
Getting Started Guide

Sybase Event Stream Processor
5.1

DOCUMENT ID: DC01622-01-0510-01
LAST REVISED: August 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Getting Started with Sybase Event
Stream Processor ..1

Key Terms and Concepts ..2
Events ...2
ESP Projects: Streams, Windows, Adapters, and

Continuous Queries ..3
Streams and Windows ..3
Data-Flow Programming ...3
Getting Results from an ESP Project5
Operation Codes ...5

What You Can Do with Sybase Event Stream Processor
...7

Beyond the Basics ...8

CHAPTER 2: Getting Started in ESP Studio9
Starting ESP Studio ...9
Exploring the ESP Studio Workspace9
Studio Authoring Views and Editors11
Diagrams ..12
Sample Projects in the Learning Perspective13
Running a Sample Project ..15
Project Execution and Testing ...16

CHAPTER 3: Building a Simple Project17
Reviewing Concepts ..18

The Sample Project ..18
Schema Discovery Using Input Adapters19
Simple Queries ...20

Getting Started Guide iii

Creating the Sample Project ...21
Editing a Project Diagram ...22
Adding an Input Adapter ..23
Discovering a Schema ..24
Adding an Input Window Manually25
Creating an Aggregate as a Simple Query27
Creating a Join as a Simple Query28
Completing the Sample Project ..31

CHAPTER 4: Testing Your Project33
Compiling the Sample Project ..33
Viewing Problems ..34
Deploying the Sample Project ..35

Run-Test Perspective ..35
Customizing Run-Test Perspective37
Loading Data into the Sample Project37
Testing the Project with Recorded Data38
Other Tools for Running and Testing Projects40

CHAPTER 5: Continuous Computation Language41
SPLASH ..41
CCL Authoring ...42
Editing in the CCL Editor ..42
CCL for the Sample Project ..44
CCL for Sample Project with Modules46

Index ...51

Contents

iv Sybase Event Stream Processor

CHAPTER 1 Getting Started with Sybase
Event Stream Processor

Sybase® Event Stream Processor enables you to create and run your own complex event
processing (CEP) applications to derive continuous intelligence from streaming event data in
real time.

Event stream processing is a form of CEP, a technique for analyzing information about events,
in real time, for situational awareness. When vast numbers of event messages are flooding in,
it is difficult to see the big picture. With event stream processing, you can analyze events as
they stream in and identify emerging threats and opportunities as they happen. Event Stream
Processor Server filters, aggregates, and summarizes data to enable better decision making
based on more complete and timely information.

Sybase Event Stream Processor includes both:

• A development platform, called ESP Studio, for building and testing event-based
applications, without significant programming effort.

• A run-time environment optimized for enterprise-scale, event-driven applications. ESP
Server processes data continually as it arrives, before storing it on disk, thus achieving
extremely high throughput and low latency, enabling better decision making based on
more complete and timely information.

Sybase Event Stream Processor does not replace databases. Unlike traditional databases that
are designed for on-demand queries and transaction processing, Sybase Event Stream
Processor is optimized for continuous queries. Thus, it complements traditional databases to
help solve new classes of problems where continuous, event-driven data analysis is required.

Event Stream Processor Deployments
Data flows into ESP Server from external sources through built-in or custom adapters, which
translate incoming messages into a format that is accepted by ESP Server.

This figure shows a typical Event Stream processor deployment. Continuous queries,
developed and tested as projects using the ESP Studio, are deployed to ESP Server. Output
adapters translate rows processed by ESP Server into message formats that are compatible
with external destinations such as Sybase RAP, and send those messages downstream. Sybase
Control Center provides an operations console for monitoring and managing ESP Server.

Getting Started Guide 1

Figure 1: Event Stream Processor Architecture

Next Steps
Use this guide to:

• Learn key concepts
• Try out the development platform by building a simple project
• Watch a running application

Key Terms and Concepts
Events, projects, streams and windows, and continuous queries are the basics of data-flow
programming in Event Stream Processor.

Events
A business event is a message that contains information about an actual business event that
occurred. Many business systems produce streams of such events as things happen.

Examples of business events that are often transmitted as streams of event messages include:

• Financial market data feeds that transmit trade and quote events, where each event may
consist of ticket symbol, price, quantity, time, and so on

• Radio Frequency Identification System (RFID) sensors that transmit events indicating that
an RFID tag was sensed nearby

• Click streams, which transmit a message (a click event) each time a user clicks a link,
button, or control on a Web site

• Database transaction events, which occur each time a record is added to a database or
updated in a database

CHAPTER 1: Getting Started with Sybase Event Stream Processor

2 Sybase Event Stream Processor

ESP Projects: Streams, Windows, Adapters, and Continuous Queries
An ESP project is like an application, consisting of a set of event streams, any other required
datasources, and the business logic applied to incoming event data to produce results.

At its most basic level, a project consists of:

• Input streams and windows – where the input data flows into the project. An input stream
can receive incoming event data on an event-driven basis, and can also receive static or
semistatic sets of data that are loaded once or periodically refreshed. Input streams that
have state—that is, they can retain and store data—are called windows.

• Adapters – connect an input stream or window to a datasource. Sybase Event Stream
Processor includes a large set of built-in adapters as well as an SDK that you can use to
build custom adapters. Adapters can also connect an output stream or window to a
destination. While an adapter connects the project to external inputs and outputs,
technically it is not part of the project.

• Derived streams and windows – take data from one or more streams or windows and
apply a continuous query to produce a new stream or window. Derived streams that have
state are windows.

Streams and Windows
Both streams and windows process events. The difference is that windows have state, meaning
they can retain and store data, while streams are stateless and cannot.

Streams process incoming events and produce output events according to the continuous
query that is attached to the stream, but no data is retained.

A window consists of a table where incoming events can add rows, update existing rows, or
delete rows. You can set the size of the window based on time, or on the number of events
recorded. For example, a window might retain all events over the past 20 minutes, or the most
recent 1,000 events. A window can also retain all events. In this case, the incoming event
stream must be self-managing in that it contains events that both insert rows into the window
and delete rows from the window, so that the window does not grow infinitely large. Windows
are needed for performing aggregate operations, as this cannot be done on streams.

Data-Flow Programming
Sybase® Event Stream Processor uses data-flow programming for processing event streams.

In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation processes an event only when it is received from
another operation. No other coordination is needed between operations.

CHAPTER 1: Getting Started with Sybase Event Stream Processor

Getting Started Guide 3

The sample project shown in the figure shows a simple example of this.

Each of the continuous queries in this simple example—the VWAP aggregate, the
IndividualPositions join object, and the ValueByBook aggregate—is a type of derived stream,
as its schema is derived from other inputs in the diagram, rather than originating directly from
external sources. You can create derived streams in a diagram using the simple query elements
provided in the Studio Visual editor, or by defining your own explicitly.

Figure 2: Data-Flow Programming - Simple Example

Table 1. Data-Flow Diagram Contents

Element Description

PriceFeed Represents an input window, where incoming data from an external
source complies with a schema consisting of five columns, similar to a
database table with columns. The difference is that in ESP, the stream-
ing data is not stored in a database.

Positions Another input window, with data from a different external source. Both
Positions and PriceFeed are included as windows, rather than streams,
so that the data can be aggregated.

VWAP Represents a simple continuous query that performs an aggregation,
similar to a SQL Select statement with a Group By clause.

IndividualPositions Represents a simple continuous query that performs a join of Positions
and VWAP, similar to a SQL FROM clause that produces a join.

CHAPTER 1: Getting Started with Sybase Event Stream Processor

4 Sybase Event Stream Processor

Element Description

ValueByBook Another simple query that aggregates data from the stream Individual
Positions.

See also
• The Sample Project on page 18

• Diagrams on page 12

Getting Results from an ESP Project
Event Stream Processor has four ways to get output from a running project.

• Applications receive information automatically from internal output adapters attached to a
stream when you build the project.

• Applications can subscribe to data streams by means of an external subscriber, which users
can create using subscription APIs provided with the product.

• Users can start a new project that binds (connects) to a stream in a running project, without
reconfiguring the project.

• Users can run on-demand queries against output windows in a running ESP project. This is
similar to querying a database table.
• From the command line, using the esp_query tool. For more information see the

Utilities Guide.
• In ESP Studio, using the SQL Query view tools.

Operation Codes
The operation code (opcode) of an event record specifies the action to perform on the
underlying store of a window for that event.

In many Event Stream Processor use cases, events are independent of each other: each carries
information about something that happened. In these cases, a stream of events is a series of
independent events. If you define a window on this type of event stream, each incoming event
is inserted into the window. If you think of a window as a table, the new event is added to the
window as a new row.

In other use cases, events deliver new information about previous events. The ESP Server
needs to maintain a current view of the set of information as the incoming events continuously
update it. Two common examples are order books for securities in capital markets, or open
orders in a fulfillment system. In both applications, incoming events may indicate the need
to:

• Add an order to the set of open orders,

CHAPTER 1: Getting Started with Sybase Event Stream Processor

Getting Started Guide 5

• Update the status of an existing open order, or,
• Remove a cancelled or filled order from the set of open orders.

To handle information sets that are updated by incoming events, Event Stream Processor
recognizes the following opcodes in incoming event records:

• insert – Insert the event record.
• update – Update the record with the specified key. If no such record exists, it is a runtime

error.
• delete – Delete the record with the specified key. If no such record exists, it is a runtime

error.
• upsert – If a record with a matching key exists, update it. If a record with a matching key

does not exist, insert this record.
• safedelete – If a record with a matching key exists, delete it. If a record with a matching key

does not exist, do nothing.

All event records include an opcode. Each stream or window in the project accepts incoming
event records and outputs event records. Output events, including opcodes, are determined by
their source (stream, window, or delta stream) and the processing specified for it.

Refer to the Streams, Windows, and Delta Streams topics in the Programmers Guide for
details on how each interprets the opcodes on incoming event records and generates opcodes
for output records.

CHAPTER 1: Getting Started with Sybase Event Stream Processor

6 Sybase Event Stream Processor

What You Can Do with Sybase Event Stream Processor
Application developers use the ESP Studio, including the Visual editor, Text editor, and
testing tools, to develop event-based applications. You can also develop custom adapters using
the SDKs.

Table 2. Event Stream Processor Capabilities by User Role

User What You Can Do

Application developer Use the ESP Studio to create sophisticated data-
flow applications in the Visual editor, a graphical
authoring environment.

Use the text editor in ESP Studio to develop
projects in the Continuous Computation Lan-
guage (CCL). Switch between the fully integrated
editors, and see changes in one editor immedi-
ately reflected in the other.

Create custom operators and external functions
by embedding SPLASH scripts in your CCL code
or diagram.

Test compiled projects by running them on a local
or remote server in ESP Studio Run-Test per-
spective. Watch data flow through the project,
record and play back in-flowing data, trace
events, set breakpoints and watch variables on
stream inputs and outputs, monitor performance,
execute continuous and on-demand queries, and
more.

Create, run, and test projects using command-line
tools as an alternative to ESP Studio.

Adapter developer Create custom input and output adapters in Java,
C/C++, or .NET (C#, Visual Basic, and so on)
using one of the SDKs provided with Sybase
Event Stream Processor.

Integrate custom function libraries using the
SDKs.

CHAPTER 1: Getting Started with Sybase Event Stream Processor

Getting Started Guide 7

User What You Can Do

Business analyst Design continuous queries in the ESP Studio
Visual editor with minimal knowledge of pro-
gramming.

Run projects in ESP Studio before production
deployment, to ensure that they satisfy your busi-
ness requirements.

Issue on-demand queries on a running ESP
project.

Administrator Configure ESP server clusters for production
scale processing volume and performance. Run
multiple projects simultaneously, apply central-
ized security, manage connections. Ensure sta-
bility with high availability and failover options.

Monitor and manage ESP Server and user access
in the Sybase Control Center operations console,
and using command-line tools.

Beyond the Basics
An ESP project can take advantage of a broad set of features.

In addition to the basic elements of input streams, adapters, and output streams, a project may
include:

• Derived streams
• SPLASH code
• External C code
• Custom adapters
• Modules that can be developed independently and loaded into a project
• Named schemas that store reusable schema definitions

See the Examples Guide for code samples that demonstrate CCL and SPLASH.

See the Adapters Guide for sample code for custom adapters.

See also
• SPLASH on page 41

• CCL for Sample Project with Modules on page 46

CHAPTER 1: Getting Started with Sybase Event Stream Processor

8 Sybase Event Stream Processor

CHAPTER 2 Getting Started in ESP Studio

To begin developing a project, start ESP Studio, review workspace basics, and optionally step
through an example before creating your own project.

Starting ESP Studio
Start ESP Studio from the desktop shortcut, Windows Start menu, or the command line.
From your desktop or workstation:

Platform Method

Windows • Double-click the Sybase ESP Studio shortcut on your computer
desktop, or,

• Select Start > Programs > Sybase > Event Stream Processor 5.1 >
Studio > Studio.

Linux or UNIX • Double-click the Sybase ESP Studio shortcut on your computer
desktop, or,

• At the command line, enter $ESP_HOME/studio/esp-
studio.

See also
• Exploring the ESP Studio Workspace on page 9

• Studio Authoring Views and Editors on page 11

• Diagrams on page 12

• Sample Projects in the Learning Perspective on page 13

• Running a Sample Project on page 15

• Project Execution and Testing on page 16

Exploring the ESP Studio Workspace
Explore ESP Studio perspectives and views to discover what you can do.

Use the sample projects to see examples of different project structures and diagrams in the
Visual editor.

1. (Optional) On the Welcome screen, use the buttons to navigate to the help, or close the
Welcome screen tab.

Getting Started Guide 9

• Click Product Overview or Getting Started to open the help.
• Click Learning to open Studio in the Learning perspective.
• Click Studio to open Studio in the Authoring perspective.

2. To switch to another perspective, click its tab just below the main menu bar.

3. Click Learning to:

• Load example projects
• Step through example projects so that you can follow what happens when you

subscribe to streams, publish demonstration data, and view results

Note: Activities you initiate in Learning perspective open in Authoring and Run-Test
perspectives.

4. Click the Authoring tab in Studio to:

• Create and edit projects
• Develop projects and diagrams in the Visual editor, a graphical editing environment
• Develop projects in the CCL editor, a text-oriented editing environment where you edit

CCL code
• Compile projects
• Import Aleri models

5. Click the Run-Test tab in Studio to:

• Connect to servers
• Run projects
• Enter test data by uploading data files to a server, or entering data manually to a stream
• Publish data
• Execute a query against a running project
• Use the Event Tracer and Debugger to set breakpoints and watchpoints, and trace the

flow of data through a project
• Record incoming event data to a playback file, and play back captured data into a

running project
• Monitor performance

Note: For more information on tasks and concepts introduced in this Getting Started Guide,
see the Studio Users Guide.

See also
• Starting ESP Studio on page 9

• Studio Authoring Views and Editors on page 11

• Diagrams on page 12

• Sample Projects in the Learning Perspective on page 13

• Running a Sample Project on page 15

• Project Execution and Testing on page 16

CHAPTER 2: Getting Started in ESP Studio

10 Sybase Event Stream Processor

Studio Authoring Views and Editors
The Visual editor, CCL editor, and other tools and views in the Authoring perspective allow
you to create, view, and edit a diagram or CCL file.

Figure 3: Authoring Perspective Views

• Editor – canvas at the center of the Authoring perspective where you edit the diagram (in
the Visual editor) or CCL (in the CCL editor). The Visual and CCL text editors are
completely integrated. When you save and switch to the other editor, your work is saved
there as well.

• Palette – includes groups of tools used to create new CCL elements on the diagram. Most
shapes on the Palette correspond to a CCL statement.

• File Explorer – provides a hierarchical tree structure of folders and files.
• Properties view – displays the properties of the object selected in the diagram. You can

also set properties in this view, and edit expressions.
• Outline view – provides an index to all elements in the diagram as a hierarchical tree

structure. Also shows the order in which adapters are started. Right-click an element in this
view to show it in the diagram, delete it, modify it, or add a child element.

CHAPTER 2: Getting Started in ESP Studio

Getting Started Guide 11

• Overview – helps you understand the big picture, and navigate easily to different areas of a
large, complex diagram. For large diagrams you can scroll the editor by dragging the gray
box in the overview.

• Search – provides full-text search capability for finding text strings in the workspace.
Useful in navigating File Explorer, and project contents in the CCL editor. You can filter
search results, and copy, remove, or replace results found.

• Problems – displays errors found when you compile a project or convert an Aleri model to
CCL.

• Console – displays messages generated when interacting with ESP components.

Note: ESP Studio lets you customize the arrangement of views in your perspectives. See
Customizing the Studio Work Environment in the Studio Users Guide.

See also
• Starting ESP Studio on page 9

• Exploring the ESP Studio Workspace on page 9

• Diagrams on page 12

• Sample Projects in the Learning Perspective on page 13

• Running a Sample Project on page 15

• Project Execution and Testing on page 16

Diagrams
In visual authoring, you use diagrams to create and manipulate the streams, windows,
connections, and other components of a project, and create simple queries.

When you open a project in the Visual editor, the project shows a collection of stream and
window shapes that are connected with arrows showing the flow of data. You develop the
project by selecting new input and output streams, windows, and other elements from the
Palette, dropping them onto the diagram, connecting them, and configuring their behavior.

Every project has at least one diagram. A diagram in the Visual editor is a projection of the
associated CCL statements in the project.

When you add a shape or other element to a diagram, it is automatically added to the project
when you save. You can delete an element from a diagram only, or from the project.

Display diagrams in verbose or iconic mode:

• iconic – compartments are collapsed to save space.

CHAPTER 2: Getting Started in ESP Studio

12 Sybase Event Stream Processor

• verbose – all compartments in elements are visible.

• To expand or collapse all shapes in the diagram, use the All Verbose or All Iconic
buttons on the main toolbar.

• To expand an individual shape, select it and click the "+" box in the shape.
• To collapse an individual shape, select it and click the "-" box in the shape header.

See also
• Starting ESP Studio on page 9

• Exploring the ESP Studio Workspace on page 9

• Studio Authoring Views and Editors on page 11

• Sample Projects in the Learning Perspective on page 13

• Running a Sample Project on page 15

• Project Execution and Testing on page 16

• Data-Flow Programming on page 3

Sample Projects in the Learning Perspective
Event Stream Processor Studio includes several example projects.

You can view the examples in ESP Studio and run them against sample data installed with the
product. Stepping through examples in the Studio Learning perspective is an ideal way to
watch a simplified set of event data flow through the system.

The examples include:

• IndexesCalculation – Shows how continuous computations can be applied to a stream of
market prices to deliver insight into the market. This example demonstrates reusable
modules. Each of the market calculations is defined in an external module, that is, a

CHAPTER 2: Getting Started in ESP Studio

Getting Started Guide 13

module defined in a separate CCL file, and then imported into the project. Parameters (in
this case, time and itnervals) are set when the module is called.

• Pattern Matching – Simple example of situation detection: watching for a pattern of
events. The scenario in this example is to watch for employee fraud in a retail setting, based
on transaction patterns from a point-of-sale system. The example applies three Filter
queries to an input stream of transactions, and then uses a Pattern query (CCL
MATCHING clause) to produce a Possible Fraud Alert event when all of the criteria occur
in the defined time interval.

• Prepay Biller – Loads call events (CDRs), such as those generated from a telephone
carrier network, and applies account and call plan information to create a billing record for
each call, and maintain a balance of prepaid minutes. The example demonstrates joins,
aggregation, and using joins to augment the events with reference data.

• Top 3 Prices – Creates a window showing the top three distinct trade prices for each
symbol. The example uses a Flex operator to create a custom operator with an embedded
SPLASH script. A Flex operator creates a single output stream or window, and allows
greater flexibility and control than a simple SELECT statement. The example also uses a
named schema, which can be defined once and shared by the input stream and output
window.

• VWAP – Defines an input stream of stock market prices, as they might be reported from an
exchange, and computes a moving average price called the volume weighted average price
(VWAP). Uses a filter, and a simple aggregation (GROUP BY).

For details of each example, click the example name in the Learning Perspective.

For more examples of CCL and SPLASH code, see the Examples Guide and the Programmers
Guide.

See also
• Starting ESP Studio on page 9

• Exploring the ESP Studio Workspace on page 9

• Studio Authoring Views and Editors on page 11

• Diagrams on page 12

• Running a Sample Project on page 15

• Project Execution and Testing on page 16

• The Sample Project on page 18

• Chapter 3, Building a Simple Project on page 17

CHAPTER 2: Getting Started in ESP Studio

14 Sybase Event Stream Processor

Running a Sample Project
Load and run one of the example projects installed with the product, so that you can view
end-to-end project execution in your workspace.

Prerequisites
To run these examples, you may need to disable McAfee host intrusion prevention. See your
McAfee documentation for details.

Task

1. Navigate to the Learning perspective.

2. Close the Welcome view.

3. In Examples view, click example titles to see descriptions.

4. Click LOAD to load an example into your workspace and start the Examples project.
File Explorer shows all example projects, plus any other projects you have created.

5. If the Add Local Password dialog appears, enter the password for the studio user.

You define a password for the studio user once per ESP Studio session. The first time you
are asked for a password, Studio accepts any value. The next time you are prompted within
the same session, you need to specify the same password. In your next Studio session, you
can select a new password or keep the same one.

6. Click Proceed.
The dialog shows Progress Information. Server view shows ESP localhost and connection
information.

7. Click Proceed to subscribe to the example stream.
The Console shows a series of status messages.

8. Click Proceed to publish example data.
Stream view shows each stream in a separate tab. For example, the IndexesCalculation
example opens four tabs, with one input stream and three output streams. You may need to
expand the project in Server view and double-click each stream to open it in Stream view.

Next
Run a second example. Server View now shows both examples. Expand it to show all streams
for each example.

See also
• Starting ESP Studio on page 9
• Exploring the ESP Studio Workspace on page 9
• Studio Authoring Views and Editors on page 11
• Diagrams on page 12

CHAPTER 2: Getting Started in ESP Studio

Getting Started Guide 15

• Sample Projects in the Learning Perspective on page 13

• Project Execution and Testing on page 16

Project Execution and Testing
ESP Studio lets you run and test all aspects of a project.

During development, you can use ESP Studio to run any compiled project against a local or
remote server, view data flowing through the streams and windows defined in the project,
execute queries, and use debugging tools. Your project configuration and licensing determine
the type of server connections you can use when running projects. Some adapters also have
special licensing requirements.

In ESP Studio you can connect immediately to a local cluster to run projects, using default
security established for ESP Studio during installation. A cluster consists of a group of server
nodes, which are processes that run on hosts. A cluster can have a single node or multiple
nodes.

In a production environment, you typically run projects on a remote server. Administrators
monitor and manage ESP Server nodes, clusters, and projects using Sybase Control Center, a
Web-based administrative tool for production deployments, and using the command-line
utilities and procedures discussed in the Administrators Guide.

See also
• Starting ESP Studio on page 9

• Exploring the ESP Studio Workspace on page 9

• Studio Authoring Views and Editors on page 11

• Diagrams on page 12

• Sample Projects in the Learning Perspective on page 13

• Running a Sample Project on page 15

• Chapter 4, Testing Your Project on page 33

CHAPTER 2: Getting Started in ESP Studio

16 Sybase Event Stream Processor

CHAPTER 3 Building a Simple Project

Walk through this hands-on tutorial to create a simple project in the Visual editor.

The sample project demonstrates how you can easily define event streams and windows by
attaching a previously configured adapter and discovering its schema, or by manually defining
a window and its schema. It shows you how to define continuous queries—aggregations,
joins, and more—using the visual tools.

Begin by reviewing background information that helps you understand the project. Then
complete the tasks to build the project.

1. Reviewing Concepts

Begin the tutorial by reading a description of the sample project, and concepts applied in
it.

2. Creating the Sample Project

Use the Studio to define a new set of processing instructions for event data.

3. Editing a Project Diagram

Edit projects in the Visual editor by adding shapes from the Palette to the project diagram,
connecting them, and completing the configuration of each shape.

4. Adding an Input Adapter

Attach an adapter by inserting it in the diagram, connecting it to a stream or window, and
setting properties.

5. Discovering a Schema

Use the Schema Discovery button in the Adapter shape to discover and automatically
create a schema based on the format of the data from the adapter.

6. Adding an Input Window Manually

Add an input window to the diagram in the sample PortfolioValuation project.

7. Creating an Aggregate as a Simple Query

Add to the sample diagram an Aggregate simple query to create a volume weighted
average price (VWAP).

8. Creating a Join as a Simple Query

Add a join to the sample project. A join combines events from two or more inputs to create
a single stream or window. It is similar to a join in SQL.

9. Completing the Sample Project

Add a new aggregate, and clean up the diagram by removing unused elements.

Getting Started Guide 17

Reviewing Concepts
Begin the tutorial by reading a description of the sample project, and concepts applied in it.

See also
• Creating the Sample Project on page 21

The Sample Project
The PortfolioValuation project that you build in this tutorial applies current prices to a
portfolio of investments to compute the value of each investment and of the portfolio. It uses
simple queries to aggregate and join data from two input windows.

The example:

1. Receives a stream of prices in an input window called PriceFeed. The schema for this
window has five columns: Id, Symbol, Price, Shares, and TradeTime. The window uses the
Id field as a primary key, and is set to keep the last 10 minutes of price events.

2. Applies an Aggregate simple query to create a 10-minute moving average—a volume
weighted average price (VWAP). With the VWAP, you can see the value of positions based
on the average price, rather than see the value of your positions change with every small
price movement. The VWAP formula is calculated as:
sum(PriceFeed.Price *
 PriceFeed.Shares) /
 sum(PriceFeed.Shares)

3. Reads data from another input window, Positions, with three columns: BookId, Symbol,
and SharesHeld.

4. Applies a Join simple query, joining the market price (from the VWAP aggregate) to your
holdings (Positions), so that you can see the value of your position in each stock:
FROM VWAP
RIGHT JOIN Positions
ON
VWAP.Symbol = Positions.Symbol

5. Applies one more aggregation to show the total value of each "book." This aggregate,
ValueByBook, groups current and average values for individual positions into different
"books." Each book may comprise a set of investment portfolios or funds. In the CCL, a
GROUP BY clause performs the aggregation:
CREATE OUTPUT WINDOW ValueByBook

 PRIMARY KEY DEDUCED
 AS
 SELECT IndividualPositions.BookId BookId,
 sum(IndividualPositions.CurrentPosition)
CurrentPosition,
 sum(IndividualPositions.AveragePosition) AveragePosition

CHAPTER 3: Building a Simple Project

18 Sybase Event Stream Processor

 FROM IndividualPositions
 GROUP BY IndividualPositions.BookId ;

Figure 4: Portfolio Valuation Sample Diagram (Iconic Mode)

See also
• CCL for the Sample Project on page 44

Schema Discovery Using Input Adapters
In the tutorial you use the schema discovery feature to discover an external schema and create
a CCL schema based on the format of the data from the datasource connected to an adapter.

Input Adapters in the Diagram
An input adapter identifies the external source for the input stream or window, and translates it
into a format that Event Stream Processor Server accepts. You can add adapters to the diagram
before or after adding input and output streams or windows.

ESP provides a set of built in adapters for common databases, message bus, file systems,
sockets, and more. You can also develop custom adapters using the SDK, in C/C++, Java,
or .NET. Most adapters provided can be used as input or output adapters.

Schema Discovery Basics
Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

Rather than manually creating a new schema, you can use schema discovery to discover and
automatically create a schema based on the format of the data from the datasource connected
to your adapter. For example, for the Database Input adapter, you can discover a schema that
corresponds to a specific table from a database the adapter is connected to. In the tutorial, you
discover the schema for the PriceFeed input window from the File XML Input adapter.

CHAPTER 3: Building a Simple Project

Getting Started Guide 19

To discover a schema, you need to first configure the adapter properties. Each adapter that
supports schema discovery has unique properties that must be set to enable schema discovery.

For a list of adapters that support schema discovery and properties to configure, see the Studio
Users Guide. For property details, see your adapter type in the Adapters Guide.

See also
• Adding an Input Adapter on page 23

• Discovering a Schema on page 24

Simple Queries
Accomplish most common querying tasks using a set of simple queries available in the Visual
editor: filter, aggregate, join, compute, union, and pattern.

The tools for these six queries are available as objects in the Palette, in Streams and Windows.

• Filter – allows you to filter a stream down to only the events of interest, based on a filter
expression. Similar to SQL WHERE clause.

• Aggregate – allows you to group events that have common values and compute
summary statistics for the group, such as an average. You can also define a window size,
based on either time or number of events. Uses the CCL GROUP BY clause, similar to
SQL GROUP BY.

• Join – allows you to combine records from multiple streams or windows, forming a
new record with information from each source. Comparable to a join in SQL, where you
specify two or more sources in the FROM clause.

• Compute – allows you to create a new event with a different schema, and compute the
value to be contained in each column (field) of the new event. Comparable to a projection
in SQL, where you use a SELECT statement to specify the column expressions, and
FROM to specify a single source.

• Union – allows you to combine multiple streams or windows that all share a common
schema into a single stream or window. Similar to SQL UNION operator.

• Pattern – lets you watch for patterns of events within a single stream or window or
across multiple streams and windows. When ESP Server detects an event pattern in a
running project, it produces an output event. This uses the CCL MATCHING clause.

See also
• Creating an Aggregate as a Simple Query on page 27

• Creating a Join as a Simple Query on page 28

• Completing the Sample Project on page 31

CHAPTER 3: Building a Simple Project

20 Sybase Event Stream Processor

Creating the Sample Project
Use the Studio to define a new set of processing instructions for event data.

Prerequisites
Start ESP Studio.

Task

1. Select File > New > Project....

2. In the Name field, enter my_portfolio_valuation.

A valid project name:
• Must start with a lowercase letter, underscore, or dollar sign
• All other characters must be lowercase letters, numbers, underscores, or dollar signs
• Must not contain spaces

For your own projects you can use any name. To ensure that you can run the sample project
you are creating, use the values listed here.

3. In the Directory field, accept the default location or browse to a directory in which to store
the new project folder.
Studio creates three files in the named directory:
• project_name.ccl – contains the CCL code.

• project_name.cclnotation – contains the diagram that corresponds to
the .ccl file.

• project_name.ccr – contains the project configuration.

For example, for a project directory named "trades," Studio creates a trades.ccl,
trades.cclnotation, and trades.ccr file in the trades directory.

4. Click Finish to create the project files.
The new project opens in the Visual editor with one input stream, NEWSTREAM, and an
inline schema ready for editing.

See also
• Reviewing Concepts on page 18

• Starting ESP Studio on page 9

CHAPTER 3: Building a Simple Project

Getting Started Guide 21

Editing a Project Diagram
Edit projects in the Visual editor by adding shapes from the Palette to the project diagram,
connecting them, and completing the configuration of each shape.

1. If the sample project diagram is not already open in the Visual editor, open it now:

a) In Authoring perspective, in File Explorer, open the sample project,
my_portfolio_valuation.

b) Navigate to the .cclnotation file in your project folder and double-click
my_portfolio_valuation.cclnotation.

2. Click in the diagram to begin editing using the Palette.

Tip: To make the Visual editor window full-screen, double-click the name:Diagram tab
at the top. Double-click again to revert.

3. Select the input stream element NEWSTREAM that was added automatically when you
created the project, right-click, and choose Delete Element.
To run the sample project with example data, you must delete this element from the project
before compiling.
• Delete Element — removes the element from the project.
• Delete from Diagram — removes the element from the diagram, but retains it in the

project. When you run the project, everything in the project runs, even elements that are
not on the diagram.

4. (Optional) To toggle between the Visual editor and the CCL editor, choose Switch to Text
 or Switch to Visual (F4).

Note: The Visual editor, like other graphical user interfaces, offers several ways to
accomplish most tasks, although this guide may not list all of them. For example, in many
contexts you can carry out an action by:
• Clicking a button or other icon in a shape, or on the main toolbar
• Using a shortcut key
• Double-clicking an element to open it
• Right-clicking to select from the context menu
• Selecting from the main menu bar
• Editing element values in the Properties view

CHAPTER 3: Building a Simple Project

22 Sybase Event Stream Processor

Adding an Input Adapter
Attach an adapter by inserting it in the diagram, connecting it to a stream or window, and
setting properties.

This example shows you how to insert an adapter, enable it for schema discovery, then
generate and attach the input window and its schema automatically. This is the best practice
for creating a schema when using an adapter that supports schema discovery.

Alternatively, ESP Studio allows you to create the stream or window and then attach an
adapter. Use this method for adapters that do not support schema discovery, or where you want
to explicitly create an inline schema for input streams or windows.

1. Open the Input Adapters compartment in the Palette (to the right of the diagram) and
locate the adapter you want.
For this example, choose the File XML Input adapter, which reads data from an XML
file.

2. Click the adapter in the Palette, then click in the diagram.

Do not try to drag-and-drop from the Palette into the diagram.

The adapter shape is inserted but its border is red, indicating it is not complete, until you
define its properties and attach it to a stream or window.

3. In the adapter shape toolbar, click Edit Properties () .

4. (Optional) In the Adapter Properties dialog, change Name to identify your adapter.

5. Configure the adapter for schema discovery:

Required properties are in red.

Note: Leave Use named property set unchecked, as this option does not allow you to
discover the schema for this adapter.

a) Click in the Value column for Directory and click the Browse button ().
b) Click the Browse button in the Directory dialog to select the folder with the data files

you want the adapter to read. Click OK.
For this example, specify the absolute path to the sample data installed with the
product.

Property Value

Directory workspace_install_path\exampledata

Windows default: C:\Documents and Settings\username\My
Documents\SybaseESP\5.1\workspace\exampledata

Linux and Solaris default: your_home_directory/SybaseESP/
5.1/workspace/exampledata

CHAPTER 3: Building a Simple Project

Getting Started Guide 23

Note: The file property is set automatically in the next task, when you select a file for
schema discovery.

6. Click OK, then press Ctrl+S to save.

Next
Import the schema and create a connected input stream or window with the same schema as the
data file.

See also
• Schema Discovery Using Input Adapters on page 19

Discovering a Schema
Use the Schema Discovery button in the Adapter shape to discover and automatically create a
schema based on the format of the data from the adapter.

Prerequisites
Add the adapter to the diagram and set its properties.

Task

1. Click Schema Discovery on the adapter toolbar.
Studio displays a Progress Information box and looks for the configuration.
• If the schema is configured properly and one or more data sets are found, a Schema

Discovery: Select Schema dialog appears where you can view and select a schema.
• If the schema is not successfully discovered, an error message appears stating that no

schema was discovered for the adapter. You can:
• Check that the adapter properties are configured for schema discovery.
• Check the Studio Users Guide to see if the adapter supports schema discovery.

2. Select the schema you need.

You can expand the data set to view the schema.

For this example, select positions.xml, then click Next.

3. In the Schema Discovery: Create Element dialog, choose Create new input window.

This option creates and attaches a new window to the adapter, creates an inline schema for
the window, and populates the window with the schema discovered from the adapter.

When the adapter is not yet attached to a stream or window, other options are:
• Create a new input stream – creates and attaches a new stream to the adapter, creates

an inline schema for the stream, and populates the stream with the schema discovered
from the adapter.

CHAPTER 3: Building a Simple Project

24 Sybase Event Stream Processor

• Create new named schema. – creates a new named schema and populates it with the
schema discovered from the adapter.

4. Click Finish.
• The new input window appears with the default name positions_xml_window1, and is

automatically connected to the File XML Input adapter.
• The adapter file property is set. The red warning border disappears, indicating that the

element is now valid.

5. In the Schema compartment of the input window, click the Toggle Key buttons for the
BookId and Symbol columns to specify the primary key.
The button indicates primary key columns.With the primary key, the shape becomes
valid.

6. Click the input window Edit button and name it Positions.

Next

Create another input window, PriceFeed. Either:

• Create the PriceFeed input window manually, following steps in the next task, or,
• Insert another File XML Input adapter and configure it for schema discovery. This time,

when you discover the schema, choose pricefeed.xml in the exampledata
directory. Name the input window PriceFeed, and click the Id column to make it the
primary key.

See also
• Schema Discovery Using Input Adapters on page 19

Adding an Input Window Manually
Add an input window to the diagram in the sample PortfolioValuation project.

These steps let you create an input window directly, and define the schema, without importing
a schema.

If you used the input adapter to discover the schema and generate both input windows
automatically, skip these steps and go directly to the next task.

1. In the Visual editor, in the Palette to the right of the diagram, open the Streams and
Windows compartment.

2. Click Input Window.

3. Click in an empty area in the diagram where you want to insert the input window.
The input window object is added to the project. The red border indicates that it needs more
definition to be valid.

CHAPTER 3: Building a Simple Project

Getting Started Guide 25

4. To set the name of the input window, either:

• In iconic mode, click once to select the shape, then click again to edit the name.
• In verbose mode, click the edit icon next to the name.

For this example, enter the name PriceFeed.

5. Click the "plus" sign to expand the shape to verbose mode if necessary, and click Add
Column () on the toolbar in the input window, to add each new column.

Tip: Hover over any icon to see its name.

A new column is created with a default name, and default datatype of integer.

6. Specify additional columns.

a) Double-click each column name to edit it.
b) Then double-click each datatype to select the correct datatype.

For this example, enter these column names and datatypes:
• Id – integer
• Symbol – string
• TradeTime – date
• Price – float
• Shares – integer

7. Click the button for the Id column to toggle it to the Key symbol.

Input windows require a primary key.

The Id column is now the primary key for the PriceFeed input window. The red warning
border disappears, indicating that the element is now valid.

8. Create a retention window.

a) Click Set Keep Policy .
b) In the Edit Keep Policy dialog, choose Time, and enter 10 MIN in the text box to its

right. Click OK.

The default policy is to keep all rows of incoming data.

This step defines a CCL KEEP clause, and retains all price events received in the last 10
minutes. Without a KEEP clause, the PriceFeed window would grow infinitely large. For
more information on specifying a retention policy, see the Studio Users Guide.

9. Save (Ctrl+S).
This saves changes to both the .cclnotation file (the diagram) and the .ccl file (the
CCL).

The input window and its schema (or deduced schema) are in the diagram.

CHAPTER 3: Building a Simple Project

26 Sybase Event Stream Processor

Creating an Aggregate as a Simple Query
Add to the sample diagram an Aggregate simple query to create a volume weighted average
price (VWAP).

An Aggregate query groups events that have common values, and computes summary
statistics for the group.

1. In the Visual editor Palette, in Streams and Windows, click Aggregate.

2. Click in the diagram to create the object.

3. Change the default name, Aggregate1, to VWAP.

4. Connect PriceFeed to the VWAP aggregate:

a) Click the Connector tool in the Palette.
b) Click the PriceFeed input window, then click the VWAP aggregate.

Click the shape that produces the output first, then the shape that receives the data, to
indicate the direction of data flow. Watch for visual indicators that show you when the
connection is valid.

Indicator Meaning

Connection is allowed

Connection is not allowed

5. Enter Column Expressions:

a) Click Copy Columns from Input () in the shape toolbar to select the columns to
copy into the schema for the aggregate window.
For this example, copy these columns:
• PriceFeed.Symbol
• PriceFeed.TradeTime
• PriceFeed.Price

b) Edit column names to clarify that these columns will hold the most recent price and
time for the group:
• Change TradeTime to LastTime
• Change Price to LastPrice

c) Add additional columns by clicking Add Column Expression in the shape toolbar.

For this example, add another column and edit its name to VWAP.

6. Edit column expressions by double-clicking to open the inline editor, or by selecting the
expressions and pressing Ctrl+F2 to open the expression in the pop-up editor.
For this example, edit the VWAP column expression to:

CHAPTER 3: Building a Simple Project

Getting Started Guide 27

sum (PriceFeed.Price *
PriceFeed.Shares) /
sum (PriceFeed.Shares)

7. Click Add GroupBy Clause ({ }) to edit the grouping of columns in the aggregate object.

Note: The Aggregate shape must have exactly one GROUP BY expression.

For this example, select PriceFeed.Symbol as the grouping column.

The red warning border disappears, indicating that the element is now valid. The aggregate
element is now valid.

8. (Optional) Use the Toggle option to change the aggregate object from LOCAL to
OUTPUT.

By making it an output window, you allow external applications to subscribe to or query it,
and you will be able to view it using the Streamviewer in Run-Test perspective.

See also
• Simple Queries on page 20

Creating a Join as a Simple Query
Add a join to the sample project. A join combines events from two or more inputs to create a
single stream or window. It is similar to a join in SQL.

Event Stream Processor supports inner joins, left and right outer joins, and full outer joins,
with join syntax comparable to SQL ANSI join syntax and comma-separated syntax. For more
information about joins, see the Studio Users Guide or the Programmers Guide.

1. In the Visual editor Palette, in Streams and Windows, select Join.

If necessary, close the compartments below Streams and Windows, or use the arrow
below the compartment, so that Join is visible.

2. Click in the diagram to create the object.
For this example, edit the join object name to be IndividualPositions.

3. Using the Connector tool, connect the join object to the appropriate stream or window.

Attach join objects to any stream, window, or Flex operator. Join objects have multiple
inputs, but only one output.

Note: Streams, windows and delta streams can participate in a join. However, a delta
stream may participate in a join only if it has a KEEP clause specified. Only one stream can
participate in a join.

For this example, connect the VWAP aggregate object and the Positions input window to
the IndividualPositions join object, in that order.

CHAPTER 3: Building a Simple Project

28 Sybase Event Stream Processor

Tip: To add multiple connections, Shift+click and hold the Connector tool and add
connections. To return to normal selection, press Esc or click the Select tool in the Palette
to release it.

4. Click Copy Columns () in the join shape toolbar and select columns to copy.

Tip: If you get an error, or do not see all columns from both inputs listed, try reconnecting
the new Join element to the Positions or VWAP shapes as needed.

For this example, choose Select All, then clear the check box on VWAP.Symbol so that
you don't get the symbol field twice.

5. Click Add Column Expressions ().
For this example add two columns: CurrentPosition and AveragePosition.

6. To modify column expressions, either:

• Double-click on the expression to open the inline editor, and either type directly or
press Ctrl+Space for syntax completion assistance, to pick from column names and
functions, or,

• Press Ctrl+F2 to open the expression editor. Press Ctrl+Space to display the available
input columns and built-in functions, or enter the desired expression manually, or,

• Modify the expression in the Properties view.

For this example, create these Column Expressions:
• CurrentPosition (VWAP.LastPrice * Positions.SharesHeld)

• AveragePosition (VWAP.VWAP * Positions.SharesHeld)

7. In the Join Conditions compartment of the join shape, set up the join conditions.
If you connected the join to the VWAP and Positions inputs, in that order, there are now
two elements in the Join Conditions compartment. The first defines the leftmost element
for the join. If you connected to VWAP first, the first element (left side of the join) is
VWAP. For this example, you must configure the second join element.

a) Double-click the second join element to open the Edit Join Expression dialog.
b) Choose a join type.

For this example, use RIGHT, which is a right outer join. You want RIGHT because
VWAP is the first, or left input, and Positions is the second, or right input. You only
want your positions in the output; you do not need prices for symbols that are not held
in the portfolio.

c) Select the columns to join on.

You cannot edit join constraints manually in the Visual editor.

For this example:.
• As Source 1, ensure that VWAP is in the dropdown, and select Symbol:string as

the column.
• As Source 2, ensure that Positions is in the dropdown, and select Symbol:string as

the column.

CHAPTER 3: Building a Simple Project

Getting Started Guide 29

d) Click Add.
The columns chosen appear in Join Constraints, where you should now see:

ON VWAP.Symbol=Positions.Symbol

The dialog shows:

e) Click OK.

8. In the join shape, click (Toggle Type to OUTPUT).

The IndividualPositions join shape now shows the completed join, as shown in the figure.

CHAPTER 3: Building a Simple Project

30 Sybase Event Stream Processor

See also
• Simple Queries on page 20

Completing the Sample Project
Add a new aggregate, and clean up the diagram by removing unused elements.

1. Create an additional Aggregate Simple Query and name it ValueByBook.

a) Connect it to the IndividualPositions join object.
b) Click Copy Columns () in the shape toolbar and copy columns BookId,

CurrentPosition, and AveragePosition.
c) Set column expressions:

• BookId IndividualPositions.BookId

• CurrentPosition sum
(IndividualPositions.CurrentPosition)

• AveragePosition sum
(IndividualPositions.AveragePosition)

CHAPTER 3: Building a Simple Project

Getting Started Guide 31

Tip: Use the inline editor. Double-click on the column expression, and use the Home
and End keys to quickly edit the expression.

d) Add the Group By clause ({ }) IndividualPositions.BookId.

e) Toggle to OUTPUT.

2. Delete any used elements from the project so that you can run it.
For example, if you have not done so, remove the unused input stream element
NEWSTREAM that was added automatically when you created the project.

3. (Optional) Toggle to Iconic mode or Verbose mode..

• Click the Toggle Image button in the upper left corner of a shape, or,
• Click the All Iconic or All Verbose button in the toolbar.

4. (Optional) Click Layout left to right to line up shapes.

5. (Optional) To close the diagram, press Ctrl+W or Ctrl+F4, or click the X on the tab at the
top of the editor .

The completed diagram should look like this in Verbose mode. You might need to open some
compartments and click again to see details for all elements.

Figure 5: Completed Sample Portfolio Valuation Diagram

Next
Follow the procedures in the next chapter, Testing Your Project, to compile and test the sample
project in ESP Studio, using test data provided in your installation.

See also
• Simple Queries on page 20

CHAPTER 3: Building a Simple Project

32 Sybase Event Stream Processor

CHAPTER 4 Testing Your Project

Compile, run, and test the simple project you created previously, using tools in Run-Test
perspective.

1. Compiling the Sample Project

Compile a project before running it to check for errors and make corrections.

2. Viewing Problems

Use the Problems view to view error details when trying to validate, upload, and compile
projects.

3. Deploying the Sample Project

Run the project and watch it open in Run-Test perspective.

4. Customizing Run-Test Perspective

Reorganize and resize the perspective to make it easier to use.

5. Loading Data into the Sample Project

Test the sample project by loading reference data into the Positions window.

6. Testing the Project with Recorded Data

Play back the previously recorded price feed data, and view the continuous portfolio
valuations in the sample project.

7. Other Tools for Running and Testing Projects

ESP Studio includes many other tools for testing projects, including those in the Run-Test
perspective.

See also
• Project Execution and Testing on page 16

Compiling the Sample Project
Compile a project before running it to check for errors and make corrections.

1. If the sample project is not already open in the Visual editor, open it now.

a) Go to Authoring perspective.
b) In File Explorer, expand the my_portfolio_valuation folder.
c) Right-click my_portfolio_valuation.cclnotation and choose Open With > Studio

Visual Editor.

2. To compile the project, either:

Getting Started Guide 33

• Click the Compile Project button in the main toolbar, or,
• Press F7.

The project compiles and reports any errors found. Compilation errors are displayed in the
Problems or Console view, depending on the type of error.

Next
Review and resolve any problems. If it compiles with no errors, you can skip Viewing
Problems.

Viewing Problems
Use the Problems view to view error details when trying to validate, upload, and compile
projects.

Prerequisites
Open the Authoring Perspective.

Task

1. Click on a problem in Problems view, or expand the group to see individual errors.

By default, Problems view is at the bottom of the screen, and problems are grouped by
severity.

Error details appear in Problems view and in the status bar at the bottom left side of the
screen.

Tip: If you double-click on a problem in the problems view while the project is open in the
Visual editor, the CCL editor opens read-only to show you where the problem is. To fix the
problem, either:
• Return to the Visual editor and fix it there, or,
• Close both the Visual editor and CCL editor for the project, and then reopen the project

in the CCL editor.

2. If the error message is too long to show the entire message, click it to read the full text in the
status bar at the bottom of the Studio window.

3. Right-click an item to choose from the context menu:

Option Action

Go to Highlight the problem in the .ccl file. The CCL editor opens in read-only
mode.

CHAPTER 4: Testing Your Project

34 Sybase Event Stream Processor

Option Action

Copy Copy error details to the clipboard. When you exit Studio, the contents of
problems view are removed. Use this option to save off errors.

Show in Display details in Properties view.

Quick Fix (Disabled)

Properties Display details in a dialog box.

4. (Optional) Click the View menu dropdown to see more options.

5. Click the Console tab to view compiler results.

Deploying the Sample Project
Run the project and watch it open in Run-Test perspective.

Prerequisites
Make sure the project compiles without errors. You must correct any problems before you can
run the project.

Task

1. With the diagram open in the editor, click Run Project in the main toolbar.

2. If the Add Local Password dialog appears, enter the password for the studio user.

You define a password for the studio user once per ESP Studio session. The first time you
are asked for a password, Studio accepts any value. The next time you are prompted within
the same session, you need to specify the same password. In your next Studio session, you
can select a new password or keep the same one.

3. Review the running project in Run-Test perspective.

See also
• Customizing Run-Test Perspective on page 37

Run-Test Perspective
In the Run-Test perspective, you access tools to test, monitor, debug, and fine-tune a project.

In Run-Test perspective you can test your projects using these view and tools. Numbers refer
to annotations in the figure. (Locations are in default perspective setup; yours may differ.)

• Server View (1) – (Upper left) Start and connect to available servers. Your first project
is there, already running.

CHAPTER 4: Testing Your Project

Getting Started Guide 35

• Activate Project view (2) – (Below Server View) Quickly connect multiple views to a
given project.

• Manual Input view (3) – (Below Activate Project, leftmost tab) Manually create and
publish events as input to a stream or window.

• Playback view (4) – Record data flowing into a running project, or play back recorded
files.

• File Upload view (5) – (Below Activate Project, third tab) Publish an existing data file to
an input stream or window.

• SQL Query view (6) – (Below Activate Project, rightmost tab) Run a snapshot SQL query.
It captures a snapshot of the current window state and displays results in the Console.

• Console view (7) – (Lower right) Review log messages and other tracing and debugging
information useful to developers.

• Stream view (8) – (Upper right, leftmost tab) Show the events of an output stream or the
retained events in an output window of a running project.

• Monitor view (9) – (Tabbed to the right of Stream view) Monitor performance of a
running project.

• Debugger view (10) – (Tabbed to the right of Stream view) Debug a project by setting
breakpoints and watchpoints.

• Event Tracer view (11) – (Tabbed to the right of Stream view by default) Trace the flow of
data through a project.

Other Run-Test tools include:

• Run Project button, same as in Authoring perspective.

The figure shows the sample project running in Run-Test perspective.

Figure 6: Run-Test Perspective

CHAPTER 4: Testing Your Project

36 Sybase Event Stream Processor

See also
• Customizing Run-Test Perspective on page 37

Customizing Run-Test Perspective
Reorganize and resize the perspective to make it easier to use.

1. Drag the Activate Project view from the middle of the left side of the screen to share space
with the Server view in the top of the left side.
The two views are now adjacent tabs.

2. Click the Server View to bring it to the foreground.

3. Drag the vertical slider (the one separating the left-side views from the right-side views) to
the right, until you can see the names of all views in the lower left portion of the screen.

4. (Optional) In the main menu bar, choose Window > Save Perspective As... and enter a
name, to save this as a custom perspective.
You can use this custom perspective at any time, for any project.

5. (Optional) To revert to the default perspective, choose Window > Reset Perspective....

Next
Use the highlighted views in the remaining tutorial tasks.

See also
• Deploying the Sample Project on page 35

• Run-Test Perspective on page 35

Loading Data into the Sample Project
Test the sample project by loading reference data into the Positions window.

If your project has the File XML Input adapter attached to the Positions input window, data is
loaded automatically when you start the project. If you removed or omitted the adapter, use
this alternative process to load the sample data.

1. In Server View, expand the my_portfolio_valuation project to show the list of windows
and streams in the project.

2. Double-click the Positions input window to open it in Stream View.
Stream View is in the upper right-hand portion of Run-Test perspective.
• If your diagram has the File XML Input adapter connected to the Positions input

window, Stream View shows sample data for Positions, loaded automatically from the
adapter.

• If you removed the adapter, go to the next step to load the data manually.

CHAPTER 4: Testing Your Project

Getting Started Guide 37

3. Load positions data from a file into the Positions window.

a) Go to File Upload view.
b) When you have only one project, Studio selects it for you. Otherwise, click the Select

Project button in the view toolbar, select the my_portfolio_valuation project in the
dialog, and click OK.

c) Click the Browse button, navigate to your ...\SybaseESP\5.1\workspace
\exampledata folder, and select positions.xml.

If you do not see the positions.xml file, try changing the file name extension filter
in the lower right corner of the dialog to *.xml.

d) Click Open.
e) With positions.xml highlighted in File Upload view, click the Upload button.

Watch the data flow in Stream View, as Studio loads the three positions for Book1 and
Book2.

Testing the Project with Recorded Data
Play back the previously recorded price feed data, and view the continuous portfolio
valuations in the sample project.

1. In Server View, double-click the IndividualPositions, VWAP, and ValueByBook output
windows.

In the Server View list, a red arrow in the lower right corner of the window icon ()
indicates the output windows.

2. Click the Playback tab.

3. If necessary, click the Select Project button in the upper right corner of Playback view.

• If you only have one project running, Studio selects it for you.
• Otherwise, select the my_portfolio_valuation project in the dialog and click OK.

4. Click the Select Playback File button.

5. Navigate to your install_path\SybaseESP\5.1\workspace
\exampledata folder, and select pricefeed.xml. Click Open.

If you do not see the pricefeed.xml file, change the file name extension filter to
*.xml.

6. In Playback view, in the Playback Mode frame, click the rec/ms button, then enter a rec/
ms value of 1.

A value of 1 plays back at a rate of 1000 records per second.

7. Click the green Start Playback button to start playback of the price feed.

8. While the data plays back, click each of the output windows in Stream View to see the
calculations revised in real-time.

CHAPTER 4: Testing Your Project

38 Sybase Event Stream Processor

9. (Optional) Click Event Tracer view, choose Select Running Project, and click Initialize
with Base Data.
In this example, Event Tracer shows the PriceFeed and Positions elements in green to
indicate Insert operations. VWAP, IndividualPositions, and ValueByBook are in blue,
indicating Updates. Colors change as different event types are processed.

Double-click each node to watch event data in the Console.

10. To stop the playback, click Stop .

11. When you are done testing the project, right-click it in Server View and choose Stop
Project.

If you omit this step, the project stops when you exit Studio, but you may get an error.

Tip: If you see an error when you restart Studio, or when you try to open a .ccl file after
running a project, there may be multiple instances of Studio trying to use the same Studio
workspace location. If this occurs, close Studio and restart it.

CHAPTER 4: Testing Your Project

Getting Started Guide 39

Other Tools for Running and Testing Projects
ESP Studio includes many other tools for testing projects, including those in the Run-Test
perspective.

For information beyond the scope of this guide on running, configuring, monitoring,
querying, and debugging projects, see the Studio Users Guide.

See also
• Run-Test Perspective on page 35

• Customizing Run-Test Perspective on page 37

CHAPTER 4: Testing Your Project

40 Sybase Event Stream Processor

CHAPTER 5 Continuous Computation
Language

CCL is the primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CCL supports sophisticated data selection and calculation capabilities, including features
such as: data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous
execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time an event arrives from one of its datasources.

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
an SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. ESP servers are
optimized for incremental processing, hence the query optimization is different than for
databases. Compilation is typically performed within Event Stream Processor Studio, but it
can also be performed by invoking the CCL compiler from the command line.

SPLASH
Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has

Getting Started Guide 41

similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

See also
• CCL Authoring on page 42

• Editing in the CCL Editor on page 42

• CCL for the Sample Project on page 44

• CCL for Sample Project with Modules on page 46

CCL Authoring
The CCL editor is a text authoring environment within ESP Studio for editing CCL code.

You can work in the CCL editor exclusively, or use it as a supplement to the Visual editor. The
CCL editor offers syntax completion options, syntax checking, and error validation.

A single CCL file can be open in only one editor at a time. The Visual and CCL editors are
completely integrated: when you save and switch to the other editor, your work is saved there
as well.

Most users new to Event Stream Processor find it easier to get started in the Visual editor. As
you gain experience with the product, and learn to successfully compile and run a simple
project, you may want to use the CCL editor to add advanced features to your projects.

The Studio Users Guide explains use of the CCL editor within ESP Studio.

For CCL language usage and reference details, see the CCL Programmers Guide.

See also
• SPLASH on page 41

• Editing in the CCL Editor on page 42

• CCL for the Sample Project on page 44

• CCL for Sample Project with Modules on page 46

Editing in the CCL Editor
Update and edit CCL code as text in the Studio CCL editor.

1. Click the Authoring tab.

2. In File Explorer, expand the project container, and double-click the .ccl file name to
open it in the CCL editor.

CHAPTER 5: Continuous Computation Language

42 Sybase Event Stream Processor

Note: Advanced CCL users can include multiple CCL files in the same project, by using an
IMPORT statement to import shared schemas and module definitions from another file.

3. Begin editing text in the CCL editor window.

Tip: If you open a .ccl file in the CCL editor when the same project is open in the Visual
editor, the CCL editor opens in read-only mode and you cannot edit the file.

Close both the Visual editor and CCL editor for the project, and then reopen the project in
the CCL editor.

Note: Backslashes within string literals are used as escape characters. Any Windows
directory paths must therefore be specified with two backslashes.

4. (Optional) Press Ctrl+Space to show a syntax completion proposal.

5. (Optional) To insert CREATE statement template code, right-click, choose Create, and
then choose the element to create.

6. Choose File > Save (Ctrl+S) to save the .ccl file and the project.

See also
• SPLASH on page 41

• CCL Authoring on page 42

• CCL for the Sample Project on page 44

• CCL for Sample Project with Modules on page 46

CHAPTER 5: Continuous Computation Language

Getting Started Guide 43

CCL for the Sample Project
The CCL for the Portfolio Valuation sample project created in the Studio Visual editor is
shown here, with the corresponding shape in the diagram for each element. Line breaks are
added for readability.

Table 3. Portfolio Valuation Project CCL and Diagram Elements

CCL Diagram

CREATE INPUT WINDOW PriceFeed
SCHEMA
 (Id integer ,
 Symbol string ,
 TradeTime date ,
 Price float ,
 Shares integer)
PRIMARY KEY (Id)
KEEP 10 MIN ;

/**@SIMPLEQUERY=AGGREGATE*/
CREATE OUTPUT WINDOW VWAP
PRIMARY KEY DEDUCED
 AS
 SELECT
 PriceFeed.Symbol Symbol ,
 PriceFeed.TradeTime LastTime ,
 PriceFeed.Price LastPrice ,
 sum (PriceFeed.Price * PriceFeed.Shares) /
 sum (PriceFeed.Shares) VWAP
 FROM PriceFeed
 GROUP BY PriceFeed.Symbol ;

CHAPTER 5: Continuous Computation Language

44 Sybase Event Stream Processor

CCL Diagram

CREATE INPUT WINDOW Positions
 SCHEMA
 (BookId string ,
 Symbol string ,
 SharesHeld integer)
 PRIMARY KEY (BookId, Symbol) ;

/**@SIMPLEQUERY=JOIN*/
CREATE OUTPUT WINDOW IndividualPositions
PRIMARY KEY DEDUCED
 AS
 SELECT
 VWAP.LastTime LastTime ,
 VWAP.LastPrice LastPrice ,
 VWAP.VWAP VWAP ,
 Positions.BookId BookId ,
 Positions.Symbol Symbol ,
 Positions.SharesHeld SharesHeld ,
 VWAP.LastPrice *
 Positions.SharesHeld CurrentPosition ,
 VWAP.VWAP *
 Positions.SharesHeld AveragePosition
 FROM VWAP RIGHT JOIN Positions ON
VWAP.Symbol = Positions.Symbol ;

/**@SIMPLEQUERY=AGGREGATE*/
CREATE OUTPUT WINDOW ValueByBook
PRIMARY KEY DEDUCED
 AS
 SELECT
 IndividualPositions.BookId BookId ,
 sum (IndividualPositions.CurrentPosition)
 CurrentPosition ,
 sum (IndividualPositions.AveragePosition)
 AveragePosition
 FROM IndividualPositions
 GROUP BY IndividualPositions.BookId ;

CHAPTER 5: Continuous Computation Language

Getting Started Guide 45

CCL Diagram

ATTACH INPUT ADAPTER Adapter1
TYPE xml_in
TO
Positions
PROPERTIES dir =
'C:/Documents and Settings/username/My Documents/
 SybaseESP/5.1/workspace/exampledata' ,
file = 'positions.xml' ;

See also
• SPLASH on page 41

• CCL Authoring on page 42

• Editing in the CCL Editor on page 42

• CCL for Sample Project with Modules on page 46

CCL for Sample Project with Modules
This variation of the portfolio valuation project uses a defined module with a named schema to
easily scale out the application in a very high volume deployment.

The module, valuation.ccl, computes the VWAP aggregate, and does the join to the
Positions window. The project uses the module to divide the moving data into smaller
partitions, based on the first letter of the Symbol column. This strategy spreads the load out to
more cores, thereby increasing throughput. By using modules, with very little coding you can
easily double, quadruple, and so on, the number of partitions.

This example also implements the streaming tick data in PriceFeed as a stream rather than as
an input window. Because keeping every tick would use a lot of memory, and because the state
is never updated or queried, a stream is a more likely choice than a window in a real-world
scenario for this event stream.

Create Module valuation

The valuation module:

1. Defines the input stream TradesIn.
2. Defines a stream, Filter1, that filters TradesIn data into a substream based on the declared

parameters afrom and ato.

3. Defnes the input window Portfolio.
4. Defines the VWAP aggregate as an output window.
5. Defines another output window, ValueBySymbol, that performs a join similar to the Join

simple query in the simple PortfolioValuation project, with the addition of a cast for the
float data.

CHAPTER 5: Continuous Computation Language

46 Sybase Event Stream Processor

CREATE MODULE valuation
IN TradesIn,Portfolio
OUT ValueBySymbol, VWAP

BEGIN
 IMPORT 'import.ccl';

 DECLARE
 PARAMETER STRING afrom;
 PARAMETER STRING ato;
 END;

 CREATE INPUT STREAM TradesIn
 SCHEMA TradesSchema ;
 CREATE STREAM Filter1 AS
 SELECT * FROM TradesIn
 WHERE substr(TradesIn.Symbol,1,1) >= afrom
 and substr(TradesIn.Symbol,1,1) <= ato
 ;

 CREATE INPUT WINDOW Portfolio
 SCHEMA PortfolioSchema
 PRIMARY KEY (BookId, Symbol);
 CREATE OUTPUT WINDOW VWAP
 PRIMARY KEY DEDUCED AS
 SELECT Filter1.Symbol Symbol ,
 (sum((Filter1.Price * cast(FLOAT ,Filter1.Shares))) /
 cast(FLOAT ,sum(Filter1.Shares)))
 AS VWAP,
 sum (Filter1.Shares) Total_Shares ,
 valueinserted(Filter1.Price) LastPrice,
 valueinserted(Filter1.TradeTime) TradeTime
 FROM Filter1
 GROUP BY Filter1.Symbol ;

 CREATE OUTPUT WINDOW ValueBySymbol
 SCHEMA (BookId STRING, Symbol STRING, CurrentPosition FLOAT,
AveragePosition FLOAT)
 PRIMARY KEY (BookId, Symbol) AS
 SELECT
 Portfolio.BookId AS BookId,
 Portfolio.Symbol AS Symbol,
 (VWAP.LastPrice * cast(FLOAT ,Portfolio.SharesHeld))
 AS CurrentPosition,
 (VWAP.VWAP * cast(FLOAT ,Portfolio.SharesHeld))
 AS AveragePosition
 FROM Portfolio JOIN
 VWAP
 ON Portfolio.Symbol = VWAP.Symbol;

END;

Create Named Schema TradesSchema
CREATE SCHEMA TradesSchema
 (Id integer ,
 Symbol string ,

CHAPTER 5: Continuous Computation Language

Getting Started Guide 47

 TradeTime date ,
 Price float ,
 Shares integer) ;

Create Named Schema PortfolioSchema
CREATE SCHEMA PortfolioSchema
 (BookId string ,
 Symbol string ,
 SharesHeld integer) ;

Import and Load the valuation Module

In the parent scope, the valuation module is loaded three times, as Valuation1, Valuation2, and
Valuation3.

1. The IN clause binds the input streams in the module to streams in the parent scope.
TradesIn is bound to InputStream1, and Portfolio is bound to InputPositions.

2. The OUT clause binds the output window in the module, ValueBySymbol, with the three
parameterized output windows, VbySym1, VbySym2, and VbySym3, and partitions the
VWAP aggregate as VWAP1, VWAP2, and VWAP3.

• InputStream1 – Input stream based on the imported schema, TradesSchema.
• InputPositions – Input window based on the imported schema, PortfolioSchema.
• UnionVWAP – Output window created as a UNION of the partitioned VWAP aggregate.

IMPORT 'import.ccl';
IMPORT 'valuation.ccl';
DECLARE
 PARAMETER STRING afrom :='A';
 PARAMETER STRING ato := 'Z';
END;

CREATE INPUT STREAM InputStream1 SCHEMA TradesSchema ;

CREATE INPUT WINDOW InputPositions
 SCHEMA PortfolioSchema PRIMARY KEY (BookId , Symbol) ;
 LOAD MODULE valuation as Valuation1
 in TradesIn = InputStream1, Portfolio = InputPositions
 OUT ValueBySymbol = VbySym1, VWAP = VWAP1
 PARAMETERS afrom = 'A', ato = 'J'
 ;
 LOAD MODULE valuation as Valuation2
 in TradesIn = InputStream1, Portfolio = InputPositions
 OUT ValueBySymbol = VbySym2, VWAP = VWAP2
 PARAMETERS afrom = 'K', ato = 'Q'
 ;
 LOAD MODULE valuation as Valuation3
 in TradesIn = InputStream1, Portfolio = InputPositions
 OUT ValueBySymbol = VbySym3, VWAP = VWAP3
 PARAMETERS afrom = 'R', ato = 'Z'
 ;

CREATE OUTPUT WINDOW UnionVWAP

CHAPTER 5: Continuous Computation Language

48 Sybase Event Stream Processor

 PRIMARY KEY DEDUCED
 AS SELECT * FROM VWAP1
 UNION SELECT * FROM VWAP3
 UNION SELECT * FROM VWAP2 ;

CREATE OUTPUT WINDOW ValueBySymbol
 PRIMARY KEY (BookId,Symbol)
 AS SELECT * FROM VbySym1
 UNION SELECT * FROM VbySym3
 UNION SELECT * FROM VbySym2 ;

// ----------------------------
// stream ValueByBook

CREATE OUTPUT WINDOW ValueByBook
 SCHEMA (BookId STRING, CurrentPosition FLOAT, AveragePosition
FLOAT)
 PRIMARY KEY DEDUCED AS
 SELECT ValueBySymbol.BookId AS BookId,
 sum(ValueBySymbol.CurrentPosition) AS CurrentPosition,
 sum(ValueBySymbol.AveragePosition) AS AveragePosition
 FROM ValueBySymbol
 GROUP BY ValueBySymbol.BookId;

ATTACH INPUT ADAPTER Adapter1 TYPE xml_in TO InputStream1
GROUP nostartGroup
PROPERTIES dir = '../exampledata' ,
file = 'pricefeed.xml' ,
matchStreamName = FALSE ,
repeatCount = 0 ,
repeatField = '-' ,
filePattern = '*.xml' ,
pollperiod = 0 ,
safeOps = FALSE ,
skipDels = FALSE ,
dateFormat = '%Y-%m-%dT%H:%M:%S' ,
timestampFormat = '%Y-%m-%dT%H:%M:%S' ,
blockSize = 1 ;

ATTACH INPUT ADAPTER Adapter2 TYPE xml_in TO InputPositions
PROPERTIES dir = '../exampledata' ,
file = 'positions.xml' ,
matchStreamName = FALSE ,
repeatCount = 0 ,
repeatField = '-' ,
filePattern = '*.xml' ,
pollperiod = 0 ,
safeOps = FALSE ,
skipDels = FALSE ,
dateFormat = '%Y-%m-%dT%H:%M:%S' ,
timestampFormat = '%Y-%m-%dT%H:%M:%S' ,
blockSize = 1 ;

ADAPTER START GROUPS nostartGroup nostart ;

CHAPTER 5: Continuous Computation Language

Getting Started Guide 49

See also
• SPLASH on page 41

• CCL Authoring on page 42

• Editing in the CCL Editor on page 42

• CCL for the Sample Project on page 44

CHAPTER 5: Continuous Computation Language

50 Sybase Event Stream Processor

Index
A

adapters
attaching in Visual editor 23
creating an input stream 24
creating an input window 24
discovering a schema 24
importing a schema 24
schema discovery 19

administrators
role description 7

aggregate
creating 27, 31
example 27
simple query 20
ValueByBook 31

architecture
sample deployment 1

attaching
adapters 23

Authoring perspective
views 11

C

CCL
editing 42
overview 41
sample code 44

CCL editor
overview 42

compiling
sample project 33

compute
simple query 20

connecting
adapters 23

D

data-flow programming
example 3
introduction 3

deleting
elements 22

developers
adapter 7
application 7

diagrams
deleting elements 12
example 18
iconic mode 12
overview 12
verbose mode 12

discovering
schemas 24

E

editing
diagrams 22
Visual editor 22

editing CCL
CCL editor 42
text editor 42

elements
connecting 22
deleting 22

error
on exiting Studio 39
on opening .ccl file 39
on restarting Studio 39

errors
in Problems view 34

event data
showing in Event Tracer 38

event streams
overview 2

Event Tracer
showing event data 38

events
definition 2
delete 5
examples 2
insert 5
update 5

examples
overview 13

Index

Getting Started Guide 51

F
filter

simple query 20

I
importing

schemas 24
input adapters

See also adapters
input windows

adding manually 25

J
join

simple query 20
joins

creating 28
example 28

L
local cluster

connecting to 16

M
modules

example 46

O
on-demand queries

command-line tool 5
in ESP Studio 5

opcodes
defined 5
delete 5
insert 5
safedelete 5
update 5
upsert 5

output adapters
See also adapters

overview 41

P
password

studio user 35

pattern
simple query 20

performance
partitioning data streams 46
using modules 46

Playback view
playing back recorded data 38

Problems view
options 34

project
deploying 35
running 35

projects
building simple projects 17
creating 21
diagrams 12
files 21
introduction 3
naming conventions 21
on-demand queries 5
output 5
running 16
simple example 21
testing 16
testing with recorded data 38

Q

queries
continuous 20
simple 20

See also on-demand queries

R

Run-Test perspective
overview 35

running projects
overview 16

S

safedelete
defined 5

sample CCL code
Portfolio Valuation sample project 44

sample diagram 18
completing 31
ValueByBook aggregate 31

Index

52 Sybase Event Stream Processor

sample project
CCL 44
compiling 33
named schema example 46
parameters example 46
playing back recorded data 38
running 35
tracing event data 38
using modules 46

sample projects
loading 15
running 15

samples
See examples

schema
adapters 19
creating an input stream 24
creating an input window 24
discovering a schema 24
discovery 19
importing a schema 24

schema discovery
adapters 24
creating an input stream 24
creating an input window 24
importing a schema 24
overview 19

SDKs
overview 7

simple queries
aggregate 27
descriptions 20
join 28

SPLASH
overview 41

starting
Studio 9

streams
schema discovery 19

Studio
Authoring perspective 9
getting started 9
Learning perspective 9
Run-Test perspective 9
starting on Linux 9
starting on UNIX 9
starting on Windows 9

studio user
password 35

T

testing
projects 16

troubleshooting
thread access error 39

U

union
simple query 20

upsert
defined 5

V

views
Authoring perspective 11
Console 11
File Explorer 11
Outline 11
Overview 11
Palette 11
Problems 11
Properties 11
Run-Test perspective 35
Search 11

visual authoring
diagrams 12
views 11

Visual editor
accessing 22
aggregate simple query 27
editing diagrams 22
full screen 22
join simple query 28
simple queries 20
switching to text 22
views 11

VWAP
example formula 18
simple query example 27

W

windows
adding manually 25
schema discovery 19

Index

Getting Started Guide 53

Index

54 Sybase Event Stream Processor

	Getting Started Guide
	Contents
	CHAPTER 1: Getting Started with Sybase Event Stream Processor
	Key Terms and Concepts
	Events
	ESP Projects: Streams, Windows, Adapters, and Continuous Queries
	Streams and Windows
	Data-Flow Programming
	Getting Results from an ESP Project
	Operation Codes

	What You Can Do with Sybase Event Stream Processor
	Beyond the Basics

	CHAPTER 2: Getting Started in ESP Studio
	Starting ESP Studio
	Exploring the ESP Studio Workspace
	Studio Authoring Views and Editors
	Diagrams
	Sample Projects in the Learning Perspective
	Running a Sample Project
	Project Execution and Testing

	CHAPTER 3: Building a Simple Project
	Reviewing Concepts
	The Sample Project
	Schema Discovery Using Input Adapters
	Simple Queries

	Creating the Sample Project
	Editing a Project Diagram
	Adding an Input Adapter
	Discovering a Schema
	Adding an Input Window Manually
	Creating an Aggregate as a Simple Query
	Creating a Join as a Simple Query
	Completing the Sample Project

	CHAPTER 4: Testing Your Project
	Compiling the Sample Project
	Viewing Problems
	Deploying the Sample Project
	Run-Test Perspective

	Customizing Run-Test Perspective
	Loading Data into the Sample Project
	Testing the Project with Recorded Data
	Other Tools for Running and Testing Projects

	CHAPTER 5: Continuous Computation Language
	SPLASH
	CCL Authoring
	Editing in the CCL Editor
	CCL for the Sample Project
	CCL for Sample Project with Modules

	Index

