

22 Sybase Event Stream Processor

CHAPTER 4 Function Examples

Event Stream Processor includes function examples that demonstrate a range of functionality,
including how to use bitwise and basic aggregate functions.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

CREATE LIBRARY statement
Identify an external library, and deploy the functions in that library.

This example uses the library file Functions.class, which is included with Event
Stream Processor. If you are creating a library within ESP Studio using an external file, the
CLASSPATH variable should contain the library file source directory. If you are not using
ESP Studio, you can edit the project configuration file (.ccr) to set the Java-classpath option
to the library file source directory.

The example begins with the CREATE LIBRARY statement, which creates a Java-language
library named SC1 from the Functions.class file.

CREATE LIBRARY SC1 LANGUAGE java FROM 'Functions' (
 integer intdiffj(integer, integer);
 string stringaddj (string, string);
);

The example creates two schemas named Schema1 and OutSchema. The example then
creates an input window named win1 that references Schema1, and an output window
named OutWin that references OutSchema. Manually load data into win1.

CREATE INPUT WINDOW win1 SCHEMA Schema1
 PRIMARY KEY (fcol5)
 KEEP ALL
;

CREATE OUTPUT WINDOW OutWin Schema OutSchema
PRIMARY KEY DEDUCED
AS
 SELECT a.intcol1,
 a.intcol2,
 SC1.intdiffj (a.intcol1, a.intcol2)as library_int,
 a.fcol5,
 a.stringcol1,
 a.stringcol2,
 SC1.stringaddj(a.stringcol1, a.stringcol2) as library_string

Examples Guide 23

 FROM win1 a
;

Aggregate Functions
Apply first, last, max, and min functions to outgoing data.

The example creates two schemas named TradeSchema and
OpenCloseMinMaxSchema, and an input window named TradeWindow, to which it
attaches a File CSV Input adapter.

The example then creates an output window named OutOpenCloseMinMax, which uses
the structure defined in OpenCloseMinMaxSchema. The SELECT clause returns the first,
last, minimum, and maximum values from the data in TradeWindow, and groups the results
by Symbol.

CREATE OUTPUT Window OutOpenCloseMinMax
 SCHEMA OpenCloseMinMaxSchema
 PRIMARY KEY DEDUCED
AS
 SELECT
 TradeWindow.Symbol as Symbol,
 first(TradeWindow.Price) as OpenPrice,
 last(TradeWindow.Price) as ClosePrice,
 min(TradeWindow.Price) as MinPrice,
 max(TradeWindow.Price) as MaxPrice

 FROM TradeWindow
 GROUP BY TradeWindow.Symbol;

Bitwise Functions
Apply bitand, bitor, bitshiftleft, bitshiftright, and bitmask operations to an output window.

The example creates two schemas named IntNumbersSchema and
ResultNumbersSchema.

The example applies bitwise functions to ResultNumbersSchema. Bitwise functions
allow you to access and manipulate the individual bits that make up the data.

CREATE SCHEMA IntNumbersSchema (
 IntNumber INTEGER
);

CREATE SCHEMA ResultNumbersSchema (
 IntNumber INTEGER,
 Bit_Shift_Left INTEGER,
 Bit_Shift_Right INTEGER,

CHAPTER 4: Function Examples

24 Sybase Event Stream Processor

 Bit_Mask INTEGER,
 Bit_And INTEGER,
 Bit_Or INTEGER
);

 CREATE Input Window InNumbers
 SCHEMA IntNumbersSchema
 Primary Key (IntNumber);

 CREATE OUTPUT WINDOW OutNumbers
 SCHEMA ResultNumbersSchema
 PRIMARY KEY (IntNumber)
 AS
 SELECT
 i.IntNumber as IntNumber,
 bitshiftleft(i.IntNumber, 2) as Bit_Shift_Left,
 bitshiftright(i.IntNumber, 2) as Bit_Shift_Right,
 bitmask(0, 4) as Bit_Mask,
 bitand(i.IntNumber, 4) as Bit_And,
 bitor(i.IntNumber, 4) as Bit_Or
 FROM
 InNumbers i;

 ATTACH INPUT ADAPTER InAdapter
 TYPE dsv_in
 TO InNumbers
 PROPERTIES
 dir='../exampledata',
 file = 'Numbers1000.csv' ,
 delimiter = '' ;

Data Aggregation
Read data from a comma-separated value (.csv) file, and aggregate the data using a volume-
weighted average price (vwap) function.

The example creates a schema named TradeSchema, which is referenced by an input
window named TradeWindow. The example attaches a File CSV Input adapter to
TradeWindow.

The example creates an output window named VwapWindow, which outputs the results of the
volume-weighted average price of the trade values processed by TradeWindow. The results
are grouped by Symbol.

CREATE output WINDOW VwapWindow
SCHEMA (Symbol STRING, vwap MONEY(4))
 PRIMARY KEY DEDUCED
 AS
 SELECT TradeWindow.Symbol AS Symbol,
 ((SUM(TradeWindow.Price*TradeWindow.Volume)) /
(SUM(TradeWindow.Volume))) AS vwap

CHAPTER 4: Function Examples

Examples Guide 25

 FROM TradeWindow
 GROUP BY TradeWindow.Symbol;

CHAPTER 4: Function Examples

26 Sybase Event Stream Processor

CHAPTER 5 Store Examples

Event Stream Processor includes CCL examples that demonstrate how to create default,
memory, and log stores.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

STORES
Create default, memory, and log stores.

The example creates a memory store named MemStore, a default store named
DefaultStore, and a log store named LogStore. Each store retains their default
parameter values.

CREATE MEMORY STORE MemStore
 PROPERTIES INDEXSIZEHINT = 8 , INDEXTYPE = 'TREE' ;

CREATE DEFAULT MEMORY STORE DefaultStore
 PROPERTIES INDEXSIZEHINT = 8 , INDEXTYPE = 'TREE' ;

CREATE LOG STORE LogStore
 PROPERTIES FILENAME = 'mylog.log' , MAXFILESIZE = 8 ,
 SYNC = FALSE , SWEEPAMOUNT = 20 ,
 RESERVEPCT = 20 , CKCOUNT= 10000 ;

The example creates an input window named TradesWindowMem that references
MemStore and an output window named DefaultStoreWindow that uses SELECT all
(*) syntax to retrieve all data columns from TradesWindowMem.

The example creates an output window named LogStoreWindow that references
LogStore. LogStoreWindow uses SELECT and FROM clauses to pull timestamp, price,
symbol, and volume data from TradesWindowMem.

The example attaches a File CSV Input adapter named InConn to TradesWindowMem.

Prepay Biller
Build a sample prepaid biller application for mobile phone plans.

The examples creates a series of memory stores named StaticStore, CDRsStore,
AccountCDRsStore, AccountSummariesStore, AuthsStore,
AccountAuthStore, and AccountAuthsMinsStore.

Examples Guide 27

CREATE MEMORY STORE StaticStore PROPERTIES INDEXTYPE ='tree',
INDEXSIZEHINT =8;

 CREATE MEMORY STORE CDRsStore PROPERTIES INDEXTYPE ='tree',
INDEXSIZEHINT =8;

The example creates two input windows named Accounts and CallPlans, and an output
window named AccountPlans, all of which reference StaticStore.
AccountPlans creates a join between Accounts and CallPlans using their call plan
and plan type values.

CREATE OUTPUT WINDOW AccountPlans
SCHEMA (AccountId INTEGER, MonthlyRate FLOAT,
 PlanMinutes FLOAT, AddlMinutesRate FLOAT, PrepaidTotal FLOAT)
PRIMARY KEY (AccountId)
 STORE StaticStore
 AS
SELECT Accounts.AccountID AS AccountId, CallPlans.MonthlyRate AS
MonthlyRate,
 CallPlans.PlanMinutes AS PlanMinutes,
CallPlans.AddlMinutesRate AS AddlMinutesRate,
 Accounts.PrepaidTotal AS PrepaidTotal
 FROM Accounts JOIN CallPlans
 ON Accounts.CallPlan = CallPlans.CallPlanType;

The example creates an input window named CDRs that references CDRsStore, and an
output window named AccountSummariesJoin that references
AccountCDRsStore. CDRs refers to call data records. AccountSummariesJoin
creates a join between CDRs and AccountPlans using their bill type code (BillTypCd)
and account ID values.

The example creates an output window named AccountSummaries that summarizes
AccountSummariesStore. AccountSummaries uses SELECT and FROM clauses to
pull data from AccountSummariesJoin, and groups the data by account plan ID.

CREATE OUTPUT WINDOW AccountSummaries
SCHEMA (AccountId INTEGER, MonthlyRate FLOAT, TotalRatedUsage FLOAT,
TotalMinutes FLOAT, CallCount INTEGER)
 PRIMARY KEY DEDUCED
 STORE AccountSummariesStore
 AS
SELECT AccountSummariesJoin.AccountPlansAccountId AS AccountId,
 AccountSummariesJoin.AccountPlansMonthlyRate AS MonthlyRate,
 ((((sum(AccountSummariesJoin.CDRsCallDuration) >
AccountSummariesJoin.AccountPlansPlanMinutes))
*AccountSummariesJoin.AccountPlansAddlMinutesRate) *
(sum(AccountSummariesJoin.CDRsCallDuration) -
AccountSummariesJoin.AccountPlansPlanMinutes)) AS TotalRatedUsage,
 sum(AccountSummariesJoin.CDRsCallDuration) AS TotalMinutes,
 count(AccountSummariesJoin.CDRsCallDuration) AS CallCount
FROM AccountSummariesJoin
GROUP BY AccountSummariesJoin.AccountPlansAccountId;

CHAPTER 5: Store Examples

28 Sybase Event Stream Processor

The example creates an output window named AccountAuthsMinsJoin that references
AccountAuthsStore. AccountAuthsMinsJoin creates a join between
AccountPlans and AccountSummaries using their bill type and account ID values.

The example creates an output window named AccountAuthsMins that references
AccountAuthsMinsStore. AccountAuthsMins uses SELECT and FROM clauses to
pull data from AccountAuthsMinsJoin, and groups the data by account plan ID.

The example concludes by attaching File XML Input adapters to Accounts, CallPlans,
CDRs, and Auths.

CHAPTER 5: Store Examples

Examples Guide 29

CHAPTER 5: Store Examples

30 Sybase Event Stream Processor

CHAPTER 6 Flex Examples

Event Stream Processor includes several Flex examples that demonstrate a range of
functionality, including how to use SPLASH syntax, opcodes, timers, if/then/else conditions,
and event caches.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

Data Management with Flex Streams
Use a Flex stream to manage your data.

The example creates three schemas named TradeSchema, Totalschema, and
Tutelage, and one input window named TradeWindow. The File CSV Input adapter is
attached to TradeWindow.

The example then creates a Flex stream named TrackOldTrades that outputs data from
TradeWindow to OldTradeEvents. The switch statement supports only outputs for
inserts and updates; as a result, deletes are not passed to the output window

CREATE FLEX TrackOldTrades
 IN TradeWindow
 OUT OUTPUT WINDOW OldTradeEvents
 SCHEMA DeleteOrExpireSchema
 Primary Key (DeleteOrExpireTime, Ts)
BEGIN
 declare
 integer oc;
 end;

 ON TradeWindow {

 oc := getOpcode(TradeWindow);

 switch (oc){
 case insert:
 output [Ts=TradeWindow.Ts;|
 Symbol=TradeWindow.Symbol;
 TotalPrice = TradeWindow.Price * TradeWindow.Volume;
 Counter =1;];
 break;
 case update:
 output [Ts=TradeWindow.Ts;|
 Symbol=TradeWindow.Symbol;
 TotalPrice = TradeWindow.Price * TradeWindow.Volume;
 Counter = 0;];

Examples Guide 31

 break;
 case delete:
 break;
 Default:
 break;
 } } ;END;
CREATE OUTPUT WINDOW OutWin
Schema Tutelage Primary Key deduced
as
Select o1.Symbol as Symbol,
 Sum(o1.TotalPrice) as TotalPrice,
 Sum(o1.Counter) as Counter
 from OutWin1 o1
 Group by o1.Symbol
 ;

Multiple Inputs
Use multiple Flex streams with multiple inputs.

The example creates two input windows named Trades 1 and Trades 2.

The example then creates a Flex stream named TradesMSFTFlexStream that joins the
two input windows, and adds an output window called TradesMSFTFlexStream.

CREATE FLEX Ccl_2_TradesMSFTFlexStream
 IN Trades2, Trades1
 OUT OUTPUT WINDOW TradesMSFTFlexStream
 SCHEMA (Id INTEGER, Symbol STRING, TradeTime DATE, Price FLOAT,
Shares INTEGER, Corr INTEGER)
 PRIMARY KEY (Id)
BEGIN
 ON Trades1 {
 if (Trades1.Symbol = 'MSFT') output copyRecord(Trades1);
 };

 ON Trades2 {
 if (Trades2.Symbol = 'MSFT') output copyRecord(Trades2);
 };
END;

The example creates another Flex stream (TradesCSCOFlexStream) that joins the
Trades1 and Trades2 windows.

 CREATE FLEX Ccl_4_TradesCSCOFlexStream

 IN Trades1, Trades2
 OUT OUTPUT WINDOW TradesCSCOFlexStream
 SCHEMA (Id INTEGER, Symbol STRING, TradeTime DATE, Price FLOAT,
Shares INTEGER, Corr INTEGER)
 PRIMARY KEY (Id)

BEGIN

CHAPTER 6: Flex Examples

32 Sybase Event Stream Processor

ON Trades1 {
if (Trades1.Symbol = 'CSCO') output copyRecord(Trades1);
 };

ON Trades2 {
if (Trades2.Symbol = 'CSCO') output copyRecord(Trades2);
 };

Finally, the example creates a Flex stream named TradesPickedFlexStream that joins
TradesMSFTFlexStream and TradesCSCOFlexStream.

CREATE FLEX Ccl_5_TradesPickedFlexStream

 IN TradesMSFTFlexStream, TradesCSCOFlexStream
 OUT OUTPUT WINDOW TradesPickedFlexStream
 SCHEMA (Id INTEGER, Symbol STRING, TradeTime DATE, Price FLOAT,
Shares INTEGER, Corr INTEGER)
PRIMARY KEY (Id)

BEGIN

ON TradesMSFTFlexStream {
if (TradesMSFTFlexStream.Price >= 93) output
copyRecord(TradesMSFTFlexStream);
 };

ON TradesCSCOFlexStream {
if (TradesCSCOFlexStream.Price >= 74.5) output
copyRecord(TradesCSCOFlexStream);
 };

END;

Average Trade Price with Timer
Use a timer to send a new row to an output window every five seconds.

The example creates a schema named TradesSchema and an input window named
TradeWindow. The File CSV Input adapter is attached to the window.

The example creates a Flex stream named FlexTimer that places a data retention policy of
10 rows on TradeWindow. The ON clause tells the project server to apply the computation
vvalue ++ to the trade price every 5 seconds. This expression increments the current value
of the local variable vvalue.

CREATE FLEX FlexTimer IN TradeWindow
 KEEP 10 ROWS
 OUT OUTPUT WINDOW SimpleOutput
 SCHEMA (a integer, b string)

CHAPTER 6: Flex Examples

Examples Guide 33

 PRIMARY KEY (a)BEGIN
 declare
 integer vvalue := 0;
 END; ON TradeWindow { } ;
 every 5 seconds {
 vvalue ++;
 output [a=vvalue; b='msg1';|];
 };END;

Variables in the DECLARE Block
Define a variable, then use the variable in both a regular stream and Flex stream.

The example specifies a default value of 1000 for the variable ThresholdValue.

declare
 INTEGER ThresholdValue := 1000;
end;

The example creates two schemas named TradeSchema and ControlSchema. An input
window named TradeWindow references TradeSchema, and an input stream named
ControlMsg references ControlSchema.

The example then creates an output window named OutTradeWindow. The SELECT
clause sends rows greater than ThresholdValue to OutTradeWindow.

CREATE OUTPUT WINDOW OutTradeWindow
 SCHEMA (Ts bigdatetime, Symbol STRING, Price MONEY(4), Volume
INTEGER)
 PRIMARY KEY (Ts)
as
SELECT *
 from TradeWindow
 where TradeWindow.Volume > ThresholdValue;

The example creates a Flex stream named FlexControlStream to process the control
messages. The BEGIN syntax introduces conditions based on control messages. If the control
message is set, the ThresholdValue is set to equal the control message value instead of
the default 1000.

CREATE FLEX FlexControlStream
 IN ControlMsg
 OUT OUTPUT WINDOW SimpleOutput
 SCHEMA (a integer, b string, c integer)
 PRIMARY KEY (a)
BEGIN
 ON ControlMsg
 {
 if (ControlMsg.Msg = 'set')
{ThresholdValue:=ControlMsg.Value;}

CHAPTER 6: Flex Examples

34 Sybase Event Stream Processor

 output [a=ControlMsg.Value; b=ControlMsg.Msg;
c=ThresholdValue; |];
 }
 ;
END
;

Finally, the example creates two ATTACH ADAPTER instances named csvInCntMsg and
csvInConn1 using the File CSV Input adapter. In the first instance, the adapter is attached to
ControlMsg and assigned to RunGroup1. In the second instance, the adapter is attached
to TradeWindow and assigned to RunGroup2. The ADAPTER START GROUPS statement
tells the project server to read the control messages first, then the stock trades data.

Event Cache
Use an event cache in an output window.

The example creates an input window named Trades and an output window named
Last5MinuteStats.

The examples uses the DECLARE block to place an event cache on the Trades window. As a
result, the Last5MinuteStats window retains the last 300 seconds of data for every
symbol cached.

DECLARE
 eventCache(Trades[Symbol], 300 seconds) stats;
END
AS
 SELECT Trades.Symbol AS symbol,
 max(stats.Price) AS MaxPrice,
 sum(stats.Shares) AS Volume
 FROM Trades
 GROUP BY Trades.Symbol;

The example creates an output window named Last10TradesStats and uses the
DECLARE block to place another event cache on the Trades window. As a result, the
Last10TradesStats window retains the last 10 trades for every symbol cached in the
Trades window.

CREATE OUTPUT WINDOW Last10TradesStats
 SCHEMA (
 symbol STRING,
 MaxPrice MONEY(4),
 Volume LONG)
 PRIMARY KEY DEDUCED
DECLARE
 eventCache(Trades[Symbol], 10 events) stats;
END
AS
 SELECT Trades.Symbol AS symbol,

CHAPTER 6: Flex Examples

Examples Guide 35

 max(stats.Price) AS MaxPrice,
 sum(stats.Shares) AS Volume
 FROM Trades
 GROUP BY Trades.Symbol;

SPLASH with if/then/else
Use a SPLASH if/then/else statement and perform the same logic using a switch statement.

The example creates a schema called TradeSchema, and an input window called
TradeWindow that references the schema. The File CSV Input adapter is attached to the
window.

The example then performs a SPLASH if/then/else function with nested if statements.

CREATE FLEX FlexIfThenElse IN TradeWindow
 OUT OUTPUT WINDOW FlexIFEOut
 Schema TradeSchema
 Primary Key (Ts)BEGIN ON TradeWindow {
 if (TradeWindow.Price > 100){
 if (TradeWindow.Price * TradeWindow.Volume < 1000000) {
output (TradeWindow);}
 }

These if statements tell the project server to output trade data values if the product of
TradeWindow.Price * TradeWindow.Volume is less than 1 million. An else if
statement executes if the conditions are not true.

 Else if (TradeWindow.Price > 10){
 if (TradeWindow.Price * TradeWindow.Volume < 10000)
{ output (TradeWindow);}
 }

The else if statement tells the project server to output trade data values greater than 10 if the
total value of shares in the window are less then 10 thousand. An additional else statement
executes if these conditions are not true.

 Else {
 if (TradeWindow.Price * TradeWindow.Volume < 1000)
{ output (TradeWindow);}
 } } ;END;

The else statement tells the project server to complete its output when the total value of shares
in the window are less than 1000, and the preceding if/else conditions are not true.

The example then uses switch syntax to achieve the same overall conditions:

CREATE FLEX FlexCase IN TradeWindow
 OUT OUTPUT WINDOW FlexCaseOut Schema TradeSchema

CHAPTER 6: Flex Examples

36 Sybase Event Stream Processor

 Primary Key (Ts)
BEGIN
 ON TradeWindow
 {
 switch (to_integer(log(to_float(TradeWindow.Price)))){
 case 0: // price less than 10
 if (TradeWindow.Price * TradeWindow.Volume < 1000) {
output (TradeWindow);}
 break;
 case 1: // price between 10 and 100
 if (TradeWindow.Price * TradeWindow.Volume < 10000) {
output (TradeWindow);}
 break;
 default: // price 100 or bigger
 if (TradeWindow.Price * TradeWindow.Volume < 1000000)
{ output (TradeWindow);}
 break;
 }
 }
 ;
END
;

The switch syntax also converts TradeWindow.Price values to float, applies a
logarithm to the values, then converts them to integer.

SPLASH with getOpcode
Use a Flex stream to capture items when they are deleted or expire.

The example creates a schema named TradeSchema, then another schema named
DeleteOrExpireSchema, which inherits the structure of TradeSchema. The example
creates an input window named TradeWindow, to which the File CSV Input adapter is
attached.

The example then creates a Flex stream named TrackOldTrades that outputs data from
TradeWindow to OldTradeEvents.

CREATE FLEX TrackOldTrades
 IN TradeWindow
 OUT OUTPUT WINDOW OldTradeEvents
 SCHEMA DeleteOrExpireSchema
 Primary Key (DeleteOrExpireTime, Ts)
BEGIN
 declare
 integer oc;
 end;

The getOpcode function determines the operation that is performed on the window. The
switch statement only processes deletes.

CHAPTER 6: Flex Examples

Examples Guide 37

 ON TradeWindow
 {
 oc := getOpcode(TradeWindow);

 switch (oc){

 case delete:
 output [DeleteOrExpireTime = now();|
 Ts= TradeWindow.Ts; Symbol=TradeWindow.Symbol ;
 Price = TradeWindow.Price; Volume =
TradeWindow.Volume;];
 break;
 Default:
 break;
 }
 }
 ;
END
;

CHAPTER 6: Flex Examples

38 Sybase Event Stream Processor

CHAPTER 7 DECLARE Block Examples

Event Stream Processor includes examples on how to use the DECLARE block, including
declaring parameters and functions.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

CCL Function
Define a function using the DECLARE block.

The example creates a schema named TradeSchema, then uses the DECLARE block to
declare the function MyWeightedAverage, which includes variables Value1 and
Value2. The example also creates the local variable Weight1. A series of if and else if
conditions determine the value of Weight1 based on whether Value 2 is greater or less
than the specified values. The resulting Weight1 value becomes a parameter in the
to_money function.

DECLARE Money(2) MyWeightedAverage
 (Money(2) Value1, Integer Value2)
{
 float Weight1 := 1.0;

 IF (Value2 > 10000)
 { Weight1 := 0.5; }
 ELSE IF (Value2 > 4000)
 {Weight1 := 0.75; }
 ELSE IF (Value2 < 100)
 { Weight1 := 3.0; }
 ELSE IF (Value2 < 500)
 { Weight1 := 0.25; }
 RETURN to_money(Value1 * Weight1 ,2);
}
end;

The example creates an input window named TradeWindow that references
TradeSchema, and an output window named OutWeightedAverage that specifies an
inline schema. OutWeightedAverage uses the MyWeightedAverage function within
the avg() function.

CREATE OUTPUT WINDOW OutWeightedAverage
 SCHEMA (Symbol String, avgPrice Money(2), wavgPrice Money(2))
 PRIMARY KEY deduced

Examples Guide 39

 AS
 SELECT
 t.Symbol,
 avg(t.Price) avgPrice,
 avg(MyWeightedAverage(t.Price, t.Volume)) wavgPrice
 FROM
 TradeWindow t
 Group by t.Symbol
 ;

The example concludes by attaching a File CSV Input adapter named csvInConn1 to
TradeWindow.

Parameter Declaration
Declare a parameter, then reference it in an output window.

The example declares a parameter called ThresholdValue in the DECLARE block, for
which it sets the default value 1000. You can change the default value at runtime, or in the
project configuration file.

DECLARE
 PARAMETER INTEGER ThresholdValue := 1000;
end;

The example creates an input window named TradeWindow and an output window named
TradeOutWindow. TradeOutWindow uses a SELECT statement to pull data from
TradeOptMatch; a WHERE clause tells TradeOutWindow to output only data from
TradeWindow where the product of TradeWindow.Volume is greater than the value set
for the ThresholdValue parameter.

CREATE OUTPUT WINDOW TradeOutWindow
 SCHEMA (Ts BIGDATETIME, Symbol STRING, Price MONEY(2), Volume
INTEGER)
 PRIMARY KEY (Ts)
AS
 SELECT * from TradeWindow WHERE TradeWindow.Volume >
ThresholdValue;

The example attaches a File CSV Input adapter named csvConn1 to TradeWindow.

CHAPTER 7: DECLARE Block Examples

40 Sybase Event Stream Processor

CHAPTER 8 Data Selection Examples

Event Stream Processor includes several data selection examples that demonstrate a range of
functionality, including how to apply GROUP BY, AGING, and WHERE clauses to data.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

AGING Column
Use the AGING clause to set an age column for an output window.

The example creates a memory store named memory1, followed by an input window named
TradesWindow that uses the memory1 store. The example attaches the File CSV Adapter
to TradesWindow.

 CREATE MEMORY STORE memory1
 PROPERTIES INDEXTYPE ='tree', INDEXSIZEHINT =8;

CREATE INPUT WINDOW TradesWindow
 SCHEMA (
 Ts bigdatetime ,
 Symbol STRING,
 Price MONEY(2),
 Volume INTEGER)
 PRIMARY KEY (Ts)
 STORE memory1;

The example creates an output window named AgingWindow. The age column for the
output window increments every 10 seconds until the age column is equal to 20.

CREATE OUTPUT WINDOW AgingWindow
 SCHEMA (
 AgeColumn integer,
 Symbol STRING,
 Ts bigdatetime)
 PRIMARY KEY (Symbol)
 AGES EVERY 10 SECONDS SET AgeColumn 20 TIMES
 AS
 SELECT 1 as AgeColumn,
 TradesWindow.Symbol AS Symbol,
 TradesWindow.Ts AS Ts
 FROM TradesWindow
;

Examples Guide 41

AGING Column with Time Option
Use the AGING clause to set an age column with time option for an input window.

The example creates a schema named TradeSchema and another schema named
TradeAgeSchema, which inherits the structure of TradeSchema. TradeAgeSchema
also defines three columns named AgeColumn, AgeStartTime, and ctime.

Create Schema TradeAgeSchema Inherits TradeSchema
 (AgeColumn integer,
 AgeStartTime bigdatetime, ctime bigdatetime);

The example creates an input window named TradeWindow that references
TradeSchema, and an output window named AgeWindow that references
TradeAgeSchema. The example uses the AGES EVERY syntax to increment AgeWindow
every 6 seconds until the age column is equal to 10. A SELECT clause places a start time
condition on AgeWindow, so that the updates specified by the AGING clause do not start until
6 minutes after the current time.

CREATE INPUT WINDOW TradeWindow
 SCHEMA TradeSchema
 PRIMARY KEY (Ts); //

CREATE OUTPUT WINDOW AgeWindow SCHEMA TradeAgeSchema
 PRIMARY KEY DEDUCED
 AGES EVERY 6 SECONDS
 SET AgeColumn 10 TIMES
 FROM AgeStartTime
AS An
 SELECT * , 1 as AgeColumn,
 now() + 360000000
 as AgeStartTime, now() as ctime
 FROM TradeWindow ;

The example then attaches a File CSV Input adapter named csvInConn1 to
TradeWindow.

Data Aggregation
Read data from a comma-separated value (.csv) file, and aggregate the data using a volume-
weighted average price (vwap) function.

The example creates a schema named TradeSchema, which is referenced by an input
window named TradeWindow. The example attaches a File CSV Input adapter to
TradeWindow.

CHAPTER 8: Data Selection Examples

42 Sybase Event Stream Processor

The example creates an output window named VwapWindow, which outputs the results of the
volume-weighted average price of the trade values processed by TradeWindow. The results
are grouped by Symbol.

CREATE output WINDOW VwapWindow
SCHEMA (Symbol STRING, vwap MONEY(4))
 PRIMARY KEY DEDUCED
 AS
 SELECT TradeWindow.Symbol AS Symbol,
 ((SUM(TradeWindow.Price*TradeWindow.Volume)) /
(SUM(TradeWindow.Volume))) AS vwap
 FROM TradeWindow
 GROUP BY TradeWindow.Symbol;

Data Aggregation with Filter
Use the HAVING clause to place a filter on a window.

The example creates an input window named TradeWindow, to which it attaches a File CSV
Input adapter named csvInConn1.

The example creates an output window named VwapWindow, which outputs the results of the
volume-weighted average price of the trade values processed by TradeWindow. The results
are grouped by Symbol. The HAVING clause places a filter condition on TradeWindow that
tells the project server to publish vwap results only when the sum of all Volume values for a
Symbol is greater than 100,000.

CREATE OUTPUT WINDOW VwapWindow
SCHEMA (Symbol STRING, vwap MONEY(4))
 PRIMARY KEY DEDUCED
 AS
 SELECT TradeWindow.Symbol AS Symbol,
 SUM(TradeWindow.Price * TradeWindow.Volume) /
SUM(TradeWindow.Volume) AS vwap
 FROM TradeWindow
 GROUP BY TradeWindow.Symbol
 HAVING
 SUM(TradeWindow.Volume) > 100000;

GROUP BY Clause with last() Function
Use the last function with SELECT clause results. Refer to the results of the SELECT clause in
a HAVING clause.

The example creates a schema named TradeSchema.

Create Schema TradeSchema
 (Ts bigdatetime, Symbol STRING, Price MONEY(4), Volume
INTEGER);

CHAPTER 8: Data Selection Examples

Examples Guide 43

The example creates the schema TradesWidthDelaySchema, and uses the INHERITS
syntax to apply the structure of TradeSchema to TradesWidthDelaySchema with row
delay.

CREATE SCHEMA TradesWidthDelaySchema INHERITS TradeSchema
 (RowDelay long);

The example creates an input window named TradeWindow, to which it attaches the File
CSV Input adapter.

The example then creates an output window named TradesWithDelay that uses the
structure defined in TradesWidthDelaySchema. The SELECT clause places a row delay
on timestamp, symbol, price, and volume data rows. The HAVING clause references the
RowDelay column in the results of the query by not specifying a window name. The HAVING
clause limits the output window to rows in which the delay is greater than 10 milliseconds.

SELECT
 TradeWindow.Ts Ts,
 TradeWindow.Symbol Symbol,
 TradeWindow.Price Price,
 TradeWindow.Volume Volume,
 timeToMsec (TradeWindow.Ts) - timeToMsec(last(TradeWindow.Ts,1))
 as RowDelay
 FROM
 TradeWindow
 GROUP BY
 TradeWindow.Symbol
 Having .RowDelay > 10
;

The example creates an output window named OutTrades that uses the structure defined in
TradeSchema. The GROUP BY statement processes the selected rows by Symbol when
the trade price is greater than the last trade price processed. Based on the previous arguments,
the project server recognizes when the trade price has increased and the time between trades is
greater than 10 milliseconds.

GROUP BY
 TradeWindow.Symbol
 having
 TradeWindow.Price > last(TradeWindow.Price,1)
;

CHAPTER 8: Data Selection Examples

44 Sybase Event Stream Processor

KEEP Clause
Place a KEEP clause on an output window.

The example creates an input window named TradesWindow and an output window named
KeepCountWindow. KeepCountWindow has a KEEP clause that keeps 10 rows at a time
in the window.

CREATE OUTPUT WINDOW KeepCountWindow
 SCHEMA (Symbol STRING, Ts bigdatetime)
 PRIMARY KEY (Ts)
 KEEP 10 ROWS
AS
 SELECT TradesWindow.Symbol AS Symbol, TradesWindow.Ts AS Ts
 FROM TradesWindow
;

The example attaches a File CSV Input adapter named InConn to TradesWindow, and a
File CSV Output adapter named OutConn to KeepCountWindow.

KEEP Clause with AGING Clause
Place KEEP and AGING clauses on an output window.

The example creates a schema named TradeSchema and another schema named
TradeAgeSchema which inherits the structure of TradeSchema. TradeAgeSchema
also defines two columns named AgeColumn and AgeStartTime.

Create Schema TradeAgeSchema Inherits TradeSchema
 (AgeColumn integer,
 AgeStartTime bigdatetime);

The example creates an input window named TradeWindow that references
TradeSchema, to which it attaches a File CSV Input adapter.

Finally, the example creates an output window named KeepAgeWindow that references
TradeAgeSchema. KeepAgeWindow has a KEEP clause that keeps 20 rows in the
window at a time. The example also uses the AGES EVERY syntax to update
KeepAgeWindow every 3 seconds until the age column is equal to 10. A SELECT clause
places a start time condition on AgeWindow, so that the updates specified by the AGING
clause do not start until 6 minutes after the current time.

CREATE OUTPUT WINDOW KeepAgeWindow
 SCHEMA TradeAgeSchema
 PRIMARY KEY DEDUCED
 KEEP 20 ROWS
 AGES EVERY 3 SECONDS SET AgeColumn 10 TIMES FROM AgeStartTime

CHAPTER 8: Data Selection Examples

Examples Guide 45

AS
 SELECT * ,
 1 as AgeColumn,
 now() + 360000000 as AgeStartTime
 FROM TradeWindow ;

KEEP ALL Clause
Use the KEEP ALL clause with an output window.

The example creates a schema named TradeSchema. The example creates an input window
named TradeWindow that references TradeSchema, to which it attaches a File CSV
Input adapter.

The example creates an output window named KeepAllWindow, which uses the KEEP ALL
clause to retain all data from TradeWindow and group the results by Symbol.

CREATE OUTPUT WINDOW KeepAllWindow
 SCHEMA (Symbol string, RowCount INTEGER)
 PRIMARY KEY DEDUCED KEEP all
AS
 SELECT TradeWindow.Symbol as Symbol, count(TradeWindow.Symbol) as
RowCount
 FROM TradeWindow
 group by TradeWindow.Symbol
;

KEEP LAST clause
Place a KEEP LAST clause on an input window.

The example creates a schema named TradeSchema that is referenced by an input window
named TradeWindow.

The example then creates an output window named KeepLastWindow that outputs data
from TradeWindow. KeepLastWindow has a KEEP clause that keeps only the last
TradeWindow row processed by KeepLastWindow.

CREATE OUTPUT WINDOW KeepLastWindow
 Schema (Symbol string, RowCount INTEGER)
 PRIMARY KEY DEDUCED KEEP LAST
AS
 SELECT TradeWindow.Symbol as Symbol,
 count(TradeWindow.Symbol) as RowCount
 FROM TradeWindow
 group by TradeWindow.Symbol
;

CHAPTER 8: Data Selection Examples

46 Sybase Event Stream Processor

The example concludes by attaching a File CSV Input adapter named csvInConn1 to
TradeWindow.

KEEP PER Clause
Use the KEEP PER clause with an input window, derived window, or an unnamed window.

The example creates a schema named TradeSchema.

CREATE SCHEMA TradeSchema (
 Id long,
 Symbol STRING,
 Price MONEY (4),
 Volume INTEGER,
 TradeTime DATE
);

The example then creates an input window named Trades which keeps the last 10,000 rows
per Symbol.

CREATE INPUT WINDOW Trades
SCHEMA TradeSchema
PRIMARY KEY (Id)
KEEP 10000 ROWS PER (Symbol);

The example creates an output window named Last5TradesPerHour that retains only
the last five rows per Symbol per hour.

CREATE OUTPUT WINDOW Last5TradesPerHour
 PRIMARY KEY DEDUCED
 KEEP 5 ROWS PER (Symbol, TradeHour)
 As SELECT trw.*, (trw.TradeTime/3600)*3600 TradeHour
 FROM Trades trw;

The example creates an output window named Last50TradesStats that retains data for
the last 50 trades per Symbol.

CREATE OUTPUT WINDOW Last50TradesStats
 PRIMARY KEY DEDUCED
 AS SELECT trw.Symbol, MAX(trw.Price) MaxPrice,
MIN(trw.Price) MinPrice, SUM(trw.Volume) Volume
 FROM Trades trw KEEP 50 ROWS PER (Symbol)
 GROUP BY trw.Symbol;

The example concludes by attaching the XML Input Adapter to the input window named
Trades to process the incoming stream data.

ATTACH INPUT ADAPTER xmlInConn1
 TYPE xml_in
 TO Trades
 PROPERTIES
 blockSize=1,
 dir='../exampledata',

CHAPTER 8: Data Selection Examples

Examples Guide 47

 file='Trades.xml',
 filePattern='*.xml',
 safeOps=false,
 skipDels=false;

KEEP UNTIL Clause
Use a KEEP UNTIL clause with a Jumping Window.

The example creates a schema named TradesSchema and an input stream named Trades
that references TradesSchema.

CREATE SCHEMA TradesSchema (
 Id integer
 Symbol string
 Price float
 Shares integer
) ;
CREATE INPUT STREAM Trades
 SCHEMA TradesSchema ;

The example then creates a Flex statement named Until8PM_Flex that operates on
Trades and produces an output window named Until8PM. The example deletes all
previous rows every five seconds, and purges all the data in Until8PM at 8:00 PM once a
day.

CREATE FLEX Until8PM_Flex
IN Trades
OUT OUTPUT WINDOW Until8PM
 SCHEMA TradesSchema
 PRIMARY KEY (Id)
BEGIN
 DECLARE
 date lastPurgeDate;
 END;
 ON Trades {
 };
 EVERY 1 MINUTE {
 if (isnull(lastPurgeDate) or (trunc(sysdate()) >
 lastPurgeDate and hour (sysbigdatetime()) = 20)) {
 for(rec in Until8pm_stream) {
 output setopcodes(rec, delete);
 }
 lastPurgeDate := trunc(sysdate());
 }
 };
END;

CHAPTER 8: Data Selection Examples

48 Sybase Event Stream Processor

Filter with WHERE Clause
Use the WHERE clause as a filter on an output window.

The example creates an input window named TradeWindow and an output window named
TradeOutWindow.

The SELECT clause returns all (*) data rows from TradeWindow. The WHERE clause places
a filter on the data when the share volume is less than 10,000. As a result, the project server
processes all data rows when the TradeWindow contains more than 10,000 shares.

CREATE OUTPUT WINDOW TradeOutWindow
 SCHEMA (
 Ts BIGDATETIME,
 Symbol STRING,
 Price MONEY(2),
 Volume INTEGER)
 PRIMARY KEY (Ts)
AS
 SELECT * from TradeWindow
 WHERE TradeWindow.Volume > 10000;

MATCHING clause
Place a MATCHING clause on an output stream.

The example creates a schema named TradeSchema, then two input windows named
InTrades and InTrades2, and an output stream named TradeOut that each reference
TradeSchema.

TradeOut uses the MATCHING clause to retrieve rows that match over a one-second period.

CREATE OUTPUT STREAM TradeOut
 SCHEMA TradeSchema
as
 SELECT
 FirstTrade.*
 FROM
 InTrades as FirstTrade,
 InTrades2 as SecondTrade
 MATCHING
 [1 seconds: FirstTrade , SecondTrade]
 ON
 FirstTrade.Symbol = SecondTrade.Symbol
 ;

CHAPTER 8: Data Selection Examples

Examples Guide 49

The example attaches a File CSV Input adapter named csvInConn1 to InTrades, and a
File CSV Input adapter named csvInConn2 to InTrades2. The example also attaches a
File CSV Output adapter named csvOut to TradeOut to publish the matching results to a
file, since data cannot be viewed in-stream.

Matching a Sequence of Events
Place MATCHING and WHERE clauses on output streams to produce a set of sequenced data.

The example creates three schemas: StocksSchema, OptionsSchema, and
OutSchema. The example then creates an input window named InTrades that references
StocksSchema; an input window named InOptions that references
OptionsSchema; and two output streams named TradeOptMatch and
TradeOptFilter that both reference OutSchema.

TradeOptMatch uses the MATCHING clause to retrieve rows that match and have the same
trade symbol, over a one-second period. TradeOptFilter uses a SELECT statement to
pull data from TradeOptMatch; a WHERE clause tells TradeOptFilter to output data
from TradeOptMatch only where the product of 0.005 *
TradeOptMatch.StockPrice is greater than the option price.

CREATE OUTPUT STREAM TradeOptMatch
 SCHEMA OutSchema
AS
 SELECT
 t.Ts as Ts,
 o.Ts as OptionTs,
 t.Symbol as Symbol,
 t.Price as StockPrice,
 t.Volume as StockVolume,
 o.StockSymbol as StockSymbol,
 o.OptionSymbol as OptionSymbol,
 o.Price as OptionPrice,
 o.Volume as OptionVolume
 FROM
 InTrades as t,
 InOptions as o
 MATCHING
 [1 seconds: t , o]
 ON
 t.Symbol = o.StockSymbol

CREATE OUTPUT stream TradeOptFilter
 SCHEMA OutSchema
 AS
 SELECT * FROM TradeOptMatch
 WHERE 0.005 * TradeOptMatch.StockPrice <
TradeOptMatch.OptionPrice

CHAPTER 8: Data Selection Examples

50 Sybase Event Stream Processor

;

The example attaches a File CSV Input adapter named csvInConn1 to InTrades, and a
File CSV Input adapter named csvInConn2 to InOptions. The example also attaches a
File CSV Output adapter named outAdapter to TradeOptFilter to publish the filter
results to a file, since data cannot be viewed in-stream.

Matching Non-Events
Place a MATCHING clause with a not (!) condition on an output stream.

The example creates a schema named TradeSchema, then creates an input window named
InTrades and an output stream named TradeOut, both of which reference
TradeSchema.

TradeOut uses MATCHING not (!) syntax to retrieve data for stocks that trade twice, but not
three times in a 10-millisecond period.

CREATE OUTPUT STREAM TradeOut
 SCHEMA TradeSchema
as
 SELECT
 SecondTrade.*
 FROM
 InTrades as FirstTrade,
 InTrades as SecondTrade,
 InTrades as ThirdTrade
 MATCHING
 [10 milliseconds: FirstTrade , SecondTrade, !ThirdTrade]
 ON
 FirstTrade.Symbol = SecondTrade.Symbol = ThirdTrade.Symbol
 ;

The example attaches a File CSV Input adapter named csvInConn1 to InTrades. The
example also attaches a File CSV Output adapter named csvOut to TradeOut to publish
the matching results to a file, since data cannot be viewed in-stream.

Row Time
Use the bigdatetime system column to retrieve row-insertion times.

The example creates a schema named TradeSchema.

The example creates the schema TradesWidthDelaySchema, and uses the INHERITS
syntax to apply the structure of TradeSchema to TradesWidthDelaySchema with row
delay.

CHAPTER 8: Data Selection Examples

Examples Guide 51

The example creates an input window named TradeWindow, to which it attaches the File
CSV Input adapter.

The example then creates an output window named TradesWithDelay that uses the
structure defined in TradesWidthDelaySchema. The SELECT clause places a row delay
on timestamp, symbol, price, and volume data rows. The row delay is defined as 10
milliseconds in the HAVING clause. The results are grouped by Symbol.

CREATE OUTPUT WINDOW TradesWithDelay SCHEMA TradesWidthDelaySchema
Primary Key deduced
as
SELECT
 TradeWindow.Ts Ts,
 TradeWindow.Symbol Symbol,
 TradeWindow.Price Price,
 TradeWindow.Volume Volume,
 timeToMsec(TradeWindow.BIGROWTIME) - timeToMsec(TradeWindow.Ts)
 as RowDelay
FROM
 TradeWindow
GROUP BY
 TradeWindow.Symbol
;

AUTOGENERATE Clause
Use the AUTOGENERATE clause in an input window to automatically generate values that
function as primary keys for input data that does not have a natural primary key.

Note: Do not use the AUTOGENERATE with upserts. This might produce duplicate rows in a
window, especially when the automatically-generated column is a primary key.

The example creates a schema named TradeSchema.

CREATE SCHEMA TradeSchema (
 AutoGenId long,
 Symbol STRING,
 Price MONEY (4),
 Volume INTEGER,
 TradeTime DATE
);

The example then creates an input window named Trades that uses the schema
TradeSchema and sets the AutoGenId as the primary key. Finally, the example uses the
AUTOGENERATE clause to automatically generate values for the AutoGenId column.

CREATE INPUT WINDOW Trades
SCHEMA TradeSchema
PRIMARY KEY (AutoGenId)
AUTOGENERATE (AutoGenId);

CHAPTER 8: Data Selection Examples

52 Sybase Event Stream Processor

The example concludes by attaching the XML Input Adapter to the input window named
Trades to process the incoming stream data.

ATTACH INPUT ADAPTER xmlInConn1
 TYPE xml_in
 TO Trades
 PROPERTIES
 blockSize=1,
 dir='../exampledata',
 file='Trades.xml',
 filePattern='*.xml',
 safeOps=false,
 skipDels=false;

CHAPTER 8: Data Selection Examples

Examples Guide 53

CHAPTER 8: Data Selection Examples

54 Sybase Event Stream Processor

CHAPTER 9 Module Examples

Event Steam Processor includes examples for creating and loading modules.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

CREATE MODULE
Create a module that can be added to a project later using the LOAD MODULE statement.

The example creates a module named Module1, identifying the input and output windows
that are later defined in the BEGIN-END block.

CREATE MODULE Module1 IN rawStockFeed OUT infoByStockSymbol

In the BEGIN-END block, the example declares the parameter myparam, for which it sets a
default value of 2. The example also creates a memory store named store1.

BEGIN
 DECLARE
 parameter integer myparam := 2;
 END;

 CREATE DEFAULT MEMORY STORE store1;

The example creates two schemas named inputSchema and outputSchema. It then
creates an input window named rawStockFeed, which references inputSchema, and an
output window named infoByStockSymbol, which references outputSchema. The
function getRecordCount(), which is referenced later in the statement, is declared using a
DECLARE block.

The output window infoByStockSymbol uses SELECT and FROM clauses to pull data
from rawStockFeed. A WHERE clause places a filter on the data when the share volume is
greater than the value set for myparam. The example concludes by closing the BEGIN-END
block.

 CREATE OUTPUT WINDOW infoByStockSymbol
 SCHEMA outputSchema
 PRIMARY KEY DEDUCED
 DECLARE
 integer recordCount:=1;
 integer getRecordCount() {
 return recordCount++ ;
 }
 END
 AS

Examples Guide 55

 SELECT rawStockFeed.Symbol,
 avg(rawStockFeed.Price) AvgPrice,
 sum(rawStockFeed.Volume) Volume,
 count(rawStockFeed.Symbol) NumRecordsForSymbol,
 getRecordCount() TotalNumRecords,
 myparam as dummy
 FROM rawStockFeed
 WHERE rawStockFeed.Volume > myparam
 GROUP BY rawStockFeed.Symbol;
END;

Load Module
Import and load a module.

This example uses the IMPORT statement to load the module defined in the CREATE MODULE
example, which is saved as module1.ccl.

The example loads module1.ccl using the IMPORT statement.

IMPORT 'module1.ccl';

The example creates two schemas named StocksSchema and
ComputedStocksSchema, a default store named MyStore1, and a memory store named
MyStore2.

The example then creates an input window named InStocks that references
StocksSchema, and to which it attaches a File CSV Input adapter named
csvInStocks.

The example uses the LOAD MODULE statement to load Module1, linking the input window
identified within the module to InStocks, and referencing MyStore1. This example does
not create a new output window, but assigns a new name (CompStocks2) to the window
loaded from Module1. The example also sets a value for the myparam parameter declared in
Module1.

LOAD MODULE Module1 AS Module1_instance_01
 IN rawStockFeed = InStocks
 OUT infoByStockSymbol = CompStocks2
 Parameters myparam = 1000
 STORES store1=MyStore1;

The example creates an output window named myw2 that references
ComputedStocksSchema. SELECT all (*) syntax outputs all data processed by
CompStocks2 to myw2.

CHAPTER 9: Module Examples

56 Sybase Event Stream Processor

CHAPTER 10 Advanced Examples

Event Stream Processor includes advanced programming examples that incorporate a variety
of CCL elements.

Note: The example syntax occasionally wraps due to space constraints. Wrapped lines should
be entered on a single line.

Portfolio Valuation
Compute volume-weighted average prices on a stock portfolio.

The example creates an input window named PriceFeed and an output window named
VWAP. VWAP outputs the results of the volume-weighted average price of the trade values
processed by PriceFeed. The results are grouped by Symbol. The cast function converts
share values to float.

CREATE OUTPUT WINDOW VWAP
SCHEMA (Symbol STRING, LastPrice FLOAT, VWAP FLOAT, LastTime DATE)
 PRIMARY KEY DEDUCED AS
 SELECT PriceFeed.Symbol AS Symbol,
 PriceFeed.Price AS LastPrice,
 (sum((PriceFeed.Price * cast(FLOAT ,PriceFeed.Shares))) /
cast(FLOAT ,sum(PriceFeed.Shares))) AS VWAP,
 PriceFeed.TradeTime AS LastTime
FROM PriceFeed
GROUP BY PriceFeed.Symbol;

The example creates an input window named Positions and an output window named
IndividualPositions. IndividualPositions creates a join between
Positions and VWAP using their symbol values.

CREATE OUTPUT WINDOW IndividualPositions
 SCHEMA (BookId STRING, Symbol STRING, CurrentPosition FLOAT,
AveragePosition FLOAT)
 PRIMARY KEY (BookId, Symbol) AS
 SELECT Positions.BookId AS BookId, Positions.Symbol AS
Symbol,
 (VWAP.LastPrice * cast(FLOAT ,Positions.SharesHeld)) AS
CurrentPosition,
 (VWAP.VWAP * cast(FLOAT ,Positions.SharesHeld)) AS
AveragePosition
 FROM Positions JOIN VWAP
 ON Positions.Symbol = VWAP.Symbol;

Examples Guide 57

The example creates an output window named ValueByBook, which uses SELECT and
FROM clauses to pull data from IndividualPositions using book ID values.
ValueByBook groups the data by book ID.

CREATE OUTPUT WINDOW ValueByBook
 SCHEMA (BookId STRING, CurrentPosition FLOAT, AveragePosition
FLOAT)
 PRIMARY KEY DEDUCED AS
 SELECT IndividualPositions.BookId AS BookId,
 sum(IndividualPositions.CurrentPosition) AS CurrentPosition,
 sum(IndividualPositions.AveragePosition) AS AveragePosition
 FROM IndividualPositions
 GROUP BY IndividualPositions.BookId;

The example concludes by attaching a File XML Input adapter named Adapter1 to
PriceFeed, and another File XML Input adapter named Adapter2 to Positions.

Trades Log
Use a Flex stream to manually delete data from windows.

The example creates a MEMORY store named store1, then two input windows named
Trades and Trades_truncate that reference store1.

The example attaches a File CSV Input adapter named Adapter1 to Trades. The adapter
reads sample data from the file pstrades1.xml in the exampledata folder, and
publishes the information to Trades.

ATTACH INPUT ADAPTER Adapter1
 TYPE xml_in TO Trades
 PROPERTIES
 dir = '../exampledata' ,
 file = 'pstrades1.xml' ;

The example creates a Flex statement named Ccl_2_Trades_log that operates on
Trades and Trades_truncate, producing an output window named Trades_log.
Using a DECLARE block within the Flex statement, the example declares two longs to store
the lowest and the highest sequence number produced in the example so far.

CREATE FLEX Ccl_2_Trades_log
 IN Trades, Trades_truncate
 OUT OUTPUT WINDOW Trades_log
 SCHEMA (SequenceNumber LONG, GDOpcode INTEGER, Id INTEGER,
 Symbol STRING, TradeTime DATE, Shares INTEGER, Price
MONEY(4))
 PRIMARY KEY (SequenceNumber)
 STORE store1
BEGIN
DECLARE

CHAPTER 10: Advanced Examples

58 Sybase Event Stream Processor

 LONG low;
 LONG high;

END;

An ON clause executes the code below anytime a record comes through on the Trades
window. A series of if, else, and while conditions tell the project server that, if this is the first
record being seen by the Flex stream, it should initialize the high and low sequence numbers.
The example uses an iterator to scan all of the records in the Trades_log to find the lowest
and highest sequence numbers stored in the log. Once the example has finished iterating
through Trades_log, the highest sequence number that exists in the log and the lowest
sequence number are stored, and the iterator is deleted.

ON Trades {
 {
 LONG sn;
 /* on the first record, initialize the low, high record
 numbers */
 if (isnull(high))
 {
 for (Trades_log in Trades_log_stream)
 {
 if (isnull (high))
 {
 high := 0; low := 9223372036854775807;
 }
 sn := Trades_log.SequenceNumber;
 if (sn > high)
 {
 high := sn;
 }
 if (sn < low)
 {
 low := sn;
 }
 }
 /* If high is still null there no records in log stream
 */
 if (isnull(high))
 {
 high := -1; low := 0;
 }
 }
 /* output the incoming record with a record number + opcode
 prepended */
 high := high + 1
 output [SequenceNumber = high; |
 GDOpcode = getOpcode(Trades);
 Id=Trades.Id;
 Symbol=Trades.Symbol;
 TradeTime=Trades.TradeTime;
 Shares=Trades.Shares;
 Price=Trades.Price;
];

CHAPTER 10: Advanced Examples

Examples Guide 59

 } ;

The example increments the highest sequence number by 1, and assigns this sequence number
to the current trade it is processing. For the first record, the sequence number is 0

 high:=(high+ cast(LONG ,1));
 output [SequenceNumber=high; |GDOpcode=getOpcode(Trades);
 Id=Trades.Id; Symbol=Trades.Symbol;
 TradeTime=Trades.TradeTime; Shares=Trades.Shares;
Price=Trades.Price;];
 }

 };

An ON clause executes this code anytime a record comes through on the
Trades_truncate window:

ON Trades_truncate {
 {
 LONG i;
 [LONG SequenceNumber; |INTEGER GDOpcode; INTEGER Id;
 STRING Symbol; DATE TradeTime; INTEGER Shares; MONEY(4)
Price;] outrec;

A series of if and while conditions provides the format for output. The example gets the
sequence number that was provided on Trades_truncate. All records with sequence
numbers lower than this number are removed from the trades log. If the sequence number
requested is larger than or equal to the largest sequence number in the trades log, the example
removes all but the latest record from the trades log.

 i:=Trades_truncate.SequenceNumber;
 if ((high> cast(LONG ,0)))
 {
 if ((i>= high))
 i:=(high- cast(LONG ,1));
 if (((low<= i) and (i< high)))
 {
 while ((low<= i))
 {

The example creates a record with an opcode of 13 (SAFE DELETE) for each sequence number
lower than the value provided. Safe delete means the record is deleted from all subsequent
windows if it exists; no error occurs if it does not exist.

 outrec:=[SequenceNumber=low; |
GDOpcode=cast(INTEGER ,null);
 Id=cast(INTEGER ,null);
 Symbol=cast(STRING ,null);
 TradeTime=cast(DATE ,null);
 Shares=cast(INTEGER ,null);

CHAPTER 10: Advanced Examples

60 Sybase Event Stream Processor

 Price=cast(MONEY(4),null);];
 setOpcode(outrec,13);
 output outrec;
 low:=(low+ cast(LONG ,1));
 }
 }
 }
 }

 };

END;

Vectors and Dictionaries
Using a vector and dictionary data structure in SPLASH.

This example implements an OUTPUT AFTER logic that accumulates N Trades per Symbol
before the rows are outputted for further processing. A data structure combining a dictionary
and a vector caches the rows for every symbol until there is at least N rows for a Symbol. N is
controlled by the parameter NoOfRows.

To test this model, run it, view the DelayedTrades stream in the stream viewer and
manually load input into the Trades stream. You will see rows in the stream viewer only after
you insert N trades for a symbol.
DECLARE
 integer NoOfRows := 3;
END;

CREATE SCHEMA TradeSchema
 (Id long, Symbol STRING, Price MONEY(4), Volume INTEGER,
TradeTime DATE);

CREATE INPUT STREAM Trades SCHEMA TradeSchema;

CREATE FLEX DelayedTrades_Flex
IN Trades
OUT OUTPUT STREAM DelayedTrades
 SCHEMA TradeSchema
BEGIN
 DECLARE
 //Data structure combining a dictionary and a vector
 dictionary(string, vector(typeof(Trades))) cache;
 END;
 ON Trades {
 /*Get the reference to the vector associated with a Symbol
 from the cache.*/
 vector(typeof(Trades)) symbolTrades := cache[Trades.Symbol];
 if(isnull(symbolTrades)){
 /*Create a new vector for this symbol.
 Note that you have to use a new to create a vector or

CHAPTER 10: Advanced Examples

Examples Guide 61

 dictionary if it is not directly defined in a global or
 local declare/end block. In this example the cache
 dictionary does not have to be newed because it is
 directly defined in the local declare/end block but the
 vector inside the dictionary is not.*/
 symbolTrades := new vector(typeof(Trades));

 //Add the current row to the vector.
 push_back(symbolTrades, Trades);

 //Assign the vector to the cache for the current Symbol.
 cache[Trades.Symbol] := symbolTrades;

 exit;
 } else {
 /*There is a vector already available for the Symbol, so
 insert the current row. Note that you don't have to
 assign the vector back into the dictionary because the
 vector symbolTrades is a reference to the corresponding
 vector in the dictionary.*/
 push_back(symbolTrades, Trades);
 }

 //The vector has reached size N.
 if(size(symbolTrades) = NoOfRows) {
 //Iterate through the rows and output them.
 for(rec in symbolTrades) {
 output rec;
 }

 //Prepare for the next N Rows. Clear the vector.
 resize(symbolTrades, 0);
 }
 };
END;

CHAPTER 10: Advanced Examples

62 Sybase Event Stream Processor

Index
A

adapter examples
adapter data with opcodes 5
ADAPTER START GROUPS statement 4
ATTACH ADAPTER statement 3
Database Input Adapter 7
Database Input Adapter with polling 9
Database Output Adapter 8
File CSV Output adapter 6
schema inheritance 4

advanced examples
dictionaries 61
portfolio valuation using vwap() 57
SPLASH 61
trades log 58
vectors 61

auto generate 52

D

data selection examples 41, 47, 48, 52
AGING column 41
AGING column with time option 42
data aggregation with filter 43
filter with WHERE clause 49
GROUP BY clause with last() function 43
KEEP ALL clause 46
KEEP clause 45
KEEP clause with AGING clause 45
KEEP LAST clause 46
MATCHING clause 49
matching non-events 51
matching sequences of events 50
row time retrieval 51

DECLARE block examples
declaring a function 39
parameter declaration 40

F

Flex examples
average trade price with timer 33
data management with Flex streams 31
event cache 35

multiple streams and inputs 32
SPLASH with getOpcode 37
SPLASH with if/then/else 36
variables in the DECLARE BLOCK 34

function examples
aggregate functions 24
bitand() 24
bitmask() 24
bitor() 24
bitshiftleft() 24
bitshiftright() 24
bitwise functions 24
CREATE LIBRARY statement 23
data aggregation with vwap() 25, 42
first() 24
last() 24
max() 24
min() 24

J

jumping window 19

K

KEEP PER clause 47
KEEP UNTIL Clause 48

M

module examples
CREATE MODULE 55
load module 56

P

parameters 40

S

store examples
default, memory, and log stores 27
prepay biller application 27

Index

Examples Guide 63

stream and window examples
delta stream 14
input and local streams 13
join streams 16
join windows 15
local windows and output windows 14
outer join 17
stream splitting 20

union streams 18

W

window
jumping 19

Index

64 Sybase Event Stream Processor

	Examples Guide
	Contents
	CHAPTER 1: Learning CCL by Example
	CHAPTER 2: Adapters Examples
	ATTACH ADAPTER Statement
	ADAPTER START GROUPS Statement
	Schema Inheritance
	Adapter Data with Opcodes
	File CSV Output Adapter
	Database Input Adapter
	Database Output Adapter
	Database Input Adapter with Polling

	CHAPTER 3: Stream and Window Examples
	Streams
	Local Windows and Output Windows
	Delta Stream
	Join Windows
	Join Streams
	Outer Join
	Union Streams
	Jumping Windows
	Splitter

	CHAPTER 4: Function Examples
	CREATE LIBRARY statement
	Aggregate Functions
	Bitwise Functions
	Data Aggregation

	CHAPTER 5: Store Examples
	STORES
	Prepay Biller

	CHAPTER 6: Flex Examples
	Data Management with Flex Streams
	Multiple Inputs
	Average Trade Price with Timer
	Variables in the DECLARE Block
	Event Cache
	SPLASH with if/then/else
	SPLASH with getOpcode

	CHAPTER 7: DECLARE Block Examples
	CCL Function
	Parameter Declaration

	CHAPTER 8: Data Selection Examples
	AGING Column
	AGING Column with Time Option
	Data Aggregation
	Data Aggregation with Filter
	GROUP BY Clause with last() Function
	KEEP Clause
	KEEP Clause with AGING Clause
	KEEP ALL Clause
	KEEP LAST clause
	KEEP PER Clause
	KEEP UNTIL Clause
	Filter with WHERE Clause
	MATCHING clause
	Matching a Sequence of Events
	Matching Non-Events
	Row Time
	AUTOGENERATE Clause

	CHAPTER 9: Module Examples
	CREATE MODULE
	Load Module

	CHAPTER 10: Advanced Examples
	Portfolio Valuation
	Trades Log
	Vectors and Dictionaries

	Index

