
.NET SDK Guide

SAP Sybase Event Stream
Processor 5.1 SP04

DOCUMENT ID: DC01619-01-0514-01
LAST REVISED: November 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Migration from Aleri Streaming Platform1
Entity Lifecycles and Access Modes3

Starting the SDK ...4
Connecting to a Server ...4
Getting and Connecting to a Project5

Publishing ..7
Publishing in Direct Access Mode8
Working Example ..9

Subscribing ..11
Subscribing to a Stream in Callback Mode11
Working Example ..14
Subscribing with Guaranteed Delivery14

Stopping the SDK ..19
Failover Handling ...21
Examples ..23
API Reference ..25
Index ..27

.NET SDK Guide iii

Contents

iv SAP Sybase Event Stream Processor

Migration from Aleri Streaming Platform

The SDK interface provided by SAP® Sybase® Event Stream Processor (ESP) differs from
the SDK interface provided in Aleri Streaming Platform (ASP). In Event Stream Processor,
the SDK has been modified for improved flexibility and performance, and to accommodate
projects running in a clustered environment.

Clusters and Projects
Because projects now run in a cluster, they are no longer accessed using the command and
control host and port. A project has a unique identity denoted by its URI which typically
consists of the cluster information, workspace name, and project name. The SDK takes care of
resolving the URI to the physical address internally. The project object in ESP loosely
corresponds to the platform object in ASP. There is no analogue of an ESP Server in the Pub/
Sub API.

Note: There are methods to connect to a standalone project but these should not be used as
they will be removed in a future release.

The ESP SDK includes new functionality to configure and monitor the cluster. There is no
counterpart for these functions in the ASP Pub/Sub API.

Access Modes
In the ASP Pub/Sub, the Platform and Publisher objects were accessed using synchronous
method calls. The Subscriber object required callback handlers. In ESP, this has changed. All
entities—that is, server, project, publisher, and subscriber—can be accessed using either
direct method calls or callback handlers. In addition, ESP introduces a third method called
selection access.

Direct access works similarly to how Platform and Publisher objects were called in ASP. Each
call blocks until the task completes or results in an error. In ESP, you can also use this mode for
Subscribers.

In callback, users register handler functions and the SDK calls the functions when anything of
interest happens. This was the only way to work with subscribers in ASP. In ESP, you can also
use this method for other entities.

The select access mode lets you register multiple entities with a selector and have a single
thread wait for an event on any of those entities. Functionally, this is similar to the select/poll
mechanism of monitoring multiple file descriptors in a single thread.

Automatic Reconnection and Monitoring
In ASP, the Pub/Sub API supported automatic reconnection to a peer when working in hot-
active mode. ESP supports automatic reconnection but adds some functionality when working

Migration from Aleri Streaming Platform

.NET SDK Guide 1

in callback or select access modes. Additional functionality includes checking if a cluster or
project has gone down and monitoring the back-end for restarts.

Publishing
In DIRECT access mode, you can now have the SDK run a background thread when
publishing for better throughput. When using ASP, tasks such as these had to be done by the
Pub/Sub user.

In ASP, a message was formatted using temporary storage (vectors) which needed to be filled
in before calling the Pub/Sub API to create the buffer. In ESP, this is avoided by writing
directly to a buffer. To create a message in the ESP SDK, users will indicate the start of a block
or row, then populate it in sequence. The fields must be filled in the same order as they appear
in the schema.

Subscribing
In ASP, the data from a message was available as a collection of objects. In the ESP SDK, that
step is skipped. Methods are provided to read the buffer directly as native data types or helper
objects (Money, BigDatetime, Binary). The data fields can be accessed in random order.

Migration from Aleri Streaming Platform

2 SAP Sybase Event Stream Processor

Entity Lifecycles and Access Modes

The SAP Sybase Event Stream Processor .NET SDK offers the same functionality and uses
the same concepts as the C SDK. All entities exposed by the SDK have a common lifecycle.

User interaction in the Event Stream Processor (ESP) SDK is handled through entities the
SDK exposes. The main entities are Server, Project, Publisher, and Subscriber. These entities
correspond to the functional areas of the SDK. The Server object represents a running instance
of a cluster, the Project corresponds to a single project deployed to the cluster, the Publisher
object deals with publishing data to a running project, and the Subscriber object subscribes to
data streams.

On initial retrieval, an entity is considered to be open. When an entity is open, you can retrieve
certain static information about it. To accomplish its assigned tasks, an entity has to connect to
the corresponding component in the cluster. A server connects to a running instance of a
cluster, and NetEspProject, NetEspPublisher, and NetEspSubscriber all connect to running
instances of a project in a cluster.

In the connected state, an entity can interact with the cluster components. Once an entity is
disconnected, it can no longer interact with the cluster but is still an active object in the SDK,
and can be reconnected to the cluster. Once an entity is closed, it is no longer available for
interaction and is reclaimed by the SDK. To reuse an entity that has closed, retrieve a fresh
copy of the entity.

For example, you can retrieve a Project object and connect it to a project in the cluster. If the
back-end project dies, the SDK Project receives a disconnected event. You can attempt to
reconnect manually, or, if you are using callback mode and your configuration supports it, the
SDK tries to reconnect automatically. Upon successful reconnection, the SDK generates a
connected event. If you actively close the entity, it disconnects from the back-end project and
the SDK reclaims the Project object. To reconnect, you first need to retrieve a new Project
object.

The SDK provides great flexibility in structuring access to the entities exposed by the API.
There are three modes that can be used to access entities: direct, callback, and select.

Direct access is the default mode when retrieving an entity. In this mode, all calls return when
an error occurs or the operation completes successfully. There are no events generated later, so
there is no need to have an associated event handler.

In callback access, an event handler must be associated with the request. Most calls to the
entity return immediately, but completion of the request is indicated by the generation of the
corresponding event. The SDK has two internal threads to implement the callback
mechanism. The update thread monitors all entities currently registered for callbacks for
applicable updates. If an update is found, an appropriate event is created and queued to the

Entity Lifecycles and Access Modes

.NET SDK Guide 3

dispatch thread. The dispatch thread calls the registered handlers for the user code to process
them.

You can register multiple callbacks on each publisher or subscriber by calling int32_t
NetEspPublisher::set_callback (uint32_t events,
PUBLISHER_EVENT_CALLBACK^ callback, IntPtr^ user_data,
NetEspError^ error) or int32_t NetEspSubscriber::set_callback
(uint32_t events, SUBSCRIBER_EVENT_CALLBACK^ callback,
IntPtr^ user_data, NetEspError^ error) multiple times. Each registered
handler gets the same events.

The select access mode lets you multiplex various entities in a single user thread—somewhat
similar to the select and poll mechanisms available on many systems—to monitor file
descriptors. To register an entity, call the select_with(...) method on the entity you want to
monitor (NetEspServer, NetEspPublisher, NetEspSubscriber, or NetEspProject), passing in
the NetEspSelector instance together with the events to monitor for. Then, call the select(...)
method on the NetEspSelector instance, which blocks until a monitored update occurs in the
background. The function returns a list of NetEspEvent objects. First determine the category
(server, project, publisher, subscriber) of the event, then handle the appropriate event type. In
this mode, the SDK uses a single background update thread to monitor for updates. If detected,
the appropriate event is created and pushed to the NetEspSelector. The event is then handled in
your own thread.

Starting the SDK
Before performing operations, start the SDK.

1. Create an error message store for the following:
NetEspError error = new NetEspError();

2. Get an instance of the .NET SDK and invoke the start method:
NetEspSdk s_sdk = NetEspSdk.get_sdk();
s_sdk.start(espError);

Connecting to a Server
When you have started the SDK, connect to a server.

Prerequisites
Start the SDK.

Entity Lifecycles and Access Modes

4 SAP Sybase Event Stream Processor

Task

1. Create a URI object:
NetEspUri uri = new NetEspUri();
uri.set_uri("esp://myserver:19011", error);

2. Create your credentials. The type of credentials depends on which security method is
configured with the cluster:
NetEspCredentials creds = new
NetEspCredentials(NetEspCredentials.NET_ESP_CREDENTIALS_T.NET_ESP
_CREDENTIALS_SERVER_RSA);
creds.set_user("auser");
creds.set_password("1234");
creds.set_keyfile("..\\test_data\\keys\\client.pem");

3. Set options:
NetEspServerOptions options = new NetEspServerOptions();
options.set_mode(NetEspServerOptions.NET_ESP_ACCESS_MODE_T.NET_CA
LLBACK_ACCESS);

4. Connect to the server:
server = new NetEspServer(uri, creds, options);
int rc = server.connect(error);

Getting and Connecting to a Project
To publish or subscribe to data, get and connect to a project instance.

1. Get the project:
NetEspProject project = server.get_project(“workspacename”,
“projectname”,
error);

2. Connect to the project:
project.connect(error);

Entity Lifecycles and Access Modes

.NET SDK Guide 5

Entity Lifecycles and Access Modes

6 SAP Sybase Event Stream Processor

Publishing

The SDK provides various options for publishing data to a project.

The steps involved in publishing data are:

1. Create a NetEspPublisher from a previously connected NetEspProject instance.
2. Create a NetEspMessageWriter for the stream to publish to. You can create multiple

NetEspMessageWriters from a single NetEspPublisher.
3. Create a NetEspRelativeRowWriter.
4. Format the data buffer to publish using NetEspRelativeRowWriter methods.
5. Publish the data.

While NetEspPublisher is thread-safe, NetEspMessageWriter and
NetEspRelativeRowWriter are not. Therefore, ensure that you synchronize access to the latter
two.

The SDK provides a number of options to tune the behavior of a NetEspPublisher. Specify
these options using NetEspPublisherOptions when creating the NetEspPublisher. Once
created, options cannot be changed. Like all other entities in the SDK, publishing also
supports the direct, callback, and select access modes.

In addition to access modes, the SDK supports internal buffering. When publishing is
buffered, the data is first written to an internal queue. This is picked up by a publishing thread
and then written to the ESP project. Buffering is possible only in direct access mode. Direct
and buffered publishing potentially provides the best throughput.

Two other settings influence publishing: batching mode and sync mode. Batching controls
how data rows are written to the socket. They can be written individually or grouped together
in either envelope or transaction batches. Envelopes group individual rows together to send to
the ESP project and are read together from the socket by the project. This improves network
throughput. Transaction batches, like envelope batches, are also written and read in groups.
However, with transaction batches, the ESP project only processes the group if all the rows in
the batch are processed successfully. If one fails, the whole batch is rolled back.

When publishing is buffered, you can specify how the SDK batches rows in
NetEspPublisherOptions. NET_EXPLICIT_BLOCKING lets you control the batches by
using start transaction and end block calls. NET_AUTO_BLOCKING ignores these calls and
batches rows internally. The default mode is NET_NO_BLOCKING.

Sync mode settings control the publishing handshake between the SDK and the ESP project.
By default, the SDK sends data to the ESP project without waiting for acknowledgement. If
sync mode is set to true, the SDK waits for acknowledgement from the ESP project before
sending the next batch of data. This provides an application level delivery guarantee, but it
reduces throughput.

Publishing

.NET SDK Guide 7

Publishing in async mode improves throughput, but does not provide an application level
delivery guarantee. Since TCP does not provide an application level delivery guarantee either,
data in the TCP buffer could be lost when a client exits. Therefore, a commit must be executed
before a client exit when publishing in async mode.

In general terms, the return code from a Publish call indicates whether or not the row was
successfully transmitted. Any error that occurs during processing on the Event Stream
Processor project (such as a duplicate insert) will not get returned. The precise meaning of the
return code from a Publish call depends on the access mode and the choice of synchronous or
asynchronous transmission.

When using callback or select access mode, the return only indicates whether or not the SDK
was able to queue the data. The indication of whether or not the data was actually written to the
socket will be returned by the appropriate event. The callback and select access modes do not
currently support synchronous publishing.

When using direct access mode, the type of transmission used determines what the return from
the Publish call indicates. If publishing in asynchronous mode, the return only indicates that
the SDK has written the data to the socket. If publishing in synchronous mode, the return from
the Publish call indicates the response code the Event Stream Processor sent.

There are certain considerations to keep in mind when using callback or select mode
publishing. These modes are driven by the NET_ESP_PUBLISHER_EVENT_READY
event, which indicates that the publisher is ready to accept more data. In response, you can
publish data or issue a commit, but only one such action is permitted in response to a single
NET_ESP_PUBLISHER_EVENT_READY event.

Like all entities, if you intend to work in callback mode with a Publisher and want to get
notified, register the callback handler before the event is triggered. For example:
net_esp_publisher_options_set_access_mode(options, CALLBACK_ACCESS,
error);
net_esp_publisher_set_callback(publisher, events, callback, NULL,
error);
net_esp_publisher_connect(publisher, error);

Publishing in Direct Access Mode
Publishing in direct access mode is a multistep process that involves creating and connecting
to a publisher, then identifying the stream to publish to and the data to publish.

The following code snippets are provided to illustrate one way of publishing and not as a
complete, working example. Adapt this sample as necessary to suit your specific publishing
scenario.

1. Create a publisher:
NetEspCredentials creds = new NetEspCredentials
(NetEspCredentials.NET_ESP_CREDENTIALS_T.NET_ESP_CREDENTIALS_USER
_PASSWORD);

Publishing

8 SAP Sybase Event Stream Processor

creds.set_user("user");
creds.set_password("password");
NetEspPublisher publisher = project.create_publisher(creds,
error);

2. Connect to the publisher:
Publisher.connect(error);

3. Get a stream:
NetEspStream stream = project.get_stream("WIN2", error);

4. Get the Message Writer:
NetEspMessageWriter writer = publisher.get_message_writer(stream,
error);

5. Get and start the Row Writer, and set an opcode to insert one row:
NetEspRelativeRowWriter rowwriter =
writer.get_relative_row_writer(error);
rowwriter.start_row(error);
rowwriter.set_opcode(1, error);

6. Set the column values sequentially, starting from the first column. Call the appropriate set
method for the data type of the column. For example, if the column type is string:
rc = rowwriter.set_string(“some value”, error);

7. When you have set all column values, end the row:
rc = rowwriter.end_row(error);

8. Publish the data:
rc = publisher.publish(writer, error);

Working Example
The previous sample code on publishing is provided for illustration purposes, but does not
comprise a full, working example.

SAP Sybase Event Stream Processor ships with fully functioning examples you can use as a
starting point for your own projects. Examples for publishing are located in:

%ESP_HOME%\examples\net\PublisherExample (Windows)

$ESP_HOME/examples/net/PublisherExample (Linux and Solaris)

Publishing

.NET SDK Guide 9

Publishing

10 SAP Sybase Event Stream Processor

Subscribing

The SDK provides various options for subscribing to a project.

The steps involved in subscribing to data using the SDK are:

1. Create a NetEspSubscriber from a previously connected NetEspProject instance.
2. Subscribe to one or more streams. Call int32_t

NetEspSubscriber::subscribe_stream (NetEspStream^ stream,
NetEspError^ error) for each stream you are connecting to.

3. In direct access mode, retrieve events using NetEspSubscriber.get_next_event(). In
callback and select access modes, the event is generated by the SDK and passed back to
user code.

4. For data events, retrieve NetEspMessageReader. This encapsulates a single message from
the ESP project. It may consist of a single data row or a block with multiple data rows.

5. Retrieve one or more NetEspRowReader. Use the methods in NetEspRowReader to read
in individual fields.

Subscribing to a Stream in Callback Mode
Subscribing in callback mode is a multistep process that involves creating a subscriber and
callback registry, connecting to the subscriber, and then subscribing to a stream.

The following code snippets are provided to illustrate one way of subscribing and not as a
complete, working example. Adapt this sample as necessary to suit your particular
subscription scenario.

1. Create a subscriber:
NetEspSubscriberOptions options = new NetEspSubscriberOptions();
options.set_mode(NetEspSubscriberOptions.NET_ESP_ACCESS_MODE_T.NE
T_CALLBACK_ACCESS);
NetEspSubscriber subscriber =
project.create_subscriber(options,error);

2. Create the callback registry:
NetEspSubscriber.SUBSCRIBER_EVENT_CALLBACK callbackInstance = new
NetEspSubscriber.SUBSCRIBER_EVENT_CALLBACK(subscriber_callback);
subscriber.set_callback(NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT
.NET_ESP_SUBSCRIBER_EVENT_ALL, callbackInstance, null, error);

3. Connect to the subscriber:
subscriber.connect(error);

4. Subscribe to a stream:
subscriber.subscribe_stream(stream, error);

Subscribing

.NET SDK Guide 11

• Callback function implementation:
Public static void subscriber_callback(NetEspSubscriberEvent
event, ValueType
data) {
 switch (evt.getType())
 {
 case (uint)
(NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER_
EVENT_CONNECTED):
 Console.WriteLine("the callback happened:
connected!");
 break;
(uint)
(NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER
_EVENT_DATA):
 //handleData
 ...
 break;

 default:
 break;
 }
}//end subscriber_callback

• handleData implementation:
NetEspRowReader row_reader = null;
while ((row_reader = evt.getMessageReader().next_row(error)) !=
null) {
 for (int i = 0; i < schema.get_numcolumns(); ++i)
{
 if (row_reader.is_null(i) == 1) {
 Console.Write("null, ");
 continue;
 }
 switch
(NetEspStream.getType(schema.get_column_type((uint)i, error)))
 {
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_INTEGER:
 ivalue = row_reader.get_integer(i,
error);
 Console.Write(ivalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_LONG:
 lvalue = row_reader.get_long(i, error);
 Console.Write(lvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_FLOAT:
 fvalue = row_reader.get_float(i,
error);
 Console.Write(fvalue + ", ");
 break;
 case

Subscribing

12 SAP Sybase Event Stream Processor

NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_STRING:
 svalue = row_reader.get_string(i,
error);
 Console.Write(svalue);
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_DATE:
 dvalue = row_reader.get_date(i, error);
 Console.Write(dvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_TIMESTAMP:
 tvalue = row_reader.get_timestamp(i,
error);
 Console.Write(tvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_BOOLEAN:
 boolvalue = row_reader.get_boolean(i,
error);
 Console.Write(boolvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_BINARY:
 uint buffersize = 256;
 binvalue = row_reader.get_binary(i,
buffersize, error);

Console.Write(System.Text.Encoding.Default.GetString(binvalue)
+ ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_INTERVAL:
 intervalue = row_reader.get_interval(i,
error);
 Console.Write(intervalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY01:
 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ",
");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY02:
 lvalue =
row_reader.get_money_as_long(i, error);
 Console.Write(lvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY03:
 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ",
");
 break;
 case

Subscribing

.NET SDK Guide 13

NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY10:
 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ",
");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY15:
 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ",
");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_BIGDATETIME:
 bdt2 = row_reader.get_bigdatetime(i,
error);
 long usecs =
bdt2.get_microseconds(error);
 Console.Write(usecs + ", ");
 break;
 }
 }

 rc = subscriber.disconnect(error);
}

Working Example
The previous sample code on subscribing is provided for illustration purposes, but does not
comprise a full, working example.

SAP Sybase Event Stream Processor ships with fully functioning examples you can use as a
starting point for your own projects. Examples for subscribing are located in:

%ESP_HOME%\examples\net\SubscriberExample (Windows)

$ESP_HOME/examples/net/SubscriberExample (Linux and Solaris)

Subscribing with Guaranteed Delivery
Use guaranteed delivery (GD) to ensure that events are still delivered to the subscriber if the
connection is temporarily lost or the server is restarted.

Prerequisites
Enable guaranteed delivery in a window and attach a log store in the CCL. To receive
checkpoint messages from the server on streams using GD with checkpoint, set the Auto
Checkpoint parameter in the project configuration file. The client may also receive checkpoint
messages if the consistent recovery option is turned on and a publisher commits a message.

Subscribing

14 SAP Sybase Event Stream Processor

Task

Guaranteed delivery is a delivery mechanism that preserves events produced by a window,
keeps data in a log store, and tracks events consumed by GD subscribers. For more
information on guaranteed delivery, see the Programmers Guide.

A CCL project can be set to checkpoint after a number of messages pass through it. Once the
configured number of messages pass through the project, the server commits the log store and
sends a checkpoint message to the subscriber. This indicates that all messages up to the
checkpoint sequence number are safely logged in the system.

A subscriber must indicate to the server when it has processed the messages and can recover
them without the server. The subscriber can call NetEspPublisher.commit_gd at any
time to tell the server the sequence number of the last message that has been processed. The
commit call ensures that the server will not resend messages up to and including the last
sequence number committed, and allows it to reclaim resources consumed by these messages.
The subscriber should not commit sequence numbers higher than the sequence number
received via the last checkpoint message. This ensures that no data is lost if the server restarts.

1. Request a GD subscription by calling
NetEspSubscriberOptions.set_gd_session(string
session_name) and creating the NetEspSubscriber object.

2. Create and connect a NetEspPublisher object.

3. Check if streams have GD or GD with checkpoint enabled by calling
NetEspStream.is_gd_enabled(NetEspError^ error) and
NetEspStream.is_checkpoint_enabled(NetEspError^ error).

4. Retrieve active and inactive GD sessions by calling
NetEspProject.get_active_gd_sessions(NetEspError^ error) and
NetEspProject.get_inactive_gd_sessions NetEspError^ error).

5. Retrieve the checkpoint sequence number for the last checkpointed data by calling
NetEspSubscriberEvent.get_checkpoint_sequence_number(NetEs
pError^ error).

6. Tell the server that the subscriber has committed messages up to a given sequence number
and no longer needs them by calling NetEspPublisher.commit_gd(String^
session_name, array<int32_t>^ stream_ids, array<int64_t>^
seq_nos, NetEspError^ error).

7. Cancel the GD session by closing the subscriber or by calling
NetEspProject.cancel_gd_subscriber_session(String^
gd_session, NetEspError^ error).

Example
 // To connect to ESP server
 NetEspError espError = new NetEspError();
 NetEspSdk s_sdk = SYBASE.Esp.SDK.NetEspSdk.get_sdk();
 s_sdk.start(espError);

Subscribing

.NET SDK Guide 15

 NetEspCredentials creds = new
NetEspCredentials(NetEspCredentials.NET_ESP_CREDENTIALS_T.NET_ESP_C
REDENTIALS_USER_PASSWORD);
 creds.set_user("sybase");
 creds.set_password("sybase");
 NetEspUri uri = new NetEspUri();
 uri.set_uri("esp://localhost:19011", espError);
 NetEspServerOptions soptions = new NetEspServerOptions();
 NetEspServer server = s_sdk.get_server(uri, creds, soptions,
espError);
 server.connect(espError);

 // To connect to an ESP project
 NetEspProject project = new NetEspProject();
 NetEspProjectOptions projoptions = new
NetEspProjectOptions();
 project = server.get_project("workspace", "gd", projoptions,
espError);
 project.connect(espError);

 // To create a GD subscriber
 NetEspSubscriberOptions suboptions = new
NetEspSubscriberOptions();
 suboptions.set_gd_session("GD999");
 NetEspSubscriber subscriber =
project.create_subscriber(suboptions, espError);

 // To create a publisher to commitGD message
 NetEspPublisher publisher = project.create_publisher(null,
espError);
 publisher.connect(espError);

 //check GD status/mode
 NetEspStream stream1 = project.get_stream("In1", espError);
 subscriber.subscribe_stream(stream1, espError);
 subscriber.connect(espError);
 stream1.is_gd_enabled(espError);
 stream1.is_checkpoint_enabled(espError);
 subscriber.is_gd_enabled();

 // retrieve GD sessions
 project.get_active_gd_sessions(espError);
 project.get_inactive_gd_sessions(espError);

 NetEspSubscriberEvent event1;
 Boolean done = false;

 while (!done)
 {
 event1 = subscriber.get_next_event(espError);

 switch (event1.getType())
 {
 case
(uint)NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER_
EVENT_DATA:

Subscribing

16 SAP Sybase Event Stream Processor

 NetEspMessageReader reader =
event1.getMessageReader();
 NetEspRowReader rows = reader.next_row(espError);
 while (rows != null)
 {
 int intcol1 = rows.get_integer(1, espError);
 Console.Out.Write(intcol1);

 string stringco2 = rows.get_string(2, espError);
 Console.Out.WriteLine(" " + stringco2);

 rows = reader.next_row(espError);
 }
 break;
 case
(uint)NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER_
EVENT_CLOSED:
 done = true;
 break;
 case
(uint)NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER_
EVENT_DISCONNECTED:
 done = true;
 break;
 case
(uint)NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER_
CHECKPOINT:

 // retrieve the sequence number returned by
NET_ESP_SUBSCRIBER_CHECKPOINT message
 long seq_val =
event1.get_checkpoint_sequence_number(espError);
 if (seq_val > 0)
 {
 Console.Out.WriteLine("SeqNo #" + seq_val);

 int[] idArray = new int[1];
 long[] seqArray = new long[1];
 idArray[0] = stream1.get_id();
 seqArray[0] = seq_val;

 // commitGD message for a single stream with the
corresponding last checkpointed sequence number
 publisher.commit_gd("GD999", idArray, seqArray,
espError);
 }
 break;
 default:
 break;
 }
 }

 // cancel GD session and disconnect subscriber and publisher
before exit
 project.cancel_gd_subscriber_session("GD999", espError);

Subscribing

.NET SDK Guide 17

 subscriber.disconnect(espError);
 server.disconnect(espError);

Subscribing

18 SAP Sybase Event Stream Processor

Stopping the SDK

When your operations are complete, stop the .NET SDK to free up resources.

To stop the .NET SDK, use:
s_sdk.stop(espError);

Stopping the SDK

.NET SDK Guide 19

Stopping the SDK

20 SAP Sybase Event Stream Processor

Failover Handling

The SDK supports either fully transparent or automatic failover in a number of situations.
• Cluster failovers – the URIs used to connect to a back-end component can include a list of

cluster manager specifications. The SDK maintains connections to these transparently. If
any one manager in the cluster goes down, the SDK tries to reconnect to another instance.
If connections to all known instances fail, the SDK returns an error. If working in callback
or select access modes, you can configure the SDK with an additional level of tolerance for
loss of connectivity. In this case, the SDK does not disconnect a NetEspServer instance
even if all known manager instances are down. Instead, it generates a
NET_ESP_SERVER_EVENT_STALE event. If it manages to reconnect after a
(configurable) number of attempts, it generates a
NET_ESP_SERVER_EVENT_UPTODATE event. Otherwise, it disconnects and
generates a NET_ESP_SERVER_EVENT_DISCONNECTED event.

• Project failovers – an Event Stream Processor cluster allows a project to be deployed with
failover. Based on the configuration settings, a cluster restarts a project if it detects that it
has exited (however, projects are not restarted if they are explicitly closed by the user). To
support this, you can have NetEspProject instances monitor the cluster for project restarts
and then reconnect. This works only in callback or select modes. A
NET_ESP_PROJECT_EVENT_STALE is generated when the SDK detects that the
project has gone down. If it is able to reconnect, it generates a
NET_ESP_PROJECT_EVENT_UPTODATE event. Otherwise, it generates a
NET_ESP_PROJECT_EVENT_DISCONNECTED event.

When the SDK reconnects, entities obtained from the project are no longer valid. This
includes publishers, subscribers, message readers/writers, and row readers/writers. After
reconnecting, recreate these objects from the project.

In direct access mode, the SDK does not monitor the cluster for restarts. If a
communication error occurs, the project object and all project-related entities are
invalidated. Close the project, which also closes any elements it contains, then create a new
project object and reconnect. The following example shows one way of doing this:
// encountered error
project.close(esperror);
project = server.get_project(workspace, pname, projoptions,
esperror);
rc = project.connect(esperror);
// if the project has been successfully restarted this will
succeed
if (!rc) {
// exit or loop
}
// create publisher or subscriber and proceed

• Active-active deployments – You can deploy a project in active-active mode. In this
mode, the cluster starts two instances of the project: a primary instance and a secondary

Failover Handling

.NET SDK Guide 21

instance. Any data published to the primary instance is automatically mirrored to the
secondary instance. The SDK supports active-active deployments. When connected to an
active-active deployment, if the currently connected instance goes down, NetEspProject
tries to reconnect to the alternate instance. Unlike failovers, this happens transparently.
Therefore, if the reconnection is successful, there is no indication given to the user. In
addition to NetEspProject, there is support for this mode when publishing and subscribing.
If subscribed to a project in an active-active deployment, the SDK does not disconnect the
subscription if the instance goes down. Instead, it generates a
NET_ESP_SUBSCRIBER_EVENT_DATA_LOST event. It then tries to reconnect to the
peer instance. If it is able to reconnect, the SDK resubscribes to the same streams.
Subscription clients then receive a NET_ESP_SUBSCRIBER_EVENT_SYNC_START
event, followed by the data events, and finally a
NET_ESP_SUBSCRIBER_EVENT_SYNC_END event. Clients can use this sequence
to maintain consistency with their view of the data if needed. Reconnection during
publishing is also supported but only if publishing in synchronous mode. It is not possible
for the SDK to guarantee data consistency otherwise. Reconnection during publishing
happens transparently; there are no external user events generated.

Failover Handling

22 SAP Sybase Event Stream Processor

Examples

ESP includes several working examples for the .NET SDK.

PublisherExample Demonstrates the basics of SDK use

PublisherAnySchema Publishes using stream metadata

SubscriberCallback Subscribes using the callback mechanism

SubscriberExample Displays published data

SubscriberGdExample Subscribes using the guaranteed delivery mechanism

UpdateShineThrough Publishes updates using ShineThrough

These examples and a readme file with instructions for running them are located at
ESP_HOME\examples\net.

Examples

.NET SDK Guide 23

Examples

24 SAP Sybase Event Stream Processor

API Reference

Detailed information on methods, functions, and other programming building blocks is
provided in the API level documentation.

To access the API level documentation:

1. Navigate to <Install_Dir>\ESP-5_1\doc\sdk\net.

2. Launch index.html.

API Reference

.NET SDK Guide 25

API Reference

26 SAP Sybase Event Stream Processor

Index
A
access modes

callback 3
direct 3
select 3

C
callback mode

example 11
class details 25
connecting

to project 5
to server 4

D
direct access mode

example 8

E
example

publishing 8
subscribing 11

F
failover

active-active 21
cluster 21
project 21

fault tolerance 21

M
method details 25
modes of publishing

batching 7

sync 7

P

project
connecting 5
publishing to 7

publishing
example 8
improving throughput 7
in direct access mode 8
modes 7
to project 7

R

reference
classes 25
functions 25
methods 25

S

SDK
starting 4
stopping 19

server
connecting 4

subscribing
example 11
in callback mode 11
overview 11
to stream 11

U

URI
creating 4

Index

.NET SDK Guide 27

Index

28 SAP Sybase Event Stream Processor

	.NET SDK Guide
	Contents
	Migration from Aleri Streaming Platform
	Entity Lifecycles and Access Modes
	Starting the SDK
	Connecting to a Server
	Getting and Connecting to a Project

	Publishing
	Publishing in Direct Access Mode
	Working Example

	Subscribing
	Subscribing to a Stream in Callback Mode
	Working Example
	Subscribing with Guaranteed Delivery

	Stopping the SDK
	Failover Handling
	Examples
	API Reference
	Index

