SYBASE

Company

Programmers Reference

Sybase Event Stream Processor
5.1

DOCUMENT ID: DC01621-01-0510-01

LAST REVISED: August 2012

Copyright © 2012 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.

Sybase trademarks can be viewed at the Sybase trademarks page at /#fp.//www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.

SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Introductionccceeeviiiiiiin e, 1
Data-Flow Programmingccccooovvviiiiiieeiececee e 1
Continuous Computation Languageccccceevvvveiiiiinneeeeeenenn. 2
SPLASH .. 3
Authoring Methods ... 3

CHAPTER 2: CCL Project BaSIiCSccovvvvviniiiieeiiineeee, 5
WINAOWS ..ot e e e e e e e eeeaannns 5

REENTION .o 5

Named WINAOWScoooviiiiiiiiiiiiiieeeeeee e 8

Unnamed WINAOWScoooiiiiiiiiiiiiiiiiee e 9
Delta SIreamsS ..o 10
Comparing Streams, Windows, and Delta Streams 11
INPUL/OULPUL/LOCAN ..o, 12
IMPLIiCit COIUMNS oo 13
SCNEMAS .o 14
SEOT S et nne 14
CCL CoNntinUOUS QUETTES ..uuuuiieeieeeeeiiiiiea e e e e eeeeiiiaa e e e eeeeees 15
F 0 o o1 (=T 17
Order of Elements ..o 17

CHAPTER 3: CCL Language Components................. 19

DatatyPES ..o 19

INEEIVAIS ... 22
OPBIALOIS it 23
g 0] €111 [0 o K= PPN 27
CCL COMMENTS ittt e aeeeaans 28
CaSe-SENSILIVITY ..uiiieiiii e 29

Programmers Reference iii

Contents

CHAPTER 4: CCL StatementsScoveeievieiiiiiieeeeeeen, 31
ADAPTER START Statementcccoveviviiiiiiieieeeeeeeeeeeeeen 31
ATTACH ADAPTER Statementccoveeeiiiiiiiiiiieeeeee, 32
CREATE DELTA STREAM Statementcccccoveevivvineeinnnnnn. 34
CREATE ERROR STREAM Statementc.ccoveevvviveiennnnn. 36
CREATE FLEX Statementcoovvvvviiiiiiiieeie e 37
CREATE LIBRARY Statementcooeveviiiiiiiiiieeeieeeveeeeann, 40
CREATE LOG STORE Statementccoooevveeivveeiiiiieeeieeeeenn, 41
CREATE MEMORY STORE Statementcccovvvvviiiieinnnnns 43
CREATE MODULE Statementc.cccovvvviiiivieiiiieeiieeeieeeenn, 44
CREATE SCHEMA Statementcooceviiviiiiiiiiiiniieeneeen, 45
CREATE SPLITTER Statementccoovviviieiiiiiiieceeeieeeen, 46
CREATE STREAM Statementc..cooovviiiiiiiiccceeeeenn, 48
CREATE WINDOW Statementccccoevvvviiiiiiiiiiieeieeeeieeeenn, 50
DECLARE Statementcieviiiiieiiiiiee e 52
IMPORT Statement ..o 54
LOAD MODULE Statementccccevivvieiiiiiiiiee e, 55

CHAPTER 5: CCL ClauSEeS ..o, 59
AGING ClaUSE .. v 59
AS ClaUSE c.oniiiicce e 60
AUTOGENERATE ClaUSecuieviiiiiieieeeeeeeeeeeee e 61
CASE ClaUSE ... 63
FROM ClaUSE cu.cecieieieeeeeeeee e 64

FROM Clause: Comma-Separated Syntax................... 64

FROM Clause: ANSI SYNtaXccceeeeeveeeeereeeeeenennnnnnns 65
GROUP BY ClaUSE ..cuuiiiiieieeeeeee et 66
GROUP FILTER ClaUSE .. .cuniieiiiieeeeeeeeeeee e 67
GROUP ORDER BY ClaUSEecccvviiiiiieeeieeeeeeeee e 68
HAVING ClaUSE .. cvniiiiiiii et 69
N IO = 10 =Y < 70
KEEP ClaUSEeoveiieiieeee e 71
MATCHING ClaUSE ...couviiiiiiieeeeeeee e 73

iv Sybase Event Stream Processor

Contents

ON Clause: JOIN SYNtaXcccvvvviiieeiiiiieeeiiie e 75
(@ 10 I O =T U= TR 76
PARAMETERS ClaUSEcvvviiiiiviiiiiiiiiiiiiiisnsn e 77
PRIMARY KEY ClaUSEccvvviiiiiiiiiiiiiiiiiiiiessns e 78
SCHEMA ClaUSE ... oot 79
SELECT ClaUSE ..uuuiiiii e e e e e e e e eeennes 80
STORE ClaUSe ... 81
STORES ClaUSEecieeiiiiie e e e 81
UNION OPErator ..c.uiiiiiiiii et 83
WHERE ClaUSeuuiiiiiii et 84
CHAPTER 6: CCL FUNCLIONS ...ccvviiiiieeiiceee e, 89
Scalar FUNCHIONS ..o 89
NUMENIC FUNCHONS ...eeiiiiie e 90
ACOS() vevverrrrrniiee e e e e e et ———————————— 90

ASIN() +evvvttrtteteeee et 90

ALAN() weveerriiee e 91

ALANZ() vt 91

AVOOT() v 92

DItANA() ... 92

bitclear()oovvvvveiieeiee e 93

o] F= To |) I 93
bitflaglong()cooeveeeee e, 94

DItMASK() ..t 94
bitmasklong()coevveeiiiiiie e, 95

DItNOT() ..o 95

DItOr() coeeeeeeee e 95

DItSET() weveeeeieeieeee 96
bitshiftleft() ..o 96
DitShIftright()uvvveie s 97

DIttEST() .eeeeeeeeeece e 97

DIttoggle() ..oooeeeeeeeeee 98

DItXON() wvveeeeee e 98

(0] 0] 0 () IR 99

Programmers Reference \Y

Contents

CeI() e 99
(od0] 0] oF= V(=T) 100
COS() -rvvennnnnnnnnn e a e e e 100
(o0 1T [I 101
COSNI() +eveetttiii e 101
AIStANCE() e eeeeeeee e 101
distancesquared()oooveeeerriiriiiiii e 102
EXP() werrrne et e ——————— 103
FlOOr() coeeeee e 103
15T 10 L RSP 104
1€@NGEN() - 104
INQ) et 105
JOG2() - 105
oTo i L0 I SRR 105
JOGX() +eeeeeeeieeeee e 106
MAXOT() wvvvriee e 106
MNOT() - 107
NEXIVAI() ..o 107
PI() oo 108
010111) I 108
FANAOM() .o 108
(0 18] o [SRS 109
SIGN() +evvteennninn e 109
SIN() ceeeeeeeeie e —————— 110
SINA() +evvvenniein e 110
SINN() e 110
SOME() +eeeeeeeeeeeeee et 111
122 1) IS 111
TANA() .o 112
1221 0 1 112
StriNg FUNCHONSooviiiiiiiiiiieeeeeeee s 112
INES2() coeeeee e 112
J€FE() +eeeeee e 113
[HKE() oo 113
JOWET() .o 114

Vi

Sybase Event Stream Processor

Contents

M) o 114
PAtINAEX() ..o eeeeeeeeeee e 115
FEAU() +eveeeeeeeeeee ettt 116
regexp_firstsearch()ccceeeeeeeeiiiiiiiiiiiiieeeeeeeens 116
regexp_replace() ... 117
regexp_S€arch() ...ccooeuveeeeeeeieeeiiiiicee e e e eee e 118
FEPIACE() -evvvrreeeeeieeieee e 118
FGNT() oo 119
PEFIMIQ) 2t 119
SEING() coeeeeeeeeeee e e 119
SUDSII() ceeeeeeee e 120
EAMI() e 120
TUNC() oo 121
(U] o] 1= (U 121
Conversion FUNCHONScoooeeiiiiiieiiiieie e 122
oo |1 ISR 122
base64_binary()ccccoeeeeeei s 122
base64 _String() ...ooooeeeveveeeeiiciie e 123
(072 11 [PP PPPPPPPRPPPN 123
(o3 0= T) PRSP 124
dateint() ...oooeeeeee s 125
S = o1 I 125
fromnetbinary() ... 126
hex_binary()ooevveeiiieie e 126
NEX_SIING() - 127
L]0 F= =T) I 127
MSECTOTIME() «oeeeeeeieiee e 128
recordDataTORecord............ooooevivvviviniiiiiiieeee, 128
recordDataTOStIINGccooee s 128
SECTOTIME() cooeeeeeeeeeeeeeeeeer e 129
tIMETOMSEC() «oevvvveeeiiiiii 129
tIMETOUSEC() .ovvvveveevriiiiiiii e 130
tIMETOSEC() ..o oo 130
to_bigdatetime()oevvvviiiiiiieeeee e 131
tO_DINAIY() ceveeeeeei e 132
Programmers Reference Vi

Contents

to_boolean() ... 132
to_date() .ooeeeeeeeiii e 133
t0_FloAt() covveeeeeeeee e 133
tO_INteger() ..covveeeeii e 134
t0_INterval()uuveermmmmiiiiiiiiiiiiiiiieee e 134
L€ T (0] g o T I 135
t0_MONEY() .ooeeeeeeeee e 135
tO_SHING() vvvne e 136
t0_tIMESTAMP() +vvvvvvvrrrrrrrerriieieeeeeeee e 138
1€ T (2 1 T 138
tOtIMEZONE() wevvvveeeeeeeeeieeeeeeeeee e 139
tonetbinary()cocvveiiiiiiee e 139
USECTOTIME() +evvvereeeeeeeeieeeiieieieeeeieeeieneieieieiieeiiaees 140
XML FUNCHONS ..o 140
XMICONCAL() +vvvvvvvvreeiiiii e 140
xmlelement()veeeiiieeiiie e 141
XMIPAISE() -.vvvvvvvrnrnvnriniiieiirienreeeeeeeeeeeeeeeeeeeeeeeeeeens 141
XMISErAaliZe() vovvvvvvveiiiiiiiee e 142
Date and Time Functionscccccviviiiiiiiiiiiiieeeeeen 142
BUSINESS() .o eeeeeeeee e 142
PUSINESSAAY() -...evvvvveeieeeeiieie e 143
[0 F= (=) I 143
dateceiling() . ..coovvrrimimiiiii 144
datefloor()ooeveeeiiee e, 145
dateint() ..ooooeeeeee s 147
datename()oooeeeieiii e 147
AtEPAIT() ... 147
dateround()eeeeeee e 148
dayofmonth()eeveveeviiiii 150
dayofweek()covvevviieeeieeeee e, 150
dayofyear() ... 151
ROUF() v 151
makebigdatetime() ... 152
MICIOSECONA() .vvvvieeeeeeeeeiiie e e e e e e et e e e eeeenes 153
MINUEE() -t 153

viii

Sybase Event Stream Processor

Contents

MONEN() +eeeeieieeee e 154
NOW() +rtee e e ettt e e e e et e e e e e e e e e e e e e e eeennnn 154
SECONA() +rvvvvrrrrrrnnnnniiiiire e e e e e e e e 155
syshigdatetime()ooeeeeviiiiiiie e, 155
SYSAALE() .o 156
systimestamp()covvvvviiiieiiiii e 156
tOtIMEZONE() wevvvvvvieiiiieee e 156
unbigdatetime()oooevveeiiiiiie 157
UNALE() +evvvvneneiee e 157
weekendday ()oeeeeeeeiiiiiie e 158
YEAI() sttt 158
Aggregate FUNCLIONSoooooiiiiiiiiiiiiieee e 159
ANY() e 160
Vo | ISP 160
COIT() ettt 161
(o10)V = Tl oo o 162
COVAI_SAMP() - eee ettt 162
(o010 | { (S 163
COUNE(AISTINCL) ... 163
exp_weighted_avg() ...coooeeeeeeeeiiiiiee e 164
FIPSE() weeeeeeee e 165
first_value() ...cooveeeiiee e 165
JAST() + e 165
last_ valuE() .uveeeeeeeeiie e 166
IWIM_@VG() -t 166
MAX() +evvrvnee e e e e e e e e ————————— 167
Meandeviation()cooorrriirieiiiiii e 167
TS0 L= g T I 168
ITUN() e 169
NEN() ©eeeeeee e 169
FECENT() 1eveeeeeeeeeeeeeteeit e e e e e e e e e e e e e e e e e e eees 170
=10 | G- \V/0 b IR 170
FEOI_AVAY() - eeeeeeeee ettt 171
=0 g oTo 1V | o () 171
FEQI_INLEICEPL() «vvvvvrrrnnnnniieiee e 172

Programmers Reference ix

Contents

FEON_T2() v 172
=70 | g1 (o] 1=) I 173
FEOI_SXX() +rvvreeeeeeeeeeeeeeeee e e e e e e e e e e 174
FEQE SXY() wrvvrrnrnniiiiiiiee e e e e e ettt e e e e e e e e e e e e e aaaaaannns 174
FEOI_SYY() +vvveeeeeeeeieaeeee et 175
5100 [0 [V () S 175
StAdeViation()oooeeeeee e 176
(51100 [0 (1Y o] o) 1P 176
StAAEV_SAMP() +evvveererrrreeeeeieieeiieieeeeeeeeeeeeeeeeeeeeeeeeeeeaaees 176
£ .0 U 177
valueinserted()ooovvvviieiie 178
172z L 0o o) SN 178
VAI_SAMP() oo 179
(VAT Lo SR 179
WeIGted_avg() ..oovveeeeeeeeeeiiiiiii e 180
D01 = o o) ISR 181
Other FUNCLIONS ..o 181
CACNESIZE() vevvvvreiii i 181
COBIESCE() «oevveeeeeiiiiiiiiiieii ettt 183
(o0] o Tor= L1) [P 183
deleteCache()ooovviiiiiiiiiiiie 184
fIrstNONNUIL) «oeeeeeee e 185
get*columnbyindex()coeeeeiiiiiiiiii s 186
get*columnbyname()cceeeeeeiieeeiieeeee e 187
0etCaCNE() .. 188
OELDALA() .evvvvrriii i 189
getmoneycolumnbyindex()couemmmmmmmmmiiiiiiiiiiiinns 190
getmoneycolumnbyname()ccccoeeeeviiiiiiiie e, 191
QEITOWIA() «eveeeeeeee e 192
=] 192
SEOUENCE() «evvveerreieiieieiee e e e 193
User-Defined External FUNCLIONScovvvviiiiviiiiiiiiiiinnn, 193
External C/C++ Function Requirements.................... 194
Example: Using External C/C++ Functions................. 195
Example: Using Java FUNCLIONScovvviviiiiiieennennn. 198

Sybase Event Stream Processor

Contents

User-Defined SPLASH FUNCtioNSccovvvveeiiiiiiieeean 199

CHAPTER 7: Programmatically Reading and Writing

CCL FileS ..ot 201
CCL File Creation ... 201

CCL File DEeCONSIIUCTION c.uveneeeeeeee e 203
CHAPTER 8: SPLASH Programming Language....... 207
Variable and Type Declarationsccccccccvviiiiiiiiiinennnnn. 207
CUSTOM FUNCTIONS oo, 208
Using SPLASH in Flex Operatorsccccccvvvviiiiiiieeeeennnnn. 209
CHAPTER 9: SPLASH Statementsc.coovoveveiieininnnnn. 215
BloCK StatemMENTS .o 215
Conditional StatemMeNntsoeieeeeeeeee e 215
CoNtrol StateMENTS ...oee e 216
Expression Statementscoceeeieiiiiiiiieceeiien e 216

(0] B I Yo o 1 PP 216
OULPUL STAtEMENTS .ovviiiieii e 217
PriNt StateM BNt .. 218
SWITCH StatEMENTS . e, 218
While STatEMENTS ..o 219
CHAPTER 10: SPLASH Data Structures 221
RECOTAS e 221

XML VAIUEBS ..o 224

R Yo K0] 227
DICHIONAIIES ..eeeeeee e 229
Operations on Dictionariesccccceeeveeeveiiieeeeeeennnnn, 229

WINAOW ILEIALOTS ..o 231
EVENT CACNES ..o 232
Manual INSEITION ... oo 233

Programmers Reference Xi

Contents

Changing Buckets ..o 233

Managing Bucket Sizeccccoevviiiiiiiiiiiiiieeeeeeeeeeii, 234

Keeping RECOIdScooooiiiiiiiiii 234

(@170 1= o o [P 234
Operations on Event Caches.........ccccccceeeieeeeieeeeiiennnnn. 235
APPENDIX A: List of Keywordsccocceviveviiiieiinnnenn, 237
APPENDIX B: Date and Time Programming 239
TIME ZONES ettt 239
Changes to Time Zone Defaultscccceeeevvvvveennnnnns 240

List Of TIME@ ZONESuvvuiiiiiiiiiiiieeiiicee e 240

Date/Time Format Codescovvvviiiiiiinieieeeiiine e 248
Calendar FIles ... 252

APPENDIX C: Statement on Support for Multibyte
CharacCters ... 255

Xii

Sybase Event Stream Processor

CHAPTER 1 Introduction

Data-Flow Programming

Sybase® Event Stream Processor uses data-flow programming for processing event streams.

In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation processes an event only when it is received from
another operation. No other coordination is needed between operations.

The sample project shown in the figure shows a simple example of this.

Each of the continuous queries in this simple example—the VWAP aggregate, the
IndividualPositions join object, and the ValueByBook aggregate—is a type of derived stream,
as its schema is derived from other inputs in the diagram, rather than originating directly from
external sources. You can create derived streams in a diagram using the simple query elements
provided in the Studio Visual editor, or by defining your own explicitly.

Figure 1: Data-Flow Programming - Simple Example

& = &

{4} Adapter1 +| Positions \\
® >,
- s
| IndividualPositions -+ ValueBvBook

E s | —

-+| PriceFeed -+ WWAP

Programmers Reference 1

CHAPTER 1: Introduction

Table 1. Data-Flow Diagram Contents

Element Description
PriceFeed Represents an input window, where incoming data from an external
= source complies with a schema consisting of five columns, similar to a
] database table with columns. The difference is that in ESP, the stream-
 PriceFeed ing data is not stored in a database.
Positions Another input window, with data from a different external source. Both
|——| Positions and PriceFeed are included as windows, rather than streams,
(| so that the data can be aggregated.
+ Posidons
VWAP Represents a simple continuous query that performs an aggregation,
—. similar to a SQL Select statement with a Group By clause.
| WiWAP

IndividualPositions

Represents a simple continuous query that performs a join of Positions
and VWAP, similar to a SQL FROM clause that produces a join.

'
L
& IrdividuaPostions
ValueByBook Another simple query that aggregates data from the stream Individual
- Positions.
+ WaheRyBadk

Continuous Computation Language

CCL isthe primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CCL supports sophisticated data selection and calculation capabilities, including features
such as: data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous

2 Sybase Event Stream Processor

CHAPTER 1: Introduction

execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time an event arrives from one of its datasources.

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
an SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. ESP servers are
optimized for incremental processing, hence the query optimization is different than for
databases. Compilation is typically performed within Event Stream Processor Studio, but it
can also be performed by invoking the CCL compiler from the command line.

SPLASH

Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has
similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

Authoring Methods

Event Stream Processor Studio provides visual and text authoring environments for
developing projects.

In the visual authoring environment, you can develop projects using graphical tools to define
streams and windows, connect them, integrate with input and output adapters, and create a
project consisting of queries.

In the text authoring environment, you can develop projects in the Continuous Computation
Language (CCL), as you would in any text editor. Create data streams and windows, develop
queries, and organize them in hierarchical modules and projects.

You can easily switch between the Visual editor and the CCL editor at any time. Changes made
in one editor are reflected in the other. You can also compile projects within Studio.

Programmers Reference 3

CHAPTER 1: Introduction

In addition to its visual and text authoring components, Studio includes environments for
working with sample projects, and for running and testing applications with a variety of
debugging tools. Studio also lets you record and playback project activity, upload data from
files, manually create input records, and run ad hoc queries against the server.

If you prefer to work from the command line, you can develop and run projects using the
esp_server, esp_client, and esp_compiler commands. For a full list of Event Stream

Processor utilities, see the Utilities Guide.

4 Sybase Event Stream Processor

CHAPTER 2 CCL Project Basics

ESP projects are written in CCL, an SQL-like language which specifies a data flow (by
defining streams, windows, operations, and connections), and provides the capability to
incorporate functions written in other languages, such as SPLASH, to handle more complex
computational work.

Windows

A window is a stateful element that can be named or unnamed, and retains rows based on a
defined retention policy.

Since a window is a stateful element, with an underlying store, it can perform any operation
specified by the opcode of an incoming event record. Depending on what changes are made to
the contents of the store by the incoming event and its opcode, a window can produce output
event records with different opcodes.

For example, if the window is performing aggregation logic, an incoming event record with an
insert opcode can update the contents of the store and thus output an event record with an
update opcode. The same could happen in a window implementing a left join.

A window can produce an output event record with same opcode as the input event record. If,
for example, a window implemented a simple copy or a filter without any additional clauses,
the input and output event records would have the same opcode.

An incoming event record with an insert opcode can produce an output event record with a
delete opcode. For example, a window with a count-based retention policy (say keep 5
records) will delete those records from the store when the sixth event arrives, thus producing
an output event record with a delete opcode.

Retention

A retention policy specifies the maximum number of rows or the maximum period of time that
data are retained in a window.

In CCL, you can specify a retention policy when defining a Window. You can also create an
Unnamed Window by specifying a retention policy on a Window or Delta Stream when it is
used as a source to another element.

Retention is specified through the KEEP clause. You can limit the number of records in a
window based on either the number, or age, of records in the window. These methods are
referred to as count-based retention and time-based retention, respectively. Or, you can use the
ALL modifier to explicitly specify that the window should retain all records.

Programmers Reference 5

CHAPTER 2: CCL Project Basics

Note: If you do not specify a retention policy, the window retains all records. This can be
dangerous: the window can keep growing until all memory is used and the system shuts down.
The only time you should have a window without a KEEP clause is if you know that the
window size will be limited by incoming delete events.

Including the EVERY modifier in the KEEP clause produces a Jumping Window, which deletes
all of the retained rows when the time interval expires or a row arrives that would exceed the
maximum number of rows.

Specifying the KEEP clause with no modifier produces a Sliding Window, which deletes
individual rows once a maximum age is reached or the maximum number of rows are retained.

Note: You can specify retention on input windows (or windows where data is copied directly
from its source) using either log file-based stores or memory-based stores. For other windows,
you can only specify retention on windows with memory-based stores

Count-based Retention
In a count-based policy, a constant integer specifies the maximum number of rows retained in
the window. You can use parameters in the count expression.

A count-based policy also defines an optional SLACK value, which can enhance performance
by requiring less frequent cleaning of memory stores. A SLACK value accomplishes this by
ensuring that there are no more than N + S rows in the window, where N is the retention size
and S is the SLACK value. When the window reaches N + S rows, the system purges S rows.
The larger the SLACK value, the better the performance, since there is less cleaning required.

Note: The SLACK value cannot be used with the EVERY modifier, and thus cannot be used in
a Jumping Windows retention policy.

The default value for SLACK is 1, which means that after the window reaches the maximum
number of records, every new record inserted deletes the oldest record. This causes a
significant impact on performance. Larger slack value s improve performance by reducing the
need to constantly delete rows.

Count-based retention policies can also support retention based on content/column values
using the PER sub-clause. A PER sub-clause can contain an individual column or a comma-
delimited list of columns. A column can only be used once in a PER sub-clause. Specifying the
primary key or autogenerate columns as a column in the PER sub-clause will result in a
compiler warning. This is because these are unique entities for which multiple values cannot
be retained.

The following example creates a Sliding Window that retains the most recent 100 records that
match the filter condition. Once there are 100 records in the window, the arrival of a new
record causes the deletion of the oldest record in the window.

CREATE W NDOW Last 100Tr ades PRI MARY KEY DEDUCED

KEEP 100 ROWB

AS SELECT * FROM Tr ades
VWHERE Tr ades. Vol une > 1000;

6 Sybase Event Stream Processor

CHAPTER 2: CCL Project Basics

Adding the SLACK value of 10 means the window may contain as many as 110 records before
any records are deleted.

CREATE W NDOW Last 100Tr ades PRI MARY KEY DEDUCED
KEEP 100 ROAS SLACK 10

AS SELECT * FROM Tr ades

VWHERE Tr ades. Vol une > 1000;

This example creates a Jumping Window named TotalCost from the source stream Trades.
This window will retain a maximum of ten rows, and delete all ten retained rows on the arrival
of a new row.

CREATE W NDOW Tot al Cost
PRI MARY KEY DEDUCTED
AS SELECT
trd. *,
trd.Price * trd. Size Total Cst
FROM Trades trd
KEEP EVERY 10 ROW5;

The following example creates a sliding window that retains 2 rows for each unique value of
Symbol. Once 2 records have been stored for any unique Symbol value, arrival of a third
record (with the same Symbol value) will result in deletion of the oldest stored record with the
same Symbol value.

CREATE SCHEMA Tr adesSchema (
Id integer,
TradeTi me date,
Venue string,
Synbol string,
Price float,
Shares integer)

1

CREATE | NPUT W NDOW Tr adesW n1
SCHEMA Tr adesSchema
PRI MARY KEY(I d)
KEEP 2 ROAS PER(Synbol)

Time-based Retention

In a Sliding Windows time-based policy, a constant interval expression specifies the
maximum age of the rows retained in the window. In a Jumping Window time-based retention
policy, all the rows produced in the specified time interval are deleted after the interval has
expired.

The following example creates a Sliding Window that retains each record received for ten
minutes. As each individual row exceeds the ten minute retention time limit, it is deleted.
CREATE W NDOW Recent Posi ti ons PRI MARY KEY DEDUCED

KEEP 10 M NS
AS SELECT * FROM Posi tions;

Programmers Reference 7

CHAPTER 2: CCL Project Basics

This example creates a Jumping Window named Win1 that keeps every row that arrives within
the 100 second interval. When the time interval expires, all of the rows retained are deleted.

CREATE W NDOW W n1

PRI MARY KEY DEDUCED

AS SELECT * FROM Sour cel
KEEP EVERY 100 SECONDS;

The PER sub-clause supports content-based data retention, wherein data is retained for a
specific time period (specified by an interval) for each unique column value/combination. A
PER sub-clause can contain a single column or a comma-delimited list of columns, but you
can use each column only once in the same PER clause.

Note: Time based windows retain data for a specified time regardless of their grouping.

The following example creates a jumping window that retains 5 seconds worth of data for each
unique value of Symbol.

CREATE SCHEMA Tr adesSchema (
Id integer,
Tr adeTi ne dat e,
Venue string,
Synbol string,
Price fl oat,
Shares integer)

1

CREATE | NPUT W NDOW Tr adesW n2
SCHEMA Tr adesSchema
PRI MARY KEY(I d)
KEEP EVERY 5 SECONDS PER(Synbol)

Retention Semantics

When the insertion of one or more new rows into a window triggers deletion of preexisting
rows (due to retention), the window propagates the inserted and deleted rows downstream to
relevant streams and subscribers. However, the inserted rows are placed before the deleted
rows, since the inserts trigger the deletes.

Named Windows

A named window is explicitly created using a CREATE WINDOW statement, and can be
referenced in other queries.

Named windows can be classed as input, output, or local. An input window can send and
receive data through adapters. An output window can send data to an adapter. Both input and
output windows are visible externally and can be subscribed to or queried. A local window is
private and invisible externally. When a qualifier for the window is missing, it is presumed to
be of type local.

8 Sybase Event Stream Processor

CHAPTER 2: CCL Project Basics

Table 2. Named Window Capabilities

Type Receives Data From | Sends Data To | Visible Externally

input Input adapter or external | Other windows, delta | Yes
application that sends data | streams, and/or out-
into ESP using the ESP put adapters

SDK
output Other windows, streams, | Other windows, delta | Yes
or delta streams streams, and/or out-
put adapters
local Other windows, streams, | Other windows or No
or delta streams delta streams

Unnamed Windows

An unnamed window is an implicitly created stateful element that cannot be referenced or
used elsewhere in a project.

An unnamed window is implicitly created when the KEEP clause is used with a source name in
the FROM clause of a statement.

Note: On a Delta Stream, only unnamed windows can be created by specifying the KEEP
clause in the FROM clause.

Examples

This example creates an unnamed window on the input Tr ades for the MaxTr adePri ce
window to keep track of a maximum trade price for all symbols seen within the last 10000
trades:

CREATE W NDOW MaxTr adePri ce

PRI MARY KEY DEDUCED

STORE S1

AS SELECT trd. Synbol, max(trd.Price) MaxPrice
FROM Trades trd KEEP 10000 ROWS

GROUP BY trd. Synbol ;

This example creates an unnamed window on Tr ades, and MaxTr adePr i ce keeps track
of the maximum trade price for all the symbols during the last 10 minutes of trades:

CREATE W NDOW MaxTr adePri ce

PRI MARY KEY DEDUCED

STORE S1

AS SELECT trd. Synbol, nmax(trd.Price) MaxPrice
FROM Trades trd KEEP 10 M NUTES

GROUP BY trd. Synbol ;

This example creates a TotalCost Unnamed Window from the source stream Trades. Jumping
Window will retain ten rows, and clear all rows on the arrival of the 11th row.

Programmers Reference 9

CHAPTER 2: CCL Project Basics

CREATE DELTA STREAM Tot al Cost
PRI MARY KEY DEDUCTED
AS SELECT
trd. *,
trd.Price * trd. Size Total Cst
FROM Trades trd
KEEP EVERY 10 ROW5;

In all three examples, Tr ades can be a delta stream, or a window.

Delta Streams

Delta streams are stateless elements that can understand all opcodes.

You can use a delta stream anywhere you use a computation, filter, or union, but do not need to
maintain a state. A delta stream performs these operations more efficiently than a window
because it keeps no state, thereby reducing memory use and increasing speed.

While a delta stream does not maintain state, it can interpret all of the opcodes in incoming
event records. The opcodes of output event records depend on the logic implemented by the
delta stream.

Example
This example creates a delta stream named Del t aTr ades that incorporates the getrowid
and now functions.

CREATE LOCAL DELTA STREAM Del t aTr ades
SCHEMA (
Rowi d | ong,
Synbol STRI NG
Ts bigdatetine,
Price MONEY(2),
Vol une | NTEGER,
ProcessDat e bi gdatetine)
PRI MARY KEY (Ts)
AS SELECT getrowid (TradesW ndow) Row d,
Tr adesW ndow. Synbol ,
TradesW ndow. Ts Ts,
TradesW ndow. Pri ce,
Tr adesW ndow. Vol une,
now() ProcessDate
FROM Tr adesW ndow

CREATE QUTPUT W NDOW Tr adesQut
PRI MARY KEY DEDUCED
AS SELECT * FROM Del t aTr ades ;

10

Sybase Event Stream Processor

CHAPTER 2: CCL Project Basics

Comparing Streams, Windows, and Delta Streams

Streams, windows, and delta streams offer different characteristics and features, but also share

common designation, visibility, and column parameters.

The terms "stateless" and "stateful" commonly describe the most significant difference
between windows and streams. A stateful element has the capacity to store information, while
a stateless element does not.

tention policy)

Feature Capabili- | Streams Windows Delta Streams
ty
Type of element Stateless Stateful, due to reten- | Stateless
tion and store capabili-
ties
Data retention None Yes, rows (based on re- | None

Available store types

Not applicable

Memory store or log
store

Not applicable

Element types that can
be derived from this el-
ement

Stream or a Window
with an aggregation
clause (GROUP BY)

Stream, Window, Delta
Stream

Stream, Window, Delta
Stream

tion operations

Primary key Required | No Yes, explicit or de- Yes, explicit or de-
duced duced
Support for aggrega- No Yes No

Behavior on receiving
update

Receives and produces
insert

Receives and produces
update

Receives and produces
update

Behavior on receiving
insert

Receives and produces
insert

Receives and produces
insert

Receives and produces
insert

Behavior on receiving
delete

Receives but ignores

Receives and produces
delete

Receives and produces
delete

Streams, windows, and delta streams share several important characteristics, including
implicit columns and visibility rules.

Programmers Reference

11

CHAPTER 2: CCL Project Basics

Input/Output/Local

You can designate streams, windows, and delta streams as input, output, or local.

Input/Output Streams and Windows

Input streams and windows can accept data from a source external to the project using an input
adapter or by connecting to an external publisher. You can attach an output adapter or connect
external subscribers directly to an input window or input stream. You can also use the SQL
interface to SELECT rows from an input window, INSERT rows in an input stream or INSERT/
UPDATE/DELETE rows in an input window.

Output windows, streams and delta streams can publish data to an output adapter or an
external subscriber. You can use the SQL interface to query (that is SELECT) rows from an
output window.

Local streams, windows, and delta streams are invisible outside the project and cannot have
input or output adapters attached to them. You cannot subscribe to or use the SQL interface to
query the contents of local streams, windows, or delta streams.

Examples
This is an input stream with a filter:

CREATE SCHEMA nySchema (Col 1 | NTEGER, Col 2 STRI NG ;
CREATE | NPUT STREAM | Str2 SCHEMA mySchena
VWHERE | Str 2. Col 2=' abcd';

This is an output stream:

CREATE QUTPUT STREAM OStr 1
AS SELECT A Col1 col1, A Col2 col2
FROM I Strl1 A

This is an input window:

CREATE SCHEMA nySchema (Col 1 | NTEGER, Col 2 STRI NG ;
CREATE MEMORY STORE ny St or e;
CREATE | NPUT W NDOW | W n1l SCHEMA mySchena

PRI MARY KEY(Col 1)

STORE nySt or e;

This is an output window:

CREATE SCHEMA nySchema (Col 1 | NTEGER, Col 2 STRI NG ;
CREATE MEMORY STORE ny St or e;
CREATE QUTPUT W NDOW OW n1

PRI MARY KEY (Col 1)

STORE ny St or e

AS SELECT A.Coll coll, A Col2 col2

FROM | Wn1 A;

12

Sybase Event Stream Processor

Local Streams and Windows
Use a local stream, window, or delta stream when the stream does not need an adapter, or to
allow outside connections. Local streams, windows, and delta streams are visible only inside
the containing CCL project, which allows for more optimizations by the CCL compiler.
Streams and windows that do not have a qualifier are local.

CHAPTER 2: CCL Project Basics

Note: A local window cannot be debugged because it is not visible to the ESP Studio run/test
tools such as viewer or debugger.

Examples

This is a local stream:

CREATE SCHEMA nySchema (Col 1 | NTEGER, Col 2 STRING);
CREATE LOCAL STREAM LStr1
AS SELECT i.Col 1 col 1,

FROM I Strl i;

This is a local window:

i.Col 2 col 2

CREATE SCHEMA nySchema (Col 1 | NTEGER, Col 2 STRING);

CREATE MEMORY STORE nySt or e;

CREATE LOCAL W NDOW LW n1
PRI MARY KEY (Col 1)

STORE ny St or e

AS SELECT i.Col 1 col 1,

FROM IStr1 i;

Implicit Columns

i.Col 2 col 2

All streams, windows, and delta streams use three implicit columns called ROWID,
ROWTIME, and BIGROWTIME.

Column Datatype Description

ROWID long Provides a unique row identification number for
each row of incoming data.

ROWTIME date Provides the last modification time as a date with
second precision.

BIGROWTIME bigdatetime Provides the last modification time of the row with

microsecond precision. You can perform filters

and selections based on these columns, like filter-
ing out all of those data rows that occur outside of

business hours.

You can refer to these implicit columns just like any explicit column (for example, using the
st r eam col um convention).

Programmers Reference

13

CHAPTER 2: CCL Project Basics

Schemas

A schema defines the structure of data rows in a stream or window.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

There are two ways to create a schema: you can create a named schema using the CREATE

SCHEMA statement or you can create an inline schema within a stream or window definition.
Named schemas are useful when the same schema will be used in multiple places, since any
number of streams and windows can reference a single named schema.

Simple Schema CCL Example

This is an example of a CREATE SCHEMA statement used to create a named schema.
Tr adeSchena represents the name of the schema.

CREATE SCHEMA Tr adeSchema (
Ts Bl GDATETI ME,
Synbol STRI NG
Price MONEY(4),
Vol une | NTEGER

)
This example uses a CREATE SCHEMA statement to make an inline schema:

CREATE STREAM trades SCHEMA (
Ts bigdatetine,
Synmbol STRI NG,
Price MONEY(4),
Vol ume | NTEGER

Stores

Set store defaults, or choose a log store or memory store to specify how data from a window is
saved.

If you do not set a default store using the CREATE DEFAULT STORE statement, each window
is assigned to a default memory store. You can use default store settings for store types and
locations if you do not assign new windows to specific store types.

Memory Stores
A memory store holds all data in memory. Memory stores retain the state of queries for a
project from the most recent server start-up for as long as the project is running. Because query

14

Sybase Event Stream Processor

CHAPTER 2: CCL Project Basics

state is retained in memory rather than on disk, access to a memory store is faster than to a log
store.

Use the CREATE MEMORY STORE statement to create memory stores. If no default store is
defined, new windows are automatically assigned to a memory store.

Log Stores

The log store holds all data in memory, but also logs all data to the disk, meaning it guarantees
data state recovery in the event of a failure. Use a log store to be able to recover the state of a
window after a restart.

Use the CREATE LOG STORE statement to create a log store. You can also set a log store as a
default store using the CREATE DEFAULT STORE statement, which overrides the default
memory store.

Log store dependency loops are a concern when using log stores, as they cause compilation
errors. Log store loops can be created when you use multiple log stores in a project, and assign
windows to these stores. The recommended way to use a log store is to either assign log stores
to source windows only or to assign all windows in a stream path to the same store. If you use
| ogst or el for n of those windows, then use | ogst or e2 for a different window, you
should never use | ogst or el again further down the chain. Put differently, if Window Y
assigned to Logstore B gets its data from Window X assigned to Logstore A, no window that
(directly or indirectly) gets its data from Window Y should be assigned to Logstore A.

CCL Continuous Queries

Build a continuous query using clauses and operators to specify its function. This section
provides reference for queries, query clauses, and operators.

Syntax

sel ect _cl ause
fromcl ause

[mat chi ng_cl ause]

[wher e_cl ause]

[groupFilter_cl ause]
[groupBy_cl ause]

[groupOrder _cl ause]
[havi ng_cl ause]

Components
sel ect _cl ause Defines the set of columns to be included in the
output. See below and SELECT Clause for more
information.
fromcl ause Selects the source data is derived from. See below
and FROM Clause for more information.

Programmers Reference 15

CHAPTER 2: CCL Project Basics

mat chi ng_cl ause Used for pattern matching. See MATCHING
Clause and Pattern Matching for more informa-
tion.

wher e_cl ause Performs a filter. See WHERE Clauseand Filters

for more information.

groupFilter_cl ause Filters incoming data in aggregation. See
GROUP FILTER Clause and Aggregation for
more information.

groupBy_cl ause Specifies what collection of rows to use the ag-
gregation operation on. See GROUP BY Clause
and Aggregation for more information.

groupOrder _cl ause Orders the data in a group before aggregation. See
GROUP ORDER BY Clauseand Aggregationfor
more information.

havi ng_cl ause Filters data that is output by the derived compo-
nents in aggregation. See HAVING Clause and

Aggregation for more information.

Usage

CCL queries are embedded in theCREATE STREAM, CREATE WINDOW, and CREATE DELTA
STREAM statements, and are applied to the inputs specified in the FROM clause of the query
todefine the contents of the new stream or window. The example below demonstrates the use
of both the SELECT clause and the FROM clause as would be seen in any query.

The SELECT clause is used directly after the AS clause. The purpose of the SELECT clause is
to determine which columns from the source or expressions the query is to use.

Following the SELECT clause, the FROM clause names the source used by the query.
Following the FROM clause, implement available clauses to use filters, unions, joins, pattern
matching, and aggregation on the queried data.

Example
This example obtains the total trades, volume, and VMWAP per trading symbol in five minute
intervals.

[...]
SELECT
g. Synbol ,
(trunc(q. TradeTinme) + (((q. TradeTime - trunc(q. TradeTi me))/
300) *300)) Fi veM nut eBucket
sun(g. Shares * q.Price)/sun(qg. Shares) Wwap,
count (*) Total Trades,
sun{ g. Shares) Tot al Vol une
FROM

16

Sybase Event Stream Processor

CHAPTER 2: CCL Project Basics

Qlrades q
[...]

Adapters

Adapters connect the Event Stream Processor to the external world.

An input adapter connects an input stream or window to a data source. It reads the data output
by the source and modifies it for use in an ESP project.

An output adapter connects an output stream or window to a data sink. It reads the data output
by the ESP project and modifies it for use by the consuming application.

Adapters are attached to input streams and windows, and output streams and windows, using
the ATTACH ADAPTER statement and they are started using the ADAPTER START statement.
In some cases it may be important for a project to start adapters in a particular order. For
example, it might be important to load reference data before attaching to a live event stream.
Adapters can be assigned to groups and the ADAPTER START statement can control the start
up sequence of the adapter groups.

See the Adapters Guide for detailed information about configuring individual adapters,
datatype mapping, and schema discovery.

Order of Elements

Determine the order of CCL project elements based on clause and statement syntax definitions
and limitations.

Define CCL elements that are referenced by other statements or clauses before using those
statements and clauses. Failure to do so causes compilation errors.

For example, define a schema using a CREATE SCHEMA statement before a CCL CREATE
STREAM statement references that schema by name. Similarly, declare parameters and
variables in a declare block before any CCL statements or clauses reference those parameters
or variables.

You cannot reorder subclause elements within CCL statements or clauses.

Programmers Reference 17

CHAPTER 2: CCL Project Basics

18 Sybase Event Stream Processor

CHAPTER 3 CCL Language Components

To ensure proper language use in your CCL projects, familiarize yourself with rules on case-
sensitivity, supported datatypes, operators, and expressions used in CCL.

Datatypes

Sybase Event Stream Processor supports integer, float, string, money, long, and timestamp
datatypes for all of its components.

Datatype Description

i nt eger A signed 32-bit integer. The range of allowed values is -2147483648 to
+2147483647 (-23! to 231-1), Constant values that fall outside of this
range are automatically processed as long datatypes.

To initialize a variable, parameter, or column with a value of
-2147483648, specify (-2147483647) -1 to avoid CCL compiler errors.

| ong A signed 64-bit integer. The range of allowed values is
-9223372036854775808 to +9223372036854775807 (-2%3 to 263-1),

To initialize a variable, parameter, or column with a value of
-9223372036854775808, specify (-9223372036854775807) -1 to
avoid CCL compiler errors.

fl oat A 64-bit numeric floating point with double precision. The range of
allowed values is approximately -10398 through +10308,

string Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but can be no more than
65535 bytes.

noney A legacy datatype maintained for backward compatibility. It is a signed

64-bit integer that supports 4 digits after the decimal point. Currency
symbols and commas are not supported in the input data stream.

Programmers Reference 19

CHAPTER 3: CCL Language Components

Datatype

Description

nmoney(n)

A signed 64-bit numerical value that supports varying scale, from 1 to
15 digits after the decimal point. Currency symbols and commas are not
supported in the input data stream, however, decimal points are.

The supported range of values change, depending on the specified scale.
noney(1) :-922337203685477580.8 to 922337203685477580.7
noney(2) : -92233720368547758.08 to 92233720368547758.07
noney(3) : -9223372036854775.808 to 9223372036854775.807
noney(4) : -922337203685477.5808 to 922337203685477.5807
noney(5) : -92233720368547.75808 to 92233720368547.75807
noney(6) : -92233720368547.75808 to 92233720368547.75807
noney(7) : -922337203685.4775808 to 922337203685.4775807
noney(8) : -92233720368.54775808 to 92233720368.54775807
noney(9) : -9223372036.854775808 to 9223372036.854775807
nmoney(10) : -922337203.6854775808 to 922337203.6854775807
nmoney(11) :-92233720.36854775808 to 92233720.36854775807
noney(12) :-9223372.036854775808 to 9223,372.036854775807
nmoney(13) : -922337.2036854775808 to 922337.2036854775807
noney(14) :-92233.72036854775808 to 92233.72036854775807
nmoney(15) : -9223.372036854775808 to 9223.372036854775807

To initialize a variable, parameter, or column with a value of
-92,233.72036854775807, specify (-9...7) -1 to avoid CCL compiler
errors.

Specify explicit scale for money constants with Dn syntax, where n
represents the scale. For example, 100.1234567D7, 100.12345D5.

Implicit conversion between noney(n) types is not supported be-
cause there is arisk of losing range or scale. Perform the cast function to
work with money types that have different scale.

20

Sybase Event Stream Processor

CHAPTER 3: CCL Language Components

Datatype Description

bi gdat eti ne Timestamp with microsecond precision. The default format is YYY'Y-
MM-DDTHH:MM:SS:SSSSSS.

All numeric datatypes are implicitly cast to bi gdat et i ne.

The rules for conversion vary for some datatypes:

* Allbool ean,i nt eger,and | ong values are converted in
their original format to bi gdat et i ne

« Only the whole-number portions of money(n) andf | oat
values are converted to bi gdat et i me. Use the cast function to
convert oney(n) and f | oat values to bi gdat eti ne
with precision.

« All dat e values are multiplied by 1000000 and converted to mi-
croseconds to satisfy bi gdat et i me format.

« Allti nest anp values are multiplied by 1000 and converted to
microseconds to satisfy bi gdat et i me format.

ti mestanp Timestamp with millisecond precision. The default format is YYY'Y-
MM-DDTHH:MM:SS:SSS.

date Date with second precision. The default format is YYYY-MM-
DDTHH:MM:SS.

Programmers Reference 21

CHAPTER 3: CCL Language Components

Datatype Description

i nterval A signed 64-bit integer that represents the number of microseconds
between two timestamps. Specify ani nt er val using multiple units
in space-separated format, for example, "5 Days 3 hours 15 Minutes".
External data that is sent to an interval column is assumed to be in
microseconds. Unit specification is not supported for i nt er val
values converted to or from St r i ng data.

Whenani nt er val isspecified, the given interval must fit in a 64-bit
integer (I ong) when it is converted to the appropriate number of
microseconds. For each i nt er val unit, the maximum allowed val-
ues that fit in a long when converted to microseconds are:

* MICROSECONDS (MICROSECOND, MICROS): +/-
9223372036854775807

e MILLISECONDS (MILLISECOND, MILLIS): +/-
9223372036854775

+ SECONDS(SECOND, SEC): +/- 9223372036854
« MINUTES(MINUTE, MIN): +/- 153722867280
« HOURS(HOUR,HRY): +/- 2562047788

« DAYS(DAY): +/- 106751991

The values in parentheses are alternate names forani nt er val unit.
When the maximum value for a unit is specified, no other unit can be
specified or it causes an overflow. Each unit can be specified only once.

bi nary Represents a raw binary buffer. Maximum length of value is platform-
dependent, but can be no more than 65535 bytes. NULL characters are
permitted.
bool ean Value is true or false. The format for values outside of the allowed range
for bool ean is 0/1/false/true/y/nfon/off/yes/no, which is case-insen-
sitive.
Intervals

Interval syntax supports day, hour, minute, second, millisecond, and microsecond values.
Intervals measure the elapsed time between two timestamps, using 64 bits of precision. All
occurrences of intervals refer to this definition:

value | {value [{DAY[S] | {HOUR[S] | HR} | MNUTE[S]] | SEC] OND{ S]]
| {MLLISECOND[S] | MLLIS} | {MCROSECOND[S] | MCROS} 1 [...]}

If only val ue is specified, the timestamp default is M CROSECOND[S] . You can specify
multiple time units by separating each unit with a space, however, you can specify each unit

22

Sybase Event Stream Processor

CHAPTER 3: CCL Language Components

only once. For example, if you specify HOUR[S] , M N[UTE[S]], and SEC] ONDJ S]]
values, you cannot specify these values again in the interval syntax.

Each unit has a maximum value when not combined with another unit:

Time Unit Maximum Value Allowed
M CROSECOND[S] | M CRCs 9,223,372,036,854,775,807

M LLISECOND[S] | MLLIS 9,233,372,036,854,775

SEC] ONDY S] 9,223,372,036,854,775

M N[UTE[S]] 153,722,867,280,912

HOUR[S] | HR 2,562,047,788,015

DAY[S 106,751,991,167

These maximum values decrease when you combine units.

Specifying val ue with a time unit means it must be a positive value. If val ue is negative, it
is treated as an expression. That is, - 10 M NUTES in the interval syntax is treated as - (10

M NUTES) . Similarly, 10 M NUTES- 10 SECONDS s treatedas (10 M NUTES) - (10
SECONDS) .

The time units can be specified only in CCL. When specifying values for the interval column

using the API or adapter, only the numeric value can be specified and is always sent in
microseconds.

Examples
3 DAYS, 1 HOUR, 54 M NUTES

2 SECONDS, 12 M LLI SECONDS, 1 M CROSECOND

Operators

CCL supports a variety of numeric, nonnumeric, and logical operator types.

Arithmetic Operators

Arithmetic operators are used to negate, add, subtract, multiply, or divide numeric values.
They can be applied to numeric types, but they also support mixed numeric types. Arithmetic
operators can have one or two arguments. A unary arithmetic operator returns the same
datatype as its argument. A binary arithmetic operator chooses the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data-type, and
returns that type.

Programmers Reference 23

CHAPTER 3: CCL Language Components

Preincrement (++argument) value is incremented before it
is passed as an argument

Postincrement (argument++) value is passed and then in-
cremented

Operator | Meaning Example Usage
+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (Remainder) 8%3

A Exponent 43

- Change signs -3

++ Increment

++a (preincrement)

a++ (postincre-
ment)

Decrement

Predecrement (--argument) value is decremented before it
is passed as an argument

Postdecrement (argument--) value is passed and then de-
cremented

--a (predecrement)

a-- (postdecrement)

Comparison Operators
Comparison operators compare one expression to another. The result of such a comparison
can be TRUE, FALSE, or NULL.

Comparison operators use this syntax:
expressi onl comnpari son_operat or expressi on2

Operator | Meaning Example Us-
age

= Equality a0=al

1= Inequality a0l=al

< Inequality a0<>al

> Greater than a0!>al

>= Greater than or equal to a0l>=al

24

Sybase Event Stream Processor

CHAPTER 3: CCL Language Components

Operator | Meaning Example Us-
age
< Less than all<al
<= Less than or equal to a0l<=al
IN Member of a list of values. If the value is in the expression list's | a0 IN (al, a2, a3)
values, then the result is TRUE.

Logical Operators

Operator |Meaning Example Usage

AND Returns TRUE if all expressions are TRUE, and FALSE oth- | (a < 10) AND (b >
erwise. 12)

NOT Returns TRUE if all expressions are FALSE, and TRUE oth- | NOT (a=5)
erwise.

OR Returns TRUE if any of the expressions are TRUE, and (b=8)OR (b=6)
FALSE otherwise.

XOR Returns TRUE if one expression is TRUE and the other is (b=8) XOR (a>14)
FALSE. Returns FALSE if both expressions are TRUE or both
are FALSE.

String Operators

Operator

Meaning

Example Usage

+

Concatenates strings and returns another string.

Note: The + operator does not support mixed datatypes (such
as an integer and a string).

'go’ + ‘cart'

LIKE Operator

May be used in column expressions and WHERE clause expressions. Use the LIKE operator to
match string expressions to strings that closely resemble each other but do not exactly match.

Programmers Reference 25

CHAPTER 3: CCL Language Components

Operator

Syntax and Meaning

Example Usage

LIKE

Matches WHERE clause string expressions to strings that
closely resemble each other but do not exactly match.

conpar e_expressi on LI KE pat -
tern_mat ch_expressi on

The LIKE operator returns a value of TRUE if compare_ex-
pression matches pattern_match_expression, or FALSE if
it does not. The expressions can contain wildcards, where the
percent sign (%) matches any length string, and the under-
score (_) matches any single character.

Trades.StockName
LIKE "%Corp%"

[] Operator

The [] operator is only supported in the context of dictionaries and vectors.

Operator

Syntax and Meaning

Example Usage

I

Allows you to perform functions on rows other than the cur-
rent row in a stream or window.

stream or-w ndow nane[i ndex] . col um

stream-or-window-name is the name of a stream or window
and column indicates a column in the stream or window.
index isan expression that can include literals, parameters, or
operators, and evaluates to an integer. This integer indicates
the stream or window row, in relation to the current row or to
the window's sort order.

MyNamedWind-
ow[1].MyColumn

Order of Evaluation for Operators
When evaluating an expression with multiple operators, the engine evaluates operators with
higher precedence before those with lower precedence. Those with equal precedence are

evaluated from left to right within an expression. You can use parentheses to override operator
precedence, since the engine evaluates expressions inside parentheses before evaluating those
outside.

Note: The ~ operator is right-associative. Thus,a”b”*c=a” (b”c), not (a”b) " c.

The operators in order of preference are as follows. Operators on the same line have the same

precedence:

+.- (as unary operators)

AN

* 1, %

+, - (as binary operators and for concatenation)
=, 1=, <>, <, >, <=, >= (comparison operators)

26

Sybase Event Stream Processor

CHAPTER 3: CCL Language Components

e LIKE, IN, ISNULL, IS NOT NULL
« NOT

« AND

* OR, XOR

Expressions

An expression is a combination of one or more values, operators, and built in functions that
evaluate to a value.

An expression often assumes the datatype of its components. You can use expressions in many
places including:

e Column expressions in a SELECT clause
« A condition of the WHERE clause or HAVING clause

Expressions can be simple or compound. A built-in function such aslength() or pi() can also be
considered an expression.

Simple Expressions

A simple CCL expression specifies a constant, NULL, or a column. A constant can be a
number or a text string. The literal NULL denotes a null value. NULL is never part of another
expression, but NULL by itself is an expression.

You can specify a column name by itself or with the name of its stream or window. To specify
both the column and the stream or window, use the format "stream_name.column_name."

Some valid simple expressions include:
« stocks.vol une

e '"this is a string'

« 26

Compound Expressions

A compound CCL expression is a combination of simple or compound expressions.
Compound expressions can include operators and functions, as well as the simple CCL
expressions (constants, columns, or NULL).

You can use parentheses to change the order of precedence of the expression's components.
Some valid compound expressions include:

« sqrt (9) +1
e ('exanple' + '"test' + 'string')
e« (length ('exanple') *10) + pi()

Programmers Reference 27

CHAPTER 3: CCL Language Components

Sequences of Expressions

An expression can contain a sequence of expressions; separated by semicolons and grouped
using parentheses, to be evaluated in order. The type and value of the expression is the type and
value of the last expression in the sequence. For example,

e (varl := v.Price; var2 := v.Qantity; 0.0)

sets the values of the variables varl and var2, and then returns the value 0. O.

Conditional Expressions

A conditional CCL expression evaluates a set of conditions to determine its result. The
outcome of a conditional expression is evaluated based on the conditions set. In CCL, the
keyword CASE appears at the beginning of these expressions and follows a WHEN-THEN-
ELSE construct.

The basic structure looks like this:

CASE

VWHEN expressi on THEN expressi on
o]

ELSE expr essi on

END

The first WHEN expression is evaluated to be either zero or non-zero. Zero means the
condition is false, and non-zero indicates that it is true. If the WHEN expression is true, the
following THEN expression is carried out. Conditional expressions are evaluated based on the
order specified. If the first expression is false, then the subsequent WHEN expression is tested.
If none of the WHEN expressions are true, the ELSE expression is carried out.

A valid conditional expression in CCL is:

CASE

WHEN mar k>100 THEN gr ade: =i nval i d
VWHEN mar k>49 THEN gr ade: =pass
ELSE grade: =fai |

END

CCL Comments

Like other programming languages, CCL lets you add comments to document your code.
CCL recognizes two types of comments: doc-comments and regular multi-line comments.

The visual editor in the ESP Studio recognizes a doc-comment and puts it in the comment field
of the top-level CCL statement (such as CREATE SCHEMA or CREATE INPUT WINDOW)
immediately following it. Doc-comments not immediately preceding a top-level statement are
seen as errors by the visual editor with ESP Studio.

28

Sybase Event Stream Processor

CHAPTER 3: CCL Language Components

Regular multi-line comments do not get treated specially by the Studio and may be used
anywhere in the CCL project.

Begin a multi-line comment with / * and complete it with */ . For example:

/*

This is a nmulti-line coment.

All text within the begin and end tags is treated as a coment.
*/

Begin a doc-comment with / ** and end it with */ . For example:

/**

This is a doc-comment. Note that it begins with two * characters

i nstead of one. All text within the begin and end tags is recogni zed
by the Studi o visual editor and associated with the innmediately
following statement (in this case the CREATE SCHEMA st atenent).

*/

CREATE SCHEMA S1 ...

The CREATE SCHEMA statement provided here is incomplete; it is shown only to illustrate
that the doc comment is associated with the immediately following CCL statement.

It is common to delineate a section of code using a row of asterisks. For example:

/***

Do not nodify anything beyond this point w thout authorization

**/

CCL treats this rendering as a doc-comment because it begins with / * * . To achieve the same
effect using a multi line comment, insert a space between the first two asterisks: / * *.

Case-Sensitivity

Some CCL syntax elements have case-sensitive names while others do not.

All identifiers are case-sensitive. This includes the names of streams, windows, parameters,
variables, schemas, and columns. Keywords are case-insensitive, and cannot be used as
identifier names. Adapter properties also include case-sensitivity restrictions.

Most built-in function names (except those that are keywords) and user-defined functions are
case-sensitive. While the following built-in function names are case-sensitive, you can
express them in two ways:

» setOpcode, setopcode

« getOpcode, getopcode

» setRange, setrange

» setSearch, setsearch

» copyRecord, copyrecord

* deletelterator, deleteiterator
 getlterator, getiterator

Programmers Reference 29

CHAPTER 3: CCL Language Components

resetlterator, resetiterator
businessDay, businessday
weekendDay, weekendday
expireCache, expirecache
insertCache, insertcache
keyCache, keycache
getNext, getnext
getParam, getparam
datelnt, dateint

intDate, intdate

uniqueld, uniqueid
LeftJoin, leftjoin
valuelnserted, valueinserted

Example
Two variables, one defined as 'aVariable' and one as 'AVariable' can coexist in the same context
as they are treated as different variables. Similarly, you can define different streams or
windows using the same name, but with different cases.

30

Sybase Event Stream Processor

CHAPTER 4 CCL Statements

The CCL statement reference provides syntax, parameter descriptions, usage, and examples.

ADAPTER START Statement

Controls adapter start times.

Syntax

ADAPTER START
GROUPS { gr oupNarme[NOSTART] }, [, ...]

Usage

The ADAPTER START statement is optional. If the statement is absent, all output adapters start
in parallel, followed by all input adapters in parallel.

Using the ADAPTER START statement, adapters can be put into startup groups, where each
group is started sequentially. This is ensures that certain adapters are started, and load their
data, before others.

Adapter groups are created implicitly when their name is used in the GROUP clause of the
ATTACH ADAPTER statement. The order in which each groupName appears determines the
order in which the adapter groups start. Adapters that are not assigned to one of the ordered
groups are placed in a group that starts after all of the ordered groups have started. By default,
all output adapters in a group start in parallel, followed by all input adapters in parallel.

NOSTART identifies adapters that should not start automatically with the rest of the adapters.
The user can start these adapters using the external XMLRPC interface
(esp_cli ent. exe).

Errors are generated when ADAPTER START:

« References a group that does not exist.

« Doesnot reference all adapter start groups created with the ATTACH ADAPTER statement.
« References the same group more than once.

Example

The ATTACH ADAPTER statement creates two named adapters groups (RunGr oupl,
NoRunG oup), each containing one adapter. The ADAPTER START statement is executed
with instructions to start RunGr oup1. The NOSTART syntax instructs the project server not
to start NoRunGr oup.

Programmers Reference 31

CHAPTER 4: CCL Statements

ATTACH | NPUT ADAPTER csvl nRun
TYPE dsv_in
TO Tr adeW ndow
GROUP RunG oupl
PROPERTI ES
bl ockSi ze=1,
dat eFor mat =" %y/ % % %H: %Vt &8
delimter=,",
di r="$Proj ect Fol der/../data',
expect St r eamNaneOpcode=f al se,
fi el dCount =0,
file='stock-trades.csv',
filePattern='*.csv',
hasHeader =t r ue,
saf eOps=f al se,
ski pDel s=f al se,
ti mestanpFormat = ' %/ % %d % 9Vt U8 ;

ATTACH | NPUT ADAPTER csvI nNoRun
TYPE dsv_in
TO Tr adeW ndow
GROUP NoRunG oup
PROPERTI ES
bl ockSi ze=1,
dat eFor mat =' %Y/ %1 %d %t YoM UE'
delimter=,",
di r=" $Proj ect Fol der/../data',
expect St r eamNanmeCpcode=f al se,
fi el dCount =0,
file="stock-trades.csv',
filePattern='*.csv',
hasHeader =t r ue,
saf eOps=f al se,
ski pDel s=f al se,
ti mest anpFor mat = ' %Y/ % %d %H. YVt US'

ADAPTER START GROUPS NoRunG oup NOSTART, RunG oupl;

ATTACH ADAPTER Statement

Attach an adapter to a stream or window.

Syntax

ATTACH { | NPUT| QUTPUT } ADAPTER nane
TYPE type

TO st reanorw ndow

[GROUP gr oupNane]

[PROPERTI ES {prop=value} [, ...11];
Parameters
name Names to the adapter

32

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

type Specifies the type of the adapter
streamorwindow Specifies the stream or window to which you are attaching
the adapter
Usage

Adapters are defined with an inline definition of the type and the properties that make up the
adapter or else via an adapter property set. The type is the unique ID assigned to each adapter.
You can find each adapter's type in the Adapters Guide.

An ATTACH ADAPTER statement cannot appear after an ADAPTER START statement.

There is no statement that creates adapter groups. You can group adapters by providing the
groupname in the GROUP clause. This grouping is then later used in the ADAPTER START
statement to start the adapters in the prescribed order. You cannot specify a group without an
ADAPTER START statement.

An adapter marked as input can be attached only to an input stream or window. An adapter
marked as output can be attached to an input or output stream or window. An adapter (either
input or output) cannot be attached to a local stream or window. An adapter defined as an input
adapterinitscnxni file cannot be attached as an output adapter, and an adapter defined in its
cnxm file as an output adapter cannot be attached as an input adapter.

The property name and value pairs that are valid for an ATTACH ADAPTER statement are
dependent on the adapter type. The property names are case-insensitive. All specifications
relating to what properties are required by a particular adapter exist in that adapter's cnxmi
file, which is stored in the Sybase Event Stream Processor installation folder. This file is used
in the validation of properties.

Any adapter property you provide must have its name defined in the adapter'scnxmni file, and
the values for all properties must match their defined datatypes. If the same property is
provided twice, the compiler raises an error.

You can also specify property sets within an ATTACH ADAPTER statement. Property sets are
reusable sets of properties that are stored in the project configuration file. If you specify a
property set, verify that all required properties are set as individual properties. Property sets
override individual properties specified within the ATTACH ADAPTER statement.

Example

ATTACH | NPUT ADAPTER Macysl nvent ory

TYPE dsv_in

TO I nventoryl nfo

PROPERTI ES

dir="C:./ Operations/ Stock/ | nventory/ Macysl nventory',
file="inventory.csv',

propertyset '<name>';

Programmers Reference 33

CHAPTER 4: CCL Statements

CREATE DELTA STREAM Statement

Defines a stateless element that can interpret all operational codes (opcodes): insert, delete and
update.

Syntax

CREATE [LOCAL | QUTPUT] DELTA STREAM nane
[schena_cl ause]

primary_key_ cl ause

[local -decl are-bl ock]

as_cl ause
Query;
Components
name The name of the delta stream being created.
schema_clause Schema definition for new windows. If no schema clause is speci-
fied, it can be derived from the query.
primary_key_clause Set primary key. See PRIMARY KEY Clause for more informa-
tion.
local-declare-block (Optional) A declaration of variables and functions that can be
accessed in the query.
as_clause Introduces query to statement.
Query A query implemented in a statement. See Queries for more infor-
mation.
Usage

A delta stream is a stateless element that can understand all opcodes. A delta stream can be
used when a computation, filter, or union must be performed on the output of a window, but a
state does not need be maintained.

A delta stream typically forwards the opcode it receives. However, for a filter, a delta stream
modifies the opcode it receives. An input record with an insert opcode that satisfies the filter
clause has an insert opcode on the output. An input record with an update opcode, where the
update meets the criteria but the original record does not, outputs with an insert opcode.
However, if the old record meets the criteria, it outputs with an update opcode. An input record
with a delete opcode outputs with a delete opcode, as long as it meets the filter criteria.
CREATE DELTA STREAM is used primarily in computations that transform through a simple
projection.

See the <xref href="san1311804134032.xml">Using SPLASH in Flex Operators</xref>
topic for more details.

34

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

Restrictions

A delta stream cannot use functions that cannot be repeated, such as random() or now().
When a delta stream produces a delete record, the computed column in the record gets
recalculated, and as a result, will not match what was originally computed and inserted for
the record. Any downstream computation using this column could lead to incorrect results.
Anupdate is internally treated as a delete followed by an insert in many contexts and hence
an update would also lead to the same issue for delta streams using non-repeatable
functions.

When subscribing to a delta stream, the opcodes the delta stream generates must be treated
as safe opcodes. This means that any inserts/updates must be treated as upserts (insert if the
record does not exist and update otherwise). Similarly, any deletes must be treated as
deletes if they exist, otherwise they should be silently ignored.

There are no restrictions on the operations that a target node can perform when using a
delta stream as an input.

When the delta stream is defined using a Flex operator, the SPLASH code can output only
inserts or deletes. Upserts and updates are not allowed because the delta streams have no
state to handle them correctly. To perform an update, issue a delete, followed by an insert.
The query of a delta stream cannot contain clauses that perform aggregation or joins.

Examples
This creates a delta stream that computes total cost:

CREATE | NPUT W NDOW Tr ades SCHENMA (

Tr adel d | ong,

Synbol string,
Price nmoney(4),
Shar es i nt eger

)
PRI MARY KEY (Tradel d)

)

CREATE DELTA stream TradesW t hCost
PRI MARY KEY DEDUCED
AS SELECT

trd. Tr adel d,

trd. Synbol ,

trd. Price,

trd. Shares,

trd.Price * trd. Shares Tot al Cost

FROM

)

Trades trd

This creates a delta stream that filters out records where total cost is less than 10,000:

CREATE DELTA stream LargeTrades
PRI MARY KEY DEDUCED
AS SELECT * FROM TradesWthCost twe WHERE twc. Tot al Cost >= 10000

)

Programmers Reference 35

CHAPTER 4: CCL Statements

CREATE ERROR STREAM Statement

Create a stream that collects errors and the events that caused them.

Syntax
CREATE [LOCAL| QUTPUT] ERROR STREAM nane ON source [, source ...]

nameis a string that identifies the newly created error stream.

sourceis a string that identifies a previously defined stream or window.

Usage

Error streams collect error data from the specified streams. Each error record includes the
error code and the input event that caused the error. You can simply display these records for
monitoring purposes, or they may trigger more processing logic downstream, just like the
records from other streams.

In production environments, error streams are used for real-time monitoring of one or more
streams in the project. They are also used in development environments to monitor the input
and derived streams when debugging a project.

The visibility of an error stream is, by default, LOCAL. To make the error stream visible to
external monitoring tools or devices, you must specify OUTPUT when you create it.

You can define more than one error stream in a single project.

Examples
To create a single error stream (that is visible externally) to monitor all the streams in a project
with one input stream and two derived streams, enter:

CREATE QUTPUT ERROR STREAM Al | Errors ON | nput Stream DerivedStreant,
Deri vedSt r ean

To create separate error streams (both visible only locally) to monitor the input and derived
streams in a project with two input streams and three derived streams, enter:
CREATE ERROR STREAM I nput Errors ON | nput Streant, | nputStrean?

CREATE ERROR STREAM QueryErrors ON DerivedStreaml, DerivedStrean?,
Deri vedSt reans

36 Sybase Event Stream Processor

CHAPTER 4: CCL Statements

CREATE FLEX Statement

A flex operator takes input from one or more streams/windows and produces a derived stream
or window as its output. It allows the use of SPLASH code to specify customizable processing
logic.

Note: The name of the Flex operator exists only for labeling in Studio and cannot be referred
to in queries. Instead, refer to the output element.

Syntax

CREATE FLEX procedur eNane
IN inputl [KEEP keep_spec],
QUT out put _el enment
BEG N

[DECLARE
//variable and function declarations

END;]

ON i nput1 {
/] st atenents

}
[EVERY interval {
// periodically executing tasks

3l
[ON START TRANSACTI ON {

//tasks to be executed

/lat the start of every transaction
I
[ON END TRANSACTI ON {

//tasks to be executed

//at the end of each transaction

3l

END;

QUT out put _el ement
out put _el enent :
{{[QUTPUT/ LOCAL] STREAM nane schena_cl ause
[QUTPUT/ LOCAL] DELTA STREAM nanme schema_cl ause| PRI MARY

KEY{col um1, col um2, .. .)
[OQUTPUT/ LOCAL] W NDOW nane schenma_cl ause}
[PRI MARY KEY(col umil, colum2,...)][store_cl ause] [keep_cl ause]
[agi ng_cl ause]
}
Components
pr ocedur eName The name of the Flex operator being created.

Programmers Reference 37

CHAPTER 4: CCL Statements

IN i nput1 Inputs to the Flex operator are declared in the IN
clause. The inputs can be streams, delta streams,
windows, or outputs of another flex operator.

KEEP keep_spec The KEEP clause modifies the retention policy of
existing input elements that are either delta
streams or windows.

OUT out put _el enent The output of the Flex operator is defined in the
OUT clause. A Flex stream can have only one
output. The SCHEMA clause is mandatory for all
output types.

DECLARE ... END; (Optional) The DECLARE block can define vari-
ables and functions of all types, including com-
plex data types such as records, vectors, diction-
aries and event caches.

See the SPLASH Programmers Guide for addi-
tional information.

ON inputl The ON input clause must be declared for every
input of the Flex operator. The SPLASH code
specified in this block is executed each time an
input record is received. If an input element does
not require processing, use an empty ON input
clause.

EVERY i nterval (Optional) The EVERY interval clause allows you
to specify a block of code that is executed every
time the interval expires. The interval can be
specified explicitly, or specified through an inter-
val type parameter.

ON START TRANSACTION and ON END (Optional) The SPLASH statements specified in
TRANSACTION the START/END transaction block are executed
at the start/end of each transaction respectively.
You can individually specify a START TRANS-
ACTION block or END TRANSACTION block,
without the other block.

Usage

The CREATE FLEX statement is used to create a Flex operator that accepts any number of input
elements and produces one output element. The input elements are previously existing
streams, delta streams, and windows defined in the project. If the input element is a delta
stream or window, its retention policy can be modified by specifying a KEEP clause. The
output element is a stream, delta stream, or window with an unique name generated by the Flex

38

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

operator. Specification of the SCHEMA clause is mandatory for all output element types.
Specification of the PRIMARY KEY is mandatory for output elements that are delta streams or
windows.

The ON input clause contains the processing logic for inputs arriving on a particular input
element. Specification of the ON input clause is mandatory for each input of the Flex operator.
The ON START TRANSACTION and ON END TRANSACTION clauses are optional and contain
processing logic that should be executed at the start/end of each transaction respectively. The
optional EVERY interval clause contains logic that is executed periodically based on a fixed
time interval independent of any incoming events.

Restrictions

» A KEEP clause can be specified for the input of a Flex operator if the input element is a
window or a delta stream.

* You cannot declare functions in the ON input and EVERY clauses.

* You can define event cache types only in the local DECLARE block associated with the
statement.

* AFlexdeltastream (a Flex stream for which the output is a delta stream) cannot be used to
generate records with update or upsert opcodes. To generate records with these opcodes,
use a Flex window instead of a Flex delta stream.

« The SPLASH output statement can be used inside the body of a function defined only in
the local declare block of a Flex operator and not in a global declare block or a local declare
block of any other element.

Example
This example computes the average trade price every five seconds.

CREATE FLEX Conmput eAver agePri ce
I N NASDAQ Tr ades
OUT QUTPUT W NDOW Aver ageTr adePri ce SCHEMA (Symbol string,
Aver agePrice noney(4)) PRI MARY KEY(Synbol)
BEG N
DECLARE
typedef [|nmoney(4) Total Price; integer Nunmf Trades] total Rec_t;
dictionary(string,total Rec_t) averageDictionary;
END;
ON NASDAQ Trades {
total Rec_t rec := averageDi cti onary[NASDAQ Tr ades. Synbol] ;
if(isnull(rec)) {
aver ageDi cti onar y[NASDAQ Tr ades. Synbol] : =
[| Total Pri ce = NASDAQ Trades. Price; Nunf Trades = 1];
} else {
/1 accunul ate the total price and nunber of trades per input record
aver ageDi cti onar y[NASDAQ Tr ades. Synbol] : =
[| Total Price=rec. Total Pri ce + NASDAQ Trades. Pri ce;
NumOF Tr ades=r ec. Nun®X Tr ades + 1];

}

iE
EVERY 5 SECONDS {
total Rec_t rec;

Programmers Reference 39

CHAPTER 4: CCL Statements

for (symin averageDictionary) {
rec := averageDictionary[syni;
out put set Opcode([Synmbol =sym | Aver agePri ce=(rec. Total Pri ce/
rec. NuntX Trades);], upsert);
}
iE
END;

CREATE LIBRARY Statement

In order to use external C/C++ and Java functions in CCL expressions, you must first declare
them in your CCL project using the CREATE LIBRARY statement.

Syntax
CREATE LI BRARY | i braryName LANGUAGE {C| JAVA} FROM fi | eName(
returnType funcNane (argType [argNane],...);
Components
libraryName The user-specified name of the library.
C, JAVA Defines the language of the library. The names are case-insensitive.
fileName For C/C++ functions, the directory of the shared library. You can
use a path relative to the current directory.
For Java functions, the name of the class file without the .class
suffix. You can specify it as a string parameter. You can use the -j
option when starting the Event Stream Processor Server to provide
the locations of the class files.
funcName The name of the declared function.
returnType, argType Datatype of the return value of the function and an argument of the
function, respectively.
argName The name of an argument of the function.
Usage

Call declared functions using the | i br ar yNane. f uncNane notation.

Use the IMPORT statement to import the CREATE LIBRARY statement from a different CCL
file to your main project.

You can reference only one external library using the CREATE LIBRARY statement, but you
can reference the external library any number of times in multiple CREATE LIBRARY
statements.

40

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

Libraries are defined, which means you can use them before they have been declared.
However, if a global user-defined function uses an external C/C++ or Java function, you must
declare the library, specifying the function signature, before the global DECLARE block.

Note: C/C++ external library calls support all datatypes, namely boolean, integer, long, float,
money(n), date, bigdatetime, binary, and string.

Java external library calls support only integer, long, double, and string datatypes.

Complex types such as dictionaries, vectors, event caches and record types are not supported
in external functions.

Examples
Create a C/C++ Library
CREATE LI BRARY MyCFuncti ons LANGUAGE C FROM '/ opt/sybase/
MyFuncti ons. so" (
i nteger MyFuncl (integer, integer, float);
string MyFunc2(string);

Create a Java Function

CREATE LI BRARY MyJavaFuncti ons LANGUAGE JAVA FROM ' MyC ass' (
i nteger MyFuncl (integer, integer, float);
string MyFunc2(string);

i

CREATE LOG STORE Statement

Creates a log store for use by one or more windows. Unlike a memory store (which is the
default) a log store persists data to disk so that it can be recovered after a shutdown or failure.

Syntax

CREATE [DEFAULT] LOG STORE st or enane
PROPERTI ES

filename='filepath'

[sync={ true | false},]

[sweepanmount =si ze,]

[reservepct =si ze,]

[ckcount =si ze,]

[maxfil esize=fil esize];

Parameters
filename The absolute or relative path to the folder where log store files
should be written. The relative path is preferred.
maxfilesize The maximum size of the log store file in MB. Default is SMB.

Programmers Reference 41

CHAPTER 4: CCL Statements

sync Specifies whether the persisted data is updated synchronously
with every stream being updated. A value of true guarantees that
every record acknowledged by the system is persisted at the ex-
pense of performance. A value of false improves performance, but
it may result in a loss of data that is acknowledged, but not yet
persisted. Default is false.

reservepct The percentage of the log to keep as free space. Default is 20
percent.
sweepamount The amount of data, in megabytes, that can be cleaned in a single

pass. Default is 20 percent of maxfilesize.

ckcount The maximum number of records written before writing the in-
termediate metadata. Default is 10,000.

Components
st or enane Anidentifier that can be referenced in the STORE clause of stateful
elements. Must be unique.
filepath A path to the log store folder, enclosed in single quotes
si ze An integer.
filesize A size in MB.
Usage

A log store is a disk-optimized store that is persisted on the disk. The state of windows
assigned to a log store are restored upon recovery, and the state of memory store windows that
receive data from a log store window are recomputed when possible. Log stores are
implemented as memory mapped files. The filename parameter is required; however, sync,
sweepamount, reservepct, and ckcount are optional. If these parameters are not specified,
the store refers to their default values.

Specify parameters in the PARAMETERS clause, in any order.

You cannot specify memory store parameters for log store parameters, or log store parameters
for memory parameters.

If DEFAULT is specified, the store is the default store for the module or project. The store is
used for stateful elements that do not explicitly specify a store with a STORE clause. When a
store is not defined for the project or module, a default memory store is automatically created
for holding the stateful elements. Due to the restrictions on the use of log stores, making a log
store the default store for a project is NOT recommended

42

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

Example

CREATE LOG STORE nyStore
PROPERTI ES

fil ename="nyfile",

maxfil esi ze=16,
sweepanount =4,

ckcount =15000,

reservepct =20,

sync=f al se;

CREATE MEMORY STORE Statement

Creates a named memory store that one or more windows can be assigned to. Is not required
but can be used for performance optimization.

Syntax

CREATE [DEFAULT] MEMORY STORE st or enane
[PROPERTI ES

[NDEXTYPE={"'tree'|"' hash'},]

[1 NDEXSI ZEHI NT=si ze]]

Parameters

INDEXTYPE The type of index mechanism for the stored elements. The default
is' tree' .Usetreeforbinary trees. Binary trees are predictable
in use of memory and consistent in speed. Use hash for hash
tables, as hash tables are faster, but they often consume more
memory.

INDEXSIZEHINT (Optional) Determines the initial number of elements in the hash
table, when using hash. The value is in units of 1024. Setting this
higher consumes more memory, but reduces the chances of spikes
in latency. Default is 8KB.

Components

st or enane An identifier that can be referenced in the STORE clause of stateful
elements. Must be unique.

"tree' Default index mechanism.

" hash' Alternative index mechanism.

Usage

A memory store holds all the retained records for one or more windows. The data is held in
memory and does not persist on the disk. The INDEXTYPE parameter is optional, and the store

Programmers Reference 43

CHAPTER 4: CCL Statements

supports' tree' or' hash' index types. If you do not specify the index type and size
parameters, the store refers to their default values.

Specify parameters in the PARAMETERS clause, but this clause is optional for memory stores,
since all its parameters are optional. Properties may be specified in any order.

You cannot specify memory stores parameters for log stores, or log store parameters for
memory stores.

If you specify DEFAULT, the store is the default store for the module or project. The store is
used for stateful elements that do not explicitly specify a store with a STORE clause. When a
store is not defined for the project or module, a default memory store is automatically created
for holding the stateful elements.

Example

CREATE DEFAULT MEMORY STORE Storel PROPERTIES | NDEXTYPE=' hash',
| NDEXSI ZEHI NT=16;

CREATE MODULE Statement

Create a module that contains specific functionality that you can load in a CCL project using
the LOAD MODULE statement.

Syntax

CREATE MODULE nodul eNane
INinputl [,...]
QUT outputl[,...]
BEGA N
st at ement s;
END;

Components

nodul eNane The name of the module.

i nput 1 The input stream or window.

out putl The output stream or window.

Usage

All CCL statements are valid in a module except:
e CREATE MODULE

e ATTACH ADAPTER

e ADAPTER START GROUPS

nmodul eName should be unique across all object names in the scope in which the statement
exists. The names in the IN and OUT clauses must match the names of the streams or windows

44

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

defined in the BEGIN-END block. All streams or windows with input visibility must be listed in
the IN clause. All streams, windows, and delta streams (including those created by the flex
operator), with output visibility must be listed in the OUT clause. The compiler generates an
error ifany input or output objects exist in the module and are not listed in their respective IN or
OUT clause.

While you can use multiple CREATE statements within modules, such as the CREATE
WINDOW and CREATE STREAM statements, the CREATE STORE statement uses a special
syntax that cannot be used outside of a module. The syntax used within a module does not
allow you to specify any store properties. The CREATE STORE syntax within a module is:
CREATE [DEFAULT] {MEMORY| LOG STORE storel-i nnodul e;

Note: All CREATE MODULE statement compilation errors are fatal.

Restrictions

* You cannot use the CREATE MODULE statement within the module definition.

Example
This example creates a simple module that filters data based on a column's values:

CREATE MODULE filter_nodul e

I N nodul el n
OUT nodul eCut
BEG N

CREATE SCHEMA filter_schema (Val ue | NTEGER);

CREATE | NPUT STREAM nodul el n SCHEMA filter_schens;

CREATE QUTPUT STREAM nodul eQut SCHEMA filter Schema AS SELECT *
FROM nodul el n WHERE nodul el n. Val ue > 10;
END;

CREATE SCHEMA Statement

Defines a named schema that can be referenced later and reused by one or more streams/
windows in the project or module.

Syntax

CREATE SCHEMA nane {(col umane type [,...])]
I NHERI TS [FROM schema_nane [,...] [(col umane type [,...])]1};

Components
name An identifier that is referenced while defining
stateless or stateful elements.
columnname The unique name of a column.
type The datatype of the specified column.

Programmers Reference 45

CHAPTER 4: CCL Statements

schema_name The name of another schema.

Usage

The CREATE SCHEMA statement defines a named schema that can be referenced by stateful
and stateless elements such as streams or windows. You can define the schema as an inline
schema definition, or so that it inherits the definition from another schema.

You can extend a schema by setting it up to inherit an existing schema definition and
appending more columns. Additional columns you specify are appended to the inherited
schema. Otherwise, the inherited schema definition remains an exact replica of the specified
named schema. Alternatively, you can extend a schema by inheriting multiple schema
definitions.

The concatenation of the schemas is implicit in the specified order. Additional columns are
appended. These column names must be unique, otherwise an error is raised.

Examples

This creates two schemas, synbol _schenaandt r ade_schemma, whichisextended from
synbol _schena:

CREATE SCHEMA synbol _schema (Synbol STRI NG ;

CREATE SCHEMA trade_schema | NHERI TS FROM synbol _schema (Price
FLOAT) ;

CREATE SPLITTER Statement

The Splitter construct is a multi-way filter that sends data to different target streams depending
on the filter condition. It works similar to the ANSI 'case’ statement.

Syntax

CREATE [[LOCAL] | QUTPUT] SPLI TTER nanme AS

{ WHEN condition THEN {target_streamane [, .]} } [.]

[ELSE {target_streamane[,..]}]

SELECT { colum_list | * }

FROM source_nane [{[alias] [KeepC ause]}|{[KeepC ause][alias]}]

)

Components
condition Any expression that results ina 0 or 1.
name Any string specified to identify the splitter construct. Must be
unique within a module or top level project.
target_streamname Name of a stream or delta stream into which the filtered records are
inserted. Must be unique within the module or top level project.

46 Sybase Event Stream Processor

CHAPTER 4: CCL Statements

source_name The source (stream, window, or delta stream) that provides input
data on which the splitter logic is applied.

column_list A set of expressions referring only to the columns in the source
stream, constant expressions, constant literals, global variables and
functions, or parameters.

Usage

The target stream or delta streams are implicitly defined by the compiler. The schema for the
target streams are derived based on the column_list specification. All the targets are defined as
either local or output depending on the visibility clause defined for the splitter. The default is
local. Note that when the splitter has an output visibility, output adapters can be directly
attached to the splitter targets, even though those targets are implicitly defined.

Each filter condition in a splitter can have one or more target streams defined. However, each
target stream name can appear only once in the list. This allows the possibility to send an event
down multiple paths in the graph as the example below shows.

Note: When a condition evaluates to true, the following conditions are neither considered nor
evaluated.

The semantics of the splitter are that of a switch statement. Whenever the condition evaluates
to true (non-zero value), the record as projected in the column_list is inserted into the
corresponding target streams. If the source is a:

« Stream, the targets are also streams.
» Delta stream or window, the targets are delta streams.

If the source is a window or delta stream, the primary keys need to be copied as-is. The other
columns can be changed.

Note: When the source is a window or a delta stream, the warning about unpredictable results
being produced if one of the projections contains a non-deterministic expressions that applies
for delta streams also applies for splitters.

Local DECLARE BLOCKS cannot be specified on SPLITTERS. However, functions,
parameters, and variables in the global DECLARE BLOCK can be accessed in the condition
or column expressions in the projection.

Examples
Createa Splitter

In the following example, if a trade event arrives where the Symbol is IBM or ORCL, then the
eventis directed to both ProcessHardWareStock and ProcessSoftwareStock streams. If atrade
event arrives where the Symbol is either 'SAP' or 'MSFT', then it is directed to the

ProcessSoftwareStock stream. All other trades are directed to the ProcessOtherStock stream.

CREATE SPLITTER Splitterl AS
WHEN Tr ades. Synmbol IN ("I1BM, 'ORCL') THEN ProcessHar dWareSt ock,

Programmers Reference 47

CHAPTER 4: CCL Statements

Pr ocessSof t war eSt ock

VHEN Trades. Synmbol IN (' SAP', 'MSFT') THEN ProcessSof t war eSt ock
ELSE ProcessQ her St ock

SELECT * FROM Tr ades;

Performance Considerations

A splitter is typically more efficient both in terms of CPU utilization and throughput when
there is more than a two way split than an equivalent construct composed of two or more
streams that implement a filter. Unlike other streams in ESP, a Splitter and all its target streams
run in asingle thread. This means that the Splitter thread is responsible for distributing data to
its dependents.

The Splitter is more efficient than its equivalent multi-threaded logic for these reasons:

The performance of a stream is inversely proportional to the amount of data that a source
stream needs to distribute to its target. If a stream has two dependent streams, it needs to
distribute twice the amount of data it produces (that is, one copy for each target stream).
Similarly, if a stream has five dependencies it needs to distribute five times the data it
produces. For example, this is the case when three filter streams depend on one source,
with each filter only producing a third of the input data as output. In the case of a splitter,
the source needs to distribute the data only once to the splitter and this reduces the load on
the source stream.

The decrease in CPU utilization comes from the fact that you don't have three separate
streams processing 100% of the input data to produce, for example, a third of the data as
output. In the case of the splitter, the incoming data is analyzed only once and typically no
more than 100% of the incoming data is distributed to the appropriate target streams when
the filter condition is satisfied.

However, note that because the splitter is single threaded, its performance advantage degrades
quickly when it needs to distribute the same data more than once. For example, there is more
than one target stream for each filter condition or when the target streams themselves have
many dependents.

CREATE STREAM Statement

Create either an input stream that receives events from external sources, or a derived stream of
events that is the result of a continuous query applied to one or more inputs.

Syntax

CREATE | NPUT STREAM nane schena_cl ause
[filter-expression-clause]

F

aut ogener at e_cl ause |

CREATE [LOCAL | QUTPUT] STREAM name [schena_cl ause]

[

| ocal - decl ar e- bl ock]

as_cl ause

)

48

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

Components

schema_clause Specifies the schema. The schema clause is required for input streams, but
is optional for local and output streams. If the schema is not specified for
local and output streams, it is deduced automatically by the compiler
based on the query specification.

filter-expression-clause | (Optional) Can be specified on an input stream. This clause filters the
events before accepting them from the adapter or an outside publisher. In
the expression, reference column values in the form stream.column,
where stream is the name of the stream being created by this statement,
and column is the name of the column being referenced.

autogenerate_clause (Optional) This can be used to automatically add a sequence number to
each event. One or more columns are specified (datatype long) and the

value in the column is incremented for each incoming event. Valid only
for input streams. See AUTOGENERATE Clause for more information.

local-declare-block Allows variable and function declarations that can be accessed in expres-
sions in the query. You cannot define a local-declare-block on an input
stream.

as_clause For derived streams, this contains the continuous query (SELECT clause,

FROM clause) that will define the output of this stream.

Usage

The CREATE STREAM statement explicitly creates a stateless element known as a stream,
which can be designated as input, output, or local. Input streams include a mandatory schema,
and may include an optional filter expression that can remove unneeded data before further
processing. Each incoming event is processed, any output is published, and then the stream is
ready to process the next event.

Output and local streams have an optional schema. They can contain a local declare block to
define variables and functions that can be used in the SELECT clause of the query.

Example
This creates an input stream with a filter:
CREATE | NPUT STREAM | nStr

SCHEMA (Col 1 I NTEGER, Col 2 STRI NG
WHERE | nStr. Col 2=' abcd' ;

This creates an output stream where the schema is implicitly determined by the SELECT
clause:

CREATE OQUTPUT STREAM Qut Str as
SELECT InStr.Col1, InStr. Col 2

Programmers Reference 49

CHAPTER 4: CCL Statements

FROM I nStr
WHERE I nStr. Col1 > 1000;

The following statement creates an input stream with auto generated values beginning at
100000 for the Tradeld column, filtering out trades with prices below 1000. Note that the
filtering is done after the Tradeld is generated.

CREATE | NPUT STREAM Bi gTr ades

SCHENMA (Tradeld | ong, Synbol string, Shares integer, Price noney(4))

WHERE Bi gTr ades. Price > 1000
AUTOGENERATE (Tradel d) FROM 1000000;

CREATE WINDOW Statement

Defines a named window that can be referenced and used by one or more downstream
operators or, if an output window, can be used to publish results.

Syntax

CREATE | NPUT W NDOW nane schema_cl ause
pri mary_key_cl ause

[store_cl ause]

[keep_cl ause]

[aut ogener at e_cl ause] ;

CREATE [LOCAL | QUTPUT] W NDOW name schema_cl ause

{ PRIMARY KEY (columl, colum2, ...) | PRI MARY KEY DEDUCED }
[store_cl ause]

[agi ng_cl ause]

[keep_cl ause]

[l ocal -decl ar e- bl ock]

as_cl ause
Components
name A name for the window being created.
schema_clause Required for input windows, but optional for lo-
cal and output windows. When the schema clause
is not specified for local and output windows, it is
automatically deduced by the compiler.
primary_key_clause Set primary key.
store_clause (Optional) Specifies the physical mechanism
used to store the state of the records. If no clause is
specified, project or module defaults apply.

50 Sybase Event Stream Processor

CHAPTER 4: CCL Statements

autogenerate_clause (Optional) Specify that the server will automati-
cally generate values for one or more columns of
datatype long. This can be used to generate a pri-
mary key for events that lack a natural key. Valid
only for input windows. See AUTOGENERATE
Clause for more information.

keep_clause (Optional) Specifies the retention policy for the
window. When not specified, the window uses the
KEEP ALL retention policy as a default.

aging_clause (Optional) Specifies the data aging policy. Used
only with output or local windows.

local-declare-block (Optional) Allows variable and function declara-
tions that can be accessed in expressions in the
query. You cannot define a local-declare-block on
an input stream.

as_clause Introduces a query to a statement.

Usage

The SCHEMA and PRIMARY KEY clauses are mandatory for an input window. The SCHEMA
clause is optional for derived windows. If a SCHEMA is not defined the compiler implicitly
determines it based on the projection list. For derived windows, the primary key may be either
deduced or explicitly specified. There are a few exceptions to these rules, which is noted in the
appropriate context.

The CREATE WINDOW statement can also includes a STORE clause to determine how records
are stored, and a KEEP clause to determine how many records are stored and for how long. The
window can be of type input, output, or local. Local and output windows can include an
AGING clause that specifies the data aging policy.

Example

This example creates a local window containing only position records received in the last ten
minutes. Italso uses the AGES clause to flag records that have not updated in the last 5 seconds
by setting the value in the AgeColumn.

CREATE W NDOW Tr adesAge

PRI MARY KEY DEDUCED

KEEP 10 M NUTES

AGES EVERY 5 SECONDS SET AgeCol umm 5 TI MES

AS

SELECT Trades.*, 0 AgeCol um FROM Tr ades;

This example creates a local window containing only position records recieved in the last ten
minutes. Inclusion of the local declare block reports how many records have been processed
(including updates and deletes).

Programmers Reference 51

CHAPTER 4: CCL Statements

CREATE W NDOW Tr adesAge
PRI MARY KEY DEDUCED
KEEP 10 M NUTES
AGES EVERY 5 SECONDS SET AgeCol umm 5 TI MES
DECLARE
| ong counter := O;

| ong get RecordCount () {
return ++counter;

END

AS

SELECT Trades.*, getRecordCount() RecordCount, 0 AgeCol umm FROM
Tr ades;

The following statement creates a window that maintains only the last 1000 rows while also
getting updates on the age of the rows. The Tradeld value is automatically generated
beginning at 0.

CREATE | NPUT W NDOW Fr eshTr ades

SCHENMA (Tradel d | ong, Synbol string, Shares integer, Price noney(4),
Age i nt eger)

PRI MARY KEY (Tradel d)

KEEP 1000 ROWS

AGES EVERY 5 M NUTES SET Age 100 TI MES

AUTOGENERATE (Tr adel d) ;

DECLARE Statement

DECLARE block statements specify the variables, parameters, typedefs and functions used in
a CCL project.

Syntax
DECLARE

[decl arati on;]
END,

Usage
CCL declare blocks consist of a DECLARE statement and an END statement with zero or more
declarations between them.

A DECLARE block statement can be used to define variables, typedefs, parameters, and
functions. The syntax for each of these declarations is:

« Variables use the SPLASH syntax, and you can specify a default value:
dat at ypeNane vari abl eNanme [:=any_expression] [,...]

« Typedefs declare new names for datatypes:
exi sti ngdat at ypeNane newdat at ypeNane

52

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

o Parameters use the qualifier parameter, and you can specify a default value:
par anet er dat at ypeNane par anet er Nane [: =const ant _expr essi on]

» Thetypeof() operator provides a convenient way to declare variables. An example of the
typeof usage would be: if recl is an expression with type [int32 key1,; string key?2; | string
data;] then the declaration typeof(recl) rec2; is the same as the declaration [int32 key1;
string key?2; | string data;] rec2;

Declare blocks can be local or global. When declare blocks are used inside a CREATE stream

or window statement they become local declare blocks. A local declare block is visible only

inside the stream or window with which it is used. When a DECLARE block statement is used
inside amodule or project, it becomes a global declare block. Global declare blocks are visible
anywhere within that project or module.

Terminate each declaration in the DECLARE block statement with a semicolon.

Example
This example demonstrates the DECLARE block in the global context, meaning it is outside of
any CREATE command.
decl are
integer toggle(integer x) { if (x% =0) { return 1; } else
{ return 2; } }
end;

CREATE SCHEMA scl (k1 integer, k2 string);

CREATE SCHEMA sc2a (k1 integer, k2 string, k3 string, k4 integer);
create schema s1_104(c2 integer, c3 date, c4 float, c5 string, c6
noney) ;

CREATE | NPUT W NDOW i wi n1 SCHEMA scl primary key(kl);
CREATE | NPUT W NDOW i wi n2 SCHEMA scl primary key(kl);

create input wi ndow wi_104 schema s1_104 prinmary key(c2);

create delta stream ds2_104 prinmary key deduced as select * from
wl_104;

create output wi ndow ww_i nnerjoinl schema sc2a primary key (k1, k2)

This example shows the DECLARE block local to a stream, meaning it is inside a CREATE
command (not flex)

decl are
integer il := 1;
string s1 :="'ok';
end
as

select A k1, (A k2 + s1) k2,B. k2 k3, toggle(A k1) k4
fromiwinl Ajoiniwin2 B
on Akl = B. k1l

This example shows a DECLARE block local to a flex stream.

Programmers Reference 53

CHAPTER 4: CCL Statements

create flex flex104

in ds2_104
out output stream fl exos1l04 schema s1_104
begin

decl are

i nteger counter := O;

end;
on ds2_104 {

count er ++

out put ds2_104_strean| [c2=ds2_104.c2;|] 1;
b

on end transaction {
if(counter = 4) {
typeof (fl exos104) rec;
rec := flexosl04_strean]f [c2=0;|] 1;
rec.c2 :=rec.c2 + counter;
out put rec;
rec := flexosl1l04_streani [c2=1;|]];
rec.c2 :=rec.c2 + counter;
out put rec;
rec := flexosl1l04_strean] [c2=2;|]];
rec.c2 :=rec.c2 + counter;
out put rec;
rec := flexosl1l04_strean] [c2=3;|]];
rec.c2 :=rec.c2 + counter;
out put rec;

b

end;

IMPORT Statement

Import libraries, parameters, variables, and schema, function, and module definitions from
another CCL file into a project, module, or another IMPORT file.

Syntax
| MPORT ' fil eNang';

Component
fil eNane The absolute or relative path of the CCL text file you are importing.
The relative path is relative to the file location of the file that
contains the IMPORT statement.
Usage

Only the following CCL statements are valid in an imported file. Any other statements in the
file generate compiler error messages.

54 Sybase Event Stream Processor

CHAPTER 4: CCL Statements

e IMPORT
* CREATE MODULE
e DECLARE

* CREATE SCHEMA
* CREATE LIBRARY

Any definitions used in an import file must be either defined in the file or imported by the file.
Once imported, these definitions belong to the scope into which they are imported. You can
use these definitions only in statements that follow the IMPORT statement.

Import files can be nested within other import files using the IMPORT statement. For example,
if file A imports file B, and the project imports file A, then the project has access to every
definition within A, which includes all of the definitions within B.

Import cycles are not allowed and are detected by the compiler. For example, if file B imports
file A, and file A imports file B, the compiler generates an error message indicating that a
cyclical dependency exists between files A and B. Importing the same file twice in a single
scope is also not allowed, and results in an error message.

Note: You cannot successfully compile your project if you cannot compile the import file, or if
the IMPORT statement attempts to import an invalid file (an improper file format or the file
cannot be found).

Example
This example imports and uses two schemas.
[/ Defines Schemal

[/l nported using rel ative paths
| MPORT ' ../schemas/inmportl.ccl';

[/ Defines Schenma2

/1l nported using absol ute paths

| MPORT ' ~/ proj ect/schemas/inport2.ccl'; [For UN X-based systens]

| MPORT ' C:/ proj ect/schemas/inport2.ccl': [For Wndows-based systens]

CREATE | NPUT STREAM streaml SCHEMA Schemal;
CREATE | NPUT STREAM st rean? SCHEMA Schema?2;

LOAD MODULE Statement

The LOAD MODULE statement loads a previously created module into the project. The
CREATE MODULE statement can either be in the current CCL file or in an imported CCL file
(see IMPORT statement).

Syntax

LOAD MODULE nodul enane AS nodul el denti fi er
i n-cl ause
out - cl ause

Programmers Reference 55

CHAPTER 4: CCL Statements

[par anet er s- cl ause]
[stores-cl ause];

Components

nodul eNanme

The name of the module, which must match the name of the pre-
viously created module.

nodul e identifier

The name used to identify this instance of the module: it must be
unique within the parent scope.

IN cl ause

Binds the input streams or windows defined in the module to pre-
viously-created streams or windows in the parent scope.

OuT cl ause

Exposes one or more output streams defined within the module to
the parent scope using unique identifiers.

PARAMETERS cl ause

Binds one or more parameters defined inside the module to an
expression at load time, or binds parameters inside the module to
another parameter within the main project. If the parameter has a
default value defined, then no parameter binding is required.

STORES cl ause

Binds a store in the module to a store within the parent scope.

Usage

The LOAD MODULE statement is used to create a instance of a previously defined module in
the current project. The IN, OUT and optional PARAMETERS and STORES clauses bind the
module to elements in the calling project. The same module may be "loaded" multiple timesin

a single project.

Before amodule can be loaded, it must be defined ina CREATE MODULE statement in either
the same project or an imported CCL file.

All streams in a loaded module have local visibility at runtime, meaning they cannot be
subscribed to, published from, or queried. When a module is loaded on the server, all of the
streams and windows within the module, and the output streams and windows created by
exposing outputs to the parent scope, behave as if they have local visibility. Therefore, the
streams and windows within a module and the exposed outputs of the module cannot be
queried externally or subscribed to.

LOAD MODULE supports:

e INclause

e OUT clause

* PARAMETERS clause
e STORES clause

Note: All LOAD MODULE statement compilation errors are fatal.

56

Sybase Event Stream Processor

CHAPTER 4: CCL Statements

Example
This example defines a module that processes raw stock trade information and outputs a list of
trades with a price exceeding 1.00. The project then creates an instance of the module using the
LOAD MODULE statement. The LOAD MODULE statement binds the project input stream
"NYSEData" to the input stream of the module (TradeData) and creates a local stream called
"NYSEPriceOverlData" that is bound to the output stream of the module
(FilteredTradeData).
CREATE MODULE FilterByPrice IN TradeData OUT FilteredTradeDat a
BEG N

CREATE SCHEMA Tr adesSchema (

Id integer,

TradeTi me date,

Venue string,

Synbol string,

Price float,

Shares i nt eger

)
CREATE | NPUT STREAM Tr adeDat a SCHEMA Tr adesScheng;
CREATE QUTPUT STREAM Fi |l t eredTr adeDat a SCHEMA Tr adesSchema
AS SELECT * FROM TradeData WHERE Tr adeData. Price > 1.00;
END;

CREATE | NPUT STREAM NYSEDat a SCHEMA Tr adesSchems;

LOAD MODULE FilterByPrice AS FilterOverl I N TradeDat a = NYSEDat a OUT
Fil teredTradeData = NYSEPri ceOver 1Dat a;

Programmers Reference 57

CHAPTER 4: CCL Statements

58 Sybase Event Stream Processor

CHAPTER 5 CCL Clauses

Syntax for the various clauses used in statements .

AGING Clause

Specifies the data aging policy.

Syntax

ACES EVERY agi ngTi ne SET agi ngFi el d [maxAgi ngFi el dVal ue TI MES] [FROM

agi ngTi meFi el d]

Components
agingTime The time interval,specified in hours, minutes, seconds, milli-
seconds, or microseconds, after which the data aging process
begins. It may be specified using a combination of the allowed
units (for example, 3 MINUTES 30 SECONDS).
Can also be specified using the interval parameter.
agingField The field in the record that is incremented by 1 every time the

agingTime period elapses and no activity has occurred on the
record.

maxAgingFieldValue

(Optional) The maximum value that agingField is incremented
to. If not specified, agingField is incremented once.

Can also be specified by the interval parameter.

agingTimeField

(Optional) The field containing the start time for the aging
process. For example, if the period of time specified in the
agingTime column has elapsed, the data aging process begins.

If not specified, the internal row time is used. If specified, the
field must contain a valid start time.

Usage

If data records have not been updated or deleted within a predefined period, they are
considered to have aged. When a data record ages, notifications are sent as update events to

subscribers of the window.

Note: You can only use the AGING clause with windows.

Programmers Reference

59

CHAPTER 5: CCL Clauses

When the predefined time period (agingTime) elapses, an integer field in the record
(agingField) is incremented once, or until a predefined maximum value
(maxAgingFieldValue) is reached. The start time of the aging process is specified through the
(agingTimeField) field in the record.

If the start time is not explicitly specified, the internal row time is used. When the aging
process begins, agingField defaults to 0, and it is incremented by 1 whenever the predefined
time period elapses. If a record is updated after aging commences, agingField resets to 0 and
the process restarts. If a record is deleted, no aging updates are generated.

When insert is received, the count field sets to 0, the insert is passed through, and aging begins.

Aging starts only after the specified inactivity period. If the data ages every five seconds, then
the record must remain inactive for five seconds before it starts counting. A record is
considered inactive when no updates or deletes have occurred.

When delete is received, aging stops and the delete is passed through. An update of a record
resets the counting to 0.

Example
This example creates an output window named Agi ngW ndow. The age column for the

output window updates every 10 seconds 20 times.

CREATE QUTPUT W NDOW Agi ngW ndow
SCHEMA (
AgeCol um i nt eger,
Synbol STRI NG
Ts bigdatetine)
PRI MARY KEY (Synbol)
AGES EVERY 10 SECONDS SET AgeCol umm 20 TI MES
AS
SELECT 1 as AgeCol um,
Tr adesW ndow. Synbol AS Synbol ,
TradesW ndow. Ts AS Ts
FROM Tr adesW ndow

1

AS Clause

Introduces a CCL query to a derived element.

Syntax

(-]

AS
CCL Query

[-..]

60 Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

Components
AS The AS clause introduces a CCL query to the rest
of the statement.
CCL Query The body of the CCL query.
Usage

The AS clause is used within derived elements (streams, windows, and delta streams) to
provide a CCL query that determines the type of data processed by the derived element.
Because of this, the AS clause is valid only with derived elements.

See the Queries section for information on structuring a query.

Example
This example shows the AS clause being used to specify the information selected by a derived
stream.

CREATE STREAM wi n1 SCHEMA (col 1 string)
AS
SELECT i nput Stream col 1
FROM i nput St r eam

AUTOGENERATE Clause

Specify one or more columns that will contain an automatically generated sequence number in
records sent to an input stream or input window.

Syntax
AUTOGENERATE (colum[, ...])[FROM {l ong_const | paraneter}]
Components

column Specify the name of the column in which the au-
tomatically generated value should be placed.
The column must be of datatype long.

FROM Overrides the default starting value of zero with
the specified numeric constant or value found in
the specified parameter at run time.

Usage

This clause can be used when specifying an input stream or input window in a project. It
cannot be used when specifying an input stream or input window in a module. When input

Programmers Reference 61

CHAPTER 5: CCL Clauses

records do not have a natural primary key, this clause provides a way to specify a column that
can be used as the primary key.

You can specify more than one column that will have its value automatically generated. The
column names must be unique. At run time all of the specified columns will get the same
automatically generated value.

The automatically generated columns must be of type long. When the value exceeds the
maximum positive value that the long datatype can hold, the value restarts from the maximum
negative value that a long datatype can hold.

By default, the values start at zero and increase by one for each insert record. This can be
overridden using the FROM clause to explicitly set a starting value, specified as either a
parameter or a long_const.

An input window with an auto generated column may be assigned to a log store; in which case,
on a restart, the next insert will get the highest sequence number recovered from the log store
plus one as the value in the automatically generated column. When there is data in the log
store, the FROM clause is ignored on restart.

The automatically generated column is only incremented on an insert and any value explicitly

provided in the automatically generated columns of the input row on an insert is ignored. On

an update, delete or upsert, the value in the auto generated column is used as it is provided in

the input row. This rule has the potential to produce duplicate rows in a window. For example,

e The primary key is an auto generated column.

« Onthefirstinsert, the primary key is set to 0 because the key column is auto generated and
the sequence number starts at 0.

« Ifthe nextrow is an upsert with the primary key set to 1, the server will insert this row into
the window because there is no row with the primary key of 1 to update.

« When another insert comes in, the server will set the auto incremented key column value to
1 and try to insert the row into the input window.

« This will cause a duplicate row in the store of the input window and the server will reject
the record.

Therefore, it is recommended that the AUTOGENERATE clause not be used with an upsert

opcode, especially when the automatically generated value is a primary key.

Examples
The following code creates an input stream named Trades with a column named Tradeld for
which the values are automatically generated.

CREATE | NPUT STREAM Tr ades
SCHENMA (Tradeld | ong, Synbol string, Shares integer, Price noney(4))
AUTOGENERATE (Tradel d) ;

This example creates an input window named Trades with a primary key column named
Tradeld for which the values are automatically generated.

CREATE | NPUT W NDOW Tr ades
SCHEMA (Tradeld | ong, Synbol string, Shares integer, Price noney(4))

62

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

PRI MARY KEY (Tradel d)
AUTOGENERATE (Tr adel d) ;

CASE Clause
Conditional processing evaluates set conditions to determine a result.
Syntax
CASE
WHEN condi ti on THEN expression [...] ELSE expression
END
Components
condition An expression that evaluates to either zero or non-zero. A non-
zero result indicates the condition is true, a result of zero in-
dicates the condition is false.
expr essi on The result of the evaluated conditions. This can be any valid
expression or variable.
Usage

A CASE clause is order-dependent and contains conditional expressions that require the
parameters WHEN, THEN, and ELSE. WHEN conditions filter the specific case and narrow
down the result through evaluations of whether the conditions set are true or false. If true,
following THEN expressions are carried out. If false, subsequent WHEN conditions are tested.

If all conditions prior to the ELSE parameter are false, then the ELSE expression is executed.
The CASE clause closes with the keyword END.

Example
This example filters weights and specifies a number to each condition set.

CASE

WHEN wei ght <500 THEN 1
VWHEN wei ght >1000 THEN 3
ELSE 2

END

Programmers Reference 63

CHAPTER 5: CCL Clauses

FROM Clause

Identifies the stream(s) or window(s) or both that will provide the input to the query.

FROM Clause: Comma-Separated Syntax

Specify a single input to a query or use to list tow or more inputs in a join or for pattern
matching two data sources in a query, in combination with the WHERE clause, using an
alternative comma-separated syntax.

Syntax
FROM [source [[AS] alias] [keep_clause]] [, .l

Components
source The name of a data stream, window, or delta stream
alias An optional alias for the stream or window
keep_clause An optional policy that specifies how rows are maintained in the window (it
cannot be used with a stream or delta stream)
Usage

Use the FROM clause with comma-separated syntax for single-source queries, inner joins, and
queries that use the MATCHING clause. This syntax specifies one or more data sources in a
query. Any column or datasource references in the query's other clauses must be to one of the
data sources named in this clause.

The comma-separated FROM clause can contain multiple data sources connected with an
inner join. The multiple sources are separated by commas. The WHERE clause, required when
using comma-separated syntax, creates the selection condition for the join.

Use comma-separated syntax for the FROM clause with a MATCHING clause to specify data
sources that should be monitored for a specified pattern. The list of data sources can include
only data streams, must include all data sources specified in the MATCHING clause, and cannot
include any other data source.

Use aliases to abbreviate stream or window names, and if required, for differentiating between
instances when the same data stream or window is used more than once in the FROM clause.

64

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

FROM Clause: ANSI Syntax

Joins two data sources in a query using outer or inner join syntax.

Syntax

FROM { source [(DYNAM C| STATIC)] [AS] alias] [keep_clause] |

nested_join }

[1 NNER| RI GHT| LEFT| FULL] JO' N
{ source [[AS] alias] [keep_clause] | nested_join }

on_cl ause

Components

source

The name of a data stream, window, or delta
stream

DYNAMIC | STATIC

DYNAMIC indicates the data in the window or
stream being joined is going to change often and
STATIC (the default) indicates that it won't

alias An alias for the stream or window
keep_clause An optional policy that specifies how rows are
maintained in the window (it cannot be used with
a stream or delta stream)
nested_join A nested join — see below
Usage

For outer joins, use an ON clause to specify the join condition. This is optional for inner joins.

You can use this variation of FROM to create inner, left , right, and full joins:

JOIN

If no join type is specified, the default is INNER.

INNER JOIN

All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published.

RIGHT JOIN

All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All the
other rows from the right data source are also published. Unmatched col-
umns in the left data source publish a value of NULL .

LEFT JOIN

All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All the
other rows from the left data source are also published. Unmatched columns
in the right data source publish a value of NULL.

Programmers Reference

65

CHAPTER 5: CCL Clauses

FULL JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All
other rows from both data sources are published as well. Unmatched col-
umns in either data source publish a value of NULL .

The data sources used with this syntax can include data stream expressions, named and
unnamed window expressions, and queries. You can use aliases for datasources in this
variation of the FROM clause.

The join variation of the FROM clause (ANSI syntax) is limited to two datasources.
Accommodate additional datasources using a nested join as one of the datasources. If a nested
join is used, it can optionally be enclosed in parentheses, and can include its own ON clause.
Therules for the use of the ON clause with a nested join are the same as the rules that govern the
use of the ON clause in the join containing the nested join.

Restrictions

« Any column or datasource references in the query's other clauses must be to one of the data
sources named in this clause.

« For a left outer join, the data stream can only be on the left side. For a right outer join as
well, the data stream can only be on the right side.

« A full outer join cannot join a window to a data stream.

GROUP BY Clause

Specifies the expressions on which to perform an aggregation operation.

Syntax
GROUP BY expressionl [, expression2 ...]

Components
expression An expression using constants, which can contain
one or more columns from the input window or
stream. However, an expression cannot use ag-
gregate functions.
Usage

It combines one or more input rows into a single row of output. Typically, GROUP BY is used
for aggregation. The query will contain a GROUP BY to specify how to group the inputs, and
one or more of the column expressions in the SELECT clause will use an aggregate function to
compute aggregate values for the group.

66

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

When a GROUP BY clause is used in a query, the compiler will deduce the primary key based
on the group by expression(s). If more than one column has the same expression, the first
column is used if it has not already been matched with a GROUP BY expression.

Note: Every expression in the GROUP BY clause must also be in at least one SELECT column
expression.

Note that the GROUP BY clause must reference input columns directly. It cannot use aliases
defined in the local SELECT clause.

Example
The GROUP BY clause collects together the rows according to T.Symbol:

CREATE W NDOW W ndowl SCHEMA (Synbol STRING MaxPrice | NTECER)
PRI MARY KEY DEDUCED

KEEP ALL

AS

SELECT T. Synbol, max(T.Price) MaxPrice

FROM Trades T

GROUP BY T. Synbol

GROUP FILTER Clause

Filters data in a group before the aggregation operation is performed.

Syntax
GROUP FI LTER expr essi on

Components
expression Any Boolean expression that does not use aggre-
gate functions such as min() or max(). The ex-
pression may use columns from the source
streams or windows.
Usage

The GROUP FILTER clause filters data before the aggregation operations are applied to the
rows. The GROUP FILTER clause is used with the GROUP BY clause. If GROUP FILTER is
used with the GROUP ORDER BY clause, GROUP ORDER BY is executed before GROUP
FILTER.

The expression in the GROUP FILTER clause often uses filters based on functions such as
rank(). These functions restrict rows that are used in the aggregation. The rank() function
assigns arank to each of the individual records in agroup. rank() is meaningful only when used
with the GROUP ORDER BY clause.

Programmers Reference 67

CHAPTER 5: CCL Clauses

Example
The GROUP FILTER clause filters out the chosen rows, keeping only those with a rank of less
than 10:

CREATE W NDOW W ndowl SCHEMA (Synbol STRING MaxPrice | NTECER)
PRI MARY KEY DEDUCED

KEEP ALL

AS

SELECT T. Synbol, max(T.Price) MaxPrice

FROM Trades T

GROUP FI LTER rank() < 10

GROUP BY T. Synbol

GROUP ORDER BY T. Vol une DESC

HAVI NG max(T. Price) > 100 AND T. Synbol ='IBM;

GROUP ORDER BY Clause

Orders the data in a group before applying the GROUP FILTER clause and aggregating the
data.

Syntax
GROUP ORDER BY col umm [ASC[ENDI NG | DESCI ENDI NG] [, ...]
Components
column Any column in the source streams or windows.
You can order by more than one column.
Usage

The GROUP ORDER BY clause is used with the GROUP BY clause. Rows may be ordered by
one or more columns in the stream or window. GROUP ORDER BY orders the data in a group
before applying aggregation operations (and before applying GROUP FILTER).

Use ASC and DESC keywords to organize column data in ascending or descending order. If no
keyword is specified, the default is ascending order.

When used with a GROUP FILTER clause, GROUP ORDER BY is performed before GROUP
FILTER. The GROUP ORDER BY clause orders records in each group based on the ordering
criteria specified in the clause.

Example
The GROUP ORDER BY clause organizes the chosen rows by T.\Volume in descending order:

CREATE W NDOW W ndowl SCHEMA (Symbol STRING MaxPrice | NTEGER)
PRI MARY KEY DEDUCED

KEEP ALL

AS

SELECT T. Synbol, max(T.Price) MaxPrice

68

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

FROM Trades T

GROUP FILTER rank() < 10

GROUP BY T. Synbol

GROUP ORDER BY T. Vol une DESC

HAVI NG max(T. Price) > 100 AND T. Synbol ='I1BM ;

HAVING Clause

Filters rows that have been grouped by a grouping clause.

Syntax
HAVI NG expr essi on

Components
expression Any Boolean expression. Can include aggregate
functions, as well as simple filters on columns.
Usage

The HAVING clause is semantically similar to the WHERE clause, but can be used only in a
query that specifies a GROUP BY clause. The HAVING clause filters rows after they have been
processed by the GROUP BY clause. Unlike the WHERE clause, the HAVING clause allows the
use of aggregates in the expression. Its function is to eliminate some of the grouped result
rows.

Example
The HAVING clause filters the rows that have been grouped by the GROUP FILTER, GROUP
BY, and GROUP ORDER clauses:

CREATE W NDOW W ndowl SCHEMA (Synbol STRING MaxPrice | NTECER)
PRI MARY KEY DEDUCED

KEEP ALL

AS

SELECT T. Synbol, max(T.Price) MaxPrice

FROM Trades T

GROUP FI LTER rank() < 10

GROUP BY T. Synbol

GROUP ORDER BY T. Vol une DESC

HAVI NG max(T. Price) > 100 AND T. Synbol ='"IBM;

Programmers Reference 69

CHAPTER 5: CCL Clauses

IN Clause

Used in the LOAD MODULE statement to bind inputs in the module to inputs in the parent
scope.

Syntax
IN

i nput 1-i nModul e = i nput 1- parent Scope [, ...]
Components

i nput 1-i nMbdul e The name of the input stream or window defined
in the module.

i nput 1- par ent Scope The name of the stream or window in the parent
scope. Bind the module input stream or window
to this stream.

Usage

The streams or windows in the parent scope can have any visibility type. Schemas between the
bound input streams or windows must be compatible. Schemas are compatible if any one of
these requirements is met:

e The number and datatypes of the columns match and are in the same order.

e The stream in the parent scope has more columns than the module stream, and the initial
column datatypes match and are in the same order. Any additional columns are ignored by
the module, and cannot be primary key columns.

e The parent module stream has fewer columns than the module stream, and the initial
column datatypes match and are in the same order. Any additional columns inside the
module stream are filled with a NULL value. Primary key columns cannot be null.

Note: For each of these requirements, column names need not match.

When associating inputs, a parent level object that does not have a primary key cannot be
bound to a module-level object that requires a primary key. For example, a stream cannot be
bound to a window.

Restrictions

» All input elements in the module must be bound for the IN clause.

Example

This example shows the input streams inside the module (nodMar ket | n1 and

nodMar ket | n2) being bound to their respective streams in the parent scope, mar ket | n1
and mar ket I n2.

70

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

LOAD MODULE filterModule AS filterl
I N nodMar ket | n1=mar ket | n1, nodMar ket | n2=nar ket | n2
OQUT nodMar ket Qut =mar ket Qut ;

KEEP Clause

Specify either amaximum number of records to retain in awindow, or a length of time to retain
them.

Syntax

KEEP {{[EVERY] count ROW S] [SLACK sl ackcount] [PER(col 1[, .])]} | ALL
[RON S]]}

KEEP [EVERY] interval [PER (col 1[, .])]
KEEP [EVERY] { count_policy | tine_policy } | ALL;

Components

count _policy Specify the maximum number of records that will be retained in the
window as either a simple maximum nn ROWS or a maximum with
some slack nn ROAS SLACK nm A larger slack value improves
performance by reducing the need to delete one row every time a row is
inserted. The number of rows, nn, and the slack value, mm, can be either
an integer value or an expression.

Note: The SLACK component cannot be used with the EVERY modi-
fier.

time_policy Specify the length of time that records will be retained in the window as
described in the /ntervals on page 22 topic.

ALL Specifies that all of the rows received will be retained.

EVERY Specifies that when the maximum number of records is exceeded or the
time interval expires, every retained record is deleted. When this modi-
fier is used, the resulting window is a Jumping Window. Otherwise, the
resulting window is a Sliding Window

PER Specifies that the retention policy will be applied to groups of rows
rather than at the window level.

Usage

The KEEP clause defines a retention policy for a Named or Unnamed Window. Window
retention policies include time-based policies (the time duration for which a window retains
rows) and count-based policies (the maximum number of rows that the window can retain). If
you omit the KEEP clause from a window definition, the default policy is KEEP ALL.

Programmers Reference 71

CHAPTER 5: CCL Clauses

Including the EVERY modifier in the KEEP clause produces a Jumping Window, which deletes
all of the retained rows when the time interval expires or a row arrives that would exceed the
maximum number of rows.

Specifying the KEEP clause without the EVERY modifier produces a Sliding Window, which
deletes individual rows once a maximum age is reached or the maximum number of rows are
retained. Specifying a SLACK value causes the retention mechanism to get triggered when the
number of stored rows equals (count+slackcount) as opposed to count. When specifying a
Sliding Window with a count-based retention policy, you can specify a SLACK value to
enhance performance by requiring less frequent cleaning of memory stores. Slack cannot be
specified for windows using time-based retention policies.

The location of the KEEP clause in the CREATE WINDOW statement determines whether a
named or an unnamed window is created. When the KEEP clause is specified for the window
being created, a Named Window is created. If there is a KEEP clause in the query portion of the
statement, however, an Unnamed Window is implicitly created. This is the case where there is
a KEEP clause attached to the FROM clause of the query.

Note: The SLACK value cannot be used with the EVERY modifier, and thus cannot be used in
a Jumping Windows retention policy.

Use the PER sub-clause within the KEEP clause syntax to retain data based on content for both
named and unnamed windows. The feature supports both row-based and time-based retention.
Rather than applying the retention policy at the window level, it will be applied to individual
groups of rows based on the PER expression.

Note that unnamed windows can be created on delta streams or windows, but they cannot be
created on streams. Windows on streams must be created explicitly using a CREATE
WINDOW statement.

The following example creates a sliding window that retains 2 rows for each unique value of
Symbol. Once 2 records have been stored for any unique Symbol value, arrival of a third
record (with the same Symbol value) will result in deletion of the oldest stored record with the
same Symbol value.

CREATE SCHEMA Tr adesSchema (
Id integer,
Tr adeTi ne dat e,
Venue string,
Synbol string,
Price fl oat,
Shares integer)

1

CREATE | NPUT W NDOW Tr adesW n1
SCHEMA Tr adesSchema
PRI MARY KEY(I d)
KEEP 2 ROAS PER(Symbol)

72 Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

The following example creates a jumping window that retains 5 seconds worth of data for each
unique value of Symbol.

CREATE SCHEMA Tr adesSchema (
Id integer,
TradeTi ne dat e,
Venue string,
Synbol string,
Price fl oat,
Shares integer)

CREATE | NPUT W NDOW Tr adesW n2
SCHEMA Tr adesSchema
PRI MARY KEY(I d)
KEEP EVERY 5 SECONDS PER(Synbol)

MATCHING Clause

This is used within a query for pattern matching, which allows detection of patterns of events
across one Or more sources.

Note: This form of the ON clause is different from the ON clause with JOIN syntax. You cannot
specify both forms at the same time.

Syntax
MATCHI NG [i nterval : pattern]
ON { {source.colum = source.colum [=...]}]
{source. col um = constant }|
{get Opcode() = opcode_constant} [AND...]
pattern:[!]{event | (event)} [&& || |,}event]
Components
MATCHI NG Identifies the MATCHING clause.
i nterval :pattern i nt erval specifies the interval and pat t er n specifies the
matching patterns.
sour ce. col um The name of the source input and the column.
get Opcode() Includes opcode conditions on the pattern.
opcode_const ant Specifies the opcode.
pattern The pattern you want to identify. Contains events connected by
event operators.

Programmers Reference 73

CHAPTER 5: CCL Clauses

event Events compared in the pattern.

Usage
The MATCHING clause immediately follows the FROM clause in a SELECT statement. The
FROM clause contains the derived elements that are used as inputs for pattern matching.

SELECT statements containing a MATCHING clause cannot include any filtering or
aggregation criteria.

The MATCHING clause consists of a mandatory interval and pattern specification.

The interval specifies the time period within which the pattern must be detected. It supports
microsecond granularity and can either be represented as an interval constant (refer to the
interval data type) or a parameter.

The pattern specification indicates the events or groups of events that must occur, or not occur,
within the specified interval to meet the pattern matching criteria. Where a pattern
specification consists of more than one event, the events or groups of events must be connected
with the operators listed in the following table:

Opera- |Operator Description
tor Name
! Not operator Specifies a negative condition for a pattern component. Pattern con-

ditions are met when the pattern component does not occur within the
specified time interval. Since this is a negative condition, the pattern
match is deemed successful only after the expiration of the specified

time interval.

&& Conjunction Both pattern components linked by the conjunction operator must
(logical AND) occur for the match condition to be met, but they do not have to occur
operator in the order listed.

I Disjunction One or both pattern components linked by the Disjunction operator
(Logical OR) must occur to meet the conditions of the match. Each output row
operator produced by a Disjunction match shows the match for one of the

members of the Disjunction, and NULL values for the other mem-
bers. This is true even when several members of the disjunction
produce events.

, Followed by op- | Pattern components linked by this operator must both occur, in the
erator order listed, to meet the conditions of the match.

The default order of precedence in which pattern components are analyzed for a possible
pattern match follows the order of operators, as they are listed in the table. The tightest binding
between an operator and a pattern component is that of the Not operator. The bindings then get
progressively looser, for events linked with a conjunction, disjunction, and sequence

74

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

operators, respectively. This default order of precedence can be overridden by enclosing a
pattern component in parentheses.

Since pattern matching on a not operator is deemed successful only after the expiration of the
specified time interval, a not operator when included with a followed by operator must be its
last component. This is because events succeeding the not operator will never be evaluated by
the pattern rule engine owing to the expiration of the time interval.

The MATCHING clause of a SELECT statement that includes multiple derived elements in the
FROM clause can contain an optional ON sub-clause, which defines one or more equality
expressions that further refine the pattern matching criteria.

The equality expression is used to compare the column values of the input records or their
opcodes. The left hand side of the equality can either contain a fully qualified column name, or
the function 1. The right hand side of the equality can contain a fully qualified column name, a
constant value, or a parameter.

If the left hand side contains the function 2, the right hand side must contain a constant
specifying the desired opcode. Valid opcode values are insert, update and delete.

ON Clause: Join Syntax

Specifies join conditions for syntax using JOIN terminology.

Syntax
ON sourcel. col uMmA = source2. col uimB [AND. . .]

Components
source The names of the sources in the FROM clause.
col um The name of the column from a particular source. Use AND when
multiple column comparisons are specified. ORexpressions are not
supported.
Usage

This form of the ON clause is required for outer and inner joins. It must consist of one or more
simple comparisons, comparing a column in one data source with a column in another data
source.

sour cel and sour ce2 refers to the sources (streams, windows, or delta streams) in the
FROM clause. If aliases are used in the FROM clause, use the aliases rather than the actual
source names.

1 getOpcode()
2 getOpcode()

Programmers Reference 75

CHAPTER 5: CCL Clauses

Restrictions

« Join conditions are limited to comparisons between columns in the two data sources of the
join. The comparison cannot specify a literal value, or compare two columns in the same

data source.
OUT Clause
Used in the LOAD MODULE statement to expose outputs in the module to the parent scope.
Syntax
(0¥))
out put 1-i nModul e = out put 1- par ent Scope [, ...]

Components

out put 1-i nModul e The name of the output defined in the module.

out put 1- par ent Scope The name by which the output is exposed to the

parent scope.

Usage

The exposed output stream created by the LOAD MODULE statement has local visibility,
meaning that you cannot attach an output adapter directly to the output stream directly.
Outputs are exposed to the parent scope using the out put 1- par ent Scope identifier. The
out put mapping provides a unique name for the module output so that it can be referred to in
the parent scope.

Restrictions

* At least one output stream must be exposed to the parent scope.

Example

This example exposes the outputs of the module, nodFi | t er edQut and

mar ket Aver ageQut , using the respective namesfi | t er edQut and aver ageQut .
LOAD MODULE filterModule AS filterl

I N modMar ket | n=mar ket | n1
QUT nodFil teredQut=filteredQut, marketAverageQut=aver ageQut;

76 Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

PARAMETERS Clause

Used in the LOAD MODULE statement to provide the bindings for the parameter inside the
module at load time.

Syntax
PARAVETERS
par amet er 1-i nMbdul e = val ue- parent Scope [, ...]
Components
par anmet er 1- i nMbdul e The name of the parameter defined in the module.
val ue- par ent Scope The value in the parent scope being bound to. This
value can be an expression or another parameter
defined in the parent scope.
Usage

Binding a parameter refers to the process of providing a value for a parameter within the
module at load time. This means that you can provide a value for the parameter that is specific
to each instance of the module. In the LOAD MODULE statement, you can bind a parameter
inside the module to:

« Another parameter declared within the parent scope, or,
« An expression when loading the module.

Note: Expressions involving parameters or variables are evaluated at compile time using
the parameter's default value and the variable's initial value. A parameter or variable in a
binding expression without a default value generates an error.

You cannot directly bind a parameter defined within a module at runtime; doing so generates a
server warning. You can bind module parameters using only the LOAD MODULE statement.

Example
This example maps the parameters in the module to another value (m nVal ue=2) and to
another parameter (maxVal ue=ser ver MaxVal ue).

CREATE MODULE fil t er Modul e
INfilterln
QUT filterQut
BEG N
CREATE SCHEMA filterSchema (Val ue Integer);
DECLARE
PARAMETER | nt eger minVal ue : = 4;
PARAMETER | nt eger maxVal ue;
END;
CREATE | NPUT STREAM filterln SCHEMA filterScheng;
CREATE QUTPUT STREAM filterQut SCHEMA filterSchema AS SELECT *

Programmers Reference 77

CHAPTER 5: CCL Clauses

FROM filterln WHERE filterln.Value > ninValue and filterln.Value <
maxVal ue;
END;

DECLARE
PARAMETER | nt eger server MaxVal ue;
END;

LOAD MODULE filterModule AS filterl
INfilterln=marketln

QUT filterQut=market Qut

PARAMETERS m nVal ue=2, maxVal ue=ser ver MaxVal ue;

PRIMARY KEY Clause

Specifies the primary key for a delta stream or window.

Syntax
PRI MARY KEY (colum [,...]) | PRIMARY KEY DEDUCED

Components

column The name of a column in the element's schema

Usage
A primary key uniquely identifies a record, and is required for windows and delta streams.

The primary key is normally treated as "strict." Any records that violate consistency rules,
such as an insert of an existing record, or update or delete for a nonexistent record, are
discarded and reported in the log.

The primary key is treated as "lax" when a keep policy is placed on a window. The expiration
of records caused by the KEEP clause creates inconsistencies with incoming records. An insert
on an existing record is treated as an update, and an update on a nonexistent record is treated as
an insert. A delete on a nonexistent record is silently ignored (as safedelete). This behavior
manifests when two records in a chain have expiry policies, and it is apparent that the target
window has a smaller expiry period.

Usage: Explicit Primary Key

An explicitly defined primary key uses the PRIMARY KEY clause and refers to one or more
columns of the window or delta stream's schema. When a primary key is specified, the engine
enforces the constraint, and erroneous operations are flagged as bad records and discarded at
runtime. To avoid this issue, ensure the primary key is defined correctly.

78

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

Usage: Deduced Primary Key

If the primary key is specified as PRIMARY KEY DEDUCED, the compiler automatically
deduces the primary key. If the primary key cannot be deduced, a compilation error is
generated.

The primary key is deduced as follows:

Primary keys cannot be deduced for input windows and Flex operators. They need to be
explicitly specified.

For single source queries, except aggregations, the primary key is deduced from the
source. All the key columns from the source need to be copied verbatim for the key
deduction to succeed.

For aggregation the primary keys are the columns in the projection containing the group by
expressions.

Note: All GROUP BY clauses needs to be included in the projection list. If the same
expression appears in more than one column then the first column with the GROUP BY
clause is made the primary key.

For joins, the following rules apply:

For a left outer join and right outer join the keys are derived from the outer side. For
example, the leftside in the case of a left join and the right side in the case of aright join. All
key columns from the outer side must be present in the projection for the primary key
deduction to work correctly.

For ainner join it depends on the cardinality of the join. For a one-many cardinality the key
is derived from the many side. For a many-many cardinality the deduced key is
combination of the keys from both sides of a join. For a one-one the key is deduced from
one of the sides. The side that is chosen as a key cannot be reliably determined. In all cases
the candidate key columns must be copied from the sources directly for key deduction to
work correctly.

For a full outer join the columns containing only a coalesce() function with the key fields of
both sides of the join as arguments is deduced to be the key column.

For the joins of multiple windows, these rules are applied transitively

SCHEMA Clause

Provides a schema definition for new streams and windows.

Syntax
SCHEMA nane | (colum type [,...])

Programmers Reference 79

CHAPTER 5: CCL Clauses

Components
name The name of schema previously defined with a
CREATE SCHEMA statement.
column The name of a column.
type The datatype of the column's entries.
Usage

A SCHEMA clause defines the columns and datatypes (inline schema) in a stream or window,
or refers to a previously defined named schema. It may also refer to a schema imported from a
different CCL file.

The schema clause is mandatory for input streams, input windows and Flex operators. For all
other cases it is optional. In which case the schema is implicitly determined by the columns in
the projection list.

Inthe case of UNION, if a schema is not explicitly specified then it is implicitly determine from
the first SELECT statement in the UNION.

SELECT Clause

Specifies a projection list for a query.

Syntax
SELECT { expression[AS colum]}[,...]

Components
expression An expression that evaluates to a value of the
same data type as the corresponding destination
column.
column the name of a column in a query destination.
Usage

The expressions within each select list item can contain literals, column names from sources
referenced in the FROM clause, operators, scalar functions, and parenthesis. A wild card (*)
selects all the columns from underlying sources referenced in the FROM clause. The AS
column reference must map to a column name in the destination.

All the items in the projection must use the AS extension to map the items to the destination
columns, or none of them should, in which case the assignment is performed left to right.

80

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

Under some circumstances, a schema can be automatically generated for the destination,
based on a query. For expressions, provide a column with the AS extension.

The SELECT clause inside a query specifies a select-list of one or more items. Rows from the
datasources listed in the FROM clause are passed to the SELECT clause after being filtered by
the WHERE clause, if specified. The results of the expressions in the list are processed by other
clauses (if any). The query usually uses the processed select-list results as its input.

These rules apply to the select-list:

» Theexpression within each select-list item can contain literals, column names from one of
the datasources listed in the FROM clause, operators, scalar and miscellaneous functions,
and parentheses. A query select-list expression can also include aggregate functions.
Alternately, you can use the "select all" (wildcard) character (*) to specify expressions.
This is equivalent to listing all column values from all datasources listed in the statement's
FROM clause, from left to right, or to using data-source.*, which is equivalent to a list of all
column values from the specified data source (where data-source is the name or alias of
one of the data sources listed in the FROM clause).

« These rules apply to all expressions that do not include the wildcard character:

« Each list item can specify an AS output column reference subclause indicating the
column within the destination, to which the select-list item should be published. The
AS subclause must be used either for all or for none of the items in the select-list.

STORE Clause

Assigns the store for the window in any window definition.

Syntax
STORE st or enane

STORES Clause

Used in the LOAD MODULE statement to bind stores in the module to stores in the parent

scope.
Syntax
STORES
storel-i nMbdul e = storel-parent Scope [,...]
Components
st ore-i nMbodul e The name of the store defined in the module.

Programmers Reference 81

CHAPTER 5: CCL Clauses

st orel- par ent Scope The name of the store in the parent scope. Bind
the module store to this store.

Usage

Unbound stores generate compilation errors. When you create windows without specifying a
store, and do not create a default store, a default parser-generated memory store is temporarily
created for the module. When you load the module, this parser-generated store is assigned to
the default memory store of the parent scope. If no default memory store exists in the parent
scope, the parser-generated memory store in the module is assigned to a parser-generated
memory store created in the parent scope.

Note: Modules can participate in store dependency loops. Since all dependency loops are
invalid, the instance of a dependency loop within a module will render the project unable to
compile.

Restrictions

* You can bind stores only of the same type. For example, bind a log store with another log
store, and a memory store with another memory store.

Example
This example maps a store in the module to a store in its parent scope.

CREATE MODULE filterMdul e

INfilterln
QUT filterQut
BEG N

CREATE MEMORY STORE filterStore;

CREATE SCHEMA filterSchema (1D Integer, Value Integer);

CREATE | NPUT WNDOWfilterln SCHEMA filterSchema PRI MARY KEY | D
STORE filterStore;

CREATE OQUTPUT WNDOW filterQut SCHEMA filterSchema PRI MARY KEY
DEDUCED STORE filterSTore AS SELECT * FROMfilterl n WHERE
filterln.Value > 10;

END;

CREATE MEMORY STORE nmi nSt or e;
CREATE SCHEMA filterSchema (1D Integer, Value |nteger);

LOAD MODULE filterModule AS filterl
INfilterln=marketln

QUT filterOQUT=mar ket Qut

STORES filterStore=minStore;

82

Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

UNION Operator

Combines the result of two or more SELECT clauses into a stream or window.

Syntax
{sel ect _clause} UNION {select_clause} [UNION ...]

Components

select_clause A SELECT clause.

Usage
The union operation may produce a stream, delta stream, or a window.

« Iftheinputtoaunionthat producesawindow is a stream, you must perform an aggregation
operation.

* When a union joins two SELECT clauses, the schema of the columns selected in the two
SELECT clauses must match.

» Ensure that a record with a particular key value is not produced by more than one input
node. Otherwise, you may see duplicate rows or invalid updates.

» To be compatible, the schema for all the nodes subject to the union must have the same
datatypes. However, the column names in the schemas may be different. In this case, the
column names from the first SELECT clause are used in the schema deduction.

« If the SELECT statement is not a direct copy from the source, intermediate nodes are
created. The compiler attempts to create delta streams or streams, but must generate
windows in cases when aggregation or a KEEP clause.

e DECLARE blocks are not allowed for union operations.

* Anode created by a union operation can have a KEEP clause and an AGING clause if the
target is a window.

Restrictions

e The inputs to a union can be any combination of streams, delta streams, and windows.

« The inputs to a union delta stream can be a delta stream or a window, but not a stream.

* The inputs to a union window can be any combination of streams, delta streams, and
windows (provided the querying involving a stream has a GROUP BY clause).

< A union stream or delta stream cannot have a GROUP BY clause specified in any of the
underlying queries.

Examples
This example uses a union operation to produce an output stream;

CREATE SCHEMA MySchenma (a0 integer, al STRING a2 string);
CREATE SCHEMA MySchena2 (a0 integer, al STRING a2 string);

Programmers Reference 83

CHAPTER 5: CCL Clauses

CREATE | NPUT STREAM I nput Streanl SCHEMA MySchens;
CREATE | NPUT STREAM I nput Strean? SCHEMA MySchema?2;
CREATE | NPUT STREAM I nput Strean8 SCHEMA MySchema?2;

CREATE QUTPUT STREAM Uni onStreanl AS SELECT * FROM | nput St reaml
UNI ON
SELECT * FROM | nput St r ean®;

Using a union operation to produce an output window:

CREATE QUTPUT W NDOW Uni onW ndowl

PRI MARY KEY DEDUCED

AS
SELECT inl.a0, min(inl.al) al, mn(inl.a2) a2
FROM | nput Streaml i n1 GROUP BY inl.a0
UNI ON
SELECT in2.a0, min(in2.al) al, mn(in2.a2) a2
FROM | nput St rean? i n2 GROUP BY i n2. a0;

Note: Since the source is a stream and target is a window, an aggregation is specified, as is
required.

This example uses a union operation to produce a delta stream:
CREATE DELTA STREAM Uni onl PRI MARY KEY DEDUCED

AS

SELECT * FROM Streanl

UNI ON

SELECT a.col1l, a.col2, a.col3 FROM Del taStreanl a WHERE a.col 1 >
10

UNI ON

SELECT a.a, sum(a.b), max(a.c) FROM Wndow2 GROUP BY a.a

WHERE Clause

Specifies a selection condition, join condition, update condition, or delete condition to filter
rows of data.

Syntax
VWHERE condition | filterexpression

Components
condition A Boolean expression representing a selection, update, delete, or join
condition, depending on the context.
filterexpression A Boolean expression based on the columns from a stream.

84 Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

Usage
The WHERE clause filters rows and columns in several CCL statements, with similar syntax,
but different usage and context. The WHERE clause:

» Specifies a selection condition for filter input from data sources in a QUERY element.
« Provides join conditions in a FROM clause.

As a Selection Condition
The WHERE clause acts as a selection condition when used with a FROM clause.

The Boolean expression in this clause creates a selection that filters rows arriving in the
query's data sources before passing them on to the SELECT clause. WHERE clause filtering is
performed before the GROUP BY clause and before aggregation (if any), so it cannot include
aggregate functions or the filtering of results based on the results of aggregates. You can use
the HAVING clause for post-aggregate filtering.

The selection condition can include literals, column references from the query's data sources
listed in the FROM clause, operators, scalar functions, parameters, and parentheses.

In a query, column references within the selection condition must refer to columns in one of
the query's data sources.

As a Join Condition

When used in conjunction with the comma-separated syntax form of the FROM clause, the
WHERE clause creates one or more join condition for the comma-separated join. The use of a
WHERE clause is optional in a comma-separated join. In the absence of a join condition, all
rows from all data sources are selected. When a WHERE clause is present, its syntax resembles
the ON clause with ANSI join syntax.

The join condition can be any valid Boolean expression that specifies the condition for the
join. All column references in this form of the WHERE clause must refer to data sources
specified with the FROM clause.

As a Filter Expression
Filter expressions are supported only in input streams.

When using columns in a filter expression, use the nodeNane. col unmNare notation.
nodeNarre is the name of the input stream.

Restrictions

* A WHERE clause cannot use aggregate functions.
* A WHERE clause cannot be used with a MATCHING clause.

 Joins using the JOIN keyword do not use the WHERE clause to specify join conditions
(though they can use the clause in its selection condition form).

Programmers Reference 85

CHAPTER 5: CCL Clauses

Examples
This example uses a WHERE clause as a select condition:

CREATE | NPUT W NDOW QTr ades SCHEMA (
Id integer,
TradeTi ne dat e,
Venue string,
Synbol string,
Price fl oat,
Shar es i nteger

)
PRI MARY KEY (1d);

CREATE OUTPUT W NDOW QTr adesConput eSel ect ed
PRI MARY KEY DEDUCED
AS SELECT
trd. *
FROM
Qlrades trd
VWHERE
trd. Synbol IN ('DELL',"' CSCO ,"' SAP')

This example uses a WHERE clause as a join condition;

CREATE | NPUT W NDOW QTr ades SCHEMA (
Id integer,
TradeTi me dat e,
Venue string,
Synbol string,
Price float,
Shares i nteger

)
PRI MARY KEY (1d);

CREATE OQUTPUT W NDOW Recent QIr ades
PRI MARY KEY DEDUCED
AS
SELECT g. Synbol, nth(0, q.Price) Price, nth(0, g.Shares) Shares
FROM
Qlrades q
GROUP BY q. Synbol
GROUP ORDER BY g. ROW D DESC

CREATE | NPUT W NDOW Posi ti ons
SCHEMA (Bookl d STRI NG, Synbol STRING SharesHel d | NTEGER)
PRI MARY KEY (Bookld, Synbol)

CREATE OUTPUT W NDOW Posi ti onVal ue
PRI MARY KEY (Bookl d, Synbol)
AS SELECT

pos. Bookl d,

pos. Synbol ,

86 Sybase Event Stream Processor

CHAPTER 5: CCL Clauses

pos. Shar esHel d,
pos. SharesHeld * g. Price Val ue
FROM
Posi tions pos, RecentQIrades g WHERE pos. Synbol = q. Synbol

This example uses a WHERE clause as a filter expression:

CREATE | NPUT STREAM LSETr adesFi |t ered SCHEMA (
Id integer,
TradeTi ne dat e,
Venue string,
Symbol string,
Price float,
Shar es i nteger

)
WHERE LSETradesFiltered. Synbol IN (' SAP', 'CSCO, 'DELL')

1

Programmers Reference 87

CHAPTER 5: CCL Clauses

88 Sybase Event Stream Processor

CHAPTER 6 CCL Functions

A function is a self-contained, reusable block of code that performs a specific task.
The Sybase Event Stream Processor supports:

< Built-in functions - including aggregate, scalar and other functions
e User-defined SPLASH functions
» User-defined external functions

Built-in functions come with the software and include functions for common mathematical
operations, aggregations, datatype conversions, and security.

Order of Evaluation of Operations

Operations in functions are evaluated from right to left. This is important when variables
depend on another operation that must pass before a function can execute because it can cause
unexpected results. For example:

integer a := 1;
integer b := 2;
max(a + b, ++a);

The built-in function max(), which returns the maximum value of a comma-separated list of
values, returns 4 since ++a is evaluated first, so max (4, 2) isexecuted instead of max(3,
2) , which may have been expected.

Scalar Functions

Scalar functions take a list of scalar arguments and return a single scalar value.

Different types of scalar functions include:

e Numeric functions

e String functions

e Conversion functions

» XML functions

« Date and time functions

Scalar functions take one or more expression values as arguments and return a single result
value for each row of data processed by a query. These functions can appear in most
expressions, and are used most often in SELECT clauses and WHERE clauses.

Programmers Reference 89

CHAPTER 6: CCL Functions

Numeric Functions

Numeric functions are used with numeric values. Some numeric functions can also be used
with interval and bigdatetime values. Examples of numeric functions include r ound () and

sqrt ().

acos()

Scalar. Returns the arccosine of a given value.

Syntax
acos (value)

Parameters

value A float between -1 and 1.

Usage
The function returns a float. If a value outside the range of -1 to 1 is given, the function returns
NULL.

Example
acos(0.0) returns 1.570796.

asin()

Scalar. Returns the arcsine of a given value.

Syntax
asin (value)

Parameters

value A float between -1 and 1.

Usage
The function returns a float. If a value outside the range of -1 to 1 is given, the function returns
NULL.

Example
asi n(1. 0) returns 1.570796.

90

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

atan()

Scalar. Returns the arctangent of a given value.

Syntax
atan (value)

Parameters

value A float.

Usage
The function returns a float.

Example
arctan(1. 0) returns 0.785398.

atan2()

Scalar. Returns the arctangent of the quotient of two given values.

Syntax
atan2 (val uel, value2)

Parameters
valuel A float.
value2 A float.
Usage

Returns the arctangent of the quotient of the given values, within the range of the standard

arctangent function;

e |Ifvalue2 >0, then at an2 (val uel, val ue?2) returnsthe value of at an

(val uel/ val ue2).

e Ifvaluel>=0andvalue2 <0, thenat an2 (val uel, val ue2) returns the value of

atan (val uel/val ue2) + pi().

e Ifvaluel <0andvalue2 <0, thenat an2 (val uel, val ue2) returns the value of

atan (valuel/value2) - pi().

e Ifvaluel >0and value2 =0, then at an2 (val uel, val ue2) returns the value of

pi ()/ 2.

e Ifvaluel <0andvalue2 =0, thenat an2 (val uel, val ue?2) returns the value of

-pi()/2.

e Ifvaluel =value2 =0, then at an2 (val uel, val ue2) returnsO.

Programmers Reference

91

CHAPTER 6: CCL Functions

Example
atan2 (1, 2) returns0.463647609, the value of at an (0. 5).

avgof()
Scalar. Returns the average value of multiple expressions, ignoring NULL parameters.
Syntax
avgof (expression, [,...])
Parameters
expression There must be at least one argument, and all the arguments must be
of the same datatype.
Usage

If all parameters are NULL, the function returns NULL. The function accepts the following
datatypes: float, integer, long, interval, money types, and date/time types.

The function returns the same datatype as its argument, however, if the expressions are
numeric types (integers, floats, or longs), the function returns a float.

Example
avgof (1, 2, NULL, 3, NULL) returns 2.0.

bitand()

Scalar. Returns the result of performing a bitwise AND operation on two expressions.

Syntax
bi tand (expressionl, expression2)

Parameters
expressionl Expression that simplifies to an integer or a long (must be the same
datatype as expression2).
expression2 Expression that simplifies to an integer or a long (must be the same
datatype as expression1).
Usage

The function takes the two expressions, and performs the logical AND operation on each pair
of bits. The result for the pair is 1 if both bits are 1; otherwise, the result for the pair is 0. Both
arguments must be the same datatype (integers or longs), and the function returns the same
datatype as its arguments.

92

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
bitand (5, 3) returns1,orinbinary,bitand (101, 011) returns 001. The user
cannot specify binary directly.

bitclear()

Scalar. Returns the value of an expression after setting a specific bit to zero.

Syntax
bitclear (expression, bit)

Parameters

expression The initial value as an integer or a long.

bit Which bit to clear, starting from 0 as the least-significant bit.
Usage

Any bit argument must be an integer. The function returns the same datatype as the initial
expression argument.

Example
bitclear (13, 0) returns 12, orinbinary, bi tcl ear (1101, 0) returns1100.
The user cannot specify binary directly.

bitflag()

Scalar. Returns a value with all bits set to zero, except the specified bit.

Syntax
bitflag (bit)

Parameters
bit An integer indicating which bit to set, starting from 0 as the least-
significant bit.
Usage

The function returns an integer.

Example
bitflag(3) returns 8 or 1000 in binary.

Programmers Reference 93

CHAPTER 6: CCL Functions

bitflaglong()

Scalar. Returns a value with all bits set to zero, except a specified bit.

Syntax
bitflaglong (bit)

Parameters
bit An integer indicating which bit to set, starting from 0 as the least-
significant bit.
Usage

The function returns a long.

Example
bitfl agl ong (35) returns 34359738368 or
100000000000000000000000000000000000 in binary.

bitmask()

Scalar. Returns a value with all bits set to 0 except a specified range of bits.

Syntax
bitmask (first, last)

Parameters
first The first bit to set, starting from 0 as the least-significant bit.
last The last bit to set, starting from 0 as the least-significant bit.
Usage

Both arguments must be integers, and the function returns an integer. The order of the
arguments does not matter, that is, bi t mask (1, 3) yieldsthe same resultas bi t mask
(3, 1).

Example
bi t mask (1, 3) returns 14 or 1110 in binary.

bi t mask (3, 0) returns 15 or 1111 in binary.

94

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

bitmasklong()

Scalar. Returns a value with all bits set to 0, except a specified range of bits.

Syntax
bi t masklong (first, last)

Parameters
first The first bit to set, starting from 0 as the least-significant bit.
last The last bit to set, starting from 0 as the least-significant bit.
Usage

Both arguments must be integers, and the function returns a long.
Example

bi t maskl ong (33, 35) returns 60129542144 or
111000000000000000000000000000000000 in binary.

bitnot()

Scalar. Returns the value of an expression with all bits inverted.

Syntax
bi tnot (expression)

Parameters

expression An integer or a long.

Usage
Returns the value of an expression after the bitwise operation is performed. Bits that were 0
become 1, and vice versa. The function returns the same datatype as the argument.

Example
bi t not (7) returns-8, orinbinary, bi t not (111) returns
11111111221112112112121111111111000. The user cannot specify binary directly.

bitor()

Scalar. Returns the results of performing a bitwise OR operation on two expressions.

Syntax
bitor (expressionl, expression2)

Programmers Reference 95

CHAPTER 6: CCL Functions

Parameters
expressionl Expression that simplifies to an integer or a long (must be the same
as expression2).
expression2 Expression that simplifies to an integer or a long (must be the same
as expressionl).
Usage

The function takes two bit patterns and produces another one of the same length by performing
the logical OR operation on each pair. The result for the pair is 1 if the first bit or the second bit
are 1, or if both bits are 1. Otherwise, the result for the pair is 0. The function returns the same
datatype as its arguments.

Example
bitor (5, 3) returns7,orinbinary, bi tor (0101, 0011) returns 0111. The user
cannot specify binary directly.

bitset()

Scalar. Returns the value of an expression after setting a specific bit to 1.

Syntax
bitset (expression, bit)

Parameters

expression The initial value as an integer or a long.

bit Which bit to set, starting from 0 as the least-significant bit.
Usage

A bit argument must be an integer. The function returns the same datatype as the initial
expression argument.

Example
bitset (2, 3) returns10,orinbinary, bitset (0010, 3) returns 1010. The user
cannot specify binary directly.

bitshiftleft()

Scalar. Returns the value of an expression after shifting the bits left a specific number of
positions.

Syntax
bitshiftleft (expression, count)

96

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Parameters
expression The initial value as an integer or a long. Can be an integer or a long.
count How many positions to shift. The same number of right-most bits
are set to 0. Must be an integer.
Usage

The bits that are shifted out the left are discarded, and zeros are shifted in on the right. The
expression argument can be an integer or a long, but the count argument must be an integer.
The function returns the same datatype as the initial expression argument.

Example
bitshiftleft (10, 2) returns40,orinbinary, bitshiftleft (1010, 2)
returns 101000. The user cannot specify binary directly.

bitshiftright()

Scalar. Returns the value of an expression after shifting the bits right a specific number of
positions.

Syntax
bitshiftright (expression, count)

Parameters
expression The initial value, as an integer or a long. Can be an integer or a
long.
count How many positions to shift. The same number of left-most bits are
set to 0. Must be an integer.
Usage

The bits that are shifted out the right are discarded, and zeros are shifted in on the left. The
function returns the same datatype as the initial expression argument.

Example
bitshiftright (3, 1) returnsl,orinbinary, bitshiftright (0011, 1)
returns 0001. The user cannot specify binary directly.

bittest()

Scalar. Returns the value of a specific bit in a binary value.

Syntax
bittest (expression, bit)

Programmers Reference 97

CHAPTER 6: CCL Functions

Parameters

expression The initial value, as an integer or a long .

bit Which bit to return. All other bits are set to zero.
Usage

A bit argument must be an integer. The function returns the same datatype as the datatype of
the expression argument.

Example
bittest (15, 3) returns8,orinbinary,bi ttest(1111, 3) returns1000. The user
cannot directly specify binary.

bittoggle
Scalar. Returns the value of an expression after inverting the value of a specific bit.

Syntax
bittoggle (expression, bit)

Parameters
expression The initial value, as an integer or a long
bit Which bit to toggle

Usage

The expression argument can be an integer or a long, but the bit argument must be an integer.
The function returns the same datatype as the datatype of the expression argument.

Example
bittoggle (7, 3) returns 15, orinbinary, bi ttoggle (0111, 3) returns1111.
The user cannot specify binary directly.

bitxor()

Scalar. Returns the results of performing a bitwise exclusive OR (XOR) operation on two
expressions.

Syntax
bi t xor (expressionl, expression2)

98

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Parameters
expressionl Expression that simplifies to an integer or a long (must be the same
datatype as expression2)
expression2 Expression that simplifies to an integer or a long (must be the same
datatype as expression1)
Usage

The function performs the logical XOR operation on each pair of corresponding bits. The
result for the pair of bits is 1 if the two bits are different, or 0 if they are the same. Using bitxor()
on the same expression yields 0. The function returns the same datatype as its arguments.

Example
bi t xor (3, 3) returnsO.

bi t xor (10, 15) returns5,orinbinary,bi t xor (1010, 1111) returns0101. The
user cannot specify binary directly.

cbrt()

Scalar. Returns the cube root of a number.

Syntax
cbrt (value)

Parameters

value A numeric datatype

Usage
The function returns a float. If the argument is invalid, the server logs a Fl oat i ng- poi nt
excepti on error.

Example
cbrt (1000. 00) returns 10.0.

ceil()

Scalar. Rounds a number up to the nearest whole number..

Syntax
ceil (value)

Programmers Reference 99

CHAPTER 6: CCL Functions

Parameters

value A float or money type

Usage
The function returns the same datatype as the argument.

Example
ceil (100. 20) returns 101.0.

compare()

Scalar. Determines which of two values is larger.

Syntax
conpare (valuel, value2)

Parameters
valuel Any datatype
value2 Any datatype
Usage

The function returns an integer (1, -1, or 0). If the first value is larger, the function returns 1. If
the second value is larger, the function returns -1. If they are equal, it returns 0.

Example
compare ((asin(0.5), (acos(0.5)) returns-1.

cos()

Scalar. Returns the cosine of a given value expressed in radians.

Syntax
cos (value)

Parameters

value A float

Usage
The function returns a float.

Example
cos (0.5) returns 0.87758.

100 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

cosd()

Scalar. Returns the cosine of a given value, expressed in degrees.

Syntax
cosd (value)

Parameters

value A float

Usage
The function returns a float.

Example
cosd (90.0) returns -0.448073616.

cosh()

Scalar. Returns the hyperbolic cosine of a given value expressed in radians.

Syntax
cosh (value)

Parameters

value A float

Usage
The function returns a float.

Example
cosh (0.5) returns 1.12762597.

distance()

Scalar. Returns a value representing the distance between two points in two or three
dimensions.

Syntax
di stance (pointlx, pointly, [pointlz], point2x, point?2y,
[poi nt 2z])

Parameters

pointlx An expression that evaluates to a value representing the position of
the first point on the x axis.

Programmers Reference 101

CHAPTER 6: CCL Functions

pointly An expression that evaluates to a value representing the position of
the first point on the y axis.

pointlz An expression that evaluates to a value representing the position of
the first point on the z axis.

point2x An expression that evaluates to a value representing the position of
the second point on the x axis.

point2y An expression that evaluates to a value representing the position of
the second point on the y axis.

point2z An expression that evaluates to a value representing the position of
the second point on the z axis.

Usage

Returns a number representing the distance between two points in either two or three
dimensions. All arguments must be the same numeric type, and the function returns the same
datatype.

Example
di stance (7.5, 6.5, 10.5, 10.5)returns5.0.

distance (1.2, 3.4, 5.6, 7.8, 9.10, 11.12) returns 10.320872.
distancesquared()

Scalar. Returns a number representing the square of the distance between two points in either
two or three dimensions.

Syntax
di stancesquared (pointlx, pointly, [pointlz], point2x, point?2y,
[poi nt2z])
Parameters
pointlx An expression that evaluates to a value representing the position of
the first point on the x axis.
pointly An expression that evaluates to a value representing the position of
the first point on the y axis.
pointlz An expression that evaluates to a value representing the position of
the first point on the z axis.
point2x An expression that evaluates to a value representing the position of
the second point on the x axis.

102 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

point2y An expression that evaluates to a value representing the position of
the second point on the y axis.

point2z An expression that evaluates to a value representing the position of
the second point on the z axis.

Usage

Returns a number representing the square of the distance between two points in either two or
three dimensions. All arguments must be of the same numeric type, and the function returns
the same datatype.

Example
di stancesquared (7.5, 6.5, 10.5, 10.5)returns25.0.

di stancesquared (1.2, 3.4, 5.6, 7.8, 9.10, 11.12) returns
106.502400.

exp()

Returns the value of e (the base of the natural logarithm) raised to the power of a given number.

Syntax
exp (value)

Parameters

value A float.

Usage
Returns the value of e (the base of the natural logarithm, 2.78128) raised to the power of a
given number. If the argument is invalid, the server logs a floating-point exception error.

Example
exp (2.0) returns 7.3890.

floor
Scalar. Rounds a number down.

Syntax
floor (value)

Parameters

value A float or a money type.

Programmers Reference 103

CHAPTER 6: CCL Functions

Usage
Rounds a given number down to the nearest whole number. The function takes a float or a
money type, and the function returns the same datatype as its argument.

Example
fl oor (100.20) returns 100.0.

floor (1.56) returns 1.0.

isnull()

Scalar. Determines if an expression is NULL.

Syntax
isnull (expression)

Parameters

expression An expression of any datatype.

Usage

Determines if an expression is NULL. The function can take any datatype as its argument, and
the function returns an integer. The function returns 1 if the argument is NULL, and 0
otherwise.

Example
isnull ('exanplestring') returnsO.

length()

Scalar. Returns the number of bytes of a given binary value.

Syntax
|l ength (binary)

Parameters

binary A binary value.

Usage

Returns the number of bytes that make up a given binary value. The function takes a binary
value as its argument, and the function returns an integer. If the binary value is NULL, the
function returns NULL.

Example
| ength (hex_binary ('0xaal234')) returns 3.

104

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

I ength (hex_binary ('aa')) returnsl.

InQ

Scalar. Returns the natural logarithm of a given number.

Syntax
In (value)

Parameters

value A float.

Usage

Returns the natural logarithm of a number. If the argument is invalid (for example, less than 0),
the server logs a “Floating-point exception” error. The function takes a float as its argument,
and the function returns a float.

Example
In (2.718281828) returns 1.0.

log2()

Scalar. Returns the logarithm of a given value to the base 2.

Syntax
| og2 (val ue)

Parameters

value An expression that evaluates to a float greater than or equal to 0.

Usage

Returns the logarithm of a given value to the base 2. The function expects a float for its
argument, however, an integer will be promoted to a float when the function executes. The
function returns a float.

Example
| og2 (8.0) returns 3.0.

l0g10()

Scalar. Returns the logarithm of a given value to a base of 10.

Syntax
| 0g10 (val ue)

Programmers Reference 105

CHAPTER 6: CCL Functions

Parameters

value An expression that evaluates to a float greater than or equal to 0.

Usage

Returns the logarithm of a given value to a base of 10. The function expects a float as it
argument, however, an integer will be promoted to a float when the function executes. The
function returns a float.

Example
| og (100. 0) returns 2.0.

logx()

Scalar. Returns the logarithm of a given value to a specified base.

Syntax
| ogx (val ue, base)

Parameters
value An expression that evaluates to a float greater than or equal to 0.
base An expression that evaluates to a float greater than 1.

Usage

Returns the logarithm of a given value to a specified base. The function expects floats for its
arguments, however, integers will be promoted to floats when the function executes. The
function returns a float.

Example
| ogx (8.0, 2.0) returns 3.0.

maxof()

Scalar. Returns the maximum value from a list of expressions.

Syntax
maxof (expression [,...])

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

106 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Returns the maximum value from a list of expressions. NULL values are ignored. If all of the
arguments are NULL, the function returns NULL. The arguments can be of any datatype, but
they must be of the same datatype. The function returns the same datatype as its arguments.

Example
maxof (1.34, 3.35, 10.93, NULL) returns 10.93.

minof()

Scalar. Returns the minimum value from a list of expressions.

Syntax
m nof (expression [,...])

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

Usage

Returns the minimum value from a list of expressions. NULL values are ignored. If all of the
arguments are NULL, the function returns NULL. The arguments can be of any datatype, but
they must be of the same datatype. The function returns the same datatype as its arguments.

Example
mn (0.61, NULL, 2.34, 1.32) returns0.61.

nextval()

Scalar. Returns a value larger than that returned by the previous call. The first call returns 1.

Syntax
next val ()

Usage

The first call to the function returns 1, and then each subsequent call returns a value larger than
that returned by the previous call. The increase in the values is not necessarily one; it may be
larger. Each call to nextval() returns a new value, even if it is called more than once in a single
statement. The function takes no arguments, and the function returns a long.

Example
The first call to next val () returns 1. Calling next val () asecond time could return 14,
for example.

Programmers Reference 107

CHAPTER 6: CCL Functions

piQ

Scalar. Returns a numerical approximation of the constant pi.

Syntax
pi ()

Usage
Returns a numerical approximation of the constant pi. The function does not take any
arguments, and the function returns a float.

Example
pi () returns 3.141593.

ower
Scalar. Returns the value of a given base raised to a specified exponent.

Syntax
power (base, exponent)

Parameters

base Any numeric type.

exponent Float that specifies the number that the base will be raised to.
Usage

Returns the value of a given base raised to a specified exponent. The function takes a numeric
type for the base argument, but the exponent must be a float. The function returns the same
datatype as the base argument.

Example
power (2.0, 3.0) returns8.0.

random()

Scalar. Returns a random value greater than or equal to 0 and less than 1.

Syntax
random()

Usage
Returns a random value greater than or equal to 0 and less than 1. The function does not take
any arguments, and the function returns a float.

108

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
random() may return 0.54 on a call, for example.

round()

Scalar. Returns a number rounded to the specified number of digits.

Syntax
round (value, digits)

Parameters

value A float representing a value that needs to be rounded.

digits The number of digits after the decimal point to round the value to.
Usage

Returns a number rounded to the specified number of digits. The value is rounded to the
number of decimal points specified by the digits argument. The function follows standard
rounding rules. Both arguments must be floats, and the function returns a float.

Example
round (66.778, 1) returns 66.8.

sign()

Scalar. Determines whether a given value is positive or negative.

Syntax
sign (value)

Parameters

value Any type that can have a sign (integer, float, long, interval, money).

Usage

Determines whether a given value is positive or negative. The function returns 1 if the value is
positive, -1 if the value is negative, and 0 otherwise. The argument can be any type that has a
sign, and the function returns an integer.

Example
sign (cosd(45.0)) returns1.

Programmers Reference 109

CHAPTER 6: CCL Functions
sin()
Scalar. Returns the sine of a given value.

Syntax
sin (value)

Parameters

value A float.

Usage
Returns the sine of a given value, expressed in radians. The function takes a float as its
argument, and the function returns a float.

Example
sin (pi()) returnsO.

sind()

Returns the sine of a given value, expressed in degrees.

Syntax
sind (value)

Parameters

value A float.

Usage
Returns the sine of a given value, expressed in degrees. The function takes a float as its
argument, and the function returns a float.

Example
si nd(45. 0) returns 0.850903525.

sinh()

Scalar. Returns the hyperbolic sine of a given value.

Syntax
sinh (val ue)

Parameters

value A float.

110 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage
Returns the hyperbolic sine of a given value, expressed in radians. The function takes a float as
its argument, and the function returns a float.

Example
si nh (0.5) returns 0.521095305.

sqrt(Q)

Scalar. Returns the square root of a given number.

Syntax
sqrt (value)

Parameters

value A money or numeric type.

Usage

Returns the square root of a given number. The function takes a numeric type or a money type
as its argument, and the function returns a float. If the argument is invalid, the function returns
a "Floating-point exception" error.

Example
sqrt (100. 0) returns 10.0.

tan“

Scalar. Returns the tangent of a given value.

Syntax
tan (value)

Parameters

value A float.

Usage
Returns the tangent of a given value, expressed in radians. The function takes a float as its
argument, and the function returns a float.

Example
tan (0.0) returnsO.

Programmers Reference 111

CHAPTER 6: CCL Functions

tand()

Scalar. Returns the tangent of a given value, expressed in degrees.

Syntax
tand (val ue)

Parameters

value A float.

Usage
Returns the tangent of a given value, expressed in degrees. The function takes a float as its
argument, and the function returns a float.

Example
tand (45.0) returns 1.61977519.

tanh()

Scalar. Returns the hyperbolic tangent of a given value.

Syntax
tanh (val ue)

Parameters

value A float.

Usage
Returns the hyperbolic tangent of a given value. The function takes a float as its argument, and
the function returns a float.

Example
tanh (0.5) returns 0.462117157.

String Functions

String functions are used with STRING values and usually return a STRING value. Examples
of string functions includel eft (),rtrim (),andrepl ace ().

int32()

Scalar. Converts a given string into an integer.

Syntax
int32 (string)

112

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Parameters
string A string that starts with an optional minus sign and contains only
digits.
Usage

Converts a given string into an integer. The function takes a string as its argument, and the
function returns an integer. An invalid string causes the function to return NULL.

Example
int32 ('1935") returns 1935.

left()

Scalar. Returns a specified number of characters from the beginning of a given string.

Syntax
left (string, count)

Parameters

string A string.

count The number of characters to return.
Usage

Returns a specified number of characters from the beginning of a given string. The function
takes a string and an integer as the count argument. The function returns a string. If count isa
negative number, the function returns NULL. If count is 0, the function returns an empty
string.

The function works with UTF-8 strings if the -U server option is specified.

Example
left ('exanplestring' , 7) returns'example'.

like()

Scalar. Determines whether a given string matches a specified pattern string.

Syntax
like (string, pattern)

Parameters

string A string.

Programmers Reference 113

CHAPTER 6: CCL Functions

pattern A pattern of characters, as a string. Can contain wildcards.

Usage

Determines whether a string matches a pattern string. The function returns 1 if the string
matches the pattern, and 0 otherwise. The pattern argument can contain wildcards: '_' matches
asingle arbitrary character, and ‘%' matches 0 or more arbitrary characters. The function takes
in two strings as its arguments, and returns an integer.

Note: In SQL, the infix notation can also be used: sourceString like patternString.

Example
like (' MSFT', 'MA') returns 1.

lower
Scalar. Returns a new string where all the characters of the given string are lowercase.

Syntax
| ower (string)

Parameters

string A string.

Usage
Returns a string where all the characters of a given string are lowercase. The function takes a
string as its argument, and the function returns a string.

Example
upper ('This Is A Test') returns 'thisis a test'.

Itrim
Scalar. Trims spaces from the left side of a string.

Syntax
Itrim(string)

Parameters

string A string.

Usage
Trims spaces from the left side of the string. The function takes a string as its argument, and the
function returns a string.

114

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
Itrim (' exanplestring') returns 'examplestring'.

patindex()

Scalar. Determines the position of the nth occurrence of a pattern within a source string.

Syntax

patindex (string, pattern, nunmber [, position] [,
constant_string])

Parameters
string A source string.
pattern String representing the pattern to search for.
number Occurence of the pattern to look for.
position (optional) Starting position (0 based index) of the search. Default is
0.
constant_string (optional) Boolean indicating whether the pattern argument should
be treated as a constant string instead of a pattern. Default is false.
Usage

Determines the position of the nth occurrence of a pattern within a source string. The pattern
can contain wildcards: "_" matches a single arbitrary character; "%" matches O or more
arbitrary characters. If fewer than n instances of the pattern are found in the string, the function
returns -1.

The function takes strings for the string and the pattern arguments, and integers for the
number and position arguments. The constant_string argument is a Boolean. The function
returns an integer representing the position of the nth occurrence of the pattern within the
given string.

If number is less than or equal to zero, the function returns NULL. If position is less than 0, the
function starts searching from the start of the string. If position is greater than the length of the
string argument, patindex() returns -1.

The function works with UTF-8 strings if the -U server option is specified.

Example

pati ndex('longlonglongstring', 'long', 2) returns4.
pati ndex('longstring , 'long', 2) returns-1.
patindex('String', __n, 1) returns2.

Programmers Reference 115

CHAPTER 6: CCL Functions

patindex('String', %, 1) returnsO.

pati ndex('String', __n, 1, false) returns?2.
pati ndex('String', __n, 1, true) returns-1.
patindex('String', S, 1, 0, false) returnsO.
patindex('Stringi', i, 2, 2, true) returnsé6.

real()

Scalar. Converts a given string into a float.

Syntax
real (string)

Parameters
string A valid string must be a sequence of digits, optionally containing a
decimal-point character. The input may also include an optional
minus sign as the first character, or an optional exponent part,
which itself consists of an e’ or 'E' character followed by an op-
tional sign and a sequence of digits.
Usage

Convertsagiven string into a float. The function takes a string as its argument, and the function
returns a float. An invalid string causes the function to return NULL.

Example
real ('43.4745") returns 43.4745.

regexp_firstsearch()
Scalar. Returns the first occurrence of a POSIX regular expression pattern found in a given
string.

Syntax
regexp_firstsearch (string, regex)

Parameters
string A string.
regex A POSIX regular expression pattern. This pattern is limited to the
Perl syntax.

116 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Returns the first occurrence of a POSIX regular expression pattern found in a given string. If
string does not contain a match for the pattern, or if the specified pattern is not a valid regular
expression, the function returns NULL. One or more subexpressions can be included in the
pattern, each enclosed in parentheses. If string contains a match for the pattern, the function
only returns the parts of the pattern specified by the first subexpression. The function returns a
string.

The function works with UTF-8 strings if the -U server option is specified.
Example

regexp_firstsearch(' aaadogaaa', '[b-z]*') returns'dog'.
regexp_firstsearch('h', "[i-z]*") returns NULL.
regexp_firstsearch(' aaaaabaaaabbbaaa', '[b-z]*') returns'b'.
regexp_replace()

Scalar. Returns a given string with the first occurrence of a match for a POSIX regular
expression pattern replaced with a second, specified string.

Syntax
regexp_replace (string, regex, replacenent)

Parameters
string A string.
regex A POSIX regular expression pattern. This pattern is limited to the
Perl syntax.
replacement A string to replace the part of the string that matches regex.
Usage

Returns a given string with the first occurrence of a match for a POSIX regular expression
pattern replaced with a second, specified string. If string does not contain a match for the
POSIX regular expression, the function returns the string with no replacements. If regex is not
a valid regular expression, the function returns NULL.

The function works with UTF-8 strings if the -U server option is specified.

Example

regexp_repl ace(' aaadogaaa', '[b-z]*', 'cat') returns'aaacataaa’.
regexp_replace(' aaadogaaa', '[b-z]*', '') returns'aaaaaa'.
regexp_replace('aaa', '[a-z]*', 'dog') returns'dog'

Programmers Reference 117

CHAPTER 6: CCL Functions

regexp_replace('aaa', '[b-z]*', 'dog') returns'aaa’.

regexp_search()
Scalar. Determines whether or not a string contains a match for a POSIX regular expression
pattern.

Syntax
regexp_search (string, regex)

Parameters
string A string.
regex A POSIX regular expression pattern. This pattern is limited to the
Perl Syntax.
Usage

Determines whether or not a string contains a match for a POSIX regular expression pattern.
The function returns the Boolean expression corresponding to whether or not the string
contains the pattern (TRUE or FALSE).

The function works with UTF-8 strings if the -U server option is specified.

Example
regexp_search(' aaadogaaa', '[b-z]*') returns TRUE.

regexp_search('h', "[i-z]*") returns FALSE.

replace()

Scalar. Returns a new string where all the occurrences of the second string in the first string are
replaced with the third string.

Syntax
repl ace (target, substring, repstring)

Parameters

target A string.

substring The string of characters to replace.

repstring The replacement for the characters, as a string.
Usage

Returns a new string where all the occurrences of the second string in the first string are
replaced with the third string. The function takes three string arguments, and returns a string.

118

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
replace (' NewAnsterdam , 'New , 'dd') returns'OldAmsterdam'.

right()

Scalar. Returns the rightmost characters of a string.

Syntax
right (string, nunber)

Parameters

string A string.

number The number of characters to return from the string.
Usage

Returns the rightmost characters of a string. The function takes in a string and an integer, and
returns a string.

Example
right ('exanplestring' , 6) returns'string'

rtrim()

Scalar. Trims spaces from the right of a string.

Syntax
rtrim(string)

Parameters

string A string.

Usage
Trims the spaces from the right side of the string. The function takes in a string as its argument,
and returns a string.

Example
rtrim (' exanplestring ') returns 'examplestring'.

string()

Scalar. Converts a given value of any type to an equivalent string.

Syntax
string (value)

Programmers Reference 119

CHAPTER 6: CCL Functions

Parameters

value An argument of any datatype, except binary or string.

Usage
Converts a given value into an equivalent string expression. The argument can be any datatype,
except binary or string. The function returns a string.

Example
string (1935) returns'1935'.

substr()

Scalar. Returns a substring of a given string, based on a start position and number of
characters.

Syntax
substr (string, position, number)

Parameters
string A string.
position The starting position to start taking a substring. The first character
or space in a string is in position 0.
number The number of characters in the substring.
Usage

Returns a substring of a given string, based on a start position and number of characters. The
first argument must be a string, and the position and number arguments must be integers. The
function returns a string.

Example
substr ('thissubstring' , 4, 3) returns'sub'.

trim()

Scalar. Returns a given string after removing trailing and leading spaces.

Syntax
trim(string)

Parameters

string A string. Works with UTF-8 strings.

120 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Returnsagiven string after removing trailing and leading spaces. The function takes a string as
the argument, and returns a string. The function returns the same value as applying Itrim() and
rtrim() to a given string.

Example
trim (' exanplestring ') returns 'examplestring'.

trim(" ') returns".

trim('a') returns'a’.

trunc()

Scalar. Truncates the time portion of a date to 00:00:00 and returns the new date value.

Syntax
trunc (dateval ue)

Parameters

datevalue A date or bigdatetime.

Usage

Truncates the time portion of a date value to 00:00:00 and returns the new date value. The
function takes a date or bigdatetime as its argument, and the function returns the same
datatype.

Example
trunc (undate ('2001:05:23 12:34:64")) returns 2001:05:23 00:00:00.

upper
Scalar. Returns a string where all the characters of a given string are uppercase.

Syntax
upper (string)

Parameters

string A string.

Usage
Returns a string where all the characters of a given string are uppercase. The argument of the
function is a string, and the function returns a string.

Programmers Reference 121

CHAPTER 6: CCL Functions

Example
upper ('This Is A Test') returns THISIS ATEST"

Conversion Functions

Conversion functions convert data values of various datatypes to the datatype specified by the
function name.

ascii()
Scalar. Returns the Unicode code point for a particular character, or the UTF-8 code point if
the -U server option is specified.

Syntax
ascii (character)

Parameters

character A character string.

Usage
If empty or NULL, the function returns NULL. Otherwise, the function returns the code point
as an integer.

Example
ascii ('D) returns 68.
ascii (' Dog') alsoreturns 68 since only the first character is converted.

base64 binary()
Scalar. Returns a binary value for a given base64-encoded string.

Syntax
base64_binary (string)

Parameters
string A base64-encoded string. Valid characters include a-z, A-Z, 0-9, /,
and +.
Usage

The function converts a base64-encoded string to a binary type. The string length cannot have
a remainder of 1 when divided by 4, as it makes the encoding invalid. Optionally, use one or
two padding characters, '=" in order to make the length divisible by 4.

122

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
base64 binary ('bGvhc3VyZS4=") returns 6C6561737572652E.

base64_binary ('ZQ==') returns 65.

base64 string()
Scalar. Returns a base64-encoded string for a given binary value.

Syntax
base64_string (binary)

Parameters

binary A binary value.

Usage

The function encodes a binary value to form a base64-encoded string. One or two padding
characters, '=" are added to the end to make the string length divisible by 4. The function
returns a string.

Example
base64_string (hex_binary ('64"')) returns ZQ==.

base64_string (hex_binary ('6C6561737572652E')) returns
bGVhc3VyzZS4=.

cast()

Scalar. Converts the value of one datatype to another datatype allowing overflows and
truncation.

Syntax
cast (type, number)

Parameters

type Any datatype, except binary or string.

number A datatype that can be cast to the new specified datatype.
Usage

The type argument must be a numeric type, money type, or a date/time type. You can cast
expressions of any type except binary or string types.

Casting from larger types to smaller types may cause overflow. Casting from decimal types
(like float or money) to nondecimal types (like integer) truncates the decimal portion. Both

Programmers Reference 123

CHAPTER 6: CCL Functions

overflows and truncation are allowed. Use this function to force a cast in places where an
implicit cast is disallowed, such as when converting an integer to a long.

When comparing values of varying scale, cast one value to the other to make the two values
compatible. For example, you can compare money values of different scale only by casting to
a common type.

How to cast money values of different scale depends on how you compare the two values:

« Ifyouset 100.55D2, amoney(2) type, as greater than (>) 100.545D3, a money(3) type, the
result is false because the values are represented internally without the decimal point.
Therefore, 10055 cannot be greater than 100545. In this example, you can perform casting
on either value to produce a true result. When you cast 10055 to 100545, the comparison
becomes 100550>100545, which is true. When you cast 100545 to 10055, the comparison
becomes 10055>10054, which is also true.

« Ifyouset100.55D2 as equal (=) to 100.556D3, the result is false. In thisexample, the result
changes depending on which value you cast. When you cast 10055 to 100556, the
comparison becomes 100550=100556, which is false. When you cast 100556 to 10055,
the comparison becomes 10055=10055, which is true.

You may prefer to cast lower scale values to higher scale values to avoid incorrect comparison
results and to maintain scale.

Example
cast (integer, 1.23) returnsl.

char()

Scalar. Returns the characters responding to one or more Unicode code points, or the UTF-8
code points if the -U server option is specified.

Syntax
char (expression [,...])
Parameters
expression One or more Unicode code points. The arguments must be integers.
Usage

An invalid code point, 0, or NULL returns NULL. The function returns a string.

Example
char (68) returns'D'".

char (68, 68, 68) returns'DDD'.

124

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

dateint()

Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch).

Note: This function is supported in mixed case. The Event Stream Processor supports both
dateint() and datelnt(), and considers them the same function.

Syntax
dateint (dateval ue)

Parameters

datevalue A date.

Usage

Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch). The function takes a date as its argument, and the function returns an
integer.

Example
dateint (undate ('1970:01:01 00: 01:01')) returns 61.

extract()

Scalar. Extracts and returns a portion of a given binary value.

Syntax
extract (binary, startByte, nunberOfBytes)

Parameters
binary A binary value.
startByte Integer representing the starting position for the extraction.
numberOfBytes Integer representing the length of the extraction.

Usage

Extracts a binary value starting at the startByte argument for a specified length. The function
takes a binary value and two integers as its arguments (for startByte and numberOfBytes),
and the function returns a binary value.

For example, if a binary value was composed of bytes abcde, ext ract (bytes, 2,3)
would produce cde. If length goes past end of binary value the rest of the binary value is
returned. In the previous example, ext ract (byt es, 2, 4) would still return cde.

Programmers Reference 125

CHAPTER 6: CCL Functions

Example
extract (hex_binary ('alb2c3e4'), 1, 2) returns B2C3.

extract (hex_binary ('alb2c3e4'), 3, 1) returns E4.
extract (hex_binary ('alb2c3e4'), 0, 4) returns A1B2C3EA4.

fromnetbinary()
Scalar. Converts a binary in network byte order to an integer in host byte order.

Syntax
frometbi nary (binary)

Parameters

binary A binary in network byte order.

Usage

Takes a binary in network byte order and converts it to an integer in host byte order. Works for
positive and negative values. The function takes a binary value as its argument and the function
returns an integer. The function returns an error if the binary value is more than 4 bytes long.

Example
fromet bi nary (FFFFFFF6) returns -10.

fromet bi nary (0012ADE4) returns 1224164.

hex_binary()

Scalar. Converts a hex string into a binary type.

Syntax
hex_binary (string)

Parameters

string A hex string, with or without the preceding "0x" or "0X".

Usage

Takes a hex string, and converts it into a binary type. Valid characters for a hex string are a-f,
A-F, and 0-9. The string must contain an even number of characters. The function takes a
string as its argument, and the function returns a binary value.

Example
hex_bi nary (' OxAA1B223F') returns AA1B223F.

126

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

hex_bi nary ('Oxaa') returns AA.

hex_string()

Scalar. Converts a binary value into a hex string.

Syntax
hex_string (binary)

Parameters

binary A binary value.

Usage

Converts abinary value into a hex string. The function takes a binary value as its argument, and
the function returns a string that represents a hex string without the preceding "0x" in all
uppercase.

Example

hex_string (hex_binary ('Oxaa')) returns AA.
hex_string (hex_binary ('0xaal234')) returns AA1234.
intdate()

Scalar. Converts an integer representing the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch) to a date.

Note: This function is supported in mixed case. The Event Stream Processor supports both
intdate() and intDate(), and considers them the same function.

Syntax
i ntdate (nunber)

Parameters
number An integer representing the number of seconds since 1970-01-01
00:00:00 UTC (the Epoch).
Usage

Converts a value representing the number of seconds since 1970-01-01 00:00:00 UTC (the
Epoch) to a date. The function takes an integer as its argument, and the function returns a
date.

Example
i nt Dat e(1) returns a date, 1970-01-01 00:00:01.

Programmers Reference 127

CHAPTER 6: CCL Functions

msecToTime()

Scalar. Converts a given number of milliseconds to a bigdatetime.

Syntax
nsecToTinme (milliseconds)

Parameters
milliseconds A long representing the number of milliseconds since the epoch
(midnight, January 1, 1970 UTC).
Usage

Converts a given number of milliseconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
nsecToTi me (3661001) returns 1970-01-01 01:01:01.001.

recordDataToRecord
Converts the binary errorRecord value to a RECORD datatype value, based on the schema of
the specified source stream.

Syntax
recor dDat aToRecord (string sourceStreanNanme, binary errorRecord)

Parameters

sourceStreamName is a string that provides the name of the stream from which the error
record originated. To allow type checking of the return type, it must be an actual name, not a
variable that carries the name. If this argument does not point to an existing stream,
recordDataToRecord returns a NULL after setting an error flag to indicate that a bad
argument has been specified.

errorRecordis a binary that provides the record that triggered the error. This should always be
the errorRecord field of the error stream.

Note: Passing any arbitrary binary string or a mismatching schema (stream) name results in
undefined behavior ranging from garbage in the record to crashing the server. The arguments
to this built-in must be the sourceStreamName and errorRecordfields of the same error
stream.

recordDataToString
Converts the binary errorRecord value to string format.

128

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Syntax
recordDat aToString (string sourceStreanNane, binary errorRecord)

Parameters

The sourceStreamNameis a string that provides the name of the stream from which the error
record originated. This should always be the sourceStreamName field of an error stream.
Specifying the name of another stream (such as the error stream) can cause a fatal error due to a
schema mismatch. If this argument doesn't point to an existing stream, recordDataToString
returns a NULL after setting an error flag to indicate that a bad argument was specified.

The éerrorRecordis a binary that provides the record that triggered the error. This should
always be the errorRecord field of the error stream and the schema should always match the
record.

Note: Passing any arbitrary binary string or a mismatching schema (stream) name will result
in undefined behavior: ranging from garbage in the record to crashing the server. The
arguments to this built-in should always be the sourceStreamName and errorRecordfields of
the same error stream.

secToTime()

Scalar. Converts a given number of seconds to a bigdatetime.

Syntax
secToTi ne (seconds)

Parameters
seconds A long representing the number of seconds since the epoch (mid-
night, January 1, 1970 UTC).
Usage

Converts a given number of seconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
secToTi me (3661) returns 1970-01-01 01:01:01.000000.

timeToMsec()

Scalar. Converts a bigdatetime to the number of milliseconds since the epoch (midnight,
January 1, 1970).

Syntax
ti meToMsec (tine)

Programmers Reference 129

CHAPTER 6: CCL Functions

Parameters

time A bigdatetime.

Usage

Converts a bigdatetime to the number of milliseconds since the epoch (midnight, January 1,
1970). The function takes a bigdatetime as its argument, and the function returns a long
representing the number of milliseconds since the epoch (midnight, January 1, 1970 UTC).
The function truncates the microseconds that are part of the bigdatetime.

Example
ti meToMsec (unbigdatetine('1970-01-01 01: 01: 01: 002100"'))
returns 3661002.

timeToUsec()

Scalar. Converts a bigdatetime to the number of microseconds since the epoch (midnight,
January 1, 1970).

Syntax
ti meToUsec (tine)

Parameters

time A bigdatetime.

Usage

Converts a bigdatetime to the number of microseconds since the epoch (midnight, January 1,
1970). The function takes a bigdatetime as its argument, and the function returns a long
representing the number of microseconds since the epoch (midnight, January 1, 1970 UTC).

Example
ti meToUsec (unbigdatetine ('21970-01-01 01:01:01.000001"))
returns 3661000001.

timeToSec()

Scalar. Converts a bigdatetime to the number of seconds since the epoch (midnight, January 1,
1970).

Syntax
ti meToSec (tinme)

Parameters

time A bigdatetime.

130

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Converts a bigdatetime to the number of seconds since the epoch (midnight, January 1, 1970).
The function takes a bigdatetime as its argument, and the function returns a long representing
the number of seconds since the epoch (midnight, January 1, 1970 UTC).The function
truncates the milliseconds or microseconds that are part of the bigdatetime.

Example
ti meToSec (unbigdatetinme(' 1970-01-01 01: 01: 01: 000000"))

returns 3661.

to_bigdatetime()
Scalar. Converts a given value to a bigdatetime.

Syntax

to_bigdatetine (value)
to_bigdatetinme (value, format)

Parameters
value A string, float, long, or bigdatetime. Strings must be in the format
specified by the format argument. Numeric values represent the
number of microseconds from the epoch (midnight, January 1,
1970 UTC).
format A format string. Only valid if the value is a string. Must be one of
the format codes for a bigdatetime. See "Date/Time Format Codes"
for more information.
Usage

Converts a given value to a bigdatetime. The function takes a float, a long, or a string (and
associated format string) as its argument, and the function returns a bigdatetime. Note that the
function can also take a bigdatetime as its argument, but it will return the same bigdatetime.

Examples
t o_bi gdat eti me(3600000000) returns 1970-01-01 01:00:00.000000.

to_bi gdatetime(' 02/ 19/2010 10: 15", "% %/ % %1 %M) returns
2010-02-19 10:15:00.000000.

to_bi gdat eti me(' 07/ 19/ 2010 10: 15 -07.00', ' MV DD YYYY HH: M
TZH TZM) returns 2010-07-19 03:15:00.000000.

Programmers Reference 131

CHAPTER 6: CCL Functions

to_binary()

Scalar. Converts a given value to a binary value.

Syntax
to_binary (value)

Parameter

value The value you wish to cast to is either string or binary type.

Usage

Converts a given string to a binary value. The function takes a string as its argument, and the
function returns a binary value. Note that the function can also take a binary value as its
argument, but it will return the same binary value.

Examples
to_bi nary(' 0123456789abcdef') returns a binary value equivalent to
0x30313233343536373839616263646566

to_binary(‘Hello there!") returns a binary value equivalent to 0x48656¢6c6f20746865726521
to_string(to_binary(‘Good morning.")) returns the string 'Good morning.' after casting it to
binary type and then back to string type.

to_boolean()

Scalar. Converts a given value to a Boolean value.

Syntax
to_bool ean (val ue)

Parameter

value A string, or a Boolean value.

Usage

Converts a given string to a Boolean value. The function takes a string as its argument, and the
function returns a Boolean value. Note that the function can also take a Boolean value as its
argument, but it will return the same Boolean value.

The strings "True", "Yes", and "On", regardless of case, or the numeral "1" returns TRUE.
NULL returns NULL. Any other string returns FALSE.

Examples

to_bool ean ('1') returns TRUE.

to_bool ean (' FALSE') returns FALSE.

132

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

to_bool ean (' exanpl e') returns FALSE.

to_date()

Scalar. Converts a given value to a date.

Syntax

to_date (value)
to_date (value, format)

Parameters
value A string, float, long, or date. Strings must be in the format specified
by the format argument. Numeric values represent the number of
seconds from the epoch (midnight, January 1, 1970 UTC).
format A format string. Only valid if the value is a string. Must be one of
the format codes for a date. See "Date/Time Format Codes" for
more information.
Usage

Converts a given value to a date. The function takes a float, a long, or a string (and associated
format string) as its argument, and the function returns a date. Note that the function can also
take a date as its argument, but it will return the same date.

Examples
to_date('02/19/2010 10:15", ' % Y/ % 9. 9%) returns 2010-02-19
10:15:00.

to_date(' 07/19/2010 10:15 -07.00', ' MM DD/ YYYY HH M
TZH: TZM) returns 2010-07-19 03:15:00.

to_float()

Scalar. Converts a given value to a float.

Syntax
to_float (value)

Parameters

value A string, interval, date/time type, numeric type, or money type.

Usage

Converts a given value to a float. The function takes a string, interval, date/time type, numeric
type, or money type as its argument, and the function returns a float . Note that the function can
also take a float as its argument, but it will return the same float value.

Programmers Reference 133

CHAPTER 6: CCL Functions

Astring converts based on the format for a float literal. An interval returns a value representing
a number of microseconds. A date/time type returns a value representing the number of
seconds, milliseconds, or microseconds from the epoch (midnight, January 1, 1970 UTC)
depending on whether the input type is a date, timestamp or bigdatetime respectively. Those
date/time types prior to the epoch convert to a negative value.

Example
to float ('2100.0") returns 100.0.

to_integer()

Scalar. Converts a given value to an integer.

Syntax
to_integer (value)

Parameters
value The boolean, money, string, date, or any numeric type value you
wish to cast to integer.
Usage

Converts a given value to an integer. The function takes a string, date, or any numeric type as
its argument, and the function returns an integer. Note that the function can take an integer as
its argument, but it will return the same integer.

Numeric values return the integer portion of the value. Values outside the valid range for an
integer, or nonnumeric characters in a string value, return NULL. A date returns a value
representing the number of seconds from the epoch (midnight, January 1, 1970 UTC). Those
prior to the epoch convert to a negative value.

Example
to_integer ('1")returnsl.

to_interval()

Scalar. Converts a given value to an interval.

Syntax
to_interval (value)

Parameters

value A string, long, float, or interval representing a number in micro-
seconds. Strings must follow the format for an interval literal.

134

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Converts a given value to an interval. The function takes a string, a long, or a float as its
argument, and the function returns an interval. Note that the function can also take an interval
as its argument, but it will return the same interval.

Example
to_interval ('1234") returns 1234.

to_long()

Scalar. Converts a given value to a long.

Syntax
to_long (value)

Parameters

value A string, interval, date/time type, numeric type, or money type.

Usage

Converts a given string to a long. The function takes a string, interval, date/time type, numeric
type, or money type as its argument, and the function returns a long. Note that the function can
take a long as its argument, but it will return the same long.

Numeric types return the integer portion of the value. Strings with nonnumeric characters, or
with values outside the valid range for a long, return NULL. An interval returns a number of
microseconds. A date/time type returns a value representing the number of seconds,
milliseconds, or microseconds from the epoch (midnight, January 1, 1970 UTC) depending on
whether the input type is a date, timestamp or bigdatetime respectively. Those prior to the
epoch convert to a negative value.

Example
to_long ('23")returns 23.

to money()

Scalar. Converts a given value to the appropriate money type, based on a given scale.

Syntax
to_nmoney (value, scale)

Parameters

value A string, or a numeric type. The string must be all numeric, but can
include a decimal point.

Programmers Reference 135

CHAPTER 6: CCL Functions

scale An integer from 1 to 15.

Usage
Converts a given value to amoney type, based on the given scale. The function takes a string or
a numeric type as its argument, and the function returns a money.

Example
to_noney (12.361, 2)returns12.36.

to_string()

Scalar. Converts a given value to a string.

Syntax
to_string (value [, format] [, tinmezone])

Parameters
value A value of any datatype.
format (Optional) A format string. Only valid if the value is a date/time or
numeric type.
timezone (Optional) A time zone. Only valid if the value is a date/time type.
If none is specified, the UTC time zone is used.
Usage

Converts a given value to a string. The function can take any datatype as its argument, and the
function returns a string. Note that the function can take a string as its argument, but it will
return the same string. This function converts values as follows:

» For integers or longs, the user can include an optional format string to specify the format
for the output string. The format string follows the 1SO standard for fprintf. The default for
integer expressions is '%d', while the default for long expressions is '%lld'".

» For a date/time type, the user can include to specify the format of the output string. The
string must be a valid timestamp format code.

« The optional time zone argument can only be used with a date/time type. This string must
be a valid time zone string. If no time zone is specified, UTC will be used. See "Time
Zones" and "List of Time Zones" for more information.

» The function works the same as xmlserialize() when converting an XML value to a string

» For binary values, the returned string can contain unprintable characters because the
function does a simple cast from binary to string rather than performing a conversion. To
convert to a hex string representation of the binary value, use the hex_string() function.

For a float value, the user can include an optional format string that specifies the format for the
output of the floating point number as a string. The format string can include the following
characters:

136

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

.orD

Returns a decimal point in the specified position. Only one decimal point can be
specified, or the output will contain number signs instead of the values.

Replaced in the output by a single digit of the value. The value is returned with as
many characters as there are 9s in the format string.

If the value is positive, a leading space is included to the left of the value. If the
value is negative, a leading minus sign is included to the left of the value.

Excess 9s to the left of the decimal point are replaced with spaces, while excess 9s
to the right of the decimal point are replaced with zeros. Insufficient 9s to the left of
the decimal point returns number signs instead of the value, while insufficient 9s to
the right of the decimal point result in rounding.

To the left of the decimal point, replaced in the output by a single digit of the value
orazero, if the value does not have a digit in the position of the zero. To the right of
the decimal point, treated as a 9.

If the value is positive, a leading space is included to the left of the value. If the
value is negative, a leading minus sign is included to the left of the value.

EEEE

Returns the value in scientific notation. The output for this format always includes
asingle digit before the decimal. Combine with a decimal point and 9s to specify
precision. 9s to the left of the decimal point are ignored.

Must be placed at the end of the format string.

Returns a leading or trailing minus sign (-) or plus sign (+), depending on whether
the value is positive or negative. Can only be placed at the beginning or end of the
format string.

Eliminates the usual single leading space, but not leading spaces as the result of
excess 9s, zeros, or commas.

Returns a leading dollar sign in front of the value. Can be placed anywhere in the
format string.

Returns a comma in the specified position. If there are no digits to the left of the
comma, the comma is replaced with a space.

The user can specify multiple commas, but cannot specify a comma as the first
character in the format, or to the right of the decimal point.

FM

Strips spaces from the output.

Examples

to_string (45642) returns '45642'.
to_string (1234.567,"' 999') returns '###'.
to_string (1234.567,' 9999D999') returns '1234.567".

Programmers Reference 137

CHAPTER 6: CCL Functions

to_string (1234.567,"'.99999999EEEE') returns '1.23456700E+03".

to_timestamp()

Scalar. Converts a given value to a timestamp.

Syntax

to_timestanp (val ue)
to_timestanp (value, format)

Parameters
value A string, float, or long. Strings must be in the format specified by
the format argument. Numeric values represent the number of
milliseconds from the epoch (midnight, January 1, 1970 UTC).
format A format string. Only valid if the value is a string. Must be one of
the format codes for a timestamp. See "Date/Time Format Codes"
for more information.
Usage

Converts a given value to a timestamp. The function takes a float, a long, or a string (and
associated format string) as its argument, and the function returns a timestamp. Note that the
function can also take a timestamp as its argument, but it will return the same timestamp.

Examples
to_timestanp('02/19/2010 10:15", ' % Y&/ % %H: 9%) returns
2010-02-19 10:15:00.000.

to_timestanp('07/19/2010 10: 15 -07.00', ' MM DDY YYYY HH M
TZH: TZM) returns 2010-07-19 03:15:00.000.

to_xml()

Scalar. Converts a given value to XML.

Syntax
to_xm (value)

Parameters

value A string, or an XML type object.

Usage

Converts a given value to XML. The function takes a string as its argument, and the function
returns a string. The function can also take an XML type object as its argument, but it will
return the same object. The function is the same as xmlparse(), but it can also handle an XML
input.

138

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
xm serialize (to_xm ('<t/>'")) returns'<t/>". The string gets converted to

XML, then back into a string.

totimezone()

Converts a date from the given time zone to a specified time zone.

Syntax
toti mezone (dateval ue, fronmzone, tozone)

Parameters
datevalue A date or bigdatetime.
fromzone A string representing a legal time zone.
tozone A string representing a legal time zone.
Usage

Converts a date from a given time zone to a new time zone. The first argument is the date being
converted, the second argument is the original time zone, and the third argument is the new
time zone. Time zone values are taken from the industry-standard TZ database. The first
argument must be a date; the second and third arguments must be strings that represent legal
time zones. The function returns a date.

Example

toti mezone(v. TradeTine, 'GMI', ' EDT') converts the time portion of each
TradeTime from Greenwich Mean Time to Eastern Daylight Time.

tonetbinary()

Scalar. Converts an integer in host byte order to a 4 byte binary in network byte order.

Syntax
tonetbinary (integer)

Parameters

integer An integer in host byte order.

Usage
Takes an integer in host byte order and converts it to a 4 byte binary in network byte order.
Works for positive and negative values.

Programmers Reference 139

CHAPTER 6: CCL Functions

Example
tonetbi nary (1224164) returns 0012ADE4.

tonetbi nary (-1224164) returns FFED521C.

usecToTime()

Scalar. Converts a given number of microseconds to a bigdatetime.

Syntax
usecToTi me (m croseconds)

Parameters
microseconds A long representing the number of microseconds since the epoch
(midnight, January 1, 1970 UTC).
Usage

Converts a given number of microseconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
usecToTi ne (3661000001) returns 1970-01-01 01:01:01.000001.

XML Functions

There are special scalar functions which are designed to correctly handle XML data.

xmlconcat()

Scalar. Concatenates a number of XML values into a single value.

Syntax
xm concat (value, value [,value ...])
Parameters

value An XML value.
Usage

Concatenates a number of XML values into a single value. The function takes at least two
XML values, and the function returns an XML value.

Example
xm concat (xm parse(stringCol), xmparse('<t/>")))

140

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

xmlelement()
Scalar. Creates a new XML data element, with attributes and XML expressions within it.
Syntax
xm el enent (nane, [xmattributes (string AS nane, ..., string AS
nane), |
[XML value, ..., XM value])
Parameters
string Attribute name/value pairs. For example: ‘attrValue' AS attrName
results in attrName = "attrValue" attribute created in the resulting
XML element.
name The name of the new element. Must adhere to naming conventions.
XML value An XML value representing a child element.
Usage

Creates anew XML data element, with attributes and XML expressions within it. The function
takes . The function returns an XML value.

Example
xm el enent (top, xmattributes('data’ as attrl),

xm parse(' <t/>")) returns a new XML element called top, with a 'data’ attribute and
<t/> child element.

xmlparse()

Scalar. Converts a string into an XML value.

Syntax
xm parse (string)

Parameters

value The XML value represented as a string.

Usage

Convertsastring into an XML value. The function takes a string as its argument, and returns an
XML value. Since there is no XML data type, the value returned from this function can only be
used as input to other functions expecting XML as input, such as xmliserialize().

Example
xm serialize (xm parse ('<t/>')) returns'<t/>'". The string gets converted
into an XML value, then back into a string.

Programmers Reference 141

CHAPTER 6: CCL Functions

xmlserialize()

Scalar. Converts an XML value into a string.

Syntax
xm serialize (value)

Parameters

value An XML value.

Usage
Converts an XML value into a string. The function takes an XML value as its argument, and
returns a string.

Example
xm serialize (xm parse ('<t/>")) returns'<t/>'". The string gets converted
into an XML value, then back into a string.

Date and Time Functions

Date and time functions set time zone parameters, date format code preferences, and define
calenders.

business()

Scalar. Determines the next business day from a date value, based on a specified offset.

Syntax
busi ness (calendarfile, datevalue, offset)

Parameters
calendarfile A string representing the file path for a calendar file.
datevalue A date/time type.
offset A negative or positive integer (should not be zero).
Usage

The function returns the same datatype as the datevalue argument.

The offset argument can be any negative or positive integer, but it cannot be zero. The function
returns NULL if the offset is zero, and logs an error message. Negative integers return previous
business days.

142

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
busi ness('/cal s/us.cal',v. TradeTi ne, 1) returnsthe next business day
within the calendar us.cal after the TradeTime date.

businessday()

Scalar. Determines if a date value falls on a business day (neither a weekend nor a holiday).

Note: This function is supported in mixed case. The Event Stream Processor considers
businessday() and businessDay() the same function.

Syntax
busi nessday (calendarfile, dateval ue)

Parameters
calendar A string representing the file path for a calendar file
datevalue A date/time type

Usage

The function returns 1 if the date falls on a business day (true), or 0 otherwise (false). The
function returns an integer.

Example

busi nessDay('/cal s/us. cal',v. TradeTi ne) returns 1 if the date portion of
v.TradeTime falls on a business day, and 0 otherwise.

date()
Scalar. Converts a date value into an integer with the digits YYYYMMDD.

Syntax
date (dateval ue)

Parameters

datevalue A date

Usage
The function returns an integer.

Example
date (undate ('1991-04-01 12:43:32')) returns 19910401.

Programmers Reference 143

CHAPTER 6: CCL Functions

dateceiling()

Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded up to the
minimum date_part multiple that is greater than or equal to the input timestamp.

Syntax
dateceiling (date_part, expression [, nmultiple])
Parameters
date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.
expression Date-time expression containing the value to be evaluated.
multiple Contains a multiple of date_parts to be used in the operation, which

if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

Valid Date Part Keywords and Multiples

Keyword Keyword mean- | Multiples
ing
yy oryear Year Any positive integers
qgorquarter Quarter Any positive integers
nmmor nont h Month Any positive integers
wKk or week Week Any positive integers
dd orday Day Any positive integers.
hh or hour Hour 1,2,3,4,6,8,12and 24
m orm nute Minute 1,2,3,4,5,6, 10, 12, 15, 20, 30, and 60
ss orsecond Second 1,2,3,4,5,6,10, 12, 15, 20, 30, and 60
msornillisecond Millisecond 1,2,4,5,8,10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000
Usage

This function determines the next largest date_part value expressed in the timestamp, and
zeros out all date_parts of finer granularity than date_part.

144

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the ceiling operation. For example, to
establish a date ceiling based on 10 minute intervals, use MINUTE or Ml for the date_part, and
10 as the multiple.

Known errors:

e The server generatesan i nval i d ar gunent error if the value of the required
arguments evaluate to NULL.

» Theservergeneratesani nval i d ar gunent error if the value of the multiple argument
is not within range valid for the specified date_part argument. As an example, have the
value of multiple be less than 60 if date_part mi is specified.

Standards and Compatibility
Sybase extension.

Example

dateceiling(' M NUTE' , to_timestanp('2010-05-04T12: 00: 01. 123",
"YYYY- Mt DDTHH24: M : SS. FF'))
returns '2010-05-04 12:01: 00. 000’

datefloor()

Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded down to the
maximum date_part multiple that is less than or equal to the input timestamp.

Syntax
datefl oor (date_part, expression [, multiple])

Parameters
date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.
expression Date-time expression containing the value to be evaluated.
multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

Programmers Reference 145

CHAPTER 6: CCL Functions

Valid Date Part Keywords and Multiples

Keyword Keyword mean- | Multiples
ing
yy oryear Year Any positive integers
qgorquarter Quarter Any positive integers
nmmor nont h Month Any positive integers
wKk or week Week Any positive integers
dd orday Day Any positive integers.
hh or hour Hour 1,2,3,4,6,8,12and 24
m ormi nute Minute 1,2,3,4,5,6, 10, 12, 15, 20, 30, and 60
ss orsecond Second 1,2,3,4,5,6, 10, 12, 15, 20, 30, and 60
msorm | |isecond Millisecond 1,2,4,5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

Usage

This function zeros out all datetime values with a granularity finer than that specified by
date_part. Date_part is a keyword, and expression is any expression that evaluates or can be
implicitly converted to a datetime (or timestamp) datatype. Multiple is an integer that contains
the multiples of date_parts to be used in performing the floor operation. For example, to
establish a date floor based on 10 minute intervals, use MINUTE or Ml for date_part, and 10 as
the multiple.

Known errors:

» The server generates an "invalid argument” error if the value of the required arguments
evaluate to NULL.

» The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, have the value
of multiple be less than 60 if date_part mi is specified.

Standards and compatibility
Sybase extension.

Example

datefloor('MNUTE , to_tinmestanp('2010-05-04T12: 00: 01. 123", ' YYYY-
MVt DDTHH24: M : SS. FF'))
returns '2010-05-04 12:00: 00. 000'

146

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

dateint()

Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch).

Note: This function is supported in mixed case. The Event Stream Processor supports both
dateint() and datelnt(), and considers them the same function.

Syntax
dateint (dateval ue)

Parameters

datevalue A date.

Usage

Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch). The function takes a date as its argument, and the function returns an
integer.

Example
dateint (undate ('1970:01: 01 00:01:01")) returns 61.

datename()

Scalar. Converts a date value into a string.

Syntax
dat enane (dateval ue)

Parameters

datevalue A date or bigdatetime.

Usage
Converts a date value to a string of the form "YYYY-MM-DD'. The function takes a date or
bigdatetime as its argument, and the function returns a string.

Example
dat enane (undate ('2010-03-03 12: 34:34')) returns '20100303'".

datepart()

Scalar. Returns an integer representing a portion of a date.

Syntax
datepart (portion, dateval ue)

Programmers Reference 147

CHAPTER 6: CCL Functions

Parameters

portion One of the following strings:

e The year, if the string is yy or yyyy.

e The month, if the string is mm or m.

e The day of the year, if the string is dy or y.

e The day of the month, if the string is dd or d.
e The day of the week, if the string is dw.

e The hour, if the string is hh.

¢ The minute, if the string is mi or n.

e The second, if the string is ss or s.

datevalue A date or bigdatetime.

Usage

Returns an integer representing a portion of a date. The portions that the function can return
are the year, the month, the day of the year, the day of the month, the day of the week, the hour,
the minute, or the second. The function takes a string as the portion argument, and a date or
bigdatetime for the datevalue argument. The function returns an integer.

Example
datepart ('ss', undate ('2010-03-03 12:34:34')) returns 34.

dateround()

Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded to the value of a
date_part multiple that is nearest to the input timestamp.

Syntax
dateround (date_part, expression [, nmultiple])

Parameters
date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.
expression Date-time expression containing the value to be evaluated.
multiple Contains amultiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

148

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Valid Date Part Keywords and Multiples

Keyword Keyword mean- | Multiples
ing
yy oryear Year Any positive integers
qq orquarter Quarter Any positive integers
nmmor nont h Month Any positive integers
wKk or week Week Any positive integers
dd orday Day Any positive integers.
hh or hour Hour 1,2,3,4,6,8,12and 24
m ormi nut e Minute 1,2,3,4,5,6, 10, 12, 15, 20, 30, and 60
ss orsecond Second 1,2,3,4,5,6, 10, 12, 15, 20, 30, and 60
msorm | |isecond Millisecond 1,2,4,5,8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

Usage

This function rounds the datetime value to the nearest date_part or multiple of date_part, and
zeros out all date_parts of finer granularity than date_part or its multiple. For example, when
rounding to the nearest hour, the minutes portion is determined, and if >= 30, then the hour
portion is incremented by 1, and the minutes and other subordinate date parts are zeros.

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the rounding operation. For example, to
round to the nearest 10-minute increment, use MINUTE or Ml for date_part, and 10 as the
multiple.

Known errors:

e The server generates an "invalid argument™ error if the value of the required arguments
evaluate to NULL.

» The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, the value of
multiple must be less than 60 if date_part mi is specified.

Example

dateround('M NUTE , to_timestanp(' 2010-05-04T12: 00: 01. 123", ' YYYY-
MVt DDTHH24: M : SS. FF'))
returns '2010-05-04 12:00: 00. 000

Programmers Reference 149

CHAPTER 6: CCL Functions

dayofmonth()

Scalar. Returns the integer representing the day of the month extracted from a given
bigdatetime.

Syntax
dayof nonth (bigdatetine [,tinmezone])

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.
Usage

Returns an integer representing the day of the month extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
dayof month ((unbigdatetime ('2010-03-03 12: 34: 34: 059111"))
returns 3.

dayofweek()

Scalar. Returns the integer representing the day of the week (Sunday is 1) extracted from a
given bigdatetime.

Syntax
dayof week (bigdatetime [,timezone])

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.
Usage

Returns an integer representing the day of the week extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer. Sunday is represented by 1, and the rest of the days of the
week follow.

150

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
dayof week ((unbigdatetinme ('2010-03-03 12:34: 34:059111"))

returns 4.

dayofyear()

Scalar. Returns the integer representing the day of the year extracted from a given bigdatetime.

Syntax
dayof year (bigdatetime [,tinmezone |)

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.
Usage

Returns an integer representing the day of the year extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
dayof year ((unbi gdatetinme ('2010-03-03 12:34:34:059111'))

returns 62.

hour()

Scalar. Returns an integer representing the hour extracted from a given bigdatetime.

Syntax
hour (bigdatetine [,tinezone]|)

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing a valid time zone. If none is
specified, UTC isused. See "Time Zones" and "List of Time Zones"
for more information.
Usage

Returns an integer representing the hour extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Programmers Reference 151

CHAPTER 6: CCL Functions
Example
hour ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 12.

makebigdatetime()
Scalar. Constructs a bigdatetime from the given values.

Syntax

makebi gdatetine (year, nonth, day, hour, mnute, second, m crosecond
[,timezone])

Parameters

year An expression that evaluates to a value from 0001 to 9999. Values
outside of the range 1970 to 2099 may result in inaccuracies due to
leap years and daylight savings time.

month An expression that evaluates to a value specifying the month. 0-12
indicate January to December, with both 0 and 1 representing Jan-
uary. Values larger than 12 roll over into subsequent years, while
negative values subtract months from January of the specified year.

day An expression that evaluates to a value specifying the day of the
month. 0 and 1 both represent the first day of the year. Values larger
than the valid number of days for the specified month roll over into
subsequent months, while negative values subtract days from the
first day of the specified month.

hour An expression that evaluates to a value specifying the hour of the
day. Values larger than 23 roll over into subsequent days, while
negative values subtract hours from midnight of the specified day.

minute An expression that evaluates to a value specifying the minute.
Values larger than 59 roll over into subsequent hours, while nega-
tive values subtract minutes from the specified hour.

second An expression that evaluates to a value specifying the second.
Values larger than 59 roll over into subsequent minutes, while
negative values subtract seconds from the specified minute.

microsecond An expression that evaluates to a value specifying the microsecond.
Values larger than 999999 roll over into subsequent seconds, while
negative values subtract microseconds from the specified second.

timezone (Optional) A string representing the time zone. If omitted, the
engine assumes the local time zone. See "Time Zones" and "List of
Time Zones" for more information about valid time zone strings.

152 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Constructs a bigdatetime from the given values. The function takes integer values as its
arguments (with the exception of the optional string representing a time zone), and the
function returns an bigdatetime. If any argument is NULL, the function returns NULL.

Example
to_string (makebi gdatetinme (2010, 3, 3, 12, 34, 34, 59111))
returns '2010-03-03 12:34:34:059111".

microsecond()

Scalar. Returns an integer representing the microsecond extracted from a given bigdatetime.

Syntax
m crosecond (bigdatetime [,tinezone])

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See 'Time Zones™ and "List of Time Zones" for more
information.
Usage

Returns an integer representing the microsecond extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example

m crosecond ((unbigdatetine ('2010-03-03 12:34:34:059111'))
returns 059111.

minute()

Scalar. Returns an integer representing the minutes extracted from a given bigdatetime.

Syntax
mnute (bigdatetinme [,timezone])

Parameters

bigdatetime A bigdatetime value.

Programmers Reference 153

CHAPTER 6: CCL Functions

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage

Returns an integer representing the minutes extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
m nute ((unbigdatetinme ('2010-03-03 12: 34: 34: 059111"')) returns 34.

month()

Scalar. Returns an integer representing the month extracted from a given bigdatetime.

Syntax
month (bigdatetine [,timezone]|)

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.
Usage

Returns an integer representing the month extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
month ((unbigdatetine ('2010-03-03 12: 34: 34: 059111')) returns 3.

now
Returns the current system date as a bigdatetime value.

Syntax
now ()

Usage
Returns the current system date as a bigdatetime value. The function has no arguments, and the
function returns a bigdatetime. This function works the same as sysbigdatetime().

154

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
now() on March 3, 2010, at 12:34:34:059111 returns 2010-03-03 12:34:34:059111.

second()

Scalar. Returns an integer representing the seconds extracted from a given bigdatetime.

Syntax
second (bigdatetinme [,timezone])

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing the time zone. If none is specified,
UTC isused. See "Time Zones" and "List of Time Zones" for more
information.
Usage

Returns an integer representing the seconds extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer. If either argument is NULL, the function returns NULL.

Example
second ((unbi gdatetinme ('2010-03-03 12: 34: 34:059111"')) returns 34.

sysbigdatetime()
Returns the current system date as a bigdatetime value.

Syntax
sysbhi gdatetine ()

Usage
Returns the current system date as a bigdatetime value. The function has no arguments, and the
function returns a bigdatetime. This function works the same as now().

Example
sysbi gdat eti me() on March 3, 2010, at 12:34:34:059111 returns 2010-03-03
12:34:34:059111.

Programmers Reference 155

CHAPTER 6: CCL Functions

sysdate()

Scalar. Returns the current system date as a date value.

Syntax
sysdate ()

Usage
Returns the current system date as a date value. The function has no arguments, and the
function returns a date.

Example
sysdat e() on March 3, 2010, at 12:34:34 returns 2010-03-03 12:34:34.

systimestamp()
Scalar. Returns the current system date as a timestamp value.

Syntax
systinestanmp ()

Usage

Returns the current date, based on the Event Stream Processor server clock time, as a
timestamp value. This date may differ from real time if the clock command inesp_cl i ent
was used to change the rate or time of the server clock. The function has no arguments, and the
function returns a timestamp.

Example
systi mestanp() on March 3, 2010, at 12:34:34:059 returns 2010-03-03 12:34:34:059.

totimezone()

Converts a date from the given time zone to a specified time zone.

Syntax
toti nezone (dateval ue, fromeone, tozone)

Parameters
datevalue A date or bigdatetime.
fromzone A string representing a legal time zone.
tozone A string representing a legal time zone.

156 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Converts a date from a given time zone to a new time zone. The first argument is the date being
converted, the second argument is the original time zone, and the third argument is the new
time zone. Time zone values are taken from the industry-standard TZ database. The first
argument must be a date; the second and third arguments must be strings that represent legal
time zones. The function returns a date.

Example
toti mezone(v. TradeTinme, 'GMI', ' EDT') converts the time portion of each
TradeTime from Greenwich Mean Time to Eastern Daylight Time.

unbigdatetime()
Scalar. Converts a given string into a bigdatetime value.

Syntax
unbi gdatetime (string)

Parameters

string A string representing a bigdatetime value.

Usage
Converts a given string into a bigdatetime value. The function takes a string as its argument,
and the function returns a bigdatetime.

Example

unbi gdatetinme ('2003-06-14 13:15:00: 232323") returns 2003-06-14
13:15:00:232323 .

undate()

Scalar. Converts a given string into a date value.

Syntax
undate (string)

Parameters

string A string representing a date value.

Usage
Converts a given string into a date value. The function takes a string as its argument, and the
function returns a date.

Programmers Reference 157

CHAPTER 6: CCL Functions

Example
undate ('2003-06-14 13:15:00") returns 2003-06-14 13:15:0.

weekendday()

Scalar. Determines if a given date/time type falls on a weekend.

Note: This function is supported in mixed case. The Event Stream Processor supports both
weekendday() and weekendDay(), and considers them the same function.

Syntax
weekendday (cal endarfile, dateval ue)

Parameters
calendar A string representing the file path for a calendar file.
datevalue A date/time type.

Usage

Determines if a date/time type value falls on a weekend. The function returns 1 if the date/time
type falls on a weekend (true), or 0 otherwise (false). The function takes a string to represent
the calendar path, and a date/time type as the datevalue. The function returns an integer.

Example
weekendDay('/ cal s/ us. cal',v. TradeTi ne) returns 1 if the date portion of
v.TradeTime falls on a weekend, and 0 otherwise.

ear
Scalar. Returns an integer representing the year extracted from a given bigdatetime.

Syntax
year (bigdatetinme [,timezone])

Parameters
bigdatetime A bigdatetime value.
timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See "Time Zones" and "List of Time Zones" for more
information.
Usage

Returns an integer representing the year extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

158

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example
year ((unbi gdatetinme ('2010-03-03 12: 34:34:059111")) returns 2010.

Aggregate Functions

Aggregate functions operate on multiple records to calculate one value from a group of values.

The groups or rows are formed using the GROUP BY clause of the SELECT statement. The
GROUP FILTER and GROUP ORDER BY clauses are used in conjunction with the GROUP BY
clause to limit the rows in the group and to order the rows in the group respectively.

Aggregate functions, suchas sunm{) , m n() etc are allowed only in the select list and in the
HAVING clause of a SELECT statement. Aggregate functions cannot be specified in the
GROUP BY, GROUP ORDER BY, GROUP FILTER and WHERE clauses of the SELECT
statement.

All aggregate functions ignore NULL values when performing their aggregate calculations.
However, when all input passed to an aggregate function is NULL the function returns a
NULL except for the count () function, which returns a 0.

Certain aggregate functions namely count (), sun{),avg() andval uel nsert ed()
are considered additive functions. Additive functions can compute its value only based upon
the column values in the current event without having to look at the rest of the events in the
group. A projection that uses ONLY additive functions allows the server to optimize the
aggregation so that additional aggregation indexes are not maintained. This improves the
performance of the aggregation operation considerably.

Note: Aggregate functions cannot be nested i.e. an aggregate function cannot be applied over
an expression containing another aggregate function.

Example
In general, the following example shows how the aggregate functions are incorporated into
CCL code:

CREATE | NPUT W NDOW Tr ades
SCHEMA (Tradeld LONG Synbol, STRING Price FLOAT, Vol une LONG
Tr adeTi mre DATE)

PRI MARY KEY (Tradel d);

CREATE QUTPUT W NDOW

TradeSummary PRI MARY KEY DEDUCED

AS SELECT trd. Synmbol, max(trd.Price) MaxPrice, mn(trd.Price)
M nPrice, sun(trd. Vol une)

Tot al Vol ume FROM Trades trd

GROUP BY trd. Synbol ;

Programmers Reference 159

CHAPTER 6: CCL Functions

any(

Aggregate. Returns a value based on an arbitrary member in a group of values.

Syntax
any (expression)

Parameters
expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.
Usage

Returns the value for the expression based on an arbitrary member of the group unless the
group has no members in which case a NULL value is returned. The function takes any
datatype as its argument, and the function returns that same datatype.

avgg)
Aggregate. Computes the average value of a given set of arguments to identify the central
tendancy of a value group.

Syntax
avg (nuneric-expression)

Parameters
numeric-expression A numeric expression for which an average is computed. The ex-
pression accepts all datatypes except boolean. The expression will
normally reference one or more columns in a group of records such
that the average will be computed using the reference column value
for each member of the group.
Usage

Compute the average value across a set of rows. The average is computed according to the
following formula:

Toot
\

i

160 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

The avg function generates a 0 when a NULL value is received and takes any numeric datatype
as input; returns type FLOAT.

The average function could be used to indentify things such as the average trading price of a
stock over a determined period of time.

COI’I’“

Aggregate. Returns the correlation coefficient of a set of number pairs to determine the
relationship between the two properties.

Syntax
corr (dependent-expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts all numeric da-
tatypes except timestamp, bigdatetime, and in-
terval. Will normally reference one or more col-
umns in the group of records to be aggregated.

independent-expression The variable that influences the outcome. The
expression accepts all numeric datatypes except
timestamp, bigdatetime, and interval. Will nor-
mally reference one or more columns in the
group of records to be aggregated.

Usage

Returns the correlation coefficient of a set of number pairs. The function converts its
arguments to FLOAT, performs the computation in double-precision floating point, and
returns a float as the result. If the function is applied to an empty set, then it returns NULL.

Both dependent-expression and independent-expression are numeric. The function is
applied to the set of (dependent-expression, independent-expression) after eliminating the
pairs for which either dependent-expression or independent-expression is NULL.

Z}:Y-ZXZY
N
J I x - (ZNX)Z W3y - (z;)z)

where X represents the independent-expression and y represents the dependent-expression.
Running totals of row_count, sum_x, sum_y, sum_xx, sum_yy and sum_xy are required.

F=

Programmers Reference 161

CHAPTER 6: CCL Functions

The correlation function could be used to analyze the relationship between two sets of stock
variables to help benchmark against competitors.

covar _po

Aggregate. Returns the population covariance of a set of number pairs to determine the
relationship between the two data sets.

Syntax
covar_pop (dependent - expressi on, independent-expression)

Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts only a range of
integers.
independent-expression The variable that influences the outcome. The
expression accepts only a range of integers.
Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float as the result. If the function is applied to an empty set, then it
returns NULL. Both dependent-expression and independent-expression are humeric. The
function is applied to the set of (dependent-expression, independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is
NULL. The following computation is then made:

(SUM exprl * expr2) - SUMexpr2) * SUMexprl) / n) / n

where x represents the dependent-expression, yrepresents the independent-expression,
and n represents the number of (x,)) pairs where neither x or y'is NULL.

The covariance of a sample may be used to assess the relationship between things such as the
rate of economic growth and the rate of stock market return.

covar samp()

Aggregate. Returns the sample covariance of a set of number pairs.

Syntax
covar _sanp (dependent - expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent variable. The ex-
pression accepts only a range of integers.

162

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

independent-expression The variable that influences the outcome. The expression accepts
only a range of integers.

Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float as the result. If the function is applied to an empty set, then it
returns NULL. Both dependent-expression and independent-expression are numeric. The
function is applied to the set of (dependent-expression, independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is
NULL.

(SUM exprl * expr2) - SUMexpr2) * SUMexprl) / n) / (n -1)
Here xrepresents the dependent-expression, yrepresents the independent-expression, and
nrepresents the number of (x,y) pairs where neither xor yis NULL.

The covariance of a sample may be used to indicate how two specific stocks may move
together in the future, which is an important aspect before analyzing the standard deviation of
a portfolio as a measure of risk.

countg)

Aggregate. Returns the number of rows in a group, excluding NULL values.

Syntax
count (* | expression)

Parameters
expression A column from the source or an expression typically based upon
columns from the source. It can also be a constant expression.
Usage

This function counts all sets of non-NULL rows and returns a long. The function returns the
number of rows in a group, excluding NULL values. Use the * syntax to return the number of
rows in the group, or use the expression argument to return the number of non-NULL rows.

count(distinct)
Aggregate. Returns the number of distinct rows in a group.

Syntax
count (distinct expression)

Parameters

distinct expression A column of any datatype, except binary.

Programmers Reference 163

CHAPTER 6: CCL Functions

Usage
This function counts all sets of non-NULL rows and returns an integer. Duplicates are not
counted. A distinct expression is a column or another distinct expression that is counted.

exp_weighted avg()

Aggregate. Calculates an exponential weighted average.

Syntax
exp_wei ghted_avg (expression, period-expression)

Parameters
expression A numeric expression for which a weighted value
is computed.
period-expression A numeric expression specifying the period for
which the average is computed.
Usage

An exponential moving average (EMA) function applies weighting factors to values that
decrease exponentially. The weighting for each older data point decreases exponentially,
giving more importance to recent observations while not discarding older observations and
allowing for descriptive statistical analysis.

The degree of weighting decrease is expressed as a constant smoothing factor a, a number
between 0 and 1. a may be expressed as a percentage, so a smoothing factor of 10% is
equivalent to a=0.1. Alternatively, a may be expressed in terms of N time periods. For

example,
2

N+1

N=19 is equivalent to a=0.1.

The observation at a time period ¢is designated Y7 and the value of the EMA at any time
period tis designated St. S7is undefined. You can initialize S2in a number of different ways,
most commonly by setting S2to YZ, though other techniques exist, such as setting S2to an
average of the first four or five observations. The prominence of the SZinitialization's effect on
the resultant moving average depends on a; smaller a values make the choice of S2relatively
more important than larger a values, since a higher a discounts older observations faster.

This type of moving average reacts faster to recent price changes than a simple moving
average. The 12- and 26-day EMAs are the most popular short-term averages, and they are
used to create indicators like the moving average convergence divergence (MACD) and the

164

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

percentage price oscillator (PPO). In general, the 50- and 200-day EMAs are used as signals of
long-term trends.

The weighted average function could be used for benchmarking over a particular time
horizon.

first()

Aggregate. Returns the first value from the group of values.

Syntax
first (expression, index)

Parameters
expression The function returns the same datatype as the argument.
index (Optional) The index accepts NULL values and integer datatypes.
Returns the same datatype as the argument. Which row to use, as
offset from the last row in the group based on the group order by
sort order. If omitted or O, uses the last row.
Usage

Returns the first value from a group of values. The function takes any datatype for the
expression argument and an optional integer as the index argument, and returns the same
datatype as the expression. The function performs a calculation on the specified expression
and returns the first value, including NULL values.

If the argument is a pure column name, use as a scalar.

This function could be used in a first in first out (FIFO) fashion for accounts and stocks.

first_value()

Aggregate. Returns the first value from the group of values. Alias for first().

last()

Aggregate. Returns the last value of a group of values.

Syntax
| ast (expression, index)

Parameters

expression The function returns the same datatype as the argument.

Programmers Reference 165

CHAPTER 6: CCL Functions

index (Optional) The index accepts NULL values and integer datatypes.
Returns the same datatype as the argument. Which row to use, as
offset from the last row in the group based on the group order by
sort order. If omitted or 0, uses the last row.

Usage

Performs a calculation on the specified expression and returns the last value from a group of
values. The function takes any datatype for the expression argument and an optional integer
as the index argument, and returns the same datatype as the expression. The function
performs a calculation on the specified expression and returns the first value, including NULL
values.

If the argument is a pure column name, use as a scalar.

This function could be used in a last in first out (LIFO) fashion for accounts and stocks.

last_value()

Aggregate. Returns the last value of a group of values. Alias for last().

lwm_avg()

Aggregate. Returns the linearly weighted moving average for a group of values.

Syntax
| wn_avg (nuneric-expression)

Parameters
numeric-expression Expressions include integer, long, float, money, timestamp, and
interval types.
Usage

The function takes any datatype (except boolean) as its argument, and returns the same
datatype. The function places more importance on the most recently received data. NULL
values are not included.

An arithmetically weighted average is any average that has multiplying factors that give
different weights to different data points based on time sensitivity. In technical analysis, a
weighted moving average (WMA) has the specific meaning of weights which decrease
arithmetically. Inan 7-day WMA, the latest day has weight 7, the second latest 7— 1, and so on,
down to zero. The following equation is used to calculate the linear weighted moving average,
where pM represents the price of a good on a specific time 7.

166

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

npup A+ (0 —)pa—1 + -+ - + 2Ppp—nt2 + Prr—n+1
n+(n—-1+---+241

WMA M=

Moving averages could be used to identify current trends and trend reversals based on closing
numbers over a determined period of time. They also could be used to set up support and
resistance levels.

max
Aggregate. Returns the maximum non-NULL value of a group of values.

Syntax
max (expression)

Parameters
expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.
Usage

The returned value is based on the datatype of the input to be counted logically. If all values are
NULL, the function returns NULL.

The max function can be used to assess portfolios and identify the top stocks in a group of
values.

meandeviation()

Aggregate. Returns the mean absolute deviation of a given expression over multiple rows.
Absolute deviation is the mean of the absolute value of the deviations from the mean of all
values.

Syntax
nmeandevi ati on (numeric-expression)

Parameters

numeric-expression An expression, commonly a column name, for which the sample-
based standard deviation is calculated over a set of rows. The ex-
pression will normally reference one or more columns in a group of
records such that the mean deviation will be computed using the
reference column value for each member of the group.

Programmers Reference 167

CHAPTER 6: CCL Functions

Usage

This function converts the argument to float, performs the computation in double-precision
floating point, and returns a float. The mean deviation is computed according to the following
formula:

2 _ Z(p—x;)
g = N

This mean deviation does not include rows where numeric-expression is NULL. It returns
NULL for a group containing no rows.

The mean deviation function could be used for optimization of stock portfolios on a real-time
basis.

median()

Aggregate. Returns the median value of a given expression over multiple rows to identify the
central tendancy of the set of values.

Syntax
medi an (col um)

Parameter

column Column name that accepts any datatype except binary.

Usage
The function returns the same datatype as the column.

Median is described as the numeric value separating the higher half of a sample, a population,
or a probability distribution, from the lower half. The median of a finite list of numbers can be
found by arranging all the observations from lowest value to highest value and identifying the
middle value (the central tendancy). In an even number of observations, there is no single
middle value; in this case the median is commonly defined as the mean of the two middle
values.

The median function behaves differently for different datatypes.

* Integer — the result is the average of two middle values rounded to the nearest whole
number.

e Money - the result is the average of two middle values.

» String — the result is the first of two middle values.

The median function could be used to find the median stock price of a group of stockcodes to
display the districts where variances occur between prices with the same stock.

168

Sybase Event Stream Processor

CHAPTER 6: CCL Functions
min
Aggregate. Returns the minimum non-NULL value from a group of values.

Syntax
mn (expression)

Parameters
expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.
Usage

The returned value is based on the datatype of the input. If all values are NULL, the function
returns NULL.

The min function can be used to assess portfolios and identify the lowest stocks in a group of
values.

nth()

Aggregate. Returns the nth value from a group of values. The first argument determines which
value is returned.

Syntax
nth (nunber, expression)

Parameters
number An integer specifying which record in the group to reference. If no
group order is specified, the default order is arrival, where 0 would
be the most recent record. If group order is specified, then 0 will
reference the first record in the group, 1 the next, etc...
expression An expression that references the rows in the group. This will
typically include references to one or more columns in the input.
Supports any datatype.
Usage

The function returns the same datatype as its expression argument.

When assessing stock portfolios, use the nth function to identify a specific item in a list. For
example, you can identify the day's third-highest traded stock price indicated by the third item
in the index. The nth function's uses a 0-based index.

Programmers Reference 169

CHAPTER 6: CCL Functions

Note: If the number argument is greater than the number of elements in the group, this
function returns a NULL value.

recent“

Aggregate. Returns the most recent non-NULL value in a group of values.

Syntax
recent (expression)

Parameter
expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.
Usage

The function returns the same datatype used in the expression.

The recent function could be used to asses profiles on a real time basis to analyze the most
current updates and changes.

regr anXQ)

Aggregate. Computes the average of the independent variable of the regression line.

Syntax
regr_avgx (dependent-expression , independent-expression)
Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts integer, long, float,
timestamp, interval, and money datatypes.
independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp, in-
terval, and money datatypes.
Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the resultis NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where yrepresents the dependent-expression:

avg(y)

170

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

regr avgy()

Aggregate. Computes the average of the dependent variable of the regression line.

Syntax
regr_avgy (dependent-expression , independent-expression)
Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts integer, long,
float, timestamp, interval, and money datatypes.
independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp,
interval, and money datatypes.
Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the resultis NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent-expression:

avg(x)

regr_count()

Aggregate. Returns an integer that represents the number of non-NULL number pairs used to
fit the regression line.

Syntax
regr_count (dependent-expression , independent-expression)
Parameters
dependent-expression The variable that is affected by the independent var-
iable. The expression accepts integer, long, float,
timestamp, interval, and money datatypes.
independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp, in-
terval, and money datatypes.

Programmers Reference 171

CHAPTER 6: CCL Functions

Usage
This function counts all sets of non-NULL rows and returns a long. Rows are eliminated where
one or both inputs are NULL.

regr_intercept()

Aggregate. Computes the y-intercept of the linear regression line that best fits the dependent
and independent variables.

Syntax
regr_intercept (dependent-expression, independent-
expression)

Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.
independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the resultis NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:

avg(x) - regr_slope(x, y) * avg(y)

regr_r2()

Aggregate. Computes the coefficient of determination (also referred to as R-squared or the
goodness of fit statistic) for the regression line.

Syntax

regr_r2 (dependent-expression , independent-expression)
Parameters

dependent-expression The variable that is affected by the independent

variable. The expression accepts numeric datatypes,

except timestamp, bigdatetime, and interval.

172

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data using this formula, where x represents
the independent variable and y represents the dependent variable:

covar POP = ((_sumxy * count) — (sumx * sumy)) * ((_sumxy * count)
— (sumx * sumy))

xVar Pop (sumxx * count) — (sumx * sum x)

yVar Pop (sumyy * count) — (sumy * sumy)

result = covarPOP / (xvarPop * yVar Pop)

regr_slope()

Aggregate. Computes the slope of the linear regression line fitted to non-NULL pairs.

Syntax
regr_sl ope (dependent - expression , independent-expression)
Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.
independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.
Parameters

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the resultis NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:

covar_pop(X, y) / var_pop(y)

Programmers Reference 173

CHAPTER 6: CCL Functions

regr SXXQ)

Aggregate. Returns the sum of squares of independent expressions used in a linear regression
model. Evaluates Use the statistical validity of a regression model.

Syntax
regr_sxx (dependent-expression , independent-expression)
Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.
independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.
Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the resultis NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:

regr_count(x, y) * var_pop(X)

regr SXY&)

Aggregate. Returns the sum of products of the dependent and independent variables.
Evaluates the statistical validity of a regression model.

Syntax
regr_sxy (dependent-expression , independent-expression)
Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.
independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

174

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the resultis NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the dependent variable and y represents the
independent variable:

regr_count(x, y) * covar_pop(X, y)

regr S!Y()

Aggregate. Returns values that represent the statistical validity of a regression model.

Syntax
regr_syy (dependent-expression , independent-expression)
Parameters
dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.
independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.
Usage

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the resultis NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the dependent variable and y represents the
independent variable:

regr_count(x, y) * var_pop(y)

stddev()

Aggregate. Computes the standard deviation of a sample. Alias for stddev_samp().

Programmers Reference 175

CHAPTER 6: CCL Functions

stddeviation()

Aggregate. Returns the standard deviation of a given expression over multiple rows. Alias for
stddev_samp().

stddev _pop()

Aggregate. Computes the standard deviation of a population consisting of a numeric-
expression, as a float.

Syntax
stddev_pop (numeric-expression)

Parameters
numeric-expression The expression, usually a column name, for which
the population-based standard deviation is calcula-
ted over a set of rows.
Usage

This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The standard deviation is used to find the amount of
variation between data points and the groups average. The population-based standard
deviation is computed according to the following formula:

o = \/E(Mgfz')g

This standard deviation does not include rows where numeric-expression is NULL. The
function returns NULL for a group containing no rows.

The standard deviation of a population could be used to estimate and assess changes in
securities, which could be used to establish future expectations.

stddev_samp()

Aggregate. Computes the standard deviation of a sample consisting of a numeric-expression,
as a float.

Syntax
stddev_sanp (nuneric-expression)

176

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Parameters
numeric-expression The expression, usually a column name, for which
the sample-based standard deviation is calculated
over a set of rows.
Usage

This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The standard deviation is used to find the amount of
variation between data points and the groups average. The standard deviation is computed
according to the following formula, which assumes a normal distribution:

T(T—xi)
n—1

5 =
This standard deviation does not include rows where numeric-expression is NULL. The

function returns NULL for a group containing either 0 or 1 rows.

The standard deviation of a sample could be used to asses the rate of return of an investment of
a determined period of time.

sum“

Aggregate. Returns the total value of the specified expression for each group of rows.

Syntax
sum (expression)

Parameters
expression The object that is summed. The expression accepts all datatypes
except boolean.
Usage

Typically, sum is performed on a column. The function returns the same datatype as the
expression. The sum function uses all of the specified values and totals their values.

The sum function could be used to find the combined annual sales in order to assess long term
and short term goals. By looking at the larger picture, the process of planning is simplified.

Programmers Reference 177

CHAPTER 6: CCL Functions

valueinserted()

Aggregate. Returns a value including NULLS, from a group based on the last row applied into
that group.

Syntax
val uei nserted (expression)

Parameters

expression The expression accepts all datatypes.

Usage
This function returns the value of the expression computed using the most recent event used to
insert/update the group. If the current event removes a row from the group then it returns a
NULL.

This function is considered an additive function. Using only additive functions in the
projection of a SELECT statement allows the server to optimize the aggregation, which results
in greater throughput and lower memory utilization.

var 909()

Aggregate. Computes the statistical variance of a population consisting of a numeric-
expression, as a float.

Syntax
var _pop (nuneric-expression)

Parameters
numeric-expression A set of rows. expression is commonly a column
name.
Usage

This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The population-based variance (s2) of numeric-expression
(x) is computed according to this formula:
—.
» XX —-X)
§SMI—
i}

This variance does not include rows where numeric-expression is NULL. The function returns
NULL for a group containing no rows.

The variance of a population could be used as a measure of assessing risk.

178

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

var samgg)

Aggregate. Computes the statistical variance of a sample consisting of a numeric-expression,
as a float.

Syntax
var_sanp (numeri c-expression)

Parameters
numeric-expression A set of rows. expression is commonly a column
name.
Usage

This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The variance (s2) of numeric-expression (x) is computed
according to this formula, which assumes a normal distribution:

This variance does not include rows where numeric-expression is NULL. The function returns
NULL for a group containing either 0 or 1 rows.

The variance of a sample could be used as a measure of assessing risk for a specific portfolio.

Aggregate. The vwap function computes a volume-weighted average price for a set of
transactions.

Syntax
vwap (price, quantity)

Parameters
price The name of the column containing the price in a set of transaction
records.
guantity The name of the column containing the number of units traded at
the specified price in a set of transaction records.

Note: For both of these parameters, you can specify an expression containing the column
name, but you must include the column name.

Programmers Reference 179

CHAPTER 6: CCL Functions

Usage

The volume-weighted average price (VWAP) is a measure of the average price a stock is
traded at over some period of time. For each trade, it determines the value by multiplying the
price paid per share times the number of shares traded. Then it takes the sum of all these values
and divides it by the sum of all the shares traded. The volume-weighted average price is
computed using the following formula:

2 Py-9j
2j0J
The vwap function takes the price paid and the number of shares traded as arguments. As an

input stream or window delivers trading events, the vwap function computes the VWAP to
track the average price at which a stock has traded.

Pvwap =

weighted avg()
Aggregate. Calculates an arithmetically (or linearly) weighted average.

Syntax
wei ght ed_avg (expression)

Parameters
expression A numeric expression that accepts integer, long,
float, money, timestamp, and interval datatypes.
Usage

An arithmetically weighted average has multiplying factors that give different weights to
different data points. In Event Processing, aweighted moving average (WMA\) has the specific
default meaning of weights which decrease arithmetically with the age of an event. So the
oldest event is given the least weight and the newest event is given the most weight. The
weighted average is expressed using the following formula:

o 3
WMA npm I (77—‘ ‘I')p)\'f—l B 2])1\[—174-'2 i PM—n+1
VLA N = = ;
n+(n—-1)+---+241
Where
* WMA — The weighted moving averagen - number of events in the group.
* pM —Refers to the newest event.

* pM-1 - Refers to the second newest event.

180 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

* pM-n+1—Refers to the oldest event.

The weighted average function could be used in circumstances that each value does to
contribute equally to the group of values.

xmlagg()

Aggregate. Concatenates all the XML values in the group and produces a single value.

Syntax
xm agg (val ue)

Parameters

value The XML value represented as a string.

Usage

The function, which can be used only in aggregate streams or with event caches, returns a
xmltype. Note that the xmltype cannot be stored directly in a record. To store the xml in the
record you need to apply the xmiserialize function to convert the xmltype into a string.

Example
xm agg (xm parse (stringCol))

Other Functions

Reference list for all functions that are neither aggregate nor scalar type functions.

cacheSize()

Returns the size of the current bucket in the event cache.

Syntax
cacheSi ze (cacheNane)

Usage
Returns the size of the current bucket in the event cache. The function takes the argument of
the name of the event cache variable. It returns a long.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.
CREATE SCHEMA Tr adesSchema (

Id integer,

Tr adeTi ne dat e,
Venue string,

Programmers Reference 181

CHAPTER 6: CCL Functions

Synbol string,
Price float,
Shar es i nteger

CREATE | NPUT W NDOW QTr ades SCHEMA
TradesScherma PRI MARY KEY (1d)

CREATE FLEX flexOp
I N QIr ades
OUT QUTPUT W NDOW QTr adesSt ats SCHEMA Tr adesSchena PRI MARY
KEY(Synbol , Pri ce)
BEG N
DECLARE
typedef [integer 1d;| date TradeTi me; string Venue;
string Synbol; float Price;
i nteger Shares] QIradesRecType;
event Cache(QTr ades[Synbol], manual, Price asc) tradesCache;
typeof (QTrades) insertlntoCache(typeof(Qlrades) qTrades)
{

i nteger counter := 0;
typeof (QIrades) rec;
| ong cacheSz : = cacheSi ze(tradesCache);
whil e (counter < cacheSz) {
rec := getCache(tradesCache, counter);

if(round(rec.Price,2) = round(qTrades.Price,?2)) {
del et eCache(tradesCache, counter);
i nsert Cache(tradesCache, qTrades);
return rec;
br eak;
} else if(gTrades.Price < rec.Price) {
br eak;
}

count er ++;

}

i f(cacheSz < 3) {
i nsert Cache(tradesCache, qTrades);
return gTrades;

} else {
rec := getCache(tradesCache, 0);
del et eCache(tradesCache, 0);
i nsert Cache(tradesCache, qTrades);
return rec;

}

return null;
END;

ON QrTrades {
keyCache(tradesCache, [Synbol =QTrades. Synbol ;|]);
typeof (QTrades) rec := insertlntoCache(QTrades);
if(rec.1d) {
if(rec.ld <> QIrades. 1d) {
out put set Opcode(rec, delete);
}

182 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

out put set Opcode(QIr ades, upsert);
}

END;

coalesce()

Other. Returns the first non-NULL expression from a list of expressions.

Syntax
coal esce (expression [,...])
Parameters
expression All expressions must be of the same datatype.
Usage

Returns the first non-NULL expression from a list of expressions. The arguments can be of
any datatype, but they must be all of the same datatype. The function returns the same datatype
as its arguments.

Example
coal esce (NULL, NULL, 'exanplestring', 'teststring' , NULL)
returns 'examplestring'.

concatg }

Scalar. Returns the concatenation of two given binary values OR one or more string values.

Syntax
concat (binaryl, binary2)
concat (stringl, ...stringn)
Parameters
binary1 A binary value
binary?2 A binary value
stringl The first string value in the set.
stringn The final string value in the set.
Usage

When working with binaries, concatenates the given binary arguments into a single binary and
returns that value. The function returns NULL if either argument is NULL.

When working with strings, concatenates the given string arguments into a single string and
returns that value. Literal text must be enclosed in single quotation marks.

Programmers Reference 183

CHAPTER 6: CCL Functions

Example

concat (hex_binary ('aabbcc'), hex_binary ('ddeeff')) returns
AABBCCDDEEFF.

concat (hex_binary ('ddeeff'), hex_binary ('aabbcc'))returns
DDEEFFAABBCC.

concat (' MSFT', ' NYSE') returns MSFT_NYSE.

deleteCache()
Deletes a row at a particular location (specified by index) in the event cache.

Syntax
del et eCache (cacheNane, i ndex)

Parameters

index Row index in the event cache as an integer.

Usage

Deletes a row at a particular location (specifed by the index) in the event cache. This index is 0
based. The function takes an integer as its argument, and the function removes the row. The
function does not produce an output. Specifying of an invalid index parameter will result in the
generation of a bad record.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.

CREATE SCHEMA Tr adesSchema (
Id integer,
TradeTi me date,
Venue string,
Synbol string,
Price float,
Shar es i nteger

)

1

CREATE | NPUT W NDOW QTr ades SCHENA
TradesSchema PRI MARY KEY (1d)

CREATE FLEX fl exOp
I N QTr ades
QUT QUTPUT W NDOW QTr adesSt ats SCHEMA Tr adesSchena PRI MARY
KEY(Synbol , Pri ce)
BEG N
DECLARE
typedef [integer Id;| date TradeTi nme; string Venue;

184 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

string Synbol; float Price

i nteger Shares] QTradesRecType
event Cache(QTr ades[Synbol], manual, Price asc) tradesCache;
typeof (QTrades) insertlntoCache(typeof(Qlrades) qTrades)
{

i nteger counter := 0;
typeof (QIrades) rec;
| ong cacheSz : = cacheSi ze(tradesCache);
whil e (counter < cacheSz) {
rec : = getCache(tradesCache, counter);

if(round(rec.Price,2) = round(qTrades.Price,?2)) {
del et eCache(tradesCache, counter);
i nsert Cache(tradesCache, qTrades)
return rec;
br eak;
} else if(gTrades.Price < rec.Price) {
br eak;
}

count er ++

}

i f(cacheSz < 3) {
i nsert Cache(tradesCache, qTrades);
return gTrades

} else {
rec := getCache(tradesCache, 0)
del et eCache(tradesCache, 0);
i nsert Cache(tradesCache, qTrades);
return rec;

}
return null
}
END;
ON QrIrades {
keyCache(tradesCache, [Symbol =QTrades. Synbol ;|]);
typeof (QTrades) rec := insertlntoCache(QTrades)
if(rec.1d) {
if(rec.ld <> QTrades. |d) {
out put set Opcode(rec, delete);
}
out put set Opcode(QIr ades, upsert);
}
};
END;

firstnonnull()
Other. Returns the first non-NULL expression from a list of expressions.

Syntax
firstnonnull (expression [,...])

Programmers Reference 185

CHAPTER 6: CCL Functions

Parameters

expression All expressions must be of the same datatype.

Usage

Returns the first non-NULL expression from a list of expressions. The function takes
arguments of any datatype, but they must be all of the same datatype. The function returns the
same datatype as its argument. This function behaves exactly like coalesce().

Example
firstnonnull (NULL, NULL, 'examplestring' , 'teststring',
NULL) returns 'examplestring'.

get*columnbyindex()

Returns the value of a column identified by an index.

Syntax

get bi narycol ummbyi ndex (record, col nane)

get stringcol umbyi ndex (record, col nane)

get | ongcol umbyi ndex (record, col nane)

geti nt eger col umbyi ndex (record, col name)

get dat ecol utmbyi ndex (record, col nanme)

get ti nmest anpcol utmbyi ndex (record, col nane)
get bi gdat eti necol utmbyi ndex (record, col nane)
geti nterval col umbyi ndex (record, col nane)
get bool eancol umbyi ndex (record, col name)

get f | oat col umbyi ndex (record, col nanme)

Parameters
name The name of a stream or window.
colindex Integer corresponding to an index value of a column. Index is 0
based.
Usage

Returns the value of a column identified by an index. The function takes a string for thename
argument and an integer for the colindex argument. The function returns the same datatype as
specified in the function's name (a string for getstringcolumnbyindex(), for example).

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

186

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Example

CREATE MEMORY STORE "nenstore";
CREATE | NPUT W NDOW iw nl SCHEMA (a int, b string)
PRI MARY KEY (a) MEMORY STORE "nenstore";

If you assume that the input passed into iwinl was (1, 'hello"), then
get stringcol utmbyi ndex (iw nl, 1) would return hello'.

get*columnbyname()
Returns the value of a column identified by an expression evaluated at runtime.

Syntax

get bi narycol ummbynane (nane, col nane)

get stri ngcol ummbynane (nane, col name)

get | ongcol utmbyname (nane, col nanme)

geti nt eger col umbynane (nane, col nanme)

get f | oat col umbynane (nane, col nane)

get dat ecol utmbynanme (nane, col nane)

getti nest anpcol umbynane (nane, col nane)
get bi gdat eti necol utmbynanme (nanme, col nanme)
geti nt erval col utmbynanme (nane, col nane)
get bool eancol utmbynane (nane, col nane)

Parameters
name The name of a stream or window.
colname An expression that evaluates to the name of a column with the same
datatype as the function, in the stream or window.
The colname argument for getstringcolumnbyname() would have
a string, for example.
Usage

Returns the value of a column identified by an expression evaluated at runtime. The function
takes a string for the name. The datatype of the colname arguments corresponds to the
function type, such as a string for getstringcolumnbyname(). The function returns the same
datatype as colname (as specified in the function's name).

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example

CREATE MEMORY STORE "nenstore";
CREATE | NPUT W NDOW iw nl SCHEMA (a int, b string)
PRI MARY KEY (a) MEMORY STORE "nenstore";

Programmers Reference 187

CHAPTER 6: CCL Functions

If you assume that the input passed into iwinl was (1, 'hello"), then
get stringcol umbynane (iw nl, a) would return hello'.

getCache()

Returns the row specified by a given index from the current bucket in the event cache.

Syntax
get Cache (cacheNane, index)

Parameters

cacheName The name of the event cache.

index Row index in the event cache as an integer.
Usage

Returns the row specified by a given index from the current bucket in the event cache. This
index is 0 based. The function takes the name of the event cache and an integer as its
arguments, and returns a row from the event cache. Specifying an invalid index parameter
generates a bad record.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.

CREATE SCHEMA Tr adesSchema (
Id integer,
TradeTi me date,
Venue string,
Synbol string,
Price float,
Shares i nteger

)

1

CREATE | NPUT W NDOW QTr ades SCHENMA
TradesScherma PRI MARY KEY (1d)

CREATE FLEX fl exOp
I N QTr ades
QUT QUTPUT W NDOW QTr adesSt ats SCHEMA Tr adesSchenma PRI MARY
KEY(Synbol , Pri ce)
BEG N
DECLARE
typedef [integer |d;| date TradeTine; string Venue;
string Synbol; float Price;
i nteger Shares] QIradesRecType;
event Cache(QTr ades[Synbol], nanual, Price asc) tradesCache;
typeof (QTrades) insertlntoCache(typeof(Qlrades) qTrades)
{

188 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

i nteger counter := 0;
typeof (Qfrades) rec;
| ong cacheSz : = cacheSi ze(tradesCache);
whil e (counter < cacheSz) {
rec : = getCache(tradesCache, counter);

if(round(rec.Price,2) = round(qTrades.Price,2)) {
del et eCache(tradesCache, counter);
i nsert Cache(tradesCache, qTrades);
return rec;
br eak;
} else if(gTrades.Price < rec.Price) {
br eak;
}

count er ++;

}

i f(cacheSz < 3)
i nsert Cache(tradesCache, qTrades);
return gTrades;

} else {
rec : = getCache(tradesCache, 0);
del et eCache(tradesCache, 0);
i nsert Cache(tradesCache, qTrades);
return rec;

return null;
}
END;
ON QrIrades {
keyCache(tradesCache, [Synbol =QTrades. Synbol ;|]);
typeof (QTrades) rec := insertlntoCache(Qfrades);
if(rec.ld) {
if(rec.ld <> Qlrades. |d) {
out put set Opcode(rec, delete);
out put set Opcode(QIr ades, upsert);
}
iE
END;

ngqu

This function takes a database query, gets rows from an external database table and returns
them in a vector of records.

Syntax

get Dat a(vector, service, query, exprl, ... exprn)

Parameters
vector the name of the vector in which to return the selected records
service the name of the service to use to make the database query, a string

Programmers Reference 189

CHAPTER 6: CCL Functions

query a query for the database, a string

expr additional parameter to pass to the database along with the query, any of the basic

datatypes (such as money, integer, string)

Usage

Specify the name of the vector in which to put the records returned by the function as the first
argument. The function returns a vector with the name specified, containing the selected
records.

Specify the service to use when querying the database as the second argument. The services
that can be used to make the database queries are defined inthe ser vi ce. xnl file. See the
Administrators Guide for more information about this file and the services described in it.

Specify the query to make of the database as the third argument. The query can be in any
database query language (such as SQL) as long as the appropriate service is defined in the
servi ce. xm file. Specify any additional parameters to pass to the database along with the
query as subsequent arguments.

Note: The query statement must include placeholders, marked by a "?" character, for any
additional parameters being passed.

Example
getData(v, 'MyService', 'SELECT coll, col2 FROM nyTabl e WHERE
id=?", '"nyld); getsrecordsfrom atable named “myTable” using a service named

“MyService”, selects the first two columns of every row where the "id" is equal to the value of
"myld" and returns them in a vector named “v”.

getmoneycolumnbyindex()

Returns the value of a column identified by an index.

Syntax
get noneycol umbyi ndex (nane, colindex, scale)

Parameters
name The name of a stream or window.
colname Integer corresponding to an index value of a column. Index is 0
based.
scale An integer between 1 and 15.

190

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Usage

Returns the value of a column identified by an index. The function takes a string for the name
and integers for the colindex and scale arguments. The function returns a money type with the
specified scale.

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example

CREATE MEMORY STORE "nenstore";
CREATE | NPUT W NDOW i wi n1 SCHEMA (a noney(1l), b noney(3))
PRI MARY KEY (a) MEMORY STORE "nenstore";

If you assume that the input passed into iwinl was (1.2, 1.23), then
get noneycol ummbyi ndex (iwinl, 1, 3) wouldreturn1.123.

getmoneycolumnbyname()
Returns the value of a column identified by an expression evaluated at runtime as a money
type.

Syntax
get noneycol umbynane (nane, col nane, scale)

Parameters
name The name of a stream or window.
colname An expression that evaluates to the name of a column with a money
datatype, in the stream or window.
scale An integer between 1 and 15.
Usage

Returns the value of a column identified by an expression evaluated at runtime. The function
takes a string for the name and colname arguments and an integer to represent the scale of the
money type. The function returns a money type with the specifed scale.

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example

CREATE MEMORY STORE "nenstore";
CREATE | NPUT W NDOW i wi n1 SCEHVA (a nmoney(1l), b noney(3))
PRI MARY KEY (a) MEMORY STORE "nenstore";

Programmers Reference 191

CHAPTER 6: CCL Functions

If you assume that the input passed into iwinl was (1.2, 1.23), then
get nmoneycol unmbynanme (iwinl, b, 3) wouldreturn1.123.

getrowid()

Other. Returns the sequence number of a given row in the window.

Syntax
getrowid (row)

Parameters

row A row in a window.

Usage

Returns the sequence number of a given row in the window. The function takes awindow ID as
its argument, and returns the sequence number of the row in the window. This sequence
number is known as the rowid, assigned uniquely as the rows get inserted. The getrowid
function returns a 64-bit integer as its datatype return form. It always returns the row identifier
of the record passed in as a parameter to the function. It can be used with a stream, delta stream,
or a window.

Example
CREATE MEMORY STORE "nenstore";

CREATE | NPUT W NDOW i wi n1 SCHEMA (a noney(1l), b noney(3))
PRI MARY KEY (a) MEMORY STORE "nmenstore";

CREATE | NPUT W NDOW i wi n2 SCHEMA (a noney(1l), b noney(3))
PRI MARY KEY (a) MEMORY STORE "nenstore";

rank()

Other. Returns the position of the row in the current group (only used in GROUP HAVING
expression).

Syntax
rank()

Usage

Returns the position of the row in the current group, starting from position 0. This function is
useful only in a GROUP FILTER expression. This function has no arguments, and the function
returns an integer.

Example
rank() > 3returns 0 for the first four rows in a group and 1 for all other rows.

192

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

seguenceg)

Combines two or more expressions to be evaluated in order.

Syntax
sequence (expression [, ...])
Parameters
expression An expression of any data type. The last expression in the sequence
determines the type and value for the entire sequence.
Usage

Combines two or more expressions to be evaluated in order. The type and value of the
expression is the type and value of the last expression.

Sequencing is useful in a projection list to perform several simple instructions in the context of
evaluating a projection column value without having to write a SPLASH UDF.

Example
This example computes the maximum price seen so far, assigns it to the maxPr i ce variable,
and returns the product of the maximum price and number of shares.

sequence (

maxPrice := case when maxPrice <
inRec. Price then inRec.Price el se maxPrice end;
maxPri ce*i nRec. Shar es

)

User-Defined External Functions

In CCL projects, use the CREATE LIBRARY statement to call user-defined functions written in
C/C++ or Java.

Load C/C++ functions from shared libraries, . so filesin Linuxand UNIX,and. dI | filesin
Windows. Load Java functions from either . cl ass filesor. j ar files.

Declare external functions in CCL using the CREATE LIBRARY statement. Once declared,
you can use the functions anywhere you use built-in functions.

Note: C/C++ external library calls support all datatypes, namely boolean, integer, long, float,
money(n), date, bigdatetime, and binary.

Java external library calls only support integer, long, double, and string datatypes.

Complex types such as dictionaries, vectors, event caches and record types are not supported
in external functions.

Programmers Reference 193

CHAPTER 6: CCL Functions

External C/C++ Function Requirements

External C/C++ functions must conform to the interface of the Sybase Event Stream Processor
by following the datatype, argument/return value, and output requirements.

Syntax
Write the function signature to the Event Stream Processor interface:
int32_t funcName (int nunargs,

Dat aVal ue: : Dat aVal ue * top,

Dat aVal ue: : Dat aVal ue * next Args,
std::vector<void *> & arena)

Datatype Requirements

The Event Stream Processor passes each function argument as a DataValue and expects to
receive the return value as DataValue. The DataValue is a structure that includes all the
datatypes understood by Event Stream Processor and is defined in Dat aVal ue. hpp, which
is located in $ESP_HOVE\ i ncl ude. The DataValue structure has this definition:

struct DataVal ue {

uni on {
bool bool eanv;
intl6_t int16v;
int32_t i nt 32v;
int64 t i nt 64v;
i nterval _t i nterval v;
noney_t noneyv;
doubl e doubl ev;
time_t dat ev;
ti mest anpval _t ti mest anmpv;
const char * stringyv;
hirestime_t bi gdat et i nev;
bi nary_t bi naryv;

voi d * objectv;

bool null;

}

When the Boolean flag nul | is set to true, the value of the argument is NULL (the argument
does not have a value). bi nary_t is a class with two public member variables defined as:

e const uint8 t * _data;.

This variable points to the first byte of the data in the buffer.
e byte_ size_t _used;.

This variable defines the length of data used in the buffer.

Note: Assign memory to _dat a using mal | oc or cal | oc, not new.

noneyvV is a generic placeholder for money arguments with any scale; it must be told what
scale a particular money argument has.

194 Sybase Event Stream Processor

CHAPTER 6: CCL Functions

Argument and Return Value Requirements

Since the Event Stream Processor internal processing engine is a bytecode stack machine that
keeps the top of the stack in a special location, ensure the Event Stream Processor splits
function arguments into two:

« Apointerto the top of the stack of type Dat aVal ue. The top of the stack points to the last
argument when more than one argument is passed to the function and to the first argument
if only one argument is passed. The first argument in the interface indicates the number of
arguments passed.

« A npointer to the rest of the arguments of type Dat aVal ue. The pointer points to the first
argument when there is more than one argument passed to the function. It is undefined if
the function has only one argument.

Note: Write the return value of the function to the top of the stack.

If the function allocates memory by calling mal | oc orcal | oc, the Event Stream Processor
can release the memory after it has processed the record by adding the memory to the arena.
The arena is the last argument to the function and is defined as vector of type voi d *. You
cannot add a pointer to the memory allocated by newto the arena; doing so can corrupt the
memory and cause an unrecoverable error.

Output Requirement

Ensure the function returns an error code to indicate successful completion of the function.
Thereturnvalueisoftypei nt 32_t . Avalue of 0 indicates no error; any other values indicate
an error. When an error occurs, Event Stream Processor rejects the current record.

Example: Using External C/C++ Functions
Write a C/C++ function that computes distances to the Event Stream Processor interface.
After compiling the function to a shared library, declare it using the CREATE LIBRARY
statement, and call the function as needed in your CCL project.

Prerequisites
Know the syntax and requirements for writing C/C++ functions to the interface of the Event
Stream Processor.

Task

1. Write the function, ensuring it conforms to the Event Stream Processor interface.

For example, this function computes distance:

#i ncl ude nath. h
doubl e di stance(int nunval s, double * vals){
doubl e sum = 0. 0;
for (int i=0; i<nunvals; i++){
sum += val s[i]*val s[i];

Programmers Reference 195

CHAPTER 6: CCL Functions

return sqgrt(sunj;

To conform to the interface of the Event Stream Processor, write the function as:

#i ncl ude <mat h. h>

#i ncl ude <vect or >

#i ncl ude "Dat aVal ue. hpp"
usi ng namespace std;

#i fdef _WN32

#define _ DLLEXPORT__ _ decl spec(dl | export)
#el se

#define _ DLLEXPORT
#endi f

/**

* This function conputes the distance using the given

arguments.
@umargs - Nunber of arguments to this function.
@ op - Points to the last argument. Also holds the

return value fromthis function.

@ext Args - The remai ning argunents in the order provided.

@r ena - Anything assigned to the arena is freed by the
the server. NOTE: Do not assign return val ues
to the arena. Also anything to be freed nust
be al | ocated using nalloc only (DO NOT USE new).

B R R R R I R R I I I R R I

/

extern "C' _ DLLEXPORT__

int32_t distance(int numargs, DataTypes:: DataValue * top,

Dat aTypes: : Dat aVal ue * next Args,

std::vector<void *>& arena) {

* % X Xk X X X o ok

doubl e sum = 0. 0;
if (numargs <= 0){
// Return val ue
t op- >set Doubl (0. 0) ;

// Return code.
return O;

}

[11f any of the arguments is null result is null.
if(top->null) return O;

/1 Top of the stack points to the last argunent.
doubl e di st = top->val.doublev * top->val.doubl ev;

/I Processes the argunments fromlast to first.
for(int i=numargs-2; i>=0; i--){

[11f any of the arguments is null result is null
i f((nextArgs+i)->null){

196

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

top->null = true;
return O;

}

/1 accunul ate the square of the distances.
di st +=(nextArgs + i)->val.doublev * (nextArgs + i)-
>val . doubl ev;

}

/I Return val ue
t op- >set Doubl e(sqrt(dist));

/| Return code.
return O;

}

Note: Use the setX function to set the return value, where X is the return type of the return
value. Using the setX function ensures that the null flag is set to false. To set the return
value to NULL, say top->null =true.

The extern declaration ensures the function has the same name within the library and not
the C++ function name.

The _ DLLEXPORT__ preprocessor macro must be defined under Windows to make the
external function available to ESP.

2. Compile the function to a shared library.

For example, using the gcc compiler, these commands create a shared library named
di st ance. so:

gcc -fPIC -shared -n64 -1.. -c -o distance.o distance.cpp
gcc -fPIC -shared -nb4 di stance.o -o distance. so

3. Declare the function in the CCL project using the CREATE LIBRARY statement.

CREATE LI BRARY Di stancelLi b LANGUAGE C FROM ' di st ance. so' (
float distance(float argl, float arg2, float arg3);
)

Note: When searching for shared libraries (. dI | files), Windows checks the path of the
application. If the .dll file is not found in that directory, other directories are searched,
culminating in the directories specified in the PATH environment variable.

Ensure the name of the function matches the name of the function in the library.

4. Call the distance function in the project using Di st ancelLi b. di st ance(ar g1,
arg2, arg3).

Programmers Reference 197

CHAPTER 6: CCL Functions

Example: Using Java Functions

Write a Java function that computes distances. After compiling the functionasa. cl ass
or. j ar file, declare it using the CREATE LIBRARY statement, and call the function as needed
in your CCL project. Finally, link the library with the Event Stream Processor.

Note: The Java 1.6 runtime environment is included with Sybase Event Stream Processor. If
your function requires a different version of Java, set the environment variable
ESP_JAVA_HOME tothe location of the appropriate Java virtual machine shared library. This
isusually |i bj vm so on Linux, UNIX, or Solarisand j vm dl | on Windows.

For example, to set the variable on a Linux, UNIX, or Solaris machine in the shell, use:
export ESP_JAVA HOVE=/user/bin/javaljrel/lib/libjvmso

1. Write the function.

Define all functions as a public static method inside the class. For example, this function
computes distances:
public class Distance {
public static doubl e di stance(doubl e argl, double arg2,
doubl e arg3) {
doubl e sum = 0;
sum += argl * argil,
sum += arg2 * arg2,
sum += arg3 * arg3;

return Math.sqrt(sum;
}

Note: You cannot pass or return null values to external Java functions.

2. Compile the function to a shared library:
javac -d /home/ sybase/user/javal/lib D stance.java

You can also create Java archives (. j ar files) of classes and refer to those when declaring
the functions in the CCL project.

3. Declare the function and library in the CCL project using the CREATE LIBRARY

statement.

CREATE LI BRARY Di st ancelLi b LANGUAGE JAVA FROM ' Di st ance' (
doubl e di stance(doubl e argl, double arg2, double arg3);
)

Note: ' Di st ance' isthe name of the class. If the class is defined in a package, replace
the class name with its directory, including the name.

Ensure the function signature in the library has the same name, argument datatypes, and
return datatypes as the function in the .class file.

198

Sybase Event Stream Processor

CHAPTER 6: CCL Functions

4, Call the function in the project using Di st ancelLi b. di stance(argl, arg2,
arg3).
5. Link the Java library to the Event Stream Processor Server.

The Event Stream Processor has a built-in Java runtime environment. To link the Java
function to your application, start the server with the -j option.

For .class files, specify only the directory of the file:
sp -j /hone/sybase/user/javal/lib

If the class is inside a .jar file located in, for example, / home/ sybase/ user/j ava,
then specify the directory of the file including the file name:
sp -j /hone/sybase/user/javal Di stance.jar

Separate multiple paths using ":" in Linux/UNIX and ";" in Windows.

User-Defined SPLASH Functions

Use the SPLASH programming language to write user-defined functions in either global or
local declare blocks.

Syntax

DECLARE
returnType funcNanme (argType argNane,...) {

[/ function body
return val ue;

END,;

Usage

Function names are case-sensitive.

Functions defined at the module or project level can be used anywhere in the expressions
inside that module or project. However, functions defined within streams, windows, and FLEX
operators are visible only in the scope of those elements.

Functions are defined and there is no need to declare a function. For example, function 2 can
reference f1 before f1 is defined.

Programmers Reference 199

CHAPTER 6: CCL Functions

200 Sybase Event Stream Processor

CHAPTER 7 Programmatically Reading and
Writing CCL Files

Using the CCL read/write SDK, you can create new CCL files, read existing files, and modify
the CCL statements within files with a set of SDK calls.

You can open, read, and write CCL files using a set of Java classes that allows you to
manipulate a CCL parse tree programmatically. You can create custom tools that interact with
CCL files (such as a translator from CCL to a different file format or a user interface to
visualize CCL files) without also having to create your own parser and pretty-printer to
manipulate CCL code as they have already been built in the SDK.

The CCL read/write SDK is constructed using the same Eclipse technologies (XTEXT and
EMF) that Studio visual and text editors use to manipulate CCL files. The programs and
examples created within this SDK can be run in a standalone manner outside of the Eclipse
IDE.

CCL File Creation

The example below performs the necessary initialization and demonstrates how to create a

new CCL filenamed hel | 0. ccl withasingle CREATE | NPUT STREAMCCL statement.
Note that all the Java code is necessary for file creation except for the three lines involving the
Input Stream statement.

package com sybase. esp. ccl . exanpl el;
import java.io.File;

i mport org.eclipse.enf.comon.util.URl;

i nport org.eclipse.enf.ecore.resource. Resource;

i mport org.eclipse. xtext.resource. SaveOpti ons;

i mport org.eclipse.xtext.resource. Xt ext Resour ceSet ;

i nport com sybase. esp. Ccl St andal oneSet up;
i mport com sybase. esp. ccl . Ccl Factory;

i mport com sybase. esp. ccl . Ccl Package;

i mport com sybase. esp. ccl . | nput St ream

i nport com sybase. esp. ccl . St at enents;

public class HelloCcl {
public static void main(String[] args) {

/1 This call nust be nade once in order to use the CCL API.
Ccl St andal oneSet up. doSet up() ;

Programmers Reference 201

CHAPTER 7: Programmatically Reading and Writing CCL Files

/! The file to be created. If it exists, renove it.
String theFile = "hello.ccl";

File cclFile = new File(theFile);
if(cclFile.exists())

cclFile.delete();

}

/1l Ccl elenents need to be placed in a Resource which is
/'l within a ResourceSet. This is default EMF behavi or.
Xt ext Resour ceSet nmyResour ceSet = new Xt ext ResourceSet () ;
URI uri = URl.createFileURl (theFile);

Resource resource = nyResourceSet. creat eResource(uri);

/1 Use the Ccl Factory to create new Ccl elenents, this is a
/] standard way EMF creates new el enents in the Ccl API.
Ccl Factory fact = Ccl Package. el NSTANCE. get Ccl Fact ory();

[/l Statenents is the root object for the Ccl nodel.
// Create one and add it to the Resource.
Statenents root = fact.createStatenents();
resource. get Cont ent s(). add(root);

/'l Create and nane the | nputStream
I nput Stream thel nput = fact.createl nputStrean();
t hel nput . set Narme(" Newl nput ") ;

/1l Add the InputStreamto the Stnts coll ection.
root.getStnts().add(thel nput);

// Save an EMF Resource naned hel |l o. ccl
try

{
SaveOpti ons saveOptions =
SaveOpt i ons. newBui | der (). get Options();
resour ce. save(saveOpti ons. t oOpti onsMap());
}
cat ch(Exception e)

System out. println(e. get Message());

}

The output file of the above example, hel | 0. ccl , contains a single CCL statement and can
be seen below.
CREATE | NPUT STREAM Newl nput ;

202 Sybase Event Stream Processor

CHAPTER 7: Programmatically Reading and Writing CCL Files

CCL File Deconstruction

The SDK contains several different resources and methods to read, analyze, and output the

contents of a CCL file.

The walkModel method below opens a CCL file and deconstructs it by iterating through each
CCL statementand printing information on any affected CCL elements. The method then calls
the prettyPrint procedure to print the statements themselves to Syst em out in CCL plain

text.
public void wal kModel (String theFile)
{
Xt ext Resour ceSet nyResourceSet = new Xt ext ResourceSet ();
URI uri = URI.createFileURlI (theFile);
Resource resource = nyResourceSet. get Resource(uri, true);
EcoreUtil.resol veAl | (resource);
Statenents root = (Statenents)resource. getContents().get(0);
Li st <TopStatenent> stmmts = root.getStnts();
for(TopStatenent d: stmmts)
print Ccl Nane(d);
}
prettyPrint(root);
}
void prettyPrint(EObject theEO
{
try
{ . . .
| Serializer serializer = getSerializer();
if(serializer==null)
Systemout. println("lnjection bug");
}
el se
Systemout.println(serializer.serialize(theEO);
}

}
cat ch(Excepti on e)
System out. println(e. get Message());
}

Below is a sample CCL file containing several statements.

DECLARE

PARAMETER i nteger the_integer := 1; PARAMETER bool ean
the_bool ean : = FALSE;
END;

CREATE SCHEMA NewSchema (col _O integer , col _1 integer , col _

Programmers Reference

203

CHAPTER 7: Programmatically Reading and Writing CCL Files

integer , col_3 integer , col_4 integer , col_5 integer , col _6
i nteger |,
col _7 integer , col_8 integer , col_9 integer);
CREATE SCHEMA NewSchema2 (AAAAA integer)
CREATE | NPUT STREAM Newl nput St r eam SCHEMA NewSchens;
CREATE | NPUT W NDOW Newi nput W ndowW t hl nl i neSchena SCHEMA (c_key
integer , c_1integer , c_21long, c_3 string) PRI MARY KEY (c_key);
CREATE | NPUT W NDOW Newl nput W ndow SCHEMA NewSchema PRI MARY KEY
(col _0) KEEP ALL ROWS
CREATE QUTPUT W NDOW NewDer i vedW ndow PRI MARY KEY DEDUCED AS SELECT *
FROM Newl nput W ndow | N1;
CREATE QUTPUT STREAM NewDer i vedSt r eam AS SELECT * FROM Newl nput St r eam
I N1;
CREATE FLEX Newfl ex | N Newi nput Stream OQUT OUTPUT W NDOW Newfl ex
SCHEMA NewSchema PRI MARY KEY (col _0)
BEGA N

ON Newl nput Stream {

)i
END;
CREATE OQUTPUT SPLI TTER NewSplitter AS WHEN 1 THEN NewSpl i tter_Qut put
SELECT * FROM Newi nput W ndow;
CREATE | NPUT W NDOW Joi nl nput W ndowl SCHEMA NewSchema PRI MARY KEY (
col _0) KEEP ALL ROWS
CREATE | NPUT W NDOW Joi nl nput W ndow2 SCHEVA NewSchenma2 PRI MARY KEY (
AAAAA) KEEP ALL ROWS
CREATE OUTPUT W NDOW Newdoi nW ndow PRI MARY KEY (AAAAA) AS SELECT *
FROM Joi nl nput W ndowl J1 | NNER JO N Joi nl nput Wndow2 J2 ON J1.col 0 =
J2. AAAAA;
CREATE | NPUT STREAM Newl nput St reanil SCHEMA NewSchema?2
CREATE | NPUT STREAM New nput St r ean? SCHEMA NewSchema?2;
CREATE QUTPUT STREAM NewUni onSt r eam AS SELECT * FROM Newi nput St r eamdl
UL UNI ON SELECT * FROM Newl nput Strean U2;
CREATE QUTPUT ERROR STREAM Newkr r or St r eam ON NewUni onSt r eam
CREATE QUTPUT STREAM NewDer i vedSt reantel ective AS SELECT | N1.col _0
INl.col "1, INl.col_2, INlL.col _3, INlL.col 4, INl.col_5, INL col_6
, INL.col _7 , INl.col_8 , INL col_9 FROM Newl nput Stream | N1
CREATE QUTPUT STREAM NewDeriveStreamANthPattern AS SELECT * FROM
Newl nput Stream IN1 MATCHHNG [1 SECOND : INL];
CREATE QUTPUT W NDOW NewConmaJoi nW ndowW t hl nput s PRI MARY KEY
DEDUCED AS SELECT * FROM Joi nl nput W ndowl i nput _1 , Joi nl nput W ndow2
i nput _2;

After calling the walkModel method with the above CCL file as the argument, the information
outputted by the printCcIName procedure is as follows:
NewSchema ki nd = Schema

col _0 i nt eger
col _1 i nt eger
col 2 i nt eger
col _3 i nteger
col _4 i nt eger
col _5 i nt eger
col _6 i nt eger
col _7 i nteger
col _8 i nt eger
col _9 i nt eger

204

Sybase Event Stream Processor

CHAPTER 7: Programmatically Reading and Writing CCL Files

NewSchema2 ki nd = Schenma
AAAAA i nteger
Newl nput Stream ki nd = | nput Stream
Newl nput W ndowW t hl nl i neSchema ki nd = | nput W ndow
Newl nput W ndow ki nd = | nput W ndow
NewDer i vedW ndow ki nd = W ndow
NewDer i vedSt r eam ki nd = Stream
NewFl ex ki nd = Fl exOper at or
NewSplitter kind = Splitter
Joi nl nput Wndowl kind = | nput Wndow
Joi nl nput W ndow2 ki nd = | nput W ndow
NewJoi nW ndow ki nd = W ndow
Newl nput Streantl ki nd I nput Stream
Newl nput St rean® ki nd I nput Stream
NewUni onSt ream ki nd = Stream
NewEr ror Stream ki nd = Error Stream
NewDer i vedSt r eantel ecti ve kind = Stream
NewDer i veStreamWt hPattern kind = Stream
NewCommaJoi nW ndowW t hl nput s ki nd = W ndow
NewDer i vedW ndowW t h\Wer e ki nd = W ndow

Programmers Reference 205

CHAPTER 7: Programmatically Reading and Writing CCL Files

206 Sybase Event Stream Processor

CHAPTER 8 SPLASH Programming
Language

This chapter describes the Streaming Platform LAnguage SHell (SPLASH), which is a
scripting language supported by Sybase ESP that brings extensibility to CCL. It is used to
define custom functions, custom operators in the form of Flex Operators, and is used to declare
global and local variables and data structures.

The syntax of SPLASH is a combination of the expression language and a C-like syntax for
blocks of statements. Just as in C, there are variable declarations within blocks, and statements
for making assignments to variables, conditionals and looping. Other datatypes, beyond scalar
types, are also available within SPLASH, including types for records, collections of records,
and iterators over those records. Comments can appear as blocks of text inside/ * -*/ pairs, or
as line comments with / / .

Variable and Type Declarations

SPLASH variable declarations resemble those in C: the type precedes the variable names, and
the declaration ends in a semicolon. The variable can be assigned an initial value as well.

Here are some examples of SPLASH declarations:

integer a, r;

float b := 9.9;

string ¢, d := 'dd';

[integer keyl; string key2; | string data;] record;

The first three declarations are for scalar variables of typesi nt eger ,f | oat ,andstri ng.
The first has two variables. In the second, the variable “b” is initialized to 9.9. In the third, the
variable “c” is not initialized but “d” is. The fourth declaration is for a record with three
columns. The key columns “key1” and “key2” are listed first before the | character; the
remaining column “data” is a non-key column. The syntax for constructing new records is
parallel to this syntax type.

Thet ypeof operator providesaconvenientway to declare variables. For instance, ifr ec1is
arecord withtype[integer keyl; string key2; | string data;].
typeof (recl) rec2;

The above declaration is the same as the following declaration:
[integer keyl; string key2; | string data;] rec2;

SPLASH type declarations also resemble those in C. The t ypedef operator provides a way
to define a synonym for a type expression.

Programmers Reference 207

CHAPTER 8: SPLASH Programming Language

typedef float newrl oat Type;

typedef [integer keyl; string key2; | string dataField;] rec_t;
These declarations create new synonyms newl oat Type andr ec_t for the float type and
the given record type, respectively. Those names can then be used in subsequent variable
declarations which improves the readability and the size of the declarations:

newFl oat Type var1;
rec_t var2;

Custom Functions

You can write your own functions in SPLASH. They can be declared in global blocks, for use
by any stream or window, or within a local block to restrict usage to the local stream/window.
A function can internally call other functions, or call themselves recursively.

The syntax of SPLASH functions resembles C. In general, a function looks like:

type functi onNane(typel argl, ..., typen argn) { ... }

Each “fuction type” is a SPLASH type, and each ar g is the name of an argument. Within the
{...} canappear any SPLASH statements. The value returned by the function is the value
returned by the r et ur n statement within.

Here are some examples:

i nteger factorial (integer x) {
if (x <= 0) {
return 1;
} else {
return factorial (x-1) * x;
}

string odd(integer x) {
if (x =1) {
return 'odd';
} else {
return even(x-1);
}

}

string even(integer x) {
if (x =0) {
return 'even';
} else {
return odd(x-1);

}

integer sun(integer x, integer y) { return x+y; }
string getField([integer k; | string data;] rec) { return rec.data;}

208

Sybase Event Stream Processor

CHAPTER 8: SPLASH Programming Language

The first function is recursive. The second and third are mutually recursive; unlike C, you do
not need a prototype of the “even” function in order to declare the “odd” function. The last two
functions illustrate multiple arguments and record input.

The real use of SPLASH functions is to define, and debug, a computation once. Suppose, for
instance, you have a way to compute the value of a bond based on its current price, its days to
maturity, and forward projections of inflation. You might write this function and use it in many
places within the project:

float bondVal ue(fl oat currentPrice,
i nt eger daysToMat ure,
float inflation)

Using SPLASH in Flex Operators

Procedures written in SPLASH are integrated into Projects using the CCL Flex operator.

Procedures written in SPLASH are not meant to be standalone programs. They are meant to be
used in Sybase® Event Stream Processor projects that are primarily written in CCL. The Flex
Operator is the CCL statement that incorporates a SPLASH routine into a CCL project.
Operations on Windows that are inputs to the Flex Operator

e Get valueby key — Get a record from the window by key. If there is no such key in the
window, return null.

Syntax: wi ndowVal ue[recordVal ue]

Type: The recordValue must have the record type of the window. The operation returns a
value of the record type of the window.

Example: i nput_window [k = 3; |]]

Note: Non-key fields of the argument do not matter. The operation returns a record with
the current values of the non-key fields, if a record with the key fields exists.

If a key field is missing from the argument, or the key field is null, then this operation
always returns null. It doesn't make sense to compare key fields in the stream to null, since
null is never equivalent to any value (including null).

* Getvalueby match — Getarecord from the window that matches the given record. Unlike
getting a value by key, there might be more than one matching record. If there is more than
one matching record, one of the matching records is returned. If there is no such match in
the window, null is returned.

Syntax: wi ndowNane{ recordVal ue }

Programmers Reference 209

CHAPTER 8: SPLASH Programming Language

Type: The record must be consistent with the record type of the window. The operation
returns a value of the record type of the window.

Example:i nput_ window{ [| d =51] }

You can use key and non-key fields in the record.
You can also iterate through all the records in a window using a “for” loop.

Examples
The following examples show complete projects that incorporate SPLASH code using the
CCL Flex operator.

This project displays the top three prices for each stock symbol.

CREATE SCHEMA Tr adesSchema (
Id integer,
TradeTi me date,
Venue string,
Synbol string,
Price float,
Shar es i nteger

)

)

/* Rk b b S O I R R Ik kS kO R R R R S ok Sk kS O kR

* Create a Nasdaq Trades | nput W ndow
*/

CREATE | NPUT W NDOW QTr ades SCHENMA

Tr adesScherma PRI MARY KEY (1d)

)

Rk S R S O R I S S kO

Use Case a:

Keep records corresponding to only the top three
di stinct values. Delete records that falls of the top
three val ues.

/

Here the trades corresponding to the top three prices
per Synbol is maintained. It uses

- eventcaches

- |l ocal UDF

L B S T I I

~

CREATE FLEX Top3Tr adesFl ex
I N QIr ades
QUT OUTPUT W NDOW Top3Trades SCHEMA TradesSchena PRI MARY
KEY(Synbol , Pri ce)
BEG N
DECLARE
event Cache(QIr ades[Synbol], manual, Price asc)
tradesCache;
/*
* |Inserts record into cache if in top 3 prices and
returns
* the record to delete or just the current record if it

210

Sybase Event Stream Processor

CHAPTER 8: SPLASH Programming Language

was
* inserted into cache with no correspondi ng del ete.
*/
typeof (QIrades) insertlntoCache(typeof (QIrades)
gTrades)
/1 keep only the top 3 distinct prices per synbol in
t he
/'] event cache
i nteger counter := 0;
typeof (QTrades) rec;
| ong cacheSz : = cacheSi ze(tradesCache);
whil e (counter < cacheSz) {
rec := getCache(tradesCache, counter);
i f(round(rec.Price,2) =round(qTrades. Price,2)) {
[/l if the price is the sane update
/'l the record.
del et eCache(tradesCache, counter);
i nsert Cache(tradesCache, gTrades);
return rec;
br eak;
} else if(qTrades.Price < rec.Price) {
br eak;
}
count er ++;
}
//Less than 3 distinct prices
i f(cacheSz < 3) {
i nsert Cache(tradesCache, qTrades);
return qTrades;
} else { //Current price is > |owest price
//del ete | owest price record.
rec : = getCache(tradesCache, 0);
del et eCache(tradesCache, 0);
i nsert Cache(tradesCache, qTrades);
return rec;
}
return null;
}
END;
ON QrIrades {
keyCache(tradesCache, [Synbol =Qlrades. Synbol ;|]);
typeof (QTrades) rec := insertlntoCache(QTrades);
if(rec.1d) {
[/ When id does not match current id it is a
//record to delete
if(rec.ld <> QIrades. 1d) {
out put set Opcode(rec, delete);
}
out put set Opcode(QTr ades, upsert);
}
b
END;

Programmers Reference 211

CHAPTER 8: SPLASH Programming Language

This project collects data for thirty seconds and then computes the desired output values.

CREATE SCHEMA Tr adesSchema (
Id integer,
TradeTi ne dat e,
Venue string,
Symbol string,
Price float,
Shar es i nteger
)

/* ER Sk b R b S R S R R O kS O

* Create a Nasdaq Trades | nput W ndow
*/

CREATE | NPUT W NDOW QTr ades SCHENVA
TradesScherma PRI MARY KEY (1d)

Rk S R S O S S S S S O

Use Case b:
Perform a conputation every N seconds for records
arrived in the |ast N seconds.

/

Here the Nasdaq trades data is collected for 30 seconds
bef ore being released for further conputation.

* % X X Xk ok F

~

CREATE FLEX Peri odi cQut put Fl ex

I N QIr ades

QUT OUTPUT W NDOW QTr adesPeri odi cQut put SCHEMA Tr adesSchena
PRI MARY KEY(Synbol , Pri ce)

BEGA N
DECLARE
dictionary(typeof (QIrades), integer) cache;
END;
ON QrIrades {
[/ Whenever a record arrives just insert into
dictionary.

/1 The key of the dictionary is the key to the record.
cache[QTrades] := 0;

EVERY 30 SECONDS {
/1 Cycle through event cache and output all the rows
//and delete the rows.
for (rec in cache) {
out put set Opcode(rec, upsert);

cl ear (cache);
b
END;
/**

* Performa conputation fromthe periodic output.
*/

212 Sybase Event Stream Processor

CHAPTER 8: SPLASH Programming Language

CREATE OQUTPUT W NDOW QTr adesSynbol St at's
PRI MARY KEY DEDUCED

AS SELECT
g. Synbol ,
M N(q. Pri ce) M npri ce,
MAX(qg. Pri ce) MaxPri ce,

sun(g. Shares * . Price)/sun(qg. Shares) Wwap,
count (*) Total Tr ades,
sun{ g. Shares) Tot al Vol une
FROM
QrIr adesPeri odi cCut put g
GROUP BY
g. Synbol

Programmers Reference 213

CHAPTER 8: SPLASH Programming Language

214 Sybase Event Stream Processor

CHAPTER 9 SPLASH Statements

SPLASH has statement forms for expressions, blocks, conditionals, output, “break” and
“continue”, “while” and “for” loops, as well as blocks of statements.

Block Statements

Statements can be a sequence of statements, wrapped in braces, with optional variable
declarations.

For example:

float d := 9.99;
record.b := d;

}

You can intersperse variable declarations with statements:

{
float pi := 3.14;

print (string(pi));
float e := 2.71;
print (string(e));

Conditional Statements

Use conditional statements to specify an action based on whether a specific condition is true or
false. Conditional statements in SPLASH use the same syntax as conditional statements in
C.

For example:

if (record.a = 9)
record.b := 9.99;

Note: You are not limited to a single statement. It is also possible to have a block of statements
after the "if" condition, similiar to the following example:

if (record.a > 9) {
float d := record. a;

Programmers Reference 215

CHAPTER 9: SPLASH Statements

record.b := d*5;
)¢

Conditionals may have optional “else” statements:

if (record.a = 9)
record.b := 9.99;

el se {
float d := 10.9;
record.b := d;
}

Control Statements

Use control statements to terminate or restart both whi | e loops and f or loops.

A br eak statement terminates the innermost loop; a cont i nue statement starts the
innermost loop over.

The r et ur n statement stops the processing and returns a value. This is most useful in
SPLASH functions.

The exi t statement stops the processing.

Expression Statements

You can turn any expression into a statement by terminating the expression with a semicolon.
For example:
set Opcode(i nput, 3);

Since assignments are expressions, assignments can be turned into statements in the same
way. For instance, the following statement assigns a string to a variable “address”:

address := '550 Broad Street';

For Loops

Loops are often coded with “for” loops, which provide a convenient means of looping over
some or all of the records in an input window, or all of the data in a vector or dictionary.

To loop over every record in an input window called “input_window™:

for (record in input_w ndow) {

}

216

Sybase Event Stream Processor

CHAPTER 9: SPLASH Statements

The variabler ecor d isanew variable; you can use any name here. The scope is the statement
or block of statements in the loop; it has no meaning outside the loop. You can also set equality
criteria in searching for records with certain values of fields. For example:

for (record in input_w ndow where c=10, d=11) {

}

This statement has the same looping behavior, except limited to the records whose ¢ field is 10
and d field is 11. If you search on the key fields, the loop runs at most one time, but it will run
extremely fast because it will use the underlying index of the stream.

To loop over the values in a vector “vecl”where val is any new variable:
for (val in vecl) {

.

The loop stops when the end of the vector is reached, or the value of the vector is null.

To loop over the values in a dictionary “dictl” where key is any new variable:
for (key in dictl) {
}

It is common, inside the loop, to use the expressiondi ct 1[key] to get the value held in the
dictionary for that particular key.

Output Statements

The out put statement schedules a record to be published in the output stream or window.

For example:

output [k = 10; | d = 20;];

If a Flex operator is sending output to a steam, all attempts to out put a non-insert are
rejected.

Note: You can use multiple output statements to process an event; the outputs are collected as
a transaction block. Similarly, if a Flex operator receives a transaction block, the entire
transaction block is processed and all output is collected into another transaction block. This
means that downstream streams, and the record data stored within the stream, are not changed
until the entire event (single event or transaction block) is processed.

Programmers Reference 217

CHAPTER 9: SPLASH Statements

Print Statement

Concatenates and prints the given string arguments to standard out (stdout), which is
redirected to esp_server. | og.

Syntax
print (string [,...])

Parameters

string Either a string expression or a string constant

Usage

This function concatenates the provided string expressions and prints them to standard out,
whichisredirected tothe log fileesp_ser ver . | og. Just like in C/C++ or Java, you can use
\n'to printanew line and \t' to print a tab character. The output of the print statement is written
to the log file immediately when you use the "\n' option; otherwise, it is written only when the
Server shuts down.

Example

print (' Trade Vol une for Synbol', Trades.Synbol, ' is '
string(Trades. Volune), '\n");

Switch Statements

The swi t ch statement is a specialized form of conditional.

For instance, you can write:

switch(intvar*2) {
case 0: print('caseQ'); break;
case 1+1: print('case2'); break;
default: print('default'); break;

}

This statement prints “case0” if the value of i nt var * 2 is 0, “case2” if the value of

i ntvar*2is 2, and “default” otherwise. The def aul t is optional. The expression inside
the parentheses swi t ch(. . .) must be of base type, and the expressions following the
case keyword must have the same base type.

As in C and Java, the br eak is needed to skip to the end. For instance, if you leave out the
br eak after the first case, then this statement will print both “case0” and “case2” when
intvar*2is0:

218

Sybase Event Stream Processor

CHAPTER 9: SPLASH Statements

switch(intvar*2) {
case 0: print('case0');
case 1+1: print('case2'); break;
default: print('default'); break
}

While Statements

While statements are a form of conditional processing. Use them to specify an action to take
while a certain condition is met. While statements use the same syntax as while statements in
C and are processed as loops.

For example:

while (not(isnull(record))) {
record.b :=record.a + record. b
record := getNext(record_iterator);

}

Programmers Reference 219

CHAPTER 9: SPLASH Statements

220 Sybase Event Stream Processor

CHAPTER 10 SPLASH Data Structures

SPLASH may store and organize data in various sets of data structures designed to support
specific data manipulation functions.

Records

A Record is a data structure that contains one or more columns along with a expression that
determines the data type and value for the column. One or more columns in the record can be
defined to be a key column. Each record also has a operation code with the default operation
code being an “insert”. The compiler implicitly determines the type for each of the columns
based upon the type of the column expression. A record that is created can be stored in a
Stream or it can be stored in a record variable with a compatible record type.

Record Event Details
A record type contains one or more column names with a basic type such string, long, date etc
associated with it. One or more the columns can be identified as a key columns.

You can declare a record type inside any block of SPLASH code including Global/Local
declare blocks, functions and the ON method of a Flex operator using one of the following
syntax:

[[columType colum; [...] []]]

or

[[columType colum; [...] |] columType colum; [...]]

Where:

columnType - is one of the basic types such as integer, long, float etc. column - the name of a
column in the record. A column name must be unique within a record and is case sensitive i.e.
'symbol' is not the same as 'Symbol'.

In the previous syntax the outer square brackets is part of the syntax and does not represent an
optional element. Also any columns appearing before the | character represents the key
columns in the record type. Note that the semicolon following the last column before the key
separator | and/or the trailing] is optional.

The following is an example:

[integer Tradeld; string Synbol; | integer Volune; float Price; date
TradeTi ne;] traderec;

Programmers Reference 221

CHAPTER 10: SPLASH Data Structures

The previous example declares a record variable called traderec with the specified record
definition that has two columns namely Tradeld and Symbol and three attribute columns
namely Volume, Price and TradeTime.

Record Details
You can define a record in SPLASH inside any Global/Local function and inside the ON
Method of a Flex Operator. To define a record use one of the following syntax:

[colum = value; [...] [I|]]
Fr [colum = value; [...] | 1 colum = value; [...]]

Where:

column - isthe name of a column in the record. A column name must be unique withinarecord
and is case sensitive i.e. symbol is not the same as Symbol.

value - is any expression including constant expressions. The column type is determined by
the compiler based upon the type of this expression.

In the previous syntax the outer square brackets is part of the syntax and does not represent an
optional element. Also any columns appearing before the | character represents the key
columns in the record type. Note that the semicolon following the last column before the key
separator | and/or the trailing] is optional.

When a record is created its opcode is set to 'insert' by default. You can change the operation
code using the setOpcode function as described in the following example:

[integer Tradeld; string Synbol; | integer Volune; float TradePrice;
date TradeTine;] traderec;
traderec :=[Tradeld = 1; Synmbol = "'SAP'; | Volune = 100; TradePrice

= 150. 0; undate('2012-03-01 10:30:35"); 1;
In the above example the record variable traderec is assigned a record object with particular
values.
Operations on Records
Operations on records:
* Getafield—Syntax:record. field
Type: The value returned has the type of the field.

Example: r ec. dat al
* Assign afield — Assign a field in a record.

Syntax:record.field : = val ue

Type: The value must be a value matching the type of the field of the record. The
expression returns a record.

222

Sybase Event Stream Processor

CHAPTER 10: SPLASH Data Structures

Example:rec. datal := 10

* AssignaRecord— Itis more efficient to assign a record than to assign individual columns
of a record one at a time.

Syntax:record : = recordCbj ect orrecord : = recordVari abl e.

Examples:

Record object assignment out Trades := [Tradeld = 1; Synbol =
"SAP'; | Volunme = 100; TradePrice = 150.0;
undat e(' 2012-03-01 10:30:35'); 1];

Assigning one record variable to another: out Tr ades : = i nTr ades;

See the section on record casting rules for information on how the compiler deals with
scenarios where the source record type does not exactly match the target record type.

* get Opcode — Gets the operation associated with a record. The operations are of type
integer, and have the following meaning:

e 1 means “insert”

e 3 means “update”

* 5 means “delete”

e 7 means “upsert”(insert if not present, update otherwise)

« 13 means “safe delete”(delete if present, ignore otherwise)

Syntax: get Opcode(record)
Type: The argument must be an event. The function returns an integer.

Example: get Opcode(i nput)
* set Opcode — Sets the operation associated with a record; the legal opCodeNumber
operations are listed in the above description for get Opcode.

Syntax: set Opcode(r ecor d, opCodenunber)

Type: The first argument must be a record, and the second an integer. The function returns
the modified record.

Example: set Opcode(i nput,insert)

Record Casting Rules

The ESP compiler does the necessary implicit casting when assigning a source record to a
target record variable where the types and column names do not match exactly. This allows
you to assign either a source record to a target that does not have all the columns in the target, or
a source that has more columns than the target record variable type. The following casting
rules are used by the compiler.

* Columns are only copied over when the source and target column names match exactly
(including case).

Programmers Reference 223

CHAPTER 10: SPLASH Data Structures

* |f the column name matches, but the column type does not, the compiler throws an error
saying that you are trying to assign an expression of a wrong type.

* Columns in the source record that do not exactly match the column names and types in the
target are ignored.

* The columns in the source with no matching column in the target are automatically filled in
with nulls.

The following are casting examples:

[integer Tradeld; string Synbol; | integer Volune; float TradePrice;
date TradeTine;] srcTrade;
[integer Tradeld; | string Synmbol; integer volune; float TradeCost;
date TradeTi me;] outTrade;

out Trade : = srcTrade

In the previous example, Volume and TradeCost are set to null because there is no
corresponding target column in the source record variable srcTrade. Note that 'volume' is
ignored because the case does not match.

The compiler produces a warning and ignores the source column "Volume' and "TradePrice'
because they do not exist in the target record type.

Symbol is automatically cast as an attribute column in the target, even though it is a key
column in the source.

Note: Casting is an expensive operation. So, where possible, explicitly create a source record
with exactly the same type (for example, the same number of columns with the same column
names and data types) as the target record variable type.

XML Values

An XML value is a value composed of XML elements and attributes, where elements can
contain other XML elements or text. XML values can be created directly or built by parsing
string values. XML values cannot be stored in records, but can be converted to string
representation and stored in that form.

Operations on XML Values
You can declare a variable of xnl type and assign it to XML values:

xm xml Var;

In addition to declaring a variable for use with XML values, you can also perform the
following operations:

« xm agg — Aggregate a number of XML values into a single value. This can be used only
in aggregate windows or with event caches (see below). Use xm agg with caution; it can

224

Sybase Event Stream Processor

CHAPTER 10: SPLASH Data Structures

consume a large amount of memory very quickly as it produces a large verbose string
proportionate to the size of the contents of each group.

Syntax: xm agg(xm val ue)
Type: The argument must be an XML value. The function returns an XML value.

Example: xm agg(xm par se(stringCol))
« xm concat — Concatenate a number of XML values into a single value.

Syntax: xml concat (xm value ..., xm val ue)
Type: The arguments must be XML values. The function returns an XML value.

Example: xm concat (xm parse(stringCol), xmparse('<t/>"))

« xm el enent — Create a new XML data element, with attributes and XML expressions
within it.
Syntax: xnl el ement (nane xm attributes(string AS name ...,
string AS nanme) , xm value,...,xm val ue)
Type: The names must adhere to these conventions:

« Anameiseither a sequence of alphabetic characters, digits, and underscore characters,
or a sequence of any characters enclosed in double quotation marks.

< Ifaname is not enclosed in double quotation marks, it must begin with an alphabetic
character or an underscore.

< A name cannot contain spaces unless it is enclosed in double quotation marks.

« A name cannot be a Reserved Word unless it is enclosed in double quotation marks.
Reserved words are case insensitive, so for example, a name cannot be “AND” or
“and” or “AnD”.

e Columns cannot be named “rowid”, "bigrowtime", or “rowtime”.
The function returns an XML value.

Example: xm el ement (top, xm attributes('data' as attrl),
xm parse(' <t/>"))

e xml par se — Convert a string to an XML value.
Syntax: xnl par se(string val ue)
Type: The argument must be a string value. The function returns an XML value.

Example: xm par se(' <tag/>')
e« xm serialize— Convertan XML value to a string.

Syntax: xml seri al i ze(xnm val ue)
Type: The argument must be an XML value. The function returns a string.

Example: xm seri al i ze(xm parse(' <t/>"))

Programmers Reference 225

CHAPTER 10: SPLASH Data Structures

Example

CREATE | NPUT W NDOW Tr ades
SCHEMA (Tradeld | NTEGER, Synbol STRING Tradel nfo STRI NG
PRI MARY KEY (Tradeld) ;

CREATE FLEX nyFl ex
I N Tr ades
QUT OUTPUT W NDOW Tr adeReport
SCHENMA (Tradeld | NTEGER, TradeDesc STRI NG
PRI MARY KEY (Tradel d)
outfile "output/TradeReport.out"

BEG N
ON Trades ({
xm u := xm parse(' <Option Optionld="8">10000</Option>");
xm v := xm parse(Trades. Tradel nf 0) ;
xm w = xm el ement (Corment, xm attributes(Trades. Synbol as
Synbol), u, v);
v := xm concat(u, v, w;

output [Tradeld = Trades. Tradel d; TradeDesc =
xm serialize(v)];

)

END;

CREATE CQUTPUT W NDOW Xml Aggr egati on

SCHEMA (Synmbol STRING TradeDesc STRI NG

PRI MARY KEY DEDUCED

outfile "output/Xm Aggregation. out"
AS

SELECT Tr ades. Synbol AS Synbol

, xmserialize(xmelenent (value
, xm attributes(Trades. Synbol as

Synbol)

xm agg(xm parse(Trades. Tradelnfo)))) AS’ Tr adeDesc
FROM Tr ades
GROUP BY Trades. Synbol ;

The output for the TradeReport will be:

<TradeReport ESP_OPS="i" Tradel d="1" TradeDesc="<Opti on

Opti onl d="8">10000</ Opti on><Transacti on Price="15.4" Vol ume="1000"/
><Comment Synbol =" EBAY" ><Opt i on Opti onl d="8">10000</

Opti on><Tr ansaction Price="15.4" Vol une="1000"/></ Conment >"/ >
<TradeReport ESP_OPS="i" Tradel d="2" TradeDesc="<Opti on

Opti onl d="8">10000</ Opti on><Transacti on Price="5.4" Vol une="2000"/
><Comment Synbol =" MSFT" ><Opti on Opti onl d="8">10000</

Opti on><Transaction Price="5.4" Vol ume="2000"/></ Comment >"/>
<TradeReport ESP_OPS="i" Tradel d="3" TradeDesc="<Opti on

Opt i onl d="8">10000</ Opti on><Transacti on Price="5.8" Vol une="4000"/
><Comment Synbol =" MSFT" ><COpti on Opti onl d="8">10000</

Opti on><Transaction Price="5.8" Vol ume="4000"/></ Conment >"/>

The output for the XMLAggregation will be:

226

Sybase Event Stream Processor

CHAPTER 10: SPLASH Data Structures

<Xm Aggr egati on ESP_OPS="i" Synbol ="EBAY" TradeDesc="<val ue
Synbol =" EBAY" ><Tr ansacti on Price="15.4" Vol ume="1000"/></val ue>"/>
<Xm Aggr egati on ESP_OPS="i" Synbol =" MSFT" TradeDesc="<val ue

Synbol =" MSFT" ><Tr ansacti on Price="5.4" Vol unme="2000"/></val ue>"/>
<Xm Aggr egati on ESP_OPS="u" Synbol =" MSFT" Tr adeDesc="<val ue

Synbol =" MBFT" ><Tr ansaction Price="5.8" Vol une="4000"/><Transacti on
Price="5.4" Vol ume="2000"/></val ue>"/>

Vectors

A vector is a sequence of values, all of which must have the same type, with an ability to access
elements of the sequence by an integer index. A vector has a size, from a minimum of O to a
maximum of 2 billion entries.

Semantics and Operations
Vectors use semantics inherited from C: when accessing elements by index, index 0 is the first
position in the vector, index 1 is the second, and so forth.

You can declare vectors in Global or Local blocks via the syntax:
vect or (val ueType) vari abl e;

For instance, you can declare a vector holding 32-bit integers:
vector (i nteger) pos;

Operations on vectors:
* Create— Create a new empty vector.
Syntax: new vect or (type)
Type: A vector of the declared type is returned.

Example: pos : = new vector (i nteger);

» Getvaluebyindex — Get a value from the vector. If the index is less than 0 or greater than
or equal to the size of the vector, return null.

Syntax: vect or [i ndex]

Type: The index must have type integer. The value returned has the type of the values held
in the vector.

Example: pos[10]
* Assign avalue— Assign a cell in the vector.

Syntax: vect or [i ndex] := val ue

Type: The index must have type integer, and the value must match the value type of the
vector. The value returned is the updated vector.

Example: pos[5] := 3

Programmers Reference 227

CHAPTER 10: SPLASH Data Structures

* Determinethesize— Returns the number of elements in the vector.
Syntax: si ze(vector)
Type: The argument must be a vector. The value returned has type integer.

Example: si ze(pos)
e Insert an element — Inserts an element at the end of the vector and returns the modified
vector.

Syntax: push_back(vect or val ue)

Type: The second argument must be a value with the value type of the vector. The return
value has the type of the vector.

Example: push_back(pos, 3)

* Changethesize— Resize a vector, either removing elements if the vector shrinks, or
adding null elements if the vector expands.

Syntax: r esi ze(vect or newsi ze)

Type: The second argument must have type integer. The return value has the type of the
vector.

Example: r esi ze(vecl, 2)

You can also iterate through all the elements in the vector (up to the first null element) using a
“for” loop.

There is no command to copy a vector. Therefore, the only way to make a copy of a vector is
manually, by iterating through the elements.

While dictionary and vector data structures can be defined globally, global use should be
limited to reading them. Only one stream should write to a dictionary or vector data structure.
And while that stream is writing, no other stream should write to or read from that data
structure. The underlying objects used to manage the global dictionary or vector data
structures are not thread-safe. A stream must have exclusive access to the global dictionary or
vector data structure while writing. Allowing other streams to access these data structures
while one stream is writing can result in server failure.

Use of these data structures should be limited to relatively static data (such as country codes)
that will not need to be updated during processing, but will be read by multiple streams.
Writing the data to the dictionary or vector must be completed before any streams read it.

All operations that read a global dictionary or vector should perform an isnull check, as shown
in this example.

>t ypeof (st reammane) rec : = dict[synbol];

if(not (isnull(rec)) {

/] use rec

}

228

Sybase Event Stream Processor

CHAPTER 10: SPLASH Data Structures

Dictionaries

Dictionaries are data structures that associate keys with values. They are called maps in C++
and Java, arrays in AWK, and association lists in LISP, so they are common data structures.

Declare a dictionary in a Global or Local block using the syntax:
di ctionary(keyType, val ueType) vari abl e;

For instance, if you have an input stream called "input_stream", you could store an integer for
distinct records as
di ctionary(typeof (i nput_stream), integer) counter;

Only one value is stored per key. It is therefore important to understand what equality on keys
means. For the simple datatypes, equality means the usual equality, for example, equality on
integer or on string values. For record types, equality means that the keys match (the data fields
and operation are ignored).

While dictionary and vector data structures can be defined globally, global use should be
limited to reading them. Only one stream should write to a dictionary or vector data structure.
And while that stream is writing, no other stream should write to or read from that data
structure. The underlying objects used to manage the global dictionary or vector data
structures are not thread-safe. A stream must have exclusive access to the global dictionary or
vector data structure while writing. Allowing other streams to access these data structures
while one stream is writing can result in server failure.

Use of these data structures should be limited to relatively static data (such as country codes)
that will not need to be updated during processing, but will be read by multiple streams.
Writing the data to the dictionary or vector must be completed before any streams read it.

All operations that read a global dictionary or vector should perform an isnull check, as shown
in this example.

>t ypeof (streammane) rec : = dict[synbol];
if(not (isnull(rec)) {
/] use rec

}

Operations on Dictionaries
Dictionaries are data structures that associate keys with values. You can perform specific
operations on dictionaries.

Operations
You can perform the following operations on dictionaries:

* Create— Create a new empty dictionary.

Syntax: new di cti onary(type, type)

Programmers Reference 229

CHAPTER 10: SPLASH Data Structures

Type: A vector of the declared type is returned.

Example:d : = new dictionary(integer, string);

* Get value by key — Get a value from the dictionary by key. If there is no such key in the
dictionary, return null.

Syntax: di cti onary[key]

Type: The key must have the type of the keys of the dictionary. The function returns a value
of the type of the values held in the dictionary.

Example: count er [i nput]
* Assign avalue by key — Associate a value with a key in the dictionary.

Syntax: di cti onary[key] := val ue

Type: The key and value must match the key type and value type of the dictionary. The
function returns the updated dictionary.

Example: counter[input] := 3
* Removeakey/valuepair — Remove a key, and its associated value, from the dictionary.

Syntax: renove(di cti onary, key)

Type: The key must match the key type of the dictionary. The function returns an integer: 0
if the key was not present, and 1 otherwise.

Example: r enove(count er, input)
* Clear adictionary — Remove all key/value pairs from the dictionary.

Syntax: cl ear (di cti onary)
The function returns the cleared dictionary.

Example: cl ear (count er)
* Test for emptiness— Test a dictionary for emptiness.

Syntax: enpt y(di cti onary)
The function returns an integer: 1 if the dictionary is empty, 0 if not empty.

Example: enpt y(count er)

You can also iterate through all the key/value pairs in the dictionary using a “for” loop.

230 Sybase Event Stream Processor

CHAPTER 10: SPLASH Data Structures

Window lterators

Window iterators are a means of explicitly iterating over all of the records stored in a window.
It is usually more convenient, and safer, to use the f or loop mechanism (see above), but
iterators provide extra flexibility.

Functions for Iterators

Each block of code has implicit variables for windows and window iterators. If an input
window is named St r ean, there are variables St r eanil_st r eamand
Streaml_iterator.

Those variables can be used in conjunction with the following functions.

del et el t er at or —Releases the resources associated with an iterator.
Syntax: del etelterator(iterator)
Type: The argument must be an iterator expression. The function returns a null value.

Example: del et el terat or (i nput _i terator)

Note: Iterators are not implicitly deleted. If you don't delete them explicitly, all further
updates to the stream may be blocked.

get | t erat or —Get an iterator for a window.

Syntax: get | t er at or (wi ndowNan®)
Type: The argument must be a window expression. The function returns an iterator.

Example: get | t erat or (i nput _w ndow)
get Next — Returns the next record in the iterator, or null if there are no more records.

Syntax: get Next (i t erator)

Type: The first argument must be an iterator expression. The function returns a record, or
“null” if there is no more data in the iterator.

Example: get Next (i nput _i terator)
reset|terator —Resets the iterator to the beginning.

Syntax:resetlterator(iterator)
Type: The argument must be an iterator expression. The function returns an iterator.

Example: reset I terator (i nput _iterator)
set Range — Sets a range of columns to search for. Subsequent getNext calls return only
those records whose columns match the given values.

Syntax: set Range(iterator fieldNanme... expr...)

Programmers Reference 231

CHAPTER 10: SPLASH Data Structures

Type: The first argument must be an iterator expression; the next arguments must be the
names of fields within the record; the final arguments must be expressions. The function
returns an iterator.
Example: set Range(i nput _iterator, Currency, Rate,' EUR , 9. 888)

* set Sear ch — Setsvalues of columns to search for. Subsequent getNext calls return only
those records whose columns match the given values.

Syntax: set Search(iterator nunber... expr...)

Type: The first argument must be an iterator expression; the next arguments must be
column numbers (starting from 0) in the record; the final arguments must be expressions.
The function returns an iterator.

Example: set Search(i nput _iterator, 0, 2,' EUR , 9. 888)

Note: The set Sear ch function has been deprecated because it requires a specific layout
of fields. It has been retained for backwards compatibility with existing projects. When
developing new projects, use the set Range function instead.

Event Caches

Event caches are an alternate windowing mechanism that provides an alternative to the CCL
KEEP clause when greater control or flexibility is required. They are organized into buckets,
based on values of the fields in the records and are often used when vectors or dictionaries are
not quite the right data structure.

You can define an event cache in a Local block. A simple event cache declaration:
event Cache(i nput _stream e0;

This event cache holds all the events for an input stream “input_stream”. The default key
structure of windows define the bucket policy. That is, the buckets in this stream correspond to
the keys of the input stream. When the input of an event cache is a window or delta stream, the
default bucket policy is set to the primary key of the window or delta stream. When the input of
an event cache is an insert-only stream, there is no default bucket policy and a single bucket is
created for all the events. However, because streams have no keys, the default behavior is for
all the rows in the streams to go into one bucket in the event cache.

Suppose the input stream in this case has two fields, a key field k and a data field d. Suppose
the events have been:

<i nput _stream ESP_OPS="i" k="1" d="10"/>
<i nput _stream ESP_OPS="u" k="1" d="11"/>
<i nput _stream ESP_OPS="i" k="2" d="21"/>

232

Sybase Event Stream Processor

CHAPTER 10: SPLASH Data Structures

After these events have flowed in, there will be two buckets. The first bucket will contain the
first two events, because these have the same key; the second bucket will contain the last
event.

Event caches allow for aggregation over events. That is, the ordinary aggregation operations
that can be used in aggregate windows can be used in the same way over event caches. The
“group” that is selected for aggregation is the one associated with the current event (i.e. the
event that has just arrived).

<i nput _stream ESP_OPS="u" k="1" d="12"/>

For instance, if the above event appears in this stream, then the expression sun{ €0. d)
returns 10+11+12=33. You can use any of the accepted aggregation functions, including avg,
count, max, and i n.

Manual Insertion

By default, every event that comes into a stream with an event cache gets put into the event
cache.

You can explicitly indicate this default behavior with the aut o option;

event Cache(instream auto) eO;

You can also put events into an event cache if they are marked manual :

event Cache(i nstream manual) e0;
Use the function i nser t Cache to do this.

Changing Buckets
An event cache organizes events into buckets. By default, the buckets are determined from the
keys of the input stream/window. You can change that default behavior to alternative keys,
specifying other fields in square brackets after the name of the input.

Specifying the following keeps buckets organized by distinct values of the d0 and d1 fields:

event Cache(i nstreani do, d1]) eO;

To keep one large bucket of all events, write the following:

event Cache(instrean|]) eO;

Programmers Reference 233

CHAPTER 10: SPLASH Data Structures

Managing Bucket Size

You can manage the size of buckets in an event cache. That can often be important in
controlling the use of memory.

You can limit the size of a bucket to the most recent events, by number of seconds, or by time:

event Cache(instream 3 events) e0;
event Cache(instream 3 seconds) el;

You can also specify whether to completely clear the bucket when the size or time expires by
specifying the j unp option:

event Cache(i nstream 3 seconds, junp);

The default is noj unp.

All of these options can be used together. For example, this example clears out a bucket when it
reaches 10 events (when the 11th event comes in) or when 3 seconds elapse.

event Cache(instream 10 events, 3 seconds, junp);

Keeping Records

You can keep records in an event cache, instead of distinct events for insert, update, and delete,
by specifying the coal esce option.

For example:

event Cache(i nstream coal esce) e0;

This option is most often used in conjunction with the ordering option.

Ordering

Normally, the events in a bucket are kept by order of arrival. You can specify a different
ordering by the fields of the events.

For instance, to keep the events in the bucket ordered by field d in descending order:

event Cache(instream d desc) e0;

You can order by more than one field. The following example orders the buckets by field dO in
descending order, then by field d1 in ascending order in case the dO fields are equal.

234

Sybase Event Stream Processor

CHAPTER 10: SPLASH Data Structures

event Cache(instream dO desc, dl asc) eO;

Operations on Event Caches

Event caches hold a number of previous events for the input stream(s)/window(s).

Supported Event Cache Operations

expi r eCache — Remove events from the current bucket that are older than a certain
number of seconds.

Syntax: expi r eCache(events, seconds)

Type: The firstargument must name an event cache variable. The second argument must be
an integer. The function returns the event cache.

Example: expi r eCache(events, 50)

i nsert Cache — Insert a record value into an event cache.

Syntax: i nsert Cache(events, record)

Type: The first argument must name an event cache variable. The argument must be a
record type. The function returns the record inserted.

Example: i nsert Cache(events, inputStrean)

keyCache — Select the current bucket in an event cache. Normally, the current input
record selects the active bucket. You might want to change the current active bucket in
some cases. For example, during the evaluation of the debugging expressions, there is no
current input record and thus no bucket is set by default. The only way to set the bucket then
is to do it manually using this function.

Syntax: keyCache(events, event)

Type: The firstargument must name an event cache variable. The second argument must be
a record type. The function returns the same record.

Example: keyCache(ecl, rec)

get Cache — Returns the row specified by a given index from the current bucket in the
event cache. This index is 0 based. The function takes an integer as its argument, and the
function returns a row. Specifying an invalid index parameter will result in the generation
of a bad record.

Syntax: get Cache(cacheNane, i ndex)

Type: The firstargument must name an event cache variable. The second argument must be
an integer specifying the row to retrieve. The function returns the specified row of the
cache.

Example: get Cache(tradesCache, 3)

Programmers Reference 235

CHAPTER 10: SPLASH Data Structures

del et eCache — Returns the row specified by a given index from the current bucket in
the event cache. This index is 0 based. The function takes an integer as its argument, and
the function returns a row. Specifying an invalid index parameter will result in the
generation of a bad record.

Syntax: del et eCache(cacheNane, index)

Type: The firstargument must name an event cache variable. The second argument must be
an integer specifying the row to delete. The function deletes the specified row; it does not
return any output.

Example: del et eCache(tradesCache, 0)
cacheSi ze — Returns the size of the current bucket in the event cache.

Syntax: cacheSi ze(cacheNane)

Type: This function takes an argument of the name of the event cache variable. It then
returns an integer.

Example: cacheSi ze(t radesCache)

236

Sybase Event Stream Processor

APPENDIX A

List of Keywords

Reserved words in CCL that are case-insensitive. Keywords cannot be used as identifiers for
any CCL objects.

A list of keywords present in CCL:

adapter age(s) all and as asc
attach auto begin break case cast
connection | continue count create day(s) declare
deduced default delete delta desc distinct
dumpfile dynamic else end eventCache every
exit external false fby filter first
flex for foreign foreigndava | from full
group groups having hour(s) hr if
import in inherits inner input insert
into is join keep key last
language left library like load local
log max memory micros microsecond(s) | millis
millisec- min minute(s) module money name
ond(s)

new nostart not nth null on

or order out outfile output parameter(s)
pattern primary properties rank records retain
return right row(s) safedelete schema sec
second(s) select set setRange slack start
static store(s) stream sum sync switch
then times to top transaction true
type typedef typeof union update upsert

Programmers Reference

237

APPENDIX A: List of Keywords

values when where while window within
xmlattri- xmlelement
butes

238 Sybase Event Stream Processor

APPENDIXB Date and Time Programming

Set time zone parameters, date format code preferences, and define calendars.

Time Zones

Atime zone is a geographic area that has adopted the same standard time, usually referred to as
the local time.

Most adjacent time zones are one hour apart. By convention, all time zones compute their local
time as an offset from GMT/UTC. GMT (Greenwich Mean Time) is an historical term,
originally referring to mean solar time at the Royal Greenwich Observatory in Britain. GMT
has been replaced by UTC (Coordinated Universal Time), which is based on atomic clocks.
For all Sybase Event Stream Processor purposes, GMT and UTC are equivalent. Due to
political and geographical practicalities, time zone characteristics may change over time. For
example, the start date and end date of daylight saving time may change, or new time zones
may be introduced in newly created countries.

Internally, Event Stream Processor always stores date and time type information as a number
of seconds, milliseconds, or microseconds since midnight January 1, 1970 UTC, depending
on the datatype. If a time zone designator is not used, UTC time is applied.

Daylight Saving Time

Daylight saving time is considered if the time zone uses daylight saving time and if the
specified timestamp is in the time period covered by daylight savings time. The starting and
ending dates for daylight saving time are stored in a C++ library.

If the user specifies a particular time zone, and if that time zone uses daylight saving time,
Event Stream Processor takes these dates into account to adjust the date and time datatype. For
example, since Pacific Standard Time (PST) is in daylight saving time setting, the engine
adjusts the timestamp accordingly:

to_timestanp(' 2002-06-18 13:52: 00. 123456 PST', ' YYYY- MM DD
HH24: M : SS. ff TzZD)

Transitioning from Standard Time to Daylight Savings Time and Vice-Versa

During the transition to and from daylight saving time, certain times do not exist. For example,
in the US, during the transition from standard time to daylight savings time, the clock changes
from 01:59 to 03:00; therefore 02:00 does not exist. Conversely, during the transition from
daylight saving time to standard time, 01:00 to 01:59 appears twice during one night because
the time changes from 2:00 to 1:00 when daylight saving time ends.

Programmers Reference 239

APPENDIX B: Date and Time Programming

However, since there may be incoming data input during these undefined times, the engine
must deal with them in some manner. During the transition to daylight savings time, Event
Stream Processor interprets 02:59 PST as 01:59 PST. When transitioning back to standard
time, Event Stream Processor interprets 02:00 PDT as 01:00 PST.

Changes to Time Zone Defaults

If you do not specify a value for the optional time zone parameter in certain date and time
functions, Event Stream Processor uses Coordinated Universal Time (UTC).

Corresponding functions in Sybase CEP defaulted to the server's local time zone when no
parameter was specified. If you are migrating CEP projects that do not have a time zone
defined, they will use UTC when converted to Event Stream Processor. To continue using the
server’s local time zone, explicitly set that time zone in the time zone parameter for the
following functions:

Sybase CEP Functions Event Stream Processor Functions
dayofmonth dayofmonth
dayofweek dayofweek
dayofyear dayofyear

hour hour
maketimestamp makebigdatetime
microsecond microsecond
minute minute

month month

second second
to_string to_string

year year

List of Time Zones
Event Stream Processor supports standard time zones and their abbreviations.

Below is a list of time zones used in the Event Stream Processor from the industry-standard
Olson time zone (also known as TZ) database.

ACT AET AGT

ART AST Africa/Abidjan

240 Sybase Event Stream Processor

APPENDIX B: Date and Time Programming

Africa/Accra Africa/Addis_Ababa Africa/Algiers
Africa/Asmera Africa/Bamako Africa/Bangui
Africa/Banjul Africa/Bissau Africa/Blantyre
Africa/Brazzaville Africa/Bujumbura Africa/Cairo
Africa/Casablanca Africa/Ceuta Africa/Conakry

Africa/Dakar Africa/Dar_es_Salaam Africa/Djibouti
Africa/Douala Africa/El_Aaiun Africa/Freetown
Africa/Gaborone Africa/Harare Africa/Johanneshurg
Africa/Kampala Africa/Khartoum Africa/Kigali
Africa/Kinshasa Africa/Lagos Africa/Libreville
Africa/Lome Africa/Luanda Africa/Lubumbashi
Africa/Lusaka Africa/Malabo Africa/Maputo
Africa/Maseru Africa/Mbabane Africa/Mogadishu
Africa/Monrovia Africa/Nairobi Africa/Ndjamena
Africa/Niamey Africa/Nouakchott Africa/Ouagadougou
Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu
Africa/Tripoli Africa/Tunis Africa/Windhoek
America/Adak America/Anchorage America/Anguilla
America/Antigua America/Araguaina America/Argentina/Bue-

nos_Aires

America/Argentina/Cata-
marca

America/Argentina/ComodRiva-
davia

America/Argentina/Cordoba

America/Argentina/Jujuy

America/Argentina/La_Rioja

America/Argentina/Mendoza

America/Argentina/

America/Argentina/San_Juan

America/Argentina/Tucuman

Rio_Gallegos

America/Argentina/Ush- America/Aruba America/Asuncion
uaia

America/Atka America/Bahia America/Barbados

America/Belem

America/Belize

America/Boa_Vista

Programmers Reference

241

APPENDIX B: Date and Time Programming

America/Bogota

America/Boise

America/Buenos_Aires

America/Cambridge_Bay

America/Campo_Grande

America/Cancun

America/Caracas

America/Catamarca

America/Cayenne

America/Cayman

America/Chicago

America/Chihuahua

America/Coral_Harbour

America/Cordoba

America/Costa_Rica

America/Cuiaba

America/Curacao

America/Danmarkshavn

America/Dawson

America/Dawson_Creek

America/Denver

America/Detroit

America/Dominica

America/Edmonton

America/Eirunepe

America/El_Salvador

America/Ensenada

America/Fort_Wayne

America/Fortaleza

America/Glace_Bay

America/Godthab

America/Goose_Bay

America/Grand_Turk

America/Grenada

America/Guadeloupe

America/Guatemala

America/Guayaquil

America/Guyana

America/Halifax

America/Havana

America/Hermosillo

America/Indiana/Indianapolis

America/Indiana/Knox

America/lndiana/Marengo

America/Indiana/Petersburg

America/Indiana/Vevay

America/Indiana/Vincennes

America/Indianapolis

America/Inuvik

America/lgaluit

America/Jamaica

America/Jujuy America/Juneau America/Kentucky/Louisville
America/Kentucky/Monti- | America/Knox_IN America/La_Paz

cello

America/Lima America/Los_Angeles America/Louisville

America/Maceio

America/Managua

America/Manaus

America/Martinique

America/Mazatlan

America/Mendoza

America/Menominee

America/Merida

America/Mexico_City

America/Miquelon

America/Moncton

America/Monterrey

America/Montevideo

America/Montreal

America/Montserrat

America/Nassau

America/New_York

America/Nipigon

America/Nome

America/Noronha

America/North_Dakota/Center

242

Sybase Event Stream Processor

APPENDIX B: Date and Time Programming

America/Panama

America/Pangnirtung

America/Paramaribo

America/Phoenix

America/Port-au-Prince

America/Port_of_Spain

America/Porto_Acre

America/Porto_Velho

America/Puerto_Rico

America/Rainy_River

America/Rankin_Inlet

America/Recife

America/Regina

America/Rio_Branco

America/Rosario

America/Santiago

America/Santo_Domingo

America/Sao_Paulo

America/Scoresbysund

America/Shiprock

America/St_Johns

America/St_Kitts

America/St_Lucia

America/St_Thomas

America/St_Vincent

America/Swift_Current

America/Tegucigalpa

America/Thule

America/Thunder_Bay

America/Tijuana

America/Toronto

America/Tortola

America/Vancouver

America/Virgin

America/Whitehorse

America/Winnipeg

America/Yakutat America/Yellowknife Antarctica/Casey
Antarctica/Davis Antarctica/DumontDUrville Antarctica/Mawson
Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera
Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok
Arctic/Longyearbyen Asia/Aden Asia/Almaty
Asia/Amman Asia/Anadyr Asia/Agtau
Asia/Aqtobe Asia/Ashgabat Asia/Ashkhabad
Asia/Baghdad Asia/Bahrain Asia/Baku
Asia/Bangkok Asia/Beirut Asia/Bishkek
Asia/Brunei Asia/Calcutta Asia/Choibalsan
Asia/Chongqing Asia/Chungking Asia/Colombo
Asia/Dacca Asia/Damascus Asia/Dhaka
Asia/Dili Asia/Dubai Asia/Dushanbe
Asia/Gaza Asia/Harbin Asia/Hong_Kong
Asia/Hovd Asia/lrkutsk Asia/lstanbul

Asia/Jakarta

Asia/Jayapura

Asiallerusalem

Programmers Reference

243

APPENDIX B: Date and Time Programming

Asia/Kabul Asia/Kamchatka Asia/Karachi
Asia/Kashgar Asia/Katmandu Asia/Krasnoyarsk
Asia/Kuala_Lumpur Asia/Kuching Asia/Kuwait
Asia/Macao Asia/Macau Asia/Magadan
Asia/Makassar Asia/Manila Asia/Muscat
Asia/Nicosia Asia/Novosibirsk Asia/Omsk
Asia/Oral Asia/Phnom_Penh Asia/Pontianak
Asia/Pyongyang Asia/Qatar Asia/Qyzylorda
Asia/Rangoon Asia/Riyadh Asia/Riyadh87
Asia/Riyadh88 Asia/Riyadh89 Asia/Saigon
Asia/Sakhalin Asia/Samarkand Asia/Seoul
Asia/Shanghai Asia/Singapore Asia/Taipei
Asia/Tashkent Asia/Thilisi Asia/Tehran
Asia/Tel_Aviv Asia/Thimbu Asia/Thimphu
Asia/Tokyo Asia/Ujung_Pandang Asia/Ulaanbaatar
Asia/Ulan_Bator Asia/Urumgqi Asia/Vientiane
Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg

Asia/Yerevan

Atlantic/Azores

Atlantic/Bermuda

Atlantic/Canary

Atlantic/Cape_Verde

Atlantic/Faeroe

Atlantic/Jan_Mayen

Atlantic/Madeira

Atlantic/Reykjavik

Atlantic/South_Georgia

Atlantic/St_Helena

Atlantic/Stanley

Australia/ACT

Australia/Adelaide

Australia/Brisbane

Australia/Broken_Hill

Australia/Canberra

Australia/Currie

Australia/Darwin

Australia/Hobart

Australia/LHI

Australia/Lindeman

Auwustralia/Lord_Howe

Australia/Melbourne

Australia/NSW

Australia/North

Australia/Perth

Australia/Queensland

Australia/South

Australia/Sydney

Australia/Tasmania

Australia/Victoria

Australia/\West

244

Sybase Event Stream Processor

APPENDIX B: Date and Time Programming

Australia/Yancowinna BET BST

Brazil/Acre Brazil/DeNoronha Brazil/East
Brazil/West CAT CET

CNT CST CST6CDT

CTT Canada/Atlantic Canada/Central
Canada/East-Saskatche- Canada/Eastern Canada/Mountain
wan

Canada/Newfoundland Canada/Pacific Canada/Saskatchewan

Canada/Yukon Chile/Continental Chile/Easterlsland
Cuba EAT ECT

EET EST ESTSEDT
Egypt Eire Etc/GMT
Etc/GMT+0 Etc/GMT+1 Etc/GMT+10
Etc/GMT+11 Etc/GMT+12 Etc/GMT+2
Etc/GMT+3 Etc/GMT+4 Etc/GMT+5
Etc/GMT+6 Etc/GMT+7 Etc/GMT+8
Etc/GMT+0 Etc/GMT-0 Etc/GMT-1
Etc/GMT-10 Etc/GMT-11 Etc/GMT-12
Etc/GMT-13 Etc/GMT-14 Etc/GMT-2
Etc/GMT-3 Etc/GMT-4 Etc/GMT-5
Etc/GMT-6 Etc/GMT-7 Etc/GMT-8
Etc/GMT-9 Etc/GMTO Etc/Greenwich
Etc/UCT Etc/UTC Etc/Universal
Etc/Zulu Europe/Amsterdam Europe/Andorra
Europe/Athens Europe/Belfast Europe/Belgrade

Europe/Berlin

Europe/Bratislava

Europe/Brussels

Europe/Bucharest

Europe/Budapest

Europe/Chisinau

Europe/Copenhagen

Europe/Dublin

Europe/Gibraltar

Programmers Reference

245

APPENDIX B: Date and Time Programming

Europe/Helsinki

Europe/lIstanbul

Europe/Kaliningrad

Europe/Kiev Europe/Lisbon Europe/Ljubljana
Europe/London Europe/Luxembourg Europe/Madrid
Europe/Malta Europe/Mariehamn Europe/Minsk
Europe/Monaco Europe/Moscow Europe/Nicosia
Europe/Oslo Europe/Paris Europe/Prague
Europe/Riga Europe/Rome Europe/Samara
Europe/San_Marino Europe/Sarajevo Europe/Simferopol
Europe/Skopje Europe/Sofia Europe/Stockholm

Europe/Tallinn

Europe/Tirane

Europe/Tiraspol

Europe/Uzhgorod Europe/Vaduz Europe/Vatican
Europe/Vienna Europe/Vilnius Europe/Warsaw
Europe/Zagreb Europe/Zaporozhye Europe/Zurich
Factory GB GB-Eire

GMT GMT+0 GMT-0

GMTO Greenwich HST

Hongkong IET IST

Iceland Indian/Antananarivo Indian/Chagos

Indian/Christmas

Indian/Cocos

Indian/Comoro

Indian/Kerguelen

Indian/Mahe

Indian/Maldives

Indian/Mauritius

Indian/Mayotte

Indian/Reunion

Iran Israel JST

Jamaica Japan Kwajalein

Libya MET MIT

MST MST7MDT Mexico/BajaNorte

Mexico/BajaSur

Mexico/General

Mideast/Riyadh87

Mideast/Riyadh88

Mideast/Riyadh89

NET

NST

NZ

NZ-CHAT

246

Sybase Event Stream Processor

APPENDIX B: Date and Time Programming

Navajo PLT PNT

PRC PRT PST

PST8PDT Pacific/Apia Pacific/Auckland
Pacific/Chatham Pacific/Easter Pacific/Efate
Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji

Pacific/Funafuti

Pacific/Galapagos

Pacific/Gambier

Pacific/Guadalcanal

Pacific/Guam

Pacific/Honolulu

Pacific/Johnston

Pacific/Kiritimati

Pacific/Kosrae

Pacific/Kwajalein

Pacific/Majuro

Pacific/Marquesas

Pacific/Midway

Pacific/Nauru

Pacific/Niue

Pacific/Norfolk

Pacific/Noumea

Pacific/Pago_Pago

Pacific/Palau

Pacific/Pitcairn

Pacific/Ponape

Pacific/Port_Moreshy

Pacific/Rarotonga

Pacific/Saipan

Pacific/Samoa

Pacific/Tahiti

Pacific/Tarawa

Pacific/Tongatapu Pacific/Truk Pacific/Wake
Pacific/Wallis Pacific/Yap Poland

Portugal ROC ROK

SST Singapore SystemV/AST4
SystemV/AST4ADT SystemV/CST6 SystemV/CST6CDT
SystemV/EST5 SystemV/ESTSEDT SystemV/HST10
SystemV/MST7 SystemV/MST7TMDT SystemV/PST8
SystemV/PST8PDT SystemV/YST9 SystemV/YSTOYDT
Turkey UCT US/Alaska
US/Aleutian US/Arizona US/Central
US/East-Indiana US/Eastern US/Hawaii
US/Indiana-Starke US/Michigan US/Mountain
US/Pacific US/Pacific-New US/Samoa

uTC Universal VST

Programmers Reference

247

APPENDIX B: Date and Time Programming

W-SU WET Zulu

Date/Time Format Codes

A list of valid components that can be used to specify the format of a date/time type: date,
timestamp, or bigdatetime.

Date/time type formats must be specified with either the Event Stream Processor formatting
codes, or a subset of timestamp conversion codes provided by the C++ strftime() function. The
are a number of different valid codes, however, A valid date/time type specification can
contain no more than one occurrence of a code specifying a particular time unit (for example, a
code specifying the year).

Note: All designations of year, month, day, hour, minute, or second can also read a fewer
number of digits than is specified by the code. For example, DD reads both two-digit and
one-digit day entries.

Event Stream Processor Time Formatting Codes

Column Code Description Input | Output
MM Month (01-12; JAN = 01). Y Y
YYYY Four-digit year. Y Y
YYY Last three digits of year. Y Y
YY Last two digits of year. Y Y
Y Last digit of year. Y Y
Q Quarter of year (1, 2, 3, 4; JAN-MAR =1). N Y
MON Abbreviated name of month (JAN, FEB, ..., DEC). | Y Y
MONTH Name of month, padded with blanks to nine char- | Y Y
acters (JANUARY, FEBRUARY, ..., DECEMBER).
RM Roman numeral month (1-XI1I; JAN =1). Y Y
ww Week of year (1-53), where week 1 starts on the first | N Y
day of the year and continues to the seventh day of
the year.
w Week of month (1-5), where week 1 startsonthe | N Y
first day of the month and continues to the seventh
day of the month.
D Day of week (1-7; SUNDAY = 1). N Y

248

Sybase Event Stream Processor

APPENDIX B: Date and Time Programming

Column Code Description Input [Output
DD Day of month (1-31). Y Y
DDD Day of year (1-366). N Y
DAY Name of day (SUNDAY, MONDAY, ..., SATUR- | Y Y

DAY).
DY Abbreviated name of day (SUN, MON, ..., SAT). | Y Y
HH Hour of day (1-12). Y Y
HH12 Hour of day (1-12). Y Y
HH24 Hour of day (0-23). Y Y
AM Meridian indicator (AM/PM). Y Y
PM Meridian indicator (AM/PM). Y Y
Ml Minute (0-59). Y Y
SS Second (0-59). Y Y
SSSSS Seconds past midnight (0-86399). Y Y
SE Seconds since epoch (January 1, 1970 UTC). This | Y Y

format can only be used by itself, with the FF for-

mat, and/or with the time zone codes TZD, TZR,

TZH and TZM.
MIC Microseconds since epoch (January 1, 1970 UTC). Y
FF Fractions of seconds (0-999999). When used in Y Y

output, FF produces six digits for microseconds.

FFFF produces twelve digits, repeating the six dig-

its for microseconds twice. (In most circumstances,

thisis not the desired effect.) When used in input, FF

collects all digits until a non-digit is detected, and

then uses only the first six, discarding the rest.
FF[1-9] Fractions of seconds. For output only, produces the | N Y

specified number of digits, rounding or padding

with trailing zeros as needed.

Programmers Reference 249

APPENDIX B: Date and Time Programming

Column Code Description Input [Output

MS Milliseconds since epoch (January 1, 1970 UTC). | Y Y
When used for input, this format code can only be
combined with FF (microseconds) and the time
zone codes TZD, TZR, TZH, TZM. All other format
code combinations generate errors. Furthermore,
when MS is used with FF, the MS code must pre-
cede the FF code: for example, MS.FF.

FM Fill mode toggle: suppress zeros and blanks or not | Y Y
(default: not).

FX Exact mode toggle: match case and punctuations | Y Y
exactly (default: not).

RR Lets you store 20th century dates in the 21st century | Y N
using only two digits.

RRRR Round year. Accepts either four-digit or two-digit | Y N
input. If two-digit, provides the same return as RR.

TZD Abbreviated time zone designator such as PST. Y Y

TZH Time zone hour displacement. For example, -5 in- | N Y

dicates a time zone five hours earlier than GMT.

TZM Time zone hour and minute displacement. Forex- | N Y
ample, -5:30 indicates a time zone that is five hours
and 30 minutes earlier than GMT.

TZR Time zone region name. For example, US/Pacific | N Y
for PST.

Strftime() Timestamp Conversion Codes
Instead of using Event Stream Processor time formatting codes, output timestamp formats can
be specified using a subset of the C++ strftime() function codes. The following rules apply:

« Any timestamp format specification that includes a percent sign (%) is considered a
stritime() code.

 Strings can only include one type of formatting codes: the Event Stream Processor
formatting codes, or the strftime() codes.

» Some strftime() codes are valid only on Microsoft Windows or only on UNIX-like
operating systems. Different implementations of strftime() also include minor differences
in code interpretation. To avoid errors, ensure that both the ESP Server and the ESP Studio
are on the same platform, and are using compatible strftime() implementations. It is also
essential to confirm that the provided codes meet the requirements for the platform.

250

Sybase Event Stream Processor

APPENDIX B: Date and Time Programming

« Alltime zones for formats specified with strftime() are assumed to be the local time zone.
« strftime() codes cannot be used to specify date/time type input, only date/time type output.

The Event Stream Processor supports the following strftime() codes:

Strftime() Description

Code

%a Abbreviated weekday name; example: "Mon".

%A Full weekday name: for example "Monday".

%Db Abbreviated month name: for example: "Feb".

%B Full month name: for example "February".

%c Full date and time string: the output format for this code differs, depending on
whether Microsoft Windows or a UNIX-like operating system is being used.
Microsoft Windows output example: 08/26/08 20:00:00 UNIX-like operating
system output example: Tue Aug 26 20:00:00 2008

%d Day of the month, represented as a two-digit decimal integer with a value
between 01 and 31.

%H Hour, represented as a two-digit decimal integer with a value between 00 and
23.

%I Hour, represented as a two-digit decimal integer with a value between 01 and
12.

%j Day of the year, represented as a three-digit decimal integer with a value be-
tween 001 and 366.

%m Month, represented as a two-digit decimal integer with a value between 01 and
12.

%M Minute, represented as a two-digit decimal integer with a value between 00 and
59.

%p Locale's equivalent of AM or PM.

%S Second, represented as a two-digit decimal integer with a value between 00 and
61.

%U Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Sunday considered the first day of the week.

%w Weekday number, represented as a one-digit decimal integer with a value be-
tween 0 and 6, with Sunday represented as 0.

Programmers Reference 251

APPENDIX B: Date and Time Programming

Calendar Files

Strftime() Description

Code

%W Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Monday considered the first day of the week.

%X Full date string (no time): The output format for this code differs, depending on
whether you are using Microsoft Windows or a UNIX-like operating system.
Microsoft Windows output example: 08/26/08 UNIX-like operating system
output example: Tue Aug 26 2008

%X Full time string (no date).

%y Year, without the century, represented as a two-digit decimal number with a
value between 00 and 99.

%Y Year, with the century, represented as a four-digit decimal number.

%% Replaced by %.

A text file detailing the holidays and weekends in a given time period.

Syntax

weekendSt art <i nteger>
weekendEnd <i nt eger >
hol i day yyyy-mm dd

hol i day yyyy-mm dd

Components

weekendStart Aninteger that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=>5, and Sun-
day=6.

weekendEnd Aninteger that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=5, and Sun-
day=6.

holiday A day of the year, in the form yyyy-mm-dd. A

calendar file can have unlimited holidays.

252

Sybase Event Stream Processor

APPENDIX B: Date and Time Programming

Usage

A calendar file is a text file that describes the start and end date of a weekend, and the holidays
within the year. The lines beginning with '# characters are ignored, and can be used to provide
user clarification or comments.

Calendar files are loaded and cached on demand by the Event Stream Processor. If changes
occur in any of the calendar files, acommand must be sent to refresh the cached calendar data,
the refresh_calendars command.

Example
The following is an example of a legal calendar file:

Sybase cal endar data for US 1983
weekendStart 5

weekendEnd 6

hol i day 1983-02-21

hol i day 1983-04-01

hol i day 1983- 05- 30

hol i day 1983-07- 04

hol i day 1983-09- 05

hol i day 1983-11-24

hol i day 1983-12-26

Programmers Reference 253

APPENDIX B: Date and Time Programming

254 Sybase Event Stream Processor

APPENDIXC Statement on Support for
Multibyte Characters

Sybase Event Stream Processor supports UTF-8 encoded data within data streams, but with
some limitations.

1. UTF-8 encoded data is supported in both input streams and derived streams (including
output streams). Thus, events streamed or loaded into Source Streams may contain UTF-8
encoded data, and this data is correctly carried through the project. Testing has shown that
the server and studio are able to receive, store, display and output UTF-8 encoded data.

2. String functions support non-ASCII data when the utf8 project deployment option in the
project configuration (CCR) file is set to frue. The only operators supported for non-ASCI|
UTF-8strings are =, <, >. The use of non-ASCI| string data in expressions in any other way
(including filter expressions) is not supported. For information on the project
configuration file, see the Sybase Event Stream Processor Administrators Guide.

3. Constants and literals cannot be assigned UTF-8 values outside the ASCII range.

Adapters have not been tested with (non-ASCII) UTF-8 data.

5. Non-ASCII characters are not supported in metadata such as stream names, column
names, and so on.

6. The Studio interface, error messages, logs, and so on are only supported in English.

e

Programmers Reference 255

APPENDIX C: Statement on Support for Multibyte Characters

256 Sybase Event Stream Processor

Index

A

acos() 90

ADAPTER START statement 31

adapters 17

aggregate functions 159

aggregates 159
any() 160
avg() 160
corr() 161
count() 163
count(distinct) 163
covar_pop() 162
covar_samp() 162
exp_weighted_avg() 164
first() 165
last() 165
lwm_avg() 166
max() 167
meandeviation() 167
median() 168
min() 169
nth() 169
recent() 170
regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173
regr_sxx() 174
regr_sxy() 174
regr_syy() 175
stddev_pop() 176
stddev_samp() 176
sum() 177
valueinserted() 178
var_pop() 178
var_samp() 179
vwap() 179
weighted_avg() 180
xmlagg() 181

AGING clause 59

any() 160

arccosine
acos() 90

arcsine

asin() 90
arctangent

atan() 91

atan2() 91
AS clause 60
ascii() 122
asin() 90
atan() 91
atan2() 91

ATTACH ADAPTER statement 32
AUTOGENERATE Clause 61

avg() 160
avgof() 92

B

base64 _binary() 122
base64_string() 123
basic project components
queries 15
bigdatetime
format codes 248
binary functions
base64 _binary() 122
base64_string() 123
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98
concat() 183
extract() 125
fromnetbinary() 126
hex_binary() 126
hex_string() 127
length() 104

Index

Programmers Reference

257

Index

tonetbinary() 139
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitwise functions
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98
bitxor() 98
block statements 215
business() 142
businessday() 143

C

cacheSize() 181

calendar 252

calendar functions 252
business() 142
businessday() 143
weekendday() 158

CASE clause 63

case-insensitive 29

case-sensitive 29

cast() 123

cbrt() 99

CCL 203

language components 19
order of elements 17

overview 2
statement 201
statements 201

CCL functions 89

CCL keywords 237

CCL statements
reference 31

ceil() 99

char() 124

clause
CASE 63

clauses
AGING 59
AS 60
FROM 64
FROM (ANSI syntax) 65
FROM (comma-separated syntax) 64
GROUP BY 66
GROUP FILTER 67
GROUP ORDER BY 68
HAVING 69
IN 70, 76, 77, 81
KEEP 71
MATCHING 73
ON (join syntax) 73, 75
OuT 70, 76, 77, 81
PARAMETERS 70, 76, 77, 81
PRIMARY KEY 78
SCHEMA 79
SELECT 80
STORE 81
STORES 70, 76, 77, 81
WHERE 84

coalesce() 183

column access functions
get*columnbyindex() 186
get*columnbyname() 187
getbigdatetimecolumnbyindex() 186
getbigdatetimecolumnbyname() 187
getbinarycolumnbyindex() 186
getbinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187

258

Sybase Event Stream Processor

getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187

column/window access functions
cacheSize() 181
deleteCache() 184
get*columnbyindex() 186
get*columnbyname() 187
gethigdatetimecolumnbyindex() 186
gethigdatetimecolumnbyname() 187
gethinarycolumnbyindex() 186
gethinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getCache() 188
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187
getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getrowid() 192
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187

columns
BIGROWTIME 13
ROWID 13
ROWTIME 13

compare() 100

concat() 183

conditional statements 215

control statements 216

conversion functions
cast() 123

Index

date() 143
dateint() 125
datename() 147
int32() 112
intdate() 127
real() 116
string() 119
timeToMsec() 129
timeTosec() 130
timeToUsec() 130
to_bigdatetime() 131
to_hinary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
totimezone() 139
unbigdatetime() 157
undate() 157
xmlparse() 141
xmiserialize() 142
correlation coefficient
corr() 161
cos() 100
cosd() 101
cosh() 101
cosine
cos() 100
cosd() 101
cosh() 101
count-based retention 5
count() 163
count(distinct) 163
covar_pop() 162
covar_samp() 162
create 201
CREATE DELTA STREAM statement 34
CREATE FLEX statement 37
CREATE LIBRARY statement 40
CREATE LOG STORE statement 41
CREATE MEMORY STORE statement 43
CREATE MODULE statement 44
CREATE SCHEMA statement 14, 45

Programmers Reference

259

Index

CREATE SPLITTER statement 46
CREATE STREAM statement 48
CREATE WINDOW statement 50

D

data aging
AGING clause 59
data structures 221
dictionaries 229
event caches 232
record events 221
stream iterators 231
vectors 227
XML values 224
data-flow programming
example 1
introduction 1
datatypes

supported datatypes in Event Stream Processor

19

date
format codes 248

date and time functions
totimezone() 156

date() 143

date/time format codes 248

date/time functions
business() 142
businessday() 143
date() 143
dateceiling() 144
datefloor() 145
dateint() 147
datename() 147
datepart() 147
dateround() 148
dayofmonth() 150
dayofweek() 150
dayofyear() 151
hour() 151
intdate() 127
makebigdatetime() 152
microsecond() 153
minute() 153
month() 154
msecToTime() 128
now() 154
second() 155
secToTime() 129

syshigdatetime() 155
sysdate() 156
systimestamp() 156
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
trunc() 121
unbigdatetime() 157
undate() 157
usecToTime() 140
weekendday() 158
year() 158
dateceiling() 144
datefloor() 145
dateint() 125, 147
datename() 147
datepart() 147
dateround() 148
daylight saving time (DST) 239
dayofmonth() 150
dayofweek() 150
dayofyear() 151
declaration
functions 52
parameters 52
typedefs 52
variables 52
declare blocks
DECLARE statement 52
DECLARE statement 52
declaring types 207
deconstruct 203
deleteCache() 184
delta streams 10, 11, 34
dependency loops 14
dictionaries
declaring 229
operations 229
distance() 101
distancesquared() 102
DST 239

E

EMF 201

error stream 36

event cache functions
cacheSize() 181
deleteCache() 184
getCache() 188

260

Sybase Event Stream Processor

getrowid() 192
event caches 232
changing buckets 233
inserting manually 233
keeping records 234
managing bucket size 234
operating on 235
ordering an event bucket 234
examples
schema discovery 45
schema inheritance 45
exp_weighted_avg() 164
exp() 103
exponential functions
exp() 103
power() 108
exponential moving average
exp_weighted_avg() 164
expression statements 216
expressions
compound expressions 27
simple expressions 27
extract() 125

F

file 201
files 203
calendar 252
filters
WHERE clause 84
first_value()
See first()
first() 165
firstnonnull() 185
flex operators
CREATE FLEX statement 37
Flex operators
using SPLASH 209
flex stream 37
floor() 103
for loops 216
format codes
bigdatetime 248
date 248
date/time 248
timestamp 248
FROM clause 64
ANSI syntax 65
comma-separated syntax 64

fromnetbinary() 126

functions
acos() 90
aggregate functions 159
any() 160
ascii() 122
asin() 90
atan() 91
atan2() 91
avg() 160
avgof() 92
base64 _binary() 122
base64_string() 123
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98
built-in functions 89
business() 142
businessday() 143
C/C++ functions 193-195
cacheSize() 181
cast() 123
cbrt() 99
ceil() 99
char() 124
coalesce() 183
compare() 100
concat() 183
corr() 161
cos() 100
cosd() 101
cosh() 101
count() 163
count(distinct) 163
covar_pop() 162
covar_samp() 162
date() 143
dateceiling() 144

Index

Programmers Reference

261

Index

datefloor() 145

dateint() 125, 147

datename() 147

datepart() 147

dateround() 148

dayofmonth() 150

dayofweek() 150

dayofyear() 151

deleteCache() 184

distance() 101

distancesquared() 102

examples 208

exp_weighted_avg() 164

exp() 103

external functions 89, 193-195, 198
extract() 125

first() 165

firstnonnull() 185

floor() 103

fromnetbinary() 126
get*columnbyindex() 186
get*columnbyname() 187
gethigdatetimecolumnbyindex() 186
getbigdatetimecolumnbyname() 187
gethinarycolumnbyindex() 186
gethinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getCache() 188

getData 189
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187
getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getrowid() 192
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187
hex_binary() 126

hex_string() 127

hour() 151

int32() 112

intdate() 127

isnull() 104

Java functions 193, 198
last() 165

left() 113

length() 104

like() 113

In() 105

log10() 105

log2() 105

logx() 106

lower() 114

Itrim() 114
lwm_avg() 166
makebigdatetime() 152
max() 167

maxof() 106
meandeviation() 167
median() 168
microsecond() 153
min() 169

minof() 107
minute() 153
month() 154
msecToTime() 128
nextval() 107

now() 154

nth() 169

other functions 181
patindex() 115

pi() 108

power() 108
random() 108

rank() 192

real() 116

recent() 170
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118
regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173
regr_sxx() 174
regr_sxy() 174

Sybase Event Stream Processor

regr_syy() 175
replace() 118

right() 119

round() 109

rtrim() 119

scalar functions 89
second() 155
secToTime() 129
sequence() 193
sign() 109

sin() 110

sind() 110

sinh() 110

SPLASH functions 89, 199
sqrt() 111
stddev_pop() 176
stddev_samp() 176
string() 119

substr() 120

sum() 177
syshigdatetime() 155
sysdate() 156
systimestamp() 156
tan() 111, 112
tanh() 112
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
tonetbinary() 139
totimezone() 139, 156
trim() 120

trunc() 121
unbigdatetime() 157
undate() 157
upper() 121
usecToTime() 140
user-defined 199

user-defined functions 89, 193-195, 198

valueinserted() 178
var_pop() 178
var_samp() 179
vwap() 179
weekendday() 158
weighted_avg() 180
xmlagg() 181
xmlconcat() 140
xmlelement() 141
xmlparse() 141
xmiserialize() 142
year() 158

G

get*columnbyindex() 186
get*columnbyname() 187
getbigdatetimecolumnbyindex() 186
getbigdatetimecolumnbyname() 187
getbinarycolumnbyindex() 186
getbinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getCache() 188
getData function 189
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187
getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getrowid() 192
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187
GROUP BY clause 66

rank() 192
GROUP FILTER clause 67

rank() 192
group filtering function

rank() 192

Index

Programmers Reference

263

Index

GROUP ORDER BY clause 68
rank() 192

GUI authoring
See visual authoring

H

HAVING clause 69
rank() 192
hex_binary() 126
hex_string() 127
hour() 151
hyperbolic cosine
cosh() 101
hyperbolic sine
sinh() 110
hyperbolic tangent
tanh() 112

|
implicit
columns 13
windows 9
IMPORT statement 54
importing
CCL files 54
function definitions 54
IMPORT statement 54
parameters 54
schema definitions 54
variables 54
IN clause 70
input 12
int32() 112
intdate() 127
international characters 255
intervals
values 22
isnull() 104

K

KEEP clause 71
retention policies 5

See last()
last() 165, 166
left() 113
length() 104
like() 113
linear regression functions
regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173
regr_sxx() 174
regr_sxy() 174
regr_syy 175
linearly weighted moving average
lwm_avg() 166
In() 105
LOAD MODULE statement 55, 70, 76, 77, 81
local 12
log store
CREATE LOG STORE statement 41
CREATE MEMORY STORE statement 43
log store loops 14
log stores
CREATE LOG STORE statement 41
log10() 105
log2() 105
logarithmic functions
In() 105
log10() 105
log2() 105
logx() 106
logx() 106
lower() 114
Itrim() 114
lwm_avg() 166

M

makebigdatetime() 152

max() 167

maxof() 106

mean dervivation
meanderivation() 167

keywords 237 meandeviation() 167
median() 168
L memory store 14
CREATE MEMORY STORE statement 43
last_value() microsecond() 153
264 Sybase Event Stream Processor

min() 169
minof() 107
minute() 153
modularity 55, 70, 76, 77, 81
CREATE MODULE statement 44
module
create 44
load 55
month() 154
msecToTime() 128

N

named schema 14
naming 29
nextval() 107
now() 154

nth() 169

@)

ON clause
join syntax 73, 75
operators
arithmetic operators 23
comparison operators 23
LIKE operators 23
logical operators 23
string operators 23
UNION operator 83
other functions 181
OUT clause 76
output 12
output expiry
AGING clause 59
output statements 217
overview 2

P

PARAMETERS clause 77

patindex() 115

performance
count-based retention 5
SLACK value 5

persistence
CREATE LOG STORE statement 41
CREATE MEMORY STORE statement 43
log store 14

Index

pi() 108

population-based variance function
var_pop() 178

POSIX regular expression functions
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118

power() 108

PRIMARY KEY clause 78

print 203

PRINT statement 218

programmatically 201

Q

queries
basic syntax 15
FROM clause 64
GROUP BY clause 66
GROUP FILTER clause 67
GROUP ORDER BY clause 68
HAVING clause 69
KEEP clause 71
MATCHING clause 73
ON clause 75
SELECT 80
UNION operator 83
WHERE clause 84

R

random() 108

rank() 67, 192

read 203

reading 201

real() 116

recent() 170

record events 221
recordDataToRecord 128
recordDataToString 128
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118
regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173

Programmers Reference

265

Index

regr_sxx() 174
regr_sxy() 174
regr_syy() 175
regular expression functions
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118
replace() 118
retention 71
count-based 5
semantics 5
time-based 5
retention policies
description 5
retention semantics 5
right() 119
round() 109
rounding functions
ceil() 99
floor() 103
round() 109
rtrim() 119

S

sample-based variance function
var_samp() 179
scalar
acos() 90
ascii() 122
asin() 90
atan() 91
atan2() 91
avgof() 92
base64 _binary() 122
base64_string() 123
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98

business() 142
businessday() 143
cast() 123

cbrt() 99

ceil() 99

char() 124
compare() 100
concat() 183

cos() 100

cosd() 101

cosh() 101

date() 143
dateceiling() 144
datefloor() 145
dateint() 125, 147
datename() 147
datepart() 147
dateround() 148
dayofmonth() 150
dayofweek() 150
dayofyear() 151
distance() 101
distancesquared() 102
exp() 103
extract() 125
floor() 103
fromnetbinary() 126
hex_binary() 126
hex_string() 127
hour() 151

int32() 112
intdate() 127
isnull() 104

left() 113

length() 104

like() 113

In() 105

log10() 105

log2() 105

logx() 106

lower() 114
Itrim() 114
makebigdatetime() 152
maxof() 106
microsecond() 153
minof() 107
minute() 153
month() 154
msecToTime() 128

266

Sybase Event Stream Processor

nextval() 107

now() 154
patindex() 115

pi() 108

power() 108
random() 108

real() 116
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118
replace() 118

right() 119

round() 109
second() 155
secToTime() 129
sign() 109

sin() 110

sind() 110

sinh() 110

sqrt() 111

string() 119

substr() 120
syshigdatetime() 155
sysdate() 156
systimestamp() 156
tan() 111, 112

tanh() 112
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
tonetbinary() 139
totimezone() 139, 156
trim() 120

trunc() 121
unbigdatetime() 157
undate() 157
usecToTime() 140

weekendday() 158
xmlconcat() 140
xmlelement() 141
xmlparse() 141
xmiserialize() 142
year() 158
scalar functions 89
rtrim() 119
upper() 121
schema 14
SCHEMA clause 14, 79
second() 155
secToTime() 129
SELECT clause 80
sequence() 193
set functions
avgof() 92
coalesce() 183
firstnonnull() 185
maxof() 106
minof() 107
sign() 109
sin() 110
sind() 110
sine
sin() 110
sind() 110
sinh() 110
SLACK
count-based retention 5
performance 5
SPLASH
overview 3
SPLASH functions
declaring 199
SPLASH programming basics 207
sqrt() 111
standard deviation functions
stddev_pop() 176
stddev_samp() 176
stateful elements 5
stateless elements
delta stream 34
statements 215
ADAPTER START 31
ATTACH ADAPTER 32
blocks 215
conditional 215
control 216

Index

Programmers Reference

267

Index

CREATE DELTA STREAM 34
CREATE FLEX 37

regexp_search() 118
replace() 118

CREATE LIBRARY statement 40 right() 119
CREATE LOG STORE 14, 41 rtrim() 119
CREATE MEMORY STORE 14, 43 substr() 120

CREATE MODULE 44
CREATE SCHEMA 45

CREATE SPLITTER statement 46

to_string() 136
trim() 120
unbigdatetime() 157

CREATE STREAM 48 undate() 157
CREATE WINDOW 50 upper() 121
DECLARE 52 string() 119
expressions 216 Studio
for loops 216 overview 3
IMPORT 54 substr() 120
LOAD MODULE 44, 55 sum() 177
output 217 support
PRINT 218 for multibyte characters 255
switch 218 switch statements 218
while 219 syshigdatetime() 155
stddev_samp() 175, 176 sysdate() 156
stddev() systimestamp() 156
See stddev_samp()
stddeviation() T
See stddev_samp()
STORE clause 81 tan() 111, 112
stores tangent
tan() 111, 112
log store 14
tanh() 112
memory store 14 text authorin
STORES clause 81 'ng
streams 11, 12 overview 3
! time zones 239, 240
error 36 . .
. time-based retention 5
input 12, 48 .
timestamp
local 12, 48
outout 12. 48 format codes 248
P ! timeToMsec() 129
schema 14

structure 14
using iterators 231
string functions

timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132

2;(::(()) 1155 to_boolean() 132
int32() 112 to_date() 133
left() 113 to_float() 133
like() 113 to_integer() 134
lower() 114 to_interval() 134
Itrim() 114 to_long() 135
patindex() 115 to_money() 135
real() 116 to_string() 136

regexp_firstsearch() 116
regexp_replace() 117

to_timestamp() 138
to_xml() 138
tonetbinary() 139

268

Sybase Event Stream Processor

totimezone() 139, 156

trigonometric functions
acos() 90
asin() 90
atan() 91
atan2() 91
cos() 100
cosd() 101
cosh() 101
sin() 110
sind() 110
sinh() 110
tan() 111, 112
tanh() 112

trim() 120

trunc() 121

type transformation
int32() 112

type transformation functions
cast() 123
date() 143
dateint() 125, 147
datename() 147
intdate() 127
real() 116
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
unbigdatetime() 157
undate() 157
xmlparse() 141
xmlserialize() 142

types
declaring 207

U
UFF-8 encoding 255

Index

unbigdatetime() 157
undate() 157
UNION operator 83
unions 83

unnamed windows 9
upper() 121
usecToTime() 140

\%

valueinserted() 178
var_pop() 178
var_samp() 179
variables

declaring 207
variance functions

var_pop() 178

var_samp() 179
vectors

declaring 227
visual authoring

overview 3
vwap() 179

W

weekendday() 158
weighted average functions
exp_weighted_avg() 164
lwm_avg() 166
vwap() 179
weighted_avg() 180
weighted moving average
weighted_avg() 180
weighted_avg() 180
WHERE clause 84
while statements 219
window
input 50
local 50
named 50
output 50
window access functions
cacheSize() 181
deleteCache() 184
getCache() 188
getrowid() 192
windows 11, 12
implicit 9

Programmers Reference

269

Index

input 8, 12 xmlparse() 141
local 8, 12 xmiserialize() 142
named 5, 8 XML values 224
output 8, 12 xmlagg() 181
schema 14 xmlconcat() 140
structure 14 xmlelement() 141
unnamed 5, 9 xmlparse() 141

writing 201 xmiserialize() 142

XTEXT 201

X

XML functions Y
xmlagg() 181
xmlconcat() 140 year() 158
xmlelement() 141

270 Sybase Event Stream Processor

	Programmers Reference
	Contents
	CHAPTER 1: Introduction
	Data-Flow Programming
	Continuous Computation Language
	SPLASH
	Authoring Methods

	CHAPTER 2: CCL Project Basics
	Windows
	Retention
	Named Windows
	Unnamed Windows

	Delta Streams
	Comparing Streams, Windows, and Delta Streams
	Input/Output/Local
	Implicit Columns
	Schemas
	Stores
	CCL Continuous Queries
	Adapters
	Order of Elements

	CHAPTER 3: CCL Language Components
	Datatypes
	Intervals

	Operators
	Expressions
	CCL Comments
	Case-Sensitivity

	CHAPTER 4: CCL Statements
	ADAPTER START Statement
	ATTACH ADAPTER Statement
	CREATE DELTA STREAM Statement
	CREATE ERROR STREAM Statement
	CREATE FLEX Statement
	CREATE LIBRARY Statement
	CREATE LOG STORE Statement
	CREATE MEMORY STORE Statement
	CREATE MODULE Statement
	CREATE SCHEMA Statement
	CREATE SPLITTER Statement
	CREATE STREAM Statement
	CREATE WINDOW Statement
	DECLARE Statement
	IMPORT Statement
	LOAD MODULE Statement

	CHAPTER 5: CCL Clauses
	AGING Clause
	AS Clause
	AUTOGENERATE Clause
	CASE Clause
	FROM Clause
	FROM Clause: Comma-Separated Syntax
	FROM Clause: ANSI Syntax

	GROUP BY Clause
	GROUP FILTER Clause
	GROUP ORDER BY Clause
	HAVING Clause
	IN Clause
	KEEP Clause
	MATCHING Clause
	ON Clause: Join Syntax
	OUT Clause
	PARAMETERS Clause
	PRIMARY KEY Clause
	SCHEMA Clause
	SELECT Clause
	STORE Clause
	STORES Clause
	UNION Operator
	WHERE Clause

	CHAPTER 6: CCL Functions
	Scalar Functions
	Numeric Functions
	acos()
	asin()
	atan()
	atan2()
	avgof()
	bitand()
	bitclear()
	bitflag()
	bitflaglong()
	bitmask()
	bitmasklong()
	bitnot()
	bitor()
	bitset()
	bitshiftleft()
	bitshiftright()
	bittest()
	bittoggle()
	bitxor()
	cbrt()
	ceil()
	compare()
	cos()
	cosd()
	cosh()
	distance()
	distancesquared()
	exp()
	floor()
	isnull()
	length()
	ln()
	log2()
	log10()
	logx()
	maxof()
	minof()
	nextval()
	pi()
	power()
	random()
	round()
	sign()
	sin()
	sind()
	sinh()
	sqrt()
	tan()
	tand()
	tanh()

	String Functions
	int32()
	left()
	like()
	lower()
	ltrim()
	patindex()
	real()
	regexp_firstsearch()
	regexp_replace()
	regexp_search()
	replace()
	right()
	rtrim()
	string()
	substr()
	trim()
	trunc()
	upper()

	Conversion Functions
	ascii()
	base64_binary()
	base64_string()
	cast()
	char()
	dateint()
	extract()
	fromnetbinary()
	hex_binary()
	hex_string()
	intdate()
	msecToTime()
	recordDataToRecord
	recordDataToString
	secToTime()
	timeToMsec()
	timeToUsec()
	timeToSec()
	to_bigdatetime()
	to_binary()
	to_boolean()
	to_date()
	to_float()
	to_integer()
	to_interval()
	to_long()
	to_money()
	to_string()
	to_timestamp()
	to_xml()
	totimezone()
	tonetbinary()
	usecToTime()

	XML Functions
	xmlconcat()
	xmlelement()
	xmlparse()
	xmlserialize()

	Date and Time Functions
	business()
	businessday()
	date()
	dateceiling()
	datefloor()
	dateint()
	datename()
	datepart()
	dateround()
	dayofmonth()
	dayofweek()
	dayofyear()
	hour()
	makebigdatetime()
	microsecond()
	minute()
	month()
	now()
	second()
	sysbigdatetime()
	sysdate()
	systimestamp()
	totimezone()
	unbigdatetime()
	undate()
	weekendday()
	year()

	Aggregate Functions
	any()
	avg()
	corr()
	covar_pop()
	covar_samp()
	count()
	count(distinct)
	exp_weighted_avg()
	first()
	first_value()
	last()
	last_value()
	lwm_avg()
	max()
	meandeviation()
	median()
	min()
	nth()
	recent()
	regr_avgx()
	regr_avgy()
	regr_count()
	regr_intercept()
	regr_r2()
	regr_slope()
	regr_sxx()
	regr_sxy()
	regr_syy()
	stddev()
	stddeviation()
	stddev_pop()
	stddev_samp()
	sum()
	valueinserted()
	var_pop()
	var_samp()
	vwap()
	weighted_avg()
	xmlagg()

	Other Functions
	cacheSize()
	coalesce()
	concat()
	deleteCache()
	firstnonnull()
	get*columnbyindex()
	get*columnbyname()
	getCache()
	getData()
	getmoneycolumnbyindex()
	getmoneycolumnbyname()
	getrowid()
	rank()
	sequence()

	User-Defined External Functions
	External C/C++ Function Requirements
	Example: Using External C/C++ Functions
	Example: Using Java Functions
	User-Defined SPLASH Functions

	CHAPTER 7: Programmatically Reading and Writing CCL Files
	CCL File Creation
	CCL File Deconstruction

	CHAPTER 8: SPLASH Programming Language
	Variable and Type Declarations
	Custom Functions
	Using SPLASH in Flex Operators

	CHAPTER 9: SPLASH Statements
	Block Statements
	Conditional Statements
	Control Statements
	Expression Statements
	For Loops
	Output Statements
	Print Statement
	Switch Statements
	While Statements

	CHAPTER 10: SPLASH Data Structures
	Records
	XML Values
	Vectors
	Dictionaries
	Operations on Dictionaries

	Window Iterators
	Event Caches
	Manual Insertion
	Changing Buckets
	Managing Bucket Size
	Keeping Records
	Ordering
	Operations on Event Caches

	APPENDIX A: List of Keywords
	APPENDIX B: Date and Time Programming
	Time Zones
	Changes to Time Zone Defaults
	List of Time Zones

	Date/Time Format Codes
	Calendar Files

	APPENDIX C: Statement on Support for Multibyte Characters
	Index

