
Programmers Reference

Sybase Event Stream Processor
5.1

DOCUMENT ID: DC01621-01-0510-01
LAST REVISED: August 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Introduction ...1
Data-Flow Programming ...1
Continuous Computation Language2
SPLASH ..3
Authoring Methods ..3

CHAPTER 2: CCL Project Basics5
Windows ...5

Retention ..5
Named Windows ...8
Unnamed Windows ...9

Delta Streams ...10
Comparing Streams, Windows, and Delta Streams11
Input/Output/Local ...12
Implicit Columns ..13
Schemas ...14
Stores ..14
CCL Continuous Queries ..15
Adapters ...17
Order of Elements ..17

CHAPTER 3: CCL Language Components19
Datatypes ..19

Intervals ..22
Operators ..23
Expressions ...27
CCL Comments ..28
Case-Sensitivity ...29

Programmers Reference iii

CHAPTER 4: CCL Statements31
ADAPTER START Statement ...31
ATTACH ADAPTER Statement ..32
CREATE DELTA STREAM Statement34
CREATE ERROR STREAM Statement36
CREATE FLEX Statement ..37
CREATE LIBRARY Statement ...40
CREATE LOG STORE Statement ..41
CREATE MEMORY STORE Statement43
CREATE MODULE Statement ...44
CREATE SCHEMA Statement ..45
CREATE SPLITTER Statement ...46
CREATE STREAM Statement ..48
CREATE WINDOW Statement ...50
DECLARE Statement ...52
IMPORT Statement ..54
LOAD MODULE Statement ..55

CHAPTER 5: CCL Clauses ...59
AGING Clause ..59
AS Clause ...60
AUTOGENERATE Clause ..61
CASE Clause ..63
FROM Clause ...64

FROM Clause: Comma-Separated Syntax64
FROM Clause: ANSI Syntax ...65

GROUP BY Clause ...66
GROUP FILTER Clause ..67
GROUP ORDER BY Clause ...68
HAVING Clause ..69
IN Clause ..70
KEEP Clause ..71
MATCHING Clause ...73

Contents

iv Sybase Event Stream Processor

ON Clause: Join Syntax ..75
OUT Clause ..76
PARAMETERS Clause ...77
PRIMARY KEY Clause ...78
SCHEMA Clause ..79
SELECT Clause ..80
STORE Clause ..81
STORES Clause ...81
UNION Operator ...83
WHERE Clause ...84

CHAPTER 6: CCL Functions ..89
Scalar Functions ..89

Numeric Functions ..90
acos() ...90
asin() ..90
atan() ... 91
atan2() ... 91
avgof() ..92
bitand() ...92
bitclear() ...93
bitflag() ...93
bitflaglong() ..94
bitmask() ..94
bitmasklong() ...95
bitnot() ..95
bitor() ... 95
bitset() ..96
bitshiftleft() ...96
bitshiftright() ...97
bittest() ...97
bittoggle() ...98
bitxor() ..98
cbrt() ..99

Contents

Programmers Reference v

ceil() ...99
compare() ..100
cos() ...100
cosd() ...101
cosh() ...101
distance() ...101
distancesquared() ..102
exp() ...103
floor() ...103
isnull() ..104
length() ...104
ln() ..105
log2() ..105
log10() ..105
logx() ..106
maxof() ...106
minof() ..107
nextval() ...107
pi() ..108
power() ...108
random() ..108
round() ...109
sign() ..109
sin() ..110
sind() ..110
sinh() ..110
sqrt() ..111
tan() ...111
tand() ...112
tanh() ...112

String Functions ..112
int32() ...112
left() ..113
like() ...113
lower() ..114

Contents

vi Sybase Event Stream Processor

ltrim() ...114
patindex() ...115
real() ..116
regexp_firstsearch() ...116
regexp_replace() ..117
regexp_search() ...118
replace() ...118
right() ...119
rtrim() ... 119
string() ...119
substr() ...120
trim() ..120
trunc() ..121
upper() ...121

Conversion Functions ...122
ascii() ...122
base64_binary() ...122
base64_string() ..123
cast() ..123
char() ...124
dateint() ..125
extract() ..125
fromnetbinary() ..126
hex_binary() ...126
hex_string() ..127
intdate() ..127
msecToTime() .. 128
recordDataToRecord ..128
recordDataToString ..128
secToTime() ... 129
timeToMsec() ...129
timeToUsec() ..130
timeToSec() ..130
to_bigdatetime() ...131
to_binary() ...132

Contents

Programmers Reference vii

to_boolean() ...132
to_date() ..133
to_float() ...133
to_integer() ..134
to_interval() ..134
to_long() ...135
to_money() ...135
to_string() ..136
to_timestamp() ...138
to_xml() ..138
totimezone() ...139
tonetbinary() ..139
usecToTime() ...140

XML Functions ..140
xmlconcat() ..140
xmlelement() ..141
xmlparse() ..141
xmlserialize() ..142

Date and Time Functions ..142
business() ..142
businessday() ...143
date() ...143
dateceiling() ..144
datefloor() ..145
dateint() ..147
datename() ..147
datepart() ...147
dateround() ..148
dayofmonth() ..150
dayofweek() ...150
dayofyear() ...151
hour() ...151
makebigdatetime() ...152
microsecond() ..153
minute() ..153

Contents

viii Sybase Event Stream Processor

month() ..154
now() ..154
second() ...155
sysbigdatetime() ..155
sysdate() ..156
systimestamp() ..156
totimezone() ...156
unbigdatetime() ..157
undate() ...157
weekendday() ..158
year() ...158

Aggregate Functions ...159
any() ..160
avg() ..160
corr() ...161
covar_pop() ..162
covar_samp() ..162
count() ...163
count(distinct) ...163
exp_weighted_avg() ..164
first() ..165
first_value() ...165
last() ..165
last_value() ...166
lwm_avg() ...166
max() ...167
meandeviation() ..167
median() ..168
min() ..169
nth() ..169
recent() ...170
regr_avgx() ...170
regr_avgy() ...171
regr_count() ..171
regr_intercept() ...172

Contents

Programmers Reference ix

regr_r2() ..172
regr_slope() ..173
regr_sxx() ..174
regr_sxy() ..174
regr_syy() ..175
stddev() ...175
stddeviation() ..176
stddev_pop() ...176
stddev_samp() ..176
sum() ...177
valueinserted() ..178
var_pop() ...178
var_samp() ..179
vwap() ...179
weighted_avg() ...180
xmlagg() ..181

Other Functions ...181
cacheSize() ...181
coalesce() ...183
concat() ...183
deleteCache() ...184
firstnonnull() ..185
get*columnbyindex() ...186
get*columnbyname() ...187
getCache() ..188
getData() ...189
getmoneycolumnbyindex() ..190
getmoneycolumnbyname() ...191
getrowid() ..192
rank() ..192
sequence() ..193

User-Defined External Functions193
External C/C++ Function Requirements194
Example: Using External C/C++ Functions195
Example: Using Java Functions198

Contents

x Sybase Event Stream Processor

User-Defined SPLASH Functions199

CHAPTER 7: Programmatically Reading and Writing
CCL Files ..201

CCL File Creation ...201
CCL File Deconstruction ...203

CHAPTER 8: SPLASH Programming Language207
Variable and Type Declarations ..207
Custom Functions ...208
Using SPLASH in Flex Operators209

CHAPTER 9: SPLASH Statements215
Block Statements ...215
Conditional Statements ...215
Control Statements ..216
Expression Statements ...216
For Loops ...216
Output Statements ...217
Print Statement ..218
Switch Statements ...218
While Statements ...219

CHAPTER 10: SPLASH Data Structures221
Records ..221
XML Values ...224
Vectors ..227
Dictionaries ..229

Operations on Dictionaries ...229
Window Iterators ..231
Event Caches ...232

Manual Insertion ...233

Contents

Programmers Reference xi

Changing Buckets ...233
Managing Bucket Size ..234
Keeping Records ..234
Ordering ..234
Operations on Event Caches235

APPENDIX A: List of Keywords237

APPENDIX B: Date and Time Programming239
Time Zones ...239

Changes to Time Zone Defaults240
List of Time Zones ..240

Date/Time Format Codes ..248
Calendar Files ..252

APPENDIX C: Statement on Support for Multibyte
Characters ..255

Index ...257

Contents

xii Sybase Event Stream Processor

CHAPTER 1 Introduction

Data-Flow Programming
Sybase® Event Stream Processor uses data-flow programming for processing event streams.

In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation processes an event only when it is received from
another operation. No other coordination is needed between operations.

The sample project shown in the figure shows a simple example of this.

Each of the continuous queries in this simple example—the VWAP aggregate, the
IndividualPositions join object, and the ValueByBook aggregate—is a type of derived stream,
as its schema is derived from other inputs in the diagram, rather than originating directly from
external sources. You can create derived streams in a diagram using the simple query elements
provided in the Studio Visual editor, or by defining your own explicitly.

Figure 1: Data-Flow Programming - Simple Example

Programmers Reference 1

Table 1. Data-Flow Diagram Contents

Element Description

PriceFeed Represents an input window, where incoming data from an external
source complies with a schema consisting of five columns, similar to a
database table with columns. The difference is that in ESP, the stream-
ing data is not stored in a database.

Positions Another input window, with data from a different external source. Both
Positions and PriceFeed are included as windows, rather than streams,
so that the data can be aggregated.

VWAP Represents a simple continuous query that performs an aggregation,
similar to a SQL Select statement with a Group By clause.

IndividualPositions Represents a simple continuous query that performs a join of Positions
and VWAP, similar to a SQL FROM clause that produces a join.

ValueByBook Another simple query that aggregates data from the stream Individual
Positions.

Continuous Computation Language
CCL is the primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CCL supports sophisticated data selection and calculation capabilities, including features
such as: data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous

CHAPTER 1: Introduction

2 Sybase Event Stream Processor

execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time an event arrives from one of its datasources.

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
an SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. ESP servers are
optimized for incremental processing, hence the query optimization is different than for
databases. Compilation is typically performed within Event Stream Processor Studio, but it
can also be performed by invoking the CCL compiler from the command line.

SPLASH
Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has
similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

Authoring Methods
Event Stream Processor Studio provides visual and text authoring environments for
developing projects.

In the visual authoring environment, you can develop projects using graphical tools to define
streams and windows, connect them, integrate with input and output adapters, and create a
project consisting of queries.

In the text authoring environment, you can develop projects in the Continuous Computation
Language (CCL), as you would in any text editor. Create data streams and windows, develop
queries, and organize them in hierarchical modules and projects.

You can easily switch between the Visual editor and the CCL editor at any time. Changes made
in one editor are reflected in the other. You can also compile projects within Studio.

CHAPTER 1: Introduction

Programmers Reference 3

In addition to its visual and text authoring components, Studio includes environments for
working with sample projects, and for running and testing applications with a variety of
debugging tools. Studio also lets you record and playback project activity, upload data from
files, manually create input records, and run ad hoc queries against the server.

If you prefer to work from the command line, you can develop and run projects using the
esp_server, esp_client, and esp_compiler commands. For a full list of Event Stream
Processor utilities, see the Utilities Guide.

CHAPTER 1: Introduction

4 Sybase Event Stream Processor

CHAPTER 2 CCL Project Basics

ESP projects are written in CCL, an SQL-like language which specifies a data flow (by
defining streams, windows, operations, and connections), and provides the capability to
incorporate functions written in other languages, such as SPLASH, to handle more complex
computational work.

Windows
A window is a stateful element that can be named or unnamed, and retains rows based on a
defined retention policy.

Since a window is a stateful element, with an underlying store, it can perform any operation
specified by the opcode of an incoming event record. Depending on what changes are made to
the contents of the store by the incoming event and its opcode, a window can produce output
event records with different opcodes.

For example, if the window is performing aggregation logic, an incoming event record with an
insert opcode can update the contents of the store and thus output an event record with an
update opcode. The same could happen in a window implementing a left join.

A window can produce an output event record with same opcode as the input event record. If,
for example, a window implemented a simple copy or a filter without any additional clauses,
the input and output event records would have the same opcode.

An incoming event record with an insert opcode can produce an output event record with a
delete opcode. For example, a window with a count-based retention policy (say keep 5
records) will delete those records from the store when the sixth event arrives, thus producing
an output event record with a delete opcode.

Retention
A retention policy specifies the maximum number of rows or the maximum period of time that
data are retained in a window.

In CCL, you can specify a retention policy when defining a Window. You can also create an
Unnamed Window by specifying a retention policy on a Window or Delta Stream when it is
used as a source to another element.

Retention is specified through the KEEP clause. You can limit the number of records in a
window based on either the number, or age, of records in the window. These methods are
referred to as count-based retention and time-based retention, respectively. Or, you can use the
ALL modifier to explicitly specify that the window should retain all records.

Programmers Reference 5

Note: If you do not specify a retention policy, the window retains all records. This can be
dangerous: the window can keep growing until all memory is used and the system shuts down.
The only time you should have a window without a KEEP clause is if you know that the
window size will be limited by incoming delete events.

Including the EVERY modifier in the KEEP clause produces a Jumping Window, which deletes
all of the retained rows when the time interval expires or a row arrives that would exceed the
maximum number of rows.

Specifying the KEEP clause with no modifier produces a Sliding Window, which deletes
individual rows once a maximum age is reached or the maximum number of rows are retained.

Note: You can specify retention on input windows (or windows where data is copied directly
from its source) using either log file-based stores or memory-based stores. For other windows,
you can only specify retention on windows with memory-based stores

Count-based Retention
In a count-based policy, a constant integer specifies the maximum number of rows retained in
the window. You can use parameters in the count expression.

A count-based policy also defines an optional SLACK value, which can enhance performance
by requiring less frequent cleaning of memory stores. A SLACK value accomplishes this by
ensuring that there are no more than N + S rows in the window, where N is the retention size
and S is the SLACK value. When the window reaches N + S rows, the system purges S rows.
The larger the SLACK value, the better the performance, since there is less cleaning required.

Note: The SLACK value cannot be used with the EVERY modifier, and thus cannot be used in
a Jumping Windows retention policy.

The default value for SLACK is 1, which means that after the window reaches the maximum
number of records, every new record inserted deletes the oldest record. This causes a
significant impact on performance. Larger slack value s improve performance by reducing the
need to constantly delete rows.

Count-based retention policies can also support retention based on content/column values
using the PER sub-clause. A PER sub-clause can contain an individual column or a comma-
delimited list of columns. A column can only be used once in a PER sub-clause. Specifying the
primary key or autogenerate columns as a column in the PER sub-clause will result in a
compiler warning. This is because these are unique entities for which multiple values cannot
be retained.

The following example creates a Sliding Window that retains the most recent 100 records that
match the filter condition. Once there are 100 records in the window, the arrival of a new
record causes the deletion of the oldest record in the window.

CREATE WINDOW Last100Trades PRIMARY KEY DEDUCED
KEEP 100 ROWS
AS SELECT * FROM Trades
WHERE Trades.Volume > 1000;

CHAPTER 2: CCL Project Basics

6 Sybase Event Stream Processor

Adding the SLACK value of 10 means the window may contain as many as 110 records before
any records are deleted.

CREATE WINDOW Last100Trades PRIMARY KEY DEDUCED
KEEP 100 ROWS SLACK 10
AS SELECT * FROM Trades
WHERE Trades.Volume > 1000;

This example creates a Jumping Window named TotalCost from the source stream Trades.
This window will retain a maximum of ten rows, and delete all ten retained rows on the arrival
of a new row.

CREATE WINDOW TotalCost
PRIMARY KEY DEDUCTED
AS SELECT
 trd.*,
 trd.Price * trd.Size TotalCst
FROM Trades trd
KEEP EVERY 10 ROWS;

The following example creates a sliding window that retains 2 rows for each unique value of
Symbol. Once 2 records have been stored for any unique Symbol value, arrival of a third
record (with the same Symbol value) will result in deletion of the oldest stored record with the
same Symbol value.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer)
;

CREATE INPUT WINDOW TradesWin1
 SCHEMA TradesSchema
 PRIMARY KEY(Id)
 KEEP 2 ROWS PER(Symbol)
;

Time-based Retention
In a Sliding Windows time-based policy, a constant interval expression specifies the
maximum age of the rows retained in the window. In a Jumping Window time-based retention
policy, all the rows produced in the specified time interval are deleted after the interval has
expired.

The following example creates a Sliding Window that retains each record received for ten
minutes. As each individual row exceeds the ten minute retention time limit, it is deleted.

CREATE WINDOW RecentPositions PRIMARY KEY DEDUCED
KEEP 10 MINS
AS SELECT * FROM Positions;

CHAPTER 2: CCL Project Basics

Programmers Reference 7

This example creates a Jumping Window named Win1 that keeps every row that arrives within
the 100 second interval. When the time interval expires, all of the rows retained are deleted.

CREATE WINDOW Win1
PRIMARY KEY DEDUCED
AS SELECT * FROM Source1
KEEP EVERY 100 SECONDS;

The PER sub-clause supports content-based data retention, wherein data is retained for a
specific time period (specified by an interval) for each unique column value/combination. A
PER sub-clause can contain a single column or a comma-delimited list of columns, but you
can use each column only once in the same PER clause.

Note: Time based windows retain data for a specified time regardless of their grouping.

The following example creates a jumping window that retains 5 seconds worth of data for each
unique value of Symbol.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer)
;

CREATE INPUT WINDOW TradesWin2
 SCHEMA TradesSchema
 PRIMARY KEY(Id)
 KEEP EVERY 5 SECONDS PER(Symbol)
;

Retention Semantics
When the insertion of one or more new rows into a window triggers deletion of preexisting
rows (due to retention), the window propagates the inserted and deleted rows downstream to
relevant streams and subscribers. However, the inserted rows are placed before the deleted
rows, since the inserts trigger the deletes.

Named Windows
A named window is explicitly created using a CREATE WINDOW statement, and can be
referenced in other queries.

Named windows can be classed as input, output, or local. An input window can send and
receive data through adapters. An output window can send data to an adapter. Both input and
output windows are visible externally and can be subscribed to or queried. A local window is
private and invisible externally. When a qualifier for the window is missing, it is presumed to
be of type local.

CHAPTER 2: CCL Project Basics

8 Sybase Event Stream Processor

Table 2. Named Window Capabilities

Type Receives Data From Sends Data To Visible Externally

input Input adapter or external
application that sends data
into ESP using the ESP
SDK

Other windows, delta
streams, and/or out-
put adapters

Yes

output Other windows, streams,
or delta streams

Other windows, delta
streams, and/or out-
put adapters

Yes

local Other windows, streams,
or delta streams

Other windows or
delta streams

No

Unnamed Windows
An unnamed window is an implicitly created stateful element that cannot be referenced or
used elsewhere in a project.

An unnamed window is implicitly created when the KEEP clause is used with a source name in
the FROM clause of a statement.

Note: On a Delta Stream, only unnamed windows can be created by specifying the KEEP
clause in the FROM clause.

Examples
This example creates an unnamed window on the input Trades for the MaxTradePrice
window to keep track of a maximum trade price for all symbols seen within the last 10000
trades:

CREATE WINDOW MaxTradePrice
PRIMARY KEY DEDUCED
STORE S1
AS SELECT trd.Symbol, max(trd.Price) MaxPrice
FROM Trades trd KEEP 10000 ROWS
GROUP BY trd.Symbol;

This example creates an unnamed window on Trades, and MaxTradePrice keeps track
of the maximum trade price for all the symbols during the last 10 minutes of trades:

CREATE WINDOW MaxTradePrice
PRIMARY KEY DEDUCED
STORE S1
AS SELECT trd.Symbol, max(trd.Price) MaxPrice
FROM Trades trd KEEP 10 MINUTES
GROUP BY trd.Symbol;

This example creates a TotalCost Unnamed Window from the source stream Trades. Jumping
Window will retain ten rows, and clear all rows on the arrival of the 11th row.

CHAPTER 2: CCL Project Basics

Programmers Reference 9

CREATE DELTA STREAM TotalCost
PRIMARY KEY DEDUCTED
AS SELECT
 trd.*,
 trd.Price * trd.Size TotalCst
FROM Trades trd
KEEP EVERY 10 ROWS;

In all three examples, Trades can be a delta stream, or a window.

Delta Streams
Delta streams are stateless elements that can understand all opcodes.

You can use a delta stream anywhere you use a computation, filter, or union, but do not need to
maintain a state. A delta stream performs these operations more efficiently than a window
because it keeps no state, thereby reducing memory use and increasing speed.

While a delta stream does not maintain state, it can interpret all of the opcodes in incoming
event records. The opcodes of output event records depend on the logic implemented by the
delta stream.

Example
This example creates a delta stream named DeltaTrades that incorporates the getrowid
and now functions.
CREATE LOCAL DELTA STREAM DeltaTrades
 SCHEMA (
 RowId long,
 Symbol STRING,
 Ts bigdatetime,
 Price MONEY(2),
 Volume INTEGER,
 ProcessDate bigdatetime)
 PRIMARY KEY (Ts)
AS SELECT getrowid (TradesWindow) RowId,
 TradesWindow.Symbol,
 TradesWindow.Ts Ts,
 TradesWindow.Price,
 TradesWindow.Volume,
 now() ProcessDate
 FROM TradesWindow

CREATE OUTPUT WINDOW TradesOut
 PRIMARY KEY DEDUCED
AS SELECT * FROM DeltaTrades ;

CHAPTER 2: CCL Project Basics

10 Sybase Event Stream Processor

Comparing Streams, Windows, and Delta Streams
Streams, windows, and delta streams offer different characteristics and features, but also share
common designation, visibility, and column parameters.

The terms "stateless" and "stateful" commonly describe the most significant difference
between windows and streams. A stateful element has the capacity to store information, while
a stateless element does not.

Feature Capabili-
ty

Streams Windows Delta Streams

Type of element Stateless Stateful, due to reten-
tion and store capabili-
ties

Stateless

Data retention None Yes, rows (based on re-
tention policy)

None

Available store types Not applicable Memory store or log
store

Not applicable

Element types that can
be derived from this el-
ement

Stream or a Window
with an aggregation
clause (GROUP BY)

Stream, Window, Delta
Stream

Stream, Window, Delta
Stream

Primary key Required No Yes, explicit or de-
duced

Yes, explicit or de-
duced

Support for aggrega-
tion operations

No Yes No

Behavior on receiving
update

Receives and produces
insert

Receives and produces
update

Receives and produces
update

Behavior on receiving
insert

Receives and produces
insert

Receives and produces
insert

Receives and produces
insert

Behavior on receiving
delete

Receives but ignores Receives and produces
delete

Receives and produces
delete

Streams, windows, and delta streams share several important characteristics, including
implicit columns and visibility rules.

CHAPTER 2: CCL Project Basics

Programmers Reference 11

Input/Output/Local
You can designate streams, windows, and delta streams as input, output, or local.

Input/Output Streams and Windows
Input streams and windows can accept data from a source external to the project using an input
adapter or by connecting to an external publisher. You can attach an output adapter or connect
external subscribers directly to an input window or input stream. You can also use the SQL
interface to SELECT rows from an input window, INSERT rows in an input stream or INSERT/
UPDATE/DELETE rows in an input window.

Output windows, streams and delta streams can publish data to an output adapter or an
external subscriber. You can use the SQL interface to query (that is SELECT) rows from an
output window.

Local streams, windows, and delta streams are invisible outside the project and cannot have
input or output adapters attached to them. You cannot subscribe to or use the SQL interface to
query the contents of local streams, windows, or delta streams.

Examples
This is an input stream with a filter:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE INPUT STREAM IStr2 SCHEMA mySchema
 WHERE IStr2.Col2='abcd';

This is an output stream:
CREATE OUTPUT STREAM OStr1
 AS SELECT A.Col1 col1, A.Col2 col2
 FROM IStr1 A;

This is an input window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE INPUT WINDOW IWin1 SCHEMA mySchema
 PRIMARY KEY(Col1)
 STORE myStore;

This is an output window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE OUTPUT WINDOW OWin1
 PRIMARY KEY (Col1)
 STORE myStore
 AS SELECT A.Col1 col1, A.Col2 col2
 FROM IWin1 A;

CHAPTER 2: CCL Project Basics

12 Sybase Event Stream Processor

Local Streams and Windows
Use a local stream, window, or delta stream when the stream does not need an adapter, or to
allow outside connections. Local streams, windows, and delta streams are visible only inside
the containing CCL project, which allows for more optimizations by the CCL compiler.
Streams and windows that do not have a qualifier are local.

Note: A local window cannot be debugged because it is not visible to the ESP Studio run/test
tools such as viewer or debugger.

Examples
This is a local stream:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE LOCAL STREAM LStr1
 AS SELECT i.Col1 col1, i.Col2 col2
 FROM IStr1 i;

This is a local window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE LOCAL WINDOW LWin1
 PRIMARY KEY (Col1)
 STORE myStore
 AS SELECT i.Col1 col1, i.Col2 col2
 FROM IStr1 i;

Implicit Columns
All streams, windows, and delta streams use three implicit columns called ROWID,
ROWTIME, and BIGROWTIME.

Column Datatype Description

ROWID long Provides a unique row identification number for
each row of incoming data.

ROWTIME date Provides the last modification time as a date with
second precision.

BIGROWTIME bigdatetime Provides the last modification time of the row with
microsecond precision. You can perform filters
and selections based on these columns, like filter-
ing out all of those data rows that occur outside of
business hours.

You can refer to these implicit columns just like any explicit column (for example, using the
stream.column convention).

CHAPTER 2: CCL Project Basics

Programmers Reference 13

Schemas
A schema defines the structure of data rows in a stream or window.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

There are two ways to create a schema: you can create a named schema using the CREATE
SCHEMA statement or you can create an inline schema within a stream or window definition.
Named schemas are useful when the same schema will be used in multiple places, since any
number of streams and windows can reference a single named schema.

Simple Schema CCL Example

This is an example of a CREATE SCHEMA statement used to create a named schema.
TradeSchema represents the name of the schema.

CREATE SCHEMA TradeSchema (
 Ts BIGDATETIME,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

This example uses a CREATE SCHEMA statement to make an inline schema:
CREATE STREAM trades SCHEMA (
 Ts bigdatetime,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

Stores
Set store defaults, or choose a log store or memory store to specify how data from a window is
saved.

If you do not set a default store using the CREATE DEFAULT STORE statement, each window
is assigned to a default memory store. You can use default store settings for store types and
locations if you do not assign new windows to specific store types.

Memory Stores
A memory store holds all data in memory. Memory stores retain the state of queries for a
project from the most recent server start-up for as long as the project is running. Because query

CHAPTER 2: CCL Project Basics

14 Sybase Event Stream Processor

state is retained in memory rather than on disk, access to a memory store is faster than to a log
store.

Use the CREATE MEMORY STORE statement to create memory stores. If no default store is
defined, new windows are automatically assigned to a memory store.

Log Stores
The log store holds all data in memory, but also logs all data to the disk, meaning it guarantees
data state recovery in the event of a failure. Use a log store to be able to recover the state of a
window after a restart.

Use the CREATE LOG STORE statement to create a log store. You can also set a log store as a
default store using the CREATE DEFAULT STORE statement, which overrides the default
memory store.

Log store dependency loops are a concern when using log stores, as they cause compilation
errors. Log store loops can be created when you use multiple log stores in a project, and assign
windows to these stores. The recommended way to use a log store is to either assign log stores
to source windows only or to assign all windows in a stream path to the same store. If you use
logstore1 for n of those windows, then use logstore2 for a different window, you
should never use logstore1 again further down the chain. Put differently, if Window Y
assigned to Logstore B gets its data from Window X assigned to Logstore A, no window that
(directly or indirectly) gets its data from Window Y should be assigned to Logstore A.

CCL Continuous Queries
Build a continuous query using clauses and operators to specify its function. This section
provides reference for queries, query clauses, and operators.

Syntax
select_clause
from_clause
[matching_clause]
[where_clause]
[groupFilter_clause]
[groupBy_clause]
[groupOrder_clause]
[having_clause]

Components

select_clause Defines the set of columns to be included in the
output. See below and SELECT Clause for more
information.

from_clause Selects the source data is derived from. See below
and FROM Clause for more information.

CHAPTER 2: CCL Project Basics

Programmers Reference 15

matching_clause Used for pattern matching. See MATCHING
Clause and Pattern Matching for more informa-
tion.

where_clause Performs a filter. See WHERE Clause and Filters
for more information.

groupFilter_clause Filters incoming data in aggregation. See
GROUP FILTER Clause and Aggregation for
more information.

groupBy_clause Specifies what collection of rows to use the ag-
gregation operation on. See GROUP BY Clause
and Aggregation for more information.

groupOrder_clause Orders the data in a group before aggregation. See
GROUP ORDER BY Clause and Aggregation for
more information.

having_clause Filters data that is output by the derived compo-
nents in aggregation. See HAVING Clause and
Aggregation for more information.

Usage
CCL queries are embedded in theCREATE STREAM, CREATE WINDOW, and CREATE DELTA
STREAM statements, and are applied to the inputs specified in the FROM clause of the query
todefine the contents of the new stream or window. The example below demonstrates the use
of both the SELECT clause and the FROM clause as would be seen in any query.

The SELECT clause is used directly after the AS clause. The purpose of the SELECT clause is
to determine which columns from the source or expressions the query is to use.

Following the SELECT clause, the FROM clause names the source used by the query.
Following the FROM clause, implement available clauses to use filters, unions, joins, pattern
matching, and aggregation on the queried data.

Example
This example obtains the total trades, volume, and VWAP per trading symbol in five minute
intervals.
[...]
SELECT
 q.Symbol,
 (trunc(q.TradeTime) + (((q.TradeTime - trunc(q.TradeTime))/
300)*300)) FiveMinuteBucket,
 sum(q.Shares * q.Price)/sum(q.Shares) Vwap,
 count(*) TotalTrades,
 sum(q.Shares) TotalVolume
FROM

CHAPTER 2: CCL Project Basics

16 Sybase Event Stream Processor

 QTrades q
[...]

Adapters
Adapters connect the Event Stream Processor to the external world.

An input adapter connects an input stream or window to a data source. It reads the data output
by the source and modifies it for use in an ESP project.

An output adapter connects an output stream or window to a data sink. It reads the data output
by the ESP project and modifies it for use by the consuming application.

Adapters are attached to input streams and windows, and output streams and windows, using
the ATTACH ADAPTER statement and they are started using the ADAPTER START statement.
In some cases it may be important for a project to start adapters in a particular order. For
example, it might be important to load reference data before attaching to a live event stream.
Adapters can be assigned to groups and the ADAPTER START statement can control the start
up sequence of the adapter groups.

See the Adapters Guide for detailed information about configuring individual adapters,
datatype mapping, and schema discovery.

Order of Elements
Determine the order of CCL project elements based on clause and statement syntax definitions
and limitations.

Define CCL elements that are referenced by other statements or clauses before using those
statements and clauses. Failure to do so causes compilation errors.

For example, define a schema using a CREATE SCHEMA statement before a CCL CREATE
STREAM statement references that schema by name. Similarly, declare parameters and
variables in a declare block before any CCL statements or clauses reference those parameters
or variables.

You cannot reorder subclause elements within CCL statements or clauses.

CHAPTER 2: CCL Project Basics

Programmers Reference 17

CHAPTER 2: CCL Project Basics

18 Sybase Event Stream Processor

CHAPTER 3 CCL Language Components

To ensure proper language use in your CCL projects, familiarize yourself with rules on case-
sensitivity, supported datatypes, operators, and expressions used in CCL.

Datatypes
Sybase Event Stream Processor supports integer, float, string, money, long, and timestamp
datatypes for all of its components.

Datatype Description

integer A signed 32-bit integer. The range of allowed values is -2147483648 to
+2147483647 (-231 to 231-1). Constant values that fall outside of this
range are automatically processed as long datatypes.

To initialize a variable, parameter, or column with a value of
-2147483648, specify (-2147483647) -1 to avoid CCL compiler errors.

long A signed 64-bit integer. The range of allowed values is
-9223372036854775808 to +9223372036854775807 (-263 to 263-1).

To initialize a variable, parameter, or column with a value of
-9223372036854775808, specify (-9223372036854775807) -1 to
avoid CCL compiler errors.

float A 64-bit numeric floating point with double precision. The range of
allowed values is approximately -10308 through +10308.

string Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but can be no more than
65535 bytes.

money A legacy datatype maintained for backward compatibility. It is a signed
64-bit integer that supports 4 digits after the decimal point. Currency
symbols and commas are not supported in the input data stream.

Programmers Reference 19

Datatype Description

money(n) A signed 64-bit numerical value that supports varying scale, from 1 to
15 digits after the decimal point. Currency symbols and commas are not
supported in the input data stream, however, decimal points are.

The supported range of values change, depending on the specified scale.

money(1): -922337203685477580.8 to 922337203685477580.7

money(2): -92233720368547758.08 to 92233720368547758.07

money(3): -9223372036854775.808 to 9223372036854775.807

money(4): -922337203685477.5808 to 922337203685477.5807

money(5): -92233720368547.75808 to 92233720368547.75807

money(6): -92233720368547.75808 to 92233720368547.75807

money(7): -922337203685.4775808 to 922337203685.4775807

money(8): -92233720368.54775808 to 92233720368.54775807

money(9): -9223372036.854775808 to 9223372036.854775807

money(10): -922337203.6854775808 to 922337203.6854775807

money(11): -92233720.36854775808 to 92233720.36854775807

money(12): -9223372.036854775808 to 9223,372.036854775807

money(13): -922337.2036854775808 to 922337.2036854775807

money(14): -92233.72036854775808 to 92233.72036854775807

money(15): -9223.372036854775808 to 9223.372036854775807

To initialize a variable, parameter, or column with a value of
-92,233.72036854775807, specify (-9...7) -1 to avoid CCL compiler
errors.

Specify explicit scale for money constants with Dn syntax, where n

represents the scale. For example, 100.1234567D7, 100.12345D5.

Implicit conversion between money(n) types is not supported be-

cause there is a risk of losing range or scale. Perform the cast function to
work with money types that have different scale.

CHAPTER 3: CCL Language Components

20 Sybase Event Stream Processor

Datatype Description

bigdatetime Timestamp with microsecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSSSSS.

All numeric datatypes are implicitly cast to bigdatetime.

The rules for conversion vary for some datatypes:

• All boolean, integer, and long values are converted in

their original format to bigdatetime

• Only the whole-number portions of money(n) and float
values are converted to bigdatetime. Use the cast function to

convert money(n) and float values to bigdatetime
with precision.

• All date values are multiplied by 1000000 and converted to mi-

croseconds to satisfy bigdatetime format.

• All timestamp values are multiplied by 1000 and converted to

microseconds to satisfy bigdatetime format.

timestamp Timestamp with millisecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSS.

date Date with second precision. The default format is YYYY-MM-
DDTHH:MM:SS.

CHAPTER 3: CCL Language Components

Programmers Reference 21

Datatype Description

interval A signed 64-bit integer that represents the number of microseconds
between two timestamps. Specify an interval using multiple units

in space-separated format, for example, "5 Days 3 hours 15 Minutes".
External data that is sent to an interval column is assumed to be in
microseconds. Unit specification is not supported for interval
values converted to or from string data.

When an interval is specified, the given interval must fit in a 64-bit

integer (long) when it is converted to the appropriate number of

microseconds. For each interval unit, the maximum allowed val-

ues that fit in a long when converted to microseconds are:

• MICROSECONDS (MICROSECOND, MICROS): +/-
9223372036854775807

• MILLISECONDS (MILLISECOND, MILLIS): +/-
9223372036854775

• SECONDS(SECOND, SEC): +/- 9223372036854

• MINUTES(MINUTE, MIN): +/- 153722867280

• HOURS(HOUR,HR): +/- 2562047788

• DAYS(DAY): +/- 106751991

The values in parentheses are alternate names for an interval unit.

When the maximum value for a unit is specified, no other unit can be
specified or it causes an overflow. Each unit can be specified only once.

binary Represents a raw binary buffer. Maximum length of value is platform-
dependent, but can be no more than 65535 bytes. NULL characters are
permitted.

boolean Value is true or false. The format for values outside of the allowed range
for boolean is 0/1/false/true/y/n/on/off/yes/no, which is case-insen-

sitive.

Intervals
Interval syntax supports day, hour, minute, second, millisecond, and microsecond values.

Intervals measure the elapsed time between two timestamps, using 64 bits of precision. All
occurrences of intervals refer to this definition:
value | {value [{DAY[S] | {HOUR[S] | HR} | MIN[UTE[S]] | SEC[OND[S]]
| {MILLISECOND[S] | MILLIS} | {MICROSECOND[S] | MICROS}] [...]}

If only value is specified, the timestamp default is MICROSECOND[S]. You can specify
multiple time units by separating each unit with a space, however, you can specify each unit

CHAPTER 3: CCL Language Components

22 Sybase Event Stream Processor

only once. For example, if you specify HOUR[S], MIN[UTE[S]], and SEC[OND[S]]
values, you cannot specify these values again in the interval syntax.

Each unit has a maximum value when not combined with another unit:

Time Unit Maximum Value Allowed

MICROSECOND[S] | MICROS 9,223,372,036,854,775,807

MILLISECOND[S] | MILLIS 9,233,372,036,854,775

SEC[OND[S]] 9,223,372,036,854,775

MIN[UTE[S]] 153,722,867,280,912

HOUR[S] | HR 2,562,047,788,015

DAY[S] 106,751,991,167

These maximum values decrease when you combine units.

Specifying value with a time unit means it must be a positive value. If value is negative, it
is treated as an expression. That is, -10 MINUTES in the interval syntax is treated as -(10
MINUTES). Similarly, 10 MINUTES-10 SECONDS is treated as (10 MINUTES)-(10
SECONDS).

The time units can be specified only in CCL. When specifying values for the interval column
using the API or adapter, only the numeric value can be specified and is always sent in
microseconds.

Examples
3 DAYS, 1 HOUR, 54 MINUTES

2 SECONDS, 12 MILLISECONDS, 1 MICROSECOND

Operators
CCL supports a variety of numeric, nonnumeric, and logical operator types.

Arithmetic Operators
Arithmetic operators are used to negate, add, subtract, multiply, or divide numeric values.
They can be applied to numeric types, but they also support mixed numeric types. Arithmetic
operators can have one or two arguments. A unary arithmetic operator returns the same
datatype as its argument. A binary arithmetic operator chooses the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data-type, and
returns that type.

CHAPTER 3: CCL Language Components

Programmers Reference 23

Operator Meaning Example Usage

+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (Remainder) 8%3

^ Exponent 4^3

- Change signs -3

++ Increment

Preincrement (++argument) value is incremented before it
is passed as an argument

Postincrement (argument++) value is passed and then in-
cremented

++a (preincrement)

a++ (postincre-
ment)

-- Decrement

Predecrement (--argument) value is decremented before it
is passed as an argument

Postdecrement (argument--) value is passed and then de-
cremented

--a (predecrement)

a-- (postdecrement)

Comparison Operators
Comparison operators compare one expression to another. The result of such a comparison
can be TRUE, FALSE, or NULL.

Comparison operators use this syntax:
expression1 comparison_operator expression2

Operator Meaning Example Us-
age

= Equality a0=a1

!= Inequality a0!=a1

<> Inequality a0<>a1

> Greater than a0!>a1

>= Greater than or equal to a0!>=a1

CHAPTER 3: CCL Language Components

24 Sybase Event Stream Processor

Operator Meaning Example Us-
age

< Less than a0!<a1

<= Less than or equal to a0!<=a1

IN Member of a list of values. If the value is in the expression list's
values, then the result is TRUE.

a0 IN (a1, a2, a3)

Logical Operators

Operator Meaning Example Usage

AND Returns TRUE if all expressions are TRUE, and FALSE oth-
erwise.

(a < 10) AND (b >
12)

NOT Returns TRUE if all expressions are FALSE, and TRUE oth-
erwise.

NOT (a = 5)

OR Returns TRUE if any of the expressions are TRUE, and
FALSE otherwise.

(b = 8) OR (b = 6)

XOR Returns TRUE if one expression is TRUE and the other is
FALSE. Returns FALSE if both expressions are TRUE or both
are FALSE.

(b = 8) XOR (a > 14)

String Operators

Operator Meaning Example Usage

+ Concatenates strings and returns another string.

Note: The + operator does not support mixed datatypes (such
as an integer and a string).

'go' + 'cart'

LIKE Operator
May be used in column expressions and WHERE clause expressions. Use the LIKE operator to
match string expressions to strings that closely resemble each other but do not exactly match.

CHAPTER 3: CCL Language Components

Programmers Reference 25

Operator Syntax and Meaning Example Usage

LIKE Matches WHERE clause string expressions to strings that
closely resemble each other but do not exactly match.

compare_expression LIKE pat-
tern_match_expression

The LIKE operator returns a value of TRUE if compare_ex-

pression matches pattern_match_expression, or FALSE if
it does not. The expressions can contain wildcards, where the
percent sign (%) matches any length string, and the under-
score (_) matches any single character.

Trades.StockName
LIKE "%Corp%"

[] Operator
The [] operator is only supported in the context of dictionaries and vectors.

Operator Syntax and Meaning Example Usage

[] Allows you to perform functions on rows other than the cur-
rent row in a stream or window.

stream-or-window-name[index].column

stream-or-window-name is the name of a stream or window
and column indicates a column in the stream or window.
index is an expression that can include literals, parameters, or
operators, and evaluates to an integer. This integer indicates
the stream or window row, in relation to the current row or to
the window's sort order.

MyNamedWind-
ow[1].MyColumn

Order of Evaluation for Operators
When evaluating an expression with multiple operators, the engine evaluates operators with
higher precedence before those with lower precedence. Those with equal precedence are
evaluated from left to right within an expression. You can use parentheses to override operator
precedence, since the engine evaluates expressions inside parentheses before evaluating those
outside.

Note: The ^ operator is right-associative. Thus, a ^ b ^ c = a ^ (b ^ c), not (a ^ b) ^ c.

The operators in order of preference are as follows. Operators on the same line have the same
precedence:

• +.- (as unary operators)
• ^
• *, /, %
• +, - (as binary operators and for concatenation)
• =, !=, <>, <, >, <=, >= (comparison operators)

CHAPTER 3: CCL Language Components

26 Sybase Event Stream Processor

• LIKE, IN, IS NULL, IS NOT NULL
• NOT
• AND
• OR, XOR

Expressions
An expression is a combination of one or more values, operators, and built in functions that
evaluate to a value.

An expression often assumes the datatype of its components. You can use expressions in many
places including:

• Column expressions in a SELECT clause
• A condition of the WHERE clause or HAVING clause

Expressions can be simple or compound. A built-in function such as length() or pi() can also be
considered an expression.

Simple Expressions
A simple CCL expression specifies a constant, NULL, or a column. A constant can be a
number or a text string. The literal NULL denotes a null value. NULL is never part of another
expression, but NULL by itself is an expression.

You can specify a column name by itself or with the name of its stream or window. To specify
both the column and the stream or window, use the format "stream_name.column_name."

Some valid simple expressions include:

• stocks.volume

• 'this is a string'

• 26

Compound Expressions
A compound CCL expression is a combination of simple or compound expressions.
Compound expressions can include operators and functions, as well as the simple CCL
expressions (constants, columns, or NULL).

You can use parentheses to change the order of precedence of the expression's components.

Some valid compound expressions include:

• sqrt (9) + 1

• ('example' + 'test' + 'string')

• (length ('example') *10) + pi()

CHAPTER 3: CCL Language Components

Programmers Reference 27

Sequences of Expressions
An expression can contain a sequence of expressions; separated by semicolons and grouped
using parentheses, to be evaluated in order. The type and value of the expression is the type and
value of the last expression in the sequence. For example,

• (var1 := v.Price; var2 := v.Quantity; 0.0)

sets the values of the variables var1 and var2, and then returns the value 0.0.

Conditional Expressions

A conditional CCL expression evaluates a set of conditions to determine its result. The
outcome of a conditional expression is evaluated based on the conditions set. In CCL, the
keyword CASE appears at the beginning of these expressions and follows a WHEN-THEN-
ELSE construct.

The basic structure looks like this:

CASE
WHEN expression THEN expression
[...]
ELSE expression
END

The first WHEN expression is evaluated to be either zero or non-zero. Zero means the
condition is false, and non-zero indicates that it is true. If the WHEN expression is true, the
following THEN expression is carried out. Conditional expressions are evaluated based on the
order specified. If the first expression is false, then the subsequent WHEN expression is tested.
If none of the WHEN expressions are true, the ELSE expression is carried out.

A valid conditional expression in CCL is:

CASE
WHEN mark>100 THEN grade:=invalid
WHEN mark>49 THEN grade:=pass
ELSE grade:=fail
END

CCL Comments
Like other programming languages, CCL lets you add comments to document your code.

CCL recognizes two types of comments: doc-comments and regular multi-line comments.

The visual editor in the ESP Studio recognizes a doc-comment and puts it in the comment field
of the top-level CCL statement (such as CREATE SCHEMA or CREATE INPUT WINDOW)
immediately following it. Doc-comments not immediately preceding a top-level statement are
seen as errors by the visual editor with ESP Studio.

CHAPTER 3: CCL Language Components

28 Sybase Event Stream Processor

Regular multi-line comments do not get treated specially by the Studio and may be used
anywhere in the CCL project.

Begin a multi-line comment with /* and complete it with */. For example:

/*
This is a multi-line comment.
All text within the begin and end tags is treated as a comment.
*/

Begin a doc-comment with /** and end it with */. For example:

/**
This is a doc-comment. Note that it begins with two * characters
instead of one. All text within the begin and end tags is recognized
by the Studio visual editor and associated with the immediately
following statement (in this case the CREATE SCHEMA statement).
*/
CREATE SCHEMA S1 ...

The CREATE SCHEMA statement provided here is incomplete; it is shown only to illustrate
that the doc comment is associated with the immediately following CCL statement.

It is common to delineate a section of code using a row of asterisks. For example:
/***
Do not modify anything beyond this point without authorization
**/

CCL treats this rendering as a doc-comment because it begins with /**. To achieve the same
effect using a multi line comment, insert a space between the first two asterisks: /* *.

Case-Sensitivity
Some CCL syntax elements have case-sensitive names while others do not.

All identifiers are case-sensitive. This includes the names of streams, windows, parameters,
variables, schemas, and columns. Keywords are case-insensitive, and cannot be used as
identifier names. Adapter properties also include case-sensitivity restrictions.

Most built-in function names (except those that are keywords) and user-defined functions are
case-sensitive. While the following built-in function names are case-sensitive, you can
express them in two ways:

• setOpcode, setopcode
• getOpcode, getopcode
• setRange, setrange
• setSearch, setsearch
• copyRecord, copyrecord
• deleteIterator, deleteiterator
• getIterator, getiterator

CHAPTER 3: CCL Language Components

Programmers Reference 29

• resetIterator, resetiterator
• businessDay, businessday
• weekendDay, weekendday
• expireCache, expirecache
• insertCache, insertcache
• keyCache, keycache
• getNext, getnext
• getParam, getparam
• dateInt, dateint
• intDate, intdate
• uniqueId, uniqueid
• LeftJoin, leftjoin
• valueInserted, valueinserted

Example
Two variables, one defined as 'aVariable' and one as 'AVariable' can coexist in the same context
as they are treated as different variables. Similarly, you can define different streams or
windows using the same name, but with different cases.

CHAPTER 3: CCL Language Components

30 Sybase Event Stream Processor

CHAPTER 4 CCL Statements

The CCL statement reference provides syntax, parameter descriptions, usage, and examples.

ADAPTER START Statement
Controls adapter start times.

Syntax
ADAPTER START
GROUPS {groupName[NOSTART]},[,...]
...
;

Usage

The ADAPTER START statement is optional. If the statement is absent, all output adapters start
in parallel, followed by all input adapters in parallel.

Using the ADAPTER START statement, adapters can be put into startup groups, where each
group is started sequentially. This is ensures that certain adapters are started, and load their
data, before others.

Adapter groups are created implicitly when their name is used in the GROUP clause of the
ATTACH ADAPTER statement. The order in which each groupName appears determines the
order in which the adapter groups start. Adapters that are not assigned to one of the ordered
groups are placed in a group that starts after all of the ordered groups have started. By default,
all output adapters in a group start in parallel, followed by all input adapters in parallel.

NOSTART identifies adapters that should not start automatically with the rest of the adapters.
The user can start these adapters using the external XMLRPC interface
(esp_client.exe).

Errors are generated when ADAPTER START:

• References a group that does not exist.
• Does not reference all adapter start groups created with the ATTACH ADAPTER statement.
• References the same group more than once.

Example
The ATTACH ADAPTER statement creates two named adapters groups (RunGroup1,
NoRunGroup), each containing one adapter. The ADAPTER START statement is executed
with instructions to start RunGroup1. The NOSTART syntax instructs the project server not
to start NoRunGroup.

Programmers Reference 31

ATTACH INPUT ADAPTER csvInRun
 TYPE dsv_in
 TO TradeWindow
 GROUP RunGroup1
 PROPERTIES
 blockSize=1,
 dateFormat='%Y/%m/%d %H:%M:%S',
 delimiter=',',
 dir='$ProjectFolder/../data',
 expectStreamNameOpcode=false,
 fieldCount=0,
 file='stock-trades.csv',
 filePattern='*.csv',
 hasHeader=true,
 safeOps=false,
 skipDels=false,
 timestampFormat= '%Y/%m/%d %H:%M:%S';

ATTACH INPUT ADAPTER csvInNoRun
 TYPE dsv_in
 TO TradeWindow
 GROUP NoRunGroup
 PROPERTIES
 blockSize=1,
 dateFormat='%Y/%m/%d %H:%M:%S',
 delimiter=',',
 dir='$ProjectFolder/../data',
 expectStreamNameOpcode=false,
 fieldCount=0,
 file='stock-trades.csv',
 filePattern='*.csv',
 hasHeader=true,
 safeOps=false,
 skipDels=false,
 timestampFormat= '%Y/%m/%d %H:%M:%S';

ADAPTER START GROUPS NoRunGroup NOSTART, RunGroup1;

ATTACH ADAPTER Statement
Attach an adapter to a stream or window.

Syntax
ATTACH { INPUT|OUTPUT } ADAPTER name
TYPE type
TO streamorwindow
[GROUP groupName]
[PROPERTIES {prop=value} [, ...]];

Parameters

name Names to the adapter

CHAPTER 4: CCL Statements

32 Sybase Event Stream Processor

type Specifies the type of the adapter

streamorwindow Specifies the stream or window to which you are attaching
the adapter

Usage
Adapters are defined with an inline definition of the type and the properties that make up the
adapter or else via an adapter property set. The type is the unique ID assigned to each adapter.
You can find each adapter's type in the Adapters Guide.

An ATTACH ADAPTER statement cannot appear after an ADAPTER START statement.

There is no statement that creates adapter groups. You can group adapters by providing the
groupname in the GROUP clause. This grouping is then later used in the ADAPTER START
statement to start the adapters in the prescribed order. You cannot specify a group without an
ADAPTER START statement.

An adapter marked as input can be attached only to an input stream or window. An adapter
marked as output can be attached to an input or output stream or window. An adapter (either
input or output) cannot be attached to a local stream or window. An adapter defined as an input
adapter in its cnxml file cannot be attached as an output adapter, and an adapter defined in its
cnxml file as an output adapter cannot be attached as an input adapter.

The property name and value pairs that are valid for an ATTACH ADAPTER statement are
dependent on the adapter type. The property names are case-insensitive. All specifications
relating to what properties are required by a particular adapter exist in that adapter's cnxml
file, which is stored in the Sybase Event Stream Processor installation folder. This file is used
in the validation of properties.

Any adapter property you provide must have its name defined in the adapter's cnxml file, and
the values for all properties must match their defined datatypes. If the same property is
provided twice, the compiler raises an error.

You can also specify property sets within an ATTACH ADAPTER statement. Property sets are
reusable sets of properties that are stored in the project configuration file. If you specify a
property set, verify that all required properties are set as individual properties. Property sets
override individual properties specified within the ATTACH ADAPTER statement.

Example
ATTACH INPUT ADAPTER MacysInventory
TYPE dsv_in
TO InventoryInfo
PROPERTIES
dir='C:/Operations/Stock/Inventory/MacysInventory',
file='inventory.csv',
propertyset '<name>';

CHAPTER 4: CCL Statements

Programmers Reference 33

CREATE DELTA STREAM Statement
Defines a stateless element that can interpret all operational codes (opcodes): insert, delete and
update.

Syntax
CREATE [LOCAL | OUTPUT] DELTA STREAM name
[schema_clause]
primary_key_clause
[local-declare-block]
as_clause
Query;

Components

name The name of the delta stream being created.

schema_clause Schema definition for new windows. If no schema clause is speci-
fied, it can be derived from the query.

primary_key_clause Set primary key. See PRIMARY KEY Clause for more informa-
tion.

local-declare-block (Optional) A declaration of variables and functions that can be
accessed in the query.

as_clause Introduces query to statement.

Query A query implemented in a statement. See Queries for more infor-
mation.

Usage
A delta stream is a stateless element that can understand all opcodes. A delta stream can be
used when a computation, filter, or union must be performed on the output of a window, but a
state does not need be maintained.

A delta stream typically forwards the opcode it receives. However, for a filter, a delta stream
modifies the opcode it receives. An input record with an insert opcode that satisfies the filter
clause has an insert opcode on the output. An input record with an update opcode, where the
update meets the criteria but the original record does not, outputs with an insert opcode.
However, if the old record meets the criteria, it outputs with an update opcode. An input record
with a delete opcode outputs with a delete opcode, as long as it meets the filter criteria.
CREATE DELTA STREAM is used primarily in computations that transform through a simple
projection.

See the <xref href="san1311804134032.xml">Using SPLASH in Flex Operators</xref>
topic for more details.

CHAPTER 4: CCL Statements

34 Sybase Event Stream Processor

Restrictions

• A delta stream cannot use functions that cannot be repeated, such as random() or now().
When a delta stream produces a delete record, the computed column in the record gets
recalculated, and as a result, will not match what was originally computed and inserted for
the record. Any downstream computation using this column could lead to incorrect results.
An update is internally treated as a delete followed by an insert in many contexts and hence
an update would also lead to the same issue for delta streams using non-repeatable
functions.

• When subscribing to a delta stream, the opcodes the delta stream generates must be treated
as safe opcodes. This means that any inserts/updates must be treated as upserts (insert if the
record does not exist and update otherwise). Similarly, any deletes must be treated as
deletes if they exist, otherwise they should be silently ignored.

• There are no restrictions on the operations that a target node can perform when using a
delta stream as an input.

• When the delta stream is defined using a Flex operator, the SPLASH code can output only
inserts or deletes. Upserts and updates are not allowed because the delta streams have no
state to handle them correctly. To perform an update, issue a delete, followed by an insert.

• The query of a delta stream cannot contain clauses that perform aggregation or joins.

Examples
This creates a delta stream that computes total cost:

CREATE INPUT WINDOW Trades SCHEMA (
 TradeId long,
 Symbol string,
 Price money(4),
 Shares integer
)
PRIMARY KEY (TradeId)
;

CREATE DELTA stream TradesWithCost
PRIMARY KEY DEDUCED
AS SELECT
 trd.TradeId,
 trd.Symbol,
 trd.Price,
 trd.Shares,
 trd.Price * trd.Shares TotalCost
FROM
 Trades trd
;

This creates a delta stream that filters out records where total cost is less than 10,000:

CREATE DELTA stream LargeTrades
PRIMARY KEY DEDUCED
AS SELECT * FROM TradesWithCost twc WHERE twc.TotalCost >= 10000
;

CHAPTER 4: CCL Statements

Programmers Reference 35

CREATE ERROR STREAM Statement
Create a stream that collects errors and the events that caused them.

Syntax
CREATE [LOCAL|OUTPUT] ERROR STREAM name ON source [, source ...]

name is a string that identifies the newly created error stream.

source is a string that identifies a previously defined stream or window.

Usage
Error streams collect error data from the specified streams. Each error record includes the
error code and the input event that caused the error. You can simply display these records for
monitoring purposes, or they may trigger more processing logic downstream, just like the
records from other streams.

In production environments, error streams are used for real-time monitoring of one or more
streams in the project. They are also used in development environments to monitor the input
and derived streams when debugging a project.

The visibility of an error stream is, by default, LOCAL. To make the error stream visible to
external monitoring tools or devices, you must specify OUTPUT when you create it.

You can define more than one error stream in a single project.

Examples
To create a single error stream (that is visible externally) to monitor all the streams in a project
with one input stream and two derived streams, enter:
CREATE OUTPUT ERROR STREAM AllErrors ON InputStream, DerivedStream1,
DerivedStream2

To create separate error streams (both visible only locally) to monitor the input and derived
streams in a project with two input streams and three derived streams, enter:
CREATE ERROR STREAM InputErrors ON InputStream1, InputStream2
CREATE ERROR STREAM QueryErrors ON DerivedStream1, DerivedStream2,
DerivedStream3

CHAPTER 4: CCL Statements

36 Sybase Event Stream Processor

CREATE FLEX Statement
A flex operator takes input from one or more streams/windows and produces a derived stream
or window as its output. It allows the use of SPLASH code to specify customizable processing
logic.

Note: The name of the Flex operator exists only for labeling in Studio and cannot be referred
to in queries. Instead, refer to the output element.

Syntax
CREATE FLEX procedureName
 IN input1 [KEEP keep_spec], ...
 OUT output_element
 BEGIN
 [DECLARE
 //variable and function declarations
 END;]
 ON input1 {
 //statements
 };
 [EVERY interval{
 //periodically executing tasks
 };]
 [ON START TRANSACTION {
 //tasks to be executed
 //at the start of every transaction
 };]
 [ON END TRANSACTION {
 //tasks to be executed
 //at the end of each transaction
 };]
 END;

OUT output_element
output_element:
{{[OUTPUT/LOCAL] STREAM name schema_clause
 [OUTPUT/LOCAL] DELTA STREAM name schema_clause|PRIMARY
KEY{column1,column2,...)
 [OUTPUT/LOCAL] WINDOW name schema_clause}
 [PRIMARY KEY(column1,column2,...)][store_clause][keep_clause]
[aging_clause]
 }
}

Components

procedureName The name of the Flex operator being created.

CHAPTER 4: CCL Statements

Programmers Reference 37

IN input1 Inputs to the Flex operator are declared in the IN
clause. The inputs can be streams, delta streams,
windows, or outputs of another flex operator.

KEEP keep_spec The KEEP clause modifies the retention policy of
existing input elements that are either delta
streams or windows.

OUT output_element The output of the Flex operator is defined in the
OUT clause. A Flex stream can have only one
output. The SCHEMA clause is mandatory for all
output types.

DECLARE ... END; (Optional) The DECLARE block can define vari-
ables and functions of all types, including com-
plex data types such as records, vectors, diction-
aries and event caches.

See the SPLASH Programmers Guide for addi-
tional information.

ON input1 The ON input clause must be declared for every
input of the Flex operator. The SPLASH code
specified in this block is executed each time an
input record is received. If an input element does
not require processing, use an empty ON input
clause.

EVERY interval (Optional) The EVERY interval clause allows you
to specify a block of code that is executed every
time the interval expires. The interval can be
specified explicitly, or specified through an inter-
val type parameter.

ON START TRANSACTION and ON END

TRANSACTION

(Optional) The SPLASH statements specified in
the START/END transaction block are executed
at the start/end of each transaction respectively.
You can individually specify a START TRANS-

ACTION block or END TRANSACTION block,
without the other block.

Usage
The CREATE FLEX statement is used to create a Flex operator that accepts any number of input
elements and produces one output element. The input elements are previously existing
streams, delta streams, and windows defined in the project. If the input element is a delta
stream or window, its retention policy can be modified by specifying a KEEP clause. The
output element is a stream, delta stream, or window with an unique name generated by the Flex

CHAPTER 4: CCL Statements

38 Sybase Event Stream Processor

operator. Specification of the SCHEMA clause is mandatory for all output element types.
Specification of the PRIMARY KEY is mandatory for output elements that are delta streams or
windows.

The ON input clause contains the processing logic for inputs arriving on a particular input
element. Specification of the ON input clause is mandatory for each input of the Flex operator.
The ON START TRANSACTION and ON END TRANSACTION clauses are optional and contain
processing logic that should be executed at the start/end of each transaction respectively. The
optional EVERY interval clause contains logic that is executed periodically based on a fixed
time interval independent of any incoming events.

Restrictions

• A KEEP clause can be specified for the input of a Flex operator if the input element is a
window or a delta stream.

• You cannot declare functions in the ON input and EVERY clauses.
• You can define event cache types only in the local DECLARE block associated with the

statement.
• A Flex delta stream (a Flex stream for which the output is a delta stream) cannot be used to

generate records with update or upsert opcodes. To generate records with these opcodes,
use a Flex window instead of a Flex delta stream.

• The SPLASH output statement can be used inside the body of a function defined only in
the local declare block of a Flex operator and not in a global declare block or a local declare
block of any other element.

Example
This example computes the average trade price every five seconds.
CREATE FLEX ComputeAveragePrice
 IN NASDAQ_Trades
 OUT OUTPUT WINDOW AverageTradePrice SCHEMA (Symbol string,
 AveragePrice money(4)) PRIMARY KEY(Symbol)
 BEGIN
 DECLARE
 typedef [|money(4) TotalPrice; integer NumOfTrades] totalRec_t;
 dictionary(string,totalRec_t) averageDictionary;
 END;
 ON NASDAQ_Trades {
 totalRec_t rec := averageDictionary[NASDAQ_Trades.Symbol];
 if(isnull(rec)) {
 averageDictionary[NASDAQ_Trades.Symbol] :=
 [|TotalPrice = NASDAQ_Trades.Price; NumOfTrades = 1];
 } else {
 // accumulate the total price and number of trades per input record
 averageDictionary[NASDAQ_Trades.Symbol] :=
 [|TotalPrice=rec.TotalPrice + NASDAQ_Trades.Price;
 NumOfTrades=rec.NumOfTrades + 1];
 }
 };
 EVERY 5 SECONDS {
 totalRec_t rec;

CHAPTER 4: CCL Statements

Programmers Reference 39

 for (sym in averageDictionary) {
 rec := averageDictionary[sym];
 output setOpcode([Symbol=sym;|AveragePrice=(rec.TotalPrice/
rec.NumOfTrades);], upsert);
 }
 };
 END;

CREATE LIBRARY Statement
In order to use external C/C++ and Java functions in CCL expressions, you must first declare
them in your CCL project using the CREATE LIBRARY statement.

Syntax
CREATE LIBRARY libraryName LANGUAGE {C|JAVA} FROM fileName(
returnType funcName (argType [argName],...);
...);

Components

libraryName The user-specified name of the library.

C, JAVA Defines the language of the library. The names are case-insensitive.

fileName For C/C++ functions, the directory of the shared library. You can
use a path relative to the current directory.

For Java functions, the name of the class file without the .class
suffix. You can specify it as a string parameter. You can use the -j
option when starting the Event Stream Processor Server to provide
the locations of the class files.

funcName The name of the declared function.

returnType, argType Datatype of the return value of the function and an argument of the
function, respectively.

argName The name of an argument of the function.

Usage
Call declared functions using the libraryName.funcName notation.

Use the IMPORT statement to import the CREATE LIBRARY statement from a different CCL
file to your main project.

You can reference only one external library using the CREATE LIBRARY statement, but you
can reference the external library any number of times in multiple CREATE LIBRARY
statements.

CHAPTER 4: CCL Statements

40 Sybase Event Stream Processor

Libraries are defined, which means you can use them before they have been declared.
However, if a global user-defined function uses an external C/C++ or Java function, you must
declare the library, specifying the function signature, before the global DECLARE block.

Note: C/C++ external library calls support all datatypes, namely boolean, integer, long, float,
money(n), date, bigdatetime, binary, and string.

Java external library calls support only integer, long, double, and string datatypes.

Complex types such as dictionaries, vectors, event caches and record types are not supported
in external functions.

Examples
Create a C/C++ Library
CREATE LIBRARY MyCFunctions LANGUAGE C FROM '/opt/sybase/
MyFunctions.so' (
 integer MyFunc1 (integer, integer, float);
 string MyFunc2(string);
);

Create a Java Function
CREATE LIBRARY MyJavaFunctions LANGUAGE JAVA FROM 'MyClass' (
 integer MyFunc1 (integer, integer, float);
 string MyFunc2(string);
);

CREATE LOG STORE Statement
Creates a log store for use by one or more windows. Unlike a memory store (which is the
default) a log store persists data to disk so that it can be recovered after a shutdown or failure.

Syntax
CREATE [DEFAULT] LOG STORE storename
PROPERTIES
filename='filepath'
[sync={ true | false},]
[sweepamount=size,]
[reservepct=size,]
[ckcount=size,]
[maxfilesize=filesize];

Parameters

filename The absolute or relative path to the folder where log store files
should be written. The relative path is preferred.

maxfilesize The maximum size of the log store file in MB. Default is 8MB.

CHAPTER 4: CCL Statements

Programmers Reference 41

sync Specifies whether the persisted data is updated synchronously
with every stream being updated. A value of true guarantees that
every record acknowledged by the system is persisted at the ex-
pense of performance. A value of false improves performance, but
it may result in a loss of data that is acknowledged, but not yet
persisted. Default is false.

reservepct The percentage of the log to keep as free space. Default is 20
percent.

sweepamount The amount of data, in megabytes, that can be cleaned in a single
pass. Default is 20 percent of maxfilesize.

ckcount The maximum number of records written before writing the in-
termediate metadata. Default is 10,000.

Components

storename An identifier that can be referenced in the STORE clause of stateful
elements. Must be unique.

filepath A path to the log store folder, enclosed in single quotes

size An integer.

filesize A size in MB.

Usage
A log store is a disk-optimized store that is persisted on the disk. The state of windows
assigned to a log store are restored upon recovery, and the state of memory store windows that
receive data from a log store window are recomputed when possible. Log stores are
implemented as memory mapped files. The filename parameter is required; however, sync,
sweepamount, reservepct, and ckcount are optional. If these parameters are not specified,
the store refers to their default values.

Specify parameters in the PARAMETERS clause, in any order.

You cannot specify memory store parameters for log store parameters, or log store parameters
for memory parameters.

If DEFAULT is specified, the store is the default store for the module or project. The store is
used for stateful elements that do not explicitly specify a store with a STORE clause. When a
store is not defined for the project or module, a default memory store is automatically created
for holding the stateful elements. Due to the restrictions on the use of log stores, making a log
store the default store for a project is NOT recommended

CHAPTER 4: CCL Statements

42 Sybase Event Stream Processor

Example
CREATE LOG STORE myStore
PROPERTIES
filename='myfile',
maxfilesize=16,
sweepamount=4,
ckcount=15000,
reservepct=20,
sync=false;

CREATE MEMORY STORE Statement
Creates a named memory store that one or more windows can be assigned to. Is not required
but can be used for performance optimization.

Syntax
CREATE [DEFAULT] MEMORY STORE storename
[PROPERTIES
[INDEXTYPE={'tree'|'hash'},]
[INDEXSIZEHINT=size]]

Parameters

INDEXTYPE The type of index mechanism for the stored elements. The default
is 'tree'. Use tree for binary trees. Binary trees are predictable

in use of memory and consistent in speed. Use hash for hash
tables, as hash tables are faster, but they often consume more
memory.

INDEXSIZEHINT (Optional) Determines the initial number of elements in the hash
table, when using hash. The value is in units of 1024. Setting this
higher consumes more memory, but reduces the chances of spikes
in latency. Default is 8KB.

Components

storename An identifier that can be referenced in the STORE clause of stateful
elements. Must be unique.

'tree' Default index mechanism.

'hash' Alternative index mechanism.

Usage
A memory store holds all the retained records for one or more windows. The data is held in
memory and does not persist on the disk. The INDEXTYPE parameter is optional, and the store

CHAPTER 4: CCL Statements

Programmers Reference 43

supports 'tree' or 'hash' index types. If you do not specify the index type and size
parameters, the store refers to their default values.

Specify parameters in the PARAMETERS clause, but this clause is optional for memory stores,
since all its parameters are optional. Properties may be specified in any order.

You cannot specify memory stores parameters for log stores, or log store parameters for
memory stores.

If you specify DEFAULT, the store is the default store for the module or project. The store is
used for stateful elements that do not explicitly specify a store with a STORE clause. When a
store is not defined for the project or module, a default memory store is automatically created
for holding the stateful elements.

Example
CREATE DEFAULT MEMORY STORE Store1 PROPERTIES INDEXTYPE='hash',
INDEXSIZEHINT=16;

CREATE MODULE Statement
Create a module that contains specific functionality that you can load in a CCL project using
the LOAD MODULE statement.

Syntax
CREATE MODULE moduleName
IN input1 [,...]
OUT output1[,...]
BEGIN
 statements;
END;

Components

moduleName The name of the module.

input1 The input stream or window.

output1 The output stream or window.

Usage
All CCL statements are valid in a module except:

• CREATE MODULE

• ATTACH ADAPTER

• ADAPTER START GROUPS

moduleName should be unique across all object names in the scope in which the statement
exists. The names in the IN and OUT clauses must match the names of the streams or windows

CHAPTER 4: CCL Statements

44 Sybase Event Stream Processor

defined in the BEGIN-END block. All streams or windows with input visibility must be listed in
the IN clause. All streams, windows, and delta streams (including those created by the flex
operator), with output visibility must be listed in the OUT clause. The compiler generates an
error if any input or output objects exist in the module and are not listed in their respective IN or
OUT clause.

While you can use multiple CREATE statements within modules, such as the CREATE
WINDOW and CREATE STREAM statements, the CREATE STORE statement uses a special
syntax that cannot be used outside of a module. The syntax used within a module does not
allow you to specify any store properties. The CREATE STORE syntax within a module is:
CREATE [DEFAULT] {MEMORY|LOG} STORE store1-inmodule;

Note: All CREATE MODULE statement compilation errors are fatal.

Restrictions

• You cannot use the CREATE MODULE statement within the module definition.

Example
This example creates a simple module that filters data based on a column's values:
CREATE MODULE filter_module
IN moduleIn
OUT moduleOut
BEGIN
 CREATE SCHEMA filter_schema (Value INTEGER);
 CREATE INPUT STREAM moduleIn SCHEMA filter_schema;
 CREATE OUTPUT STREAM moduleOut SCHEMA filterSchema AS SELECT *
FROM moduleIn WHERE moduleIn.Value > 10;
END;

CREATE SCHEMA Statement
Defines a named schema that can be referenced later and reused by one or more streams/
windows in the project or module.

Syntax
CREATE SCHEMA name {(columname type [,...])|
 INHERITS [FROM] schema_name [,...] [(columname type [,...])]};

Components

name An identifier that is referenced while defining
stateless or stateful elements.

columnname The unique name of a column.

type The datatype of the specified column.

CHAPTER 4: CCL Statements

Programmers Reference 45

schema_name The name of another schema.

Usage
The CREATE SCHEMA statement defines a named schema that can be referenced by stateful
and stateless elements such as streams or windows. You can define the schema as an inline
schema definition, or so that it inherits the definition from another schema.

You can extend a schema by setting it up to inherit an existing schema definition and
appending more columns. Additional columns you specify are appended to the inherited
schema. Otherwise, the inherited schema definition remains an exact replica of the specified
named schema. Alternatively, you can extend a schema by inheriting multiple schema
definitions.

The concatenation of the schemas is implicit in the specified order. Additional columns are
appended. These column names must be unique, otherwise an error is raised.

Examples
This creates two schemas, symbol_schema and trade_schema, which is extended from
symbol_schema:

CREATE SCHEMA symbol_schema (Symbol STRING);
CREATE SCHEMA trade_schema INHERITS FROM symbol_schema (Price
FLOAT);

CREATE SPLITTER Statement
The Splitter construct is a multi-way filter that sends data to different target streams depending
on the filter condition. It works similar to the ANSI 'case' statement.

Syntax
CREATE [[LOCAL]|OUTPUT] SPLITTER name AS
{ WHEN condition THEN {target_streamname [, …]} } […]
[ELSE {target_streamname[,..]}]
SELECT { column_list | * }
FROM source_name [{[alias] [KeepClause]}|{[KeepClause][alias]}]
;

Components

condition Any expression that results in a 0 or 1.

name Any string specified to identify the splitter construct. Must be
unique within a module or top level project.

target_streamname Name of a stream or delta stream into which the filtered records are
inserted. Must be unique within the module or top level project.

CHAPTER 4: CCL Statements

46 Sybase Event Stream Processor

source_name The source (stream, window, or delta stream) that provides input
data on which the splitter logic is applied.

column_list A set of expressions referring only to the columns in the source
stream, constant expressions, constant literals, global variables and
functions, or parameters.

Usage
The target stream or delta streams are implicitly defined by the compiler. The schema for the
target streams are derived based on the column_list specification. All the targets are defined as
either local or output depending on the visibility clause defined for the splitter. The default is
local. Note that when the splitter has an output visibility, output adapters can be directly
attached to the splitter targets, even though those targets are implicitly defined.

Each filter condition in a splitter can have one or more target streams defined. However, each
target stream name can appear only once in the list. This allows the possibility to send an event
down multiple paths in the graph as the example below shows.

Note: When a condition evaluates to true, the following conditions are neither considered nor
evaluated.

The semantics of the splitter are that of a switch statement. Whenever the condition evaluates
to true (non-zero value), the record as projected in the column_list is inserted into the
corresponding target streams. If the source is a:

• Stream, the targets are also streams.
• Delta stream or window, the targets are delta streams.

If the source is a window or delta stream, the primary keys need to be copied as-is. The other
columns can be changed.

Note: When the source is a window or a delta stream, the warning about unpredictable results
being produced if one of the projections contains a non-deterministic expressions that applies
for delta streams also applies for splitters.

Local DECLARE BLOCKS cannot be specified on SPLITTERS. However, functions,
parameters, and variables in the global DECLARE BLOCK can be accessed in the condition
or column expressions in the projection.

Examples
Create a Splitter

In the following example, if a trade event arrives where the Symbol is IBM or ORCL, then the
event is directed to both ProcessHardWareStock and ProcessSoftwareStock streams. If a trade
event arrives where the Symbol is either 'SAP' or 'MSFT', then it is directed to the
ProcessSoftwareStock stream. All other trades are directed to the ProcessOtherStock stream.
CREATE SPLITTER Splitter1 AS
WHEN Trades.Symbol IN ('IBM', 'ORCL') THEN ProcessHardWareStock,

CHAPTER 4: CCL Statements

Programmers Reference 47

ProcessSoftwareStock
WHEN Trades.Symbol IN ('SAP', 'MSFT') THEN ProcessSoftwareStock
ELSE ProcessOtherStock
SELECT * FROM Trades;

Performance Considerations
A splitter is typically more efficient both in terms of CPU utilization and throughput when
there is more than a two way split than an equivalent construct composed of two or more
streams that implement a filter. Unlike other streams in ESP, a Splitter and all its target streams
run in a single thread. This means that the Splitter thread is responsible for distributing data to
its dependents.

The Splitter is more efficient than its equivalent multi-threaded logic for these reasons:

• The performance of a stream is inversely proportional to the amount of data that a source
stream needs to distribute to its target. If a stream has two dependent streams, it needs to
distribute twice the amount of data it produces (that is, one copy for each target stream).
Similarly, if a stream has five dependencies it needs to distribute five times the data it
produces. For example, this is the case when three filter streams depend on one source,
with each filter only producing a third of the input data as output. In the case of a splitter,
the source needs to distribute the data only once to the splitter and this reduces the load on
the source stream.

• The decrease in CPU utilization comes from the fact that you don't have three separate
streams processing 100% of the input data to produce, for example, a third of the data as
output. In the case of the splitter, the incoming data is analyzed only once and typically no
more than 100% of the incoming data is distributed to the appropriate target streams when
the filter condition is satisfied.

However, note that because the splitter is single threaded, its performance advantage degrades
quickly when it needs to distribute the same data more than once. For example, there is more
than one target stream for each filter condition or when the target streams themselves have
many dependents.

CREATE STREAM Statement
Create either an input stream that receives events from external sources, or a derived stream of
events that is the result of a continuous query applied to one or more inputs.

Syntax
CREATE INPUT STREAM name schema_clause
[filter-expression-clause]
[autogenerate_clause]
;

CREATE [LOCAL | OUTPUT] STREAM name [schema_clause]
 [local-declare-block]
as_clause
;

CHAPTER 4: CCL Statements

48 Sybase Event Stream Processor

Components

schema_clause Specifies the schema. The schema clause is required for input streams, but
is optional for local and output streams. If the schema is not specified for
local and output streams, it is deduced automatically by the compiler
based on the query specification.

filter-expression-clause (Optional) Can be specified on an input stream. This clause filters the
events before accepting them from the adapter or an outside publisher. In
the expression, reference column values in the form stream.column,
where stream is the name of the stream being created by this statement,
and column is the name of the column being referenced.

autogenerate_clause (Optional) This can be used to automatically add a sequence number to
each event. One or more columns are specified (datatype long) and the
value in the column is incremented for each incoming event. Valid only
for input streams. See AUTOGENERATE Clause for more information.

local-declare-block Allows variable and function declarations that can be accessed in expres-
sions in the query. You cannot define a local-declare-block on an input
stream.

as_clause For derived streams, this contains the continuous query (SELECT clause,
FROM clause) that will define the output of this stream.

Usage
The CREATE STREAM statement explicitly creates a stateless element known as a stream,
which can be designated as input, output, or local. Input streams include a mandatory schema,
and may include an optional filter expression that can remove unneeded data before further
processing. Each incoming event is processed, any output is published, and then the stream is
ready to process the next event.

Output and local streams have an optional schema. They can contain a local declare block to
define variables and functions that can be used in the SELECT clause of the query.

Example
This creates an input stream with a filter:

CREATE INPUT STREAM InStr
SCHEMA (Col1 INTEGER, Col2 STRING)
WHERE InStr.Col2='abcd';

This creates an output stream where the schema is implicitly determined by the SELECT
clause:

CREATE OUTPUT STREAM OutStr as
SELECT InStr.Col1, InStr.Col2

CHAPTER 4: CCL Statements

Programmers Reference 49

FROM InStr
WHERE InStr.Col1 > 1000;

The following statement creates an input stream with auto generated values beginning at
100000 for the TradeId column, filtering out trades with prices below 1000. Note that the
filtering is done after the TradeId is generated.

CREATE INPUT STREAM BigTrades
SCHEMA (TradeId long, Symbol string, Shares integer, Price money(4))
WHERE BigTrades.Price > 1000
AUTOGENERATE (TradeId) FROM 1000000;

CREATE WINDOW Statement
Defines a named window that can be referenced and used by one or more downstream
operators or, if an output window, can be used to publish results.

Syntax
CREATE INPUT WINDOW name schema_clause
primary_key_clause
[store_clause]
[keep_clause]
[autogenerate_clause];

CREATE [LOCAL | OUTPUT] WINDOW name schema_clause
{ PRIMARY KEY (column1, column2, ...) | PRIMARY KEY DEDUCED }
[store_clause]
[aging_clause]
[keep_clause]
[local-declare-block]
as_clause
;

Components

name A name for the window being created.

schema_clause Required for input windows, but optional for lo-
cal and output windows. When the schema clause
is not specified for local and output windows, it is
automatically deduced by the compiler.

primary_key_clause Set primary key.

store_clause (Optional) Specifies the physical mechanism
used to store the state of the records. If no clause is
specified, project or module defaults apply.

CHAPTER 4: CCL Statements

50 Sybase Event Stream Processor

autogenerate_clause (Optional) Specify that the server will automati-
cally generate values for one or more columns of
datatype long. This can be used to generate a pri-
mary key for events that lack a natural key. Valid
only for input windows. See AUTOGENERATE
Clause for more information.

keep_clause (Optional) Specifies the retention policy for the
window. When not specified, the window uses the
KEEP ALL retention policy as a default.

aging_clause (Optional) Specifies the data aging policy. Used
only with output or local windows.

local-declare-block (Optional) Allows variable and function declara-
tions that can be accessed in expressions in the
query. You cannot define a local-declare-block on
an input stream.

as_clause Introduces a query to a statement.

Usage
The SCHEMA and PRIMARY KEY clauses are mandatory for an input window. The SCHEMA
clause is optional for derived windows. If a SCHEMA is not defined the compiler implicitly
determines it based on the projection list. For derived windows, the primary key may be either
deduced or explicitly specified. There are a few exceptions to these rules, which is noted in the
appropriate context.

The CREATE WINDOW statement can also includes a STORE clause to determine how records
are stored, and a KEEP clause to determine how many records are stored and for how long. The
window can be of type input, output, or local. Local and output windows can include an
AGING clause that specifies the data aging policy.

Example
This example creates a local window containing only position records received in the last ten
minutes. It also uses the AGES clause to flag records that have not updated in the last 5 seconds
by setting the value in the AgeColumn.

CREATE WINDOW TradesAge
PRIMARY KEY DEDUCED
KEEP 10 MINUTES
AGES EVERY 5 SECONDS SET AgeColumn 5 TIMES
AS
SELECT Trades.*, 0 AgeColumn FROM Trades;

This example creates a local window containing only position records recieved in the last ten
minutes. Inclusion of the local declare block reports how many records have been processed
(including updates and deletes).

CHAPTER 4: CCL Statements

Programmers Reference 51

CREATE WINDOW TradesAge
PRIMARY KEY DEDUCED
KEEP 10 MINUTES
AGES EVERY 5 SECONDS SET AgeColumn 5 TIMES
DECLARE
 long counter := 0;

 long getRecordCount() {
 return ++counter;
 }
END
AS
SELECT Trades.*, getRecordCount() RecordCount, 0 AgeColumn FROM
Trades;

The following statement creates a window that maintains only the last 1000 rows while also
getting updates on the age of the rows. The TradeId value is automatically generated
beginning at 0.

CREATE INPUT WINDOW FreshTrades
SCHEMA (TradeId long, Symbol string, Shares integer, Price money(4),
Age integer)
PRIMARY KEY (TradeId)
KEEP 1000 ROWS
AGES EVERY 5 MINUTES SET Age 100 TIMES
AUTOGENERATE (TradeId);

DECLARE Statement
DECLARE block statements specify the variables, parameters, typedefs and functions used in
a CCL project.

Syntax
DECLARE
 [declaration;]
 ...
END;

Usage
CCL declare blocks consist of a DECLARE statement and an END statement with zero or more
declarations between them.

A DECLARE block statement can be used to define variables, typedefs, parameters, and
functions. The syntax for each of these declarations is:

• Variables use the SPLASH syntax, and you can specify a default value:
datatypeName variableName [:=any_expression] [,...]

• Typedefs declare new names for datatypes:
existingdatatypeName newdatatypeName

CHAPTER 4: CCL Statements

52 Sybase Event Stream Processor

• Parameters use the qualifier parameter, and you can specify a default value:
 parameter datatypeName parameterName [:=constant_expression]

• Thetypeof() operator provides a convenient way to declare variables. An example of the
typeof usage would be: if rec1 is an expression with type [int32 key1; string key2; | string
data;] then the declaration typeof(rec1) rec2; is the same as the declaration [int32 key1;
string key2; | string data;] rec2;

Declare blocks can be local or global. When declare blocks are used inside a CREATE stream
or window statement they become local declare blocks. A local declare block is visible only
inside the stream or window with which it is used. When a DECLARE block statement is used
inside a module or project, it becomes a global declare block. Global declare blocks are visible
anywhere within that project or module.

Terminate each declaration in the DECLARE block statement with a semicolon.

Example
This example demonstrates the DECLARE block in the global context, meaning it is outside of
any CREATE command.
declare
 integer toggle(integer x) { if (x%2 = 0) { return 1; } else
{ return 2; } }
end;

CREATE SCHEMA sc1 (k1 integer,k2 string);
CREATE SCHEMA sc2a (k1 integer,k2 string,k3 string, k4 integer);
create schema s1_104(c2 integer, c3 date, c4 float, c5 string, c6
money);

CREATE INPUT WINDOW iwin1 SCHEMA sc1 primary key(k1);
CREATE INPUT WINDOW iwin2 SCHEMA sc1 primary key(k1);

create input window w1_104 schema s1_104 primary key(c2);
create delta stream ds2_104 primary key deduced as select * from
w1_104;

create output window ww_innerjoin1 schema sc2a primary key (k1,k2)

This example shows the DECLARE block local to a stream, meaning it is inside a CREATE
command (not flex)
declare
 integer i1 := 1;
 string s1 := 'ok';
end
 as
 select A.k1,(A.k2 + s1) k2,B.k2 k3, toggle(A.k1) k4
 from iwin1 A join iwin2 B
 on A.k1 = B.k1
;

This example shows a DECLARE block local to a flex stream.

CHAPTER 4: CCL Statements

Programmers Reference 53

create flex flex104
 in ds2_104
 out output stream flexos104 schema s1_104
 begin
 declare
 integer counter := 0;
 end;

 on ds2_104 {
 counter++;
 output ds2_104_stream[[c2=ds2_104.c2;|]];
 };

 on end transaction {
 if(counter = 4) {
 typeof(flexos104) rec;
 rec := flexos104_stream[[c2=0;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 rec := flexos104_stream[[c2=1;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 rec := flexos104_stream[[c2=2;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 rec := flexos104_stream[[c2=3;|]];
 rec.c2 := rec.c2 + counter;
 output rec;
 }
 };

 end;

IMPORT Statement
Import libraries, parameters, variables, and schema, function, and module definitions from
another CCL file into a project, module, or another IMPORT file.

Syntax
IMPORT 'fileName';

Component

fileName The absolute or relative path of the CCL text file you are importing.

The relative path is relative to the file location of the file that
contains the IMPORT statement.

Usage
Only the following CCL statements are valid in an imported file. Any other statements in the
file generate compiler error messages.

CHAPTER 4: CCL Statements

54 Sybase Event Stream Processor

• IMPORT

• CREATE MODULE

• DECLARE

• CREATE SCHEMA

• CREATE LIBRARY

Any definitions used in an import file must be either defined in the file or imported by the file.
Once imported, these definitions belong to the scope into which they are imported. You can
use these definitions only in statements that follow the IMPORT statement.

Import files can be nested within other import files using the IMPORT statement. For example,
if file A imports file B, and the project imports file A, then the project has access to every
definition within A, which includes all of the definitions within B.

Import cycles are not allowed and are detected by the compiler. For example, if file B imports
file A, and file A imports file B, the compiler generates an error message indicating that a
cyclical dependency exists between files A and B. Importing the same file twice in a single
scope is also not allowed, and results in an error message.

Note: You cannot successfully compile your project if you cannot compile the import file, or if
the IMPORT statement attempts to import an invalid file (an improper file format or the file
cannot be found).

Example
This example imports and uses two schemas.
//Defines Schema1
//Imported using relative paths
IMPORT '../schemas/import1.ccl';

//Defines Schema2
//Imported using absolute paths
IMPORT '~/project/schemas/import2.ccl'; [For UNIX-based systems]
IMPORT 'C:/project/schemas/import2.ccl': [For Windows-based systems]

CREATE INPUT STREAM stream1 SCHEMA Schema1;
CREATE INPUT STREAM stream2 SCHEMA Schema2;

LOAD MODULE Statement
The LOAD MODULE statement loads a previously created module into the project. The
CREATE MODULE statement can either be in the current CCL file or in an imported CCL file
(see IMPORT statement).

Syntax
LOAD MODULE modulename AS moduleIdentifier
 in-clause
 out-clause

CHAPTER 4: CCL Statements

Programmers Reference 55

 [parameters-clause]
 [stores-clause];

Components

moduleName The name of the module, which must match the name of the pre-
viously created module.

module identifier The name used to identify this instance of the module: it must be
unique within the parent scope.

IN clause Binds the input streams or windows defined in the module to pre-
viously-created streams or windows in the parent scope.

OUT clause Exposes one or more output streams defined within the module to
the parent scope using unique identifiers.

PARAMETERS clause Binds one or more parameters defined inside the module to an
expression at load time, or binds parameters inside the module to
another parameter within the main project. If the parameter has a
default value defined, then no parameter binding is required.

STORES clause Binds a store in the module to a store within the parent scope.

Usage
The LOAD MODULE statement is used to create a instance of a previously defined module in
the current project. The IN, OUT and optional PARAMETERS and STORES clauses bind the
module to elements in the calling project. The same module may be "loaded" multiple times in
a single project.

Before a module can be loaded, it must be defined in a CREATE MODULE statement in either
the same project or an imported CCL file.

All streams in a loaded module have local visibility at runtime, meaning they cannot be
subscribed to, published from, or queried. When a module is loaded on the server, all of the
streams and windows within the module, and the output streams and windows created by
exposing outputs to the parent scope, behave as if they have local visibility. Therefore, the
streams and windows within a module and the exposed outputs of the module cannot be
queried externally or subscribed to.

LOAD MODULE supports:

• IN clause
• OUT clause
• PARAMETERS clause
• STORES clause

Note: All LOAD MODULE statement compilation errors are fatal.

CHAPTER 4: CCL Statements

56 Sybase Event Stream Processor

Example
This example defines a module that processes raw stock trade information and outputs a list of
trades with a price exceeding 1.00. The project then creates an instance of the module using the
LOAD MODULE statement. The LOAD MODULE statement binds the project input stream
"NYSEData" to the input stream of the module (TradeData) and creates a local stream called
"NYSEPriceOver1Data" that is bound to the output stream of the module
(FilteredTradeData).
CREATE MODULE FilterByPrice IN TradeData OUT FilteredTradeData
BEGIN
 CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
);

 CREATE INPUT STREAM TradeData SCHEMA TradesSchema;
 CREATE OUTPUT STREAM FilteredTradeData SCHEMA TradesSchema
 AS SELECT * FROM TradeData WHERE TradeData.Price > 1.00;
END;

CREATE INPUT STREAM NYSEData SCHEMA TradesSchema;

LOAD MODULE FilterByPrice AS FilterOver1 IN TradeData = NYSEData OUT
FilteredTradeData = NYSEPriceOver1Data;

CHAPTER 4: CCL Statements

Programmers Reference 57

CHAPTER 4: CCL Statements

58 Sybase Event Stream Processor

CHAPTER 5 CCL Clauses

Syntax for the various clauses used in statements .

AGING Clause
Specifies the data aging policy.

Syntax
AGES EVERY agingTime SET agingField [maxAgingFieldValue TIMES] [FROM
agingTimeField]

Components

agingTime The time interval,specified in hours, minutes, seconds, milli-
seconds, or microseconds, after which the data aging process
begins. It may be specified using a combination of the allowed
units (for example, 3 MINUTES 30 SECONDS).

Can also be specified using the interval parameter.

agingField The field in the record that is incremented by 1 every time the
agingTime period elapses and no activity has occurred on the
record.

maxAgingFieldValue (Optional) The maximum value that agingField is incremented
to. If not specified, agingField is incremented once.

Can also be specified by the interval parameter.

agingTimeField (Optional) The field containing the start time for the aging
process. For example, if the period of time specified in the
agingTime column has elapsed, the data aging process begins.

If not specified, the internal row time is used. If specified, the
field must contain a valid start time.

Usage
If data records have not been updated or deleted within a predefined period, they are
considered to have aged. When a data record ages, notifications are sent as update events to
subscribers of the window.

Note: You can only use the AGING clause with windows.

Programmers Reference 59

When the predefined time period (agingTime) elapses, an integer field in the record
(agingField) is incremented once, or until a predefined maximum value
(maxAgingFieldValue) is reached. The start time of the aging process is specified through the
(agingTimeField) field in the record.

If the start time is not explicitly specified, the internal row time is used. When the aging
process begins, agingField defaults to 0, and it is incremented by 1 whenever the predefined
time period elapses. If a record is updated after aging commences, agingField resets to 0 and
the process restarts. If a record is deleted, no aging updates are generated.

When insert is received, the count field sets to 0, the insert is passed through, and aging begins.

Aging starts only after the specified inactivity period. If the data ages every five seconds, then
the record must remain inactive for five seconds before it starts counting. A record is
considered inactive when no updates or deletes have occurred.

When delete is received, aging stops and the delete is passed through. An update of a record
resets the counting to 0.

Example
This example creates an output window named AgingWindow. The age column for the
output window updates every 10 seconds 20 times.
CREATE OUTPUT WINDOW AgingWindow
 SCHEMA (
 AgeColumn integer,
 Symbol STRING,
 Ts bigdatetime)
 PRIMARY KEY (Symbol)
 AGES EVERY 10 SECONDS SET AgeColumn 20 TIMES
 AS
 SELECT 1 as AgeColumn,
 TradesWindow.Symbol AS Symbol,
 TradesWindow.Ts AS Ts
 FROM TradesWindow
;

AS Clause
Introduces a CCL query to a derived element.

Syntax
[...]
 AS
 CCL Query
[...]

CHAPTER 5: CCL Clauses

60 Sybase Event Stream Processor

Components

AS The AS clause introduces a CCL query to the rest
of the statement.

CCL Query The body of the CCL query.

Usage
The AS clause is used within derived elements (streams, windows, and delta streams) to
provide a CCL query that determines the type of data processed by the derived element.
Because of this, the AS clause is valid only with derived elements.

See the Queries section for information on structuring a query.

Example
This example shows the AS clause being used to specify the information selected by a derived
stream.

CREATE STREAM win1 SCHEMA (col1 string)
 AS
 SELECT inputStream.col1
 FROM inputStream;

AUTOGENERATE Clause
Specify one or more columns that will contain an automatically generated sequence number in
records sent to an input stream or input window.

Syntax
AUTOGENERATE (column[, ...])[FROM {long_const|parameter}]

Components

column Specify the name of the column in which the au-
tomatically generated value should be placed.
The column must be of datatype long.

FROM Overrides the default starting value of zero with
the specified numeric constant or value found in
the specified parameter at run time.

Usage
This clause can be used when specifying an input stream or input window in a project. It
cannot be used when specifying an input stream or input window in a module. When input

CHAPTER 5: CCL Clauses

Programmers Reference 61

records do not have a natural primary key, this clause provides a way to specify a column that
can be used as the primary key.

You can specify more than one column that will have its value automatically generated. The
column names must be unique. At run time all of the specified columns will get the same
automatically generated value.

The automatically generated columns must be of type long. When the value exceeds the
maximum positive value that the long datatype can hold, the value restarts from the maximum
negative value that a long datatype can hold.

By default, the values start at zero and increase by one for each insert record. This can be
overridden using the FROM clause to explicitly set a starting value, specified as either a
parameter or a long_const.

An input window with an auto generated column may be assigned to a log store; in which case,
on a restart, the next insert will get the highest sequence number recovered from the log store
plus one as the value in the automatically generated column. When there is data in the log
store, the FROM clause is ignored on restart.

The automatically generated column is only incremented on an insert and any value explicitly
provided in the automatically generated columns of the input row on an insert is ignored. On
an update, delete or upsert, the value in the auto generated column is used as it is provided in
the input row. This rule has the potential to produce duplicate rows in a window. For example,
• The primary key is an auto generated column.
• On the first insert, the primary key is set to 0 because the key column is auto generated and

the sequence number starts at 0.
• If the next row is an upsert with the primary key set to 1, the server will insert this row into

the window because there is no row with the primary key of 1 to update.
• When another insert comes in, the server will set the auto incremented key column value to

1 and try to insert the row into the input window.
• This will cause a duplicate row in the store of the input window and the server will reject

the record.
Therefore, it is recommended that the AUTOGENERATE clause not be used with an upsert
opcode, especially when the automatically generated value is a primary key.

Examples
The following code creates an input stream named Trades with a column named TradeId for
which the values are automatically generated.
CREATE INPUT STREAM Trades
SCHEMA (TradeId long, Symbol string, Shares integer, Price money(4))
AUTOGENERATE (TradeId);

This example creates an input window named Trades with a primary key column named
TradeId for which the values are automatically generated.
CREATE INPUT WINDOW Trades
SCHEMA (TradeId long, Symbol string, Shares integer, Price money(4))

CHAPTER 5: CCL Clauses

62 Sybase Event Stream Processor

PRIMARY KEY (TradeId)
AUTOGENERATE (TradeId);

CASE Clause
Conditional processing evaluates set conditions to determine a result.

Syntax
CASE
 WHEN condition THEN expression [...] ELSE expression
END

Components

condition An expression that evaluates to either zero or non-zero. A non-
zero result indicates the condition is true, a result of zero in-
dicates the condition is false.

expression The result of the evaluated conditions. This can be any valid
expression or variable.

Usage
A CASE clause is order-dependent and contains conditional expressions that require the
parameters WHEN, THEN, and ELSE. WHEN conditions filter the specific case and narrow
down the result through evaluations of whether the conditions set are true or false. If true,
following THEN expressions are carried out. If false, subsequent WHEN conditions are tested.

If all conditions prior to the ELSE parameter are false, then the ELSE expression is executed.
The CASE clause closes with the keyword END.

Example
This example filters weights and specifies a number to each condition set.
CASE
WHEN weight<500 THEN 1
WHEN weight>1000 THEN 3
ELSE 2
END

CHAPTER 5: CCL Clauses

Programmers Reference 63

FROM Clause
Identifies the stream(s) or window(s) or both that will provide the input to the query.

FROM Clause: Comma-Separated Syntax
Specify a single input to a query or use to list tow or more inputs in a join or for pattern
matching two data sources in a query, in combination with the WHERE clause, using an
alternative comma-separated syntax.

Syntax
FROM [source [[AS] alias] [keep_clause]] [, …]

Components

source The name of a data stream, window, or delta stream

alias An optional alias for the stream or window

keep_clause An optional policy that specifies how rows are maintained in the window (it
cannot be used with a stream or delta stream)

Usage
Use the FROM clause with comma-separated syntax for single-source queries, inner joins, and
queries that use the MATCHING clause. This syntax specifies one or more data sources in a
query. Any column or datasource references in the query's other clauses must be to one of the
data sources named in this clause.

The comma-separated FROM clause can contain multiple data sources connected with an
inner join. The multiple sources are separated by commas. The WHERE clause, required when
using comma-separated syntax, creates the selection condition for the join.

Use comma-separated syntax for the FROM clause with a MATCHING clause to specify data
sources that should be monitored for a specified pattern. The list of data sources can include
only data streams, must include all data sources specified in the MATCHING clause, and cannot
include any other data source.

Use aliases to abbreviate stream or window names, and if required, for differentiating between
instances when the same data stream or window is used more than once in the FROM clause.

CHAPTER 5: CCL Clauses

64 Sybase Event Stream Processor

FROM Clause: ANSI Syntax
Joins two data sources in a query using outer or inner join syntax.

Syntax
FROM { source [(DYNAMIC|STATIC)] [AS] alias] [keep_clause] |
nested_join }
[INNER|RIGHT|LEFT|FULL] JOIN
{ source [[AS] alias] [keep_clause] | nested_join }
on_clause

Components

source The name of a data stream, window, or delta
stream

DYNAMIC | STATIC DYNAMIC indicates the data in the window or
stream being joined is going to change often and
STATIC (the default) indicates that it won't

alias An alias for the stream or window

keep_clause An optional policy that specifies how rows are
maintained in the window (it cannot be used with
a stream or delta stream)

nested_join A nested join — see below

Usage
For outer joins, use an ON clause to specify the join condition. This is optional for inner joins.

You can use this variation of FROM to create inner, left , right, and full joins:

JOIN If no join type is specified, the default is INNER.

INNER JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published.

RIGHT JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All the
other rows from the right data source are also published. Unmatched col-
umns in the left data source publish a value of NULL .

LEFT JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All the
other rows from the left data source are also published. Unmatched columns
in the right data source publish a value of NULL.

CHAPTER 5: CCL Clauses

Programmers Reference 65

FULL JOIN All possible combinations of rows from the intersection of both data sources
(limited by the selection condition, if one is specified) are published. All
other rows from both data sources are published as well. Unmatched col-
umns in either data source publish a value of NULL .

The data sources used with this syntax can include data stream expressions, named and
unnamed window expressions, and queries. You can use aliases for datasources in this
variation of the FROM clause.

The join variation of the FROM clause (ANSI syntax) is limited to two datasources.
Accommodate additional datasources using a nested join as one of the datasources. If a nested
join is used, it can optionally be enclosed in parentheses, and can include its own ON clause.
The rules for the use of the ON clause with a nested join are the same as the rules that govern the
use of the ON clause in the join containing the nested join.

Restrictions

• Any column or datasource references in the query's other clauses must be to one of the data
sources named in this clause.

• For a left outer join, the data stream can only be on the left side. For a right outer join as
well, the data stream can only be on the right side.

• A full outer join cannot join a window to a data stream.

GROUP BY Clause
Specifies the expressions on which to perform an aggregation operation.

Syntax
GROUP BY expression1 [, expression2 ...]

Components

expression An expression using constants, which can contain
one or more columns from the input window or
stream. However, an expression cannot use ag-
gregate functions.

Usage
It combines one or more input rows into a single row of output. Typically, GROUP BY is used
for aggregation. The query will contain a GROUP BY to specify how to group the inputs, and
one or more of the column expressions in the SELECT clause will use an aggregate function to
compute aggregate values for the group.

CHAPTER 5: CCL Clauses

66 Sybase Event Stream Processor

When a GROUP BY clause is used in a query, the compiler will deduce the primary key based
on the group by expression(s). If more than one column has the same expression, the first
column is used if it has not already been matched with a GROUP BY expression.

Note: Every expression in the GROUP BY clause must also be in at least one SELECT column
expression.

Note that the GROUP BY clause must reference input columns directly. It cannot use aliases
defined in the local SELECT clause.

Example
The GROUP BY clause collects together the rows according to T.Symbol:

CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice
FROM Trades T
GROUP BY T.Symbol

GROUP FILTER Clause
Filters data in a group before the aggregation operation is performed.

Syntax
GROUP FILTER expression

Components

expression Any Boolean expression that does not use aggre-
gate functions such as min() or max(). The ex-
pression may use columns from the source
streams or windows.

Usage
The GROUP FILTER clause filters data before the aggregation operations are applied to the
rows. The GROUP FILTER clause is used with the GROUP BY clause. If GROUP FILTER is
used with the GROUP ORDER BY clause, GROUP ORDER BY is executed before GROUP
FILTER.

The expression in the GROUP FILTER clause often uses filters based on functions such as
rank(). These functions restrict rows that are used in the aggregation. The rank() function
assigns a rank to each of the individual records in a group. rank() is meaningful only when used
with the GROUP ORDER BY clause.

CHAPTER 5: CCL Clauses

Programmers Reference 67

Example
The GROUP FILTER clause filters out the chosen rows, keeping only those with a rank of less
than 10:
CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice
FROM Trades T
GROUP FILTER rank() < 10
GROUP BY T.Symbol
GROUP ORDER BY T.Volume DESC
HAVING max(T.Price) > 100 AND T.Symbol ='IBM';

GROUP ORDER BY Clause
Orders the data in a group before applying the GROUP FILTER clause and aggregating the
data.

Syntax
GROUP ORDER BY column [ASC[ENDING]|DESC[ENDING]] [, ...]

Components

column Any column in the source streams or windows.
You can order by more than one column.

Usage
The GROUP ORDER BY clause is used with the GROUP BY clause. Rows may be ordered by
one or more columns in the stream or window. GROUP ORDER BY orders the data in a group
before applying aggregation operations (and before applying GROUP FILTER).

Use ASC and DESC keywords to organize column data in ascending or descending order. If no
keyword is specified, the default is ascending order.

When used with a GROUP FILTER clause, GROUP ORDER BY is performed before GROUP
FILTER. The GROUP ORDER BY clause orders records in each group based on the ordering
criteria specified in the clause.

Example
The GROUP ORDER BY clause organizes the chosen rows by T.Volume in descending order:

CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice

CHAPTER 5: CCL Clauses

68 Sybase Event Stream Processor

FROM Trades T
GROUP FILTER rank() < 10
GROUP BY T.Symbol
GROUP ORDER BY T.Volume DESC
HAVING max(T.Price) > 100 AND T.Symbol ='IBM';

HAVING Clause
Filters rows that have been grouped by a grouping clause.

Syntax
HAVING expression

Components

expression Any Boolean expression. Can include aggregate
functions, as well as simple filters on columns.

Usage
The HAVING clause is semantically similar to the WHERE clause, but can be used only in a
query that specifies a GROUP BY clause. The HAVING clause filters rows after they have been
processed by the GROUP BY clause. Unlike the WHERE clause, the HAVING clause allows the
use of aggregates in the expression. Its function is to eliminate some of the grouped result
rows.

Example
The HAVING clause filters the rows that have been grouped by the GROUP FILTER, GROUP
BY, and GROUP ORDER clauses:
CREATE WINDOW Window1 SCHEMA (Symbol STRING, MaxPrice INTEGER)
PRIMARY KEY DEDUCED
KEEP ALL
AS
SELECT T.Symbol, max(T.Price) MaxPrice
FROM Trades T
GROUP FILTER rank() < 10
GROUP BY T.Symbol
GROUP ORDER BY T.Volume DESC
HAVING max(T.Price) > 100 AND T.Symbol ='IBM';

CHAPTER 5: CCL Clauses

Programmers Reference 69

IN Clause
Used in the LOAD MODULE statement to bind inputs in the module to inputs in the parent
scope.

Syntax
IN
 input1-inModule = input1-parentScope [,...]

Components

input1-inModule The name of the input stream or window defined
in the module.

input1-parentScope The name of the stream or window in the parent
scope. Bind the module input stream or window
to this stream.

Usage
The streams or windows in the parent scope can have any visibility type. Schemas between the
bound input streams or windows must be compatible. Schemas are compatible if any one of
these requirements is met:

• The number and datatypes of the columns match and are in the same order.
• The stream in the parent scope has more columns than the module stream, and the initial

column datatypes match and are in the same order. Any additional columns are ignored by
the module, and cannot be primary key columns.

• The parent module stream has fewer columns than the module stream, and the initial
column datatypes match and are in the same order. Any additional columns inside the
module stream are filled with a NULL value. Primary key columns cannot be null.

Note: For each of these requirements, column names need not match.

When associating inputs, a parent level object that does not have a primary key cannot be
bound to a module-level object that requires a primary key. For example, a stream cannot be
bound to a window.

Restrictions

• All input elements in the module must be bound for the IN clause.

Example
This example shows the input streams inside the module (modMarketIn1 and
modMarketIn2) being bound to their respective streams in the parent scope, marketIn1
and marketIn2.

CHAPTER 5: CCL Clauses

70 Sybase Event Stream Processor

LOAD MODULE filterModule AS filter1
IN modMarketIn1=marketIn1, modMarketIn2=marketIn2
OUT modMarketOut=marketOut;

KEEP Clause
Specify either a maximum number of records to retain in a window, or a length of time to retain
them.

Syntax
KEEP {{[EVERY] count ROW[S][SLACK slackcount][PER(col1[,…])]} | ALL
[ROW[S]]}

KEEP [EVERY] interval [PER (col1[,…])]

KEEP [EVERY] { count_policy | time_policy } | ALL;

Components

count_policy Specify the maximum number of records that will be retained in the
window as either a simple maximum nn ROWS or a maximum with

some slack nn ROWS SLACK mm. A larger slack value improves

performance by reducing the need to delete one row every time a row is
inserted. The number of rows, nn, and the slack value, mm, can be either
an integer value or an expression.

Note: The SLACK component cannot be used with the EVERY modi-

fier.

time_policy Specify the length of time that records will be retained in the window as
described in the Intervals on page 22 topic.

ALL Specifies that all of the rows received will be retained.

EVERY Specifies that when the maximum number of records is exceeded or the
time interval expires, every retained record is deleted. When this modi-
fier is used, the resulting window is a Jumping Window. Otherwise, the
resulting window is a Sliding Window

PER Specifies that the retention policy will be applied to groups of rows
rather than at the window level.

Usage
The KEEP clause defines a retention policy for a Named or Unnamed Window. Window
retention policies include time-based policies (the time duration for which a window retains
rows) and count-based policies (the maximum number of rows that the window can retain). If
you omit the KEEP clause from a window definition, the default policy is KEEP ALL.

CHAPTER 5: CCL Clauses

Programmers Reference 71

Including the EVERY modifier in the KEEP clause produces a Jumping Window, which deletes
all of the retained rows when the time interval expires or a row arrives that would exceed the
maximum number of rows.

Specifying the KEEP clause without the EVERY modifier produces a Sliding Window, which
deletes individual rows once a maximum age is reached or the maximum number of rows are
retained. Specifying a SLACK value causes the retention mechanism to get triggered when the
number of stored rows equals (count+slackcount) as opposed to count. When specifying a
Sliding Window with a count-based retention policy, you can specify a SLACK value to
enhance performance by requiring less frequent cleaning of memory stores. Slack cannot be
specified for windows using time-based retention policies.

The location of the KEEP clause in the CREATE WINDOW statement determines whether a
named or an unnamed window is created. When the KEEP clause is specified for the window
being created, a Named Window is created. If there is a KEEP clause in the query portion of the
statement, however, an Unnamed Window is implicitly created. This is the case where there is
a KEEP clause attached to the FROM clause of the query.

Note: The SLACK value cannot be used with the EVERY modifier, and thus cannot be used in
a Jumping Windows retention policy.

Use the PER sub-clause within the KEEP clause syntax to retain data based on content for both
named and unnamed windows. The feature supports both row-based and time-based retention.
Rather than applying the retention policy at the window level, it will be applied to individual
groups of rows based on the PER expression.

Note that unnamed windows can be created on delta streams or windows, but they cannot be
created on streams. Windows on streams must be created explicitly using a CREATE
WINDOW statement.

The following example creates a sliding window that retains 2 rows for each unique value of
Symbol. Once 2 records have been stored for any unique Symbol value, arrival of a third
record (with the same Symbol value) will result in deletion of the oldest stored record with the
same Symbol value.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer)
;

CREATE INPUT WINDOW TradesWin1
 SCHEMA TradesSchema
 PRIMARY KEY(Id)
 KEEP 2 ROWS PER(Symbol)
;

CHAPTER 5: CCL Clauses

72 Sybase Event Stream Processor

The following example creates a jumping window that retains 5 seconds worth of data for each
unique value of Symbol.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer)
;

CREATE INPUT WINDOW TradesWin2
 SCHEMA TradesSchema
 PRIMARY KEY(Id)
 KEEP EVERY 5 SECONDS PER(Symbol)
;

MATCHING Clause
This is used within a query for pattern matching, which allows detection of patterns of events
across one or more sources.

Note: This form of the ON clause is different from the ON clause with JOIN syntax. You cannot
specify both forms at the same time.

Syntax
MATCHING [interval:pattern]
ON { {source.column = source.column [=...]}|
 {source.column = constant }|
 {getOpcode() = opcode_constant} [AND...]
 }

pattern:[!]{event | (event)} [&&| || |,}event]

Components

MATCHING Identifies the MATCHING clause.

interval:pattern interval specifies the interval and pattern specifies the

matching patterns.

source.column The name of the source input and the column.

getOpcode() Includes opcode conditions on the pattern.

opcode_constant Specifies the opcode.

pattern The pattern you want to identify. Contains events connected by
event operators.

CHAPTER 5: CCL Clauses

Programmers Reference 73

event Events compared in the pattern.

Usage
The MATCHING clause immediately follows the FROM clause in a SELECT statement. The
FROM clause contains the derived elements that are used as inputs for pattern matching.

SELECT statements containing a MATCHING clause cannot include any filtering or
aggregation criteria.

The MATCHING clause consists of a mandatory interval and pattern specification.

The interval specifies the time period within which the pattern must be detected. It supports
microsecond granularity and can either be represented as an interval constant (refer to the
interval data type) or a parameter.

The pattern specification indicates the events or groups of events that must occur, or not occur,
within the specified interval to meet the pattern matching criteria. Where a pattern
specification consists of more than one event, the events or groups of events must be connected
with the operators listed in the following table:

Opera-
tor

Operator
Name

Description

! Not operator Specifies a negative condition for a pattern component. Pattern con-
ditions are met when the pattern component does not occur within the
specified time interval. Since this is a negative condition, the pattern
match is deemed successful only after the expiration of the specified
time interval.

&& Conjunction
(logical AND)
operator

Both pattern components linked by the conjunction operator must
occur for the match condition to be met, but they do not have to occur
in the order listed.

|| Disjunction
(Logical OR)
operator

One or both pattern components linked by the Disjunction operator
must occur to meet the conditions of the match. Each output row
produced by a Disjunction match shows the match for one of the
members of the Disjunction, and NULL values for the other mem-
bers. This is true even when several members of the disjunction
produce events.

, Followed by op-
erator

Pattern components linked by this operator must both occur, in the
order listed, to meet the conditions of the match.

The default order of precedence in which pattern components are analyzed for a possible
pattern match follows the order of operators, as they are listed in the table. The tightest binding
between an operator and a pattern component is that of the Not operator. The bindings then get
progressively looser, for events linked with a conjunction, disjunction, and sequence

CHAPTER 5: CCL Clauses

74 Sybase Event Stream Processor

operators, respectively. This default order of precedence can be overridden by enclosing a
pattern component in parentheses.

Since pattern matching on a not operator is deemed successful only after the expiration of the
specified time interval, a not operator when included with a followed by operator must be its
last component. This is because events succeeding the not operator will never be evaluated by
the pattern rule engine owing to the expiration of the time interval.

The MATCHING clause of a SELECT statement that includes multiple derived elements in the
FROM clause can contain an optional ON sub-clause, which defines one or more equality
expressions that further refine the pattern matching criteria.

The equality expression is used to compare the column values of the input records or their
opcodes. The left hand side of the equality can either contain a fully qualified column name, or
the function 1.The right hand side of the equality can contain a fully qualified column name, a
constant value, or a parameter.

If the left hand side contains the function 2, the right hand side must contain a constant
specifying the desired opcode. Valid opcode values are insert, update and delete.

ON Clause: Join Syntax
Specifies join conditions for syntax using JOIN terminology.

Syntax
ON source1.columnA = source2.columnB [AND...]

Components

source The names of the sources in the FROM clause.

column The name of the column from a particular source. Use AND when

multiple column comparisons are specified. OR expressions are not

supported.

Usage
This form of the ON clause is required for outer and inner joins. It must consist of one or more
simple comparisons, comparing a column in one data source with a column in another data
source.

source1 and source2 refers to the sources (streams, windows, or delta streams) in the
FROM clause. If aliases are used in the FROM clause, use the aliases rather than the actual
source names.

1 getOpcode()
2 getOpcode()

CHAPTER 5: CCL Clauses

Programmers Reference 75

Restrictions

• Join conditions are limited to comparisons between columns in the two data sources of the
join. The comparison cannot specify a literal value, or compare two columns in the same
data source.

OUT Clause
Used in the LOAD MODULE statement to expose outputs in the module to the parent scope.

Syntax
OUT
 output1-inModule = output1-parentScope [,...]

Components

output1-inModule The name of the output defined in the module.

output1-parentScope The name by which the output is exposed to the
parent scope.

Usage
The exposed output stream created by the LOAD MODULE statement has local visibility,
meaning that you cannot attach an output adapter directly to the output stream directly.
Outputs are exposed to the parent scope using the output1-parentScope identifier. The
output mapping provides a unique name for the module output so that it can be referred to in
the parent scope.

Restrictions

• At least one output stream must be exposed to the parent scope.

Example
This example exposes the outputs of the module, modFilteredOut and
marketAverageOut, using the respective names filteredOut and averageOut.

LOAD MODULE filterModule AS filter1
IN modMarketIn=marketIn1
OUT modFilteredOut=filteredOut, marketAverageOut=averageOut;

CHAPTER 5: CCL Clauses

76 Sybase Event Stream Processor

PARAMETERS Clause
Used in the LOAD MODULE statement to provide the bindings for the parameter inside the
module at load time.

Syntax
PARAMETERS
 parameter1-inModule = value-parentScope [,...]

Components

parameter1-inModule The name of the parameter defined in the module.

value-parentScope The value in the parent scope being bound to. This
value can be an expression or another parameter
defined in the parent scope.

Usage
Binding a parameter refers to the process of providing a value for a parameter within the
module at load time. This means that you can provide a value for the parameter that is specific
to each instance of the module. In the LOAD MODULE statement, you can bind a parameter
inside the module to:

• Another parameter declared within the parent scope, or,
• An expression when loading the module.

Note: Expressions involving parameters or variables are evaluated at compile time using
the parameter's default value and the variable's initial value. A parameter or variable in a
binding expression without a default value generates an error.

You cannot directly bind a parameter defined within a module at runtime; doing so generates a
server warning. You can bind module parameters using only the LOAD MODULE statement.

Example
This example maps the parameters in the module to another value (minValue=2) and to
another parameter (maxValue=serverMaxValue).

CREATE MODULE filterModule
IN filterIn
OUT filterOut
BEGIN
 CREATE SCHEMA filterSchema (Value Integer);
 DECLARE
 PARAMETER Integer minValue := 4;
 PARAMETER Integer maxValue;
 END;
 CREATE INPUT STREAM filterIn SCHEMA filterSchema;
 CREATE OUTPUT STREAM filterOut SCHEMA filterSchema AS SELECT *

CHAPTER 5: CCL Clauses

Programmers Reference 77

FROM filterIn WHERE filterIn.Value > minValue and filterIn.Value <
maxValue;
END;

DECLARE
 PARAMETER Integer serverMaxValue;
END;

LOAD MODULE filterModule AS filter1
IN filterIn=marketIn
OUT filterOut=marketOut
PARAMETERS minValue=2, maxValue=serverMaxValue;

PRIMARY KEY Clause
Specifies the primary key for a delta stream or window.

Syntax
PRIMARY KEY (column [,...]) | PRIMARY KEY DEDUCED

Components

column The name of a column in the element's schema

Usage
A primary key uniquely identifies a record, and is required for windows and delta streams.

The primary key is normally treated as "strict." Any records that violate consistency rules,
such as an insert of an existing record, or update or delete for a nonexistent record, are
discarded and reported in the log.

The primary key is treated as "lax" when a keep policy is placed on a window. The expiration
of records caused by the KEEP clause creates inconsistencies with incoming records. An insert
on an existing record is treated as an update, and an update on a nonexistent record is treated as
an insert. A delete on a nonexistent record is silently ignored (as safedelete). This behavior
manifests when two records in a chain have expiry policies, and it is apparent that the target
window has a smaller expiry period.

Usage: Explicit Primary Key
An explicitly defined primary key uses the PRIMARY KEY clause and refers to one or more
columns of the window or delta stream's schema. When a primary key is specified, the engine
enforces the constraint, and erroneous operations are flagged as bad records and discarded at
runtime. To avoid this issue, ensure the primary key is defined correctly.

CHAPTER 5: CCL Clauses

78 Sybase Event Stream Processor

Usage: Deduced Primary Key
If the primary key is specified as PRIMARY KEY DEDUCED, the compiler automatically
deduces the primary key. If the primary key cannot be deduced, a compilation error is
generated.

The primary key is deduced as follows:

• Primary keys cannot be deduced for input windows and Flex operators. They need to be
explicitly specified.

• For single source queries, except aggregations, the primary key is deduced from the
source. All the key columns from the source need to be copied verbatim for the key
deduction to succeed.

• For aggregation the primary keys are the columns in the projection containing the group by
expressions.

Note: All GROUP BY clauses needs to be included in the projection list. If the same
expression appears in more than one column then the first column with the GROUP BY
clause is made the primary key.

For joins, the following rules apply:

• For a left outer join and right outer join the keys are derived from the outer side. For
example, the left side in the case of a left join and the right side in the case of a right join. All
key columns from the outer side must be present in the projection for the primary key
deduction to work correctly.

• For a inner join it depends on the cardinality of the join. For a one-many cardinality the key
is derived from the many side. For a many-many cardinality the deduced key is
combination of the keys from both sides of a join. For a one-one the key is deduced from
one of the sides. The side that is chosen as a key cannot be reliably determined. In all cases
the candidate key columns must be copied from the sources directly for key deduction to
work correctly.

• For a full outer join the columns containing only a coalesce() function with the key fields of
both sides of the join as arguments is deduced to be the key column.

• For the joins of multiple windows, these rules are applied transitively

SCHEMA Clause
Provides a schema definition for new streams and windows.

Syntax
SCHEMA name | (column type [,...])

CHAPTER 5: CCL Clauses

Programmers Reference 79

Components

name The name of schema previously defined with a
CREATE SCHEMA statement.

column The name of a column.

type The datatype of the column's entries.

Usage
A SCHEMA clause defines the columns and datatypes (inline schema) in a stream or window,
or refers to a previously defined named schema. It may also refer to a schema imported from a
different CCL file.

The schema clause is mandatory for input streams, input windows and Flex operators. For all
other cases it is optional. In which case the schema is implicitly determined by the columns in
the projection list.

In the case of UNION, if a schema is not explicitly specified then it is implicitly determine from
the first SELECT statement in the UNION.

SELECT Clause
Specifies a projection list for a query.

Syntax
SELECT { expression[AS column]}[,...]

Components

expression An expression that evaluates to a value of the
same data type as the corresponding destination
column.

column the name of a column in a query destination.

Usage
The expressions within each select list item can contain literals, column names from sources
referenced in the FROM clause, operators, scalar functions, and parenthesis. A wild card (*)
selects all the columns from underlying sources referenced in the FROM clause. The AS
column reference must map to a column name in the destination.

All the items in the projection must use the AS extension to map the items to the destination
columns, or none of them should, in which case the assignment is performed left to right.

CHAPTER 5: CCL Clauses

80 Sybase Event Stream Processor

Under some circumstances, a schema can be automatically generated for the destination,
based on a query. For expressions, provide a column with the AS extension.

The SELECT clause inside a query specifies a select-list of one or more items. Rows from the
datasources listed in the FROM clause are passed to the SELECT clause after being filtered by
the WHERE clause, if specified. The results of the expressions in the list are processed by other
clauses (if any). The query usually uses the processed select-list results as its input.

These rules apply to the select-list:

• The expression within each select-list item can contain literals, column names from one of
the datasources listed in the FROM clause, operators, scalar and miscellaneous functions,
and parentheses. A query select-list expression can also include aggregate functions.
Alternately, you can use the "select all" (wildcard) character (*) to specify expressions.
This is equivalent to listing all column values from all datasources listed in the statement's
FROM clause, from left to right, or to using data-source.*, which is equivalent to a list of all
column values from the specified data source (where data-source is the name or alias of
one of the data sources listed in the FROM clause).

• These rules apply to all expressions that do not include the wildcard character:
• Each list item can specify an AS output column reference subclause indicating the

column within the destination, to which the select-list item should be published. The
AS subclause must be used either for all or for none of the items in the select-list.

STORE Clause
Assigns the store for the window in any window definition.

Syntax
STORE storename

STORES Clause
Used in the LOAD MODULE statement to bind stores in the module to stores in the parent
scope.

Syntax
STORES
 store1-inModule = store1-parentScope [,...]

Components

store-inModule The name of the store defined in the module.

CHAPTER 5: CCL Clauses

Programmers Reference 81

store1-parentScope The name of the store in the parent scope. Bind
the module store to this store.

Usage
Unbound stores generate compilation errors. When you create windows without specifying a
store, and do not create a default store, a default parser-generated memory store is temporarily
created for the module. When you load the module, this parser-generated store is assigned to
the default memory store of the parent scope. If no default memory store exists in the parent
scope, the parser-generated memory store in the module is assigned to a parser-generated
memory store created in the parent scope.

Note: Modules can participate in store dependency loops. Since all dependency loops are
invalid, the instance of a dependency loop within a module will render the project unable to
compile.

Restrictions

• You can bind stores only of the same type. For example, bind a log store with another log
store, and a memory store with another memory store.

Example
This example maps a store in the module to a store in its parent scope.
CREATE MODULE filterModule
IN filterIn
OUT filterOut
BEGIN
 CREATE MEMORY STORE filterStore;
 CREATE SCHEMA filterSchema (ID Integer, Value Integer);
 CREATE INPUT WINDOW filterIn SCHEMA filterSchema PRIMARY KEY ID
STORE filterStore;
 CREATE OUTPUT WINDOW filterOut SCHEMA filterSchema PRIMARY KEY
DEDUCED STORE filterSTore AS SELECT * FROM filterIn WHERE
filterIn.Value > 10;
END;

CREATE MEMORY STORE mainStore;
CREATE SCHEMA filterSchema (ID Integer, Value Integer);

LOAD MODULE filterModule AS filter1
IN filterIn=marketIn
OUT filterOUT=marketOut
STORES filterStore=mainStore;

CHAPTER 5: CCL Clauses

82 Sybase Event Stream Processor

UNION Operator
Combines the result of two or more SELECT clauses into a stream or window.

Syntax
{select_clause} UNION {select_clause} [UNION ...]

Components

select_clause A SELECT clause.

Usage
The union operation may produce a stream, delta stream, or a window.

• If the input to a union that produces a window is a stream, you must perform an aggregation
operation.

• When a union joins two SELECT clauses, the schema of the columns selected in the two
SELECT clauses must match.

• Ensure that a record with a particular key value is not produced by more than one input
node. Otherwise, you may see duplicate rows or invalid updates.

• To be compatible, the schema for all the nodes subject to the union must have the same
datatypes. However, the column names in the schemas may be different. In this case, the
column names from the first SELECT clause are used in the schema deduction.

• If the SELECT statement is not a direct copy from the source, intermediate nodes are
created. The compiler attempts to create delta streams or streams, but must generate
windows in cases when aggregation or a KEEP clause.

• DECLARE blocks are not allowed for union operations.
• A node created by a union operation can have a KEEP clause and an AGING clause if the

target is a window.

Restrictions

• The inputs to a union can be any combination of streams, delta streams, and windows.
• The inputs to a union delta stream can be a delta stream or a window, but not a stream.
• The inputs to a union window can be any combination of streams, delta streams, and

windows (provided the querying involving a stream has a GROUP BY clause).
• A union stream or delta stream cannot have a GROUP BY clause specified in any of the

underlying queries.

Examples
This example uses a union operation to produce an output stream:
CREATE SCHEMA MySchema (a0 integer, a1 STRING, a2 string);
CREATE SCHEMA MySchema2 (a0 integer, a1 STRING, a2 string);

CHAPTER 5: CCL Clauses

Programmers Reference 83

CREATE INPUT STREAM InputStream1 SCHEMA MySchema;
CREATE INPUT STREAM InputStream2 SCHEMA MySchema2;
CREATE INPUT STREAM InputStream3 SCHEMA MySchema2;

CREATE OUTPUT STREAM UnionStream1 AS SELECT * FROM InputStream1
UNION
SELECT * FROM InputStream2;

Using a union operation to produce an output window:
CREATE OUTPUT WINDOW UnionWindow1
PRIMARY KEY DEDUCED
AS
 SELECT in1.a0, min(in1.a1) a1, min(in1.a2) a2
 FROM InputStream1 in1 GROUP BY in1.a0
 UNION
 SELECT in2.a0, min(in2.a1) a1, min(in2.a2) a2
 FROM InputStream2 in2 GROUP BY in2.a0;

Note: Since the source is a stream and target is a window, an aggregation is specified, as is
required.

This example uses a union operation to produce a delta stream:
CREATE DELTA STREAM Union1 PRIMARY KEY DEDUCED
AS
 SELECT * FROM Stream1
 UNION
 SELECT a.col1, a.col2, a.col3 FROM DeltaStream1 a WHERE a.col1 >
10
 UNION
 SELECT a.a, sum(a.b), max(a.c) FROM Window2 GROUP BY a.a

WHERE Clause
Specifies a selection condition, join condition, update condition, or delete condition to filter
rows of data.

Syntax
WHERE condition | filterexpression

Components

condition A Boolean expression representing a selection, update, delete, or join
condition, depending on the context.

filterexpression A Boolean expression based on the columns from a stream.

CHAPTER 5: CCL Clauses

84 Sybase Event Stream Processor

Usage
The WHERE clause filters rows and columns in several CCL statements, with similar syntax,
but different usage and context. The WHERE clause:

• Specifies a selection condition for filter input from data sources in a QUERY element.
• Provides join conditions in a FROM clause.

As a Selection Condition
The WHERE clause acts as a selection condition when used with a FROM clause.

The Boolean expression in this clause creates a selection that filters rows arriving in the
query's data sources before passing them on to the SELECT clause. WHERE clause filtering is
performed before the GROUP BY clause and before aggregation (if any), so it cannot include
aggregate functions or the filtering of results based on the results of aggregates. You can use
the HAVING clause for post-aggregate filtering.

The selection condition can include literals, column references from the query's data sources
listed in the FROM clause, operators, scalar functions, parameters, and parentheses.

In a query, column references within the selection condition must refer to columns in one of
the query's data sources.

As a Join Condition
When used in conjunction with the comma-separated syntax form of the FROM clause, the
WHERE clause creates one or more join condition for the comma-separated join. The use of a
WHERE clause is optional in a comma-separated join. In the absence of a join condition, all
rows from all data sources are selected. When a WHERE clause is present, its syntax resembles
the ON clause with ANSI join syntax.

The join condition can be any valid Boolean expression that specifies the condition for the
join. All column references in this form of the WHERE clause must refer to data sources
specified with the FROM clause.

As a Filter Expression
Filter expressions are supported only in input streams.

When using columns in a filter expression, use the nodeName.columnName notation.
nodeName is the name of the input stream.

Restrictions

• A WHERE clause cannot use aggregate functions.
• A WHERE clause cannot be used with a MATCHING clause.
• Joins using the JOIN keyword do not use the WHERE clause to specify join conditions

(though they can use the clause in its selection condition form).

CHAPTER 5: CCL Clauses

Programmers Reference 85

Examples
This example uses a WHERE clause as a select condition:
CREATE INPUT WINDOW QTrades SCHEMA (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
PRIMARY KEY (Id);

CREATE OUTPUT WINDOW QTradesComputeSelected
PRIMARY KEY DEDUCED
AS SELECT
 trd.*
FROM
 QTrades trd
WHERE
 trd.Symbol IN ('DELL','CSCO','SAP')
;

This example uses a WHERE clause as a join condition:
CREATE INPUT WINDOW QTrades SCHEMA (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
PRIMARY KEY (Id);

CREATE OUTPUT WINDOW RecentQTrades
PRIMARY KEY DEDUCED
AS
 SELECT q.Symbol, nth(0, q.Price) Price, nth(0, q.Shares) Shares
FROM
 QTrades q
GROUP BY q.Symbol
GROUP ORDER BY q.ROWID DESC
;

CREATE INPUT WINDOW Positions
SCHEMA (BookId STRING, Symbol STRING, SharesHeld INTEGER)
PRIMARY KEY (BookId, Symbol)
;

CREATE OUTPUT WINDOW PositionValue
PRIMARY KEY (BookId, Symbol)
AS SELECT
 pos.BookId,
 pos.Symbol,

CHAPTER 5: CCL Clauses

86 Sybase Event Stream Processor

 pos.SharesHeld,
 pos.SharesHeld * q.Price Value
FROM
 Positions pos, RecentQTrades q WHERE pos.Symbol = q.Symbol
;

This example uses a WHERE clause as a filter expression:
CREATE INPUT STREAM LSETradesFiltered SCHEMA (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
WHERE LSETradesFiltered.Symbol IN ('SAP', 'CSCO', 'DELL')
;

CHAPTER 5: CCL Clauses

Programmers Reference 87

CHAPTER 5: CCL Clauses

88 Sybase Event Stream Processor

CHAPTER 6 CCL Functions

A function is a self-contained, reusable block of code that performs a specific task.

The Sybase Event Stream Processor supports:

• Built-in functions - including aggregate, scalar and other functions
• User-defined SPLASH functions
• User-defined external functions

Built-in functions come with the software and include functions for common mathematical
operations, aggregations, datatype conversions, and security.

Order of Evaluation of Operations
Operations in functions are evaluated from right to left. This is important when variables
depend on another operation that must pass before a function can execute because it can cause
unexpected results. For example:

integer a := 1;
integer b := 2;
max(a + b, ++a);

The built-in function max(), which returns the maximum value of a comma-separated list of
values, returns 4 since ++a is evaluated first, so max(4, 2) is executed instead of max(3,
2), which may have been expected.

Scalar Functions
Scalar functions take a list of scalar arguments and return a single scalar value.

Different types of scalar functions include:

• Numeric functions
• String functions
• Conversion functions
• XML functions
• Date and time functions

Scalar functions take one or more expression values as arguments and return a single result
value for each row of data processed by a query. These functions can appear in most
expressions, and are used most often in SELECT clauses and WHERE clauses.

Programmers Reference 89

Numeric Functions
Numeric functions are used with numeric values. Some numeric functions can also be used
with interval and bigdatetime values. Examples of numeric functions include round () and
sqrt ().

acos()
Scalar. Returns the arccosine of a given value.

Syntax
acos (value)

Parameters

value A float between -1 and 1.

Usage
The function returns a float. If a value outside the range of -1 to 1 is given, the function returns
NULL.

Example
acos(0.0) returns 1.570796.

asin()
Scalar. Returns the arcsine of a given value.

Syntax
asin (value)

Parameters

value A float between -1 and 1.

Usage
The function returns a float. If a value outside the range of -1 to 1 is given, the function returns
NULL.

Example
asin(1.0)returns 1.570796.

CHAPTER 6: CCL Functions

90 Sybase Event Stream Processor

atan()
Scalar. Returns the arctangent of a given value.

Syntax
atan (value)

Parameters

value A float.

Usage
The function returns a float.

Example
arctan(1.0) returns 0.785398.

atan2()
Scalar. Returns the arctangent of the quotient of two given values.

Syntax
atan2 (value1, value2)

Parameters

value1 A float.

value2 A float.

Usage
Returns the arctangent of the quotient of the given values, within the range of the standard
arctangent function:

• If value2 > 0, then atan2 (value1, value2) returns the value of atan
(value1/value2).

• If value1 >= 0 and value2 < 0, then atan2 (value1, value2) returns the value of
atan (value1/value2) + pi().

• If value1 < 0 and value2 < 0, then atan2 (value1, value2) returns the value of
atan (value1/value2) - pi().

• If value1 > 0 and value2 = 0, then atan2 (value1, value2) returns the value of
pi()/2.

• If value1 < 0 and value2 = 0, then atan2 (value1, value2) returns the value of
-pi()/2.

• If value1 = value2 = 0, then atan2 (value1, value2) returns 0.

CHAPTER 6: CCL Functions

Programmers Reference 91

Example
atan2 (1, 2) returns 0.463647609, the value of atan (0.5).

avgof()
Scalar. Returns the average value of multiple expressions, ignoring NULL parameters.

Syntax
avgof (expression, [,...])

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

Usage
If all parameters are NULL, the function returns NULL. The function accepts the following
datatypes: float, integer, long, interval, money types, and date/time types.

The function returns the same datatype as its argument, however, if the expressions are
numeric types (integers, floats, or longs), the function returns a float.

Example
avgof (1, 2, NULL, 3, NULL) returns 2.0.

bitand()
Scalar. Returns the result of performing a bitwise AND operation on two expressions.

Syntax
bitand (expression1, expression2)

Parameters

expression1 Expression that simplifies to an integer or a long (must be the same
datatype as expression2).

expression2 Expression that simplifies to an integer or a long (must be the same
datatype as expression1).

Usage
The function takes the two expressions, and performs the logical AND operation on each pair
of bits. The result for the pair is 1 if both bits are 1; otherwise, the result for the pair is 0. Both
arguments must be the same datatype (integers or longs), and the function returns the same
datatype as its arguments.

CHAPTER 6: CCL Functions

92 Sybase Event Stream Processor

Example
bitand (5, 3) returns 1, or in binary, bitand (101, 011) returns 001. The user
cannot specify binary directly.

bitclear()
Scalar. Returns the value of an expression after setting a specific bit to zero.

Syntax
bitclear (expression, bit)

Parameters

expression The initial value as an integer or a long.

bit Which bit to clear, starting from 0 as the least-significant bit.

Usage
Any bit argument must be an integer.The function returns the same datatype as the initial
expression argument.

Example
bitclear (13, 0) returns 12, or in binary, bitclear (1101, 0) returns 1100.
The user cannot specify binary directly.

bitflag()
Scalar. Returns a value with all bits set to zero, except the specified bit.

Syntax
bitflag (bit)

Parameters

bit An integer indicating which bit to set, starting from 0 as the least-
significant bit.

Usage
The function returns an integer.

Example
bitflag(3) returns 8 or 1000 in binary.

CHAPTER 6: CCL Functions

Programmers Reference 93

bitflaglong()
Scalar. Returns a value with all bits set to zero, except a specified bit.

Syntax
bitflaglong (bit)

Parameters

bit An integer indicating which bit to set, starting from 0 as the least-
significant bit.

Usage
The function returns a long.

Example
bitflaglong (35) returns 34359738368 or
100000000000000000000000000000000000 in binary.

bitmask()
Scalar. Returns a value with all bits set to 0 except a specified range of bits.

Syntax
bitmask (first, last)

Parameters

first The first bit to set, starting from 0 as the least-significant bit.

last The last bit to set, starting from 0 as the least-significant bit.

Usage
Both arguments must be integers, and the function returns an integer. The order of the
arguments does not matter, that is, bitmask (1, 3) yields the same result as bitmask
(3, 1).

Example
bitmask (1, 3) returns 14 or 1110 in binary.

bitmask (3, 0) returns 15 or 1111 in binary.

CHAPTER 6: CCL Functions

94 Sybase Event Stream Processor

bitmasklong()
Scalar. Returns a value with all bits set to 0, except a specified range of bits.

Syntax
bitmasklong (first, last)

Parameters

first The first bit to set, starting from 0 as the least-significant bit.

last The last bit to set, starting from 0 as the least-significant bit.

Usage
Both arguments must be integers, and the function returns a long.

Example
bitmasklong (33, 35) returns 60129542144 or
111000000000000000000000000000000000 in binary.

bitnot()
Scalar. Returns the value of an expression with all bits inverted.

Syntax
bitnot (expression)

Parameters

expression An integer or a long.

Usage
Returns the value of an expression after the bitwise operation is performed. Bits that were 0
become 1, and vice versa. The function returns the same datatype as the argument.

Example
bitnot (7) returns -8, or in binary, bitnot (111) returns
11111111111111111111111111111000. The user cannot specify binary directly.

bitor()
Scalar. Returns the results of performing a bitwise OR operation on two expressions.

Syntax
bitor (expression1, expression2)

CHAPTER 6: CCL Functions

Programmers Reference 95

Parameters

expression1 Expression that simplifies to an integer or a long (must be the same
as expression2).

expression2 Expression that simplifies to an integer or a long (must be the same
as expression1).

Usage
The function takes two bit patterns and produces another one of the same length by performing
the logical OR operation on each pair. The result for the pair is 1 if the first bit or the second bit
are 1, or if both bits are 1. Otherwise, the result for the pair is 0. The function returns the same
datatype as its arguments.

Example
bitor (5, 3) returns 7, or in binary, bitor (0101, 0011) returns 0111. The user
cannot specify binary directly.

bitset()
Scalar. Returns the value of an expression after setting a specific bit to 1.

Syntax
bitset (expression, bit)

Parameters

expression The initial value as an integer or a long.

bit Which bit to set, starting from 0 as the least-significant bit.

Usage
A bit argument must be an integer. The function returns the same datatype as the initial
expression argument.

Example
bitset (2, 3) returns 10, or in binary, bitset (0010, 3) returns 1010. The user
cannot specify binary directly.

bitshiftleft()
Scalar. Returns the value of an expression after shifting the bits left a specific number of
positions.

Syntax
bitshiftleft (expression, count)

CHAPTER 6: CCL Functions

96 Sybase Event Stream Processor

Parameters

expression The initial value as an integer or a long. Can be an integer or a long.

count How many positions to shift. The same number of right-most bits
are set to 0. Must be an integer.

Usage
The bits that are shifted out the left are discarded, and zeros are shifted in on the right. The
expression argument can be an integer or a long, but the count argument must be an integer.
The function returns the same datatype as the initial expression argument.

Example
bitshiftleft (10, 2) returns 40, or in binary, bitshiftleft (1010, 2)
returns 101000. The user cannot specify binary directly.

bitshiftright()
Scalar. Returns the value of an expression after shifting the bits right a specific number of
positions.

Syntax
bitshiftright (expression, count)

Parameters

expression The initial value, as an integer or a long. Can be an integer or a
long.

count How many positions to shift. The same number of left-most bits are
set to 0. Must be an integer.

Usage
The bits that are shifted out the right are discarded, and zeros are shifted in on the left. The
function returns the same datatype as the initial expression argument.

Example
bitshiftright (3, 1) returns 1, or in binary, bitshiftright (0011, 1)
returns 0001. The user cannot specify binary directly.

bittest()
Scalar. Returns the value of a specific bit in a binary value.

Syntax
bittest (expression, bit)

CHAPTER 6: CCL Functions

Programmers Reference 97

Parameters

expression The initial value, as an integer or a long .

bit Which bit to return. All other bits are set to zero.

Usage
A bit argument must be an integer. The function returns the same datatype as the datatype of
the expression argument.

Example
bittest (15, 3) returns 8, or in binary, bittest(1111, 3) returns 1000. The user
cannot directly specify binary.

bittoggle()
Scalar. Returns the value of an expression after inverting the value of a specific bit.

Syntax
bittoggle (expression, bit)

Parameters

expression The initial value, as an integer or a long

bit Which bit to toggle

Usage
The expression argument can be an integer or a long, but the bit argument must be an integer.
The function returns the same datatype as the datatype of the expression argument.

Example
bittoggle (7, 3) returns 15, or in binary, bittoggle (0111, 3) returns 1111.
The user cannot specify binary directly.

bitxor()
Scalar. Returns the results of performing a bitwise exclusive OR (XOR) operation on two
expressions.

Syntax
bitxor (expression1, expression2)

CHAPTER 6: CCL Functions

98 Sybase Event Stream Processor

Parameters

expression1 Expression that simplifies to an integer or a long (must be the same
datatype as expression2)

expression2 Expression that simplifies to an integer or a long (must be the same
datatype as expression1)

Usage
The function performs the logical XOR operation on each pair of corresponding bits. The
result for the pair of bits is 1 if the two bits are different, or 0 if they are the same. Using bitxor()
on the same expression yields 0. The function returns the same datatype as its arguments.

Example
bitxor (3, 3) returns 0.

bitxor (10, 15) returns 5, or in binary, bitxor (1010, 1111) returns 0101. The
user cannot specify binary directly.

cbrt()
Scalar. Returns the cube root of a number.

Syntax
cbrt (value)

Parameters

value A numeric datatype

Usage
The function returns a float. If the argument is invalid, the server logs a Floating-point
exception error.

Example
cbrt (1000.00) returns 10.0.

ceil()
Scalar. Rounds a number up to the nearest whole number..

Syntax
ceil (value)

CHAPTER 6: CCL Functions

Programmers Reference 99

Parameters

value A float or money type

Usage
The function returns the same datatype as the argument.

Example
ceil (100.20) returns 101.0.

compare()
Scalar. Determines which of two values is larger.

Syntax
compare (value1, value2)

Parameters

value1 Any datatype

value2 Any datatype

Usage
The function returns an integer (1, -1, or 0). If the first value is larger, the function returns 1. If
the second value is larger, the function returns -1. If they are equal, it returns 0.

Example
compare ((asin(0.5), (acos(0.5)) returns -1.

cos()
Scalar. Returns the cosine of a given value expressed in radians.

Syntax
cos (value)

Parameters

value A float

Usage
The function returns a float.

Example
cos (0.5) returns 0.87758.

CHAPTER 6: CCL Functions

100 Sybase Event Stream Processor

cosd()
Scalar. Returns the cosine of a given value, expressed in degrees.

Syntax
cosd (value)

Parameters

value A float

Usage
The function returns a float.

Example
cosd (90.0) returns -0.448073616.

cosh()
Scalar. Returns the hyperbolic cosine of a given value expressed in radians.

Syntax
cosh (value)

Parameters

value A float

Usage
The function returns a float.

Example
cosh (0.5) returns 1.12762597.

distance()
Scalar. Returns a value representing the distance between two points in two or three
dimensions.

Syntax
distance (point1x, point1y, [point1z], point2x, point2y,
[point2z])

Parameters

point1x An expression that evaluates to a value representing the position of
the first point on the x axis.

CHAPTER 6: CCL Functions

Programmers Reference 101

point1y An expression that evaluates to a value representing the position of
the first point on the y axis.

point1z An expression that evaluates to a value representing the position of
the first point on the z axis.

point2x An expression that evaluates to a value representing the position of
the second point on the x axis.

point2y An expression that evaluates to a value representing the position of
the second point on the y axis.

point2z An expression that evaluates to a value representing the position of
the second point on the z axis.

Usage
Returns a number representing the distance between two points in either two or three
dimensions. All arguments must be the same numeric type, and the function returns the same
datatype.

Example
distance (7.5, 6.5, 10.5, 10.5)returns 5.0.

distance (1.2, 3.4, 5.6, 7.8, 9.10, 11.12) returns 10.320872.

distancesquared()
Scalar. Returns a number representing the square of the distance between two points in either
two or three dimensions.

Syntax
distancesquared (point1x, point1y, [point1z], point2x, point2y,
[point2z])

Parameters

point1x An expression that evaluates to a value representing the position of
the first point on the x axis.

point1y An expression that evaluates to a value representing the position of
the first point on the y axis.

point1z An expression that evaluates to a value representing the position of
the first point on the z axis.

point2x An expression that evaluates to a value representing the position of
the second point on the x axis.

CHAPTER 6: CCL Functions

102 Sybase Event Stream Processor

point2y An expression that evaluates to a value representing the position of
the second point on the y axis.

point2z An expression that evaluates to a value representing the position of
the second point on the z axis.

Usage
Returns a number representing the square of the distance between two points in either two or
three dimensions. All arguments must be of the same numeric type, and the function returns
the same datatype.

Example
distancesquared (7.5, 6.5, 10.5, 10.5)returns 25.0.

distancesquared (1.2, 3.4, 5.6, 7.8, 9.10, 11.12) returns
106.502400.

exp()
Returns the value of e (the base of the natural logarithm) raised to the power of a given number.

Syntax
exp (value)

Parameters

value A float.

Usage
Returns the value of e (the base of the natural logarithm, 2.78128) raised to the power of a
given number. If the argument is invalid, the server logs a floating-point exception error.

Example
exp (2.0) returns 7.3890.

floor()
Scalar. Rounds a number down.

Syntax
floor (value)

Parameters

value A float or a money type.

CHAPTER 6: CCL Functions

Programmers Reference 103

Usage
Rounds a given number down to the nearest whole number. The function takes a float or a
money type, and the function returns the same datatype as its argument.

Example
floor (100.20) returns 100.0.

floor (1.56) returns 1.0.

isnull()
Scalar. Determines if an expression is NULL.

Syntax
isnull (expression)

Parameters

expression An expression of any datatype.

Usage
Determines if an expression is NULL. The function can take any datatype as its argument, and
the function returns an integer. The function returns 1 if the argument is NULL, and 0
otherwise.

Example
isnull ('examplestring') returns 0.

length()
Scalar. Returns the number of bytes of a given binary value.

Syntax
length (binary)

Parameters

binary A binary value.

Usage
Returns the number of bytes that make up a given binary value. The function takes a binary
value as its argument, and the function returns an integer. If the binary value is NULL, the
function returns NULL.

Example
length (hex_binary ('0xaa1234')) returns 3.

CHAPTER 6: CCL Functions

104 Sybase Event Stream Processor

length (hex_binary ('aa')) returns 1.

ln()
Scalar. Returns the natural logarithm of a given number.

Syntax
ln (value)

Parameters

value A float.

Usage
Returns the natural logarithm of a number. If the argument is invalid (for example, less than 0),
the server logs a “Floating-point exception” error. The function takes a float as its argument,
and the function returns a float.

Example
ln (2.718281828) returns 1.0.

log2()
Scalar. Returns the logarithm of a given value to the base 2.

Syntax
log2 (value)

Parameters

value An expression that evaluates to a float greater than or equal to 0.

Usage
Returns the logarithm of a given value to the base 2. The function expects a float for its
argument, however, an integer will be promoted to a float when the function executes. The
function returns a float.

Example
log2 (8.0) returns 3.0.

log10()
Scalar. Returns the logarithm of a given value to a base of 10.

Syntax
log10 (value)

CHAPTER 6: CCL Functions

Programmers Reference 105

Parameters

value An expression that evaluates to a float greater than or equal to 0.

Usage
Returns the logarithm of a given value to a base of 10. The function expects a float as it
argument, however, an integer will be promoted to a float when the function executes. The
function returns a float.

Example
log (100.0) returns 2.0.

logx()
Scalar. Returns the logarithm of a given value to a specified base.

Syntax
logx (value, base)

Parameters

value An expression that evaluates to a float greater than or equal to 0.

base An expression that evaluates to a float greater than 1.

Usage
Returns the logarithm of a given value to a specified base. The function expects floats for its
arguments, however, integers will be promoted to floats when the function executes. The
function returns a float.

Example
logx (8.0, 2.0) returns 3.0.

maxof()
Scalar. Returns the maximum value from a list of expressions.

Syntax
maxof (expression [,...])

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

CHAPTER 6: CCL Functions

106 Sybase Event Stream Processor

Usage
Returns the maximum value from a list of expressions. NULL values are ignored. If all of the
arguments are NULL, the function returns NULL. The arguments can be of any datatype, but
they must be of the same datatype. The function returns the same datatype as its arguments.

Example
maxof (1.34, 3.35, 10.93, NULL) returns 10.93.

minof()
Scalar. Returns the minimum value from a list of expressions.

Syntax
minof (expression [,...])

Parameters

expression There must be at least one argument, and all the arguments must be
of the same datatype.

Usage
Returns the minimum value from a list of expressions. NULL values are ignored. If all of the
arguments are NULL, the function returns NULL. The arguments can be of any datatype, but
they must be of the same datatype. The function returns the same datatype as its arguments.

Example
min (0.61, NULL, 2.34, 1.32) returns 0.61.

nextval()
Scalar. Returns a value larger than that returned by the previous call. The first call returns 1.

Syntax
nextval()

Usage
The first call to the function returns 1, and then each subsequent call returns a value larger than
that returned by the previous call. The increase in the values is not necessarily one; it may be
larger. Each call to nextval() returns a new value, even if it is called more than once in a single
statement. The function takes no arguments, and the function returns a long.

Example
The first call to nextval() returns 1. Calling nextval() a second time could return 14,
for example.

CHAPTER 6: CCL Functions

Programmers Reference 107

pi()
Scalar. Returns a numerical approximation of the constant pi.

Syntax
pi()

Usage
Returns a numerical approximation of the constant pi. The function does not take any
arguments, and the function returns a float.

Example
pi() returns 3.141593.

power()
Scalar. Returns the value of a given base raised to a specified exponent.

Syntax
power (base, exponent)

Parameters

base Any numeric type.

exponent Float that specifies the number that the base will be raised to.

Usage
Returns the value of a given base raised to a specified exponent. The function takes a numeric
type for the base argument, but the exponent must be a float. The function returns the same
datatype as the base argument.

Example
power (2.0, 3.0) returns 8.0.

random()
Scalar. Returns a random value greater than or equal to 0 and less than 1.

Syntax
random()

Usage
Returns a random value greater than or equal to 0 and less than 1. The function does not take
any arguments, and the function returns a float.

CHAPTER 6: CCL Functions

108 Sybase Event Stream Processor

Example
random() may return 0.54 on a call, for example.

round()
Scalar. Returns a number rounded to the specified number of digits.

Syntax
round (value, digits)

Parameters

value A float representing a value that needs to be rounded.

digits The number of digits after the decimal point to round the value to.

Usage
Returns a number rounded to the specified number of digits. The value is rounded to the
number of decimal points specified by the digits argument. The function follows standard
rounding rules. Both arguments must be floats, and the function returns a float.

Example
round (66.778, 1) returns 66.8.

sign()
Scalar. Determines whether a given value is positive or negative.

Syntax
sign (value)

Parameters

value Any type that can have a sign (integer, float, long, interval, money).

Usage
Determines whether a given value is positive or negative. The function returns 1 if the value is
positive, -1 if the value is negative, and 0 otherwise. The argument can be any type that has a
sign, and the function returns an integer.

Example
sign (cosd(45.0)) returns 1.

CHAPTER 6: CCL Functions

Programmers Reference 109

sin()
Scalar. Returns the sine of a given value.

Syntax
sin (value)

Parameters

value A float.

Usage
Returns the sine of a given value, expressed in radians. The function takes a float as its
argument, and the function returns a float.

Example
sin (pi()) returns 0.

sind()
Returns the sine of a given value, expressed in degrees.

Syntax
sind (value)

Parameters

value A float.

Usage
Returns the sine of a given value, expressed in degrees. The function takes a float as its
argument, and the function returns a float.

Example
sind(45.0) returns 0.850903525.

sinh()
Scalar. Returns the hyperbolic sine of a given value.

Syntax
sinh (value)

Parameters

value A float.

CHAPTER 6: CCL Functions

110 Sybase Event Stream Processor

Usage
Returns the hyperbolic sine of a given value, expressed in radians. The function takes a float as
its argument, and the function returns a float.

Example
sinh (0.5) returns 0.521095305.

sqrt()
Scalar. Returns the square root of a given number.

Syntax
sqrt (value)

Parameters

value A money or numeric type.

Usage
Returns the square root of a given number. The function takes a numeric type or a money type
as its argument, and the function returns a float. If the argument is invalid, the function returns
a "Floating-point exception" error.

Example
sqrt (100.0) returns 10.0.

tan()
Scalar. Returns the tangent of a given value.

Syntax
tan (value)

Parameters

value A float.

Usage
Returns the tangent of a given value, expressed in radians. The function takes a float as its
argument, and the function returns a float.

Example
tan (0.0) returns 0.

CHAPTER 6: CCL Functions

Programmers Reference 111

tand()
Scalar. Returns the tangent of a given value, expressed in degrees.

Syntax
tand (value)

Parameters

value A float.

Usage
Returns the tangent of a given value, expressed in degrees. The function takes a float as its
argument, and the function returns a float.

Example
tand (45.0) returns 1.61977519.

tanh()
Scalar. Returns the hyperbolic tangent of a given value.

Syntax
tanh (value)

Parameters

value A float.

Usage
Returns the hyperbolic tangent of a given value. The function takes a float as its argument, and
the function returns a float.

Example
tanh (0.5) returns 0.462117157.

String Functions
String functions are used with STRING values and usually return a STRING value. Examples
of string functions include left (), rtrim (), and replace ().

int32()
Scalar. Converts a given string into an integer.

Syntax
int32 (string)

CHAPTER 6: CCL Functions

112 Sybase Event Stream Processor

Parameters

string A string that starts with an optional minus sign and contains only
digits.

Usage
Converts a given string into an integer. The function takes a string as its argument, and the
function returns an integer. An invalid string causes the function to return NULL.

Example
int32 ('1935') returns 1935.

left()
Scalar. Returns a specified number of characters from the beginning of a given string.

Syntax
left (string, count)

Parameters

string A string.

count The number of characters to return.

Usage
Returns a specified number of characters from the beginning of a given string. The function
takes a string and an integer as the count argument. The function returns a string. If count is a
negative number, the function returns NULL. If count is 0, the function returns an empty
string.

The function works with UTF-8 strings if the -U server option is specified.

Example
left ('examplestring', 7) returns 'example'.

like()
Scalar. Determines whether a given string matches a specified pattern string.

Syntax
like (string, pattern)

Parameters

string A string.

CHAPTER 6: CCL Functions

Programmers Reference 113

pattern A pattern of characters, as a string. Can contain wildcards.

Usage
Determines whether a string matches a pattern string. The function returns 1 if the string
matches the pattern, and 0 otherwise. The pattern argument can contain wildcards: '_' matches
a single arbitrary character, and '%' matches 0 or more arbitrary characters. The function takes
in two strings as its arguments, and returns an integer.

Note: In SQL, the infix notation can also be used: sourceString like patternString.

Example
like ('MSFT', 'M%T') returns 1.

lower()
Scalar. Returns a new string where all the characters of the given string are lowercase.

Syntax
lower (string)

Parameters

string A string.

Usage
Returns a string where all the characters of a given string are lowercase. The function takes a
string as its argument, and the function returns a string.

Example
upper ('This Is A Test') returns 'this is a test'.

ltrim()
Scalar. Trims spaces from the left side of a string.

Syntax
ltrim (string)

Parameters

string A string.

Usage
Trims spaces from the left side of the string. The function takes a string as its argument, and the
function returns a string.

CHAPTER 6: CCL Functions

114 Sybase Event Stream Processor

Example
ltrim (' examplestring') returns 'examplestring'.

patindex()
Scalar. Determines the position of the nth occurrence of a pattern within a source string.

Syntax
patindex (string, pattern, number [, position] [,
constant_string])

Parameters

string A source string.

pattern String representing the pattern to search for.

number Occurence of the pattern to look for.

position (optional) Starting position (0 based index) of the search. Default is
0.

constant_string (optional) Boolean indicating whether the pattern argument should
be treated as a constant string instead of a pattern. Default is false.

Usage
Determines the position of the nth occurrence of a pattern within a source string. The pattern
can contain wildcards: "_" matches a single arbitrary character; "%" matches 0 or more
arbitrary characters. If fewer than n instances of the pattern are found in the string, the function
returns -1.

The function takes strings for the string and the pattern arguments, and integers for the
number and position arguments. The constant_string argument is a Boolean. The function
returns an integer representing the position of the nth occurrence of the pattern within the
given string.

If number is less than or equal to zero, the function returns NULL. If position is less than 0, the
function starts searching from the start of the string. If position is greater than the length of the
string argument, patindex() returns -1.

The function works with UTF-8 strings if the -U server option is specified.

Example
patindex('longlonglongstring', 'long', 2) returns 4.

patindex('longstring', 'long', 2) returns - 1.

patindex('String', __n, 1) returns 2.

CHAPTER 6: CCL Functions

Programmers Reference 115

patindex('String', %n, 1) returns 0.

patindex('String', __n, 1, false) returns 2.

patindex('String', __n, 1, true) returns -1.

patindex('String', S, 1, 0, false) returns 0.

patindex('Stringi', i, 2, 2, true) returns 6.

real()
Scalar. Converts a given string into a float.

Syntax
real (string)

Parameters

string A valid string must be a sequence of digits, optionally containing a
decimal-point character. The input may also include an optional
minus sign as the first character, or an optional exponent part,
which itself consists of an 'e' or 'E' character followed by an op-
tional sign and a sequence of digits.

Usage
Converts a given string into a float. The function takes a string as its argument, and the function
returns a float. An invalid string causes the function to return NULL.

Example
real ('43.4745') returns 43.4745.

regexp_firstsearch()
Scalar. Returns the first occurrence of a POSIX regular expression pattern found in a given
string.

Syntax
regexp_firstsearch (string, regex)

Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the
Perl syntax.

CHAPTER 6: CCL Functions

116 Sybase Event Stream Processor

Usage
Returns the first occurrence of a POSIX regular expression pattern found in a given string. If
string does not contain a match for the pattern, or if the specified pattern is not a valid regular
expression, the function returns NULL. One or more subexpressions can be included in the
pattern, each enclosed in parentheses. If string contains a match for the pattern, the function
only returns the parts of the pattern specified by the first subexpression. The function returns a
string.

The function works with UTF-8 strings if the -U server option is specified.

Example
regexp_firstsearch('aaadogaaa', '[b-z]*') returns 'dog'.

regexp_firstsearch('h', '[i-z]*') returns NULL.

regexp_firstsearch('aaaaabaaaabbbaaa', '[b-z]*') returns 'b'.

regexp_replace()
Scalar. Returns a given string with the first occurrence of a match for a POSIX regular
expression pattern replaced with a second, specified string.

Syntax
regexp_replace (string, regex, replacement)

Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the
Perl syntax.

replacement A string to replace the part of the string that matches regex.

Usage
Returns a given string with the first occurrence of a match for a POSIX regular expression
pattern replaced with a second, specified string. If string does not contain a match for the
POSIX regular expression, the function returns the string with no replacements. If regex is not
a valid regular expression, the function returns NULL.

The function works with UTF-8 strings if the -U server option is specified.

Example
regexp_replace('aaadogaaa', '[b-z]*', 'cat') returns 'aaacataaa'.

regexp_replace('aaadogaaa', '[b-z]*', '') returns 'aaaaaa'.

regexp_replace('aaa', '[a-z]*', 'dog') returns 'dog'.

CHAPTER 6: CCL Functions

Programmers Reference 117

regexp_replace('aaa', '[b-z]*', 'dog') returns 'aaa'.

regexp_search()
Scalar. Determines whether or not a string contains a match for a POSIX regular expression
pattern.

Syntax
regexp_search (string, regex)

Parameters

string A string.

regex A POSIX regular expression pattern. This pattern is limited to the
Perl Syntax.

Usage
Determines whether or not a string contains a match for a POSIX regular expression pattern.
The function returns the Boolean expression corresponding to whether or not the string
contains the pattern (TRUE or FALSE).

The function works with UTF-8 strings if the -U server option is specified.

Example
regexp_search('aaadogaaa', '[b-z]*') returns TRUE.

regexp_search('h', '[i-z]*') returns FALSE.

replace()
Scalar. Returns a new string where all the occurrences of the second string in the first string are
replaced with the third string.

Syntax
replace (target, substring, repstring)

Parameters

target A string.

substring The string of characters to replace.

repstring The replacement for the characters, as a string.

Usage
Returns a new string where all the occurrences of the second string in the first string are
replaced with the third string. The function takes three string arguments, and returns a string.

CHAPTER 6: CCL Functions

118 Sybase Event Stream Processor

Example
replace ('NewAmsterdam', 'New', 'Old') returns 'OldAmsterdam'.

right()
Scalar. Returns the rightmost characters of a string.

Syntax
right (string, number)

Parameters

string A string.

number The number of characters to return from the string.

Usage
Returns the rightmost characters of a string. The function takes in a string and an integer, and
returns a string.

Example
right ('examplestring', 6) returns 'string'.

rtrim()
Scalar. Trims spaces from the right of a string.

Syntax
rtrim (string)

Parameters

string A string.

Usage
Trims the spaces from the right side of the string. The function takes in a string as its argument,
and returns a string.

Example
rtrim ('examplestring ') returns 'examplestring'.

string()
Scalar. Converts a given value of any type to an equivalent string.

Syntax
string (value)

CHAPTER 6: CCL Functions

Programmers Reference 119

Parameters

value An argument of any datatype, except binary or string.

Usage
Converts a given value into an equivalent string expression. The argument can be any datatype,
except binary or string. The function returns a string.

Example
string (1935) returns '1935'.

substr()
Scalar. Returns a substring of a given string, based on a start position and number of
characters.

Syntax
substr (string, position, number)

Parameters

string A string.

position The starting position to start taking a substring. The first character
or space in a string is in position 0.

number The number of characters in the substring.

Usage
Returns a substring of a given string, based on a start position and number of characters. The
first argument must be a string, and the position and number arguments must be integers. The
function returns a string.

Example
substr ('thissubstring', 4, 3) returns 'sub'.

trim()
Scalar. Returns a given string after removing trailing and leading spaces.

Syntax
trim (string)

Parameters

string A string. Works with UTF-8 strings.

CHAPTER 6: CCL Functions

120 Sybase Event Stream Processor

Usage
Returns a given string after removing trailing and leading spaces. The function takes a string as
the argument, and returns a string. The function returns the same value as applying ltrim() and
rtrim() to a given string.

Example
trim (' examplestring ') returns 'examplestring'.

trim(' ') returns ''.

trim('a') returns 'a'.

trunc()
Scalar. Truncates the time portion of a date to 00:00:00 and returns the new date value.

Syntax
trunc (datevalue)

Parameters

datevalue A date or bigdatetime.

Usage
Truncates the time portion of a date value to 00:00:00 and returns the new date value. The
function takes a date or bigdatetime as its argument, and the function returns the same
datatype.

Example
trunc (undate ('2001:05:23 12:34:64')) returns 2001:05:23 00:00:00.

upper()
Scalar. Returns a string where all the characters of a given string are uppercase.

Syntax
upper (string)

Parameters

string A string.

Usage
Returns a string where all the characters of a given string are uppercase. The argument of the
function is a string, and the function returns a string.

CHAPTER 6: CCL Functions

Programmers Reference 121

Example
upper ('This Is A Test') returns 'THIS IS A TEST'.

Conversion Functions
Conversion functions convert data values of various datatypes to the datatype specified by the
function name.

ascii()
Scalar. Returns the Unicode code point for a particular character, or the UTF-8 code point if
the -U server option is specified.

Syntax
ascii (character)

Parameters

character A character string.

Usage
If empty or NULL, the function returns NULL. Otherwise, the function returns the code point
as an integer.

Example
ascii ('D') returns 68.

ascii ('Dog') also returns 68 since only the first character is converted.

base64_binary()
Scalar. Returns a binary value for a given base64-encoded string.

Syntax
base64_binary (string)

Parameters

string A base64-encoded string. Valid characters include a-z, A-Z, 0-9, /,
and +.

Usage
The function converts a base64-encoded string to a binary type. The string length cannot have
a remainder of 1 when divided by 4, as it makes the encoding invalid. Optionally, use one or
two padding characters, '=' in order to make the length divisible by 4.

CHAPTER 6: CCL Functions

122 Sybase Event Stream Processor

Example
base64_binary ('bGVhc3VyZS4=') returns 6C6561737572652E.

base64_binary ('ZQ==') returns 65.

base64_string()
Scalar. Returns a base64-encoded string for a given binary value.

Syntax
base64_string (binary)

Parameters

binary A binary value.

Usage
The function encodes a binary value to form a base64-encoded string. One or two padding
characters, '=' are added to the end to make the string length divisible by 4. The function
returns a string.

Example
base64_string (hex_binary ('64')) returns ZQ==.

base64_string (hex_binary ('6C6561737572652E')) returns
bGVhc3VyZS4=.

cast()
Scalar. Converts the value of one datatype to another datatype allowing overflows and
truncation.

Syntax
cast (type, number)

Parameters

type Any datatype, except binary or string.

number A datatype that can be cast to the new specified datatype.

Usage
The type argument must be a numeric type, money type, or a date/time type. You can cast
expressions of any type except binary or string types.

Casting from larger types to smaller types may cause overflow. Casting from decimal types
(like float or money) to nondecimal types (like integer) truncates the decimal portion. Both

CHAPTER 6: CCL Functions

Programmers Reference 123

overflows and truncation are allowed. Use this function to force a cast in places where an
implicit cast is disallowed, such as when converting an integer to a long.

When comparing values of varying scale, cast one value to the other to make the two values
compatible. For example, you can compare money values of different scale only by casting to
a common type.

How to cast money values of different scale depends on how you compare the two values:

• If you set 100.55D2, a money(2) type, as greater than (>) 100.545D3, a money(3) type, the
result is false because the values are represented internally without the decimal point.
Therefore, 10055 cannot be greater than 100545. In this example, you can perform casting
on either value to produce a true result. When you cast 10055 to 100545, the comparison
becomes 100550>100545, which is true. When you cast 100545 to 10055, the comparison
becomes 10055>10054, which is also true.

• If you set 100.55D2 as equal (=) to 100.556D3, the result is false. In this example, the result
changes depending on which value you cast. When you cast 10055 to 100556, the
comparison becomes 100550=100556, which is false. When you cast 100556 to 10055,
the comparison becomes 10055=10055, which is true.

You may prefer to cast lower scale values to higher scale values to avoid incorrect comparison
results and to maintain scale.

Example
cast (integer, 1.23) returns 1.

char()
Scalar. Returns the characters responding to one or more Unicode code points, or the UTF-8
code points if the -U server option is specified.

Syntax
char (expression [,...])

Parameters

expression One or more Unicode code points. The arguments must be integers.

Usage
An invalid code point, 0, or NULL returns NULL. The function returns a string.

Example
char (68) returns 'D'.

char(68, 68, 68) returns 'DDD'.

CHAPTER 6: CCL Functions

124 Sybase Event Stream Processor

dateint()
Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch).

Note: This function is supported in mixed case. The Event Stream Processor supports both
dateint() and dateInt(), and considers them the same function.

Syntax
dateint (datevalue)

Parameters

datevalue A date.

Usage
Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch). The function takes a date as its argument, and the function returns an
integer.

Example
dateint (undate ('1970:01:01 00:01:01')) returns 61.

extract()
Scalar. Extracts and returns a portion of a given binary value.

Syntax
extract (binary, startByte, numberOfBytes)

Parameters

binary A binary value.

startByte Integer representing the starting position for the extraction.

numberOfBytes Integer representing the length of the extraction.

Usage
Extracts a binary value starting at the startByte argument for a specified length. The function
takes a binary value and two integers as its arguments (for startByte and numberOfBytes),
and the function returns a binary value.

For example, if a binary value was composed of bytes abcde, extract(bytes, 2,3)
would produce cde. If length goes past end of binary value the rest of the binary value is
returned. In the previous example, extract(bytes,2,4) would still return cde.

CHAPTER 6: CCL Functions

Programmers Reference 125

Example
extract (hex_binary ('a1b2c3e4'),1,2)returns B2C3.

extract (hex_binary ('a1b2c3e4'),3,1) returns E4.

extract (hex_binary ('a1b2c3e4'),0,4)returns A1B2C3E4.

fromnetbinary()
Scalar. Converts a binary in network byte order to an integer in host byte order.

Syntax
fromnetbinary (binary)

Parameters

binary A binary in network byte order.

Usage
Takes a binary in network byte order and converts it to an integer in host byte order. Works for
positive and negative values. The function takes a binary value as its argument and the function
returns an integer. The function returns an error if the binary value is more than 4 bytes long.

Example
fromnetbinary (FFFFFFF6) returns -10.

fromnetbinary (0012ADE4) returns 1224164.

hex_binary()
Scalar. Converts a hex string into a binary type.

Syntax
hex_binary (string)

Parameters

string A hex string, with or without the preceding "0x" or "0X".

Usage
Takes a hex string, and converts it into a binary type. Valid characters for a hex string are a-f,
A-F, and 0-9. The string must contain an even number of characters. The function takes a
string as its argument, and the function returns a binary value.

Example
hex_binary ('0xAA1B223F') returns AA1B223F.

CHAPTER 6: CCL Functions

126 Sybase Event Stream Processor

hex_binary ('0xaa') returns AA.

hex_string()
Scalar. Converts a binary value into a hex string.

Syntax
hex_string (binary)

Parameters

binary A binary value.

Usage
Converts a binary value into a hex string. The function takes a binary value as its argument, and
the function returns a string that represents a hex string without the preceding "0x" in all
uppercase.

Example
hex_string (hex_binary ('0xaa')) returns AA.

hex_string (hex_binary ('0xaa1234')) returns AA1234.

intdate()
Scalar. Converts an integer representing the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch) to a date.

Note: This function is supported in mixed case. The Event Stream Processor supports both
intdate() and intDate(), and considers them the same function.

Syntax
intdate (number)

Parameters

number An integer representing the number of seconds since 1970-01-01
00:00:00 UTC (the Epoch).

Usage
Converts a value representing the number of seconds since 1970-01-01 00:00:00 UTC (the
Epoch) to a date. The function takes an integer as its argument, and the function returns a
date.

Example
intDate(1) returns a date, 1970-01-01 00:00:01.

CHAPTER 6: CCL Functions

Programmers Reference 127

msecToTime()
Scalar. Converts a given number of milliseconds to a bigdatetime.

Syntax
msecToTime (milliseconds)

Parameters

milliseconds A long representing the number of milliseconds since the epoch
(midnight, January 1, 1970 UTC).

Usage
Converts a given number of milliseconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
msecToTime (3661001) returns 1970-01-01 01:01:01.001.

recordDataToRecord
Converts the binary errorRecord value to a RECORD datatype value, based on the schema of
the specified source stream.

Syntax
recordDataToRecord (string sourceStreamName, binary errorRecord)

Parameters
sourceStreamName is a string that provides the name of the stream from which the error
record originated. To allow type checking of the return type, it must be an actual name, not a
variable that carries the name. If this argument does not point to an existing stream,
recordDataToRecord returns a NULL after setting an error flag to indicate that a bad
argument has been specified.

errorRecord is a binary that provides the record that triggered the error. This should always be
the errorRecord field of the error stream.

Note: Passing any arbitrary binary string or a mismatching schema (stream) name results in
undefined behavior ranging from garbage in the record to crashing the server. The arguments
to this built-in must be the sourceStreamName and errorRecord fields of the same error
stream.

recordDataToString
Converts the binary errorRecord value to string format.

CHAPTER 6: CCL Functions

128 Sybase Event Stream Processor

Syntax
recordDataToString (string sourceStreamName, binary errorRecord)

Parameters
The sourceStreamName is a string that provides the name of the stream from which the error
record originated. This should always be the sourceStreamName field of an error stream.
Specifying the name of another stream (such as the error stream) can cause a fatal error due to a
schema mismatch. If this argument doesn't point to an existing stream, recordDataToString
returns a NULL after setting an error flag to indicate that a bad argument was specified.

The errorRecord is a binary that provides the record that triggered the error. This should
always be the errorRecord field of the error stream and the schema should always match the
record.

Note: Passing any arbitrary binary string or a mismatching schema (stream) name will result
in undefined behavior: ranging from garbage in the record to crashing the server. The
arguments to this built-in should always be the sourceStreamName and errorRecord fields of
the same error stream.

secToTime()
Scalar. Converts a given number of seconds to a bigdatetime.

Syntax
secToTime (seconds)

Parameters

seconds A long representing the number of seconds since the epoch (mid-
night, January 1, 1970 UTC).

Usage
Converts a given number of seconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
secToTime (3661) returns 1970-01-01 01:01:01.000000.

timeToMsec()
Scalar. Converts a bigdatetime to the number of milliseconds since the epoch (midnight,
January 1, 1970).

Syntax
timeToMsec (time)

CHAPTER 6: CCL Functions

Programmers Reference 129

Parameters

time A bigdatetime.

Usage
Converts a bigdatetime to the number of milliseconds since the epoch (midnight, January 1,
1970). The function takes a bigdatetime as its argument, and the function returns a long
representing the number of milliseconds since the epoch (midnight, January 1, 1970 UTC).
The function truncates the microseconds that are part of the bigdatetime.

Example
timeToMsec (unbigdatetime('1970-01-01 01:01:01:002100'))
returns 3661002.

timeToUsec()
Scalar. Converts a bigdatetime to the number of microseconds since the epoch (midnight,
January 1, 1970).

Syntax
timeToUsec (time)

Parameters

time A bigdatetime.

Usage
Converts a bigdatetime to the number of microseconds since the epoch (midnight, January 1,
1970). The function takes a bigdatetime as its argument, and the function returns a long
representing the number of microseconds since the epoch (midnight, January 1, 1970 UTC).

Example
timeToUsec (unbigdatetime ('1970-01-01 01:01:01.000001'))
returns 3661000001.

timeToSec()
Scalar. Converts a bigdatetime to the number of seconds since the epoch (midnight, January 1,
1970).

Syntax
timeToSec (time)

Parameters

time A bigdatetime.

CHAPTER 6: CCL Functions

130 Sybase Event Stream Processor

Usage
Converts a bigdatetime to the number of seconds since the epoch (midnight, January 1, 1970).
The function takes a bigdatetime as its argument, and the function returns a long representing
the number of seconds since the epoch (midnight, January 1, 1970 UTC).The function
truncates the milliseconds or microseconds that are part of the bigdatetime.

Example
timeToSec (unbigdatetime('1970-01-01 01:01:01:000000'))
returns 3661.

to_bigdatetime()
Scalar. Converts a given value to a bigdatetime.

Syntax
to_bigdatetime (value)
to_bigdatetime (value, format)

Parameters

value A string, float, long, or bigdatetime. Strings must be in the format
specified by the format argument. Numeric values represent the
number of microseconds from the epoch (midnight, January 1,
1970 UTC).

format A format string. Only valid if the value is a string. Must be one of
the format codes for a bigdatetime. See "Date/Time Format Codes"
for more information.

Usage
Converts a given value to a bigdatetime. The function takes a float, a long, or a string (and
associated format string) as its argument, and the function returns a bigdatetime. Note that the
function can also take a bigdatetime as its argument, but it will return the same bigdatetime.

Examples
to_bigdatetime(3600000000) returns 1970-01-01 01:00:00.000000.

to_bigdatetime('02/19/2010 10:15', '%m/%d/%Y %H:%M') returns
2010-02-19 10:15:00.000000.

to_bigdatetime('07/19/2010 10:15 -07.00', 'MM/DD/YYYY HH:MI
TZH:TZM') returns 2010-07-19 03:15:00.000000.

CHAPTER 6: CCL Functions

Programmers Reference 131

to_binary()
Scalar. Converts a given value to a binary value.

Syntax
to_binary (value)

Parameter

value The value you wish to cast to is either string or binary type.

Usage
Converts a given string to a binary value. The function takes a string as its argument, and the
function returns a binary value. Note that the function can also take a binary value as its
argument, but it will return the same binary value.

Examples
to_binary('0123456789abcdef') returns a binary value equivalent to
0x30313233343536373839616263646566

to_binary('Hello there!') returns a binary value equivalent to 0x48656c6c6f20746865726521

to_string(to_binary('Good morning.')) returns the string 'Good morning.' after casting it to
binary type and then back to string type.

to_boolean()
Scalar. Converts a given value to a Boolean value.

Syntax
to_boolean (value)

Parameter

value A string, or a Boolean value.

Usage
Converts a given string to a Boolean value. The function takes a string as its argument, and the
function returns a Boolean value. Note that the function can also take a Boolean value as its
argument, but it will return the same Boolean value.

The strings "True", "Yes", and "On", regardless of case, or the numeral "1" returns TRUE.
NULL returns NULL. Any other string returns FALSE.

Examples
to_boolean ('1')returns TRUE.

to_boolean ('FALSE')returns FALSE.

CHAPTER 6: CCL Functions

132 Sybase Event Stream Processor

to_boolean ('example')returns FALSE.

to_date()
Scalar. Converts a given value to a date.

Syntax
to_date (value)
to_date (value, format)

Parameters

value A string, float, long, or date. Strings must be in the format specified
by the format argument. Numeric values represent the number of
seconds from the epoch (midnight, January 1, 1970 UTC).

format A format string. Only valid if the value is a string. Must be one of
the format codes for a date. See "Date/Time Format Codes" for
more information.

Usage
Converts a given value to a date. The function takes a float, a long, or a string (and associated
format string) as its argument, and the function returns a date. Note that the function can also
take a date as its argument, but it will return the same date.

Examples
to_date('02/19/2010 10:15', '%m/%d/%Y %H:%M') returns 2010-02-19
10:15:00.

to_date('07/19/2010 10:15 -07.00', 'MM/DD/YYYY HH:MI
TZH:TZM') returns 2010-07-19 03:15:00.

to_float()
Scalar. Converts a given value to a float.

Syntax
to_float (value)

Parameters

value A string, interval, date/time type, numeric type, or money type.

Usage
Converts a given value to a float. The function takes a string, interval, date/time type, numeric
type, or money type as its argument, and the function returns a float . Note that the function can
also take a float as its argument, but it will return the same float value.

CHAPTER 6: CCL Functions

Programmers Reference 133

A string converts based on the format for a float literal. An interval returns a value representing
a number of microseconds. A date/time type returns a value representing the number of
seconds, milliseconds, or microseconds from the epoch (midnight, January 1, 1970 UTC)
depending on whether the input type is a date, timestamp or bigdatetime respectively. Those
date/time types prior to the epoch convert to a negative value.

Example
to_float ('100.0')returns 100.0.

to_integer()
Scalar. Converts a given value to an integer.

Syntax
to_integer (value)

Parameters

value The boolean, money, string, date, or any numeric type value you
wish to cast to integer.

Usage
Converts a given value to an integer. The function takes a string, date, or any numeric type as
its argument, and the function returns an integer. Note that the function can take an integer as
its argument, but it will return the same integer.

Numeric values return the integer portion of the value. Values outside the valid range for an
integer, or nonnumeric characters in a string value, return NULL. A date returns a value
representing the number of seconds from the epoch (midnight, January 1, 1970 UTC). Those
prior to the epoch convert to a negative value.

Example
to_integer ('1')returns 1.

to_interval()
Scalar. Converts a given value to an interval.

Syntax
to_interval (value)

Parameters

value A string, long, float, or interval representing a number in micro-
seconds. Strings must follow the format for an interval literal.

CHAPTER 6: CCL Functions

134 Sybase Event Stream Processor

Usage
Converts a given value to an interval. The function takes a string, a long, or a float as its
argument, and the function returns an interval. Note that the function can also take an interval
as its argument, but it will return the same interval.

Example
to_interval('1234') returns 1234.

to_long()
Scalar. Converts a given value to a long.

Syntax
to_long (value)

Parameters

value A string, interval, date/time type, numeric type, or money type.

Usage
Converts a given string to a long. The function takes a string, interval, date/time type, numeric
type, or money type as its argument, and the function returns a long. Note that the function can
take a long as its argument, but it will return the same long.

Numeric types return the integer portion of the value. Strings with nonnumeric characters, or
with values outside the valid range for a long, return NULL. An interval returns a number of
microseconds. A date/time type returns a value representing the number of seconds,
milliseconds, or microseconds from the epoch (midnight, January 1, 1970 UTC) depending on
whether the input type is a date, timestamp or bigdatetime respectively. Those prior to the
epoch convert to a negative value.

Example
to_long ('23')returns 23.

to_money()
Scalar. Converts a given value to the appropriate money type, based on a given scale.

Syntax
to_money (value, scale)

Parameters

value A string, or a numeric type. The string must be all numeric, but can
include a decimal point.

CHAPTER 6: CCL Functions

Programmers Reference 135

scale An integer from 1 to 15.

Usage
Converts a given value to a money type, based on the given scale. The function takes a string or
a numeric type as its argument, and the function returns a money.

Example
to_money (12.361, 2)returns 12.36.

to_string()
Scalar. Converts a given value to a string.

Syntax
to_string (value [, format] [, timezone])

Parameters

value A value of any datatype.

format (Optional) A format string. Only valid if the value is a date/time or
numeric type.

timezone (Optional) A time zone. Only valid if the value is a date/time type.
If none is specified, the UTC time zone is used.

Usage
Converts a given value to a string. The function can take any datatype as its argument, and the
function returns a string. Note that the function can take a string as its argument, but it will
return the same string. This function converts values as follows:

• For integers or longs, the user can include an optional format string to specify the format
for the output string. The format string follows the ISO standard for fprintf. The default for
integer expressions is '%d', while the default for long expressions is '%lld'.

• For a date/time type, the user can include to specify the format of the output string. The
string must be a valid timestamp format code.

• The optional time zone argument can only be used with a date/time type. This string must
be a valid time zone string. If no time zone is specified, UTC will be used. See "Time
Zones" and "List of Time Zones" for more information.

• The function works the same as xmlserialize() when converting an XML value to a string
• For binary values, the returned string can contain unprintable characters because the

function does a simple cast from binary to string rather than performing a conversion. To
convert to a hex string representation of the binary value, use the hex_string() function.

For a float value, the user can include an optional format string that specifies the format for the
output of the floating point number as a string. The format string can include the following
characters:

CHAPTER 6: CCL Functions

136 Sybase Event Stream Processor

. or D Returns a decimal point in the specified position. Only one decimal point can be
specified, or the output will contain number signs instead of the values.

9 Replaced in the output by a single digit of the value. The value is returned with as
many characters as there are 9s in the format string.

If the value is positive, a leading space is included to the left of the value. If the
value is negative, a leading minus sign is included to the left of the value.

Excess 9s to the left of the decimal point are replaced with spaces, while excess 9s
to the right of the decimal point are replaced with zeros. Insufficient 9s to the left of
the decimal point returns number signs instead of the value, while insufficient 9s to
the right of the decimal point result in rounding.

0 To the left of the decimal point, replaced in the output by a single digit of the value
or a zero, if the value does not have a digit in the position of the zero. To the right of
the decimal point, treated as a 9.

If the value is positive, a leading space is included to the left of the value. If the
value is negative, a leading minus sign is included to the left of the value.

EEEE Returns the value in scientific notation. The output for this format always includes
a single digit before the decimal. Combine with a decimal point and 9s to specify
precision. 9s to the left of the decimal point are ignored.

Must be placed at the end of the format string.

S Returns a leading or trailing minus sign (-) or plus sign (+), depending on whether
the value is positive or negative. Can only be placed at the beginning or end of the
format string.

Eliminates the usual single leading space, but not leading spaces as the result of
excess 9s, zeros, or commas.

$ Returns a leading dollar sign in front of the value. Can be placed anywhere in the
format string.

. Returns a comma in the specified position. If there are no digits to the left of the
comma, the comma is replaced with a space.

The user can specify multiple commas, but cannot specify a comma as the first
character in the format, or to the right of the decimal point.

FM Strips spaces from the output.

Examples
to_string (45642) returns '45642'.

to_string (1234.567,'999') returns '####'.

to_string (1234.567,'9999D999') returns '1234.567'.

CHAPTER 6: CCL Functions

Programmers Reference 137

to_string (1234.567,'.99999999EEEE') returns '1.23456700E+03'.

to_timestamp()
Scalar. Converts a given value to a timestamp.

Syntax
to_timestamp (value)
to_timestamp (value, format)

Parameters

value A string, float, or long. Strings must be in the format specified by
the format argument. Numeric values represent the number of
milliseconds from the epoch (midnight, January 1, 1970 UTC).

format A format string. Only valid if the value is a string. Must be one of
the format codes for a timestamp. See "Date/Time Format Codes"
for more information.

Usage
Converts a given value to a timestamp. The function takes a float, a long, or a string (and
associated format string) as its argument, and the function returns a timestamp. Note that the
function can also take a timestamp as its argument, but it will return the same timestamp.

Examples
to_timestamp('02/19/2010 10:15', '%m/%d/%Y %H:%M') returns
2010-02-19 10:15:00.000.

to_timestamp('07/19/2010 10:15 -07.00', 'MM/DD/YYYY HH:MI
TZH:TZM') returns 2010-07-19 03:15:00.000.

to_xml()
Scalar. Converts a given value to XML.

Syntax
to_xml (value)

Parameters

value A string, or an XML type object.

Usage
Converts a given value to XML. The function takes a string as its argument, and the function
returns a string. The function can also take an XML type object as its argument, but it will
return the same object. The function is the same as xmlparse(), but it can also handle an XML
input.

CHAPTER 6: CCL Functions

138 Sybase Event Stream Processor

Example
xmlserialize (to_xml ('<t/>')) returns '<t/>'. The string gets converted to
XML, then back into a string.

totimezone()
Converts a date from the given time zone to a specified time zone.

Syntax
totimezone (datevalue, fromzone, tozone)

Parameters

datevalue A date or bigdatetime.

fromzone A string representing a legal time zone.

tozone A string representing a legal time zone.

Usage
Converts a date from a given time zone to a new time zone. The first argument is the date being
converted, the second argument is the original time zone, and the third argument is the new
time zone. Time zone values are taken from the industry-standard TZ database. The first
argument must be a date; the second and third arguments must be strings that represent legal
time zones. The function returns a date.

Example
totimezone(v.TradeTime, 'GMT', 'EDT') converts the time portion of each
TradeTime from Greenwich Mean Time to Eastern Daylight Time.

tonetbinary()
Scalar. Converts an integer in host byte order to a 4 byte binary in network byte order.

Syntax
tonetbinary (integer)

Parameters

integer An integer in host byte order.

Usage
Takes an integer in host byte order and converts it to a 4 byte binary in network byte order.
Works for positive and negative values.

CHAPTER 6: CCL Functions

Programmers Reference 139

Example
tonetbinary (1224164) returns 0012ADE4.

tonetbinary (-1224164) returns FFED521C.

usecToTime()
Scalar. Converts a given number of microseconds to a bigdatetime.

Syntax
usecToTime (microseconds)

Parameters

microseconds A long representing the number of microseconds since the epoch
(midnight, January 1, 1970 UTC).

Usage
Converts a given number of microseconds to a bigdatetime. The function takes a long as its
argument, and the function returns a bigdatetime.

Example
usecToTime (3661000001) returns 1970-01-01 01:01:01.000001.

XML Functions
There are special scalar functions which are designed to correctly handle XML data.

xmlconcat()
Scalar. Concatenates a number of XML values into a single value.

Syntax
xmlconcat (value, value [,value ...])

Parameters

value An XML value.

Usage
Concatenates a number of XML values into a single value. The function takes at least two
XML values, and the function returns an XML value.

Example
xmlconcat (xmlparse(stringCol), xmlparse('<t/>')))

CHAPTER 6: CCL Functions

140 Sybase Event Stream Processor

xmlelement()
Scalar. Creates a new XML data element, with attributes and XML expressions within it.

Syntax
xmlelement (name, [xmlattributes (string AS name, ..., string AS
name),]
[XML value, ..., XML value])

Parameters

string Attribute name/value pairs. For example: 'attrValue' AS attrName
results in attrName = "attrValue" attribute created in the resulting
XML element.

name The name of the new element. Must adhere to naming conventions.

XML value An XML value representing a child element.

Usage
Creates a new XML data element, with attributes and XML expressions within it. The function
takes . The function returns an XML value.

Example
xmlelement (top, xmlattributes('data' as attr1),
xmlparse('<t/>')) returns a new XML element called top, with a 'data' attribute and
<t/> child element.

xmlparse()
Scalar. Converts a string into an XML value.

Syntax
xmlparse (string)

Parameters

value The XML value represented as a string.

Usage
Converts a string into an XML value. The function takes a string as its argument, and returns an
XML value. Since there is no XML data type, the value returned from this function can only be
used as input to other functions expecting XML as input, such as xmlserialize().

Example
xmlserialize (xmlparse ('<t/>')) returns '<t/>'. The string gets converted
into an XML value, then back into a string.

CHAPTER 6: CCL Functions

Programmers Reference 141

xmlserialize()
Scalar. Converts an XML value into a string.

Syntax
xmlserialize (value)

Parameters

value An XML value.

Usage
Converts an XML value into a string. The function takes an XML value as its argument, and
returns a string.

Example
xmlserialize (xmlparse ('<t/>')) returns '<t/>'. The string gets converted
into an XML value, then back into a string.

Date and Time Functions
Date and time functions set time zone parameters, date format code preferences, and define
calenders.

business()
Scalar. Determines the next business day from a date value, based on a specified offset.

Syntax
business (calendarfile, datevalue, offset)

Parameters

calendarfile A string representing the file path for a calendar file.

datevalue A date/time type.

offset A negative or positive integer (should not be zero).

Usage
The function returns the same datatype as the datevalue argument.

The offset argument can be any negative or positive integer, but it cannot be zero. The function
returns NULL if the offset is zero, and logs an error message. Negative integers return previous
business days.

CHAPTER 6: CCL Functions

142 Sybase Event Stream Processor

Example
business('/cals/us.cal',v.TradeTime, 1) returns the next business day
within the calendar us.cal after the TradeTime date.

businessday()
Scalar. Determines if a date value falls on a business day (neither a weekend nor a holiday).

Note: This function is supported in mixed case. The Event Stream Processor considers
businessday() and businessDay() the same function.

Syntax
businessday (calendarfile, datevalue)

Parameters

calendar A string representing the file path for a calendar file

datevalue A date/time type

Usage
The function returns 1 if the date falls on a business day (true), or 0 otherwise (false). The
function returns an integer.

Example
businessDay('/cals/us.cal',v.TradeTime) returns 1 if the date portion of
v.TradeTime falls on a business day, and 0 otherwise.

date()
Scalar. Converts a date value into an integer with the digits YYYYMMDD.

Syntax
date (datevalue)

Parameters

datevalue A date

Usage
The function returns an integer.

Example
date (undate ('1991-04-01 12:43:32')) returns 19910401.

CHAPTER 6: CCL Functions

Programmers Reference 143

dateceiling()
Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded up to the
minimum date_part multiple that is greater than or equal to the input timestamp.

Syntax
dateceiling (date_part, expression [, multiple])

Parameters

date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.

expression Date-time expression containing the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

Valid Date Part Keywords and Multiples

Keyword Keyword mean-
ing

Multiples

yy or year Year Any positive integers

qq or quarter Quarter Any positive integers

mm or month Month Any positive integers

wk or week Week Any positive integers

dd or day Day Any positive integers.

hh or hour Hour 1, 2, 3, 4, 6, 8, 12 and 24

mi or minute Minute 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ss or second Second 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ms or millisecond Millisecond 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

Usage
This function determines the next largest date_part value expressed in the timestamp, and
zeros out all date_parts of finer granularity than date_part.

CHAPTER 6: CCL Functions

144 Sybase Event Stream Processor

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the ceiling operation. For example, to
establish a date ceiling based on 10 minute intervals, use MINUTE or MI for the date_part, and
10 as the multiple.

Known errors:

• The server generates an invalid argument error if the value of the required
arguments evaluate to NULL.

• The server generates an invalid argument error if the value of the multiple argument
is not within range valid for the specified date_part argument. As an example, have the
value of multiple be less than 60 if date_part mi is specified.

Standards and Compatibility
Sybase extension.

Example
dateceiling('MINUTE', to_timestamp('2010-05-04T12:00:01.123',
'YYYY-MM-DDTHH24:MI:SS.FF'))
returns '2010-05-04 12:01:00.000'

datefloor()
Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded down to the
maximum date_part multiple that is less than or equal to the input timestamp.

Syntax
datefloor (date_part, expression [, multiple])

Parameters

date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.

expression Date-time expression containing the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

CHAPTER 6: CCL Functions

Programmers Reference 145

Valid Date Part Keywords and Multiples

Keyword Keyword mean-
ing

Multiples

yy or year Year Any positive integers

qq or quarter Quarter Any positive integers

mm or month Month Any positive integers

wk or week Week Any positive integers

dd or day Day Any positive integers.

hh or hour Hour 1, 2, 3, 4, 6, 8, 12 and 24

mi or minute Minute 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ss or second Second 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ms or millisecond Millisecond 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

Usage
This function zeros out all datetime values with a granularity finer than that specified by
date_part. Date_part is a keyword, and expression is any expression that evaluates or can be
implicitly converted to a datetime (or timestamp) datatype. Multiple is an integer that contains
the multiples of date_parts to be used in performing the floor operation. For example, to
establish a date floor based on 10 minute intervals, use MINUTE or MI for date_part, and 10 as
the multiple.

Known errors:

• The server generates an "invalid argument" error if the value of the required arguments
evaluate to NULL.

• The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, have the value
of multiple be less than 60 if date_part mi is specified.

Standards and compatibility
Sybase extension.

Example
datefloor('MINUTE', to_timestamp('2010-05-04T12:00:01.123', 'YYYY-
MM-DDTHH24:MI:SS.FF'))
returns '2010-05-04 12:00:00.000'

CHAPTER 6: CCL Functions

146 Sybase Event Stream Processor

dateint()
Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch).

Note: This function is supported in mixed case. The Event Stream Processor supports both
dateint() and dateInt(), and considers them the same function.

Syntax
dateint (datevalue)

Parameters

datevalue A date.

Usage
Converts a date to an integer that represents the number of seconds since 1970-01-01 00:00:00
UTC (the Epoch). The function takes a date as its argument, and the function returns an
integer.

Example
dateint (undate ('1970:01:01 00:01:01')) returns 61.

datename()
Scalar. Converts a date value into a string.

Syntax
datename (datevalue)

Parameters

datevalue A date or bigdatetime.

Usage
Converts a date value to a string of the form 'YYYY-MM-DD'. The function takes a date or
bigdatetime as its argument, and the function returns a string.

Example
datename (undate ('2010-03-03 12:34:34')) returns '20100303'.

datepart()
Scalar. Returns an integer representing a portion of a date.

Syntax
datepart (portion, datevalue)

CHAPTER 6: CCL Functions

Programmers Reference 147

Parameters

portion One of the following strings:

• The year, if the string is yy or yyyy.

• The month, if the string is mm or m.

• The day of the year, if the string is dy or y.

• The day of the month, if the string is dd or d.

• The day of the week, if the string is dw.

• The hour, if the string is hh.

• The minute, if the string is mi or n.

• The second, if the string is ss or s.

datevalue A date or bigdatetime.

Usage
Returns an integer representing a portion of a date. The portions that the function can return
are the year, the month, the day of the year, the day of the month, the day of the week, the hour,
the minute, or the second. The function takes a string as the portion argument, and a date or
bigdatetime for the datevalue argument. The function returns an integer.

Example
datepart ('ss', undate ('2010-03-03 12:34:34')) returns 34.

dateround()
Scalar. Computes a new date-time based on the provided date-time, multiple and date_part
arguments, with subordinate date_parts set to zero. The result is then rounded to the value of a
date_part multiple that is nearest to the input timestamp.

Syntax
dateround (date_part, expression [, multiple])

Parameters

date_part Keyword that identifies the granularity desired. Valid keywords are
identified below.

expression Date-time expression containing the value to be evaluated.

multiple Contains a multiple of date_parts to be used in the operation, which
if supplied must be a nonzero positive integer value. If none is
provided or it is NULL, the value is assumed to be 1.

CHAPTER 6: CCL Functions

148 Sybase Event Stream Processor

Valid Date Part Keywords and Multiples

Keyword Keyword mean-
ing

Multiples

yy or year Year Any positive integers

qq or quarter Quarter Any positive integers

mm or month Month Any positive integers

wk or week Week Any positive integers

dd or day Day Any positive integers.

hh or hour Hour 1, 2, 3, 4, 6, 8, 12 and 24

mi or minute Minute 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ss or second Second 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, and 60

ms or millisecond Millisecond 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125,
200, 250, 500, and 1000

Usage
This function rounds the datetime value to the nearest date_part or multiple of date_part, and
zeros out all date_parts of finer granularity than date_part or its multiple. For example, when
rounding to the nearest hour, the minutes portion is determined, and if >= 30, then the hour
portion is incremented by 1, and the minutes and other subordinate date parts are zeros.

Date_part is a keyword, expression is any expression that evaluates or can be implicitly
converted to a datetime (or timestamp) datatype, and multiple is an integer containing the
multiples of date_parts to be used in performing the rounding operation. For example, to
round to the nearest 10-minute increment, use MINUTE or MI for date_part, and 10 as the
multiple.

Known errors:

• The server generates an "invalid argument" error if the value of the required arguments
evaluate to NULL.

• The server generates an "invalid argument" error if the value of the multiple argument is
not within a range valid for the specified datepart argument. As an example, the value of
multiple must be less than 60 if date_part mi is specified.

Example
dateround('MINUTE', to_timestamp('2010-05-04T12:00:01.123', 'YYYY-
MM-DDTHH24:MI:SS.FF'))
returns '2010-05-04 12:00:00.000'

CHAPTER 6: CCL Functions

Programmers Reference 149

dayofmonth()
Scalar. Returns the integer representing the day of the month extracted from a given
bigdatetime.

Syntax
dayofmonth (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the day of the month extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
dayofmonth ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 3.

dayofweek()
Scalar. Returns the integer representing the day of the week (Sunday is 1) extracted from a
given bigdatetime.

Syntax
dayofweek (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the day of the week extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer. Sunday is represented by 1, and the rest of the days of the
week follow.

CHAPTER 6: CCL Functions

150 Sybase Event Stream Processor

Example
dayofweek ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 4.

dayofyear()
Scalar. Returns the integer representing the day of the year extracted from a given bigdatetime.

Syntax
dayofyear (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the day of the year extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
dayofyear ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 62.

hour()
Scalar. Returns an integer representing the hour extracted from a given bigdatetime.

Syntax
hour (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See 'Time Zones" and "List of Time Zones"
for more information.

Usage
Returns an integer representing the hour extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

CHAPTER 6: CCL Functions

Programmers Reference 151

Example
hour ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 12.

makebigdatetime()
Scalar. Constructs a bigdatetime from the given values.

Syntax
makebigdatetime (year, month, day, hour, minute, second, microsecond
[,timezone])

Parameters

year An expression that evaluates to a value from 0001 to 9999. Values
outside of the range 1970 to 2099 may result in inaccuracies due to
leap years and daylight savings time.

month An expression that evaluates to a value specifying the month. 0-12
indicate January to December, with both 0 and 1 representing Jan-
uary. Values larger than 12 roll over into subsequent years, while
negative values subtract months from January of the specified year.

day An expression that evaluates to a value specifying the day of the
month. 0 and 1 both represent the first day of the year. Values larger
than the valid number of days for the specified month roll over into
subsequent months, while negative values subtract days from the
first day of the specified month.

hour An expression that evaluates to a value specifying the hour of the
day. Values larger than 23 roll over into subsequent days, while
negative values subtract hours from midnight of the specified day.

minute An expression that evaluates to a value specifying the minute.
Values larger than 59 roll over into subsequent hours, while nega-
tive values subtract minutes from the specified hour.

second An expression that evaluates to a value specifying the second.
Values larger than 59 roll over into subsequent minutes, while
negative values subtract seconds from the specified minute.

microsecond An expression that evaluates to a value specifying the microsecond.
Values larger than 999999 roll over into subsequent seconds, while
negative values subtract microseconds from the specified second.

timezone (Optional) A string representing the time zone. If omitted, the
engine assumes the local time zone. See "Time Zones" and "List of
Time Zones" for more information about valid time zone strings.

CHAPTER 6: CCL Functions

152 Sybase Event Stream Processor

Usage
Constructs a bigdatetime from the given values. The function takes integer values as its
arguments (with the exception of the optional string representing a time zone), and the
function returns an bigdatetime. If any argument is NULL, the function returns NULL.

Example
to_string (makebigdatetime (2010, 3, 3, 12, 34, 34, 59111))
returns '2010-03-03 12:34:34:059111'.

microsecond()
Scalar. Returns an integer representing the microsecond extracted from a given bigdatetime.

Syntax
microsecond (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See 'Time Zones" and "List of Time Zones" for more
information.

Usage
Returns an integer representing the microsecond extracted from a given bigdatetime. The
function takes a bigdatetime as its argument (and an optional string representing a time zone),
and the function returns an integer.

Example
microsecond ((unbigdatetime ('2010-03-03 12:34:34:059111'))
returns 059111.

minute()
Scalar. Returns an integer representing the minutes extracted from a given bigdatetime.

Syntax
minute (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

CHAPTER 6: CCL Functions

Programmers Reference 153

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the minutes extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
minute ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 34.

month()
Scalar. Returns an integer representing the month extracted from a given bigdatetime.

Syntax
month (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing a valid time zone. If none is
specified, UTC is used. See "Time Zones" and "List of Time
Zones" for more information.

Usage
Returns an integer representing the month extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

Example
month ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 3.

now()
Returns the current system date as a bigdatetime value.

Syntax
now ()

Usage
Returns the current system date as a bigdatetime value. The function has no arguments, and the
function returns a bigdatetime. This function works the same as sysbigdatetime().

CHAPTER 6: CCL Functions

154 Sybase Event Stream Processor

Example
now() on March 3, 2010, at 12:34:34:059111 returns 2010-03-03 12:34:34:059111.

second()
Scalar. Returns an integer representing the seconds extracted from a given bigdatetime.

Syntax
second (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See "Time Zones" and "List of Time Zones" for more
information.

Usage
Returns an integer representing the seconds extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer. If either argument is NULL, the function returns NULL.

Example
second ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 34.

sysbigdatetime()
Returns the current system date as a bigdatetime value.

Syntax
sysbigdatetime ()

Usage
Returns the current system date as a bigdatetime value. The function has no arguments, and the
function returns a bigdatetime. This function works the same as now().

Example
sysbigdatetime() on March 3, 2010, at 12:34:34:059111 returns 2010-03-03
12:34:34:059111.

CHAPTER 6: CCL Functions

Programmers Reference 155

sysdate()
Scalar. Returns the current system date as a date value.

Syntax
sysdate ()

Usage
Returns the current system date as a date value. The function has no arguments, and the
function returns a date.

Example
sysdate() on March 3, 2010, at 12:34:34 returns 2010-03-03 12:34:34.

systimestamp()
Scalar. Returns the current system date as a timestamp value.

Syntax
systimestamp ()

Usage
Returns the current date, based on the Event Stream Processor server clock time, as a
timestamp value. This date may differ from real time if the clock command in esp_client
was used to change the rate or time of the server clock. The function has no arguments, and the
function returns a timestamp.

Example
systimestamp() on March 3, 2010, at 12:34:34:059 returns 2010-03-03 12:34:34:059.

totimezone()
Converts a date from the given time zone to a specified time zone.

Syntax
totimezone (datevalue, fromzone, tozone)

Parameters

datevalue A date or bigdatetime.

fromzone A string representing a legal time zone.

tozone A string representing a legal time zone.

CHAPTER 6: CCL Functions

156 Sybase Event Stream Processor

Usage
Converts a date from a given time zone to a new time zone. The first argument is the date being
converted, the second argument is the original time zone, and the third argument is the new
time zone. Time zone values are taken from the industry-standard TZ database. The first
argument must be a date; the second and third arguments must be strings that represent legal
time zones. The function returns a date.

Example
totimezone(v.TradeTime, 'GMT', 'EDT') converts the time portion of each
TradeTime from Greenwich Mean Time to Eastern Daylight Time.

unbigdatetime()
Scalar. Converts a given string into a bigdatetime value.

Syntax
unbigdatetime (string)

Parameters

string A string representing a bigdatetime value.

Usage
Converts a given string into a bigdatetime value. The function takes a string as its argument,
and the function returns a bigdatetime.

Example
unbigdatetime ('2003-06-14 13:15:00:232323') returns 2003-06-14
13:15:00:232323 .

undate()
Scalar. Converts a given string into a date value.

Syntax
undate (string)

Parameters

string A string representing a date value.

Usage
Converts a given string into a date value. The function takes a string as its argument, and the
function returns a date.

CHAPTER 6: CCL Functions

Programmers Reference 157

Example
undate ('2003-06-14 13:15:00') returns 2003-06-14 13:15:0 .

weekendday()
Scalar. Determines if a given date/time type falls on a weekend.

Note: This function is supported in mixed case. The Event Stream Processor supports both
weekendday() and weekendDay(), and considers them the same function.

Syntax
weekendday (calendarfile, datevalue)

Parameters

calendar A string representing the file path for a calendar file.

datevalue A date/time type.

Usage
Determines if a date/time type value falls on a weekend. The function returns 1 if the date/time
type falls on a weekend (true), or 0 otherwise (false).The function takes a string to represent
the calendar path, and a date/time type as the datevalue. The function returns an integer.

Example
weekendDay('/cals/us.cal',v.TradeTime) returns 1 if the date portion of
v.TradeTime falls on a weekend, and 0 otherwise.

year()
Scalar. Returns an integer representing the year extracted from a given bigdatetime.

Syntax
year (bigdatetime [,timezone])

Parameters

bigdatetime A bigdatetime value.

timezone (Optional) A string representing the time zone. If none is specified,
UTC is used. See "Time Zones" and "List of Time Zones" for more
information.

Usage
Returns an integer representing the year extracted from a given bigdatetime. The function
takes a bigdatetime as its argument (and an optional string representing a time zone), and the
function returns an integer.

CHAPTER 6: CCL Functions

158 Sybase Event Stream Processor

Example
year ((unbigdatetime ('2010-03-03 12:34:34:059111')) returns 2010.

Aggregate Functions
Aggregate functions operate on multiple records to calculate one value from a group of values.

The groups or rows are formed using the GROUP BY clause of the SELECT statement. The
GROUP FILTER and GROUP ORDER BY clauses are used in conjunction with the GROUP BY
clause to limit the rows in the group and to order the rows in the group respectively.

Aggregate functions, such as sum(), min() etc are allowed only in the select list and in the
HAVING clause of a SELECT statement. Aggregate functions cannot be specified in the
GROUP BY, GROUP ORDER BY, GROUP FILTER and WHERE clauses of the SELECT
statement.

All aggregate functions ignore NULL values when performing their aggregate calculations.
However, when all input passed to an aggregate function is NULL the function returns a
NULL except for the count() function, which returns a 0.

Certain aggregate functions namely count(), sum(), avg() and valueInserted()
are considered additive functions. Additive functions can compute its value only based upon
the column values in the current event without having to look at the rest of the events in the
group. A projection that uses ONLY additive functions allows the server to optimize the
aggregation so that additional aggregation indexes are not maintained. This improves the
performance of the aggregation operation considerably.

Note: Aggregate functions cannot be nested i.e. an aggregate function cannot be applied over
an expression containing another aggregate function.

Example
In general, the following example shows how the aggregate functions are incorporated into
CCL code:
 CREATE INPUT WINDOW Trades
SCHEMA (TradeId LONG, Symbol, STRING, Price FLOAT, Volume LONG,
TradeTime DATE)
PRIMARY KEY (TradeId);

CREATE OUTPUT WINDOW
TradeSummary PRIMARY KEY DEDUCED
AS SELECT trd.Symbol, max(trd.Price) MaxPrice, min(trd.Price)
MinPrice, sum(trd.Volume)
TotalVolume FROM Trades trd
GROUP BY trd.Symbol;

CHAPTER 6: CCL Functions

Programmers Reference 159

any()
Aggregate. Returns a value based on an arbitrary member in a group of values.

Syntax
any (expression)

Parameters

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
Returns the value for the expression based on an arbitrary member of the group unless the
group has no members in which case a NULL value is returned. The function takes any
datatype as its argument, and the function returns that same datatype.

avg()
Aggregate. Computes the average value of a given set of arguments to identify the central
tendancy of a value group.

Syntax
avg (numeric-expression)

Parameters

numeric-expression A numeric expression for which an average is computed. The ex-
pression accepts all datatypes except boolean. The expression will
normally reference one or more columns in a group of records such
that the average will be computed using the reference column value
for each member of the group.

Usage
Compute the average value across a set of rows. The average is computed according to the
following formula:

CHAPTER 6: CCL Functions

160 Sybase Event Stream Processor

The avg function generates a 0 when a NULL value is received and takes any numeric datatype
as input; returns type FLOAT.

The average function could be used to indentify things such as the average trading price of a
stock over a determined period of time.

corr()
Aggregate. Returns the correlation coefficient of a set of number pairs to determine the
relationship between the two properties.

Syntax
corr (dependent-expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts all numeric da-
tatypes except timestamp, bigdatetime, and in-
terval. Will normally reference one or more col-
umns in the group of records to be aggregated.

independent-expression The variable that influences the outcome. The
expression accepts all numeric datatypes except
timestamp, bigdatetime, and interval. Will nor-
mally reference one or more columns in the
group of records to be aggregated.

Usage
Returns the correlation coefficient of a set of number pairs. The function converts its
arguments to FLOAT, performs the computation in double-precision floating point, and
returns a float as the result. If the function is applied to an empty set, then it returns NULL.

Both dependent-expression and independent-expression are numeric. The function is
applied to the set of (dependent-expression, independent-expression) after eliminating the
pairs for which either dependent-expression or independent-expression is NULL.

where x represents the independent-expression and y represents the dependent-expression.
Running totals of row_count, sum_x, sum_y, sum_xx, sum_yy and sum_xy are required.

CHAPTER 6: CCL Functions

Programmers Reference 161

The correlation function could be used to analyze the relationship between two sets of stock
variables to help benchmark against competitors.

covar_pop()
Aggregate. Returns the population covariance of a set of number pairs to determine the
relationship between the two data sets.

Syntax
covar_pop (dependent-expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts only a range of
integers.

independent-expression The variable that influences the outcome. The
expression accepts only a range of integers.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float as the result. If the function is applied to an empty set, then it
returns NULL. Both dependent-expression and independent-expression are numeric. The
function is applied to the set of (dependent-expression, independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is
NULL. The following computation is then made:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where x represents the dependent-expression, y represents the independent-expression,
and n represents the number of (x,y) pairs where neither x or y is NULL.

The covariance of a sample may be used to assess the relationship between things such as the
rate of economic growth and the rate of stock market return.

covar_samp()
Aggregate. Returns the sample covariance of a set of number pairs.

Syntax
covar_samp (dependent-expression, independent-expression)

Parameters

dependent-expression The variable that is affected by the independent variable. The ex-
pression accepts only a range of integers.

CHAPTER 6: CCL Functions

162 Sybase Event Stream Processor

independent-expression The variable that influences the outcome. The expression accepts
only a range of integers.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float as the result. If the function is applied to an empty set, then it
returns NULL. Both dependent-expression and independent-expression are numeric. The
function is applied to the set of (dependent-expression, independent-expression) pairs after
eliminating all pairs for which either dependent-expression or independent-expression is
NULL.

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / (n -1)

Here x represents the dependent-expression, y represents the independent-expression, and
n represents the number of (x,y) pairs where neither x or y is NULL.

The covariance of a sample may be used to indicate how two specific stocks may move
together in the future, which is an important aspect before analyzing the standard deviation of
a portfolio as a measure of risk.

count()
Aggregate. Returns the number of rows in a group, excluding NULL values.

Syntax
count (* | expression)

Parameters

expression A column from the source or an expression typically based upon
columns from the source. It can also be a constant expression.

Usage
This function counts all sets of non-NULL rows and returns a long. The function returns the
number of rows in a group, excluding NULL values. Use the * syntax to return the number of
rows in the group, or use the expression argument to return the number of non-NULL rows.

count(distinct)
Aggregate. Returns the number of distinct rows in a group.

Syntax
count (distinct expression)

Parameters

distinct expression A column of any datatype, except binary.

CHAPTER 6: CCL Functions

Programmers Reference 163

Usage
This function counts all sets of non-NULL rows and returns an integer. Duplicates are not
counted. A distinct expression is a column or another distinct expression that is counted.

exp_weighted_avg()
Aggregate. Calculates an exponential weighted average.

Syntax
exp_weighted_avg (expression, period-expression)

Parameters

expression A numeric expression for which a weighted value
is computed.

period-expression A numeric expression specifying the period for
which the average is computed.

Usage
An exponential moving average (EMA) function applies weighting factors to values that
decrease exponentially. The weighting for each older data point decreases exponentially,
giving more importance to recent observations while not discarding older observations and
allowing for descriptive statistical analysis.

The degree of weighting decrease is expressed as a constant smoothing factor α, a number
between 0 and 1. α may be expressed as a percentage, so a smoothing factor of 10% is
equivalent to α=0.1. Alternatively, α may be expressed in terms of N time periods. For
example,

N=19 is equivalent to α=0.1.

The observation at a time period t is designated Yt, and the value of the EMA at any time
period t is designated St. S1 is undefined. You can initialize S2 in a number of different ways,
most commonly by setting S2 to Y1, though other techniques exist, such as setting S2 to an
average of the first four or five observations. The prominence of the S2 initialization's effect on
the resultant moving average depends on α; smaller α values make the choice of S2 relatively
more important than larger α values, since a higher α discounts older observations faster.

This type of moving average reacts faster to recent price changes than a simple moving
average. The 12- and 26-day EMAs are the most popular short-term averages, and they are
used to create indicators like the moving average convergence divergence (MACD) and the

CHAPTER 6: CCL Functions

164 Sybase Event Stream Processor

percentage price oscillator (PPO). In general, the 50- and 200-day EMAs are used as signals of
long-term trends.

The weighted average function could be used for benchmarking over a particular time
horizon.

first()
Aggregate. Returns the first value from the group of values.

Syntax
first (expression, index)

Parameters

expression The function returns the same datatype as the argument.

index (Optional) The index accepts NULL values and integer datatypes.
Returns the same datatype as the argument. Which row to use, as
offset from the last row in the group based on the group order by
sort order. If omitted or 0, uses the last row.

Usage
Returns the first value from a group of values. The function takes any datatype for the
expression argument and an optional integer as the index argument, and returns the same
datatype as the expression. The function performs a calculation on the specified expression
and returns the first value, including NULL values.

If the argument is a pure column name, use as a scalar.

This function could be used in a first in first out (FIFO) fashion for accounts and stocks.

first_value()
Aggregate. Returns the first value from the group of values. Alias for first().

last()
Aggregate. Returns the last value of a group of values.

Syntax
last (expression, index)

Parameters

expression The function returns the same datatype as the argument.

CHAPTER 6: CCL Functions

Programmers Reference 165

index (Optional) The index accepts NULL values and integer datatypes.
Returns the same datatype as the argument. Which row to use, as
offset from the last row in the group based on the group order by
sort order. If omitted or 0, uses the last row.

Usage
Performs a calculation on the specified expression and returns the last value from a group of
values. The function takes any datatype for the expression argument and an optional integer
as the index argument, and returns the same datatype as the expression. The function
performs a calculation on the specified expression and returns the first value, including NULL
values.

If the argument is a pure column name, use as a scalar.

This function could be used in a last in first out (LIFO) fashion for accounts and stocks.

last_value()
Aggregate. Returns the last value of a group of values. Alias for last().

lwm_avg()
Aggregate. Returns the linearly weighted moving average for a group of values.

Syntax
lwm_avg (numeric-expression)

Parameters

numeric-expression Expressions include integer, long, float, money, timestamp, and
interval types.

Usage
The function takes any datatype (except boolean) as its argument, and returns the same
datatype. The function places more importance on the most recently received data. NULL
values are not included.

An arithmetically weighted average is any average that has multiplying factors that give
different weights to different data points based on time sensitivity. In technical analysis, a
weighted moving average (WMA) has the specific meaning of weights which decrease
arithmetically. In an n-day WMA, the latest day has weight n, the second latest n − 1, and so on,
down to zero. The following equation is used to calculate the linear weighted moving average,
where pM represents the price of a good on a specific time n.

CHAPTER 6: CCL Functions

166 Sybase Event Stream Processor

Moving averages could be used to identify current trends and trend reversals based on closing
numbers over a determined period of time. They also could be used to set up support and
resistance levels.

max()
Aggregate. Returns the maximum non-NULL value of a group of values.

Syntax
max (expression)

Parameters

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
The returned value is based on the datatype of the input to be counted logically. If all values are
NULL, the function returns NULL.

The max function can be used to assess portfolios and identify the top stocks in a group of
values.

meandeviation()
Aggregate. Returns the mean absolute deviation of a given expression over multiple rows.
Absolute deviation is the mean of the absolute value of the deviations from the mean of all
values.

Syntax
meandeviation (numeric-expression)

Parameters

numeric-expression An expression, commonly a column name, for which the sample-
based standard deviation is calculated over a set of rows. The ex-
pression will normally reference one or more columns in a group of
records such that the mean deviation will be computed using the
reference column value for each member of the group.

CHAPTER 6: CCL Functions

Programmers Reference 167

Usage
This function converts the argument to float, performs the computation in double-precision
floating point, and returns a float. The mean deviation is computed according to the following
formula:

This mean deviation does not include rows where numeric-expression is NULL. It returns
NULL for a group containing no rows.

The mean deviation function could be used for optimization of stock portfolios on a real-time
basis.

median()
Aggregate. Returns the median value of a given expression over multiple rows to identify the
central tendancy of the set of values.

Syntax
median (column)

Parameter

column Column name that accepts any datatype except binary.

Usage
The function returns the same datatype as the column.

Median is described as the numeric value separating the higher half of a sample, a population,
or a probability distribution, from the lower half. The median of a finite list of numbers can be
found by arranging all the observations from lowest value to highest value and identifying the
middle value (the central tendancy). In an even number of observations, there is no single
middle value; in this case the median is commonly defined as the mean of the two middle
values.

The median function behaves differently for different datatypes.

• Integer – the result is the average of two middle values rounded to the nearest whole
number.

• Money – the result is the average of two middle values.
• String – the result is the first of two middle values.

The median function could be used to find the median stock price of a group of stockcodes to
display the districts where variances occur between prices with the same stock.

CHAPTER 6: CCL Functions

168 Sybase Event Stream Processor

min()
Aggregate. Returns the minimum non-NULL value from a group of values.

Syntax
min (expression)

Parameters

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
The returned value is based on the datatype of the input. If all values are NULL, the function
returns NULL.

The min function can be used to assess portfolios and identify the lowest stocks in a group of
values.

nth()
Aggregate. Returns the nth value from a group of values. The first argument determines which
value is returned.

Syntax
nth (number, expression)

Parameters

number An integer specifying which record in the group to reference. If no
group order is specified, the default order is arrival, where 0 would
be the most recent record. If group order is specified, then 0 will
reference the first record in the group, 1 the next, etc...

expression An expression that references the rows in the group. This will
typically include references to one or more columns in the input.
Supports any datatype.

Usage
The function returns the same datatype as its expression argument.

When assessing stock portfolios, use the nth function to identify a specific item in a list. For
example, you can identify the day's third-highest traded stock price indicated by the third item
in the index. The nth function's uses a 0-based index.

CHAPTER 6: CCL Functions

Programmers Reference 169

Note: If the number argument is greater than the number of elements in the group, this
function returns a NULL value.

recent()
Aggregate. Returns the most recent non-NULL value in a group of values.

Syntax
recent (expression)

Parameter

expression An expression that will typically reference one or more columns in
the input stream. It will be evaluated using an arbitrary member of
the group.

Usage
The function returns the same datatype used in the expression.

The recent function could be used to asses profiles on a real time basis to analyze the most
current updates and changes.

regr_avgx()
Aggregate. Computes the average of the independent variable of the regression line.

Syntax
regr_avgx (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts integer, long, float,
timestamp, interval, and money datatypes.

independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp, in-
terval, and money datatypes.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where y represents the dependent-expression:
avg(y)

CHAPTER 6: CCL Functions

170 Sybase Event Stream Processor

regr_avgy()
Aggregate. Computes the average of the dependent variable of the regression line.

Syntax
regr_avgy (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts integer, long,
float, timestamp, interval, and money datatypes.

independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp,
interval, and money datatypes.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent-expression:
avg(x)

regr_count()
Aggregate. Returns an integer that represents the number of non-NULL number pairs used to
fit the regression line.

Syntax
regr_count (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent var-
iable. The expression accepts integer, long, float,
timestamp, interval, and money datatypes.

independent-expression The variable that influences the outcome. The ex-
pression accepts integer, long, float, timestamp, in-
terval, and money datatypes.

CHAPTER 6: CCL Functions

Programmers Reference 171

Usage
This function counts all sets of non-NULL rows and returns a long. Rows are eliminated where
one or both inputs are NULL.

regr_intercept()
Aggregate. Computes the y-intercept of the linear regression line that best fits the dependent
and independent variables.

Syntax
regr_intercept (dependent-expression, independent-
expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:
avg(x) - regr_slope(x, y) * avg(y)

regr_r2()
Aggregate. Computes the coefficient of determination (also referred to as R-squared or the
goodness of fit statistic) for the regression line.

Syntax
regr_r2 (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

CHAPTER 6: CCL Functions

172 Sybase Event Stream Processor

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data using this formula, where x represents
the independent variable and y represents the dependent variable:
covarPOP = ((_sum_xy * count) – (sum_x * sum_y)) * ((_sum_xy * count)
– (sum_x * sum_y))
xVarPop = (sum_xx * count) – (sum_x * sum_x)
yVarPop = (sum_yy * count) – (sum_y * sum_y)
result = covarPOP / (xvarPop * yVarPop)

regr_slope()
Aggregate. Computes the slope of the linear regression line fitted to non-NULL pairs.

Syntax
regr_slope (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Parameters
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:
covar_pop(x, y) / var_pop(y)

CHAPTER 6: CCL Functions

Programmers Reference 173

regr_sxx()
Aggregate. Returns the sum of squares of independent expressions used in a linear regression
model. Evaluates Use the statistical validity of a regression model.

Syntax
regr_sxx (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the independent variable and y represents the
dependent variable:
regr_count(x, y) * var_pop(x)

regr_sxy()
Aggregate. Returns the sum of products of the dependent and independent variables.
Evaluates the statistical validity of a regression model.

Syntax
regr_sxy (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

CHAPTER 6: CCL Functions

174 Sybase Event Stream Processor

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the dependent variable and y represents the
independent variable:
regr_count(x, y) * covar_pop(x, y)

regr_syy()
Aggregate. Returns values that represent the statistical validity of a regression model.

Syntax
regr_syy (dependent-expression , independent-expression)

Parameters

dependent-expression The variable that is affected by the independent
variable. The expression accepts numeric datatypes,
except timestamp, bigdatetime, and interval.

independent-expression The variable that influences the outcome. The ex-
pression accepts numeric datatypes, except time-
stamp, bigdatetime, and interval.

Usage
This function converts its arguments to float, performs the computation in double-precision
floating point, and returns a float. If the function is applied to an empty set, the result is NULL.
The function is applied to sets of dependent-expression and independent-expression pairs
after eliminating all pairs where either variable is NULL. The function is computed
simultaneously during a single pass through the data. After eliminating NULL values, this
computation is made, where x represents the dependent variable and y represents the
independent variable:
regr_count(x, y) * var_pop(y)

stddev()
Aggregate. Computes the standard deviation of a sample. Alias for stddev_samp().

CHAPTER 6: CCL Functions

Programmers Reference 175

stddeviation()
Aggregate. Returns the standard deviation of a given expression over multiple rows. Alias for
stddev_samp().

stddev_pop()
Aggregate. Computes the standard deviation of a population consisting of a numeric-
expression, as a float.

Syntax
stddev_pop (numeric-expression)

Parameters

numeric-expression The expression, usually a column name, for which
the population-based standard deviation is calcula-
ted over a set of rows.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The standard deviation is used to find the amount of
variation between data points and the groups average. The population-based standard
deviation is computed according to the following formula:

This standard deviation does not include rows where numeric-expression is NULL. The
function returns NULL for a group containing no rows.

The standard deviation of a population could be used to estimate and assess changes in
securities, which could be used to establish future expectations.

stddev_samp()
Aggregate. Computes the standard deviation of a sample consisting of a numeric-expression,
as a float.

Syntax
stddev_samp (numeric-expression)

CHAPTER 6: CCL Functions

176 Sybase Event Stream Processor

Parameters

numeric-expression The expression, usually a column name, for which
the sample-based standard deviation is calculated
over a set of rows.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The standard deviation is used to find the amount of
variation between data points and the groups average. The standard deviation is computed
according to the following formula, which assumes a normal distribution:

This standard deviation does not include rows where numeric-expression is NULL. The
function returns NULL for a group containing either 0 or 1 rows.

The standard deviation of a sample could be used to asses the rate of return of an investment of
a determined period of time.

sum()
Aggregate. Returns the total value of the specified expression for each group of rows.

Syntax
sum (expression)

Parameters

expression The object that is summed. The expression accepts all datatypes
except boolean.

Usage
Typically, sum is performed on a column. The function returns the same datatype as the
expression. The sum function uses all of the specified values and totals their values.

The sum function could be used to find the combined annual sales in order to assess long term
and short term goals. By looking at the larger picture, the process of planning is simplified.

CHAPTER 6: CCL Functions

Programmers Reference 177

valueinserted()
Aggregate. Returns a value including NULLS, from a group based on the last row applied into
that group.

Syntax
valueinserted (expression)

Parameters

expression The expression accepts all datatypes.

Usage
This function returns the value of the expression computed using the most recent event used to
insert/update the group. If the current event removes a row from the group then it returns a
NULL.

This function is considered an additive function. Using only additive functions in the
projection of a SELECT statement allows the server to optimize the aggregation, which results
in greater throughput and lower memory utilization.

var_pop()
Aggregate. Computes the statistical variance of a population consisting of a numeric-
expression, as a float.

Syntax
var_pop (numeric-expression)

Parameters

numeric-expression A set of rows. expression is commonly a column
name.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The population-based variance (s2) of numeric-expression
(x) is computed according to this formula:

This variance does not include rows where numeric-expression is NULL. The function returns
NULL for a group containing no rows.

The variance of a population could be used as a measure of assessing risk.

CHAPTER 6: CCL Functions

178 Sybase Event Stream Processor

var_samp()
Aggregate. Computes the statistical variance of a sample consisting of a numeric-expression,
as a float.

Syntax
var_samp (numeric-expression)

Parameters

numeric-expression A set of rows. expression is commonly a column
name.

Usage
This function converts its argument to float, performs the computation in double-precision
floating point, and returns a float. The variance (s2) of numeric-expression (x) is computed
according to this formula, which assumes a normal distribution:

This variance does not include rows where numeric-expression is NULL. The function returns
NULL for a group containing either 0 or 1 rows.

The variance of a sample could be used as a measure of assessing risk for a specific portfolio.

vwap()
Aggregate. The vwap function computes a volume-weighted average price for a set of
transactions.

Syntax
vwap (price, quantity)

Parameters

price The name of the column containing the price in a set of transaction
records.

quantity The name of the column containing the number of units traded at
the specified price in a set of transaction records.

Note: For both of these parameters, you can specify an expression containing the column
name, but you must include the column name.

CHAPTER 6: CCL Functions

Programmers Reference 179

Usage
The volume-weighted average price (VWAP) is a measure of the average price a stock is
traded at over some period of time. For each trade, it determines the value by multiplying the
price paid per share times the number of shares traded. Then it takes the sum of all these values
and divides it by the sum of all the shares traded. The volume-weighted average price is
computed using the following formula:

The vwap function takes the price paid and the number of shares traded as arguments. As an
input stream or window delivers trading events, the vwap function computes the VWAP to
track the average price at which a stock has traded.

weighted_avg()
Aggregate. Calculates an arithmetically (or linearly) weighted average.

Syntax
weighted_avg (expression)

Parameters

expression A numeric expression that accepts integer, long,
float, money, timestamp, and interval datatypes.

Usage
An arithmetically weighted average has multiplying factors that give different weights to
different data points. In Event Processing, a weighted moving average (WMA) has the specific
default meaning of weights which decrease arithmetically with the age of an event. So the
oldest event is given the least weight and the newest event is given the most weight. The
weighted average is expressed using the following formula:

Where

• WMA – The weighted moving averagen - number of events in the group.

• pM – Refers to the newest event.

• pM-1 – Refers to the second newest event.

CHAPTER 6: CCL Functions

180 Sybase Event Stream Processor

• pM-n+1 – Refers to the oldest event.

The weighted average function could be used in circumstances that each value does to
contribute equally to the group of values.

xmlagg()
Aggregate. Concatenates all the XML values in the group and produces a single value.

Syntax
xmlagg (value)

Parameters

value The XML value represented as a string.

Usage
The function, which can be used only in aggregate streams or with event caches, returns a
xmltype. Note that the xmltype cannot be stored directly in a record. To store the xml in the
record you need to apply the xmlserialize function to convert the xmltype into a string.

Example
xmlagg (xmlparse (stringCol))

Other Functions
Reference list for all functions that are neither aggregate nor scalar type functions.

cacheSize()
Returns the size of the current bucket in the event cache.

Syntax
cacheSize (cacheName)

Usage
Returns the size of the current bucket in the event cache. The function takes the argument of
the name of the event cache variable. It returns a long.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.
CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,

CHAPTER 6: CCL Functions

Programmers Reference 181

 Symbol string,
 Price float,
 Shares integer
)
;

CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;
CREATE FLEX flexOp
 IN QTrades
 OUT OUTPUT WINDOW QTradesStats SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE
 typedef [integer Id;| date TradeTime; string Venue;
 string Symbol; float Price;
 integer Shares] QTradesRecType;
 eventCache(QTrades[Symbol], manual, Price asc) tradesCache;
 typeof(QTrades) insertIntoCache(typeof(QTrades) qTrades)
 {
 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);
 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else {
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }
 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }

CHAPTER 6: CCL Functions

182 Sybase Event Stream Processor

 output setOpcode(QTrades, upsert);
 }
 };
 END;

coalesce()
Other. Returns the first non-NULL expression from a list of expressions.

Syntax
coalesce (expression [,...])

Parameters

expression All expressions must be of the same datatype.

Usage
Returns the first non-NULL expression from a list of expressions. The arguments can be of
any datatype, but they must be all of the same datatype. The function returns the same datatype
as its arguments.

Example
coalesce (NULL, NULL, 'examplestring', 'teststring', NULL)
returns 'examplestring'.

concat()
Scalar. Returns the concatenation of two given binary values OR one or more string values.

Syntax
concat (binary1, binary2)
concat (string1, ...stringn)

Parameters

binary1 A binary value

binary2 A binary value

string1 The first string value in the set.

stringn The final string value in the set.

Usage
When working with binaries, concatenates the given binary arguments into a single binary and
returns that value. The function returns NULL if either argument is NULL.

When working with strings, concatenates the given string arguments into a single string and
returns that value. Literal text must be enclosed in single quotation marks.

CHAPTER 6: CCL Functions

Programmers Reference 183

Example
concat (hex_binary ('aabbcc'), hex_binary ('ddeeff')) returns
AABBCCDDEEFF.

concat (hex_binary ('ddeeff'), hex_binary ('aabbcc'))returns
DDEEFFAABBCC.

concat ('MSFT', '_NYSE')returns MSFT_NYSE.

deleteCache()
Deletes a row at a particular location (specified by index) in the event cache.

Syntax
deleteCache (cacheName, index)

Parameters

index Row index in the event cache as an integer.

Usage
Deletes a row at a particular location (specifed by the index) in the event cache. This index is 0
based. The function takes an integer as its argument, and the function removes the row. The
function does not produce an output. Specifying of an invalid index parameter will result in the
generation of a bad record.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.
CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;
CREATE FLEX flexOp
 IN QTrades
 OUT OUTPUT WINDOW QTradesStats SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE
 typedef [integer Id;| date TradeTime; string Venue;

CHAPTER 6: CCL Functions

184 Sybase Event Stream Processor

 string Symbol; float Price;
 integer Shares] QTradesRecType;
 eventCache(QTrades[Symbol], manual, Price asc) tradesCache;
 typeof(QTrades) insertIntoCache(typeof(QTrades) qTrades)
 {
 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);
 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else {
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }
 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }
 output setOpcode(QTrades, upsert);
 }
 };
 END;

firstnonnull()
Other. Returns the first non-NULL expression from a list of expressions.

Syntax
firstnonnull (expression [,...])

CHAPTER 6: CCL Functions

Programmers Reference 185

Parameters

expression All expressions must be of the same datatype.

Usage
Returns the first non-NULL expression from a list of expressions. The function takes
arguments of any datatype, but they must be all of the same datatype. The function returns the
same datatype as its argument. This function behaves exactly like coalesce().

Example
firstnonnull (NULL, NULL, 'examplestring', 'teststring',
NULL) returns 'examplestring'.

get*columnbyindex()
Returns the value of a column identified by an index.

Syntax
getbinarycolumnbyindex (record, colname)
getstringcolumnbyindex (record, colname)
getlongcolumnbyindex (record, colname)
getintegercolumnbyindex (record, colname)
getdatecolumnbyindex (record, colname)
gettimestampcolumnbyindex (record, colname)
getbigdatetimecolumnbyindex (record, colname)
getintervalcolumnbyindex (record, colname)
getbooleancolumnbyindex (record, colname)
getfloatcolumnbyindex (record, colname)

Parameters

name The name of a stream or window.

colindex Integer corresponding to an index value of a column. Index is 0
based.

Usage
Returns the value of a column identified by an index. The function takes a string for thename
argument and an integer for the colindex argument. The function returns the same datatype as
specified in the function's name (a string for getstringcolumnbyindex(), for example).

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

CHAPTER 6: CCL Functions

186 Sybase Event Stream Processor

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCHEMA (a int, b string)
PRIMARY KEY (a) MEMORY STORE "memstore";

If you assume that the input passed into iwin1 was (1, 'hello'), then
getstringcolumnbyindex (iwin1, 1) would return 'hello'.

get*columnbyname()
Returns the value of a column identified by an expression evaluated at runtime.

Syntax
getbinarycolumnbyname (name, colname)
getstringcolumnbyname (name, colname)
getlongcolumnbyname (name, colname)
getintegercolumnbyname (name, colname)
getfloatcolumnbyname (name, colname)
getdatecolumnbyname (name, colname)
gettimestampcolumnbyname (name, colname)
getbigdatetimecolumnbyname (name, colname)
getintervalcolumnbyname (name, colname)
getbooleancolumnbyname (name, colname)

Parameters

name The name of a stream or window.

colname An expression that evaluates to the name of a column with the same
datatype as the function, in the stream or window.

The colname argument for getstringcolumnbyname() would have
a string, for example.

Usage
Returns the value of a column identified by an expression evaluated at runtime. The function
takes a string for the name. The datatype of the colname arguments corresponds to the
function type, such as a string for getstringcolumnbyname(). The function returns the same
datatype as colname (as specified in the function's name).

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCHEMA (a int, b string)
PRIMARY KEY (a) MEMORY STORE "memstore";

CHAPTER 6: CCL Functions

Programmers Reference 187

If you assume that the input passed into iwin1 was (1, 'hello'), then
getstringcolumnbyname (iwin1, a) would return 'hello'.

getCache()
Returns the row specified by a given index from the current bucket in the event cache.

Syntax
getCache (cacheName, index)

Parameters

cacheName The name of the event cache.

index Row index in the event cache as an integer.

Usage
Returns the row specified by a given index from the current bucket in the event cache. This
index is 0 based. The function takes the name of the event cache and an integer as its
arguments, and returns a row from the event cache. Specifying an invalid index parameter
generates a bad record.

Example
This example obtains the top 3 distinct prices per trading symbol. In order to accomplish this
task, the example makes use of the getCache(), cacheSize() and deleteCache() functions.
CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;
CREATE FLEX flexOp
 IN QTrades
 OUT OUTPUT WINDOW QTradesStats SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE
 typedef [integer Id;| date TradeTime; string Venue;
 string Symbol; float Price;
 integer Shares] QTradesRecType;
 eventCache(QTrades[Symbol], manual, Price asc) tradesCache;
 typeof(QTrades) insertIntoCache(typeof(QTrades) qTrades)
 {

CHAPTER 6: CCL Functions

188 Sybase Event Stream Processor

 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);
 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else {
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }
 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }
 output setOpcode(QTrades, upsert);
 }
 };
 END;

getData()
This function takes a database query, gets rows from an external database table and returns
them in a vector of records.

Syntax
getData(vector, service, query, expr1, ... exprn)

Parameters

vector the name of the vector in which to return the selected records

service the name of the service to use to make the database query, a string

CHAPTER 6: CCL Functions

Programmers Reference 189

query a query for the database, a string

expr additional parameter to pass to the database along with the query, any of the basic
datatypes (such as money, integer, string)

Usage
Specify the name of the vector in which to put the records returned by the function as the first
argument. The function returns a vector with the name specified, containing the selected
records.

Specify the service to use when querying the database as the second argument. The services
that can be used to make the database queries are defined in the service.xml file. See the
Administrators Guide for more information about this file and the services described in it.

Specify the query to make of the database as the third argument. The query can be in any
database query language (such as SQL) as long as the appropriate service is defined in the
service.xml file. Specify any additional parameters to pass to the database along with the
query as subsequent arguments.

Note: The query statement must include placeholders, marked by a "?" character, for any
additional parameters being passed.

Example
getData(v, 'MyService', 'SELECT col1, col2 FROM myTable WHERE
id= ?', 'myId'); gets records from a table named “myTable” using a service named
“MyService”, selects the first two columns of every row where the "id" is equal to the value of
"myId" and returns them in a vector named “v”.

getmoneycolumnbyindex()
Returns the value of a column identified by an index.

Syntax
getmoneycolumnbyindex (name, colindex, scale)

Parameters

name The name of a stream or window.

colname Integer corresponding to an index value of a column. Index is 0
based.

scale An integer between 1 and 15.

CHAPTER 6: CCL Functions

190 Sybase Event Stream Processor

Usage
Returns the value of a column identified by an index. The function takes a string for the name
and integers for the colindex and scale arguments. The function returns a money type with the
specified scale.

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCHEMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

If you assume that the input passed into iwin1 was (1.2, 1.23), then
getmoneycolumnbyindex (iwin1, 1, 3) would return 1.123.

getmoneycolumnbyname()
Returns the value of a column identified by an expression evaluated at runtime as a money
type.

Syntax
getmoneycolumnbyname (name, colname, scale)

Parameters

name The name of a stream or window.

colname An expression that evaluates to the name of a column with a money
datatype, in the stream or window.

scale An integer between 1 and 15.

Usage
Returns the value of a column identified by an expression evaluated at runtime. The function
takes a string for the name and colname arguments and an integer to represent the scale of the
money type. The function returns a money type with the specifed scale.

If colname argument evaluates to NULL or the specified column does not exist in the
associated window or stream, the function returns NULL and generates an error message.

Example
CREATE MEMORY STORE "memstore";
CREATE INPUT WINDOW iwin1 SCEHMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

CHAPTER 6: CCL Functions

Programmers Reference 191

If you assume that the input passed into iwin1 was (1.2, 1.23), then
getmoneycolumnbyname (iwin1, b, 3) would return 1.123.

getrowid()
Other. Returns the sequence number of a given row in the window.

Syntax
getrowid (row)

Parameters

row A row in a window.

Usage
Returns the sequence number of a given row in the window. The function takes a window ID as
its argument, and returns the sequence number of the row in the window. This sequence
number is known as the rowid, assigned uniquely as the rows get inserted. The getrowid
function returns a 64-bit integer as its datatype return form. It always returns the row identifier
of the record passed in as a parameter to the function. It can be used with a stream, delta stream,
or a window.

Example
CREATE MEMORY STORE "memstore";

CREATE INPUT WINDOW iwin1 SCHEMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

CREATE INPUT WINDOW iwin2 SCHEMA (a money(1), b money(3))
PRIMARY KEY (a) MEMORY STORE "memstore";

rank()
Other. Returns the position of the row in the current group (only used in GROUP HAVING
expression).

Syntax
rank()

Usage
Returns the position of the row in the current group, starting from position 0. This function is
useful only in a GROUP FILTER expression. This function has no arguments, and the function
returns an integer.

Example
rank() > 3 returns 0 for the first four rows in a group and 1 for all other rows.

CHAPTER 6: CCL Functions

192 Sybase Event Stream Processor

sequence()
Combines two or more expressions to be evaluated in order.

Syntax
sequence (expression [, ...])

Parameters

expression An expression of any data type. The last expression in the sequence
determines the type and value for the entire sequence.

Usage
Combines two or more expressions to be evaluated in order. The type and value of the
expression is the type and value of the last expression.

Sequencing is useful in a projection list to perform several simple instructions in the context of
evaluating a projection column value without having to write a SPLASH UDF.

Example
This example computes the maximum price seen so far, assigns it to the maxPrice variable,
and returns the product of the maximum price and number of shares.
sequence (
 maxPrice := case when maxPrice <
inRec.Price then inRec.Price else maxPrice end;
maxPrice*inRec.Shares
)

User-Defined External Functions
In CCL projects, use the CREATE LIBRARY statement to call user-defined functions written in
C/C++ or Java.

Load C/C++ functions from shared libraries, .so files in Linux and UNIX, and .dll files in
Windows. Load Java functions from either .class files or .jar files.

Declare external functions in CCL using the CREATE LIBRARY statement. Once declared,
you can use the functions anywhere you use built-in functions.

Note: C/C++ external library calls support all datatypes, namely boolean, integer, long, float,
money(n), date, bigdatetime, and binary.

Java external library calls only support integer, long, double, and string datatypes.

Complex types such as dictionaries, vectors, event caches and record types are not supported
in external functions.

CHAPTER 6: CCL Functions

Programmers Reference 193

External C/C++ Function Requirements
External C/C++ functions must conform to the interface of the Sybase Event Stream Processor
by following the datatype, argument/return value, and output requirements.

Syntax
Write the function signature to the Event Stream Processor interface:

int32_t funcName (int numargs,
 DataValue::DataValue * top,
 DataValue::DataValue * nextArgs,
 std::vector<void *> & arena)

Datatype Requirements
The Event Stream Processor passes each function argument as a DataValue and expects to
receive the return value as DataValue. The DataValue is a structure that includes all the
datatypes understood by Event Stream Processor and is defined in DataValue.hpp, which
is located in $ESP_HOME\include. The DataValue structure has this definition:

struct DataValue {
 union {
 bool booleanv;
 int16_t int16v;
 int32_t int32v;
 int64_t int64v;
 interval_t intervalv;
 money_t moneyv;
 double doublev;
 time_t datev;
 timestampval_t timestampv;
 const char * stringv;
 hirestime_t bigdatetimev;
 binary_t binaryv;
 void * objectv;
 }
 bool null;
}

When the Boolean flag null is set to true, the value of the argument is NULL (the argument
does not have a value). binary_t is a class with two public member variables defined as:

• const uint8 t * _data;.

This variable points to the first byte of the data in the buffer.
• byte_size_t _used;.

This variable defines the length of data used in the buffer.

Note: Assign memory to _data using malloc or calloc, not new.

moneyv is a generic placeholder for money arguments with any scale; it must be told what
scale a particular money argument has.

CHAPTER 6: CCL Functions

194 Sybase Event Stream Processor

Argument and Return Value Requirements
Since the Event Stream Processor internal processing engine is a bytecode stack machine that
keeps the top of the stack in a special location, ensure the Event Stream Processor splits
function arguments into two:

• A pointer to the top of the stack of type DataValue. The top of the stack points to the last
argument when more than one argument is passed to the function and to the first argument
if only one argument is passed. The first argument in the interface indicates the number of
arguments passed.

• A pointer to the rest of the arguments of type DataValue. The pointer points to the first
argument when there is more than one argument passed to the function. It is undefined if
the function has only one argument.

Note: Write the return value of the function to the top of the stack.

If the function allocates memory by calling malloc or calloc, the Event Stream Processor
can release the memory after it has processed the record by adding the memory to the arena.
The arena is the last argument to the function and is defined as vector of type void *. You
cannot add a pointer to the memory allocated by new to the arena; doing so can corrupt the
memory and cause an unrecoverable error.

Output Requirement
Ensure the function returns an error code to indicate successful completion of the function.
The return value is of type int32_t. A value of 0 indicates no error; any other values indicate
an error. When an error occurs, Event Stream Processor rejects the current record.

Example: Using External C/C++ Functions
Write a C/C++ function that computes distances to the Event Stream Processor interface.
After compiling the function to a shared library, declare it using the CREATE LIBRARY
statement, and call the function as needed in your CCL project.

Prerequisites
Know the syntax and requirements for writing C/C++ functions to the interface of the Event
Stream Processor.

Task

1. Write the function, ensuring it conforms to the Event Stream Processor interface.

For example, this function computes distance:

#include math.h
double distance(int numvals, double * vals){
 double sum = 0.0;
 for (int i=0; i<numvals; i++){
 sum += vals[i]*vals[i];

CHAPTER 6: CCL Functions

Programmers Reference 195

 }
return sqrt(sum);
}

To conform to the interface of the Event Stream Processor, write the function as:

#include <math.h>
#include <vector>
#include "DataValue.hpp"

using namespace std;

#ifdef _WIN32
 #define __DLLEXPORT__ __declspec(dllexport)
#else
 #define __DLLEXPORT__
#endif

/**
 * This function computes the distance using the given
 * arguments.
 * @numargs - Number of arguments to this function.
 * @top - Points to the last argument. Also holds the
 * return value from this function.
 * @nextArgs - The remaining arguments in the order provided.
 * @arena - Anything assigned to the arena is freed by the
 * the server. NOTE: Do not assign return values
 * to the arena. Also anything to be freed must
 * be allocated using malloc only (DO NOT USE new).

/
extern "C" __DLLEXPORT__
int32_t distance(int numargs, DataTypes::DataValue * top,
 DataTypes::DataValue * nextArgs,
 std::vector<void *>& arena){

 double sum = 0.0;
 if (numargs <= 0){
 //Return value
 top->setDouble(0.0);

 //Return code.
 return 0;
 }

 //If any of the arguments is null result is null.
 if(top->null) return 0;

 //Top of the stack points to the last argument.
 double dist = top->val.doublev * top->val.doublev;

 //Processes the arguments from last to first.
 for(int i=numargs-2; i>=0; i--){

 //If any of the arguments is null result is null
 if((nextArgs+i)->null){

CHAPTER 6: CCL Functions

196 Sybase Event Stream Processor

 top->null = true;
 return 0;
 }

 //accumulate the square of the distances.
 dist +=(nextArgs + i)->val.doublev * (nextArgs + i)-
>val.doublev;
 }

 //Return value
 top->setDouble(sqrt(dist));

 //Return code.
 return 0;
}

Note: Use the setX function to set the return value, where X is the return type of the return
value. Using the setX function ensures that the null flag is set to false. To set the return
value to NULL, say top->null = true.

The extern declaration ensures the function has the same name within the library and not
the C++ function name.

The __DLLEXPORT__ preprocessor macro must be defined under Windows to make the
external function available to ESP.

2. Compile the function to a shared library.

For example, using the gcc compiler, these commands create a shared library named
distance.so:

gcc -fPIC -shared -m64 -I.. -c -o distance.o distance.cpp
gcc -fPIC -shared -m64 distance.o -o distance.so

3. Declare the function in the CCL project using the CREATE LIBRARY statement.

CREATE LIBRARY DistanceLib LANGUAGE C FROM 'distance.so'(
 float distance(float arg1, float arg2, float arg3);
);

Note: When searching for shared libraries (.dll files), Windows checks the path of the
application. If the .dll file is not found in that directory, other directories are searched,
culminating in the directories specified in the PATH environment variable.

Ensure the name of the function matches the name of the function in the library.

4. Call the distance function in the project using DistanceLib.distance(arg1,
arg2, arg3).

CHAPTER 6: CCL Functions

Programmers Reference 197

Example: Using Java Functions
Write a Java function that computes distances. After compiling the function as a .class
or .jar file, declare it using the CREATE LIBRARY statement, and call the function as needed
in your CCL project. Finally, link the library with the Event Stream Processor.

Note: The Java 1.6 runtime environment is included with Sybase Event Stream Processor. If
your function requires a different version of Java, set the environment variable
ESP_JAVA_HOME to the location of the appropriate Java virtual machine shared library. This
is usually libjvm.so on Linux, UNIX, or Solaris and jvm.dll on Windows.

For example, to set the variable on a Linux, UNIX, or Solaris machine in the shell, use:
export ESP_JAVA_HOME=/user/bin/java/jre/lib/libjvm.so

1. Write the function.

Define all functions as a public static method inside the class. For example, this function
computes distances:

public class Distance {
 public static double distance(double arg1, double arg2,
 double arg3) {
 double sum = 0;
 sum += arg1 * arg1;
 sum += arg2 * arg2;
 sum += arg3 * arg3;

 return Math.sqrt(sum);
 }
}

Note: You cannot pass or return null values to external Java functions.

2. Compile the function to a shared library:
javac -d /home/sybase/user/java/lib Distance.java

You can also create Java archives (.jar files) of classes and refer to those when declaring
the functions in the CCL project.

3. Declare the function and library in the CCL project using the CREATE LIBRARY
statement.
CREATE LIBRARY DistanceLib LANGUAGE JAVA FROM 'Distance' (
 double distance(double arg1, double arg2, double arg3);
);

Note: 'Distance' is the name of the class. If the class is defined in a package, replace
the class name with its directory, including the name.

Ensure the function signature in the library has the same name, argument datatypes, and
return datatypes as the function in the .class file.

CHAPTER 6: CCL Functions

198 Sybase Event Stream Processor

4. Call the function in the project using DistanceLib.distance(arg1, arg2,
arg3).

5. Link the Java library to the Event Stream Processor Server.

The Event Stream Processor has a built-in Java runtime environment. To link the Java
function to your application, start the server with the -j option.

For .class files, specify only the directory of the file:
sp -j /home/sybase/user/java/lib

If the class is inside a .jar file located in, for example, /home/sybase/user/java,
then specify the directory of the file including the file name:
sp -j /home/sybase/user/java/Distance.jar

Separate multiple paths using ":" in Linux/UNIX and ";" in Windows.

User-Defined SPLASH Functions
Use the SPLASH programming language to write user-defined functions in either global or
local declare blocks.

Syntax
DECLARE
 returnType funcName (argType argName,...) {

 //function body

 return value;
 }
END;

Usage
Function names are case-sensitive.

Functions defined at the module or project level can be used anywhere in the expressions
inside that module or project. However, functions defined within streams, windows, and FLEX
operators are visible only in the scope of those elements.

Functions are defined and there is no need to declare a function. For example, function f2 can
reference f1 before f1 is defined.

CHAPTER 6: CCL Functions

Programmers Reference 199

CHAPTER 6: CCL Functions

200 Sybase Event Stream Processor

CHAPTER 7 Programmatically Reading and
Writing CCL Files

Using the CCL read/write SDK, you can create new CCL files, read existing files, and modify
the CCL statements within files with a set of SDK calls.

You can open, read, and write CCL files using a set of Java classes that allows you to
manipulate a CCL parse tree programmatically. You can create custom tools that interact with
CCL files (such as a translator from CCL to a different file format or a user interface to
visualize CCL files) without also having to create your own parser and pretty-printer to
manipulate CCL code as they have already been built in the SDK.

The CCL read/write SDK is constructed using the same Eclipse technologies (XTEXT and
EMF) that Studio visual and text editors use to manipulate CCL files. The programs and
examples created within this SDK can be run in a standalone manner outside of the Eclipse
IDE.

CCL File Creation
The example below performs the necessary initialization and demonstrates how to create a
new CCL file named hello.ccl with a single CREATE INPUT STREAM CCL statement.
Note that all the Java code is necessary for file creation except for the three lines involving the
Input Stream statement.

package com.sybase.esp.ccl.example1;

import java.io.File;

import org.eclipse.emf.common.util.URI;
import org.eclipse.emf.ecore.resource.Resource;
import org.eclipse.xtext.resource.SaveOptions;
import org.eclipse.xtext.resource.XtextResourceSet;

import com.sybase.esp.CclStandaloneSetup;
import com.sybase.esp.ccl.CclFactory;
import com.sybase.esp.ccl.CclPackage;
import com.sybase.esp.ccl.InputStream;
import com.sybase.esp.ccl.Statements;

public class HelloCcl {

 public static void main(String[] args) {
 // This call must be made once in order to use the CCL API.
 CclStandaloneSetup.doSetup();

Programmers Reference 201

 // The file to be created. If it exists, remove it.
 String theFile = "hello.ccl";
 File cclFile = new File(theFile);
 if(cclFile.exists())
 {
 cclFile.delete();
 }

 // Ccl elements need to be placed in a Resource which is
 // within a ResourceSet. This is default EMF behavior.
 XtextResourceSet myResourceSet = new XtextResourceSet();
 URI uri = URI.createFileURI(theFile);
 Resource resource = myResourceSet.createResource(uri);

 // Use the CclFactory to create new Ccl elements, this is a
 // standard way EMF creates new elements in the Ccl API.
 CclFactory fact = CclPackage.eINSTANCE.getCclFactory();

 // Statements is the root object for the Ccl model.
 // Create one and add it to the Resource.
 Statements root = fact.createStatements();
 resource.getContents().add(root);

 // Create and name the InputStream.
 InputStream theInput = fact.createInputStream();
 theInput.setName("NewInput");

 // Add the InputStream to the Stmts collection.
 root.getStmts().add(theInput);

 // Save an EMF Resource named hello.ccl
 try
 {
 SaveOptions saveOptions =
SaveOptions.newBuilder().getOptions();
 resource.save(saveOptions.toOptionsMap());
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

The output file of the above example, hello.ccl, contains a single CCL statement and can
be seen below.
CREATE INPUT STREAM NewInput ;

CHAPTER 7: Programmatically Reading and Writing CCL Files

202 Sybase Event Stream Processor

CCL File Deconstruction
The SDK contains several different resources and methods to read, analyze, and output the
contents of a CCL file.

The walkModel method below opens a CCL file and deconstructs it by iterating through each
CCL statement and printing information on any affected CCL elements. The method then calls
the prettyPrint procedure to print the statements themselves to System.out in CCL plain
text.
public void walkModel(String theFile)
{
 XtextResourceSet myResourceSet = new XtextResourceSet();
 URI uri = URI.createFileURI(theFile);
 Resource resource = myResourceSet.getResource(uri, true);
 EcoreUtil.resolveAll(resource);

 Statements root = (Statements)resource.getContents().get(0);
 List <TopStatement> stmnts = root.getStmts();
 for(TopStatement d: stmnts)
 {
 printCclName(d);
 }
 prettyPrint(root);
}

void prettyPrint(EObject theEO)
{
 try
 {
 ISerializer serializer = getSerializer();
 if(serializer==null)
 {
 System.out.println("Injection bug");
 }
 else
 {
 System.out.println(serializer.serialize(theEO));
 }
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
}

Below is a sample CCL file containing several statements.
DECLARE
 PARAMETER integer the_integer := 1; PARAMETER boolean
the_boolean := FALSE;
END;
CREATE SCHEMA NewSchema (col_0 integer , col_1 integer , col_2

CHAPTER 7: Programmatically Reading and Writing CCL Files

Programmers Reference 203

integer , col_3 integer , col_4 integer , col_5 integer , col_6
integer ,
col_7 integer , col_8 integer , col_9 integer);
CREATE SCHEMA NewSchema2 (AAAAA integer);
CREATE INPUT STREAM NewInputStream SCHEMA NewSchema;
CREATE INPUT WINDOW NewInputWindowWithInlineSchema SCHEMA (c_key
integer , c_1 integer , c_2 long , c_3 string) PRIMARY KEY (c_key);
CREATE INPUT WINDOW NewInputWindow SCHEMA NewSchema PRIMARY KEY
(col_0) KEEP ALL ROWS;
CREATE OUTPUT WINDOW NewDerivedWindow PRIMARY KEY DEDUCED AS SELECT *
FROM NewInputWindow IN1;
CREATE OUTPUT STREAM NewDerivedStream AS SELECT * FROM NewInputStream
IN1;
CREATE FLEX NewFlex IN NewInputStream OUT OUTPUT WINDOW NewFlex
SCHEMA NewSchema PRIMARY KEY (col_0)
BEGIN
 ON NewInputStream {
 };
END;
CREATE OUTPUT SPLITTER NewSplitter AS WHEN 1 THEN NewSplitter_Output
SELECT * FROM NewInputWindow;
CREATE INPUT WINDOW JoinInputWindow1 SCHEMA NewSchema PRIMARY KEY (
col_0) KEEP ALL ROWS;
CREATE INPUT WINDOW JoinInputWindow2 SCHEMA NewSchema2 PRIMARY KEY (
AAAAA) KEEP ALL ROWS;
CREATE OUTPUT WINDOW NewJoinWindow PRIMARY KEY (AAAAA) AS SELECT *
FROM JoinInputWindow1 J1 INNER JOIN JoinInputWindow2 J2 ON J1.col_0 =
J2.AAAAA;
CREATE INPUT STREAM NewInputStream1 SCHEMA NewSchema2;
CREATE INPUT STREAM NewInputStream2 SCHEMA NewSchema2;
CREATE OUTPUT STREAM NewUnionStream AS SELECT * FROM NewInputStream1
U1 UNION SELECT * FROM NewInputStream2 U2;
CREATE OUTPUT ERROR STREAM NewErrorStream ON NewUnionStream;
CREATE OUTPUT STREAM NewDerivedStreamSelective AS SELECT IN1.col_0 ,
IN1.col_1 , IN1.col_2 , IN1.col_3 , IN1.col_4 , IN1.col_5 , IN1.col_6
, IN1.col_7 , IN1.col_8 , IN1.col_9 FROM NewInputStream IN1;
CREATE OUTPUT STREAM NewDeriveStreamWithPattern AS SELECT * FROM
NewInputStream IN1 MATCHING [1 SECOND : IN1];
CREATE OUTPUT WINDOW NewCommaJoinWindowWithInputs PRIMARY KEY
DEDUCED AS SELECT * FROM JoinInputWindow1 input_1 , JoinInputWindow2
input_2;

After calling the walkModel method with the above CCL file as the argument, the information
outputted by the printCclName procedure is as follows:
NewSchema kind = Schema
 col_0 integer
 col_1 integer
 col_2 integer
 col_3 integer
 col_4 integer
 col_5 integer
 col_6 integer
 col_7 integer
 col_8 integer
 col_9 integer

CHAPTER 7: Programmatically Reading and Writing CCL Files

204 Sybase Event Stream Processor

NewSchema2 kind = Schema
 AAAAA integer
NewInputStream kind = InputStream
NewInputWindowWithInlineSchema kind = InputWindow
NewInputWindow kind = InputWindow
NewDerivedWindow kind = Window
NewDerivedStream kind = Stream
NewFlex kind = FlexOperator
NewSplitter kind = Splitter
JoinInputWindow1 kind = InputWindow
JoinInputWindow2 kind = InputWindow
NewJoinWindow kind = Window
NewInputStream1 kind = InputStream
NewInputStream2 kind = InputStream
NewUnionStream kind = Stream
NewErrorStream kind = ErrorStream
NewDerivedStreamSelective kind = Stream
NewDeriveStreamWithPattern kind = Stream
NewCommaJoinWindowWithInputs kind = Window
NewDerivedWindowWithWhere kind = Window

CHAPTER 7: Programmatically Reading and Writing CCL Files

Programmers Reference 205

CHAPTER 7: Programmatically Reading and Writing CCL Files

206 Sybase Event Stream Processor

CHAPTER 8 SPLASH Programming
Language

This chapter describes the Streaming Platform LAnguage SHell (SPLASH), which is a
scripting language supported by Sybase ESP that brings extensibility to CCL. It is used to
define custom functions, custom operators in the form of Flex Operators, and is used to declare
global and local variables and data structures.

The syntax of SPLASH is a combination of the expression language and a C-like syntax for
blocks of statements. Just as in C, there are variable declarations within blocks, and statements
for making assignments to variables, conditionals and looping. Other datatypes, beyond scalar
types, are also available within SPLASH, including types for records, collections of records,
and iterators over those records. Comments can appear as blocks of text inside /*-*/ pairs, or
as line comments with //.

Variable and Type Declarations
SPLASH variable declarations resemble those in C: the type precedes the variable names, and
the declaration ends in a semicolon. The variable can be assigned an initial value as well.

Here are some examples of SPLASH declarations:
integer a, r;
float b := 9.9;
string c, d := 'dd';
[integer key1; string key2; | string data;] record;

The first three declarations are for scalar variables of types integer, float, and string.
The first has two variables. In the second, the variable “b” is initialized to 9.9. In the third, the
variable “c” is not initialized but “d” is. The fourth declaration is for a record with three
columns. The key columns “key1” and “key2” are listed first before the | character; the
remaining column “data” is a non-key column. The syntax for constructing new records is
parallel to this syntax type.

The typeof operator provides a convenient way to declare variables. For instance, if rec1 is
a record with type [integer key1; string key2; | string data;].

typeof(rec1) rec2;

The above declaration is the same as the following declaration:
[integer key1; string key2; | string data;] rec2;

SPLASH type declarations also resemble those in C. The typedef operator provides a way
to define a synonym for a type expression.

Programmers Reference 207

typedef float newFloatType;
typedef [integer key1; string key2; | string dataField;] rec_t;

These declarations create new synonyms newFloatType and rec_t for the float type and
the given record type, respectively. Those names can then be used in subsequent variable
declarations which improves the readability and the size of the declarations:
newFloatType var1;
rec_t var2;

Custom Functions
You can write your own functions in SPLASH. They can be declared in global blocks, for use
by any stream or window, or within a local block to restrict usage to the local stream/window.
A function can internally call other functions, or call themselves recursively.

The syntax of SPLASH functions resembles C. In general, a function looks like:

type functionName(type1 arg1, ..., typen argn) { ... }

Each “fuction type” is a SPLASH type, and each arg is the name of an argument. Within the
{...} can appear any SPLASH statements. The value returned by the function is the value
returned by the return statement within.

Here are some examples:

integer factorial(integer x) {
 if (x <= 0) {
 return 1;
 } else {
 return factorial(x-1) * x;
 }
 }
string odd(integer x) {
 if (x = 1) {
 return 'odd';
 } else {
 return even(x-1);
 }
 }

string even(integer x) {
 if (x = 0) {
 return 'even';
 } else {
 return odd(x-1);
 }
}
integer sum(integer x, integer y) { return x+y; }
string getField([integer k; | string data;] rec) { return rec.data;}

CHAPTER 8: SPLASH Programming Language

208 Sybase Event Stream Processor

The first function is recursive. The second and third are mutually recursive; unlike C, you do
not need a prototype of the “even” function in order to declare the “odd” function. The last two
functions illustrate multiple arguments and record input.

The real use of SPLASH functions is to define, and debug, a computation once. Suppose, for
instance, you have a way to compute the value of a bond based on its current price, its days to
maturity, and forward projections of inflation. You might write this function and use it in many
places within the project:

float bondValue(float currentPrice,
 integer daysToMature,
 float inflation)
{
 ...
}

Using SPLASH in Flex Operators
Procedures written in SPLASH are integrated into Projects using the CCL Flex operator.

Procedures written in SPLASH are not meant to be standalone programs. They are meant to be
used in Sybase® Event Stream Processor projects that are primarily written in CCL. The Flex
Operator is the CCL statement that incorporates a SPLASH routine into a CCL project.

Operations on Windows that are inputs to the Flex Operator

• Get value by key – Get a record from the window by key. If there is no such key in the
window, return null.

Syntax: windowValue[recordValue]

Type: The recordValue must have the record type of the window. The operation returns a
value of the record type of the window.

Example: input_window[[k = 3; |]]

Note: Non-key fields of the argument do not matter. The operation returns a record with
the current values of the non-key fields, if a record with the key fields exists.

If a key field is missing from the argument, or the key field is null, then this operation
always returns null. It doesn't make sense to compare key fields in the stream to null, since
null is never equivalent to any value (including null).

• Get value by match – Get a record from the window that matches the given record. Unlike
getting a value by key, there might be more than one matching record. If there is more than
one matching record, one of the matching records is returned. If there is no such match in
the window, null is returned.

Syntax: windowName{ recordValue }

CHAPTER 8: SPLASH Programming Language

Programmers Reference 209

Type: The record must be consistent with the record type of the window. The operation
returns a value of the record type of the window.

Example: input_window{ [| d = 5] }

You can use key and non-key fields in the record.
You can also iterate through all the records in a window using a “for” loop.

Examples
The following examples show complete projects that incorporate SPLASH code using the
CCL Flex operator.

This project displays the top three prices for each stock symbol.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

/* **
 * Create a Nasdaq Trades Input Window
 */
CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;

/* **
 * Use Case a:
 * Keep records corresponding to only the top three
 * distinct values. Delete records that falls of the top
 * three values.
 *
 * Here the trades corresponding to the top three prices
 * per Symbol is maintained. It uses
 * - eventcaches
 * - local UDF
 */
CREATE FLEX Top3TradesFlex
 IN QTrades
 OUT OUTPUT WINDOW Top3Trades SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE
 eventCache(QTrades[Symbol], manual, Price asc)
tradesCache;
 /*
 * Inserts record into cache if in top 3 prices and
returns
 * the record to delete or just the current record if it

CHAPTER 8: SPLASH Programming Language

210 Sybase Event Stream Processor

was
 * inserted into cache with no corresponding delete.
 */
 typeof(QTrades) insertIntoCache(typeof(QTrades)
qTrades)
 {
 // keep only the top 3 distinct prices per symbol in
the
 // event cache
 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);
 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 // if the price is the same update
 // the record.
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }

 //Less than 3 distinct prices
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else { //Current price is > lowest price
 //delete lowest price record.
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }

 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 //When id does not match current id it is a
 //record to delete
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }
 output setOpcode(QTrades, upsert);
 }
 };
 END;

CHAPTER 8: SPLASH Programming Language

Programmers Reference 211

This project collects data for thirty seconds and then computes the desired output values.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

/* **
 * Create a Nasdaq Trades Input Window
 */
CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;

/* **
 * Use Case b:
 * Perform a computation every N seconds for records
 * arrived in the last N seconds.
 *
 * Here the Nasdaq trades data is collected for 30 seconds
 * before being released for further computation.
 */
CREATE FLEX PeriodicOutputFlex
 IN QTrades
 OUT OUTPUT WINDOW QTradesPeriodicOutput SCHEMA TradesSchema
PRIMARY KEY(Symbol,Price)
 BEGIN
 DECLARE
 dictionary(typeof(QTrades), integer) cache;
 END;
 ON QTrades {
 //Whenever a record arrives just insert into
dictionary.
 //The key of the dictionary is the key to the record.
 cache[QTrades] := 0;
 };
 EVERY 30 SECONDS {
 //Cycle through event cache and output all the rows
 //and delete the rows.
 for (rec in cache) {
 output setOpcode(rec, upsert);
 }
 clear(cache);
 };
 END;

/**
 * Perform a computation from the periodic output.
 */

CHAPTER 8: SPLASH Programming Language

212 Sybase Event Stream Processor

CREATE OUTPUT WINDOW QTradesSymbolStats
PRIMARY KEY DEDUCED
AS SELECT
 q.Symbol,
 MIN(q.Price) Minprice,
 MAX(q.Price) MaxPrice,
 sum(q.Shares * q.Price)/sum(q.Shares) Vwap,
 count(*) TotalTrades,
 sum(q.Shares) TotalVolume
FROM
 QTradesPeriodicOutput q
GROUP BY
 q.Symbol
;

CHAPTER 8: SPLASH Programming Language

Programmers Reference 213

CHAPTER 8: SPLASH Programming Language

214 Sybase Event Stream Processor

CHAPTER 9 SPLASH Statements

SPLASH has statement forms for expressions, blocks, conditionals, output, “break” and
“continue”, “while” and “for” loops, as well as blocks of statements.

Block Statements
Statements can be a sequence of statements, wrapped in braces, with optional variable
declarations.

For example:

{
 float d := 9.99;
 record.b := d;
}

You can intersperse variable declarations with statements:

{
 float pi := 3.14;
 print (string(pi));
 float e := 2.71;
 print (string(e));
}

Conditional Statements
Use conditional statements to specify an action based on whether a specific condition is true or
false. Conditional statements in SPLASH use the same syntax as conditional statements in
C.

For example:

if (record.a = 9)
 record.b := 9.99;

Note: You are not limited to a single statement. It is also possible to have a block of statements
after the "if" condition, similiar to the following example:

if (record.a > 9) {
 float d := record.a;

Programmers Reference 215

 record.b := d*5;
};

Conditionals may have optional “else” statements:

if (record.a = 9)
 record.b := 9.99;
else {
 float d := 10.9;
 record.b := d;
}

Control Statements
Use control statements to terminate or restart both while loops and for loops.

A break statement terminates the innermost loop; a continue statement starts the
innermost loop over.

The return statement stops the processing and returns a value. This is most useful in
SPLASH functions.

The exit statement stops the processing.

Expression Statements
You can turn any expression into a statement by terminating the expression with a semicolon.

For example:
setOpcode(input, 3);

Since assignments are expressions, assignments can be turned into statements in the same
way. For instance, the following statement assigns a string to a variable “address”:
address := '550 Broad Street';

For Loops
Loops are often coded with “for” loops, which provide a convenient means of looping over
some or all of the records in an input window, or all of the data in a vector or dictionary.

To loop over every record in an input window called “input_window”:

for (record in input_window) {
 ...
}

CHAPTER 9: SPLASH Statements

216 Sybase Event Stream Processor

The variable record is a new variable; you can use any name here. The scope is the statement
or block of statements in the loop; it has no meaning outside the loop. You can also set equality
criteria in searching for records with certain values of fields. For example:

for (record in input_window where c=10, d=11) {
 ...
}

This statement has the same looping behavior, except limited to the records whose c field is 10
and d field is 11. If you search on the key fields, the loop runs at most one time, but it will run
extremely fast because it will use the underlying index of the stream.

To loop over the values in a vector “vec1”where val is any new variable:

for (val in vec1) {
 ...
}

The loop stops when the end of the vector is reached, or the value of the vector is null.

To loop over the values in a dictionary “dict1” where key is any new variable:

for (key in dict1) {
 ...
}

It is common, inside the loop, to use the expression dict1[key] to get the value held in the
dictionary for that particular key.

Output Statements
The output statement schedules a record to be published in the output stream or window.

For example:

output [k = 10; | d = 20;];

If a Flex operator is sending output to a steam, all attempts to output a non-insert are
rejected.

Note: You can use multiple output statements to process an event; the outputs are collected as
a transaction block. Similarly, if a Flex operator receives a transaction block, the entire
transaction block is processed and all output is collected into another transaction block. This
means that downstream streams, and the record data stored within the stream, are not changed
until the entire event (single event or transaction block) is processed.

CHAPTER 9: SPLASH Statements

Programmers Reference 217

Print Statement
Concatenates and prints the given string arguments to standard out (stdout), which is
redirected to esp_server.log.

Syntax
print (string [,...])

Parameters

string Either a string expression or a string constant

Usage
This function concatenates the provided string expressions and prints them to standard out,
which is redirected to the log file esp_server.log. Just like in C/C++ or Java, you can use
'\n' to print a new line and '\t' to print a tab character. The output of the print statement is written
to the log file immediately when you use the '\n' option; otherwise, it is written only when the
Server shuts down.

Example
print('Trade Volume for Symbol', Trades.Symbol, ' is ',
string(Trades.Volume), '\n');

Switch Statements
The switch statement is a specialized form of conditional.

For instance, you can write:

switch(intvar*2) {
 case 0: print('case0'); break;
 case 1+1: print('case2'); break;
 default: print('default'); break;
}

This statement prints “case0” if the value of intvar*2 is 0, “case2” if the value of
intvar*2 is 2, and “default” otherwise. The default is optional. The expression inside
the parentheses switch(...) must be of base type, and the expressions following the
case keyword must have the same base type.

As in C and Java, the break is needed to skip to the end. For instance, if you leave out the
break after the first case, then this statement will print both “case0” and “case2” when
intvar*2 is 0:

CHAPTER 9: SPLASH Statements

218 Sybase Event Stream Processor

switch(intvar*2) {
 case 0: print('case0');
 case 1+1: print('case2'); break;
 default: print('default'); break;
}

While Statements
While statements are a form of conditional processing. Use them to specify an action to take
while a certain condition is met. While statements use the same syntax as while statements in
C and are processed as loops.

For example:

while (not(isnull(record))) {
 record.b := record.a + record.b;
 record := getNext(record_iterator);
}

CHAPTER 9: SPLASH Statements

Programmers Reference 219

CHAPTER 9: SPLASH Statements

220 Sybase Event Stream Processor

CHAPTER 10 SPLASH Data Structures

SPLASH may store and organize data in various sets of data structures designed to support
specific data manipulation functions.

Records
A Record is a data structure that contains one or more columns along with a expression that
determines the data type and value for the column. One or more columns in the record can be
defined to be a key column. Each record also has a operation code with the default operation
code being an “insert”. The compiler implicitly determines the type for each of the columns
based upon the type of the column expression. A record that is created can be stored in a
Stream or it can be stored in a record variable with a compatible record type.

Record Event Details
A record type contains one or more column names with a basic type such string, long, date etc
associated with it. One or more the columns can be identified as a key columns.

You can declare a record type inside any block of SPLASH code including Global/Local
declare blocks, functions and the ON method of a Flex operator using one of the following
syntax:

[[columnType column; [...] [|]]

or

[[columnType column; [...] |] columnType column; [...]]

Where:

columnType - is one of the basic types such as integer, long, float etc. column - the name of a
column in the record. A column name must be unique within a record and is case sensitive i.e.
'symbol' is not the same as 'Symbol'.

In the previous syntax the outer square brackets is part of the syntax and does not represent an
optional element. Also any columns appearing before the | character represents the key
columns in the record type. Note that the semicolon following the last column before the key
separator | and/or the trailing] is optional.

The following is an example:
[integer TradeId; string Symbol; | integer Volume; float Price; date
TradeTime;] traderec;

Programmers Reference 221

The previous example declares a record variable called traderec with the specified record
definition that has two columns namely TradeId and Symbol and three attribute columns
namely Volume, Price and TradeTime.

Record Details
You can define a record in SPLASH inside any Global/Local function and inside the ON
Method of a Flex Operator. To define a record use one of the following syntax:

[column = value; [...] [|]]
or
[[column = value; [...] |] column = value; [...]]

Where:

column - is the name of a column in the record. A column name must be unique within a record
and is case sensitive i.e. symbol is not the same as Symbol.

value - is any expression including constant expressions. The column type is determined by
the compiler based upon the type of this expression.

In the previous syntax the outer square brackets is part of the syntax and does not represent an
optional element. Also any columns appearing before the | character represents the key
columns in the record type. Note that the semicolon following the last column before the key
separator | and/or the trailing] is optional.

When a record is created its opcode is set to 'insert' by default. You can change the operation
code using the setOpcode function as described in the following example:
[integer TradeId; string Symbol; | integer Volume; float TradePrice;
date TradeTime;] traderec;
traderec := [TradeId = 1; Symbol = 'SAP'; | Volume = 100; TradePrice
= 150.0; undate('2012-03-01 10:30:35');];

In the above example the record variable traderec is assigned a record object with particular
values.

Operations on Records
Operations on records:

• Get a field – Syntax: record.field

Type: The value returned has the type of the field.

Example: rec.data1

• Assign a field – Assign a field in a record.

Syntax: record.field := value

Type: The value must be a value matching the type of the field of the record. The
expression returns a record.

CHAPTER 10: SPLASH Data Structures

222 Sybase Event Stream Processor

Example: rec.data1 := 10

• Assign a Record – It is more efficient to assign a record than to assign individual columns
of a record one at a time.

Syntax: record := recordObject or record := recordVariable.

Examples:

Record object assignment outTrades := [TradeId = 1; Symbol =
'SAP'; | Volume = 100; TradePrice = 150.0;
undate('2012-03-01 10:30:35');];

Assigning one record variable to another: outTrades := inTrades;

See the section on record casting rules for information on how the compiler deals with
scenarios where the source record type does not exactly match the target record type.

• getOpcode – Gets the operation associated with a record. The operations are of type
integer, and have the following meaning:

• 1 means “insert”
• 3 means “update”
• 5 means “delete”
• 7 means “upsert”(insert if not present, update otherwise)
• 13 means “safe delete”(delete if present, ignore otherwise)

Syntax: getOpcode(record)

Type: The argument must be an event. The function returns an integer.

Example: getOpcode(input)

• setOpcode – Sets the operation associated with a record; the legal opCodeNumber
operations are listed in the above description for getOpcode.

Syntax: setOpcode(record,opCodenumber)

Type: The first argument must be a record, and the second an integer. The function returns
the modified record.

Example: setOpcode(input,insert)

Record Casting Rules
The ESP compiler does the necessary implicit casting when assigning a source record to a
target record variable where the types and column names do not match exactly. This allows
you to assign either a source record to a target that does not have all the columns in the target, or
a source that has more columns than the target record variable type. The following casting
rules are used by the compiler.

* Columns are only copied over when the source and target column names match exactly
(including case).

CHAPTER 10: SPLASH Data Structures

Programmers Reference 223

* If the column name matches, but the column type does not, the compiler throws an error
saying that you are trying to assign an expression of a wrong type.

* Columns in the source record that do not exactly match the column names and types in the
target are ignored.

* The columns in the source with no matching column in the target are automatically filled in
with nulls.

The following are casting examples:
[integer TradeId; string Symbol; | integer Volume; float TradePrice;
date TradeTime;] srcTrade;
[integer TradeId; | string Symbol; integer volume; float TradeCost;
date TradeTime;] outTrade;

outTrade := srcTrade

In the previous example, Volume and TradeCost are set to null because there is no
corresponding target column in the source record variable srcTrade. Note that 'volume' is
ignored because the case does not match.

The compiler produces a warning and ignores the source column 'Volume' and 'TradePrice'
because they do not exist in the target record type.

Symbol is automatically cast as an attribute column in the target, even though it is a key
column in the source.

Note: Casting is an expensive operation. So, where possible, explicitly create a source record
with exactly the same type (for example, the same number of columns with the same column
names and data types) as the target record variable type.

XML Values
An XML value is a value composed of XML elements and attributes, where elements can
contain other XML elements or text. XML values can be created directly or built by parsing
string values. XML values cannot be stored in records, but can be converted to string
representation and stored in that form.

Operations on XML Values
You can declare a variable of xml type and assign it to XML values:

xml xmlVar;

In addition to declaring a variable for use with XML values, you can also perform the
following operations:

• xmlagg – Aggregate a number of XML values into a single value. This can be used only
in aggregate windows or with event caches (see below). Use xmlagg with caution; it can

CHAPTER 10: SPLASH Data Structures

224 Sybase Event Stream Processor

consume a large amount of memory very quickly as it produces a large verbose string
proportionate to the size of the contents of each group.

Syntax: xmlagg(xml value)

Type: The argument must be an XML value. The function returns an XML value.

Example: xmlagg(xmlparse(stringCol))

• xmlconcat – Concatenate a number of XML values into a single value.

Syntax: xmlconcat(xml value ..., xml value)

Type: The arguments must be XML values. The function returns an XML value.

Example: xmlconcat(xmlparse(stringCol), xmlparse('<t/>'))

• xmlelement – Create a new XML data element, with attributes and XML expressions
within it.

Syntax: xmlelement(name xmlattributes(string AS name ...,
string AS name) , xml value,...,xml value)

Type: The names must adhere to these conventions:

• A name is either a sequence of alphabetic characters, digits, and underscore characters,
or a sequence of any characters enclosed in double quotation marks.

• If a name is not enclosed in double quotation marks, it must begin with an alphabetic
character or an underscore.

• A name cannot contain spaces unless it is enclosed in double quotation marks.
• A name cannot be a Reserved Word unless it is enclosed in double quotation marks.

Reserved words are case insensitive, so for example, a name cannot be “AND” or
“and” or “AnD”.

• Columns cannot be named “rowid”, "bigrowtime", or “rowtime”.

The function returns an XML value.

Example: xmlelement(top, xmlattributes('data' as attr1),
xmlparse('<t/>'))

• xmlparse – Convert a string to an XML value.

Syntax: xmlparse(string value)

Type: The argument must be a string value. The function returns an XML value.

Example: xmlparse('<tag/>')

• xmlserialize – Convert an XML value to a string.

Syntax: xmlserialize(xml value)

Type: The argument must be an XML value. The function returns a string.

Example: xmlserialize(xmlparse('<t/>'))

CHAPTER 10: SPLASH Data Structures

Programmers Reference 225

Example
CREATE INPUT WINDOW Trades
 SCHEMA (TradeId INTEGER, Symbol STRING, TradeInfo STRING)
 PRIMARY KEY (TradeId) ;

CREATE FLEX myFlex
 IN Trades
 OUT OUTPUT WINDOW TradeReport
 SCHEMA (TradeId INTEGER, TradeDesc STRING
 PRIMARY KEY (TradeId)
 outfile "output/TradeReport.out"
BEGIN
 ON Trades {
 xml u := xmlparse('<Option OptionId="8">10000</Option>');
 xml v := xmlparse(Trades.TradeInfo);
 xml w := xmlelement(Comment, xmlattributes(Trades.Symbol as
Symbol), u, v);
 v := xmlconcat(u, v, w);
 output [TradeId = Trades.TradeId; TradeDesc =
xmlserialize(v)];
 };
END;

CREATE OUTPUT WINDOW XmlAggregation
 SCHEMA (Symbol STRING, TradeDesc STRING)
 PRIMARY KEY DEDUCED
 outfile "output/XmlAggregation.out"
AS
 SELECT Trades.Symbol AS Symbol
 , xmlserialize(xmlelement (value
 , xmlattributes(Trades.Symbol as
Symbol)
 ,
xmlagg(xmlparse(Trades.TradeInfo)))) AS TradeDesc
 FROM Trades
 GROUP BY Trades.Symbol;

The output for the TradeReport will be:
<TradeReport ESP_OPS="i" TradeId="1" TradeDesc="<Option
OptionId="8">10000</Option><Transaction Price="15.4" Volume="1000"/
><Comment Symbol="EBAY"><Option OptionId="8">10000</
Option><Transaction Price="15.4" Volume="1000"/></Comment>"/>
<TradeReport ESP_OPS="i" TradeId="2" TradeDesc="<Option
OptionId="8">10000</Option><Transaction Price="5.4" Volume="2000"/
><Comment Symbol="MSFT"><Option OptionId="8">10000</
Option><Transaction Price="5.4" Volume="2000"/></Comment>"/>
<TradeReport ESP_OPS="i" TradeId="3" TradeDesc="<Option
OptionId="8">10000</Option><Transaction Price="5.8" Volume="4000"/
><Comment Symbol="MSFT"><Option OptionId="8">10000</
Option><Transaction Price="5.8" Volume="4000"/></Comment>"/>

The output for the XMLAggregation will be:

CHAPTER 10: SPLASH Data Structures

226 Sybase Event Stream Processor

<XmlAggregation ESP_OPS="i" Symbol="EBAY" TradeDesc="<value
Symbol="EBAY"><Transaction Price="15.4" Volume="1000"/></value>"/>
<XmlAggregation ESP_OPS="i" Symbol="MSFT" TradeDesc="<value
Symbol="MSFT"><Transaction Price="5.4" Volume="2000"/></value>"/>
<XmlAggregation ESP_OPS="u" Symbol="MSFT" TradeDesc="<value
Symbol="MSFT"><Transaction Price="5.8" Volume="4000"/><Transaction
Price="5.4" Volume="2000"/></value>"/>

Vectors
A vector is a sequence of values, all of which must have the same type, with an ability to access
elements of the sequence by an integer index. A vector has a size, from a minimum of 0 to a
maximum of 2 billion entries.

Semantics and Operations
Vectors use semantics inherited from C: when accessing elements by index, index 0 is the first
position in the vector, index 1 is the second, and so forth.

You can declare vectors in Global or Local blocks via the syntax:
vector(valueType) variable;

For instance, you can declare a vector holding 32-bit integers:
vector(integer) pos;

Operations on vectors:

• Create – Create a new empty vector.

Syntax: new vector(type)

Type: A vector of the declared type is returned.

Example: pos := new vector(integer);

• Get value by index – Get a value from the vector. If the index is less than 0 or greater than
or equal to the size of the vector, return null.

Syntax: vector[index]

Type: The index must have type integer. The value returned has the type of the values held
in the vector.

Example: pos[10]

• Assign a value – Assign a cell in the vector.

Syntax: vector[index] := value

Type: The index must have type integer, and the value must match the value type of the
vector. The value returned is the updated vector.

Example: pos[5] := 3

CHAPTER 10: SPLASH Data Structures

Programmers Reference 227

• Determine the size – Returns the number of elements in the vector.

Syntax: size(vector)

Type: The argument must be a vector. The value returned has type integer.

Example: size(pos)

• Insert an element – Inserts an element at the end of the vector and returns the modified
vector.

Syntax: push_back(vector value)

Type: The second argument must be a value with the value type of the vector. The return
value has the type of the vector.

Example: push_back(pos, 3)

• Change the size – Resize a vector, either removing elements if the vector shrinks, or
adding null elements if the vector expands.

Syntax: resize(vector newsize)

Type: The second argument must have type integer. The return value has the type of the
vector.

Example: resize(vec1, 2)

You can also iterate through all the elements in the vector (up to the first null element) using a
“for” loop.

There is no command to copy a vector. Therefore, the only way to make a copy of a vector is
manually, by iterating through the elements.

While dictionary and vector data structures can be defined globally, global use should be
limited to reading them. Only one stream should write to a dictionary or vector data structure.
And while that stream is writing, no other stream should write to or read from that data
structure. The underlying objects used to manage the global dictionary or vector data
structures are not thread-safe. A stream must have exclusive access to the global dictionary or
vector data structure while writing. Allowing other streams to access these data structures
while one stream is writing can result in server failure.

Use of these data structures should be limited to relatively static data (such as country codes)
that will not need to be updated during processing, but will be read by multiple streams.
Writing the data to the dictionary or vector must be completed before any streams read it.

All operations that read a global dictionary or vector should perform an isnull check, as shown
in this example.
>typeof(streamname) rec := dict[symbol];
if(not (isnull(rec)) {
// use rec
}

CHAPTER 10: SPLASH Data Structures

228 Sybase Event Stream Processor

Dictionaries
Dictionaries are data structures that associate keys with values. They are called maps in C++
and Java, arrays in AWK, and association lists in LISP, so they are common data structures.

Declare a dictionary in a Global or Local block using the syntax:
dictionary(keyType, valueType) variable;

For instance, if you have an input stream called "input_stream", you could store an integer for
distinct records as
dictionary(typeof(input_stream), integer) counter;

Only one value is stored per key. It is therefore important to understand what equality on keys
means. For the simple datatypes, equality means the usual equality, for example, equality on
integer or on string values. For record types, equality means that the keys match (the data fields
and operation are ignored).

While dictionary and vector data structures can be defined globally, global use should be
limited to reading them. Only one stream should write to a dictionary or vector data structure.
And while that stream is writing, no other stream should write to or read from that data
structure. The underlying objects used to manage the global dictionary or vector data
structures are not thread-safe. A stream must have exclusive access to the global dictionary or
vector data structure while writing. Allowing other streams to access these data structures
while one stream is writing can result in server failure.

Use of these data structures should be limited to relatively static data (such as country codes)
that will not need to be updated during processing, but will be read by multiple streams.
Writing the data to the dictionary or vector must be completed before any streams read it.

All operations that read a global dictionary or vector should perform an isnull check, as shown
in this example.
>typeof(streamname) rec := dict[symbol];
if(not (isnull(rec)) {
// use rec
}

Operations on Dictionaries
Dictionaries are data structures that associate keys with values. You can perform specific
operations on dictionaries.

Operations
You can perform the following operations on dictionaries:

• Create – Create a new empty dictionary.

Syntax: new dictionary(type, type)

CHAPTER 10: SPLASH Data Structures

Programmers Reference 229

Type: A vector of the declared type is returned.

Example: d := new dictionary(integer, string);

• Get value by key – Get a value from the dictionary by key. If there is no such key in the
dictionary, return null.

Syntax: dictionary[key]

Type: The key must have the type of the keys of the dictionary. The function returns a value
of the type of the values held in the dictionary.

Example: counter[input]

• Assign a value by key – Associate a value with a key in the dictionary.

Syntax: dictionary[key] := value

Type: The key and value must match the key type and value type of the dictionary. The
function returns the updated dictionary.

Example: counter[input] := 3

• Remove a key/value pair – Remove a key, and its associated value, from the dictionary.

Syntax: remove(dictionary, key)

Type: The key must match the key type of the dictionary. The function returns an integer: 0
if the key was not present, and 1 otherwise.

Example: remove(counter, input)

• Clear a dictionary – Remove all key/value pairs from the dictionary.

Syntax: clear(dictionary)

The function returns the cleared dictionary.

Example: clear(counter)

• Test for emptiness – Test a dictionary for emptiness.

Syntax: empty(dictionary)

The function returns an integer: 1 if the dictionary is empty, 0 if not empty.

Example: empty(counter)

You can also iterate through all the key/value pairs in the dictionary using a “for” loop.

CHAPTER 10: SPLASH Data Structures

230 Sybase Event Stream Processor

Window Iterators
Window iterators are a means of explicitly iterating over all of the records stored in a window.
It is usually more convenient, and safer, to use the for loop mechanism (see above), but
iterators provide extra flexibility.

Functions for Iterators
Each block of code has implicit variables for windows and window iterators. If an input
window is named Stream1, there are variables Stream1_stream and
Stream1_iterator.

Those variables can be used in conjunction with the following functions.

• deleteIterator – Releases the resources associated with an iterator.

Syntax: deleteIterator(iterator)

Type: The argument must be an iterator expression. The function returns a null value.

Example: deleteIterator(input_iterator)

Note: Iterators are not implicitly deleted. If you don't delete them explicitly, all further
updates to the stream may be blocked.

• getIterator – Get an iterator for a window.

Syntax: getIterator(windowName)

Type: The argument must be a window expression. The function returns an iterator.

Example: getIterator(input_window)

• getNext – Returns the next record in the iterator, or null if there are no more records.

Syntax: getNext(iterator)

Type: The first argument must be an iterator expression. The function returns a record, or
“null” if there is no more data in the iterator.

Example: getNext(input_iterator)

• resetIterator – Resets the iterator to the beginning.

Syntax: resetIterator(iterator)

Type: The argument must be an iterator expression. The function returns an iterator.

Example: resetIterator(input_iterator)

• setRange – Sets a range of columns to search for. Subsequent getNext calls return only
those records whose columns match the given values.

Syntax: setRange(iterator fieldName... expr...)

CHAPTER 10: SPLASH Data Structures

Programmers Reference 231

Type: The first argument must be an iterator expression; the next arguments must be the
names of fields within the record; the final arguments must be expressions. The function
returns an iterator.

Example: setRange(input_iterator,Currency,Rate,'EUR',9.888)

• setSearch – Sets values of columns to search for. Subsequent getNext calls return only
those records whose columns match the given values.

Syntax: setSearch(iterator number... expr...)

Type: The first argument must be an iterator expression; the next arguments must be
column numbers (starting from 0) in the record; the final arguments must be expressions.
The function returns an iterator.

Example: setSearch(input_iterator,0,2,'EUR',9.888)

Note: The setSearch function has been deprecated because it requires a specific layout
of fields. It has been retained for backwards compatibility with existing projects. When
developing new projects, use the setRange function instead.

Event Caches
Event caches are an alternate windowing mechanism that provides an alternative to the CCL
KEEP clause when greater control or flexibility is required. They are organized into buckets,
based on values of the fields in the records and are often used when vectors or dictionaries are
not quite the right data structure.

You can define an event cache in a Local block. A simple event cache declaration:
eventCache(input_stream) e0;

This event cache holds all the events for an input stream “input_stream”. The default key
structure of windows define the bucket policy. That is, the buckets in this stream correspond to
the keys of the input stream. When the input of an event cache is a window or delta stream, the
default bucket policy is set to the primary key of the window or delta stream. When the input of
an event cache is an insert-only stream, there is no default bucket policy and a single bucket is
created for all the events. However, because streams have no keys, the default behavior is for
all the rows in the streams to go into one bucket in the event cache.

Suppose the input stream in this case has two fields, a key field k and a data field d. Suppose
the events have been:

<input_stream ESP_OPS="i" k="1" d="10"/>
<input_stream ESP_OPS="u" k="1" d="11"/>
<input_stream ESP_OPS="i" k="2" d="21"/>

CHAPTER 10: SPLASH Data Structures

232 Sybase Event Stream Processor

After these events have flowed in, there will be two buckets. The first bucket will contain the
first two events, because these have the same key; the second bucket will contain the last
event.

Event caches allow for aggregation over events. That is, the ordinary aggregation operations
that can be used in aggregate windows can be used in the same way over event caches. The
“group” that is selected for aggregation is the one associated with the current event (i.e. the
event that has just arrived).

<input_stream ESP_OPS="u" k="1" d="12"/>

For instance, if the above event appears in this stream, then the expression sum(e0.d)
returns 10+11+12=33. You can use any of the accepted aggregation functions, including avg,
count, max, and min.

Manual Insertion
By default, every event that comes into a stream with an event cache gets put into the event
cache.

You can explicitly indicate this default behavior with the auto option:

eventCache(instream, auto) e0;

You can also put events into an event cache if they are marked manual:

eventCache(instream, manual) e0;

Use the function insertCache to do this.

Changing Buckets
An event cache organizes events into buckets. By default, the buckets are determined from the
keys of the input stream/window. You can change that default behavior to alternative keys,
specifying other fields in square brackets after the name of the input.

Specifying the following keeps buckets organized by distinct values of the d0 and d1 fields:

eventCache(instream[d0,d1]) e0;

To keep one large bucket of all events, write the following:

eventCache(instream[]) e0;

CHAPTER 10: SPLASH Data Structures

Programmers Reference 233

Managing Bucket Size
You can manage the size of buckets in an event cache. That can often be important in
controlling the use of memory.

You can limit the size of a bucket to the most recent events, by number of seconds, or by time:

eventCache(instream, 3 events) e0;
eventCache(instream, 3 seconds) e1;

You can also specify whether to completely clear the bucket when the size or time expires by
specifying the jump option:

eventCache(instream, 3 seconds, jump);

The default is nojump.

All of these options can be used together. For example, this example clears out a bucket when it
reaches 10 events (when the 11th event comes in) or when 3 seconds elapse.

eventCache(instream, 10 events, 3 seconds, jump);

Keeping Records
You can keep records in an event cache, instead of distinct events for insert, update, and delete,
by specifying the coalesce option.

For example:

eventCache(instream, coalesce) e0;

This option is most often used in conjunction with the ordering option.

Ordering
Normally, the events in a bucket are kept by order of arrival. You can specify a different
ordering by the fields of the events.

For instance, to keep the events in the bucket ordered by field d in descending order:

eventCache(instream, d desc) e0;

You can order by more than one field. The following example orders the buckets by field d0 in
descending order, then by field d1 in ascending order in case the d0 fields are equal.

CHAPTER 10: SPLASH Data Structures

234 Sybase Event Stream Processor

eventCache(instream, d0 desc, d1 asc) e0;

Operations on Event Caches
Event caches hold a number of previous events for the input stream(s)/window(s).

Supported Event Cache Operations

• expireCache – Remove events from the current bucket that are older than a certain
number of seconds.

Syntax: expireCache(events, seconds)

Type: The first argument must name an event cache variable. The second argument must be
an integer. The function returns the event cache.

Example: expireCache(events, 50)

• insertCache – Insert a record value into an event cache.

Syntax: insertCache(events, record)

Type: The first argument must name an event cache variable. The argument must be a
record type. The function returns the record inserted.

Example: insertCache(events, inputStream)

• keyCache – Select the current bucket in an event cache. Normally, the current input
record selects the active bucket. You might want to change the current active bucket in
some cases. For example, during the evaluation of the debugging expressions, there is no
current input record and thus no bucket is set by default. The only way to set the bucket then
is to do it manually using this function.

Syntax: keyCache(events, event)

Type: The first argument must name an event cache variable. The second argument must be
a record type. The function returns the same record.

Example: keyCache(ec1, rec)

• getCache – Returns the row specified by a given index from the current bucket in the
event cache. This index is 0 based. The function takes an integer as its argument, and the
function returns a row. Specifying an invalid index parameter will result in the generation
of a bad record.

Syntax: getCache(cacheName, index)

Type: The first argument must name an event cache variable. The second argument must be
an integer specifying the row to retrieve. The function returns the specified row of the
cache.

Example: getCache(tradesCache, 3)

CHAPTER 10: SPLASH Data Structures

Programmers Reference 235

• deleteCache – Returns the row specified by a given index from the current bucket in
the event cache. This index is 0 based. The function takes an integer as its argument, and
the function returns a row. Specifying an invalid index parameter will result in the
generation of a bad record.

Syntax: deleteCache(cacheName, index)

Type: The first argument must name an event cache variable. The second argument must be
an integer specifying the row to delete. The function deletes the specified row; it does not
return any output.

Example: deleteCache(tradesCache, 0)

• cacheSize – Returns the size of the current bucket in the event cache.

Syntax: cacheSize(cacheName)

Type: This function takes an argument of the name of the event cache variable. It then
returns an integer.

Example: cacheSize(tradesCache)

CHAPTER 10: SPLASH Data Structures

236 Sybase Event Stream Processor

APPENDIX A List of Keywords

Reserved words in CCL that are case-insensitive. Keywords cannot be used as identifiers for
any CCL objects.

A list of keywords present in CCL:

adapter age(s) all and as asc

attach auto begin break case cast

connection continue count create day(s) declare

deduced default delete delta desc distinct

dumpfile dynamic else end eventCache every

exit external false fby filter first

flex for foreign foreignJava from full

group groups having hour(s) hr if

import in inherits inner input insert

into is join keep key last

language left library like load local

log max memory micros microsecond(s) millis

millisec-
ond(s)

min minute(s) module money name

new nostart not nth null on

or order out outfile output parameter(s)

pattern primary properties rank records retain

return right row(s) safedelete schema sec

second(s) select set setRange slack start

static store(s) stream sum sync switch

then times to top transaction true

type typedef typeof union update upsert

Programmers Reference 237

values when where while window within

xmlattri-
butes

xmlelement

APPENDIX A: List of Keywords

238 Sybase Event Stream Processor

APPENDIX B Date and Time Programming

Set time zone parameters, date format code preferences, and define calendars.

Time Zones
A time zone is a geographic area that has adopted the same standard time, usually referred to as
the local time.

Most adjacent time zones are one hour apart. By convention, all time zones compute their local
time as an offset from GMT/UTC. GMT (Greenwich Mean Time) is an historical term,
originally referring to mean solar time at the Royal Greenwich Observatory in Britain. GMT
has been replaced by UTC (Coordinated Universal Time), which is based on atomic clocks.
For all Sybase Event Stream Processor purposes, GMT and UTC are equivalent. Due to
political and geographical practicalities, time zone characteristics may change over time. For
example, the start date and end date of daylight saving time may change, or new time zones
may be introduced in newly created countries.

Internally, Event Stream Processor always stores date and time type information as a number
of seconds, milliseconds, or microseconds since midnight January 1, 1970 UTC, depending
on the datatype. If a time zone designator is not used, UTC time is applied.

Daylight Saving Time
Daylight saving time is considered if the time zone uses daylight saving time and if the
specified timestamp is in the time period covered by daylight savings time. The starting and
ending dates for daylight saving time are stored in a C++ library.

If the user specifies a particular time zone, and if that time zone uses daylight saving time,
Event Stream Processor takes these dates into account to adjust the date and time datatype. For
example, since Pacific Standard Time (PST) is in daylight saving time setting, the engine
adjusts the timestamp accordingly:

to_timestamp('2002-06-18 13:52:00.123456 PST','YYYY-MM-DD
HH24:MI:SS.ff TZD')

Transitioning from Standard Time to Daylight Savings Time and Vice-Versa
During the transition to and from daylight saving time, certain times do not exist. For example,
in the US, during the transition from standard time to daylight savings time, the clock changes
from 01:59 to 03:00; therefore 02:00 does not exist. Conversely, during the transition from
daylight saving time to standard time, 01:00 to 01:59 appears twice during one night because
the time changes from 2:00 to 1:00 when daylight saving time ends.

Programmers Reference 239

However, since there may be incoming data input during these undefined times, the engine
must deal with them in some manner. During the transition to daylight savings time, Event
Stream Processor interprets 02:59 PST as 01:59 PST. When transitioning back to standard
time, Event Stream Processor interprets 02:00 PDT as 01:00 PST.

Changes to Time Zone Defaults
If you do not specify a value for the optional time zone parameter in certain date and time
functions, Event Stream Processor uses Coordinated Universal Time (UTC).

Corresponding functions in Sybase CEP defaulted to the server's local time zone when no
parameter was specified. If you are migrating CEP projects that do not have a time zone
defined, they will use UTC when converted to Event Stream Processor. To continue using the
server’s local time zone, explicitly set that time zone in the time zone parameter for the
following functions:

Sybase CEP Functions Event Stream Processor Functions

dayofmonth dayofmonth

dayofweek dayofweek

dayofyear dayofyear

hour hour

maketimestamp makebigdatetime

microsecond microsecond

minute minute

month month

second second

to_string to_string

year year

List of Time Zones
Event Stream Processor supports standard time zones and their abbreviations.

Below is a list of time zones used in the Event Stream Processor from the industry-standard
Olson time zone (also known as TZ) database.

ACT AET AGT

ART AST Africa/Abidjan

APPENDIX B: Date and Time Programming

240 Sybase Event Stream Processor

Africa/Accra Africa/Addis_Ababa Africa/Algiers

Africa/Asmera Africa/Bamako Africa/Bangui

Africa/Banjul Africa/Bissau Africa/Blantyre

Africa/Brazzaville Africa/Bujumbura Africa/Cairo

Africa/Casablanca Africa/Ceuta Africa/Conakry

Africa/Dakar Africa/Dar_es_Salaam Africa/Djibouti

Africa/Douala Africa/El_Aaiun Africa/Freetown

Africa/Gaborone Africa/Harare Africa/Johannesburg

Africa/Kampala Africa/Khartoum Africa/Kigali

Africa/Kinshasa Africa/Lagos Africa/Libreville

Africa/Lome Africa/Luanda Africa/Lubumbashi

Africa/Lusaka Africa/Malabo Africa/Maputo

Africa/Maseru Africa/Mbabane Africa/Mogadishu

Africa/Monrovia Africa/Nairobi Africa/Ndjamena

Africa/Niamey Africa/Nouakchott Africa/Ouagadougou

Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu

Africa/Tripoli Africa/Tunis Africa/Windhoek

America/Adak America/Anchorage America/Anguilla

America/Antigua America/Araguaina America/Argentina/Bue-
nos_Aires

America/Argentina/Cata-
marca

America/Argentina/ComodRiva-
davia

America/Argentina/Cordoba

America/Argentina/Jujuy America/Argentina/La_Rioja America/Argentina/Mendoza

America/Argentina/
Rio_Gallegos

America/Argentina/San_Juan America/Argentina/Tucuman

America/Argentina/Ush-
uaia

America/Aruba America/Asuncion

America/Atka America/Bahia America/Barbados

America/Belem America/Belize America/Boa_Vista

APPENDIX B: Date and Time Programming

Programmers Reference 241

America/Bogota America/Boise America/Buenos_Aires

America/Cambridge_Bay America/Campo_Grande America/Cancun

America/Caracas America/Catamarca America/Cayenne

America/Cayman America/Chicago America/Chihuahua

America/Coral_Harbour America/Cordoba America/Costa_Rica

America/Cuiaba America/Curacao America/Danmarkshavn

America/Dawson America/Dawson_Creek America/Denver

America/Detroit America/Dominica America/Edmonton

America/Eirunepe America/El_Salvador America/Ensenada

America/Fort_Wayne America/Fortaleza America/Glace_Bay

America/Godthab America/Goose_Bay America/Grand_Turk

America/Grenada America/Guadeloupe America/Guatemala

America/Guayaquil America/Guyana America/Halifax

America/Havana America/Hermosillo America/Indiana/Indianapolis

America/Indiana/Knox America/Indiana/Marengo America/Indiana/Petersburg

America/Indiana/Vevay America/Indiana/Vincennes America/Indianapolis

America/Inuvik America/Iqaluit America/Jamaica

America/Jujuy America/Juneau America/Kentucky/Louisville

America/Kentucky/Monti-
cello

America/Knox_IN America/La_Paz

America/Lima America/Los_Angeles America/Louisville

America/Maceio America/Managua America/Manaus

America/Martinique America/Mazatlan America/Mendoza

America/Menominee America/Merida America/Mexico_City

America/Miquelon America/Moncton America/Monterrey

America/Montevideo America/Montreal America/Montserrat

America/Nassau America/New_York America/Nipigon

America/Nome America/Noronha America/North_Dakota/Center

APPENDIX B: Date and Time Programming

242 Sybase Event Stream Processor

America/Panama America/Pangnirtung America/Paramaribo

America/Phoenix America/Port-au-Prince America/Port_of_Spain

America/Porto_Acre America/Porto_Velho America/Puerto_Rico

America/Rainy_River America/Rankin_Inlet America/Recife

America/Regina America/Rio_Branco America/Rosario

America/Santiago America/Santo_Domingo America/Sao_Paulo

America/Scoresbysund America/Shiprock America/St_Johns

America/St_Kitts America/St_Lucia America/St_Thomas

America/St_Vincent America/Swift_Current America/Tegucigalpa

America/Thule America/Thunder_Bay America/Tijuana

America/Toronto America/Tortola America/Vancouver

America/Virgin America/Whitehorse America/Winnipeg

America/Yakutat America/Yellowknife Antarctica/Casey

Antarctica/Davis Antarctica/DumontDUrville Antarctica/Mawson

Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera

Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok

Arctic/Longyearbyen Asia/Aden Asia/Almaty

Asia/Amman Asia/Anadyr Asia/Aqtau

Asia/Aqtobe Asia/Ashgabat Asia/Ashkhabad

Asia/Baghdad Asia/Bahrain Asia/Baku

Asia/Bangkok Asia/Beirut Asia/Bishkek

Asia/Brunei Asia/Calcutta Asia/Choibalsan

Asia/Chongqing Asia/Chungking Asia/Colombo

Asia/Dacca Asia/Damascus Asia/Dhaka

Asia/Dili Asia/Dubai Asia/Dushanbe

Asia/Gaza Asia/Harbin Asia/Hong_Kong

Asia/Hovd Asia/Irkutsk Asia/Istanbul

Asia/Jakarta Asia/Jayapura Asia/Jerusalem

APPENDIX B: Date and Time Programming

Programmers Reference 243

Asia/Kabul Asia/Kamchatka Asia/Karachi

Asia/Kashgar Asia/Katmandu Asia/Krasnoyarsk

Asia/Kuala_Lumpur Asia/Kuching Asia/Kuwait

Asia/Macao Asia/Macau Asia/Magadan

Asia/Makassar Asia/Manila Asia/Muscat

Asia/Nicosia Asia/Novosibirsk Asia/Omsk

Asia/Oral Asia/Phnom_Penh Asia/Pontianak

Asia/Pyongyang Asia/Qatar Asia/Qyzylorda

Asia/Rangoon Asia/Riyadh Asia/Riyadh87

Asia/Riyadh88 Asia/Riyadh89 Asia/Saigon

Asia/Sakhalin Asia/Samarkand Asia/Seoul

Asia/Shanghai Asia/Singapore Asia/Taipei

Asia/Tashkent Asia/Tbilisi Asia/Tehran

Asia/Tel_Aviv Asia/Thimbu Asia/Thimphu

Asia/Tokyo Asia/Ujung_Pandang Asia/Ulaanbaatar

Asia/Ulan_Bator Asia/Urumqi Asia/Vientiane

Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg

Asia/Yerevan Atlantic/Azores Atlantic/Bermuda

Atlantic/Canary Atlantic/Cape_Verde Atlantic/Faeroe

Atlantic/Jan_Mayen Atlantic/Madeira Atlantic/Reykjavik

Atlantic/South_Georgia Atlantic/St_Helena Atlantic/Stanley

Australia/ACT Australia/Adelaide Australia/Brisbane

Australia/Broken_Hill Australia/Canberra Australia/Currie

Australia/Darwin Australia/Hobart Australia/LHI

Australia/Lindeman Australia/Lord_Howe Australia/Melbourne

Australia/NSW Australia/North Australia/Perth

Australia/Queensland Australia/South Australia/Sydney

Australia/Tasmania Australia/Victoria Australia/West

APPENDIX B: Date and Time Programming

244 Sybase Event Stream Processor

Australia/Yancowinna BET BST

Brazil/Acre Brazil/DeNoronha Brazil/East

Brazil/West CAT CET

CNT CST CST6CDT

CTT Canada/Atlantic Canada/Central

Canada/East-Saskatche-
wan

Canada/Eastern Canada/Mountain

Canada/Newfoundland Canada/Pacific Canada/Saskatchewan

Canada/Yukon Chile/Continental Chile/EasterIsland

Cuba EAT ECT

EET EST EST5EDT

Egypt Eire Etc/GMT

Etc/GMT+0 Etc/GMT+1 Etc/GMT+10

Etc/GMT+11 Etc/GMT+12 Etc/GMT+2

Etc/GMT+3 Etc/GMT+4 Etc/GMT+5

Etc/GMT+6 Etc/GMT+7 Etc/GMT+8

Etc/GMT+0 Etc/GMT-0 Etc/GMT-1

Etc/GMT-10 Etc/GMT-11 Etc/GMT-12

Etc/GMT-13 Etc/GMT-14 Etc/GMT-2

Etc/GMT-3 Etc/GMT-4 Etc/GMT-5

Etc/GMT-6 Etc/GMT-7 Etc/GMT-8

Etc/GMT-9 Etc/GMT0 Etc/Greenwich

Etc/UCT Etc/UTC Etc/Universal

Etc/Zulu Europe/Amsterdam Europe/Andorra

Europe/Athens Europe/Belfast Europe/Belgrade

Europe/Berlin Europe/Bratislava Europe/Brussels

Europe/Bucharest Europe/Budapest Europe/Chisinau

Europe/Copenhagen Europe/Dublin Europe/Gibraltar

APPENDIX B: Date and Time Programming

Programmers Reference 245

Europe/Helsinki Europe/Istanbul Europe/Kaliningrad

Europe/Kiev Europe/Lisbon Europe/Ljubljana

Europe/London Europe/Luxembourg Europe/Madrid

Europe/Malta Europe/Mariehamn Europe/Minsk

Europe/Monaco Europe/Moscow Europe/Nicosia

Europe/Oslo Europe/Paris Europe/Prague

Europe/Riga Europe/Rome Europe/Samara

Europe/San_Marino Europe/Sarajevo Europe/Simferopol

Europe/Skopje Europe/Sofia Europe/Stockholm

Europe/Tallinn Europe/Tirane Europe/Tiraspol

Europe/Uzhgorod Europe/Vaduz Europe/Vatican

Europe/Vienna Europe/Vilnius Europe/Warsaw

Europe/Zagreb Europe/Zaporozhye Europe/Zurich

Factory GB GB-Eire

GMT GMT+0 GMT-0

GMT0 Greenwich HST

Hongkong IET IST

Iceland Indian/Antananarivo Indian/Chagos

Indian/Christmas Indian/Cocos Indian/Comoro

Indian/Kerguelen Indian/Mahe Indian/Maldives

Indian/Mauritius Indian/Mayotte Indian/Reunion

Iran Israel JST

Jamaica Japan Kwajalein

Libya MET MIT

MST MST7MDT Mexico/BajaNorte

Mexico/BajaSur Mexico/General Mideast/Riyadh87

Mideast/Riyadh88 Mideast/Riyadh89 NET

NST NZ NZ-CHAT

APPENDIX B: Date and Time Programming

246 Sybase Event Stream Processor

Navajo PLT PNT

PRC PRT PST

PST8PDT Pacific/Apia Pacific/Auckland

Pacific/Chatham Pacific/Easter Pacific/Efate

Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji

Pacific/Funafuti Pacific/Galapagos Pacific/Gambier

Pacific/Guadalcanal Pacific/Guam Pacific/Honolulu

Pacific/Johnston Pacific/Kiritimati Pacific/Kosrae

Pacific/Kwajalein Pacific/Majuro Pacific/Marquesas

Pacific/Midway Pacific/Nauru Pacific/Niue

Pacific/Norfolk Pacific/Noumea Pacific/Pago_Pago

Pacific/Palau Pacific/Pitcairn Pacific/Ponape

Pacific/Port_Moresby Pacific/Rarotonga Pacific/Saipan

Pacific/Samoa Pacific/Tahiti Pacific/Tarawa

Pacific/Tongatapu Pacific/Truk Pacific/Wake

Pacific/Wallis Pacific/Yap Poland

Portugal ROC ROK

SST Singapore SystemV/AST4

SystemV/AST4ADT SystemV/CST6 SystemV/CST6CDT

SystemV/EST5 SystemV/EST5EDT SystemV/HST10

SystemV/MST7 SystemV/MST7MDT SystemV/PST8

SystemV/PST8PDT SystemV/YST9 SystemV/YST9YDT

Turkey UCT US/Alaska

US/Aleutian US/Arizona US/Central

US/East-Indiana US/Eastern US/Hawaii

US/Indiana-Starke US/Michigan US/Mountain

US/Pacific US/Pacific-New US/Samoa

UTC Universal VST

APPENDIX B: Date and Time Programming

Programmers Reference 247

W-SU WET Zulu

Date/Time Format Codes
A list of valid components that can be used to specify the format of a date/time type: date,
timestamp, or bigdatetime.

Date/time type formats must be specified with either the Event Stream Processor formatting
codes, or a subset of timestamp conversion codes provided by the C++ strftime() function. The
are a number of different valid codes, however, A valid date/time type specification can
contain no more than one occurrence of a code specifying a particular time unit (for example, a
code specifying the year).

Note: All designations of year, month, day, hour, minute, or second can also read a fewer
number of digits than is specified by the code. For example, DD reads both two-digit and
one-digit day entries.

Event Stream Processor Time Formatting Codes

Column Code Description Input Output

MM Month (01-12; JAN = 01). Y Y

YYYY Four-digit year. Y Y

YYY Last three digits of year. Y Y

YY Last two digits of year. Y Y

Y Last digit of year. Y Y

Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1). N Y

MON Abbreviated name of month (JAN, FEB, ..., DEC). Y Y

MONTH Name of month, padded with blanks to nine char-
acters (JANUARY, FEBRUARY, ..., DECEMBER).

Y Y

RM Roman numeral month (1-XII; JAN = I). Y Y

WW Week of year (1-53), where week 1 starts on the first
day of the year and continues to the seventh day of
the year.

N Y

W Week of month (1-5), where week 1 starts on the
first day of the month and continues to the seventh
day of the month.

N Y

D Day of week (1-7; SUNDAY = 1). N Y

APPENDIX B: Date and Time Programming

248 Sybase Event Stream Processor

Column Code Description Input Output

DD Day of month (1-31). Y Y

DDD Day of year (1-366). N Y

DAY Name of day (SUNDAY, MONDAY, ..., SATUR-
DAY).

Y Y

DY Abbreviated name of day (SUN, MON, ..., SAT). Y Y

HH Hour of day (1-12). Y Y

HH12 Hour of day (1-12). Y Y

HH24 Hour of day (0-23). Y Y

AM Meridian indicator (AM/PM). Y Y

PM Meridian indicator (AM/PM). Y Y

MI Minute (0-59). Y Y

SS Second (0-59). Y Y

SSSSS Seconds past midnight (0-86399). Y Y

SE Seconds since epoch (January 1, 1970 UTC). This
format can only be used by itself, with the FF for-
mat, and/or with the time zone codes TZD, TZR,
TZH and TZM.

Y Y

MIC Microseconds since epoch (January 1, 1970 UTC). Y Y

FF Fractions of seconds (0-999999). When used in
output, FF produces six digits for microseconds.
FFFF produces twelve digits, repeating the six dig-
its for microseconds twice. (In most circumstances,
this is not the desired effect.) When used in input, FF
collects all digits until a non-digit is detected, and
then uses only the first six, discarding the rest.

Y Y

FF[1-9] Fractions of seconds. For output only, produces the
specified number of digits, rounding or padding
with trailing zeros as needed.

N Y

APPENDIX B: Date and Time Programming

Programmers Reference 249

Column Code Description Input Output

MS Milliseconds since epoch (January 1, 1970 UTC).
When used for input, this format code can only be
combined with FF (microseconds) and the time
zone codes TZD, TZR, TZH, TZM. All other format
code combinations generate errors. Furthermore,
when MS is used with FF, the MS code must pre-
cede the FF code: for example, MS.FF.

Y Y

FM Fill mode toggle: suppress zeros and blanks or not
(default: not).

Y Y

FX Exact mode toggle: match case and punctuations
exactly (default: not).

Y Y

RR Lets you store 20th century dates in the 21st century
using only two digits.

Y N

RRRR Round year. Accepts either four-digit or two-digit
input. If two-digit, provides the same return as RR.

Y N

TZD Abbreviated time zone designator such as PST. Y Y

TZH Time zone hour displacement. For example, -5 in-
dicates a time zone five hours earlier than GMT.

N Y

TZM Time zone hour and minute displacement. For ex-
ample, -5:30 indicates a time zone that is five hours
and 30 minutes earlier than GMT.

N Y

TZR Time zone region name. For example, US/Pacific
for PST.

N Y

Strftime() Timestamp Conversion Codes
Instead of using Event Stream Processor time formatting codes, output timestamp formats can
be specified using a subset of the C++ strftime() function codes. The following rules apply:

• Any timestamp format specification that includes a percent sign (%) is considered a
strftime() code.

• Strings can only include one type of formatting codes: the Event Stream Processor
formatting codes, or the strftime() codes.

• Some strftime() codes are valid only on Microsoft Windows or only on UNIX-like
operating systems. Different implementations of strftime() also include minor differences
in code interpretation. To avoid errors, ensure that both the ESP Server and the ESP Studio
are on the same platform, and are using compatible strftime() implementations. It is also
essential to confirm that the provided codes meet the requirements for the platform.

APPENDIX B: Date and Time Programming

250 Sybase Event Stream Processor

• All time zones for formats specified with strftime() are assumed to be the local time zone.
• strftime() codes cannot be used to specify date/time type input, only date/time type output.

The Event Stream Processor supports the following strftime() codes:

Strftime()
Code

Description

%a Abbreviated weekday name; example: "Mon".

%A Full weekday name: for example "Monday".

%b Abbreviated month name: for example: "Feb".

%B Full month name: for example "February".

%c Full date and time string: the output format for this code differs, depending on
whether Microsoft Windows or a UNIX-like operating system is being used.
Microsoft Windows output example: 08/26/08 20:00:00 UNIX-like operating
system output example: Tue Aug 26 20:00:00 2008

%d Day of the month, represented as a two-digit decimal integer with a value
between 01 and 31.

%H Hour, represented as a two-digit decimal integer with a value between 00 and
23.

%I Hour, represented as a two-digit decimal integer with a value between 01 and
12.

%j Day of the year, represented as a three-digit decimal integer with a value be-
tween 001 and 366.

%m Month, represented as a two-digit decimal integer with a value between 01 and
12.

%M Minute, represented as a two-digit decimal integer with a value between 00 and
59.

%p Locale's equivalent of AM or PM.

%S Second, represented as a two-digit decimal integer with a value between 00 and
61.

%U Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Sunday considered the first day of the week.

%w Weekday number, represented as a one-digit decimal integer with a value be-
tween 0 and 6, with Sunday represented as 0.

APPENDIX B: Date and Time Programming

Programmers Reference 251

Strftime()
Code

Description

%W Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Monday considered the first day of the week.

%x Full date string (no time): The output format for this code differs, depending on
whether you are using Microsoft Windows or a UNIX-like operating system.
Microsoft Windows output example: 08/26/08 UNIX-like operating system
output example: Tue Aug 26 2008

%X Full time string (no date).

%y Year, without the century, represented as a two-digit decimal number with a
value between 00 and 99.

%Y Year, with the century, represented as a four-digit decimal number.

%% Replaced by %.

Calendar Files
A text file detailing the holidays and weekends in a given time period.

Syntax
weekendStart <integer>
weekendEnd <integer>
holiday yyyy-mm-dd
holiday yyyy-mm-dd
...

Components

weekendStart An integer that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=5, and Sun-
day=6.

weekendEnd An integer that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=5, and Sun-
day=6.

holiday A day of the year, in the form yyyy-mm-dd. A
calendar file can have unlimited holidays.

APPENDIX B: Date and Time Programming

252 Sybase Event Stream Processor

Usage
A calendar file is a text file that describes the start and end date of a weekend, and the holidays
within the year. The lines beginning with '#' characters are ignored, and can be used to provide
user clarification or comments.

Calendar files are loaded and cached on demand by the Event Stream Processor. If changes
occur in any of the calendar files, a command must be sent to refresh the cached calendar data,
the refresh_calendars command.

Example
The following is an example of a legal calendar file:
Sybase calendar data for US 1983
weekendStart 5
weekendEnd 6
holiday 1983-02-21
holiday 1983-04-01
holiday 1983-05-30
holiday 1983-07-04
holiday 1983-09-05
holiday 1983-11-24
holiday 1983-12-26

APPENDIX B: Date and Time Programming

Programmers Reference 253

APPENDIX B: Date and Time Programming

254 Sybase Event Stream Processor

APPENDIX C Statement on Support for
Multibyte Characters

Sybase Event Stream Processor supports UTF-8 encoded data within data streams, but with
some limitations.

1. UTF-8 encoded data is supported in both input streams and derived streams (including
output streams). Thus, events streamed or loaded into Source Streams may contain UTF-8
encoded data, and this data is correctly carried through the project. Testing has shown that
the server and studio are able to receive, store, display and output UTF-8 encoded data.

2. String functions support non-ASCII data when the utf8 project deployment option in the
project configuration (CCR) file is set to true. The only operators supported for non-ASCII
UTF-8 strings are =, <, >. The use of non-ASCII string data in expressions in any other way
(including filter expressions) is not supported. For information on the project
configuration file, see the Sybase Event Stream Processor Administrators Guide.

3. Constants and literals cannot be assigned UTF-8 values outside the ASCII range.
4. Adapters have not been tested with (non-ASCII) UTF-8 data.
5. Non-ASCII characters are not supported in metadata such as stream names, column

names, and so on.
6. The Studio interface, error messages, logs, and so on are only supported in English.

Programmers Reference 255

APPENDIX C: Statement on Support for Multibyte Characters

256 Sybase Event Stream Processor

Index
A
acos() 90
ADAPTER START statement 31
adapters 17
aggregate functions 159
aggregates 159

any() 160
avg() 160
corr() 161
count() 163
count(distinct) 163
covar_pop() 162
covar_samp() 162
exp_weighted_avg() 164
first() 165
last() 165
lwm_avg() 166
max() 167
meandeviation() 167
median() 168
min() 169
nth() 169
recent() 170
regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173
regr_sxx() 174
regr_sxy() 174
regr_syy() 175
stddev_pop() 176
stddev_samp() 176
sum() 177
valueinserted() 178
var_pop() 178
var_samp() 179
vwap() 179
weighted_avg() 180
xmlagg() 181

AGING clause 59
any() 160
arccosine

acos() 90

arcsine
asin() 90

arctangent
atan() 91
atan2() 91

AS clause 60
ascii() 122
asin() 90
atan() 91
atan2() 91
ATTACH ADAPTER statement 32
AUTOGENERATE Clause 61
avg() 160
avgof() 92

B
base64_binary() 122
base64_string() 123
basic project components

queries 15
bigdatetime

format codes 248
binary functions

base64_binary() 122
base64_string() 123
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98
concat() 183
extract() 125
fromnetbinary() 126
hex_binary() 126
hex_string() 127
length() 104

Index

Programmers Reference 257

tonetbinary() 139
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitwise functions

bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98

bitxor() 98
block statements 215
business() 142
businessday() 143

C
cacheSize() 181
calendar 252
calendar functions 252

business() 142
businessday() 143
weekendday() 158

CASE clause 63
case-insensitive 29
case-sensitive 29
cast() 123
cbrt() 99
CCL 203

language components 19
order of elements 17

overview 2
statement 201
statements 201

CCL functions 89
CCL keywords 237
CCL statements

reference 31
ceil() 99
char() 124
clause

CASE 63
clauses

AGING 59
AS 60
FROM 64
FROM (ANSI syntax) 65
FROM (comma-separated syntax) 64
GROUP BY 66
GROUP FILTER 67
GROUP ORDER BY 68
HAVING 69
IN 70, 76, 77, 81
KEEP 71
MATCHING 73
ON (join syntax) 73, 75
OUT 70, 76, 77, 81
PARAMETERS 70, 76, 77, 81
PRIMARY KEY 78
SCHEMA 79
SELECT 80
STORE 81
STORES 70, 76, 77, 81
WHERE 84

coalesce() 183
column access functions

get*columnbyindex() 186
get*columnbyname() 187
getbigdatetimecolumnbyindex() 186
getbigdatetimecolumnbyname() 187
getbinarycolumnbyindex() 186
getbinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187

Index

258 Sybase Event Stream Processor

getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187

column/window access functions
cacheSize() 181
deleteCache() 184
get*columnbyindex() 186
get*columnbyname() 187
getbigdatetimecolumnbyindex() 186
getbigdatetimecolumnbyname() 187
getbinarycolumnbyindex() 186
getbinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getCache() 188
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187
getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getrowid() 192
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187

columns
BIGROWTIME 13
ROWID 13
ROWTIME 13

compare() 100
concat() 183
conditional statements 215
control statements 216
conversion functions

cast() 123

date() 143
dateint() 125
datename() 147
int32() 112
intdate() 127
real() 116
string() 119
timeToMsec() 129
timeTosec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
totimezone() 139
unbigdatetime() 157
undate() 157
xmlparse() 141
xmlserialize() 142

correlation coefficient
corr() 161

cos() 100
cosd() 101
cosh() 101
cosine

cos() 100
cosd() 101
cosh() 101

count-based retention 5
count() 163
count(distinct) 163
covar_pop() 162
covar_samp() 162
create 201
CREATE DELTA STREAM statement 34
CREATE FLEX statement 37
CREATE LIBRARY statement 40
CREATE LOG STORE statement 41
CREATE MEMORY STORE statement 43
CREATE MODULE statement 44
CREATE SCHEMA statement 14, 45

Index

Programmers Reference 259

CREATE SPLITTER statement 46
CREATE STREAM statement 48
CREATE WINDOW statement 50

D
data aging

AGING clause 59
data structures 221

dictionaries 229
event caches 232
record events 221
stream iterators 231
vectors 227
XML values 224

data-flow programming
example 1
introduction 1

datatypes
supported datatypes in Event Stream Processor

19
date

format codes 248
date and time functions

totimezone() 156
date() 143
date/time format codes 248
date/time functions

business() 142
businessday() 143
date() 143
dateceiling() 144
datefloor() 145
dateint() 147
datename() 147
datepart() 147
dateround() 148
dayofmonth() 150
dayofweek() 150
dayofyear() 151
hour() 151
intdate() 127
makebigdatetime() 152
microsecond() 153
minute() 153
month() 154
msecToTime() 128
now() 154
second() 155
secToTime() 129

sysbigdatetime() 155
sysdate() 156
systimestamp() 156
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
trunc() 121
unbigdatetime() 157
undate() 157
usecToTime() 140
weekendday() 158
year() 158

dateceiling() 144
datefloor() 145
dateint() 125, 147
datename() 147
datepart() 147
dateround() 148
daylight saving time (DST) 239
dayofmonth() 150
dayofweek() 150
dayofyear() 151
declaration

functions 52
parameters 52
typedefs 52
variables 52

declare blocks
DECLARE statement 52

DECLARE statement 52
declaring types 207
deconstruct 203
deleteCache() 184
delta streams 10, 11, 34
dependency loops 14
dictionaries

declaring 229
operations 229

distance() 101
distancesquared() 102
DST 239

E
EMF 201
error stream 36
event cache functions

cacheSize() 181
deleteCache() 184
getCache() 188

Index

260 Sybase Event Stream Processor

getrowid() 192
event caches 232

changing buckets 233
inserting manually 233
keeping records 234
managing bucket size 234
operating on 235
ordering an event bucket 234

examples
schema discovery 45
schema inheritance 45

exp_weighted_avg() 164
exp() 103
exponential functions

exp() 103
power() 108

exponential moving average
exp_weighted_avg() 164

expression statements 216
expressions

compound expressions 27
simple expressions 27

extract() 125

F
file 201
files 203

calendar 252
filters

WHERE clause 84
first_value()

See first()
first() 165
firstnonnull() 185
flex operators

CREATE FLEX statement 37
Flex operators

using SPLASH 209
flex stream 37
floor() 103
for loops 216
format codes

bigdatetime 248
date 248
date/time 248
timestamp 248

FROM clause 64
ANSI syntax 65
comma-separated syntax 64

fromnetbinary() 126
functions

acos() 90
aggregate functions 159
any() 160
ascii() 122
asin() 90
atan() 91
atan2() 91
avg() 160
avgof() 92
base64_binary() 122
base64_string() 123
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98
built-in functions 89
business() 142
businessday() 143
C/C++ functions 193–195
cacheSize() 181
cast() 123
cbrt() 99
ceil() 99
char() 124
coalesce() 183
compare() 100
concat() 183
corr() 161
cos() 100
cosd() 101
cosh() 101
count() 163
count(distinct) 163
covar_pop() 162
covar_samp() 162
date() 143
dateceiling() 144

Index

Programmers Reference 261

datefloor() 145
dateint() 125, 147
datename() 147
datepart() 147
dateround() 148
dayofmonth() 150
dayofweek() 150
dayofyear() 151
deleteCache() 184
distance() 101
distancesquared() 102
examples 208
exp_weighted_avg() 164
exp() 103
external functions 89, 193–195, 198
extract() 125
first() 165
firstnonnull() 185
floor() 103
fromnetbinary() 126
get*columnbyindex() 186
get*columnbyname() 187
getbigdatetimecolumnbyindex() 186
getbigdatetimecolumnbyname() 187
getbinarycolumnbyindex() 186
getbinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getCache() 188
getData 189
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187
getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getrowid() 192
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187
hex_binary() 126
hex_string() 127

hour() 151
int32() 112
intdate() 127
isnull() 104
Java functions 193, 198
last() 165
left() 113
length() 104
like() 113
ln() 105
log10() 105
log2() 105
logx() 106
lower() 114
ltrim() 114
lwm_avg() 166
makebigdatetime() 152
max() 167
maxof() 106
meandeviation() 167
median() 168
microsecond() 153
min() 169
minof() 107
minute() 153
month() 154
msecToTime() 128
nextval() 107
now() 154
nth() 169
other functions 181
patindex() 115
pi() 108
power() 108
random() 108
rank() 192
real() 116
recent() 170
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118
regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173
regr_sxx() 174
regr_sxy() 174

Index

262 Sybase Event Stream Processor

regr_syy() 175
replace() 118
right() 119
round() 109
rtrim() 119
scalar functions 89
second() 155
secToTime() 129
sequence() 193
sign() 109
sin() 110
sind() 110
sinh() 110
SPLASH functions 89, 199
sqrt() 111
stddev_pop() 176
stddev_samp() 176
string() 119
substr() 120
sum() 177
sysbigdatetime() 155
sysdate() 156
systimestamp() 156
tan() 111, 112
tanh() 112
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
tonetbinary() 139
totimezone() 139, 156
trim() 120
trunc() 121
unbigdatetime() 157
undate() 157
upper() 121
usecToTime() 140
user-defined 199

user-defined functions 89, 193–195, 198
valueinserted() 178
var_pop() 178
var_samp() 179
vwap() 179
weekendday() 158
weighted_avg() 180
xmlagg() 181
xmlconcat() 140
xmlelement() 141
xmlparse() 141
xmlserialize() 142
year() 158

G

get*columnbyindex() 186
get*columnbyname() 187
getbigdatetimecolumnbyindex() 186
getbigdatetimecolumnbyname() 187
getbinarycolumnbyindex() 186
getbinarycolumnbyname() 187
getbooleancolumnbyindex() 186
getbooleancolumnbyname() 187
getCache() 188
getData function 189
getdatecolumnbyindex() 186
getdatecolumnbyname() 187
getfloatcolumnbyindex() 186
getfloatcolumnbyname() 187
getintegercolumnbyindex() 186
getintegercolumnbyname() 187
getintervalcolumnbyindex() 186
getintervalcolumnbyname() 187
getlongcolumnbyindex() 186
getlongcolumnbyname() 187
getmoneycolumnbyindex() 190
getmoneycolumnbyname() 191
getrowid() 192
getstringcolumnbyindex() 186
getstringcolumnbyname() 187
gettimestampcolumnbyindex() 186
gettimestampcolumnbyname() 187
GROUP BY clause 66

rank() 192
GROUP FILTER clause 67

rank() 192
group filtering function

rank() 192

Index

Programmers Reference 263

GROUP ORDER BY clause 68
rank() 192

GUI authoring
See visual authoring

H
HAVING clause 69

rank() 192
hex_binary() 126
hex_string() 127
hour() 151
hyperbolic cosine

cosh() 101
hyperbolic sine

sinh() 110
hyperbolic tangent

tanh() 112

I
implicit

columns 13
windows 9

IMPORT statement 54
importing

CCL files 54
function definitions 54
IMPORT statement 54
parameters 54
schema definitions 54
variables 54

IN clause 70
input 12
int32() 112
intdate() 127
international characters 255
intervals

values 22
isnull() 104

K
KEEP clause 71

retention policies 5
keywords 237

L
last_value()

See last()
last() 165, 166
left() 113
length() 104
like() 113
linear regression functions

regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173
regr_sxx() 174
regr_sxy() 174
regr_syy 175

linearly weighted moving average
lwm_avg() 166

ln() 105
LOAD MODULE statement 55, 70, 76, 77, 81
local 12
log store

CREATE LOG STORE statement 41
CREATE MEMORY STORE statement 43
log store loops 14

log stores
CREATE LOG STORE statement 41

log10() 105
log2() 105
logarithmic functions

ln() 105
log10() 105
log2() 105
logx() 106

logx() 106
lower() 114
ltrim() 114
lwm_avg() 166

M
makebigdatetime() 152
max() 167
maxof() 106
mean dervivation

meanderivation() 167
meandeviation() 167
median() 168
memory store 14

CREATE MEMORY STORE statement 43
microsecond() 153

Index

264 Sybase Event Stream Processor

min() 169
minof() 107
minute() 153
modularity 55, 70, 76, 77, 81

CREATE MODULE statement 44
module

create 44
load 55

month() 154
msecToTime() 128

N

named schema 14
naming 29
nextval() 107
now() 154
nth() 169

O

ON clause
join syntax 73, 75

operators
arithmetic operators 23
comparison operators 23
LIKE operators 23
logical operators 23
string operators 23
UNION operator 83

other functions 181
OUT clause 76
output 12
output expiry

AGING clause 59
output statements 217
overview 2

P

PARAMETERS clause 77
patindex() 115
performance

count-based retention 5
SLACK value 5

persistence
CREATE LOG STORE statement 41
CREATE MEMORY STORE statement 43
log store 14

pi() 108
population-based variance function

var_pop() 178
POSIX regular expression functions

regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118

power() 108
PRIMARY KEY clause 78
print 203
PRINT statement 218
programmatically 201

Q

queries
basic syntax 15
FROM clause 64
GROUP BY clause 66
GROUP FILTER clause 67
GROUP ORDER BY clause 68
HAVING clause 69
KEEP clause 71
MATCHING clause 73
ON clause 75
SELECT 80
UNION operator 83
WHERE clause 84

R

random() 108
rank() 67, 192
read 203
reading 201
real() 116
recent() 170
record events 221
recordDataToRecord 128
recordDataToString 128
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118
regr_avgx() 170
regr_avgy() 171
regr_count() 171
regr_intercept() 172
regr_r2() 172
regr_slope() 173

Index

Programmers Reference 265

regr_sxx() 174
regr_sxy() 174
regr_syy() 175
regular expression functions

regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118

replace() 118
retention 71

count-based 5
semantics 5
time-based 5

retention policies
description 5

retention semantics 5
right() 119
round() 109
rounding functions

ceil() 99
floor() 103
round() 109

rtrim() 119

S
sample-based variance function

var_samp() 179
scalar

acos() 90
ascii() 122
asin() 90
atan() 91
atan2() 91
avgof() 92
base64_binary() 122
base64_string() 123
bitand() 92
bitclear() 93
bitflag() 93
bitflaglong() 94
bitmask() 94
bitmasklong() 95
bitnot() 95
bitor() 95
bitset() 96
bitshiftleft() 96
bitshiftright() 97
bittest() 97
bittoggle() 98
bitxor() 98

business() 142
businessday() 143
cast() 123
cbrt() 99
ceil() 99
char() 124
compare() 100
concat() 183
cos() 100
cosd() 101
cosh() 101
date() 143
dateceiling() 144
datefloor() 145
dateint() 125, 147
datename() 147
datepart() 147
dateround() 148
dayofmonth() 150
dayofweek() 150
dayofyear() 151
distance() 101
distancesquared() 102
exp() 103
extract() 125
floor() 103
fromnetbinary() 126
hex_binary() 126
hex_string() 127
hour() 151
int32() 112
intdate() 127
isnull() 104
left() 113
length() 104
like() 113
ln() 105
log10() 105
log2() 105
logx() 106
lower() 114
ltrim() 114
makebigdatetime() 152
maxof() 106
microsecond() 153
minof() 107
minute() 153
month() 154
msecToTime() 128

Index

266 Sybase Event Stream Processor

nextval() 107
now() 154
patindex() 115
pi() 108
power() 108
random() 108
real() 116
regexp_firstsearch() 116
regexp_replace() 117
regexp_search() 118
replace() 118
right() 119
round() 109
second() 155
secToTime() 129
sign() 109
sin() 110
sind() 110
sinh() 110
sqrt() 111
string() 119
substr() 120
sysbigdatetime() 155
sysdate() 156
systimestamp() 156
tan() 111, 112
tanh() 112
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
tonetbinary() 139
totimezone() 139, 156
trim() 120
trunc() 121
unbigdatetime() 157
undate() 157
usecToTime() 140

weekendday() 158
xmlconcat() 140
xmlelement() 141
xmlparse() 141
xmlserialize() 142
year() 158

scalar functions 89
rtrim() 119
upper() 121

schema 14
SCHEMA clause 14, 79
second() 155
secToTime() 129
SELECT clause 80
sequence() 193
set functions

avgof() 92
coalesce() 183
firstnonnull() 185
maxof() 106
minof() 107

sign() 109
sin() 110
sind() 110
sine

sin() 110
sind() 110

sinh() 110
SLACK

count-based retention 5
performance 5

SPLASH
overview 3

SPLASH functions
declaring 199

SPLASH programming basics 207
sqrt() 111
standard deviation functions

stddev_pop() 176
stddev_samp() 176

stateful elements 5
stateless elements

delta stream 34
statements 215

ADAPTER START 31
ATTACH ADAPTER 32
blocks 215
conditional 215
control 216

Index

Programmers Reference 267

CREATE DELTA STREAM 34
CREATE FLEX 37
CREATE LIBRARY statement 40
CREATE LOG STORE 14, 41
CREATE MEMORY STORE 14, 43
CREATE MODULE 44
CREATE SCHEMA 45
CREATE SPLITTER statement 46
CREATE STREAM 48
CREATE WINDOW 50
DECLARE 52
expressions 216
for loops 216
IMPORT 54
LOAD MODULE 44, 55
output 217
PRINT 218
switch 218
while 219

stddev_samp() 175, 176
stddev()

See stddev_samp()
stddeviation()

See stddev_samp()
STORE clause 81
stores

log store 14
memory store 14

STORES clause 81
streams 11, 12

error 36
input 12, 48
local 12, 48
output 12, 48
schema 14
structure 14
using iterators 231

string functions
ascii() 122
char() 124
int32() 112
left() 113
like() 113
lower() 114
ltrim() 114
patindex() 115
real() 116
regexp_firstsearch() 116
regexp_replace() 117

regexp_search() 118
replace() 118
right() 119
rtrim() 119
substr() 120
to_string() 136
trim() 120
unbigdatetime() 157
undate() 157
upper() 121

string() 119
Studio

overview 3
substr() 120
sum() 177
support

for multibyte characters 255
switch statements 218
sysbigdatetime() 155
sysdate() 156
systimestamp() 156

T
tan() 111, 112
tangent

tan() 111, 112
tanh() 112
text authoring

overview 3
time zones 239, 240
time-based retention 5
timestamp

format codes 248
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
tonetbinary() 139

Index

268 Sybase Event Stream Processor

totimezone() 139, 156
trigonometric functions

acos() 90
asin() 90
atan() 91
atan2() 91
cos() 100
cosd() 101
cosh() 101
sin() 110
sind() 110
sinh() 110
tan() 111, 112
tanh() 112

trim() 120
trunc() 121
type transformation

int32() 112
type transformation functions

cast() 123
date() 143
dateint() 125, 147
datename() 147
intdate() 127
real() 116
timeToMsec() 129
timeToSec() 130
timeToUsec() 130
to_bigdatetime() 131
to_binary() 132
to_boolean() 132
to_date() 133
to_float() 133
to_integer() 134
to_interval() 134
to_long() 135
to_money() 135
to_string() 136
to_timestamp() 138
to_xml() 138
unbigdatetime() 157
undate() 157
xmlparse() 141
xmlserialize() 142

types
declaring 207

U
UFF-8 encoding 255

unbigdatetime() 157
undate() 157
UNION operator 83
unions 83
unnamed windows 9
upper() 121
usecToTime() 140

V

valueinserted() 178
var_pop() 178
var_samp() 179
variables

declaring 207
variance functions

var_pop() 178
var_samp() 179

vectors
declaring 227

visual authoring
overview 3

vwap() 179

W

weekendday() 158
weighted average functions

exp_weighted_avg() 164
lwm_avg() 166
vwap() 179
weighted_avg() 180

weighted moving average
weighted_avg() 180

weighted_avg() 180
WHERE clause 84
while statements 219
window

input 50
local 50
named 50
output 50

window access functions
cacheSize() 181
deleteCache() 184
getCache() 188
getrowid() 192

windows 11, 12
implicit 9

Index

Programmers Reference 269

input 8, 12
local 8, 12
named 5, 8
output 8, 12
schema 14
structure 14
unnamed 5, 9

writing 201

X
XML functions

xmlagg() 181
xmlconcat() 140
xmlelement() 141

xmlparse() 141
xmlserialize() 142

XML values 224
xmlagg() 181
xmlconcat() 140
xmlelement() 141
xmlparse() 141
xmlserialize() 142
XTEXT 201

Y

year() 158

Index

270 Sybase Event Stream Processor

	Programmers Reference
	Contents
	CHAPTER 1: Introduction
	Data-Flow Programming
	Continuous Computation Language
	SPLASH
	Authoring Methods

	CHAPTER 2: CCL Project Basics
	Windows
	Retention
	Named Windows
	Unnamed Windows

	Delta Streams
	Comparing Streams, Windows, and Delta Streams
	Input/Output/Local
	Implicit Columns
	Schemas
	Stores
	CCL Continuous Queries
	Adapters
	Order of Elements

	CHAPTER 3: CCL Language Components
	Datatypes
	Intervals

	Operators
	Expressions
	CCL Comments
	Case-Sensitivity

	CHAPTER 4: CCL Statements
	ADAPTER START Statement
	ATTACH ADAPTER Statement
	CREATE DELTA STREAM Statement
	CREATE ERROR STREAM Statement
	CREATE FLEX Statement
	CREATE LIBRARY Statement
	CREATE LOG STORE Statement
	CREATE MEMORY STORE Statement
	CREATE MODULE Statement
	CREATE SCHEMA Statement
	CREATE SPLITTER Statement
	CREATE STREAM Statement
	CREATE WINDOW Statement
	DECLARE Statement
	IMPORT Statement
	LOAD MODULE Statement

	CHAPTER 5: CCL Clauses
	AGING Clause
	AS Clause
	AUTOGENERATE Clause
	CASE Clause
	FROM Clause
	FROM Clause: Comma-Separated Syntax
	FROM Clause: ANSI Syntax

	GROUP BY Clause
	GROUP FILTER Clause
	GROUP ORDER BY Clause
	HAVING Clause
	IN Clause
	KEEP Clause
	MATCHING Clause
	ON Clause: Join Syntax
	OUT Clause
	PARAMETERS Clause
	PRIMARY KEY Clause
	SCHEMA Clause
	SELECT Clause
	STORE Clause
	STORES Clause
	UNION Operator
	WHERE Clause

	CHAPTER 6: CCL Functions
	Scalar Functions
	Numeric Functions
	acos()
	asin()
	atan()
	atan2()
	avgof()
	bitand()
	bitclear()
	bitflag()
	bitflaglong()
	bitmask()
	bitmasklong()
	bitnot()
	bitor()
	bitset()
	bitshiftleft()
	bitshiftright()
	bittest()
	bittoggle()
	bitxor()
	cbrt()
	ceil()
	compare()
	cos()
	cosd()
	cosh()
	distance()
	distancesquared()
	exp()
	floor()
	isnull()
	length()
	ln()
	log2()
	log10()
	logx()
	maxof()
	minof()
	nextval()
	pi()
	power()
	random()
	round()
	sign()
	sin()
	sind()
	sinh()
	sqrt()
	tan()
	tand()
	tanh()

	String Functions
	int32()
	left()
	like()
	lower()
	ltrim()
	patindex()
	real()
	regexp_firstsearch()
	regexp_replace()
	regexp_search()
	replace()
	right()
	rtrim()
	string()
	substr()
	trim()
	trunc()
	upper()

	Conversion Functions
	ascii()
	base64_binary()
	base64_string()
	cast()
	char()
	dateint()
	extract()
	fromnetbinary()
	hex_binary()
	hex_string()
	intdate()
	msecToTime()
	recordDataToRecord
	recordDataToString
	secToTime()
	timeToMsec()
	timeToUsec()
	timeToSec()
	to_bigdatetime()
	to_binary()
	to_boolean()
	to_date()
	to_float()
	to_integer()
	to_interval()
	to_long()
	to_money()
	to_string()
	to_timestamp()
	to_xml()
	totimezone()
	tonetbinary()
	usecToTime()

	XML Functions
	xmlconcat()
	xmlelement()
	xmlparse()
	xmlserialize()

	Date and Time Functions
	business()
	businessday()
	date()
	dateceiling()
	datefloor()
	dateint()
	datename()
	datepart()
	dateround()
	dayofmonth()
	dayofweek()
	dayofyear()
	hour()
	makebigdatetime()
	microsecond()
	minute()
	month()
	now()
	second()
	sysbigdatetime()
	sysdate()
	systimestamp()
	totimezone()
	unbigdatetime()
	undate()
	weekendday()
	year()

	Aggregate Functions
	any()
	avg()
	corr()
	covar_pop()
	covar_samp()
	count()
	count(distinct)
	exp_weighted_avg()
	first()
	first_value()
	last()
	last_value()
	lwm_avg()
	max()
	meandeviation()
	median()
	min()
	nth()
	recent()
	regr_avgx()
	regr_avgy()
	regr_count()
	regr_intercept()
	regr_r2()
	regr_slope()
	regr_sxx()
	regr_sxy()
	regr_syy()
	stddev()
	stddeviation()
	stddev_pop()
	stddev_samp()
	sum()
	valueinserted()
	var_pop()
	var_samp()
	vwap()
	weighted_avg()
	xmlagg()

	Other Functions
	cacheSize()
	coalesce()
	concat()
	deleteCache()
	firstnonnull()
	get*columnbyindex()
	get*columnbyname()
	getCache()
	getData()
	getmoneycolumnbyindex()
	getmoneycolumnbyname()
	getrowid()
	rank()
	sequence()

	User-Defined External Functions
	External C/C++ Function Requirements
	Example: Using External C/C++ Functions
	Example: Using Java Functions
	User-Defined SPLASH Functions

	CHAPTER 7: Programmatically Reading and Writing CCL Files
	CCL File Creation
	CCL File Deconstruction

	CHAPTER 8: SPLASH Programming Language
	Variable and Type Declarations
	Custom Functions
	Using SPLASH in Flex Operators

	CHAPTER 9: SPLASH Statements
	Block Statements
	Conditional Statements
	Control Statements
	Expression Statements
	For Loops
	Output Statements
	Print Statement
	Switch Statements
	While Statements

	CHAPTER 10: SPLASH Data Structures
	Records
	XML Values
	Vectors
	Dictionaries
	Operations on Dictionaries

	Window Iterators
	Event Caches
	Manual Insertion
	Changing Buckets
	Managing Bucket Size
	Keeping Records
	Ordering
	Operations on Event Caches

	APPENDIX A: List of Keywords
	APPENDIX B: Date and Time Programming
	Time Zones
	Changes to Time Zone Defaults
	List of Time Zones

	Date/Time Format Codes
	Calendar Files

	APPENDIX C: Statement on Support for Multibyte Characters
	Index

