
Adapters Guide

Sybase Event Stream Processor
5.0

DOCUMENT ID: DC01615-01-0500-05
LAST REVISED: June 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Introduction ...1
Input and Output Adapters ...1
Internal and External Adapters ...2
Custom Adapters ...3
Working with Adapters ..3

Publishing Data with Output Adapters4
Datatypes ..5

Adapter Parameters Datatypes8
Date and Timestamp Formats for Input Adapters11
Date and Timestamp Formats for Output Adapters12

CHAPTER 2: Adapters Supported by Event Stream
Processor ...15

Adapter Summary ..15
Editing Adapter Property Sets ..17
Internal Adapters ...18

AtomReader Input Adapter ...18
Database Adapter ...20

Database Input Adapter20
Database Output Adapter22
Datatype Mapping for the Database Adapter26

File CSV Input Adapter ...32
File CSV Output Adapter ..35
File XML Input Adapter ...37
File XML Output Adapter ..41
File FIX Input Adapter ...42

Datatype Mapping for the File FIX Input Adapter
...43

File FIX Output Adapter ..44

Adapters Guide iii

Datatype Mapping for the File FIX Output
Adapter ..45

JMS Adapter ...46
Configuring a Queuing System for JMS Adapter

...46
JMS CSV Input Adapter47
JMS CSV Output Adapter50
JMS Custom Input Adapter55
JMS Custom Output Adapter59
JMS FIX Input Adapter ..64
JMS FIX Output Adapter66
JMS Object Array Input Adapter70
JMS Object Array Output Adapter74
JMS XML Input Adapter79
JMS XML Output Adapter82

Random Tuples Generator Input Adapter87
Socket FIX Input Adapter ..92

Datatype Mapping for the Socket FIX Input
Adapter ..94

Socket FIX Output Adapter ...94
Datatype Mapping for the Socket FIX Output

Adapter ..96
Socket (As Client) CSV Input Adapter96
Socket (as Client) CSV Output Adapter99
Socket (As Client) XML Input Adapter101
Socket (As Client) XML Output Adapter103
Socket (As Server) XML Input Adapter104
Socket (As Server) XML Output Adapter106
Socket (As Server) CSV Input Adapter107
Socket (As Server) CSV Output Adapter109
SMTP Output Adapter ..110
Sybase IQ Output Adapter ..115

Datatype Mapping for the Sybase IQ Adapter . . .120
WebSphere MQ Adapter ..120

WebSphere MQ Input Adapter121

Contents

iv Sybase Event Stream Processor

WebSphere MQ Output Adapter123
Queue Configuration ..126

External Adapters ..127
ESP Add-In for Microsoft Excel127

Connection Wizard ..127
Subscription Wizard ...129
Publication Wizard ...130
Automatic Publishing ...132
Subscription Queries ...134
Applying a Query ...134
Known Issues and Limitations135

FIX Adapter ...135
Supported FIX Versions136
Control Flow ...136
Data Streams ...138
Adapters and Sessions141
Message Flow ..142
Datatype Mapping for the FIX Adapter143
Setting the JAVA_HOME Environment Variable 143
Configuration ...143
Operation ...164
Examples ...166

Flex Adapter ...175
Control Flow ...175
Message Flow ..176
Stream Handler ..177
Setting the JAVA_HOME Environment Variable 179
Configuration ...179
Operation ...184
Example: Sending a Subscription Request186

HTTP Output Adapter ...188
Control Flow ...188
Message Flow ..190
Setting the JAVA_HOME Environment Variable 191
Configuration ...191

Contents

Adapters Guide v

Operation ...198
Example: Sending, Receiving, and Viewing

Data ..200
KDB Adapter ...202

Control Flow ...202
Datatype Mapping for the KDB Adapter202
KDB Input Adapter ...204
KDB Output Adapter ..209

Log File Input Adapter ..214
Configuration ...215
Properties ..216
Starting the Adapter from the Command Line . . .218

NYSE Technologies Input Adapter219
Control Flow ...219
Watchlists ..221
Data Streams ...224
Stale Records ..226
Message Flow ..227
Datatype Mapping for the NYSE Adapter228
Setting the JAVA_HOME Environment Variable

...228
Configuration ...228
Operation ...237
Example: Subscribing to and Publishing Data .. .240

Open Adapter ...241
Datatype Mapping for the Open Adapter242
Setting the JAVA_HOME Environment Variable

...243
Configuration ...243
Starting the Open Adapter284
Monitoring the Open Adapter284
Examples ...289

RAP Adapter ...303
Start Command ...303
Stop Command ..304

Contents

vi Sybase Event Stream Processor

Datatype Mapping for the RAP Adapter304
Configuration ...306
Operation ... 318

Replication Server Adapter ...320
Configuring the Adapter on the Replication

Server Workstation ..320
Configuring the Adapter on an Event Streaming

Processor Workstation322
Defining a Persistent rs_lastcommit326
Supported Datatypes ...327
Performance Tips ...327

Reuters Marketfeed Adapter327
Requirements ..328
General Configuration ..328
Input Adapter Configuration331
Output Adapter Configuration 342
Creating a Subordinate Map File 348
Performance Tuning ...350
Command Usage ...352
Environment Variables354
Input Adapter Map File XML Syntax 355
Output Adapter Map File XML Syntax382
Logging Facilities ...395

Reuters OMM Adapter ..401
Requirements ..401
General Configuration ..402
Input Adapter Configuration405
Output Adapter Configuration 415
Split Adapter Map Files419
Command Usage ...420
Environment Variables424
Input Adapter Map File426
Output Adapter Map File XML Syntax458
Logging Facilities ...469

RTView Adapter ..475

Contents

Adapters Guide vii

Datatype Mapping for the RTView Adapter475
Installing the RTView Adapter476
Configuration: Creating and Updating a Sybase

Connection ..476
Operation ...479
Running the Publisher Example485
Running the Subscriber Example486
Known Limitations ..487

TIBCO Rendezvous Adapter488
Control Flow ...488
Data Streams ...490
Message Flow ..490
Datatype Mapping for the TIBCO Rendezous

Adapter ..491
Setting the JAVA_HOME Environment Variable

...492
Configuration ...492
Operation ...501
Example: Subscribing and Publishing503

CHAPTER 3: Custom Adapters505
Custom Internal Adapters ...505

The Adapter Shared Utility Library505
Callback Functionality ...506
Sample Model File ..506
The Adapter Configuration File506
Adapter Life Cycle Functions507
Adapter Setup Functions ..508
Miscellaneous Functions ..508
Adapter Run States ..509
Schema Discovery for Internal Custom Adapters510
Sample Custom Internal Adapter Implementation510

Custom External Adapters ..517
External Adapter Configuration File518

Contents

viii Sybase Event Stream Processor

External Adapter Properties521
External Adapter Commands521
User-Defined Parameters and Parameter Substitution

..523
Auto-Generated Parameter Files525
configFilename Parameter ..526
Custom External Parameter Datatypes526
Creating Custom External Adapters527

Java External Adapters527
C/C++ External Adapters531
.Net External Adapters534

CHAPTER 4: Schema Discovery539
Adapters that Support Schema Discovery539

CHAPTER 5: Guaranteed Delivery543
Log Window ...544
Truncate Window ...545

Index ...547

Contents

Adapters Guide ix

Contents

x Sybase Event Stream Processor

CHAPTER 1 Introduction

Sybase® Event Stream Processor supplies an extensive set of input and output adapters that
you can use to subscribe to and publish data, including external process adapters. Event
Stream Processor also provides several SDKs that enable you to write an adapter.

The supplied adapters support numerous datatypes, as well as providing datatype mapping for
unsupported types.

Input and Output Adapters
Input and output adapters enable Event Stream Processor to send and receive messages from
dynamic and static external sources and destinations.

External sources or destinations can include:

• Data feeds
• Sensor devices
• Messaging systems
• Radio frequency identification (RFID) readers
• E-mail servers
• Relational databases

Input adapters connect to an external datasource and translate incoming messages from the
external sources into a format that is accepted by the Event Stream Processor Server. Output
adapters translate rows published by Event Stream Processor into message formats that are
compatible with external destinations and send those messages downstream.

The following illustration shows a series of input adapters that translate messages from a
temperature sensor, bar code scanner, and a Java Message Service (JMS) cloud into formats
compatible with Event Stream Processor. After the data is processed using various queries
within Event Stream Processor, output adapters convert the result rows into updates that are
sent to an external database server, e-mail server, and Web services dashboard.

Adapters Guide 1

Figure 1: Adapters in Event Stream Processor

Internal and External Adapters
An adapter that runs as part of the Server is called an internal adapter. An adapter that runs as a
separate process is called an external adapter.

Internal adapters generally run faster because the Server can get data from (or to) the adapter
with less overhead. Internal adapters are started by the Server when it starts the corresponding
project (query module). The adapter is recognized by Sybase Event Stream Processor Studio,
and from inside Studio, you can attach the adapter to a stream by selecting the adapter from a
menu of adapters. A disadvantage of internal adapters is that if the adapter crashes, it may
crash the Server as well.

External adapters have more flexibility than internal adapters and can run on a different
machine than the Server. Like internal adapters, external adapter can be configured using
Studio, and started and stopped by the Server as long as they are installed with an adapter
configuration file.

External adapters can be either "managed" or "unmanaged". Managed external adapters
provide an adapter configuration file (.cnxml) that can be configured using Studio,
referenced in a CCL ATTACH ADAPTER statement, and can be started and stopped by the
Server, behaving very similarly to an internal adapter. Unmanaged external adapters are not
referenced in a CCL ATTACH ADAPTER statement, and are not managed by the Server. You
start, stop, and configure these adapters independently.

CHAPTER 1: Introduction

2 Sybase Event Stream Processor

Custom Adapters
In addition to the adapters provided by Event Stream Processor, you can write your own
adapters to integrate into the Server. You can design adapters to handle a variety of external
requirements that the standard adapters cannot manage.

Event Stream Processor provides a variety of SDKs that allow you to write adapters in a
number of programming languages, including:

• C
• C++
• Java
• .NET (C#, Visual Basic, and so on)

For versions supported for SDKs, see the Installation Guide.

See also
• Custom External Adapters on page 517

• Custom Internal Adapters on page 505

• Java External Adapters on page 527

• C/C++ External Adapters on page 531

• .Net External Adapters on page 534

• Creating Custom External Adapters on page 527

Working with Adapters
Pre-planning and configuration steps to consider when using Event Stream Processor-
supplied and custom adapters.

Overview of typical tasks to perform before attaching an input adapter to the Server, as well as
an introduction to the CCL ATTACH ADAPTER statement.

Note: Unmanaged adapters are not referenced in the CCL ATTACH ADAPTER statement, and
need to be configured, started, and stopped independently.

Detailed information on configuring individual adapters, datatype mapping, and schema
discovery are contained in this guide. You can also refer to the CCL queries, ATTACH
ADAPTER statement, CREATE SCHEMA statement, and Parameters topics in the CCL
Programmers Guide.

1. Assess the input data. Determine which sets or subsets of data you want to pull into the
Server

CHAPTER 1: Introduction

Adapters Guide 3

2. Choose an input adapter for your task.

If the datasource uses datatypes that are not supported by the Server, the Server maps the
data to an accepted datatype. Review the associated mapping description for your adapter
in this guide.

3. Configure your adapter as required.

4. Create a stream or window and use the CREATE SCHEMA statement to define the structure
for incoming data.

5. Use the ATTACH ADAPTER statement to attach your adapter to the Server stream or
window, and set values for the adapter properties.

To declare default parameters for your adapter properties, use the DECLARE block and
parameters qualifier to define default parameter values before you attach your adapter.
Once you create the ATTACH ADAPTER statement, you can set the adapter properties to the
parameter values you declared.

Note: You can only bind declared parameters to a new value when a module or project is
loaded.

6. Run your data queries and perform analysis.

7. Publish your results.

Publishing Data with Output Adapters
An overview of typical tasks to perform before attaching an output adapter to an external data
destination.

1. Assess the output data. Determine which sets or subsets of data you want to send to an
external data destination.

2. Choose an output adapter for your task.

If the output destination uses datatypes that are not supported by the Server, the Server
maps the data to an accepted datatype. Review the associated mapping description for your
adapter in this guide to ensure that the resulting datatype is permitted by the external data
destination.

3. Configure the adapter as required.

4. Create an output stream or window and use the CREATE SCHEMA statement to define the
structure for outgoing data.

5. Use the ATTACH ADAPTER statement to attach your adapter to the output stream or
window, and set values for the adapter properties.

To declare default parameters for your adapter properties, use the DECLARE block and
parameters qualifier to define default parameter values before you attach your adapter.
Once you create the ATTACH ADAPTER statement, you can set the adapter properties to the
parameter values you declared.

CHAPTER 1: Introduction

4 Sybase Event Stream Processor

Note: You can only bind declared paramaters to a new value when a module or project is
loaded.

6. Publish your results.

Datatypes
Sybase Event Stream Processor supports integer, float, string, money, long, and timestamp
datatypes for all of its components.

Datatype Description

integer A signed 32-bit integer. The range of allowed values is -2147483648 to
+2147483647 (-231 to 231-1). Constant values that fall outside of this
range are automatically processed as long datatypes.

To initialize a variable, parameter, or column with a value of
-2147483648, specify (-2147483647) -1 to avoid CCL compiler errors.

long A signed 64-bit integer. The range of allowed values is
-9223372036854775808 to +9223372036854775807 (-263 to 263-1).

To initialize a variable, parameter, or column with a value of
-9223372036854775808, specify (-9223372036854775807) -1 to
avoid CCL compiler errors.

float A 64-bit numeric floating point with double precision. The range of
allowed values is approximately -10308 through +10308.

string Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but can be no more than
65535 bytes.

money A legacy datatype maintained for backward compatibility. It is a signed
64-bit integer that supports 4 digits after the decimal point. Currency
symbols and commas are not supported in the input data stream.

CHAPTER 1: Introduction

Adapters Guide 5

Datatype Description

money(n) A signed 64-bit numerical value that supports varying scale, from 1 to
15 digits after the decimal point. Currency symbols and commas are not
supported in the input data stream, however, decimal points are.

The supported range of values change, depending on the specified scale.

money(1): -922337203685477580.8 to 922337203685477580.7

money(2): -92233720368547758.08 to 92233720368547758.07

money(3): -9223372036854775.808 to 9223372036854775.807

money(4): -922337203685477.5808 to 922337203685477.5807

money(5): -92233720368547.75808 to 92233720368547.75807

money(6): -92233720368547.75808 to 92233720368547.75807

money(7): -922337203685.4775808 to 922337203685.4775807

money(8): -92233720368.54775808 to 92233720368.54775807

money(9): -9223372036.854775808 to 9223372036.854775807

money(10): -922337203.6854775808 to 922337203.6854775807

money(11): -92233720.36854775808 to 92233720.36854775807

money(12): -9223372.036854775808 to 9223,372.036854775807

money(13): -922337.2036854775808 to 922337.2036854775807

money(14): -92233.72036854775808 to 92233.72036854775807

money(15): -9223.372036854775808 to 9223.372036854775807

To initialize a variable, parameter, or column with a value of
-92,233.72036854775807, specify (-9...7) -1 to avoid CCL compiler
errors.

Specify explicit scale for money constants with Dn syntax, where n

represents the scale. For example, 100.1234567D7, 100.12345D5.

Implicit conversion between money(n) types is not supported be-

cause there is a risk of losing range or scale. Perform the cast function to
work with money types that have different scale.

CHAPTER 1: Introduction

6 Sybase Event Stream Processor

Datatype Description

bigdatetime Timestamp with microsecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSSSSS.

All numeric datatypes are implicitly cast to bigdatetime.

The rules for conversion vary for some datatypes:

• All boolean, integer, and long values are converted in

their original format to bigdatetime

• Only the whole-number portions of money(n) and float
values are converted to bigdatetime. Use the cast function to

convert money(n) and float values to bigdatetime
with precision.

• All date values are multiplied by 1000000 and converted to mi-

croseconds to satisfy bigdatetime format.

• All timestamp values are multiplied by 1000 and converted to

microseconds to satisfy bigdatetime format.

timestamp Timestamp with millisecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSS.

date Date with second precision. The default format is YYYY-MM-
DDTHH:MM:SS.

CHAPTER 1: Introduction

Adapters Guide 7

Datatype Description

interval A signed 64-bit integer that represents the number of microseconds
between two timestamps. Specify an interval using multiple units

in space-separated format, for example, "5 Days 3 hours 15 Minutes".
External data that is sent to an interval column is assumed to be in
microseconds. Unit specification is not supported for interval
values converted to or from string data.

When an interval is specified, the given interval must fit in a 64-bit

integer (long) when it is converted to the appropriate number of

microseconds. For each interval unit, the maximum allowed val-

ues that fit in a long when converted to microseconds are:

• MICROSECONDS (MICROSECOND, MICROS): +/-
9223372036854775807

• MILLISECONDS (MILLISECOND, MILLIS): +/-
9223372036854775

• SECONDS(SECOND, SEC): +/- 9223372036854

• MINUTES(MINUTE, MIN): +/- 153722867280

• HOURS(HOUR,HR): +/- 2562047788

• DAYS(DAY): +/- 106751991

The values in parentheses are alternate names for an interval unit.

When the maximum value for a unit is specified, no other unit can be
specified or it causes an overflow. Each unit can be specified only once.

binary Represents a raw binary buffer. Maximum length of value is platform-
dependent, but can be no more than 65535 bytes. NULL characters are
permitted.

boolean Value is true or false. The format for values outside of the allowed range
for boolean is 0/1/false/true/y/n/on/off/yes/no, which is case-insen-

sitive.

Adapter Parameters Datatypes
A comprehensive list of datatypes you can use with adapters supplied by Event Stream
Processor, or any custom internal or external adapters you create.

Some exceptions for custom external adapters are noted in the datatype descriptions.

Note: This table includes all the adapter related datatypes supported by Event Stream
Processor. For more information on specific datatypes supported by an adapter, as well as its
datatype mapping description, see the section on that adapter.

CHAPTER 1: Introduction

8 Sybase Event Stream Processor

Datatype Description

boolean Value is true or false. The format for values outside of the allowed range
for boolean is 0/1/false/true/y/n/on/off/yes/no, which is case insen-

sitive.

choice A list of custom values from which a user would select one value.

configFilename Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no more than 65535
bytes.

directory Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no more than 65535
bytes.

double Floating point value. The range of allowed values is 2.22507e-308 to
1.79769e+308

filename Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no more than 65535
bytes.

int A signed 32-bit integer value. The range of allowed values is
-2147483648 to +2147483647 (-23^1 to 2^31-1). Constant values that
fall outside of this range are automatically processed as long datatypes.

To initialize a variable, parameter, or column with the lowest negative
value, specify (-2...7) -1 instead to avoid CCL compiler errors. For
example, specify (-2147483647) -1 to initialize a variable, parameter, or
column with a value of -2147483648.

password Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no more than 65535
bytes.

Note: While entering value for this field, user can see '*' for every
character.

permutation Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no more than 65535
bytes.

Note: This datatype is not supported for custom external adapters.

CHAPTER 1: Introduction

Adapters Guide 9

Datatype Description

range An integer value for which user can define lower and upper limits. e.g.

<Parameter id="port" label="KDB Port" descr="IP
port of the database listener"
 type="range" rangeLow="0" range-
High="65535" default="5001"
 use="required"
 />

query A string value Studio creates from the tablename.

Note: This datatype is not supported for custom external adapters.

runtimeDirectory Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no less than 65535
bytes.

Note: This datatype is not supported for custom external adapters.

runtimeFilename Runtime filename, if different from discovery time filename.

Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no more than 65535
bytes.

Note: This datatype is not supported for custom external adapters.

string Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, but no more than 65535
bytes.

tables This is list of choices returned by getTables() defined in adapter.

text A value capable of storing multiline text.

Note: This datatype is not supported for custom external adapters.

uint Positive intger value. The range of allowed values is 0 to 0xffffffff.

See also
• Custom External Parameter Datatypes on page 526

• Internal Adapters on page 18

• External Adapters on page 127

• Chapter 3, Custom Adapters on page 505

CHAPTER 1: Introduction

10 Sybase Event Stream Processor

Date and Timestamp Formats for Input Adapters
Sybase supports numerous formats for date and timestamp datatypes.

Use the info below to create a custom format for your date and timestamp datatypes.

Character Description

%a The day of the week, using the locale's weekday names. You can specify either
the abbreviated or full name.

%A Equivalent to %a.

%b The month, using the locale's month names. You can specify either the abbre-
viated or full name.

%B Equivalent to %b.

%c The locale's appropriate date and time representation.

%C The century number [00,99]. Leading zeros are permitted but not required.

%d The day of the month [01,31]. Leading zeros are permitted but not required.

%D The date as %m / %d / %y.

%e Equivalent to %d.

%h Equivalent to %b.

%H The hour (24-hour clock) [00,23]. Leading zeros are permitted but not re-
quired.

%I The hour (12-hour clock) [01,12]. Leading zeros are permitted but not re-
quired.

%j The day number of the year [001,366]. Leading zeros are permitted but not
required.

%m The month number [01,12]. Leading zeros are permitted but not required.

%M The minute [00,59]. Leading zeros are permitted but not required.

%n Any white space.

%p The locale's equivalent of a.m or p.m.

%r 12-hour clock time using the AM/PM notation.

%R The time as %H : %M.

%S The seconds [00,60]. Leading zeros are permitted but not required.

CHAPTER 1: Introduction

Adapters Guide 11

Character Description

%t Any white space.

%T The time as %H : %M : %S.

%U The week number of the year (Sunday as the first day of the week) as a decimal
number [00,53]. Leading zeros are permitted but not required.

%w The weekday as a decimal number [0,6], with 0 representing Sunday. Leading
zeros are permitted but not required.

%W The week number of the year (Monday as the first day of the week) as a decimal
number [00,53]. Leading zeros are permitted but not required.

%x The date, using the locale's date format.

%X The time, using the locale's time format.

%y The year within the century. When a century is not otherwise specified, values
in the range [69,99] shall refer to years 1969 to 1999 inclusive, and values in the
range [00,68] shall refer to years 2000 to 2068 inclusive. Leading zeros are
permitted but not required.

%Y The year, including the century. For example, 1988.

%% Replaced by %.

Date and Timestamp Formats for Output Adapters
Sybase supports numerous formats for date and timestamp datatypes.

Use the info below to create a custom format for your date and timestamp datatypes.

Character Description

%a The locale's abbreviated weekday name.

%A The locale's full weekday name.

%b The locale's abbreviated month name.

%B The locale's full month name.

%c The locale's appropriate date and time representation.

%C The year divided by 100, and truncated to an integer as a decimal number
[00,99].

%d The day of the month as a decimal number [01,31].

%D Equivalent to %m / %d / %y.

CHAPTER 1: Introduction

12 Sybase Event Stream Processor

Character Description

%e The day of the month as a decimal number [1,31]. A single digit is preceded by
a space.

%F Equivalent to %Y - %m - %d. This is the ISO 8601:2000 standard date format.

%g The last 2 digits of the week-based year, as a decimal number [00,99].

%G The week-based year as a decimal number. For example, 1977.

%h Equivalent to %b.

%H The hour (24-hour clock) as a decimal number [00,23].

%I The hour (12-hour clock) as a decimal number [01,12].

%j The day of the year as a decimal number [001,366].

%m The month as a decimal number [01,12].

%M The minute as a decimal number [00,59].

%n A <newline>.

%p The locale's equivalent of either a.m. or p.m.

%r The time in a.m. and p.m. notation.

%R The time in 24-hour notation (%H : %M).

%S The second as a decimal number [00,60].

%t A <tab>.

%T The time in the following format %H : %M : %S.

%u The weekday as a decimal number [1,7], with 1 representing Monday.

%U The week number of the year as a decimal number [00,53]. The first Sunday of
January is the first day of week 1, and days in the new year before this are in
week 0.

%V The week number of the year (Monday as the first day of the week) as a decimal
number [01,53]. If the week containing 1 January has four or more days in the
new year, then it is considered week 1. Otherwise, it is the last week of the
previous year, and the next week is week 1.

Both January 4th and the first Thursday of January are always in week 1.

%w The weekday as a decimal number [0,6], with 0 representing Sunday.

CHAPTER 1: Introduction

Adapters Guide 13

Character Description

%W The week number of the year as a decimal number [00,53]. The first Monday of
January is the first day of week 1, and days in the new year before this are in
week 0.

%x The locale's appropriate date representation.

%X The locale's appropriate time representation.

%y The last two digits of the year as a decimal number [00,99].

%Y The year as a decimal number. For example, 1997.

%z The offset from UTC in the ISO 8601:2000 standard format (+hhmm or -
hhmm), or by no characters if no time zone is determinable. For exam-
ple, "-0430" means 4 hours 30 minutes behind UTC (west of Greenwich).

%Z The time zone name or abbreviation, or by no bytes if no time zone information
exists.

%% Replaced by %.

CHAPTER 1: Introduction

14 Sybase Event Stream Processor

CHAPTER 2 Adapters Supported by Event
Stream Processor

Event Stream Processor supports various internal and external adapters.

Unless otherwise noted, these adapters support the same platforms and operating systems as
the Server and Studio. For information, see the Event Stream Processor Installation Guide.

Adapter Summary
Summary on adapters supported by Event Stream Processor. Includes the adapter type, and
whether the adapter is managed, Studio configurable, and supports guaranteed delivery.

Adapter Type Managed Studio
Configura-
ble

Supports Guar-
anteed Delivery

AtomReader Input Internal Yes Yes No

Database Input Internal Yes Yes No

Database Output Internal Yes Yes No

File CSV Input Internal Yes Yes No

File CSV Output Internal Yes Yes No

File XML Input Internal Yes Yes No

File XML Output Internal Yes Yes No

File FIX Input Internal Yes Yes No

File FIX Output Internal Yes Yes No

JMS CSV Input Internal Yes Yes Yes

JMS CSV Output Internal Yes Yes Yes

JMS Custom Input Internal Yes Yes Yes

JMS Custom Output Internal Yes Yes Yes

JMS FIX Input Internal Yes Yes Yes

JMS FIX Output Internal Yes Yes Yes

Adapters Guide 15

Adapter Type Managed Studio
Configura-
ble

Supports Guar-
anteed Delivery

JMS Object Array Input Internal Yes Yes Yes

JMS Object Array Output Internal Yes Yes Yes

JMS XML Input Internal Yes Yes Yes

JMS XML Output Internal Yes Yes Yes

Random Tuples Generator
Input

Internal Yes Yes No

Socket FIX Input Internal Yes Yes No

Socket FIX Output Internal Yes Yes No

Socket (as Client) CSV In-
put

Internal Yes Yes No

Socket (as Client) CSV
Output

Internal Yes Yes No

Socket (as Client) XML In-
put

Internal Yes Yes No

Socket (as Client) XML
Output

Internal Yes Yes No

Socket (as Server) XML
Input

Internal Yes Yes No

Socket (as Server) XML
Output

Internal Yes Yes No

Socket (as Server) CSV In-
put

Internal Yes Yes No

Socket (as Server) CSV
Output

Internal Yes Yes No

SMTP Output Internal Yes Yes No

Sybase IQ Output Internal Yes Yes No

WebSphere MQ Input Internal Yes Yes Yes

WebSphere MQ Output Internal Yes Yes Yes

FIX Input External Yes Yes No

CHAPTER 2: Adapters Supported by Event Stream Processor

16 Sybase Event Stream Processor

Adapter Type Managed Studio
Configura-
ble

Supports Guar-
anteed Delivery

FIX Output External Yes Yes No

Flex Output External No No No

HTTP Output External Yes Yes No

KDB Input External Yes Yes No

KDB Output External Yes Yes No

Log File Input External No No No

NYSE Technologies Input External Yes Yes No

Open Input External No No No

Open Output External No No No

RAP Output External No No No

Replication Server Input External Yes Yes Yes

Reuters Marketfeed Input External No No No

Reuters Marketfeed Output External No No No

Reuters OMM Input External No No No

Reuters OMM Output External No No No

RTView Output External No No No

Tibco Rendezvous Input External Yes No Yes

Tibco Rendezvous Output External Yes No Yes

Editing Adapter Property Sets
Use the CCR Project Configuration editor in Studio to configure adapter property sets.
Property sets are reusable sets of properties that are stored in the project configuration file.

Property sets appear in a tree format, and individual property definitions are shown as children
to property sets.

1. In the CCR Project Configuration editor, select the Adapter Properties tab.

2. To create a new adapter property node, click Add.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 17

3. Define a name for the property node in the Property Set Details pane.

4. To add a new property to a property set, right-click the set and select New > Property.

Note: You can add as many property items to a property set as required.

5. To configure a property:

a) Define a name for the property in the Property Details pane.
b) Enter a value for the property.

6. (Optional) To encrypt the property value:

a) Select the property value and click Encrypt.
b) Enter the required fields, including Cluster URI and credential fields.
c) Click Encrypt.

The value, and related fields are filled with randomized encryption characters.

Note: To reset the encryption, click Encrypt beside the appropriate field. Change the
values, as appropriate, then click Reset.

7. To remove items from the All Adapter Properties list:

• Right-click a property set and select Remove, or
• Right-click a property and select Delete.

Internal Adapters
Event Stream Processor provides internal adapters for processing standard data formats.

Internal adapters execute within Event Stream Processor. The Server starts and stops these
adapters with query module execution.

See also
• Adapter Parameters Datatypes on page 8

• Adapters that Support Schema Discovery on page 539

AtomReader Input Adapter
Adapter type: atomreader_in. The AtomReader Input adapter allows you to receive
information from ATOM datasources.

ATOM datasources enable connections through URLs and transmit their information in a
specialized XML format. Information the adapter receives from an ATOM datasource is
inserted into an Event Stream Processor stream.

Ensure that incoming XML information includes:

• feed_title
• feed_link

CHAPTER 2: Adapters Supported by Event Stream Processor

18 Sybase Event Stream Processor

• feed_author_name
• entry_title
• entry_link
• entry_content

Note: The adapter ignores any additional fields in the XML file.

If you are not already familiar with the specific XML format ATOM uses, see: http://
www.atomenabled.org/

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is atomreader_in.

Property Label Property ID Type Description

Source URL URL string (Required) The URL of the
ATOM datasource.

Refresh interval refreshInterval interval (Optional) Determines how of-
ten the specified URL is quer-
ied for data. The adapter meas-
ures the interval in microsec-
onds unless qualified with in-
terval formatting. Default val-
ue is 60000 milliseconds.

Timestamp format timestampFormat string (Advanced) The format string
for parsing timestamp values.
Default value is %Y-%m-%dT
%H:%M:%S.

Date Format dateFormat string (Advanced) The format string
for parsing date values. De-
fault value is %Y-%m-%dT
%H:%M:%S.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 19

http://www.atomenabled.org/
http://www.atomenabled.org/

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies the
name of the property set (a
group of properties and values)
you want to use from the
project configuration file. If
you specify the same proper-
ties in the project configuration
file and the ATTACH ADAPTER

statement, the values in the
property set override the val-
ues defined in the ATTACH

ADAPTER statement. No de-
fault value.

Database Adapter
Event Stream Processor provides an input and output database adapter. The Database Input
adapter receives data from a database table, and the Database Output adapter sends data to a
database table.

You can use several different JDBC and ODBC drivers with the database adapter. To use the
ODBC drivers, ensure you have a driver manager installed.

Database Input Adapter
Adapter type: db_in. The Database Input adapter receives data from a database table.

You can use the adapter to periodically poll the table and receive updates. The required
properties depend on the database type you are connecting to. The supported databases for
JDBC are Adaptive Server® Enterprise, Microsoft SQL Server, IBM DB2, Oracle, and KDB.
The supported databases for ODBC are Adaptive Server Enterprise, Microsoft SQL Server,
IBM DB2, Oracle, Sybase IQ, SQL Anywhere®, TimesTen, MySQL 5.x, and PostgreSQL.

The service.xml file contains service definitions and the properties required for a
database connection. For the service definition name, consult the person responsible for
configuring and maintaining the service.xml file. See the Adminstrators Guide for
information on configuring database connections using the service.xml file.

Use the query property to override the table selection and get data from an arbitrary query.
This adapter supports schema discovery.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is db_in.

Important: For an ASE database, enable the "ddl in tran" option on the temporary database
(tempdb) to discover all tables when using schema discovery. Then, update the Server by

CHAPTER 2: Adapters Supported by Event Stream Processor

20 Sybase Event Stream Processor

performing a checkpoint on tempdb or restarting the database instance. For more information
on the "ddl in tran" option, consult your Adaptive Server documentation.

Property
Label

Property
ID

Type Description

Database Serv-
ice

service string (Required) Name of database service as defined in the
service.xml file. No default value.

Database
Query

query string (Optional) The SQL query to be executed by the
adapter. No default value.

Note: The adapter definition requires either query or
table to be defined. If both parameters are defined the
query parameter is used.

Input Table
Name

table tables (Optional) Name of the table to read. No default value.

Poll Period (in
seconds)

pollperiod uint (Advanced) Period for polling for new contents, in
seconds. Default value is 0, which means no polling.

Date Format dateFormat string (Advanced) Format string for parsing date values.
Default value is %Y-%m-%dT%H:%M:%S.

Timestamp
Format

timestamp-

Format

string (Advanced) Format string for parsing timestamp val-
ues. Default value is %Y-%m-%dT%H:%M:%S.

Field Mapping permutation permu-
tation

(Advanced) Mapping between the in-platform and
external fields. No default value.

Note:

• For Oracle 11g and DB2 9.7, the metadata services
return results in uppercase, so ensure the database
column key in the permutation is in uppercase. For
example, in CCL, this command does not work:

permutation= 'Subject=sub-
ject:c_string=c_string'

but this one does:

permutation= 'Subject=SUB-
JECT:c_string=C_STRING'

• For ASE 15.5 and SQL Server 2008, the metadata
results are the same as the case in the defined col-
umn name, unless the name is modified in the
SELECT statement.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 21

Property
Label

Property
ID

Type Description

PropertySet propertyset string (Advanced) Specifies the name of the property set (a
group of properties and values) you want to use from
the project configuration file. If you specify the same
properties in the project configuration file and the AT-

TACH ADAPTER statement, the values in the property
set override the values defined in the ATTACH ADAPT-

ER statement. No default value.

The Database Input adapter has these limitations:

• Ensure, when polling, that this is the only adapter.
• Any data updates received from any other source are undone on the next poll.

Database Output Adapter
Adapter type: db_out. The Database Output adapter sends data to a database table.

You can truncate the table when the adapter starts using the truncateTable property. The
required properties depend on the database type you are connecting to. The supported
databases for JDBC are Adaptive Server Enterprise, Microsoft SQL Server, IBM DB2,
Oracle, and KDB. The supported databases for ODBC are Adaptive Server Enterprise,
Microsoft SQL Server, IBM DB2, Oracle, Sybase IQ, SQL Anywhere, TimesTen, MySQL
5.x, and PostgreSQL.

The service.xml file contains service definitions and the properties required for a
database connection. For the service definition name, consult the person responsible for
configuring and maintaining the service.xml file. See the Administrators Guide for more
information on configuring database connections using the service.xml file.

Attention: The Oracle ODBC driver does not support SQL_C_SBIGINT/SQL_C_UBIGINT
parameters, causing errors when the Database Output adapter tries to write long and
interval Event Stream Processor types to bigint type columns. To successfully use the
Oracle and the TimesTen ODBC drivers with the Database Output adapter, add this parameter
"<Parameter Name ="WriteBigIntAsChar" > true < /Parameter >" to
the service.xml file.

An example of specifying a different date format is when inserting a date column into an
Oracle Date column. The default Oracle date format is: 04-Apr-1964 17:12:00, so you
specify that the dateFormat parameter is d-%b-%Y %H:%M:%S.

Important: Enable the "Server side prepare" option in the ODBC configuration to ensure that
the Database Output adapter writes successfully to the PostgreSQL database using the ODBC
driver. For more information on this option, consult your ODBC documentation.

CHAPTER 2: Adapters Supported by Event Stream Processor

22 Sybase Event Stream Processor

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is db_out.

Important: For an ASE database, enable the "ddl in tran" option on the temporary database
(tempdb) to discover all tables when using schema discovery. Then, update the Server by
performing a checkpoint on tempdb or restarting the database instance. For more information
on the "ddl in tran" option, consult your Adaptive Server documentation.

Property La-
bel

Property ID Type Description

Database Service service string (Required) Name of database service as
defined in the service.xml file. No

default value.

Date Format dateFormat string (Advanced) Format string for parsing
date values. Default value is %Y-%m-
%dT%H:%M:%S.

Timestamp For-
mat

timestampFor-

mat

string (Advanced) Format string for parsing
timestamp values. Default value is %Y-
%m-%dT%H:%M:%S.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 23

Property La-
bel

Property ID Type Description

Field Mapping permutation permuta-
tion

(Advanced) Mapping between the in-
platform and external fields. No default
value.

Note:

• For Oracle 11g and DB2 9.7, the
metadata services return results in
uppercase, so ensure the database
column key in the permutation is in
uppercase. For example, in CCL,
this command does not work:

permutation= 'Sub-
ject=sub-
ject:c_string=c_string'

but this one does:

permutation= 'Sub-
ject=SUB-
JECT:c_string=C_STRING'

• For ASE 15.5 and SQL Server 2008,
the metadata results are the same as
the case in the defined column name,
unless the name is modified in the
SELECT statement.

Only Base Con-
tent

onlyBase boolean (Advanced) Send only the initial con-
tents of the stream, once. Default value is
false.

CHAPTER 2: Adapters Supported by Event Stream Processor

24 Sybase Event Stream Processor

Property La-
bel

Property ID Type Description

Batch Limit batchLimit uint (Advanced) Number of records to proc-
ess as a batch. Default value is 1.

Note: Using UPSERT with batch pro-
cessing may negatively impact perform-
ance, since this process may be termina-
ted if the adapter receives a delete. The
resolution of an UPSERT to either IN-
SERT or UPDATE based on stream con-
tent gives you less control over the
grouping of these operations. However,
frequently changing between operations
(INSERT, UPDATE, DELETE, and UP-
SET) reduces the optimization of using
batch processing.

Data Location datalocation string (Advanced) Looks up properties in the
project configuration. No default value.

Output Table
Name (runtime)

table tables (Optional) Name of the table to push
data to. No default value.

Include Base Con-
tent

outputBase boolean (Optional) Output initial stream con-
tents in addition to stream updates. De-
fault value is false.

Truncate the Data-
base Table

truncateTable boolean (Optional) Start by truncating the data-
base table, then populating with stream-
ing data. Default value is false.

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the project
configuration file. If you specify the
same properties in the project configu-
ration file and the ATTACH ADAPTER

statement, the values in the property set
override the values defined in the AT-

TACH ADAPTER statement. No default
value.

The Database Output adapter has these limitations:

• The output table must exist.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 25

• Each row translates to an SQL statement, therefore updates are slow.
• If you are using a memory store, you can perform only UPSERT, UPDATE, and DELETE

on data that is in the stream.

Datatype Mapping for the Database Adapter
Mapping between Event Stream Processor datatypes and Sybase Adaptive Service Enterprise,
Microsoft SQL Server, IBM DB2, Oracle, and KDB datatypes.

Datatype Mapping: Sybase ASE
Mapping between Event Stream Processor datatypes and Adaptive Server Enterprise 15.5
datatypes.

Event Stream Processor Datatype Adaptive Server Enterprise Datatype

integer int

long bigint

float float

date datetime

string varchar(n)

money money

timestamp bigdatetime

boolean smallint

or

bit (Does not support null values)

money1 numeric(19,1)

money2 numeric(19,2)

money3 numeric(19,3)

money4 numeric(19,4)

money5 numeric(19,5)

money6 numeric(19,6)

money7 numeric(19,7)

money8 numeric(19,8)

money9 numeric(19,9)

CHAPTER 2: Adapters Supported by Event Stream Processor

26 Sybase Event Stream Processor

Event Stream Processor Datatype Adaptive Server Enterprise Datatype

money10 numeric(19,10)

money11 numeric(19,11)

money12 numeric(19,12)

money13 numeric(19,13)

money14 numeric(19,14)

money15 numeric(19,15)

interval bigint

bigdatetime bigdatetime

binary varbinary(n)

Datatype Mapping: Microsoft SQL Server Database
Mapping between Event Stream Processor datatypes and Microsoft SQL Server 2008 R2
datatypes.

Event Stream Processor Datatype SQL Datatype

integer int

long bigint

float float

date datetime

string varchar(n)

money money

timestamp datetime2

boolean smallint

or

bit (Does not support null values)

money1 numeric(19,1)

money2 numeric(19,2)

money3 numeric(19,3)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 27

Event Stream Processor Datatype SQL Datatype

money4 numeric(19,4)

money5 numeric(19,5)

money6 numeric(19,6)

money7 numeric(19,7)

money8 numeric(19,8)

money9 numeric(19,9)

money10 numeric(19,10)

money11 numeric(19,11)

money12 numeric(19,12)

money13 numeric(19,13)

money14 numeric(19,14)

money15 numeric(19,15)

interval bigint

bigdatetime datetime2

binary varbinary(n)

Datatype Mapping: IBM DB2 Database
Mapping between Event Stream Processor datatypes and IBM DB2 9.7 datatypes.

Event Stream Processor Datatype IBM DB2 Datatype

integer int

long bigint

float float

date timestamp

string varchar(n)

money decimal(19,5)

timestamp timestamp

CHAPTER 2: Adapters Supported by Event Stream Processor

28 Sybase Event Stream Processor

Event Stream Processor Datatype IBM DB2 Datatype

boolean smallint

or

bit (Does not support null values)

money1 decimal(19,1)

money2 decimal(19,2)

money3 decimal(19,3)

money4 decimal(19,4)

money5 decimal(19,5)

money6 decimal(19,6)

money7 decimal(19,7)

money8 decimal(19,8)

money9 decimal(19,9)

money10 decimal(19,10)

money11 decimal(19,11)

money12 decimal(19,12)

money13 decimal(19,13)

money14 decimal(19,14)

money15 decimal(19,15)

interval bigint

bigdatetime timestamp

binary blob

Datatype Mapping: Oracle Database
Mapping between Event Stream Processor datatypes and Oracle 11g datatypes.

Event Stream Processor Datatype Oracle Datatype

integer int

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 29

Event Stream Processor Datatype Oracle Datatype

long number(19)

float float

date date

string varchar2(n)

money number(19,4)

timestamp timestamp

boolean smallint

or

bit (Does not support null values)

money1 number(19,1)

money2 number(19,2)

money3 number(19,3)

money4 number(19,4)

money5 number(19,5)

money6 number(19,6)

money7 number(19,7)

money8 number(19,8)

money9 number(19,9)

money10 number(19,10)

money11 number(19,11)

money12 number(19,12)

money13 number(19,13)

money14 number(19,14)

money15 number(19,15)

interval number(19)

bigdatetime timestamp

CHAPTER 2: Adapters Supported by Event Stream Processor

30 Sybase Event Stream Processor

Event Stream Processor Datatype Oracle Datatype

binary blob

Datatype Mapping: KDB Database
Mapping between Event Stream Processor datatypes and KDB datatypes.

Event Stream Processor Datatype KDB Datatype

integer int

long long

float float

date datetime

string symbol

money –

timestamp datetime

boolean boolean (Does not support null)

money1 –

money2 –

money3 –

money4 –

money5 –

money6 –

money7 –

money8 –

money9 –

money10 –

money11 –

money12 –

money13 –

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 31

Event Stream Processor Datatype KDB Datatype

money14 –

money15 –

interval long

bigdatetime –

binary –

Note: Do not include Event Stream Processor datatypes in your output that do not have an
equivalent KDB datatype.

File CSV Input Adapter
Adapter type: dsv_in. The File CSV Input adapter reads a file in Event Stream Processor
delimited format.

Use this adapter to poll new data appended to the data file. The file does not require a header. If
the file includes a header, it specifies the field names.

Sample record formats for the data file:
1. hasHeader=true
delimiter=,
expectStreamNameOpcode=false

Ts,ItemID,Price,Quantity,WarehouseZipCode,DeliveryZipCode
2004/06/17 10:00:00.000000,SKU1276532,50.00,1,10012,94086
2004/06/17 10:00:05.000000,SKU6723143,23.00,2,10012,94043

2. expectStreamNameOpcode=true
delimiter=,

Trades_in,i,2004/06/17
10:00:00.000000,SKU1276532,50.00,1,10012,94086
Trades_in,i,2004/06/17
10:00:05.000000,SKU6723143,23.00,2,10012,94043

3. expectStreamNameOpcode=false
timestampFormat=%Y/%m/%d %H:%M:%S
delimiter=,

2004/06/17 10:00:00.000000,SKU1276532,50.00,1,10012,94086
2004/06/17 10:00:05.000000,SKU6723143,23.00,2,10012,94043

This adapter supports schema discovery. If you use the CCL ATTACH ADAPTER statement to
attach an adapter, you must supply the adapter type. The type for this adapter is dsv_in.

CHAPTER 2: Adapters Supported by Event Stream Processor

32 Sybase Event Stream Processor

Property Label Property ID Type Description

Directory dir direc-
tory

(Required) Specify the absolute path
to the data files you want the adapter
to read. For example, <user-
name>/<folder name>. No

default value.

File (in Directory) file tables (Required) File to read. No default
value.

Stream name, opcode
expected

expectStreamNa-

meOpcode

boo-
lean

(Optional) If true, the adapter inter-
prets the first two fields as stream
name and opcode respectively. Mes-
sages with unmatched stream names
are discarded. Default value is false.

Field Count fieldCount uint (Optional) Count of fields in CSV
file, if different from the value for the
source stream. Default value is 0.

Repeat Count repeatCount uint (Optional) Number of times the input
data is repeated. If set to -1, the input
data is repeated indefinitely. Default
value is 0.

Note: This parameter can be used for
testing a continuous streaming
source.

Repeat Field repeatField string (Optional) Determines which numer-
ic field's values are bumped on each
repeat. Default value is a hyphen (-).

Note:

• If repeatCount has a nonzero val-
ue, specify the stream column
name.

• If the repeatColumn is a key col-
umn in the stream, ensure there
are no duplicates when specifying
multiple rows in the input file.

• If the adapter is attached to a win-
dow, the repeatField must be a
key column.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 33

Property Label Property ID Type Description

Delimiter delimiter string (Advanced) Symbol used to separate
the column. Default value is a comma
(,).

Has Header hasHeader boo-
lean

(Advanced) Determines whether the
first line of the file contains the de-
scription of the fields. Default value is
false.

Directory (runtime) runtimeDir runti-
meDir-
ectory

(Advanced) Location of the data files
at runtime, if the value is different
from the location defined at discovery
time. No default value.

File Pattern filePattern string (Advanced) Pattern used to look up
files for discovery. Default value is
*.csv.

Poll Period (seconds) pollperiod uint (Advanced) Period for polling for
new contents, in seconds. If set to 0,
the File CSV Input adapter will not
poll the file for appended records.
Default value is 0.

Convert to Safe Opco-
des

safeOps boo-
lean

(Advanced) Converts the opcodes IN-
SERT and UPDATE to UPSERT, and
converts DELETE to SAFEDE-
LETE. Default value is false.

Skip Deletes skipDels boo-
lean

(Advanced) Skips the rows with opc-
odes DELETE or SAFEDELETE.
Default value is false.

Date Format dateFormat string (Advanced) Format string for parsing
date values. Default value is %Y-
%m-%dT%H:%M:%S.

Timestamp Format timestampFormat string (Advanced) Format string for parsing
timestamp values. Default value is
%Y-%m-%dT%H:%M:%S.

Block Size blockSize int (Advanced) Number of records to
block into one pseudotransaction. De-
fault value is 1.

CHAPTER 2: Adapters Supported by Event Stream Processor

34 Sybase Event Stream Processor

Property Label Property ID Type Description

Field Mapping permutation permu-
tation

(Advanced) Mapping between the in-
platform and external fields. No de-
fault value.

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the
project configuration file. If you spec-
ify the same properties in the project
configuration file and the ATTACH

ADAPTER statement, the values in the
property set override the values de-
fined in the ATTACH ADAPTER state-
ment. No default value.

The File CSV Input adapter has these limitations:

• When polling, you can append to the file, but the file cannot be overwritten or replaced.
The stream names in the file rows are ignored and all the data is sent to the same stream.

• For discovery to work correctly, set the delimiter character and the header presence flag to
match the actual data.

• Do not mix files with different delimiters or files with and without headers in the same
directory. Files with wrong delimiters or headers are incorrectly discovered.

File CSV Output Adapter
Adapter type: dsv_out. The File CSV Output adapter writes data as a file in Event Stream
Processor delimited format.

The file does not require a header. If the file includes a header, it specifies the field names. This
adapter does not support schema discovery.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is dsv_out.

Property Label Property ID Type Description

Directory dir directory (Required) Specify the abso-
lute path to the data files you
want the adapter to read. For
example, <username>/
<folder name>. No

default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 35

Property Label Property ID Type Description

File (in Directory) file tables (Required) File the adapter
writes data to. No default
value.

Include Base Content outputBase boolean (Optional) Records the ini-
tial contents of the stream,
not just the updates. Default
value is false.

Only Base Content onlyBase boolean (Optional) Sends a one-time
snapshot of initial contents in
a stream. Default value is
false.

Prepend StreamNa-
meOpcode

prependStreamNa-

meOpcode

boolean (Optional) If true, each
merge starts the stream name
and the opcode. Default val-
ue is false.

Delimiter delimiter string (Advanced) Symbol used to
separate the columns. De-
fault value is a comma (,).

Has Header hasHeader boolean (Advanced) Determines
whether the first line of the
file contains the description
of the fields. Default value is
false.

Directory (runtime) runtimeDir runtimeDir-
ectory

(Advanced) Location of the
data files at runtime, if dif-
ferent from discovery time.
No default value.

File Pattern filePattern string (Advanced) Pattern used to
look up files for discovery.
Default value is *.csv.

Date Format dateFormat string (Advanced) Format string to
parse data values. Default
value is %Y-%m-%dT%H:
%M:%S.

CHAPTER 2: Adapters Supported by Event Stream Processor

36 Sybase Event Stream Processor

Property Label Property ID Type Description

Timestamp Format timestampFormat string (Advanced) Format string to
parse timestamp values. De-
fault value is %Y-%m-%dT
%H:%M:%S.

Field Mapping permutation permutation (Advanced) Mapping be-
tween the in-platform and
external fields. No default
value.

PropertySet propertyset string (Advanced) Specifies the
name of the property set (a
group of properties and val-
ues) you want to use from the
project configuration file. If
you specify the same proper-
ties in the project configura-
tion file and the ATTACH

ADAPTER statement, the
values in the property set
override the values defined in
the ATTACH ADAPTER state-
ment. No default value.

File XML Input Adapter
Adapter type: xml_in. The File XML Input adapter reads a file in XML format.

This adapter polls for new data appended to a file, and supports schema discovery.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is xml_in.

Sample record format for the data file:
<Trades Id="0" Symbol="EBAY" TradeTime="2000-05-04T12:00:00"
Price="140.0" Shares="50" />
<Trades Id="1" Symbol="EBAY" TradeTime="2000-05-04T12:00:01"
Price="150.0" Shares="500" />

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 37

Property Label Property ID Type Description

Directory dir directory (Required) Specify the abso-
lute path to the data files you
want the adapter to read. For
example, <username>/
<folder name>. No

default value.

File (in Directory) file tables (Required) File the adapter
writes data to. No default val-
ue.

Match Stream Name matchStreamName boolean (Optional) If true, XML ele-
ment name is matched
against the stream name. Un-
matched messages are discar-
ded. Default value is false.

Repeat Count repeatCount uint (Optional) Number of times
the input data is repeated. If
set to -1, the input data is re-
peated indefinitely. Default
value is 0.

Note: This parameter can be
used for testing a continuous
streaming source.

CHAPTER 2: Adapters Supported by Event Stream Processor

38 Sybase Event Stream Processor

Property Label Property ID Type Description

Repeat Field repeatField string (Optional) Determines which
numeric field's values are
bumped on each repeat. De-
fault value is a hyphen (-).

Note:

• If repeatCount has a
nonzero value, specify
the stream column name.

• If the repeatColumn is a
key column in the stream,
ensure there are no dupli-
cates when specifying
multiple rows in the input
file.

• If the adapter is attached
to a window, the repeat-

Field must be a key col-
umn.

Directory (run-time) runtimeDir runtime-
Directory

(Advanced) Location of the
data files at run time, if dif-
ferent from discovery time.
No default value.

File Pattern filePattern string (Advanced) Pattern used to
look up files for discovery.
Default value is *.xml.

Poll Period (seconds) pollperiod uint (Advanced) Period for poll-
ing new contents, in seconds.
Default value is 0.

Convert to Safe Opc-
odes

safeOps boolean (Advanced) Converts the
opcodes INSERT and UP-
DATE to UPSERT. Converts
DELETE to SAFEDELETE.
Default value is false.

Skip Deletes skipDels boolean (Advanced) Skips the rows
with opcodes DELETE or
SAFEDELETE. Default val-
ue is false.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 39

Property Label Property ID Type Description

Date Format dateFormat string (Advanced) Format string for
parsing data values. Default
value is %Y-%m-%dT%H:
%M:%S.

Timestamp Format timestampFormat string (Advanced) Format string for
parsing timestamp values.
Default value is %Y-%m-
%dT%H:%M:%S.

Block Size blockSize int (Advanced) Determines the
number of records to block
into one pseudotransaction.
Default value is 1.

Field Mapping permutation permuta-
tion

(Advanced) Mapping be-
tween the in-platform and ex-
ternal fields. No default val-
ue.

PropertySet propertyset string (Advanced) Specifies the
name of the property set (a
group of properties and val-
ues) you want to use from the
project configuration file. If
you specify the same proper-
ties in the project configura-
tion file and the ATTACH

ADAPTER statement, the val-
ues in the property set over-
ride the values defined in the
ATTACH ADAPTER state-
ment. No default value.

Known limitations:

• When polling, you can append to a file, but cannot overwrite or replace the file.
• The stream name in the file entries is ignored.
• Do not mix data files and model XML files in the same directory. This causes Event Stream

Processor XML files to be discovered as invalid.

CHAPTER 2: Adapters Supported by Event Stream Processor

40 Sybase Event Stream Processor

File XML Output Adapter
Adapter type: xml_out. The File XML Output adapter writes data as a file in XML format.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is xml_out.

Property Label Property
ID

Type Description

Directory dir directory (Required) Specify the absolute path
to the data files you want the adapter
to read. For example, <user-
name>/<folder name>. No

default value.

File (in Directory) file tables (Required) File the adapter writes
data to. No default value.

Include Base Content output-

Base

boolean (Optional) Records the initial con-
tents of the stream, not just the up-
dates. Default value is false.

Only Base Content onlyBase boolean (Optional) Sends a one-time snap-
shot of initial contents of the stream.
Default value is false.

Directory (run-time) runtimeDir runtimeDir-
ectory

(Advanced) Location of the data
files at run time, if different from
discovery time. No default value.

File Pattern filePattern string (Advanced) Pattern used to look up
files for discovery. Default value is
*.xml.

Date Format dateFor-

mat

string (Advanced) Format string for pars-
ing data values. Default value is
%Y-%m-%dT%H:%M:%S.

Timestamp Format timestamp-

Format

string (Advanced) Format string for pars-
ing timestamp values. Default value
is %Y-%m-%dT%H:%M:%S.

Field Mapping permuta-

tion

permutation (Advanced) Mapping between the
in-platform and external fields. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 41

Property Label Property
ID

Type Description

PropertySet property-

set

string (Advanced) Specifies the name of
the property set (a group of proper-
ties and values) you want to use from
the project configuration file. If you
specify the same properties in the
project configuration file and the AT-

TACH ADAPTER statement, the val-
ues in the property set override the
values defined in the ATTACH

ADAPTER statement. No default
value.

File FIX Input Adapter
Adapter type: fixfile_in. The File FIX Input adapter reads FIX messages from a file and writes
them as stream records.

Each stream hosts FIX messages of a certain type. The adapter ignores messages of any other
FIX type. It writes all FIX fields, except the following, in the same order in stream columns:

• BeginString
• BodyLength
• MsgType
• CheckSum

Ensure the names of the stream columns correspond to the FIX protocol specification.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is fixfile_in.

Property Label Property ID Type Description

FIX Version fixVersion choice (Required) Version of the FIX
protocol. Default value is 4.2.

FIX Message Type fixMessageType string (Required) Type of messages
hosted by the stream. No de-
fault value.

File fileName filename (Required) Path to the input file
containing FIX messages. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

42 Sybase Event Stream Processor

Property Label Property ID Type Description

Date Format dateFormat string (Advanced) Date format. De-
fault value is YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp Format timestampFormat string (Advanced) Timestamp for-
mat. Default value is YYYY-
MM-DDTHH:MM:SS.SSS.

PropertySet propertyset string (Advanced) Specifies the name
of the property set (a group of
properties and values) you
want to use from the project
configuration file. If you spec-
ify the same properties in the
project configuration file and
the ATTACH ADAPTER state-
ment, the values in the property
set override the values defined
in the ATTACH ADAPTER

statement. No default value.

Known limitations:

• This adapter is not a full FIX Engine.
• Supports only FIX versions 4.2, 4.3, 4.4, and 5.0.
• Does not support repeating groups and components.
• Supports only INSERT opcode.

See also
• FIX Adapter on page 135

Datatype Mapping for the File FIX Input Adapter
Event Stream Processor datatypes map to FIX datatypes.

Event Stream Processor
Datatype

QuickFix Datatype

integer boolean

string byte[]

string char

string string

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 43

Event Stream Processor
Datatype

QuickFix Datatype

date date

float float

integer integer

date or timestamp UTCDateOnly

date or timestamp UTCTimeOnly

date or timestamp UTCTimeStamp

File FIX Output Adapter
Adapter type: fixfile_out. The File FIX Output adapter writes stream data as FIX messages to
a file.

Each stream hosts FIX messages of a certain type. The adapter writes messages to file in an
adjoining manner, with no line feeds. It generates the following FIX fields:

• BeginString
• BodyLength
• MsgType
• CheckSum

Write the remaining fields in appropriate order in stream columns. Ensure the names of the
stream columns correspond to the FIX protocol specification.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is fixfile_out.

Property Label Property ID Type Description

FIX Version fixVersion choice (Required) Version of the FIX
protocol. Default value is 4.2.

FIX Message Type fixMessageType string (Required) Type of messages
hosted by the stream. No default
value.

File fileName file-
name

(Required) Path to the input file
containing FIX messages. No de-
fault value.

CHAPTER 2: Adapters Supported by Event Stream Processor

44 Sybase Event Stream Processor

Property Label Property ID Type Description

Date Format dateFormat string (Advanced) Date format. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp Format timestampFormat string (Advanced) Timestamp format.
Default value is YYYY-MM-
DDTHH:MM:SS.SSS.

PropertySet propertyset string (Advanced) Specifies the name
of the property set (a group of
properties and values) you want
to use from the project configu-
ration file. If you specify the
same properties in the project
configuration file and the AT-

TACH ADAPTER statement, the
values in the property set over-
ride the values defined in the AT-

TACH ADAPTER statement. No
default value.

Known limitations:

• This adapter is not a full FIX Engine.
• Supports only FIX versions 4.2, 4.3, 4.4, and 5.0.
• Does not support repeating groups and components.
• Does not support schema discovery.
• Supports only INSERT opcode.

See also
• FIX Adapter on page 135

Datatype Mapping for the File FIX Output Adapter
Event Stream Processor datatypes map to FIX datatypes.

Event Stream Processor
Datatype

QuickFix Datatype

integer boolean

string byte[]

string char

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 45

Event Stream Processor
Datatype

QuickFix Datatype

string string

date date

float float

integer integer

date or timestamp UTCDateOnly

date or timestamp UTCTimeOnly

date or timestamp UTCTimeStamp

JMS Adapter
Event Stream Processor supports five JMS Input and Output adapters: CSV, Custom, FIX,
Object Array, and XML.

Configuring a Queuing System for JMS Adapter
To use the JMS adapters, configure the queuing system with the naming server.

Prerequisites
Queuing systems that support JNDI naming Servers.

Task

1. Set up a naming Server.

Some queuing systems contain internal naming Servers that could connect to JMS
adapters.

2. Set up the queuing system to use the naming Server to administer JMS objects.

For more information, consult the documentation provided with your third-party queuing
system.

3. Obtain the JNDI context library and the URL to get to the naming Server.

Note: To use the Sybase Event Stream Processor Adapter for JMS to integrate or
communicate with TIBCO Enterprise Message Services, you must have a valid license for
TIBCO Enterprise Message Services from TIBCO or from an authorized TIBCO channel.

For example, for Apache Active MQ, these are
org.apache.activemq.jndi.ActiveMQInitialContextFactory and
tcp://localhost:61616.

4. Set the jndiContextFactory and jndiURL properties for the JMS adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

46 Sybase Event Stream Processor

5. Obtain the name that the JMS connection factory is bound by.

6. Set the connectionFactory property to this name for the adapter.

7. Ensure that appropriate JNDI and JMS factory classes are in the Java class path.

JMS CSV Input Adapter
Adapter type: jms_csv_in. The JMS CSV Input adapter subscribes to text messages formatted
as a delimited list of values, and writes them as stream records.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_csv_in.

When the delimiter is set to a comma (,) and the expectStreamNameOpcode is set to
true, the JMS CSV Input adapter expects the input stream to be formatted as:
aaa,
11,111,1.100000,2008-03-13T08:19:30,111.1111,2008-03-13T08:19:30.12
3,false,FF00FE05FF,
2008-03-13T08:19:30.123456,64000,922.0,337.000000000000000

The stream contains the following columns:

• stringCol
• int32Col
• int64Col
• doubleCol
• dateCol
• moneyCol
• timestampCol
• booleanCol
• binaryCol
• bigdatetimeCol
• intervalCol
• money1Col
• money15Col

<RecordType name="StreamIn_rec">
 <Column datatype="string" key="true" name="stringCol" />
 <Column datatype="integer" key="false" name="int32Col" />
 <Column datatype="long" key="false" name="int64Col" />
 <Column datatype="float" key="false" name="doubleCol" />
 <Column datatype="date" key="false" name="dateCol" />
 <Column datatype="money" key="false" name="moneyCol" />
 <Column datatype="timestamp" key="false" name="timestampCol" />
 <Column datatype="boolean" key="false" name="booleanCol" />
 <Column datatype="binary" key="false" name="binaryCol" />
 <Column datatype="bigdatetime" key="false"
name="bigdatetimeCol" />
 <Column datatype="interval" key="false" name="intervalCol" />
 <Column datatype="money(1)" key="false" name="money1Col" />
 <Column datatype="money(15)" key="false" name="money15Col" /

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 47

>
</RecordType>

Property Label Property ID Type Description

Delimiter delimiter string (Required) Field delim-
iter. Default value is a
comma (,).

Connection Factory connectionFactory string (Required) Connection
factory class name. No
default value.

JNDI Context Factory jndiContextFactory string (Required) Context
Factory for JNDI con-
text initialization. No
default value.

JNDI URL jndiURL string (Required) JNDI URL.
No default value.

Destination Type destinationType choice (Required) Destination
type. Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name. No default value.

Subscription Mode subscriptionMode choice (Optional) Specifies the
subscription mode for
TOPIC. Default value is
NONDURABLE. Valid
values are DURABLE
and NONDURABLE.

Client ID clientID string (Optional) Specifies the
client identifier for the
connection that is iden-
tifying durable sub-
scription. No default
value.

CHAPTER 2: Adapters Supported by Event Stream Processor

48 Sybase Event Stream Processor

Property Label Property ID Type Description

Subscription Name subscriptionName string (Optional) Specifies a
unique name identify-
ing a durable subscrip-
tion. No default value.

Batch Size batchsize uint (Optional) Specifies
number of records in a
batch to commit in du-
rable subscription
mode. Default value is
1.

Stream Name Opcode Ex-
pected

expectStreamNameOp-

code

boolean (Advanced) If true, the
first two fields in CSV
records are interpreted
as stream name, and op-
code. Default value is
false.

Note: An empty string
is a valid value.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp Format timestampFormat string (Advanced) Timestamp
format. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 49

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the val-
ues defined in the AT-

TACH ADAPTER state-
ment. No default value.

Known limitations:

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS CSV Output Adapter
Adapter type: jms_csv_out. The JMS CSV Output adapter publishes stream data as text
messages formatted as a delimited list of values to a JMS queue or topic.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_csv_out.

Property Label Property ID Type Description

Delimiter delimiter string (Required) Field delim-
iter. Default value is a
comma (,).

Connection Factory connectionFactory string (Required) Connection
factory class name. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

50 Sybase Event Stream Processor

Property Label Property ID Type Description

JNDI Context Factory jndiContextFactory string (Required) Context
Factory for JNDI con-
text initialization. No
default value.

JNDI URL jndiURL string (Required) JNDI URL.
No default value.

Destination Type destinationType choice (Required) Destination
type. Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name. No default value.

Delivery Mode deliveryMode choice (Optional) Type of de-
livery mode. Valid val-
ues are:

• PERSISTENT

• NON_PERSIS-
TENT

Default value is PER-
SISTENT.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 51

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the val-
ues defined in the AT-

TACH ADAPTER state-
ment. No default value.

Column To Message Property
Map

columnPropertyMap string (Advanced) A comma-
delimited list of Col-
umnName=Proper-
tyName mappings

that enables message
filtering on the message
broker side using the
JMS selector mecha-
nism. For each mapped
column name, the out-
bound message is
paired with a corre-
sponding JMS property
that has a value equal to
the column value.
Colum-
nName1=Proper-
tyName1,Colum-
nName2=Proper-
tyName2... No

default value.

Note: Ensure that there
are no spaces in the val-
ue of this property.

CHAPTER 2: Adapters Supported by Event Stream Processor

52 Sybase Event Stream Processor

Property Label Property ID Type Description

Prepend Stream Name, Opcode prependStreamNameOp-

code

boo-
lean

(Advanced) If true, ev-
ery CSV record is pre-
pended with stream
name, and opcode. No
default value.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp Format timestampFormat string (Advanced) Timestamp
format. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS.

Runs Adapter in GD Mode enableGDMode boo-
lean

(Advanced) If set to
true, the adapter runs in
guaranteed delivery
(GD) mode and all GD-
related parameters be-
come required. Default
value is false.

Name of Column Holding GD
Key

gdKeyColumn string (Advanced) Specifies
column name in the
Flex operator holding
the GD key. The GD
key is a constantly in-
creasing value that
uniquely identifies ev-
ery event regardless of
the opcode in the
stream of interest. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 53

Property Label Property ID Type Description

Name of Column Holding op-
code

gdOpcodeColumn string (Advanced) Specifies
name of column in Flex
operator holding op-
code. The opcode is the
operation code (for ex-
ample, inserts, update,
or delete) of the event
occurring in the stream
of interest. No default
value.

Name of Truncate Stream gdControlStream string (Advanced) Specifies
name of the control
window in the GD set-
up. The control window
is a source stream that
informs the Flex opera-
tor of which data has
been processed by the
adapter and can be safe-
ly deleted. No default
value.

Purge After Number of Records gdPurgeInternal int (Advanced) Specifies
number of records after
which to purge the Flex
operator. Default value
is 1000.

Batch Size to Update Truncate
Stream

gdBatchSize int (Advanced) Specifies
number of records after
which the control win-
dow must be updated
with the latest GD key.
Default value is 1000.

Known limitations:

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

See also
• Chapter 5, Guaranteed Delivery on page 543

CHAPTER 2: Adapters Supported by Event Stream Processor

54 Sybase Event Stream Processor

JMS Custom Input Adapter
Adapter type: jms_custom_in. The JMS Custom Input adapter subscribes to custom-
formatted Java object messages from a JMS queue or topic, and writes them as stream records.

A custom-provided implementation performs the fomat conversions of this interface:

package com.sybase.esp.adapters;
public interface ExternalToESPConverter {
 public ESPMessage externalToESP(Serializable externalMessage)
throws Exception;
}

Ensure that the objects returned by the externalToESP method implement this interface:

package com.sybase.esp.adapters;
public interface ESPMessage extends Serializable {
 public String getStreamName();
 public String getOpCode();
 public Map<String, Serializable> getColumnValues();
}

The objects returned by the getStreamName, getOpCode, getColumnValues
methods are interpreted as the name of the stream to write to, the opcode, and the stream record
as a column to message property map value.

Ensure that stream column types correspond to Java classes as follows:

Stream Column Type Java Class

bigdatetime java.lang.Double

binary java.lang.String

boolean java.lang.Boolean

integer java.lang.Integer

interval java.lang.Long

date java.util.Date

float java.lang.Double

long java.lang.Long

money1 java.math.BigDecimal

money2 java.math.BigDecimal

money3 java.math.BigDecimal

money4 java.math.BigDecimal

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 55

Stream Column Type Java Class

money5 java.math.BigDecimal

money6 java.math.BigDecimal

money7 java.math.BigDecimal

money8 java.math.BigDecimal

money9 java.math.BigDecimal

money10 java.math.BigDecimal

money11 java.math.BigDecimal

money12 java.math.BigDecimal

money13 java.math.BigDecimal

money14 java.math.BigDecimal

money15 java.math.BigDecimal

string java.lang.String

timestamp java.util.Date

Ensure that implementations of the ExternalToEFSConverter interface provide a constructor
with a single argument of java.lang.String type, or a default constructor with no
arguments.

Note: Records with unmatched stream names are ignored. Records with null opcodes are
interpreted as upserts. The values of non-key columns may be absent or null.

If an implementation is not provided, the default implementation is used instead, which
interprets each external message as an instance of the DefaultEFSMessage class and does not
perform a conversion.

Ensure that a Java archive containing an implementation of the ExternalToEFSConverter
interface is provided, and place it in the lib subfolder of the Event Stream Processor
installation folder.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_custom_in.

Note: This adapter supports schema discovery.

CHAPTER 2: Adapters Supported by Event Stream Processor

56 Sybase Event Stream Processor

Property Label Property ID Type Description

Converter Class Name converterClassName string (Required) External to
ESP message converter
fully qualified class
name. No default value.

Connection Factory connectionFactory string (Required) Connection
factory class name. No
default value.

JNDI Context Factory jndiContextFactory string (Required) Context fac-
tory for JNDI context
initialization. No de-
fault value.

JNDI URL jndiURL string (Required) JNDI URL.
No default value.

Destination Type destinationType choice (Required) Destination
type. Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name. No default value.

Converter Parameter converterParam string (Optional) External to
Event Stream Processor
message converter
start-up parameter. No
default value.

Subscription Mode subscriptionMode choice (Optional) Specifies the
subscription mode for
TOPIC. Default value
is NONDURABLE.
Valid values are DU-
RABLE and NON-
DURABLE.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 57

Property Label Property ID Type Description

Client ID clientID string (Optional) Specifies the
client identifier for the
connection that is iden-
tifying durable sub-
scription. No default
value.

Subscription Name subscriptionName string (Optional) Specifies a
unique name identify-
ing a durable subscrip-
tion. No default value.

Batch Size batchsize uint (Optional) Specifies
number of records in a
batch to commit in du-
rable subscription
mode. Default value is
1.

PropertySet propertyset string (Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the val-
ues defined in the AT-

TACH ADAPTER state-
ment. No default value.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS.

CHAPTER 2: Adapters Supported by Event Stream Processor

58 Sybase Event Stream Processor

Property Label Property ID Type Description

Timestamp Format timestampFormat string (Advanced) Timestamp
format. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS.

Known limitations:

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS Custom Output Adapter
Adapter type: jms_custom_out. The JMS Custom Output adapter publishes stream records as
custom-formatted Java objects to a JMS queue or topic.

A custom-provided implementation performs the format conversions of this interface:

package com.sybase.esp.adapters;
public interface ESPToExternalConverter {
 public Serializable ESPToExternal(ESPMessage ESPMessage) throws
Exception;
}

Ensure that stream column types correspond to Java classes as follows:

Stream Column Type Java Class

bigdatetime java.lang.Double

binary java.lang.String

boolean java.lang.Boolean

integer java.lang.Integer

interval java.lang.Long

date java.util.Date

float java.lang.Double

long java.lang.Long

money1 java.math.BigDecimal

money2 java.math.BigDecimal

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 59

Stream Column Type Java Class

money3 java.math.BigDecimal

money4 java.math.BigDecimal

money5 java.math.BigDecimal

money6 java.math.BigDecimal

money7 java.math.BigDecimal

money8 java.math.BigDecimal

money9 java.math.BigDecimal

money10 java.math.BigDecimal

money11 java.math.BigDecimal

money12 java.math.BigDecimal

money13 java.math.BigDecimal

money14 java.math.BigDecimal

money15 java.math.BigDecimal

string java.lang.String

timestamp java.util.Date

Ensure that implementations of the ESPToExternalConverter interface provide a constructor
with a single argument of java.lang.String type or a default constructor with no
arguments.

Note: The stream name, the opcode and the map of column name value of the ESPMessage
object are guaranteed to be valid, even if some non-key column values may be null.

Ensure that a Java archive containing an implementation of the ExternalToEFSConverter
interface is provided, and place it in the lib subfolder of the Event Stream Processor
installation folder.

If an implementation is not provided, the default implementation is used and the ESPMessage
object is returned with no actual conversion performed.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_custom_out.

CHAPTER 2: Adapters Supported by Event Stream Processor

60 Sybase Event Stream Processor

Property La-
bel

Property ID Type Description

Converter Class
Name

converterClassName string (Required) External to Event
Stream Processor message con-
verter fully qualified class name.
No default value.

Connection Fac-
tory

connectionFactory string (Required) Connection factory
class name. No default value.

JNDI Context
Factory

jndiContextFactory string (Required) Context Factory for
JNDI context initialization. No
default value.

JNDI URL jndiURL string (Required) JNDI URL. No default
value.

Destination
Type

destinationType choice (Required) Destination type. Val-
id values are:

• QUEUE

• TOPIC

Default value is QUEUE.

Destination
Name

destinationName string (Required) Destination name. No
default value.

Delivery Mode deliveryMode choice (Optional) Type of delivery mode.
Valid values are:

• PERSISTENT

• NON_PERSISTENT

Default value is PERSISTENT.

Converter Pa-
rameter

converterParam string (Optional) External to ESP mes-
sage converter startup parameter.
No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 61

Property La-
bel

Property ID Type Description

PropertySet propertyset string (Advanced) Specifies the name of
the property set (a group of prop-
erties and values) you want to use
from the project configuration
file. If you specify the same prop-
erties in the project configuration
file and the ATTACH ADAPTER

statement, the values in the prop-
erty set override the values de-
fined in the ATTACH ADAPTER

statement. No default value.

Column To
Message Prop-
erty Map

columnPropertyMap string (Advanced) A comma-delimited
list of ColumnName=Prop-
ertyName mappings which

enables message filtering on the
message broker side using the
JMS selector mechanism. For
each mapped column name, the
outbound message is paired with a
corresponding JMS property
whose value equals the column
value. Colum-
nName1=Property-
Name1,Colum-
nName2=Property-
Name2... No default value.

Note: Ensure that there are no
spaces in the value of this proper-
ty.

Date Format dateFormat string (Advanced) Date format. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp For-
mat

timestampFormat string (Advanced) Timestamp format.
Default value is YYYY-MM-
DDTHH:MM:SS.SSS.

CHAPTER 2: Adapters Supported by Event Stream Processor

62 Sybase Event Stream Processor

Property La-
bel

Property ID Type Description

Runs Adapter in
GD Mode

enableGDMode boolean (Advanced) If set to true, the
adapter runs in guaranteed deliv-
ery (GD) mode and all GD-related
parameters become required. De-
fault value is false.

Name of Col-
umn Holding
GD Key

gdKeyColumn string (Advanced) Specifies column
name in the Flex operator holding
the GD key. The GD key is a con-
stantly increasing value that
uniquely identifies every event re-
gardless of the opcode in the
stream of interest. No default val-
ue.

Name of Col-
umn Holding
opcode

gdOpcodeColumn string (Advanced) Specifies name of
column in Flex operator holding
opcode. The opcode is the opera-
tion code (for example, inserts,
update, or delete) of the event oc-
curring in the stream of interest.
No default value.

Name of Trun-
cate Stream

gdControlStream string (Advanced) Specifies name of the
control window in the GD setup.
The control window is a source
stream that informs the Flex op-
erator of which data has been pro-
cessed by the adapter and can be
safely deleted. No default value.

Purge After
Number of Re-
cords

gdPurgeInternal int (Advanced) Specifies number of
records after which to purge the
Flex operator. Default value is
1000.

Batch Size to
Update Trun-
cate Stream

gdBatchSize int (Advanced) Specifies number of
records after which the control
window must be updated with the
latest GD key. Default value is
1000.

Known limitations:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 63

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS FIX Input Adapter
Adapter type: jms_fix_in. The JMS FIX Input adapter subscribes to messages from a JMS
queue or topic, and writes these messages as stream records.

Each stream hosts FIX messages of a certain type. The adapter discards messages of any other
FIX type. Most FIX fields are stored in the same order in stream columns however these fields
can be stored in a different order:

• BeginString
• BodyLength
• MsgType
• CheckSum

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_fix_in.

Property Label Property ID Type Description

FIX Version fixVersion choice (Required) FIX Ver-
sion.

Valid values are:

• 4.2

• 4.3

• 4.4

• 5.0

Default value is 4.2.

FIX Message Type fixMessageType string (Required) FIX Mes-
sage type. No default
value.

Connection Factory connectionFactory string (Required) Connection
factory class name. No
default value.

JNDI Context Factory jndiContextFactory string (Required) Context
Factory for JNDI con-
text initialization. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

64 Sybase Event Stream Processor

Property Label Property ID Type Description

JNDI URL jndiURL string (Required) JNDI URL.
No default value.

Destination Type destinationType choice (Required) Destination
type.

Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name. No default value.

Subscription Mode subscriptionMode choice (Optional) Specifies the
subscription mode for
TOPIC. Default value is
NONDURABLE. Valid
values are DURABLE
and NONDURABLE.

Client ID clientID string (Optional) Specifies the
client identifier for the
connection that is iden-
tifying durable sub-
scription. No default
value.

Subscription Name subscriptionName string (Optional) Specifies a
unique name identify-
ing a durable subscrip-
tion. No default value.

Batch Size batchsize uint (Optional) Specifies
number of records in a
batch to commit in du-
rable subscription
mode. Default value is
1.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 65

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies
the name of the property
set (a group of proper-
ties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the proper-
ty set override the val-
ues defined in the AT-

TACH ADAPTER state-
ment. No default value.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS

Timestamp Format timestampFormat string (Advanced) Timestamp
format. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS

Known limitations:

• This adapter is not a full FIX engine.
• Supports only FIX versions 4.2, 4.3, 4.4, and 5.0.
• Repeating groups and components are not supported.
• If the connection to the message broker is lost, the adapter does not attempt to reconnect.
• Supports only INSERT opcode.

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS FIX Output Adapter
Adapter type: jms_fix_out. The JMS FIX Output adapter publishes FIX messages to a JMS
queue or topic.

Each stream hosts FIX messages of a certain type. Messages of any other FIX type are
discarded. All FIX fields except the following are stored in the same order in stream columns.

CHAPTER 2: Adapters Supported by Event Stream Processor

66 Sybase Event Stream Processor

• BeginString
• BodyLength
• MsgType
• CheckSum

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_fix_out.

Property Label Property ID Type Description

FIX Version fixVersion choice (Required) FIX Ver-
sion.

Valid values are:

• 4.2

• 4.3

• 4.4

• 5.0

Default value is 4.2.

FIX Message Type fixMessageType string (Required) FIX Mes-
sage type.

Connection Factory connectionFactory string (Required) Connection
factory class name.

JNDI Context Factory jndiContextFactory string (Required) Context
factory for JNDI con-
text initialization.

JNDI URL jndiURL string (Required) JNDI URL.

Destination Type destinationType choice (Required) Destination
type.

Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 67

Property Label Property ID Type Description

Delivery Mode deliveryMode choice (Optional) Type of de-
livery mode.

Valid values are:

• PERSISTENT

• NON_PERSIS-
TENT

Default value is PER-
SISTENT.

PropertySet propertyset string (Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the
values defined in the
ATTACH ADAPTER

statement. No default
value.

Column To Message Property
Map

columnPropertyMap string (Advanced) Comma-
delimited MyCol-
umn=MyMessageProp-
erty correspondence
list

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS

Timestamp Format timestampFormat string (Advanced) Time-
stamp format. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS

CHAPTER 2: Adapters Supported by Event Stream Processor

68 Sybase Event Stream Processor

Property Label Property ID Type Description

Runs Adapter in GD Mode enableGDMode boolean (Advanced) If set to
true, the adapter runs in
guaranteed delivery
(GD) mode and all GD-
related parameters be-
come required. Default
value is false.

Name of Column Holding GD
Key

gdKeyColumn string (Advanced) Specifies
column name in the
Flex operator holding
the GD key. The GD
key is a constantly in-
creasing value that
uniquely identifies ev-
ery event regardless of
the opcode in the
stream of interest. No
default value.

Name of Column Holding op-
code

gdOpcodeColumn string (Advanced) Specifies
name of column in Flex
operator holding op-
code. The opcode is the
operation code (for ex-
ample, inserts, update,
or delete) of the event
occurring in the stream
of interest. No default
value.

Name of Truncate Stream gdControlStream string (Advanced) Specifies
name of the control
window in the GD set-
up. The control win-
dow is a source stream
that informs the Flex
operator of which data
has been processed by
the adapter and can be
safely deleted. No de-
fault value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 69

Property Label Property ID Type Description

Purge After Number of Records gdPurgeInternal int (Advanced) Specifies
number of records after
which to purge the Flex
operator. Default value
is 1000.

Batch Size to Update Truncate
Stream

gdBatchSize int (Advanced) Specifies
number of records after
which the control win-
dow must be updated
with the latest GD key.
Default value is 1000.

Known limitations:

• This adapter is not a full FIX engine.
• Supports only FIX versions 4.2, 4.3, 4.4, and 5.0.
• Repeating groups and components are not supported.
• Schema discovery is not supported.
• If the connection to the message broker is lost, the adapter does not attempt to reconnect.
• Supports only INSERT opcode.

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS Object Array Input Adapter
Adapter type: jms_objarray_in. The JMS Object Array Input adapter subscribes to messages
formatted as arrays of Java objects from a JMS queue or topic, and writes these messages as
stream records.

Note: A null element in the array generates a null value for the corresponding column.

Ensure that stream column types correspond to Java classes as follows:

Stream Column Type Java Class

bigdatetime java.lang.Double

binary java.lang.String

boolean java.lang.Boolean

integer java.lang.Integer

CHAPTER 2: Adapters Supported by Event Stream Processor

70 Sybase Event Stream Processor

Stream Column Type Java Class

interval java.lang.Long

date java.util.Date

float java.lang.Double

long java.lang.Long

money1 java.math.BigDecimal

money2 java.math.BigDecimal

money3 java.math.BigDecimal

money4 java.math.BigDecimal

money5 java.math.BigDecimal

money6 java.math.BigDecimal

money7 java.math.BigDecimal

money8 java.math.BigDecimal

money9 java.math.BigDecimal

money10 java.math.BigDecimal

money11 java.math.BigDecimal

money12 java.math.BigDecimal

money13 java.math.BigDecimal

money14 java.math.BigDecimal

money15 java.math.BigDecimal

string java.lang.String

timestamp java.util.Date

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_objarray_in.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 71

Property Label Property ID Type Description

Connection Factory connectionFactory string (Required) Connection
factory class name. No
default value.

JNDI Context Factory jndiContextFactory string (Required) Context
factory for JNDI con-
text initialization. No
default value.

JNDI URL jndiURL string (Required) JNDI URL.
No default value.

Destination Type destinationType choice (Required) Destination
type.

Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name. No default value.

Subscription Mode subscriptionMode choice (Optional) Specifies
the subscription mode
for TOPIC. Default val-
ue is NONDURABLE.
Valid values are DU-
RABLE and NON-
DURABLE.

Client ID clientID string (Optional) Specifies
the client identifier for
the connection that is
identifying durable
subscription. No de-
fault value.

Subscription Name subscriptionName string (Optional) Specifies a
unique name identify-
ing a durable subscrip-
tion. No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

72 Sybase Event Stream Processor

Property Label Property ID Type Description

Batch Size batchsize uint (Optional) Specifies
number of records in a
batch to commit in du-
rable subscription
mode. Default value is
1.

PropertySet propertyset string (Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the val-
ues defined in the AT-

TACH ADAPTER state-
ment. No default value.

Stream Name Opcode Ex-
pected

expectStreamNameOpcode boolean (Advanced) If true, the
first two fields in CSV
records are interpreted
as stream name, and op-
code. Default value is
false.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS

Timestamp Format timestampFormat string (Advanced) Timestamp
format. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS

Known limitations:

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 73

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS Object Array Output Adapter
Adapter type: jms_objarray_out. The JMS Object Array Output adapter publishes stream data
as an array of Java objects to a JMS queue or topic.

Note: A null value in the column generates a null element for the corresponding array.

Ensure that stream column types correspond to Java classes as follows:

Stream Column Type Java Class

bigdatetime java.lang.Double

binary java.lang.String

boolean java.lang.Boolean

integer java.lang.Integer

interval java.lang.Long

date java.util.Date

float java.lang.Double

long java.lang.Long

money1 java.math.BigDecimal

money2 java.math.BigDecimal

money3 java.math.BigDecimal

money4 java.math.BigDecimal

money5 java.math.BigDecimal

money6 java.math.BigDecimal

money7 java.math.BigDecimal

money8 java.math.BigDecimal

money9 java.math.BigDecimal

money10 java.math.BigDecimal

money11 java.math.BigDecimal

CHAPTER 2: Adapters Supported by Event Stream Processor

74 Sybase Event Stream Processor

Stream Column Type Java Class

money12 java.math.BigDecimal

money13 java.math.BigDecimal

money14 java.math.BigDecimal

money15 java.math.BigDecimal

string java.lang.String

timestamp java.util.Date

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_objarray_out.

Property Label Property ID Type Description

Connection Factory connectionFactory string (Required) Connection
factory class name. No
default value.

JNDI Context Factory jndiContextFactory string (Required) Context
factory for JNDI con-
text initialization. No
default value.

JNDI URL jndiURL string (Required) JNDI URL.
No default value.

Destination Type destinationType choice (Required) Destination
type.

Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 75

Property Label Property ID Type Description

Delivery Mode deliveryMode choice (Optional) Type of de-
livery mode.

Valid values are:

• PERSISTENT

• NON_PERSIS-
TENT

Default value is PER-
SISTENT.

PropertySet propertyset string (Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the
values defined in the
ATTACH ADAPTER

statement. No default
value.

CHAPTER 2: Adapters Supported by Event Stream Processor

76 Sybase Event Stream Processor

Property Label Property ID Type Description

Column To Message Property
Map

columnPropertyMap string (Advanced) A comma-
delimited list of Col-
umnName=Prop-
ertyName map-

pings that enables mes-
sage filtering on the
message broker side
using the JMS selector
mechanism. For each
mapped column name,
the outbound message
is paired with a corre-
sponding JMS property
whose value equals the
column value. Col-
umnName1=Prop-
ertyName1,Col-
umnName2=Prop-
ertyName2...
No default value.

Note: Ensure that no
spaces are present in
the value of this prop-
erty.

Prepend Stream Name, Opcode prependStreamNameOp-

code

boolean (Advanced) If true, ev-
ery CSV record is pre-
pended with stream
name, opcode. No de-
fault value.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS

Timestamp Format timestampFormat string (Advanced) Time-
stamp format. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 77

Property Label Property ID Type Description

Runs Adapter in GD Mode enableGDMode boolean (Advanced) If set to
true, the adapter runs in
guaranteed delivery
(GD) mode and all GD-
related parameters be-
come required. Default
value is false.

Name of Column Holding GD
Key

gdKeyColumn string (Advanced) Specifies
column name in the
Flex operator holding
the GD key. The GD
key is a constantly in-
creasing value that
uniquely identifies ev-
ery event regardless of
the opcode in the
stream of interest. No
default value.

Name of Column Holding op-
code

gdOpcodeColumn string (Advanced) Specifies
name of column in Flex
operator holding op-
code. The opcode is the
operation code (for ex-
ample, inserts, update,
or delete) of the event
occurring in the stream
of interest. No default
value.

Name of Truncate Stream gdControlStream string (Advanced) Specifies
name of the control
window in the GD set-
up. The control win-
dow is a source stream
that informs the Flex
operator of which data
has been processed by
the adapter and can be
safely deleted. No de-
fault value.

CHAPTER 2: Adapters Supported by Event Stream Processor

78 Sybase Event Stream Processor

Property Label Property ID Type Description

Purge After Number of Records gdPurgeInternal int (Advanced) Specifies
number of records after
which to purge the Flex
operator. Default value
is 1000.

Batch Size to Update Truncate
Stream

gdBatchSize int (Advanced) Specifies
number of records after
which the control win-
dow must be updated
with the latest GD key.
Default value is 1000.

Known limitations:

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS XML Input Adapter
Adapter type: jms_xml_in. The JMS XML Input adapter subscribes to XML-formatted text
messages from a JMS queue or topic, and writes the messages as stream records.

Ensure that each message consists of an XML element. If opted, the element name
corresponds to the stream name.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_xml_in.

Sample record format for the data file:
< StreamOut ESP_OPS="u" stringCol="aaa" int32Col="22" int64Col="222"
doubleCol="2.200000" dateCol="2008-03-13T08:19:30"
moneyCol="222.2222" timestampCol="2008-03-13T08:19:30.123"
booleanCol="true" binaryCol="FF00FE05FF"
bigdatetimeCol="2008-03-13T08:19:30.123456" intervalCol="64000"
money1Col="922.0" money15Col="337.000000000000000" />

The stream contains the following columns:

• stringCol
• int32Col
• int64Col
• doubleCol
• dateCol

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 79

• moneyCol
• timestampCol
• booleanCol
• binaryCol
• bigdatetimeCol
• intervalCol
• money1Col
• money15Col

<RecordType name="StreamIn_rec">
 <Column datatype="string" key="true" name="stringCol" />
 <Column datatype="integer" key="false" name="int32Col" />
 <Column datatype="long" key="false" name="int64Col" />
 <Column datatype="float" key="false" name="doubleCol" />
 <Column datatype="date" key="false" name="dateCol" />
 <Column datatype="money" key="false" name="moneyCol" />
 <Column datatype="timestamp" key="false" name="timestampCol" />
 <Column datatype="boolean" key="false" name="booleanCol" />
 <Column datatype="binary" key="false" name="binaryCol" />
 <Column datatype="bigdatetime" key="false"
name="bigdatetimeCol" />
 <Column datatype="interval" key="false" name="intervalCol" />
 <Column datatype="money(1)" key="false" name="money1Col" />
 <Column datatype="money(15)" key="false" name="money15Col" /
>
</RecordType>

The ESP-OPS attribute is optional. If omitted, the message is interpreted as an upsert. Ensure
that the rest of the attributes have the same names as the corresponding stream columns, and
that the columns with null values are omitted. This adapter supports schema discovery.

Property La-
bel

Property ID Type Description

Connection Fac-
tory

connectionFactory string (Required) Connection factory
class name. No default value.

JNDI Context
Factory

jndiContextFactory string (Required) Context Factory for
JNDI context initialization. No
default value.

JNDI URL jndiURL string (Required) JNDI URL. No de-
fault value.

CHAPTER 2: Adapters Supported by Event Stream Processor

80 Sybase Event Stream Processor

Property La-
bel

Property ID Type Description

Destination Type destinationType choice (Required) Destination type.

Valid values are:

• QUEUE

• TOPIC

Default value is QUEUE.

Destination
Name

destinationName string (Required) Destination name. No
default value.

Subscription
Mode

subscriptionMode choice (Optional) Specifies the subscrip-
tion mode for TOPIC. Default
value is NONDURABLE. Valid
values are DURABLE and NON-
DURABLE.

Client ID clientID string (Optional) Specifies the client
identifier for the connection that
is identifying durable subscrip-
tion. No default value.

Subscription
Name

subscriptionName string (Optional) Specifies a unique
name identifying a durable sub-
scription. No default value.

Batch Size batchsize uint (Optional) Specifies number of
records in a batch to commit in
durable subscription mode. De-
fault value is 1.

PropertySet propertyset string (Advanced) Specifies the name of
the property set (a group of prop-
erties and values) you want to use
from the project configuration
file. If you specify the same prop-
erties in the project configuration
file and the ATTACH ADAPTER

statement, the values in the prop-
erty set override the values de-
fined in the ATTACH ADAPTER

statement. No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 81

Property La-
bel

Property ID Type Description

Match Stream
Name

matchStreamName boolean (Advanced) Ignore message if the
XML element name does not
match the source stream name.
Default value is false.

Date Format dateFormat string (Advanced) Date format. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS

Timestamp For-
mat

timestampFormat string (Advanced) Timestamp format.
Default value is YYYY-MM-
DDTHH:MM:SS.SSS

Known limitations:

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

See also
• Chapter 5, Guaranteed Delivery on page 543

JMS XML Output Adapter
Adapter type: jms_xml_out. The JMS XML Output adapter publishes stream data as XML-
formatted text messages to a JMS queue or topic.

Ensure that each message consists of an XML element with the same name as the stream
name.

The first attribute is the Event Stream Processor opcode. The rest of the attributes have the
same names as the corresponding stream columns. Ensure that any columns with null values
are omitted.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is jms_xml_out.

Property Label Property ID Type Description

Connection Factory connectionFactory string (Required) Connection
factory class name. No
default value.

JNDI Context Factory jndiContextFactory string (Required) Context
factory for JNDI con-
text initialization. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

82 Sybase Event Stream Processor

Property Label Property ID Type Description

JNDI URL jndiURL string (Required) JNDI URL.
No default value.

Destination Type destinationType choice (Required) Destination
type.

Valid values are:

• QUEUE

• TOPIC

Default value is
QUEUE.

Destination Name destinationName string (Required) Destination
name. No default val-
ue.

Delivery Mode deliveryMode choice (Optional) Type of de-
livery mode.

Valid values are:

• PERSISTENT

• NON_PERSIS-
TENT

Default value is PER-
SISTENT.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 83

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the
values defined in the
ATTACH ADAPTER

statement. No default
value.

CHAPTER 2: Adapters Supported by Event Stream Processor

84 Sybase Event Stream Processor

Property Label Property ID Type Description

Column To Message Property
Map

columnPropertyMap string (Advanced) A comma-
delimited list of Col-
umnName=Prop-
ertyName map-

pings that enables mes-
sage filtering on the
message broker side
using the JMS selector
mechanism. For each
mapped column name,
the outbound message
is paired with a corre-
sponding JMS property
that has a value equal to
the column value.
Colum-
nName1=Proper-
tyName1,Colum-
nName2=Proper-
tyName2... No

default value.

Note: Ensure that there
are no spaces present in
the value of this prop-
erty.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
YYYY-MM-
DDTHH:MM:SS.SSS

Timestamp Format timestampFormat string (Advanced) Time-
stamp format. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 85

Property Label Property ID Type Description

Runs Adapter in GD Mode enableGDMode boolean (Advanced) If set to
true, the adapter runs in
guaranteed delivery
(GD) mode and all GD-
related parameters be-
come required. Default
value is false.

Name of Column Holding GD
Key

gdKeyColumn string (Advanced) Specifies
column name in the
Flex operator holding
the GD key. The GD
key is a constantly in-
creasing value that
uniquely identifies ev-
ery event regardless of
the opcode in the
stream of interest. No
default value.

Name of Column Holding op-
code

gdOpcodeColumn string (Advanced) Specifies
name of column in Flex
operator holding op-
code. The opcode is the
operation code (for ex-
ample, inserts, update,
or delete) of the event
occurring in the stream
of interest. No default
value.

Name of Truncate Stream gdControlStream string (Advanced) Specifies
name of the control
window in the GD set-
up. The control win-
dow is a source stream
that informs the Flex
operator of which data
has been processed by
the adapter and can be
safely deleted. No de-
fault value.

CHAPTER 2: Adapters Supported by Event Stream Processor

86 Sybase Event Stream Processor

Property Label Property ID Type Description

Purge After Number of Re-
cords

gdPurgeInternal int (Advanced) Specifies
number of records after
which to purge the Flex
operator. Default value
is 1000.

Batch Size to Update Trun-
cate Stream

gdBatchSize int (Advanced) Specifies
number of records after
which the control win-
dow must be updated
with the latest GD key.
Default value is 1000.

Known limitations:

• If the connection to the message broker is lost, the adapter does not attempt to reconnect.

See also
• Chapter 5, Guaranteed Delivery on page 543

Random Tuples Generator Input Adapter
Adapter type: randomtuplegen_in. The Random Tuples Generator adapter generates random
tuples according to the given schema and sends the rows to the stream.

A tuple is an ordered list of elements, or in other words, a row of data. A row that has two
column values is a 2-tuple, and generally, a row that has n column values is an n-tuple. The
adapter is primarily used for prototyping and basic testing of Event Stream Processor. You can
edit both the schema and configuration file.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is randomtuplegen_in.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 87

Property Label Property ID Type Description

Rate Rate uint

(Optional) Number of
rows generated per sec-
ond. Must be between 0
(exclusive) and
1,000,000 (inclusive).

If Rate is negative, the
adapter stops and re-
turns a fatal error mes-
sage to the Server.

If Rate is larger than
the maximum value, it
resets to the maximum
and reports a warning
message to the Server.

If Rate property is
blank, it resets to the
default value and re-
ports a message.

Default value is 100.

CHAPTER 2: Adapters Supported by Event Stream Processor

88 Sybase Event Stream Processor

Property Label Property ID Type Description

Row Count RowCount uint

(Optional) Specifies
number of generated
rows. Must be between
0 and 2,000,000,000
inclusive.

If RowCount is nega-
tive, the adapter stops
and returns a fatal error
message to the Server.

If RowCount is larger
than the maximum val-
ue, it resets to the max-
imum and reports a
warning message to the
Server.

If RowCount property
is blank, it resets to the
default value and re-
ports an information
message to the Server.

Default value is 0,
which represents an in-
finite number of rows.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 89

Property Label Property ID Type Description

Timestamp Base TimestampBase string

(Optional) Initial time
for message time-
stamps. The supported
format of Timestamp-

Base is %Y-%m-%dT
%H:%M:%S.

If TimestampBase is
blank, it resets to de-
fault value and the
adapter initializes im-
mediately. Similarly,
the adapter initializes
immediately if the
TimestampBase value
is earlier than current
time.

If TimestampBase val-
ue is later than current
time, the adapter sleeps
until then.

If TimestampBase has
an invalid timestamp
format, the adapter
stops and returns a fatal
error message to the
Server.

Default value is the
current time.

Date Format DateFormat string

(Optional) Format
string for parsing date
values. Default value is
%Y-%m-%d %H:
%M:%S.

Timestamp Format TimestampFormat string

(Optional) Format
string for parsing date
values. Default value is
%Y-%m-%d %H:
%M:%S.

CHAPTER 2: Adapters Supported by Event Stream Processor

90 Sybase Event Stream Processor

Property Label Property ID Type Description

PropertySet propertyset string

(Advanced) Specifies
the name of the proper-
ty set (a group of prop-
erties and values) you
want to use from the
project configuration
file. If you specify the
same properties in the
project configuration
file and the ATTACH

ADAPTER statement,
the values in the prop-
erty set override the
values defined in the
ATTACH ADAPTER

statement. No default
value.

The data this adapter generates is not evenly distributed across the range of possible values for
each datatype. This table shows the value range generated for each datatype:

Datatype Range of values

boolean true/false

integer 0 .. 99 inclusive

long 0 .. 99 inclusive

float 0.0 .. 10.0 exclusive (should never get 10.0)

interval 0 .. 9 inclusive

timestamp Current time with milliseconds

string 2 characters from the following ranges a..z, A..Z, 0..9

binary 2 bytes each with range 0..255

money 0.0000 to 3.2767

money1 0.0 to 3276.7

money2 0.00 to 327.67

money3 0.000 to 32.767

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 91

Datatype Range of values

money4 0.0000 to 3.2767

money5 0.00000 to 0.32767

money6 0.000000 to 0.032767

money7 0.0000000 to 0.0032767

money8 0.00000000 to 0.00032767

money9 0.000000000 to 0.000032767

money10 0.0000000000 to 0.0000032767

money11 0.00000000000 to 0.00000032767

money12 0.000000000000 to 0.000000032767

money13 0.0000000000000 to 0.0000000032767

money14 0.00000000000000 to 0.00000000032767

money15 0.000000000000000 to 0.000000000032767

bigdatetime Current time with microseconds

date Current time with seconds

Note: Values are not necessarily evenly distributed within these ranges.

Socket FIX Input Adapter
Adapter type: fixsocket_in. The Socket FIX Input adapter reads FIX messages from a TCP
server socket and writes them as stream records.

Each stream hosts FIX messages of a certain type. The adapter discards messages of any other
FIX type, and stores FIX fields in the same order in stream columns. The following fields are
exceptions to this:

• BeginString
• BodyLength
• MsgType
• CheckSum

Ensure that the names of the stream columns correspond to the FIX protocol specification.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is fixsocket_in.

CHAPTER 2: Adapters Supported by Event Stream Processor

92 Sybase Event Stream Processor

Property Label Property ID Type Description

FIX Version fixVersion choice (Required) Version of the FIX
protocol. Default value is 4.2.

FIX Message Type fixMessageType string (Required) Type of messages
hosted by the stream. No de-
fault value.

Source Host fixHost string (Required) Name or IP address
of source server for FIX mes-
sages. Default value is local-
host.

Source Port fixPort uint (Required) Port on which FIX
messages are available on. De-
fault value is 12345.

Reconnect Interval reconnectInterval uint (Required) Reconnect interval,
in seconds. If zero, makes no
attempt to reconnect. Default
value is 10.

Maximum Reconnect At-
tempts

maxReconnectAt-

tempts

uint (Required) Maximum number
of reconnect attempts. Default
value is zero.

Date Format dateFormat string (Advanced) Date format. De-
fault value is YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp Format timestampFormat string (Advanced) Timestamp format.
Default value is YYYY-MM-
DDTHH:MM:SS.SSS.

PropertySet propertyset string (Advanced) Specifies the name
of the property set (a group of
properties and values) you want
to use from the project config-
uration file. If you specify the
same properties in the project
configuration file and the AT-

TACH ADAPTER statement, the
values in the property set over-
ride the values defined in the
ATTACH ADAPTER statement.
No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 93

Known limitations:

• This adapter is not a full FIX Engine.
• Supports only FIX versions 4.2, 4.3, 4.4, and 5.0.
• Does not support repeating groups and components.
• Supports only INSERT opcode.

See also
• FIX Adapter on page 135

Datatype Mapping for the Socket FIX Input Adapter
Event Stream Processor datatypes map to FIX datatypes.

Event Stream Processor
Datatype

QuickFix Datatype

integer boolean

string byte[]

string char

string string

date date

float float

integer integer

date or timestamp UTCDateOnly

date or timestamp UTCTimeOnly

date or timestamp UTCTimeStamp

Socket FIX Output Adapter
Adapter type: fixsocket_out. The Socket FIX Output adapter writes stream data as FIX
messages to a TCP server socket.

Each stream hosts FIX messages of a certain type. The adapter sends messages contiguously,
with no line feeds. It generates the following FIX fields:

• BeginString
• BodyLength
• MsgType
• CheckSum

CHAPTER 2: Adapters Supported by Event Stream Processor

94 Sybase Event Stream Processor

Ensure that the rest of the fields are stored in the appropriate order in stream columns, and that
the names of the stream columns correspond to the FIX protocol specification.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is fixsocket_out.

Property Label Parameter ID Type Description

FIX Version fixVersion choice (Required) Version of the FIX
protocol. Default value is 4.2.

FIX Message Type fixMessageType string (Required) Type of messages
hosted by the stream. No default
value.

Destination Host fixHost string (Required) Name or IP address
of destination server for FIX
messages. Default value is local-
host.

Destination Port fixPort uint (Required) Port on which the
destination server socket is lis-
tening to FIX messages. Default
value is 12346.

Date Format dateFormat string (Advanced) Date format. De-
fault value is YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp Format timestampFormat string (Advanced) Timestamp format.
Default value is YYYY-MM-
DDTHH:MM:SS.SSS.

PropertySet propertyset string (Advanced) Specifies the name
of the property set (a group of
properties and values) you want
to use from the project configu-
ration file. If you specify the
same properties in the project
configuration file and the AT-

TACH ADAPTER statement, the
values in the property set over-
ride the values defined in the AT-

TACH ADAPTER statement. No
default value.

Known limitations:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 95

• This adapter is not a full FIX Engine.
• Supports only FIX versions 4.2, 4.3, 4.4, and 5.0.
• Does not support repeating groups and components.
• Does not attempt to reconnect if the connection to the FIX server is lost.
• Supports only INSERT opcode.

See also
• FIX Adapter on page 135

Datatype Mapping for the Socket FIX Output Adapter
Event Stream Processor datatypes map to FIX datatypes.

Event Stream Processor
Datatype

QuickFix Datatype

integer boolean

string byte[]

string char

string string

date date

float float

integer integer

date or timestamp UTCDateOnly

date or timestamp UTCTimeOnly

date or timestamp UTCTimeStamp

Socket (As Client) CSV Input Adapter
Adapter type: dsv_sockout_in. The Socket (as Client) CSV Input adapter receives data in
delimited format from outgoing network adapters.

The adapter initiates the connection to an external datasource, and an external program sends
out the data. The data does not require a header (accepted by esp_convert). If the file includes
a header, the header specifies the field names.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is dsv_sockout_in.

Sample record formats for the data file:
1. hasHeader=true
delimiter=,

CHAPTER 2: Adapters Supported by Event Stream Processor

96 Sybase Event Stream Processor

expectStreamNameOpcode=false

Ts,ItemID,Price,Quantity,WarehouseZipCode,DeliveryZipCode
2004/06/17 10:00:00.000000,SKU1276532,50.00,1,10012,94086
2004/06/17 10:00:05.000000,SKU6723143,23.00,2,10012,94043

2. expectStreamNameOpcode=true
delimiter=,

Trades_in,i,2004/06/17
10:00:00.000000,SKU1276532,50.00,1,10012,94086
Trades_in,i,2004/06/17
10:00:05.000000,SKU6723143,23.00,2,10012,94043

3. expectStreamNameOpcode=false
timestampFormat=%Y/%m/%d %H:%M:%S
delimiter=,

2004/06/17 10:00:00.000000,SKU1276532,50.00,1,10012,94086
2004/06/17 10:00:05.000000,SKU6723143,23.00,2,10012,94043

Property Label Property ID Type Description

Server host string (Required) Server host name.
Default value is localhost.

Port port int (Required) Server port. If port

is set to -1, the adapter reads
from the Ephemeral Port File.
Default value is 12345.

Stream name, opcode
expected

expectStreamNameOp-

code

boolean (Optional) If true, the adapter
interprets the first two fields as
a stream name and opcode re-
spectively. Adapters discard
messages with unmatched
stream names. Default value is
false.

Field Count fieldCount uint (Optional) Counts the number
of fields in a CSV file, if dif-
ferent from the source stream.
Default value is 0.

Delimiter delimiter string (Advanced) Symbol used to
separate the columns. Default
value is a comma (,).

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 97

Property Label Property ID Type Description

Has Header hasHeader boolean (Advanced) Determines
whether the first line of the file
contains the description of the
fields. Default value is false.

Ephemeral Port File epFile file-
name

(Advanced) File that contains
the server port number, if Port

is -1. No default value.

Retry Period retryperiod uint (Advanced) Period for trying
to re-establish an outgoing
connection. In seconds. De-
fault value is 1.

Enter Initial State initial choice (Advanced) When the adapter
enters the initial loading state.
Default value is never.

Convert to Safe Opco-
des

safeOps boolean (Advanced) Converts the opc-
odes INSERT and UPDATE to
UPSERT. Converts DELETE
to SAFEDELETE. Default
value is false.

Skip Deletes skipDels boolean (Advanced) Skips the rows
with opcodes DELETE or
SAFEDELETE. Default value
is false.

Timestamp Format timestampFormat string (Advanced) Format string for
parsing timestamp values. De-
fault value is %Y-%m-%dT
%H:%M:%S.

Date Format dateFormat string (Advanced) Format string for
parsing date values. Default
value is %Y-%m-%dT%H:
%M:%S.

Block Size blockSize int (Advanced) Determines num-
ber of records to block into one
pseudo-transaction. Default
value is 1.

CHAPTER 2: Adapters Supported by Event Stream Processor

98 Sybase Event Stream Processor

Property Label Property ID Type Description

Field Mapping permutation permu-
tation

(Advanced) Mapping between
the in-platform and external
fields. No default value.

PropertySet propertyset string (Advanced) Specifies the
name of the property set (a
group of properties and val-
ues) you want to use from the
project configuration file. If
you specify the same proper-
ties in the project configura-
tion file and the ATTACH

ADAPTER statement, the val-
ues in the property set override
the values defined in the AT-

TACH ADAPTER statement.
No default value.

Known limitations:

• The adapter ignores the stream name in the file rows.
• All data is sent to the same stream.

Socket (as Client) CSV Output Adapter
Adapter type: dsv_sockout_out. The Socket (as Client) CSV Output adapter sends data in
delimited format to the outgoing network.

The Socket (as Client) CSV Output adapter initiates the connection to an external datasource
and sends out the data. The data does not require a header (accepted by esp_convert). If the
file includes a header, it specifies the field names. The adapter retries a connection if the
connection breaks.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is dsv_sockout_out.

Property Label Property ID Type Description

Server host string (Required) Server host name. De-
fault value is localhost.

Port port int (Required) Server port. If port is set
to -1, the adapter reads from the
Ephemeral Port File. Default value is
12345.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 99

Property Label Property ID Type Description

Prepend stream
name, opcode

prependStreamNa-

meOpcode

boolean (Optional) If true, the first two fields
are interpreted as stream name and
opcode respectively. The adapter
discards messages with unmatched
stream names. Default value is false.

Delimiter delimiter string (Advanced) Symbol used to separate
the columns. Default value is a com-
ma (,).

Has Header hasHeader boolean (Advanced) Determines whether the
first line of the file contains the de-
scription of the fields. Default value
is false.

Ephemeral Port File epFile file-
name

(Advanced) File that contains the
server port number, if port is -1. No
default value.

Retry Period, s retryperiod uint (Advanced) Period for trying to re-
establish an outgoing connection, in
seconds. Default value is 1.

Include Base Con-
tent

outputBase boolean (Optional) Starts by recording the
initial contents of the stream, not just
the updates. Default value is false.

Only Base Content onlyBase boolean (Advanced) Sends the initial con-
tents of the stream once. Default val-
ue is false.

Timestamp Format timestampFormat string (Advanced) Format string for pars-
ing timestamp values. Default value
is %Y-%m-%dT%H:%M:%S.

Date Format dateFormat string (Advanced) Format string for pars-
ing date values. Default value is %Y-
%m-%dT%H:%M:%S.

Field Mapping permutation permu-
tation

(Advanced) Mapping between the
in-platform and external fields. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

100 Sybase Event Stream Processor

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies the name of
the property set (a group of proper-
ties and values) you want to use from
the project configuration file. If you
specify the same properties in the
project configuration file and the AT-

TACH ADAPTER statement, the val-
ues in the property set override the
values defined in the ATTACH

ADAPTER statement. No default val-
ue.

Socket (As Client) XML Input Adapter
Adapter type: xml_sockout_in. The Socket (As Client) XML Input adapter receives data in
Event Stream Processor format from the outgoing network adapters.

The adapter initiates a connection with an outgoing network adapter, which can then send data
to the input adapter. It is possible for the data not to have the header, or for the header not to
specify the field names.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is xml_sockout_in.

Sample record format for the data file:
<Trades Id="0" Symbol="EBAY" TradeTime="2000-05-04T12:00:00"
Price="140.0" Shares="50" />
<Trades Id="1" Symbol="EBAY" TradeTime="2000-05-04T12:00:01"
Price="150.0" Shares="500" />

Property Label Property ID Type Description

Server host string (Required) The server host name. Default
value is localhost.

Port port int (Required) Server port. If port is set to -1,
the adapter reads from the Ephemeral Port
File. Default value is 12345.

Match Stream
Name

matchStream-

Name

boolean (Optional) Ignores messages if the XML
element name does not match the source
stream name. Default value is false.

Ephemeral Port File epFile file-
name

(Advanced) The file that contains the serv-
er port number, if port is set to -1. Default
value is false.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 101

Property Label Property ID Type Description

Retry period (sec-
onds)

retryperiod uint (Advanced) Indicates the time period for
attempting to re-establish an outgoing con-
nection, in seconds. Default value is 1.

Enter Initial State initial choice (Advanced) Indicates when the adapter
enters the initial loading state. Default val-
ue is never.

Convert to Safe
Opcodes

safeOps boolean (Advanced) Converts the opcodes IN-
SERT and UPDATE to UPSERT, and DE-
LETE to SAFEDELETE. Default value is
false.

Skip Deletes skipDels boolean (Advanced) Skips the rows with opcodes
DELETE or SAFEDELETE. Default val-
ue is false.

Date Format dateFormat string (Advanced) Format string for parsing date
values. Default value is %Y-%m-%dT%H:
%M:%S.

Timestamp Format timestampFormat string (Advanced) Format string for parsing
timestamp values. Default value is %Y-
%m-%dT%H:%M:%S.

Block Size blockSize int (Advanced) Number of records to block
into one pseudo-transaction. Default value
is 1.

Field Mapping permutation permu-
tation

(Advanced) Mapping between the in-plat-
form and external fields. No default value.

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and val-
ues) you want to use from the project con-
figuration file. If you specify the same
properties in the project configuration file
and the ATTACH ADAPTER statement, the
values in the property set override the val-
ues defined in the ATTACH ADAPTER

statement. No default value.

Known limitations:

• The adapter ignores the stream name in the file rows.

CHAPTER 2: Adapters Supported by Event Stream Processor

102 Sybase Event Stream Processor

• All the data is sent to the same stream.

Socket (As Client) XML Output Adapter
Adapter type: xml_sockout_out. The Socket (As Client) XML Output adapter sends data in
Event Stream Processor format to the outgoing network adapter.

The adapter initiates a connection with another program and then sends the data. If the
connection is broken, the adapter retries the connection.

You can configure this adapter to send only the base state of the stream. The adapter sends data
once and exits, but can be restarted later.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is xml_sockout_out.

Property Label Property ID Type Description

Server host string (Required) The server host name. De-
fault value is localhost.

Port port int (Required) Server port. If port is set to
-1, the adapter reads from the Ephem-
eral Port File. Default value is 12345.

Include Base Con-
tent

outputBase boo-
lean

(Optional) Records the initial contents
of the stream and not just the updates.
Default value is false.

Ephemeral Port File epFile file-
name

(Advanced) The file that contains the
server port number, if port is -1. No
default value.

Retry period, s retryperiod uint (Advanced) The time period for at-
tempting to re-establish an outgoing
connection, in seconds. Default value
is 1.

Only Base Content onlyBase boo-
lean

(Advanced) Sends only the initial con-
tents of the stream. Default value is
false.

Date Format dateFormat string (Advanced) The format string for pars-
ing date values. Default value is %Y-
%m-%dT%H:%M:%S.

Timestamp Format timestampFormat string (Advanced) The format string for pars-
ing timestamp values. Default value is
%Y-%m-%dT%H:%M:%S.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 103

Property Label Property ID Type Description

Field Mapping permutation permu-
tation

(Advanced) Mapping between the in-
platform and external fields. Default
value is %Y-%m-%dT%H:%M:%S.

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the
project configuration file. If you spec-
ify the same properties in the project
configuration file and the ATTACH

ADAPTER statement, the values in the
property set override the values de-
fined in the ATTACH ADAPTER state-
ment. No default value.

Socket (As Server) XML Input Adapter
Adapter type: xml_sockin_in. The Socket (As Server) XML Input adapter receives data in
Event Stream Processor format from the incoming network adapter.

Another program initiates the connection and then sends the data.

This adapter can be configured to send only the base state of the stream, and can be repeatedly
reconnected.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is xml_sockin_in.

Property Label Property ID Type Description

Port port int (Required) Server port. If port is set to -1,
the adapter reads from the Ephemeral Port
File. Default value is 12345.

Match Stream
Name

matchStreamName boo-
lean

(Optional) If true, the XML element names
are matched against the stream name. Un-
matched messages are discarded. Default
value is false.

Ephemeral Port File epFile file-
name

(Advanced) The file that contains the port

number, if port is -1. No default value.

Initial Listen Period
(seconds)

retryperiod uint (Advanced) Designates the length of time
to wait for the first incoming connection
before switching to the continuous state.
Default value is 0.

CHAPTER 2: Adapters Supported by Event Stream Processor

104 Sybase Event Stream Processor

Property Label Property ID Type Description

Enter Initial State initial choic
e

(Advanced) Indicates when the adapter
enters the initial loading state. Default val-
ue is never.

Convert to Safe
Opcodes

safeOps boo-
lean

(Advanced) Converts the opcodes IN-
SERT and UPDATE to UPSERT, and DE-
LETE to SAFEDELETE. Default value is
false.

Skip Deletes skipDels boo-
lean

(Advanced) Skips the rows with opcodes
DELETE or SAFEDELETE. Default val-
ue is false.

Date Format dateFormat strin
g

(Advanced) The format string for parsing
date values. Default value is %Y-%m-%dT
%H:%M:%S.

Timestamp Format timestampFormat strin
g

(Advanced) The format string for parsing
timestamp values. Default value is %Y-
%m-%dT%H:%M:%S.

Block Size blockSize int (Advanced) Number of records to block
into one pseudo-transaction. Default value
is 1.

Field Mapping permutation per-
muta-
tion

(Advanced) Mapping between the in-plat-
form and external fields. No default value.

PropertySet propertyset strin
g

(Advanced) Specifies the name of the
property set (a group of properties and val-
ues) you want to use from the project con-
figuration file. If you specify the same
properties in the project configuration file
and the ATTACH ADAPTER statement, the
values in the property set override the val-
ues defined in the ATTACH ADAPTER

statement. No default value.

Known limitations:

• The adapter ignores the stream name in the file entries.
• All the data is sent to the same stream.
• Supports only one network connection at a time.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 105

Socket (As Server) XML Output Adapter
Adapter type: xml_sockin_out. The Socket (As Server) XML Output adapter receives data in
Event Stream Processor format from the outgoing network adapters.

Another program initiates the connection and then receives the data from the output adapter.

This adapter can be configured to send only the base state of the stream. The socket closes after
sending the base state of the stream but can be repeatedly reconnected.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is xml_sockin_out.

Property Label Property ID Type Description

Port port int (Required) Server port. If port is set to -1,
the adapter reads from the Ephemeral Port
File. Default value is 12345.

Include Base Con-
tent

outputBase boo-
lean

(Optional) Starts by recording the initial
contents of the stream, not just the updates.
Default value is false.

Ephemeral Port File epFile file-
name

(Advanced) The file that contains the port

number, if port is -1. No default value.

Only Base Content onlyBase boo-
lean

(Advanced) The adapter sends the initial
contents of the stream, once. Default value
is false.

Date Format dateFormat string (Advanced) The format string for parsing
date values. Default value is %Y-%m-%dT
%H:%M:%S.

Timestamp Format timestampFormat string (Advanced) The format string for parsing
timestamp values. Default value is %Y-
%m-%dT%H:%M:%S.

Field Mapping permutation permu-
tation

(Advanced) Mapping between the in-plat-
form and external fields. No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

106 Sybase Event Stream Processor

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the project
configuration file. If you specify the same
properties in the project configuration file
and the ATTACH ADAPTER statement, the
values in the property set override the val-
ues defined in the ATTACH ADAPTER

statement. No default value.

Known limitations:

• Supports only one network connection at a time.

Socket (As Server) CSV Input Adapter
Adapter type: dsv_sockin_in. The Socket (As Server) CSV Input adapter receives data in
Event Stream Processor delimited format from the incoming network adapters.

Another program initiates the connection and then sends the data to the adapter.

It is possible for the data not to have the header, or for the header not to specify the field
names.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is dsv_sockin_in.

Property Label Property ID Type Description

Port port int (Required) Server port. If port is set to -1,
the adapter reads from the Ephemeral Port
File. Default value is 12345.

Stream name, op-
code expected

expectStreamNa-

meOpcode

boo-
lean

(Optional) If true, the first two fields are
interpreted as stream name and opcode re-
spectively. Messages with unmatched
stream names are discarded. Default value
is false.

Delimiter delimiter string (Advanced) Symbol used to separate the
columns. Default value is a comma (,).

Has Header hasHeader boo-
lean

(Advanced) Determines whether the first
line of the file contains the description of
the fields. Default value is false.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 107

Property Label Property ID Type Description

Ephemeral Port File epFile file-
name

(Advanced) The file that contains the serv-
er port number, if port is -1.

Initial Listen Period
(seconds)

retryperiod uint (Advanced) How long to wait for the first
incoming connection before switching to
the continuous state. Default value is 0.

Enter Initial State initial choice (Advanced) Indicates when the adapter
enters the initial loading state. Default val-
ue is never.

Convert to Safe
Opcodes

safeOps boo-
lean

(Advanced) Converts the opcodes IN-
SERT and UPDATE to UPSERT, and DE-
LETE to SAFEDELETE. Default value is
False.

Skip Deletes skipDels boo-
lean

(Advanced) Skips the rows with opcodes
DELETE or SAFEDELETE. Default val-
ue is false.

Date Format dateFormat string (Advanced) The format string for parsing
date values. Default value is %Y-%m-
%dT%H:%M:%S.

Timestamp Format timestampFormat string (Advanced) The format string for parsing
timestamp values. Default value is %Y-
%m-%dT%H:%M:%S.

Block Size blockSize int (Advanced) The number of records to
block into one pseudo-transaction. Default
value is 1.

Field Mapping permutation permu-
tation

(Advanced) Mapping between the in-plat-
form and external fields. No default value.

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the project
configuration file. If you specify the same
properties in the project configuration file
and the ATTACH ADAPTER statement, the
values in the property set override the val-
ues defined in the ATTACH ADAPTER

statement. No default value.

Known limitations:

CHAPTER 2: Adapters Supported by Event Stream Processor

108 Sybase Event Stream Processor

• The stream name in the file rows is ignored.
• All the data is sent to the same stream.
• Supports only one network connection.

Socket (As Server) CSV Output Adapter
Adapter type: dsv_sockin_out. The Socket (As Server) CSV Output adapter sends data in
Event Stream Processor delimited format to the incoming network adapters.

The adapter can be configured to send only the base state of the stream. The socket closes after
sending the base state of the stream but may be repeatedly reconnected.

It is possible for the data not to have the header, or for the header not to specify the field
names.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is dsv_sockin_out.

Property Label Property ID Type Description

Port port int (Required) Server port. If port is set to -1,
the adapter reads from the Ephemeral Port
File. Default value is 12345.

Include Base Con-
tent

outputBase boo-
lean

(Optional) Records the initial contents of
the stream, not just the updates. Default
value is false.

Prepend Stream
Name, Opcode

prependStream-

NameOpcode

boo-
lean

(Optional) If true, each message starts with
the stream name and the opcode. Default
value is false.

Ephemeral Port File epFile file-
name

(Advanced) The file that contains the serv-
er port number, if port is -1. No default
value.

Only Base Content onlyBase boo-
lean

(Advanced) The adapter sends only the
initial contents of the stream, once. Default
value is false.

Delimiter delimiter string (Advanced) The symbol used to separate
the columns. Default value is a comma
(,).

Has Header hasHeader boo-
lean

(Advanced) Whether the first line of the
file contains the description of the fields.
Default value is false.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 109

Property Label Property ID Type Description

Date Format dateFormat string (Advanced) The format string for parsing
date values. Default value is %Y-%m-%dT
%H:%M:%S.

Timestamp Format timestampFormat string (Advanced) The format string for parsing
timestamp values. Default value is %Y-
%m-%dT%H:%M:%S.

Field Mapping permutation permu-
tation

(Advanced) Mapping between the in-plat-
form and external fields. No default value.

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the project
configuration file. If you specify the same
properties in the project configuration file
and the ATTACH ADAPTER statement, the
values in the property set override the val-
ues defined in the ATTACH ADAPTER

statement. No default value.

Known limitations:

• Supports only one network connection.

SMTP Output Adapter
Adapter type: smtp_out. The SMTP Output adapter sends an e-mail containing stream
records.

For each record, the e-mail body contains:

• Stream name
• Columns names and values

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is smtp_out.

Property Label Property ID Type Description

SMTP Host smtpHost string (Required) Name or IP
address of the e-mail
server. No default val-
ue.

CHAPTER 2: Adapters Supported by Event Stream Processor

110 Sybase Event Stream Processor

Property Label Property ID Type Description

fromAddress from string (Required) E-mail ad-
dress of the sender. No
default value.

Importance Column importanceColumn string (Required) Name of
the stream column
where the e-mail im-
portance is stored. Val-
id values are: high,
normal, and low. The
default value is impor-
tance. The values are
case-sensitive.

Address Column addressColumn string (Required) Name of
the column where a
semicolon-delimited
list of recipient e-mail
addresses is stored. No
default value.

Subject Column subjectColumn string (Required) Name of
the stream column
where the e-mail sub-
ject is stored. No de-
fault value.

SMTP Port smtpPort uint (Optional) Port used
by the SMTP server.
Default value is 25.

SMTP Username smtpUsername string (Optional) Once you
configure this proper-
ty, the SMTP authen-
tication requires the
SMTP password to be
set also.

SMTP Password smtpPassword string (Optional) Set this
property if you have
set a SMTP username.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 111

Property Label Property ID Type Description

Use SSL useSSL boolean (Optional) If you want
to enable this option,
import the security
certificate into the Java
keystore file (located
under install/
lib/jre/lib/
security/ca-
certs). Once the se-

curity certificate is
configured, you can
enable this option.

Default value is false.

Important: Enable
the SMTP server for
SSL before configur-
ing this option.

Use TLS useTLS boolean (Optional) If you want
to enable this option,
import the security
certificate into the Java
keystore file (located
under install/
lib/jre/lib/
security/ca-
certs). Once the se-

curity certificate is
configured, you can
enable this option.

Default value is false.

Important: Enable
the SMTP server for
TLS before configur-
ing this option.

CHAPTER 2: Adapters Supported by Event Stream Processor

112 Sybase Event Stream Processor

Property Label Property ID Type Description

cc Column ccColumn string (Advanced) Name of
the column where a
semicolon-delimited
list of recipient cc ad-
dresses is stored. By
default, no cc e-mails
are sent.

bcc Column bccColumn string (Advanced) Name of
the column where a
semicolon-delimited
list of recipient bcc ad-
dresses is stored. By
default, no bcc e-mails
are sent.

Column Names columnNames string (Advanced) Colon-de-
limited names of
stream columns whose
values are included in
the e-mail. By default,
the e-mail contains
values of all columns
in the stream.

Show Column Names showColumnNames boolean (Advanced) If true, the
adapter includes the
column names in the e-
mail along with their
values. If false, it in-
cludes only the values.
Default value is true.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 113

Property Label Property ID Type Description

Number of Resend At-
tempts

resendAttempts integer (Advanced) The num-
ber of times to retry
sending an e-mail if
the initial attempt to
send it fails. Default is
0, no attempt is made
to resend e-mails.

Choose a moderate
value (0 - 10) for this
property. Requiring a
large number of at-
tempts to resend the e-
mail may lead to ex-
cessive memory con-
sumption, particularly
if aggravated by net-
work problems and a
high volume of re-
cords waiting to be e-
mailed.

Log Alert logAlert boolean (Advanced) If true,
logs an alert at debug
level 1 each time the e-
mail sending has been
successful or failed.
Default value is true.

Date Format dateFormat string (Advanced) Date for-
mat. Default value is
%Y-%m-%dT%H:
%M:%S.

Timestamp Format timestampFormat string (Advanced) Time-
stamp format. Default
value is %Y-%m-
%dT%H:%M:%S.

CHAPTER 2: Adapters Supported by Event Stream Processor

114 Sybase Event Stream Processor

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies
the name of the prop-
erty set (a group of
properties and values)
you want to use from
the project configura-
tion file. If you specify
the same properties in
the project configura-
tion file and the AT-

TACH ADAPTER state-
ment, the values in the
property set override
the values defined in
the ATTACH ADAPT-

ER statement. No de-
fault value.

Known limitations:

• If you are a Microsoft Outlook® user, disable the feature that removes extra line breaks:
1. Open Outlook, go to Tools > Options.
2. On the Preferences tab, select E-mail Options.
3. Click to clear the Remove extra line breaks in plain text messages check box. Click

OK twice.

Sybase IQ Output Adapter
Adapter type: sybase_iq_out. The Sybase IQ Output adapter loads data from Event Stream
Processor into Sybase IQ.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is sybase_iq_out.

The Sybase IQ Output adapter makes use of the esp_iqloader utility to load data into Sybase
IQ. When the adapter starts, it launches the esp_iqloader utility, which subscribes to the
streams specified in its configuration file, and loads the data from those streams into IQ using
ODBC.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 115

Property La-
bel

Property ID Type Description

Configuration File configFile filename (Required) Full path to the
esp_iqloader configuration file
that provides Sybase IQ connec-
tion details, stream information,
and load options. See the Utilities
Guide for more information
about the format of this file.

User Name user string (Optional) User name the
esp_iqloader utility uses when
connecting to Event Stream Pro-
cessor.

Note: This property is required
when using Server RSA, user-
name or password, Kerberos, and
LDAP authentication.

Password password password (Optional) Password to use to
connect to the Event Stream Pro-
cessor.

Note: Not needed if specifying
the RSA Key file.

CHAPTER 2: Adapters Supported by Event Stream Processor

116 Sybase Event Stream Processor

Property La-
bel

Property ID Type Description

RSA Key File rsaKeyFile RuntimeFi-
lename

(Optional) Full path to the RSA
key private key file. Set this when
using Server RSA authentication
to the Event Stream Processor.

Note: Set a user name before
configuring this option.

Use Kerberos useKerberos boolean (Optional) If true, uses Kerberos
authentication to the Event
Stream Processor if the RSA key
file parameter is not specified. If
the RSA key file parameter is
specified and UseKerberos is set
to true, the RSA settings override
Kerberos settings and RSA au-
thentication is used. Default val-
ue is false.

Note: Set a user name before
configuring this option.

PropertySet propertyset string (Advanced) Specifies the name
of the property set (a group of
properties and values) you want
to use from the project configu-
ration file. If you specify the
same properties in the project
configuration file and the AT-

TACH ADAPTER statement, the
values in the property set over-
ride the values defined in the AT-

TACH ADAPTER statement. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 117

Property La-
bel

Property ID Type Description

Archive Deltas archiveDeltas boolean (Advanced) If true, archives del-
tas, otherwise archives only a
snapshot of the data.

Delta mode continually uploads
all data (existing and updates)
from the specified streams or
windows into Sybase IQ. Snap-
shot mode uploads all existing
data from the specified streams
or windows when the adapter
starts up, and then exits.

Existing data is data that is al-
ready present in the window
when the adapter starts up and
connects to it. Default value is
true.

Project URI projectUri string (Required) The URI needed to
connect to a project in the Event
Stream Processor cluster. For ex-
ample, <host-
name>:<port>/<work-
space-name>/
<project-name>.

Swap Bytes byteSwap boolean (Advanced) Set to true if the
Event Stream Processor and the
esp_iqloader utility are running
on different architectures (little/
big endian). Default value is
false.

Recover Only recoverOnly boolean (Advanced) If true, recovers any
data that was read from the Event
Stream Processor but not ar-
chived, and exits. Default value is
false.

Datawarehousing
Mode

dataWarehouse boolean (Advanced) If true, updates are
treated as inserts and deletes are
ignored. Default value is false.

CHAPTER 2: Adapters Supported by Event Stream Processor

118 Sybase Event Stream Processor

Property La-
bel

Property ID Type Description

Archive Interval archiveInterval uint (Advanced) Specifies how long
to wait, in seconds, after each
time a set of data is archived and
the next set of data is archived.
Default value is 1.

Precision precision uint (Advanced) A value between 0
and 6 that specifies the precision
to use for money and float data-
types. Default value is 6.

Subscription Buf-
fer Size

queueSize uint (Advanced) A positive value
greater than 1000 that specifies
the subscription buffer size to
use.

Note: Change this value if the
data is bursty and the Event
Stream Processor reports the
subscription buffer is full.

Commit Batch
Size

batchSize uint (Advanced) The batch size used
to archive data into Sybase IQ.
Default value is 1000.

Important: Specify bulk loads
in the batch size configuration
file.

ODBC Retry At-
tempts

odbcRetryTimes uint (Advanced) Number of times to
retry the ODBC connection if a
connection cannot be made. De-
fault value is 5.

ODBC Retry In-
terval

odbcRetryInterval uint (Advanced) Number of seconds
to wait before retrying the ODBC
connection. Default value is 60.

Known limitations:

• Attaching a Sybase IQ output adapter to a stream does not guarantee that the adapter
archives the data from this stream. The adapter uses the specified configuration file to get
this information. If a different stream is specified by the configuration file, then that one is
archived.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 119

Datatype Mapping for the Sybase IQ Adapter
Event Stream Processor datatypes map to Sybase IQ datatypes.

If required, you can create a table in Sybase IQ to map Event Stream Processor datatypes to
other compatible Sybase IQ datatypes. The datatype mapping below is default mapping.

Note: The date and timestamp Event Stream Processor datatypes are compatible only with the
datetime Sybase IQ datatype.

Event Stream Processor Datatypes Sybase IQ Datatypes

bigdatetime timestamp

binary binary

boolean varchar(5)

date datetime

float float

integer integer

interval bigint

long bigint

money decimal(38,4)

money(n) decimal(38,n)

string varchar(n)

timestamp datetime

WebSphere MQ Adapter
Event Stream Processor supplies WebSphere MQ adapters that enable you to read and write to
and from the WebSphere MQ queue and an Event Stream Processor stream.

Event Stream Processor permits a WebSphere MQ server to read and write to the Event Stream
Processor engine. You can customize these internal adapters to suit your needs. Because
WebSphere MQ messages are unstructured, properly define a schema and prepare the MQ
messages. The full range of Event Stream Processor datatypes is permitted in the schema
definition. You can send binary data, strings, and so on, into and out of the Event Stream
Processor engine.

Ensure MQ Client adapters have MQ 7.0.1 Client software installed. Failure to match the
adapter to installed software results in errors. Sybase WebSphere MQ adapters are designed to

CHAPTER 2: Adapters Supported by Event Stream Processor

120 Sybase Event Stream Processor

work with WebSphere MQ client software on the same host computer as the Server. The
WebSphere MQ Server, however, can reside on the same computer or on another computer.

WebSphere MQ Input and Output adapters support opcodes for inserting, deleting, updating,
and upserting data between the Event Stream Processor and WebSphere queues.

WebSphere MQ Input Adapter
Adapter type: wsmq_in. The default WebSphere MQ Input adapter reads a string in CSV
format.

Ensure the order of the data in the message matches the schema of the input stream to which
the adapter is attached. The WebSphere MQ Input adapter applies stream names and opcode
instructions (INSERT, DELETE, UPDATE, UPSERT) to CSV data pulled from a queue. See
the expectStreamNameOpcode property.

Note: If you are reading data from WSMQ using the WebSphere MQ Input adapter, but
publishing data using a JMS program rather than the WebSphere MQ Output adapter, set the
following line in the JMS program:
queue.setTargetClient(com.ibm.mq.jms.JMSC.MQJMS_CLIENT_NONJM
S_MQ);.

To run the adapter successfully in Linux and UNIX installations, set the
LD_LIBRARY_PATH to point to the MQ client libraries.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is wsmq_in.

Note: To avoid data loss in the case of a server failure, Sybase recommends you attach a log
store to an input window.

Property La-
bel

Property ID Type Description

Queue Name QueueName string (Required) The name of the queue on
the server to send messages. This queue
must be managed by the indicated
Queue Manager Name. No default val-
ue.

Queue Manager
Name

QueueManager-

Name

string (Required) The name of the queue man-
ager on the server to send messages to.
No default value.

MQ System
Name

SystemName string (Required) The name of the MQ server
system. This may be a symbolic name
or an IP address. No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 121

Property La-
bel

Property ID Type Description

Port Port string (Required) The port number on the MQ
server system to which the MQ server
queue listener is attached. No default
value.

MQ Channel Channel string (Required) The name of the MQ server
channel associated with the queue. No
default value.

Maximum Input
Buffer Size

MaxBufferSize uint (Required) The maximum size of the
buffer, in bytes. No default value.

Sync Point Com-
mit Mode

syncpointmode boolean (Optional) Enables sync point commit
mode. Set this to ensure guaranteed de-
livery of messages from the adapter to
the Server. Default value is false.

Batch Size batchsize uint (Optional) Specifies number of records
in a batch to commit in sync point com-
mit mode. Default value is 1.

CSV Delimiters CsvSeparators string (Optional) The CSV field separators.
Can be multiple characters. Default
value is a comma (,).

CSV Escape
Characters

CsvEscapeChars string (Optional) The character that escapes
the meaning of special characters, in-
cluding the delimiters, escape charac-
ters, and quote characters. Can be mul-
tiple characters. Default value is a back-
slash (\).

CSV Quote Char-
acters

CsvQuoteChars string (Optional) The characters to delineate
the beginning and end of a field. Default
value is double quotes (").

Perform CSV
Trimming

CsvTrimming boolean (Optional) If set to true, this trims lead-
ing and trailing whitespace from the
beginning and end of each field. If true,
a quoted field containing nothing but
spaces is interpreted as NULL. Default
value is true.

CHAPTER 2: Adapters Supported by Event Stream Processor

122 Sybase Event Stream Processor

Property La-
bel

Property ID Type Description

Stream Name,
Opcode Expected

TimestampColumn-

Format

string (Optional) The format for timestamp
values. Default value is YYYY-MM-
DDTHH:MM:SS.SSS.

Timestamp Col-
umn Format

expectStreamNa-

meOpcode

boolean (Advanced) If true, the first two fields in
CSV records are interpreted as stream
name, opcode. Default value is false.

Date Column
Name

DateColumnName string (Advanced) The format in which date
values are stored in the file. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS.

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the project
configuration file. If you specify the
same properties in the project configu-
ration file and the ATTACH ADAPTER

statement, the values in the property set
override the values defined in the AT-

TACH ADAPTER statement. No default
value.

See also
• Chapter 5, Guaranteed Delivery on page 543

WebSphere MQ Output Adapter
Adapter type: wsmq_out. The default WebSphere MQ Output adapter publishes a string in
CSV format.

The WebSphere MQ adapter does not produce a header line because the schema of the stream
publishing to the adapter determines the order and datatypes of the fields. Columns are
published in the default display format for the appropriate datatype. The adapter prepends
stream names and opcode instructions (insert, delete, update, upsert) to CSV data added to a
queue. See the prependStreamNameOpcode property.

To run the adapter successfully in Linux and UNIX installations, set the
LD_LIBRARY_PATH to point to the MQ client libraries to run the adapter successfully.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is wsmq_out.

Note: This adapter uses TCP/IP for transfers. To use other protocols, determine the
appropriate configuration and interface properties for those protocols.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 123

Property Label Property ID Type Description

Queue Name QueueName string (Required) Name of the queue on the
server to send messages. This queue
must be managed by the indicated
Queue Manager Name. No default
value.

Queue Manager Name QueueMana-

gerName

string (Required) Name of the queue man-
ager on the server to send messages.
No default value.

MQ System Name SystemName string (Required) Name of the MQ server
system. This may be a symbolic name
or an IP address. No default value.

Port Port string (Required) Port number on the MQ
server system to which the MQ server
queue listener is attached. No default
value.

MQ Channel Channel string (Required) Name of the MQ server
channel associated with the queue. No
default value.

CSV Field Separator CsvSepara-

torChar

string (Optional) The CSV field separator,
specify a single character. Default val-
ue is a comma (,).

CSV Escape Character CsvEscape-

Char

string (Optional) The character to escape the
meaning of special characters, includ-
ing the field separator, escape charac-
ter, and quote character. Default value
is a backslash (\).

CSV Quote Character CsvQuoteChar string (Optional) The character to delineate
the beginning and end of a field, which
can include anything. Any embedded
quote characters are escaped. Default
value is a double quote (").

Prepend Stream Name,
Opcode

prepend-

StreamNa-

meOpcode

boolean (Advanced) If true, every CSV record
is prepended with stream name and an
opcode. Default value is false.

Timestamp Column For-
mat

TimestampCo-

lumnFormat

string (Advanced) The format for timestamp
values. Default value is YYYY-MM-
DDTHH:MM:SS.SSS.

CHAPTER 2: Adapters Supported by Event Stream Processor

124 Sybase Event Stream Processor

Property Label Property ID Type Description

Date Column Format DateColumn-

Format

string (Advanced) The format in which date
values are stored in the file. Default
value is YYYY-MM-
DDTHH:MM:SS.SSS.

Runs Adapter in GD
Mode

enable-

GDMode

boolean (Advanced) If set to true, the adapter
runs in guaranteed delivery (GD)
mode and all GD-related parameters
become required. Default value is
false.

Name of Column Hold-
ing GD Key

gdKeyColumn string (Advanced) Specifies column name in
the Flex operator holding the GD key.
The GD key is a constantly increasing
value that uniquely identifies every
event regardless of the opcode in the
stream of interest. No default value.

Name of Column Hold-
ing opcode

gdOpcodeCol-

umn

string (Advanced) Specifies name of column
in Flex operator holding opcode. The
opcode is the operation code (for ex-
ample, inserts, update, or delete) of the
event occurring in the stream of inter-
est. No default value.

Name of Truncate Stream gdControl-

Stream

string (Advanced) Specifies name of the
control window in the GD setup. The
control window is a source stream that
informs the Flex operator of which
data has been processed by the adapter
and can be safely deleted. No default
value.

Purge After Number of
Records

gdPurgeInter-

nal

int (Advanced) Specifies number of re-
cords after which to purge the Flex
operator. Default value is 1000.

Batch Size to Update
Truncate Stream

gdBatchSize int (Advanced) Specifies number of re-
cords after which the control window
must be updated with the latest GD
key. Default value is 1000.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 125

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies the name of the
property set (a group of properties and
values) you want to use from the
project configuration file. If you spec-
ify the same properties in the project
configuration file and the ATTACH

ADAPTER statement, the values in the
property set override the values de-
fined in the ATTACH ADAPTER state-
ment. No default value.

See also
• Chapter 5, Guaranteed Delivery on page 543

Queue Configuration
Use this sample code to call a queue manager, server queue, channel, and listener.

A standard MQ server configuration provides:

• A default queue manager called queue.manager.1.

• A local server queue called QUEUE1.

• A Server-Connection channel called channel1.

• A listener called listener1 on TCP/IP port 2001.

Create a default queue manager called queue.manager.1 and
start it:
crtmqm -q queue.manager.1
strmqm
dspmq # display list of active queues
Now create a local queue, a channel and a listener:
runmqsc
define qlocal(QUEUE1)
5
define channel (channel1) chltype (svrconn) trptype (tcp)
\
mcauser ('mqm')
define listener (listener1) trptype (tcp) control (qmgr) \
port (2001)
start listener (listener1)
end

Note: In this configuration example, backslashes (\) are used for readability, and because of
space constraints. When configuring queues in the system, keep this information on one line.

CHAPTER 2: Adapters Supported by Event Stream Processor

126 Sybase Event Stream Processor

External Adapters
Event Stream Processor provides specialized external adapters for processing nonstandard
data formats from non-standard interfaces.

External adapters execute as a separate process either on the same machine as the Server or on
different machines. These adapters start and stop independently of the Server and associated
query modules.

See also
• Adapter Parameters Datatypes on page 8

• Adapters that Support Schema Discovery on page 539

• Custom External Adapters on page 517

ESP Add-In for Microsoft Excel
The Sybase ESP Add-in for Microsoft Excel® is a real-time data add-in for Microsoft Excel
that lets you view and retrieve records from one or more running Event Stream Processor
projects, as well as publish records to them.

The ESP Add-in for Microsoft Excel does not support Linux or Solaris platforms. You can run
it on 32-bit and 64-bit editions of Windows, and with MS Excel 2007 and 2010 (32-bit editions
only).

On the display side, you can use the ESP Add-in for Microsoft Excel to select streams and
view the columns within those streams. You can also filter records based on data values, and
view the most recent “N” records, or the most recent “N” records that match a specified filter
(where “N” is the specified number of records).

On the publication side, you can use the ESP Add-in for Microsoft Excel to automatically
publish data whenever data changes in a range of cells. You can also manually publish data to
Event Stream Processor by selecting a range of cells and using the Publication wizard.

Connection Wizard
The Connection wizard enables you to simultaneously connect to one or more instances of
Event Stream Processor.

The connection information for an Excel workbook is saved with the workbook.

Component Description

Connections Enter the name of a new connection, or select from a list of previ-
ously defined connections. When you select a connection, all the
information associated with that connection appears.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 127

Component Description

Host (Required) Enter the host name for the Event Stream Processor
cluster manager to connect to.

Port (Required) Enter the port of the Event Stream Processor cluster
manager.

Workspace Enter the workspace that the project is part of.

Project Enter the project to connect to.

User Enter the user name to connect to the cluster manager. This prop-
erty is required unless you selected none as the authentication type.

Password (Optional) Enter the password associated with the user name.

SSL To connect to an Event Stream Processor cluster manager that was
started with SSL mode enabled.

Authentication Type Select an authentication type from the list. The authentication type
selected must match the mode that was used when starting Event
Stream Processor.

RSA Key File If RSA authentication is selected, enter the RSA key file. You can
either type the location and name of the key file, or click the button
next to the field to browse and to choose the file.

Save Saves the connection information in a hidden worksheet associated
with the active workbook. Connection when the active workbook is
retrieved and shown.

Connect After providing all the information, click this button to connect to
the server. If the connection is successful, only the Disconnect
button is available for this connection. This also saves the connec-
tion information for future use.

Disconnect Drop the connection to Event Stream Processor. On a successful
disconnect, this button is disabled and the Connect and Delete
buttons are enabled. Any queries that are actively using this con-
nection are stopped, after user confirmation, before disconnecting.

Delete Delete a connection.

Hide Hide the window while preserving all information. To redisplay the
screen, click the SybaseRT button on the Excel toolbar.

CHAPTER 2: Adapters Supported by Event Stream Processor

128 Sybase Event Stream Processor

Subscription Wizard
The Subscription wizard pane enables you to define and control one or more subscription
queries, the results of which appear in the Excel worksheet.

The ESP Add-in for Microsoft Excel keeps track of the locations of your queries even if its
defined cells are shifted horizontally or vertically.

Component Description

Subscription Queries Enter the name of a new query, or choose a previously defined
query. When you select a previously saved query, you see all in-
formation associated with that query.

Connection Name Select the connection associated with the query. you can run a
query only if the associated connection is active.

Start Cell Enter the location in the Excel worksheet in which start inserting
the real-time data formulas. Specify the location in “A1” notation;
for example, a value of B5 tells the ESP Add-in for Microsoft Excel
to insert the formulas as a grid starting at column B, row 5.

Max Rows Enter the number of records (maximum value 65536) to appear in
the Excel worksheet. When there are more rows to be displayed
than the number specified, the oldest records are discarded.

Get Base Transactions Select this field to retrieve base records from a stream before new
transactions. Leave this field unselected to retrieve only new trans-
actions.

For small tables with relatively few new transactions turn this op-
tion on, so you can see query data. Otherwise, the data for the query
is not displayed. However, for dynamic tables with high transaction
activity, leave this option unselected: otherwise, Excel tries to po-
tentially load millions of records every time it starts.

Streams Displays all the streams available in the server with which the
selected connection is associated. These streams automatically
appear when you select a connection.

Columns When one of the streams is selected, this area displays each col-
umn, along with its datatype and a check box to indicate whether or
not it is a key column. You can choose a different key column for
the stream than the specified one.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 129

Component Description

SQL Statement To customize data retrieved from Event Stream Processor, specify
a SQL statement. The statement cannot include joins, group by, and
order by clauses as the SQL is applied to individual transaction logs
for the stream, not the data in the stream. See the Utilities Guide for
information about esp_query supported SQL syntax. This option
is available only if SQL Statement is selected as the stream with
which the connection is associated.

Parse SQL Parse the SQL statement in the SQL Statement field. If the SQL is
parses successfully, the column names and corresponding data
types appear in the Columns field. By default, while none of the
columns are marked as key fields, the appropriate key columns
must be selected before the real-time data query is applied.

Apply Apply the real-time data formulas in the Excel worksheet after
configuring a new subscription or modifying an existing subscrip-
tion. Once the formulas have been applied, you can start the query.

Reset Display the properties of the Subscription Query when it was last
saved. Select this option if changes have been made to the query
that need to be completely reversed.

Delete Delete a previously saved query.

Start Start the query. The data appears in the Excel worksheet.

Stop Stop the running query. No new data appears in the Excel work-
sheet. However, any data that appears continues to show until you
close and reopen the worksheet, or restart the query.

Publication Wizard
The Publication wizard lets you manually publish data to a stream and graphically construct
publication formulas meant for automatic publishing.

Components Description

Connection Name The name of the connection to use for publishing. Only active
connections appear. When you click a connection, the streams the
connection object is connected to appear in the Streams field, and
the columns and the datatypes for the stream appear in the table
named Columns.

Operation Code If a record exists, select UPDATE, DELETE, or UPSERT (the
default). Otherwise, select INSERT.

CHAPTER 2: Adapters Supported by Event Stream Processor

130 Sybase Event Stream Processor

Components Description

Data Range Specify the range of cells in the Excel worksheet that contain the
data to publish. You cannot edit this field directly: select the cells in
the worksheet to publish, then click the blue button next to this field
to populate it.

You cannot simultaneously publish multiple noncontiguous areas.

WorkBook Name A read-only field that shows the workbook in which the selected
range is located.

WorkSheet Name A read-only field that shows the worksheet in which the selected
range is located.

First Row Has Columns Indicate that the first row in the selected range has column names. If
it does not, leave this field unselected.

When you specify data columns, they can be in any order, and only
values for the desired fields must be supplied. The rest of the col-
umns are automatically filled with NULL.

However, you do not provide column names, the ESP Add-in for
Microsoft Excel expects all the columns in the streams to be in the
exact same order as defined in Event Stream Processor.

Transpose Rows To Columns Select this option if the data columns for a record are provided
vertically in a single column instead of the horizontally across
multiple columns (the normal way of representing records).

Streams Select the stream for which a publication should be made.

Columms This table shows the columns and the corresponding datatypes for
the selected stream. You cannot select the columns in this table;
however, you can copy the names of the columns and paste them in
Excel.

Log File (Optional) Specify the path and file name to which publication
errors are written, either by entering it directly into the field, or by
browsing to and selecting it.

The errors written to this file in also appear in the Result field.

Result Read-only results of the publication.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 131

Components Description

Publish Data Publish the data to Event Stream Processor. The result of the pub-
lication appears in the Result field.

The Event Stream Processor only acknowledges whether the data
has been received. To find out whether the record was rejected for
some reason, such as a duplicate insert or bad data, either subscribe
to the stream or submit a SQL query.

Show Formula Graphically create the formula. This provides a convenient way to
create a formula for automatic publishing. If there are no errors, the
formula appears in the Results field. You can then copy the formula
and place it in the Excel worksheet to start automatically publish-
ing the data.

Clear Results Clear the Result field if there are too many entries.

Automatic Publishing
Use the SybaseRTP add-in function when the data in a cell changes

SybaseRTP is a wrapper function around the underlying Excel real-time data mechanism
used for publishing data. The syntax for this formula is:

=SybaseRTP("ConnectionName","StreamName","OperationCode",DataRange,
[[ColumnRange],[TransposeRows],["LogFile"],[InstanceNo],
[NoResults])]

where:

Parameter Description

ConnectionName Name of the connection to use for publishing. You must establish
the connection before you can publish successfully.

StreamName Name of the stream where to publish data.

OperationCode The opcode for publishing INSERT, UPDATE, DELETE, or UP-
SERT.

DataRange The address or name of the Excel range containing the data to
publish. Do not enclose the DataRange object in double quotes.

[ColumnRange] (Optional) The Excel range address or range name containing the
stream column names. Do not enclose this parameter in quotes.

[TransposeRows] (Optional) Whether the data record is specified in a column instead
of a row. It can be either true or false (the default).

CHAPTER 2: Adapters Supported by Event Stream Processor

132 Sybase Event Stream Processor

Parameter Description

[LogFile] (Optional) The name and location of the log file to which any errors
are logged. If not provided, no logging is done.

[InstanceNo] Internal use only; leave empty.

[NoResults] Internal use only; set to false or leave empty.

For example:

=SybaseRTP("Connection1","Trades","INSERT",A2:E10, A1:E1,False,"C:
\logs\log1.log",,)

You can place this formula in any sheet in the workbook. When constructing the formula, tell
Excel the workbook or worksheet to which the address refers either by selecting the
appropriate cells in the desired worksheet or using the [Workbook]Worksheet!A1:E5 format.

Once the formula is in Excel any changes made to any of the cells publishes the entire range.
To publish only when certain cells are changed, use a call inside a custom wrapper that
encapsulates the business logic that dictates when to call this function.

The return value for this function is an array that is formatted as a string using an Excel-style
location: {{val11,val12},{val21,22}....}. You can then convert this formula into an Excel-
style array object. The string contains one or more array of elements, and each subelement
contains two subitems. The array string contains only one element when there are errors
passed in values. Otherwise, it contains one more element than the number of rows to publish.

The first element in the array string is a summary that indicates whether errors are detected
when parsing the formula, a one-element array of the form is returned; for example:
{{"1","Some error message."}}

If there are errors during record validation, or if the process is completed successfully, there is
one more array element than the number of rows to publish. For example, if there are two rows
to publish and both the records have been successfully published, the array string looks like the
following example:

{{"0",""},{"0",""},{"0",""}}

If only one record was published successfully, and another failed, then the return array string
looks like this:

{{"1","An error message"},{"0",""},{"1","row level error message"}}

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 133

Subscription Queries
You can save subscription queries permanently by saving the Excel worksheet containing the
formula associated with the query. The next time the Excel Worksheet is opened, the query
appears in the Subscription wizard.

Applying a Query
Apply and start a query from the Subscription Wizard pane to populate the Excel worksheet.

Prerequisites
You have defined a query in the Subscription Wizard pane.

Task

1. From the Subscription Queries menu, select the desired query.

2. Click Apply.
• The ESP Add-in for Microsoft Excel first verifies that the supplied subscription query

name has not already been used then verifies that the provided Start Cell is a valid Excel
cell address. If either conditions is false resolve the problem.

• Next, the ESP Add-in for Microsoft Excel constructs Excel real-time data formulas
based on the specified subscription query, and inserts one formula per cell into the
active worksheet. Depending on the query, hundreds of formulas may be inserted. The
ESP Add-in for Microsoft Excel uses this logic to insert formulas:
• Formulas are always inserted as a grid, starting at the specified Start Cell location.

Each selected column appears in separate but contiguous columns in the Excel
worksheet. The value of Max Rows controls the number of rows to which the filter
is applied.

• Soon after the first formula is inserted into the active worksheet, Excel recognizes
the real-time data formula and makes a call to the ESP Add-in for Microsoft Excel
server that passes the query information for the first filter. The real-time server
looks at the information passed, recognizes it as a new query, and spawns a query
object. The real-time data server also stores the passed-in information for future
use.

• This process is repeated for every formula of the query, except the real-time server
recognizes that the formula is part of the previously seen query. Therefore, it does
not create a new query object. Rather, it stores the information so that it can return
the data corresponding to the formula.

3. Click Start.
• The ESP Add-in for Microsoft Excel verifies that the connection to Event Stream

Processor is active and that the specified query is still valid. If either of these condition
is false, then it returns to the formula.

CHAPTER 2: Adapters Supported by Event Stream Processor

134 Sybase Event Stream Processor

• Next, the ESP Add-in for Microsoft Excel spawns a new read thread to read the
transaction log data from Event Stream Processor, and stores it in an internal buffer.

• Every tenth of a second, the ESP Add-in for Microsoft Excel reads the transaction logs
from the internal buffer, and decides whether to insert, update, or delete records in a
display buffer, based on the user-specified key fields. When there is an insert into the
display buffer and the number of records in the buffer is equal to the specified Max
Rows, the oldest record in the buffer is deleted, the rest of the records are moved up, and
the record is inserted at end. When a record needs to is updated, an in-place update is
performed. This insert and update mechanism results in a more stable view of the data
in the Excel worksheet, and makes it easier to create charts based on the subscribed
data.

• Once the display buffer has been populated, the ESP Add-in for Microsoft Excel
notifies Excel that new data is available. When it receives a request for the data, it sends
the data in a format that Excel can understand and shows it the appropriate location in
the worksheet.

Known Issues and Limitations
The ESP Add-in for Microsoft Excel has some known issues and limitations.

• Performance degrades when Max Rows is set to a large value, for example, several
thousand rows or more. The machine becomes very busy as it attempts to process and
complete the request.

• When Event Stream Processor stops or the connection is lost due to network failure, the
ESP Add-in for Microsoft Excel screen is not automatically refreshed to reflect the current
state of the query and connection. Refresh the screen by selecting either the connection or
the query to show the current state of the selected object.

• You cannot use more than one worksheet containing ESP Add-in for Microsoft Excel
connection or subscription information within the same instance of Excel.

FIX Adapter
Adapter type: fixplugin. The Sybase Event Stream Processor FIX adapter is an
implementation of the opensource QuickFIX engine that has been integrated with the Sybase
Event Stream Processor API.

The FIX adapter:

• Engages in and manages FIX sessions with well-behaved FIX engines
• Receives and sends FIX messages via connectors and FIX sessions
• Validates inbound FIX messages
• Translates FIX messages into Event Stream Processor records
• Translates Event Stream Processor records into FIX messages

Note: The FIX adapter supports customization of the FIX dictionary.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 135

The FIX adapter requires a separately purchased license. This license supports the standard
SySAM grace period, meaning it can run unlicensed for 30 days. After this period, the adapter
cannot run without a valid license.

If you purchased your product from Sybase or an authorized Sybase reseller, go to the secure
Sybase Product Download Center (SPDC) at https://sybase.subscribenet.com and log in to
generate license keys. The license generation process may vary slightly, depending on
whether you ordered directly from Sybase or from a Sybase reseller.

If you ordered your product under an SAP® contract and were directed to download from SAP
Service Marketplace (SMP), you can use SMP at http://service.sap.com/licensekeys to
generate license keys for Sybase products that use SySAM 2-based licenses.

See also
• File FIX Input Adapter on page 42

• File FIX Output Adapter on page 44

• Socket FIX Input Adapter on page 92

• Socket FIX Output Adapter on page 94

Supported FIX Versions
FIX protocol versions supported by the FIX adapter.

The FIX adapter supports FIX protocol versions 4.0 through 5.0.

Note: FIXML is not supported.

Control Flow
The adapter loads its configuration from a file (for example, adapter.xml) and validates it
against the adapter schema (fixadapter.xsd), which includes the API-wide controller
schema (controller.xsd).

You cannot edit schemas.

The FIX adapter control flow includes loading different configuration files, and various
commands and components.

The Adapter Controller creates an instance of the adapters, and receives and executes user
commands. It can execute start, stop, and status commands.

CHAPTER 2: Adapters Supported by Event Stream Processor

136 Sybase Event Stream Processor

https://sybase.subscribenet.com
http://service.sap.com/licensekeys

Figure 2: Control Flow

Start Command
The start command starts the FIX adapter, configures and starts the command and control
interface, loads the FIX dictionary and the SpPublisher and SpSubscriber components, and
then connects to the Event Stream Processor via the API interfaces.

The Message Distributor prepares to publish and subscribe to data streams. Data streams are
organized into hierarchies named stream clusters. A stream cluster is a set of streams capable
of hosting FIX messages of a certain type.

The Connector Manager opens FIX data files and socket connections to client and server
sources of FIX data, and the Session Manager uses the QuickFIX API to create and log on to
sessions with well-behaved FIX engines. The SpSubscriber and SpPublisher components
connect to Event Stream Processor via the API interfaces. SpSubscriber starts listening to
output streams, and SpPublisher is ready to publish data to input streams.

The adapter ignores the start command if it is executed when there is a running instance of the
adapter, and a warning is sent.

See also
• Data Streams on page 138
• Message Flow on page 142

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 137

• Starting the FIX Adapter on page 164

Stop Command
The stop command causes the datasource Handler to close the session and disconnect from
the datasource, the Adapter Controller to stop listening to user commands, and the adapter
process to terminate.

The Connector Manager closes any open data files and socket connections to client and server
datasources, and the Session Manager logs out of existing sessions.

The adapter ignores the stop command if it is executed when there is no running instance of
the adapter, and a warning is sent.

See also
• Stopping the FIX Adapter on page 166

Status Command
The status command reports the FIX adapter status, and the Adapter Controller prints out its
status: either running or stopped.

See also
• Checking the FIX Adapter Status on page 165

Data Streams
Input FIX messages are stored as stream records organized into stream clusters.

The FIX adapter stores individual messages in multiple records that belong to a stream
hierarchy named stream cluster. The top stream in the stream cluster is called the main stream.
The main stream stores fields that belong to the FIX message. All the other streams in the
stream cluster store fields that belong to nested groups.

Note: Messages of the same type can be stored in more than one stream cluster. These clusters
do not have to share a common structure.

Store inbound messages in source streams only and outbound messages in any kind of stream.

The FIX adapter ensures proper indexing of records related to inbound messages. Proper
indexing of outbound records is the responsibility of the person creating the model.

The adapter templates directory contains generated models for all FIX message types.
These automatically generated, exhaustive projects can be used to create stream clusters that
serve specific business purposes.

See also
• Message Flow on page 142

• Start Command on page 137

CHAPTER 2: Adapters Supported by Event Stream Processor

138 Sybase Event Stream Processor

Example: FIX Input Adapter Data Stream
Sample of a FIX Input adapter data stream.

This is a Quote type FIX message.

8=FIX.4.4 | 9=204 | 35=S | 49=COUNTERPARTYA | 55=AASymbol | 117=AAQuoteID |
133=31.1 | 453=2 | 448=AAPartyID1 | 447=B | 452=1 | 802=2 | 523=AAPartySubID11 |
803=1 | 523=AAPartySubID12 | 803=2 | 448=AAPartyID2 | 447=C | 452=2 | 802=1 |
523=AAPartySubID21 | 803=3 | 10=107 |

That contains these fields:

• SenderCompID=COUNTERPARTYA (tag 49)
• QuoteID=AAQuoteID (tag 117)
• Symbol=AASymbol (tag 55)
• OfferPx=31.1 (tag 133)
• NoPartyIDs=2 (tag 453)

The message for Event Stream Processor is in this main stream:
<SourceStream id="MyQuotes" store="FixStore">
 <Column datatype="string" name="SenderCompID"/>
 <Column datatype="string" name="QuoteID"/>
 <Column datatype="integer" name="NoPartyIDs"/>
 <Column datatype="string" name="Symbol"/>
 <Column datatype="float" name="OfferPx"/>
 <Column datatype="long" name="FixMsgId" key="true"/>
</SourceStream>

This is the message for the Server:
CREATE MEMORY STORE FixStore PROPERTIES INDEXTYPE ='tree',
INDEXSIZEHINT =8;

CREATE INPUT WINDOW MyQuotes
SCHEMA (SenderCompID STRING, QuoteID STRING, NoPartyIDs INTEGER,
Symbol STRING, OfferPx FLOAT, FixMsgId LONG)
PRIMARY KEY (FixMsgId)
 STORE FixStore;

The message contains two groups of type NoPartyIDs:

Group 1:

• PartyID=AAPartyID1 (tag 448)

• PartyIDSource=B (tag 447)

• PartyRole=1 (Executing Firm, tag 452)

• NoPartySubIDs=2 (tag 802)

Group 2:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 139

• PartyID=AAPartyID1 (tag 448)

• PartyIDSource=C (tag 447)

• PartyRole=2 (Broker of Credit, tag 452)

• NoPartySubIDs=1 (tag 802)

Groups 1 and 2 for Event Stream Processor are stored in this stream:
<SourceStream id="MyQuotes_NoPartyIDs" store="FixStore">
 <Column datatype="string" name="PartyID"/>
 <Column datatype="string" name="PartyIDSource"/>
 <Column datatype="integer" name="PartyRole"/>
 <Column datatype="integer" name="NoPartySubIDs"/>
 <Column datatype="long" name="FixMsgId" key="true"/>
 <Column datatype="long" name="NoPartyIDs_Num" key="true"/>
</SourceStream>

Groups 1 and 2 for the Server are stored in this stream:
CREATE INPUT WINDOW MyQuotes_NoPartyIDs
SCHEMA (PartyID STRING, PartyIDSource STRING, PartyRole INTEGER,
NoPartySubIDs INTEGER, FixMsgId LONG, NoPartyIDs_Num LONG)
PRIMARY KEY (FixMsgId, NoPartyIDs_Num)
 STORE FixStore;

Group 1 and Group 2 contain their own groups of type NoPartySubIDs. Groups 11 and 12
below are part of Group 1:

Group 11:

• PartySubID=AAPartySubID11 (tag 523)

• PartySubIDType=1 (Firm, tag 803)

Group 12:

• PartySubID=AAPartySubID12 (tag 523)

• PartySubIDType=2 (Person, tag 803)

Group 21 is part of Group 2:

• PartySubID=AAPartySubID21 (tag 523)

• PartySubIDType=3 (System, tag 803)

Groups 11, 12, and 21 in Event Stream Processor are stored in this stream:
<SourceStream id="MyQuotes_NoPartyIDs_NoPartySubIDs"
store="FixStore">
 <Column datatype="string" name="PartySubID"/>
 <Column datatype="integer" name="PartySubIDType"/>
 <Column datatype="long" name="FixMsgId" key="true"/>
 <Column datatype="long" name="NoPartyIDs_Num" key="true"/>
 <Column datatype="long" name="NoPartySubIDs_Num" key="true"/>
<SourceStream>

Groups 11, 12, and 21 for the Server are stored in this stream:
CREATE INPUT WINDOW MyQuotes_NoPartyIDs_NoPartySubIDs
SCHEMA (PartySubID STRING, PartySubIDType INTEGER, FixMsgId LONG,

CHAPTER 2: Adapters Supported by Event Stream Processor

140 Sybase Event Stream Processor

NoPartyIDs_Num LONG, NoPartySubIDs_Num LONG)
PRIMARY KEY (FixMsgId, NoPartyIDs_Num, NoPartySubIDs_Num)
 STORE FixStore;

Stream and Column Names
Ensure that the field names of the stream columns correspond to FIX fields. The order of
columns does not have to follow the order of fields in the FIX dictionary.

Note: Columns unrelated to hosted FIX messages are not allowed.

The names of main streams can be chosen arbitrarily.

Ensure that descendant streams follow a strict naming convention. Since each descendant
stream has a parent stream and corresponds to a repeating group, ensure that its name follows
this form:
<parent stream name>_<name of the repeating group>

Header and Trailer Fields
You can add or update header and trailer fields to create a valid FIX message. Some columns
may correspond to header or trailer fields. Output connectors keep all fields in the message
body intact, as stored in stream columns.

Record Indexing
FIX messages are stored in a hierarchy of records, and cross-referenced using index columns.

Index columns have a long type, and are located at the end of the stream.

Records in the main stream have only one index. Child records have two indexes, the first must
have the same value as the parent record. Descendant records at the next level have three
indexes, the first two must have the same value as their parent record, and so on.

Adapters and Sessions
The FIX adapter exchanges FIX messages with datasources such as files and socket
connections, as well as other FIX engines.

Files and socket connections are handled by the Connection Manager. Sessions with other FIX
engines are handled by the Session Manager.

Note: The adapter can work with any number of different datasources simultaneously.

Adapters are one-directional. Each adapter can be used to receive messages from (or send
them to) a single source of FIX data, such as file, client socket connection, or server socket
connection. By default, file and socket adapters validate the checksum and body length tags of
all input messages. You can turn validation off in the adapter configuration file.

Sessions with other FIX engines are two-directional. Input messages received via sessions are
always validated. You cannot turn off validation for sessions. Session management (login,
logout, message sequence numbers, resending of messages, and so on), as well as message
validation, is performed by the QuickFIX API.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 141

Invalid input messages are discarded and any errors are logged. Otherwise, messages are
parsed and published to stream clusters even if their checksum or body length tags are absent
or have incorrect values.

Before sending an output message, the adapter recalculates its checksum and body length and
updates the appropriate tags.

Message Flow
The message flow through the adapter is initiated by the start command.

Figure 3: Inbound Message Flow Through a Socket Connector

The connector receives FIX data as a byte stream. FIX messages are preparsed into string
objects. The QuickFIX API parses the strings into field maps, and those field maps pass on to
the Message Distributor.

The Message Distributor converts each field map into a number of records targeting a stream
cluster. The records are now ready to be published to Event Stream Processor. However, they
are not published immediately. Records are queued, then picked up by the Publisher object on
separate threads, one thread for each record queue. You can configure the queue capacity. A
larger queue is less likely to overflow in the event of a message burst. When the queue becomes
three-quarters full, a warning is logged. Another warning is logged when the queue returns to
three-quarters empty. If the queue is full, the adapter waits until room becomes available
before placing the next record.

Records are published asynchronously. The adapter receives no feedback from Event Stream
Processor.

If you are using the adapter with Event Stream Processor, in the event of a failover, the SDK
interface switches to the spare Event Stream Processor instance without message loss.

CHAPTER 2: Adapters Supported by Event Stream Processor

142 Sybase Event Stream Processor

See also
• Data Streams on page 138

• Start Command on page 137

Datatype Mapping for the FIX Adapter
Event Stream Processor datatypes map to FIX datatypes.

Event Stream Processor
Datatype

QuickFix Datatype

integer boolean

string byte[]

string char

string string

date date

float float

integer integer

date or timestamp UTCDateOnly

date or timestamp UTCTimeOnly

date or timestamp UTCTimeStamp

Setting the JAVA_HOME Environment Variable
Set the JAVA_HOME environment variable to point to the Java directory.

Prerequisites
Install Java Runtime Environment version 1.6.0_26 or higher.

Task
Set the JAVA_HOME environment variable to the directory path where Java Runtime
Environment 1.6.0_26 or higher is installed.

Next
Verify that the ESP_HOME environment variable is set correctly.

Configuration
Configuration information for the FIX adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 143

FIX Adapter Directory
The adapter directory contains all files, such as configuration files, templates, examples, and
JAR files, relating to the adapter.

README.txt Documentation note
ReleaseNotes.txt Release notes

bin/
 adapter.bat Standalone adapter startup script
 adapter.sh Standalone adapter startup script
 adapter-plugin.bat Plug-in connector startup script
 adapter-plugin.sh Plug-in connector startup script

config/
 controller.xsd Controller schema
 fixadapter.xsd Adapter schema
 log4j.properties Sample logging configuration
 login.config Authentication configuration

dictionary/
 FIX40.xml FIX 4.0 dictionary
 FIX41.xml FIX 4.1 dictionary
 FIX42.xml FIX 4.2 dictionary
 FIX43.xml FIX 4.3 dictionary
 FIX44.xml FIX 4.4 dictionary

examples/ Working examples
 AllInOne/
 ClientSocketConnectors/
 FileConnectors/
 ServerSocketConnectors/

lib/
 quickfixj/ QuickFIX libraries
 mina-core-1.1.0.jar
 quickfixj-all-1.3.2.jar
 slf4j-api-1.5.6.jar
 slf4j-simple-1.5.6.jar
 sylapij.dll (Windows)
 libsylapij.so (UNIX)
 esp_fix_adapter.jar FIX Adapter code
templates/ Sample stream descriptions
 FlexStream40.xml
 FlexStream41.xml
 FlexStream42.xml
 FlexStream43.xml
 FlexStream44.xml
 SourceStream40.xml
 SourceStream41.xml
 SourceStream42.xml
 SourceStream43.xml
 SourceStream44.xml

CHAPTER 2: Adapters Supported by Event Stream Processor

144 Sybase Event Stream Processor

Schema and Configuration File
The adapter configuration is loaded from a file and validated against the adapter schema.

Ensure that the FIX adapter configuration file is placed into the $ESP_HOME/adapters/
fix/config before you start the adapter, and that the adapter configuration validates
against the schema.

The $ESP_HOME/adapters/fix/examples folder contains sample adapter
configuration files. You can edit any of these files or write a new one.

Note: The adapter manager looks for either <sp> or <sdk> node in the configuration file. An
<sp> node indicates a connection to Event Stream Processor.

Adapter Controller Parameters
The Adapter Controller port listens for commands.

Parameter Name Type Description

controllerPort positive inte-
ger

(Required) Specifies the adapter command and
control port. User commands are sent to this
port on localhost.

Note: Ensure that each adapter instance has its
own dedicated port.

Event Stream Processor Parameters
Event Stream Processor parameters configure communication between Event Stream
Processor and the FIX adapter.

These parameters are defined in the controller.xsd file in the config directory.

Parameter Name Type Description

espAuthType string (Required) Specifies method used to authen-
ticate to the Event Stream Processor. Valid
values are:

• server_rsa – RSA authentication using
keystore

• user_password – Kerberos and LDAP
authentication

• none – No authentication

If the adapter is operated as a Studio plug-in,
espAuthType is overridden by the Authenti-

cation Mode Studio start-up parameter.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 145

Parameter Name Type Description

espUser string (Required) Specifies user name required to
log in to Event Stream Processor. It is required
for any authentication scheme other than none
(see espAuthType). No default value.

espPassword string (Required) Specifies the password required to
log in to Event Stream Processor. Required for
any authentication scheme other than none
(see espAuthType).

Includes an "encrypted" attribute indicating
whether the espPassword value is encrypted.
Default value is false. If set to true, the pass-
word value is decrypted using espRSAKeyS-

tore and espRSAKeyStorePassword.

espProjectUri string (Required) Specifies the total project Uri to
connect to Event Stream Processor cluster. For
example, esp://localhost:
19011/ws1/p1.

pulseInterval non-nega-
tive inte-
ger

(Optional) Specifies time interval, in seconds,
during which outbound record changes are
coalesced by Event Stream Processor, then
received by the adapter as a single event.

If not set or set to 0, record changes are re-
ceived individually as they occurr.

espHeartbeatPeriod positive
integer

(Optional) Specifies number, in seconds, that
adapter waits before sending the next heart-
beat to Event Stream Processor.

If Event Stream Processor fails to receive two
consecutive heartbeats, all records the adapter
publishes are marked stale. Default value is
10.

recordQueueCapacity positive
integer

(Optional) Specifies capacity of the record
queues. Default value is 4096.

maxPubPoolSize positive
integer

(Optional) Specifies the maximum size of the
record pool. Record pooling allows for faster
publication. Default value is 256.

CHAPTER 2: Adapters Supported by Event Stream Processor

146 Sybase Event Stream Processor

Parameter Name Type Description

maxPubPoolTime positive
integer

(Optional) Specifies the maximum period of
time (in milliseconds) for which records are
pooled before being published. If not set,
pooling time is unlimited and the pooling
strategy is governed by maxPubPoolSize. No
default value.

useTransactions boolean (Optional) If set to true, pooled messages are
published to Event Stream Processor in trans-
actions. If set to false, they are published in
envelopes. Default value is false.

espRSAKeyStore string (Dependent required) Specifies the location of
the RSA keystore, and is used to decrypt the
password value. Required if espAuthType is
set to server_rsa, or the encrypted attribute for
espPassword is set to true, or both.

espRSAKeyStorePassword string (Dependent required) Specifies the keystore
password, and is used to decrypt the password
value. Required if espAuthType is set to serv-
er_rsa, or the encrypted attribute for espPass-

word is set to true, or both.

espEncryptionAlgorithm string (Optional) Used when the encrypted attribute
for espPassword is set to true. If left blank,
RSA is used as default.

FIX Input Adapter
The FIX Input adapter reads FIX messages from any number of file, socket, and session
connectors.

Property Label Property ID Type Description

Adapter Directory Path baseDir directory (Required) Specifies
the path to the adapter
base directory. No de-
fault value.

Note: This property is
ignored if the Connec-
tor Remote Directory
Path property is sup-
plied.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 147

Property Label Property ID Type Description

Configuration File Path configFilePath configFi-
lename

(Required) Specifies
the absolute path to
the adapter configura-
tion file. No default
value.

Note: This property is
ignored if the Remote
Configuration File
Path property is sup-
plied.

PropertySet propertyset string (Advanced) Specifies
the name of the prop-
erty set (a group of
properties and values)
you want to use from
the project configura-
tion file. If you speci-
fy the same properties
in the project configu-
ration file and the AT-

TACH ADAPTER

statement, the values
in the property set
override the values
defined in the AT-

TACH ADAPTER

statement. No default
value.

Adapter Remote Directory remoteBaseDir string (Advanced) Specifies
the path to the adapter
remote base directory
(for remote execution
only). No default val-
ue.

Note: If this property
is supplied, the Con-
nector Directory Path
property is ignored.

CHAPTER 2: Adapters Supported by Event Stream Processor

148 Sybase Event Stream Processor

Property Label Property ID Type Description

Adapter Configuration File Path remoteConfigFile-

Path

string (Advanced) Specifies
the absolute path to
the adapter configura-
tion file (for remote
execution only). No
default value.

Note: If this property
is supplied, the con-
figuration file path
property is ignored.

Event Stream Proccessor Server Properties
The Server connection properties are provided as attributes and sub-elements of the <sdk>
node in the configuration file.

Parameter Name Description

server (Required) Specifies the attribute of the sdk node.

serverHost (Required) Specifies name of the machine the Server is
running on.

serverPort (Required) Specifies port number the Server is listening on.

serverWorkspace (Required) Workspace.

serverProject (Required) Program name.

serverUser (Optional) User name.

serverPassword (Optional) Password.

FIX Dictionary
The FIX adapter dictionary contains the definitions of FIX message types, components, and
fields.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 149

Parameter Name Type Description

fixDictionary string (Required) Name of the FIX dictionary file.

Note: Dictionary files for all supported FIX
versions (4.0 through 5.0) are provided in the
dictionary folder.

You can edit the definitions of FIX message
types, components, and fields.

Stream Configuration
Use the streams section in the configuration file to map FIX message types to stream
clusters.

Parameter Name Type Description

name string (Required) Name of the main stream in a
stream cluster. No default value.

messageName string (Required) name of a message type hosted on
the stream cluster. No default value.

To host FIX messages of type Quote in a stream cluster descending from the MyQuotes
stream, add this fragment to the <streams> group:

<stream>
 <name>MyQuotes</name>
 <messageName>Quote</messageName>
</stream>

Connectors
The connector section in the FIX configuration file defines the file and socket connectors.

Parameter Name Type Description

streamNames streamName-
Type

(Required) Lists the names of the main
streams in stream clusters where messages
coming through this connector are hosted.

CHAPTER 2: Adapters Supported by Event Stream Processor

150 Sybase Event Stream Processor

Inbound and Outbound Connectors
The inbound and outbound parameter in the FIX configuration file lists inbound and
outbound file and socket connectors.

Parameter Name Type Description

doValidation boolean (Optional) If set to true, inbound messages
coming through this connector are validated
for correct message length and checksum. If
set to false, the message length and checksum
fields are ignored. Invalid messages are dis-
carded and the errors are logged. Default value
is true.

Note: Message data is validated against the
data dictionary during the parsing of the mes-
sage.

See also
• Example: Using All In One on page 173

Sample Configuration File for All In One Connectors
Sample configuration file (adapter.xml) for the all in one connectors in the FIX adapter.

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- Sybase ESP FIX adapter configuration file
 -->
- <adapter>
- <!-- Adapter Controller
 -->
- <controller>
 <controllerPort>13579</controllerPort>
 </controller>
- <!-- Event Stream Processor settings
 -->
- <esp>
- <espConnection>
 <espProjectUri>esp://localhost:19011/w1/p1</espProjectUri>
 </espConnection>
- <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>
 <espAuthType>none</espAuthType>
- <!-- <espRSAKeyStore>/keystore/keystore.jks</
espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword>
 -->
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 </esp>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 151

- <!-- FIX dictionary
 -->
 <fixDictionary>FIX44.xml</fixDictionary>
- <!-- Stream cluster to FIX message mapping
 -->
- <streams>
- <stream>
 <name>MyQuotes</name>
 <messageName>Quote</messageName>
 </stream>
- <stream>
 <name>MyOrders</name>
 <messageName>NewOrderSingle</messageName>
 </stream>
 </streams>
- <!-- Connectors
 -->
- <connectors>
- <outbound>
- <fileConnector>
 <fileName>orders.fix</fileName>
- <streamNames>
 <streamName>MyOrders</streamName>
 </streamNames>
 </fileConnector>
 </outbound>
 </connectors>
- <!-- FIX Session Settings
 -->
- <sessionSettings>
- <default>
 <ConnectionType>acceptor</ConnectionType>
 <SocketAcceptPort>23456</SocketAcceptPort>
 <FileLogPath>logs</FileLogPath>
 <FileStorePath>store</FileStorePath>
 <DataDictionary>FIX44.xml</DataDictionary>
 <HeartBtInt>600</HeartBtInt>
 <BeginString>FIX.4.4</BeginString>
 <StartTime>00:00:00</StartTime>
 <EndTime>23:59:59</EndTime>
 <SenderCompID>SYBASE</SenderCompID>
 </default>
- <sessionSetting>
 <TargetCompID>COUNTERPARTYA</TargetCompID>
 </sessionSetting>
- <sessionSetting>
 <TargetCompID>COUNTERPARTYB</TargetCompID>
 </sessionSetting>
 </sessionSettings>
- <!-- Session logins
 -->
- <sessionLogins>
- <senderLogin>
 <username>MyUsername</username>
 <password>MyPassword</password>
 <NextExpectedMsgSeqNum>1</NextExpectedMsgSeqNum>

CHAPTER 2: Adapters Supported by Event Stream Processor

152 Sybase Event Stream Processor

 </senderLogin>
- <targetLogin>
 <TargetCompID>COUNTERPARTYA</TargetCompID>
 <username>UsernameA</username>
 <password>PasswordA</password>
 </targetLogin>
- <targetLogin>
 <TargetCompID>COUNTERPARTYB</TargetCompID>
 <username>UsernameB</username>
 <password>PasswordB</password>
 </targetLogin>
 </sessionLogins>
- <!-- Sessions
 -->
- <sessions>
- <inbound>
- <session>
 <TargetCompID>COUNTERPARTYA</TargetCompID>
- <streamNames>
 <streamName>MyQuotes</streamName>
 </streamNames>
 </session>
 </inbound>
- <outbound>
- <session>
 <TargetCompID>COUNTERPARTYA</TargetCompID>
- <streamNames>
 <streamName>MyOrders</streamName>
 </streamNames>
 </session>
- <session>
 <TargetCompID>COUNTERPARTYB</TargetCompID>
- <streamNames>
 <streamName>MyQuotes</streamName>
 </streamNames>
 </session>
 </outbound>
 </sessions>
 </adapter>

File Connectors
The fileConnector parameter in the FIX configuration file lists property values for file
connectors.

Parameter Name Type Description

fileName string (Required) The relative or absolute path to the
file containing FIX data.

streamNames streamNa-
mesType

(Required) Lists the names of the main
streams in stream clusters where messages
coming through this connector are hosted.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 153

Parameter Name Type Description

doValidation boolean (Optional) If set to true, inbound messages
coming through this connector are validated
for correct message length and checksum. If
set to false, the message length and checksum
fields are ignored. Invalid messages are dis-
carded and the errors are logged. Default value
is true.

Note: Message data is validated against the
data dictionary during the parsing of the mes-
sage.

See also
• Example: Using File Connectors on page 167

Sample Configuration File for File Connectors
Sample configuration file (adapter.xml) for the file connectors in the FIX adapter.

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- Sybase ESP FIX adapter configuration file
 -->
- <adapter>
- <!-- Adapter Controller
 -->
- <controller>
 <controllerPort>13579</controllerPort>
 </controller>
- <!-- Event Stream Processor settings
 -->
- <esp>
- <espConnection>
 <espProjectUri>esp://localhost:19011/w1/p1</espProjectUri>
 </espConnection>
- <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>
 <espAuthType>none</espAuthType>
- <!-- <espRSAKeyStore>/keystore/keystore.jks</
espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword>
 -->
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 </esp>
- <!-- FIX dictionary
 -->
 <fixDictionary>FIX44.xml</fixDictionary>
- <!-- Stream cluster to FIX message mapping
 -->

CHAPTER 2: Adapters Supported by Event Stream Processor

154 Sybase Event Stream Processor

- <streams>
- <stream>
 <name>MyQuotes</name>
 <messageName>Quote</messageName>
 </stream>
- <stream>
 <name>MyOrders</name>
 <messageName>NewOrderSingle</messageName>
 </stream>
 </streams>
- <!-- Connectors
 -->
- <connectors>
- <inbound>
- <fileConnector>
 <fileName>quotes.fix</fileName>
 <doValidation>false</doValidation>
- <streamNames>
 <streamName>MyQuotes</streamName>
 </streamNames>
 </fileConnector>
 </inbound>
- <outbound>
- <fileConnector>
 <fileName>orders.fix</fileName>
- <streamNames>
 <streamName>MyOrders</streamName>
 </streamNames>
 </fileConnector>
 </outbound>
 </connectors>
- <!-- Sessions
 -->
 <sessions />
 </adapter>

Client Socket Connectors
The clientSocketConnector parameters in the FIX configuration file define the name, IP
address, validation scheme, stream names, and port of the Server to send FIX messages to.

Parameter Name Type Description

dataHost string (Required) Specifies the name or IP address of
the server to send FIX messages to.

dataPort nonNegati-
veInteger

(Required) Specifies the port to connect to.

streamNames streamName-
Type

(Required) Lists the names of the main
streams in stream clusters where messages
coming through this connector are hosted.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 155

Parameter Name Type Description

doValidation boolean (Optional) If set to true, inbound messages
coming through this connector are validated
for correct message length and checksum. If
set to false, the message length and checksum
fields are ignored. Invalid messages are dis-
carded and the errors are logged. Default value
is true.

Note: Message data is validated against the
data dictionary during the parsing of the mes-
sage.

See also
• Example: Using Client Socket Connectors on page 168

Sample Configuration File for Client Socket Connectors
Sample configuration file (adapter.xml) for the client socket connectors in the FIX
adapter.

 <?xml version="1.0" encoding="UTF-8" ?>
- <!-- Sybase ESP FIX adapter configuration file
 -->
- <adapter>
- <!-- Adapter Controller
 -->
- <controller>
 <controllerPort>13579</controllerPort>
 </controller>
- <!-- Event Stream Processor settings
 -->
- <esp>
- <espConnection>
 <espProjectUri>esp://localhost:19011/w1/p1</espProjectUri>
 </espConnection>
- <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>
 <espAuthType>none</espAuthType>
- <!-- <espRSAKeyStore>/keystore/keystore.jks</
espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword>
 -->
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 </esp>
- <!-- FIX dictionary
 -->
 <fixDictionary>FIX44.xml</fixDictionary>
- <!-- Stream cluster to FIX message mapping

CHAPTER 2: Adapters Supported by Event Stream Processor

156 Sybase Event Stream Processor

 -->
- <streams>
- <stream>
 <name>MyQuotes</name>
 <messageName>Quote</messageName>
 </stream>
- <stream>
 <name>MyOrders</name>
 <messageName>NewOrderSingle</messageName>
 </stream>
 </streams>
- <!-- Connectors
 -->
- <connectors>
- <inbound>
- <clientSocketConnector>
 <dataHost>localhost</dataHost>
 <dataPort>43210</dataPort>
 <doValidation>true</doValidation>
- <streamNames>
 <streamName>MyQuotes</streamName>
 </streamNames>
 </clientSocketConnector>
 </inbound>
- <outbound>
- <clientSocketConnector>
 <dataHost>localhost</dataHost>
 <dataPort>32109</dataPort>
- <streamNames>
 <streamName>MyOrders</streamName>
 </streamNames>
 </clientSocketConnector>
 </outbound>
 </connectors>
- <!-- Sessions
 -->
 <sessions />
 </adapter>

Server Socket Connectors
The serverSocketConnector parameter in the FIX configuration file defines the port on
which the Server is listening for client connections.

Parameter Name Type Description

dataPort nonNegati-
veInteger

(Required) Specifies the port the server is lis-
tening for client connections.

streamNames streamName-
Type

(Required) Lists the names of the main
streams in stream clusters where messages
coming through this connector are hosted.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 157

Parameter Name Type Description

doValidation boolean (Optional) If set to true, inbound messages
coming through this connector are validated
for correct message length and checksum. If
set to false, the message length and checksum
fields are ignored. Invalid messages are dis-
carded and the errors are logged. Default value
is true.

Note: Message data is validated against the
data dictionary during the parsing of the mes-
sage.

See also
• Example: Using Server Socket Connectors on page 170

Sample Configuration File for Server Socket Connectors
Sample configuration file (adapter.xml) for the server socket connectors in the FIX
adapter.

<?xml version="1.0" encoding="UTF-8" ?>
- <!-- Sybase ESP FIX adapter configuration file
 -->
- <adapter>
- <!-- Adapter Controller
 -->
- <controller>
 <controllerPort>13579</controllerPort>
 </controller>
- <!-- Event Stream Processor settings
 -->
- <esp>
- <espConnection>
 <espProjectUri>esp://localhost:19011/w1/p1</espProjectUri>
 </espConnection>
- <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>
 <espAuthType>none</espAuthType>
- <!-- <espRSAKeyStore>/keystore/keystore.jks</
espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword>
 -->
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 </esp>
- <!-- FIX dictionary
 -->
 <fixDictionary>FIX44.xml</fixDictionary>

CHAPTER 2: Adapters Supported by Event Stream Processor

158 Sybase Event Stream Processor

- <!-- Stream cluster to FIX message mapping
 -->
- <streams>
- <stream>
 <name>MyQuotes</name>
 <messageName>Quote</messageName>
 </stream>
- <stream>
 <name>MyOrders</name>
 <messageName>NewOrderSingle</messageName>
 </stream>
 </streams>
- <!-- Connectors
 -->
- <connectors>
- <inbound>
- <serverSocketConnector>
 <dataPort>54321</dataPort>
 <doValidation>true</doValidation>
- <streamNames>
 <streamName>MyQuotes</streamName>
 </streamNames>
 </serverSocketConnector>
 </inbound>
- <outbound>
- <serverSocketConnector>
 <dataPort>43210</dataPort>
- <streamNames>
 <streamName>MyOrders</streamName>
 </streamNames>
 </serverSocketConnector>
 </outbound>
 </connectors>
- <!-- Sessions
 -->
 <sessions />
 </adapter>

Session Settings
Properties in the sessionSettings section configure default and specific settings for
session connections with the FIX engine.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 159

Default Settings
Properties used to configure default settings for all session connections.

Property Name Type Description

ConnectionType string (Required) Specifies whether the adapter acts
as a server or a client. Valid values are:

• Acceptor – The adapter acts as a server
accepting connection requests from FIX
session initiators.

• Initiator – The adapter acts as a client
connecting to FIX session acceptors.

No default value.

Note: Each adapter instance operates in either
acceptor mode or initiator mode, but cannot
operate in both modes simultaneously.

SocketAcceptPort nonNegati-
veInteger

(Required) Specifies the port on which the
adapter listens for connections from FIX ses-
sion initiators. No default value.

Operates only in initiator mode.

FileLogPath string (Required) Specifies the directory path for
message logs. Both absolute and relative paths
are accepted. No default value.

FileStorePath string (Required) Specifies the directory path for
message stores. Both absolute and relative
paths are accepted. No default value.

StartTime string (Required) Specifies the time of the day when
the FIX session is activated. No default value.

EndTime string (Required) Specifies the time of the day when
the FIX session is deactivated. No default val-
ue.

DataDictionary string (Required) Specifies the absolute or relative
paths to the FIX dictionary file path. No de-
fault value.

BeginString string (Required) Specifies the value of the Begin-

String field (tag 8) in outbound FIX messages.
No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

160 Sybase Event Stream Processor

Property Name Type Description

SenderCompID string (Required) Specifies the value of the Sender-

CompID field (tag 49) in outbound FIX mes-
sages. An adapter instance uses the same
SenderCompID value for all session connec-
tions.

HeartBtInt nonNegati-
veInteger

(Optional) Specifies the heartbeat interval, in
seconds. Default value is 10.

Operates only in initiator mode.

ReconnectInterval positiveIn-
teger

(Optional) Specifies the interval between re-
connection attempts, in seconds.

The adapter keeps trying to reconnect if it fails
to connect to the acceptor engine at startup or
if the connection is lost afterward. Default
value is 30.

Operates only in initiator mode.

LogonTimeout nonNegati-
veInteger

(Optional) Specifies the number of seconds to
wait for a logon response before disconnect-
ing from the acceptor engine. Default value is
10.

Operates only in initiator mode.

LogoutTimeout nonNegati-
veInteger

(Optional) Specifies the number of seconds to
wait for a logout response before disconnect-
ing from the acceptor engine. Default value is
2.

Operates only in initiator mode.

Specific Settings
Properties used to configure specific settings for specific session connections.

Property Name Type Description

TargetCompID string (Required) Specifies the value of the Target-

CompID field (tag 56) in outbound FIX mes-
sages.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 161

Property Name Type Description

SocketConnectHost string (Required) Specifies the acceptor engine's
host name or IP address.

Note: Operates only in initiator mode.

SocketConnectPort non-nega-
tive inte-
ger

(Required) Specifies the port on which the
acceptor engine is listening for connections.

Note: Operates only in initiator mode.

Session Logins
Properties in the sessionLogins section configure sender and target login properties for
session connections with the FIX engine.

Sender Login Properties
If specified, the adapter attaches senderLogin properties to outbound login messages at the
beginning of FIX sessions.

Parameter Name Type Description

username string (Required) Specifies the sender's user name.

password string (Required) Specifies the sender's password.

NextExpectedMsgSeqNum integer (Required) Specifies the value of the NextEx-

pectedMsgSeqNum field (tag 789) in out-
bound login messages.

Target Login Properties
For each inbound login message, the FIX adapter tries to match the values of the username
and password fields with the ones specified for the corresponding TargetCompID field.

Note: An error is logged if the user names or the passwords do not match.

Parameter Name Type Description

username string (Required) Specifies the target's user name.

password string (Required) Specifies the target's password.

TargetCompID string (Required) pecifies the value of the Target-

CompID field (tag 56) in inbound login mes-
sages.

CHAPTER 2: Adapters Supported by Event Stream Processor

162 Sybase Event Stream Processor

Session Properties
Properties in sessionProperties sections identify inbound and outbound FIX sessions and
indicate the main streams of the stream clusters that host data exchanged during FIX sessions.

Property Name Type Description

TargetCompID string (Required) The session identifier. No default
value.

Note: An inbound and an outbound session
with the same identifier are implemented as a
single two-way session.

streamNames streamNa-
mesType

(Required) Specifies the lists the names of the
main streams in stream clusters where mes-
sages exchanged over this FIX session are
hosted.

• For inbound sessions, unmapped messag-
es are ignored; mapped messages are writ-
ten to all stream clusters as they are map-
ped to.

• For outbound sessions, the header and
trailer fields are added or updated, if nec-
essary, to ensure the validity of the outgo-
ing FIX messages.

Note: Two stream clusters hosting messages
of the same type are not required to share the
same structure.

Example: Receiving and Hosting Inbound Messages
Receive inbound messages from a specified target, and host it in a specified stream cluster
with a specified main stream.

Inbound messages received over a FIX session from a target identified as COUNTERPARTYA
are hosted in a stream cluster for which MyQuotes is the main stream. Messages of types
other than Quote are ignored.
<inbound>
 <session>
 <TargetCompID>COUNTERPARTYA</TargetCompID>
 <streamNames>
 <streamName>MyQuotes</streamName>
 </streamNames>
 </session>
</inbound>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 163

Logging
The FIX adapter uses Apache log4j API to log errors, warnings, and information and
debugging messages.

A sample log4j.properties file containing the logging configuration is part of the FIX
adapter distribution. This file is located in the $ESP_HOME/adapters/fix/
examples/<example name>/log4j.properties folder.

Note: Setting the logging value to DEBUG may result in large log files. The default value is
INFO.

Refer to http://logging.apache.org/log4j for details on logging configuration.

Operation
Operate the FIX adapter from the command line.

To allow the adapter.xml configuration to be placed in any desired location, ensure that
the full file path appears along with the start, stop, and status commands.

Note: You can define long file path names as environment variables.

Starting the FIX Adapter
To start the FIX adapter from the command line, start Event Stream Processor, verify
parameters, and execute the start command.

1. Start Event Stream Processor.

Windows:
1. Start the example cluster.

cd %ESP_HOME%\cluster\nodes\node1
 %ESP_HOME%\bin\esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
%ESP_HOME%\bin\esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

UNIX:
1. Start the example cluster.

cd $ESP_HOME/cluster/nodes/node1
 $ESP_HOME/bin/esp_server --cluster-node node1.xml

CHAPTER 2: Adapters Supported by Event Stream Processor

164 Sybase Event Stream Processor

http://logging.apache.org/log4j

2. Compile CCL to create CCX.
$ESP_HOME/bin/esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

2. Start the adapter.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/fix/bin

./adapter.sh <configuration file path> start

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/fix/bin

adapter.bat <configuration file path> start

You can use the esp_subscribe utility to ensure that FIX messages are successfully
published to Event Stream Processor.

See also
• Start Command on page 137

Checking the FIX Adapter Status
Run the status command in a terminal or command window to check adapter status.
Check the FIX adapter status:

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/fix/bin

./adapter.sh <configuration file path> status

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 165

Operating
System

Step

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/fix/bin

adapter.bat <configuration file path> status

You see the adapter status, which is either running or stopped.

See also
• Status Command on page 138

Stopping the FIX Adapter
Run the stop command in a terminal or command window to stop the adapter.

Operating System Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/fix/bin

./adapter.sh $ADAPTER stop &

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/fix/bin

adapter.bat %ADAPTER% stop

See also
• Stop Command on page 138

Examples
Use the working examples provided with the adapter to learn how to subscribe to real-time
market data and publish data to the Event Stream Processor.

The scripts provided with the examples do not require a network connection.

CHAPTER 2: Adapters Supported by Event Stream Processor

166 Sybase Event Stream Processor

Example: Using File Connectors
Use file connectors to read Quote messages from a file, and publish them to the Event Stream
Processor. If the value of the OfferPx field is less than 30.0, write a NewOrderSingle message
to another file.

Figure 4: File Connectors

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start the respective subscriber utility for Event Stream Processor.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 167

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

4. Wait five to ten seconds for the adapter to initialize.
• The MyQuotes stream now contains two records. The MyOrders stream contains one

record. Use the Event Stream Processor subscriber utility to view the content of the
streams.

• The orders.fix file now contains a NewOrderSingle message.

See also
• File Connectors on page 153

Example: Using Client Socket Connectors
Use client socket connectors to read Quote messages from a server socket, and publish them to
the Event Stream Processor. If the value of the OfferPx field is less than 30.0, the adapter
writes a NewOrderSingle message to another server socket.

1. Start Event Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

168 Sybase Event Stream Processor

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start the respective subscriber utility for Event Stream Processor.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the adapter.

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

4. Wait five to ten seconds for the adapter to initialize.

5. Start server socket terminal B.

Operating System Step

UNIX Open a terminal window and enter:

./terminalB.sh

Windows Open a command window and enter:

terminalB.bat

6. Start server socket terminal A.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 169

Operating System Step

UNIX Open a terminal window and enter:

./terminalA.sh

Windows Open a command window and enter:

terminalA.bat

• The MyQuotes stream now contains two records, and the MyOrders stream contains one
record. Use the Event Stream Processor subscriber utility to view the content of the
streams.

• The terminal B console window now contains a NewOrderSingle message.

See also
• Client Socket Connectors on page 155

Example: Using Server Socket Connectors
Use server socket connectors to read Quote messages from two client sockets, and publish
them to the Event Stream Processor. If the value of the OfferPx field is less than 30.0, the FIX
adapter writes a NewOrderSingle message to the a third client socket.

Figure 5: Server Socket Connectors

CHAPTER 2: Adapters Supported by Event Stream Processor

170 Sybase Event Stream Processor

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start the respective subscriber utility for Event Stream Processor.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the adapter.

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

4. Wait five to ten seconds for the adapter to initialize.

5. Start output terminal C.

Operating System Step

UNIX Open a terminal window and enter:

./terminalC.sh

Windows Open a command window and enter:

terminalC.bat

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 171

6. Start output terminal B.

Operating System Step

UNIX Open a terminal window and enter:

./terminalB.sh

Windows Open a command window and enter:

terminalB.bat

7. Start output terminal A.

Operating System Step

UNIX Open a terminal window and enter:

./terminalA.sh

Windows Open a command window and enter:

terminalA.bat

• The MyQuotes stream now contains three records. The MyOrders stream contains one
record. Use the Event Stream Processor subscriber utility to view the content of the
streams.

• The terminal C console window now contains a NewOrderSingle message.

See also
• Server Socket Connectors on page 157

CHAPTER 2: Adapters Supported by Event Stream Processor

172 Sybase Event Stream Processor

Example: Using All In One
Engage in a two-way FIX session with counterparty A, and in a one-way FIX session with
counterparty B. If the value of the OfferPx field is less than 30.0, the FIX adapter sends a
NewOrderSingle message back to counterparty A and copies it to a file.

Figure 6: All In One

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start the respective subscriber utility for Event Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 173

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the adapter.

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

4. Wait five to ten seconds for the adapter to initialize.

5. Start output terminal B.

Operating System Step

UNIX Open a terminal window and enter:

./terminalB.sh

Windows Open a command window and enter:

terminalB.bat

6. Wait five to ten seconds for the adapter to initialize.

7. Start output terminal A.

Operating System Step

UNIX Open a terminal window and enter:

./terminalA.sh

Windows Open a command window and enter:

terminalA.bat

8. Wait five to ten seconds for the adapter to initialize.

9. Copy the contents of the quotes.fix file and paste it into the terminal A console
window.

CHAPTER 2: Adapters Supported by Event Stream Processor

174 Sybase Event Stream Processor

• The MyQuotes stream now contains two records. The MyOrders stream contains 1 record.
Use the Event Stream Processor subscriber utility to view the content of the streams.

• The terminal B console window now contains a NewOrderSingle message.
• The orders.fix file now contains a copy of the NewOrderSingle message.

See also
• Inbound and Outbound Connectors on page 151

Flex Adapter
The Sybase Event Stream Processor Flex Output adapter is a software interface that allows
you to obtain data from streams in an Event Stream Processor project and provide it to a full
range of Adobe Flex applications.

The Flex adapter :
• Runs an internal Flex server, listens and accepts client connections
• Parses client requests and subscribes to streams
• Filters stream records, converts them into XML, and sends them to clients, one record at a

time

Control Flow
The Flex adapter loads its configuration from a file (for example, adapter-pubsub.xml),
and validates it against the adapter schema (flexadapter.xsd), which includes the API-
wide controller schema (controller.xsd).

Figure 7: Flex Adapter Control Flow

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 175

The Adapter Controller creates an instance of the adapter, and receives and executes start,
stop, and status commands.

Start Command
The start command configures and starts the control interface, gets the Server Handler to start
listening for client connections, creates a separate Client Handler to serve each client
connection, and connects the SpSubscriber component to Event Stream Processor via the
SDK interface.

The adapter ignores the start command if it is executed when there is a running instance of the
adapter, and a warning is sent.

See also
• Starting the Flex Adapter on page 184

Stop Command
The stop command disconnects the SpSubscriber from Event Stream Processor, stops the
Server Handler from accepting new client connections, causes the Client Handlers to finalize
the responses to existing clients and disconnects them, and terminates the adapter process.

If the stop command is executed when there is no instance of a running adapter, the command
is ignored and a warning is sent.

See also
• Stopping the Flex Adapter on page 186

Status Command
The status command reports the adapter status, and the Adapter Controller prints out its
status: either running or stopped.

See also
• Checking the Flex Adapter Status on page 185

Message Flow
The message flow between the adapter and any Flex client is initiated when the client sends a
subscribe request indicating the stream name and a column filter (optional).

CHAPTER 2: Adapters Supported by Event Stream Processor

176 Sybase Event Stream Processor

Ensure the request has the format:

<subscribe stream="MyStream" myFilterColumn1="MyRegex1" .../>

Ensure the filtered columns are string type. Regular expressions are accepted as column
values. For example, as a result of this request:

<subscribe stream="MarketData" Symbol="I.*"/>

the client receives all records on the MarketData stream in which the Symbol begins with the
capital letter “I”.

The records sent back to the clients have the format:

<MyStream ESP_OPS="i" myColumn1="MyValue1" myColumn2="MyValue2" .../
>

where ESP_OPS is the record opcode. The valid opcode values are "i" (INSERT), "u"
(UPDATE), "d" (DELETE), and "p" (UPSERT). All columns with non-null values are
included, regardless of the opcode. Null column values are ignored.

To unsubscribe from a previously subscribed stream, the client sends a request with the
format:

<unsubscribe stream="MyStream"/>

The client can subscribe concurrently to any number of different streams. To change the
column filter values, unsubscribe from the stream first, then subscribe with the new filter.

In the event of an Event Stream Processor failover, the SDK API switches to the spare Event
Stream Processor instance without message loss.

Stream Handler
Use a Stream Handler for client-server communication.

Although Flex clients can use raw XML to subscribe to and receive stream data from Event
Stream Processor, Sybase recommends you delegate the client-server communication to a

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 177

Stream Handler. To use the Stream Handler functionality, include the
streamhandler.swc library, located in the lib directory, in your Flex client build.

Here is an example of using the Stream Handler in the ActionScript code:

 import com.sybase.esp.adapter.flex.StreamHandler;
private var streamHandler:StreamHandler = new StreamHandler(
"localhost", 23456, onConnect, onDisconnect, onRecord);
private function onConnect(event:Event):void {
// Invoked after the client has successfully connected to
// the adapter
}
private function onDisconnect(event:Event):void {
// Invoked after the client has disconnected from
// the adapter
}
private function onRecord(streamName:String, opcode:String,
record:Object):void {
// Invoked when the client receives a record from
// the adapter
}

To subscribe to a stream, invoke the subscribe() method of the Stream Handler with the
stream name and filter parameters. The filter is an ActionScript object with several properties,
one for each filtered column. You can use regular expressions as property values. For example:

var filter:Object = new Object();
filter.Symbol = "I.*";
streamHandler.subscribe("Stream1", filter);

Ensure that filtered columns are string type. To receive all stream records, without filtering, do
not add any properties to the filter object. To unsubscribe from a stream, invoke the
unsubscribe() method of the Stream Handler, passing in the stream name as a parameter.

For example:

streamHandler.subscribe("Stream1");

Implement the onRecord() callback method to process the records coming on a
subscription. The callback has three parameters:

• streamName

• Opcode

• An object which contains all non-null column values as properties

For example:

private function onRecord(streamName:String, opcode:String,
record:Object):void {
trace("Record received on stream " + streamName);
trace("Opcode=" + opcode);
trace("Column values:");
for (var column:String in record)
trace(column + "=" + record[column];

CHAPTER 2: Adapters Supported by Event Stream Processor

178 Sybase Event Stream Processor

Setting the JAVA_HOME Environment Variable
Set the JAVA_HOME environment variable to point to the Java directory.

Prerequisites

• Install Java Runtime Environment version 1.6.0_26 or higher. To see if you have a suitable
version of Java installed, go to http://www.java.com/en/download/installed.jsp?
detect=jre"&"try=1.

• To download and install Java, go to http://jdl.sun.com/webapps/getjava/BrowserRedirect?
locale=en"&"host=www.java.com:80.

Task
Set the JAVA_HOME environment variable to the directory path where Java Runtime
Environment 1.6.0_26 or higher is installed.

Next
Verify that the ESP_HOME environment variable is set correctly.

Configuration
Configuration information for the Flex adapter.

Flex Adapter Directory
The adapter directory contains all files, such as configuration files, templates, examples, and
JAR files, relating to the adapter.

README.txt Quick Guide
ReleaseNotes.txt Release Notes

bin/
 adapter.bat Standalone adapter startup script
 adapter.sh Standalone adapter startup script
 adapter-plugin.bat Plug-in connector startup script
 adapter-plugin.sh Plug-in connector startup script

config/
 controller.xsd Controller schema
 log4j.properties Sample logging configuration
 flexadapter.xsd Flex Adapter schema
 login.config Authentication configuration

example/ Working example

lib/
 esp_flex_adapter.jar Flex adapter library

javadoc/
 adapterapi/ Adapter API Javadoc
 flexadapter/ Flex Adapter Javadoc

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 179

http://www.java.com/en/download/installed.jsp?detect=jre"&"amp;amp;try=1
http://www.java.com/en/download/installed.jsp?detect=jre"&"amp;amp;try=1
http://jdl.sun.com/webapps/getjava/BrowserRedirect?locale=en"&"host=www.java.com:80
http://jdl.sun.com/webapps/getjava/BrowserRedirect?locale=en"&"host=www.java.com:80

Common jars are located here:

$ESP_HOME/adapters/jar

The directory structure is:

activation.jar Java mail library
adapterapi.jar Adapter API code
axis.jar Webservices jar
commons-codec-1.3.jar Required by SDK API
commons-discovery-0.2.jar
commons-logging-1.1.jar Logging library
esp_java_sdk-0.2.jar ESP SDK library
jaxrpc-api-1.1.jar Required by ESP SDK
log4j-1.2.14.jar Logging library
mail.jar Java mail library
saaj-api-1.3.jar Webservices jar
ws-commons-util-1.0.2.jar Required by ESP SDK
wsdl4j-1.5.1.jar
xercesImpl.jar XML parser library
xmlrpc-client-3.1.3.jar Required by ESP SDK
xmlrpc-common-3.1.3.jar Required by ESP SDK
xmlrpc-server-3.1.3.jar Required by ESP SDK

Schema and Configuration File
The adapter configuration loads from a file and validates against the adapter schema.

The example folder contains the adapter.xml sample adapter configuration file.

You must provide a valid configuration file and ensure the adapter configuration validates
against the adapter schema.

Adapter Controller Parameter
The Adapter Controller parameter specifies the adapter command and control port.

This parameter is defined in the controller.xsd file in the config directory.

Parameter Name Type Description

controllerPort positive
integer

(Required) Specifies the adapter command
and control port. User commands are sent to
this port on localhost.

Event Stream Processor Parameters
Event Stream Processor parameters configure communication between Event Stream
Processor and the Flex adapter.

These parameters are defined in the controller.xsd file in the config directory.

CHAPTER 2: Adapters Supported by Event Stream Processor

180 Sybase Event Stream Processor

Parameter Name Type Description

espAuthType string (Required) Specifies method used to authen-
ticate to the Event Stream Processor. Valid
values are:

• server_rsa – RSA authentication using
keystore

• user_password – Kerberos and LDAP
authentication

• none – No authentication

If the adapter is operated as a Studio plug-in,
espAuthType is overridden by the Authenti-

cation Mode Studio start-up parameter.

espUser string (Required) Specifies user name required to
log in to Event Stream Processor. It is required
for any authentication scheme other than none
(see espAuthType). No default value.

espPassword string (Required) Specifies the password required to
log in to Event Stream Processor. Required for
any authentication scheme other than none
(see espAuthType).

Includes an "encrypted" attribute indicating
whether the espPassword value is encrypted.
Default value is false. If set to true, the pass-
word value is decrypted using espRSAKeyS-

tore and espRSAKeyStorePassword.

espProjectUri string (Required) Specifies the total project Uri to
connect to Event Stream Processor cluster. For
example, esp://localhost:
19011/ws1/p1.

pulseInterval non-nega-
tive inte-
ger

(Optional) Specifies time interval, in seconds,
during which outbound record changes are
coalesced by Event Stream Processor, then
received by the adapter as a single event.

If not set or set to 0, record changes are re-
ceived individually as they occurr.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 181

Parameter Name Type Description

espHeartbeatPeriod positive
integer

(Optional) Specifies number, in seconds, that
adapter waits before sending the next heart-
beat to Event Stream Processor.

If Event Stream Processor fails to receive two
consecutive heartbeats, all records the adapter
publishes are marked stale. Default value is
10.

recordQueueCapacity positive
integer

(Optional) Specifies capacity of the record
queues. Default value is 4096.

maxPubPoolSize positive
integer

(Optional) Specifies the maximum size of the
record pool. Record pooling allows for faster
publication. Default value is 256.

maxPubPoolTime positive
integer

(Optional) Specifies the maximum period of
time (in milliseconds) for which records are
pooled before being published. If not set,
pooling time is unlimited and the pooling
strategy is governed by maxPubPoolSize. No
default value.

useTransactions boolean (Optional) If set to true, pooled messages are
published to Event Stream Processor in trans-
actions. If set to false, they are published in
envelopes. Default value is false.

espRSAKeyStore string (Dependent required) Specifies the location of
the RSA keystore, and is used to decrypt the
password value. Required if espAuthType is
set to server_rsa, or the encrypted attribute for
espPassword is set to true, or both.

espRSAKeyStorePassword string (Dependent required) Specifies the keystore
password, and is used to decrypt the password
value. Required if espAuthType is set to serv-
er_rsa, or the encrypted attribute for espPass-

word is set to true, or both.

espEncryptionAlgorithm string (Optional) Used when the encrypted attribute
for espPassword is set to true. If left blank,
RSA is used as default.

CHAPTER 2: Adapters Supported by Event Stream Processor

182 Sybase Event Stream Processor

Flex Server Settings
The serverPort parameter specifies the port on which the adapter runs its Flex server.

This parameter is defined in flexadapter.xsd file in the config directory.

Parameter Name Type Description

serverPort int (Required) Specifies the port on which the
adapter runs its Flex server.

Sample Flex Configuration File
Sample configuration file (adapter.xml) for the Flex adapter.

This file is in the example folder.

<adapter>

<!-- Adapter Controller -->
 <controller>
 <controllerPort>13579</controllerPort>
 </controller>

<!-- Sybase ESP Server settings -->
 <esp>
 <espConnection>
 <espProjectUri>esp://localhost:19011/w1/p1</espProjectUri>
 </espConnection>

 <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>
 <espAuthType>none</espAuthType>
<!-- <espRSAKeyStore>/keystore/keystore.jks</espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword> --
>
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 <maxPubPoolSize>1</maxPubPoolSize>
 </esp>

<!-- Flex specific -->
 <flex>
 <serverPort>23456</serverPort>
 </flex>

</adapter>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 183

Logging
The adapter uses the Apache log4j API to log errors, warnings, and information and
debugging messages.

The log4j.properties file contains the logging configuration. A sample
log4j.properties file is part of the adapter distribution.

Setting the logging level to DEBUG may result in very large log files. The default level is
INFO.

Refer to http://logging.apache.org/log4j for details on logging configuration.

Operation
Start, stop, or check adapter status from the command line.

Starting the Flex Adapter
To start the Flex adapter from the command line, start Event Stream Processor and execute the
start command.

Prerequisites
Ensure that the port on which the adapter is listening for client connections is open for TCP
connections from the machines where the Flex clients are to be run.

Task

1. Start Event Stream Processor.

Windows:
1. Start the example cluster.

cd %ESP_HOME%\cluster\nodes\node1
 %ESP_HOME%\bin\esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
%ESP_HOME%\bin\esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

UNIX:
1. Start the example cluster.

cd $ESP_HOME/cluster/nodes/node1
 $ESP_HOME/bin/esp_server --cluster-node node1.xml

CHAPTER 2: Adapters Supported by Event Stream Processor

184 Sybase Event Stream Processor

http://logging.apache.org/log4j

2. Compile CCL to create CCX.
$ESP_HOME/bin/esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

2. Start the adapter.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/flex/bin

./adapter.sh <configuration file path> start

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/flex/bin

adapter.bat <configuration file path> start

See also
• Start Command on page 176

Checking the Flex Adapter Status
To check the Flex adapter status from the command line, execute the status command.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/flex/bin

./adapter.sh <configuration file path> status

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/flex/bin

adapter.bat <configuration file path> status

You see the adapter status, which is either running or stopped.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 185

See also
• Status Command on page 176

Stopping the Flex Adapter
To stop the Flex adapter from the command line, execute the stop command.

Operating System Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/flex/bin

./adapter.sh <configuration file path> stop

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/flex/bin

adapter.bat <configuration file path> stop

See also
• Stop Command on page 176

Example: Sending a Subscription Request
Send a subscription request to the adapter, and see a stream record from Event Stream
Processor in a Web browser.

Prerequisites

• Install a Web server (port default is 80), Flash policy server (default is 843), and a Web
browser with the Flash plug-in.

• The Web server and the policy server must be running on the same machine on which the
adapter is installed.

• Copy the example.swf file from the adapter example directory to the content area of
the Web server.

• If the Web server and policy server are running on a different machine than the one on
which the adapter is installed, ensure the ports listed above are open for TCP connections
from the machine where the Web browser is running.

• The Flex Server port default is 23456.
• The Web browser can be used on the same machine or on a different machine.

Task

1. Edit the adapter.sh script.

CHAPTER 2: Adapters Supported by Event Stream Processor

186 Sybase Event Stream Processor

2. Set the JAVA_HOME environment variable to the directory where the Java Runtime
Environment (JRE) is installed.

3. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

4. Start the adapter.

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

5. Wait five to ten seconds for the adapter to initialize.

6. Upload a stream record.

Operating System Step

UNIX Open a terminal window and enter:

./upload.sh

Windows Open a command window and enter:

upload.bat

7. Point the Web browser to the example.swf file. For example:

http://localhost:80/sybase/example.swf

8. You see this stream record in the browser window:
Stream = Stream1
Opcode = i
Symbol = IBM
Price = 12.50

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 187

HTTP Output Adapter
Adapter type: httpplugin. The Sybase Event Stream Processor HTTP adapter publishes data
from Event Stream Processor to external clients.

The HTTP adapter:

• Runs an internal HTTP server, listens to and accepts client connections
• Extracts SQL queries from client requests and subscribes to streams
• Converts stream records into XML, and sends XML to clients in chunk-coded HTTP

responses

Control Flow
The adapter loads its configuration from a file (for example, adapter.xml) and validates it
against the adapter schema (httpadapter.xsd), which includes the API-wide controller
schema (controller.xsd).

You cannot edit schemas.

Figure 8: HTTP Adapter Control Flow

The Adapter Controller creates an instance of the adapter, receives and executes user
commands. The Adapter Controller executes start, stop, and status commands.

CHAPTER 2: Adapters Supported by Event Stream Processor

188 Sybase Event Stream Processor

Start Command
The start command configures and starts the adapter command and control interface, gets the
Message Handler to start listening for client connections, and connects the SpSubscriber
component to Event Stream Processor via the SDK interface.

The adapter ignores the start command if it is executed when there is a running instance of the
adapter, and a warning is sent.

See also
• Starting the HTTP Adapter on page 198

Stop Command
The stop command disconects the SpSubscriber from Event Stream Processor,causes the
Message Handler to finalize the HTTP responses to the existing clients, disconnect them and
stop listening for connections from new clients, and terminates he adapter process.

If the stop command is executed when there is no instance of a running adapter, the command
is ignored and a warning is sent.

See also
• Stopping the HTTP Adapter on page 199

Status Command
The status command reports the adapter status, and the Adapter Controller prints out its
status: either running or stopped.

See also
• Checking the HTTP Adapter Status on page 199

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 189

Message Flow
The message flow between the adapter and an HTTP client is initiated when the client sends a
POST request with the start command in it and a body consisting of a SQL query to Event
Stream Processor.

Changes in the corresponding stream are pulsed back to the HTTP client as XML-formatted
chunk-coded HTTP responses.

CHAPTER 2: Adapters Supported by Event Stream Processor

190 Sybase Event Stream Processor

The pulse interval is specified in the adapter configuration. In the event of a failover, the SDK
API switches, as configured, to the spare Event Stream Processor instance without message
loss.

See also
• Event Stream Processor Parameters on page 193

Setting the JAVA_HOME Environment Variable
Set the JAVA_HOME environment variable to point to the Java directory.

Prerequisites
Install Java Runtime Environment version 1.6.0_26 or higher.

Task
Set the JAVA_HOME environment variable to the directory path where Java Runtime
Environment 1.6.0_26 or higher is installed.

Configuration
Configuration information for the HTTP adapter.

HTTP Adapter Directory
The adapter directory contains all files, such as configuration files, templates, examples, and
JAR files, relating to the adapter.

README.txt Quick Guide
ReleaseNotes.txt Release Notes

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 191

bin/
adapter.bat Standalone adapter startup script
adapter.sh Standalone adapter startup script
adapter-plugin.bat Plug-in connector startup script
adapter-plugin.sh Plug-in connector startup script

config/
controller.xsd Controller schema
log4j.properties Sample logging configuration
httpadapter.xsd Adapter schema
login.config Authentication configuration

example/ Working example

lib/
esp_http_adapter.jar http adapter library

javadoc/

adapterapi/ Adapter API Javadoc
httpadapter/ Http Adapter Javadoc

Common jars are located:

$ESP_HOME/adapters/jar

activation.jar Java mail library
adapterapi.jar Adapter API code
axis.jar Webservices jar
commons-codec-1.3.jar Required by SDK API
commons-discovery-0.2.jar
commons-logging-1.1.jar Logging library
esp_java_sdk-0.2.jar ESP SDK library
jaxrpc-api-1.1.jar Required by ESP SDK
log4j-1.2.14.jar Logging library
mail.jar Java mail library
saaj-api-1.3.jar Webservices jar
ws-commons-util-1.0.2.jar Required by ESP SDK
wsdl4j-1.5.1.jar
xercesImpl.jar XML parser library
xmlrpc-client-3.1.3.jar Required by ESP SDK
xmlrpc-common-3.1.3.jar Required by ESP SDK
xmlrpc-server-3.1.3.jar Required by ESP SDK

Schema and Configuration File
The adapter configuration is loaded from a file and validated against the adapter schema.

The example folder contains a sample adapter configuration file. Provide a valid
configuration file, and ensure the adapter configuration validates against the adapter schema.

CHAPTER 2: Adapters Supported by Event Stream Processor

192 Sybase Event Stream Processor

Adapter Controller Parameter
The controllerPort parameter specifies the adapter command and control port.

Parameter Name Type Description

controllerPort positive
integer

(Required) Specifies the adapter command
and control port. User commands are sent to
this port on localhost.

Event Stream Processor Parameters
Event Stream Processor parameters configure communication between Event Stream
Processor and the HTTP adapter.

These parameters are defined in the controller.xsd file in the config directory.

Parameter Name Type Description

espAuthType string (Required) Specifies method used to authen-
ticate to the Event Stream Processor. Valid
values are:

• server_rsa – RSA authentication using
keystore

• user_password – Kerberos and LDAP
authentication

• none – No authentication

If the adapter is operated as a Studio plug-in,
espAuthType is overridden by the Authenti-

cation Mode Studio start-up parameter.

espUser string (Required) Specifies user name required to
log in to Event Stream Processor. It is required
for any authentication scheme other than none
(see espAuthType). No default value.

espPassword string (Required) Specifies the password required to
log in to Event Stream Processor. Required for
any authentication scheme other than none
(see espAuthType).

Includes an "encrypted" attribute indicating
whether the espPassword value is encrypted.
Default value is false. If set to true, the pass-
word value is decrypted using espRSAKeyS-

tore and espRSAKeyStorePassword.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 193

Parameter Name Type Description

espProjectUri string (Required) Specifies the total project Uri to
connect to Event Stream Processor cluster. For
example, esp://localhost:
19011/ws1/p1.

pulseInterval non-nega-
tive inte-
ger

(Optional) Specifies time interval, in seconds,
during which outbound record changes are
coalesced by Event Stream Processor, then
received by the adapter as a single event.

If not set or set to 0, record changes are re-
ceived individually as they occurr.

espHeartbeatPeriod positive
integer

(Optional) Specifies number, in seconds, that
adapter waits before sending the next heart-
beat to Event Stream Processor.

If Event Stream Processor fails to receive two
consecutive heartbeats, all records the adapter
publishes are marked stale. Default value is
10.

recordQueueCapacity positive
integer

(Optional) Specifies capacity of the record
queues. Default value is 4096.

maxPubPoolSize positive
integer

(Optional) Specifies the maximum size of the
record pool. Record pooling allows for faster
publication. Default value is 256.

maxPubPoolTime positive
integer

(Optional) Specifies the maximum period of
time (in milliseconds) for which records are
pooled before being published. If not set,
pooling time is unlimited and the pooling
strategy is governed by maxPubPoolSize. No
default value.

useTransactions boolean (Optional) If set to true, pooled messages are
published to Event Stream Processor in trans-
actions. If set to false, they are published in
envelopes. Default value is false.

CHAPTER 2: Adapters Supported by Event Stream Processor

194 Sybase Event Stream Processor

Parameter Name Type Description

espRSAKeyStore string (Dependent required) Specifies the location of
the RSA keystore, and is used to decrypt the
password value. Required if espAuthType is
set to server_rsa, or the encrypted attribute for
espPassword is set to true, or both.

espRSAKeyStorePassword string (Dependent required) Specifies the keystore
password, and is used to decrypt the password
value. Required if espAuthType is set to serv-
er_rsa, or the encrypted attribute for espPass-

word is set to true, or both.

espEncryptionAlgorithm string (Optional) Used when the encrypted attribute
for espPassword is set to true. If left blank,
RSA is used as default.

See also
• Message Flow on page 190

HTTP Server Settings
The httpPort and contentType parameters specify HTTP Server settings.

Parameter Type Description

httpPort integer (Required) Specifies the port on which the adapter
runs its HTTP server.

contentType string (Required) Specifies the content type of HTTP re-
sponses. The adapter supports the text/plain and
text/html content types.

Sample HTTP Configuration File
Sample configuration file (adapter.xml) for the HTTP adapter.

This file is in the example folder.

<adapter>
- <!-- Adapter Controller
 -->
- <controller>
 <controllerPort>13579</controllerPort>
 </controller>
- <!-- Event Stream Processor Settings
 -->
- <esp>
- <espConnection>
 <espHost>localhost</espHost>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 195

 <espPort>22000</espPort>
- <!-- <espProjectUri>esp://localhost:19011/ws1/p1</
espProjectUri>
 -->
 </espConnection>
- <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>
 <espAuthType>none</espAuthType>
- <!--
 <espRSAKeyFile>/keyfilepath/espuser.private.der</espRSAKeyFile>
 <espRSAKeyStore>/keystore/keystore.jks</espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword>

 -->
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 <maxPubPoolSize>1</maxPubPoolSize>
 </esp>
- <!-- HTTP specific
 -->
- <http>
 <httpPort>23456</httpPort>
 <contentType>text/html</contentType>
 </http>
 </adapter>

HTTP Output Adapter
The HTTP Output adapter receives SQL queries wrapped in HTTP requests from a client
application, such as a Web browser, and sends chunk-coded stream content back to the client.

You can configure the adapter on any source stream as an outbound data location. The
authentication method is set to Event Stream Processing standards: none, rsa, or gssapi. To use
this adapter, ensure Sybase HTTP adapter version 1.0 or later is installed.

Property Label Property Id Type Description

Connector Directory
Path

baseDir directory (Required) Specifies the abso-
lute path to the adapter instal-
lation directory. This property
is ignored if the Connector

Remote Directory Path prop-
erty is supplied. No default
value.

Configuration File Path configFilePath configFi-
lename

(Required) Specifies the abso-
lute path to the adapter config-
uration file. This property is
ignored if the Remote Config-

uration Path property is sup-
plied. No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

196 Sybase Event Stream Processor

Property Label Property Id Type Description

Connector Remote Di-
rectory Path

remoteBaseDir string (Advanced) Specifies the path
to the adapter remote base di-
rectory, for remote execution
only. If this property is sup-
plied, the Connector Directory

Path is ignored. No default
value.

Remote Configuration
File Path

remoteConfigFile-

Path

string (Advanced) Specifies the path
to the adapter remote configu-
ration file, for remote execu-
tion only. If this property is
supplied, the Configuration

File Path property is ignored.
No default value.

PropertySet propertyset string (Advanced) Specifies the
name of the property set (a
group of properties and values)
you want to use from the
project configuration file. If
you specify the same proper-
ties in the project configura-
tion file and the ATTACH

ADAPTER statement, the val-
ues in the property set override
the values defined in the AT-

TACH ADAPTER statement.
No default value.

Logging
The adapter uses the Apache log4j API to log errors, warnings, and information and
debugging messages.

The log4j.properties file contains the logging configuration. A sample
log4j.properties file is part of the adapter distribution.

Set the desired logging level in the log4j.properties file. Setting the logging level to
DEBUG may result in very large log files. The default level is INFO. Raw IDC messages are
logged at the DEBUG level. Refer to http://logging.apache.org/log4j for details on logging
configuration.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 197

http://logging.apache.org/log4j

Operation
You can operate the HTTP Output adapter from the command line.

Starting the HTTP Adapter
To start the HTTP adapter from the command line, start Event Stream Processor and execute
the start command.

1. Start Event Stream Processor.

Windows:
1. Start the example cluster.

cd %ESP_HOME%\cluster\nodes\node1
 %ESP_HOME%\bin\esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
%ESP_HOME%\bin\esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

UNIX:
1. Start the example cluster.

cd $ESP_HOME/cluster/nodes/node1
 $ESP_HOME/bin/esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
$ESP_HOME/bin/esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

2. Start the adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

198 Sybase Event Stream Processor

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/http/bin

./adapter.sh <configuration file path> start

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/http/bin

adapter.bat <configuration file path> start

See also
• Start Command on page 189

Checking the HTTP Adapter Status
To check the HTTP adapter status from the command line, execute the status command.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/http/bin

./adapter.sh <configuration file path> status

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/http/bin

adapter.bat <configuration file path> status

You see the adapter status, which is either running or stopped.

See also
• Status Command on page 189

Stopping the HTTP Adapter
To stop the HTTP adapter from the command line, execute the stop command.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 199

Operating system Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/http/bin

./adapter.sh <configuration file path> stop

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/http/bin

adapter.bat <configuration file path> stop

See also
• Stop Command on page 189

Example: Sending, Receiving, and Viewing Data
Use the working example provided in the adapter distribution to learn how to send a SQL
query to the adapter, and receive XML-formatted stream data from Event Stream Processor
and view it in a Web browser.

Prerequisites
You have a network connection.

Task

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Edit the adapter.sh script.

3. Set the JAVA_HOME environment variable to the directory where the Java Runtime
Environment (JRE) is installed.

4. Start the adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

200 Sybase Event Stream Processor

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

5. Wait five to ten seconds for the adapter to initialize.

6. Start uploading stream records.

Operating System Step

UNIX Open a terminal window and enter:

./upload.sh

Windows Open a command window and enter:

upload.bat

7. Load the HTTPAdapterClient.html page in a Web browser.

8. Enter a valid SQL query, for example:
SELECT * FROM Stream1

Note: Queries that return a smaller number of records may not appear on some browsers
because those browsers appear to expect a certain amount of data to be present in the buffer
cache before they display the data. For example:

SELECT * FROM Stream1
where intcol = 10

• Mozilla FireFox Browser: displays record.
• Google Chrome Browser: does not display record.
• Internet Explorer Browser: does not display record.

SELECT * FROM Stream1
where intCol > 10

(executed in debug mode)

– Mozilla FireFox Browser: records appear after they are sent to the browser.

– Google Chrome Browser: records appear after the fifth record is sent to the browser.

– Internet Explorer Browser: records appear after the 20th record is sent to the browser.

9. Click Submit.

10. Note the records being streamed into the Web browser window.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 201

KDB Adapter
Adapter types: KDBInput, KDBOutput. The Sybase Event Stream Processor KDB Input and
Output adapters allow data to be loaded from a kdb+ database into an Event Stream Processor
project, and for output from an Event Stream Processor project to be stored in a kdb+ database.

Note: The KDB Input and Output adapters do not support the Solaris AMD platform.

Control Flow
KDB Input and Output adapters are operated by a set of script files.

The adapter scripts use these basic commands:

Figure 9: KDB Adapter Control Flow

Start Command
The start command starts the KDB Input or Output adapter, the KDB client API, and the KDB
database server, and connects them to Event Stream Processor via the SDK interface.

Stop Command
The stop command stops the KDB Input or Output adapter, and closes the connection between
the KDB database server and Event Stream Processor.

Datatype Mapping for the KDB Adapter
Event Stream Processor datatypes map to KDB datatypes, and KDB datatypes map to Event
Stream Processor datatypes.

CHAPTER 2: Adapters Supported by Event Stream Processor

202 Sybase Event Stream Processor

KDB Datatypes to ESP Datatypes
KDB datatypes map to Event Stream Processor datatypes.

KDB Datatype Character ESP Datatype

boolean b boolean

byte x integer

short h integer

int i integer

long j long

real e float

float f float

symbol s string

date d date

datetime z timestamp

time t timestamp

month m date

minute u interval

second v interval

ESP Datatypes to KDB Datatypes
Event Stream Processor datatypes map to KDB datatypes.

ESP Datatype Character KDB Datatype

integer i int

long j long

float f float

money f float

string s symbol

date z datatime

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 203

ESP Datatype Character KDB Datatype

timestamp z datatime

bigdatetime j long

interval j long

boolean b boolean

KDB Input Adapter
The KDB Input adapter reads kdb or kdb+tick database tables.

By default, the adapter matches the field names (in a case-insensitive manner) to determine the
mapping between the source kdb+tick table and the target stream. The KDB Output adapter
also supports custom field-mapping.

This adapter supports schema discovery.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is KDBInput.

Property Label Property ID Type Description

KDB Server server string (Required) Specifies the
name or IP address of the
database server machine.
Default value is localhost.

KDB Port port range (Required) Specifies the IP
port of the database listener.
Default value is 5001. Min-
imum value is 0, maximum
value is 65535.

Event Stream Processor
User ID

espUser string (Optional) Specifies the
user name for connecting to
the Event Stream Processor.
Default value is t.

Event Stream Processor
Password

espPassword password (Optional) Specifies the
password for the Event
Stream Processor user ID.

Note: If RSA authentica-
tion is used, this property
can be left blank.

Default value is t.

CHAPTER 2: Adapters Supported by Event Stream Processor

204 Sybase Event Stream Processor

Property Label Property ID Type Description

Authentication authentication choice (Optional) Specifies the
method used to authenticate
to the kdb or kdb+tick data-
base tables. Valid values
are:

• value="none"
label="None"

• value="pam"
label="PAM"

• value="rsa"
label="RSA"

• value="gssapi"
label="Ker-
beros V5"

No default value.

Project URI projectUri string (Optional) Specifies the
URI to connect to a project
in cluster environment. No
default value.

RSA Key File rsaKeyFile filename (Optional) Specifies the
RSA private-key file name
and location. No default val-
ue.

KDB User user string (Optional) Specifies the
user ID for the database
connection. No default val-
ue.

KDB Password password password (Optional) Specifies the
password for the database
connection. No default val-
ue.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 205

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies the
name of the property set (a
group of properties and val-
ues) you want to use from
the project configuration
file. If you specify the same
properties in the project
configuration file and the
ATTACH ADAPTER state-
ment, the values in the prop-
erty set override the values
defined in the ATTACH

ADAPTER statement. No
default value.

Source Table table tables (Advanced) Specifies the
name of the source table to
retrieve data from.

Note: This property sup-
ports SQL query state-
ments.

No default value.

Field Mapping permutation string (Advanced) Specifies the
mapping between the in-
Event Stream Processor and
external fields. Format is:
ESPCol-
umn1=KDBCol-
umn1:ESPCol-
umn2=KDBCol-
umn2.... No default val-

ue.

CHAPTER 2: Adapters Supported by Event Stream Processor

206 Sybase Event Stream Processor

Property Label Property ID Type Description

Streaming Mode mode choice (Advanced) Specifies if the
adapter should connect to a
kdb+tick database and read
in streaming data or execute
the supplied query and feed
the result to Event Stream
Processor. Valid value list:

• val-
ue="stream",
label
="Stream"

• value="pull",
label="One
time pull"

Default value is "stream".

Polling Interval pollInterval int (Advanced) Specifies the
number of seconds to wait
before re-executing query in
pull mode. If set to 0, the
query is not reexecuted. De-
fault value is 0.

Block Size blockSize int (Advanced) Specifies the
number of records to block
into one pseudo-transac-
tion. Default value is 64.

Async Mode async boolean (Advanced) If set to true, the
adapter does not wait for an
acknowledgement from
Event Stream Processor that
is received the data. Default
value is false.

Encrypt Connection encrypt boolean (Advanced) If set to true, the
traffic between Event
Stream Processor and the
adapter is encrypted. De-
fault value is false.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 207

Property Label Property ID Type Description

Print Debug Info debug boolean (Advanced) Specifies if the
adapter prints additional de-
bugging information to the
console. Default value is
false.

Use Transaction Blocks useTransaction boolean (Advanced) For better per-
formance, use transaction
blocks instead of envelopes
while sending data to Event
Stream Processor. Default
value is false.

Connection Retries connectionRetries int (Advanced) Specifies the
number of times to retry
connection if it breaks. De-
fault value is 1.

Event Stream Processor
Host Name

gatewayHost string (Advanced) Specifies the
explicit gateway host name.
No default value.

Parameter File x_paramFile filename (Advanced) Specifies the
file to write the parameters
into, to pass to the external
process. No default value.

Parameter File Format x_paramFormat choice (Advanced) Specifies the
format in which the external
process expects the param-
eters. Valid value list:

• value = prop,
label = "Java
properties"

• value= shell,
label="Unix
shell assign-
ments"

• value = xml,
label = "Sim-
ple XML"

Default value is "prop".

CHAPTER 2: Adapters Supported by Event Stream Processor

208 Sybase Event Stream Processor

Known limitations:

• If the kdb+tick databases are not running when the adapter tries to make a connection, the
adapter waits indefinitely until the kdb+tick database is started.

Note: This issue occurs only if the kdb+tick database and Event Stream Processor are
running on different machines.

• If the connection to the database is broken, any updates that happen between the time the
connection is broken and reestablished are lost.

KDB Output Adapter
The KDB Output adapter publishes stream data from Event Stream Processor to a KDB+tick
database table.

By default, the adapter matches the field names (in a case-insensitive manner) to decide the
mapping between the source KDB+tick table and the target stream. The KDB Output adapter
supports custom field-mapping.

If you use the CCL ATTACH ADAPTER statement to attach an adapter, you must supply the
adapter type. The type for this adapter is KDBOutput.

Property Label Property ID Type Description

KDB Server server string (Required) Name or IP ad-
dress of the database server
machine. No default value.

KDB Port port range (Required) IP port of the da-
tabase listener. Default value
is 5001. Minimum value is 0,
maximum value is 65535.

Event Stream Processor
User ID

espUser string (Optional) User name for
connecting to the Event
Stream Processor. No de-
fault value.

Event Stream Processor
Password

espPassword password (Optional) Password for the
Event Stream Processor user
ID. Can be empty if using
RSA authentication. No de-
fault value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 209

Property Label Property ID Type Description

Authentication authentication choice (Optional) Authentication
mechanism to use. Valid val-
ues are:

• value="none"
label="None"

• Value val-
ue="rsa" la-
bel="RSA"

• Value val-
ue="gssapi"
label="Ker-
beros V5"

No default value.

Project URI projectUri string (Optional) Specifies the URI
to connect to a project in
cluster environment. No de-
fault value.

RSA Key File rsaKeyFile filename (Optional) RSA private-key
file name and location. No
default value.

KDB User user string (Optional) User ID for the
database connection. No de-
fault value.

KDB Password password password (Optional) Password for the
database connection. No de-
fault value.

CHAPTER 2: Adapters Supported by Event Stream Processor

210 Sybase Event Stream Processor

Property Label Property ID Type Description

PropertySet propertyset string (Advanced) Specifies the
name of the property set (a
group of properties and val-
ues) you want to use from the
project configuration file. If
you specify the same prop-
erties in the project configu-
ration file and the ATTACH

ADAPTER statement, the
values in the property set
override the values defined
in the ATTACH ADAPTER

statement. No default value.

Target Table table tables (Advanced) Name of the tar-
get table to update. No de-
fault value.

SQL Query query string (Advanced) The SQL query
to filter incoming data. No
default value.

Field Mapping permutation string (Advanced) Mapping be-
tween the in-Event Stream
Processor and external
fields. Format is:ESPCol-
umn1=KDBCol-
umn1:ESPCol-
umn2=KDBCol-
umn2….” No default val-

ue.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 211

Property Label Property ID Type Description

Streaming Mode mode choice (Advanced) Streaming
mode. Valid values are:

• val-
ue="stream",
la-
bel="user.u.up
d"

• value="push",
label=”use up-
date"

No default value.

Async Mode async boolean (Advanced) If set to true, the
adapter does not wait for an
acknowledgement from
Event Stream Processor that
is received the data. Default
value is false.

Connection Retries connectionRetries int (Advanced) Number of
times to retry connection if it
breaks. Default value is 1.

KDB Batch size blockSize int (Advanced) Maximum num-
ber of records in a single
KDB write batch. Default
value is 5000.

BASE Data Only baseOnly boolean (Advanced) If set to true,
does not retrieve data exist-
ing at connection time. De-
fault value is false.

Lossy Subscriber lossy boolean (Advanced) If set to true, the
Event Stream Processor
drops records if connection
slows down. Default value is
false.

CHAPTER 2: Adapters Supported by Event Stream Processor

212 Sybase Event Stream Processor

Property Label Property ID Type Description

Pulse Interval pulsed int (Advanced) If set as a non-
zero value, the subscription
is created in pulsed mode
with the specified period.
Default value is 0.

Shine Through shine boolean (Advanced) If set to true,
subscribe send data with
shine through. Default value
is false.

Droppable Subscription droppable boolean (Advanced) If set to true,
Event Stream Processor
drops the subscription if data
is being backed up. Default
value is false.

Preserve Transaction
Blocks

originalBlocks boolean (Advanced) If set to true,
Event Stream Processor pre-
serves transaction bounda-
ries in subscribed data. De-
fault value is false.

Debug debug boolean (Advanced) If set to true, a
debug message of connec-
tion between KDB database
server and Event Stream
Processor is shown together
with other Event Stream
Processor logs. Default val-
ue is false.

Omitted Fields omitFields string (Advanced) Comma-delimi-
ted list of KDB fields to
omit.

Note: Ommited fields are
not sent.

No default value.

Ignored Fields ignoreFields string (Advanced) Comma-delimi-
ted list of KDB fields to ig-
nore, these are set to NULL.
No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 213

Property Label Property ID Type Description

Quite Mode quietMode boolean (Advanced) If true, a KDB
log message is not show in
standard error output. De-
fault value is false.

Encrypt Connection encrypt boolean (Advanced) If set to true, the
traffic between Event
Stream Processor and the
KDB adapter is encrypted.
Default value is false.

Parameter File x_paramFile filename (Advanced) File to write the
parameters into, to pass to
the external process. Default
value is <temp>\PA-
RAMETER_FILE.txt.

Parameter File Format x_paramFormat choice (Advanced) Format in which
the external process expects
the parameters. Valid values
are:

• value = prop,
label = "Java
properties"

• value = shell,
label= "Unix
shell assign-
ments"

• value = xml,
label = "Sim-
ple XML"

Default value is “prop”.

Log File Input Adapter
The Sybase Event Stream Processor Log File Input adapter reads from a log file and sends data
to a stream.

For each log record read from the file, the adapter sends one row (message) to the stream. The
log file can be in any of the following formats:

• Common log format

CHAPTER 2: Adapters Supported by Event Stream Processor

214 Sybase Event Stream Processor

• Combined log format
• Extended common log format

The choice of formats allows you to read log files from Apache, Tomcat, IIS, and other
datasources that write their log files in one of these formats. You can customize the
appropriate .properties file to read the log files in other formats.

This adapter is written in Java and uses JavaBeans. Sybase assumes, if you use this adapter,
that you have extensive knowledge and experience with JavaBeans and .properties files.

You can use this adapter to read either live or historical log files. Historical files are complete
and can be read once from beginning to end. Live files are those to which data continues to be
added.

There are two types of live files, rotating and advancing. For rotating files, when the log file is
full, the program that writes to the file renames the existing file and starts a new file with the
original name. Typically the new file name is based on the original file name with a suffix
appended, for example, if the original file name is "access.log", the renamed files are
"access.log.1", "access.log.2", and so on. The Log File Input adapter always reads the original
file name. The adapter starts over at the beginning when the old file has been renamed and a
new one created.

For advancing files, when one file is full, the log file writer creates a new file and starts writing
to that new file. The naming convention is typically a base name plus a suffix, where the suffix
might be based on date/time or a sequential number (for example, "access-log.2007-01-01",
"access-log.2007-01-02", and so on, or "access.log.1", "access.log.2", and so on.) Regardless
of the naming convention, the adapter opens these log files in chronological order by last
modification date.

Configuration
Configure your Log File Input adapter by setting values in the .properties file for the
adapter.

For example, specify the name of the log file to read by setting the Input.Filename property.
An example .properties file is included in the product.

You can use this adapter to read either live or historical log files.

• To read a historical file, specify the file name in the Input.Filename property, and set the
Input.WaitForGrowth property to false.

• To read a live file, whether rotated or advancing, set the Input.WaitForGrowth property to
true. The Log File Input adapter goes to the end of the file and then reads as new data is
appended to the file. When the file size shrinks to zero (after the old log file is renamed and
a new, empty one is created), the Log File Input adapter continues reading from the
beginning of the new file.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 215

Properties
Lists and briefly describes some of the crucial properties in the .properties file. See the
example.properties file for a complete, up-to-date list of configurable properties for
the adapter.

The example .properties file contains commented-out examples of the column lists
for the common log format and the combined log format. (See the "Parse.Class" section of the
file.) To use the Extended Common log format, add column names and datatypes to the
Parse.Format.Common.Columns property. Since the log file reader is extensible and
modifiable, you can define your own formats, and modify the existing formats to match your
configurations. For example, if your Apache server has changed the format it writes for
common log format or combined log format, you can modify the properties file to match. You
can either modify existing entries or create new entries. For example, you can create a new
format named "MyUncommonFormat" and define the columns for that format.

Property Name Type Description

Input.Filename string Lists the name of the log file to read from.

Input.WaitFor-
Growth

string(true,
false, a number of
milliseconds, or a
number of milli-
seconds followed
by a comma and a
number of nano-
seconds)

If set to false, the adapter reads until it reaches the end of
the file and then exits. If set to true, the adapter continues
reading from the log file indefinitely at intervals of 100
milliseconds (the default interval).

A value in the format milliseconds or milliseconds,
nanoseconds tells the server to continue reading from
the log file indefinitely at the specified interval, for ex-
ample, 10 tells the adapter to read every 10 milliseconds
and 0,500000 tells the adapter to check every 500000
nanoseconds, or 2000 times per second. The actual in-
terval between reads is only approximately the interval
you specify; the exact interval depends upon your sys-
tem's hardware and operating system and load.

Parse.Class string Specifies the JavaBean used to parse columns in the log
file.

Parse.FormatName string Specifies the name of the format of the data in the log
file. This may be the name of one of the predefined
formats, such as common or combined, or it may be the
name of a custom format.

Parse.{Format-
Name}.Columns
(where {Format-
Name} is replaced
with the name provi-
ded by Parse.For-
matName)

string Contains the names and datatypes of the column names
in the log file. You may need to customize this property.

CHAPTER 2: Adapters Supported by Event Stream Processor

216 Sybase Event Stream Processor

Property Name Type Description

Parse.{Format-
Name}.DateColumn
(where {Format-
Name} is replaced
with the name provi-
ded by Parse.For-
matName)

string Contains the name of the date column in the log file. This
value must match the actual name of your date column.

Parse.{Format-
Name}.TimeCol-
umn (where {For-
matName} is re-
placed with the
name provided by
Parse.FormatName)

string (Optional) Contains the name of the time column in the
log file. This column is needed only if the date column
does not include the time.

Output.Uri string URI of the stream to send the rows to.

Output.Columns string The string should contain a list of column names sepa-
rated by spaces. This allows you to match the output to
the schema of the stream that you are writing to.

Admin.Input string If Admin.Input is set to stdin, then the log file adapter
reads stdin looking for administrative commands. The
only administrative command it currently supports is
exit, which can be requested by any of the input lines:
exit, quit, x, or q. The primary intent of this is as a de-
bugging aid. The default is for no administrative request
bean.

Output.AuthType string (Optional) Specifies authentication type. Valid values
are: None, UserPassword, or ServerRSA. Default value
is None.

Output.username string (Dependent required) Required for all authentication
methods other than None. For UserPassword, this speci-
fies the username for the server. For ServerRSA authen-
tication method, this specifies the keystore alias.

Output.password string (Dependant required) Required by UserPassword au-
thentication method. Specifies password for the Server.

Output.passwor-
dEncrypted

string (Dependant required) Specifies whether password in
Output.password property is encrypted. Valid values are
true or false. Default value is false.

Output.RSAKeyS-
tore

string (Dependent required) Specifies location of keystore file.
Required by ServerRSA authentication method or User-
Password (if password is encrypted).

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 217

Property Name Type Description

Output.RSAKeyS-
toreAlias

string (Dependent required) Specifies the keystore alias. Re-
quired by UserPassword authentication method if pass-
word is encrypted.

Output.RSAKeyS-
torePassword

string (Dependent required) Specifies password for the RSA
keystore. Required by ServerRSA authentication meth-
od or UserPassword (if password is encrypted).

Parse.BigDate-
time.Format

string Specifies format of bigdatetime column. Uses
java.text.SimpleDateFormat, which does not support
microseconds. To display microseconds, ensure the
string UUUUUU is present.

Note: If month comes after microseconds, and the num-
ber of characters in the month are variable, the data is not
parsed correctly. For example, if the full month name is
used, September has more characters than July, and July
has more than May.

Note: Each input stream has a property (see the stream's Properties tab in Studio) that can
specify whether to use the current server timestamp value instead of the row timestamp set by
the adapter. If this stream property is set to true, it overrides any row timestamp set by the
adapter.

Starting the Adapter from the Command Line
To start the Log File Input adapter from the command line, set the CLASSPATH environment
variable and execute the start command.

To set the CLASSPATH environment variable, use createClasspath.sh (UNIX,
Linux) or createClasspath.bat (Windows).

Most UNIX-like operating systems place startup scripts in /etc/init.d. To start the
adapter on such a system, Sybase recommends that you copy the script
logfile_input.rc to the /etc/init.d directory and make any necessary edits.

Note: The logfile_input.rc script is a sample, and only works on Linux. To use this on
another platform, you need to customize this script.

On systems without /etc/init.d, you can use logfile_input.rc as the basis for
writing your own script to start the Log File Input adapter.

The commands that you can execute through the logfile_input.rc file are:

• Start

• Stop

• Status

CHAPTER 2: Adapters Supported by Event Stream Processor

218 Sybase Event Stream Processor

• Restart

Attention: The logfile_input.rc script requires you to have write permissions to /
etc/sysconfig, /var/run, and /var/lock/sybsys.

1. Run the command source createClasspath.bat for Windows or source
createClasspath.sh for UNIX to set the CLASSPATH environment variable.

2. To run the adapter from the command line:
java -cp $CP -Dproperties=FILE.PROPERTIES
com.sybase.esp.adapters.logFileInput.Main

There is no space between the "D" and the word "properties".

NYSE Technologies Input Adapter
Adapter type: wombatplugin. The Sybase Event Stream Processor adapter for NYSE
Technologies MAMA (NYSE adapter) is used to connect to Wombat market data
infrastructure.

The NYSE adapter does not support the Solaris SPARC platform.

The NYSE adapter:

• Connects to the Wombat data feed, opens sessions, and creates and signs off subscriptions
• Translates Wombat messages into Event Stream Processor records

The NYSE adapter requires a separately purchased license. This license does not support the
standard SySAM grace period, meaning it cannot run without a valid license.

If you purchased your product from Sybase or an authorized Sybase reseller, go to the secure
Sybase Product Download Center (SPDC) at https://sybase.subscribenet.com and log in to
generate license keys. The license generation process may vary slightly, depending on
whether you ordered directly from Sybase or from a Sybase reseller.

If you ordered your product under an SAP contract and were directed to download from SAP
Service Marketplace (SMP), you can use SMP at http://service.sap.com/licensekeys to
generate license keys for Sybase products that use SySAM 2-based licenses.

Control Flow
The adapter loads its configuration from a file (for example adapter.xml) and validates it
against the adapter schema (wombatadapter.xsd), which includes the API-wide
controller schema (controller.xsd).

You cannot edit schemas.

The Adapter Controller creates an instance of the adapters, and receives and executes start,
stop, and status commands.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 219

https://sybase.subscribenet.com
http://service.sap.com/licensekeys

Figure 10: NYSE Technologies Adapter Control Flow

Start Command
The start command configures and starts the adapter command and control interface.

The Data Source Handler, which implements the NYSE MAMA and MAMDA Client APIs,
connects to the NYSE data feed, initiates a session with it, and downloads the data dictionary.
The SpSubscriber and SpPublisher components connect to Event Stream Processor via the
SDK interface. SpSubscriber starts listening to the watchlists and SpPublisher is ready to
publish data to data streams.

The adapter ignores the start command if it is executed when there is a running instance of the
adapter, and a warning is sent.

See also
• Starting the NYSE Adapter on page 237

Stop Command
The stop command disconnects the SpPublisher and SpSubscriber from Event Stream
Processor, causes the Data Source Handler to close the session and disconnect from the

CHAPTER 2: Adapters Supported by Event Stream Processor

220 Sybase Event Stream Processor

datasource, stops the Adapter Controller from listening to user commands, and terminates the
adapter process.

If the stop command is executed when there is no instance of a running adapter, the command
is ignored and a warning is sent.

See also
• Stopping the NYSE Adapter on page 239

Status Command
The status command reports the adapter status, and the Adapter Controller prints out its
status: either running or stopped.

See also
• Checking the NYSE Adapter Status on page 238

Watchlists
Dynamically control message flow through the adapter using two watchlist streams: market
data and order book.

The adapter subscribes, over different transports, to various symbols from available
namespaces. The symbol+ namespace+transport triads are called subscription keys. The
watchlists map subscription keys to data streams. The watchlist stream names are defined in
the adapter configuration file.

The adapter supports group subscriptions for market data. Group subscriptions are identified
by a group symbol, and each group symbol is associated with various individual symbols.
Data coming on symbols from the same group are stored in the same data stream. Data stream
records are keyed by individual symbols. For example, if symbols X1, X2, and X3 are
associated with GROUPX, the data records are keyed using X1, X2, and X3 as opposed to
GROUPX.

Subscription keys relate to streams as many to one. Subsequently, a subscription key may not
target more than one market data stream and one order book stream per side (Buy or Sell).
However, a data stream may be targeted by multiple subscription keys. Order book sides (Buy
and Sell) may be hosted on the same or separate streams.

Watchlist inserts and deletes are user-controlled, while updates are interpreted as error
conditions. The adapter reacts to changes in watchlists as follows:

Insert Activates subscription to symbol from specified
namespace over specified transport.

Delete Deactivates subscription.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 221

Update Logs an error. Sends an alert to operator (as con-
figured). Continues to send data to old data
streams. The valid way to modify the target
streams is to shut down and restart the adapter.

See also
• Watchlist Stream Configuration Parameters on page 232

• Market Data Watchlists on page 222

• Order Book Watchlists on page 223

• Watchlist Operation on page 239

• Insert on page 239

• Delete on page 240

Market Data Watchlists
Example of market data watchlist structure and content.

Table 1. Market Data Watchlist Structure and Sample Content

Subscription Key Group Sub-
scription Flag

Data Stream
Name

Sym-
bol

Namespace Transport

BDK NASDAQ T1 false MarketB

MSFT NYSE T1 false MarketA

CHAPTER 2: Adapters Supported by Event Stream Processor

222 Sybase Event Stream Processor

Subscription Key Group Sub-
scription Flag

Data Stream
Name

Sym-
bol

Namespace Transport

IBM NASDAQ T2 false MarketA

GROUP
X

NYSE T2 true MarketC

See also
• Watchlist Stream Configuration Parameters on page 232

• Order Book Watchlists on page 223

• Watchlists on page 221

Order Book Watchlists
Example of order book watchlist structure and content.

Table 2. Order Book Watchlist Structure and Sample Content

Subscription Key Buy Side Data
Stream

Sell Side Data
Stream

Sym-
bol

Namespace Transport

APPL NASDAQ T1 BookABuy -

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 223

Subscription Key Buy Side Data
Stream

Sell Side Data
Stream

Sym-
bol

Namespace Transport

BDK NASDAQ T1 BookABuy BookASell

MSFT NYSE T1 BookB -

IBM NASDAQ T2 BookB BookB

See also
• Watchlist Stream Configuration Parameters on page 232

• Market Data Watchlists on page 222

• Watchlists on page 221

Data Streams
There are two types of data streams: market data and order book.

See also
• Data Stream Configuration on page 233

Market Data Streams
A market data stream contains the record key, one or more fields, and the stale flag.

The record key consists of the symbol, namespace (if present), and transport (if present). If
you omit the namespace, the transport, or both, incoming symbol updates from different
namespaces and transports are stored in the same record.

A market data stream column may have the same name as the hosted field, for example,
wBidSize, wBidPrice. Custom-named columns (for example, MyTimestamp) are mapped to
field names in the adapter configuration file.

Table 3. Sample Market Data Stream Content

Record Key wBid-
Size

wBid-
Price

My Time-
stamp

Stale

Sym-
bol

Name-
space

Trans-
port

MSFT NYSE T1 550 33.67 31--12--2008T
10:32:10.536

false

IBM NASDAQ T2 430 51.89 31--12--2008T
10:32:44.993

true

CHAPTER 2: Adapters Supported by Event Stream Processor

224 Sybase Event Stream Processor

Record Key wBid-
Size

wBid-
Price

My Time-
stamp

Stale

Sym-
bol

Name-
space

Trans-
port

X1 NYSE T2 850 133.63 31--12--2008T
10:27:58.563

false

X2 NYSE T2 440 74.36 31--12--2008T
10:29:03.755

false

X3 NYSE T2 180 21.53 31--12--2008T
10:31:55.001

false

See also
• Data Stream Configuration on page 233

Order Book Data Streams
An order book data stream contains the record key, entry ID, price, total size, timestamp, and
stale flag.

The number of price levels is unlimited.

The record key consists of the symbol, namespace (if present), transport (if present), side
indicator (if present), and price. If you omit the namespace, transport, or both, incoming
symbol updates from different namespaces and transports are consolidated.

Valid values for the side indicator are B (Bid) and A (Ask). The side indicator column is
mandatory if the data stream is targeted for both sides of the order book. The adapter ignores
the value of the side indicator column for subscriptions that target separate buy and sell
streams.

Table 4. Sample Order Book Stream Content

Record Key EntryID Size Timestamp Stale

Sym-
bol

Name-
space

Side Price

IBM NASDAQ B 106.23 25345 200 31--12--2008
T10:32:10.5 36

false

IBM NASDAQ B 106.22 74558 300 31--12--2008
T10:32:09.2 11

false

IBM NASDAQ B 106.19 12347 600 31--12--2008
T10:32:07.8 40

false

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 225

Record Key EntryID Size Timestamp Stale

Sym-
bol

Name-
space

Side Price

IBM NASDAQ A 108.73 53298 200 31--12--2008
T10:32:05.2 66

false

IBM NASDAQ A 108.11 53749 300 31--12--2008
T10:32:03.7 54

false

MSFT NYSE - 55.93 65228 400 31--12--2008
T10:31:53.9 22

false

MSFT NYSE - 55.87 54349 700 31--12--2008
T10:31:46.7 25

false

Note: Transport is ignored when storing data records. Also, the side indicator is empty when
its value is derived from the watchlist.

See also
• Data Stream Configuration on page 233

Stale Records
Data stream records are marked stale when certain adapter functions fail.

When the adapter starts, it sends finalization instructions to Event Stream Processor. These
instructions are run if communication with the adapter is lost or the adapter fails to deliver two
consecutive heartbeats. The finalization procedure sets the stale flag to 1 (true) in all records of
all configured adapter data streams.

Data stream records are also marked stale if:

• A subscription is deactivated.
• The adapter receives a market data gap message.
• The adapter receives an order book gap message.
• The adapter receives a transport disconnect message from the NYSE data feed.
• The adapter is about to shut down due to a user command or fatal error condition.

See also
• Event Stream Processor Parameters on page 230

CHAPTER 2: Adapters Supported by Event Stream Processor

226 Sybase Event Stream Processor

Message Flow
Adapter message flow is initiated by the start command.

The Data Source Handler receives real-time market data messages in MAMA format. It
receives order book recaps and updates, such as deltas and complex deltas, in MAMDA
format. It resolves the subscription key and routes the message to the appropriate data stream,
where the data fields extract and convert into stream records.

A record is then ready to be published to Event Stream Processor but is not published
immediately. Records are queued, then picked up by SpPublisher. Set the queue capacity in the
adapter configuration file. A larger queue is less likely to overflow if a message burst occurs.
When the queue is three-quarters full, a warning is logged. Another warning is logged when
the queue returns to three-quarters empty. If the queue is full, the adapter waits until room
becomes available before it places the next record.

The adapter uses record pooling for performance considerations. The dequeued records are
pooled according to user preferences in the adapter configuration file. Messages are published
when the pool size reaches the Maximum Pool Size or after a Maximum Pooling Time since
the previous publication, whichever occurs first. The Maximum Pooling Time drives the
adapter's latency. If the Maximum Pooling Time is too short or Maximum Pool Size is too
small, messages are published to Event Stream Processor in undersized batches, resulting in
poor overall performance.

When a pooled record batch is ready for publication, the SpPublisher uses the Pub/Sub API to
send the records to Event Stream Processor. Records are published asynchronously. The

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 227

adapter receives no feedback from Event Stream Processor. In the event of a failover, the Pub/
Sub API switches to the spare Event Stream Processor instance without message loss.

Datatype Mapping for the NYSE Adapter
Event Stream Processor datatypes map to NYSE datatypes.

Event Stream Processor Data-
type

MAMA API Datatype

integer long

long long

float, money, money1-
money15

double

string string

bigdatetime com.wombat.mama.MamaDateTime

interval com.wombat.mama.MamaDateTime

binary string

Setting the JAVA_HOME Environment Variable
Set the JAVA_HOME environment variable to point to the Java directory.

Prerequisites
Install Java Runtime Environment version 1.6.0_26 or higher. Place NYSE Java and binary
libraries under $ESP_HOME/adapters/wombat/lib/wombat.

Task
Set the JAVA_HOME environment variable to the directory path where Java Runtime
Environment 1.6.0_26 or higher is installed.

Next
Verify that the ESP_HOME environment variable is set correctly.

Configuration
Configuration information for the NYSE Technologies adapter.

NYSE Adapter Directory
The adapter directory contains all files, such as configuration files, templates, examples, and
JAR files, relating to the adapter.

README.txt Quick Guide
ReleaseNotes.txt Release Notes

CHAPTER 2: Adapters Supported by Event Stream Processor

228 Sybase Event Stream Processor

bin/
 adapter.bat Standalone adapter startup script
 adapter.sh Standalone adapter startup script
 adapter-plugin.bat Plug-in connector startup script
 adapter-plugin.sh Plug-in connector startup script

config/
 controller.xsd Controller schema
 log4j.properties Sample logging configuration
 wombatadapter.xsd Adapter schema
 dictionary.txt The configuration file to map wombat fields
with ESP datatypes. This is used for data dictionary.
 login.config Authentication configuration

discovery/ Data discovery templates

example/ Working example

lib/
 esp_wombat_adapter.jar wombat adapter library
 wombat/ wombat java and binary libraries

javadoc/
 adapterapi/ Adapter API Javadoc
 wombatadapter/ Wombat Adapter Javadoc

Common jars are located:

$ESP_HOME/adapters/jar

activation.jar Java mail library
adapterapi.jar Adapter API code
axis.jar Webservices jar
commons-codec-1.3.jar Required by SDK API
commons-discovery-0.2.jar
commons-logging-1.1.jar Logging library
esp_java_sdk-0.2.jar ESP SDK library
jaxrpc-api-1.1.jar Required by ESP SDK
log4j-1.2.14.jar Logging library
mail.jar Java mail library
saaj-api-1.3.jar Webservices jar
ws-commons-util-1.0.2.jar Required by ESP SDK
wsdl4j-1.5.1.jar
xercesImpl.jar XML parser library
xmlrpc-client-3.1.3.jar Required by ESP SDK
xmlrpc-common-3.1.3.jar Required by ESP SDK
xmlrpc-server-3.1.3.jar Required by ESP SDK

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 229

Schema and Configuration File
The adapter configuration is loaded from a file and validated against the adapter schema.

The adapter working example includes a sample adapter.xml file. You can edit this file or
write a new one. Ensure that the adapter configuration validates against the schema. An error
message displays if the configuration does not validate.

Adapter Controller Parameter
The controllerPort parameter specifies the adapter command and control port.

Parameter Name Type Description

controllerPort positive
integer

(Required) Specifies the adapter command
and control port. User commands are sent to
this port on localhost.

Event Stream Processor Parameters
Event Stream Processor parameters configure communication between Event Stream
Processor and the NYSE adapter.

These parameters are defined in the controller.xsd file in the config directory.

Parameter Name Type Description

espAuthType string (Required) Specifies method used to authen-
ticate to the Event Stream Processor. Valid
values are:

• server_rsa – RSA authentication using
keystore

• user_password – Kerberos and LDAP
authentication

• none – No authentication

If the adapter is operated as a Studio plug-in,
espAuthType is overridden by the Authenti-

cation Mode Studio start-up parameter.

espUser string (Required) Specifies user name required to
log in to Event Stream Processor. It is required
for any authentication scheme other than none
(see espAuthType). No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

230 Sybase Event Stream Processor

Parameter Name Type Description

espPassword string (Required) Specifies the password required to
log in to Event Stream Processor. Required for
any authentication scheme other than none
(see espAuthType).

Includes an "encrypted" attribute indicating
whether the espPassword value is encrypted.
Default value is false. If set to true, the pass-
word value is decrypted using espRSAKeyS-

tore and espRSAKeyStorePassword.

espProjectUri string (Required) Specifies the total project Uri to
connect to Event Stream Processor cluster. For
example, esp://localhost:
19011/ws1/p1.

pulseInterval non-nega-
tive inte-
ger

(Optional) Specifies time interval, in seconds,
during which outbound record changes are
coalesced by Event Stream Processor, then
received by the adapter as a single event.

If not set or set to 0, record changes are re-
ceived individually as they occurr.

espHeartbeatPeriod positive
integer

(Optional) Specifies number, in seconds, that
adapter waits before sending the next heart-
beat to Event Stream Processor.

If Event Stream Processor fails to receive two
consecutive heartbeats, all records the adapter
publishes are marked stale. Default value is
10.

recordQueueCapacity positive
integer

(Optional) Specifies capacity of the record
queues. Default value is 4096.

maxPubPoolSize positive
integer

(Optional) Specifies the maximum size of the
record pool. Record pooling allows for faster
publication. Default value is 256.

maxPubPoolTime positive
integer

(Optional) Specifies the maximum period of
time (in milliseconds) for which records are
pooled before being published. If not set,
pooling time is unlimited and the pooling
strategy is governed by maxPubPoolSize. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 231

Parameter Name Type Description

useTransactions boolean (Optional) If set to true, pooled messages are
published to Event Stream Processor in trans-
actions. If set to false, they are published in
envelopes. Default value is false.

espRSAKeyStore string (Dependent required) Specifies the location of
the RSA keystore, and is used to decrypt the
password value. Required if espAuthType is
set to server_rsa, or the encrypted attribute for
espPassword is set to true, or both.

espRSAKeyStorePassword string (Dependent required) Specifies the keystore
password, and is used to decrypt the password
value. Required if espAuthType is set to serv-
er_rsa, or the encrypted attribute for espPass-

word is set to true, or both.

espEncryptionAlgorithm string (Optional) Used when the encrypted attribute
for espPassword is set to true. If left blank,
RSA is used as default.

See also
• Stale Records on page 226

Watchlist Stream Configuration Parameters
Watchlist stream configuration parameters specify the names of the market data and order
book watchlists.

Parameter Name Type Description

marketDataWatchlist string (Required) Specifies name of the market data
watchlist.

orderBookWatchlist string (Required) Specifies name of the order book
watchlist.

See also
• Market Data Watchlists on page 222

• Order Book Watchlists on page 223

• Watchlists on page 221

CHAPTER 2: Adapters Supported by Event Stream Processor

232 Sybase Event Stream Processor

Data Stream Configuration
Use the marketDataStreams section in the configuration file to provide data stream
parameters.

Indicate the stream name for each data stream.

Data stream columns and the corresponding MAMA fields may have the same or different
names. If the names are different, map the column and its corresponding data field explicitly.
In the example below, the MyTimestamp column is mapped to the wSrcTime MAMA field.

<column>
<name>MyTimestamp</name>
<field>wSrcTime</field>
</column>

Ensure columns have the same data type as their corresponding fields. Some columns may
correspond to no field. Column names Symbol, Namespace, Transport, and Stale are reserved.

See also
• Data Streams on page 224

• Market Data Streams on page 224

• Order Book Data Streams on page 225

Datafeed Parameters
Datafeed parameters configure the datafeed for the NYSE adapter.

Refer to the MAMA Developer's Guide for more detailed information about these parameters.

Parameter Name Type Description

middleware string (Required) Specifies the name of the middle-
ware API. Currently only Configuration 9
wmw (NYSE TCP Middleware) is supported.
Default value is wmv or lbm.

subscriptionTimeout positive
integer

(Required) Specifies number of seconds the
adapter waits, without receiving an initial val-
ue, before it resends a market data subscrip-
tion request.

subscriptionRetries positive
integer

(Required) Specifies how many attempts to
make to obtain an initial image for a subscrip-
tion.

dictionaryTransport string (Required) Specifies transport over which the
MAMA dictionary is requested on adapter
startup.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 233

Parameter Name Type Description

dictionaryNamespace string (Required) Specifies namespace from which
the MAMA dictionary is requested on adapter
startup.

dictionaryTimeout positive
integer

(Required) Specifies number of seconds the
adapter waits, without receiving a response,
before it resends a MAMA dictionary request.

dictionaryRetries positive
integer

(Required) Specifies how many attempts to
make to obtain the MAMA dictionary.

Sample NYSE Configuration File
Sample configuration file (adapter.xml) for the NYSE adapter.

This file is in the example folder.

<adapter>

<!-- Adapter Controller -->
 <controller>
 <controllerPort>13579</controllerPort>
 </controller>

<!-- Event Stream Processor Settings -->
 <esp>
 <espConnection>
 <espProjectUri>esp://localhost:19011/w1/p1</espProjectUri>
 </espConnection>

 <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>
 <espAuthType>none</espAuthType>
<!--
 <espRSAKeyStore>/keystore/keystore.jks</espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword> --
>
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 <maxPubPoolSize>1</maxPubPoolSize>
 </esp>

 <watchlists>
 <marketDataWatchlist>MarketDataWatchlist</marketDataWatchlist>
 <orderBookWatchlist>OrderBookWatchlist</orderBookWatchlist>
 </watchlists>

 <marketDataStreams>
 <stream>
 <name>MyMarketDataStream</name>
 <column>

CHAPTER 2: Adapters Supported by Event Stream Processor

234 Sybase Event Stream Processor

 <name>MyTimestamp</name>
 <field>wSrcTime</field>
 </column>
 </stream>
 </marketDataStreams>

<datafeed>
 <middleware>wmw</middleware>
 <subscriptionTimeout>5</subscriptionTimeout>
 <subscriptionRetries>1</subscriptionRetries>
 <dictionaryTransport>demo</dictionaryTransport>
 <dictionaryNamespace>WOMBAT</dictionaryNamespace>
 <dictionaryTimeout>10</dictionaryTimeout>
 <dictionaryRetries>1</dictionaryRetries>
</datafeed>

</adapter>

NYSE Input Adapter
The NYSE Input adapter connects to a NYSE data feed to receive real-time level 1 and level 2
market data.

You can configure the adapter on any source stream as an input data location. The
authentication method is set to that of Event Stream Processor: none, rsa, or gssapi. This
adapter supports schema discovery.

To use this adapter, ensure NYSE adapter version 1 or later is installed.

Property Label Property ID Type Description

Connector Directory
Path

baseDir directory (Required) Specify the path to the
adapter installation directory.
This property is ignored if the
Connector Remote Directory

Path property is supplied. Default
value is /mydir/NYSEA-
dapter.

Configuration File Path configFilePath configFi-
lename

(Required) Specify the absolute
path to the adapter configuration
file. This property is ignored if
the Remote Configuration File

Path property is supplied. Default
value is /mydir/NYSEA-
dapter/config/
adapter.xml.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 235

Property Label Property ID Type Description

Discovery Directory
Path

discDirPath directory (Required) Specify the absolute
path to the adapter discovery di-
rectory. Default value is /my-
dir/NYSEAdapter/
discovery.

Connector Remote Di-
rectory Path

remoteBaseDir string (Advanced) Specify the path to
the adapter remote base directory
(for remote execution only). If
this property is supplied, the Con-

nector Directory Path property is
ignored.

Remote Configuration
File Path

remoteConfigFile-

Path

string (Advanced) Specify the absolute
path to the adapter configuration
file (for remote execution only).
If this property is supplied, the
Configuration File Path property
is ignored.

Discovered Table (run-
time)

table tables (Advanced) Name of the discov-
ered table. This is filled in by
Studio.

PropertySet propertyset string (Advanced) Specifies the name
of the property set (a group of
properties and values) you want
to use from the project configu-
ration file. If you specify the same
properties in the project configu-
ration file and the ATTACH

ADAPTER statement, the values
in the property set override the
values defined in the ATTACH

ADAPTER statement. No default
value.

Logging
The NYSE adapter uses the Apache log4j API to log errors, warnings, and information and
debugging messages.

The log4j.properties file contains the logging configuration. A sample of this file is
included in the adapter distribution.

CHAPTER 2: Adapters Supported by Event Stream Processor

236 Sybase Event Stream Processor

Note: Setting the logging level to DEBUG may result in very large log files. The default level
is INFO. Raw Wombat messages are logged at the DEBUG level.

Refer to http://logging.apache.org/log4j for details on logging configuration.

Operation
Operate the NYSE adapter from the command line.

Ensure the project to be run contains the market data and order book watchlists. Check that the
names of the watchlist streams correspond to the marketDataWatchlist and
orderBookWatchlist parameters respectively.

Set the desired logging level in log4j.properties.

Starting the NYSE Adapter
To start the NYSE adapter from the command line, start Event Stream Processor and execute
the start command.

1. Start Event Stream Processor.

Windows:
1. Start the example cluster.

cd %ESP_HOME%\cluster\nodes\node1
 %ESP_HOME%\bin\esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
%ESP_HOME%\bin\esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

UNIX:
1. Start the example cluster.

cd $ESP_HOME/cluster/nodes/node1
 $ESP_HOME/bin/esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
$ESP_HOME/bin/esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 237

http://logging.apache.org/log4j

$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

2. Start the adapter.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/wombat/bin

./adapter.sh <configuration file path> start

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/wombat/bin

adapter.bat <configuration file path> start

You can use the esp_subscribe utility to ensure that NYSE messages are successfully
published to Event Stream Processor.

See also
• Start Command on page 220

Checking the NYSE Adapter Status
To check the NYSE adapter status from the command line, execute the status command.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/wombat/bin

./adapter.sh <configuration file path> status

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/wombat/bin

adapter.bat <configuration file path> status

You see the adapter status, which is either running or stopped.

See also
• Status Command on page 221

CHAPTER 2: Adapters Supported by Event Stream Processor

238 Sybase Event Stream Processor

Stopping the NYSE Adapter
To stop the NYSE adapter from the command line, execute the stop command.

Operating System Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/wombat/bin

./adapter.sh <configuration file path> stop

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/wombat/bin

adapter.bat <configuration file path> stop

See also
• Stop Command on page 220

Watchlist Operation
Watchlists can be modified using inserts and deletes.

Watchlist updates are interpreted as error conditions and no action is taken.

Modifying the market data watchlist causes the adapter to subscribe to or unsubscribe from
real-time data on symbols. Modifying the order book watchlist causes the adapter to subscribe
to or unsubscribe from order book data on symbols.

See also
• Watchlists on page 221

Insert
A watchlist insert triggers two actions in the adapter: subscribing and publishing.

A watchlist insert triggers these actions:

• The adapter subscribes to the specified symbol from the specified namespace over the
specified transport.

• The adapter receives real-time market data messages or order book recaps and updates,
and publishes them to the corresponding data streams.

See also
• Watchlists on page 221

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 239

Delete
A watchlist delete triggers two actions in the adapter: unsubscribing and marking records
stale.

A watchlist delete triggers these actions:

• The adapter unsubscribes the specified symbol from the specified namespace over the
specified transport.

• Market data stream records that result from the canceled subscription are marked stale.

See also
• Watchlists on page 221

Example: Subscribing to and Publishing Data
Subscribe to real-time market data on two symbols and order book data on one symbol, and
publish the incoming data to Event Stream Processor.

Prerequisites
You have a network connection to the NYSE datafeed.

Task

1. Edit the adapter.sh script.

2. Set the JAVA_HOME environment variable to the directory where Java Runtime
Environment (JRE) is installed.

Note: The NYSE libraries are available in both 32- and 64-bit versions. If your libraries are
32-bit, use a 32-bit JRE. If your libraries are 64-bit, use a 64-bit JRE.

3. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

4. Edit the mama.properties file in the adapter lib/wombat directory to ensure the
subscribe_address and subscribe_port properties point to a NYSE data feed.

CHAPTER 2: Adapters Supported by Event Stream Processor

240 Sybase Event Stream Processor

5. Start the adapter.

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

6. Wait five to ten seconds for the adapter to initialize.

7. Upload a stream record.

Operating System Step

UNIX ./upload.sh

Windows upload.bat

8. Start the subscriber utility to view data stream content.

Operating System Step

UNIX ./esp-subscribe.sh

Windows esp-subscribe.bat

Open Adapter
The Sybase Event Stream Processor Open adapter is a version of the open-source
openadapter™ (openadapter.org).

A range of adapters is available for common applications and middleware environments, such
as Web services and various file types. Each adapter can be used with a variety of readers and
writers to parse and format different types of messages (for example, delimited field records or
XML documents). The records coming in through the adapter can include an ESP_OPS
column that indicates the database operation to perform with the record.

• i, I, insert, or INSERT indicates an insert.
• p, P, upsert, or UPSERT indicates an upsert.
• u, U, update, or UPDATE indicates an update.
• s, S, safedelete, or SAFEDELETE indicates a safedelete.
• d, D, delete, or DELETE indicates a delete.

If you use the ESP_OPS column, ensure every record in this column has a value.

An Open adapter is defined by an adapter properties file, and includes a number of
components that move data from one or more source components to one or more sink
components. You may also configure intermediate components (pipes) to perform additional

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 241

processing on the data. In a system where a number of possible adapters can run, each adapter
runs as a separate instance that you start and control individually.

Note: On Microsoft Windows, use double backslash \\ as separator in paths, class paths, and
URLs.

The Open adapter requires a separately purchased license. This license supports the standard
SySAM grace period, meaning it can run unlicensed for 30 days. After this period, the adapter
cannot run without a valid license.

If you purchased your product from Sybase or an authorized Sybase reseller, go to the secure
Sybase Product Download Center (SPDC) at https://sybase.subscribenet.com and log in to
generate license keys. The license generation process may vary slightly, depending on
whether you ordered directly from Sybase or from a Sybase reseller.

If you ordered your product under an SAP contract and were directed to download from SAP
Service Marketplace (SMP), you can use SMP at http://service.sap.com/licensekeys to
generate license keys for Sybase products that use SySAM 2-based licenses.

Datatype Mapping for the Open Adapter
Event Stream Processor datatypes map to Open adapter datatypes.

Event Stream Processor Data-
type

Open Adapter Datatype

integer integer

long long

float double

date datetime

timestamp datetime

bigdatetime long

boolean short

interval long

binary string

money double

money(1-n) double

string string

CHAPTER 2: Adapters Supported by Event Stream Processor

242 Sybase Event Stream Processor

https://sybase.subscribenet.com
http://service.sap.com/licensekeys

Setting the JAVA_HOME Environment Variable
Set the JAVA_HOME environment variable to point to the Java directory.

Set the JAVA_HOME environment variable to the directory path where Java Runtime
Environment 1.6.0_26 or higher is installed.

Next
Verify that the ESP_HOME environment variable is set correctly.

Configuration
The adapter properties (.props) files are text files that contain configuration information for
the components to be invoked for an adapter.

You can create properties files by using a text editor or the Adapter Framework Editor. A
configuration can contain any number of source, sink, and pipe components, and their
respective readers and formatters. The Sybase Open adapter can also read properties from
XML documents.

Each adapter properties file contains the configuration for a single adapter. An adapter
property specifies the adapter, component, and property names:

AdapterName. ComponentName.PropertyName=PropertyValue

For example:

A # character in the first column denotes a comment line.

#
Adaptor ‘Dynamic2’ Component ‘BalanceInMQ
#
Dynamic2.BalanceInMQ.QueueManager=QM_Test
Dynamic2.BalanceInMQ.Queue=TEST.BALANCE.IN … #
Adaptor ‘Dynamic2’ Component ‘EventInMQ’
#
Dynamic2.EventInMQ.QueueManager=QM_Tes t
Dynamic2.EventInMQ.Queue=TEST.EVENT.IN

Properties may be qualified to more levels. Ensure that properties that define a field are
defined for both the field name and the field type. For example:

Dynamic2.EventInMQ.Field1=Date
Dynamic2.EventInMQ.Date.Name=CurrentDate Dynamic2.
EventInMQ.Date.Type=Datetime

The Open adapter supports properties for individual components. You can use a number of
statements in the adapter properties file to simplify the definition of properties.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 243

Open Adapter Directory
The adapter directory contains all files, such as configuration files, templates, examples, and
JAR files, relating to the adapter.

$ESP_HOME/adapters/esp_open Root directory for the Open adapter.
This directory contains the log4j.xml configuration file

 lib/ All adapter and third-party distributable jar files.

 bin/ Example scrips for starting the adapters and editor.

 repo/ Standard location for all property files.

 examples/ Various component examples.

Include Files Syntax
Syntax for including an additional properties file.

#include other.props

The file name can be preceded by a prefix, which is added to each property name in the
included file:
#include A.comp other.props

Where other.props contains:

property1=foo

The Open adapter reads:
A.comp.property1=foo

Variable Substitution
Defines a variable within the properties file or an included properties file.

You can define a variable within the properties file or an included properties file if the variable
is defined before it is used:

NUM_TO_SEND=1000 … A.comp.MaxRecords=${NUM_TO_SEND}

You can also define the variable using the "-D" option to the Java Virtual Machine when the
adapter is started:

java –DNUM_TO_SEND=1000 org.openadapter.adapter.RunAdapter
config.props A

Wildcard Property Names
If a component initializes and attempts to get property values for a property that is defined with
a wildcard name, the SuperProperties class returns the value for the wildcard property
unless there is a more specific property setting that matches the request.

For example, this matches any adapter and component names:

CHAPTER 2: Adapters Supported by Event Stream Processor

244 Sybase Event Stream Processor

*.QueueManager=QM_Test

This matches exactly one component in the name:

A.?.QueueManager=QM_Test

A.B.QueueManager matches; however, A.B.C.QueueManager does not.

Autoincremented Property Names
You can choose to autoincrement property names if there is a long list of properties to be
specified.

For example:

A.comp.field1=foo A.comp.field2=bar A.comp.field3=hello
A.comp.field4=world

You can autoincrement these fields:

A.comp.field++=foo A.comp.field++=bar A.comp.field++=hello
A.comp.field++=world

Note: If you use the Adaptor Framework Editor, the autoincrement fields convert to the
corresponding numbered fields on reading the configuration file. The Adaptor Framework
Editor cannot revert the fields to auto-numbered fields on rewriting the properties file.

XML Properties Files
Specify adapter properties files as XML documents.

<?xml version=”1.0” encoding=”UTF-8” ?>
<openadapter>
<A>
<Component1>
<Name>C1</Name>
</Component1>
<Component2>
<Name>C2</Name>
</Component2>
<C1>
<ClassName>com.sybase.adapter.ibm.MqSource</ClassName>
</C1>
<C2>
…
…

</openadapter>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 245

Open Adapter Components
Add at least one source and one sink component to use the Open adapter. Source components
read provided data, and sink components write to associated output.

Each component has its own required properties. Set the DOStringReader and
DOStringWriter properties for the source and sink components to enable data passing
through these components to be parsed and formatted by various parsers and formatters.

Event Stream Processor does not support multibyte character sets, such as UTF-16. However,
an external source can contain non-ASCII characters. By default, the adapter interprets them
as 1-byte or 2-byte Unicode characters, which may lead to data corruption. To set the encoding
explicitly, add the TextEncoding property to the configuration file. For example:

Adapter. Component.TextEncoding=ASCII

If a property for defining multiple table names is specified as:

Adapter. Component.Table++=TableName

the configuration file contains:
Adapter. Component.Table1=TableName1
Adapter. Component.Table2=TableName2

You can define properties with a number of levels separated by a period. For example, a
property specific to Table1 can be represented as:

Adapter. Component.TableName1.Field1=FieldName1

Source Components
The Open adapter has two source components: AsapSource and
SpPersistentSubscribeSource.

AsapSource Properties
The AsapSource component subscribes to data from the Event Stream Processor stream name
specified in the adapter configuration.

ClassName=com.sybase.esp.adapter.asap.AsapSource

Property Description

ProjectUri (Dependent required) Connect to the Server running in cluster mode. For
example, esp://localost:19011/ws1/p1.

User (Required) The initial connection between AsapSource and Event Stream
Processor requires authentication. Enter a valid user name known to Event
Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

246 Sybase Event Stream Processor

Property Description

Passwd (Required) The initial connection between AsapSource and Event Stream
Processor requires authentication. Enter a valid password for the user name
configured above.

Note: If the IsEncrypted property is set to true , the user and password

information is passed to Event Stream Processor before the SSL connection
is set up. These details are passed in plain text.

IsEncrypted (Optional) If this property is set to true, AsapSource attempts to use an SSL
socket connection to Event Stream Processor.

UseServerRSA (Optional) If true, server RSA authentication is used to connect to the Server.
If you specify this property, also provide the KeyStore and Key-
StorePassword properties.

The Open adapter uses the Bouncy Castle Java security implementation.
Ensure that Bouncy Castle is listed among other security providers in the
java.security file of your Java Runtime Environment directory:

=org.bouncycastle.jce.provider.BouncyCastlePro-
vider

KeyStore (Optional) Used for server RSA authentication. Specifies the location of the
keystore (.jks file). Set this property if you specify UseServerRSA.

KeyStorePass-
word

(Optional) Specify the keystore password. This is used for server RSA
authentication. Set this property if you specify UseServerRSA.

UseUserPass-
word

(Optional) If set to true, User and Password authentication (for ex-

ample, Kerberos) is used to connect to the Server. If you specify this, provide
values for User and Password.

Stream++ (Optional) Name of stream to subscribe to.

MaxBlock-
BuildTime
(millisec-
onds)

(Optional) AsapSource sends records in blocks for better performance. A
block is built of individual records until the MaxBlockSize is reached

or MaxBlockBuildTime elapses, whichever occurs first. Then, the

block is sent along the adapter pipeline. If set to 0, there is no limit on the
block building time. Default value is 1000 (milliseconds).

MaxBlockSize (Optional) AsapSource sends records in blocks for better performance. A
block is built of individual records until the MaxBlockSize is reached

or MaxBlockBuildTime elapses, whichever occurs first. Then the

block is sent along the adapter pipeline. Default value is 256.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 247

Property Description

RecordBuffer-
Capacity

(Optional) If set to 0, records are sent along the adapter pipeline one at a
time.

If set to a positive number, AsapSource queues the records made available
by the Event Stream Processor in an internal buffer.

Buffered records are added to ongoing blocks on a dedicated thread so that
the Pub/Sub subscription thread can continue buffering the records. When
the buffer capacity is exceeded, the queue blocks until the buffer capacity
becomes available again. Default value is 4096.

PulseInterval (Optional) The number of seconds to wait until AsapSource gets the next
record from Event Stream Processor. All updates to a record that are made
on the Event Stream Processor during the pulse interval are coalesced and
only the resulting record is sent.

By default, records are received by the adapter instantaneously, rather than
being pulsed.

See also
• Example: Using the AsapSource Component on page 291

SpPersistentSubscribeSource Properties
The SpPersistentSubscribeSource component subscribes to a stream in Event Stream
Processor and sends records on to other components.

ClassName =
com.sybase.esp.adapter.asap.SpPersistentSubscribeSource

The stream the component subscribes to does not explicitly remove records until asked by the
subscriber. Once records are processed, SpPersistentSubscribeSource publishes tags back to
the Event Stream Processor to remove rows from the subscribed stream.

SpPersistentSubscribeSource has two additional streams: log stream and truncate stream. For
example, you can have three streams named Stream1, Stream1_log, and Stream1Truncate.
The log stream has two additional columns: sequence number and opcode. Records pass from
Stream1 to Stream1_log, as well as increasing sequence number values. The opcode values in
the opcode column in Stream1_log are "insert". After SpPersistentSubscribeSource
subscribes to a batch of data (or a single record), the last sequence number of the records is
published to Stream1Truncate, which then removes any records prior to that sequence number
from the Stream1_log and persistent store (for example, file on hard disk).

CHAPTER 2: Adapters Supported by Event Stream Processor

248 Sybase Event Stream Processor

Property Description

Host (Required) Host name for the Event Stream Processor command and
control process.

Port (Required) Port number for the Event Stream Processor command and
control process.

ProjectUri (Dependent required) Connect to the Server running in cluster mode. For
example, esp://localost:19011/ws1/p1.

IsEncrypted (Optional) If this property is set to true, AsapSource attempts to use an
SSL connection to Event Stream Processor.

UseServerRSA (Optional) If true, server RSA authentication is used to connect to the
Server. If you specify this property, also provide the KeyStore and

KeyStorePassword properties.

KeyStore (Optional) Used for server RSA authentication. Specifies the location of
the keystore (.jks file). Set this property if you specify UseServerR-
SA.

KeyStorePass-
word

(Optional) Specify the keystore password. This is used for server RSA
authentication. Set this property if you specify UseServerRSA.

UseUserPass-
word

(Optional) If set to true, User and Password authentication (for

example, Kerberos) is used to connect to the Server. If you specify this,
provide values for User and Password.

SyncBase-
Streams

(Optional) Asks platform for SYNC_BASE_STREAMS. When set to
true, the publisher.commit() method is called after each batch

is published to the platform.

Default value is true.

CommitLimit (Optional) Max size of batch to process in one call. Default value is 100.

User (Required) The initial connection between SpPersistentSubscribeSource
and the Event Stream Processor requires authentication. Enter a valid
username known to the Event Stream Processor.

Passwd (Required) The initial connection between SpPersistentSubscribeSource
and the Event Stream Processor requires authentication. Enter a valid
password for the username configured above.

Stream++ (Optional) Name of stream to subscribe to.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 249

Property Description

<Stream+
+>.Truncate-
Stream

(Required) Stream responsible for truncating data.

<Stream++>.Op-
codeColumn

(Required) Name for the column where the opcode value is stored.

<Stream++>.Se-
quenceColumn

(Required) Name for the column where the sequence number is stored.

QueueCapacity (Optional) SpPersistentSubscribeSource queues the records made avail-
able by the Event Stream Processor. The queued records are consumed by
a separate thread. This property sets the capacity of the internal queue.
When the queue is full, the adapter waits for space to become available.
The default value is 4096.

Note: If the IsEncrypted property is set to true, the user and password
information is passed to the Event Stream Processor before the SSL con-
nection is set up. These details are passed in plain text.

See also
• Example: Using the SpPersistentSubscribeSource Component on page 296

Sink Components
The Open adapter has two sink components: AsapSink and WSSink.

AsapSink Properties
The AsapSink component takes records from the source and delivers them to Event Stream
Processor.

Ensure that every input adapter configuration includes exactly one AsapSink component.

ClassName=com.sybase.esp.adapter.asap.AsapSink

Property Description

ProjectUri (Dependent required) Connect to the Server running in cluster mode.
For example, esp://localost:19011/ws1/p1.

User (Required) The initial connection between AsapSink and Event Stream
Processor requires authentication. Enter a valid user name known to
Event Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

250 Sybase Event Stream Processor

Property Description

Passwd (Required) The initial connection between AsapSink and Event Stream
Processor requires authentication. Enter a valid password for the user
name configured above.

Note: If the UseSSL property is set to true, the user and password

information is passed to the Event Stream Processor before the SSL
connection is set up. These details are passed in plain text.

Stream++ (Required) The name of the stream to which the data is delivered.

IsEncrypted (Optional) If present and set to true, AsapSink attempts to use an SSL
connection to Event Stream Processor.

UseServerRSA (Optional) If true, server RSA authentication is used to connect to the
Server. If you specify this property, also provide the KeyStore and

KeyStorePassword properties.

KeyStore (Optional) Used for server RSA authentication. Specifies the location of
the keystore (.jks file). Set this property if you specify UseSer-
verRSA.

KeyStorePassword (Optional) Specify the keystore password. This is used for server RSA
authentication. Set this property if you specify UseServerRSA.

UseUserPassword (Optional) If set to true, User and Password authentication (for

example, Kerberos) is used to connect to the Server. If you specify this,
provide values for User and Password.

SHINE (Optional) Shine through is used for update and upsert operations. If this
is set to true and a field value is set to null, then an update to an existing
record does not affect the value of that field.

PublishMethod (Optional) Determines how the data is published to the Event Stream
Processor: RECORD, COLLECTION, ENVELOPE, TRANSAC-
TION.

SyncBaseStreams (Optional) Asks platform for SYNC_BASE_STREAMS. When set to
true, the publisher.commit() method is called after each

batch is published to the platform.

Default value is false.

DiscardFile (Optional) Name of the file where discarded SDOs should land.

TruncateDiscard-
File

(Optional) If set to true, the file is truncated.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 251

Property Description

EspOpsColumn (Optional) If set, the value of the ESP_OPS attribute in the incoming
records is written to the corresponding column and the record is treated
as UPSERT regardless of the ESP_OPS value.

See also
• Example: Using the AsapSink Component on page 289

WSSink Properties
The WSSink component is a client implementation of a Web service, allowing
communication with remote services.

WSSink is consistent with the WSDL descriptor in lib/WEB-INF/
WSAdapterSource.wsdl.

Note: Build server site Web services based on the WSDL descriptor located in lib/WEB-
INF/WSAdapterSource.wsdl of the adapter installation directory.

The Web service client uses simple objects called Data Transfer Objects (DTO) as data
containers. The classes used are:

1. com.sybase.adapter.soap.DataTransferObject

public class DataTransferObject {
private String name;
private int opcode;
private Object[] data;
}

Ensure the structure of the data field is the same as that defined in the Web service. You
can obtain metadata for DTOs.

2. com.sybase.adapter.soap.DTOMetaData

public class DTOMetaData {
private String name;
private DTOAttribute[] attributes;
}

which uses class:com.sybase.adapter.soap.DTOAttribute

public class DTOAttribute {
private String name;
private String xsdType;
}

DataTransferObject, DTOMetaData, and DTOAttribute all offer getter and setter
methods. You can also obtain object definitions from the WSDL descriptor of the service.

CHAPTER 2: Adapters Supported by Event Stream Processor

252 Sybase Event Stream Processor

Property Description

URL (Required) URL string of the server Web service. Example of valid
value is "http://eult121.sybase.com:9085/services/WSAdapter-
Source".

TypeN (Required) Name of the message type with which the source compo-
nent transmits data. TypeN is also the name of the exposed DTO.

TypeN.<DOType> (Required) Name of the DTO configured on the remote service.

ManualMapping (Optional) If true, sink uses mapping AttName->DtoAttName given in
the configuration file. If false, sink gets DTO information from the
service and assumes that all attribute names defined in DTO are also
present in the incoming adapter message.

TypeN.AttName++ (Dependent optional) Name of the field as passed by the source within
the adapter. It is also the name of the DTO attribute.

TypeN.<AttName+
+>. DTOAttName

(Dependent optional) Name of attribute defined by remote Web service
for the selected DTO type.

DiscardedLogger-
Name

(Optional) Name of logger responsible for logging any records that
were not processed successfully.

See also
• Example: Using the WSSink Component on page 298

Pipe Components
The Open adapter has two pipe components: BeanShellPipe and JDBCLookupPipe.

BeanShellPipe Properties
A scriptable pipe used to modify a message.

You can script the entire message or each field individually in Java, and use this component
within incoming and outgoing flows. The scripting is implemented through BeanShell. Refer
to http://www.beanshell.org for details on this language.

ClassName: com.sybase.esp.adapter.scripting.BeanShellPipe

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 253

http://www.beanshell.org

Property Description

MsgPreProcessor (Required) BeanShell script for this message. The script is applied
to the message before any fields are processed.

The script has access to a message object type. The name of the
variable is message. For example:

System.out.println("Message received; SDO
array size= " + message.peekDataOb-
jects().length);

MsgPostProcessor (Required) BeanShell script for this message. The script is applied
to the message after all fields have been processed.

The script has access to a message object type. The name of the
variable is message. For example:

System.out.println("Message sent; SDO array
size= " + message.peekDataObjects().length);

Type++ (Required) The type of the data object that is received from the
source component. For an incoming flow (one flowing into Event
Stream Processor through an AsapSink component), this is the
Event Stream Processor Base Stream name to be updated with the
message.

For an outgoing flow (one originating from published data from an
Event Stream Processor stream), this is the Event Stream Processor
stream name that is publishing the data.

.PreProcessor (Optional) BeanShell script for this message type. The script is
applied to the message before any fields are processed.

The script has access to a SimpleDataObject object type. The name
of the variable is sdo. Typen is the name of the message type or

stream as defined in the associated Type property. For example:

System.out.println("Got data for message
type: " + sdo.getType().getName());

.PostProcessor (Optional) BeanShell script for this message type. The script is
applied to the message after all fields have been processed.

The script has access to a SimpleDataObject object type. The name
of the variable is sdo. Typen is the name of the message type or

stream as defined in the associated Type property. For example:

System.out.println("Sending data for message
type: " + sdo.getType().getName());

CHAPTER 2: Adapters Supported by Event Stream Processor

254 Sybase Event Stream Processor

Property Description

.AttName++ (Required) Field names contained in the associated message type.
Bean-Shell scripting is required for this. If the field name does not
exist in the received message type, a new field is created. Typen is

the name of the message type or stream as defined in the associated
Type property.

.Script (Optional) BeanShell script for this field. The script has access to a
SimpleDataObject object type. The name of the variable is sdo.
Typen is the name of the message type/stream as defined in the

associated Type property.

AttNamex (Optional) Field name as defined in the associated AttName
property. For example:

if (sdo.isPresent("Amount ") && sdo.getAt-
tributeValue ("Amount")>0 {value="AC";} else
{value="CO"}

See also
• Example: Using the BeanShellPipe Component on page 292

JDBCLookupPipe Properties
The JDBCLookupPipe component queries a database at startup and uses the cached result set
as a lookup table.

ClassName: com.sybase.esp.adapter.jdbc.JDBCLookupPipe

Each record in the lookup table consists of a unique lookup key and an array of added
attributes. The lookup key consists of one or more attributes. When a data object arrives from
the source:

• The values of the key attributes are matched against a record in the lookup table.
• If no record matches, the data object is passed on to the sink without any transformation.
• If a record in the lookup table does match the value of the key attributes, the added

attributes from the lookup table are added to the record, and the record result is passed on to
the sink.

Property Description

JdbcDriver (Required) The JDBC driver used to connect to the database. For
example:

oracle.jdbc.OracleDriver

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 255

Property Description

JdbcUrl (Required) The location of the database. For example:

jdbc:oracle:thin:@myhost.com:1521:mydatabase

DBProperty++ (Optional) Name of a database property that the pipe sets when con-
necting to the database. For example, the user name, password, da-
tabase name, and so on.

DBPropertyn.Value (Dependent optional) Value for the associated DBProperty. Set this
property if the DBProperty++ property is set.

Table (Required) Name of the database table where lookup is performed.

KeyAttName++ (Required) Attribute names that make up the lookup key.

KeyDbCol++ (Required) Names of the database columns that correspond to Key-
AttNames.

ValueAttName++ (Required) Names of the attributes used for added values.

ValueDbCol++ (Required) Names of the database columns that correspond to Val-
ueAttNames.

WhereClause (Optional) The WHERE clause that is part of the lookup SELECT
query. The lookup query uses this form:

SELECT KeyDbCol1, KeyDbCol2, ... , ValueDb-
Col1, ValueDbCol2, ... FROM Table WHERE
WhereClause

Example
The Oracle database table "MyTable = (SYMBOL, ID, PRICE)" is used for lookup. Each data
object has four attributes: AttA, AttB, AttC and AttD. AttA and AttB correspond to SYMBOL
and ID respectively and are used as a lookup key, and AttD corresponds to PRICE and is added
to the data object received from the source. Here is an example of the pipe configuration:

adapter.LOOKUPPIPE.ClassName=
com.sybase.esp.adapter.jdbc.JdbcLookupPipe
adapter.LOOKUPPIPE.JdbcUrl = jdbc:oracle:thin:@myhost.com:
1521:mydatabase
adapter.LOOKUPPIPE.JdbcDriver = oracle.jdbc.OracleDriver
adapter.LOOKUPPIPE.DBProperty1 = user
adapter.LOOKUPPIPE.DBProperty1.Value = MyUser
adapter.LOOKUPPIPE.DBProperty2 = password
adapter.LOOKUPPIPE.DBProperty2.Value = MyPassword
adapter.LOOKUPPIPE.Table = MyTable
adapter.LOOKUPPIPE.KeyDbCol1 = SYMBOL
adapter.LOOKUPPIPE.KeyAttName1 = AttA
adapter.LOOKUPPIPE.KeyDbCol2 = ID

CHAPTER 2: Adapters Supported by Event Stream Processor

256 Sybase Event Stream Processor

adapter.LOOKUPPIPE.KeyAttName2 = AttB
adapter.LOOKUPPIPE.ValueDbCol1 = PRICE
adapter.LOOKUPPIPE.ValueAttName1 = AttD
adapter.LOOKUPPIPE.WhereClause = SYMBOL LIKE 'A%'

See also
• Example: Using the JDBCLookupPipe Component on page 293

Reader Components
The Open adapter has four reader components: MultiFlatXmlStringReader,
XPathXmlStreamReader, XPathMultiTypeXmlReader, and EspDelimitedStringReader.

MultiFlatXmlStringReader Properties
The MultiFlatXmlStringReader component handles messages quickly, provides the
flexibility to set defaults based on message content, and splits data into multiple tables in
Event Stream Processor.

This reader uses a simple XML format, where the name of the table is the tag and the fields are
the attributes.

If MultiFlatXmlStringReader is selected as the parsing method, sources can populate multiple
tables (defined streams). Specify an internal table or tables that Event Stream Processor
updates based on data from the source. Also define the fields within each source record by
specifying the name and datatype for each field.

Source records for MultiFlatXmlStringReader have this format:

<TableName field1=’field1 data’ field2=’field2 data’ … />

Property Description

AcceptAmper-
sand

(Default required) Enter a true or false value to indicate whether the adapter
accepts non-XML uses of the ampersand (&). True indicates that the
adapter accepts non-XML uses of the ampersand. For example, the adapter
converts "&" , "<" , and so on, but it also accepts values such as "Marks &
Spencer". False indicates that the adapter rejects non-XML uses of the
ampersand.

Type++ (Required) Type the name of the base stream or streams that Event Stream
Processor updates based on the data in the source. Repeat this process for
each stream you are updating. Ensure each system table has its own
Typen property.

Typen.AttName+
+

(Required) Type the name of the table field that Event Stream Processor
updates based on the data in the source. This field is case-sensitive. Typen
is the name of the related table.

Note: Specify a name for each record field in the source data.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 257

Property Description

Typen.AttType+
+

(Default required) The system defaults the datatype for the field. Typen is

the name of the related table. Event Stream Processor supports these da-
tatypes:

• string – for strings

• datetime – for dates

• float– for floating-point numbers

• short – for 16-bit signed integers

• integer – for 32-bit signed integers

• long – for 64-bit signed integers

Note: Specify a datatype for each record field in the source data.

Typen.Format++ (Dependent optional) If you created a field with a datetime datatype, enter
the format that the adapter understands when reading data for that field. The
adapter rejects any data that is not in this format. Typen is the name of the

related table.

If you do not specify a value, the adapter understands only datetime values
with the format yyyyMMdd or yyyyMMdd HH:mm:ss for the field.

It rejects any other datetime data.

Typen.Match (Required) Enter the regular expression to match records for this table.
Typen is the name of the related table. Provide a regular expression for

each table. For example:

.*table_is_x.*

Typen.UTCTime-
Zone++

(Dependent optional) If you created a field with a datetime datatype, you
can enter the time zone for the field. Typen is the name of the related table.

The adapter converts and normalizes the corresponding datetime value
from its originating time zone value to an equivalent UTC value. The UTC
value is then passed to Event Stream Processor for storage. You can enter
any time zone that Java recognizes (for example, Europe/London or Amer-
ica/New_York).

If there is no specified value, the datetime value passes through as local time
to Event Stream Processor for storage.

See also
• Example: Using the MultiFlatXmlStringReader Component on page 295

• Valid Time Zones for the Open Adapter on page 269

CHAPTER 2: Adapters Supported by Event Stream Processor

258 Sybase Event Stream Processor

XPathXmlStreamReader Properties
The XPathXmlStreamReader component handles XML documents using XPath properties.
Select XPathXmlStreamReader as the parsing method to get sources to populate a number of
tables.

DOStringReader=com.sybase.esp.adapter.xml.xpath.XPathXmlStreamReade
r

Specify a base stream that Event Stream Processor updates based on data from the source.
Also, define the fields within each source record by specifying the name and data type for each
field.

You can populate fields with data from an XML document by specifying tag data or attribute
values. Specify nested tags by using a forward slash (/) to separate the tag names:

For example, the field data is set to xyz.
XPath=/env/body/tag
<env>
<body>
<tag> xyz </tag>
</body>
</env>

Attributes are specified by [@attributeName].

In this case, the field data is be set to abc.
XPath=/env/body/tag[@attr]
<env>
<body>
<tag attr= abc />
</body>
</env>

The XPathXmlStreamReader handles collections.

XPath=/env/body/tag
<env>
<body>
<tag> xyz </tag>
<tag> abc </tag>
</body>
</env>

By default, the command above inserts both values into the field, separated by the collection
separator character: xyz|abc.

If a specific tag value is required, use an index operator to specify the position in the collection:
XPath=/env/body/tag[2]
<env>
<body>
<tag> xyz </tag>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 259

<tag> abc </tag>
</body> </env>

This command inserts the value of only the second tag.

Property Description

XmlRoot (Required) Enter the root node of the XML document. For example:

env

DateFormat (Optional) If you create fields with a datetime datatype, you can type the
default format that the adapter understands when reading data for that field.

Unless overridden by the field's Format property, the adapter rejects any

data that is not in this format. If you do not enter a value, the adapter only
understands datetime values with the format yyyyMMdd or yyyyMMdd
HH:mm:ss for the field. It rejects any other datetime data.

Type++ (Required) Name of the base streams that Event Stream Processor updates
based on the data in the source.

XPath (Required) Enter an XPath-style expression for the root node of the table.
For example:

/env

.AttName++ (Required) Names of the table fields that Event Stream Processor updates
based on the data in the source. This property is case-sensitive.

Note: Specify a name for each record field in the target Event Stream
Processor base stream.

.XPath (Required) Enter an XPath-style expression for the data to be inserted into
this field. If the expression begins with "/", it is taken as a full path. Other-
wise, it is relative to the Typen.XPath property. For example:

tag

or:

/env/body/tag

Note: If you specify a full path, you cannot access a field at a higher level
than the Typen.XPath property.

.DefaultValue (Optional) If the field is empty, for example, it is an empty tag or the tag is
not present in the XML document, this value is substituted.

CHAPTER 2: Adapters Supported by Event Stream Processor

260 Sybase Event Stream Processor

Property Description

.Format (Dependent optional) If you created a field with a datetime datatype, you
may type the format that the adapter understands when reading data for that
field. The adapter rejects any data that is not in this format. If you do not
enter a value, the adapter understands datetime values only with the format
yyyyMMdd, yyyyMMdd HH:mm:ss for the field, or with the default

value from the DateFormat property. It rejects any other datetime data.

.Match (Optional) If necessary, type a regular expression match for the adapter to
perform on the record. AttNamex is the field name as defined in the Att-
Name property. If the regular expression is matched in the field data, the

string defined in AttNamex.MatchReplace is substituted. For example:

.*char_is_(.).*

.MatchReplace (Dependent optional) Type the replacement value for the .Match prop-

erty that the adapter may use when the corresponding regular expression
match is successful.

.AttType (Default required) Type the data type for the field. AttNamex is the field

name as defined in the AttName property. Event Stream Processor sup-

ports these datatypes:

• string – for strings

• datetime – for dates

• float – for floating-point numbers

• short – for 16-bit signed integers

• integer – for 32-bit signed integers

• long – for 64-bit signed integers

.UTCTimeZone (Dependent optional) If you created a field with a datetime datatype, you
may type the time zone for the field. The adapter converts and normalizes
the corresponding datetime value from its originating time zone value to an
equivalent UTC value. The UTC value is then passed to Event Stream
Processor for storage.

You may type any time zone that Java recognizes (for example, Europe/
London or America/New_York). If no value is set, the datetime value passes
through as local time to Event Stream Processor for storage.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 261

Property Description

BadRecordLog-
gerName

(Optional) The name of the logger responsible for writing bad records. The
behavior depends on implementation.

If the name is provided, also provide the implementation class. If this prop-
erty is left blank, the adapter warns only about bad records but the original
message is lost.

<BadRecordLoggerName>.ClassName - Logger imple-
mentation

See also
• Example: Using the XPathXmlStreamReader Component on page 301

• Valid Time Zones for the Open Adapter on page 269

XPathMultiTypeXmlReader Properties
The XPathMultiTypeXmlReader component handles XML messages.

DOStringReader=com.sybase.esp.adapter.xml.xpath.XPathMultiTypeXmlRe
ader

This reader uses XPathXmlStreamReader, depending on the message type provided in XML.
Once the message type is obtained, this component uses the standard
XPathXmlStreamReader component to handle incoming messages. All configuration
property files for the XPathXmlStreamReader component are stored in separate files called
parsing rules. The list of properties in parsing rules are similar to XPathXmlStreamReader
except that they require prefix parsing rules.

Property Description

MSGTypeXPath (Required) Location of the message type in the XML message ex-
pressed as XPath. This can also be provided as an attribute of the
element.

MSGTypeN (Required) Name of message type. One of the message type names
must match the value obtained by MSGTypeXPath from XML mes-
sage.

MSGTypeN.Par-
singRules

(Required) Name of the file where XPathXmlStreamReader stores its
properties.

CHAPTER 2: Adapters Supported by Event Stream Processor

262 Sybase Event Stream Processor

Property Description

BadRecordLogger-
Name

(Optional) The name of the logger responsible for writing bad records.
The behavior depends on implementation. If you provide a name, also
provide the implementation class. If you leave this property blank, the
adapter only warns about bad records, and the original message is lost.

<BadRecordLoggerName>.ClassName - Logger im-
plementation.

See also
• Example: Using the XPathMultiTypeXmlReader Component on page 300

• Valid Time Zones for the Open Adapter on page 269

EspDelimitedStringReader
The EspDelimitedStringReader component is responsible for handling delimited (for
example, comma separated) messages. You can use it to send incorrect records to a bad record
file.

DOStringReader=com.sybase.esp.adapter.dostrings.EspDelimitedStringR
eader

Property Description

BadRecordLog-
gerName

(Optional) Name of the logger responsible for writing bad records. The
behavior depends on the implementation. If you provide a name, also
provide the implementation class. If you leave this property blank, the
adapter warns only about bad records, and the original message is lost.

<BadRecordLoggerName>.ClassName - Logger imple-
mentation.

EmptyStringAs-
Null

(Optional) If set to true, empty string values are translated to null values.
For example:

NULL

If the input record contains:

A,B,NULL,D

Then the resulting field values is:

A, B,{null},D

FieldDelimiter (Default required) Character number for a single-character field delim-
iter. Use either "uXXXX" for a hexadecimal unicode value, or "DDD"
for a decimal ASCII value. Use this property if the field is a nonprintable
or whitespace character (for example, "space", "tab", or "null"). The
default delimiter is the comma (ASCII 44).

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 263

Property Description

NullString (Optional) A string, which if encountered as a field value, causes the
adapter to insert a null string in the resulting message for this field.

StripQuotes (Optional) If set to true and a field is "quoted", the quote characters are
stripped from the beginning and end of the field value. Default value is
true.

See also
• Valid Time Zones for the Open Adapter on page 269

Writer Component
The Open adapter has one writer component, the XPathXmlWriter.

XPathXmlStringWriter Properties
The XPathXmlWriter component uses an XPath-style syntax to format XML documents from
published Event Stream Processor stream data.

The formatter formats XML tags and attributes. To use this writer, ensure the sink specifies
this property:

DOStringWriter = com.sybase.esp.adapter.xml.xpath.XmlStringWriter

Specify nested tags by separating the tag names by / :

/env/body/tag
<env>
<body>
<tag>xyz</tag>
</body>
</env>

Attributes are specified by [@attributeName].

/env/body/tag[@attr]
<env>
<body>
<tag attr=’xyz’/>
</body>
</env>

By default, the formatter creates collections. For example, a new nested tag is created for each
occurrence of a tag name:

XPath1=/env/body/tag
XPath2=/env/body/tag
<env>
<body>
<tag>xyz</tag>
</body>
<body>
<tag>abc</tag>

CHAPTER 2: Adapters Supported by Event Stream Processor

264 Sybase Event Stream Processor

</body>
</env>

If tags are added within a nesting, use an index operator to specify the position in the
collection:

XPath1=/env/body[1]/tag
XPath2=/env/body[1]/tag
<env>
<body>
<tag>xyz</tag>
<tag>abc</tag>
</body>
</env>

XML content encoding for this component is iso-8859-1.

Property Description

Type++ (Required) Name of the Event Stream Processor stream to be exported.

.XPath (Required) The XPath–style description of the top-level tags for this table.

/env/body
<env/>
<body/>

.AttName++ (Required) Name of a field within the Type (stream).

.XPath (Required) The XPath–style description of the XML tag or attribute to be
formatted. Typen is the table name and AttNamen is the field name

specifying the source of the data to insert into the tag or attribute.

If the description specifies a tag, the field is output as tag data:

/env/body/tag
<env>
<body>
<tag>field data from Typen.AttNamex</tag>
</body>
</env>

If the description specifies an attribute, the attribute value is set to the field
data:

/env/body/tag[@attr]
<env>
<body>
<tag attr= field data from Typen.AttNamex />
</body>
</env>

See also
• Example: Using the XPathXmlStringWriter Component on page 301

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 265

Specifying Datetime Formats
You can specify the acceptable format for dates in a file, if you are using a system that reads
data from a file.

The Open adapter rejects dates that are not in the specified format. If you do not specify an
acceptable datetime format, the adapter understands datetime values only with the format
yyyyMMdd or yyyyMMdd HH:mm:ss, and rejects any other datetime data.

If you specify the format in the form of a template string, use special identifiers for day, year,
month, and so on, along with formatting characters. Use uppercase H for hour to ensure the use
of a 24-hour clock.

Table 5. Datetime Format Identifiers

Character Description Typical Usage

y A digit of year yyyy

M A digit of month MM

d A digit of day dd

H A digit of hour (0 – 23) HH

m A digit of minute mm

s A digit of second ss

S A digit of millisecond SS

If your input data contains letters, enter them in single quotation marks. For example, if the
input has strings like Day:2003-12-29 Time:10:22-00, specify a datetime format of
'Day' :yyyy-MM-dd 'Time' :HH:mm:ss. Entering the format in this way prevents
the Open adapter from mistaking the letters as formatting instructions.

Examples of specifying datetime formats:

• If you read dates from a file formatted as 2003/06/29, where the year is 2003, the month
is 06 (June), and the day is 29, enter the datetime format as yyyy/MM/dd.

• If you read dates from a file formatted as 29-06-2003 19:12:45, where the day is 29,
the month is 06 (June), the year is 2003, and the time is 7:12:45 PM, enter the datetime
format as dd-MM-yyyy HH:mm:ss.

• If MQ-Series passes a value for MQPutDateTime in the format of 2003-06-29
19:12:45.493, where the year is 2003, the month is 06 (June), the day is 29, and the
time is 7:12:45 PM and 493 milliseconds, enter the datetime format as yyyy-MM-dd
HH:mm:ss.SSS.

Note: The Open adapter it strips off (Ignores) any milliseconds that it reads through datetime.

CHAPTER 2: Adapters Supported by Event Stream Processor

266 Sybase Event Stream Processor

See also
• Valid Time Zones for the Open Adapter on page 269

Third-Party JAR Files
The Open adapter distribution includes a number of third-party distributable JAR files.

Note: The distribution does not contain the MSSQL JDBC driver, which you can download
from http://www.microsoft.com/downloads. Search for 'mssql jdbc driver'. The Open adapter
supports the SQL Server 2000 driver for JDBC SP3.

File Description License Information

.../lib/
esp_open_adapt-
er.jar

Contains Sybase Open adapter
components

Sybase

.../lib/openadap-
tor.jar

Sybase build of Open adaptor
sources based on version 1.7

https://www.openadaptor.org/
licence.html

.../jar/
esp_java_sdk-0.4.j
ar

Sybase Event Stream Processor
Java SDK library

Sybase

.../lib//jetty/
jetty-6.0.1.jar

.../lib/jetty/jet-
ty-util-6.0.1.jar

.../lib/jetty/
servlet-
api-2.5-6.0.1.jar

Jetty client libraries http://www.apache.org/licen-
ses

.../lib/
bsh-2.0b4.jar

Library containing BeanShell
scripting implementation.

LGPL

http://www.beanshell.org/li-
cense.html

.../jar/commons-
codec-1.3.jar

Part of Apache Commons project Apache License

http://jakarta.apache.org/com-
mons/license.html

.../jar/commons-
discovery-0.2.jar

Part of Apache Commons project Apache License

http://jakarta.apache.org/com-
mons/license.html

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 267

http://www.microsoft.com/downloads
https://www.openadaptor.org/licence.html
https://www.openadaptor.org/licence.html
http://www.apache.org/licenses
http://www.apache.org/licenses
http://www.beanshell.org/license.html
http://www.beanshell.org/license.html
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/license.html

File Description License Information

.../jar/commons-
logging-1.1.jar

Part of Apache Commons project Apache License

http://jakarta.apache.org/com-
mons/license.html

.../lib/
dom4j-1.5.jar

DOM XML implementation BSD style

http://www.dom4j.org/li-
cense.html

.../lib/jakarta-
oro-2.0.8.jar

Java classes that provide Perl5
compatible regular expressions,
AWK-like regular expressions,
glob expressions, and utility
classes for performing substitu-
tions, splits, filtering filenames,
and so on.

Apache License

http://svn.apache.org/repos/
asf/jakarta/oro/trunk/LI-
CENSE

.../jar/
log4j-1.2.14.jar

Logging implementation for Java Apache License

http://logging.apache.org/
log4j/docs/index.html

.../jar/xerce-
sImpl.jar

Xerces2 XML implementation Apache License

http://xerces.apache.org/xer-
ces-j/

.../jar/xmlrpc-
client-3.1.3.jar

.../jar/xmlrpc-
common-3.1.3.jar

.../jar/xmlrpc-
server-3.1.3.jar

XML RPC implementation for
Java

Apache License

http://ws.apache.org/xmlrpc/

.../jar/adaptera-
pi.jar

External Java adapter framework
API

Sybase

.../jar/activa-
tion.jar

JavaBeans Activation Framework
Specification

SunMicroSystems

.../jar/axis.jar An implementation of the SOAP
submission to W3C

Apache

CHAPTER 2: Adapters Supported by Event Stream Processor

268 Sybase Event Stream Processor

http://jakarta.apache.org/commons/license.html
http://jakarta.apache.org/commons/license.html
http://www.dom4j.org/license.html
http://www.dom4j.org/license.html
http://svn.apache.org/repos/asf/jakarta/oro/trunk/LICENSE
http://svn.apache.org/repos/asf/jakarta/oro/trunk/LICENSE
http://svn.apache.org/repos/asf/jakarta/oro/trunk/LICENSE
http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html
http://xerces.apache.org/xerces-j/
http://xerces.apache.org/xerces-j/
http://ws.apache.org/xmlrpc/

File Description License Information

.../jar/
esp_java_i18n-1.0.
jar

Internationalization of messages Sybase

.../jar/
esp_java_li-
cense-1.0.jar

Event Stream Processor licensing
API

Sybase

.../jar/mail.jar Java mail API Sun Microsystems

.../jar/saaj.jar Web service API Sun Microsystems

.../jar/sylapi.jar Required by Sybase Event Stream
Processor licensing

Sybase

.../jar/ws-com-
mons-
util-1.0.2.jar

Apache Web service common util-
ities

Apache

.../jar/
wsdl4j-1.5.1.jar

Web services description for Java Apache

Valid Time Zones for the Open Adapter
Examples of possible valid time zones for UTCTimeZone properties in various adapter
reader components.

In the UTCTimeZone property, you can set any time zone that Java recognizes. Currently,
there are over 500 time zones. You can retrieve the comprehensive list in Java through the
TimeZone object's getAvailableIDs() method:

TimeZone.getAvailableIds()

See also
• Specifying Datetime Formats on page 266

• MultiFlatXmlStringReader Properties on page 257

• XPathXmlStreamReader Properties on page 259

• XPathMultiTypeXmlReader Properties on page 262

• EspDelimitedStringReader on page 263

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 269

Africa Time Zones
Valid time zones to specify for Africa in the UTCTimeZone property.

Country Time Zone

Algeria Africa/Algiers

Angola Africa/Luanda

Benin Africa/Porto-Novo

Botswana Africa/Gaborone

Burkina Faso Africa/Ouagadougou

Burundi Africa/Bujumbura

Cameroon Africa/Douala

Cape Verde Atlantic/Cape_Verde

Central African Republic Africa/Bangui

Chad Africa/Ndjamena

Comoros Indian/Comoro

Democratic Republic of Congo Africa/Kinshasa

Africa/Lubumbashi

Republic of the Congo Africa/Brazzaville

Cote D'Ivoire Africa/Abidjan

Djibouti Africa/Djibouti

Egypt Africa/Cairo

Equatorial Guinea Africa/Malabo

Eritrea Africa/Asmera

Ethiopia Africa/Addis_Ababa

Gabon Africa/Libreville

Gambia Africa/Banjul

Ghana Africa/Accra

Guinea Africa/Conakry

CHAPTER 2: Adapters Supported by Event Stream Processor

270 Sybase Event Stream Processor

Country Time Zone

Guinea-Bissau Africa/Bissau

Kenya Africa/Nairobi

Lesotho Africa/Maseru

Liberia Africa/Monrovia

Libya Africa/Tripoli

Madagascar Indian/Antananarivo

Malawi Africa/Blantyre

Mali Africa/Bamako

Africa/Timbuktu

Mauritania Africa/Nouakchott

Mauritius Indian/Mauritius

Mayotte Indian/Mayotte

Morocco Africa/Casablanca

Western Sahara Africa/El_Aaiun

Mozambique Africa/Maputo

Namibia Africa/Windhoek

Niger Africa/Niamey

Nigeria Africa/Lagos

Reunion Indian/Reunion

Rwanda Africa/Kigali

St Helena Atlantic/St_Helena

Sao Tome and Principe Africa/Sao_Tome

Senegal Africa/Dakar

Seychelles Indian/Mahe

Sierra Leone Africa/Freetown

Somalia Africa/Mogadishu

South Africa Africa/Johannesburg

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 271

Country Time Zone

Sudan Africa/Khartoum

Swaziland Africa/Mbabane

Tanzania Africa/Dar_es_Salaam

Togo Africa/Lome

Tunisia Africa/Tunis

Uganda Africa/Kampala

Zambia Africa/Lusaka

Zimbabwe Africa/Harare

Asia Time Zones
Valid time zones to specify for Asia in the UTCTimeZone property.

Country Time Zone

Afghanistan Asia/Kabul

Armenia Asia/Yerevan

Azerbaijan Asia/Baku

Bahrain Asia/Bahrain

Bangladesh Asia/Dacca

Bhutan Asia/Thimbu

British Indian Ocean Territory Indian/Chagos

Brunei Asia/Brunei

Burma / Myanmar Asia/Rangoon

Cambodia Asia/Phnom_Penh

China Asia/Harbin

Asia/Shanghai

Asia/Chungking

Asia/Urumqi

Asia/Kashgar

Hong Kong Asia/Hong_Kong

CHAPTER 2: Adapters Supported by Event Stream Processor

272 Sybase Event Stream Processor

Country Time Zone

Taiwan Asia/Taipei

Macao Asia/Macao

Cyprus Asia/Nicosia

Georgia Asia/Tbilisi

India Asia/Calcutta

Indonesia Asia/Jakarta

Asia/Ujung_Pandang

Asia/Jayapura

Iran Asia/Tehran

Iraq Asia/Baghdad

Israel Asia/Jerusalem

Japan Asia/Tokyo

Jordan Asia/Amman

Kazakhstan Asia/Almaty

Asia/Aqtobe

Asia/Aqtau

Kirgizstan Asia/Bishkek

Korea (North and South) Asia/Seoul

Asia/Pyongyang

Kuwait Asia/Kuwait

Asia/Vientiane

Lebanon Asia/Beirut

Malaysia Asia/Kuala_Lumpur

Asia/Kuching

Maldives Indian/Maldives

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 273

Country Time Zone

Mongolia Asia/Dariv

Asia/Ulan_Bator

Asia/Baruun-Urt

Nepal Asia/Katmandu

Oman Asia/Muscat

Pakistan Asia/Karachi

Palestine Asia/Gaza

Philippines Asia/Manila

Qatar Asia/Qatar

Saudi Arabia Asia/Riyadh

Singapore Asia/Singapore

Sri Lanka Asia/Colombo

Syria Asia/Damascus

Tajikistan Asia/Dushanbe

Thailand Asia/Bangkok

Turkmenistan Asia/Ashkhabad

United Arab Emirates Asia/Dubai

Uzbekistan Asia/Samarkand

Asia/Tashkent

Vietnam Asia/Saigon

Yemen Asia/Aden

CHAPTER 2: Adapters Supported by Event Stream Processor

274 Sybase Event Stream Processor

Australasia Time Zones
Valid time zones to specify for Australasia in the UTCTimeZone property.

Country Time Zone

Australia Australia/Adelaide

Australia/Brisbane

Australia/Broken_Hill

Australia/Darwin

Australia/Hobart

Australia/Lindeman

Australia/Lord_Howe

Australia/Melbourne

Australia/Perth

Australia/Sydney

Christmas Indian/Christmas

Cook Islands Pacific/Rarotonga

Cocos Indian/Cocos

Fiji Pacific/Fiji

French Polynesia Pacific/Gambier

Pacific/Marquesas

Pacific/Tahiti

Guam Pacific/Guam

Kiribati Pacific/Tarawa

Pacific/Enderbury

Pacific/Kiritimati

North Mariana Islands Pacific/Saipan

Marshall Island Pacific/Majuro

Pacific/Kwajalein

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 275

Country Time Zone

Micronesia Pacific/Yap

Pacific/Truk

Pacific/Ponape

Pacific/Kosrae

Nauru Pacific/Nauru

New Caledonia Pacific/Noumea

New Zealand Pacific/Auckland

Pacific/Chatham

Niue Pacific/Niue

Norfolk Pacific/Norfolk

Palau (Belau) Pacific/Palau

Papua New Guinea Pacific/Port_Moresby

Pitcairn Pacific/Pitcairn

American Samoa American Samoa

W Samoa Pacific/Apia

Solomon Islands Pacific/Guadalcanal

Tokelau Islands Pacific/Fakaofo

Tonga Pacific/Tongatapu

Tuvalu Pacific/Funafuti

US minor outlying islands Pacific/Johnston

Pacific/Midway

Pacific/Wake

Vanuatu Pacific/Efate

Wallis and Futuna Pacific/Wallis

CHAPTER 2: Adapters Supported by Event Stream Processor

276 Sybase Event Stream Processor

Europe Time Zones
Valid time zones to specify for Europe in the UTCTimeZone property.

Country Time Zone

Andorra Europe/Andorra

Austria Europe/Vienna

Belarus Europe/Minsk

Belgium Europe/Brussels

Britain / Ireland Europe/London

Europe/Belfast

Europe/Dublin

Bulgaria Europe/Sofia

Czech Republic Europe/Prague

Denmark, Faeroe Islands, and
Greenland

Europe/Copenhagen

Atlantic/Faeroe

Estonia Europe/Tallinn

Finland Europe/Helsinki

France Europe/Paris

Germany Europe/Berlin

Gibraltar Europe/Gibraltar

Greece Europe/Athens

Hungary Europe/Budapest

Iceland Atlantic/Reykjavik

Italy Europe/Rome

Europe/San_Marino

Europe/Vatican

Latvia Europe/Riga

Liechtenstein Europe/Vaduz

Lithuania Europe/Vilnius

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 277

Country Time Zone

Luxembourg Europe/Luxembourg

Malta Europe/Malta

Moldova Europe/Chisinau

Monaco Europe/Monaco

Netherlands Europe/Amsterdam

Norway Europe/Oslo

Poland Europe/Warsaw

Portugal Europe/Lisbon

Atlantic/Azores

Atlantic/Madeira

Romania Europe/Bucharest

Russia Europe/Kaliningrad

Europe/Moscow

Europe/Samara

Asia/Yekaterinburg

Asia/Oms

Asia/Krasnoyarsk

Asia/Irkutsk

Asia/Yakutsk

Asia/Vladivostok

Asia/Magadan

Asia/Kamchatka

Asia/Anadyr

Spain Africa/Ceuta

Atlantic/Canary

Europe/Madrid

Sweden Europe/Stockholm

Switzerland Europe/Zurich

CHAPTER 2: Adapters Supported by Event Stream Processor

278 Sybase Event Stream Processor

Country Time Zone

Turkey Europe/Istanbul

Asia/Istanbul

Ukraine Europe/Kiev

Europe/Simferopol

Yugoslavia Europe/Belgrade

Europe/Ljubljana

Europe/Sarajevo

Europe/Skopje

Europe/Zagreb

North America Time Zones
Valid time zones to specify for North America in the UTCTimeZone property.

Country Time Zone

Anguilla America/Anguilla

Antigua and Barbuda America/Antigua

Bahamas America/Nassau

Barbados America/Barbados

Belize America/Belize

Bermuda Atlantic/Bermuda

British Virgin Islands America/Tortola

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 279

Country Time Zone

Canada America/Dawson

America/Dawson_Creek

America/Edmonton

America/Glace_Bay

America/Goose_Bay

America/Halifax

America/Inuvik

America/Iqaluit

America/Montreal

America/Nipigon

America/Pangnirtung

America/Rainy_River

America/Rankin_Inlet

America/Regina

America/St_Johns

America/Swift_Current

America/Thunder_Bay

America/Vancouver

America/Whitehorse

America/Winnipeg

America/Yellowknife

Cayman Islands America/Cayman

Costa Rica America/Costa_Rica

Cuba America/Havana

Dominica America/Dominica

Dominican Republic America/Santo_Domingo

El Salvador America/El_Salvador

Grenada America/Grenada

CHAPTER 2: Adapters Supported by Event Stream Processor

280 Sybase Event Stream Processor

Country Time Zone

Guadeloupe America/Guadeloupe

Guatemala America/Guatemala

Haiti America/Port-au-Prince

Honduras America/Tegucigalpa

Jamaica America/Jamaica

Martinique America/Martinique

Mexico America/Cancun

America/Chihuahua

America/Ensenada

America/Mazatlan

America/Mexico_City

America/Tijuana

Montserrat America/Montserrat

Nicaragua America/Managua

Panama America/Panama

Puerto Rico America/Puerto_Rico

St Kitts-Nevis America/St_Kitts

St Lucia America/St_Lucia

St Pierre and Miquelon America/Miquelon

St Vincent and the Grenadines America/St_Vincent

Turks and Caicos America/Grand_Turk

United States America/Chicago

America/Denver

America/Honolulu

America/Los_Angeles

America/New_York

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 281

Country Time Zone

United States (Alaska) America/Adak

America/Anchorage

America/Juneau

America/Nome

America/Yakutat

United States (exceptions) America/Boise

America/Detroit

America/Indiana/Knox

America/Indiana/Marengo

America/Indiana/Vevay

America/Indianapolis

America/Louisville

America/Menominee

America/Phoenix

Virgin Islands America/St_Thomas

South America Time Zones
Valid time zones to specify for South America in the UTCTimeZone property.

Country Time Zones

Argentina America/Buenos_Aires

America/Catamarca

America/Cordoba

America/Jujuy

America/Mendoza

America/Rosario

Aruba America/Aruba

Bolivia America/La_Paz

CHAPTER 2: Adapters Supported by Event Stream Processor

282 Sybase Event Stream Processor

Country Time Zones

Brazil America/Araguaina

America/Belem

America/Cuiaba

America/Fortaleza

America/Maceio

America/Manaus

America/Noronha

America/Porto_Acre

America/Porto_Velho

America/Sao_Paulo

Chile America/Santiago

Pacific/Easter

Colombia America/Bogota

Curacao America/Curacao

Ecuador America/Guayaquil

Pacific/Galapagos

Falklands Atlantic/Stanley

French Guiana America/Cayenne

Guyana America/Guyana

Paraguay America/Asuncion

Peru America/Lima

South Georgia Atlantic/South_Georgia

Suriname America/Paramaribo

Trinidad and Tobago America/Port_of_Spain

Uruguay America/Montevideo

Venezuela America/Caracas

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 283

Starting the Open Adapter
Start an Open adapter instance via a bootstrap class.

Prerequisites

1. Install Java Runtime Environment 1.6.0_26 or higher.
2. Set the JAVA_HOME environment variable to JRE 1.6.0_26 root.

Task
Start the Open adapter using a bootstrap class that reads the configuration file and starts the
adapter components:

java - Xmx768M –cp ClassPath Bootstrap PropertyFile
AdapterName

where:
• Xmx768M – Java parameter specifying the size of the memory heap. You can increase the

memory size from 768 for adapter configurations that require more memory.
• ClassPath – Java classpath containing the JAR files or classes required by the Open

adapter. This includes third-party JAR files. Refer to the component property files within
the examples directory for more info on the classpath used.

• Bootstrap – the adapter bootstrap and a Java class that can be run as a command line
program. The name of the class provided is
org.openadapter.adapter.RunAdaptor.

• PropertyFile – name of the properties file containing the component configuration
for the adapter <adapterName>.props.

• AdapterName – name of the adapter to start. When creating adapter configurations,
Sybase recommends that you provide adapters with descriptive names to simplify
identifying and monitoring adapter processes.

Monitoring the Open Adapter
Monitor a running adapter using RemoteControl and RemoteLogger interfaces.

RemoteControl and RemoteLogger are optional adapter implementations. Specify the
interfaces in the adapter properties.

A running adapter contains a controller that supports a dynamic control interface, that can be
invoked by a RemoteControl. A RemoteControl provides an interface for operators to
communicate with running adapters to establish the current status and resolve problems. To
specify a RemoteControl, use this properties syntax:

adapterName. Controller.RemoteControl.ClassName = Class

Remote logging filters the log output of the adapter and generates alerts or messages. You can
configure remote loggers to send all log lines with a specific log level such as FATAL, WARN,

CHAPTER 2: Adapters Supported by Event Stream Processor

284 Sybase Event Stream Processor

and so on. You can also use a regular expression to pattern match for explicit errors. To specify
a RemoteLogger, use this syntax:

adapterName. Logging.RemoteLogger.ClassName = Class

Sybase provides some standard implementations for remote control and remote logging.

Table 6. Remote Control and Remote Logging Interface Implementations

Interface Description

HTTPRemote-Control Turns adapter into a Web server. Point a browser at the machine on
which the adapter is running, and the port (default value is 80) on
which the HTTPRemoteControl is listening, and HTTPRemote-
Control returns a simple control interface.

RvRemote-Control Allows you to use TIBCO Rendezvous to communicate with the
adapter without knowing where the adapter is running.

JMXRemote-Control A JMX-compliant remote control.

RMIRemote-Control Registers as an RMI service and allows clients to support, admin-
ister, and configure an adapter using RMI.

RvRemoteLogger Publishes log lines on a specified Rendezvous subject

MailRemote-Logger Sends e-mail messages using the Java Mail API.

Remote Control Interface
The remote control implementation expects to receive requests as DataObjects that contain
specific attributes.

Table 7. Remote Control Interface Attributes

Attribute Description

Method Name of the operation.

UserName Name of the user sending the request.

HostName Host name the request originates from.

Comment Any comment.

ControllerName Name of the Adapter Controller. For example, Adapter.Controller.

Password If set, ensure this matches the ControlPassword property for

the adapter.

Arg1…ArgN Arguments for the method.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 285

Table 8. Remote Control Methods (Operations)

Operation Description

pause Invokes pause() on all adapter components. No messages are

processed until the adapter is told to resume.

resume Invokes resume() on all adapter components. Messages are

processed again.

terminate Invokes terminate() on all adapter components. All source

components inform the controller that they are exiting, and the con-
troller then exits.

kill Invokes System.exit(0), which ends any controller process-

es.

logLines Returns the last N lines from the adapter output logger. The Out-
putLogger caches the last N lines it writes. The default is 10, but you
can change this by using the LogLinesToCache property.

status Invokes getStatus(), which returns a string on all components

and publishes a consolidated status message on the control interface
reply subject. The control utility can then display the results. If you
write your own component, you can override the getStatus()
method.

setLogLevel Invokes setLogLevel(arg1,arg2) on the adapter Out-

putLogger. setLogLevel assumes that arg1 and arg2 in the

request DataObject are loglevel and scope. An example is INFO
DEFAULT.

customControl Assumes that arg1 in the request DataObject is the name of an
adapter component. The remote control forwards the entire request
DataObject to the component by calling customControl()
on the component. You can edit this.

HTTPRemoteControl
The HTTPRemoteControl implementation provides an HTTP-based remote control, turning
your adapter into a simple Web server.

The Remote control listens for HTTP requests on a defined port (the default is 80) and replies
with a simple HTML interface. This interface represents a control panel, and the buttons
generate HTTP get requests. The Remote control parses these URLs into remote control
requests.

For adapter A, set:

CHAPTER 2: Adapters Supported by Event Stream Processor

286 Sybase Event Stream Processor

A.Controller.RemoteControl.ClassName =
org...standard.HTTPRemoteControl
A.Controller.RemoteControl.HTTPPort = ?
A.Controller.RemoteControl.ControlPassword = ?

The HTTPort and ControlPassword properties are optional. They default to port 80 and
no password.

To test this remote control, type this URL into a browser: http://<hostname>:<port>

You see a control panel that supports the dynamic control interface. The control interface is
based on parsing the URL so that you may cut and paste the URLs and use them on existing
Web sites. Add &reply=false to the URL to disable the control interface in the reply.

The syntax for the URL is:
 http:// HostName :Port/ ?name= ControllerName &method= Method
&password= ControlPassword &arg1= Arg-Value ... &argN= ArgValue
&reply={true|false}

The HTTPRemoteControl parses this URL and creates a request DataObject, which the
AbstractRemoteControl processes.

MailRemoteLogger
The MailRemoteLogger implementation uses the Java Mail API.

The CLASSPATH requires mail.jar and activation.jar. For adapter A, set:

A.Logging.RemoteLogSetting = FATAL A.Logging.RemoteLogger.ClassName
=
org.openadapter.adapter.mail.MailRemoteLogger
A.Logging.RemoteLogger.Mailhost = mailhost@foo.com
A.Logging.RemoteLogger.To = fred@openadaptor.org
A.Logging.RemoteLogger.FilterPattern = failed to connect

Note: FilterPattern is an optional property but requires a regular expression. Refer to
Java documentation for additional properties.

The standard Open Adapter Controller offers an OASecurityManager interface that is
responsible for all security related issues. Select an implementation of OASecurityManager
by setting the controller property SecurityManager.ClassName in the controller
property file.

PasswordEncryptor
The PasswordEncryptor component ensures that there are no plain text passwords in the Open
adapter components.

The Event Stream Processor Extension for Open adapter provides sample keystores with the
pairs of private and public keys. The default location of keystores is $ESP_HOME/
adapters/esp_open/lib/security. There are three samples:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 287

• jksKeyStore – a Java native keystore containing an RSA key pair generated with 512
encryption strength. The password for keystore is "changeit", and the key pair alias is
"adaptor".

• pkcs8KeyStore.der – a keystore in the form PKCS#8 standard, and encoded using
DER. It does not expect a password and alias. It contains an RSA key-pair, and is generated
using 512 encryption strength.

• pkcs12KeyStore.p12 – keystore in the form PKCS#12 standard. The password is
"changeit" and alias is"adaptor".

Note: The keystores above are samples only. In a production system, use your own keys.

The Open adapter offers a simple tool to encrypt password strings. In $ESP_HOME/
adapters/esp_open/bin, the pwdenc.sh and pwdenc.bat files allow you to
encrypt passwords. The tool requires two parameters:

• -t – the type of keystore. Valid values are JKS, PKCS8, and PKCS12.
• - k – keystore location.

If you provide no settings, the tool uses these default values:

pwdenc -t JKS -k ../lib/security/jksKeyStore.der

Depending on the keystore type, the tool asks further questions. Encrypted passwords are
stored in the encrytedPwd.txt file of the directory where the shell script is executed. For
example, $ESP_HOME/adapters/esp_open/bin. The string is also encoded using
base64 algorithm. A limitation is that all characters should be in one line of the adapter
property file. Passwords in encrypted form should be copied to the related password field of
the component in the adapter property file.

Property Description

KeyStore (Required) Location of the Keystore file.

KeyStoreType (Optional) The standard used to store the Keystore file. Valid val-
ues are: JKS, PKCS8, PKCS12. Default value is JKS.

KeyAlias (Optional) If Keystore type is JKS or PKCS12, provide an alias
name for the key pair. This property is not used in PKCS8.

KeyStorePassword (Optional) If Keystore type is JKS or PKCS12, provide a password.
This property is not used in PKCS8.

Generating Self-Signed RSA Keys Using Java Keytool
Use the sample jksKeyStore file in the $ESP_HOME/adapters/esp_open/lib/
security directory to generate self-signed RSA keys using Java keytool.

In a command prompt, execute:
keytool -genkey -keyalg rsa -keysize 512 -alias adaptor -keystore
jksKeyStore

CHAPTER 2: Adapters Supported by Event Stream Processor

288 Sybase Event Stream Processor

Generating Self-Signed RSA Keys Using OpenSSL
Use the PKCS12 Keystore file in the $ESP_HOME/adapters/esp_open/lib/
security directory to generate self-signed RSA keys using OpenSSL.

1. Generate CA private key.
openssl genrsa -rand -des3 -out ca.key 512

2. Use that key to create the CA certificate.
openssl req -new -x509 -days 365 -key ca.key -out ca.pem -outform
PEM

3. Export the CA certificate so it can be imported into clientTrustStore.
openssl x509 -in ca.pem -out caCert.pem -outform PEM -signkey
ca.key

4. Generate the server private key.
openssl genrsa -rand -des3 -out server.key 512

5. Create a server certificate.
openssl req -new -days 365 -key server.key -out server.crs

6. Sign the server certificate with your CA certificate.
openssl ca -in server.crs -out signedServerCert.pem -keyfile
ca.key -cert caCert.pem

7. Export the certificate to PKCS#12 format so it can be imported to Queue Manager store.
openssl pkcs12 -export -in signedServerCert.pem -out
pkcs12KeyStore.p12 -inkey server.key -name adaptor

Generating Self-Signed RSA Keys Using OpenSSL (PKCS8 Keystore)
Use the sample pkcs8KeyStore.der file in the $ESP_HOME/adapters/
esp_open/lib/security directory to generate self-signed RSA keys using OpenSSL.

In a command prompt, enter:
openssl pkcs8 -nocrypt -in server.key -out pkcs8KeyStore.der -
outform DER -topk8

Examples
See examples of how to operate different Open adapter components.

Example: Using the AsapSink Component
Associate the FilePollSource (reader) component with the AsapSink(writer) component. The
FilePollSource component reads records from file on the disk (insert.txt) and transfers those
records to the AsapSink component. The AsapSink component then publishes those records to
Event Stream Processor.

1. Start Event Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 289

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the FilePollsource and AsapSink components.

Operating System Step

UNIX Open a terminal window and enter:

./fileToAsap.sh

Windows Open a command window and enter:

fileToAsap.bat

The FilePollsource components reads from the insert.txt file and passes records to
AsapSink to publish to the Server.

4. In the fileToAsap.props file, change
adaptor.FILESOURCE.InputFileName to insert_withNULL.txt, and run
again.

See also
• AsapSink Properties on page 250

CHAPTER 2: Adapters Supported by Event Stream Processor

290 Sybase Event Stream Processor

Example: Using the AsapSource Component
Associate the AsapSource (reader) component with the FileSink (writer) component.
AsapSource reads records from Event Stream Processor and passes those to FileSink, which
then writes those records to the out.txt file.
1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Starts the AsapSource and FileSink components.

Operating System Step

UNIX Open a terminal window and enter:

./asapToFile.sh

Windows Open a command window and enter:

asapToFile.bat

4. Upload data from the esp_insert.txt file to the Server.

Operating System Step

UNIX Open a terminal window and enter:

./esp_upload.sh

Windows Open a command window and enter:

esp_upload.bat

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 291

AsapSource reads this published data from the Server and passes it to FileSink, which
writes it to the out.txt file.

See also
• AsapSource Properties on page 246

Example: Using the BeanShellPipe Component
You can use the BeanShellPipe component between the AsapSource and FileSink
components. BeanShellPipe executes some commands in shell after it receives data from
AsapSource, and before publishing data to FileSink.

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the AsapSource, FileSink and BeanShellPipe components.

Operating System Step

UNIX Open a terminal window and enter:

./asapToFile.sh

Windows Open a command window and enter:

asapToFile.bat

CHAPTER 2: Adapters Supported by Event Stream Processor

292 Sybase Event Stream Processor

4. Upload data from the esp_insert.txt file to Server.

Operating System Step

UNIX Open a terminal window and enter:

./esp_upload.sh

Windows Open a command window and enter:

esp_upload.bat

AsapSource reads this data and passes to BeanShellPipe, which then passes it to FileSink,
which writes it to the out.txt file. BeanShellPipe outputs the text to the command
prompt.

See also
• BeanShellPipe Properties on page 253

Example: Using the JDBCLookupPipe Component
AsapSource reads data from Event Stream Processor and passes it to the JDBC lookup pipe. If
required, the JDBC lookup pipe modifies the values of the 'charfield' column by using
'replaceValue1', and passes that data to FileSource, which then outputs that data to the file
out.txt file.

1. Create a table and then create data into the table. For example, for a DB2 database, run the
createTable_DB2.sql script.

Modify this script to use it for any other databases.

2. Update the DB properties in the JdbcLookupPipe.props file to point to the required
database instance.

3. Update the JdbcLookupPipe.bat or JdbcLookupPipe.sh script, and add JDBC
driver JARs in the classpath.

4. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 293

Operating
System

Step

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

5. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

6. Start the AsapSource, FileSink, and JDBCLookupPipe components.

Operating System Step

UNIX Open a terminal window and enter:

./JdbcLookupPipe.sh

Windows Open a command window and enter:

JdbcLookupPipe.bat

7. Upload data to the the Server.

Operating System Step

UNIX Open a terminal window and enter:

./esp_upload.sh

Windows Open a command window and enter:

esp_upload.bat

AsapSource reads this data (records) and passes it on to JDBCLookupPipe, which
modifies the records according to data available and reference data from the database
tables. JDBCLookupPipe then passes that data to FileSink, which then writes the records
to file.
• Table "test1" contains data "col1='AttributeKey'" and "col2='replaceValue1'".

'KeyDbCol1' is col1 in the props file, therefore, col1 column contains attribute keys.

CHAPTER 2: Adapters Supported by Event Stream Processor

294 Sybase Event Stream Processor

• Theses attribute keys are present in the incoming record column 'textfield'.
• To replace the 'charfield' column value of a record to 'replaceValue1', then include

'AttributeKey' as a value in 'textfield' column of a record
See the esp_insert.txt file for more details. Records that do not have 'AttributeKey'
as the 'textfield' column value do not get modified.

8. See contents of the out.txt file.
Charfield data for some of the records is updated to 'replaceValue1' value.

See also
• JDBCLookupPipe Properties on page 255

Example: Using the MultiFlatXmlStringReader Component
Associate the MultiFlatXmlStringReader component with the FilePollSource component so
that it can read records in XML format and pass them to AsapSink, which publishes them to
the Server.
1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the MultiFlatXmlStringReader, FilePollSource, and AsapSink components.

Operating System Step

UNIX Open a terminal window and enter:

./MultiFlatXMLStringReader.sh

Windows Open a command window and enter:

MultiFlatXMLStringReader.bat

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 295

FilePollSource reads XML formatted data from the insert.xml file using
MultiFlatXmlStringReader, and passes it to AsapSink, which publishes data to the Server.

See also
• MultiFlatXmlStringReader Properties on page 257

Example: Using the SpPersistentSubscribeSource Component
The SpPersistentSubscribeSource component subscribes to the Server using persistent
subscribe (stores subscribed records until it processes them, and then deletes them).

To implement this, a log stream (Stream1_log) and truncate stream (TruncateStream1) are
created for stream "Stream1". Stream1_log stores the data and TruncateStream1 has two
columns, primary key and sequence number. See the model.ccl in the bin folder for more
details.

Incoming records are transferred to Stream1_log with an additional sequencenumber column.
Once records are processed from Stream1_log, the last sequence number is published to
TruncateStream1. All records with sequence numbers smaller than or equal to the published
sequencenumber are then deleted from the Stream1_log.

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to Stream1 of the project running on the cluster above.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe-Stream1.sh

Windows Open a command window and enter:

esp-subscribe-Stream1.bat

3. Subscribe to the log stream, Stream1_Log.

CHAPTER 2: Adapters Supported by Event Stream Processor

296 Sybase Event Stream Processor

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe-Stream1_log.sh

Windows Open a command window and enter:

esp-subscribe-Stream1_log.bat

4. Subscribe to the log stream, Truncate_stream1.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe-TruncateStream1.sh

Windows Open a command window and enter:

esp-subscribe-TruncateStream1.bat

5. Start the SpPersistentSubscribeSource and FileSink components.

Operating System Step

UNIX Open a terminal window and enter:

./asapToFile.sh

Windows Open a command window and enter:

asapToFile.bat

6. Upload data from the esp_insert.txt file to the the Server.

Operating System Step

UNIX Open a terminal window and enter:

./esp_upload.sh

Windows Open a command window and enter:

esp_upload.bat

SpPersistentSubscribeSource subscribes to the Server and Stream1_log, and passes these
records to FileSink, which writes these records to the out.txt file. All the subscription
script files show the respective subscriptions.

See also
• SpPersistentSubscribeSource Properties on page 248

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 297

Example: Using the WSSink Component
Use the WsSink.props file to associate the WSSink component with the AsapSource
component. AsapSource reads data from the Server and passes records to WSSink, which
publishes these records to a Web service. A second WsSource.props file associates the
WSSource component with FileSink. WSSource reads published records to the Web service
and passes them to FileSink, which writes those records to file.

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Call the esp_upload command, and upload records to the Server.

Operating System Step

UNIX Open a terminal window and enter:

./upload.sh

Windows Open a command window and enter:

upload.bat

4. Start the WSSource and FileSink components, and the Web service they are connected
to.

CHAPTER 2: Adapters Supported by Event Stream Processor

298 Sybase Event Stream Processor

Operating System Step

UNIX Open a terminal window and enter:

./WsSource.sh

Windows Open a command window and enter:

WsSource.bat

5. Start the WSSink with AsapSource components.

Operating System Step

UNIX Open a terminal window and enter:

./WsSink.sh

Windows Open a command window and enter:

WsSink.bat

The out_wssource.txt file now contains records. WSSink reads the uploaded
records and passes them to the Web service. WSSource reads these records and passes
them to FileSink, which writes them to the out_wssource.txt file.

See also
• WSSink Properties on page 252

Example: Using the WSSource Component
Use the WSSource component to publish data to a Web service using a Web service client,
such as soapUI. WSSource reads records from the Web service and passes them to FileSink,
which writes those records to file.

1. Start the Web service that WSSource is connected to.

Operating System Step

UNIX Open a terminal window and enter:

./WsSource.sh

Windows Open a command window and enter:

WsSource.bat

2. Using any SOAP client, try calls given in the readme.txt file in WSSource folder,
which is located within the examples folder. For example, use SOAP client soapUI.
This publishes data to a Web service using Web service client. WSSource reads records
from the Web service, passes them to FileSink, which writes the records to file.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 299

Example: Using the XPathMultiTypeXmlReader Component
Associate the XPathMultiTypeXmlReader component with the FilePollSource component,
which reads XML formatted data, and with the AsapSink component, which publishes
records to the Server. Define parsing rules in the XPathXmlStreamReader.props file,
and use these rules to parse XML records being read from file.

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the FilePollSource (with XPathXmlStreamReader) and AsapSink components.

Operating System Step

UNIX Open a terminal window and enter:

./XPathMultiTypeXmlReader.sh

Windows Open a command window and enter:

XPathMultiTypeXmlReader.bat

Data from the insert.xml file publishes to the Server.

See also
• XPathMultiTypeXmlReader Properties on page 262

CHAPTER 2: Adapters Supported by Event Stream Processor

300 Sybase Event Stream Processor

Example: Using the XPathXmlStreamReader Component
Use XPathXmlStreamReader with FilePollSource, which reads XML data and parses it using
XPath rules. Then pass the records to AsapSink, which publishes them to the Server.

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the FilePollsource (with XPathXmlStreamReader) and AsapSink components.

Operating System Step

UNIX Open a terminal window and enter:

./XPathXmlStreamReader.sh

Windows Open a command window and enter:

XPathXmlStreamReader.bat

Data from the insert.xml file publishes to the Server.

See also
• XPathXmlStreamReader Properties on page 259

Example: Using the XPathXmlStringWriter Component
The XPathXmlStringWriter component writes XML formatted data using XPath rules, and is
used with the FileSink component. Associate the AsapSource component, which reads data

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 301

from the Server and passes it to FileSink, with the FileSink component, which writes out the
XML data using XPathXmlStringWriter.

1. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

2. Start esp_subscriber to subscribe to the project above that is running on the cluster.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

3. Start the AsapSource and FileSink (with XPathXmlStringWriter) components.

Operating System Step

UNIX Open a terminal window and enter:

./XPathXmlStringWriter.sh

Windows Open a command window and enter:

XPathXmlStringWriter.bat

Data from the insert.xml file publishes to the Server.

See also
• XPathXmlStringWriter Properties on page 264

CHAPTER 2: Adapters Supported by Event Stream Processor

302 Sybase Event Stream Processor

RAP Adapter
Adapter type: esp_rap_out_adapter. The Sybase Event Stream Processor RAP adapter is an
external adapter that publishes data from the Event Stream Processor to the RAP platform
using the C SDK.

The RAP adapter supports only Solaris and Linux platforms.

Each stream you want to publish to the RAP platform requires its own adapter. For example, to
publish three streams to RAP, configure three adapters. Start and stop these adapters
separately.

Note: Since RAP accepts only inserts as input, deletes from the Server are dropped, and
updates are converted to inserts.

Start Command
Use the start.sh script to publish data from the Server to RAP.

Syntax
To use the start.sh script, copy the platform specific libpublisher.so to the
$ESP_HOME/adapters/rap_out/lib directory.

Note: The start.sh is an implementation of the esp_rap_out_adapter command.

esp_rap_out_adapter -f configFile -t templateDir -p
publisherConfigDir &

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 303

Note: Ensure that libodbc.so is installed if it is not present. A symbolic link with the file
name libodbc.so.1 should be made to libodbc.so version 1.0.0 and this file should
be put in $ESP_HOME/adapters/rap_out/lib.

Required Arguments

Argument Description

-f configFile The full path of the configuration file that speci-
fies the streams from Event Stream Processor that
provide data to RAP. Default value is ../con-
fig/espfeedhandler.xml

-t templateDir The full path to the directory containing the RDS
templates that map columns in the Event Stream
Processor streams to tables and columns of RAP.
Default value is ../templates

-p PublisherConfigDir The full path to the directory containing the pub-
lisher configuration file, which defines the mul-
ticast address used by the RAP subscriber. De-
fault value is ../config

& (Optional) Run the adapter in the background.

See also
• Starting the RAP Adapter on page 319

Stop Command
If the RAP adapter is running in the foreground, you can stop it by pressing Ctrl+C.

If the RAP adapter is running in the background, you can stop it by entering ps -eaf |
grep esp_rap_out to get the process ID of the adapter and enter kill -ll
processID in the command line.

See also
• Stopping the RAP Adapter on page 319

Datatype Mapping for the RAP Adapter
Event Stream Processor datatypes map to RAP, ASE, and IQ datatypes.

The RAP adapter does not support the Event Stream Processor binary and boolean
datatypes.

CHAPTER 2: Adapters Supported by Event Stream Processor

304 Sybase Event Stream Processor

ESP Datatype RAP Datatype ASE Datatype IQ Datatype

integer sint32 int int

long sint64 bigint bigint

float decimal(p,s) decimal(p,s) or
numeric(p,s)

decimal(p,s)
or numer-
ic(p,s)

interval sint64 bigint bigint

date datetime datetime timestamp

timestamp datetime datetime timestamp

bigdatetime datetime2 bigdatetime timestamp

money decimal(19,4) numeric(19,4) numeric(19,4)

money(1) decimal(19,1) decimal(19,1) decimal(19,1)

money(2) decimal(19,2) decimal(19,2) decimal(19,2)

money(3) decimal(19,3) decimal(19,3) decimal(19,3)

money(4) decimal(19,4) decimal(19,4) decimal(19,4)

money(5) decimal(19,5) decimal(19,5) decimal(19,5)

money(6) decimal(19,6) decimal(19,6) decimal(19,6)

money(7) decimal(19,7) decimal(19,7) decimal(19,7)

money(8) decimal(19,8) decimal(19,8) decimal(19,8)

money(9) decimal(19,9) decimal(19,9) decimal(19,9)

money(10) decimal(19,10) decimal(19,10) decimal(19,10)

money(11) decimal(19,11) decimal(19,11) decimal(19,11)

money(12) decimal(19,12) decimal(19,12) decimal(19,12)

money(13) decimal(19,13) decimal(19,13) decimal(19,13)

money(14) decimal(19,14) decimal(19,14) decimal(19,14)

money(15) decimal(19,15) decimal(19,15) decimal(19,15)

string string varchar(n) varchar(n)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 305

Configuration
Configuration information for the RAP adapter.

To configure the RAP adapter, you need:

• An adapter configuration file
• A publisher file
• An RDS template file

Adapter Configuration File
Use the espfeedhandler.xml configuration file to specify which Event Stream
Processor streams provide data to RAP.

Syntax
<?xml version="1.0" encoding="UTF-8"?>
<ESPFeedHandler>
 <Logger>
 <LogLevel>warning</LogLevel>
 <LogFile>ESPFeedHandler.log</LogFile>
 </Logger>
 <MainCommandControlServer>
 <MainCCHost>127.0.0.1</MainCCHost>
 <MainCCPort>55555</MainCCPort>
 <Workspace>workspace1</Workspace>
 <Project>project1</Project>
 </MainCommandControlServer>
 <StandbyCommandControlServer>
 <StandbyCCHost/>
 <StandbyCCPort/>
 </StandbyCommandControlServer>
 <UseEncryption/>
 <ESPAuthentication>
 <User></User>
 <Password></Password>
 </ESPAuthentication>
 <Subscription> <ProjectionSQL></ProjectionSQL>
<SubscriptionStream>ds1</SubscriptionStream>
 <RAPMessageType>69</RAPMessageType>
 </Subscription>
</ESPFeedHandler>

Table 9. XML Elements

Element Description

ESPFeedHandler (Required) The root element of the file.

Logger (Required) The root element for logging activities settings.

CHAPTER 2: Adapters Supported by Event Stream Processor

306 Sybase Event Stream Processor

Element Description

LogLevel (Required) The level of logging. Valid values are:

• error – logs only errors.

• warning – logs warnings and errors.

• info – logs informational messages and messages logged at the

warning level.

• debug – logs debugging messages and messages logged at the

info level.

LogFile (Required) The name and location (relative or absoulte path) of the
log file.

MainCommandControlServ-
er

The root element of the connection information for the main com-
mand control server.

MainCCHost (Required) The IP address of the main command control server.

MainCCPort (Required) The port for the main command control server.

Workspace (Required) The workspace in the cluster that contains the stream.

Project (Required) The project that contains the stream.

StandbyCommandControl-
Server

(Optional) The root element of the connection information for the
standby command control server.

StandbyCCHost (Required) The IP address of the standby command control server.

StandbyCCPort (Required) The port for the standby command control server.

UseEncryption (Optional) The root element for SSL encryption for communications
between the RAP adapter and Event Stream Processor.

ESPAuthentication (Required) The root element for the information necessary for au-
thenticating the connection to the command control server.

User (Required) The user name to connect to the command control server.

Password (Required) The password to use to connect to the command control
server (in encrypted form).

Subscription (Required) The root element for information about subscription to a
stream.

ProjectionSQL (Optional) The SQL query projection to be used on the stream.

SubscriptionStream (Optional) The name of the stream to which you want to subscribe.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 307

Element Description

RAPMessageType (Required) The RAP message type number. This is the same number
used in the RDS template.

Publisher File
The publisher.xml file configures the RAP publisher in Event Stream Processor. It
specifies the log file, administration channel, and data stream channels.

For more information about how to configure the RAP publisher, see Configuring a Publisher
in the RAP - The Trading Edition R4.1 Operations Console Users Guide.

Syntax
<?xml version=”1.0” encoding=”UTF-8”?>
<Publisher>
<Logger>
 <LogLevel>...</LogLevel>
 <LogFile>...</LogFile>
</Logger>
<NumMessageBuffers>...</NumMessageBuffers>
<NumPacketBuffers>...</NumPacketBuffers>
<MessageFlushInterval>...</MessageFlushInterval>
<LatencyCheckInterval>...</LatencyCheckInterval>
<AdminChannel>
 <LocalInterface>...</<LocalInterface>
 <AdminPort>...</AdminPort>
 <MaxConnections>...</MaxConnections>
</AdminChannel>
<ResendChannel>
 <ResendPort>...</ResendPort>
</ResendChannel>
<TimeToLive>...</TimeToLive>
<DataStreamChannelList>
 <DataStreamChannel>
 <ChannelName>...</ChannelName>
 <LocalInterface>...</LocalInterface>
 <IPAddress>...</IPAddress>
 <Port>...</Port>
 </DataStreamChannel>
 <DataStreamChannel>
 <ChannelName>...</ChannelName>
 <LocalInterface>...</LocalInterface>
 <IPAddress>...</IPAddress>
 <Port>...</Port>
 </DataStreamChannel>
</DataStreamChannelList>
</Publisher>

CHAPTER 2: Adapters Supported by Event Stream Processor

308 Sybase Event Stream Processor

Table 10. XML Elements

Element Description

Publisher Root element for the configuration file.

Logger Contains settings for logging activities.

LogLevel The level of logging. Valid values are:

• Error – log only errors.

• Warning – log warnings in addition to errors.

• Info – log informational messages in addition to messages log-
ged at the warning level.

• Debug – log debugging messages in addition to messages logged
at the info level.

LogFile Name and location of the log file. The file name can be relative or a
full path.

NumMessageBuffers Number of message buffers. One message buffer is required for each
message that is being simultaneously built. This setting can have a
value from 1 to 65535, although the machine must have enough
memory to hold the number of buffers specified.

NumPacketBuffers Maximum number of packets to cache to satisfy requests by a sub-
scriber to resend a packet. The number of packets is cached per data
stream channel. The setting can have a value from 1 to 4294967296,
although the machine must have enough memory to hold the number
of packets specified. The number of buffers is allocated on initiali-
zation of the publisher.

MessageFlushInterval Interval, in seconds, during which a partially filled message buffer
must be idle before being sent on the network. This setting can have a
value from 1 to 65535.

LatencyCheckInterval Number of seconds after which to perform a latency check on a
message. This setting can have a value from 1 to 65535.

AdminChannel Information about the administration channel. This channel accepts
requests for version information, statistics, and shutdown.

LocalInterface Local interface that the publisher uses to monitor administrative
requests.

AdminPort Port number used by the UAF agent to communicate with the pub-
lisher. The publisher listens for incoming administration requests on
this port.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 309

Element Description

MaxConnections Determines the number of concurrent connections to the Admin-
Channel. Value must be in the range of 1 to 65535. Default value is
10

ResendChannel Information about the resend channel. This channel listens for con-
nections from subscribers, who open connections to publishers and
issue requests to resend packets.

ResendPort Port number used by subscribers to request resends of dropped net-
work packets, and to time network latency between publisher and
subscriber.

TimeToLive The limit on the number of routing devices a message may pass
through before expiring.

DataStreamChannelList A list of data stream channel definitions. There can be up to 255 data
stream channels.

DataStreamChannel Contains information for one data stream channel. Each message
sent by the publisher is sent in a network packet buffer over one of the
defined channels. The publisher attempts to balance sending over all
the channels while the system is under load.

ChannelName Descriptive name for the channel, which is used to identify the
channel when logging.

LocalInterface IP address of a network interface on the local machine, which should
be used for sending data.

IPAddress UDP multicast address for sending the messages over the network.

Port Port over which messages are sent using UDP multicasting.

RDS Template File
The RAP data stream (RDS) template file defines the structure of RAP message types in Event
Stream Processor.

For more information on RAP Messages and Schemas, see Customizing the RAP Messages
and Schema Chapter in the RAP - The Trading Edition R4.1 Developers Guide.

Syntax
<?xml version="1.0" encoding="UTF-8"?>

<Template xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../template.xsd">
 <MessageDefnList>
 <MessageDefn>

CHAPTER 2: Adapters Supported by Event Stream Processor

310 Sybase Event Stream Processor

 <MessageDesc>...</MessageDesc>
 <MessageType>...</MessageType>
 <DestTableName>...</DestTableName>
 <FieldDefnList>
 <FieldDefn>
 <FieldName>...</FieldName>
 <StringField/>
 <DestColumnName>...</DestColumnName>
 <Lookup>
 <LookupTableName>...T</LookupTableName>
 <LookupColumnName>...</LookupColumnName>
 <LookupColumnReturn>...</LookupColumnReturn>
 </Lookup>
 </FieldDefn>
 </FieldDefnList>
 </MessageDefn>
 </MessageDefnList>
</Template>

Table 11. XML Elements

Element Description

Template Root element for the template.

MessageDefnList A list of one or more message definitions.

MessageDefn Information that defines a single message type.

MessageDesc Description of the type of market data message, for example, Stock
Quote. This element is used only for descriptive purposes, and can
contain any string.

MessageType Unique number representing the type of market data message. This
number must uniquely identify the message type across all message
definitions within all templates. The value can contain any integer
from 1 – 65535.

DestTableName Name of the database table into which the message should be stored.
There is one database table per message type. The value can contain
any string.

FieldDefnList A list of one or more field definitions.

FieldDefn Information that defines a single field.

FieldName Name of the field. The value can contain any string.

IntegerField Indicates that the field is some type of integer datatype.

IntegerDataType Datatype of an integer field. Valid values: uint8, uint16,

uint32, uint64, sint8, sint16, sint32, or sint64.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 311

Element Description

DecimalField Indicates that the field is a decimal value. The field definition can
contain only one of: IntegerField, DecimalField, StringField, Date-
Field, TimeField, DateTimeField, DateTime2Field, or Time2Field.

Precision Precision of a decimal field. Maximum precision allowed is 38 digits.

Scale Scale of a decimal field (the number of digits after the decimal point).
Maximum scale can be no larger than the precision (38).

StringField Indicates that the field is a string datatype.

DateField Indicates that the field is a date datatype. The field definition can
contain only one of: IntegerField, DecimalField, StringField, Date-
Field, TimeField, DateTimeField, DateTime2Field, or Time2Field.

TimeField Indicates that the field is a time datatype.

Time2Field Indicates that the field is a bigtime datatype (granularity to 6 decimal
places). The field definition can contain only one of: IntegerField,
DecimalField, StringField, DateField, TimeField, DateTimeField,
DateTime2Field, or Time2Field.

DateTimeField Indicates that the field is a datetime datatype.

DateTime2Field Indicates that the field is a bigdatetime (granularity to 6 decimal
places). The field definition can contain only one of: IntegerField,
DecimalField, StringField, DateField, TimeField, DateTimeField,
DateTime2Field, or Time2Field.

DestColumnName Name of the column into which the field data should be stored. There
is one column per field. The value of this element can contain any
string.

Lookup (Optional) Indicates that the data in the field should be used as a
lookup for another table. If this element does not appear in a field
definition, then no lookup is required.

LookupTableName Name of the table to use to look up a value.

LookupColumnName Name of the column to use to look up a value.

LookupColumnReturn Name of the column from which to return data when doing a lookup.

CHAPTER 2: Adapters Supported by Event Stream Processor

312 Sybase Event Stream Processor

Example: Configuring the RAP Adapter
Set the configuration, publisher, and RDS template files to configure the RAP adapter for
communication between RAP and Event Stream Processor.

1. Set the $RAPOUT_HOME environment variable to $ESP_HOME/adapters/
rap_out directory.

2. Navigate to the $RAPOUT_HOME directory.

3. Create a project defining the streams you want to publish to RAP, and save it to a file named
model.ccl in the $ESP_HOME/bin directory.

4. Start Event Stream Processor.
Windows:
1. Start the example cluster.

cd %ESP_HOME%\cluster\nodes\node1
 %ESP_HOME%\bin\esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
%ESP_HOME%\bin\esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

UNIX:
1. Start the example cluster.

cd $ESP_HOME/cluster/nodes/node1
 $ESP_HOME/bin/esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
$ESP_HOME/bin/esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

5. In the $RAPOUT_HOME/config directory, modify the espfeedhandler.xml
configuration file to specify which Event Stream Processor streams are providing data to
RAP. For example, the file below configures the adapter to publish a single stream called
Trades:
<?xml version="1.0" encoding="UTF-8"?>
<ESPFeedHandler>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 313

 <Logger>
 <LogLevel>warning</LogLevel>
 <LogFile>ESPFeedHandler.log</LogFile>
 </Logger>
 <MainCommandControlServer>
 <MainCCHost>127.0.0.1</MainCCHost>
 <MainCCPort>19011</MainCCPort>
 <Workspace>w1</Workspace>
 <Project>p1</Project>
 </MainCommandControlServer>
 <StandbyCommandControlServer>
 <StandbyCCHost/>
 <StandbyCCPort/>
 </StandbyCommandControlServer>
 <UseEncryption/>
 <ESPAuthentication>
 <User></User>
 <Password></Password>
 </ESPAuthentication>
 <Subscription>
 <ProjectionSQL></ProjectionSQL>
 <SubscriptionStream>Trades</SubscriptionStream>
 <RAPMessageType>69</RAPMessageType>
 </Subscription>
</ESPFeedHandler>

6. In $RAPOUT_HOME/config, modify the existing publisher file to specify the multicast
address used by the RAP subscriber. For example:
<?xml version="1.0" encoding="UTF-8"?>
<Publisher>
 <Logger>
 <LogLevel>debug</LogLevel>
 <LogFile>Publisher.log</LogFile>
 </Logger>
 <NumMessageBuffers>1</NumMessageBuffers>
 <NumPacketBuffers>10000</NumPacketBuffers>
 <MessageFlushInterval>1</MessageFlushInterval>
 <LatencyCheckInterval>30</LatencyCheckInterval>
 <AdminChannel>
 <LocalInterface>testmachine</LocalInterface>
 <AdminPort>5002</AdminPort>
 </AdminChannel>
 <ResendChannel>
 <ResendPort>5103</ResendPort>
 </ResendChannel>

 <TimeToLive>1</TimeToLive>

 <DataStreamChannelList>
 <DataStreamChannel>
 <ChannelName>test2</ChannelName>
 <LocalInterface>127.0.0.1</LocalInterface>
 <IPAddress>224.0.2.0</IPAddress>
 <Port>5050</Port>
 </DataStreamChannel>

CHAPTER 2: Adapters Supported by Event Stream Processor

314 Sybase Event Stream Processor

 <DataStreamChannel>
 <ChannelName>test1</ChannelName>
 <LocalInterface>127.0.0.1</LocalInterface>
 <IPAddress>224.0.2.0</IPAddress>
 <Port>5800</Port>
 </DataStreamChannel>
 </DataStreamChannelList>
</Publisher>

7. In $RAPOUT_HOME/templates, create an RDS template for each stream you want to
publish to RAP.
<?xml version="1.0" encoding="UTF-8"?>

<Template xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../template.xsd">
 <MessageDefnList>
 <MessageDefn>
 <MessageDesc>Split Event</MessageDesc>
 <MessageType>70</MessageType>
 <DestTableName>rapout2</DestTableName>
 <FieldDefnList>
 <FieldDefn>
 <FieldName>integer</FieldName>
 <IntegerField>
 <IntegerDataType>sint32</IntegerDataType>
 </IntegerField>
 <DestColumnName>int16</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>string</FieldName>
 <StringField/>
 <DestColumnName>string</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>int32</FieldName>
 <IntegerField>
 <IntegerDataType>sint32</IntegerDataType>
 </IntegerField>
 <DestColumnName>int32test</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>int64</FieldName>
 <IntegerField>
 <IntegerDataType>sint64</IntegerDataType>
 </IntegerField>
 <DestColumnName>int64test</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>double</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>4</Scale>
 </DecimalField>
 <DestColumnName>doubletest</DestColumnName>
 </FieldDefn>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 315

 <FieldDefn>
 <FieldName>money</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>4</Scale>
 </DecimalField>
 <DestColumnName>money_test</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(1)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>1</Scale>
 </DecimalField>
 <DestColumnName>money1</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(2)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>2</Scale>
 </DecimalField>
 <DestColumnName>money2</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(3)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>3</Scale>
 </DecimalField>
 <DestColumnName>money3</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(4)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>4</Scale>
 </DecimalField>
 <DestColumnName>money4</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(5)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>5</Scale>
 </DecimalField>
 <DestColumnName>money5</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(6)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>6</Scale>
 </DecimalField>
 <DestColumnName>money6</DestColumnName>
 </FieldDefn>

CHAPTER 2: Adapters Supported by Event Stream Processor

316 Sybase Event Stream Processor

 <FieldDefn>
 <FieldName>money(7)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>7</Scale>
 </DecimalField>
 <DestColumnName>money7</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(8)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>8</Scale>
 </DecimalField>
 <DestColumnName>money8</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(9)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>9</Scale>
 </DecimalField>
 <DestColumnName>money9</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(10)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>10</Scale>
 </DecimalField>
 <DestColumnName>money10</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(11)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>11</Scale>
 </DecimalField>
 <DestColumnName>money11</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(12)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>12</Scale>
 </DecimalField>
 <DestColumnName>money12</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(13)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>13</Scale>
 </DecimalField>
 <DestColumnName>money13</DestColumnName>
 </FieldDefn>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 317

 <FieldDefn>
 <FieldName>money(14)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>14</Scale>
 </DecimalField>
 <DestColumnName>money14</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>money(15)</FieldName>
 <DecimalField>
 <Precision>18</Precision>
 <Scale>15</Scale>
 </DecimalField>
 <DestColumnName>money15</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>interval</FieldName>
 <IntegerField>
 <IntegerDataType>sint64</IntegerDataType>
 </IntegerField>
 <DestColumnName>interval</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>bigdatetime</FieldName>
 <DateTime2Field/>
 <DestColumnName>bigdatetime</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>date</FieldName>
 <DateTimeField/>
 <DestColumnName>date_test</DestColumnName>
 </FieldDefn>
 <FieldDefn>
 <FieldName>timestamp</FieldName>
 <DateTimeField/>
 <DestColumnName>timestamp_test</DestColumnName>
 </FieldDefn>
 </FieldDefnList>
 </MessageDefn>
 </MessageDefnList>
</Template>

Ensure that the template file is copied to the RAP subscriber template directory

Operation
Start and stop the RAP adapter from the command line.

CHAPTER 2: Adapters Supported by Event Stream Processor

318 Sybase Event Stream Processor

Starting the RAP Adapter
Once you have configured the adapter, start it using the start.sh script.

Prerequisites

• Start the RAP databases (there are message tables in the database), RAP subscribers, the
Server, and that the project you want the adapter to connect to.

• Install libodbc.so if it is not present. A symbolic link with the file name
libodbc.so.1 should be made to libodbc.so version 1.0.0 and this file should be
put in $ESP_HOME/adapters/rap_out/lib.

• To use the start.sh script, copy the platform specific libpublisher.so to the
$ESP_HOME/adapters/rap_out/lib directory.

Task

1. Start the RAP databases (RAPCache and RAPStore) by selecting start in the RAP
OpsConsole.

2. Start the RAP subscribers by selecting start in the RAP OpsConsole.

3. From a command prompt, execute the start.sh script.

The start.sh script executes:
esp_rap_out_adapter -f $RAPOUT_HOME/config/espfeedhandler.xml -t
$RAPOUT_HOME/templates -p $RAPOUT_HOME/config

See also
• Start Command on page 303

Stopping the RAP Adapter
Once you have configured the adapter, stop it using the esp_rap_out_adapter command.

1. Shut down the adapter:

• If you are running the adapter in the foreground, go to the window in which you started
the adapter and press Ctrl-C.

• If you are running the adapter in the background, enter ps -eaf | grep
esp_rap_out_adapter to get the process ID of the adapter, then enter kill -
ll processID.

2. Shut down the RAP subscribers by selecting stop in the RAP OpsConsole.

3. Shut down the RAP databases by:

• Selecting stop in the RAP OpsConsole.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 319

• If you are running the adapter in the background, enter ps -eaf | grep
dataserver (for RAPCache) or ps -eaf | grep IQSRV15 (for RAPStore) to
get the process ID of the databases, then enter kill -ll processID..

See also
• Stop Command on page 304

Replication Server Adapter
The Sybase Replication Server adapter replicates and synchronizes database transactions.

Configuring the Adapter on the Replication Server Workstation
Set up the Replication Server adapter, schema, and source location on the Replication Server
workstation.

The adapter copies information from one database to another. These configuration
instructions are compatible with source data coming from the Sybase Adaptive Server
Enterprise database, as well as other databases.

1. Set up the replication system according to the Sybase Replication Server documentation.

2. Using the dsedit utility, add an entry to the interfaces (sql.ini) file with the name of the
Event Streaming Processor workstation and the port used for the Replication Server
adapter connection. This entry used to specify the Replication Server adapter data server
name and TDS Port in the Replication Server Adapter configuration process. See Chapter
6: Using dsedit in the Sybase Adaptive Server Enterprise 15.7 Utility Guide for more
information on modifying the interface or sql.ini files. For example, if the adapter and
the Event Streaming Processor are on a workstation named my_workstation and the
connection is to be made on port 5100, use:
[RSadapter]
query=TCP,my_workstation,5100

3. Define the user name and password.
create user rsuser
set password rspassword
go

4. Create the connection from the Replication Server to the adapter. Use the same server
name used in the previous step (and later for the Replication Server adapter configuration).
Log in to the Replication Server to create the Replication Server adapter connection. For
example,
create connection to RSadapter.RSadapter
set error class to srsa_error_class
set function string class srsa_function_class
set username rsuser
set password rspassword
set batch to “off”
with dsi_suspended
go
alter connection to RSadapter.RSadapter

CHAPTER 2: Adapters Supported by Event Stream Processor

320 Sybase Event Stream Processor

set replication server error class to srsa_rs_error_class
go

To turn off minimal columns,
alter connection to RSadapter.RSadapter
set replicate_minimal_columns to 'off'
go

Note: Do not use minimal columns in the repdef.

To enable batching,
alter connection to RSadapter.RSadapter
 set batch to 'on'
go
alter connection to RSadapter.RSadapter
 set dsi_cmd_separator to ';'
go

Define the user name and password used for this connection within the Replication Server.
This user name must not be the same as that of the administrator user of the Replication
Server adapter.

5. Create the replication definitions. A replication definition specifies the schema and the
source location for a given table or stored procedure. Log into the Replication Server to
create the sample TEST replication definition.
There is a replication definition for a source table named "TEST" (create table
TEST (ID int, FNAME char(15)), which is defined on a sourced database
located on an Adaptive Server Enterprise server named ASEHOST.
create replication definition TESTrep
with primary at ASEHOST.sourcedb
with all tables named ‘TEST’
(ID int, FNAME char(15))
primary key (ID)
go

6. Mark the Adaptive Server Enterprise source "TEST" table for replication. Log in to the
Adaptive Server Enterprise server, locate the source table "TEST", and execute:
esp_setreptable ‘TEST’, true
go

7. Define the subscriptions. Each subscription defines a target for the information coming
through the Replication Server. In the following example, the target is the Replication
Server adapter connection for the Replication Server adapter located on the Event
Streaming Processor workstation. Log in to the Replication Server to create the sample
TEST subscription:
create subscription TESTsub
for TESTrep
with replicate at RSadapter.RSadapter
without materialization
go

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 321

Configuring the Adapter on an Event Streaming Processor Workstation
Set up a project using the Replication Server adapter on an Event Streaming Processor
workstation.

Prerequisites
Complete the Replication Server adapter configuration on the Replication Server workstation.

Task

1. Start the Studio:

Windows Click Start > All Programs > Sybase > Event Stream Processor > Studio

UNIX Enter $ESP_HOME/ESP/studio/esp_studio

2. Define a new project using the Studio Visual editor. In the Studio, select File > New >
Project.

3. Configure the Replication Server Input Adapter.

a) Drag the Replication Server Input Adapter from the Input Adapters Palette to the
Canvas.

b) Click the Edit Properties icon.
c) From the Configure Adapter Properties window that opens, configure the adapter

parameters used to connect to the Replication Server System Database (RSSD) to
obtain metadata on tables and stored procedures:

RSSD contains information about the databases involved and the data transfer rules.

Property Label Property ID Type Description

RSSD Host rssdHost strin
g

(Required) The RSSD server port.

RSSD Port rssdPort uint (Required) Specify the port to use on
the server containing the RSSD data-
base.

RSSD Database
Name

rssdDatabase-

Name

strin
g

(Required) Specify the name of the
RSSD database created by the Repli-
cation Server to store replication in-
formation.

CHAPTER 2: Adapters Supported by Event Stream Processor

322 Sybase Event Stream Processor

Property Label Property ID Type Description

RSSD User Name rssdUser strin
g

(Required) Specify the user name
used to connect to the RSSD server
during schema discovery. This user
must have permissions to run the
RSSD Stored Procedures.

ESP Server User ID espUser strin
g

(Required) User name for connecting
to the ESP Server.

RSadapter Data Serv-
er Name

repSubscription-

Server

strin
g

(Required) Specify the shared data
server and database name that defines
the replication server connection
pointing to the Replication Server
adapter within Event Streaming Pro-
cessor. This server name is also used
to define an entry in the Replication
Server’s interfaces sql.ini file.

This value should be used for both the
“data server” and “database name”
portions of the replication server con-
nection definition.

Project URI projectUri strin
g

(Required) URI to connect to a
project in a cluster environment.

Authentication Mech-
anism Type

authType strin
g

(Required) Specify the authentication
mechanism to use.

ESP Server Password espPassword strin
g

(Optional) ESP Server password for
the ESP Server User ID. Do not use if
using RSA authentication.

RSA Key Store rsaKeyStore strin
g

(Optional) RSA Key Store file name
and location.

RSSD Password rssdPasswd pass-
word

(Optional) Specify the password for
the RSSD user.

RSA Key Store Pass-
word

rsaKeyStorePass-

word

pass-
word

(Optional) RSA Key Store password.

4. Select the Advanced tab and configure the adapter parameters for runtime processing and
internal communications:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 323

Property
Type

Property ID Type Description

Stored Proc
Stream Op-
eration

storedProcStrea-

mOp

choice (Advanced) Specify whether an insert or upsert
operation is performed with stored procedure
for the stream in Replication Server. Defaults to
insert.

TDS Port tdsListenerPort uint (Advanced) Specify the port used by the adapt-
er. This is the port to which the Replication
Server connection definition must connect.
This port is defined within the interfaces
(sql.ini) file on the Replication Server

workstation it defines connectivity between the
Replication Server and the adapter.

Adapter Ad-
min User

adminUser string (Advanced) Specify a user name for the adapter
to use for internal communications. This name
can be anything except it must not match the
user defined within the Replication Server con-
nection definition.

Adapter Ad-
min Pass-
word

adminPasswd pass-
word

(Advanced) Specify a password associated
with the user name the adapter uses for internal
communications.

Transaction-
al Stream
Operations

isTransactional boo-
lean

(Advanced) Specify whether or not Event
Streaming Processor data changes are in a Syb-
ase transaction. This causes changes to be com-
mitted to a log store immediately after the
transaction. This parameter should be set to true
when using a log store for a persistent rs_last-

commit.

Async
Stream Op-
erations

isAsync boo-
lean

(Advanced) Specify whether or notEvent
Streaming Processor data changes are in an
Sybase transaction. This parameter allows you
to use asynchronous stream operations.

Batched
Stream Op-
erations

isBatched boo-
lean

(Advanced) Specify whether or not the Repli-
cation Server adapter sends data to the Sybase
Event Streaming Processor in batches.

Batch Size batchSize uint (Advanced) If the Batched Stream Operations

parameter is set to true, specify the number of
rows in the batch.

CHAPTER 2: Adapters Supported by Event Stream Processor

324 Sybase Event Stream Processor

Property
Type

Property ID Type Description

Publish
When Batch
is Full

publishWhen-

BatchFull

boo-
lean

(Advanced) If set to true, the adapter writes
data to the stream when the batch reaches Batch

size. If set to false, the adapter waits for a com-
mit to write data to the stream.

Error on
Missing
Stream Col-
umn

errorOnMissing-

StreamColumn

boo-
lean

(Advanced) Set to true to send an error back to
the Replication Server if a column in the repdef

is not defined within the stream. Sybase rec-
ommends you set this parameter to false (to
avoid frequent disconnections from the repli-
cation server) is recommended.

RSSD Table
Name

tableName tables (Advanced) Specify the name of the table in
RSSD. Required if the RSSD table name is
different from the corresponding stream name.

Field Map-
ping

permutation permu-
tation

(Advanced) Specify mapping between the in-
ternal and external fields.

Property Set propertyset string (Advanced)

(Advanced) Specifies the name of the property
set (a group of properties and values) you want
to use from the project configuration file. If you
specify the same properties in the project con-
figuration file and the ATTACH ADAPTER

statement, the values in the property set over-
ride the values defined in the ATTACH ADAPT-

ER statement. No default value.

5. Select OK to save the project configuration.

6. Discover the source tables or stored procedures for the adapter. The schema discovery
process establishes a connection to the RSSD and reveals defined subscriptions that target
the Replication Server adapter.

a) Click Schema Discovery in the Adapter shape.
A list of tables or stored procedures that have Replication Server adapter subscriptions
associated with them is returned. The rs_lastcommit table is also returned.

b) Select one of the discovered tables and click Next.
c) In the Create Element dialog, choose Create new input window.
d) Click Finish.
e) Define primary keys. Each table and stored procedure stream must contain at least one

primary key. Sybase recommends that this key match the primary key defined in the

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 325

replication definition. Locate the appropriate primary key column and click on the
toggle key to the left of it. The toggle key changes to an image of a key.

Schema discovery adds a special column named ‘ra_pkey’ to the stream definition for a
stored procedure. The ‘ra_pkey’ column must be set as the primary key and ‘Autogen’
set to true for stored procedures.

f) Select File > Save to save the changes.

7. Test data movement to the Event Stream Processor stream. Use the Studio for these steps,
unless otherwise noted:

a) Open the project within the Studio.
b) Go to the Run-Test perspective.
c) Run this project in a pre-started cluster. The cluster URI, workspace name, and project

name must match the projectURI which is defined in adapter parameters. A successful
startup appears as:

Stream TEST is ready for Replication Server connections.
d) Log in to the Replication Server and resume the Replication Server adapter

connection:
resume connection to RSadapter.RSadapter
go

e) Insert sample data into the source table.
f) Verify that the replicated data reaches the Replication Server adapter stream using the

Stream View tab in Studio.

Defining a Persistent rs_lastcommit
The rs_lastcommit table is non-persistent by default. It is held in memory and cleared when
the stream is shut down. This results in a full replay of all remaining items within the
Replication Server when the stream is restarted. Sybase recommends making rs_lastcommit
persistent to minimize the replay of transactions following a stream restart.

In Studio:

1. Add rs_lastcommit to the project.

a) Select the rs_lastcommit table returned as part of the schema discovery process and
click Next.

b) Choose Create a new input window and click Finish.
c) Set the "origin" column as the primary key.

2. Configure rs_lastcommit to use the persistent log store.

a) In the Palette, expand Shared Components.
b) Select and drag the Log Store component from Shared Components over to the

project.
c) Edit the store property in rs_lastcommit so that it selects the log store.

CHAPTER 2: Adapters Supported by Event Stream Processor

326 Sybase Event Stream Processor

Supported Datatypes
Map Adaptive Server Enterprise and Replication Server datatypes to Event Stream Processing
datatypes.

ESP Datatype Adaptive Server Enterprise and Replication Server Data-
types

integer smallint, tinyint, int, bit

timestamp datetime, time

date date, smalldatetime

long bigint, unsigned bigint, unsigned int, un-
signed smallint

string binary, char, unichar, nchar, nvarchar, varbi-
nary, univarchar, varchar, timestamp

float numeric, float, real

money money, smallmoney

bigdatetime bigdatetime (ASE15.7 or later)

boolean bit

binary varbinary

Performance Tips
Modify the system configuration to improve performance.

• Configure the Replication Server to use batches (terminator must be a semicolon).
• Configure the Replication Server to use larger packets. For example, set a value of 4096.
• Run on a 64-bit machine.
• Set all log levels to info or lower in the $ESP_HOME/adapters/repserver/

config/log4j.properties file.

Reuters Marketfeed Adapter
The Sybase Reuters Marketfeed adapter is a software interface between Event Stream
Processor and the Reuters Market Data System (RMDS). It uses the Reuters Marketfeed
message format.

You can configure the adapter as an input or output adapter. The input adapter subscribes to
one or more Reuters Instrument Codes (RICs) on the RMDS to provide input to Event Stream
Processor. The output adapter publishes output from Event Stream Processor to the RMDS.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 327

This enables Event Stream Processor to use the speed and reliability of Reuters' infrastructure
to deliver data.

The Reuters Marketfeed Input adapter supports schema discovery. Run two adapter instances
if you require both input and output capabilities.

The adapter runs on Solaris and Linux operating systems but you can use it with Event Stream
Processor software running on Solaris, Linux, or Windows.

Requirements
The Reuters Marketfeed input and output adapters have several requirements.

An input adapter requires:

• A RMDS market data connection that uses the Marketfeed protocol
• A working subscription for data on one or more financial instruments

An output adapter requires:

• A working connection with support for sending data to RMDS using the Marketfeed
protocol

General Configuration
Enable user access for each user account that runs the Reuters Marketfeed adapter, and
configure an input connection from Reuters and an output connection to Reuters.

Enabling User Access
Enable user access for each user account that uses the Reuters Marketfeed adapter.

1. Ensure the user account has permission to execute the installed software.

2. Add an environment variable, $ESP_REUTERS_HOME, set to the root of the adapter
hierarchy, to the user's runtime environment.

3. (Optional) Add the environment variable to your shell profile.

4. Event Stream Processor supports RSA, LDAP, and Kerberos authentication. If your
installation uses one of these authentication methods, ensure the user account is set up to
work with that method of authentication.

Configuring an Input Connection from Reuters
Modify the sample configuration file for your site's RMDS connection.

Prerequisites

• Create (or choose) a directory in which to store your site-specific configuration files.
• Create an environment variable (MY_CONFIG) and set it to the full path name of that

directory.

CHAPTER 2: Adapters Supported by Event Stream Processor

328 Sybase Event Stream Processor

Task

During the installation process, a sample configuration file (rfasub.cfg) was placed in the
$ESP_REUTERS_HOME/config directory. This file, shown below, follows the
Reuters format for configuration files.

Change this if necessary.
the port number of the P2PS (default 8101)
\Connections\Connection_SSLED\PortNumber = 8101

Change this if necessary.
the user name to connect with (should be the DACS name if DACS is
enabled)
\Connections\Connection_SSLED\UserName = "triarch"

Change this if necessary.
a list of P2PS host names
\Connections\Connection_SSLED\ServerList = "localhost"

Refer to RFA documentation for more advanced changes to the
remaining entries
\Connections\Connection_SSLED\connectionType = "SSLED"

\Adapters\SASS3_Adapter\requestQueueReadThreshold = 1
\Adapters\SASS3_Adapter\mainLoopTimerInterval = 200

\Adapters\SSLED_Adapter\masterFidFile = "config/
appendix_a"
\Adapters\SSLED_Adapter\enumTypeFile = "config/
enumtype.def"
\Adapters\SSLED_Adapter\downloadDataDict = false

Change the fileLoggerFilename appropriately for your setup
\Logger\AppLogger\windowsLoggerEnabled = false
\Logger\AppLogger\fileLoggerEnabled = true
\Logger\AppLogger\fileLoggerFilename = "rfasub.{p}.log"

\Control\Entitlements\dacs_SbeEnabled = false
\Control\Entitlements\dacs_CbeEnabled = false

\Logger\ComponentLoggers\Connections\messageFile = "config/
messages/RFA7_Connections.mc"
\Logger\ComponentLoggers\Adapter\messageFile = "config/
messages/RFA7_Adapter.mc"
\Logger\ComponentLoggers\SessionCore\messageFile = "config/
messages/RFA7_SessionLayer.mc"
\Logger\ComponentLoggers\SSLED_Adapter\messageFile = "config/
messages/RFA7_SSLED_Adapter.mc"

\Sessions\Session1\connectionList =
"Connection_SSLED"

1. Obtain this information from your system administrator:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 329

• Name of the server that receives Marketfeed data from RMDS
• Port number on the machine to which your system connects
• User name defined for your connection to Reuters
• Name of each Reuters service to which you are subscribed

2. Make a copy of the sample configuration file in your $MY_CONFIG directory:

cp $ESP_REUTERS_HOME/config/rfasub.cfg $MY_CONFIG

3. Use a text editor to open the configuration.

4. In the \Connections\Connection_SSLED\PortNumber line, replace the
default port number (8101) with the number used by your Reuters connection, if different.

5. In the \Connections\Connection_SSLED\UserName line, replace triarch with
the user name for your Reuters subscription. Keep the surrounding quotation marks. In the
\Connections\Connection_SSLED\ServerList line, replace localhost
with the name of the server that receives Marketfeed data from RMDS. Keep the
surrounding quotation marks.

If your system has more than one server receiving data from RMDS, include all of their
names in a comma-separated list, in priority order.

6. (Optional) In the \Logger\AppLogger\fileLoggerFilename line, you can
change the name of the log file.

The default file name specified here, rfasub.{p}.log, includes the string {p} which
the Reuters library replaces with the UNIX process ID when it creates the log file.

7. Save the modified file.

The other parameters in the configuration file also affect the functioning of the Reuters
Marketfeed adapter, and you may want to modify them as well.

Configuring an Output Connection to Reuters
Modify the sample configuration file for your site's RMDS connection.

Prerequisites

• Create (or choose) a directory in which to store your site-specific configuration files.
• Create an environment variable (MY_CONFIG) and set it to the full path name of that

directory.

Task

During the installation process, a sample configuration file (rfapub.cfg) was placed in the
$ESP_REUTERS_HOME/config directory. This file, shown below, follows the Reuters
format for configuration files.

Change this if necessary.
This needs to match port number for the route as defined in the
Source Distributor.
\Connections\Connection_SSLED_MP\ipcServerName = "8105"

CHAPTER 2: Adapters Supported by Event Stream Processor

330 Sybase Event Stream Processor

Refer to RFA documentation for more advanced changes to the
remaining entries.
\Connections\Connection_SSLED_MP\connectionType = "SSLED_MP"
\Connections\Connection_SSLED_MP\entitlementData = false
\Sessions\Session1\connectionList =
"Connection_SSLED_MP"

Change the fileLoggerFilename appropriately for your setup
\Logger\AppLogger\windowsLoggerEnabled = false
\Logger\AppLogger\fileLoggerEnabled = true
\Logger\AppLogger\fileLoggerFilename = "./rfapub.
{p}.log"

\Control\Entitlements\dacs_SbeEnabled = false
\Control\Entitlements\dacs_CbeEnabled = false

\Logger\ComponentLoggers\Connections\messageFile = "./config/
messages/RFA7_Connections.mc"
\Logger\ComponentLoggers\Adapter\messageFile = "./config/
messages/RFA7_Adapter.mc"
\Logger\ComponentLoggers\SessionCore\messageFile = "./config/
messages/RFA7_SessionLayer.mc"
\Logger\ComponentLoggers\SSLED_Adapter\messageFile = "./config/
messages/RFA7_SSLED_Adapter.mc"
\Logger\ComponentLoggers\SSLED_MP_Adapter\messageFile = "./config/
messages/RFA7_SSLED_MP_Adapter.mc"

1. Obtain this information from your system administrator:
• Port number at which the src_dist or RMDS infrastructure server listens for updates

from the Reuters Marketfeed adapter
• Name of the server that receives updates from Event Stream Processor

2. Make a copy of the sample configuration file in your $MY_CONFIG directory.

cp $ESP_REUTERS_HOME/config/rfapub.cfg $MY_CONFIG

3. Use a text editor to open the configuration.

4. In the \Connections\Connection_SSLED_MP\ipcServerName line, replace
the default port number (8105) with the port number at which your src_dist listens for
updates from the Reuters Marketfeed adapter, if different.

5. (Optional) In the \Logger\AppLogger\fileLoggerFilename line, change the
name of the log file. The default file name specified here, ./rfapub.{p}.log,
includes the string {p} which the Reuters library replaces with the UNIX process ID when
it creates the log file.

6. Save the modified file.

Input Adapter Configuration
Configure an input adapter to push data from the Reuters Market Data Service (RMDS) to
Event Stream Processor.

Before configuring an input adapter, decide what data you need and how you want to set up
your system.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 331

You need to know the following about the Event Stream Processor instance from which you
receive data.

• Possible security options in a cluster environment, and the workspace and project name.
• What type of authentication mechanism (Kerberos, RSA, LDAP, or none) does it use?

Data Decisions
Decide how the incoming Reuters data fits into the project.

Also decide whether you require Level 1 or Level 2 data. For Level 1 data, use the Reuters
Marketfeed adapter, and for Level 2 data, use the Reuters OMM adapter instead.

Decision Description

Venues Decide which venues are of interest (for example, NYSE, NAS-
DAQ, Toronto, and so on).

RICs and FIDs Determine what market data you need. Specifically, which Reuters
Instrument Codes (RICs) you want the adapter to provide to Event
Stream Processor, and which Reuters Field IDs (FIDs) for these
instruments you want to use.

Streams The Reuters adapter can furnish data to one or more streams on
Event Stream Processor. To use the Reuters Market Data provided
by the adapter, decide which existing data streams to map to the
adapter's data feed, or define one or more new streams.

Administrative Decisions
You have several administrative decisions to make in regards to the project.

Decision Description

Session Name An arbitrary string used to link the project and the adapter map file.
Use it consistently.

Directories for logging and
stream output

The adapter writes its own log messages and can generate a sepa-
rate set of Reuters log messages. In the configuration, specify if and
where these log files should be written.

Sybase user account Specify a valid Event Stream Processor user account for the adapter
to use, unless you specified no authentication when you started the
Event Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

332 Sybase Event Stream Processor

Input Adapter Map File
The map file configures the interface between the Reuters Marketfeed adapter and Event
Stream Processor. It specifies which source streams receive data from RMDS via the adapter,
and it maps specific RMDS Field Identifiers (FIDs) to specific columns in that source stream.

The input adapter map file must accomplish three major tasks:

• Match incoming data elements to columns in one or more streams defined in the Event
Stream Processor configuration file.

• Match the RIC provided with each update from the adapter with a row in the Event Stream
Processor configuration file.

• Ensure that each update from the adapter can be converted into a record that provides a
unique key for each stream being populated, as defined by the stream's column definitions.

Data Structures
Data structures have three important structural aspects: data columns, datatypes, and key
values.

• Each data stream includes one or more data columns.
• Each column has a datatype.
• In most streams, each row has a unique key value. The source stream definition designates

one or more columns as "key" columns.

Incoming RMDS Data
When the adapter subscribes to RMDS for a certain RIC, RMDS first sends an initial image
containing all available market data for that RIC.

After that, RMDS sends an update when any values for a subscribed RIC change. Each update
consists of the identifying RIC, with the Field Identifier (FID), and the new value for each
change. Each FID defined for RMDS has a datatype.

Market Data Field Mapping
Map each column in the target Event Stream Processor stream to a Reuters FID or a pseudo-
field.

Find the appropriate FID for each column in the stream. The datatype of the Event Stream
Processor column must be compatible with the datatype of the Reuters FID that feeds it.

Here are possible matches between FID datatypes and Event Stream Processor datatypes:

Event Stream Processor Datatype Reuters Datatype

integer or long integer

string alphanumeric

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 333

Event Stream Processor Datatype Reuters Datatype

integer enumerated

timestamp or date time, date

money or float price

long or integer time_seconds

Not supported binary

Reuters Instrument Code Mapping
The identifier of each incoming RMDS update is the Reuters Instrument Code (RIC).

Map the RIC to a column of datatype string in the stream. If the stream you want to map to does
not have a suitable column, either add a column to the stream, or map to a different stream.

Matching the Stream's Key
The adapter map file must configure the adapter so that every update sent to the Event Stream
Processor stream includes a field or combination of fields conforming to the unique key
defined for that stream. To make this more flexible, the adapter configuration mechanism
supports "pseudofields".

The market data updates that the adapter receives from RMDS are mapped to columns in the
Event Stream Processor stream using the dataField or dateTimeField element in the map file.
RMDS also provides non-market data information, for example, each update includes a RIC.
Additionally, you can configure the adapter to add a sequence number to each update.

To make these data items available to the mapping process, the map file mechanism supports
the following elements, called pseudofields:

Field Description Datatype

itemName The RIC. string (required)

serviceName Name of the service from which RMDS
received the market data from this RIC.

string (optional)

itemState The item state. integer (optional)

sequenceNumber A unique number, assigned sequentially
by the adapter to each incoming event
(whether or not it causes an update).

long (optional)

FIDListField Shows the FID name and value for each
updated value.

string (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

334 Sybase Event Stream Processor

Field Description Datatype

updateNumber A unique number, assigned sequentially
by the adapter to each incoming update.

long (optional)

Getting Stream Information from the Project
Gather the necessary information about the Reuters stream.

The first step in configuring the input adapter is to determine the source streams on Event
Stream Processor which will receive the RMDS market data. If the Event Stream Processor
project does not already include one or more streams for this purpose, define a new stream (or
streams) for use with the Reuters adapter.

After you have chosen (or defined) the streams that will receive data from the Reuters
Marketfeed adapter, collect information about that stream from your project file. The Event
Stream Processor project file contains one or more stream definitions. Each stream definition
specifies a data stream that is instantiated when Event Stream Processor is started. The stream
definition comprises:

• A unique ID for the stream
• A database store and output file for the stream data
• A list of the columns used as the unique key value for each row in the data stream

Once you have decided which streams will carry the RMDS data provided by the Reuters
adapter, get information from the stream definition in the project file. There is no standard for
project file names. Two Event Stream Processor installations may have completely different
stream definitions, but the definition of any stream includes the same basic set of components.

These instructions refer to the example project to show what components of the stream
configuration you must identify to configure the Reuters Marketfeed adapter.

1. Open the project to which the adapter provides data. The example shown here is the
$ESP_REUTERS_HOME/examples/example.ccl file supplied with the Reuters
Marketfeed adapter distribution.

2. Find the name of the source stream. The opening SourceStream tag specifies the name of
the stream as the value of the id attribute. The first source stream in this example is named
“stream1.”

The stream used for subscription by the Reuters Marketfeed adapter must always be a
source stream.

3. Determine the key fields. Examine each of the column entries between the opening and
closing SourceStream tags to see if the key attribute is set to true. In this example,
“stream1”, has one key field, “symbol.”

4. Carefully note the number and order of the column entries in the source stream definition.

In the input adapter map file, list the same set of data in the same order.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 335

Creating the Input Adapter Map File
Create an adapter map file to configure the interface between the Reuters Marketfeed input
adapter and Event Stream Processor.

This procedure maps updates from RMDS to the source stream defined in the example.ccl
file. This file is in the $ESP_REUTERS_HOME/examples directory along with an example
map file.

1. Open a new map file using an editor.

2. Enter the following as the first line of the file to specify that the adapter map file conforms
to XML version 1.0.:
xml version="1.0" encoding="UTF-8"

3. Specify that this is an adapter map file and that includes a separate file:
<!DOCTYPE adapter [
<!ENTITY rmdsFields SYSTEM "rmds.sm.mf.xml">
]>

4. Add the opening and closing adapter tags. In the opening adapter tag, specify the name of
the adapter. For example:
<adapter name="mySubscribeAdapter1">
</adapter>

5. After the opening adapter tag, add the publication element. Specify the name to be used in
log messages for this adapter and any other attributes required to prescribe how the adapter
should deliver data to Event Stream Processor.

For example,
<publication name="RMDS Adapter - low latency" retryInterval="5" /
>

This example also includes a retryInterval attribute with a value that tells the adapter to
wait five seconds before retrying if it fails to connect to Event Stream Processor.

6. After the publication element, add the opening and closing streamMaps tags to contain the
streamMap elements that do the actual mapping between RMDS FIDs and columns of an
Event Stream Processor stream. Each streamMap maps to one and only one Event Stream
Processor stream.
<streamMaps>
</streamMaps>

Since the streamMaps section can contain more than one streamMap, one instance of the
adapter can provide RMDS data to more than one Event Stream Processor stream.

7. Enter a streamMap element for each Event Stream Processor stream to which you wish to
send RMDS data. For each streamMap,

a) Enter the opening streamMap tag specifying the name of the Event Stream Processor
stream to which the RMDS data is sent as the value of the name attribute.

b) Enter the closing streamMap tag.

CHAPTER 2: Adapters Supported by Event Stream Processor

336 Sybase Event Stream Processor

c) Between the streamMap tags, add one mapping element for each column defined in the
target stream's definition. You can do this in the map file itself or in a separate file that is
included in the map file as an entity.
<streamMap name="stream1" flags="NO_SHINE">
&rmdsFields;
</streamMap>

8. After the streamMaps section, add the rfa element, including:

• A config attribute that specifies the absolute path and file name of the Reuters
configuration file

• A sessionName attribute that specifies a session name corresponding to the one used in
the Reuters configuration file
<rfa config="$ESP_REUTERS_HOME/config/rfasub.cfg"
sessionName="Session1" />

The rfa element may also include attributes to modify the adapter's treatment of blanks (by
default it converts them to zeros). You can specify the value for the blank attribute or
specify values for each datatype directly using the blankInt32, blankInt64, blankMoney,
blankString, blankDate, and blankTimestamp attributes. Specify a value that does not
conflict with any of the values you expect in your data. If you are using both input and
output adapters, specify the same value for each attribute to both adapters.

9. Between the rfa element and the closing adapter tag, add the opening and closing itemLists
tags. When entering the opening itemLists tag:

• Specify the Reuters service from which the adapter is receiving RMDS data as the
value of the service attribute.

• Specify the name of the Event Stream Processor stream that is receiving the RMDS
data as the value of the stream attribute.
<itemLists service="IDN_RDF" stream="stream1">
</itemLists>

The itemLists tags will contain one or more pairs of opening and closing itemList tags.

10. Between the itemLists tags, add opening and closing itemList tags for each separate list of
RICs to which the adapter subscribes.

11. Between the itemList tags, add an item element for each RIC to add to the list. When
entering the item element:

a) Specify an RIC to which the adapter subscribes as the value of the name attribute.
b) (Optional) Specify the name of the queue you wish to use as the value of the rfaQueue

attribute. Specifying an rfaQueue spawns a separate thread to do the processing.
c) (Optional) Specify the name of the service to use.

For example:
<itemList>
<item name="AAPL.O" rfaQueue="queue1" />
<item name="CSCO.O" />
</itemList>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 337

Running the Input Adapter
Run the Reuters Marketfeed input adapter once you have configured it.

Prerequisites
Configure an adapter.

Task

1. Ensure that esp_server is running and that the project has been loaded and started.

2. Start the adapter using the esp_rmds command.

a) If the Event Stream Processor is running with no authentication, start the adapter with
this command:
esp_rmds -a in -f mapfile -p cluster_host:cluster_port/
workspace/project

using the appropriate mapfile, cluster_host, cluster_port, workspace, and project
names for the project to which the adapter will connect.

b) If the Event Stream Processor is running with some form of authentication, refer to
Command Usage to obtain the additional arguments necessary for the command to
start the adapter.

The exact usage of the command depends on how you started your Event Stream
Processor. You must invoke the adapter with compatible options. The command string
shown above invokes neither encryption nor authentication: you can specify either or both.

3. The adapter starts the subscription by first connecting to Event Stream Processor and then
connecting to RMDS. Both connections must be operational for any data to flow.

If you plan to direct the adapter's log output to stderr, as shown here, you may want to
redirect stdout and stderr to a log file (for example, append >& myrmdslog & to the
command line shown above).

Testing the Adapter
If the adapter is not working as expected, you can perform a quick sanity check by executing
the esp_rmds command and verifying whether the adapter is sending Reuters market data to
Event Stream Processor.

• Execute esp_rmds:
esp_rmds -v

This command returns the version information. Ensure that the Event Stream Processor to
which you are connecting is compatible with your version of the adapter.

• There are three quick ways verify that the Reuters Marketfeed adapter is sending Reuters
Market Data to Event Stream Processor:

CHAPTER 2: Adapters Supported by Event Stream Processor

338 Sybase Event Stream Processor

• Use the Studio or the esp_subscribe command to check the output of the stream
configured to receive Reuters data.

• Use the tail command on the redirected adapter log file (specified in the adapter map
file) or the Reuters subscriber log (specified in the configuration file rfasub.cfg)
for activity.

• Run the esp_rmds command with the -d7 option to produce verbose output.

Multiple RICs
When configuring an input adapter, you will usually want to specify multiple RICs.

There are several ways to do this:
• Specify each individual RIC by entering the name directly into the map file or use an XML

ENTITY include file.
• Specify a chain RIC from Reuters.
• Create a dynamic watch list, which employs Event Stream Processor to specify the list of

RICs.
• Use a combination of the options above.

Individual RICs
Enter an item element declaration for each RIC you want in the itemList section of the map
file.

Here is an example of this:

<itemLists service="SSL_PUB" stream="stream1">
<itemList>
<item name="CSCO.O"/>
<item name="K.N"/>
<item name="KBN.N"/>
<item name="KBR.N"/>
<item name="ACAM.ARC"/>
<item name="IBM.ARC"/>
</itemList>
</itemLists>

It can become difficult to create and maintain your list of RICs this way if it is very large or
changes frequently, for example, if you are attempting to track all of the stocks traded on the
NYSE. All RICs for the same stream must use the same FID set. Since FIDs often vary by
venue, use a different itemList and streamMap for each venue.

Chain RIC
When you specify the name of a chain RIC, Reuters translates it to a list of individual RICs.
Chain RICs usually contain all of the RICs from a single market or for a single index
instrument, such as the S&P 500 or the Russell 2000.

For example, to specify the chain RICs for the Dow Jones Index and the SIAC entities, add a
chain- map section:
<streamMap name="chainMap" chain="1" >
<itemName /> <dataField name="REF_COUNT" />

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 339

<dataField name="NEXT_LR" /> <dataField name="PREF_LINK" />
<dataField name="LINK_1" /> <dataField name="LINK_2" />
<dataField name="LINK_3" /> <dataField name="LINK_4" />
<dataField name="LINK_5" /> <dataField name="LINK_6" />
<dataField name="LINK_7" /> <dataField name="LINK_8" />
<dataField name="LINK_9" /> <dataField name="LINK_10" />
<dataField name="LINK_11" /> <dataField name="LINK_12" />
<dataField name="LINK_13" /> <dataField name="LINK_14" />
<dataField name="LONGNEXTLR" /> <dataField name="LONGPREVLR" />
<dataField name="LONGLINK1" /> <dataField name="LONGLINK2" />
<dataField name="LONGLINK3" /> <dataField name="LONGLINK4" />
<dataField name="LONGLINK5" /> <dataField name="LONGLINK6" />
<dataField name="LONGLINK7" /> <dataField name="LONGLINK8" />
<dataField name="LONGLINK9" /> <dataField name="LONGLINK10" />
<dataField name="LONGLINK11" /> <dataField name="LONGLINK12" />
<dataField name="LONGLINK13" /> <dataField name="LONGLINK14" />
</streamMap>

and enter their names in the itemList section.

<itemList stream="stream1" service="IDN_RDF" >
<item name="0#.DJI" /> <!-- The Dow Jones Index -->
<item name="0#SIAC" /> <!-- The entities of SIAC -->
</itemList>

For more details about chains, look at the example in chain.example.map.xml in the
$ESP_REUTERS_HOME/examples directory. For more information about Reuters chain
RICs, see the Reuters Venue Guide for your chosen venue, which is available from Reuters.

Creating a Dynamic Watch List
Creating a dynamic watch list is a bit more complex than creating individual or chain RICs, but
is also more flexible. Chain RICs are limited to those defined by Reuters, but with this method
you can specify a customized list of RICs.

Prerequisites
Define a source stream (named MyInfoStream) to receive the data, and manually edit the list
of RICs to include.

Task

Creating a dynamic watch list is also dynamic: when inserts or deletes occur on the stream
configured using these steps, RMDS subscriptions to the appropriate RICs are started or
stopped.

1. Define a stream on Event Stream Processor (for example, MyListStream), which
publishes to the adapter the list of RICs to which you want to subscribe. This stream
requires these columns:

CHAPTER 2: Adapters Supported by Event Stream Processor

340 Sybase Event Stream Processor

Column Description

symbol Specifies an RIC symbol ticker (for example, CSCO.O) to which the adapter
should subscribe.

service Specifies the RMDS service on which to subscribe to obtain data for that
RIC.

stream Specifies the name of the stream (for example, MyInfoStream) on which the
adapter publishes data for this RIC.

The stream can also include an optional fourth column, rfaQueue.

2. Define a second stream on Event Stream Processor (for example, MyInfoStream) that
receives the data requested by the first stream.

3. Edit the map file to include the subscription.
<subscriptions>
<subscription name="subscription1" flags="BASE" >
<stream name="MyListStream" >
<name column="3" /> <!-- symbol -->
<field column="1" name="service"/>
<field column="2" name="stream"/>
</stream>
</subscription>
</subscriptions>

4. Specify the set of RICs you want and send them to the first stream you created (for
example, MyListStream) to subscribe to them.

a) Create a file with the same six columns that the stream expects in comma-separated
values (CSV) format. The columns are: stream from which you are receiving data,
opcode, service, symbol, and stream to which you are sending data.

For example, open a new file (RIClist.csv) using an editor and put in these lines.

MyListStream,p,,IDN_RDF,MyInfoStream,CSCO.O
MyListStream,p,,IDN_RDF,MyInfoStream,K.N
MyListStream,p,,IDN_RDF,MyInfoStream,KBN.N
MyListStream,p,,IDN_RDF,MyInfoStream,KBN.R
MyListStream,p,,IDN_RDF,MyInfoStream,ACAM.ARC
MyListStream,p,,IDN_RDF,MyInfoStream,IBM.ARC

b) Send the data from the file to Event Stream Processor using the esp_convert and
esp_upload commands. The following example assumes that you have installed all
Sybase command line tools in the default directories and added those directories to
your PATH variable. If you have not, prepend the appropriate path to each command
shown in this example.

For example, to send the file created in the previous step to Event Stream Processor
running a project named p1 in workspace ws1 on port 19011 of your local server,
enter:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 341

cat RIClist.csv | esp_convert -c user:password -d "," -p
localhost:19011/ws1/p1 | esp_upload -c user:password -p
localhost:19011/ws1/p1

c) Start the adapter:
esp_rmds -f mapfile -d7 -c user:password -p localhost:19011/
ws1/p1 >& logfile &

If the adapter and Event Stream Processor are on different machines, enter the name of
the remote host in place of localhost after the -p in the previous command.

Output Adapter Configuration
Configure an output adapter to push data from Event Stream Processor to RMDS, using
RMDS as a message infrastructure.

Before configuring an output adapter, decide which data to provide and how you want to set up
your system.

You need to know the following about the Event Stream Processor instance from which you
receive data.

• Possible security options in a cluster environment, and the workspace and project name.
• What type of authentication mechanism (Kerberos, RSA, LDAP, or none) does it use?

Data Decisions
Identify which columns from which streams in Event Stream Processor to publish data from.

The Reuters Marketfeed adapter can rearrange the columns from a stream in any order. Its
output can also include constants, and the published output can include values from more than
one stream.

Consider these items when planning the output of the Reuters Marketfeed Output adapter:

• For each stream for which to publish data, you must specify a unique key in the output
adapter map file. Since this adapter sends data to RMDS, the unique identifier should be an
RIC.

• Each data column you want to publish from any stream must map to a unique FID.
• Data from one column can be repeated in the published output, giving you a way to publish

a DateTime value as separate Date and Time values.
• If the stream you are working with receives data about the same FID from more than one

service, you can configure the adapter to differentiate these data items by service and
transmit each service's data separately.

• The first time the Reuters Marketfeed adapter publishes to RMDS, it publishes values for
all the columns for which it is configured. After that initial image, the adapter only
publishes updates for individual columns as these updates occur.

CHAPTER 2: Adapters Supported by Event Stream Processor

342 Sybase Event Stream Processor

Administrative Decisions
You have several administrative decisions to make in regards to the project.

Decision Description

Session Name An arbitrary string used to link the project and the adapter map file.
Use it consistently.

Directories for logging and
stream output

The adapter writes its own log messages and can generate a sepa-
rate set of Reuters log messages. In the configuration, specify if and
where these log files should be written.

Sybase user account Specify a valid Event Stream Processor user account for the adapter
to use, unless you specified no authentication when you started the
Event Stream Processor.

Reuters Information
You need several pieces of information from Reuters to enable the Reuters Marketfeed adapter
to publish to the RMDS.

• The name of the Reuters service on which the adapter transmits data
• Up-to-date lists of valid Reuters Instrument Codes (RICs) and Field Identifiers (FID) used

by RMDS
• The Product Permission Code assigned by Reuters

The adapter does not work with the Reuters Data Access Control System (DACS), so the
Product Permission Code is needed to allow access to the information you are transmitting on
the RMDS.

A list of FIDs, $ESP_REUTERS_HOME/config/appendix_a, has been supplied as
part of the Reuters adapter distribution. You can obtain the latest list and other information
from your Reuters technical contact.

The datatype of the Event Stream Processor column must be compatible with the Reuters FID
datatype that feeds it. This table shows possible matches between Event Stream Processor and
FID datatypes:

Event Stream Processor Datatype Reuters Datatype

integer, long integer or price

money, float price

string alphanumeric

date, timestamp date or time

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 343

Getting Stream Information from the Project
Gather the necessary information from the project.

The first step in configuring the output adapter is determining which data elements from which
streams on the Event Stream Processor are to be published. After you have chosen (or defined)
a project containing the items for publication over RMDS via the Reuters adapter, collect
information from the streams to obtain the data to send to RMDS.

Each stream definition specifies a data stream that is instantiated when Event Stream
Processor is started. The stream definition:

• Specifies a unique ID for the stream
• Identifies the columns used as the unique key value for each row in the data stream

Once you have decided which streams will provide the information to be sent to RMDS by the
Reuters adapter, get information from the stream definition in the project file. There is no
standard for project file names. Two Event Stream Processor installations may have
completely different stream definitions, but the definition of any stream includes the same
basic set of components.

1. Open the project to which the adapter provides data. The Reuters Marketfeed adapter
distribution includes an example project, $ESP_REUTERS_HOME/examples/
example.ccl.

2. From the definition of each stream defined in the project:

a) Obtain the name of the stream from the id attribute in the opening tag of that stream.
b) Verify that the key attribute is set to true for the column containing the RIC and note the

column. In this example, both “stream1” and “orderbookStream” have the RIC in the
column named “symbol,” which is identified as a key field.

c) Decide what data, if any, you want the adapter to send to RMDS.

3. Carefully note which streams contain data to send to RMDS, and where in the stream
definition it is located.

In the output adapter map file, reference each of the columns you want to publish.

Creating the Output Adapter Map File
Create an adapter map file to configure the interface between the output adapter and Event
Stream Processor.

The examples shown below map updates from RMDS to the source stream defined in the
example.project.xml file.

1. Open a new map file using an editor.

2. Enter the following as the first line of the file to specify that the adapter map file conforms
to XML version 1.0.:
xml version="1.0" encoding="UTF-8"

CHAPTER 2: Adapters Supported by Event Stream Processor

344 Sybase Event Stream Processor

3. Add the opening and closing adapter tags by entering this as the first line:.
<adapter>
</adapter>

4. Define the configuration of the adapter's interface to RMDS by adding the rfa tag, with
these attributes:

Attribute Description

config Specify the full path name of the Reuters configuration file.

fidFile Specify the full path name of the Reuters-supplied file that lists all of
the valid FIDs.

enumFile Specify the full path name of the Reuters-supplied file that lists each
enumerated type along with the range of values it can take.

serviceName Specify the service name provided by Reuters for the adapter to send
data to RMDS.

sessionName Specify the sessionName value found in the Reuters configuration
file, rfasub.cfg.

For example, using the files that were shipped with the adapter distribution:
<rfa config="$ESP_REUTERS_HOME/config/rfapub.cfg"
fidFile="$ESP_REUTERS_HOME/config/appendix_a"
enumFile="$ESP_REUTERS_HOME/config/enumtype.def"
serviceName="IDN_RDF" sessionName="Session1" />

5. Add the subscriptions begin and end tags between the rfa element and the closing adapter
tag.
<subscriptions>
</subscriptions>

The adapter subscribes to Event Stream Processor to get the data to publish to the RMDS.

6. Between the opening and closing subscriptions tags, add opening and closing subscription
tags to define a subscription. Include these attributes in the opening subscription tag:

Attribute Description

name Specify a unique name for this subscription.

flags Set this parameter to “BASE” to obtain a complete set of initial values. This
may be undesirable in situations such as recovery if there are a lot of
unchanging values because getting those values adds latency to the other
values. In these cases, set this parameter to “NO_BASE”.

<subscription name="subscription1" flags="BASE" >
</subscription>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 345

Each subscription defined in the output adapter map file must reference at least one Event
Stream Processor stream.

7. Add the stream definition to the subscription.

a) Immediately before the closing subscription tag, insert the opening and closing stream
tags. In the opening stream tag, include the name attribute set to the name of the stream.

b) To use a “constant” rather than a column to specify your Reuters permission code,
insert the constant tag immediately before the closing stream tag, including these
attributes:

Attribute Description

name Specify the Reuters FID “PROD_PERM.”

value Specify the permission code issued by Reuters that certifies
your permission to publish to RMDS.

c) Immediately following the opening stream tag, insert the name tag, with the attribute
column set to the column before the column with the symbol or RIC in the project. For
example, if the symbol or RIC is in the first column in the project, set the value of
column to 0.

d) Immediately following the opening name tag, insert the stale tag, with the attribute
column set to one less than the position of the value in the project.

e) Between the stale and the constant tags, add a field tag for each data column in the
stream that you want to send to RMDS. Include these attributes:

Attribute Description

column Set this parameter to either the name of the column or the
numeric position (one less than the position of the value in the
project).

name Specify the Reuters FID for this data.

For fields of datatype float, you may also include the precision attribute, set to the
number of digits you want after the decimal place in the value sent to RMDS. For
example:
<stream name="stream1" >
<name column="0"/>
<stale column="3" />
<field column="4" name="BID" precision="5" />
<field column="5" name="ASK" precision="0" />
<field column="6" name="TRDPRC_1"/>
<field column="7" name="ACVOL_1"/>
<constant name="PROD_PERM" value="1"/>
</stream>

CHAPTER 2: Adapters Supported by Event Stream Processor

346 Sybase Event Stream Processor

Running the Output Adapter
Run the adapter once you have configured it.

Prerequisites
Configure an adapter.

Task

1. Ensure that esp_server is running and that the project has been loaded and started.

2. Start the adapter using the esp_rmds command.

a) If the Event Stream Processor is running with no authentication or encryption, start the
adapter:
esp_rmds -a out -f mapfile -p cluster_host:cluster_port/
workspace/project

using the appropriate mapfile, cluster_host, cluster_port, workspace, and project
names for the project to which the adapter will connect.

b) If the Event Stream Processor is running with encryption or some form of
authentication, refer to Command Usage to obtain the additional arguments necessary
for the command to start the adapter.

The exact usage of the command depends on how you started your Event Stream
Processor. You must invoke the adapter with compatible options. The command string
shown invokes neither encryption nor authentication: you can specify either or both.

3. The adapter starts the subscription by first connecting to Event Stream Processor and then
connecting to RMDS. Both connections must be operational for any data to flow.

If you plan to direct the adapter's log output to stderr, as shown here, you may want to
redirect stderr to a log file (for example, append >& myrmdslog & to the command line
shown above).

Testing the Adapter
If the adapter is not working as expected, you can perform a quick sanity check by executing
the esp_rmds command and verifying whether the adapter is sending Reuters market data to
Event Stream Processor.

• Execute esp_rmds:
esp_rmds -v

• This command returns the adapter release number and the revision number of the source
tree separated by an underscore character. Ensure that your version of the adapter is
compatible with your version of Event Stream Processor.

• There are several ways to verify whether the Reuters Marketfeed adapter is publishing to
RMDS:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 347

• Use the tail command on the adapter log file to which console output was redirected or
any of the Reuters publisher log files (specified in rfapub.cfg) to look for activity.

• Use the esp_subscribe command to look at the outbound stream and verify that values
are changing.

• Use RMDS tools to subscribe to RICs provided by the output adapter.
• Use an input adapter to subscribe to the output adapter.

Creating a Subordinate Map File
Create a subordinate map file to hold part of the map file configuration.

It can be advantageous to put part of your input or output adapter map file in a separate file. For
example, you might want to keep a subscription configuration in a map file, but break out the
list of RICs you want the adapter to subscribe to.

1. Go to the directory that contains the map file.

2. Create a new file with the extension .xml.

You need not add a declaration of the XML version.

3. Insert the selected content from the map file into the new file.

The content you add depends on which part of the map file you have decided to store
separately.

4. (Optional) Add a comment to the new file.

5. Save the file.

Modifying the Main Map File
Modify the main map file to reference the subordinate file.

1. Make sure the first line of the main map file is:
<?xml version="1.0"?>

2. Between the XML version declaration and the opening adapter tag, add these lines:
<!DOCTYPE adapter SYSTEM "adapter.dtd" [
]>

3. For each subordinate map file:

a) Between the two lines just added, add:
<!ENTITY SUBREF SYSTEM "SUBFILE">

where SUBREF is a string to reference the subordinate file and SUBFILE is the path
and file name of the subordinate file itself. Enclose the path and file name in quotation
marks.

b) Remove the content that you put in the subordinate map file.
c) Insert a string like the following to include the content from the subordinate map file:

&SUBREF;

where SUBREF is the string you specified to reference the subordinate file.

CHAPTER 2: Adapters Supported by Event Stream Processor

348 Sybase Event Stream Processor

Example
Configure the input adapter in the map file (subInclude.map.xml) to reference two
subordinate files (RIClist1.sm.mf.xml, and RIClist2.sm.mf.xml).

The map file subInclude.map.xml configures the input adapter to reference two
subordinate files, each containing a list of RICs for the adapter to subscribe to.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE adapter [
<!ENTITY RIClist1 SYSTEM "RIClist1.sm.mf.xml">
<!ENTITY RIClist2 SYSTEM "RIClist2.sm.mf.xml">
<!ENTITY rmdsFields SYSTEM "rmds.sm.mf.xml">
]>
<adapter>
<publication name="RMDS Adapter" retryInterval="5"
sendAsTransactions="0" flushInterval="1000"
intraSubscribeDelay="100"/>
<streamMaps>
<streamMap name="stream1">
&rmdsFields;
</streamMap>
</streamMaps>
<rfa config="$ESP_REUTERS_HOME/config/rmdsmf.cfg"
sessionName="Inbound" />
<itemLists>
&RIClist1;
&RIClist2;
</itemLists>
</adapter>

The first file, RIClist1.sm.mf.xml, contains:

<!-- This fragment is meant to be included in an itemLists section.--
>
<!-- These are FX RICs -->
<itemList service="IDN_RDF" stream="stream1">
<item name="GRMN.O"/>
<item name="INTC.O"/>
<item name="KLAC.O"/>
<item name="XLNX.O"/>
<item name="YHOO.O"/>
</itemList>

The second file, RIClist2.sm.mf.xml, contains:

<!-- This fragment is meant to be included in an itemLists section.--
>
<!-- These are FX RICs -->
<itemList service="IDN_RDF" stream="stream1">
<item name="AUD="/>
<item name="CAD="/>
<item name="DKKTN="/>
<item name="GBPSW="/>
<item name="GBPTN="/>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 349

<item name="JPYSN="/>
<item name="JPYSW="/>
<item name="JPYTN="/>
<item name="HKD="/>
<item name="SGDSW="/>
<item name="ZAR="/>
<item name="ZARSN="/>
</itemList>

Performance Tuning
There are several attributes you can use to fine-tune performance in an input adapter.

Attribute Description

flushInterval Specify an interval of time in microseconds (for example, 5000
microseconds = 5 milliseconds) to wait while accumulating data.
At the end of this interval, any accumulated events are sent to Event
Stream Processor. Send events less often to allow more events to be
placed into a message, resulting in a communications overhead
savings. Use a nonzero flushInterval to make even accumulation
time-based.

maxRecordsPerBlock Specify the maximum number of accumulated events that the
adapter should send to Event Stream Processor at a time. When the
number of accumulated events is larger than this value, the enve-
lope or transaction is broken into fragments that are less than or
equal to the specified value. For example, if accumulated event
counts of more than 1024 (which would immediately fill the Event
Stream Processor Gateway's inbound queue) are expected, set
maxRecordsPerBlock to a value like 500 to prevent the inbound
queue from filling.

pendingLimit Specify a threshold for the number of events that must accumulate
before they are sent to Event Stream Processor. Set this parameter
to zero to publish each event immediately when it happens (pro-
viding the lowest latency), at the expense of high network overhead
(a TCP/IP packet for each update). If you set this parameter to a
larger value, the adapter waits until number of events have accu-
mulated, packs them efficiently in TCP/IP packets, and sends them
to Event Stream Processor. This saves communication work but
increases latency on both the adapter and Event Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

350 Sybase Event Stream Processor

Attribute Description

sendAsTransactions This parameter controls whether events are sent as an envelope or a
transaction. You can specify this parameter on a per-stream basis.

Set this parameter to true for Event Stream Processor to treat a
group of events as a single transaction. Transactions typically cause
application-level workload savings, since Event Stream Processor
collapses multiple events to the same value (as determined by
identical key columns) in a transaction to a single event. If a trans-
action contains a delete, additional savings are achieved since up-
dates prior to the delete can be discarded.

If you set this parameter to false and you are not in low-latency
mode (pendingLimit and flushInterval both set to zero), then use
the maxRecordsPerBlock to control the size of the envelope. You
still gain the communications overhead savings mentioned above,
but not the transactional savings. This is the preferred configura-
tion for applications that require every event to be sent separately,
such as a market data compliance application.

As a general rule, for quote-based applications, where only the
most recent update matters, use transactions to be most efficient.
For trades, however, every event must be processed seperately to
compute a total volume, use envelopes instead.

When you use both flushInterval and pendingLimit, no event waits longer than the time
indicated in the flushInterval before being sent, and as long as the number of events specified
in pendingLimit arrive, they are sent immediately. The adapter waits flushInterval and, if any
events have accumulated, it sends them. If the number of pendingLimit events, or more,
accumulate while the adapter is sending the earlier events, the new events are sent
immediately (without waiting for the flushInterval). If fewer than the number of pendingLimit
events accumulate while the adapter is sending events, it waits for the flushInterval to elapse.

You can also use the rfaQueue attribute at the itemLists, itemList, or item element level. When
specified, the rfaQueue attribute causes the element to be subscribed from Reuters on a named
rfaQueue. Each rfaQueue is processed by its own thread within the Reuters adapter. Spreading
requests across multiple threads can reduce latency and improve overall adapter throughput at
the cost of greater CPU usage.

Since all events (images and updates) for the same RIC come from Reuters on the same queue,
the integrity of the order of arrival is maintained for any individual RIC. If you do not specify
an rfaQueue for any of the elements, a single default queue (named "default") is used for all
RICs.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 351

Command Usage
The Reuters Marketfeed adapter converts data from the Reuters Market Data System (RMDS)
to the Event Stream Processor and vice versa.

Synopsis
esp_rmds -f mapFile -p host:port/workspace/project [OPTION ...]

Description
esp_rmds can operate as either an input or an output adapter. An input adapter passes data
from RMDS in to the Event Stream Processor. An output adapter passes data from the Event
Stream Processor out to RMDS. A single adapter instance cannot operate both ways. To have
an input adapter and an output adapter, you must run two separate adapter instances.

The metadata describing the connection has several parts, including a map file, a configuration
file, and possibly a configuration stream resident on a running instance of the Event Stream
Processor.

Only limited Level 2 data is available via RMDS Marketfeed. For full order book depth, use
the Reuters OMM adapter (esp_rmdsomm).

The Marketfeed adapter process runs as a daemon, getting its configuration from a map file. It
handles SIGHUP; so you can enter kill -s SIGHUP pid on Linux or kill -s HUP
pid on Solaris (where pid is the process ID of the esp_rmds daemon, which you can obtain
using the ps command) to gracefully shut down the adapter. Using the KILL signal rather than
the HUP signal may prevent a complete clean up of system resources.

There are three directories containing additional information underneath the directory where
the adapter is installed: doc, examples, and config. The doc directory contains Reuters
README files that describe various configuration options. The examples directory
contains several example map files that demonstrate many features. The config directory
contains example RMDS configuration files. Minimally, you must modify the RMDS
config file with your site's specific information. Typically, you must also modify the map
file to match the Event Stream Processor.

Required Arguments

• -f mapFile – specify the map file containing the metadata required to map the market data
to/from RMDS.

• -p host:port/workspace/project – specify the URI to connect to the server (cluster
manager). For example, -p localhost:19011/default/prj1 specifies a project
called prj1 in the default workspace of an ESP cluster server using port 19011 on the
machine at which you entered the command.

CHAPTER 2: Adapters Supported by Event Stream Processor

352 Sybase Event Stream Processor

Options

• -a in|out – specify whether the RMDS Marketfeed adapter instance is passing data in to
the Event Stream Processor or receiving data passed out from it. Valid values are in and
out. Since the default value is in, this option is typically omitted when subscribing to
market data.

For backward compatibility, "subscribe" (in) and "publish" (out) are still allowed, but
these options have been deprecated.

• -c user:password – if you are using an authentication method that requires credentials
(such as Kerberos, PAM, or RSA), this option passes those authentication credentials to
Event Stream Processor. If Event Stream Processor successfully authenticates with these
credentials, the connection is maintained, otherwise Event Stream Processor immediately
closes the connection.

• -d debugLevel – set the debug level. The valid range is 0 - 7, with 0 being minimal and 7
being verbose. By default, the debug level is 4.

• -e – negotiate encrypted OpenSSL sockets for all communication with the Event Stream
Processor, which must be started in encrypted mode when using this option.

• -F configFile – specify the RMDS configuration file, overriding the configuration file
specified in the map file.

• -g gatewayHost – explicitly the Event Stream Processor gateway host.
• -G – use Kerberos authentication. This option is required when the Event Stream

Processor is started with the -V gssapi option.
• -h – print a short help message describing the syntax of this command.
• -k privateRSAKeyFile – perform authentication using the RSA private key file

mechanism instead of password authentication. The privateRSAKeyFile must specify the
absolute path file name of the private RSA key file. With this option enabled, the user name
must be specified with the -c option, but the password is not required. In addition, Event
Stream Processor must be started with the -k option.

• -l 0|1|2|3 – specify the location to which log messages are sent. Use 0 for no log messages,
1 to send to stderr only (the default), 2 to send to syslog only, and 3 to send to both stderr
and syslog.

• -r subscribeRetryInterval – specify how many seconds to wait (default is 300) between
attempts to resubscribe to a RIC. (If a subscription to a RIC is marked CLOSED or
CLOSEDRECOVER, you must resubscribe to that RIC for data to flow.) To disable
resubscription attempts, specify 0 as the value. Periodically resubscribing can compensate
for a temporary condition where the source is not ready for subscribers. Each unsuccessful
resubscribe attempt generates a failure event which may result in a status update marking
the item stale.

• -s streamName – specify the stream to be used when running in discovery mode. This
option is used by the connector start mechanism and specifies the single stream for which
mapped columns have been discovered.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 353

• -v – print the version of the RMDS Marketfeed Adapter and exit.
• -w retrySeconds – specify the number of seconds to wait between retries when

connecting to the Event Stream Processor. The default is 5. Specify 0 to try only once.
• -x optName – specify various extra settings; use -x help to see a list of possible values.

• -z publishCount – specify the number of values to pass to the Event Stream Processor
before terminating. By default this is 0, which means never terminate.

• -Z subscribeCount – specify the number of values to pass to RMDS before terminating.
By default this is 0, which means never terminate.

Examples
To start an input adapter, using the map file subexample.map.xml, running a project
named project1 in a workspace named ws1 on port 19011 of the localhost machine, enter:
esp_rmds -c user:pw -p localhost:19011/ws1/project1 -a in -f
subexample.map.xml

Environment Variables
The Reuters Marketfeed adapters use environment variables to specify behavior.

Environment Variable Used
By

Description

ESP_ACCUMULATOR_DELAY Input (Expert) Delay connection to the Event Stream
Processor (seconds).

ESP_DISABLE_REPORT_ENCOD-
ING_NULL

Output Stop warning about blank to null conversions
(bool) [false].

ESP_FLUSH_INTERVAL Input Override the publication flushInterval (micro-
seconds).

ESP_INTRASUBSCRIBE_DELAY Input Override the map attribute (milliseconds).

ESP_LOG_CONFIG_EVENTS Both Set log level (1–7) for config event processing
[-1].

ESP_MARKETFEED_DUMP Output Set the log level (0–7) at which to dump raw
Reuters messages to the log.

ESP_MAX_RE-
CORDS_PER_BLOCK

Input Override the publication maxRecordsPerBlock
(count).

ESP_PENDING_LIMIT Input Override the publication pendingLimit.

ESP_RETRY_INTERVAL Both Override the publication retryInterval.

ESP_REUTERS_HOME Both Specify the installation directory.

CHAPTER 2: Adapters Supported by Event Stream Processor

354 Sybase Event Stream Processor

Environment Variable Used
By

Description

ESP_RMDS_DISPATCH Both (Expert) Dispatch RFA every N milliseconds
[10,000].

ESP_RMDS_EVENT_TRACE Both (Expert) Enables RFA event tracing every N
event (int).

ESP_RMDS_PUBLISH_BUFSIZE Output Override the buffer size.

ESP_RMDS_PUBLISH_DE-
BUG_LEVEL

Output Set to 7 to see values.

ESP_RMDS_PUBLISH_DE-
BUG_SYMBOLS

Output Contains a space-delimited list of symbols that
are used when default behavior is overridden. If
this environment variable is not set, all symbols
are used.

ESP_RMDS_SUBSCRIBE_DE-
BUG_LEVEL

Input Set to 7 to see values.

ESP_RMDS_SUBSCRIBE_DE-
BUG_SYMBOLS

Input Contains a space-delimited list of symbols for
above. If this environment variable is not set, all
symbols are used.

ESP_RMDS_SUBSCRIBE_SYM-
BOL_FORMAT

Input Specify symbol list format: 0 for multiline; or 1
for single line.

ESP_SEND_AS_TRANSACTIONS Input Override the map attribute.

ESP_SHOW_FIELD_INFO Input Show FID, column, spColumn, and stream name
[false].

ESP_SHOW_SP_EVENT_DATA Output Set log level (1–7) for events from the Event
Stream Processor [-1].

Input Adapter Map File XML Syntax
The syntax of the map file for a Reuters Marketfeed input adapter.

adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 355

 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

adapter
The adapter element is the root element of the map file.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Nest all the configuration sections between the adapter start and end tags.

Parent
None

Children
The following child elements are defined for the adapter element. All of these elements must
be in the order specified.

Name Requirement

publication Exactly one required

streamMaps Exactly one required

recordTypeMap Optional

rfa Exactly one required

CHAPTER 2: Adapters Supported by Event Stream Processor

356 Sybase Event Stream Processor

Name Requirement

itemLists Exactly one required

Attributes

Name Description Requirement

name A string that uniquely identifies this adapter (included in log entries) Optional

Notes
None

Example
See the examples for the individual elements contained within the adapter definition.

dataField
In the streamMap definition, the dataField element maps one column from a source stream to
a Reuters Field ID (FID).

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 357

Attributes

Name Description Requirement

name The Reuters FID that identifies the data item that appears in this column
of the source stream

Required

key Either true or false, depending on whether this column is part of the
source stream's unique key

See Notes

Notes
Each element in the streamMap section of the input adapter map file must represent a column
in the row definition of the target source stream. (The order of the streamMap elements must
mirror the order of the columns in the RowDef.) If the column in the RowDef is a data item
(Bid, Ask, and so on), the corresponding streamMap entry must be a dataField element for
which the name attribute identifies a specific FID. Any time RMDS publishes an update
tagged with that FID, the adapter sends it to Event Stream Processor source stream as a value
in the corresponding row.

Use the key attribute to set the value to true. If this column is not part of the stream's key, you
can omit the key attribute.

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The example shown above maps columns 5–8 of stream1 to the Reuters FIDs BID, ASK,
TRDPRC_1, and ACVOL_1.

dateTimeField
In the streamMap definition, the dateTimeField element maps a Reuters date or time FID (or
one of each) to a date column, a timestamp column, or both, in a stream.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)

CHAPTER 2: Adapters Supported by Event Stream Processor

358 Sybase Event Stream Processor

 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

dateName The FID of the date value provided by RMDS See Notes

timeName The FID of the time value provided by RMDS See Notes

Notes
The most commonly used datatype for date/time information in Event Stream Processor data
streams is dateTime, which combines both date and time. In most cases, however, the updates
provided by RMDS and brought in to the Event Stream Processor by the Reuters Marketfeed
adapter use separate FIDs for date and time.

To address this discrepancy, the map file provides the dateTimeField element, which provides
separate attributes for date and time, allowing you to map two FIDs (one for date, one for time)
to the same column in the stream definition.

If dateTime is used, it must be used alone. The dateName and timeName can be used either
separately or together. One of these three attributes must be used.

The value for each FID must match one listed in the FID list referenced in the Reuters-side
configuration file (the FID list provided with the adapter is named appendix_a). This file is
referenced in the configuration file rfasub.cfg.

Example
<streamMap name="stream1">
 <itemName key="true"/>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 359

 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

This example maps the TIMACT and ACTIV_DATE FIDs together to the ninth column of the
Event Stream Processor source stream named stream1.

FIDListField
In the streamMap definition, the FIDListField element maps all of the Reuters FIDs with their
values for an event to the Event Stream Processor source stream.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name A string that will appear in any adapter-related log entries Optional

CHAPTER 2: Adapters Supported by Event Stream Processor

360 Sybase Event Stream Processor

Notes
None

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

In this example, the second column of the source stream is identified as the one that carries the
FIDList string of any update from the adapter.

item
The itemelement is used to identify a RIC to which the Reuters Marketfeed adapter
subscribes.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
itemList

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 361

Children
None

Attributes

Name Description Requirement

name An RIC to which the adapter subscribes Required

rfaQueue A name for the rfaQueue, which, if provided, replaces
the default rfaQueue name and causes separate thread
to be used for this queue

Optional

service The name of a Reuters Service that provides incoming
data through RMDS

Optional if already specified in
the parent itemList or itemLists
element, otherwise required

stream The source stream on which updates for this RIC are
brought to the Event Stream Processor

Optional if already specified in
the parent itemList or itemLists
element, otherwise required

Notes
The value for the name attribute must match one listed in the appendix_a file referenced in
the Reuters-side configuration file (rfasub.cfg is the name of the file provided with the
adapter).

If you specify a stream name here, updates for this RIC are brought in to the Event Stream
Processor on that stream. If you do not specify a stream here, the stream specified at the
itemList level is used.

The stream you specify must match one of the streamMaps defined elsewhere in the map file
by the value of the streamMap's name attribute.

Example
<itemLists service="SSL_PUB" stream="stream1">
 <itemList service="IDN_RDF" >
 <item name="EUR=" />
 <item name="EURJPY=" stream="stream6" />
 </itemList>
</itemLists>

These two item elements subscribe the adapter to the RICs EUR and EURJPY. The EUR
updates are sent to the stream1, which is set in the itemLists element. The EURJPY updates
are sent to stream6, since the item level stream attribute overrides the itemLists level attribute.

CHAPTER 2: Adapters Supported by Event Stream Processor

362 Sybase Event Stream Processor

itemList
The itemList element contains one or more instances of the item element.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
itemLists

Children

Name Requirement

item Zero or more required

Attributes

Name Description Requirement

rfaQueue A name for the rfaQueue which, if provided, re-
places the default rfaQueue name and causes a
separate thread to be used for this queue

Optional

service The name of a Reuters Service that provides in-
coming data through RMDS

Optional if already specified in the
parent itemLists element or in all
child item elements, otherwise re-
quired

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 363

Name Description Requirement

stream The name of an Event Stream Processor source
stream receives updates on the RICs specified in
this list of items

Optional if already specified in the
parent itemLists element or in all
child item elements, otherwise re-
quired

Notes
Configure the adapter to push updates for every item in this section to the specified stream.
However, you can override the stream specification at the item level.

The adapter supports more than one itemList element under itemLists; this allows you to
configure one instance of the adapter to direct updates from two or more groups of RICs to
different Event Stream Processor source streams.

The stream you specify must match, by the value of the name attribute, one of the streamMaps
defined elsewhere in the map file.

Use the rfaQueue attribute to control scalability.

Example
<itemLists service="SSL_PUB" stream="stream1">
 <itemList service="IDN_RDF" >
 <item name="EUR=" />
 <item name="EURJPY=" stream="stream6" />
 </itemList>
</itemLists>

This itemList element sets the service attribute to IDN_RDF, overriding the SSL_PUB service
attribute defined in the parent itemLists element.

itemLists
The itemLists element contains one or more instances of the itemList element.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

364 Sybase Event Stream Processor

 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children

Name Requirement

itemList One required, two or more supported

Attributes

Name Description Requirement

name A string that appears in any adapter-related log
entries

Optional

rfaQueue A name for the rfaQueue which, if provided, re-
places the default rfaQueue name and causes a
separate thread to be used for this queue

Optional

service The name of a Reuters service that provides in-
coming data through RMDS

Optional if specified in the child
itemLists or item elements so that all
child item elements either specify or
inherit it, otherwise required

stream The name of an Event Stream Processor source
stream that receives updates on the RICs specified
in the item lists in this section (a default that can
be overridden at the item level)

Optional if specified in the child
itemLists and/or item elements so
that all child item elements either
specify or inherit it, otherwise re-
quired

Notes
Each itemList instance in this section is a list of one or more of the RICs to which the adapter
subscribes.

Example
<itemLists service="SSL_PUB" stream="stream1">
 <itemList service="IDN_RDF" >
 <item name="EUR=" />
 <item name="EURJPY=" stream="stream6" />
 </itemList>
</itemLists>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 365

This itemLists element sets the service attribute to SSL_PUB and the stream attribute to
stream1. These attributes are either inherited or overridden at the itemList and/or item level.

itemName
In the streamMap definition, the itemName element identifies the row in the Event Stream
Processor source stream that carries the RIC from the RMDS update.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

key True or false, depending on whether or not this column is
part of the source stream's unique key

See first note

Notes
You do not need to use the key attribute. It is present for backward compatibility.

Insert the itemName element in the streamMap to correspond with the column in the RowDef
that carries the RIC or symbol. If this column is part of the source stream's key, set the key
attribute to true.

CHAPTER 2: Adapters Supported by Event Stream Processor

366 Sybase Event Stream Processor

This element is one of the "pseudofields" that specify data items that are not part of the data
feed coming directly from RMDS.

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The first column of the stream is identified as the one that carries the RIC value of any update
from the adapter. It is also identified as part of the stream's key.

itemStale
In the streamMap definition, the itemStale element identifies a column in the Event Stream
Processor source stream that carries a flag indicating whether incoming RMDS data has gone
stale.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 367

Children
None

Attributes

Name Description Requirement

name A string that appears in any adapter-related log entries Required

Notes
Use this element in the streamMap if one of the columns in the source stream is a "stale" flag.

RMDS itself does not supply a stale flag with regular market data, although it may pass along
such a flag if it is provided by another service you are subscribing to via RMDS. If this element
is used in the streamMap, the adapter sends out an update value of 1 if it receives a stale flag
from RMDS, or stops receiving any data from RMDS.

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The fourth column of the source stream is identified as the one that is updated if the adapter
receives a stale notification, or stops receiving data from RMDS.

nullField
In a streamMap, the nullField element acts as a placeholder that always delivers a NULL value
to the stream. This lets you add extra fields to a source stream to get the configuration you
want.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

368 Sybase Event Stream Processor

 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name A string that appears in any adapter-related log entries Optional

Notes
When experimenting with a project, you can use a nullField to temporarily stop feeding data
into one column of the stream. In this case, you can simply keep the name of the dataField that
you are temporarily replacing, as in the following example.

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <nullField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The seventh column of the source stream is identified as a placeholder receives a null value in
each update from the adapter. It includes the name of the dataField that it replaces for
debugging purposes.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 369

publication
The publication element specifies basic operating parameters for this instance of the adapter.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children
None

Attributes

Name Description Requirement

flushInterval Specify the number of microseconds the adapter allows
events to accumulate before sending them to the Event
Stream Processor. A non zero flushInterval makes event
accumulation time-based.

Optional

intraSubscribeDelay Specify the number of milliseconds the adapter pauses
between subscription requests.

Optional

CHAPTER 2: Adapters Supported by Event Stream Processor

370 Sybase Event Stream Processor

Name Description Requirement

maxRecordsPer-
Block

Specify the maximum number of accumulated events that
the adapter should send to the Event Stream Processor at a
time. This reduces the size of each transaction or envelope
fragment when there is a large number of accumulated
events. For example, if 140 events have accumulated and
maxRecordsPerBlock is set to 50, the adapter will send
the envelope or transaction as three fragments.

Optional

name Specify a string that identifies the adapter instance in log
file entries.

Required

pendingLimit Specify the number of events that may accumulate before
the adapter sends them in to the Event Stream Processor.
Using a pendingLimit makes event accumulation count-
based.

Optional

retryInterval Specify the number of seconds for which the adapter at-
tempts to connect to RMDS before shutting down.

Required

sendAsTransactions Set to true to treat a group of updates as a single transac-
tion or false to treat them as separate transactions within
an envelope.

Optional

Notes
You can optimize the adapter's performance using the pendingLimit and flushInterval
attributes, along with the maxRecordsPerBlock and sendAsTransactions attributes from the
Pub/Sub interface that the adapter uses to communicate with the Event Stream Processor.

Some venues send initial images as multi part messages, which may produce large data sets.
The intraSubscribeDelay attribute paces these subscriptions and prevents the adapter from
being overwhelmed by initial images. The default value is zero, which is suitable for short RIC
lists. When intraSubscribeDelay is set to a nonzero value, the adapter pauses between
subscription requests for milliseconds. The suggested value is ten (10).

Example
<publication name="RMDS Adapter - low latency" retryInterval="5"
 flushInterval="0" pendingLimit="0" sendAsTransactions="0" />

recordType
The recordType element maps a stream to a predefined set of FIDs.

Summary
adapter (required, limit one)
 |----publication (required, limit one)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 371

 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
recordTypeMap

Children
None

Attributes

Name Description Requirement

number The ID of a recordType defined in Reuters configuration Required

stream The name of a stream to which this record will be mapped Required

Notes
The pre-defined record specified by recordType must match all the columns in the stream's
definition. Otherwise, these columns must be explicitly mapped in a streamMap
configuration.

Example
<recordTypeMap>
 <recordType number="123" stream="eqInput"/>
</recordTypeMap>

This example maps a set of FIDs pre-defined as record "123" to the source stream eqInput.

recordTypeMap
The recordTypeMap element contains one or more instances of recordType.

Summary
adapter (required, limit one)
 |----publication (required, limit one)

CHAPTER 2: Adapters Supported by Event Stream Processor

372 Sybase Event Stream Processor

 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children

Name Requirement

recordType Zero or more supported

Attributes
None

Notes
A stream must have either a recordTypeMap or a streamMap; it cannot have both.

The pre-defined record must match all the columns in the stream's definition to use the implicit
mapping provided by recordTypeMap. Otherwise, these columns must be explicitly mapped
in a streamMap configuration.

Example
<recordTypeMap>
 <recordType number="123" stream="eqInput"/>
</recordTypeMap>

This example maps a set of FIDs pre-defined as record "123" to the source stream eqInput.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 373

rfa
The rfa element links the input adapter map file to the Reuters-side configuration file.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children
None

Attributes

Name Description Requirement

config The absolute path and file name of the Reuters-side
configuration file for subscription (the sample file sup-
plied with the adapter is $ESP_REUTERS_HOME/
config/rfasub.cfg.

Required

configDatabaseName Must be set to RFA. Required

enumFile The full path name of the Reuters-supplied file that lists
each enumerated type along with the range of values it
can take.

Required

fidFile The full path name of the Reuters-supplied file that lists
all of the valid FIDs.

Required

CHAPTER 2: Adapters Supported by Event Stream Processor

374 Sybase Event Stream Processor

Name Description Requirement

sessionName A reference to a session name defined in the Reuters-
side configuration file for subscription.

Required

blank Specify a marker to use for blanks Optional

blankInt32 Specify a marker to use for blank Int32 fields Optional

blankInt64 Specify a marker to use for blank Int64 fields Optional

blankMoney Specify a marker to use for blank Money fields Optional

blankString Specify a marker to use for blank String fields Optional

blankDate Specify a marker to use for blank Date fields Optional

blankTimestamp Specify a marker to use for blank Timestamp fields Optional

Notes
None

Example
<rfa config="$ESP_REUTERS_HOME/config/rfasub.cfg"
 sessionName="Session1" />

This example points the Reuters Marketfeed adapter to the Reuters-side configuration in the
file rfasub.cfg. The list line in this configuration file is:

\Sessions\Session1\connectionList =
"Connection_SSLED"

This line defines a session name that is referenced by other lines in the configuration file.
When the map file references a session name in the sessionName attribute, it links the adapter
to the Reuters-side configuration parameters identified by that name.

sequenceNumber
In the streamMap definition, the sequenceNumber element maps a column in the source
stream that is populated by a unique number generated by the adapter, not provided as part of
the data from RMDS.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 375

 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

key True or false, depending on whether this column is part of the source
stream's unique key

See Notes

name A string that appears in log entries Optional

Notes
The adapter maintains a separate counter for each RIC to which it is subscribed. Each time it
receives an update for a RIC, it increments the counter for that RIC. This number is the one
sent to the source stream column mapped by the sequenceNumber element.

Many source stream definitions include a column specification similar to:
<Column datatype="int32" name="Id"/>

This line specifies a unique ID for the source stream. The sequenceNumber pseudo field is a
good match for this column in the input adapter map file

You must use the key attribute to set the value to true. If this column is not part of the stream's
key, you can omit this.

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>

CHAPTER 2: Adapters Supported by Event Stream Processor

376 Sybase Event Stream Processor

 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The third column of the source stream is mapped to the sequence number provided by the
adapter. This column is also identified as part of the source stream's unique key.

serviceName
In the streamMap definition, the serviceName element maps a column in the source stream to
the service identifier that the adapter provides as part of the envelope for each update.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

key True or false, depending on whether this column is part of the source
stream's unique key

See Notes

Notes
You must use the key attribute to set the value to true. If this column is not part of the stream's
key, you can ommit this.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 377

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

In this example, no column of the source stream is mapped to the service name provided by the
adapter because it is commented out.

streamMap
The streamMap element contains the mappings between the columns of an Event Stream
Processor source stream and the RMDS FIDs being subscribed to by the adapter.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMaps

Children
The following child elements are defined for streamMap. These child elements can occur in
any order, but for a specific streamMap, the order of the child elements must mirror the order

CHAPTER 2: Adapters Supported by Event Stream Processor

378 Sybase Event Stream Processor

of the columns of the source stream (as defined in the project). This is how the adapter is
configured to deliver RMDS updates to the appropriate rows in the source stream.

Name Requirement

dataField One required, two or more supported

dateTimeField Zero or more supported

itemName One required, two or more supported

itemStale Zero or one supported

sequenceNumber Zero or one supported

serviceName Zero or one supported

Attributes

Name Description Requirement

name References the source stream to which the RMDS up-
dates are mapped. Must match the name of a source
stream defined in the Event Stream Processor project.

Required

opcode Defines the operation the adapter performs when send-
ing updates to the source stream. Possible values are
insert and upsert. The insert operation adds new updates
to the end of the source stream. The upsert operation
replaces an existing source stream entry if its key match-
es the entry's key; if not, the update is added.

Optional (default value is up-
sert)

Notes
None

Example
<streamMaps>
 <streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT"
dateName="ACTIV_DATE"/>
 </streamMap>
</streamMaps>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 379

This example maps a set of the adapter's updates to an Event Stream Processor source stream
named stream1. All updates going to this source stream are added using the upsert mode. The
RICs for which updates are sent to this source stream are specified in an itemList elsewhere in
the map file that also references stream1.

streamMaps
The streamMaps element contains one or more instances of the streamMap element.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children

Name Requirement

streamMap One required, two or more supported

Attributes
None

Notes
Each streamMap instance in this section maps incoming FIDs from the Reuters adapter to
columns in an Event Stream Processor source stream.

Example
<streamMaps>
 <streamMap name="stream1">
 <itemName key="true"/>

CHAPTER 2: Adapters Supported by Event Stream Processor

380 Sybase Event Stream Processor

 <FIDListField />
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT"
dateName="ACTIV_DATE"/>
 </streamMap>
</streamMaps>

updateNumber
In the streamMap definition, the updateNumber element maps a column in the Event Stream
Processor source stream that is populated by a unique number generated by the adapter, not
provided as part of the data from RMDS.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----itemName (required, limit one)
 | |----serviceName (optional)
 | |----sequenceNumber (optional)
 | |----itemStale (optional)
 | |----dataField (required)
 | |----updateNumber (required)
 | |----dateTimeField (optional)
 | |----FIDListField (optional)
 | '----nullField (optional)
 |----recordTypeMap (optional)
 | '----recordType (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 381

Attributes

Name Description Requirement

key True or false, depending on whether this column is part
of the source stream's unique key

See Notes

name A string that appears in log entries Optional

Notes
The adapter maintains a separate counter for each RIC to which it is subscribed. Each time it
receives an update for a RIC, it increments the counter for that RIC. This number is the one
sent to the source stream column mapped by the updateNumber element.

Many source stream definitions include a column specification similar to:
<Column datatype="integer" name="Id"/>

This line specifies a unique ID for the source stream. The updateNumber pseudo field is a
good match for this column in the input adapter map file.

You must use the key attribute to set the value to true. If this column is not part of the stream's
key, you can omit this attribute.

Example
<streamMap name="stream1">
 <itemName key="true"/>
 <FIDListField />
 <!-- serviceName / -->
 <updateNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The third column of the source stream is mapped to the update number provided by the
adapter. This column is also identified as part of the source stream's unique key.

Output Adapter Map File XML Syntax
The syntax of the map file for a Reuters Marketfeed output adapter.

The following listing shows the structure of an output adapter map file. Each line of this
summary lists one element of the map file structure. See the topics for each element for details.
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)

CHAPTER 2: Adapters Supported by Event Stream Processor

382 Sybase Event Stream Processor

 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

adapter
The adapter element is the root element of the output map file.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Nest all configuration elements between the start and end adapter tags.

Parent
None

Children
The following child elements are defined for adapter. All of these elements must be present in
the specified order.

Name Requirement

rfa Exactly one required

subscriptions Exactly one required

Attributes
None

Notes
None

Example
See the examples for the child elements.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 383

constant
The constant element defines a data item with a constant value that is published to RMDS by
the adapter.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
stream

Children
None

Attributes

Name Description Requirement

name The name associated with this data item in the image published
by the adapter

Required

value The value of this constant (always the same whenever this data
item is published to RMDS)

Required

Notes
At start-up, the adapter publishes a complete image, containing all data items defined in the
map file, to RMDS. After that, the adapter publishes updated values for data items when they
change, unless the Event Stream Processor goes stale and then recovers. This means that the
value for constant is published only when a complete image is published.

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>

CHAPTER 2: Adapters Supported by Event Stream Processor

384 Sybase Event Stream Processor

 <constant name="PROD_PERM" value="1"/>
</stream>

This example defines a constant called PROD_PERM, with the constant value 1, to be
published with data values from the stream1 under the publication name subscription1.

enum
The enum element maps the value of the Event Stream Processor stream's service column to a
unique string that is prepended to the name element of an update published to RMDS by the
adapter.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

If the Event Stream Processor stream from which you are publishing handles data items for the
same symbol from different sources (the "Ask" price for IBM from NASDAQ and from S&P,
for example), you can use the service and enum attributes in the output adapter map file to
configure the adapter to differentiate between updates of the same value for the same symbol
from different sources.

Parent
service

Children
None

Attributes

Name Description Requirement

value A possible value for the data stream column specified by the service

element
Required

prefix The string prepended to the value of the name element when it pub-
lishes updates received from the Event Stream Processor with the
service value that matches prefix

Required

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 385

Notes
The service element in the output adapter map file must contain one enum element for each
possible value in the source column.

Example
<service column="2" delim="_">
 <enum value="RDF" prefix="R"/>
 <enum value="ISFS" prefix="I"/>
</service>

Within a service definition, each enum element specifies a particular service. Based on this
value, the published RICs are renamed to indicate the provider of the data. Assume that RIC.X
is the RIC found in the name column. If the value in column 2 is RDF, the RIC becomes
"R_RIC.X". If the value in column 2 is ISFS, the RIC becomes "I_RIC.X". If neither is true, no
value is published.

field
In a stream definition in an output adapter map file, field specifies a column in a stream to
publish.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
stream

Children
None

Attributes

Name Description Requirement

column A number that represents the position of the source column in the
stream being published from (the first column in the stream has the
number 0)

Required

CHAPTER 2: Adapters Supported by Event Stream Processor

386 Sybase Event Stream Processor

Name Description Requirement

name The FID that identifies this data value when published to RMDS Required

precision An integer that specifies the total number of digits after the decimal
point in the published value (for example, 1.23 has a precision of 2)

Optional

Notes
Modify the value of the name attribute to indicate the source of the data item if you have
defined the parmname and enum elements in this stream definition.

Include the precision attribute only for columns of datatype double.

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
</stream>

The adapter is configured to publish updates from the fourth, fifth, sixth and seventh columns
of the Event Stream Processor stream named stream1 as data items named BID, ASK,
TRDPRC_1 and ACVOL_1, respectively.

name
In a stream definition in an output adapter map file, name specifies the column in the source
stream that provides the value to use to identify each update.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
stream

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 387

Children
None

Attributes

Name Description Requirement

column A number that represents the position of the column in the stream
that carries the stream's unique identifier (the first column in the
stream is number 0)

Either column or
name

name The name of the column in the stream that carries the stream's
unique identifier

Either column or
name

Notes
The output adapter uses RMDS as a simple message bus; the published updates need not
conform to Reuters protocols. This means that the column specified by this element does not
have to be a Reuters RIC, but it must follow Reuters RIC syntax.

If the source stream's unique key is a composition of two or more columns, you can use the
name element in combination with one or more instances of the service element to configure
the adapter to publish updates with completely unique names.

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
</stream>

This example identifies the first column of stream1 as its unique identifier or "key" column.

rfa
The rfa element provides information for configuring the Reuters side of the adapter,
including an explicit reference to the Reuters-side configuration file.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)

CHAPTER 2: Adapters Supported by Event Stream Processor

388 Sybase Event Stream Processor

 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
adapter

Children
None

Attributes

Name Description Require-
ment

serviceName Defines a service name that is included in the header of
every update sent out by the Reuters Marketfeed adapter

Optional

config The absolute path and file name of the Reuters-side con-
figuration file for publication (the sample file supplied with
the adapter is $ESP_REUTERS_HOME/config/
rfapub.cfg)

Required

sessionName A reference to a session named defined in the Reuters-side
configuration file for publication

Required

configDatabaseName A reference to the Reuters database name Optional

Notes
None

Example
<rfa serviceName="IDN_RDF"
 config="$ESP_REUTERS_HOME/config/rfapub.cfg"
 sessionName="Session1" configDatabaseName="RFA" />

This example points the Reuters Marketfeed adapter to the Reuters-side configuration in the
file rfapub.cfg. The first four uncommented lines in this configuration file are:

\Connections\Connection_SSLED_MP\ipcServerName = "8105"
\Connections\Connection_SSLED_MP\connectionType = "SSLED_MP"
\Connections\Connection_SSLED_MP\entitlementData = false
\Sessions\Session1\connectionList = "Connection_SSLED_MP"

The last of these lines implicitly defines a session name that is defined as the sessionName in
the map file. The other three lines from rfapub.cfg key on this session name. This is how

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 389

the value for sessionName ties this publication section of the map file to a configuration set in
the .cfg file.

When the adapter publishes using this configuration, each update is identified with the
serviceName "IDN_RDF".

service
In a stream definition in an output adapter map file, service identifies a column in the source
stream that is another component of the stream's unique key.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
stream

Children
None

Attributes

Name Description Requirement

column A number that represents the position of the column with the secon-
dary key value (the first column in the stream has the number 0)

Required

delim Specifies a character to use as the separator between a name and a
prefix

Optional

Notes
The service element in the output adapter map file must contain one enum element for each
possible value in the source column.

Example
<service column="2" delim="_">
 <enum value="RDF" prefix="R"/>
 <enum value="ISFS" prefix="I"/>
</service>

CHAPTER 2: Adapters Supported by Event Stream Processor

390 Sybase Event Stream Processor

This section configures the adapter to test the value of the second column of every update from
the Event Stream Processor stream (the value of the name attribute of the stream element).

If the value is RDF, the adapter adds the prefix "R" followed by the specified delim value to the
name of the published update (the value of the name attribute of the publication element).

If the value is ISFS, the adapter adds the prefix "I" to the name of the published update.

stale
In a stream definition in an output adapter map file, the stale element identifies a column in
the source stream for which the value changes from 0 to 1 if the stream goes stale.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

A stream is considered to have gone stale if, for example, one of the stream's data sources is no
longer being updated.

Parent
stream

Children
None

Attributes

Name Description Requirement

column A number representing the position of the column with the secondary
key value (the first column in the stream has the number 0)

Required

name A string that identifies the stale column so that it may be mapped to a
FID (published)

Optional

Notes
None

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 391

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
</stream>

This example identifies the third column of stream1 as its stale column. If the stale column is
specified, the column value is published and the RIC is marked stale.

stream
In a subscription section in an output adapter map file, identifies the stream from which the
adapter obtains the data it publishes to RMDS.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
subscription

Children

Name Requirement

Name One

Service Optional

Stale Optional

Field One or more

Constant Optional

CHAPTER 2: Adapters Supported by Event Stream Processor

392 Sybase Event Stream Processor

Attributes

Name Description Requirement

exitOnStreamExit This is a boolean attribute. When true,RMDS terminates if
the stream exits, the Event Stream Processor exits, or the
connection is lost.

Optional

finalizer This string specifies an action to take if the specified number
of heartbeat milliseconds elapse without an event being
published to the Event Stream Processor.

Optional

heartbeat This integer specifies the number of milliseconds to wait
without an event being published to the Event Stream Pro-
cessor before executing the finalizer action.

Optional

name The name of the stream from which the adapter receives the
data it publishes on RMDS

Required

templateNumber A Reuters template set up in the RMDS configuration Optional

Notes
You must define the value of the name attribute in the Event Stream Processor project.

Any stream in the Event Stream Processor project can map to only one stream section in the
map file.

The templateNumber must be a unique identifier of the stream for which it is defined

Example
<stream name="stream1">
 <name column="0"/>
 <field column="4" name="TRDPRC_1"/>
 <field column="9" name="BID" precision="5"/>
</stream>

This example configures the Event Stream Processor to publish data from a stream named
stream1.

subscription
The subscription element contains one or more instances of the stream element, enabling you
to configure the adapter to receive data from one or more streams.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 393

 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

The output adapter map file can contain two or more subscription sections. At runtime, the
publishing mechanism for each subscription section is instantiated on a separate thread,
which provides scalability.

Parent
subscriptions

Children

Name Requirement

stream One or more

Attributes

Name Description Requirement

name A name for this subscription that appears in updates published on
RMDS and in log file entries

Required

Notes
None

Example
<subscriptions>
 <subscription name="subscription1" >
 <stream name="stream1" >
 <name column="0"/>
 <field column="4" name="BID"/>
 <field column="5" name="ASK"/>
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
 </stream>
 </subscription>
</subscriptions>

This example configures the adapter to publish some columns from stream1 using the name
subscription1.

CHAPTER 2: Adapters Supported by Event Stream Processor

394 Sybase Event Stream Processor

subscriptions
The subscriptions element contains one or more subscription elements.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----service (optional)
 | '----enum (required)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
adapter

Children

Name Requirement

Subscription One or more

Attributes
None

Notes
Each subscription instance in this section defines one set of data that the adapter publishes to
RMDS.

Example
See the example for an individual subscription instance.

Logging Facilities
The Reuters Marketfeed adapter supports two different logging mechanisms.

In addition to its own logging mechanism, the Reuters Marketfeed adapter can utilize Reuters-
side logging. You can use both of these mechanisms to check the adapter's performance and
diagnose problems.

You can configure these logs to be written to stderr, syslog, or both.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 395

Adapter Logging
The Reuters Marketfeed adapter supports the same options for logging as the Event Stream
Processor.

The -d option sets the debug level (0=emergency messages only, 7=all messages).

The -l option tells the adapter to write log messages to stderr, syslog, both, or neither. If you use
the -l option to direct adapter log messages to stderr, you may also want to redirect stderr to a
file.

The name attribute of the publication element in the input adapter map file specifies a
descriptive text string that is logged to help identify how the adapter was configured. For
example, lines 3–6 of subexample.xml specify the publication element for a subscribing
instance of the Reuters Marketfeed adapter, as follows:
<publication
 name="RMDS Adapter exp"
 retryInterval="5"
/>

As the adapter connects with and interacts with Event Stream Processor, this configuration
causes the adapter to write log messages similar to:
(0.123) @1 INFO: Configuring publication with name RMDS Adapter exp

The first two fields are the timestamp (in seconds since start-up) and the thread number,
respectively. The base time for the timestamp, along with other information, is written to the
log file on startup as shown in the following example. To convert the timestamp to a date and
time, simply add the number of seconds to the base time.
(63359098041.768) @1 NOTICE:Base time is 10/08/08-17:27:21
(0.001) @1 NOTICE:insta-a sub -c cimtest:-- -d 7
-f /home/sybase/support/1.0.3/ReutersAdapter/quotes.map.xml
-l 1 -p tigris:12192 -P 1
(0.001) @1 NOTICE:pid=28649
(0.001) @1 DEBUG:Using ESP_RMDS_SUBSCRIBE_DEBUG_LEVEL=7ll/
i86pc_64_spro/bin/rmds version:
1.0.3a-alpha_r18674M

Page Data and Partial Page Updates
Some Reuters data comes as pages which use Marketfeed partial format. Each page consists of
multiple lines; initially sent as a snapshot. Page data is supported without any special
configuration. The following extract from an adapter log file shows the delivery of the initial
page image (which is displayed).
(27.729) @6 INFO:Publishing VOD.mGBPd 21 of 21 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SERVICE_NAME_ STRING: IDN_RDF
_SEQUENCE_NUMBER_ INTEGER: 1
_ITEM_STALE_ INTEGER: 0
ROW80_1 STRING: VOD.mGBPd SI Quote Publication
ROW80_2 STRING:

CHAPTER 2: Adapters Supported by Event Stream Processor

396 Sybase Event Stream Processor

ROW80_3 STRING: DATE:03/07/2008 Time:11:09
ROW80_4 STRING:
ROW80_5 STRING: Time Venue SI Bid Size Bid Price Ask Price Ask Size
Status
ROW80_6 STRING: ==== ===== == ======== ========= ========= ========
======
ROW80_7 STRING: 110937 GSILGB2XXXX GSIL 1 150.9000 150.9500 1 OPEN
ROW80_8 STRING: 070021 SBILGB2LXXX CITI OPEN
ROW80_9 STRING: 110909 CSFBGB2LXXX CSFB 329 150.7000 151.1500 329
OPEN
ROW80_10 STRING: 110942 DEUTGB22ZEQ DBBL 528 150.6500 151.2000 527
OPEN
ROW80_11 STRING: 110946 ABNAGB22XXX ABNV 483306 150.9000 150.9500
483306 OPEN
ROW80_12 STRING: 110936 UBSWGB2LEQU UBSI 1 149.7682 152.1325 1 OPEN
ROW80_13 STRING: 110828 SBUKGB21XXX CITI 20600 150.9000 151.0000
20600 OPEN
ROW80_14 STRING: 110937 SLIIGB2LXXX LEHM 3750 150.9000 150.9500 15
OPEN
ROW80_15 STRING:
ROW80_16 STRING:
ROW80_17 STRING:
(27.730) @6 DEBUG:Immediate flush for low latency; opcode=p

Each line of the page has its own FID to facilitate line-oriented deltas to the page. The adapter
parses the partial page updates from Reuters and produces strings like the ones shown in the
following extract from an adapter log file.
(49.934) @6 DEBUG:Processing update for VOD.mGBPd from service
IDN_RDF
(49.934) @6 INFO:Publishing VOD.mGBPd 4 of 21 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SEQUENCE_NUMBER_ INTEGER: 2
ROW80_3 STRING: off:78 size:2 value:10
ROW80_11 STRING: off:2 size:3 value:101
(49.934) @6 DEBUG:Immediate flush for low latency; opcode=p
(50.315) @6 DEBUG:Processing update for VOD.mGBPd from service
IDN_RDF
(50.315) @6 INFO:Publishing VOD.mGBPd 3 of 21 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SEQUENCE_NUMBER_ INTEGER: 3
ROW80_11 STRING: off:5 size:1 value:7
(50.315) @6 DEBUG:Immediate flush for low latency; opcode=p

The first update in the example is to write the 2-character string 10 at an offset of 78 characters
in the line of the page which contains the data from the ROW80_3 FID. The second update in
the example is to write the 3-character string 101 at an offset of 2 characters in the line of the
page which contains the data from the ROW80_11 FID. The third update in the example is to
write the 1-character string 7 at an offset of 5 characters in the line of the page which contains
the data from the ROW80_11 FID. Thus, updates for page data are very concise.

Modifying Log Entry Format
You can modify the default format of log entries in two ways.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 397

Set the environment variable ESP_RMDS_SUBSCRIBE_SYMBOL_FORMAT to 1 to
configure your system to log messages that show what values flow to the Event Stream
Processor on a single line rather than the default multi line format. When messages are written
to a log file, this can make it easier to scan for specific items.

Use the -P option to the esp_rmds command to specify specify the number of decimal places
that appear on output for double type variables.

By default, log messages that show what values flow to the Event Stream Processor are written
in multi line format as shown.
(38079.526) @2 INFO:Publishing VOD.mGBPd 3 of 9 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SEQUENCE_NUMBER_ INTEGER: 953
ROW80_7 STRING: off:53 size:2 value:45

If you set the environment variable ESP_RMDS_SUBSCRIBE_SYMBOL_FORMAT to 1
these messages are written are written in single-line format.
(17.794) @5 DEBUG:stream1 p values: _ITEM_NAME_=VOD.mGBPd
_SEQUENCE_NUMBER_=2
ROW 80_3=off:78 size:2 value:20

The -P option can alter the manner in which double datatype variables appear, as shown by
ask and last are in the following example. This affects only the way variables appear; it does
not alter the contents.
<RowDefinition id="marketfeed_RowDef">
<Column name="symbol" datatype="string" />
<Column name="service" datatype="string" />
<Column name="seq" datatype="integer" />
<Column name="stale" datatype="integer" />
<Column name="bid" datatype="money" />
<Column name="ask" datatype="double" />
<Column name="last" datatype="double" />
<Column name="volume" datatype="integer" />
<Column name="when" datatype="timestamp" />
</RowDefinition>

If you accept the default precision, variables of type double (for example, ASK in the
following example) are written with three digits to the right of the decimal
(5.089) @5 INFO:Publishing EURJPY= 7 of 9 on stream1 as UPSERT
(5.090) @5 DEBUG:stream1 p values: _ITEM_NAME_=EURJPY=
_SEQUENCE_NUMBER_=1 _ITEM_STALE_=0 BID=137.4800 ASK=137.530
ACVOL_1=0
ACTIV_DATE+TIMACT=2008-10-06T21:07:00.000 (1223327220000)

If you specify the option -P 7 when enter the esp_rmds command, variables of type double
(for example, ASK in the following example) are written with seven digits to the right of the
decimal. Variables of other types are not affected.
(4.913) @5 INFO:Publishing EURJPY= 7 of 9 on stream1 as UPSERT
(4.913) @5 DEBUG:stream1 p values: _ITEM_NAME_=EURJPY=
_SEQUENCE_NUMBER_=1 _ITEM_STALE_=0 BID=137.5200 ASK=137.5700000
ACVOL_1=0 ACTIV_DATE+TIMACT=2008-10-06T20:55:00.000 (1223326500000)

CHAPTER 2: Adapters Supported by Event Stream Processor

398 Sybase Event Stream Processor

Reuters Logging
Turn Reuters logging on or off using the Reuters-side configuration file.

You can configure the adapter's interface to RMDS to write to a logging facility. In the
Reuters-side configuration file (rfasub.cfg and rfapub.cfg are the ones provided with
the adapter), you can turn logging on or off and specify a path and file name of the log file. The
Reuters interface also supports a set of "message files."

The Reuters-side configuration file contains a set of configuration entries for the Reuters
"Logger" facility.
\Logger\AppLogger\fileLoggerEnabled = true
\Logger\AppLogger\fileLoggerFilename = "rfasub.{p}.log"

This configuration turns on Reuters logging for the Reuters Marketfeed adapter. The log
messages are written to the rfasub.PID.log file, where PID is the adapter's process ID.

The first line in this set, \Logger\AppLogger\windowsLoggerEnabled =
false, pertains to a Windows logging facility that is not supported for the Reuters
Marketfeed adapter.

These example lines are from rfasub.cfg, the file that configures an adapter that
subscribes to RMDS. The configuration file for publication, rfapub.cfg, contains the
same configuration lines (except that the value for fileLoggerFilename is rfapub.{p}.log.

The same file contains configuration entries for Component Loggers, as follows:
\Logger\ComponentLoggers\Connections\messageFile ="config/
messages/RFA7_Connections.mc"
\Logger\ComponentLoggers\Adapter\messageFile ="config/
messages/RFA7_Adapter.mc"
\Logger\ComponentLoggers\SessionCore\messageFile ="config/
messages/RFA7_SessionLayer.mc"
\Logger\ComponentLoggers\SSLED_Adapter\messageFile ="config/
messages/RFA7_SSLED_Adapter.mc"

Log Messages
Examples of typical entries from the adapter log file.

The actual format and working of the log messages, as well as the nature of the events logged
and the log levels associated with these events, may change in subsequent releases of the
adapter.

• Message: – NOTICE:Item BARC.VX is closed: No Quality of
Service is available to process subscription, timeout
expired

• Cause: – the value for the Reuters user name in the Reuters config file is incorrect (verify
the case-sensitivity) or the Reuters Service name in the map file is incorrect.

• Message: – DEBUG: Immediate flush for low latency

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 399

• Cause: – data received from RMDS is being sent to Event Stream Processor immediately.

• Message: – NOTICE:XMLRPC ERROR-116: The connection to the
server could not be established. Please make sure the server
is up, and check the specified host name/port, user name/
password, and encryption settings. If a host name is
specified, make sure that it can be resolved through a DNS
lookup. (5.092) @1 INFO:Could not connect to SP; (tigris:
12190 cimtest) will retry in 5 seconds.

• Cause: – cannot connect to the server running Event Stream Processor.

• Message: – Ignoring market data event because no significant
fields updated

• Cause: – the adapter received data from Reuters, but none of the fields were of interest to
Event Stream Processor stream, so no data was sent.

• Message: – ERROR: Error publishing: PUBLICATION ERROR-442:
The send method of this publication object failed.

• Cause: – connection to Event Stream Processor unsuccessful during a message
transmission.

• Message: – ERROR:Mismatch between platform stream (9 columns)
and adapter (31 columns for stream: stream1)

• Cause: – the number of columns defined in the adapter did not match the number of
columns in the stream.

• Message: – WARNING: Event Stream Processor down, dropping all
subscriptions

followed by multiple iterations of a message similar to:

DEBUG: Unsubscribing item: EUR= service: IDN_RDF

• Cause: – lost connection to Event Stream Processor. Stopping subscriptions to RMDS
data since the adapter has nowhere to put it.

• Message: – WARNING: Discarding data rec'd after unsubscribe
• Cause: – before the adapter shut off the subscription, additional data arrived. The data has

been discarded because there is no connection to Event Stream Processor.

• Message: – DEBUG: Processing update for EUR= from service
IDN_RDF

• Cause: – an update for RIC "EUR=" on service named "IDN_RDF" has arrived.

• Message: – WARNING: Event Stream Processor down, dropping all
subscriptions

followed by numerous repetitions of:

CHAPTER 2: Adapters Supported by Event Stream Processor

400 Sybase Event Stream Processor

DEBUG: Unsubscribing item: EUR= service: IDN_RDF

• Cause: – lost connection to Event Stream Processor. Stopping subscriptions to RMDS
data since the adapter has nowhere to put it.

• Message: – WARNING: Discarding data rec'd after unsubscribe
• Cause: – before the adapter shut off the subscription, additional data arrived. The data has

been discarded, because there is no connection to Event Stream Processor.

• Message: – EMERGENCY: Fatal Error at line 0, column 0 of config
file: An exception occurred! Type:RuntimeException,
Message:The primary document entity could not be opened.
Id=/home/sybase/adapter/trunk/src/ReutersAdapter/
xxsubexample.xml

• Cause: – specified configuration file is unavailable.

• Message: – EMERGENCY: Fatal Error at line 0, column 0 of config
file: An exception occurred! Type:RuntimeException,
Message:The primary document entity could not be opened.
Id=/home/sybase/adapter/trunk/src/ReutersAdapter/
xxsubexample.xml

• Cause: – specified config file is unavailable.

Reuters OMM Adapter
The Sybase Event Stream Processor Reuters OMM adapter is a software interface between
Event Stream Processor and the Reuters Market Data System (RMDS). It uses the Reuters
Open Message Model (OMM) message format.

You can configure the adapter as an input or output adapter. The input adapter subscribes to
one or more Reuters Instrument Codes (RICs) on the RMDS to provide input to Event Stream
Processor. The output adapter publishes output from Event Stream Processor to the RMDS.
This enables Event Stream Processor to use the speed and reliability of Reuters' infrastructure
to deliver data.

The Reuters OMM Input adapter supports schema discovery. Run two adapter instances if you
require both input and output capabilities.

The adapter runs only on Solaris and Linux operating systems but you can use it with Event
Stream Processor software running on Solaris, Linux, or Windows.

Requirements
The Reuters OMM input and output adapters have several requirements.

An input adapter requires:

• An RMDS market data connection that uses the Reuters Open Message Model (OMM)
protocol

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 401

• A working subscription for data on one or more financial instruments

An output adapter requires:

• A working connection with support for sending data to RMDS using the OMM protocol

General Configuration
Enable user access for each user account that runs the Reuters OMM adapter, and configure an
input connection from Reuters and an output connection to Reuters.

Enabling User Access
Enable user access for each user account that uses the Reuters OMM adapter.

1. Ensure the user account has permission to execute the installed software.

2. Create an environment variable, $ESP_RMDSOMM_HOME, and set to the full path
name of the directory in which you placed the adapter distribution file.

3. (Optional) Add the environment variable to your shell profile.

4. Event Stream Processor supports RSA, Kerberos, and LDAP authentication. If your
installation uses one of these authentication methods, ensure the user account is set up to
work with that method of authentication.

Configuring an Input Connection from Reuters
Modify the sample configuration file for your site's RMDS connection. If you have multiple
adapters using multiple RMDS connections, you may need a separate and uniquely named
configuration file for each one. For a configuration file with a different name, either change the
entry in the input adapter map file or specify that file name using the -f option to the
esp_rmdsomm command.

Prerequisites

• Create (or choose) a directory in which to store your site-specific configuration files.
• Create an environment variable (MY_CONFIG) and set it to the full path name of that

directory.

Task

During the installation process, a sample configuration file (rmdsomm.cfg) was placed in
the $ESP_RMDSOMM_HOME/config directory. This file follows the Reuters format for
configuration files and includes this section for your site-specific information:

##
Site-specific values for OMM Inbound - subscribing from RMDS
##
\Connections\Connection_RSSL\connectionType = "RSSL"
Caution: post value comments like below confuse RFA parsing
causing coredump
#\Connections\Connection_RSSL\hostName = "localhost" ## not
here

CHAPTER 2: Adapters Supported by Event Stream Processor

402 Sybase Event Stream Processor

\Connections\Connection_RSSL\hostName = "localhost"
\Connections\Connection_RSSL\rsslPort = "14002"
\Connections\Connection_RSSL\connectRetryInterval = 7000
\Sessions\Session1\connectionList = "Connection_RSSL"

1. Obtain this information from your system administrator:

• Name of the server from which you receive RMDS OMM data
• Port number on that machine to which your system connects
• Name of the Reuters service to which you subscribe

2. Make a copy of the sample configuration file in your $MY_CONFIG directory.

cp $ESP_RMDSOMM_HOME/config/rmdsomm.cfg $MY_CONFIG

3. Use a text editor to open the configuration file.

4. In the \Connections\Connection_RSSL\rsslPort line, replace the default
port number (14002) with the port used by your Reuters connection, if different.

5. In the \Connections\Connection_RSSL\hostName line, replace
tigris.sybase.com with the name of your server that receives OMM data from RMDS (keep
the surrounding quotation marks).

If your system has more than one server receiving data from RMDS, include all of their
names in a comma-separated list, in priority order.

6. (Optional) In the \Logger\AppLogger\fileLoggerFilename line, change the
name of the log file.

The default file name rfasub.{p}.log, includes the string {p} which the Reuters
library replaces with the UNIX process ID when it creates the log file.

7. Save the modified file.

The other parameters in the configuration file also affect the functioning of the Reuters
OMM adapter, and you may want to modify them as well.

Configuring an Output Connection to Reuters
Modify the sample configuration file for your site's RMDS connection. If you have multiple
adapters using multiple RMDS connections, you may need a separate and uniquely named
configuration file for each one. For a configuration file with a different name, either change the
entry in the output adapter map file or specify that file name using the -F option to the
esp_rmdsomm command.

Prerequisites

• Create (or choose) a directory in which to store your site-specific configuration files.
• Create an environment variable (MY_CONFIG) and set it to the full path name of that

directory.

Task

During the installation process a sample configuration file, rmdsomm.cfg, was placed in the
$ESP_RMDSOMM_HOME/config directory. This file follows the Reuters format for

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 403

configuration files, and includes sections for site-specific information for noninteractive and
interactive publishing to RMDS.

1. Obtain this information from your system administrator:

• Port number at which the src_dist or RMDS infrastructure server listens for updates
from the Reuters OMM adapter

• Name of the server that receives updates from Event Stream Processor

2. Decide whether to publish to RMDS interactively or non-interactively.

3. If you have not already done so when specifying an input connection from Reuters, make a
copy of the sample configuration file in your $MY_CONFIG directory.

cp $ESP_RMDSOMM_HOME/config/rmdsomm.cfg $MY_CONFIG

4. Use a text editor to open the configuration file.

a) If you are going to publish to RMDS interactively, go to the site-specific information
section for interactive publishing. In the \Connections
\Connection_RSSL_PROV\connectionType line, refer to the value
“RSSL_PROV,” which is the Reuters term for an information provider.
##
Site-specific values for OMM Outbound - Interactive
publishing to RMDS
##
Interactive publisher
\Connections\Connection_RSSL_PROV\connectionType = "RSSL_PROV"
grab a free port until the MDH is setup with 2nd src_dist
instance
\Connections\Connection_RSSL_PROV\rsslPort = "14007"
\Connections\Connection_RSSL_PROV\connectRetryInterval = 7000
\Connections\Connection_RSSL_PROV\hostName =
"tigris.sybase.com"
\Sessions\SessionOMMProv\connectionList =
"Connection_RSSL_PROV"

In the \Connections\Connection_RSSL_PROV\rsslPort line, replace
the default port number (14007) with the port number at which your IPC server listens
for updates from the Reuters OMM adapter, if different.

b) If you are going to publish to RMDS non-interactively, go to the site-specific
information section for noninteractive publishing. In the \Connections
\Connection_RSSL_CPROV\connectionType line, refer to the value
“RSSL_CPROV,” which is the Reuters term for a client provider.
##
Site-specific values for OMM Outbound - Non-interactive
publishing to RMDS
##
non-interactive publisher
\Connections\Connection_RSSL_CPROV\connectionType =
"RSSL_CPROV"
\Connections\Connection_RSSL_CPROV\hostName =
"tigris.sybase.com"
Within Sybase, this non-standard port is a proxy to the

CHAPTER 2: Adapters Supported by Event Stream Processor

404 Sybase Event Stream Processor

standard 14003
\Connections\Connection_RSSL_CPROV\rsslPort = "14010"
\Connections\Connection_RSSL_CPROV\connectRetryInterval = 7000
\Sessions\SessionOMMCProv\connectionList =
"Connection_RSSL_CPROV"

In the \Connections\Connection_RSSL_CPROV\rsslPort line, replace
the default port number (14010) with the port number at which your IPC server listens
for updates from the Reuters OMM adapter, if different.

5. To change the name of the log file, go to the local file logging section.
##
General values
##
local file logging
\Logger\AppLogger\windowsLoggerEnabled = false
\Logger\AppLogger\fileLoggerEnabled = true
\Logger\AppLogger\fileLoggerFilename = "rfa.{p}.log"

In the \Logger\AppLogger\fileLoggerFilename line, replace the default
name, rfapub.{p}.log, with the name you want to use. The Reuters library replaces
the {p} string in the default file name with the UNIX Process ID when it creates the log
file.

6. Save the modified file.

Input Adapter Configuration
Configure an input adapter to push data from the Reuters Market Data Service (RMDS) to
Event Stream Processor.

Before configuring an input adapter, decide what data you need and how you want to set up
your system.

You need to know the following about the Event Stream Processor instance from which you
receive data.

• Possible security options in a cluster environment, and the workspace and project name.
• What type of authentication mechanism (Kerberos, RSA, LDAP, or none) does it use?

Data Decisions
Decide how the incoming Reuters data fits into the project.

Also decide whether you require Level 1 or Level 2 data. For Level 2 data, use the OMM
Adapter, and for Level 1 data, you can use either OMM MarketPrice messages or the Reuters
Marketfeed adapter.

Decision Description

Venues Decide which venues are of interest (for example, NYSE, NAS-
DAQ, Toronto, and so on).

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 405

Decision Description

RICs and FIDs Determine what market data you need. Specifically, which Reuters
Instrument Codes (RICs) you want the adapter to provide to Event
Stream Processor, and which Reuters Field IDs (FIDs) for these
instruments you want to use.

Streams The Reuters adapter can furnish data to one or more streams on
Event Stream Processor. To use the Reuters Market Data provided
by the adapter, decide which existing data streams to map to the
adapter's data feed or define one or more new streams.

Administrative Decisions
You have several administrative decisions to make in regards to the project.

Decision Description

Session Name An arbitrary string used to link the project and the adapter map file.
Use the session name consistently. The adapter supports only one
session per adapter instance.

Directories for logging and
stream output

The adapter writes its own log messages and can generate a sepa-
rate set of Reuters log messages. In the configuration, specify
whether and where to write these log files.

Sybase user account Specify a valid Event Stream Processor user account for the adapter
to use, unless you specified no authentication when you started the
Event Stream Processor.

Input Adapter Map File
The map file configures the interface between the Reuters OMM adapter and Event Stream
Processor. It specifies which source streams receive data from RMDS via the adapter, and it
maps specific RMDS Field Identifiers (FIDs) to specific columns in that source stream.

The input adapter map file must accomplish two major tasks:

• Match incoming data elements to columns in one or more streams defined in the Event
Stream Processor configuration file.

• Ensure that each update from the adapter can be converted into a record that provides a
unique key for each stream being populated, as defined by the stream's column definitions.

Data Structures
Data structures have three important structural aspects: data columns, datatypes, and key
values.

• Each data stream includes one or more data columns.
• Each column has a datatype.

CHAPTER 2: Adapters Supported by Event Stream Processor

406 Sybase Event Stream Processor

• Each row has a unique key value. The source stream definition designates one or more
columns as "key" columns. Data must be fed to a source stream.

Incoming RMDS Data
When the adapter subscribes to RMDS for a certain RIC, RMDS first sends an initial image
containing all available market data for that RIC. After that, RMDS sends an update only when
any values for a subscribed RIC change.

Each FID defined for RMDS has a datatype.

Market Data Field Mapping
Map each column in the target Event Stream Processor stream to a Reuters FID or a
"pseudofield."

Find the appropriate FID for each column in the stream. The datatype of the Event Stream
Processor column must be compatible with the datatype of the Reuters FID that feeds it.

Here are possible matches between FID datatypes and Event Stream Processor datatypes:

Event Stream Processor
Datatype

Reuters Datatype

integer enumeration, time_seconds

integer or long uint32

long uint64

money, float, integer,

or long
real32

money or float real64

string ASCII_string, RMTES_string

date or timestamp date, time

Note: OMM supports milliseconds as part of a time field. When mapping to or from a
timestamp column, milliseconds are preserved.

Reuters Instrument Code Mapping
The identifier of each incoming RMDS update is the Reuters Instrument Code (RIC).

Map the RIC to a column of datatype string in the stream. If the stream you want to map to
does not have a suitable column, either add a column to the stream or map to a different
stream.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 407

Matching the Stream's Key
The adapter map file must configure the adapter so that every update sent to the Event Stream
Processor stream includes a field or combination of fields that conform to the unique key
defined for that stream. To make this more flexible, the adapter configuration mechanism
supports "pseudofields."

The market data updates that the adapter receives from RMDS are mapped to columns in the
Event Stream Processor stream using the dataField or dateTimeField element in the map file.
RMDS also provides nonmarket data information and each update includes a RIC.
Additionally, you can configure the adapter to add a sequence number to each update.

To make these data items available to the mapping process, the map file mechanism supports
these elements called "pseudofields."

Field Description Datatype

dataField Values such as PRICE, SIZE (Required) datatype is determined at
runtime from FIDs and stream sche-
ma)

dateTimeField The date and time (optional) string

itemName The RIC (required) string

imageField Flag to indicate if an entry is an
image

(required for Level 2 data) inte-
ger

itemStale The item state (optional)integer

marketByOrder-
KeyField

Secondary key for Level 2 mes-
sages

(required for Level 2 MARKET_
BY_ORDER messages) integer

marketByPrice-
KeyField

Secondary key for Level 2 mes-
sages

(required for Level 2 MARKET_
BY_PRICE messages) integer

marketMakerKey-
Field

Secondary key for Level 2 mes-
sages

(required for MARKET_MAKER
messages) integer

nullField A null value (optional) A placeholder

respTypeNumField Identifies type of message (optional) integer

sequenceNumber A unique number, assigned se-
quentially by the adapter to
each incoming event whether it
causes an update or not.

(optional)long

CHAPTER 2: Adapters Supported by Event Stream Processor

408 Sybase Event Stream Processor

Field Description Datatype

serviceName The name of the service from
which RMDS received the mar-
ket data from this RIC.

(optional) string

updateNumber A unique number, assigned se-
quentially by the adapter to
each incoming update.

(optional) long

Getting Stream Information from the Project
Gather the necessary information about the Reuters stream.

The first step in configuring the input adapter is to determine the source streams on Event
Stream Processor that will receive the RMDS Market Data. If the Event Stream Processor
project does not already include one or more streams for this purpose, define a new stream (or
streams) for use with the Reuters adapter.

After you have chosen (or defined) the streams that will receive data from the Reuters OMM
adapter, collect information about that stream from your project file. The Event Stream
Processor project file contains one or more stream definitions. Each stream definition
specifies a data stream that is instantiated when Event Stream Processor is started. The stream
definition comprises:

• A unique ID for the stream
• A database store and output file for the stream data
• A list of the columns used as the unique key value for each row in the data stream

Once you have decided which streams will carry the RMDS data provided by the Reuters
adapter, get information from the stream definition in the project file. There is no standard for
project file names. Two Event Stream Processor installations may have completely different
stream definitions, but the definition of any stream includes the same basic set of components.

These instructions refer to the example project to show what components of the stream
configuration you must identify to configure the Reuters OMM adapter.

1. Open the project to which the adapter provides data. The Reuters OMM adapter
distribution includes an example project, $ESP_RMDSOMM_HOME/examples/
example.ccl, that contains schema definitions for three streams.

2. Find the name of the source stream. The opening SourceStream tag specifies the name of
the stream as the value of the id attribute. The first source stream in this example is named
“marketByOrderStream.”

The stream used for subscription by the Reuters OMM adapter must always be a source
stream.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 409

3. Determine the key fields. Check each column entry between the opening and closing
SourceStream tags to see if the key attribute is set to true. In this example,
“marketByOrderStream” has one key field: symbol.

4. Carefully note the number and order of the column entries in the source stream definition.

In the input adapter map file, list the same set of data in the same order.

Creating the Input Map File
Use the procedure in the sample adapter map files provided in the examples subdirectory to
create your own adapter map file.

1. Select or create a directory for your adapter map file.

2. Copy the contents of the $ESP_RMDSOMM_HOME/examples directory to that
directory.

3. Use a text editor to modify the example files as necessary for your installation.

Running the Input Adapter
Run the Reuters OMM input adapter once you have configured it.

Prerequisites
Configure an adapter.

Task

1. Ensure that esp_server is running and that the project has been loaded and started.

2. If the Event Stream Processor is running with RSA authentication, start the adapter using:
esp_rmdsomm -a in -f mapfile -p cluster_host:cluster_port/
workspace/project \
 -k <private_rsa_key_file> -c username

3. If Event Stream Processor is running with Kerberos/LDAP authentication, start the
adapter using:
esp_rmdsomm -a in -f mapfile -p cluster_host:cluster_port/
workspace/project \
-c username:password

4. If Event Stream Processor is running with no authentication, start the adapter using:
esp_rmdsomm -a in -e -f mapfile -p cluster_host:cluster_port/
workspace/project \

5. The adapter starts the subscription by first connecting to Event Stream Processor and then
connecting to RMDS. Both connections must be operational for any data to flow.

If you plan to direct the adapter's log output to stderr, as shown here, you may want to
redirect stderr to a log file (for example, append >& myrmdsommlog & to the command
line shown above).

CHAPTER 2: Adapters Supported by Event Stream Processor

410 Sybase Event Stream Processor

Testing the Adapter
If the adapter is not working as expected, you can perform a quick sanity check by executing
the esp_rmdsomm command and verifying whether the adapter is sending Reuters market
data to Event Stream Processor.

• Execute esp_rmdsomm:
esp_rmdsomm -v

This command returns the version information. Ensure that the Event Stream Processor to
which you are connecting is compatible with your version of the adapter.

• There are three quick ways to verify that the Reuters OMM adapter is sending Reuters
market data to Event Stream Processor:

• Use the Studio or the esp_subscribe command to check the output of the stream
configured to receive Reuters data.

• Use the tail command on the redirected adapter log file (specified in the adapter map
file) or the Reuters subscriber log (specified in the configuration file rmdsomm.cfg)
for activity.

• Run the esp_rmdsomm command with the -d7 option to produce verbose output.

Multiple RICs
When configuring an input adapter, specify multiple RICs if you are interested in more than
one symbol.

There are several ways to do this:

• Specify each individual RIC by entering the name directly into the map file or use an XML
ENTITY include file.

• Create a dynamic watch list, which employs Event Stream Processor to specify the list of
RICs.

• Use a combination of the options above.

Individual RICs
Enter an item element declaration for each RIC you want in the itemList section of the map
file.

Here is an example of this:

<itemLists service="SSL_PUB" stream="marketByOrderStream">
<itemList>
<item name="CSCO.O"/>
<item name="K.N"/>
<item name="KBN.N"/>
<item name="KBR.N"/>
<item name="ACAM.ARC"/>
<item name="IBM.ARC"/>
</itemList>
</itemLists>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 411

It can become difficult to create and maintain your list of RICs this way if it is very large or
changes frequently, for example, if you are attempting to track all of the stocks traded on the
NYSE. All RICs for the same stream must use the same FID set. Since FIDs often vary by
venue, use a different itemList and streamMap for each venue.

Creating a Dynamic Watch List
Creating a dynamic watch list is a bit more complex than creating individual RICs, but is also
more flexible. You can specify a custom list of RICs.

Prerequisites
Define source stream (named MyInfoStream) to receive the data, and manually edit the list of
RICs.

Task

This method is also dynamic: when inserts or deletes occur on the stream configured using
these steps, RMDS subscriptions to the appropriate RICs are started or stopped.

1. Define a stream on Event Stream Processor (for example, MyListStream) which publishes
to the adapter the list of RICs to which you wish to subscribe. This stream requires these
columns:

Column Description

symbol Specifies an RIC symbol ticker (for example, CSCO.O) to which the adapter
should subscribe.

service Specifies the RMDS service on which to subscribe to obtain data for that
RIC.

stream Specifies the name of the stream (for example, MyInfoStream) on which the
adapter publishes data for this RIC.

The stream can also include an optional fourth column, rfaQueue.

2. Define a second stream on Event Stream Processor (for example, MyInfoStream) that
receives the data requested by the first stream.

3. Edit the map file to include the subscription.
<subscriptions>
<subscription name="subscription1" flags="BASE" >
<stream name="MyListStream" >
<name column="3" /> <!-- symbol -->
<field column="1" name="service"/>
<field column="2" name="stream"/>
</stream>
</subscription>
</subscriptions>

CHAPTER 2: Adapters Supported by Event Stream Processor

412 Sybase Event Stream Processor

4. Specify the set of RICs you want and send them to the first stream you created (for
example, MyListStream) to subscribe to them.

a) Create a file with the same six columns that the stream expects in comma-separated
values (CSV) format. The columns are: stream from which you are receiving data,
opcode (the p in the example is for UPSERT), service, symbol, and stream to which
you are sending data.

For example, use a text editor to open a new file (RIClist.csv) and put in these
lines:
MyListStream,p,,IDN_RDF,MyInfoStream,CSCO.O
MyListStream,p,,IDN_RDF,MyInfoStream,K.N
MyListStream,p,,IDN_RDF,MyInfoStream,KBN.N
MyListStream,p,,IDN_RDF,MyInfoStream,KBN.R
MyListStream,p,,IDN_RDF,MyInfoStream,ACAM.ARC
MyListStream,p,,IDN_RDF,MyInfoStream,IBM.ARC

b) Send the data from the file to Event Stream Processor using the esp_convert and
esp_upload commands. The following example assumes that you have installed all
Sybase command line tools in the default directories and added those directories to
your PATH variable. If you have not, prepend the appropriate path to each command
shown in this example.

For example, to send the file created in the previous step to Event Stream Processor
running on port 11180 of your local server, enter:
cat RIClist.csv | esp_convert -c user:password -d "," \
-p localhost:11180/ws1/p1 | esp_upload -c user:password -p
localhost:11180/ws1/p1

c) Start the adapter:
esp_rmdsomm -f mapfile -d7 -c user:password \
-p localhost:11180/ws1/p1 >& logfile &

If the adapter and Event Stream Processor are on different machines, enter the name of
the remote host rather than localhost after the -p in the previous command.

Performance Tuning
There are several attributes you can use to fine-tune performance in an input adapter.

Attribute Description

flushInterval Specify an interval of time in microseconds (for example, 5000
microseconds = 5 milliseconds) to wait while accumulating data.
At the end of this interval, any accumulated events are sent to Event
Stream Processor. Send events less often to allow more events to be
placed into a message resulting in a communications overhead
savings. Use a nonzero flushInterval to make even accumulation
time-based.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 413

Attribute Description

maxRecordsPerBlock Specify the maximum number of accumulated events that the
adapter should send to Event Stream Processor at a time. When the
number of accumulated events is larger than this value, the enve-
lope or transaction is broken into fragments that are less than or
equal to the specified value. For example, if accumulated event
counts of more than 1024 (which would immediately fill the Event
Stream Processor Gateway's inbound queue) are expected, set
maxRecordsPerBlock to a value like 500 to prevent the inbound
queue from filling.

pendingLimit Specify a threshold for the number of events that must accumulate
before they are sent to Event Stream Processor. Set this parameter
to zero to publish each event immediately when it happens (pro-
viding the lowest latency), at the expense of high network overhead
(a TCP/IP packet for each update). If you set this parameter to a
larger value, the adapter waits until that number of events have
accumulated, packs them efficiently in TCP/IP packets, and sends
them to Event Stream Processor. This saves communication work
but increases latency on both the adapter and Event Stream Pro-
cessor.

sendAsTransactions This parameter controls whether events are sent as an envelope or a
transaction. You can specify this parameter on a per-stream basis.

Set this parameter to true for Event Stream Processor to treat a
group of updates as a single transaction. Transactions typically
cause application-level workload savings, since Event Stream Pro-
cessor collapses multiple updates to the same value in a transaction
to a single update. If a transaction contains a delete, additional
savings are achieved since updates prior to the delete can be dis-
carded.

If you set this parameter to false and you are not in low-latency
mode (pendingLimit and flushInterval both set to zero), then use
the maxRecordsPerBlock to control the size of the envelope. You
still gain the communications overhead savings mentioned above,
but not the transactional savings. This is the preferred configura-
tion for applications that require every event to be sent separately ,
such as a market data compliance application.

As a general rule, for quote-based applications, where only the
most recent update matters, use transactions to be most efficient.
For trades, however, where every event must be processed sepa-
rately to compute a total volume, use envelopes instead.

CHAPTER 2: Adapters Supported by Event Stream Processor

414 Sybase Event Stream Processor

When you use both flushInterval and pendingLimit, no event waits longer than the time
indicated in the flushInterval before being sent, and as long as the number of events specified
in pendingLimit arrive, they are sent immediately. The adapter waits for the amount of time
specified in the flushInterval and, if any events have accumulated, it sends them. If the number
of pendingLimit events, or more accumulate while the adapter is sending the earlier events, the
new events are sent immediately (without waiting for the flushInterval). If fewer than the
number of pendingLimit events accumulate while the adapter is sending events, it waits for the
flushInterval to elapse.

You can also use the rfaQueue attribute at the itemLists, itemList, or item element level. When
specified, the rfaQueue attribute causes the element to be subscribed from Reuters on a named
rfaQueue. Each rfaQueue is processed by its own thread within the Reuters adapter. Spreading
requests across multiple threads can reduce latency and improve overall adapter throughput at
the cost of greater CPU usage.

Since all images and updates come from Reuters on the same queue, the integrity of the order
of arrival is maintained for any individual RIC. If you do not specify an rfaQueue for any of the
elements, a single default queue (named "defaultQueue") is used for all RICs.

Output Adapter Configuration
Configure an output adapter to push data from Event Stream Processor to RMDS.

Before configuring an output adapter, decide which data to provide and how you want to set up
your system.

You need to know the following about the Event Stream Processor instance from which you
receive data.

• Possible security options in a cluster environment, and the workspace and project name.
• What type of authentication mechanism (Kerberos, RSA, LDAP, or none) does it use?

Data Decisions
Identify which columns from which streams in Event Stream Processor to publish data from.

The Reuters OMM adapter can rearrange the columns from a stream in any order. Its output
can also include constants, and the published output can include values from more than one
stream.

Consider these items when planning the output of the Reuters OMM Output adapter:

• For each stream for which to publish data, you must specify a unique key in the output
adapter map file. Since this adapter sends data to RMDS, the unique identifier should be an
RIC. For Market Price data the key can be just the RIC. For Level 2 data, the key must
contain additional fields: MarketbyPrice requires PRICE and SIDE, and MarketbyOrder
requires ORDER_ID, in addition to the RIC.

• Each data column you want to publish from any stream must map to a unique FID.
• Data from one column can be repeated in the published output, giving you a way to publish

a DateTime value as separate Date and Time values.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 415

• If the stream you are working with receives data about the same FID from more than one
service, you can configure the adapter to differentiate these data items by service and
transmit each service's data separately.

• The first time the Reuters OMM adapter publishes to RMDS, it publishes values for all the
columns for which it is configured. After that initial image, the adapter only publishes
updates for individual columns as these updates occur.

The datatype of the Event Stream Processor column must be compatible with the Reuters FID
datatype that feeds it. This table shows possible matches between Event Stream Processor and
FID datatypes:

Event Stream Processor Da-
tatype

Reuters Datatype

integer enumeration,time_seconds,uint32,
uint64, or real32

long int64 or uint64

money, float real32 or real64

string ASCII_string, RMTES_string

date, timestamp date, time

Administrative Decisions
You have several administrative decisions to make in regards to the project.

Decision Description

Session Name An arbitrary string used to link the project and the adapter map file.
Use it consistently.

Directories for logging and
stream output

The adapter writes its own log messages and can generate a sepa-
rate set of Reuters log messages. In the configuration, specify if and
where these log files should be written.

Sybase user account Specify a valid Event Stream Processor user account for the adapter
to use, unless you specified no authentication when you started the
Event Stream Processor.

Reuters Information
You need several pieces of information from Reuters to enable the Reuters OMM adapter to
publish to the RMDS.

• The name of the Reuters service on which the adapter transmits data
• Up-to-date lists of valid Reuters Instrument Codes (RICs) and Field Identifiers (FID) used

by RMDS

CHAPTER 2: Adapters Supported by Event Stream Processor

416 Sybase Event Stream Processor

• The Product Permission Code assigned by Reuters

The adapter does not work with the Reuters Data Access Control System (DACS), so the
Product Permission Code is needed to allow access to the information you are transmitting on
the RMDS.

A list of FIDs, $ESP_RMDSOMM_HOME/config/RDMFieldDictionary, has been
supplied as part of the Reuters adapter distribution. You can obtain the latest list and other
information from your Reuters technical contact.

Getting Stream Information from the Project
Gather the necessary information from the project.

The first step in configuring the output adapter is determining which data elements from which
streams on the Event Stream Processor are to be published. After you have chosen (or defined)
a project containing the items for publication over RMDS via the Reuters adapter, collect
information from the streams from which to obtain the data to send to RMDS.

Each stream definition specifies a data stream that is instantiated when Event Stream
Processor is started up. The stream definition:

• Specifies a unique ID for the stream
• Identifies the columns used as the unique key value for each row in the data stream

Once you have decided which streams will provide the information to be sent to RMDS by the
Reuters adapter, get information from the stream definition in the project file. There is no
standard for project file names. Two Event Stream Processor installations may have
completely different stream definitions, but the definition of any stream includes the same
basic set of components.

1. Open the project from which the adapter is obtaining data. The Reuters OMM adapter
distribution includes an example project in the $ESP_RMDSOMM_HOME/examples/
example.ccl file.

2. From the definition of each stream defined in the project:

a) Obtain the name of the stream from the id attribute in the opening tag of that stream.
b) Verify that the key attribute is set to true for the column containing the RIC and note the

column. In this example, the “marketByOrderStream” has the RIC in the column
named “symbol,” which is identified as a key field.

c) Decide what data, if any, you want the adapter to send to RMDS.

3. Carefully note which streams contain data you want to send to RMDS, and where in the
stream definition it is located.

In the output adapter map file, reference each of the columns you want to publish.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 417

Creating the Output Map File
Create an adapter map file to configure the interface between the output adapter and Event
Stream Processor.

There are sample adapter map files in the examples subdirectory.

1. Select or create a directory for your adapter map file.

2. Copy the contents of the $ESP_RMDSOMM_HOME/examples directory to that
directory.

3. Use the text editor to modify the example files as necessary for your installation.

Running the Output Adapter
Run the adapter once you have configured it.

Prerequisites
Configure an adapter.

Task

1. Ensure that esp_server is running and that the project has been loaded and started.

2. Start the adapter:
esp_rmdsomm -a out -f mapfile -p cluster_host:cluster_port/
workspace/project

The exact usage of the command depends on how you started your Event Stream
Processor. You must invoke the adapter with compatible options. The command string
shown invokes neither encryption nor authentication: you can specify either or both.

Note: If you plan to direct the adapter's log output to stderr, as shown here, you may want to
redirect stderr to a log file (for example, append >& myrmdsommlog & to the command
line shown above).

Testing the Adapter
If the adapter is not working as expected, you can perform a quick sanity check by executing
the esp_rmdsomm command and verifying whether the adapter is sending Reuters market
data to Event Stream Processor.

• Execute esp_rmdsomm:
esp_rmdsomm -v

• This command returns the adapter release number and the revision number of the source
tree separated by an underscore character. Ensure that your version of the adapter is
compatible with your version of Event Stream Processor.

• There are several ways to verify that the Reuters OMM adapter is publishing to RMDS:

CHAPTER 2: Adapters Supported by Event Stream Processor

418 Sybase Event Stream Processor

• Use the tail command on the adapter log file to which console output was redirected or
any of the Reuters publisher log files (specified in rmdsomm.cfg) to look for activity.

• Use the esp_subscribe command to look at the outbound stream and verify that values
are changing.

• Use RMDS tools to subscribe to RICs provided by the output adapter.
• Use an input adapter to subscribe to the output adapter via the RMDS Market Data Hub

(MDH).

Performance Tuning
You can improve the performance of output adapters by using multiple threads.

The subscriptions section of the output adapter map file can contain more than one
subscription. Each subscription is instantiated on a separate thread so you can specify multiple
subscription sections to gain the performance advantage of running on multiple threads.

Split Adapter Map Files
It can be advantageous to put part of your input or output adapter map file in a separate file.

For example, you might want to keep a subscription configuration in a map file, but break out
the list of RICs you want the adapter to subscribe to.

The sample files in $ESP_RMDSOMM_HOME/examples demonstrate how this facilitates
reuse. The pubexample.omm.map.xml map file references three “map fragment” files:
mbo.s.mf.xml, mbp.s.mf.xml, and mp.s.mf.xml file. The mbo.s.mf.xml is
also referenced by three other map files.

Map file fragments are reusable blocks of XML for constructing adapter map files, using the
XML entity mechanism. File names are of the form
description.parent_element.mf.xml. Some current descriptions are:

• mbo – MarketByOrder
• mbp – MarketByPrice
• mp – MarketPrice

And current parent_elements are:

• sd – Event Stream Processor model stream definition
• sms – Subscriber's streamMaps section
• rfa – common config section
• sm – Subscriber's streamMap
• il – Subscriber's itemList
• s – Publisher's stream

Therefore, it is evident that the mbo.sm.mf.xml file is a subscriber map fragment
containing streamMap elements for a MARKET_BY_ORDER message.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 419

Creating a Subordinate Map File
Create a subordinate map file to hold part of the map file configuration.

1. Go to the directory that contains the map File.

2. Create a new file with the extension .xml.

It is not necessary to add a declaration of the XML version.

3. Insert the selected content from the map file into the new file.

The content you add depends on which part of the map file you have decided to store
separately.

4. (Optional) Add a comment to the new file.

5. Save the file when you are done.

Modifying the Main Map File
Modify the main map file to reference the subordinate file.

1. Make sure the first line of the main map file is:
<?xml version="1.0"?>

2. Between the XML version declaration and the opening adapter tag, add these lines:
<!DOCTYPE adapter SYSTEM "adapter.dtd" [
]>

3. For each subordinate map file:

a) Between the two lines just added, add:
<!ENTITY SUBREF SYSTEM "SUBFILE">

where SUBREF is a string to reference the subordinate file and SUBFILE is the path
and filename of the subordinate file itself. Enclose the path and filename in quotation
marks.

b) Remove the content that you put in the subordinate map file.
c) Insert a string like the following to include the content from the subordinate map file:

&SUBREF;

where SUBREF is the string you specified to reference the subordinate file.

Command Usage

esp_ommsample
The esp_ommsample utility displays data received from the Reuters Market Data System
(RMDS) to stdout.

Synopsis
esp_ommsample -u username [OPTION ...]

CHAPTER 2: Adapters Supported by Event Stream Processor

420 Sybase Event Stream Processor

Description
The esp_ommsample utility operates as a data sink from RMDS for OMM messages. It
enables you to see which fields are delivered and their values without setting up a Reuters
OMM adapter and model.

esp_ommsample prints data to stdout, getting its configuration from the command line. You
can run it for a specified period of time or stop it using Ctrl+C.

Required Arguments

• -u username – specify the user name with which to connect to RMDS
[ENTER_VALID_USERNAME].

Options

• -a FID_dictionary – specify a dictionary to use instead of the default dictionary (./
config/RDMFieldDictionary).

• -A applicationId – specify an ApplicationId to override the default (256).
• -c Reuters config file – specify the path and file name of the Reuters configuration file.

Since this file is usually shared with the Reuters OMM adapter, this is, by default, set
to ./config/rmdsomm.cfg.

• -e enum_defs – specify a file name to override the default (./config/
enumtype.def).

• -f format – specify the format (0, 1, 2, or 3) for update messages. The default, 0, is a
multiline format with each value on a separate line. Specify 1 to get all of the values on one
line, for example:
207 TRIN.O|TRDPRC_1=1.14|BID=1.13|ASK=1.17|ACVOL_1=1000|
ASK_TIME=10:26:2|

The RIC (TRIN.O) is prefaced by a millisecond timestamp and followed by FID=value
pairs, delimited by "|". Specify 2 to have the FID numbers included along with the field
names: field[FID]=value. Specify 3 for the tersest format: FID=value.

You can use separator characters for environment variables.
ESP_OMMSAMPLE_PAIR_SEPARATOR defaults to '='.
ESP_OMMSAMPLE_FIELD_SEPARATOR defaults to '|'.
ESP_OMMSAMPLE_TIMESTAMP_SEPARATOR defaults to ' '.

• -h – print this help message and exit.
• -I instanceId – specify an InstanceId to override the default (1).
• -m type – specify the message type (MMT) to use, where type is one of:

 1 = MarketPrice
 m = MarketMaker
 o = MarketByOrder
[p = MarketByPrice]
 s = SymbolList

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 421

• -p period – specify the length of time (in seconds) to listen to updates before terminating.
The default is 120.

• -P position – Specify a position to override the default (yourIP/net).
• -r service – specify the RMDS service: one that is a valid service name for your site. This

value defaults to DF_EAP_LAB1, which is a service available on Reuters test lab.
• -s symbol [symbol ...] – specify one or more symbols (RICs) to which to subscribe. A

space-separated list likely needs quotes to protect it from the shell.
• -S file – specify a file containing symbols (RICs) to which to subscribe. These are added to

any RICs that have been specified via the -s option.
• -v – Show the version number and exit.

Examples
cd $ESP_RMDSOMM_HOME/bin
./esp_ommsample -u myUsername -r MY_SERVICE -m 1 -s GOOG.O >&
esp_ommsample.out &

esp_rmdsomm
The Reuters OMM Adapter adapts data from the Reuters Market Data System (RMDS) to the
Event Stream Processor and vice versa.

Synopsis
esp_rmdsomm -f mapFile -p host:port/workspace/project [OPTION ...]

Description
The esp_rmdsomm command can start an adapter as either a data source or sink to or from the
Event Stream Processor to or from Reuters Market Data System (RMDS). To both subscribe
from and publish data to RMDS, you must run two separate RMDS OMM adapter instances.

The metadata describing the connection has several parts, including a map file, configuration
file, and possibly a configuration stream resident on a running instance of the Event Stream
Processor.

Reuters OMM has several domains. Currently, only MARKET_PRICE,
MARKET_BY_PRICE, and MARKET_ BY_ORDER are fully supported.
MARKET_MAKER is supported only for inbound streams. See the Reuters documentation
for more information, including what FIDs to expect on the message domains.

The process runs as a daemon, getting its configuration from a map file. It handles SIGHUP;
so you can enter kill -s SIGHUP pid on Linux or kill -s HUP pid on Solaris
(where pid is the process ID of the esp_rmdsomm daemon, which you can obtain using the ps
command) to gracefully shut dow the adapter. Using the KILL signal rather than the HUP
signal may prevent a complete clean up of system resources.

There are three directories underneath the directory where the adapter is installed containing
additional information: doc, examples, and config. The doc directory contains
Reuters README files that describe various configuration options. The examples

CHAPTER 2: Adapters Supported by Event Stream Processor

422 Sybase Event Stream Processor

directory contains several example map files that demonstrate many features. The config
directory contains example RMDS configuration files. Minimally, you must modify the
RMDS config file with your site's specific information. Typically, you must also modify the
map file to match the Event Stream Processor.

Required Arguments

• -f mapFile – specify the map file containing the metadata required to map the market data
to/from RMDS.

• -p hostname:port/workspace/project – specify the URI to connect to the server (cluster
manager). For example, -p localhost:19011/default/prj1 specifies a project called prj1 in
the default workspace of an ESP cluster server using port 19011 on your localhost.

Options

• -a in|out|interactive – specifies whether the RMDS OMM adapter instance is passing
data in to the Event Stream Processor or receiving data passed out from it. Valid values are
in, out and interactive. Since the default value is in, this option is typically
omitted when subscribing to market data.

For backward compatibility, "subscribe" (in) and "publish" (out) are still allowed, but the
options have been deprecated.

• -c user[:password] – if you are using an authentication method that requires credentials
(such as Kerberos, PAM, or RSA), this option passes those authentication credentials to
Event Stream Processor. If Event Stream Processor successfully authenticates with these
credentials, the connection is maintained, otherwise Event Stream Processor immediately
closes the connection.

• -d debugLevel – sets the debug level. The valid range is 0–7, with 0 being minimal and 7
being verbose. By default it is set to 4.

• -e – negotiates encrypted OpenSSL sockets for all communication with the Event Stream
Processor, which must be started in encrypted mode when using this option.

• -F configFile – specifies the RMDS Configuration file, overriding the configuration file
specified in the map file.

• -g gatewayHost – explicitly specifies the Event Stream Processor gateway host.
• -G – uses Kerberos authentication. This option is required when the Event Stream

Processor is started with the -V gssapi option.
• -h – print a short help message describing the syntax of this command.
• -k privateRsaKeyFile – perform authentication using the RSA private key file

mechanism instead of password authentication. The privateRSAKeyFile must specify the
absolute path filename of the private RSA key file. With this option enabled, the user name
must be specified with the -c option, but the password is not required. In addition, Event
Stream Processor must be started with the -k option.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 423

• -l 0|1|2|3 – specify the location to which log messages get sent. Use 0 for no log messages,
1 to send to stderr only (the default), 2 to send to syslog only, and 3 to send to both stderr
and syslog.

• -r resubscribeInterval – specify how many seconds to wait (default is 300) between
attempts to resubscribe to a RIC. (If a subscription to a RIC is marked CLOSED or
CLOSEDRECOVER, you must resubscribe to that RIC for data to flow.) To disable
resubscription attempts, specify 0 as the value. Periodically resubscribing can compensate
for a temporary condition where the source is not ready for subscribers. Each unsuccessful
resubscribe attempt generates a failure event which may result in a status update marking
the item stale.

• -s streamName – specify the stream to be used when running in discovery mode. This
option is used by the connector start mechanism and specifies the single stream for which
mapped columns have been discovered.

• -v – print the version of the RMDS OMM adapter and exit.
• -w retrySeconds – specify the number of seconds to wait between retries when

connecting to the Event Stream Processor. The default is 5. Specify 0 to try only once.
• -x optName – specify various extra settings; use -x help to see a list of possible values.

• -z publishCount – specify the number of (2x) values to pass to the Event Stream Processor
before terminating. By default this is 0, which means never terminate.

• -Z subscribeCount – Specify the number of (2x) values to pass to RMDS before
terminating. By default this is 0, which means never terminate.

Examples
To start a Reuters OMM input adapter on the machine where you enter the command, using
port 1099 and running project proj1 in workspace work02 using the myMap.xml map file:

esp_rmdsomm -c user:passwd -f myMap.xml -p localhost:1099/work02/
proj1 -d 7 &> omm.in.log &

To start a Reuters OMM outbound adapter on a host named loki, using port 2010 and running
project proj3 in workspace work01 using the myMap.xml map file:

esp_rmdsomm -a out -c user:passwd -f myMap.xml -p loki:2010/work01/
proj3 -d 7 &> omm.out.log &

Environment Variables
The Reuters OMM adapters use environment variables to specify behavior.

Environment Variable Used
By

Description

ESP_ACCUMULATOR_DELAY Input (Expert) Delay connection to the Event
Stream Processor (seconds).

ESP_DISABLE_REPORT_ENCOD-
ING_NULL

Output Stop warning about blank-to-null con-
versions (bool) [false].

CHAPTER 2: Adapters Supported by Event Stream Processor

424 Sybase Event Stream Processor

Environment Variable Used
By

Description

ESP_FLUSH_INTERVAL Input Override the publication flushInterval
(microseconds).

ESP_INTRASUBSCRIBE_DELAY Input Override the map attribute (millisec-
onds).

ESP_LOG_CONFIG_EVENTS Both Set log level (1–7; 2x) for config event
processing [-1]

ESP_MAX_RECORDS_PER_BLOCK Input Override the publication maxRecord-
sPerBlock (count).

ESP_PENDING_LIMIT Input Override the publication pendingLimit.

ESP_RETRY_INTERVAL Both Override the publication retryInterval.

ESP_RMDSOMM_DISPATCH Both (Expert) Dispatch RFA every N milli-
seconds [10,000].

ESP_RMDSOMM_EVENT_TRACE Both (Expert) Enable RFA event tracing every
N event (int).

ESP_RMDSOMM_HOME Both Specify the installation directory.

ESP_RMDSOMM_PUBLISH_DE-
BUG_LEVEL

Output Set to 7 to see values [not in -opt].

ESP_RMDSOMM_PUBLISH_DE-
BUG_SYMBOLS

Output Contains a space-delimited list of sym-
bols that are used when default behavior
is overriden. If this environment variable
is not set, all symbols are used.

ESP_RMDSOMM_SUBSCRIBE_DE-
BUG_LEVEL

Input Set to 7 to see values [not in -opt].

ESP_RMDSOMM_SUBSCRIBE_DE-
BUG_SYMBOLS

Input Contains a space-delimited list of sym-
bols that are used when default behavior
is overriden. If this environment variable
is not set, all symbols are used.

ESP_RMDSOMM_SUBSCRIBE_SYM-
BOL_FORMAT

Input Specify symbol list format: 0 for multi-
line; 1 for single line.

ESP_SEND_AS_TRANSACTIONS Input Override the map attribute.

ESP_SHOW_FIELD_INFO Input Show FID, column, spColumn, and
stream name [false].

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 425

Environment Variable Used
By

Description

ESP_SHOW_SP_EVENT_DATA Output Set log level (1–7) for events from the
Event Stream Processor [-1].

Input Adapter Map File
Shows the structure of the map file for the Reuters OMM input adapter.

adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

adapter
The adapter element is the root element of the map file.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

426 Sybase Event Stream Processor

 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
None

Children
The following child elements are defined for adapter. All of these elements must be present,
and in the order specified.

Name Requirement

publication Exactly one required

streamMaps Exactly one required

rfa Exactly one required

itemLists Exactly one required

Attributes

Name Description Requirement

name A string that uniquely identifies this adapter (included in log entries) Optional

Notes
None

Example
See the examples given for each of the component elements of the map.

dataField
In the streamMap definition, the dataField element maps a Reuters Field ID (FID) to one
column in a source stream.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 427

 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name The Reuters FID that identifies the data item that
appears in this column of the source stream

Required

key True or false, depending on whether this column is
part of the source stream's unique key

See Notes

Notes
Each element in the streamMap section of the input adapter map file must represent a column
in the row definition of the target source stream. (The order of the streamMap elements must
mirror the order of the columns in the source stream.) If the column in the source stream is a
data item (Bid, Ask, and so on), the corresponding streamMap entry must be a dataField
element for which the name attribute identifies a specific FID. Any time RMDS publishes an
update tagged with that FID, the adapter sends it to Event Stream Processor source stream as a
value in the corresponding column.

Use the key attribute to set the value to true. If this column is not part of the stream's key, you
can omit the key attribute.

The adapter uses the Event Stream Processor schema.

Example
<streamMap name="marketByOrder">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>

CHAPTER 2: Adapters Supported by Event Stream Processor

428 Sybase Event Stream Processor

 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

This example maps columns 4–8 of the marketByOrder stream to the Reuters FIDs BID, ASK,
TRDPRC_1, and ACVOL_1.

dateTimeField
In a streamMap, the dateTimeField element maps a Reuters date or time FID (or one of each)
to a date column, a timestamp column, or both, in an Event Stream Processor source stream.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

dateName The FID of the date value provided by RMDS See Note

timeName The FID of the time value provided by RMDS See Note

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 429

Notes
The dateTime datatype, which combines both date and time, is the most commonly used
datatype for date/time information in Event Stream Processor data streams. In most cases,
however, the updates provided by RMDS and brought in to the Event Stream Processor by the
Reuters OMM adapter use separate FIDs for date and time.

To address this discrepancy, the map file provides the dateTimeField element, which provides
separate attributes for date and time, allowing you to map two FIDs (one for date, one for time)
to the same column in the source stream definition.

If dateTime is used, it must be used alone. The dateName and timeName attributes can be used
either separately or together. One of these three attributes must be used.

The value for each FID must match one listed in the FID list referenced in the Reuters-side
configuration file (the FID list provided with the adapter is named appendix_a). This file is
referenced in the rmdsomm.cfg configuration file.

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

This example maps the TIMACT and ACTIV_DATE FIDs together to the ninth column of the
Event Stream Processor source stream marketByOrderStream.

hiResTimestampField
The hiResTimestampField element substitutes a high-resolution timestamp for the regular
timestamp.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)

CHAPTER 2: Adapters Supported by Event Stream Processor

430 Sybase Event Stream Processor

 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name long relative timestamp required

Notes
This element can be used only on Solaris machines.

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <hiResTimestampField name="TIME"/>
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

imageField
The imageField element indicates whether or not the Event Stream Processor row is part of a
snapshot initial image.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 431

 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name Integer (1 if part of image, 0 if not) Required for Level 2

Notes
The project should treat all rows of a snapshot image as one transaction.

Example
 <name column="0"/>
 <keyField column="1" name="mbpkey" />
 <imageField column="2" />
<!-- summary fields -->
 <stale column="4" />
 <field column="5" name="CURRENCY" />
 <field column="6" name="ACTIV_DATE" />
 <field column="7" name="PROD_PERM" />
<!-- end summary fields -->

item
The item element identifies an RIC to which the Reuters OMM adapter subscribes.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)

CHAPTER 2: Adapters Supported by Event Stream Processor

432 Sybase Event Stream Processor

 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
itemList

Children
None

Attributes

Name Description Requirement

name An RIC to which the adapter will subscribe Required

rfaQueue A name for the rfaQueue, which, if provided, replaces
the default rfaQueue name and cause a separate thread
to be used for this queue

Optional

service The name of a Reuters Service that provides incoming
data through RMDS

Optional if already specified in
the parent itemList or itemLists
element, otherwise required

stream The source stream on which updates for this RIC are be
brought to the Event Stream Processor

Optional if already specified in
the parent itemList or itemLists
element, otherwise required

Notes
The value for the name attribute should be a valid RIC on the service.

If you specify a stream name here, updates for this RIC are brought in to the Event Stream
Processor on that stream. If you do not specify a stream here, the stream specified at the
itemList level is used.

The stream you specify must match a streamMap defined elsewhere in the map file.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 433

Example
<itemLists service="SSL_PUB" stream="marketByOrderStream">
 <itemList service="IDN_RDF" >
 <item name="EUR=" />
 <item name="EURJPY=" stream="stream6" />
 </itemList>
</itemLists>

These two item elements subscribe the adapter to the RICs EUR= and EURJPY=. The EUR=
updates are sent to the stream marketByOrderStream which was set in the itemLists element.
The EURJPY= updates are sent to the stream stream6, since the item level stream attribute
overrides the itemLists level attribute.

itemList
The itemList element contains one or more instances of the item element.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
itemLists

Children

Name Requirement

item zero or more required

CHAPTER 2: Adapters Supported by Event Stream Processor

434 Sybase Event Stream Processor

Attributes

Name Description Requirement

rfaQueue A name for the rfaQueue, which if provided, it
replaces the default rfaQueue name and causes a
separate thread to be used for this queue

optional

service The name of a Reuters Service that provides in-
coming data through RMDS

optional if already specified in the
parent itemLists element or in all
child item elements, otherwise re-
quired

stream The name of an Event Stream Processor source
stream that will receive updates on the RICs
specified in this list of items

optional if already specified in the
parent itemLists element or in all
child item elements, otherwise re-
quired

Notes
Configure the adapter to push updates for every item in this section to that stream (although
you can override this specification at the item level) by specifying a stream name for this
element.

The adapter supports more than one itemList element under itemLists; this allows you to
configure one instance of the adapter to direct updates from two or more groups of RICs to
different Event Stream Processor source streams.

The stream you specify must match one of the streamMaps defined elsewhere in the map file
(by the value of the streamMap's name attribute).

Use the rfaQueue attribute to control scalability.

Example
<itemLists service="SSL_PUB" stream="marketByOrderStream">
 <itemList service="IDN_RDF" >
 <item name="EUR=" />
 <item name="EURJPY=" stream="stream6" />
 </itemList>
</itemLists>

This itemList element sets the service attribute to IDN_RDF, overriding the SSL_PUB service
attribute defined in the parent itemLists element.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 435

itemLists
The itemLists element contains one or more instances of the itemList element.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children

Name Requirement

itemList One required, two or more supported

Attributes

Name Description Requirement

name A string that appears in any adapter-related log entries Optional

rfaQueue A name for the rfaQueue, which if provided, it repla-
ces the default rfaQueue name and causes a separate
thread to be used for this queue (a default that you can
override at the item level)

Optional

CHAPTER 2: Adapters Supported by Event Stream Processor

436 Sybase Event Stream Processor

Name Description Requirement

service The name of a Reuters Service that provides incoming
data through RMDS (a default that you can override at
the item level)

Optional if specified in the
child itemLists or item ele-
ments or both, so that all child
item elements either specify or
inherit it, otherwise required

stream The name of an Event Stream Processor source stream
that receives updates on the RICs specified in the item
lists in this section (a default that you can override at
the item level)

Optional if specified in the
child itemLists and/or item el-
ements so that all child item
elements either specify or in-
herit it, otherwise required

Notes
Each itemList instance in this section is a list of one or more RICs to which the adapter
subscribes.

Get the value for service from your Reuters administrator.

Example
<itemLists service="SSL_PUB" stream="marketByOrderStream">
 <itemList service="IDN_RDF" >
 <item name="EUR=" />
 <item name="EURJPY=" stream="stream6" />
 </itemList>
</itemLists>

This itemLists element sets the service attribute to SSL_PUB and the stream attribute to
marketByOrderStream. These attributes are either inherited, or overridden at the itemList
and/or item level.

itemName
In the streamMap definition, the itemName element identifies the row in the Event Stream
Processor source stream that carries the RIC from the RMDS update.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 437

 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

key True or false, depending on whether or not this column is part of the
source stream's unique key

See first note

Notes
You need not use the key attribute; it is present for backward compatibility.

Insert the itemName element in the streamMap to correspond with the column in the source
stream that carries the RIC or symbol. If this column is part of the source stream's key, set the
key attribute to true.

This element is one of the "pseudofields" that specify data items that are not part of the data
feed coming directly from RMDS.

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The first column of the source stream is identified as the one that carries the RIC value of any
update from the adapter. It is also identified as part of the stream's key.

CHAPTER 2: Adapters Supported by Event Stream Processor

438 Sybase Event Stream Processor

itemStale
In the streamMap definition, the itemStale element identifies a column in the Event Stream
Processor source stream that carries an indicator of whether or not incoming RMDS data has
gone stale.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name A string that appears in any adapter-related log entries optional

Notes
Use this element in the streamMap if one of the columns in the source stream is a "stale"
column.

RMDS itself does not supply a stale flag with regular market data, although it may pass along
such a flag if it is provided by another service you are subscribing to via RMDS. If this element
is used in the streamMap, the adapter sends a non-zero update value if it receives a stale flag

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 439

from RMDS, or stops receiving any data from RMDS. It uses three sets of bits to indicate stale
reasons.

Adapter Status Bits Description

0 Unknown = initial state

1 ConnectionInLoss

2 ConnectionOutLoss

3–7 Reserved

Data Status Bits Description

8 Data suspect

9 Unspecified (initializing)

10–15 Reserved

Stream Status Bits Description

16 Unspecified = initializing

17 NonStreaming = configured as snapshot only

18 ClosedRecover = stream is closed but can be retried

19 Closed = stream is closed and not coming back

20 Redirected = part of failing over state

21 Stale = for OMM

22–24 Reserved

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The fourth column of the source stream is identified as the one that is updated if the adapter
receives a "stale" notification or stops receiving data from RMDS.

CHAPTER 2: Adapters Supported by Event Stream Processor

440 Sybase Event Stream Processor

marketByOrderKeyField
The marketByOrderKeyField element is a secondary key for messages of the
MARKET_BY_ORDER domain.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name string required for Level 2

Notes
Typically, the ORDER_ID FID is specified as the secondary key.

Example
<streamMaps>
 <streamMap name="MarketByOrderStream"
messageType="MARKET_BY_ORDER">
 &marketByOrder;
 </streamMap>
 <streamMap name="MarketByPriceStream"

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 441

messageType="MARKET_BY_PRICE">
 &marketByPrice;
 </streamMap>
 <streamMap name="MarketMakerStream" messageType="MARKET_MAKER">
 &marketMaker;
 </streamMap>
</streamMaps>

marketByPriceKeyField
The marketByPriceKeyField element is a secondary key for messages of the
MARKET_BY_PRICE domain.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name PRICE + SIDE as a string required for Level 2

CHAPTER 2: Adapters Supported by Event Stream Processor

442 Sybase Event Stream Processor

Notes
This element is not meant to be parsed by the Event Stream Processor; it is used only as a
secondary key to keep orderbook rows for the same RIC.

Example
<streamMaps>
 <streamMap name="MarketByOrderStream"
messageType="MARKET_BY_ORDER">
 &marketByOrder;
 </streamMap>
 <streamMap name="MarketByPriceStream"
messageType="MARKET_BY_PRICE">
 &marketByPrice;
 </streamMap>
 <streamMap name="MarketMakerStream" messageType="MARKET_MAKER">
 &marketMaker;
 </streamMap>
</streamMaps>

marketMakerKeyField
The marketMakerKeyField element is a secondary key for messages of the
MARKET_MAKER domain.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 443

Children
None

Attributes

Name Description Requirement

name string, typically MMID required for Level 2

Notes
None

Example
<streamMaps>
 <streamMap name="MarketByOrderStream"
messageType="MARKET_BY_ORDER">
 &marketByOrder;
 </streamMap>
 <streamMap name="MarketByPriceStream"
messageType="MARKET_BY_PRICE">
 &marketByPrice;
 </streamMap>
 <streamMap name="MarketMakerStream" messageType="MARKET_MAKER">
 &marketMaker;
 </streamMap>
</streamMaps>

nullField
In a streamMap, the nullField element acts as a placeholder that always delivers a NULL value
to the Event Stream Processor source stream. This lets you add extra fields to a source stream
to get the configuration you want.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

444 Sybase Event Stream Processor

 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name A string that appears in any adapter-related log entries optional

dateName A string that appears in any adapter-related log entries optional

timeName A string that appears in any adapter-related log entries optional

Notes
When experimenting with a project, you can replace a dataField or dateTimeField element
with a nullField to temporarily stop feeding data into any column of the stream.

You need not modify any attribute(s) of the dataField or dateTimeField you are temporarily
replacing, as the following example shows.

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <nullField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The sixth column of the source stream is identified as a placeholder that receives a null value in
each update from the adapter. It includes the name of the dataField that it replaces for
debugging purposes.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 445

publication
The publication element specifies basic publishing information for this instance of the
adapter.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children
None

Attributes

Name Description Requirement

flushInterval Specify the number of microseconds the
adapter allows events to accumulate be-
fore sending them to the Event Stream
Processor. A nonzero flushInterval makes
event accumulation time-based.

Optional (the default is 1000)

intraSubscribeDelay Specify the number of milliseconds the
adapter pauses between subscription re-
quests.

Optional (the default is 100)

CHAPTER 2: Adapters Supported by Event Stream Processor

446 Sybase Event Stream Processor

Name Description Requirement

maxRecordsPerBlock Specify the maximum number of accumu-
lated events that the adapter sends to the
Event Stream Processor at a time. This
reduces the size of each transaction or en-
velope fragment when there is a large
number of accumulated events. For exam-
ple, if 140 events have accumulated and
maxRecordsPerBlock is set to 50, the
adapter sends the envelope or transaction
as three fragments.

Optional (the default is 256)

name Specify a string that identifies the adapter
instance in log file entries.

Optional

pendingLimit Specify the number of events that may ac-
cumulate before the adapter sends them in
to the Event Stream Processor. Using a
pendingLimit makes the event accumula-
tion count-based.

Optional (the default is 256)

retryInterval Specify the number of seconds for which
the adapter waits between attempts to con-
nect to RMDS before shutting down.

Optional (the default is 5)

sendAsTransactions Set to true to treat a group of updates as a
single transaction or false to treat them as
separate rows within an envelope.

Optional (the default is false)

Notes
You can optimize the adapter's performance using the pendingLimit and flushInterval
attributes, along with the maxRecordsPerBlock and sendAsTransactions attributes from the
Pub/Sub interface that the adapter uses to communicate with the Event Stream Processor. See
Performance Tuning for details.

Some venues send initial images as multipart messages, which may produce large data sets.
The intraSubscribeDelay attribute provides the ability to pace these subscriptions and
prevents the adapter from being overwhelmed by initial images. The default value is zero,
which is suitable for short RIC lists. When intraSubscribeDelay is set to a nonzero value, the
adapter pauses between subscription requests for the specified number of milliseconds. The
suggested value is ten (10).

Example
<publication name="RMDS Adapter - low latency" retryInterval="5"
 flushInterval="0" pendingLimit="0" sendAsTransactions="0" />

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 447

respTypeNumField
The respTypeNumField element populates a column with the RMDS respTypeNum value.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

name A string used in adapter-related log entries optional

Notes
For an initial snapshot image, respTypeNumField has a value of 1 for UNSOLICITED or 0 for
SOLICITED. Updates may have other values. See the RMDS documentation for more details.

Example
<itemName key="true" /> <!-- str: the RIC -->
<marketByPriceKeyField key="true"/> <!-- str: SIDE + PRICE as a key
-->
<imageField name="imageIn" />
<updateNumber name="upd" /> <!-- generated by Adapter -->
<respTypeNumField name="rtn" />

CHAPTER 2: Adapters Supported by Event Stream Processor

448 Sybase Event Stream Processor

rfa
The rfa element links the subscriber map file to the Reuters-side configuration file.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children
None

Attributes

Name Description Requirement

config The absolute path and file name of the Reuters-side
configuration file for subscription (the sample file sup-
plied with the adapter is at
$ESP_RMDSOMM_HOME/config/
rmdsomm.cfg).

Required

configDatabaseName Must be set to RFA. Required

enumFile The full path name of the Reuters-supplied file that lists
each enumerated type along with the range of values it
can take

See first Note

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 449

Name Description Requirement

fidFile The full path name of the Reuters-supplied file that lists
all of the valid FIDs

See second Note

sessionName A reference to a session name defined in the Reuters-
side configuration file for subscription

Required

blank Specifies a marker to use for blanks Optional

blankInt32 Specifies a marker to use for blank Int32 fields Optional

blankInt64 Specifies a marker to use for blank Int64 fields Optional

blankMoney Specifies a marker to use for blank Money fields Optional

blankString Specifies a marker to use for blank String fields Optional

blankDate Specifies a marker to use for blank Date fields Optional

blankTimestamp Specifies a marker to use for blank Timestamp fields Optional

blankDouble Specifies a marker to use for blank Double fields Optional

Notes
The default enumFile is $ESP_RMDSOMM_HOME/config/enumtype.def.

The default fidFile is $ESP_RMDSOMM_HOME/config/RDMFieldDictionary.

You can specify another file for either of these defaults.

Example
<rfa config="$ESP_RMDSOMM_HOME/config/rmdsomm.cfg"
 sessionName="Session1" />

This example points the Reuters OMM adapter to the Reuters-side configuration in the file
rmdsomm.cfg. The list line in this configuration file is:

\Sessions\Session1\connectionList =
"Connection_SSLED"

This line defines a session name that is referenced by other lines in the configuration file.
When the map file references a session name in the sessionName attribute, it links the adapter
to the Reuters-side configuration parameters identified by that name.

CHAPTER 2: Adapters Supported by Event Stream Processor

450 Sybase Event Stream Processor

sequenceNumber
In the streamMap definition, the sequenceNumber element maps a column in Event Stream
Processor source stream that is populated by a unique number generated by the adapter, not
provided as part of the data from RMDS.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

key true or false, depending on whether this column is part of the
source stream's unique key

See Note

name a string that appears in log entries Optional

Notes
The adapter maintains a separate counter for each RIC to which it is subscribed. Each time it
receives an update for an RIC, it increments its counter for that RIC. This number is the one
sent to the source stream column mapped by the sequenceNumber element.

Source stream definitions include a column specification similar to:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 451

<Column datatype="long" name="Id"/>

This line specifies a unique ID for the source stream. The sequenceNumber pseudo-field is a
good match for this column in the input adapter map file.

You must use the key attribute to set the value to true. If this column is not part of the stream's
key, you can omit this attribute.

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

The third column of the source stream is mapped to the sequence number provided by the
adapter. This column is also identified as part of the source stream's unique key.

serviceName
In the streamMap definition, the serviceName element maps a column in the Event Stream
Processor source stream to the service identifier that the adapter provides.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

452 Sybase Event Stream Processor

The identifier provided by serviceName can potentially be used to provide namespace scope
for a RIC that was provided by two different services to which you subscribed.

Parent
streamMap

Children
None

Attributes

Name Description Requirement

key true or false, depending on whether this column is part of the source
stream's unique key

see Notes

Notes
You must use the key attribute to set the value to true. If this column is not part of the stream's
key, you can omit this attribute.

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

In this example, no column of the source stream is mapped to the service name provided by the
adapter because it is commented out.

streamMap
The streamMap element of the input map file defines the mappings between the columns of an
Event Stream Processor source stream and the RMDS FIDs being subscribed to by the adapter.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 453

 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMaps

Children
The following child elements are defined for streamMap. These child elements can occur in
any order, but for a specific streamMap, the order of the child elements must mirror the order
of the columns of the source stream (as defined in the project). This is how the adapter is
configured to deliver RMDS updates to the appropriate rows in the source stream.

Name Requirement

dataField One required, two or more supported

dateTimeField Zero or more supported

imageField Required for Level 2 data

itemName One required, two or more supported

itemStale Zero or one supported

marketByOrderKeyField Required for Level 2 MARKET_BY_ORDER
messages

marketByPriceKeyField Required for Level 2 MARKET_BY_PRICE
messages

marketMakerKeyField Required for Level 2 MARKET_MAKER mes-
sages

nullField Zero or more supported

respTypeNumField Zero or more supported

sequenceNumber Zero or more supported

serviceName Zero or more supported

CHAPTER 2: Adapters Supported by Event Stream Processor

454 Sybase Event Stream Processor

Name Requirement

updateNumber Zero or more supported

Attributes

Name Description Requirement

name Identifies the source stream to which the RMDS
updates are mapped; must match the name of a
source stream defined in the Event Stream Pro-
cessor project

Required

sendAsTransactions True to treat a group of updates as a single
transaction, or false to treat them as separate
rows within an envelope

Optional (the default is
false)

Notes
None

Example
<streamMaps>
 <streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT"
dateName="ACTIV_DATE"/>
 </streamMap>
</streamMaps>

This example maps a set of the adapter's updates to an Event Stream Processor source stream
named marketByOrderStream. All updates going to this source stream are added using the
upsert opcode.

The RICs for which updates are sent to this source stream are specified in an itemList
elsewhere in the map file that also references marketByOrderStream.

streamMaps
The streamMaps element of the input map file contains one or more streamMap elements.

Summary
adapter (required, limit one)
 |----publication (required, limit one)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 455

 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
adapter

Children

Name Requirement

streamMap One required, two or more supported

Attributes
None

Notes
Each streamMap instance in this section maps incoming FIDs from the Reuters adapter to
columns in an Event Stream Processor source stream.

A stream must have a streamMap.

Example
<streamMaps>
 <streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <!-- serviceName / -->
 <sequenceNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT"
dateName="ACTIV_DATE"/>

CHAPTER 2: Adapters Supported by Event Stream Processor

456 Sybase Event Stream Processor

 </streamMap>
</streamMaps>

updateNumber
In the streamMap definition, the updateNumber element maps a column in Event Stream
Processor source stream that are populated by a unique number generated by the adapter, not
provided as part of the data from RMDS.

Summary
adapter (required, limit one)
 |----publication (required, limit one)
 |----streamMaps (required, limit one)
 | '----streamMap (required)
 | |----dataField (required)
 | |----hiResTimestampField (optional)
 | |----imageField (required for L2 data)
 | |----itemName (required, limit one)
 | |----itemStale (optional)
 | |----marketByOrderKeyField (required)
 | |----marketByPriceKeyField (required)
 | |----marketMakerKeyField (required)
 | |----nullField (optional)
 | |----respTypeNumField (optional)
 | |----sequenceNumber (optional)
 | |----serviceName (optional)
 | '----updateNumber (optional)
 |----rfa (required, limit one)
 '----itemLists (required, limit one)
 '----itemList (required)
 '----item (optional)

Parent
streamMap

Children
None

Attributes

Name Description Requirement

key true or false, depending on whether this column is part of the source
stream's unique key

See Notes

name A string that appears in log entries Optional

Notes
The adapter infers whether or not a column is part of the stream's unique key from the schema;
the key attribute is included here only for backward compatibility.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 457

The adapter maintains a separate counter for each RIC to which it is subscribed. Each time it
receives an update for a RIC, it increments its counter for that RIC. This number is sent to the
column in the stream mapped by the updateNumber element.

Many source stream definitions include a column specification similar to:
<Column datatype="int64" name="Id"/>

This line specifies a unique ID for the source stream. The updateNumber pseudo-field is a
good match for this column in the input adapter map file.

Example
<streamMap name="marketByOrderStream">
 <itemName key="true"/>
 <updateNumber />
 <itemStale/>
 <dataField name="BID"/>
 <dataField name="ASK"/>
 <dataField name="TRDPRC_1"/>
 <dataField name="ACVOL_1"/>
 <dateTimeField timeName="TIMACT" dateName="ACTIV_DATE"/>
</streamMap>

In this example, the second column of the source stream is mapped to the update number
provided by the adapter. This column is also identified as part of the source stream's unique
key. To see additional examples, look in the $ESP_RMDSOMM_HOME/examples directory.

Output Adapter Map File XML Syntax
The syntax of the map file for a Reuters OMM output adapter.

adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

adapter
The adapter element is the root element of the map file.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

458 Sybase Event Stream Processor

 |----field (required)
 '----constant (optional)

Nest all configuration elements between the start and end adapter tags.

Parent
None

Children
The following child elements are defined for adapter. All of these elements must be present in
the specified order.

Name Requirement

rfa Exactly one required

subscriptions Exactly one required

Attributes
None

Notes
None

Example
See the examples for the child elements.

constant
The constant element defines a data item with a constant value that will be published to
RMDS by the adapter.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
stream

Children
None

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 459

Attributes

Name Description Requirement

name The name associated with this data item in the image published
by the adapter

Required

value The value of this constant (always the same whenever this data
item is published to RMDS)

Required

Notes
On start-up, the adapter publishes a complete image to RMDS, containing all data items
defined in the map file. After that, the adapter publishes updated values for data items only
when they change, unless Event Stream Processor goes stale and then recovers. This means
that the value for constant is published only when a complete image is published.

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
</stream>

This example defines a constant called PROD_PERM, with the constant value 1, to be
published with data values from stream1 under the publication name subscription1.

field
In a stream definition in an output adapter map file, field specifies a column in a stream to
publish.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
stream

CHAPTER 2: Adapters Supported by Event Stream Processor

460 Sybase Event Stream Processor

Children
None

Attributes

Name Description Requirement

column A number that represents the position of the source column in the
stream being published from (the first column in the stream has
the number 0)

Either column or
columnName is
required

columnName The name of the column in the Event Stream Processor stream
that carries the stream's unique identifier

Either column or
columnName is
required

name The FID that identifies this data value when published to RMDS Required

precision An integer that specifies the total number of digits after the dec-
imal point in the published value (for example, 1.23 has a pre-
cision of 2)

Optional

Notes
The precision attribute should be included only for columns of datatype double.

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
</stream>

The adapter is configured to publish updates from the fourth, fifth, sixth and seventh columns
of the Event Stream Processor stream named stream1 as data items named BID, ASK,
TRDPRC_1, and ACVOL_1, respectively.

name
In a stream definition in an output adapter map file, name specifies the column in the source
stream that provides the value to use to identify each update.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 461

 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
stream

Children
None

Attributes

Name Description Requirement

column A number that represents the position of the column in the stream
that carries the stream's unique identifier (the first column in the
stream is number 0)

Either column or
columnName

colum-
nName

The name of the column in the stream that carries the stream's
unique identifier

Either column or
columnName

Notes
The output adapter uses RMDS as a simple message bus; published updates need not conform
to Reuters protocols. This means that the column specified by this element does not have to be
a Reuters RIC, but it must follow Reuters RIC syntax.

If the source stream's unique key is a composition of two or more columns, you can use the
name element in combination with one or more instances of the service element to configure
the adapter to publish updates with completely unique names.

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
</stream>

This example identifies the first column of stream1 as its unique identifier or "key" column.

CHAPTER 2: Adapters Supported by Event Stream Processor

462 Sybase Event Stream Processor

rfa
The rfa element provides information for configuring the Reuters side of the adapter,
including an explicit reference to the Reuters-side configuration file.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
adapter

Children
None

Attributes

Name Description Requirement

serviceName A service name that is included in the header of every
update sent out by the Reuters OMM adapter

Optional

config The absolute path and file name of the Reuters-side
configuration file for publication (the sample file sup-
plied with the adapter is at
$ESP_RMDSOMM_HOME/config/
rmdsomm.cfg)

Required

sessionName A reference to a session named defined in the Reuters-
side configuration file for publication

Required

configDatabaseName A reference to the Reuters database name Optional

blankDate A marker to use for blank Date fields Optional

blankDouble A marker to use for blank Double fields Optional

blankInt32 A marker to use for blank Int32 fields Optional

blankInt64 A marker to use for blank Int64 fields Optional

blankMoney A marker to use for blank Money fields Optional

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 463

Name Description Requirement

blankString A marker to use for blank String fields Optional

blankTimestamp A marker to use for blank Timestamp fields Optional

enumFile The full path name of the Reuters-supplied file that lists
each enumerated type along with the range of values it
can take

Optional (the de-
fault is the enum-
Type definition)

fidFile The full path name of the Reuters-supplied file that lists
all of the valid FIDs

optional (the de-
fault is the
RDMField Dic-
tionary)

Notes
None

Example
<rfa serviceName="IDN_RDF"
 config="$ESP_RDMSOMM_HOME/config/rmdsomm.cfg"
 sessionName="Session1" configDatabaseName="RFA" />

This example points the Reuters OMM adapter to the Reuters-side configuration in the file
rmdsomm.cfg key. The first five uncommented lines in this configuration file are:

\Connections\Connection_RSSL\connectionType = "RSSL"
\Connections\Connection_RSSL\hostName = "tigris.sybase.com"
\Connections\Connection_RSSL\rsslPort = "14002"
\Connections\Connection_RSSL\connectRetryInterval = 7000
\Sessions\Session1\connectionList = "Connection_RSSL"

The last of these lines implicitly defines a session name that is defined as the sessionName in
the map file. The other three lines from rmdsomm.cfg key on this session name. This is
how the value for sessionName ties this publication section of the map file to a configuration
set in the .cfg file.

When the adapter publishes using this configuration, each update is identified with the
serviceName "IDN_RDF."

stale
In a stream definition in an output adapter map file, the stale element identifies a column in
the source stream for which the value changes from 0 to 1 if the stream goes stale.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)

CHAPTER 2: Adapters Supported by Event Stream Processor

464 Sybase Event Stream Processor

 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

A stream is considered to have gone stale if, for example, one of the stream's data sources is no
longer being updated.

Parent
stream

Children
None

Attributes

Name Description Requirement

column A number that represents the position of the column with the secon-
dary key value (the first column in the stream has the number 0)

Required

name A string that identifies the stale column so that it may be mapped to a
FID (published)

Optional

Notes
None

Example
<stream name="stream1" >
 <name column="0"/>
 <stale column="3" name="ACVOL_1"/>
 <field column="1" name="DSPLY_NAME" />
 <field column="4" name="BID" precision="47" />
 <field column="5" name="ASK" precision="0" />
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
</stream>

This example identifies the third column of stream1 as its stale column. If the stale column is
specified, the column value is published and the RIC is marked stale.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 465

stream
In a subscription section in an output adapter map file, identifies the stream from which the
adapter gets the data it publishes to RMDS.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

Parent
subscription

Children

Name Requirement

name One

stale Optional

field One or more

constant Optional

Attributes

Name Description Requirement

exitOnStreamExit This is a boolean attribute. When true,
esp_rmdsomm terminates if the stream exits,
Event Stream Processor exits, or the connection is
lost.

Optional (default
is false)

finalizer This string specifies an action to take if the speci-
fied number of heartbeat milliseconds elapse with-
out an event being published to Event Stream Pro-
cessor.

Optional

heartbeat This integer specifies how many milliseconds to
wait without an event being published to Event
Stream Processor before executing the finalizer
action .

Optional

CHAPTER 2: Adapters Supported by Event Stream Processor

466 Sybase Event Stream Processor

Name Description Requirement

name The name of the stream from which the adapter
receives the data it publishes on RMDS

Required

platformExitOnStream-
Drop

This is a boolean attribute. When true, Event
Stream Processor exits if this subscription drops
its connection.

Optional (default
is false)

platformQueueSize The size, in bytes, of Event Stream Processor
queue

Optional (default
is 8000)

Notes
The value of the name attribute must be defined in Event Stream Processor project.

Any stream in Event Stream Processor project can map to only one stream section in the map
file.

Example
<stream name="stream1">
 <name column="0"/>
 <field column="4" name="TRDPRC_1"/>
 <field column="9" name="BID" precision="5"/>
</stream>

This example configures Event Stream Processor to publish data from a stream named
stream1.

subscription
The subscription element contains one or more instances of the stream element; enabling you
to configure the adapter to receive data from one or more streams.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

The output adapter map file can contain two or more subscription sections. At runtime, the
publishing mechanism for each subscription section is instantiated on a separate thread,
which provides scalability.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 467

Parent
subscriptions

Children

Name Requirement

stream One or more

Attributes

Name Description Requirement

name A name for this subscription that appears in updates published on
RMDS and in log file entries

Required

Notes
None

Example
<subscriptions>
 <subscription name="subscription1" >
 <stream name="stream1" >
 <name column="0"/>
 <field column="4" name="BID"/>
 <field column="5" name="ASK"/>
 <field column="6" name="TRDPRC_1"/>
 <field column="7" name="ACVOL_1"/>
 <constant name="PROD_PERM" value="1"/>
 </stream>
 </subscription>
</subscriptions>

This example configures the adapter to publish some columns from stream1 on Event Stream
Processor using the name subscription1.

subscriptions
The subscriptions element contains one or more subscription elements.

Summary
adapter (required, limit one)
 |----rfa (required, limit one)
 '----subscriptions (required, limit one)
 '----subscription (required)
 '----stream (required)
 |----name (required, limit one)
 |----stale (optional)
 |----field (required)
 '----constant (optional)

CHAPTER 2: Adapters Supported by Event Stream Processor

468 Sybase Event Stream Processor

Parent
adapter

Children

Name Requirement

subscription One or more

Attributes
None

Notes
Each subscription instance in this section defines one set of data that the adapter publishes to
RMDS.

Example
See the example for an individual subscription instance.

Logging Facilities
The Reuters OMM adapter supports two different logging mechanisms.

In addition to its own logging mechanism, the Reuters OMM adapter can utilize Reuters-side
logging. You can use both of these mechanisms to check the adapter's performance and
diagnose problems.

You can configure these logs to be written to stderr, syslog, or both.

Adapter Logging
The Reuters OMM adapter supports the same options for logging as the Event Stream
Processor.

The -d option sets the debug level (0=emergency messages only, 7=all messages).

The -l option tells the adapter to write log messages to stderr, syslog, both, or neither. If you use
the -l option to direct adapter log messages to stderr, you may also want to redirect stderr to a
file.

The name attribute of the publication element in the input adapter map file specifies a
descriptive text string that is logged to help identify how the adapter was configured. For
example, lines 3–6 of subexample.xml specify the publication element for a subscribing
instance of the Reuters OMM adapter, as follows:
<publication
 name="RMDS OMM Adapter"
 retryInterval="5"
/>

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 469

As the adapter connects with and interacts with Event Stream Processor, this configuration
causes the adapter to write log messages similar to:
(0.123) @1 INFO: Configuring publication with name RMDS Adapter exp

The first two fields are the timestamp (in seconds since start-up) and the thread number,
respectively. The base time for the timestamp, along with other information, is written to the
log file on startup as shown in the example below. To convert the timestamp to a date and time,
simply add the number of seconds to the base time.
(63359098041.768) @1 NOTICE:Base time is 10/08/08-17:27:21
(0.001) @1 NOTICE:insta-a sub -c cimtest:-- -d 7
-f /home/sybase/support/1.0.3/ReutersOMMAdapter/marketprice.map.xml
-l 1 -p tigris:12192 -P 1
(0.001) @1 NOTICE:pid=28649
(0.001) @1 DEBUG:Using ESP_RMDSOMM_SUBSCRIBE_DEBUG_LEVEL=7ll/
i86pc_64_spro/bin/rmdsomm version:
1.0.3a-alpha_r18674M

Page Data and Partial Page Updates
Some Reuters data comes as pages which use the partial page format. Each page consists of
multiple lines; initially sent as a snapshot. Page data is supported without any special
configuration. The following extract from an adapter log file shows the delivery of the initial
page image (which is highlighted).
(27.729) @6 INFO:Publishing VOD.mGBPd 21 of 21 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SERVICE_NAME_ STRING: IDN_RDF
_SEQUENCE_NUMBER_ INT32: 1
_ITEM_STALE_ INT32: 0
ROW80_1 STRING: VOD.mGBPd SI Quote Publication
ROW80_2 STRING:
ROW80_3 STRING: DATE:03/07/2008 Time:11:09
ROW80_4 STRING:
ROW80_5 STRING: Time Venue SI Bid Size Bid Price Ask Price Ask Size
Status
ROW80_6 STRING: ==== ===== == ======== ========= ========= ========
======
ROW80_7 STRING: 110937 GSILGB2XXXX GSIL 1 150.9000 150.9500 1 OPEN
ROW80_8 STRING: 070021 SBILGB2LXXX CITI OPEN
ROW80_9 STRING: 110909 CSFBGB2LXXX CSFB 329 150.7000 151.1500 329
OPEN
ROW80_10 STRING: 110942 DEUTGB22ZEQ DBBL 528 150.6500 151.2000 527
OPEN
ROW80_11 STRING: 110946 ABNAGB22XXX ABNV 483306 150.9000 150.9500
483306 OPEN
ROW80_12 STRING: 110936 UBSWGB2LEQU UBSI 1 149.7682 152.1325 1 OPEN
ROW80_13 STRING: 110828 SBUKGB21XXX CITI 20600 150.9000 151.0000
20600 OPEN
ROW80_14 STRING: 110937 SLIIGB2LXXX LEHM 3750 150.9000 150.9500 15
OPEN
ROW80_15 STRING:
ROW80_16 STRING:
ROW80_17 STRING:
(27.730) @6 DEBUG:Immediate flush for low latency; opcode=p

CHAPTER 2: Adapters Supported by Event Stream Processor

470 Sybase Event Stream Processor

Each line of the page has its own FID to facilitate line-oriented deltas to the page. The adapter
parses the partial page updates from Reuters and produces strings like the ones shown
highlighted in the following extract from an adapter log file.
(49.934) @6 DEBUG:Processing update for VOD.mGBPd from service
IDN_RDF
(49.934) @6 INFO:Publishing VOD.mGBPd 4 of 21 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SEQUENCE_NUMBER_ INT32: 2
ROW80_3 STRING: off:78 size:2 value:10
ROW80_11 STRING: off:2 size:3 value:101
(49.934) @6 DEBUG:Immediate flush for low latency; opcode=p
(50.315) @6 DEBUG:Processing update for VOD.mGBPd from service
IDN_RDF
(50.315) @6 INFO:Publishing VOD.mGBPd 3 of 21 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SEQUENCE_NUMBER_ INT32: 3
ROW80_11 STRING: off:5 size:1 value:7
(50.315) @6 DEBUG:Immediate flush for low latency; opcode=p

The first update in the example is to write the 2-character string 10 at an offset of 78 characters
in the line of the page which contains the data from the ROW80_3 FID. The second update in
the example is to write the 3-character string 101 at an offset of 2 characters in the line of the
page which contains the data from the ROW80_11 FID. The third update in the example is to
write the 1-character string 7 at an offset of 5 characters in the line of the page which contains
the data from the ROW80_11 FID. Thus, updates for page data are very concise.

Modifying Log Entry Format
You can modify the default format of log entries in two ways.

Set the environment variable ESP_RMDS_SUBSCRIBE_SYMBOL_FORMAT to 1 to
configure your system to log messages that show what values flow to the Event Stream
Processor on a single line rather than the default multiline format. When messages are written
to a log file, this can make it easier to scan for specific items.

Use the -P option to the esp_rmdsomm command to specify the number of decimal places that
appear on output for double type variables.

By default, log messages that show what values flow to Event Stream Processor are written in
multiline format as shown:
(38079.526) @2 INFO:Publishing VOD.mGBPd 3 of 9 on stream1 as UPSERT
_ITEM_NAME_ STRING: VOD.mGBPd
_SEQUENCE_NUMBER_ INT32: 953
ROW80_7 STRING: off:53 size:2 value:45

If you set the environment variable ESP_RMDS_SUBSCRIBE_SYMBOL_FORMAT to 1
these messages are written are written in single-line format as shown:
(17.794) @5 DEBUG:stream1 p values: _ITEM_NAME_=VOD.mGBPd
_SEQUENCE_NUMBER_=2
ROW 80_3=off:78 size:2 value:20

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 471

The -P option can alter the manner in which double datatype variables appear, as shown by
ask and last are in the following example. This affects only the way variables appear; it does
not alter the contents.
<RowDefinition id="omm_RowDef">
<Column name="symbol" datatype="string" />
<Column name="service" datatype="string" />
<Column name="seq" datatype="integer" />
<Column name="stale" datatype="integer" />
<Column name="bid" datatype="money" />
<Column name="ask" datatype="double" />
<Column name="last" datatype="double" />
<Column name="volume" datatype="integer" />
<Column name="when" datatype="timestamp" />
</RowDefinition>

If you accept the default precision, variables of type double (for example, ASK in the
following example) are written with three digits to the right of the decimal
(5.089) @5 INFO:Publishing EURJPY= 7 of 9 on stream1 as UPSERT
(5.090) @5 DEBUG:stream1 p values: _ITEM_NAME_=EURJPY=
_SEQUENCE_NUMBER_=1 _ITEM_STALE_=0 BID=137.4800 ASK=137.530
ACVOL_1=0
ACTIV_DATE+TIMACT=2008-10-06T21:07:00.000 (1223327220000)

If you specify the option -P 7 when enter the esp_rmdsomm command, variables of type
double (for example, ASK in the following example) are written with seven digits to the
right of the decimal. Variables of other types are not affected.
(4.913) @5 INFO:Publishing EURJPY= 7 of 9 on stream1 as UPSERT
(4.913) @5 DEBUG:stream1 p values: _ITEM_NAME_=EURJPY=
_SEQUENCE_NUMBER_=1 _ITEM_STALE_=0 BID=137.5200 ASK=137.5700000
ACVOL_1=0 ACTIV_DATE+TIMACT=2008-10-06T20:55:00.000 (1223326500000)

Reuters Logging
Turn Reuters logging on or off using the Reuters-side configuration file.

You can configure the Reuters OMM adapter's interface to RMDS to write to a logging
facility. In the Reuters-side configuration file (rmdsomm.cfg is the one provided with the
adapter), you can turn logging on or off and specify a path and file name of the log file. The
Reuters interface also supports a set of "message files."

The Reuters-side configuration file contains a set of configuration entries for the Reuters
"Logger" facility.
\Logger\AppLogger\fileLoggerEnabled = true
\Logger\AppLogger\fileLoggerFilename = "rfasub.{p}.log"

This configuration turns on Reuters logging for the Reuters OMM adapter. The log messages
are written to the rfasub.PID.log file, where PID is the adapter's process ID.

CHAPTER 2: Adapters Supported by Event Stream Processor

472 Sybase Event Stream Processor

The first line in this set, \Logger\AppLogger\windowsLoggerEnabled =
false, pertains to a Windows logging facility that is not supported for the Reuters OMM
adapter.
These example lines are from rmdsomm.cfg, the file that configures an adapter that
subscribes to RMDS.

The same file contains configuration entries for Component Loggers, as follows:
\Logger\ComponentLoggers\Connections\messageFile =\
 "config/messages/RFA7_Connections.mc"
\Logger\ComponentLoggers\Adapter\messageFile =\
 "config/messages/RFA7_Adapter.mc"
\Logger\ComponentLoggers\SessionCore\messageFile =\
 "config/messages/RFA7_SessionLayer.mc"
\Logger\ComponentLoggers\SSLED_Adapter\messageFile =\
 "config/messages/RFA7_SSLED_Adapter.mc"

Log Messages
Examples of typical entries from the adapter log file.

The actual format and working of the log messages, as well as the nature of the events logged
and the log levels associated with these events, may change in subsequent releases of the
adapter.

• Message: – NOTICE:Item BARC.VX is closed: No Quality of
Service is available to process subscription, timeout
expired

• Cause: – the value for the Reuters user name in the Reuters config file is incorrect (verify
the case-sensitivity) or the Reuters Service name in the map file is incorrect.

• Message: – DEBUG: Immediate flush for low latency
• Cause: – data received from RMDS is being sent to Event Stream Processor immediately.

• Message: – NOTICE:XMLRPC ERROR-116: The connection to the
server could not be established. Please make sure the server
is up, and check the specified host name/port, user name/
password, and encryption settings. If a host name is
specified, make sure that it can be resolved through a DNS
lookup. (5.092) @1 INFO:Could not connect to SP; (tigris:
12190 cimtest) will retry in 5 seconds.

• Cause: – cannot connect to the server running Event Stream Processor.

• Message: – Ignoring market data event because no significant
fields updated

• Cause: – the adapter received data from Reuters, but none of the fields were of interest to
Event Stream Processor stream, so no data was sent.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 473

• Message: – ERROR: Error publishing: PUBLICATION ERROR-442:
The send method of this publication object failed.

• Cause: – connection to Event Stream Processor unsuccessful during a message
transmission.

• Message: – ERROR:Mismatch between platform stream (9 columns)
and adapter (31 columns for stream: stream1)

• Cause: – the number of columns defined in the adapter did not match the number of
columns in the stream.

• Message: – WARNING: Event Stream Processor down, dropping all
subscriptions

followed by multiple iterations of a message similar to:

DEBUG: Unsubscribing item: EUR= service: IDN_RDF

• Cause: – lost connection to Event Stream Processor. Stopping subscriptions to RMDS
data since the adapter has nowhere to put it.

• Message: – WARNING: Discarding data rec'd after unsubscribe
• Cause: – before the adapter shut off the subscription, additional data arrived. The data has

been discarded because there is no connection to Event Stream Processor.

• Message: – DEBUG: Processing update for EUR= from service
IDN_RDF

• Cause: – an update for RIC "EUR=" on service named "IDN_RDF" has arrived.

• Message: – WARNING: Event Stream Processor down, dropping all
subscriptions

followed by numerous repetitions of:

DEBUG: Unsubscribing item: EUR= service: IDN_RDF

• Cause: – lost connection to Event Stream Processor. Stopping subscriptions to RMDS
data since the adapter has nowhere to put it.

• Message: – WARNING: Discarding data rec'd after unsubscribe
• Cause: – before the adapter shut off the subscription, additional data arrived. The data has

been discarded, because there is no connection to Event Stream Processor.

• Message: – EMERGENCY: Fatal Error at line 0, column 0 of config
file: An exception occurred! Type:RuntimeException,
Message:The primary document entity could not be opened.
Id=/home/sybase/adapter/trunk/src/ReutersAdapter/
xxsubexample.xml

• Cause: – specified configuration file is unavailable.

• Message: – EMERGENCY: Fatal Error at line 0, column 0 of config
file: An exception occurred! Type:RuntimeException,

CHAPTER 2: Adapters Supported by Event Stream Processor

474 Sybase Event Stream Processor

Message:The primary document entity could not be opened.
Id=/home/sybase/adapter/trunk/src/ReutersAdapter/
xxsubexample.xml

• Cause: – specified config file is unavailable.

RTView Adapter
The Sybase Event Stream Processor RTView adapter is an external adapter that streams data
from Event Stream Processor to the RTView® Enterprise Dashboard. RTView Enterprise
software from SL Corp. is required to operate this adapter.

While this document provides information on configing the RTView software for use with the
adapter, you should also consult your SL Corp. documentation for complete details and the
most up-to-date information.

Datatype Mapping for the RTView Adapter
Event Stream Processor datatypes map to RTView datatypes.

Event Stream Processor
Datatype

SL RTView Datatype

boolean boolean

integer integer

long long

float double

date date

timestamp date

string string

money, mon-
ey(1)...money(15)

double

binary string

interval long

bigdatetime date

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 475

Installing the RTView Adapter
To install the RTView adapter, unpack the RTView adapter files and set the environment
variables for the adapter and the RTView software.

Prerequisites

• Install either version 5.8 or 5.9 of the Enterprise RTView software from SL Corporation on
the client machine.

• Install Java Software Development Kit 1.6 (or higher) on the client machine.
• Set the JAVA_HOME environment variable to the root directory of the installation.
• Set the ESP_HOME environment variable.

Task

1. Create an environment variable called RTVIEWADAPTER_ HOME and set its value to
the folder $ESP_HOME \adapters\rtview.

2. Verify that the RTV_HOME environment variable is set to the location of the enterprise
RTView installation. It should be set automatically during installation.

3. Add the RTView lib and bin folders to the PATH environment variable. For example,
update PATH to $RTV_HOME/bin;$RTV_HOME/lib;$PATH.

Configuration: Creating and Updating a Sybase Connection
Create and update the ESPOPTIONS.ini configuration file with connection information
for the Server.

You can create multiple connections to the Server. Each connection has a specific server, host,
and properties. You require at least one connection to the Server.

1. In the Display Builder, select Tools > Options.

2. In the left pane of the Application Options window, choose ESP.

3. In the ESP Connections tab, click Add.

4. To modify the properties of an existing connection, double-click the connection.

5. Fill in the appropriate connection information and click OK.

6. Click Apply, then Save to save the connection information in the ESPOPTIONS.ini
configuration file. When asked if you want to save the configuration file to the lib folder
in the adapter installation directory, click No. This ensures your connection information is
applied only to the current project.

Next
After you have created and edited the connection, restart either the RTView Display Builder or
the Server for the changes to take effect.

CHAPTER 2: Adapters Supported by Event Stream Processor

476 Sybase Event Stream Processor

Event Stream Processor Parameters
Parameters that you can specify within the ESPOPTIONS.ini configuration file to create a
connection to Event Stream Processor.

Parameter Type Description

authType choice (Required) Specifies the method used to authen-
ticate to Event Stream Processor. No default val-
ue.

• UserPassword – user and password param-
eters are required.

• ServerRSA – user, keyStore, and keyStore-

File parameters are required.

• None.

projectUri string (Optional) Specifies the total project uri to con-
nect to Event Stream Processor cluster. For ex-
ample, esp://hostname:port/
workspace/project. No default value.

keyStore string (Optional) Specifies the location of the RSA
keystore, and decrypts the password value. Re-
quired if authType is set to ServerRSA. No de-
fault value.

keyStorePassword string (Optional) Specifies the keystore password, and
decrypts the password value. Required if auth-

Type is set to ServerRSA. No default value.

user string (Optional) Specifies user name required to log in
to Event Stream Processor. Required for any au-
thentication scheme other than none (see auth-

Type). No default value.

password string (Optional) Specifies the password required to log
in to Event Stream Processor. Required for User-
Password authentication scheme (see authType).
No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 477

Parameter Type Description

isEncrypted string (Optional) Specifies whether password is en-
crypted. Valid values are true or false. If set to
true, password is an encrypted field. This ensures
that the Server recognizes the password as en-
crypted text and is able to decrypt the password at
runtime. Default value is true.

getBase string (Optional) Specifies whether the Server sends
existing data in stream at the time the subscrip-
tion is set up. Valid values are true or false. If set
to true, the Server does not send existing data in
the stream. Default value is false.

droppable string (Optional) Specifies whether the Server drops
this connection if that client cannot keep up. If set
to true, the Server drops the connection. Default
value is false.

lossy string (Optional) Specifies whether the Server may dis-
card records if the client cannot keep up. If set to
true, the Server discards records. Default value is
false.

shineThrough string (Optional) Specifies whether Event Stream Pro-
cessor sends data for fields which have not
changed. If set to true, the Server does not send
data. Default value is false.

refreshInterval integer (Optional) Specifies the pulse interval. Event
Stream Processor consolidates data and sends it
periodically at intervals as specified in millisec-
onds. A value of 0 or less disables pulsing. No
default value.

dateFormat string (Optional) Specifies date format. Default value is
YYYY-MM-DDHH24:MI:SS:FF.

timestampFormat string (Optional) Specifies timestamp format. Default
value is YYYY-MM-DDHH24:MI:SS:FF.

delimiter string (Required) Used in the publisher command line.
Default value is ##.

defaultconnection string (Required) Specifies default connection settings
used to connect to the Server. Default value is
conn1.

CHAPTER 2: Adapters Supported by Event Stream Processor

478 Sybase Event Stream Processor

Parameter Type Description

retryInterval integer (Required) Specifies how long to wait to recon-
nect to the Server if the connection is broken.
Default value is 0.

pollinterval (seconds) integer (Required) Specifies how long to wait to poll
data. Default value is 0.

Operation
Once you have installed the RTView adapter, you can begin using the Display Builder and the
Display Viewer.

Starting the RTView Display Builder
To build and run dashboard projects, start the Display Builder from the command line.

Prerequisites
Start the Server.

Task

Running the Display Builder from the adapter installation folder in the command line ensures
that the Builder links to the Server upon start-up.

Sybase recommends that you place each dashboard project in its own folder. You can then start
the Display Builder from this folder.

1. To start a new dashboard project, create a new folder for it. To open an existing project,
select Start > Run.

2. Start the project in the RTView Display Builder by typing:
%RTVIEWADAPTER_HOME%\bin\start_builder.bat <project_filepath>
[<rtv_file_name>.rtv]

• <project_filepath> is the absolute file path of the project folder.

• <rtv_file_name> is the name of an existing dashboard. When creating a new .rtv
file, do not supply a file name: the Display Builder opens into a blank dashboard called
unnamed.rtv, which you can then save with a desired name into the new dashboard
project folder created in step 1.

Note: On Windows, if you type the start builder command and use only the project folder
argument without a file name, it looks for a file named "<projectfolder>.rtv". If such a file
does not exist in the folder,you see a message that the file cannot be opened. Click OK to
launch the builder. This is a known RTView issue.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 479

Starting the RTView Display Viewer
To begin viewing runtime data, start the Display Viewer from the command line.

Prerequisites
Start the Server.

Task

Running the Display Viewer from the adapter installation folder in the command line ensures
that the Viewer links to the Server upon start-up.

Sybase recommends that you place each dashboard project in its own folder. You can then start
the Display Viewer from this folder.

1. To start a new dashboard project, create a new folder for it. To open an existing project,
select Start > Run.

2. Start the project in the RTView Display Viewer by typing:
%RTVIEWADAPTER_HOME%\bin\start_viewer.bat <project_filepath>
<rtv_file_name>.rtv

• <project_filepath> is the absolute file path of the project folder.

• <rtv_file_name> is the name of the .rtv file of the dashboard. You need to specify
this to start the Viewer.

Creating Shortcuts for Dashboard Projects
Starts the Display Builder or Viewer from a convenient location.

The shortcut starts the Builder or Viewer and simultaneously opens a specified dashboard
project.

1. At the location where you want to create the shortcut, select File > New > Shortcut from
the menu bar, or right-click and select New > Shortcut.

2. In the Create Shortcut wizard, assign the shortcut a name, then enter
%RTVIEWADAPTER_HOME%\bin\start_builder.bat
<project_filepath> [<rtv_file_name>.rtv] as the location of the item.

<project_filepath> is the absolute file path of the project folder.
<rtv_file_name> is the name of the .rtv file of the dashboard you want to open.

Click Next.

3. Right-click the shortcut and select Properties.

4. In the Properties window, set the Run field to Minimized.

5. Repeat steps 2––4 to create a corresponding shortcut that starts the dashboard project in
the Display Viewer.

CHAPTER 2: Adapters Supported by Event Stream Processor

480 Sybase Event Stream Processor

Enter %RTVIEWADAPTER_HOME%\bin\start_viewer.bat
<project_filepath> <rtv_file_name>.rtv as the location of the item.

Dashboard Objects and Data Streams
You can connect most RTView dashboard objects to Event Stream Processor data streams.
With this connection, dashboard objects can receive real-time data from streams.

There are two approaches for connecting to streams, depending on the type of stream:

• If the stream produces updates and deletes against keyed entries, first set up an
intermediate object known as a cache. You can then connect the dashboard objects.

• If the stream contains insert elements, such as a timeseries, connect the dashboard object
directly to the stream.

Creating a Cache
Use the RTView Builder to create a cache in a separate .rtv file, then import the file into the
main dashboard file.

A cache is a datasource that allows users high-speed analytic processing of real-time data and
the comparison of current real-time values against historical data. It is an intermediate
datasource when connecting a dashboard object to an Event Stream Processor data stream that
produces updates and deletes against user-entered values. From the RTView Builder:

1. Select File > New to create a new .rtv file.

2. Select Tools > Caches, then click Add in the Caches tab at the bottom of the main Display
Builder window.

3. Enter a name for the new cache and set its type to Table.

4. Edit the cache properties:

Property Procedure

valueTable 1. Right-click valueTable and select Attach To Data > ESP.
2. Select the name of the stream that the cache subscribes to.
3. (Optional) Choose specific stream columns; however, if you select

specific columns, you must select the primary-key columns.

indexColumnNames 1. Click the ellipsis (...) beside the indexColumnNames field.
2. Specify the key columns for the stream, separating the column

names with a semicolon.

Note: The column names are case-sensitive.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 481

Property Procedure

rowsToDeleteTable rowsToDeleteTable is a data attachment that removes selected rows
from the cache tables. Rows are removed if their index column values
match those of a row in the table data coming from this attachment.
1. Right-click rowsToDeleteTable and select Attach To Data >

ESP.
2. Event Stream Processor does not have a rowsToDeleteTable, so you

must use a virtual table name. For example, to use the Positions
stream name, use !Positions for the rowsToDeleteTable property.

maxNumberOfRows • Specify the number of rows of historical data to save. The default
value is zero. Anything larger than zero enables storage of historical
data. For every key value, N rows of history are maintained, where N
is the number of rows specified.

5. Save the file.

6. Import this file to the main dashboard file. From the main dashboard file:

a) Select Tools > Options > Caches.
b) Click Add and select the cache created in step 3.
c) Click Apply, then OK.

Note: If you make any changes to the cache after importing it to the main display file,
select Options > Caches > Refresh Selection.

7. Save, then close, the file.

8. Repeat steps 1 to 7 for every cache you are creating.

Example: Attaching an Object to a Cache
Attach a dashboard table object to a previously created cache.

You cannot directly connect dashboard objects to streams that make updates or deletes against
keyed entries. Connect a cache to the stream, then connect the object to the cache.

Attach any object to streams, either directly or through caches, by setting the object's value
property under the Data heading in the Object Properties pane. For a table object, this property
is called valueTable.

In this example, first attach a table to a dashboard, then use the valueTable property to attach
the table to a previously created cache that connects to an Event Stream Processor stream.

1. From the Tables tab in the Object Palette, select a table, then click the canvas to add the
table object to the dashboard.

2. Import the cache to the dashboard project:

a) Select Tools > Options > Caches.
b) Click Add and select the cache.
c) Click Apply, then OK.

CHAPTER 2: Adapters Supported by Event Stream Processor

482 Sybase Event Stream Processor

3. Right-click the valueTable property of the table object, and go to Attach To Data >
Cache.
This opens a dialog box to configure the datasource.

4. Choose the cache from step 2.

5. Choose Current in the Table field and select the columns you want to view.

6. (Optional) Select Filter Rows to Basic or Advanced to view a subset of the data.

7. Click Apply, then OK.

Example: Attaching an Object to a Stream
Attach a Dashboard table object directly to a stream that contains only inserts.

Attach any object to streams, either directly or through caches, by setting the object's value
property under the Data heading in the Object Properties panel. For a table object, this
property is called valueTable.

1. From the Tables tab in the Object Palette, select a table, then click the canvas to add the
table object to the dashboard.

2. Right-click the valueTable property of the table object and select Attach To Data >
ESP.

3. Select the connection to use, and the table and columns you want to view.

4. If desired, filter the rows and columns of the stream to view a subset of the data.

Example: Creating a Function
Create a function that returns a list of table values to populate a listbox object (labelled
obj_c1tlb).

Functions allow you to automate common calculations, such as taking the average value of a
table column and adding the values of multiple data attachments.

There are several functions grouped into two categories, Scalar Functions and Tabular
Functions, that act on scalar and tabular data, respectively.

From the Display Builder:

1. Select Tools > Functions, or click the Functions tab at the bottom of the Display Builder
window, and click Add.

2. Enter a name for the function and choose an appropriate function type. For example,
choose Count Unique Values to return a list of unique values from a column in a table or
stream. If you select this function, you are prompted to specify a table or stream column.

3. Right-click the Table Column field and select Attach To Data > ESP. Choose a
connection to the Event Stream Processor stream name and a column defined in the stream.

4. Create a listbox object in the Controls tab of the Object Palette.

5. Right-click the listValues property of the listbox object properties, and select Attach To
Data > Functions. Choose the function you created in step 2 and select Value in the
Columns field to bind the function to the listbox object.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 483

Whenever a new value appears in a column in the stream that the function has been
attached to, that value also appears automatically in the listbox object.

6. Set the selectedValue and varToSet properties of the listbox object so the
selections made in the listbox can be used elsewhere, such as for publishing to Event
Stream Processor.

Publishing to Event Stream Processor
Add user control objects to a dashboard project so you can actively interact with Event Stream
Processor streams.

The RTView adapter supports publishing data to the Event Stream Processor from a
dashboard. The dashboard sends an event through the RTView adapter to an input stream on
the Server.

1. Add one or more control objects to the dashboard.

Add a control for each field you want to set. You can use input boxes, picklists, listboxes,
checkboxes, and buttons.

a) Use the Tools menu in the Display Builder to create a variable for each field.
b) Attach each control to a variable.
c) Add variables by selecting Tools > Variables and specifying the name, initial value,

and type of the variable.
d) (Optional) Select Tools > Functions and create a function to determine the user

choices in the control and attach the control to that function.
e) (Optional) Link the property of other objects on the dashboard to the control.

2. Associate an action command with the Control Object by right-clicking actionCommand
under the Interaction category, and selecting Define Command > ESP. Enter a publish
command:
conn_name.publish ## opcode ## stream_name ## col_value_1 ##
col_value_2 ...

Parameter Description

The argument delimiter, which you can set to anything. Default value is ##.

Select Tools > Options, select ESP on the left pane, then click Add button. The
delimiter must have a space before and after it.

conn_name A predefined connection to be used for publishing.

opcode The operation to perform. Valid values are:
• 1 –– INSERT
• 3 –– UPDATE
• 5 –– DELETE
• 7 –– UPSERT
• 13 –– SAFE DELETE

CHAPTER 2: Adapters Supported by Event Stream Processor

484 Sybase Event Stream Processor

Parameter Description

stream_name The name of the target stream.

col_value_... The value of a column. The number of column values must equal the number of
columns in the target stream. You can specify NULL values by entering two
single quotation marks with nothing between them (for example, '') . Default
value is ''.

The RTView Viewer publishes empty fields as two single quotes (''). Because
the default nullValue property is also '', a NULL is inserted into Event Stream
Processor for corresponding columns.

To specify an empty string, change the Null Value property in the Add ESP
Connection window to a different value. For datatypes other than string, two
single quotation marks without a space between them (for example, '') always
represents a NULL value.

• Specify date and timestamp values in the same format as in the Date and Timestamp
format properties in the Add ESP Connection window. This is the same format
specification the Java SimpleDateFormat object uses.

• If the publish command is successful, there is no response. If the command does not
succeed, you see an appropriate error message.

Running the Publisher Example
Use the RTView Display Viewer to run the provided publisher example that comes with the
RTView adapter.

1. Start Event Stream Processor with the provided rtviewadapter.ccx model, located
in %RTVIEWADAPTER_HOME%\examples, and use port 19011.

Operating
System

Step

Windows 1. Enter cd %RTVIEWADAPTER_HOME%\examples.

2. Start the example cluster: start_server_cluster.bat

3. Add project to the cluster, and start it on the cluster:
start_project.bat

UNIX 1. Enter cd $RTVIEWADAPTER_HOME/examples.

2. Start the example cluster: start_server_cluster.sh

3. Start the project on the cluster: start_project.sh

2. Start the RTView Display Viewer from the command line:

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 485

Operating System Step

Windows %RTVIEWADAPTER_HOME%\bin\start_viewer.bat
%RTVIEWADAPTER_HOME%\examples
publisher.rtv

UNIX $RTVIEWADAPTER_HOME/bin/start_viewer.sh
$RTVIEWADAPTER_HOME/examples publisher.rtv

Note: You can start the RTView Display Builder by replacing the start_viewer command
with the start_builder command.

3. Follow the on-screen instructions.

4. Verify that data has been successfully published to the Server.

Operating System Step

Windows cd %RTVIEWADAPTER_HOME%\examples
run_sub.bat

UNIX cd $RTVIEWADAPTER_HOME/examples run_sub.sh

Running the Subscriber Example
Use the RTView Display Viewer to run the provided subscriber example that comes with the
RTView adapter.

1. Start the Event Stream Processor with the provided rtviewadapter.ccx model
located in %RTVIEWADAPTER_HOME%\examples, and use port 19011.

Operating
System

Step

Windows 1. Enter cd %RTVIEWADAPTER_HOME%\examples

2. Start the example cluster: start_server_cluster.bat

3. Add project to the cluster, and start it on the cluster:
start_project.bat

UNIX 1. Enter cd $RTVIEWADAPTER_HOME/examples

2. Start the example cluster: start_server_cluster.sh

3. Start the project on the cluster: start_project.sh

2. Start the RTView Display Viewer from the command line:

CHAPTER 2: Adapters Supported by Event Stream Processor

486 Sybase Event Stream Processor

Operating System Step

Windows %RTVIEWADAPTER_HOME%\bin\start_viewer.bat
%RTVIEWADAPTER_HOME%\examples
subscriber.rtv

UNIX $RTVIEWADAPTER_HOME/bin/start_viewer.sh
$RTVIEWADAPTER_HOME/examples
subscriber.rtv

Note: You can start the RTView Display Builder by replacing the start_viewer command
with the start_builder command.

3. Use the esp_convert and esp_upload utilities to load input.xml data, convert XML
data to stream data, and feed this data into target streams.

Operating System Step

Windows cd %RTVIEWADAPTER_HOME%\examples

run_loaddata.bat

UNIX cd $RTVIEWADAPTER_HOME/examples

run_loaddata.sh

4. (Optional) Verify that data is successfully loaded into streams.

Operating System Step

Windows cd %RTVIEWADAPTER_HOME%\examples

run_sub.bat

UNIX cd $RTVIEWADAPTER_HOME/examples

run_sub.sh

5. Observe the stream data that displays in tables.

Known Limitations
Learn about the known limitations of the RTView adapter.

• To modify a connection that is already connected to the Server, restart either the Builder or
the Server.

• You cannot publish values containing a period. As a workaround for double and money
types, the adapter lets you type a comma for a decimal point instead of a period. There is no
workaround for string datatypes.

• Because the RTView double datatype maps to the money datatype in Event Stream
Processor, you may lose precision for data that has more than 15 digits.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 487

• RTView adapter does not handle microsecond precision in their date datatype. As a
result, the RTView date datatype maps to the bigdatetime datatype in Event Stream
Processor, with millisecond precision. This is an RTView limitation to be resolved by SL
Corporation.

• In the Add ESP Connection window, if you click OK before entering the connection name,
you see an empty box.

TIBCO Rendezvous Adapter
Adapter type: tibcorvplugin. The Sybase Event Stream Processor TIBCO Rendezvous
adapter subscribes to and publishes data from Event Stream Processor to the Rendezvous
server.

The Rendezvous adapter:

• Connects to a Rendezvous server, opens sessions, subscribes and unsubscribes to subjects
• Translates Rendezvous messages into Event Stream Processor records and vice-versa
• Receives messages from and publishes messages to the Rendezvous server

See also
• Chapter 5, Guaranteed Delivery on page 543

Control Flow
The adapter loads its configuration from a file (for example, adapter.xml), and validates it
against the adapter schema (tibcorvadapter.xsd), which includes the API-wide
controller schema (controller.xsd).

You cannot edit schemas.

CHAPTER 2: Adapters Supported by Event Stream Processor

488 Sybase Event Stream Processor

Figure 11: TIBCO Adapter Control Flow

The Adapter Controller creates an instance of the adapter which then receives and executes
user commands. The Adapter Controller can execute start, stop, and status commands.

Start Command
The start command configures and starts the adapter command and control interface.

The Data Source Handler connects to and initiates a session with the Rendezvous server using
the Rendezvous Client API. The SpSubscriber and SpPublisher components connect to Event
Stream Processor using the Pub/Sub interface. SpSubscriber starts listening to the outbound
streams and SpPublisher is ready to publish data to inbound streams.

If the start command is executed when there is a running instance of the adapter, it is ignored
and a warning is sent that the adapter is already running.

See also
• Starting the TIBCO Rendezvous Adapter on page 501

Stop Command
The stop command disconnects the SpPublisher and SpSubscriber from Event Stream
Processor, causes the Data Source Handler to close the session and disconnect from the

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 489

datasource, causes the Adapter Controller to stop listening to user commands, and terminates
the adapter process.

If the stop command is executed when there is no instance of a running adapter, the command
is ignored and a warning is sent.

See also
• Stopping the TIBCO Rendezvous Adapter on page 502

Status Command
The status command reports the adapter status, and the Adapter Controller prints out its
status: either running or stopped.

See also
• Checking the TIBCO Rendezvous Adapter Status on page 502

Data Streams
The adapter stores each Rendezvous message in a stream record.

A single stream may store messages on different subjects. The subject is stored in a mandatory
column Subject. The rest of the columns correspond to fields in Rendezvous messages.

Ensure the names of the stream columns are identical to the names of the corresponding scalar
fields in Rendezvous messages. In case of message-type fields, the columns adhere to the
following naming convention:

<message type field name>_<field name>

The adapter supports embedded messages of arbitrary depth. Columns unrelated to
Rendezvous messages are not allowed, and fields of array type are not supported.

The Client and Date columns correspond to scalar fields. Trade is an embedded message
which contains two fields: Price and Volume.

Table 12. Sample data strean

Sub-
ject

Client Date Trade_Price Trade_Volume

MySub-
ject

UBS 2008-03-13T08:19:
30

34.7 6000

Message Flow
The start command initiates the message flow through the adapter.

This figure shows the inbound message flow.

CHAPTER 2: Adapters Supported by Event Stream Processor

490 Sybase Event Stream Processor

On startup, the adapter subscribes to all subjects listed in the inbound section of the
configuration file. Wildcard subscriptions are supported. Inbound messages are received via
client API callbacks. The messages are passed on to the Message Distributor.

The Message Distributor converts each Rendezvous message into a record targeting one or
more data streams. The records are now ready to be published to Event Stream Processor, but
they are not published immediately. Records are queued, then picked up by the SpPublisher
object on separate threads, one thread for each record queue. You can configure the queue
capacity. A larger queue is less likely to overflow in the event of a message burst. When the
queue becomes three-quarters full, a warning is logged. Another warning is logged when the
queue returns to three-quarters empty. If the queue is full, the adapter waits until room
becomes available before placing the next record.

Records are published asynchronously. The adapter receives no feedback from Event Stream
Processor. In the event of a failover, the Pub/Sub API switches, as configured to the spare
Event Stream Processor instance without message loss.

Note: For outbound records, opcodes (values for ESP_OPS) are not communicated to the
TIBCO Rendezvous server. For inbound records, all records have "p" (upsert) set as the
opcode before publishing to the Server.

Datatype Mapping for the TIBCO Rendezous Adapter
Event Stream Processor datatypes map to TIBCO Rendezous datatypes.

Event Stream Processor Data-
type

TIBCO Datatype

boolean TibcorvMsg.Bool

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 491

Event Stream Processor Data-
type

TIBCO Datatype

integer TibcorvMsg.i32

long TibcorvMsg.i64

float/money/money1-money15 TibcorvMsg.f64

string TibcorvMsg.string

date/timestamp TibcorvMsg.datetime

bigdatetime TibcorvMsg.i64

interval TibcorvMsg.i64

binary TibcorvMsg.string

Setting the JAVA_HOME Environment Variable
Set the JAVA_HOME environment variable to point to the Java directory.

Prerequisites

• Install Java Runtime Environment version 1.6.0_26 or higher.
• Install the TIBCO Rendezvous binary libraries for the operating system on which the

adapter is running. The binary libraries are not included in the TIBCO Rendezvous adapter
distribution.

Task
Set the JAVA_HOME environment variable to the directory path where Java Runtime
Environment 1.6.0_26 or higher is installed.

Next

• Place the TIBCO Rendezvous binary libraries in $ESP_HOME/adapters/
tibco_rv/lib/tibco/<platform_type> where <platform> is retrieved by
the arch command for UNIX-based systems. For windows, win32 and win64 folders are
present. Use these respective folders to copy the libraries.

• Verify that the ESP_HOME environment variable is set correctly.

Configuration
Configuration information for the TIBCO Rendezvous adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

492 Sybase Event Stream Processor

TIBCO Rendezvous Adapter Directory
The adapter directory contains all files, such as configuration files, templates, examples, and
JAR files, relating to the adapter.

README.txt Quick Guide
ReleaseNotes.txt Release Notes

bin/
 adapter.bat Standalone adapter startup script
 adapter.sh Standalone adapter startup script
 adapter-plugin.bat Plug-in connector startup script
 adapter-plugin.sh Plug-in connector startup script

config/
 controller.xsd Controller schema
 log4j.properties Sample logging configuration
 tibcorvadapter.xsd Adapter schema
 login.config Authentication configuration

example/ Working example
 GD Working example for guaranteed delivery

lib/
 tibco/
 i86pc
 sun4
 win32
 win64
 x84_64
 esp_tibco_rv_adapter.jar Tibco Rendezvous adapter library
 tibrvj.jar Tibco Rendezvous java library

javadoc/
 adapterapi/ Adapter API Javadoc
 tibcorvadapter/ TIBCO Rendezvous Adapter Javadoc

Common jars are located:

$ESP_HOME/adapters/jar

activation.jar Java mail library
adapterapi.jar Adapter API code
axis.jar Webservices jar
commons-codec-1.3.jar Required by SDK API
commons-discovery-0.2.jar
commons-logging-1.1.jar Logging library
esp_java_sdk-0.4.jar ESP SDK library
jaxrpc.jar Required by ESP SDK
log4j-1.2.14.jar Logging library
mail.jar Java mail library
saaj.jar Webservices jar
ws-commons-util-1.0.2.jar Required by ESP SDK
wsdl4j-1.5.1.jar
xercesImpl.jar XML parser library

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 493

xmlrpc-client-3.1.3.jar Required by ESP SDK
xmlrpc-common-3.1.3.jar Required by ESP SDK
xmlrpc-server-3.1.3.jar Required by ESP SDK

Schema and Configuration File
The adapter configuration loads from a file and validates against the adapter schema.

The example folder contains a sample adapter configuration file.

Provide a valid configuration file, and ensure the adapter configuration specified in the file
validates against the adapter schema.

Adapter Controller Parameters
The adapter controllerPort parameter specifies the adapter command and control port.

This parameter is defined in the controller.xsd file located in the config directory.

Parameter Name Type Description

controllerPort positive
integer

(Required) Specifies the adapter command
and control port. User commands are sent to
this port on localhost.

Event Stream Processor Parameters
Event Stream Processor parameters configure communication between Event Stream
Processor and the TIBCO Rendezvous adapter.

These parameters are defined in the controller.xsd file in the config directory.

Parameter Name Type Description

espAuthType string (Required) Specifies method used to authen-
ticate to the Event Stream Processor. Valid
values are:

• server_rsa – RSA authentication using
keystore

• user_password – Kerberos and LDAP
authentication

• none – No authentication

If the adapter is operated as a Studio plug-in,
espAuthType is overridden by the Authenti-

cation Mode Studio start-up parameter.

espUser string (Required) Specifies user name required to
log in to Event Stream Processor. It is required
for any authentication scheme other than none
(see espAuthType). No default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

494 Sybase Event Stream Processor

Parameter Name Type Description

espPassword string (Required) Specifies the password required to
log in to Event Stream Processor. Required for
any authentication scheme other than none
(see espAuthType).

Includes an "encrypted" attribute indicating
whether the espPassword value is encrypted.
Default value is false. If set to true, the pass-
word value is decrypted using espRSAKeyS-

tore and espRSAKeyStorePassword.

espProjectUri string (Required) Specifies the total project Uri to
connect to Event Stream Processor cluster. For
example, esp://localhost:
19011/ws1/p1.

pulseInterval non-nega-
tive inte-
ger

(Optional) Specifies time interval, in seconds,
during which outbound record changes are
coalesced by Event Stream Processor, then
received by the adapter as a single event.

If not set or set to 0, record changes are re-
ceived individually as they occurr.

espHeartbeatPeriod positive
integer

(Optional) Specifies number, in seconds, that
adapter waits before sending the next heart-
beat to Event Stream Processor.

If Event Stream Processor fails to receive two
consecutive heartbeats, all records the adapter
publishes are marked stale. Default value is
10.

recordQueueCapacity positive
integer

(Optional) Specifies capacity of the record
queues. Default value is 4096.

maxPubPoolSize positive
integer

(Optional) Specifies the maximum size of the
record pool. Record pooling allows for faster
publication. Default value is 256.

maxPubPoolTime positive
integer

(Optional) Specifies the maximum period of
time (in milliseconds) for which records are
pooled before being published. If not set,
pooling time is unlimited and the pooling
strategy is governed by maxPubPoolSize. No
default value.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 495

Parameter Name Type Description

useTransactions boolean (Optional) If set to true, pooled messages are
published to Event Stream Processor in trans-
actions. If set to false, they are published in
envelopes. Default value is false.

espRSAKeyStore string (Dependent required) Specifies the location of
the RSA keystore, and is used to decrypt the
password value. Required if espAuthType is
set to server_rsa, or the encrypted attribute for
espPassword is set to true, or both.

espRSAKeyStorePassword string (Dependent required) Specifies the keystore
password, and is used to decrypt the password
value. Required if espAuthType is set to serv-
er_rsa, or the encrypted attribute for espPass-

word is set to true, or both.

espEncryptionAlgorithm string (Optional) Used when the encrypted attribute
for espPassword is set to true. If left blank,
RSA is used as default.

Stream Configuration
Use the streams section in the configuration file to map message subjects to data streams.

Input Stream Parameters
The name and subjects parameters defined within the inboundStreamType parameter
specify the name of the data stream and message subjects.

These parameters are defined in the tibcorvadapter.xsd file located in the config
folder.

Property ID Type Description

name string (Required) Specifies the name of the data stream.

subjects subjectsType (Required) Specifies 0 or more message subjects.
On startup, the adapter subscribes to each of these
subjects. Wildcard subscriptions are supported.

If an inbound message arrives on any of the speci-
fied subjects, it is published to this data stream.
Several data streams can specify the same subjects.

CHAPTER 2: Adapters Supported by Event Stream Processor

496 Sybase Event Stream Processor

Output Stream Parameters
The output stream parameters are defined within the outboundStreamType parameter.

These parameters are defined in the tibcorvadapter.xsd file in the config folder.

Parameter ID Type Description

name string (Required) Specifies the name of the data stream.

gdmode boolean (Advanced) If set to true, the adapter runs in guaranteed
delivery (GD) mode and all GD-related parameters
become required. Default value is false.

gdkeycolumnname string (Advanced) Specifies column name in the Flex opera-
tor holding the GD key. The GD key is a constantly
increasing value that uniquely identifies every event
regardless of the opcode in the stream of interest. No
default value.

gdopcodecolumn-

name

string (Advanced) Specifies name of column in Flex operator
holding opcode. The opcode is the operation code (for
example, inserts, update, or delete) of the event occur-
ring in the stream of interest. No default value.

gdcontrolstream string (Advanced) Specifies name of the control window in
the GD setup. The control window is a source stream
that informs the Flex operator of which data has been
processed by the adapter and can be safely deleted. No
default value.

gdbatchsize integer (Advanced) Specifies number of records after which
the control window must be updated with the latest GD
key. Default value is 1000.

gdpurgeinterval integer (Advanced) Specifies number of records after which to
purge the Flex operator. Default value is 1000.

See also
• Chapter 5, Guaranteed Delivery on page 543

Rendezvous Server Settings
Configure the Rendezvous Server settings using the rvDaemon, rvService, rvNetwork,
cmmode, cmname, and cmledgerfile parameters.

These parameters are defined in the tibcorvadapter.xsd file in the config folder.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 497

Parameter Name Type Description

rvDaemon string (Required) Specifies the colon-separated
host name (or IP address) and port on
which the Rendezvous server daemon
runs.

rvService string (Optional) Specifies the name of the Ren-
dezvous service.

rvNetwork string (Optional) Specifies the name of the Ren-
dezvous network.

cmmode boolean (Required) Enables Certified Message
(CM) transport mode for both input and
output streams. Default value is false.

cmname string (Optional) Is a reusable name that identi-
fies the CM transport to other CM trans-
ports. If its value is not specified in CM
mode, then it defaults to 'sesp'. Its value is
considered only if cmmode is set to true.

cmledgerfile string (Optional) Specify a valid file location to
run the CM transport in file-based ledger
mode. Otherwise, it runs in process-based
ledger mode. Its value is considered only
if cmmode is set to true.

Sample TIBCO Rendezvous Configuration File
Sample configuration file (adapter.xml) for the TIBCO Rendezvous adapter.

This file is in the example folder.

<adapter>

<!-- Adapter controller -->
 <controller>
 <controllerPort>13579</controllerPort>
 </controller>

<!-- Sybase Stream processor settings -->
 <esp>
 <espConnection>
 <espProjectUri>esp://localhost:19011/w1/p1</espProjectUri>
 </espConnection>

 <espSecurity>
 <espUser>espuser</espUser>
 <espPassword encrypted="false">espuser</espPassword>

CHAPTER 2: Adapters Supported by Event Stream Processor

498 Sybase Event Stream Processor

 <espAuthType>none</espAuthType>
<!--
 <espRSAKeyStore>/keystore/keystore.jks</espRSAKeyStore>
 <espRSAKeyStorePassword>Sybase123</espRSAKeyStorePassword> --
>
 <espEncryptionAlgorithm>RSA</espEncryptionAlgorithm>
 </espSecurity>
 <maxPubPoolSize>1</maxPubPoolSize>
 </esp>

<!-- Stream to subject mapping -->
 <streams>
 <inbound>
 <stream>
 <name>MyInStream</name>
 <subjects>
 <subject>MySubject</subject>
 </subjects>
 </stream>
 </inbound>
 <outbound>
 <stream>
 <name>MyOutStream</name>
 <gdmode>false</gdmode>
 <gdkeycolumnname>gdkey</gdkeycolumnname>
 <gdopcodecolumnname>gdopcode</gdopcodecolumnname>
 <gdcontrolstream>W1_truncate</gdcontrolstream>
 <gdbatchsize>2</gdbatchsize>
 <gdpurgeinterval>4</gdpurgeinterval>
 </stream>
 </outbound>
 </streams>

<!-- Rendezvous settings -->
 <rvSettings>
 <rvDaemon>localhost:7500</rvDaemon>
 <cmmode>false</cmmode>
 <cmname>sesp</cmname>
 <cmledgerfile>C:\ledger.txt</cmledgerfile>
 </rvSettings>

</adapter>

TIBCO Rendezvous Adapter
The TIBCO Rendezvous adapter publishes stream data to and from a Rendezvous subject.

The authentication method is set to that of Event Stream Processor: none, rsa, or gssapi.

Install TIBCO Rendezvous Adapter version 1.0 or later to use this adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 499

Property Label Property ID Type Description

Connector Directory
Path

baseDir directory (Required) Specify the path to the
adapter installation directory. This
property is ignored if the Connector

Remote Directory Path property is
supplied. No default value.

Configuration File Path configFilePath configFi-
lename

(Required) Specify the absolute path
to the adapter configuration file. This
property is ignored if the Remote

Configuration File Path property is
supplied. No default value.

Connector Remote Di-
rectory Path

remoteBaseDir string (Advanced) Specify the path to the
adapter remote base directory (for
remote execution only). If this prop-
erty is supplied, the Connector Di-

rectory Path property is ignored. No
default value.

Remote Configuration
File Path

remoteConfigFi-

lePath

string (Advanced) Specify the absolute
path to the adapter remote configu-
ration file (for remote execution on-
ly). If this property is supplied, the
Configuration File Path property is
ignored. No default value.

PropertySet propertyset string (Advanced) Specifies the name of
the property set (a group of proper-
ties and values) you want to use from
the project configuration file. If you
specify the same properties in the
project configuration file and the AT-

TACH ADAPTER statement, the val-
ues in the property set override the
values defined in the ATTACH

ADAPTER statement. No default val-
ue.

Logging
The TIBCO Rendezvous adapter uses the Apache log4j API to log errors, warnings, and
information and debugging messages.

The log4j.properties file contains the logging configuration. A sample
log4j.properties file is part of the adapter distribution.

CHAPTER 2: Adapters Supported by Event Stream Processor

500 Sybase Event Stream Processor

Setting the logging level to DEBUG may result in very large log files. The default level is
INFO. Refer to http:// logging.apache.org/log4j for details on logging configuration.

Operation
Operate the adapter from the command line.

Ensure the rvDaemon and, optionally, rvService and rvNetwork parameters in the
configuration are consistent with the Rendezvous server settings.

Ensure that the project that processes events contains inbound and outbound streams. Set the
desired logging level in the log4j.properties file.

Starting the TIBCO Rendezvous Adapter
To start the TIBCO adapter from the command line, start Event Stream Processor and execute
the start command.

1. Start Event Stream Processor.

Windows:
1. Start the example cluster.

cd %ESP_HOME%\cluster\nodes\node1
 %ESP_HOME%\bin\esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
%ESP_HOME%\bin\esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
%ESP_HOME%\bin\esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

UNIX:
1. Start the example cluster.

cd $ESP_HOME/cluster/nodes/node1
 $ESP_HOME/bin/esp_server --cluster-node node1.xml

2. Compile CCL to create CCX.
$ESP_HOME/bin/esp_compiler -i model.ccl -o model.ccx

3. Deploy the project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --add_project --workspace-
name=w1 --project-name=p1 --ccx=model.ccx

4. Start the deployed project on the cluster.
$ESP_HOME/bin/esp_cluster_admin" --uri=esp://localhost:19011
--username=sybase --password=sybase --start_project --
workspace-name=w1 --project-name=p1

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 501

http://logging.apache.org/log4j

2. Start the adapter.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/tibco_rv/bin

./adapter.sh <configuration file path> start

Windows Open a command window and enter:

cd %ESP_HOME%\adapters\tibco_rv\bin

adapter.bat <configuration file path> start

Note: Use the esp_subscribe utility to ensure that inbound Rendezvous messages are
successfully published to Event Stream Processor.

See also
• Start Command on page 489

Checking the TIBCO Rendezvous Adapter Status
To check the TIBCO adapter status from the command line, execute the status command.

Operating
System

Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/tibco_rv/bin

./adapter.sh <configuration file path> status

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/tibco_rv/bin

adapter.bat <configuration file path> status

You see the adapter status, which is either running or stopped.

See also
• Status Command on page 490

Stopping the TIBCO Rendezvous Adapter
To stop the TIBCO adapter from the command line, execute the stop command.

CHAPTER 2: Adapters Supported by Event Stream Processor

502 Sybase Event Stream Processor

Operating System Step

UNIX Open a terminal window and enter:

cd $ESP_HOME/adapters/tibco_rv/bin

./adapter.sh <configuration file path> stop

Windows Open a command window and enter:

cd %ESP_HOME%/adapters/tibco_rv/bin

adapter.bat <configuration file path> stop

See also
• Stop Command on page 489

Example: Subscribing and Publishing
Subscribe to a subject, upload an outbound record on that subject to Event Stream Processor,
send the message to the Rendezvous server, and then receive and publish it as an inbound
record.

Prerequisites
You have a network connection to a running instance of the TIBCO Rendezvous server.
Operate this example from the command line.

Task

1. Edit the adapter.sh script.

2. Set the JAVA_HOME environment variable to the directory where the Java Runtime
Environment (JRE) is installed.

3. Start Event Stream Processor.

Operating
System

Step

UNIX Open a terminal window:
1. Start the example cluster: start_server_cluster.sh

2. Start the project on the cluster: start_project.sh

Windows Open a command window:
1. Start the example cluster: start_server_cluster.bat

2. Add project to the cluster, and start it on the cluster:
start_project.bat

4. Start the adapter.

CHAPTER 2: Adapters Supported by Event Stream Processor

Adapters Guide 503

Operating System Step

UNIX Open a terminal window and enter:

./adapter.sh

Windows Open a command window and enter:

adapter.bat

5. Wait five to ten seconds for the adapter to initialize.

6. Upload the outbound record.

Operating System Step

UNIX Open a terminal window and enter:

./upload.sh

Windows Open a command window and enter:

upload.bat

7. Start the Event Stream Processor subscriber utility to view data stream content.

Operating System Step

UNIX Open a terminal window and enter:

./esp-subscribe.sh

Windows Open a command window and enter:

esp-subscribe.bat

8. Note the inbound record published to Event Stream Processor.

CHAPTER 2: Adapters Supported by Event Stream Processor

504 Sybase Event Stream Processor

CHAPTER 3 Custom Adapters

Use the Event Stream Processor internal adapter framework to build custom internal adapters,
and ESP-supplied SDKs to build custom external adapters.

See also
• Adapter Parameters Datatypes on page 8

Custom Internal Adapters
For circumstances where the supplied adapters do not meet your needs, Event Stream
Processor provides an internal adapter framework you can use to build internal adapters.

To create a custom internal adapter, provide a custom adapter library. Your custom adapter
library uses the Event Stream Processor shared utility library to help convert external data to
server format.

The adapter shared utility library exposes APIs with a C interface that allows you to
implement life cycle and information management functions for your custom adapter. The C
interface lets you to implement your custom adapter in C or C++ without any compiler
restrictions.

The header file, GenericAdapterInterface.h, contains import declarations for
functions in the adapter shared utility library.

See also
• Custom Adapters on page 3

• Custom External Adapters on page 517

The Adapter Shared Utility Library
The adapter shared utility library provides the utility functions required for a custom adapter
implementation, including data conversion, data manipulation, and data management.

The header file, GenericAdapterInterface.h, contains the import declarations
required to call utility functions in the adapter shared utility library.

When calling functions, each data utility requires a unique handle. The adapter shared utility
library is labeled esp_adapter_util_lib.dll for Windows installations, and
libesp_adapter_util_lib.so for Linux installations.

When calling functions in the adapter shared utility shared, each data utility requires a unique
handle. For example, users can use the ConnectionRow function by calling

Adapters Guide 505

CreateConnectionRow. This call returns a unique handle in the form of a void pointer. The
user can pass this pointer back when making calls to any other APIs under
ConnectionRow.

Callback Functionality
An adapter implementation can use callback functions to log on to the Server, retrieve
information related to schemas, and convey state information to the Server.

Callback functions are contained in the esp_server_lib.dll file for Windows
installations, and in the libesp_server_lib.dll file for Linux installations.

The GenericAdapterInterface.h file contains import declarations for these
functions.

Sample Model File
Sample syntax you can use to build a basic model file.

This model represents a schema with two columns of string data. The model also defines an
input connection that references a sample custom adapter implementation.
CREATE MEMORY STORE "memory" PROPERTIES INDEXTYPE ='tree',
INDEXSIZEHINT =8;

CREATE INPUT WINDOW Custom
SCHEMA (column1 STRING, column2 STRING)
PRIMARY KEY (column1)
STORE "memory";

ATTACH INPUT ADAPTER Connection1
TYPE custom_in
TO Custom;

The Adapter Configuration File
The internal adapter configuration file is an XML file (.cnxml) that contains the properties
and commands used by Event Stream Processor to start and stop the internal adapter, as well as
other information that allows the internal adapter to be configured from the Studio.

The adapter configuration file also constructs the name for your custom adapter DLL file. The
library name is referenced when you load your adapter.

This is sample code for naming the custom adapter DLL file:
<?xml version="1.0" encoding="UTF-8"?>
<Adapter type="input"
 id="custom_in"
 label="Custom Input"
 descr="Dummy Custom Input Adapter"
>
 <Library file="custom_in" type=binary"/>
 <Section></Section>
</Adapter>

CHAPTER 3: Custom Adapters

506 Sybase Event Stream Processor

Note: The .cnxml file adheres to the Adapter.xsd file.

Once the .cnxml and custom adapter DLL files are ready, copy them to the ESP_HOME/
lib/adapters folder.

Adapter Life Cycle Functions
All adapters follow a set of adapter life cycle events.

API Description

bool reset(void* adapters); This is the first life cycle API. Call this API to
initialize both input and output adapters.

void start(void* adapter); Call this API immediately after reset and use it for
data processing specific to the adapter implemen-
tation. Call this API for both input and output
adapters.

void* getNext(void* adapter); This API reads data and returns a pointer to the
data in a format the server understands. The
adapter shared utility library provides data con-
version functions. Call this API for input adapters
only.

void putNext(void* adapter,void* stream); This API converts presented data into a format the
server understands, and writes it according to the
specified adapter implementation. The adapter
shared utility library provides data conversion
functions. Call this API for output adapters only.

void stop(void* adapter); Call this API to stop an adapter. This API gets
called for both input and output adapters.

void cleanup(void* adapter); Call this API to perform clean-up activities after
an adapter is stopped.

void commitTransaction(void* adapter); This API notifies an output adapter when a trans-
action ends. Call this API for output adapters on-
ly.

void putStartSync(void* adapter); This API notifies the adapter implementation that
the base data is being sent. Call this API for output
adapters only.

void putEndSync(void* adapter); This API notifies the adapter implementation that
the base data has been sent. Call this API for
output adapters only.

CHAPTER 3: Custom Adapters

Adapters Guide 507

API Description

void purgePending)void* adapter); This API instructs an output adapter to purge
pending data. Call this API for output adapters
only.

bool isOutBase(void* adapter); Call this API to determine whether the adapter
expects to receive the output for the base contents
of the stream. Call this API for output adapters
only.

Adapter Setup Functions
The Server uses information management functions to complete the adapter implementation
process.

These functions are used for both input and output adapters.

API Description

void* createAdapter(); This is the first call the Server makes when cre-
ating an adapter. The function returns a unique
handle that the Server uses to make subsquent
calls to the adapter.

void setCallBackReference(void*adapter,void*

connectionCallBackReference);

The Server calls this API to give the adapter im-
plementation a unique handle that corresponds to
the connectionCallBack object on the Server
side. Use this handle as a parameter when making
callbacks to the Server.

void setConnectionRowType(void* adapt-

er,void* connectionRowType);

The Server calls this API to provide the adapter
implementation with information related to sche-
ma.

void setConnectionParams(void* adapter, void*

connectionParams);

The Server calls this API to provide the adapter
implementation with information related to con-
nection parameters.

Miscellaneous Functions
Describes miscellaneous APIs supported for Event Stream Processor adapters.

API Description

int getNumGood(void* adapter); The server calls this API to retrieve information
from the adapter implementation about the num-
ber of good rows processed by the adapter.

CHAPTER 3: Custom Adapters

508 Sybase Event Stream Processor

API Description

int getNumBad(void* adapter); The server calls this API to retrieve information
from the adapter implementation about the num-
ber of bad rows processed by the adapter.

int getNumRows(void* adapter); The server calls this API to get information from
the adapter implementation about the total num-
ber of rows processed by the adapter.

bool canDiscover(void* adapter); The server calls this API to retrieve information
from the adapter implementation about whether it
supports schema discovery functionality.

bool hasError(void* adapter); The server calls this API to get information from
the adapter implementation about whether there
were any errors during the processing of data.

void getError(void* adapter, char**errorString); The server calls this API to get error information
from the adapter implementation.

Adapter Run States
Adapters progress through a set of run states (RS) as they interact with Event Stream
Processor.

• RS_READY – indicates that adapters are ready to be started.
• RS_INITIAL – indicates that the adapter is performing start-up and initial loading. An

adapter enters the RS_INITIAL state when the reset function is called.
• RS_CONTINUOUS – indicates that the adapter is continuously waiting for additional

data. If the RS_CONTINUOUS state is set in the reset method, input adapters return from
reset with data to process, and output adapters return from reset prepared to accept data.

• RS_IDLE – indicates that the adapter has timed out or is attempting to restore a broken
socket.

• RS_DONE – indicates when the adapter no longer returns data and can no longer retrieve
data following the poll period.

• RS_DEAD – indicates that the adapter has entered the exited state. The adapter does not
operate until the restart function is called.

When polling is enabled, an input adapter may change states from RS_CONTINUOUS to
RS_IDLE. Change the adapter state back to RS_CONTINUOUS to retry data retrieval after a
certain amount of time.

CHAPTER 3: Custom Adapters

Adapters Guide 509

Schema Discovery for Internal Custom Adapters
Use extern "C" functions to enable your custom internal adapter for schema discovery.

Method Description

extern "C" DLLEXPORT bool canDis-

cover(void* adapter)

During discovery, this is the first method called by the
adapter framework to check whether an adapter supports
discovery. Adapters that support discovery return a value of
true.

extern "C" DLLEXPORT void setDis-

covery(void* adapter)

This method tells the adapter that it is running in discovery
mode.

extern "C" DLLEXPORT int getTable-

Names(void* adapter, char*** tables)

This method is a pointer to an array of strings that populates
tables. The method contains table names when discovering
tables in a database, or file names when discovering par-
ticular types of files in a directory.

extern "C" DLLEXPORT int getField-

Names(void* adapter, char*** names,

const char* tableName)

This method returns field names.

extern "C" DLLEXPORT int getField-

Types(void* adapter, char*** types,

const char* tableName)

This method returns field types.

extern "C" DLLEXPORT int getSam-

pleRow(void* adapter, char*** row,

const char* tableName, int pos)

This method returns sample rows.

Sample Custom Internal Adapter Implementation
Sample syntax you can use to build your custom internal adapter implementation.This
implementation incorporates extern "C" methods that enable schema discovery in a custom
adapter.

/*
 * CustomAdapterInterface.cpp
 *
 * Author: sample
 */

#include "GenericAdapterInterface.h"
#include <vector>
#include <sstream>
#include <iostream>
#include <string>

using namespace std;

CHAPTER 3: Custom Adapters

510 Sybase Event Stream Processor

struct InputAdapter
{
 InputAdapter();
 void* connectionCallBackReference;
 void* schemaInfomartion;
 void* parameters;
 void* rowBuf;
 void* errorObjIdentifier;
 int _badRows;
 int _goodRows;
 int _totalRows;
 int getColumnCount();
 void setState(int st);
 bool discoverTables();
 bool discover(string tableName);
 vector<string> _discoveredTableNames;
 vector<string> _discoveredFieldNames;
 vector<string> _discoveredFieldTypes;
 vector<vector<string> > _discoveredRows;
 vector<string> _row1;
 vector<string> _row2;
 bool _discoveryMode;
};

InputAdapter::InputAdapter()
{
 rowBuf = NULL;
 _badRows = 0;
 _goodRows = 0;
 _totalRows = 0;
 _discoveryMode = false;
 _discoveredTableNames.clear();
 _discoveredFieldNames.clear();
 _discoveredFieldTypes.clear();
 _discoveredRows.clear();
 _row1.clear();
 _row2.clear();
}

int InputAdapter::getColumnCount()
{
 return ::getColumnCount(schemaInfomartion);
}

void InputAdapter::setState(int st)
{
 ::setAdapterState(connectionCallBackReference, st);
}

extern "C" DLLEXPORT
void* createAdapter()
{
 return new InputAdapter();
}

CHAPTER 3: Custom Adapters

Adapters Guide 511

extern "C" DLLEXPORT
void setCallBackReference(void *adapter,void
*connectionCallBackReference)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 inputAdapterObject->connectionCallBackReference =
connectionCallBackReference;
}

extern "C" DLLEXPORT
void setConnectionRowType(void *adapter,void *connectionRowType)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 inputAdapterObject->schemaInfomartion = connectionRowType;
}

extern "C" DLLEXPORT
void setConnectionParams(void* adapter,void* connectionParams)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 inputAdapterObject->parameters = connectionParams;
}

extern "C" DLLEXPORT
void* getNext(void *adapter)
{
 StreamRow streamRow = NULL;
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 int n = inputAdapterObject->getColumnCount();
 std::stringstream ss;
 if(inputAdapterObject->_totalRows <10){

 for (int column = 0; column < n; column++) {
 ss.str("");
 ss << inputAdapterObject->_totalRows;
 std::string tempString;
 tempString = ss.str();
 std::string row = "ROW";
 row.append(tempString);
 ss.str("");
 ss << column;
 tempString = ss.str();
 std::string columnString = "COLUMN";
 columnString.append(tempString);
 row.append(columnString);
 ::setFieldAsStringWithIndex(inputAdapterObject->rowBuf,
column, row.c_str());

 }

 inputAdapterObject->_totalRows++;
 streamRow = ::toRow(inputAdapterObject->rowBuf,
inputAdapterObject->_totalRows, inputAdapterObject-
>errorObjIdentifier);
 if(streamRow)
 {

CHAPTER 3: Custom Adapters

512 Sybase Event Stream Processor

 inputAdapterObject->_goodRows++;
 } else
 {
 inputAdapterObject->_badRows++;
 }

 } else {
 inputAdapterObject->setState(RS_DONE);
 }
 return streamRow;

}

extern "C" DLLEXPORT
bool reset(void *adapter)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 if(inputAdapterObject->rowBuf)
 delete inputAdapterObject->rowBuf;
 string type = "RowByOrder";
 inputAdapterObject->rowBuf
= ::createConnectionRow(type.c_str());
 ::setStreamType(inputAdapterObject->rowBuf, inputAdapterObject-
>schemaInfomartion, false);
 inputAdapterObject->errorObjIdentifier
=::createConnectionErrors();
 inputAdapterObject->setState(RS_CONTINUOUS);
 return true;
}

extern "C" DLLEXPORT
int getTotalRowsProcessed(void *adapter)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 return inputAdapterObject->_totalRows;
}

extern "C" DLLEXPORT
int getNumberOfBadRows(void *adapter)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 return inputAdapterObject->_badRows;
}

extern "C" DLLEXPORT
int getNumberOfGoodRows(void *adapter)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 return inputAdapterObject->_goodRows;
}

extern "C" DLLEXPORT
bool hasError(void *adapter)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;

CHAPTER 3: Custom Adapters

Adapters Guide 513

 return !(::empty(inputAdapterObject->errorObjIdentifier));
}

extern "C" DLLEXPORT
void getError(void *adapter, char** errorString)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 ::getAdapterError(inputAdapterObject->errorObjIdentifier,
errorString);
}

extern "C" DLLEXPORT
void start(void* adapter){}

extern "C" DLLEXPORT
void stop(void* adapter){}

extern "C" DLLEXPORT
void cleanup(void* adapter){}

extern "C" DLLEXPORT
bool canDiscover(void* adapter){return true;}

extern "C" DLLEXPORT
void deleteAdapter(void* adapter)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 delete inputAdapterObject;
}

extern "C" DLLEXPORT
void commitTransaction(void *adapter){}

extern "C" DLLEXPORT
int getTableNames(void* adapter, char*** tables)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;

 if(!inputAdapterObject->discoverTables())
 {
 return 0;
 }

 (*tables) = (char**) malloc(sizeof(char*)*inputAdapterObject-
>_discoveredTableNames.size());

 for(int index=0; index < inputAdapterObject-
>_discoveredTableNames.size(); index++)
 {
 size_t tableNameSize = inputAdapterObject-
>_discoveredTableNames[index].size() + 1 ;
 char* tableName = new char [tableNameSize];
 strncpy(tableName, inputAdapterObject-
>_discoveredTableNames[index].c_str(),tableNameSize);

CHAPTER 3: Custom Adapters

514 Sybase Event Stream Processor

 (*tables)[index] = tableName;
 }

 return inputAdapterObject->_discoveredTableNames.size();
}

extern "C" DLLEXPORT
int getFieldNames(void* adapter, char*** names, const char*
tableName)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;

 string table (tableName);

 if(!inputAdapterObject->discover(table))
 {
 return 0;
 }

 (*names) = (char**) malloc(sizeof(char*)*inputAdapterObject-
>_discoveredFieldNames.size());

 for(int index=0; index < inputAdapterObject-
>_discoveredFieldNames.size(); index++)
 {
 size_t fieldNameSize = inputAdapterObject-
>_discoveredFieldNames[index].size() + 1;
 char* fieldName = new char [fieldNameSize];
 strncpy(fieldName, inputAdapterObject-
>_discoveredFieldNames[index].c_str(),fieldNameSize);
 (*names)[index] = fieldName;
 }

 return inputAdapterObject->_discoveredFieldNames.size();

}

extern "C" DLLEXPORT
int getFieldTypes(void* adapter, char*** types, const char*
tableName)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;

 string table (tableName);

 if(!inputAdapterObject->discover(table))
 {
 return 0;
 }

 (*types) = (char**) malloc(sizeof(char*)*inputAdapterObject-
>_discoveredFieldTypes.size());

 for(int index=0; index < inputAdapterObject-
>_discoveredFieldTypes.size(); index++)

CHAPTER 3: Custom Adapters

Adapters Guide 515

 {
 size_t fieldTypeSize = inputAdapterObject-
>_discoveredFieldTypes[index].size() + 1;
 char* fieldType = new char [fieldTypeSize];
 strncpy(fieldType, inputAdapterObject-
>_discoveredFieldTypes[index].c_str(), fieldTypeSize);
 (*types)[index] = fieldType;
 }

 return inputAdapterObject->_discoveredFieldTypes.size();
}

extern "C" DLLEXPORT
int getSampleRow(void* adapter, char*** row, const char* tableName,
int pos)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;

 string table (tableName);

 if(!inputAdapterObject->discover(table))
 {
 return 0;
 }

 vector<string> vals;

 if (pos < (int)inputAdapterObject->_discoveredRows.size())
 {
 vals = inputAdapterObject->_discoveredRows[pos];

 (*row) = (char**) malloc(sizeof(char*)*vals.size());

 for(int index=0; index < vals.size(); index++)
 {
 size_t columnSize = vals[index].size() + 1;
 char* column = new char [columnSize];
 strncpy(column, vals[index].c_str(),columnSize);
 (*row)[index] = column;
 }
 }

 return vals.size();

}

extern "C" DLLEXPORT
void setDiscovery(void* adapter)
{
 InputAdapter *inputAdapterObject = (InputAdapter*)adapter;
 inputAdapterObject->_discoveryMode = true;
}

bool InputAdapter::discoverTables()
{
 _discoveredTableNames.push_back("Table1");

CHAPTER 3: Custom Adapters

516 Sybase Event Stream Processor

 _discoveredTableNames.push_back("Table2");
 _discoveredTableNames.push_back("Table3");
 _discoveredTableNames.push_back("Table4");
 _discoveredTableNames.push_back("Table5");
 return true;
}

bool InputAdapter::discover(string tableName)
{
 _discoveredFieldNames.clear();
 _discoveredFieldTypes.clear();
 _row1.clear();
 _row2.clear();
 _discoveredRows.clear();
 _discoveredFieldNames.push_back("Column1");
 _discoveredFieldNames.push_back("Column2");
 _discoveredFieldNames.push_back("Column3");
 _discoveredFieldNames.push_back("Column4");
 _discoveredFieldNames.push_back("Column5");
 _discoveredFieldTypes.push_back("integer");
 _discoveredFieldTypes.push_back("string");
 _discoveredFieldTypes.push_back("string");
 _discoveredFieldTypes.push_back("float");
 _discoveredFieldTypes.push_back("float");
 _row1.push_back("1");
 _row1.push_back("A");
 _row1.push_back("B");
 _row1.push_back("1.1");
 _row1.push_back("2.2");
 _row2.push_back("2");
 _row2.push_back("X");
 _row2.push_back("Y");
 _row2.push_back("3.3");
 _row2.push_back("4.4");
 _discoveredRows.push_back(_row1);
 _discoveredRows.push_back(_row2);
 return true;
}

Custom External Adapters
The external adapter framework provides a mechanism to create and add adapters that are not
included in the set provided by Event Stream Processor.

External adapters can be added in the field and provide all necessary information to allow the
Studio and Server to manage and interact with an external datasource or sink. These custom
adapters are simply datasource and sink applications that are built with the Pub/Sub API. After
an adapter configuration file (cnxml) is installed, an external adapter can be used in the Studio
in the same way as built-in adapters.

See also
• Custom Adapters on page 3

CHAPTER 3: Custom Adapters

Adapters Guide 517

• Custom Internal Adapters on page 505

• External Adapters on page 127

External Adapter Configuration File
The framework defines the structure of the external adapter configuration file (cnxml) file that
contains the adapter properties.

The external adapter configuration file is an XML file that contains the properties and
commands used by Event Stream Processor to start and stop the external adapter and to
optionally run schema discovery, as well as other information that allows the external adapter
to be configured from Studio.

The example below shows a cnxml file that uses four of the utilities shipped with Event Stream
Processor (esp_convert, esp_upload, esp_client, and esp_discxmlfiles) to fully define a
functional external adapter that supports browsing a directory of files, the creation of a source
stream, and data loading. This sample configuration file,
simplified_xml_input_plugin.cnxml, can be found in the $ESP_HOME/lib/
adapters directory. The directory is included in the standard Event Stream Processor
distribution package.

In the example, long lines of script below have been split for readability and to avoid
formatting issues. If you are using this to create your own external adapter configuration file,
ensure that all command properties are on a single line, regardless of length.

<?xml version="1.0" encoding="UTF-8"?>

<Adapter type="input" external="true"
 id="simplified_xml_input_plugin"
 label="Simplified external XML file input plugin Adapter"
 descr="Example of uploading an XML file through a simple external
Adapter"
>
 <Library file="simple_ext" type="binary"/>

 <!--
 The special section contains the special internal parameters
 which are prefixed with "x_". Although these are parameters,
 the framwork requires them to be defined using the <Internal
 .../> element. They are hidden from the user in ESP Studio.
 -->
 <Special>
 <Internal id="x_initialOnly"
 label="Does Initial Loading Only"
 descr="Do initial loading, or the continuous loading"
 type="boolean"
 default="true"
 />
 <Internal id="x_addParamFile"
 label="Add Parameter File"
 type="boolean"
 default="false"

CHAPTER 3: Custom Adapters

518 Sybase Event Stream Processor

 />
 <Internal id="x_killRetryPeriod"
 label="Period to repeat the stop command until the process
exits"
 type="int"
 default="1"
 />

 <!--
 Convert a file of xml record to ESP Binary format using
esp_convert;
 pipe into the esp_upload program, naming the upload
connection:
 $platformStream.$platformConnection
 -->
 <Internal id="x_unixCmdExec"
 label="Execute Command"
 type="string"
 default="$ESP_HOME/bin/esp_convert -p $platformCommandPort
<"$directory/$filename" | $ESP_HOME/bin/esp_upload -m
$platformStream.$platformConnection -p $platformCommandPort"
 />
 <Internal id="x_winCmdExec"
 label="Execute Command"
 type="string"
 default="$+/{$ESP_HOME/bin/esp_convert} -p $platformCommandPort
<"$directory/$filename" | $+/{$ESP_HOME/bin/esp_upload}
-m $platformStream.$platformConnection -p $platformCommandPort"
 />

 <!--
 use the esp_client command to stop an existing esp_upload
connection named:
 $platformStream.$platformConnection
 -->
 <Internal id="x_unixCmdStop"
 label="Stop Command"
 type="string"
 default="$ESP_HOME/bin/esp_client -p $platformCommandPort 'kill
every {$platformStream.$platformConnection}' </dev/null"
 />
 <Internal id="x_winCmdStop"
 label="Stop Command"
 type="string"
 default="$+/{$ESP_HOME/bin/esp_client} -p $platformCommandPort
"kill every {$platformStream.$platformConnection}"
<nul"
 />

 <!--
 Use the esp_discxmlfiles command to do data discovery.
 The command below will have '-o "<temp file>"' added to it. It
 will write the discovered data in this file.
 -->
 <Internal id="x_unixCmdDisc"
 label="Discovery Command"

CHAPTER 3: Custom Adapters

Adapters Guide 519

 type="string"
 default="$ESP_HOME/bin/esp_discxmlfiles -d "
$directory""
 />
 <Internal id="x_winCmdDisc"
 label="Discovery Command"
 type="string"
 default="$+/{$ESP_HOME/bin/esp_discxmlfiles} -d "$+/
{$directory}""
 />
 </Special>

 <Section>

 <!--
 Any parameter defined here, is visible in the ESP Studio, and
may
 be configured by the user at runtime in the data location
explorer.
 These are defined according to the $ESP_HOME/etc/Adapter.xsd
 schema.
 -->

 <Parameter id="filename"
 label="File"
 descr="File to upload"
 type="tables"
 use="required"
 />
 <Parameter id="directory"
 label="path to file"
 descr="directory to search"
 type="directory"
 use="required"
 />
 <Parameter id="propertyset"
 label="propertyset"
 descr="to look up properties in project configuration"
 type="string"
 use="advanced"
 default=""/>
 </Section>
</Adapter>

CHAPTER 3: Custom Adapters

520 Sybase Event Stream Processor

External Adapter Properties
See examples in $ESP_HOME/lib/connections/PLUGIN_TEMPLATE.cnxmlfor a
sample cnxml file that may be copied and customized. It has all possible internal parameters
embedded in it, and has comment blocks indicating their usage.

Property Id Type Description

x_paramFile string Specifies the file name that where the adapter frame-
work writes all internal and user-defined parameters.
It may use other internal parameters in specifying the
file name. For example:

/tmp/mymodel.$platformStream.
$platformConnector.$platformCom-
mandPort.cfg

x_paramFormat string Set to prop, shell, or xml to choose the format

for the parameter file.

x_addParamFile boolean Determines if the parameter file name is automatically
appended to all x_cmd* strings. For example, if you

specify the command as cmd -f, and this is set to

true, the actual command is executed as cmd -f
<value of x_paramFile>.

x_initialOnly boolean If true, does initial loading only. Set to false for con-
tinuous loading. Initial loading is useful for adapters
that start, load some static data then finish, thus al-
lowing another adapter group to start up in a staged
loading scenario.

x_killRetryPeriod integer If this parameter is >0 the x_{unix,win}CmdStop

command is retried every x_killRetry seconds, until
the framework detects that the x_{unix,win}CmdExec

command has returned. If it is equal to zero, run the
x_{unix,win}CmdStop command only once and as-
sume that it has stopped the x_{unix,win}CmdExec

command.

External Adapter Commands
External adapter commands fall into two categories: those that run on the same host as Studio,
and those that run on the same host as the Server.

The discovery commands, x_unixDiscCmd and x_winDiscCmd always run on the Studio
host. All other commands run on the Server host.

CHAPTER 3: Custom Adapters

Adapters Guide 521

The Studio and Server are frequently run on the same host, so the development of all command
and driving scripts for the custom adapter are straightforward. the configuration becomes
more complex during remote execution when Studio and the Server are running on different
hosts.

For example, if the Studio is running on a Windows host, and the Server is set up through
Studio to execute on a remote Linux host, it implies that the discovery command and the
discovery file name that the framework generates are running and are generated in a Windows
environment. The path to the discovery file is a Windows-specific path with drive letters and '\'
characters used as path separators. In this case, the developer of the connector should write the
discovery command to run in a Windows environment while coding all other commands to
remotely execute on the Linux box using a user-configured ssh or rsh command.

Command Description

x_unixCmdConfig

x_winCmdConfig

The configure command should do any required parsing and/or
checking of the parameters. It may also convert the parameters into
the real format expected by the execution command by reading,
parsing, and re-writing the parameter file. If the configure com-
mand fails (non-zero return), it is reported as a reset() error,

and the adapter fails to start.

x_unixCmdExec

x_winCmdExec

When the Server starts the adapter, it executes this command with
its ending indicating that the connector has finished.

x_unixCmdStop

x_winCmdStop

The stop command runs from a separate thread; it should stop all
processes created with the x_{unix,win}CmdExec command, thus
causing the x_{unix,win}CmdExec to return.

x_unixCmdClean

x_winCmdClean

The clean command runs after the Server has stopped the connec-
tion, that is, when x_{unix,win}CmdExec returns.

CHAPTER 3: Custom Adapters

522 Sybase Event Stream Processor

Command Description

x_winDiscCmd This command is for schema discovery. It should write a discovery
file into the file name passed to it. The parameter -o <temporary

disc filename> argument is appended to this command before it is
executed.

<discover>
 <table name="table_name_1" />
 <column name="col_name_1"
type="col_type_1"/>
 .
 .
 .
 <column name="col_name_k"
type="col_type_k"/>
 </table>
 .
 .
 .
 <table name="table_name_n" />
 <column name="col_name_1"
type="col_type_1"/>
 .
 .
 .
 <column name="col_name_1"
type="col_type_1"/>
 </table>
</discover>

User-Defined Parameters and Parameter Substitution
Internal parameters and any number of user-defined parameters can be created in the cnxml
file.

All system and user-defined parameters can be referenced in the command or script
arguments. These parameters behave in a similar way to shell substitution variables. The
simplest example is from the simplified_xml_input_external.cnxml file.
Some of the long lines below have been split for readability and to avoid formatting issues.

 <Internal id="x_unixCmdExec"
 label="Execute Command"
 type="string"
 default="$ESP_HOME/bin/esp_convert
 -p $platformCommandPort <"$directory/
$filename" | $ESP_HOME/bin/esp_upload
 -m $platformStream.$platformConnection
 -p $platformCommandPort"
 />

CHAPTER 3: Custom Adapters

Adapters Guide 523

External environment variables, such as ESP_HOME, may be expanded, as well as internal
system parameters (platformCommandPort) and user-defined parameters (filename). The
full semantics for parameter expansion are:

$name
${name}
${name=value?substitution[:substitution]}
${name<>value?substitution[:substitution]}
${name!=value?substitution[:substitution]}
${name==value?substitution[:substitution]}
${name<value?substitution[:substitution]}
${name<=value?substitution[:substitution]}
${name>value?substitution[:substitution]}
${name>=value?substitution[:substitution]}

All forms with {} may have a + added after $ (for example, $+{name}). The presence of +
means that the result of the substitution is parsed again and any values in it are substituted. The
\ symbol escapes the next character and prevents any special interpretation.

The conditional expression compares the value of a parameter with a constant value and uses
either the first substitution on success or the second substitution on failure. The comparisons
== and != try to compare the values as numbers. The = comparisons and <> try to compare
values as strings. Any characters like ?, : and } in the values must be shielded with \. The
characters { and } in the substitutions must be balanced, all unbalanced braces must be
shielded with \. The quote characters are not treated as special.

This form of substitution, $+{...}, may contain references to other variables. This is
implemented by passing the result of a substitution through one more round of substitution.
The consequence is that extra layers of \ may be needed for shielding. For example, the string
$+{name=?\\\\} produces one \ if the parameter name is empty. On the first pass each
pair of backslashes is turned into one backslash, and then on the second pass \\ turns into a
single backslash.

Special substitution syntax for Windows convenience:

$/{value}

$+/{value}

Replaces all the forward slashes in the value by
backslashes, for convenience of specifying the
Windows paths that otherwise would have to have
all the slashes escaped.

$%{value}

$+%{value}

Replaces all the % with %% as escaping for Win-

dows.

If the resulting string is passed to shell or cmd.exe for execution, shell or cmd.exe would
do its own substitution too.

Here is an example using some of the more powerful substitution features to define the
execution command as in the simple example. However, you may make use of the conditional
features to support optional authentication and encryption and an optional user-defined date
format.

CHAPTER 3: Custom Adapters

524 Sybase Event Stream Processor

<Internal id="x_unixCmdExec"
 label="Execute Command"
 type="string"
 default="$ESP_HOME/bin/esp_convert
 ${platformSsl==1?-e}
 $+{dateFormat<>?-m '$dateFormat'}
 -c '$+{user=?user:$user}:$password'
 -p $platformCommandPort
 <"$directory/$filename" |
 $ESP_HOME/bin/esp_upload
 ${platformSsl==1?-e}
 -m $platformStream.$platformConnection
 -c '$user:$password'
 -p $platformCommandPort"
/>

Auto-Generated Parameter Files
The basic external adapter framework, when started, writes its set of parameters (system and
user-defined) to a parameter file.

This file is written in either:

• Java properties
• Shell assignments
• Simple XML format

Commands then have full access to the parameter file.

There is an example of parameters in the simplified_xml_input_plugin.cnxml
file.

 <Internal id="x_paramFile"
 label="Parameter File"
 type="string"
 default="/tmp/PARAMETER_FILE.txt"
 />
 <Internal id="x_paramFormat"
 label="Parameter Format"
 type="string"
 default="prop"
 />
 <Internal id="x_addParamFile"
 label="Add Parameter File"
 type="boolean"
 default="false"
/>

The parameter file is written to /tmp/PARAMETER_FILE.txt.

 directory=/home/sjk/work/aleri/cimarron
 /branches/3.1/examples/input/xml_tables
 filename=trades.xml
 platformAuth=none
 platformCommandPort=31415
 platformConnection=Connection1

CHAPTER 3: Custom Adapters

Adapters Guide 525

 platformHost=sjk-laptop
 platformSqlPort=22200
 platformSsl=0
 platformStream=Trades

or a full list of parameters, in the Java properties format. Note the format can be specified as
shell for shell assignments, or as xml for a simple XML format.

When x_addParamFile is specified as true,

 <Internal id="x_addParamFile"
 label="Add Parameter File"
 type="boolean"
 default="true"
 />

the argument /tmp/PARAMETER_FILE.txt is added to all commands prior to being
executed.

configFilename Parameter
The configFilename parameter enables you to specify user-editable configuration files in the
Studio.

If you create a user-defined confgFilename parameter, clicking in the value portion of this
field in Studio produces a file selector dialog, allowing you to choose a file on the local file
system. Right-clicking on the read-only name brings up a different dialog, allowing you to
modify file contents. This provides you with a way to specify user-editable configuration
files.

Custom External Parameter Datatypes
The adapter.xsd schema supports several datatypes for user-defined parameters.

For supported datatypes refer to Adapter Parameters Datatypes in the Introduction.

Custom external adapters do not support the datatypes:

• runtimeFilename

• runtimeDirectory

• text

• query

• permutation

Note: The start and stop commands are run by the Server, while discovery is run by Studio.
This distinction can affect use of these parameters.

See also
• Adapter Parameters Datatypes on page 8

CHAPTER 3: Custom Adapters

526 Sybase Event Stream Processor

Creating Custom External Adapters
General steps for using SDKs to build custom adapters.

1. Get an SDK instance.

2. Create credentials for the required type of authentication.

3. Connect to a project using those credentials.

4. Create a publisher to publish to the Server.

5. Create a subscriber to subscribe to records from the Server.

6. Publish or subscribe.

See also
• Custom Adapters on page 3

• Java External Adapters on page 527

• C/C++ External Adapters on page 531

• .Net External Adapters on page 534

Java External Adapters
Use the Java SDK to build a custom Java external adapter.

See also
• Custom Adapters on page 3

• C/C++ External Adapters on page 531

• .Net External Adapters on page 534

• Creating Custom External Adapters on page 527

Connecting to a Project
Connect to a project using your authentication credentials.

1. Get the project:
String projectUriStr = "esp://localhost:19011/ws1/p1“;
Uri uri = new Uri.Builder(projectUriStr).create();
project = sdk.getProject(uri, credentials);

2. Connect to the project:
 project.connect(60000);

Here, 60000 refers to the time in milliseconds that the Server waits for the connection call
to complete before timing out.

Creating a Publisher
Create and connect to a publisher, then publish a message.

CHAPTER 3: Custom Adapters

Adapters Guide 527

1. Create and connect to a publisher:
Publisher pub = project.createPublisher();
pub.connect();

2. To create and publish a message, call a stream and the stream name, call the message
writer, call the row writer, and publish:
String streamName = “Stream1”;
Stream stream = project.getStream(streamName);
MessageWriter mw = pub.getMessageWriter(streamName);
RelativeRowWriter writer= mw.getRelativeRowWriter();
mw.startEnvelope(0); // can also be mw.startTransaction() for
transactions.
for (int i = 0; i < recordsToPublish.length; i++) {
 addRow(writer, incomingRecords[i], stream);
}
mw.endBlock();
pub.publish(mw);

Sample Java Code for addRow
The addRow operation adds a single record row to messages published to the Server.

Opcodes are used to update the table with a new row.

Schema schema = stream.getEffectiveSchema();
DataType[] colTypes = schema.getColumnTypes();
rowWriter.startRow();
rowWriter.setOperation(Stream.Operation.UPSERT);
for (int fieldIndex = 0; fieldIndex < schema.getColumnCount();
fieldIndex++) {
 String name = (String) colNames[fieldIndex];
 attValue = record.get(fieldIndex);
switch(dataType){
 case BOOLEAN: writer.setBoolean((Boolean) attValue); break;
 case INTEGER: writer.setInteger((Integer) attValue); break;
 case TIMESTAMP: writer.setTimestamp((Date) attValue);
break;
 }//switch
}//for loop
rowWriter.endRow();

Subscribing Using Callback
Perform callbacks for new data.

1. Create the subscriber options:
SubscriberOptions.Builder builder = new
SubscriberOptions.Builder();
builder.setAccessMode(AccessMode.CALLBACK);
builder.setPulseInterval(pulseInterval);
SubscriberOptions opts = builder.create();

Set the access mode to CALLBACK and the pulse interval for how often you wish to make
the callback.

CHAPTER 3: Custom Adapters

528 Sybase Event Stream Processor

2. Create the subscriber and register the callback:
Subscriber sub = project.createSubscriber(opts);
 sub.setCallback(EnumSet.allOf(SubscriberEvent.Type.class),
this);
 sub.subscribeStream(streamName);
 sub.connect();

sub.setCallback is the class which implements the processEvent method and
gets called by the callback mechanism.

3. Create the callback class, which is used to register with the subscriber.
a) Implement Callback<SubscriberEvent>.
b) Implement the getName() and processEvent(SubsriberEvent) methods.

 public void processEvent(SubscriberEvent event) {
 switch (event.getType()) {
 case SYNC_START: dataFromLogstore=true; break;
 case SYNC_END: dataFromLogStore=false;
break; case ERROR: handleError(event);
break;
 case DATA: handleData(event); break;
 case DISCONNECTED: cleanupExit(); break;
 }
 }

A separate method named handleData is declared in this example, which is referenced
in Step 4. The name of the method is variable.

Note: When the event is received, the callback mechanism calls processEvent and
passes the event to it.

4. (Optional) Use handleData to complete a separate method to retrieve and use
subscribed data. Otherwise, data can be directly processed in processEvent:

public void handleData(SubscriberEvent event) {
 MessageReader reader = event.getMessageReader();
 String streamName= event.getStream().getName();
 while (reader.hasNextRow()) {
 RowReader row = reader.nextRowReader();
 int ops= row.getOperation().code();
 String[] colNames=row.getSchema().getColumnNames();
 List record = new ArrayList<Object>();
 for (int j = 0; index = 0; j <
row.getSchema().getColumnCount(); ++j) {
 if (row.isNull(j)) { record.add(index,null); index
++; continue; }
 switch (row.getSchema().getColumnTypes()[j]) {
 case BOOLEAN: record.add(j,
row.getBoolean(j));break;
 case INTEGER: record.add(j,
row.getInteger(j));break;
 case TIMESTAMP: record.add(j,
row.getTimestamp(j)); break;
 }//switch
 }//for loop
 sendRecordToExternalDataSource(record);

CHAPTER 3: Custom Adapters

Adapters Guide 529

 }//while loop
 }//handleData

The handleData event contains a message reader, gets the stream name, and uses the
row reader to search for new rows as long as there is data being subscribed to. Datatypes
are specified.

Subscribe Using Direct Access Mode
Direct access mode is recommended only for testing purposes.

Subscriber sub = p.createSubscriber(); sub.connect();
sub.subscribeStream(“stream1");
while (true) {
 SubscriberEvent event = sub.getNextEvent();
 handleEvent(event);
}

Publish Using Callback
Publishing in callback mode can be used in special cases, but is not recommended.

PublisherOptions.Builder builder = new PublisherOptions.Builder();
builder.setAccessMode(AccessMode.CALLBACK);
builder.setPulseInterval(pulseInterval);
PublisherOptions opts = builder.create();
 Publisher pub = project.createPublisher(opts);
 pub.setCallback(EnumSet.allOf(PublisherEvent.Type.class), new
PublisherHandler(project));
 pub.connect();

PublisherHandler implements Callback<PublisherEvent>. It also implements
two methods: getName() and processEvent(PublisherEvent event).

The script for implementing processEvent should look like this:

public void processEvent(PublisherEvent event) {
 switch (event.getType()) {
 case CONNECTED: mwriter =
event.getPublisher().getMessageWriter(mstr);
 rowwriter = mwriter.getRelativeRowWriter(); break;
 case READY: mwriter.startTransaction(0);
 for (int j = 0; j < 100; ++j) {
 mrowwriter.startRow();
 mrowwriter.setOperation(Operation.INSERT);
 for (int i = 0; i < mschema.getColumnCount(); ++i)
{
 switch (mtypes[i]) {
 case INTEGER: mrowwriter.setInteger(int_value+
+);break;
 case DOUBLE: mrowwriter.setDouble(double_value+=1.0);
break;
 }
 }//columns
 mrowwriter.endRow();
 }//for

CHAPTER 3: Custom Adapters

530 Sybase Event Stream Processor

 event.getPublisher().publish(mwriter);
 case ERROR: break;
 case DISCONNECTD:break;
 }//switch
}//processEvent

C/C++ External Adapters
Use the C/C++ SDK to build custom C/C++ external adapters.

See also
• Custom Adapters on page 3

• Java External Adapters on page 527

• .Net External Adapters on page 534

• Creating Custom External Adapters on page 527

Getting a Project
Create your authentication credentials, and use them to create a project.

All calls to SDK are available as external C calls.

1. Create a credentials object for authentication:
#include <sdk/esp_sdk.h>
#include <sdk/esp_credentials.h>
 EspError* error = esp_error_create();
 esp_sdk_start(error);
 EspCredentials * m_creds =
esp_credentials_create(ESP_CREDENTIALS_USER_PASSWORD, error);
 esp_credentials_set_user(espuser.c_str(),error);
 esp_credentials_set_password(m_creds,
esppass.c_str(),error);

2. Create a project:
 EspUri* m_espUri = NULL; EspProject* m_project = NULL;
 if (isCluster){
 m_espUri = esp_uri_create_string(project_uri.c_str(),
error);
 m_project = esp_project_get(m_espUri, m_creds ,NULL,error);
 esp_project_connect (m_project,error);

Publishing and Subscribing
Create a publisher and subscriber, and implement a callback instance.

1. Create the publisher:
EspPublisherOptions* publisherOptions =
esp_publisher_options_create (error);
Int rc
EspPublisher * m_publisher = esp_project_create_publisher
(m_project,publisherOptions,error);
EspStream* m_stream = esp_project_get_stream (m_project,m_opts-

CHAPTER 3: Custom Adapters

Adapters Guide 531

>target.c_str(),error);
rc = esp_publisher_connect (m_publisher,error);

2. Publish:

Note: The sample code in this step includes syntax for adding rows to messages.

EspMessageWriter* m_msgwriter = esp_publisher_get_writer
(m_publisher,m_stream,error);
 EspRelativeRowWriter* m_rowwriter =
esp_message_writer_get_relative_rowwriter(m_msgwriter, error);
 const EspSchema* m_schema = esp_stream_get_schema
(m_stream,error);
 int numColumns;
 rc = esp_schema_get_numcolumns (m_schema, &numColumns,error);
 rc = esp_message_writer_start_envelope(m_msgwriter, 0, error);
 rc = esp_relative_rowwriter_start_row(m_rowwriter, error);
 rc = esp_relative_rowwriter_set_operation(m_rowwriter, (const
ESP_OPERATION_T)opcode, error);
int32_t colType;
 for (int j = 0;j < numColumns;j++){
 rc = esp_schema_get_column_type (m_schema,j,&colType,error);
 switch (type){
 case ESP_DATATYPE_INTEGER:
 memcpy (&integer_val,(int32_t *)
(dataValue),sizeof(uint32_t));
 rc = esp_relative_rowwriter_set_integer(m_rowwriter,
integer_val, error);
 break;
 case ESP_DATATYPE_LONG:
 memcpy (&long_val,(int64_t *)
(dataValue),sizeof(int64_t));
 rc = esp_relative_rowwriter_set_long(m_rowwriter,
long_val, error);
 break;
 }
}//for
rc = esp_relative_rowwriter_end_row(m_rowwriter, error);
rc = esp_message_writer_end_block(m_msgwriter, error);
rc = esp_publisher_publish(m_publisher, m_msgwriter, error);

3. Create the subscriber options:
EspSubscriberOptions * m_subscriberOptions =
esp_subscriber_options_create (error);
 int rc = esp_subscriber_options_set_access_mode(options,
CALLBACK_ACCESS, m_error);
 EspSubscriber * m_subscriber = esp_project_create_subscriber
(m_project,m_subscriberOptions,error);
 rc = esp_subscriber_options_free(options, m_error);
 rc = esp_subscriber_set_callback(subscriber ,
ESP_SUBSCRIBER_EVENT_ALL,
 subscriber_callback, NULL, m_error);
 subscriber_callback is global function which will get called
up.

4. Subscribe using callback:

CHAPTER 3: Custom Adapters

532 Sybase Event Stream Processor

void subscriber_callback(const EspSubscriberEvent * event, void *
data) {
 uint32_t type;
 rc = esp_subscriber_event_get_type(event, &type, error);
 switch (type) {
 case ESP_SUBSCRIBER_EVENT_CONNECTED:
init(event,error);break;
 case ESP_SUBSCRIBER_EVENT_SYNC_START: fromLogStore =
true; break;
 case ESP_SUBSCRIBER_EVENT_SYNC_END: fromLogStore
= false; break;
 case ESP_SUBSCRIBER_EVENT_DATA:
handleData(event,error); break;
 case ESP_SUBSCRIBER_EVENT_DISCONNECTED:
cleanupaExit(); break;
 case ESP_SUBSCRIBER_EVENT_ERROR:
handleError(event,error); break;
 }
}//end subscriber_callback

handleData
Sample C/C++ code for the handleData method.

 EspMessageReader * reader = esp_subscriber_event_get_reader(event,
error);
 EspStream * stream = esp_message_reader_get_stream(reader,
error);
 const EspSchema * schema = esp_stream_get_schema(stream, error);
 EspRowReader * row_reader;
 int32_t int_value; int64_t long_value; time_t date_value;
double double_value;
 int numcolumns, numrows, type;
 rc = esp_schema_get_numcolumns(schema, &numcolumns, error);
 while ((row_reader = esp_message_reader_next_row(reader,
error)) != NULL) {
 for (int i = 0; i < numcolumns; ++i) {
 rc = esp_schema_get_column_type(schema, i, &type,
error);
 switch(type){
 case ESP_DATATYPE_INTEGER:
 rc = esp_row_reader_get_integer(row_reader, i,
&int_value, error);
 break;
 case ESP_DATATYPE_LONG:
 rc = esp_row_reader_get_long(row_reader, i,
&long_value, error);
 break;
 case ESP_DATATYPE_DATE:
 rc = esp_row_reader_get_date(row_reader, i,
&date_value, error);
 break;
 }
 }

CHAPTER 3: Custom Adapters

Adapters Guide 533

.Net External Adapters
Use the .Net SDK to build a custom .Net external adapter.

See also
• Custom Adapters on page 3

• Java External Adapters on page 527

• C/C++ External Adapters on page 531

• Creating Custom External Adapters on page 527

Connecting to the Server
Set credentials and .Net server options when you connect to the Server.

1. Run the NetEspError command to create an error message store for these tasks:
NetEspError error = new NetEspError();

2. Set a new URI:
NetEspUri uri = new NetEspUri();
uri.set_uri("esp://cepsun64amd.sybase.com:19011", error);

3. Create your credentials:
NetEspCredentials creds = new
NetEspCredentials(NetEspCredentials.NET_ESP_CREDENTIALS_T.NET_ESP
_CREDENTIALS_SERVER_RSA);
creds.set_user("pengg");
creds.set_password("1234");
creds.set_keyfile("..\\test_data\\keys\\client.pem");

4. Set options:
NetEspServerOptions options = new NetEspServerOptions();
options.set_mode(NetEspServerOptions.NET_ESP_ACCESS_MODE_T.NET_CA
LLBACK_ACCESS);
server = new NetEspServer(uri, creds, options);
int rc = server.connect(error);

Connecting to a Project
Use sample .Net code to connect to a project.

1. Get the project:
NetEspProject project = server.get_project(“test”, “test”,
error);

2. Connect to the project:
project.connect(error);

Publishing
Create a publisher, add rows, and complete the publishing process.

1. Create a publisher:

CHAPTER 3: Custom Adapters

534 Sybase Event Stream Processor

NetEspPublisher publisher = project.create_publisher(null,
error);

2. Connect to the publisher:
Publisher.connect(error);

3. Get a stream:
NetEspStream stream = project.get_stream("WIN2", error);

4. Get the Message Writer:
NetEspMessageWriter writer = publisher.get_message_writer(stream,
error);

5. Get and start the Row Writer, and set an opcode to insert one row:
NetEspRelativeRowWriter rowwriter =
writer.get_relative_row_writer(error);
rowwriter.start_row(error);
rowwriter.set_opcode(1, error);

(Optional) If publishing in transaction mode, use these arguments to add multiple rows:
NetEspRelativeRowWriter rowwriter =
writer.get_relative_row_writer(error);
for(int i=0; i<100; i++){
 rowwriter.start_row(error);
//add row columns' values
rowwriter.end_row(error);
}

6. Publish data:
rc = publisher.publish(writer, error);

Connecting to a Subscriber
Create and connect to a new subscriber.

1. Create a subscriber:
NetEspSubscriberOptions options = new NetEspSubscriberOptions();
options.set_mode(NetEspSubscriberOptions.NET_ESP_ACCESS_MODE_T.NE
T_CALLBACK_ACCESS);
NetEspSubscriber subscriber = new NetEspSubscriber(options,
error);

2. Connect to the subscriber:
Subscriber.connect(error);

Subscribing Using Callback Mode
Perform callbacks for new data.

1. Set the subscriber options:
NetEspSubscriberOptions options = new NetEspSubscriberOptions();
options.set_mode(NetEspSubscriberOptions.NET_ESP_ACCESS_MODE_T.NE
T_CALLBACK_ACCESS);

CHAPTER 3: Custom Adapters

Adapters Guide 535

NetEspSubscriber subscriber = new NetEspSubscriber(options,
error);

2. Create the callback instance:
NetEspSubscriber.SUBSCRIBER_EVENT_CALLBACK callbackInstance = new
NetEspSubscriber.SUBSCRIBER_EVENT_CALLBACK(subscriber_callback);

3. Create the callback registry:
subscriber.set_callback(NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT
.NET_ESP_SUBSCRIBER_EVENT_ALL, callbackInstance, null, error);

4. Connect to the subscriber:
subscriber.connect(error);

5. Subscribe to a stream:
subscriber.subscribe_stream(stream, error);

6. Implement the callback:
Public static void subscriber_callback(NetEspSubscriberEvent
event, ValueType
data) {
switch (evt.getType())
 {
 case (uint)
(NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER_EVE
NT_CONNECTED):
 Console.WriteLine("the callback happened:
connected!");
 break;
(uint)
(NetEspSubscriber.NET_ESP_SUBSCRIBER_EVENT.NET_ESP_SUBSCRIBER_EV
ENT_DATA):

7. (Optional) Use handleData to complete a separate method to retrieve and use subscribed
data.
NetEspRowReader row_reader = null;
while ((row_reader = evt.getMessageReader().next_row(error)) !=
null) {
 for (int i = 0; i < schema.get_numcolumns(); ++i) {
 if (row_reader.is_null(i) == 1) {
 Console.Write("null, ");
 continue;
 }
 switch
(NetEspStream.getType(schema.get_column_type((uint)i, error)))
 {
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_INTEGER:
 ivalue = row_reader.get_integer(i, error);
 Console.Write(ivalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_LONG:
 lvalue = row_reader.get_long(i, error);
 Console.Write(lvalue + ", ");

CHAPTER 3: Custom Adapters

536 Sybase Event Stream Processor

 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_FLOAT:
 fvalue = row_reader.get_float(i, error);
 Console.Write(fvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_STRING:
 svalue = row_reader.get_string(i, error);
 Console.Write(svalue);
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_DATE:
 dvalue = row_reader.get_date(i, error);
 Console.Write(dvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_TIMESTAMP:
 tvalue = row_reader.get_timestamp(i,
error);
 Console.Write(tvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_BOOLEAN:
 boolvalue = row_reader.get_boolean(i,
error);
 Console.Write(boolvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_BINARY:
 uint buffersize = 256;
 binvalue = row_reader.get_binary(i,
buffersize, error);

Console.Write(System.Text.Encoding.Default.GetString(binvalue) +
", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_INTERVAL:
 intervalue = row_reader.get_interval(i,
error);
 Console.Write(intervalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY01:
 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY02:
 lvalue = row_reader.get_money_as_long(i,
error);
 Console.Write(lvalue + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY03:

CHAPTER 3: Custom Adapters

Adapters Guide 537

 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY10:
 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_MONEY15:
 mon = row_reader.get_money(i, error);
 Console.Write(mon.get_long(error) + ", ");
 break;
 case
NetEspStream.NET_DATA_TYPE_T.NET_ESP_DATATYPE_BIGDATETIME:
 bdt2 = row_reader.get_bigdatetime(i,
error);
 long usecs = bdt2.get_microseconds(error);
 Console.Write(usecs + ", ");
 break;
 }
 }
 }

8. Disconnect from the subscriber:
 rc = subscriber.disconnect(error);
}

CHAPTER 3: Custom Adapters

538 Sybase Event Stream Processor

CHAPTER 4 Schema Discovery

You can use the schema discovery feature to discover external schemas and create CCL
schemas based on the format of the data from the datasource connected to an adapter.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

Rather than manually creating a new schema, you can use schema discovery to discover and
automatically create a schema based on the format of the data from the datasource connected
to your adapter. For example, for the Database Input adapter, you can discover a schema that
corresponds to a specific table from a database the adapter is connected to.

To discover a schema, you need to first configure the adapter properties. Each adapter that
supports schema discovery has unique properties that must be set to enable schema discovery.

Adapters that Support Schema Discovery
The adapters that support schema discovery and the properties they use to enable it.

Adapter Supports Schema
Discovery

Properties

AtomReader Input No —

Database Input Yes Database Service

Name of database service from which the
adapter obtains the database connection.

Database Output Yes Database Service

Name of service entry to use.

File CSV Input Yes Directory

The absolute path to the data files you want
the adapter to read.

File CSV Output No —

File FIX Input No —

File FIX Output No —

Adapters Guide 539

Adapter Supports Schema
Discovery

Properties

File XML Input Yes Directory

The absolute path to the data files you want
the adapter to read.

File XML Output No —

FIX Input No —

FIX Output No —

Flex Output No —

HTTP Input No —

JMS CSV Input Yes • Delimiter – field delimiter

• Connection Factory – connection facto-
ry class name

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS CSV Output No —

JMS Custom Input No —

JMS Custom Output No —

JMS FIX Input No —

JMS FIX Output No —

JMS Object Array Input Yes • Connection Factory – connection facto-
ry class name

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS Object Array Output No —

CHAPTER 4: Schema Discovery

540 Sybase Event Stream Processor

Adapter Supports Schema
Discovery

Properties

JMS XML Input Yes • Connection Factory – connection facto-
ry class name.

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS XML Output No —

Kdb Input Yes • KDB Server

• KDB Port

• KDB User

• KDB Password

Kdb Output Yes • KDB Server

• KDB Port

• KDB User

• KDB Password

Log File Input No —

Random Tuples Generator
Input

No —

Replication Server Input Yes • RSSD Host

• RSSD Port

• RSSD Database Name

• RSSD User Name

• RSSD Password

Reuters Marketfeed Input Yes Discovery Path

Reuters Marketfeed Out-
put

No —

Reuters OMM Input Yes Discovery Path

Reuters OMM Output No —

RTView Output No —

CHAPTER 4: Schema Discovery

Adapters Guide 541

Adapter Supports Schema
Discovery

Properties

SMTP Output No —

Socket (as Client) CSV In-
put

No —

Socket (as Client) CSV
Output

No —

Socket (as Client) XML
Input

No —

Socket (as Client) XML
Output

No —

Socket (as Server) XML
Input

No —

Socket (as Server) XML
Output

No —

Socket (as Server) CSV In-
put

No —

Socket (as Server) CSV
Output

No —

Socket FIX Input No —

Socket FIX Output No —

Sybase IQ Output No —

Open Input and Output No —

Tibco Rendezvous Input No —

Tibco Rendezvous Output No —

NYSE Input Yes Discovery Directory Path

Absolute path to the adapter discovery di-
rectory.

See also
• Internal Adapters on page 18

• External Adapters on page 127

CHAPTER 4: Schema Discovery

542 Sybase Event Stream Processor

CHAPTER 5 Guaranteed Delivery

Guaranteed delivery (GD) is a delivery mechanism that guarantees data is processed from a
stream to an adapter.

GD ensures that data continues to be processed when:

• The Server fails.
• The destination (third-party server) fails.
• The destination (third-party server) does not respond for a period of time.

Persistent subscribe pattern (PSP) is used to implement GD in output adapters. Input adapters
support GD using facilities provided by the source rather than using PSP. The WebSphereMQ
Input and Output adapter, all JMS Input and Output adapters, and the TIBCO Rendezvous
adapter all support GD. These adapters have specific PSP and GD parameters that are unique
to them. Examples for enabling GD in one of the JMS CSV Output adapters and the
WebSphere Output adapter are located <ESP_HOME>/examples/ccl/
JmsOutBoundAdapterWithGDSupport and <ESP_HOME>/examples/ccl/
WsmqOutBoundAdapterWithGDSupport respectively.

PSP works through a combination of a window (input, output), a control window, and a Flex
operator with a log store. The window and control window plug into the Flex operator. Data
from the window on which PSP is enabled is entered into the flex operator, which generates a
sequence number and opcode from the data, and places them at the beginning of each row of
data. The Flex operator sends this data to the adapter that is attached to it, and the adapter
passes the information on to the control window. Finally, the control window informs the Flex
operator of the data that has been processed by the adapter, and the Flex operator removes this
data from the log store.

Figure 12: PSP Overview

Adapters Guide 543

See also
• TIBCO Rendezvous Adapter on page 488
• WebSphere MQ Input Adapter on page 121
• WebSphere MQ Output Adapter on page 123
• JMS CSV Input Adapter on page 47
• JMS CSV Output Adapter on page 50
• JMS Custom Input Adapter on page 55
• JMS Custom Output Adapter on page 59
• JMS FIX Input Adapter on page 64
• JMS FIX Output Adapter on page 66
• JMS Object Array Input Adapter on page 70
• JMS Object Array Output Adapter on page 74
• JMS XML Input Adapter on page 79
• JMS XML Output Adapter on page 82
• Output Stream Parameters on page 497

Log Window
The log window is a Flex operator that is assigned to a log store and is the centre of the
guaranteed delivery (GD) mechanism.

For persistent subscription using persistent subscribe pattern (PSP), attach the output adapter
to a log window instead of a stream of interest. The stream definition for the log window
contains all the columns belonging to the stream of interest, plus two additional columns.
These additional columns are the gdKey (long) and the gdOpcode (integer).

The gdKey is a constantly increasing value that uniquely identifies every event, regardless of
the opcode in the stream of interest. This serves as the key for the log window. The gdOpcode
is the operation code (for example, INSERT, UPDATE, or DELETE) of the event that occurs
in the stream of interest.

The log window takes two inputs namely from the stream whose data needs to be delivered in a
guaranteed fashion (stream of interest) and from the truncate window. The log window has a
method associated with each input. The method associated with the stream of interest:

1. Increments the gdKey by 1, starting from 0, on every incoming event. On restart, it starts
from the last generated sequence number by self inspecting the data it has previously
output.

2. Determines the opcode of the incoming event.
3. Outputs the gdKey and the gdOpcode determined in the previous two steps, along with all

the columns of the input event from the stream of interest.

The method associated with the truncate window is responsible for ensuring that the data in the
log window does not grow indefinitely. Every time an event occurs on the truncate window,

CHAPTER 5: Guaranteed Delivery

544 Sybase Event Stream Processor

this method deletes all events in the log window that has a gdKey less than or equal to the
provided gdKey, and provided that the purge data flag is set to true.

Truncate Window
Output adapters use the truncate window to inform the log window of which data has been
processed by the adapter and can be safely deleted.

It has three columns, simpleKey (integer), gdKey (long), and purge (boolean). The simpleKey
column is currently just a dummy value of 0 or 1, and its sole purpose is to serve as a key for the
truncate window. The gdKey column contains the value of the gdKey that the output adapter
has successfully processed. The log window uses this to delete all the data that has a gdKey
equal to or lesser than the provided value. In the purge column, a value of true indicates that the
data in the log window needs to be deleted. The output adapter updates this column.

Assign this window to a log store to ensure data recovery from this window in the case of a
failure.

CHAPTER 5: Guaranteed Delivery

Adapters Guide 545

CHAPTER 5: Guaranteed Delivery

546 Sybase Event Stream Processor

Index
A
adapter configuration 506

Open adapter 243
RAP adapter 306

adapter controller parameters
FIX adapter 145
Flex adapter 180
HTTP adapter 193
NYSE adapter 230
TIBCO Rendezvous adapter 494

adapter directory
FIX adapter 144
Flex adapter 179
HTTP adapter 191
NYSE adapter 228
TIBCO Rendezvous adapter 493

adapter element 356, 383, 426, 458
adapter logging 396, 469
adapter operation

FIX adapter 164
Flex adapter 184
HTTP adapter 198
NYSE adapter 237
RAP adapter 318
RTView adapter 479
TIBCO Rendezvous adapter 501

adapter property sets
creating 17
editing 17

adapter schema
FIX adapter 145
Flex adapter 180
HTTP adapter 192
NYSEadapter 230
TIBCO Rendezvous adapter 494

adapters 15
adapter shared utility library 505
adapter utilities 505
adding a new property set 17
AtomReader Input 18
ATTACH ADAPTER statement 3
attaching an adapter 4
basic steps for input adapters 3
basic steps for output adapters 4
configuring property sets 17

custom 3
custom external 517
custom internal 505
Database Input 20
Database Output 20, 22
external 127
File CSV Input 32
File CSV Output 35
File FIX Input 42
File FIX Output 44
File XML Input 37
File XML Output 41
FIX Input 147
guaranteed delivery 543
HTTP Output 196
information management functions 508
internal 18
introduction 1
JMS 46
JMS CSV Input 47
JMS CSV Output 50
JMS Custom Input 55
JMS Custom Output 59
JMS FIX Output 66
JMS Object Array Input 64, 70
JMS Object Array Output 74
JMS XML Input 79
JMS XML Output 82
KDB Input 204
KDB Output 209
life cycle functions 507
miscellaneous functions 508
NYSE Input 235
Open adapter directory 244
overview 1, 2
parameter datatypes 8
properties for schema discovery 539
publishing data 4
Random Tuples Generator Input 87
run states 509
schema discovery 539
SMTP Output 110
Socket (as Client) CSV Input 96
Socket (as Client) CSV Output 99
Socket (as Client) XML Input 101

Index

Adapters Guide 547

Socket (as Client) XML Output 103
Socket (as Server) CSV Input 107
Socket (as Server) CSV Output 109
Socket (as Server) XML Input 104
Socket (as Server) XML Output 106
Socket FIX Input 92
Socket FIX Output 94
summary 15
supporting schema discovery 539
Sybase IQ Output 115
TIBCO Rendezvous 499
WebSphere MQ Input 121
WebSphere MQ Output 123

administrative decisions 343, 416
Marketfeed Input adapter 332
OMM Input adapter 406

all in one
sample configuration file 151

APIs
supported languages 3

applying a query
ESP Add-in for Microsoft Excel 134

AsapSink
example 289

AsapSource 246
example 291

AsapSource properties 246
ASE to ESP datatype mapping 327
AtomReader Input adapter

internal adapter 18
properties 18

ATTACH ADAPTER statement 3
attaching an object to a cache

RTView adapter 482
attaching an object to a stream

RTView adapter 483
automatic publishing

ESP Add-in for Microsoft Excel 132
SybaseRTP function 132

B

BeanShellPipe 253
example 292

C

callback functions 506
chain RICs 339

checking adapter status
FIX adapter 165
Flex adapter 185
HTTP adapter 199
NYSE adapter 238
TIBCO Rendezvous adapter 502

CLASSPATH environment variable 218
client socket connectors

FIX adapter 155
sample configuration file 156

cnxml file
custom internal adapters 506

column names
FIX adapter 141

configuration
creating a Sybase connection 476
data streams for NYSE adapter 232, 233
Flex Server 183
HTTP Server 195
Log File Input adapter 215
Marketfeed output adapter 342
OMM output adapter 415
Open adapter 243
property sets 17
RAP adapter 306, 313
Rendezvous Server 497
Replication Server adapter 320, 322
updating a Sybase connection 476

configuration file
FIX adapter 145
Flex adapter 180
HTTP adapter 192
NYSE adapter 230
TIBCO Rendezvous adapter 494

configuration files
RAP adapter 306

configuring a queuing system 46
configuring an input connection

from Reuters 328, 402
Reuters Marketfeed adapter 328
Reuters OMM adapter 402

configuring an output connection
Reuters Marketfeed adapter 330
Reuters OMM adapter 403
to Reuters 330, 403

connecting dashboard object to data streams
RTView adapter 481

Connection Wizard
ESP Add-in for Microsoft Excel 127

Index

548 Sybase Event Stream Processor

constant element 384, 459
control flow

FIX adapter 136
Flex adapter 175
HTTP adapter 188
KDB adapter 202
NYSE adapter 219
TIBCO Rendezvous adapter 488

creating
OMM output adapter map file 418

creating a cache
RTView adapter 481

creating a dynamic watch list 340, 412
creating a function

RTView adapter 483
creating a Sybase connection 476
creating Marketfeed output adapter map file 344
creating shortcuts to Display Builder 480
creating shortcuts to Display Viewer 480
creating the input map file

Reuters Marketfeed Input adapter 336
Reuters OMM Input adapter 410

custom .Net external adapters
connecting to a subscriber 535
connecting to projects 534
connecting to the server 534
publishing data 534
subscribing using callback 535

custom adapters 505
overview 3

custom C/C++ external adapters
creating authentication credentials 531
getting a project 531
publishing and subscribing 531
sample code for handleData 533
subscribing using callback 531

custom external adapters 517
.Net adapters 534
auto-generated parameter files 525
configFilename parameter 526
datatypes 526
external adapter commands 521
external adapter configuration file 518
external adapter properties 521
parameter substitution 523
publish using callback 530
task overview 527
user-defined parameters 523

custom internal adapters 505
sample implementation 510
schema discovery 510

custom Java external adapters
connecting to projects 527
creating publishers 527
sample code for adding rows 528
subscribe using Direct Access mode 530
subscribing using callback 528

D
data decisions 342, 415

Marketfeed Input adapter 332
OMM Input adapter 405

data streams
FIX adapter 138
market data streams 224
NYSE adapter 224
order book data streams 225
TIBCO Rendezvous adapter 490

data streams configuration 233
data structures

Reuters Marketfeed adapter 333
Reuters OMM adapter 406

Database Input 20
Database Input adapter

properties 20
Database Output 20
Database Output adapter

properties 22
datafeed parameters

NYSE adapter 233
dataField element 357, 427
datatype formats for input adapters

date format 11
timestamp format 11

datatype formats for output adapters
date format 12
timestamp format 12

datatype mapping 26
ESP to ASE datatype mapping 327
ESP to FIX 143
ESP to KDB 202, 203
ESP to NYSE 228
ESP to Open adapter 242
ESP to RAP adapter 304
ESP to Replication Server datatype mapping

327
ESP to RTView 475

Index

Adapters Guide 549

ESP to TIBCO Rendezvous 491
File FIX Input adapter 43
File FIX Output adapter 45
IBM DB2 database 28
KDB database 31
KDB to ESP 203
Microsoft SQL Server database 27
Oracle database 29
Replication Server adapter 327
Socket FIX Input adapter 94
Socket FIX Output adapter 96
Sybase ASE database 26
Sybase IQ Output adapter 120

datatypes
adapter parameter datatypes 8
custom external adapters 526
supported datatypes in Event Stream Processor

5
date format 11, 12
datetime formats 266
dateTimeField element 358, 429
decisions

administrative 343, 416
data 342, 415

delete
watchlist 240

Display Builder 475
Display Viewer 475
dynamic watch lists

creating 340, 412

E
enabling user access

Reuters Marketfeed adapter 328
Reuters OMM adapter 402

encryption
Open adapter 287

enum element 385
environment variables 354, 424

CLASSPATH 218
FIX adapter 143
Flex adapter 179
HTTP adapter 191
NYSE adapter 228
Open adapter 243
TIBCO Rendezvous adapter 492

ESP Add-in for Microsoft Excel
applying a query 134
automatic publishing 132

Connection Wizard 127
Publication Wizard 130
saving subscription queries 134
Subscription Wizard 129
SybaseRTP function 132

ESP Add-In for Microsoft Excel
functionality 127
overview 127

ESP Add-on for Microsoft Excel
known issues 135
limitations 135

ESP datatype mapping
FIX adapter 143
KDB adapter 202
NYSE adapter 228
Open adapter 242
RAP adapter 304
RTView adapter 475
TIBCO Rendezvous adapter 491

ESP to ASE datatype mapping 327
ESP to Replication Server datatype mapping 327
esp_ommsample 420
esp_rmds 352
esp_rmdsomm 422
Event Stream Processor parameters

connecting to the Flex adapter 180
connecting to the HTTP adapter 193
connecting to the NYSE adapter 230
connecting to the TIBCO Rendezvous adapter

494
RTView adapter 477

examples
configuring the RAP adapter 313
creating a function in RTView adapter 483
FIX adapter 139, 163, 166–168, 170, 173
Flex adapter 186
hosting inbound messages 163
HTTP adapter 200
NYSE adapter 240
Open adapter 289
receiving inbound messages 163
RTView adapter 485, 486
TIBCO Rendezvous adapter 503
using all in one 173
using AsapSink component 289
using AsapSource component 291
using BeanShellPipe component 292
using client socket connectors 168
using file connectors 167

Index

550 Sybase Event Stream Processor

using JDBCLookupPipe component 293
using MultiFlatXmlStringReader component

295
using server socket connectors 170
using SpPersistentSubscribeSource

component 296
using WSSink component 298
using WSSource component 299
using XPathMultiTypeXmlReader component

300
using XPathXmlStreamReader component

301
using XPathXMLStringWriter component

301
external adapters 127

FIX Input 147
HTTP Output 196
KDB Input 204
KDB Output 209
NYSE Input 235
overview 2
TIBCO Rendezvous 499

external data
input and output adapters 1

F
FIDListField element 360
field element 386, 460
file connectors

FIX adapter 153
sample configuration file 154

File CSV Input adapter
properties 32

File CSV Output adapter
properties 35

File FIX Input adapter
datatype mapping 43
properties 42

File FIX Output adapter
datatype mapping 45
properties 44

File XML Input adapter
properties 37

File XML Output adapter
properties 41

FIX adapter
adapter controller parameters 145
adapter directory 144
checking adapter status 165

client socket connectors 155
column names 141
configuration file 145
control flow 136
data streams 138
datatype mapping 143
Event Stream Processor Server properties 149
example 139, 163, 167, 168, 170, 173
file connectors 150, 153
FIX dictionary 149
header fields 141
hosting inbound messages 163
inbound connectors 151
log4j API 164
logging 164
login properties 162
message flow 142
operation 164
outbound connectors 151
overview 135
receiving inbound messages 163
record indexing 141
schema 145
sender login properties 162
server socket connectors 157
session connection properties 159–161
session login properties 162
session properties 163
sessions 141
socket connectors 150
start command 137
starting the adapter 164
status command 138
stop command 138
stopping the adapter 166
stream configuration 150
stream names 141
supported FIX protocol versions 136
trailer fields 141

FIX adapter environment variables
JAVA_HOME 143

FIX dictionary 149
FIX Input adapter

properties 147
FIX protocol versions 136
FIX session properties 163
Flex adapter

adapter controller parameters 180
adapter directory 179

Index

Adapters Guide 551

checking adapter status 185
client-server communication 177
configuration file 180
control flow 175
Event Stream Processor parameters 180
example 186
log4j API 184
logging 184
message flow 176
operation 184
overview 175
sample configuration file 183
schema 180
sending a subscription request 186
start command 176
starting the adapter 184
status command 176
stop command 176
stopping the adapter 186
Stream Handler 177
subscribing to a stream 177

Flex adapter environment variables
JAVA_HOME 179

Flex Server settings 183
Flexs adapter

Flex Server settings 183
formats for input adapters

date format 11
timestamp format 11

formats for output adapters
date format 12
timestamp format 12

G
generating self-signed RSA keys

Open adapter 288, 289
getting stream information from project 344
getting stream information from the project 417
guaranteed delivery 543

log window 544
truncate window 545

H
header fields

FIX adapter 141
hiResTimestampField element 430
HTTP adapter

adapter controller parameters 193

adapter directory 191
checking adapter status 199
configuration file 192
control flow 188
Event Stream Processor parameters 193
example 200
log4j API 197
logging 197
message flow 190
operation 198
overview 188
receiving data 200
sample configuration file 195
schema 192
sending data 200
start command 189
starting the adapter 198
status command 189
stop command 189
stopping the adapter 199
viewing data 200

HTTP adapter environment variables
JAVA_HOME 191

HTTP Output adapter
properties 196

HTTP Server settings 195

I
IBM DB2 database

datatype mapping 28
imageField element 431
inbound connectors

FIX adapter 151
individual RICs 339, 411
input adapter

map file 355, 426
input adapter map file

Reuters Marketfeed Input adapter 333
Reuters OMM Input adapter 406

input adapters 499
AtomReader Input 18
Database Input 20
File CSV Input 32
File XML Input 37
FIX Input 147
JMS CSV Input 47
JMS Custom Input 55
JMS Object Array Input 64, 70
JMS XML Input 79

Index

552 Sybase Event Stream Processor

KDB Input 204
KDB Output 209
NYSE Input 235
overview 1
Random Tuples Generator Input 87
Socket (as Client) CSV Input 96
Socket (as Client) XML Input 101
Socket (as Server) CSV Input 107
Socket (as Server) XML Input 104
Socket FIX Input 92
WebSphere MQ Input 121

insert
watchlist 239

installation
RTView adapter 476

internal adapter
WebSphere MQ adapter 120

internal adapters 18
AtomReader Input 18
Database Input 20
Database Output 22
File CSV Input 32
File CSV Output 35
File FIX Input 42
File FIX Output 44
File XML Input 37
File XML Output 41
JMS CSV Input 47
JMS CSV Output 50
JMS Custom Input 55
JMS Custom Output 59
JMS FIX Output 66
JMS Object Array Input 64, 70
JMS Object Array Output 74
JMS XML Input 79
JMS XML Output 82
overview 2
Random Tuples Generator Input 87
SMTP Output 110
Socket (as Client) CSV Input 96
Socket (as Client) CSV Output 99
Socket (as Client) XML Input 101
Socket (as Client) XML Output 103
Socket (as Server) CSV Input 107
Socket (as Server) CSV Output 109
Socket (as Server) XML Input 104
Socket (as Server) XML Output 106
Socket FIX Input 92
Socket FIX Output 94

Sybase IQ Output 115
WebSphere MQ Input 121
WebSphere MQ Output 123

item element 361, 432
itemList element 363, 434
itemLists element 364, 436
itemName element 366, 437
itemStale element 367, 439

J

JAVA_HOME environment variable
FIX adapter 143
Flex adapter 179
HTTP adapter 191
NYSE adapter 228
Open adapter 243
TIBCO Rendezvous adapter 492

JDBCLookupPipe 253
example 293

JMS adapter 46
configuring a queuing system 46

JMS CSV Input adapter
properties 47

JMS CSV Output adapter
properties 50

JMS Custom Input adapter
properties 55

JMS Custom Output adapter
properties 59

JMS FIX Output adapter
properties 66

JMS Object Array Input adapter
properties 64, 70

JMS Object Array Output adapter
properties 74

JMS XML Input adapter
properties 79

JMS XML Output adapter
properties 82

K

KDB adapter
control flow 202
datatype mapping 202
ESP to KDB datatype mapping 203
KDB to ESP datatype mapping 203
overview 202

Index

Adapters Guide 553

start command 202
stop command 202

KDB database
datatype mapping 31

KDB Input adapter
properties 204

KDB Output adapter
properties 209

known limitations
RTView adapter 487

L

life cycle functions 507
Log File Input adapter

CLASSPATH environment variable 218
configuration 215
overview 214
properties 216
starting the adapter 218

log messages 399, 473
log4j API

Flex adapter 184
HTTP adapter 197
NYSE adapter 236
TIBCO Rendezvous adapter 500

logging
adapter 396, 469
FIX adapter 164
Flex adapter 184
HTTP adapter 197
log4j API 164
NYSE adapter 236
Reuters 399, 472
TIBCO Rendezvous adapter 500

logging facilities 395, 469

M

map file
creating a subordinate map file 348, 420
creating the input map file 336, 410
input adapter 355, 426
modifying the main map file 348, 420
output adapter 382
Reuters Marketfeed Input adapter 333
Reuters OMM Input adapter 406

market data field mapping
Reuters Marketfeed adapter 333

Reuters OMM adapter 407
market data streams 224
market data watchlists 222
marketByOrderKeyField element 441
marketByPriceKeyField element 442
Marketfeed Input adapter

administrative decisions 332
data decisions 332

Marketfeed output adapter
configuration 342
running 347
testing 347

Marketfeed output adapter map file
creating 344

message flow
FIX adapter 142
Flex adapter 176
HTTP adapter 190
NYSE adapter 227
TIBCO Rendezvous adapter 490

Microsoft SQL Server database
datatype mapping 27

model files 506
MultiFlatXmlStringReader 257

example 295

N
name element 387, 461
nullField element 368, 444
NYSE adapter

adapter controller parameters 230
adapter directory 228
checking adapter status 238
configuration file 230
control flow 219
data stream configuration 233
data streams 224
datafeed parameters 233
datatype mapping 228
Event Stream Processor parameters 230
example 240
log4j API 236
logging 236
market data streams 224
market data watchlists 222
message flow 227
modifying watchlists 239
operation 237
order book data streams 225

Index

554 Sybase Event Stream Processor

order book watchlists 223
overview 219
publishing data 240
sample configuration file 234
schema 230
stale data stream records 226
start command 220
starting the adapter 237
status command 221
stop command 220
stopping the adapter 239
subscribing to data 240
watchlist delete 240
watchlist insert 239
watchlist stream configuration 232
watchlists 221, 239

NYSE adapter environment variables
JAVA_HOME 228

NYSE Input adapter
properties 235

O
OMM adapter output map file

creating 418
OMM Input adapter

administrative decisions 406
data decisions 405

OMM output adapter
configuration 415
performance tuning 419
running 418
testing 418

Open adapter
Africa time zones 270
AsapSink example 289
AsapSink properties 250
AsapSource 246
AsapSource example 291
AsapSource properties 246
Asia time zones 272
Australasia time zones 275
BeanShellPipe example 292
BeanShellPipe properties 253
configuration 243
datatype mapping 242
directory 244
encryption 287
EspDelimitedStringReader properties 263
Europe time zones 277

examples 289
generating self-signed RSA keys 288, 289
HTTPRemoteControl 286
JDBCLookupPipe example 293
JDBCLookupPipe properties 255
MailRemoteLogger 287
MultiFlatXmlStringReader example 295
MultiFlatXmlStringReader properties 257
North America time zones 279
overview 241
PasswordEncryptor 287
reader components 257
remote control attributes 285
remote control interface 285
remote control methods 285
RemoteControl interface 284
RemoteLogger interface 284
sample key stores 287
sink components 250
source components 246
South America time zones 282
specifying datetime formats 266
SpPersistentSubscribeSource 246
SpPersistentSubscribeSource example 296
SpPersistentSubscribeSource properties 248
starting the adapter 284
third-party JAR files 267
time zones 269
WSSink example 298
WSSink properties 252
WSSource example 299
XPathMultiTypeXmlReader example 300
XPathMultiTypeXmlReader properties 262
XPathXmlStreamReader example 301
XPathXmlStreamReader properties 259
XPathXMLStringWriter example 301
XPathXmlStringWriter properties 264
XPathXmlWriter 264

Open Adapter
pipe components 253

Open adapter components 246
Open adapter environment variables

JAVA_HOME 243
Open Adapter pipe components

BeanShellPipe 253
JDBCLookupPipe 253

Open adapter reader components
MultiFlatXmlStringReader 257
XPathMultiTypeXmlReader 257

Index

Adapters Guide 555

XPathXmlStreamReader 257
Open adapter sink components

AsapSink 250
WSSink 250

Open adapter source components
AsapSource 246
SpPersistentSubscribeSource 246

Open adapter writer component
XPathXmlWriter 264

operating systems 327
operation

FIX adapter 164
Flex adapter 184
HTTP adapter 198
NYSE adapter 237
RAP adapter 318
RTView adapter 479
TIBCO Rendezvous adapter 501

Oracle database
datatype mapping 29

order book data streams 225
order book watchlists 223
outbound connectors

FIX adapter 151
output adapter

map file 382
output adapters

Database Output 22
File CSV Output 35
File FIX Input 42
File FIX Output 44
File XML Output 41
HTTP Output 196
JMS CSV Output 50
JMS Custom Output 59
JMS FIX Output 66
JMS Object Array Output 74
JMS XML Output 82
overview 1
SMTP Output 110
Socket (as Client) CSV Output 99
Socket (as Client) XML Output 103
Socket (as Server) CSV Output 109
Socket (as Server) XML Output 106
Socket FIX Output 94
Sybase IQ Output 115
TIBCO Rendezvous 499
WebSphere MQ Output 123

overview 327
FIX adapter 135
Flex adapter 175
HTTP adapter 188
KDB adapter 202
Log File Input adapter 214
NYSE adapter 219
Open adapter 241
RAP adapter 303
Replication Server Adapter 320
RTView adapter 475
TIBCO Rendezvous adapter 488

P
PasswordEncryptor

Open adapter 287
performance tips

Replication Server adapter 327
performance tuning

OMM output adapter 419
Reuters Marketfeed Input adapter 350
Reuters OMM Input adapter 413

persistent subscribe pattern 543
pipe components

BeanShellPipe 253
JDBCLookupPipe 253

properties
AsapSink 250
AsapSource component 246
AtomReader Input adapter 18
BeanShellPipe 253
Database Input adapter 20
Database Output adapter 22
EspDelimitedStringReader 263
File CSV Input adapter 32
File CSV Output adapter 35
File FIX Input adapter 42
File FIX Output adapter 44
File XML Input adapter 37
File XML Output adapter 41
FIX adapter 159–162
FIX Input adapter 147
FIX sessions 163
HTTP Output adapter 196
JDBCLookupPipe 255
JMS CSV Input adapter 47
JMS CSV Output adapter 50
JMS Custom Input adapter 55
JMS Custom Output adapter 59

Index

556 Sybase Event Stream Processor

JMS FIX Output adapter 66
JMS Object Array Input adapter 64, 70
JMS Object Array Output adapter 74
JMS XML Input adapter 79
JMS XML Output adapter 82
KDB Input adapter 204
KDB Output adapter 209
Log File Input adapter 216
MultiFlatXmlStringReader 257
NYSE Input adapter 235
Random Tuples Generator Input adapter 87
schema discovery 539
SMTP Output adapter 110
Socket (as Client) CSV Input adapter 96
Socket (as Client) CSV Output adapter 99
Socket (as Client) XML Input adapter 101
Socket (as Client) XML Output adapter 103
Socket (as Server) CSV Input adapter 107
Socket (as Server) CSV Output adapter 109
Socket (as Server) XML Input adapter 104
Socket (as Server) XML Output adapter 106
Socket FIX Input adapter 92
Socket FIX Output adapter 94
SpPersistentSubscribeSource 248
Sybase IQ Output adapter 115
TIBCO Rendezvous adapter 499
WebSphere MQ Input adapter 121
WebSphere MQ Output adapter 123
WSSink 252
XPathMultiTypeXmlReader 262
XPathXmlStreamReader 259
XPathXmlStringWriter 264

property sets
creating 17
editing 17

publication element 370, 446
Publication Wizard

ESP Add-in for Microsoft Excel 130
publisher file

RAP adapter 308

Q
queue configuration

WebSphere adapter 126

R
Random Tuples Generator Input adapter

properties 87

RAP adapter
configuration 306
configuration file 306
configuring the RAP adapter 313
datatype mapping 304
example configuration 313
operation 318
overview 303
publisher file 308
RDS template file 310
start command 303
starting the adapter 319
stop command 304
stopping the adapter 319

RDS template file
RAP adapter 310

reader components
MultiFlatXmlStringReader 257
XPathMultiTypeXmlReader 257
XPathXmlStreamReader 257

record indexing
FIX adapter 141

recordType element 371
recordTypeMap element 372
remote control methods

Open adapter 285
Rendezvous Server settings 497
Replication Server adapter

configuration 320, 322
datatype mapping 327
performance tips 327

Replication Server Adapter
defining a persistent table 326
overview 320
rs_lastcommit table 326

Replication Server to ESP datatype mapping 327
respTypeNumField element 448
Reuters information 343, 416
Reuters Instrument Codes 334, 407
Reuters logging 399, 472
Reuters Marketfeed adapter

data structures 333
enabling user access 328
input connection 328
market data field mapping 333
output connection 330
Reuters Instrument Codes 334
testing the adapter 338

Index

Adapters Guide 557

Reuters Marketfeed Input adapter
creating the input map file 336
map file 333
performance tuning 350
running the adapter 338

Reuters OMM adapter
data structures 406
enabling user access 402
input connection 402
market data field mapping 407
output connection 403
Reuters Instrument Codes 407
testing the adapter 411

Reuters OMM Input adapter
creating the input map file 410
map file 406
performance tuning 413
running the adapter 410

rfa element 374, 388, 449, 463
RSA keys

generating RSA keys for Open adapter 288,
289

RTView adapter
attaching an object to a cache 482
attaching an object to a stream 483
components 475
configuration 476
connecting dashboard object to data streams

481
creating a cache 481
creating a Sybase connection 476
creating shortcuts to Display Builder 480
creating shortcuts to Display Viewer 480
datatype mapping 475
Event Stream Processor parameters 477
installing the adapter 476
known limitations 487
operation 479
overview 475
publishing data 484
running the publisher example 485
running the subscriber example 486
starting the adapter 479, 480
updating a Sybase connection 476

RTView Display Viewer
running the publisher example 485

running the adapter
Reuters Marketfeed Input adapter 338
Reuters OMM Input adapter 410

running the Marketfeed output adapter 347
running the OMM output adapter 418
running the publisher example for RTView adapter

485

S

sample configuration file
all in one 151
client socket connectors 156
file connectors 154

sample configuration files
Flex adapter 183
HTTP adapter 195
NYSE adapter 234
server socket connectors 158
TIBCO Rendezvous adapter 498

saving subscription queries
ESP Add-in for Microsoft Excel 134

schema
adapters 539
discovery 539

schema discovery
adapter properties 539
adapters that support it 539
overview 539

SDKs
supported languages 3

sender login properties
FIX adapter 162

sequenceNumber element 375, 451
server socket connectors

FIX adapter 157
sample configuration files 158

service element 390
serviceName element 377, 452
session connection properties

FIX adapter 159–161
session login properties

FIX adapter 162
sink components

AsapSink 250
WSSink 250

SMTP Output adapter
properties 110

Socket (as Client) CSV Input adapter
properties 96

Socket (as Client) CSV Output adapter
properties 99

Index

558 Sybase Event Stream Processor

Socket (as Client) XML Input adapter
properties 101

Socket (as Client) XML Output adapter
properties 103

Socket (as Server) CSV Input adapter
properties 107

Socket (as Server) CSV Output adapter
properties 109

Socket (as Server) XML Input adapter
properties 104

Socket (as Server) XML Output adapter
properties 106

Socket FIX Input adapter
datatype mapping 94
properties 92

Socket FIX Output adapter
datatype mapping 96
properties 94

source components
AsapSource 246
SpPersistentSubscribeSource 246

specifying datetime formats
Open adapter 266

SpPersistentSubscribeSource 246
example 296

SpPersistentSubscribeSource properties 248
stale data stream records

NYSE adapter 226
stale element 391, 464
start command

FIX adapter 137
Flex adapter 176
HTTP adapter 189
KDB adapter 202
NYSE adapter 220
RAP adapter 303
TIBCO Rendezvous adapter 489

starting an adapter
FIX adapter 164
Flex adapter 184
HTTP adapter 198
Log File Input adapter 218
NYSE adapter 237
Open adapter 284
RAP adapter 319
RTView adapter 479, 480
TIBCO Rendezvous adapter 501

statements
ATTACH ADAPTER statement 3

status command
FIX adapter 138
Flex adapter 176
HTTP adapter 189
NYSE adapter 221
TIBCO Rendezvous adapter 490

stop command
FIX adapter 138
Flex adapter 176
HTTP adapter 189
KDB adapter 202
NYSE adapter 220
RAP adapter 304
TIBCO Rendezvous adapter 489

stopping the adapter
FIX adapter 166
Flex adapter 186
HTTP adapter 199
NYSE adapter 239
RAP adapter 319
TIBCO Rendezvous adapter 502

stream configuration
FIX adapter 150

stream element 392, 466
Stream Handler

Flex adapter 177
stream information

getting from project 344
getting from the project 417

stream names
FIX adapter 141

streamMap element 378, 453
streamMaps element 380, 455
streams

schema discovery 539
subscription element 393, 467
Subscription Wizard

ESP Add-in for Microsoft Excel 129
subscriptions element 395, 468
supported operating systems 327
Sybase ASE database

datatype mapping 26
Sybase IQ Output adapter

datatype mapping 120
properties 115

T
testing the adapter

Reuters Marketfeed adapter 338

Index

Adapters Guide 559

Reuters OMM adapter 411
testing the Marketfeed output adapter 347
testing the OMM output adapter 418
third-party JAR files

Open Adapter 267
Tibco Rendezvous adapter

HTTP Server settings 195
TIBCO Rendezvous adapter

adapter controller parameters 494
adapter directory 493
checking adapter status 502
configuration file 494
control flow 488
data streams 490
datatype mapping 491
Event Stream Processor parameters 494
example 503
input stream parameters 496
log4j API 500
logging 500
message flow 490
operation 501
output stream properties 497
overview 488
properties 499
publishing data 503
Rendezvous Server settings 497
sample configuration file 498
schema 494
start command 489
starting the adapter 501
status command 490
stop command 489
stopping the adapter 502
uploading records 503

TIBCO Rendezvous adapter environment variables
JAVA_HOME 492

time zones for Open adapter 269
Africa 270
Asia 272
Australasia 275
Europe 277
North America 279
South America 282

timestamp format 11, 12
trailer fields

FIX adapter 141

U

updateNumber element 381, 457
updating a Sybase connection 476

V

variables
environment 354, 424

W

watchlist delete 240
watchlist insert 239
watchlist stream configuration 232
watchlists 239

market data watchlists 221, 222
order book watchlists 221, 223

WebSphere adapter
queue configuration 126

WebSphere MQ adapter
overview 120

WebSphere MQ Input adapter
properties 121

WebSphere MQ Output adapter
properties 123

windows
schema discovery 539

writer component
XPathXmlWriter 264

WSSink
example 298

WSSource
example 299

X

XPathMultiTypeXmlReader 257
example 300

XPathXmlStreamReader 257
example 301

XPathXMLStringWriter
example 301

XPathXmlWriter 264

Index

560 Sybase Event Stream Processor

	Adapters Guide
	Contents
	CHAPTER 1: Introduction
	Input and Output Adapters
	Internal and External Adapters
	Custom Adapters
	Working with Adapters
	Publishing Data with Output Adapters

	Datatypes
	Adapter Parameters Datatypes
	Date and Timestamp Formats for Input Adapters
	Date and Timestamp Formats for Output Adapters

	CHAPTER 2: Adapters Supported by Event Stream Processor
	Adapter Summary
	Editing Adapter Property Sets
	Internal Adapters
	AtomReader Input Adapter
	Database Adapter
	Database Input Adapter
	Database Output Adapter
	Datatype Mapping for the Database Adapter
	Datatype Mapping: Sybase ASE
	Datatype Mapping: Microsoft SQL Server Database
	Datatype Mapping: IBM DB2 Database
	Datatype Mapping: Oracle Database
	Datatype Mapping: KDB Database

	File CSV Input Adapter
	File CSV Output Adapter
	File XML Input Adapter
	File XML Output Adapter
	File FIX Input Adapter
	Datatype Mapping for the File FIX Input Adapter

	File FIX Output Adapter
	Datatype Mapping for the File FIX Output Adapter

	JMS Adapter
	Configuring a Queuing System for JMS Adapter
	JMS CSV Input Adapter
	JMS CSV Output Adapter
	JMS Custom Input Adapter
	JMS Custom Output Adapter
	JMS FIX Input Adapter
	JMS FIX Output Adapter
	JMS Object Array Input Adapter
	JMS Object Array Output Adapter
	JMS XML Input Adapter
	JMS XML Output Adapter

	Random Tuples Generator Input Adapter
	Socket FIX Input Adapter
	Datatype Mapping for the Socket FIX Input Adapter

	Socket FIX Output Adapter
	Datatype Mapping for the Socket FIX Output Adapter

	Socket (As Client) CSV Input Adapter
	Socket (as Client) CSV Output Adapter
	Socket (As Client) XML Input Adapter
	Socket (As Client) XML Output Adapter
	Socket (As Server) XML Input Adapter
	Socket (As Server) XML Output Adapter
	Socket (As Server) CSV Input Adapter
	Socket (As Server) CSV Output Adapter
	SMTP Output Adapter
	Sybase IQ Output Adapter
	Datatype Mapping for the Sybase IQ Adapter

	WebSphere MQ Adapter
	WebSphere MQ Input Adapter
	WebSphere MQ Output Adapter
	Queue Configuration

	External Adapters
	ESP Add-In for Microsoft Excel
	Connection Wizard
	Subscription Wizard
	Publication Wizard
	Automatic Publishing
	Subscription Queries
	Applying a Query
	Known Issues and Limitations

	FIX Adapter
	Supported FIX Versions
	Control Flow
	Start Command
	Stop Command
	Status Command

	Data Streams
	Example: FIX Input Adapter Data Stream
	Stream and Column Names
	Header and Trailer Fields
	Record Indexing

	Adapters and Sessions
	Message Flow
	Datatype Mapping for the FIX Adapter
	Setting the JAVA_HOME Environment Variable
	Configuration
	FIX Adapter Directory
	Schema and Configuration File
	Adapter Controller Parameters
	Event Stream Processor Parameters
	FIX Input Adapter
	Event Stream Proccessor Server Properties
	FIX Dictionary
	Stream Configuration
	Connectors
	Inbound and Outbound Connectors
	Sample Configuration File for All In One Connectors

	File Connectors
	Sample Configuration File for File Connectors

	Client Socket Connectors
	Sample Configuration File for Client Socket Connectors

	Server Socket Connectors
	Sample Configuration File for Server Socket Connectors

	Session Settings
	Default Settings
	Specific Settings

	Session Logins
	Sender Login Properties
	Target Login Properties

	Session Properties
	Example: Receiving and Hosting Inbound Messages

	Logging

	Operation
	Starting the FIX Adapter
	Checking the FIX Adapter Status
	Stopping the FIX Adapter

	Examples
	Example: Using File Connectors
	Example: Using Client Socket Connectors
	Example: Using Server Socket Connectors
	Example: Using All In One

	Flex Adapter
	Control Flow
	Start Command
	Stop Command
	Status Command

	Message Flow
	Stream Handler
	Setting the JAVA_HOME Environment Variable
	Configuration
	Flex Adapter Directory
	Schema and Configuration File
	Adapter Controller Parameter
	Event Stream Processor Parameters
	Flex Server Settings
	Sample Flex Configuration File
	Logging

	Operation
	Starting the Flex Adapter
	Checking the Flex Adapter Status
	Stopping the Flex Adapter

	Example: Sending a Subscription Request

	HTTP Output Adapter
	Control Flow
	Start Command
	Stop Command
	Status Command

	Message Flow
	Setting the JAVA_HOME Environment Variable
	Configuration
	HTTP Adapter Directory
	Schema and Configuration File
	Adapter Controller Parameter
	Event Stream Processor Parameters
	HTTP Server Settings
	Sample HTTP Configuration File
	HTTP Output Adapter
	Logging

	Operation
	Starting the HTTP Adapter
	Checking the HTTP Adapter Status
	Stopping the HTTP Adapter

	Example: Sending, Receiving, and Viewing Data

	KDB Adapter
	Control Flow
	Start Command
	Stop Command

	Datatype Mapping for the KDB Adapter
	KDB Datatypes to ESP Datatypes
	ESP Datatypes to KDB Datatypes

	KDB Input Adapter
	KDB Output Adapter

	Log File Input Adapter
	Configuration
	Properties
	Starting the Adapter from the Command Line

	NYSE Technologies Input Adapter
	Control Flow
	Start Command
	Stop Command
	Status Command

	Watchlists
	Market Data Watchlists
	Order Book Watchlists

	Data Streams
	Market Data Streams
	Order Book Data Streams

	Stale Records
	Message Flow
	Datatype Mapping for the NYSE Adapter
	Setting the JAVA_HOME Environment Variable
	Configuration
	NYSE Adapter Directory
	Schema and Configuration File
	Adapter Controller Parameter
	Event Stream Processor Parameters
	Watchlist Stream Configuration Parameters
	Data Stream Configuration
	Datafeed Parameters
	Sample NYSE Configuration File
	NYSE Input Adapter
	Logging

	Operation
	Starting the NYSE Adapter
	Checking the NYSE Adapter Status
	Stopping the NYSE Adapter
	Watchlist Operation
	Insert
	Delete

	Example: Subscribing to and Publishing Data

	Open Adapter
	Datatype Mapping for the Open Adapter
	Setting the JAVA_HOME Environment Variable
	Configuration
	Open Adapter Directory
	Include Files Syntax
	Variable Substitution
	Wildcard Property Names
	Autoincremented Property Names
	XML Properties Files
	Open Adapter Components
	Source Components
	AsapSource Properties
	SpPersistentSubscribeSource Properties

	Sink Components
	AsapSink Properties
	WSSink Properties

	Pipe Components
	BeanShellPipe Properties
	JDBCLookupPipe Properties

	Reader Components
	MultiFlatXmlStringReader Properties
	XPathXmlStreamReader Properties
	XPathMultiTypeXmlReader Properties
	EspDelimitedStringReader

	Writer Component
	XPathXmlStringWriter Properties

	Specifying Datetime Formats
	Third-Party JAR Files
	Valid Time Zones for the Open Adapter
	Africa Time Zones
	Asia Time Zones
	Australasia Time Zones
	Europe Time Zones
	North America Time Zones
	South America Time Zones

	Starting the Open Adapter
	Monitoring the Open Adapter
	Remote Control Interface
	HTTPRemoteControl
	MailRemoteLogger
	PasswordEncryptor
	Generating Self-Signed RSA Keys Using Java Keytool
	Generating Self-Signed RSA Keys Using OpenSSL
	Generating Self-Signed RSA Keys Using OpenSSL (PKCS8 Keystore)

	Examples
	Example: Using the AsapSink Component
	Example: Using the AsapSource Component
	Example: Using the BeanShellPipe Component
	Example: Using the JDBCLookupPipe Component
	Example: Using the MultiFlatXmlStringReader Component
	Example: Using the SpPersistentSubscribeSource Component
	Example: Using the WSSink Component
	Example: Using the WSSource Component
	Example: Using the XPathMultiTypeXmlReader Component
	Example: Using the XPathXmlStreamReader Component
	Example: Using the XPathXmlStringWriter Component

	RAP Adapter
	Start Command
	Stop Command
	Datatype Mapping for the RAP Adapter
	Configuration
	Adapter Configuration File
	Publisher File
	RDS Template File
	Example: Configuring the RAP Adapter

	Operation
	Starting the RAP Adapter
	Stopping the RAP Adapter

	Replication Server Adapter
	Configuring the Adapter on the Replication Server Workstation
	Configuring the Adapter on an Event Streaming Processor Workstation
	Defining a Persistent rs_lastcommit
	Supported Datatypes
	Performance Tips

	Reuters Marketfeed Adapter
	Requirements
	General Configuration
	Enabling User Access
	Configuring an Input Connection from Reuters
	Configuring an Output Connection to Reuters

	Input Adapter Configuration
	Data Decisions
	Administrative Decisions
	Input Adapter Map File
	Data Structures
	Incoming RMDS Data
	Market Data Field Mapping
	Reuters Instrument Code Mapping
	Matching the Stream's Key
	Getting Stream Information from the Project
	Creating the Input Adapter Map File
	Running the Input Adapter
	Testing the Adapter
	Multiple RICs
	Individual RICs
	Chain RIC
	Creating a Dynamic Watch List

	Output Adapter Configuration
	Data Decisions
	Administrative Decisions
	Reuters Information
	Getting Stream Information from the Project
	Creating the Output Adapter Map File
	Running the Output Adapter
	Testing the Adapter

	Creating a Subordinate Map File
	Modifying the Main Map File
	Example

	Performance Tuning
	Command Usage
	Environment Variables
	Input Adapter Map File XML Syntax
	adapter
	dataField
	dateTimeField
	FIDListField
	item
	itemList
	itemLists
	itemName
	itemStale
	nullField
	publication
	recordType
	recordTypeMap
	rfa
	sequenceNumber
	serviceName
	streamMap
	streamMaps
	updateNumber

	Output Adapter Map File XML Syntax
	adapter
	constant
	enum
	field
	name
	rfa
	service
	stale
	stream
	subscription
	subscriptions

	Logging Facilities
	Adapter Logging
	Reuters Logging
	Log Messages

	Reuters OMM Adapter
	Requirements
	General Configuration
	Enabling User Access
	Configuring an Input Connection from Reuters
	Configuring an Output Connection to Reuters

	Input Adapter Configuration
	Data Decisions
	Administrative Decisions
	Input Adapter Map File
	Data Structures
	Incoming RMDS Data
	Market Data Field Mapping
	Reuters Instrument Code Mapping
	Matching the Stream's Key
	Getting Stream Information from the Project
	Creating the Input Map File
	Running the Input Adapter
	Testing the Adapter
	Multiple RICs
	Individual RICs
	Creating a Dynamic Watch List

	Performance Tuning

	Output Adapter Configuration
	Data Decisions
	Administrative Decisions
	Reuters Information
	Getting Stream Information from the Project
	Creating the Output Map File
	Running the Output Adapter
	Testing the Adapter
	Performance Tuning

	Split Adapter Map Files
	Creating a Subordinate Map File
	Modifying the Main Map File

	Command Usage
	esp_ommsample
	esp_rmdsomm

	Environment Variables
	Input Adapter Map File
	adapter
	dataField
	dateTimeField
	hiResTimestampField
	imageField
	item
	itemList
	itemLists
	itemName
	itemStale
	marketByOrderKeyField
	marketByPriceKeyField
	marketMakerKeyField
	nullField
	publication
	respTypeNumField
	rfa
	sequenceNumber
	serviceName
	streamMap
	streamMaps
	updateNumber

	Output Adapter Map File XML Syntax
	adapter
	constant
	field
	name
	rfa
	stale
	stream
	subscription
	subscriptions

	Logging Facilities
	Adapter Logging
	Reuters Logging
	Log Messages

	RTView Adapter
	Datatype Mapping for the RTView Adapter
	Installing the RTView Adapter
	Configuration: Creating and Updating a Sybase Connection
	Event Stream Processor Parameters

	Operation
	Starting the RTView Display Builder
	Starting the RTView Display Viewer
	Creating Shortcuts for Dashboard Projects
	Dashboard Objects and Data Streams
	Creating a Cache
	Example: Attaching an Object to a Cache
	Example: Attaching an Object to a Stream

	Example: Creating a Function
	Publishing to Event Stream Processor

	Running the Publisher Example
	Running the Subscriber Example
	Known Limitations

	TIBCO Rendezvous Adapter
	Control Flow
	Start Command
	Stop Command
	Status Command

	Data Streams
	Message Flow
	Datatype Mapping for the TIBCO Rendezous Adapter
	Setting the JAVA_HOME Environment Variable
	Configuration
	TIBCO Rendezvous Adapter Directory
	Schema and Configuration File
	Adapter Controller Parameters
	Event Stream Processor Parameters
	Stream Configuration
	Input Stream Parameters
	Output Stream Parameters

	Rendezvous Server Settings
	Sample TIBCO Rendezvous Configuration File
	TIBCO Rendezvous Adapter
	Logging

	Operation
	Starting the TIBCO Rendezvous Adapter
	Checking the TIBCO Rendezvous Adapter Status
	Stopping the TIBCO Rendezvous Adapter

	Example: Subscribing and Publishing

	CHAPTER 3: Custom Adapters
	Custom Internal Adapters
	The Adapter Shared Utility Library
	Callback Functionality
	Sample Model File
	The Adapter Configuration File
	Adapter Life Cycle Functions
	Adapter Setup Functions
	Miscellaneous Functions
	Adapter Run States
	Schema Discovery for Internal Custom Adapters
	Sample Custom Internal Adapter Implementation

	Custom External Adapters
	External Adapter Configuration File
	External Adapter Properties
	External Adapter Commands
	User-Defined Parameters and Parameter Substitution
	Auto-Generated Parameter Files
	configFilename Parameter
	Custom External Parameter Datatypes
	Creating Custom External Adapters
	Java External Adapters
	Connecting to a Project
	Creating a Publisher
	Sample Java Code for addRow
	Subscribing Using Callback
	Subscribe Using Direct Access Mode
	Publish Using Callback

	C/C++ External Adapters
	Getting a Project
	Publishing and Subscribing
	handleData

	.Net External Adapters
	Connecting to the Server
	Connecting to a Project
	Publishing
	Connecting to a Subscriber
	Subscribing Using Callback Mode

	CHAPTER 4: Schema Discovery
	Adapters that Support Schema Discovery

	CHAPTER 5: Guaranteed Delivery
	Log Window
	Truncate Window

	Index

