
Getting Started Guide

Sybase Event Stream Processor
5.0

DOCUMENT ID: DC01622-01-0500-03
LAST REVISED: May 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Introduction to Sybase Event Stream
Processor ...1

Event Streams ..2
Event Stream Processor Compared to Databases2
Data-Flow Programming ...3
ESP Projects: Adapters, Streams, Windows, and

Continuous Queries ..3
Streams Versus Windows ...4
Schemas ...5
Inserts, Updates, and Deletes ..5
Product Components ..6
Input and Output Adapters ...7

Custom Adapters ..8
Authoring Methods ..8
Continuous Computation Language9
SPLASH ..9

CHAPTER 2: Exploring a Project in ESP Studio11
Studio Workspace Basics ...11
Examples ..12
Loading a Sample Project ...13

CHAPTER 3: Visual Editor Authoring15
Diagrams ..15
Visual Authoring Environment ...16
Editing a Project in the Visual Editor17
Adding Shapes to a Diagram ..18
Connecting Elements ..18

Getting Started Guide iii

Changing the Display of Diagrams19
Building a Simple Project ...19

Sample Project Diagram ...19
Creating the Sample Project ...20
Adding an Input Adapter ..21

Schema Discovery ...22
Discovering a Schema ...23

Adding an Input Window Manually24
Adding Simple Continuous Queries25

Simple Queries ..26
Creating an Aggregate as a Simple Query27
Creating a Join as a Simple Query28

Completing the Sample Project29
Deleting an Element ..30

CHAPTER 4: CCL Authoring ..31
Editing in the CCL Editor ..31
CCL for the Sample Project ..32

CHAPTER 5: Project Execution and Testing33
Run-Test Perspective ..33
Server View ..34
Connecting to a Local Cluster ..34
Viewing the Data in a Stream or Window35
Other Tools for Running and Testing Projects35

Index ...37

Contents

iv Sybase Event Stream Processor

CHAPTER 1 Introduction to Sybase Event
Stream Processor

Sybase® Event Stream Processor enables you to create and run your own complex event
processing (CEP) applications to derive continuous intelligence from streaming event data in
real time.

Event Stream Processing and CEP
Event stream processing is a form of CEP, a technique for analyzing information about events,
in real time, for situational awareness. When vast numbers of event messages are flooding in,
it is difficult to see the big picture. With event stream processing, you can analyze events as
they stream in and identify emerging threats and opportunities as they happen. Event Stream
Processor Server filters, aggregates, and summarizes data to enable better decision making
based on more complete and timely information.

Event Stream Processor is not an end-user application, but an enabling technology that
provides tools that make it easy to develop and deploy both simple and complex projects. It
provides a highly scalable runtime environment in which to deploy those projects.

Event Stream Processor as a Development Platform
As a platform for developing CEP projects, Event Stream Processor provides high-level tools
for defining how events are processed and analyzed. Developers can work in either a visual or
text-oriented authoring environment. You can define logic that is applied to incoming events
to:

• Combine data from multiple sources, producing derived event streams that include richer
and more complete information.

• Compute value-added information to enable rapid decision making.
• Watch for specific conditions or patterns to enable instantaneous response.
• Produce high-level information, such as summary data, statistics, and trends to see the big

picture, or the net effect, of many individual events.
• Continuously recompute key operating values based on complex analysis of incoming

data.
• Collect raw and result data into a historical database for historical analysis and

compliance.

Event Stream Processor Runtime Environment
As an engine for an event-driven architecture (EDA), Event Stream Processor can absorb,
aggregate, correlate, and analyze events to produce new high-level events that can trigger
responses, and high-level information that shows the current state of the business. Event
Stream Processor:

Getting Started Guide 1

• Processes data continuously as it arrives
• Processes data before it is stored on disk, thus achieving extremely high throughput and

low latency, enabling better decision making based on more complete and timely
information

• Separates business logic from data management, making it easier to maintain the business
logic and reducing total cost of ownership

• Provides enterprise class scalability, reliability, and security

Event Streams
An business event is a message that contains information about an actual business event that
occurred. Many business systems produce events when things happen.

Examples of business events that are often transmitted as streams of event messages include:

• Financial market data feeds that transmit trade and quote events
• Radio Frequency Identification System (RFID) sensors that transmit events indicating that

an RFID tag was sensed nearby
• Click streams, which transmit a message (a click event) each time a user clicks a link,

button, or control on a Web site
• Transaction events, which occur each time a record is added to a database or updated in a

database

Many applications are already designed to produce events in real time, typically publishing
them on a message bus. Applications that are not designed in this way can be “event enabled”
using tools such as Sybase® Replication Server®, which can monitor transaction logs to
produce a real-time stream of events based on application database updates .

Event Stream Processor Compared to Databases
Sybase Event Stream Processor complements traditional databases to help solve new classes
of problems where continuous, event-driven data analysis is required.

Event Stream Processor is not a replacement for databases. Databases excel at storing and
querying static data, and reliably processing transactions. However, databases are not
effective at continuously analyzing fast moving streams of data.

• Traditional databases must store all data on disk before beginning to process it.
• Databases do not use preregistered continuous queries. Database queries are "one-time-

only" queries. To ask a question ten times a second, you must issue the query ten times a
second. This model breaks down when there are many queries that must be continuously
evaluated.

• Databases do not use incremental processing. Event Stream Processor can evaluate
queries incrementally as data arrives.

CHAPTER 1: Introduction to Sybase Event Stream Processor

2 Sybase Event Stream Processor

Event Stream Processor is not an in-memory database. It shares some traits with in-memory
databases in that it operates in and holds all data in memory, to achieve desired speed.
However, unlike an in-memory database, that is designed to efficiently process on-demand
queries, Event Stream Processor uses a data-flow architecture that is optimized for continuous
event-driven queries.

Data-Flow Programming
In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation runs on a separate thread and processes an event only
when it is received from another operation. No other coordination is needed between
operations.

Figure 1: Data-Flow Programming

ESP Projects: Adapters, Streams, Windows, and
Continuous Queries

An ESP project defines a set of event streams, any other required datasources, and the business
logic applied to incoming event data to produce results.

At its most basic level, a project consists of:

CHAPTER 1: Introduction to Sybase Event Stream Processor

Getting Started Guide 3

• Input streams and windows – where the input data flows into the project. An input stream
can receive incoming event data on an event-driven basis, and can also receive static or
semistatic sets of data that are loaded once or periodically refreshed.

• Adapters – connect an input stream or window to a datasource. Sybase Event Stream
Processor includes a large set of built-in adapters as well as an SDK that you can use to
build custom adapters. Adapters can also connect an output stream or window to a
destination.

• Derived streams and windows – take data from one or more streams or windows and
apply a continuous query to produce a new stream or window.

Getting Results from an ESP Project
Event Stream Processor has four ways to get output from a running project:

• Applications receive information automatically from internal output adapters attached to a
stream when you build the project.

• Applications can subscribe to data streams by means of an external subscriber, which users
can create using subscription APIs provided with the product.

• Users can start a new project that binds (connects) to a stream in a running project, without
reconfiguring the project.

• Users can run on-demand queries using the esp_query tool to query output windows in a
running ESP project. For more information see the Utilities Guide.

Streams Versus Windows
Both streams and windows process events. The difference is that windows have state, meaning
they can retain and store data, while streams are stateless and cannot.

Streams process incoming events and produce output events according to the continuous
query that is attached to the stream, but no data is retained.

By contrast, a window consists of a table where incoming events can add rows, update existing
rows, or delete rows. You can set the size of the window based on time, or on the number of
events recorded. For example, a window might retain all events over the past 20 minutes, or the
most recent 1,000 events. A window can also retain all events. In this case, the incoming event
stream must be self-managing in that it contains events that both insert rows into the window
and delete rows from the window, so that the window does not grow infinitely large.

Input, Output, and Local Streams and Windows
Streams and windows can be designated as input, output, or local. Input streams are the point
at which data enters the project from external sources via adapters. A project may have any
number of input streams. Input streams do not have continuous queries attached to them,
although you can define filters for them.

Local and output streams and windows take their input from other streams or windows, rather
than from adapters, and they apply a continuous query to produce their output. Local streams

CHAPTER 1: Introduction to Sybase Event Stream Processor

4 Sybase Event Stream Processor

and windows are identical to output streams and windows, except that local streams and
windows are hidden from outside subscribers. Thus, when a subscriber selects which stream
or window to subscribe to, only output streams and windows are available.

Note: The visual authoring palette lists local and output streams as derived streams, and lists
local and output windows as derived windows.

See also
• Adding an Input Window Manually on page 24
• Adding Simple Continuous Queries on page 25

Schemas
Each stream or window has a schema, which defines the columns in the events produced by the
stream or window.

Each column has a name and datatype. All events that output from a single stream or window
have an identical set of columns. For example:

• An input stream called RFIDRaw, coming out of an RFID reader, may have columns for a
ReaderID and a TagID, both containing string data.

• An input stream called Trades, coming from a stock exchange, may have columns for the
Symbol (string), Volume (integer), Price (float), and Time (datetime).

See also
• Schema Discovery on page 22
• Discovering a Schema on page 23

Inserts, Updates, and Deletes
Operation Codes (opcodes) associate insert, update, and delete events with a window. They
simplify development and improve performance by applying these events automatically.

In many Event Stream Processor use cases, events are independent of each other: each carries
information about something that happened. In these cases, a stream of events is a series of
independent events. If you define a window on this type of event stream, each incoming event
is inserted into the window. If you think of a window as a table, the new event is added to the
window as a new row.

In other use cases, events deliver new information about previous events. The ESP Server
needs to maintain a current view of the set of information as the incoming events continuously
update it. Two common examples are order books for securities in capital markets, or open
orders in a fulfillment system. In both applications, incoming events may indicate the need
to:

CHAPTER 1: Introduction to Sybase Event Stream Processor

Getting Started Guide 5

• Add an order to the set of open orders,
• Update the status of an existing open order, or,
• Remove a cancelled or filled order from the set of open orders.

To handle information sets that are updated by incoming events, Event Stream Processor
recognizes insert, update, and delete operations associated with incoming events. You can tag
events with an opcode, a special field that indicates whether the event is an insert event, an
update event, or a delete event. There is also an upsert opcode, which either updates an existing
record with a matching key, or inserts a new record.

Input windows apply insert, update, and delete events to the data in the window directly, as
events arrive. Inserts, updates, and deletes are propagated through the query graph, that is, all
downstream derived windows. Thus, when an event updates or deletes a record in an input
window, it automatically applies to any downstream derived windows. This native handling of
updates and deletes provides high performance and simplicity. Users do not need to manually
define the logic to examine incoming events and determine how to apply them to a window.

Product Components
Event Stream Processor includes a server component for processing and correlating streams
of data, a Studio environment for developing, testing, and starting applications that run on the
server, and administrative tools.

Components include:

• ESP Server – the software that processes and correlates data streams at runtime. Event
Stream Processor can process and analyze hundreds of thousands of messages per second.
Clustering provides scale-out support to ESP Server. A server cluster lets users run
multiple projects simultaneously; provides high availability and failover; and lets you
apply centralized security and support for managing cluster connections.

• ESP Studio – an integrated development environment for creating, modifying, and testing
ESP projects.

• CCL compiler – the compiler that translates and optimizes projects for processing by ESP
Server. It is invoked by ESP Studio or from the command line.

• Input and output adapters – the components that establish connections between Event
Stream Processor and datasources, as well as the connections between the ESP Server and
the consumers that will receive output from Event Stream Processor.

• Integration SDK – a set of APIs for creating custom adapters in C/C++, Java, and .NET,
for integrating custom function libraries, and for managing and monitoring live projects.

• Utilities – a set of executables that offer command line access to many administrative,
project development, publishing and subscription, and other features.

CHAPTER 1: Introduction to Sybase Event Stream Processor

6 Sybase Event Stream Processor

Input and Output Adapters
Input and output adapters enable Event Stream Processor to send and receive messages from
dynamic and static external sources and destinations.

External sources or destinations can include:

• Data feeds
• Sensor devices
• Messaging systems
• Radio frequency identification (RFID) readers
• E-mail servers
• Relational databases

Input adapters connect to an external datasource and translate incoming messages from the
external sources into a format that is accepted by the ESP server. Output adapters translate
rows processed by Event Stream Processor into message formats that are compatible with
external destinations and send those messages downstream.

The following illustration shows a series of input adapters that translate messages from a
temperature sensor, bar code scanner, and a Java Message Service (JMS) cloud into formats
compatible with Event Stream Processor. After the data is processed using various queries
within Event Stream Processor, output adapters convert the result rows into updates that are
sent to an external database server, e-mail server, and Web services dashboard.

Figure 2: Adapters in Event Stream Processor

For a complete list of adapters supplied by Event Stream Processor, see the Adapters
Guide.

CHAPTER 1: Introduction to Sybase Event Stream Processor

Getting Started Guide 7

See also
• Adding an Input Adapter on page 21

Custom Adapters
In addition to the adapters provided by Event Stream Processor, you can write your own
adapters to integrate into the server. You can design adapters to handle a variety of external
requirements that the standard adapters cannot manage.

Event Stream Processor provides a variety of SDKs that allow you to write adapters in a
number of programming languages, including:

• C
• C++
• Java
• .NET (C#, Visual Basic, and so on)

For detailed information about how to create custom adapters, see the Adapters Guide. For
versions supported by these SDKs, see the Installation Guide.

Authoring Methods
Event Stream Processor Studio provides visual and text authoring environments.

In the visual authoring environment, you can develop projects using graphical tools to define
streams and windows, connect them, integrate with input and output adapters, and create a
variety of simple queries.

In the text authoring environment, you can develop projects in the Continuous Computation
Language (CCL), as you would in any text editor. Create data streams and windows, develop
queries, and organize them in hierarchical modules and projects.

You can easily switch between the Visual editor and the CCL editor at any time. Changes made
in one editor are reflected in the other. You can also compile projects within Studio.

In addition to its visual and text authoring components, Studio includes environments for
working with sample projects, and for running and testing applications with a variety of
debugging tools. Studio also lets you record and playback project activity, upload data from
files, manually create input records, issue commands to the server, and run ad hoc queries
against the server.

If you prefer to work from the command line, you can develop and run projects using the
esp_server, esp_client, and esp_compiler commands. For a full list of Event Stream
Processor utilities, see the Utilities Guide.

CHAPTER 1: Introduction to Sybase Event Stream Processor

8 Sybase Event Stream Processor

Continuous Computation Language
CCL is the primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CCL supports sophisticated data selection and calculation capabilities, including features
such as: data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous
execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time data arrives from one of its datasources.

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
an SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. Compilation is
typically performed within Event Stream Processor Studio, but it can also be performed by
invoking the CCL compiler from the command line.

SPLASH
Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has
similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

CHAPTER 1: Introduction to Sybase Event Stream Processor

Getting Started Guide 9

CHAPTER 1: Introduction to Sybase Event Stream Processor

10 Sybase Event Stream Processor

CHAPTER 2 Exploring a Project in ESP
Studio

Use the sample projects in ESP Studio to learn about project structure and how to navigate
perspectives and views.

Start by exploring Studio and learning what you can do in each perspective. Then, use the
sample projects to see examples of different project structures and diagrams in the Visual
editor.

Note: For more information on tasks and concepts introduced in the Getting Started Guide,
see the Studio Users Guide.

1. Double-click the Sybase ESP Studio shortcut on the desktop to start the Studio.

2. (Optional) On the Welcome screen, use the buttons to navigate, or close the Welcome
screen tab.

• Click Product Overview or Getting Started to open the help.
• Click Learning to open Studio with the Learning perspective active.
• Click Studio to open with the Authoring perspective active.

Studio Workspace Basics
In the Studio workspace, you use different perspectives and views to run examples, create and
edit projects, and run and test your projects in a running Event Stream Processor server.

By default, all perspectives are open. To switch to another perspective, click its tab, just below
the main menu bar.

Table 1. User Activities in Studio Perspectives

Perspective Activities

Authoring • Create and edit projects
• Develop projects and diagrams in the Visual editor, a graphical editing

environment
• Develop projects in the CCL editor, a text-oriented editing environment

where you edit CCL code
• Compile projects
• Import Aleri models

Getting Started Guide 11

Perspective Activities

Learning • Load example projects
• Step through example projects so that you can follow what happens

when you subscribe to streams, publish demonstration data, and view
results

Note: Activities you initiate in Learning perspective open in Authoring and
Run-Test perspectives so that you can take advantage of facilities there to
learn more about the example project.

Run-Test • Start and connect to servers
• Run projects
• Enter test data by uploading data files to a server, or entering data

manually to a stream
• Publish data
• Execute a query against a running project
• Use the Event Tracer and Debugger to set breakpoints and watchpoints,

and trace the flow of data through a project
• Record incoming event data to a playback file, and play back captured

data into a running project
• Monitor performance

Examples
Event Stream Processor includes several example projects.

You can view the examples in ESP Studio and run them against sample data installed with the
product. Stepping through examples in the Studio Learning perspective is an ideal way to
watch a simplified set of event data flow through the system.

Also see the sample CCL and SPLASH code in the Examples Guide, the CCL Programmers
Guide, and the SPLASH Programmers Guide.

See also
• Sample Project Diagram on page 19

• Building a Simple Project on page 19

CHAPTER 2: Exploring a Project in ESP Studio

12 Sybase Event Stream Processor

Loading a Sample Project
Load one of the example projects installed with the product, so that you can view it in your
workspace.

1. Navigate to the Learning perspective.

2. In Examples view, click one of the LOAD buttons to load the example into your
workspace.

3. On the Start Example Project dialog, click Cancel.

For now, you only want to get the project into your workspace, so that you can view it in the
Visual editor. Later you can run the project.

The example project opens in Authoring perspective, with the diagram (.cclnotation
file) open in the Visual editor.

4. Explore the diagram by clicking the shapes, and clicking the plus sign to open
compartments to see column or property details.

Note: Do not edit the example, and especially do not save any changes to the examples.

5. (Optional) To see the corresponding CCL code, right-click and choose Switch to Text
(F4).
The diagram closes, and the project opens in the CCL editor.

6. Close the project without saving any changes.

CHAPTER 2: Exploring a Project in ESP Studio

Getting Started Guide 13

CHAPTER 2: Exploring a Project in ESP Studio

14 Sybase Event Stream Processor

CHAPTER 3 Visual Editor Authoring

The Visual editor lets you create and edit projects without learning CCL syntax.

It is also a valuable tool for experienced CCL programmers, particularly when working on
complex projects, as a way to easily visualize the data flow and navigate within the project. In
the Visual editor, the project is represented by one or more diagrams that show streams,
windows, adapters, and the data flows between them.

Begin by developing a simple project. Use the graphical tools to add streams and windows,
connect them, and associate them with adapters. Add simple queries directly in the diagram
using the visual editing tools.

Once you have a basic diagram completed, compile and run your project.

When you are confident that your simple project is working, you can progress to advanced
features: more complex queries, Flex operators for custom operations, modularity, and
custom adapters. You can access many of these features in the visual authoring environment.

For more complex queries and other advanced features, you can switch to the CCL editor. A
single CCL file can be open in only one editor at a time. The Visual and CCL editors are
completely integrated. When you save and switch to the other editor, your work is saved there
as well.

Diagrams
In visual authoring, you use diagrams to create and manipulate the streams, windows,
connections, and other components of a project, and create simple queries.

When you open a project in the Visual editor, the project displays a collection of stream and
window shapes that are connected with arrows showing the flow of data. You develop the
project by selecting new input and output streams, windows, and other elements from the
Palette, dropping them onto the diagram, connecting them, and configuring their behavior.

Every project has at least one diagram. A project can have multiple diagrams. You cannot
share a diagram among multiple projects.

When you add a shape or other element to a diagram, it is automatically added to the project
when you save. You can delete an element from a diagram only, or from the project.

Display diagrams in verbose or iconic mode:

• iconic – compartments are collapsed to save space.

Getting Started Guide 15

• verbose – all compartments in elements are visible.

You can apply verbose and iconic mode to all elements in a diagram, or to the selected shape
only.

Visual Authoring Environment
The Visual editor and other tools and views in the Authoring perspective allow you to create,
view, and edit a diagram.

• Editor – canvas at the center of the Authoring perspective where you edit the diagram.
• Palette – includes groups of tools used to create new CCL elements on the diagram. Most

shapes on the Palette correspond to a CCL statement.
• File Explorer – provides a hierarchical tree structure of folders and files.
• Properties view – displays the properties of the object selected in the diagram. You can

also set properties in this view, and edit expressions.
• Outline view – provides an index to all elements in the diagram as a hierarchical tree

structure. Also shows the order in which adapters are started. Right-click an element in this
view to show it in the diagram, delete it, modify it, or add a child element.

• Overview – helps you understand the big picture, and navigate easily to different areas of a
large, complex diagram.

• Search – provides full-text search capability for finding text strings in the workspace.
Useful in navigating File Explorer, and project contents in the CCL editor. You can filter
search results, and copy, remove, or replace results found.

• Problems – displays errors found when you validate a project or upload files.
• Console – displays messages generated by Studio scripts.

CHAPTER 3: Visual Editor Authoring

16 Sybase Event Stream Processor

Figure 3: Authoring Perspective Views

Editing a Project in the Visual Editor
Edit diagrams in a graphical user interface.

1. In the Authoring perspective, navigate to File Explorer.

2. To open a saved project in the Visual editor, double-click the .cclnotation file
name.

3. Click in the diagram to begin editing using the Palette.

Tip: To make the Visual editor window full-screen, double-click the name:Diagram tab
at the top. Double-click again to revert.

4. Save as you go (Ctrl+S).
This saves changes to both the .cclnotation file (the diagram) and the .ccl file (the
CCL).

5. To toggle between the Visual editor and the CCL editor, choose Switch to Text or
Switch to Visual (F4).

6. To close the diagram, press Ctrl+W or Ctrl+F4, or click the X on the tab at the top of the
editor .

CHAPTER 3: Visual Editor Authoring

Getting Started Guide 17

Note: The Visual editor, like other graphical user interfaces, offers several ways to
accomplish most tasks, although this guide may not list all of them. For example, in many
contexts you can carry out an action by:
• Clicking a button or other icon in a shape, or on the main toolbar
• Using a shortcut key
• Double-clicking an element to open it
• Right-clicking to select from the context menu
• Selecting from the main menu bar
• Editing element values in the Properties view

ESP Studio also includes features common to Eclipse-based applications.

See also
• Creating the Sample Project on page 20

Adding Shapes to a Diagram
Create streams, windows, and shared components, relate them using continuous queries, and
attach them to adapters.

1. Open a diagram in the Visual editor.

2. Click a shape tool in the Palette (Input Window, Flex, and so on), then click an empty area
in the diagram.
This creates the new shape in the diagram. Red borders indicate that the shape definition is
incomplete or incorrect. When a shape definition is complete, the border changes to gray.

Note: Do not try to drag-and-drop from the Palette into the diagram.

3. To view actions needed to complete a shape definition, hover the mouse over the shape in
the diagram.

Next
See tasks for specific shapes for more steps you may need to do.

Connecting Elements
Connect two shapes in a diagram to create a data flow between them.

The Connector tool creates flows between streams and windows, enables aggregation
between streams and shared components, or attaches notes between shapes.

1. In the Palette view, select the Connector tool.

CHAPTER 3: Visual Editor Authoring

18 Sybase Event Stream Processor

2. Click the shape that will produce the output.

This attaches the connector line to the first shape.

3. Click the shape that will receive the data to indicate the direction of data flow.

If a connection is allowed between shapes, you see a connection icon beside your cursor. If

a connection is not allowed, you see a "not allowed" icon .

Tip: To add multiple connections, Shift+click and hold the Connector tool and add
connections. To return to normal selection, press Esc or click the Select tool in the Palette
to release it.

Changing the Display of Diagrams
Display diagrams in verbose or iconic mode. Lay out the elements in the diagram left to right
or top down.

Prerequisites
Open the diagram in the Visual editor.

• To toggle a shape between iconic and verbose mode:

• In verbose mode, click the "minus" sign in the upper-left corner to collapse it.
• In iconic mode, click the "plus" sign to expand it.

• To show all shapes as iconic or verbose, in the Visual editor toolbar click All Verbose ,
or All Iconic .

• To change the orientation, in the Visual editor toolbar click Layout left to right or
Layout top down .

Note: For more display options, right-click an object or the diagram surface and choose
from the context menu.

Building a Simple Project
Build a simple project in the Visual editor.

The Portfolio Valuation example described here takes as input a set of positions (stock
holdings) and a market price feed, and values the positions.

Sample Project Diagram
The PortfolioValuation diagram uses simple queries to aggregate and join data from two input
windows.

The example:

CHAPTER 3: Visual Editor Authoring

Getting Started Guide 19

1. Reads data from an input window, PriceFeed, with five columns: Id, Symbol, Price, shares,
and TradeTime.

2. Applies an Aggregate simple query to create a moving average—a volume weighted
average price (VWAP). With the VWAP, you can see the value of positions based on the
average price, rather than see the value of your positions change with every small price
movement.

3. Read data from another input window, Positions, with three columns: BookId, Symbol,
and SharesHeld.

4. Applies a Join simple query, joining the market price (from the VWAP aggregate) to your
holdings (Positions), so that you can see the value of your position in each stock.

5. Applies one more aggregation to show the total value of each "book." This aggregate,
ValueByBook, embodies a strategy where your positions may be organized by different
"books," which may be portfolios or funds.

Figure 4: Portfolio Valuation Sample Diagram (Iconic Mode)

Creating the Sample Project
Use the Studio to define a new set of processing instructions for event data.

1. Select File > New > Project....

2. In the Name field, enter my_portfolio_valuation.

A valid project name:
• Must start with a letter, underscore, or dollar sign
• All other characters must be alphanumeric, underscore, or dollar sign
• Must not contain spaces

For your own projects you can use any name. To ensure that you can run the sample project
you are creating, use the values listed here.

CHAPTER 3: Visual Editor Authoring

20 Sybase Event Stream Processor

3. In the Directory field, accept the default location or browse to a directory in which to store
the new project folder.
Studio creates three files in the named directory:
• project_name.ccl – contains the CCL code.
• project_name.cclnotation – contains the diagram that corresponds to

the .ccl file.
• project_name.ccr – contains the project configuration.

For example, for a project directory named "trades," Studio creates a trades.ccl,
trades.cclnotation, and trades.ccr file in the trades directory.

4. Click Finish to create the project files.
The new project opens in the Visual editor with one input stream, NEWSTREAM, and an
inline schema ready for editing.

Adding an Input Adapter
Attach an adapter by inserting it in the diagram, connecting it to a stream or window, and
setting properties.

The input adapter identifies the external source for the input stream or window, and translates
it into a format that Event Stream Processor Server accepts. You can add adapters to the
diagram before or after adding input and output streams or windows.

This example shows you how to insert an adapter, enable it for schema discovery, then
generate and attach the input window and its schema automatically. This is the best practice
for adapters that support it.

Alternatively, ESP Studio allows you to create the stream or window and then attach an
adapter. Use this method for adapters that do not support schema discovery, or where you want
to explicitly create an inline schema for input streams or windows.

For a list of adapters that support schema discovery, and descriptions of properties to
configure, see the Studio Users Guide.

1. Open the Input Adapters compartment in the Palette and locate the adapter you want.
For this example, choose the File XML Input adapter, which reads data from an XML
file.

2. Click the adapter in the Palette, then click in the diagram.
The adapter shape is inserted but its border is red, indicating it is not complete, until you
define its properties and attach it to a stream or window.

3. In the adapter shape toolbar, click Edit Properties() .

4. (Optional) In the Adapter Properties dialog, change Name to identify your adapter.

5. Under Adapter Properties, configure the adapter for schema discovery:
a) Choose Set properties locally.

This lets you set properties in the table on the right side of the dialog. Required
properties are in red.

CHAPTER 3: Visual Editor Authoring

Getting Started Guide 21

Note: Do not choose Use named property set, as it will not allow you to discover the
schema for this adapter.

To use schema discovery for the File XML Input adapter, set the Directory and File
properties to specify the absolute path to the data files you want the adapter to read.

b) Click in the Value column for Directory, and click the button to browse for the directory
with the data files. Then enter the File value.
For this example, specify the path to the sample data installed with the product.

Property Value

Directory workspace_install_path\exampledata

Windows default: C:\Documents and Settings\username\My
Documents\SybaseESP\5.0\workspace\exampledata

Linux and Solaris default: your_home_directory/SybaseESP/
5.0/workspace/exampledata

File positions.xml

6. Press OK to save.

Next
Import the schema and create a connected input stream or window with the same schema as the
data file.

See also
• Input and Output Adapters on page 7

Schema Discovery
You can use the schema discovery feature to discover external schemas and create CCL
schemas based on the format of the data from the datasource connected to an adapter.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

Rather than manually creating a new schema, you can use schema discovery to discover and
automatically create a schema based on the format of the data from the datasource connected
to your adapter. For example, for the Database Input adapter, you can discover a schema that
corresponds to a specific table from a database the adapter is connected to.

To discover a schema, you need to first configure the adapter properties. Each adapter that
supports schema discovery has unique properties that must be set to enable schema discovery.

CHAPTER 3: Visual Editor Authoring

22 Sybase Event Stream Processor

See also
• Discovering a Schema on page 23

Discovering a Schema
Use the Schema Discovery button in the Adapter shape to discover and automatically create a
schema based on the format of the data from the adapter.

Prerequisites
Add the adapter to the diagram and set its properties.

Task

1. Click Schema Discovery on the adapter toolbar.
• If the schema is configured properly and one or more data sets are found, a dialog

appears where you can view and select a schema.
• If the schema is not successfully discovered, an error message appears stating that no

schema was discovered for the adapter. You can:
• Check that the adapter properties are configured for schema discovery.
• Check to see if the adapter supports schema discovery.

2. Select the schema you need.

You can expand the data set to view the schema.

For this example, select positions.xml, then click Next.

3. In the Create Element dialog, choose Create new input window.

This option creates and attaches a new window to the adapter, creates an inline schema for
the window, and populates the window with the schema discovered from the adapter.

When the adapter is not yet attached to a stream or window, other options are:
• Create a new input stream – creates and attaches a new stream to the adapter, creates

an inline schema for the stream, and populates the stream with the schema discovered
from the adapter.

• Create new named schema. – creates a new named schema and populates it with the
schema discovered from the adapter.

4. Click Finish.
The new input window appears, and is automatically connected to the File XML Input
adapter.

5. In the Schema compartment of the input window, click the Toggle Key buttons for the
BookId and Symbol columns to specify the primary key.
With the primary key, the shape becomes valid.

6. (Optional) Click the input window Edit button and name it Positions.

Next

Create another input window, PriceFeed. Either:

CHAPTER 3: Visual Editor Authoring

Getting Started Guide 23

• Insert another File XML Input adapter, that takes input from the pricefeed.xml file in
the same exampledata directory. Then use schema discovery to generate and connect
the window automatically, and set the Id column as the primary key, or,

• Create the PriceFeed input window manually.

See also
• Schema Discovery on page 22

Adding an Input Window Manually
Add an input window to the diagram in the sample PortfolioValuation project.

These steps let you create an Input Window directly, and define the schema, without importing
a schema.

If you used the input adapter to discover the schema and generate both input windows
automatically, skip these steps and go directly to the next task.

1. In the Visual editor, in the Palette to the right of the diagram, open the Streams and
Windows compartment.

2. Click Input Window.

3. Click in an empty area in the diagram where you want to insert the input window
The input window object is added to the project. The red border indicates that it needs more
definition to be valid.

4. To set the name of the input window, either:

• In iconic mode, click once to select the shape, then click again to edit the name.
• In verbose mode, click the edit icon next to the name.

For this example, enter the name PriceFeed.

5. Expand the shape to verbose mode, and click Add Column () on the input window
shape toolbar, to add each new column.

Tip: Hover over any icon to see its name.

A new column is created with a default name, and default datatype of integer.

6. Enter the column name, then click the datatype. Click again to choose a datatype from the
drop-down.
For this example, enter these column names and datatypes:
• Id – integer
• Symbol – string
• Price – float
• Shares – integer
• TradeTime – date

CHAPTER 3: Visual Editor Authoring

24 Sybase Event Stream Processor

7. Click the button for the Id column to toggle it to the Key symbol.

A primary key is required for input windows.

The Id column is now the primary key for the PriceFeed input window. The red border
should change to gray.

8. Save (Ctrl+S).

The input window and its schema (or deduced schema) are in the diagram. Because you did
not set a retention policy, the default policy, save all records, applies.

Adding Simple Continuous Queries
Review the types of queries available in the Visual editor. To get started, try adding one of the
simple queries to your project.

To create the PortfolioValuation diagram, add three simple queries:

1. An Aggregate simple query called VWAP to create a volume weighted average price
(VWAP). This aggregate should take input from the PriceFeed input window.

2. A Join simple query to join the VWAP output to the Positions input window. Name the join
result IndividualPositions.

3. A second Aggregate simple query, ValueByBook, to show the total value of each
"book."

For example details, refer to the figure, and the steps for creating and modifying simple
queries.

CHAPTER 3: Visual Editor Authoring

Getting Started Guide 25

Figure 5: Portfolio Valuation Sample Diagram (Verbose)

Simple Queries
Accomplish most common querying tasks using a set of queries available in the Visual editor:
filter, aggregate, join, compute, union, and pattern.

The tools for these six queries are available as objects in the Palette, in Streams and Windows.

• Filter – allows you to filter a stream down to only the events of interest, based on a filter
expression.

• Aggregate – allows you to group events that have common values and compute
summary statistics for the group, such as an average. You can also define a window size,
based on either time or number of events.

• Join – allows you to combine records from multiple streams or windows, forming a
new record with information from each source.

• Compute – allows you to create a new event, with a different schema from the input,
and compute the value to be contained in each column (field) of the new event.

• Union – allows you to combine multiple streams or windows that all share a common
schema into a single stream or window.

CHAPTER 3: Visual Editor Authoring

26 Sybase Event Stream Processor

• Pattern – lets you watch for patterns of events within a single stream or window or
across multiple streams and windows. When ESP Server detects an event pattern in a
running project, it produces an output event.

Creating an Aggregate as a Simple Query
Add to the sample diagram an Aggregate simple query to create a volume weighted average
price (VWAP).

An Aggregate query groups events that have common values, and computes summary
statistics for the group.

1. In the Visual editor Palette, in Streams and Windows, click Aggregate ().

2. Click in the diagram to create the object.

3. Change the default name, Aggregate1, to VWAP.

4. Connect PriceFeed to the VWAP aggregate:

a) Click the Connector shape in the Palette.
b) Click the PriceFeed input window, then click the VWAP aggregate.

The aggregate border changes from red to black, indicating that it is valid, now that it
has input.

5. Enter Column Expressions:

a) Click Copy Columns from Input () in the shape toolbar to select the columns to
copy into the schema for the aggregate window.

b) Add additional columns by clicking Add Column Expressions in the shape
toolbar.

For this example, copy these columns:
• PriceFeed.Symbol
• PriceFeed.Price
• PriceFeed.TradeTime

Then add another column and edit its name to VWAP.

6. Edit column expressions by double-clicking to open the inline editor, or by selecting the
expressions and pressing Ctrl+F2 to open the expression in the pop-up editor.
For this example, make these changes:
• Edit Price to LastPrice
• Edit TradeTime to LastTime
• Edit the VWAP column expression to:
(sum ((PriceFeed.Price *
 CAST (FLOAT , PriceFeed.Shares))) /
 CAST (FLOAT , sum (PriceFeed.Shares)))

7. Click Add GroupBy Clause ({ }) to edit the grouping of columns in the aggregate object.

Note: The Aggregate shape must have exactly one GROUP BY expression.

CHAPTER 3: Visual Editor Authoring

Getting Started Guide 27

For this example, select PriceFeed.Symbol as the grouping column.

8. (Optional) Click Set Keep Policy to create a retention window.

The default policy is to keep all rows of incoming data. You can also choose to keep only
the last row, a specific number of rows, or keep the rows for a specific time. This defines the
CCL KEEP clause.

9. (Optional) Use the Toggle option to change the aggregate object from LOCAL to
OUTPUT.

Creating a Join as a Simple Query
Add to the sample diagram a join simple query that combines multiple datasources, similar to
the join expression options of the CCL FROM clause.

1. In the Visual editor Palette, in Streams and Windows, select Join.

If necessary, close the compartments below Streams and Windows, or use the arrow
below the compartment, so that Join is visible.

2. Click in the diagram to create the object.
For this example, edit the join object name to be IndividualPositions.

3. Connect the join object to the appropriate stream or window.

Attach join objects to any stream, window, or Flex operator. Join objects have multiple
inputs, but only one output.

Note: Streams, windows and delta streams can participate in a join. However, a delta
stream may participate in a join only if it has a KEEP clause specified. Only one stream can
participate in a join. For more about supported joins, see the Studio Users Guide or the
CCL Programmers Guide.

For this example, connect the VWAP aggregate object and the Positions input window to
the IndividualPositions join object.

4. Click Copy Columns () in the join shape toolbar and select columns to copy.
For this example, choose Select All, then clear the check box on the second Symbol field.

5. Click Add Column Expressions ().
For this example add two columns: Current Position and Average Position.

6. To modify Column Expressions, either:

• Press F2 to open the inline editor. A drop-down menu displays which is populated with
input columns and built-in functions. Select the input column or built-in function you
want to use to define the expression.

• Press Ctrl+F2 to open the expression editor. Press Ctrl+Space to display the available
input columns and built-in functions, or enter the desired expression manually.

• Modify the expression in the Properties view.

For this example, create these Column Expressions:
• BookId Positions.BookId

CHAPTER 3: Visual Editor Authoring

28 Sybase Event Stream Processor

• Symbol Positions.Symbol

• CurrentPosition (VWAP.LastPrice * CAST (float ,
Positions.SharesHeld))

• AveragePosition (VWAP.VWAP * CAST (float ,
Positions.SharesHeld))

7. In the Join Conditions compartment of the join shape, set up the join conditions.
In this example, if you connected the join to the VWAP and Positions inputs, in that order,
there are now two elements in the Join Conditions compartment. The first defines the
leftmost element for the join. If you connected to VWAP first, the first element (left side of
the join) is VWAP. You can double click it to change it. For this example, you must
configure the second join element.

a) Double-click the second join element to open the Edit Join Expression dialog.
b) Select the columns from Source 1 and Source 2 to join on.

For this example, select Symbol for both Positions and VWAP.
c) Click Add.

The columns chosen appear in Join Constraints, where you should now see
Positions.Symbol=VWAP.Symbol. You cannot edit join constraints manually
in the Visual editor.

d) (Optional) Choose a join type.
For this example, use the default, LEFT.

8. Click OK.

Completing the Sample Project
Clean up the diagram by removing unused elements.

1. Create an additional Aggregate Simple Query called ValueByBook,

a) Set column expressions:
• BookId IndividualPositions.BookId

• CurrentPosition sum
(IndividualPositions.CurrentPosition)

• AveragePosition sum
(IndividualPositions.AveragePosition)

b) Set Group By to IndividualPositions.BookId.

c) Toggle to OUTPUT.
d) Connect it to the IndividualPositions join object.

2. Delete the unused input stream element NEWSTREAM that was added automatically
when you created the project.

Remove any other unused elements as well, so that you can run the project.

3. (Optional) Toggle to Iconic mode to Compare your diagram to the figure in Portfolio
Valuation Sample Diagram.

CHAPTER 3: Visual Editor Authoring

Getting Started Guide 29

• Click the Toggle Image button in the upper left corner of a shape, or,
• Click the All Iconic or All Verbose button in the toolbar.

Deleting an Element
Delete an element from the project to remove it completely, or delete it from the diagram
only.

1. Select one or more elements in the diagram.

2. Right-click and choose either:

• Delete Element — removes the element from the project.
• Delete from Diagram — removes the element from the diagram, but retains it in the

project. When you run the project, everything in the project runs, even elements that are
not on the diagram.

3. When you choose Delete Element, confirm the deletion.

CHAPTER 3: Visual Editor Authoring

30 Sybase Event Stream Processor

CHAPTER 4 CCL Authoring

The CCL editor is a text authoring environment within ESP Studio for editing CCL code.

You can work in the CCL editor exclusively, or use it as a supplement to the Visual editor. The
CCL editor offers syntax completion options, syntax checking, and error validation.

A single CCL file can be open in only one editor at a time. The Visual and CCL editors are
completely integrated: when you save and switch to the other editor, your work is saved there
as well.

Most users new to Event Stream Processor find it easier to get started in the Visual editor. As
you gain experience with the product, and learn to successfully compile and run a simple
project, you may want to use the CCL editor to add advanced features to your projects.

The Studio Users Guide explains use of the CCL editor within ESP Studio.

For CCL language usage and reference details, see the CCL Programmers Guide.

Editing in the CCL Editor
Update and edit CCL code as text in the Studio CCL editor.

1. Click the Authoring tab.

2. In File Explorer, expand the project container, and double-click the .ccl file name to
open it in the CCL editor.

By default, the .ccl file opens in the CCL editor, and the .cclnotation file opens in
the Visual editor.

Note: Advanced CCL users can include multiple CCL files in the same project, by using an
IMPORT statement to import shared schemas and module definitions from another file.

3. Begin editing text in the CCL editor window.

Note: Backslashes within string literals are used as escape characters. Any Windows
directory paths must therefore be specified with two backslashes.

4. (Optional) Press Ctrl+Space to show a syntax completion proposal.

5. (Optional) To insert CREATE statement template code, right-click, choose Create, and
then choose the element to create.

6. Choose File > Save (Ctrl+S) to save the .ccl file and the project.

Getting Started Guide 31

CCL for the Sample Project
The CCL for the Portfolio Valuation sample project created in the Studio Visual editor is
shown here, with line breaks added for readability.

CREATE INPUT WINDOW PriceFeed
 SCHEMA (Id integer , Symbol string , Price float , Shares integer ,
TradeTime date)
 PRIMARY KEY (Id) ;

/**@SIMPLEQUERY=AGGREGATE*/
CREATE OUTPUT WINDOW VWAP PRIMARY KEY DEDUCED AS
 SELECT
 PriceFeed.Symbol Symbol ,
 PriceFeed.Price LastPrice ,
 (sum ((PriceFeed.Price * CAST (FLOAT ,
PriceFeed.Shares))) /
 CAST (float , sum (PriceFeed.Shares))) VWAP ,
 PriceFeed.TradeTime LastTime
 FROM PriceFeed
 GROUP BY PriceFeed.Symbol ;

CREATE INPUT WINDOW Positions
 SCHEMA (BookId string , Symbol string , SharesHeld integer)
 PRIMARY KEY (BookId, Symbol) ;

/**@SIMPLEQUERY=JOIN*/
CREATE OUTPUT WINDOW IndividualPositions
 SCHEMA (BookId string , Symbol string , CurrentPosition float ,
AveragePosition float)
 PRIMARY KEY (BookId, Symbol)
 AS
 SELECT
 Positions.BookId BookId ,
 Positions.Symbol Symbol ,
 (VWAP.LastPrice * CAST (float , Positions.SharesHeld))
CurrentPosition ,
 (VWAP.VWAP * CAST (float , Positions.SharesHeld))
AveragePosition
 FROM Positions , VWAP
 WHERE Positions.Symbol = VWAP.Symbol;

/**@SIMPLEQUERY=AGGREGATE*/
CREATE OUTPUT WINDOW ValueByBook PRIMARY KEY DEDUCED AS
 SELECT
 IndividualPositions.BookId BookId ,
 sum (IndividualPositions.CurrentPosition) CurrentPosition ,
 sum (IndividualPositions.AveragePosition) AveragePosition
 FROM IndividualPositions GROUP BY IndividualPositions.BookId ;

CHAPTER 4: CCL Authoring

32 Sybase Event Stream Processor

CHAPTER 5 Project Execution and Testing

ESP Studio lets you run and test all aspects of a project.

During development, you can use ESP Studio to run any compiled project against a local or
remote server, view data flowing through the streams and windows defined in the project,
execute queries, and use debugging tools. Your project configuration and licensing determine
the type of server connections you can use when running projects. Some adapters also have
special licensing requirements.

If your license supports it, in ESP Studio you can connect immediately to a local cluster to run
projects.

In a production environment, you typically run projects on a remote server using the
command-line utilities and procedures discussed in the Administrators Guide, rather than
ESP Studio.

Run-Test Perspective
In the Run-Test perspective, access the tools used to test, debug, and fine-tune a project.

In Run-Test perspective you can:

• Start and connect to servers from the Server View
• Run projects
• Enter test data by uploading data files to a server in File Upload view, or manually entering

data to a stream in Manual Input view
• Subscribe to a stream in Server View
• Publish data from a stream or window
• Execute a query against a running project in SQL Query view
• Use the Event Tracer and Debugger to set breakpoints and watchpoints, and trace the flow

of data through a project
• Monitor performance in Monitor view
• Record in-flowing data to a playback file and play the captured data back into a running

Event Stream Processor instance, in Playback view

The figure shows a sampling of view contents you might see in Run-Test perspective while
testing a project. They do not represent the sample project created in this guide.

Getting Started Guide 33

Figure 6: Run-Test Perspective

Server View
The Server View shows servers available for connecting and running projects.

You can:

• Connect a project, enabling a local or remote cluster
• Add a new server URL to the list of available connections, remove an existing server, or

reconnect all listed servers
• Show a server in Monitor View or Event Tracer View
• Load projects into a workspace
• Filter metadata streams (default).

Metadata streams are created automatically, and are typically used by administrators in a
production system to obtain health and performance information about the currently running
project. For details of what each stream contains, see Metadata Streams in the Administrators
Guide.

Connecting to a Local Cluster
Connect ESP Studio to a local cluster.

Server connections appear in the Run-Test perspective.

CHAPTER 5: Project Execution and Testing

34 Sybase Event Stream Processor

1. Select the Authoring perspective.

2. Select Run Project and select a project. Click OK.
The Server View in the Run-Test perspective opens, showing the project connection. A
successful connection displays the server streams below the server folder, and the Console
shows the server log for the project.

If the connection is unsuccessful, you see a Server Connection error dialog.

ESP Studio acts as a node (cluster manager) and automatically connects the project to the local
cluster.

Viewing the Data in a Stream or Window
In the Stream View, watch data flow through a stream or window in a dynamic view that
updates as the information changes.

1. In the Run-Test perspective, select the stream or window from the Server View.

2. Right-click on the output stream or window and chooseShow in > Stream Viewer.
A tab opens in the Stream View displaying all new events. If you selected a window, all
retained rows currently in the window are displayed.

3. (Optional) Select a subscription and choose an option, using the buttons at the top of the
Stream View:

• Close Subscription URL — to disconnect and close the current Stream View.
• Clear contents and pause subscription .
• Show current subscription in new view — to open a new Stream View with the

current table visible.

Other Tools for Running and Testing Projects
ESP Studio includes many other tools for testing projects, including those in the Run-Test
perspective.

For information beyond the scope of this guide on running, configuring, monitoring,
querying, and debugging projects, see the Studio Users Guide.

CHAPTER 5: Project Execution and Testing

Getting Started Guide 35

CHAPTER 5: Project Execution and Testing

36 Sybase Event Stream Processor

Index
A
adapters

attaching in Visual editor 21
creating an input stream 23
creating an input window 23
custom 8
discovering a schema 23
importing a schema 23
overview 7
schema discovery 22

aggregate
creating 27
example 27
simple query 26

APIs
supported languages 8

attaching
adapters 21

Authoring perspective
views 16

C
CCL

editing 31
overview 9
sample code 32

CCL editor
overview 31

compute
simple query 26

connecting
adapters 21
shapes 18
starting a server connection 34
to a local cluster 34

custom adapters
overview 8

D
data flow

viewing in Stream View 35
data-flow programming

example 3

introduction 3
databases

compared to Sybase Event Stream Processor
2

deleting
elements from a diagram 30
elements from a project 30

diagrams
deleting elements 15, 30
example 19
iconic mode 19
inserting shapes 18
modifying layout 19
overview 15
verbose mode 19

discovering
schemas 23

E

editing
Visual editor 17

editing CCL
CCL editor 31
text editor 31

Event Stream Processor
components 6

event streams
overview 2

events
delete 5
examples 2
insert 5
update 5

examples
overview 12

external data
input and output adapters 7

F

filter
simple query 26

filtering
metadata streams 34

Index

Getting Started Guide 37

G

GUI authoring
See visual authoring

I

iconic mode
toggling 19

importing
schemas 23

input adapters
overview 7

See also adapters
input windows

adding manually 24

J

join
simple query 26

joins
creating 28
example 28

L

layout
modifying 19

M

metadata streams
filtering 34

N

named schema 5

O

opcodes
defined 5
insert, update, and delete events 5

output adapters
overview 7

See also adapters

overview 9
Sybase Event Stream Processor 1

P
pattern

simple query 26
projects

building simple projects 19
creating 20
deleting elements 30
diagrams 15
files 20
introduction 3
running 33
running in local cluster 34
simple example 20
testing 33

Q
queries 25

continuous 26
simple 26

See also simple queries

R
removing elements

from a diagram 30
from a project 30

Run-Test perspective
overview 33

running a project
in local cluster 34

running projects
overview 33

S
sample CCL code

Portfolio Valuation sample project 32
sample diagram 19
sample projects

loading 13
samples

See examples
schema

adapters 22

Index

38 Sybase Event Stream Processor

creating an input stream 23
creating an input window 23
discovering a schema 23
discovery 22
importing a schema 23
overview 5

schema discovery
adapters 23
creating an input stream 23
creating an input window 23
importing a schema 23
overview 22

SDKs
supported languages 8

Server View
overview 34
showing servers in Event Tracer View 34
showing servers in Monitor View 34

servers
connecting to 34

shapes
iconic and verbose 19
inserting in a diagram 18

simple queries 25, 27, 28
aggregate 27
descriptions 26
join 28

SPLASH
overview 9

Stream View
viewing data flow 35

streams
introduction 4
schema 5
schema discovery 22
structure 5

Studio
overview 8
starting 11

Studio workspace
basics 11

subscriptions
viewing data flow 35

T
testing

projects 33

text authoring
overview 8

U

union
simple query 26

V

verbose mode
toggling 19

viewing data flow
in Stream View 35

views
Authoring perspective 16
Run-Test perspective 33
Stream View 35

visual authoring
diagrams 15
overview 8
views 16

Visual editor
accessing 17
aggregate simple query 27
creating dataflow 18
join simple query 28
modifying layout 19
overview 15
simple queries 26
views 16

VWAP
example 19
simple query example 27

W

windows
adding manually 24
introduction 4
schema 5
schema discovery 22
structure 5

workspace
basics 11

Index

Getting Started Guide 39

Index

40 Sybase Event Stream Processor

	Getting Started Guide
	Contents
	CHAPTER 1: Introduction to Sybase Event Stream Processor
	Event Streams
	Event Stream Processor Compared to Databases
	Data-Flow Programming
	ESP Projects: Adapters, Streams, Windows, and Continuous Queries
	Streams Versus Windows
	Schemas
	Inserts, Updates, and Deletes
	Product Components
	Input and Output Adapters
	Custom Adapters

	Authoring Methods
	Continuous Computation Language
	SPLASH

	CHAPTER 2: Exploring a Project in ESP Studio
	Studio Workspace Basics
	Examples
	Loading a Sample Project

	CHAPTER 3: Visual Editor Authoring
	Diagrams
	Visual Authoring Environment
	Editing a Project in the Visual Editor
	Adding Shapes to a Diagram
	Connecting Elements
	Changing the Display of Diagrams
	Building a Simple Project
	Sample Project Diagram
	Creating the Sample Project
	Adding an Input Adapter
	Schema Discovery
	Discovering a Schema

	Adding an Input Window Manually
	Adding Simple Continuous Queries
	Simple Queries
	Creating an Aggregate as a Simple Query
	Creating a Join as a Simple Query

	Completing the Sample Project
	Deleting an Element

	CHAPTER 4: CCL Authoring
	Editing in the CCL Editor
	CCL for the Sample Project

	CHAPTER 5: Project Execution and Testing
	Run-Test Perspective
	Server View
	Connecting to a Local Cluster
	Viewing the Data in a Stream or Window
	Other Tools for Running and Testing Projects

	Index

