
Java SDK Guide

SAP Sybase Event Stream
Processor 5.1 SP04

DOCUMENT ID: DC01618-01-0514-01
LAST REVISED: November 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

Migration from Aleri Streaming Platform1
Entity Lifecycles and Access Modes3
Starting and Stopping the Java SDK11
Publishing ..13

Working Example ..19
Subscribing ..21

Working Example ..23
Subscribing with Guaranteed Delivery24

Failover Handling ...27
Examples ..29
API Reference ..31
Index ..33

Java SDK Guide iii

Contents

iv SAP Sybase Event Stream Processor

Migration from Aleri Streaming Platform

The SDK interface provided by SAP® Sybase® Event Stream Processor (ESP) differs from
the SDK interface provided in Aleri Streaming Platform (ASP). In Event Stream Processor,
the SDK has been modified for improved flexibility and performance, and to accommodate
projects running in a clustered environment.

Clusters and Projects
Because projects now run in a cluster, they are no longer accessed using the command and
control host and port. A project has a unique identity denoted by its URI which typically
consists of the cluster information, workspace name, and project name. The SDK takes care of
resolving the URI to the physical address internally. The project object in ESP loosely
corresponds to the platform object in ASP. There is no analogue of an ESP Server in the Pub/
Sub API.

Note: There are methods to connect to a standalone project but these should not be used as
they will be removed in a future release.

The ESP SDK includes new functionality to configure and monitor the cluster. There is no
counterpart for these functions in the ASP Pub/Sub API.

Access Modes
In the ASP Pub/Sub, the Platform and Publisher objects were accessed using synchronous
method calls. The Subscriber object required callback handlers. In ESP, this has changed. All
entities—that is, server, project, publisher, and subscriber—can be accessed using either
direct method calls or callback handlers. In addition, ESP introduces a third method called
selection access.

Direct access works similarly to how Platform and Publisher objects were called in ASP. Each
call blocks until the task completes or results in an error. In ESP, you can also use this mode for
Subscribers.

In callback, users register handler functions and the SDK calls the functions when anything of
interest happens. This was the only way to work with subscribers in ASP. In ESP, you can also
use this method for other entities.

The select access mode lets you register multiple entities with a selector and have a single
thread wait for an event on any of those entities. Functionally, this is similar to the select/poll
mechanism of monitoring multiple file descriptors in a single thread.

Automatic Reconnection and Monitoring
In ASP, the Pub/Sub API supported automatic reconnection to a peer when working in hot-
active mode. ESP supports automatic reconnection but adds some functionality when working

Migration from Aleri Streaming Platform

Java SDK Guide 1

in callback or select access modes. Additional functionality includes checking if a cluster or
project has gone down and monitoring the back-end for restarts.

Publishing
In DIRECT access mode, you can now have the SDK run a background thread when
publishing for better throughput. When using ASP, tasks such as these had to be done by the
Pub/Sub user.

In ASP, a message was formatted using temporary storage (vectors) which needed to be filled
in before calling the Pub/Sub API to create the buffer. In ESP, this is avoided by writing
directly to a buffer. To create a message in the ESP SDK, users will indicate the start of a block
or row, then populate it in sequence. The fields must be filled in the same order as they appear
in the schema.

Subscribing
In ASP, the data from a message was available as a collection of objects. In the ESP SDK, that
step is skipped. Methods are provided to read the buffer directly as native data types or helper
objects (Money, BigDatetime, Binary). The data fields can be accessed in random order.

Migration from Aleri Streaming Platform

2 SAP Sybase Event Stream Processor

Entity Lifecycles and Access Modes

In the SAP® Sybase® Event Stream Processor Java SDK, all entities share a common lifecycle
and set of access modes.

User interaction in the Event Stream Processor (ESP) SDK is handled through entities the
SDK exposes. The main entities are Server, Project, Publisher, and Subscriber. These entities
correspond to the functional areas of the SDK. For example, the Server object represents a
running instance of a cluster, the Project corresponds to a single project deployed to the
cluster, the Publisher object deals with publishing data to a running project, and the Subscriber
object subscribes to data streams.

On initial retrieval an entity is considered to be open. When an entity is open, you can retrieve
certain static information about it. To accomplish its assigned tasks, an entity connects to the
corresponding component in the cluster. A server connects to a running instance of a cluster,
and Project, Publisher and Subscriber all connect to running instances of a project in a cluster.

In the connected state, an entity can interact with the cluster components. Once an entity is
disconnected, it can no longer interact with the cluster but is still an active object in the SDK,
and can be reconnected to the cluster. Once an entity is closed, it is no longer available for
interaction and is reclaimed by the SDK. To reuse an entity that has closed, retrieve a fresh
copy of the entity.

For example, you can retrieve a Project object and connect it to a project in the cluster. If the
back-end project dies, the SDK Project receives a disconnected event. You can attempt to
reconnect manually, or, if you are using callback mode and your configuration supports it, the
SDK tries to reconnect automatically. Upon successful reconnection, the SDK generates a
connected event. If you actively close the entity, it disconnects from the back-end project and
the SDK reclaims the Project object. To reconnect, you first need to retrieve a new Project
object.

The SDK provides great flexibility in structuring access to the entities exposed by the API.
There are three modes that can be used to access entities: direct, callback, and select.

Direct access is the default mode when retrieving an entity. In this mode, all calls return when
an error occurs or the operation completes successfully. There are no events generated later, so
there is no need to have an associated event handler.

In callback access, an event handler must be associated with the request. Most calls to the
entity return immediately, but completion of the request is indicated by the generation of the
corresponding event. The SDK has two internal threads to implement the callback
mechanism. The update thread monitors all entities currently registered for callbacks for
applicable updates. If an update is found, an appropriate event is created and queued to the
dispatch thread. The dispatch thread calls the registered handlers for the user code to process
them.

Entity Lifecycles and Access Modes

Java SDK Guide 3

You can register multiple callbacks on each publisher or subscriber by calling the
setCallback(...) method multiple times. Each registered handler gets the same events.

The following sample illustrates accessing a project in callback mode. If you are working in
callback mode and want to receive the callback events, register your callback handlers before
you call connect on the entity you are interested in.

 ProjectOptions opts = new
ProjectOptions.Builder().setAccessMode(AccessMode.CALLBACK).create(
);

 Project project = SDK.getInstance().getProject(projectUri, creds,
opts);

 project.setCallback(EnumSet.allOf(ProjectEvent.Type.class), new
ProjectHandler("Handler"));

 project.connect(60000);

 //

 // Wait or block. Rest of the project lifecycle is handled in the
project callback handler

 //

 // Project handler class

 public class ProjectHandler implements Callback

 {

 String m_name;

 ProjectHandler(String name) {

 m_name = name;

 }

 public String getName() {

Entity Lifecycles and Access Modes

4 SAP Sybase Event Stream Processor

 return m_name;

 }

 public void processEvent(ProjectEvent pevent)

 {

 Project p = pevent.getProject();

 try {

 switch (pevent.getType()) {

 // Project has connected - can retrieve streams,
deployment etc.

 case CONNECTED:

 String[] streams =
pevent.getProject().getModelledStreamNames();

 break;

 // Project disconnected - only call possible connect
again

 case DISCONNECTED:

 break;

 // Project closed - this object should not be accessed
anymore by user code

 case CLOSED:

 break;

 case STALE:

 case UPTODATE:

 break;

 case ERROR:

 break;

 }

 } catch (IOException e) {

 }

Entity Lifecycles and Access Modes

Java SDK Guide 5

 }

 }

The select access mode lets you multiplex various entities in a single user thread—somewhat
similar to the select and poll mechanisms available on many systems—to monitor file
descriptors. Register an entity using a Selector together with the events to monitor for. Then,
call Selector.select(), which blocks until a monitored update occurs in the background. The
function returns a list of SdkEvent objects. First determine the category (server, project,
publisher, subscriber) of the event, then handle the appropriate event type. In this mode, the
SDK uses a single background update thread to monitor for updates. If detected, the
appropriate event is created and pushed to the Selector. The event is then handled in your own
thread.

This example shows multiplexing of different entities.

 Uri cUri = new Uri.Builder(REAL_CLUSTER_URI).create();

 Selector selector = SDK.getInstance().getDefaultSelector();

 ServerOptions srvopts = new
ServerOptions.Builder().setAccessMode(AccessMode.SELECT).create();

 Server server = SDK.getInstance().getServer(cUri, creds,
srvopts);

 ProjectOptions prjopts = new
ProjectOptions.Builder().setAccessMode(AccessMode.SELECT).create();

 Project project = null; //SDK.getInstance().getProject(cUri,
creds, prjopts);

 SubscriberOptions subopts = new
SubscriberOptions.Builder().setAccessMode(AccessMode.SELECT).create
();

 Subscriber subscriber = null; //
SDK.getInstance().getProject(cUri, creds, prjopts);

 PublisherOptions pubopts = new
PublisherOptions.Builder().setAccessMode(AccessMode.SELECT).create(
);

Entity Lifecycles and Access Modes

6 SAP Sybase Event Stream Processor

 Publisher publisher = null; //
SDK.getInstance().getProject(cUri, creds, prjopts);

 server.connect();

 server.selectWith(selector,
EnumSet.allOf(ServerEvent.Type.class));

 // Your logic to exit the loop goes here ...

 while (true) {

 List<sdkevent> events = selector.select();

 for (SdkEvent event : events) {

 switch (event.getCategory()) {

 // Server events

 case SERVER:

 ServerEvent srvevent = (ServerEvent) event;

 switch (srvevent.getType()) {

 // Server has connected - can now perform
operations, such as adding removing

 // applications.

 case CONNECTED:

 case MANAGER_LIST_CHANGE:

 Manager[] managers =
srvevent.getServer().getManagers();

 for (Manager m : managers)

 System.out.println("Manager:" + m);

 break;

Entity Lifecycles and Access Modes

Java SDK Guide 7

 case CONTROLLER_LIST_CHANGE:

 Controller[] controllers =
srvevent.getServer().getControllers();

 for (Controller cn : controllers)

 System.out.println("Controller:" + cn);

 break;

 case WORKSPACE_LIST_CHANGE:

 break;

 // This indicates that the Server has updated its
state with the latest running application

 // information. Project objects can now be
retrieved

 case APPLICATION_LIST_CHANGE:

 case DISCONNECTED:

 case CLOSED:

 case ERROR:

 break;

 }

 break;

 // Project events

 case ESP_PROJECT:

 ProjectEvent prjevent = (ProjectEvent) event;

 switch (prjevent.getType()) {

 case CONNECTED:

 case DISCONNECTED:

 case CLOSED:

 case ERROR:

Entity Lifecycles and Access Modes

8 SAP Sybase Event Stream Processor

 case WARNING:

 break;

 }

 break;

 // Publisher events

 case PUBLISHER:

 PublisherEvent pubevent = (PublisherEvent) event;

 switch (pubevent.getType()) {

 case CONNECTED:

 // The publisher is read. This event is to be used
to publish data in callback mode

 case READY:

 case DISCONNECTED:

 case CLOSED:

 break;

 }

 break;

 // Subscriber events

 case SUBSCRIBER:

 SubscriberEvent subevent = (SubscriberEvent) event;

 switch (subevent.getType()) {

 case CONNECTED:

 case SUBSCRIBED:

 case SYNC_START:

 // There is data. This event is to be used to
retrieve the subscribed data.

 case DATA:

Entity Lifecycles and Access Modes

Java SDK Guide 9

 case SYNC_END:

 case DISCONNECTED:

 case CLOSED:

 case UNSUBSCRIBED:

 case DATA_INVALID:

 case ERROR:

 case STREAM_EXIT:

 case DATA_LOST:

 break;

 }

 break;

 }

 }

 }

Entity Lifecycles and Access Modes

10 SAP Sybase Event Stream Processor

Starting and Stopping the Java SDK

Start the Java SDK before performing operations.

Initializing the SDK prompts it to start its internal threads and register required resources. This
call can be made from any thread, but it must be made before any other SDK functionality is
used.

Example:

 static final SDK sdk = SDK.getInstance();// retrieve the SDK
singleton
 sdk.start(); // start the SDK

Stop the Java SDK once the application using Java SDK is ready to exit or its functionality is
no longer needed. This stops its internal threads and releases any held resources.

Example:

 sdk.stop(); = esp_sdk_stop(error); // stop the SDK

Multiple SDK start calls may be made. The Java SDK requires a corresponding number of stop
calls to properly shut down.

Starting and Stopping the Java SDK

Java SDK Guide 11

Starting and Stopping the Java SDK

12 SAP Sybase Event Stream Processor

Publishing

The SDK provides a number of different options to publish data to a project.

The steps involved in publishing data are.

1. Retrieve a Publisher for the project to which you need to publish. You can create a
Publisher directly or from a previously retrieved and connected Project object.

2. Create a MessageWriter for the stream to publish to. You can create multiple
MessageWriters from a single Publisher.

3. Create a RelativeRowWriter method.
4. Format the data buffer to publish using RelativeRowWriter methods.
5. Publish the data.

While Publisher is thread-safe, MessageWriter and RelativeRowWriter are not. Therefore,
ensure that you synchronize access to the latter two.

The SDK supports automatic publisher switchover in high availability (HA) configurations,
except when publishing asynchronously. Switching over automatically in this instance risks
dropping or duplicating records because the SDK does not know which records have been
published.

The SDK provides a number of options to tune the behavior of a Publisher. Specify these
options using the PublisherOptions object when the Publisher is created. Once created,
options cannot be changed. Like all other entities in the SDK, publishing supports the direct,
callback, and select access modes.

In addition to access modes, the SDK supports internal buffering. When publishing is
buffered, the data is first written to an internal queue. This is picked up by a publishing thread
and then written to the ESP project. Note that buffering is possible only in direct access mode.
Direct access mode together with buffered publishing potentially provides the best
throughput.

Two other settings influence publishing: batching mode and sync mode. Batching controls
how data rows are written to the socket. They can be written individually, or grouped together
in envelope or transaction batches. Envelopes group individual rows together to send to the
ESP project and are read together from the socket by the project. This improves network
throughput. Transaction batches, like envelopes, are also written and read in groups. However,
with transaction batches, the ESP project only processes the group if all the rows in the batch
are processed successfully. If one fails, the whole batch is rolled back.

Note: When using shine-through to preserve previous values for data that are null in an update
record, publish rows individually or in envelopes, rather than in transaction batches.

When publishing is buffered, you can specify how the SDK batches rows in PublisherOptions.
EXPLICIT lets you control the batches by using start transaction and end block calls.

Publishing

Java SDK Guide 13

AUTOBLOCKING ignores these calls and batches rows internally. The default mode is
NONE.

Sync mode settings control the publishing handshake between the SDK and the ESP project.
By default, the SDK keeps sending data to the ESP project without waiting for an
acknowledgement. If sync mode is set to true, the SDK waits for an acknowledgement from
the ESP project each time it sends data before sending more. Issue an explicit
Publisher.commit() call when publishing in asynchronous mode before the client application
exits or closes the Publisher. This is to guarantee that all data written is read by the ESP
project.

In general terms, the return code from a Publish call indicates whether or not the row was
successfully transmitted. Any error that occurs during processing on the ESP project (such as a
duplicate insert) will not get returned. The precise meaning of the return code from a Publish
call depends on the access mode and the choice of synchronous or asynchronous transmission.

When using callback or select access mode, the return only indicates whether or not the SDK
was able to queue the data. The indication of whether or not the data was actually written to the
socket will be returned by the appropriate event. The callback and select access modes do not
currently support synchronous publishing.

When using direct access mode, the type of transmission used determines what the return from
the Publish call indicates. If publishing in asynchronous mode, the return only indicates that
the SDK has written the data to the socket. If publishing in synchronous mode, the return from
the Publish call indicates the response code the ESP project sent.

There are certain considerations to keep in mind when using callback or select mode
publishing. These modes are driven by the PublisherEvent.READY event, which indicates
that the publisher is ready to accept more data. In response, users can publish data or issue a
commit, but only one such action is permitted in response to a single PublisherEvent.READY
event.

Like all entities, if you intend to work in callback mode with a Publisher and want to get
notified, register the callback handler before the event is triggered. For example:
PublisherOptions opts = new
PublisherOptions.Builder().setAccessMode(AccessMode.CALLBACK).creat
e();
 Publisher publisher = project.createPublisher(opts);
 PublisherHandler handler = new PublisherHandler();

publisher.setCallback(EnumSet.allOf(PublisherEvent.Type.class),
handler);
 publisher.connect();

Below are some code snippets that show different ways of publishing data. The sample code
provided here is for illustration only; it does not comprise a complete, working example.

This example demonstrates publishing in direct access mode with transaction blocks.

Publishing

14 SAP Sybase Event Stream Processor

 // The Project must be connected first

 project.connect(60000);

 Publisher publisher = project.createPublisher();

 publisher.connect();

 Stream stream = project.getStream("Stream");

 MessageWriter mw = publisher.getMessageWriter(s);

 RelativeRowWriter writer = mw.getRelativeRowWriter();

 // It is more efficient to cache this

 DataType[] types = stream.getEffectiveSchema().getColumnTypes();

 // Your logic to loop over data to publish

 while (true) {

 // Logic to determine if to start a transaction block

 if (...)

 mw.startTransaction(0);

 // Loop over rows in a single block

 while (true) {

 // Loop over columns in a row

 for (i = ...) {

 writer.startRow();

 writer.setOperation(Operation.INSERT);

Publishing

Java SDK Guide 15

 switch (types[i]) {

 case DATE:

 writer.setDate(datevalue);

 break;

 case DOUBLE:

 writer.setDouble(doublevalue);

 break;

 case INTEGER:

 writer.setInteger(intvalue);

 break;

 case LONG:

 writer.setLong(longvalue);

 break;

 case MONEY:

 break;

 case STRING:

 writer.setString(stringvalue);

 break;

 case TIMESTAMP:

 writer.setTimestamp(tsvalue);

 break;

 //

 // Other data types

 //

 }

 }

 writer.endRow();

 }

Publishing

16 SAP Sybase Event Stream Processor

 // Logic to determine if to end block

 if (...)

 mw.endBlock();

 }

 publisher.commit();

This example demonstrates publishing in callback access mode. Notice that the access mode
is set before the publisher is connected; this is a requirement for both callback and select
access modes.

 p.connect(60000);

 PublisherOptions opts = new PublisherOptions.Builder()

 .setAccessMode(AccessMode.CALLBACK)

 .create();

 Publisher pub = p.createPublisher(opts);

 PublisherHandler handler = new PublisherHandler();

 pub.setCallback(EnumSet.allOf(PublisherEvent.Type.class),
handler);

 pub.connect();

 // Block/wait. Publishing happens in the callback handler

 //

 //

 // Publisher callback handler

 //

Publishing

Java SDK Guide 17

 public class PublisherHandler implements Callback<PublisherEvent>

 {

 Stream m_stream;

 MessageWriter m_mwriter;

 RelativeRowWriter m_rowwriter;

 public PublisherHandler() throws IOException {

 }

 public String getName() {

 return "PublishHandler";

 }

 public void processEvent(PublisherEvent event)

 {

 switch (event.getType()) {

 case CONNECTED:

 // It is advisable to create and cache these

 try {

 m_stream =
event.getPublisher().getProject().getStream("Stream");

 m_mwriter =
event.getPublisher().getMessageWriter(m_stream);

 m_rowwriter = m_mwriter.getRelativeRowWriter();

 } catch (IOException e) {

 e.printStackTrace();

 }

 break;

Publishing

18 SAP Sybase Event Stream Processor

 case READY:

 // Publishing code goes here.

 // NOTE: Only a single publish or a commit call can be
made in one READY callback

 break;

 case ERROR:

 case DISCONNECTED:

 case CLOSED:

 break;

 }

 }

 }

Working Example
The previous sample code on publishing is provided for illustration purposes, but does not
comprise a full, working example.

SAP Sybase Event Stream Processor ships with fully functioning examples you can use as a
starting point for your own projects. Examples for publishing are located in:

%ESP_HOME%\examples\java\com\sybase\esp\sdk\examples (Windows)

$ESP_HOME/examples/java/com/sybase/esp/sdk/examples (Linux and
Solaris)

Publishing

Java SDK Guide 19

Publishing

20 SAP Sybase Event Stream Processor

Subscribing

The SDK provides several options for subscribing to data in a project.

Subscribing to data using the SDK involves:

1. Create a Subscriber object. Create the object directly or retrieve it from a Project object.
2. Connect the Subscriber object.
3. Subscribe to one or more streams. Call Subscriber.subscribeStream(Stream

stream) for each stream you are connecting to, or use
Subscriber.subscriberStreams(Stream[] stream) to specify multiple
streams.

4. In direct access mode, retrieve events using the Subscriber.getNextEvent() object. In
callback and select access modes, the SDK generates events and passes them back to user
code.

5. For data events, retrieve MessageReader. This encapsulates a single message from the ESP
project. It may consist of a single data row or a block with multiple data rows.

6. Retrieve one or more RowReaders. Use the methods in RowReader to read in individual
fields.

The sample code provided here is for illustration only; it does not comprise a complete,
working example. This example demonstrates subscribing to a stream in direct access mode
with default options:

 p.connect(60000);

 subscriber = p.createSubscriber();

 String strName = "WIN1";

 subscriber.subscribeStream("WIN1");

 subscriber.connect();

 // Various data type we will be reading

 BigDatetime bigdatetime = null;

 Money m = null;

 byte[] binary = null;

Subscribing

Java SDK Guide 21

 // Logic to exit loop goes here

 while (true) {

 SubscriberEvent event = subscriber.getNextEvent();

 switch (event.getType()) {

 case SYNC_START:

 break;

 case SYNC_END:

 break;

 // There is data to read

 case DATA:

 while (reader.hasNextRow()) {

 RowReader rr = reader.nextRowReader();

 for (int j = 0; j < rr.getSchema().getColumnCount();
++j) {

 if (rr.isNull(j))

 continue;

 // This is legal but it is better to cache the
data types array

 switch (rr.getSchema().getColumnTypes()[j]) {

 case INTEGER:

 rr.getInteger(j);

 break;

 case LONG:

 rr.getLong(j);

 break;

 case STRING:

Subscribing

22 SAP Sybase Event Stream Processor

 rr.getString(j);

 break;

 case TIMESTAMP:

 rr.getTimestamp(j));

 break;

 case MONEY01:

 m = rr.getMoney(j);

 break;

 // ...

 // process other data types

 // ...

 }

 }

 }

 break;

 }

 }

 subscriber.disconnect();

Working Example
The previous sample code on subscribing is provided for illustration purposes, but does not
comprise a full, working example.

SAP Sybase Event Stream Processor ships with fully functioning examples you can use as a
starting point for your own projects. Examples for subscribing are located in:

%ESP_HOME%\examples\java\com\sybase\esp\sdk\examples (Windows)

Subscribing

Java SDK Guide 23

$ESP_HOME/examples/java/com/sybase/esp/sdk/examples (Linux and
Solaris)

Subscribing with Guaranteed Delivery
Use guaranteed delivery (GD) to ensure that events are still delivered to the subscriber if the
connection is temporarily lost or the server is restarted.

Prerequisites
Enable guaranteed delivery in a window and attach a log store in the CCL. To receive
checkpoint messages from the server on streams using GD with checkpoint, set the Auto
Checkpoint parameter in the project configuration file. The client may also receive checkpoint
messages if the consistent recovery option is turned on and a publisher commits a message.

Task

Guaranteed delivery is a delivery mechanism that preserves events produced by a window,
keeps data in a log store, and tracks events consumed by GD subscribers. For more
information on guaranteed delivery, see the Programmers Guide.

A CCL project can be set to checkpoint after a number of messages pass through it. Once the
configured number of messages pass through the project, the server commits the log store and
sends a checkpoint message to the subscriber. This indicates that all messages up to the
checkpoint sequence number are safely logged in the system.

A subscriber must indicate to the server when it has processed the messages and can recover
them without the server. The subscriber can call esp_publisher_commit_gd at any
time to tell the server the sequence number of the last message that has been processed. The
commit call ensures that the server will not resend messages up to and including the last
sequence number committed, and allows it to reclaim resources consumed by these messages.
The subscriber should not commit sequence numbers higher than the sequence number
received via the last checkpoint message. This ensures that no data is lost if the server restarts.

1. Request a GD subscription by setting setGDSession(String gdName) in
SubscriberOptions and creating the subscriber.

2. Create and connect a Publisher object.

3. Check if streams have GD or GD with checkpoint enabled, either from the project interface
by calling project.isGDStream(String streamName) and
project.isGDCheckPointStream(String streamName) or from the
stream interface by calling stream.isGDEnabled() and
stream.isGDCheckPointEnabled().

Subscribing

24 SAP Sybase Event Stream Processor

4. Retrieve active and inactive GD sessions by calling
project.getActiveGDSessions() and
project.getInactiveGDSessions().

5. Tell the server that the subscriber has committed messages up to a given sequence number
and no longer needs them by calling publisher.commitGD(String gdName,
int[] streamIDs, long[] seqNos) throws IOException.

6. Cancel the GD session by closing the subscriber or with
project.cancelGDSession(String gdName).

Example
 // create a GD subscriber
 SDK sdk = SDK.getInstance();
 SubscriberOptions.Builder optBuilder = new
SubscriberOptions.Builder();
 optBuilder.setGDSession(gdName);
 SubscriberOptions options = optBuilder.create();
 Subscriber subscriber = sdk.createSubscriber(projectUri, creds,
options);

 subscriber.connect();
 subscriber.subscribeStream(gdStream);

 // create an ESP project
 ProjectOptions opts = new ProjectOptions.Builder().create();
 ProjectImpl project = (ProjectImpl)
SDK.getInstance().getProject(projectUri, creds, opts);
 project.connect(60000);

 // create a publisher to commitGD message
 Publisher publisher = project.createPublisher();
 publisher.connect();
 Stream stream = project.getStream(gdStream);

 // check GD status/mode
 boolean gdStatus = project.isGDStream(gdStream);
 boolean gdCPStatus = project.isGDCheckPointStream(gdStream);
 boolean isGD = subscriber.isGD();

 // retrieve GD sessions
 String[] actGD = project.getActiveGDSessions();
 String[] inactGD = project.getInactiveGDSessions();

 int streamId = stream.getStreamId();
 long seqNo = 0L; // sequence number for GD record
 SubscriberEvent event = null;
 boolean done = false;

 while (!done) {
 event = subscriber.getNextEvent();
 switch (event.getType()) {
 case DATA:
 MessageReader reader =
event.getMessageReader();

Subscribing

Java SDK Guide 25

 Stream s = reader.getStream();
 String str = s.getName();
 while (reader.hasNextRow()) {
 // use nextRowReader(isGD) to read GD
and non-GD records
 RowReader row =
reader.nextRowReader(isGD);

System.out.println(row.toXmlString(str));
 }
 break;
 case CHECKPOINT:
 // retrieve the sequence number returned by
CHECKPOINT message
 seqNo = event.getSeqNo();
 System.out.println("<checkpoint>" + seqNo +
"</checkpoint>");
 int[] streamIds = new int[1];
 streamIds[0] = streamId;
 long[] seqNos = new long[1];
 seqNos[0] = seqNo;
 // commitGD message for a single stream with
the corresponding
 // last checkpointed sequence number
 publisher.commitGD(gdName, streamIds,
seqNos);
 System.out.println("<commitGD>" + seqNo +
"</commitGD>");
 break;
 case CLOSED:
 System.out.println("<closed/>");
 done = true;
 break;
 case DISCONNECTED:
 System.out.println("<disconnected/>");
 done = true;
 break;
 }
 }

 // cancel GD session and disconnect subscriber and publisher
before exit
 project.cancelGDSession(gdName);
 subscriber.disconnect();
 publisher.disconnect();

Subscribing

26 SAP Sybase Event Stream Processor

Failover Handling

The SDK supports either fully transparent or automatic failover in a number of situations.
• Cluster Failovers – the URIs used to connect to a back-end component can include a list

of cluster manager specifications. The SDK maintains connections to these transparently.
If any one manager in the cluster goes down, the SDK tries to reconnect to another
instance. If connections to all known instances fail, the SDK returns an error. If working in
callback or select access modes, you can configure the SDK with an additional level of
tolerance for loss of connectivity. In this case, the SDK does not disconnect a Server
instance even if all known manager instances are down. Instead, it generates a
ServerEvent.STALE event. If it manages to reconnect after a (configurable) number of
attempts, it generates a ServerEvent.UPTODATE event. Otherwise, it disconnects and
generates a ServerEvent.DISCONNECTED event.

• Project Failovers – an Event Stream Processor cluster lets you deploy projects with
failover. Based on the configuration settings, a cluster restarts a project if it detects that it
has exited (however, projects are not restarted if they are explicitly closed by the user). To
support this, you can have Project instances monitor the cluster for project restarts and then
reconnect. This works only in callback or select modes. When the SDK detects that a
project has gone down, it generates a ProjectEvent.STALE event. If it is able to reconnect,
it generates a ProjectEvent.UPTODATE event, otherwise it generates a
ProjectEvent.DISCONNECTED event.

When the SDK reconnects, entities obtained from the project are no longer valid. This
includes publishers, subscribers, message readers/writers, and row readers/writers. After
reconnecting, recreate these objects from the project.

In direct access mode, the SDK does not monitor the cluster for restarts. If a
communication error occurs, the project object and all project-related entities are
invalidated. Close the project, which also closes any elements it contains, then create a new
project object and reconnect. The following example shows one way of doing this:
// Encountered communication error
project.close();
Project project = s_sdk.getProject(uri, creds);
project.connect(WAIT_TIME_60000_MS);
// will succeed if cluster has restarted project.
// Create publisher or subscriber and proceed

• Active-Active Deployments – you can deploy a project in active-active mode. In this
mode, a cluster starts two instances of the project: a primary instance and a secondary
instance. Any data published to the primary is automatically mirrored to the secondary
instance. The SDK supports active-active deployments. When connected to an active-
active deployment, if the currently connected instance goes down, the Project tries to
reconnect to the alternate instance. Unlike failovers, this happens transparently. Therefore,
if the reconnection is successful, there is no indication given to the user. In addition to the
Project, there is support for this mode when publishing and subscribing. If subscribed to a

Failover Handling

Java SDK Guide 27

project in an active-active deployment, the SDK does not disconnect the subscription if the
instance goes down. Instead, it generates a SubscriberEvent.DATA_LOST event. It then
tries to reconnect to the peer instance. If it is able to reconnect, the SDK resubscribes to the
same streams. Subscription clients then receive a SubscriberEvent.SYNC_START event,
followed by the data events, and finally a SubscriberEvent.SYNC_END event. Clients can
use this sequence to maintain consistency with their view of the data if needed.
Reconnection during publishing is also supported, but only if publishing in synchronous
mode. It is not possible for the SDK to guarantee data consistency otherwise.
Reconnection during publishing happens transparently; there are no external user events
generated.

Failover Handling

28 SAP Sybase Event Stream Processor

Examples

ESP includes several working examples for the Java SDK.

ESP_JDBC_Example Shows how to perform ad-hoc inserts, updates, and deletes for ESP
windows

ESP_SQL_Projection Shows how to subscribe to a subset of data

ProjectDeployment Shows how to deploy a project to the cluster with the SDK

PublisherAnySchemaExample Publishes using stream metadata

PublisherExample Demonstrates the basics of SDK use

SubscriberCallbackExample Subscribes using the callback mechanism

SubscriberExample Displays published data

UpdateShineThroughExample Publishes updates using ShineThrough

WorkspaceProjectProperties Shows the type of information about the cluster and projects that can
be retrieved. Similar to esp_cluster_admin functionality

These examples and a readme file with instructions for running them are located at
ESP_HOME\examples\java.

Examples

Java SDK Guide 29

Examples

30 SAP Sybase Event Stream Processor

API Reference

Detailed information on methods, functions, and other programming building blocks is
provided in the API level documentation.

To access the API level documentation:

1. Navigate to <Install_Dir>/ESP-5_1/doc/sdk/java.

2. Launch index.html.

API Reference

Java SDK Guide 31

API Reference

32 SAP Sybase Event Stream Processor

Index
A
Access Modes

callback 3
direct 3
select 3

API reference
Java 31

D
direct mode

example 21

E
example

subscribing 21

F
failover

active-active 27
cluster 27
project 27

fault tolerance 27

J
Java API reference 31

M

modes of publishing
batching 13
sync 13

P

project
publishing to 13

Publishing
improving throughput 13
modes 13
to project 13

S

Subscribing
example 21
in direct mode 21
to stream 21

Index

Java SDK Guide 33

Index

34 SAP Sybase Event Stream Processor

	Java SDK Guide
	Contents
	Migration from Aleri Streaming Platform
	Entity Lifecycles and Access Modes
	Starting and Stopping the Java SDK
	Publishing
	Working Example

	Subscribing
	Working Example
	Subscribing with Guaranteed Delivery

	Failover Handling
	Examples
	API Reference
	Index

