
Studio Users Guide

Sybase Event Stream Processor
5.1

DOCUMENT ID: DC01613-01-0510-01
LAST REVISED: July 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Introduction to Sybase Event Stream
Processor ...1

Events ...2
Event Stream Processor Compared to Databases2
Data-Flow Programming ...4
ESP Projects: Streams, Windows, Adapters, and

Continuous Queries ..5
Streams Versus Windows ...6
Getting Results from an ESP Project6
Schemas ...7
Operation Codes ..7
Product Components ..8
Input and Output Adapters ...9

Custom Adapters ..9
Authoring Methods ..10
Continuous Computation Language10
SPLASH ..11

CHAPTER 2: Getting Started in ESP Studio13
Starting ESP Studio ...13
Studio Workspace Basics ...13

File Explorer ..14
The Studio Log File ...15
Learning Perspective ...15

Running Examples in the Learning Perspective16
Creating a Project ..16

Converting AleriML Models into CCL Projects17
Converting AleriML Models into New Projects17

Studio Users Guide iii

Converting AleriML Models to Add to Existing
Projects ...18

Opening a Project ...18
Importing an Existing Project ..19
Importing Multiple Projects ...19

CHAPTER 3: Visual Editor Authoring21
Diagrams ..21
Studio Authoring Views and Editors22
Shape Reference ..24
Editing a Project in the Visual Editor27
Adding Shapes to a Diagram ..28
Adding Comments to Shapes ...29
Keyboard Shortcuts in the Visual Editor29
Changing the Display of Diagrams30
Building a Simple Project ...31

Adding an Adapter to a Project32
Schema Discovery ..32
Discovering a Schema ..33
Adding an Input Stream or Window to a Project34
Specifying a Retention Policy35
Adding a Simple Query ...38

Simple Queries ..38
Creating and Modifying Simple Queries: Filter40
Creating and Modifying Simple Queries:

Aggregate ..41
Creating and Modifying Simple Queries:

Compute ..42
Creating and Modifying Simple Queries: Join43
Creating and Modifying Simple Queries: Union ...46
Creating and Modifying Simple Queries: Pattern

...47
Connecting Elements ..48
Setting Key Columns ..48

Contents

iv Sybase Event Stream Processor

Editing Column Expressions for Windows, Streams,
and Delta Streams ..49

Column Expressions ..50
Deleting an Element ... 51

Adding Advanced Features to a Project52
Complex Queries ..52
Modularity ...53

Creating a Module ... 53
Editing a Module ..54
Creating a Module File ...55
Importing Definitions from Another CCL File55
Using a Module Within a Project56
Configuring the Loaded Module 57
Configuring a Module Repository58

Stores ... 59
Creating a Log Store ..59
Creating a Memory Store 61

Flex Operators ..62
Creating a Flex Operator in the Visual Editor 62

Creating a Schema in the Visual Editor63
Setting an Aging Policy ...63
Monitoring Streams for Errors64

Creating an Error Stream64
Displaying Error Stream Data65
Modifying an Error Stream65

Switching Between the CCL and Visual Editors65
Splitting Inputs into Multiple Outputs66

CHAPTER 4: CCL Editor Authoring67
Editing in the CCL Editor ..67
CCL Editor Features ..68
Keyboard Shortcuts in the CCL Editor68
Searching for Text ..69
Queries in CCL ...69

Contents

Studio Users Guide v

Creating a Schema in the CCL Editor70
CCL Functions ...70
Operators ..71
Adding Tooltip Comments for the Visual Editor in CCL

...74

CHAPTER 5: Project Configurations75
Creating a Project Configuration75
Opening an Existing Project Configuration76
Project Configuration File Editor76

Editing Cluster Parameters in Project Configuration76
Editing Bindings in Project Configuration77
Editing Adapter Property Sets in Project Configuration

..79
Setting Parameters in Project Configuration80
Editing Advanced Options in Project Configuration80

Advanced Project Deployment Options83

CHAPTER 6: Running Projects in Studio87
Connecting to the Local Cluster ..87
Connecting to a Remote Cluster ..88
Connecting to a Kerberos-Enabled Server89
Connecting to an RSA-Enabled Server89
Configuring a Remote Cluster Connection90
Modifying a Remote Cluster Connection91

CHAPTER 7: Running and Testing a Project93
Starting the Run-Test Perspective93
Compiling a Project ...93

Viewing Problems ...94
Running a Project ..95

Server View ..95
Viewing a Stream ..96

Contents

vi Sybase Event Stream Processor

Controlling the Pulse Rate for Viewing a Stream96
Uploading Data to ESP Server97
Manually Entering Data to a Stream98

Activating a Project ...98
Performance Monitor ...99

Running the Monitor ...99
Saving a Performance Diagram as an Image100

Running a Snapshot SQL Query against a Window100
Playback View ..101

Recording Incoming Data in a Playback File102
Playing Recorded Data ...103

Debugging ..103
Event Tracer View ... 104

Tracing Data Flow in the Event Tracer104
Viewing the Topology Stream105

Debugging with Breakpoints and Watch Variables106
Breakpoints ..107
Adding Breakpoints ..107
Watch Variables ... 108
Adding Watch Variables109
Pausing the Event Stream Processor 109
Stepping the Event Stream Processor110

CHAPTER 8: Customizing the Studio Work
Environment ...111

Editing Studio Preferences ...111
Manual Input Settings ...112
Rearranging Views in a Perspective113
Moving the Perspective Shortcut Bar114

APPENDIX A: Adapter Support for Schema
Discovery ...115

Contents

Studio Users Guide vii

Index ...119

Contents

viii Sybase Event Stream Processor

CHAPTER 1 Introduction to Sybase Event
Stream Processor

Sybase® Event Stream Processor enables you to create and run your own complex event
processing (CEP) applications to derive continuous intelligence from streaming event data in
real time.

Event Stream Processing and CEP
Event stream processing is a form of CEP, a technique for analyzing information about events,
in real time, for situational awareness. When vast numbers of event messages are flooding in,
it is difficult to see the big picture. With event stream processing, you can analyze events as
they stream in and identify emerging threats and opportunities as they happen. Event Stream
Processor Server filters, aggregates, and summarizes data to enable better decision making
based on more complete and timely information.

Event Stream Processor is not an end-user application, but an enabling technology that
provides tools that make it easy to develop and deploy both simple and complex projects. It
provides a highly scalable runtime environment in which to deploy those projects.

Event Stream Processor as a Development Platform
As a platform for developing CEP projects, Event Stream Processor provides high-level tools
for defining how events are processed and analyzed. Developers can work in either a visual or
text-oriented authoring environment. You can define logic that is applied to incoming events
to:

• Combine data from multiple sources, producing derived event streams that include richer
and more complete information.

• Compute value-added information to enable rapid decision making.
• Watch for specific conditions or patterns to enable instantaneous response.
• Produce high-level information, such as summary data, statistics, and trends to see the big

picture, or the net effect, of many individual events.
• Continuously recompute key operating values based on complex analysis of incoming

data.
• Collect raw and result data into a historical database for historical analysis and

compliance.

Event Stream Processor Runtime Environment
As an engine for an event-driven architecture (EDA), Event Stream Processor can absorb,
aggregate, correlate, and analyze events to produce new high-level events that can trigger
responses, and high-level information that shows the current state of the business. Event
Stream Processor:

Studio Users Guide 1

• Processes data continuously as it arrives
• Processes data before it is stored on disk, thus achieving extremely high throughput and

low latency, enabling better decision making based on more complete and timely
information

• Separates business logic from data management, making it easier to maintain the business
logic and reducing total cost of ownership

• Provides enterprise class scalability, reliability, and security

Events
A business event is a message that contains information about an actual business event that
occurred. Many business systems produce streams of such events as things happen.

Examples of business events that are often transmitted as streams of event messages include:

• Financial market data feeds that transmit trade and quote events, where each event may
consist of ticket symbol, price, quantity, time, and so on

• Radio Frequency Identification System (RFID) sensors that transmit events indicating that
an RFID tag was sensed nearby

• Click streams, which transmit a message (a click event) each time a user clicks a link,
button, or control on a Web site

• Database transaction events, which occur each time a record is added to a database or
updated in a database

Event Stream Processor Compared to Databases
Sybase Event Stream Processor complements traditional databases to help solve new classes
of problems where continuous, event-driven data analysis is required.

Event Stream Processor executes queries continuously on fast moving data streams.

Event Stream Processor is not a replacement for databases. While databases excel at storing
and querying static data, and reliably processing transactions, they are not effective at
continuously analyzing fast moving streams of data.

CHAPTER 1: Introduction to Sybase Event Stream Processor

2 Sybase Event Stream Processor

Figure 1: Traditional Business Intelligence: On-Demand Queries

• Traditional databases must store all data on disk before beginning to process it.
• Databases do not use preregistered continuous queries. Database queries are "one-time-

only" queries. To ask a question ten times a second, you must issue the query ten times a
second. This model breaks down when one or more such queries need to be executed
continuously, as polling the database faster results in a performance impact to the source
systems, and adds latency.

• Databases do not use incremental processing. Event Stream Processor can evaluate
queries incrementally as data arrives.

Event Stream Processor (ESP) is not an in-memory database, although it stores all data in
memory. Unlike an in-memory database, the ESP is optimized for continuous queries, rather
than on-demand queries and transaction processing, as shown in the figure.

Figure 2: Continuous Queries in Event Stream Processor

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 3

Data-Flow Programming
Sybase® Event Stream Processor uses data-flow programming for processing event streams.

In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation processes an event only when it is received from
another operation. No other coordination is needed between operations.

The sample project shown in the figure shows a simple example of this.

Each of the continuous queries in this simple example—the VWAP aggregate, the
IndividualPositions join object, and the ValueByBook aggregate—is a type of derived stream,
as its schema is derived from other inputs in the diagram, rather than originating directly from
external sources. You can create derived streams in a diagram using the simple query elements
provided in the Studio Visual editor, or by defining your own explicitly.

Figure 3: Data-Flow Programming - Simple Example

Table 1. Data-Flow Diagram Contents

Element Description

PriceFeed Represents an input window, where incoming data from an external
source complies with a schema consisting of five columns, similar to a
database table with columns. The difference is that in ESP, the stream-
ing data is not stored in a database.

CHAPTER 1: Introduction to Sybase Event Stream Processor

4 Sybase Event Stream Processor

Element Description

Positions Another input window, with data from a different external source. Both
Positions and PriceFeed are included as windows, rather than streams,
so that the data can be aggregated.

VWAP Represents a simple continuous query that performs an aggregation,
similar to a SQL Select statement with a Group By clause.

IndividualPositions Represents a simple continuous query that performs a join of Positions
and VWAP, similar to a SQL FROM clause that produces a join.

ValueByBook Another simple query that aggregates data from the stream Individual
Positions.

ESP Projects: Streams, Windows, Adapters, and
Continuous Queries

An ESP project is like an application, consisting of a set of event streams, any other required
datasources, and the business logic applied to incoming event data to produce results.

At its most basic level, a project consists of:

• Input streams and windows – where the input data flows into the project. An input stream
can receive incoming event data on an event-driven basis, and can also receive static or
semistatic sets of data that are loaded once or periodically refreshed. Input streams that
have state—that is, they can retain and store data—are called windows.

• Adapters – connect an input stream or window to a datasource. Sybase Event Stream
Processor includes a large set of built-in adapters as well as an SDK that you can use to
build custom adapters. Adapters can also connect an output stream or window to a
destination. While an adapter connects the project to external inputs and outputs,
technically it is not part of the project.

• Derived streams and windows – take data from one or more streams or windows and
apply a continuous query to produce a new stream or window. Derived streams that have
state are windows.

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 5

Streams Versus Windows
Both streams and windows process events. The difference is that windows have state, meaning
they can retain and store data, while streams are stateless and cannot.

Streams process incoming events and produce output events according to the continuous
query that is attached to the stream, but no data is retained.

By contrast, a window consists of a table where incoming events can add rows, update existing
rows, or delete rows. You can set the size of the window based on time, or on the number of
events recorded. For example, a window might retain all events over the past 20 minutes, or the
most recent 1,000 events. A window can also retain all events. In this case, the incoming event
stream must be self-managing in that it contains events that both insert rows into the window
and delete rows from the window, so that the window does not grow infinitely large. Windows
are needed for performing aggregate operations, as this cannot be done on streams.

Input, Output, and Local Streams and Windows
Streams and windows can be designated as input, output, or local. Input streams are the point
at which data enters the project from external sources via adapters. A project may have any
number of input streams. Input streams do not have continuous queries attached to them,
although you can define filters for them.

Local and output streams and windows take their input from other streams or windows, rather
than from adapters, and they apply a continuous query to produce their output. Local streams
and windows are identical to output streams and windows, except that local streams and
windows are hidden from outside subscribers. Thus, when a subscriber selects which stream
or window to subscribe to, only output streams and windows are available.

Note: The visual authoring palette lists local and output streams as derived streams, and lists
local and output windows as derived windows.

Getting Results from an ESP Project
Event Stream Processor has four ways to get output from a running project.

• Applications receive information automatically from internal output adapters attached to a
stream when you build the project.

• Applications can subscribe to data streams by means of an external subscriber, which users
can create using subscription APIs provided with the product.

• Users can start a new project that binds (connects) to a stream in a running project, without
reconfiguring the project.

• Users can run on-demand queries against output windows in a running ESP project. This is
similar to querying a database table.

CHAPTER 1: Introduction to Sybase Event Stream Processor

6 Sybase Event Stream Processor

• From the command line, using the esp_query tool. For more information see the
Utilities Guide.

• In ESP Studio, using the SQL Query view tools.

Schemas
Each stream or window has a schema, which defines the columns in the events produced by the
stream or window.

Each column has a name and datatype. All events that output from a single stream or window
have an identical set of columns. For example:

• An input stream called RFIDRaw, coming out of an RFID reader, may have columns for a
ReaderID and a TagID, both containing string data.

• An input stream called Trades, coming from a stock exchange, may have columns for the
Symbol (string), Volume (integer), Price (float), and Time (datetime).

Operation Codes
The operation code (opcode) of an event record specifies the action to perform on the
underlying store of a window for that event.

In many Event Stream Processor use cases, events are independent of each other: each carries
information about something that happened. In these cases, a stream of events is a series of
independent events. If you define a window on this type of event stream, each incoming event
is inserted into the window. If you think of a window as a table, the new event is added to the
window as a new row.

In other use cases, events deliver new information about previous events. The ESP Server
needs to maintain a current view of the set of information as the incoming events continuously
update it. Two common examples are order books for securities in capital markets, or open
orders in a fulfillment system. In both applications, incoming events may indicate the need
to:

• Add an order to the set of open orders,
• Update the status of an existing open order, or,
• Remove a cancelled or filled order from the set of open orders.

To handle information sets that are updated by incoming events, Event Stream Processor
recognizes the following opcodes in incoming event records:

• insert – Insert the event record.
• update – Update the record with the specified key. If no such record exists, it is a runtime

error.

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 7

• delete – Delete the record with the specified key. If no such record exists, it is a runtime
error.

• upsert – If a record with a matching key exists, update it. If a record with a matching key
does not exist, insert this record.

• safedelete – If a record with a matching key exists, delete it. If a record with a matching key
does not exist, do nothing.

All event records include an opcode. Each stream or window in the project accepts incoming
event records and outputs event records. Output events, including opcodes, are determined by
their source (stream, window, or delta stream) and the processing specified for it.

Refer to the Streams, Windows, and Delta Streams topics in the Programmers Guide for
details on how each interprets the opcodes on incoming event records and generates opcodes
for output records.

Product Components
Event Stream Processor includes a server component for processing and correlating streams
of data, a Studio environment for developing, testing, and starting applications that run on the
server, and administrative tools.

Components include:

• ESP Server – the software that processes and correlates data streams at runtime. Event
Stream Processor can process and analyze hundreds of thousands of messages per second.
Clustering provides scale-out support to ESP Server. A server cluster lets users run
multiple projects simultaneously; provides high availability and failover; and lets you
apply centralized security and support for managing cluster connections.

• ESP Studio – an integrated development environment for creating, modifying, and testing
ESP projects.

• CCL compiler – the compiler that translates and optimizes projects for processing by ESP
Server. It is invoked by ESP Studio or from the command line.

• Input and output adapters – the components that establish connections between Event
Stream Processor and datasources, as well as the connections between the ESP Server and
the consumers that will receive output from Event Stream Processor.

• Integration SDK – a set of APIs for creating custom adapters in C/C++, Java, and .NET,
for integrating custom function libraries, and for managing and monitoring live projects.

• Utilities – a set of executables that offer command line access to many administrative,
project development, publishing and subscription, and other features.

Do not mix components from different versions of Event Stream Processor. For example, do
not run ESP Server from the current version along with ESP Studio from the previous version.

CHAPTER 1: Introduction to Sybase Event Stream Processor

8 Sybase Event Stream Processor

Input and Output Adapters
Input and output adapters enable Event Stream Processor to send and receive messages from
dynamic and static external sources and destinations. Most adapters provided can be used as
input or output adapters.

Input adapters connect to an external datasource and translate incoming messages from the
external sources into a format that is accepted by the ESP server. Output adapters translate
rows processed by Event Stream Processor into message formats that are compatible with
external destinations and send those messages downstream. See the figure for an example.

Figure 4: Adapters in Event Stream Processor

For a complete list of adapters supplied by Event Stream Processor, see the Adapters
Guide.

Custom Adapters
In addition to the adapters provided by Event Stream Processor, you can write your own
adapters to integrate into the server.

Event Stream Processor provides a variety of SDKs that allow you to write adapters in a
number of programming languages, including:

• C
• C++
• Java
• .NET (C#, Visual Basic, and so on)

For detailed information about how to create custom adapters, see the Adapters Guide. For
versions supported by these SDKs, see the Installation Guide.

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 9

Authoring Methods
Event Stream Processor Studio provides visual and text authoring environments for
developing projects.

In the visual authoring environment, you can develop projects using graphical tools to define
streams and windows, connect them, integrate with input and output adapters, and create a
project consisting of queries.

In the text authoring environment, you can develop projects in the Continuous Computation
Language (CCL), as you would in any text editor. Create data streams and windows, develop
queries, and organize them in hierarchical modules and projects.

You can easily switch between the Visual editor and the CCL editor at any time. Changes made
in one editor are reflected in the other. You can also compile projects within Studio.

In addition to its visual and text authoring components, Studio includes environments for
working with sample projects, and for running and testing applications with a variety of
debugging tools. Studio also lets you record and playback project activity, upload data from
files, manually create input records, and run ad hoc queries against the server.

If you prefer to work from the command line, you can develop and run projects using the
esp_server, esp_client, and esp_compiler commands. For a full list of Event Stream
Processor utilities, see the Utilities Guide.

Continuous Computation Language
CCL is the primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CCL supports sophisticated data selection and calculation capabilities, including features
such as: data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous
execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time an event arrives from one of its datasources.

CHAPTER 1: Introduction to Sybase Event Stream Processor

10 Sybase Event Stream Processor

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
an SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. ESP servers are
optimized for incremental processing, hence the query optimization is different than for
databases. Compilation is typically performed within Event Stream Processor Studio, but it
can also be performed by invoking the CCL compiler from the command line.

SPLASH
Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has
similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

See also
• Flex Operators on page 62

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 11

CHAPTER 1: Introduction to Sybase Event Stream Processor

12 Sybase Event Stream Processor

CHAPTER 2 Getting Started in ESP Studio

To begin developing a project, start ESP Studio, review workspace basics, and optionally step
through an example before creating your own project.

Starting ESP Studio
Start ESP Studio from the desktop shortcut, Windows Start menu, or the command line.
From your desktop or workstation:

Platform Method

Windows • Double-click the Sybase ESP Studio shortcut on your computer
desktop, or,

• Select Start > Programs > Sybase > Event Stream Processor 5.1 >
Studio > Studio.

Linux or UNIX • Double-click the Sybase ESP Studio shortcut on your computer
desktop, or,

• At the command line, enter $ESP_HOME/studio/esp-
studio.

Studio Workspace Basics
In the Studio workspace, you use different perspectives and views to run examples, create and
edit projects, and run and test your projects in a running Event Stream Processor server.

By default, all perspectives are open. To switch to another perspective, click its tab, just below
the main menu bar.

Studio Users Guide 13

Table 2. User Activities in Studio Perspectives

Perspective Activities

Authoring • Create and edit projects
• Develop projects and diagrams in the Visual editor, a graphical editing

environment
• Develop projects in the CCL editor, a text-oriented editing environment

where you edit CCL code
• Compile projects
• Import Aleri models

Learning • Load example projects
• Step through example projects so that you can follow what happens

when you subscribe to streams, publish demonstration data, and view
results

Note: Activities you initiate in Learning perspective open in Authoring and
Run-Test perspectives so that you can take advantage of facilities there to
learn more about the example project.

Run-Test • Start and connect to servers
• Run projects
• Enter test data by uploading data files to a server, or entering data

manually to a stream
• Publish data
• Execute a query against a running project
• Use the Event Tracer and Debugger to set breakpoints and watchpoints,

and trace the flow of data through a project
• Record incoming event data to a playback file, and play back captured

data into a running project
• Monitor performance

See also
• Chapter 3, Visual Editor Authoring on page 21

• Chapter 7, Running and Testing a Project on page 93

File Explorer
Organize and navigate among your projects using the File Explorer, which provides a tree-
structured hierarchy of folders and files

The File Explorer view lets you organize project files, navigate to files and perform various
file-based actions:

• Creating new CCL files

CHAPTER 2: Getting Started in ESP Studio

14 Sybase Event Stream Processor

• Creating new projects
• Editing existing files
• Deleting files
• Creating new folders

See also
• Editing a Project in the Visual Editor on page 27

• Editing in the CCL Editor on page 67

The Studio Log File
The Studio logs activity and records it in a log file. Access this log file to view Studio activity
and to help troubleshoot events such as unexpected shut down.

The Studio log file resides in your workspace directory under
workspace/.metadata/.log, but you can view the log within Studio. To view the log:

1. Select Help > About Studio.
2. Click Configuration Details.
3. Click View Error Log.
4. If prompted, select a text editor to view the file with.

The log provides read-only details on internal Studio activity. You cannot modify the file to
change what it reports on, or its level of verbosity.

Learning Perspective
The Learning perspective helps you get started with Studio by performing common tasks with
example projects.

You can open the Learning perspective in three different ways:

• The Open Example shortcut on the Welcome Screen
• The Learning button on the perspective shortcuts bar
• Select Window > Open Perspective > Learning

The Examples view, which appears on the left in the Learning perspective, lists all currently
available examples. Each example item has a LOAD button, which you can click to run the
example.

The Description view, to the right of the Learning perspective, shows a detailed description of
the selected example.

CHAPTER 2: Getting Started in ESP Studio

Studio Users Guide 15

Running Examples in the Learning Perspective
Load and run provided examples to demonstrate Server View, Stream View, Visual editor and
other important Studio functions.

1. Select an example project from the Examples view and click LOAD.

2. Either:

• Click Proceed to start the example project and follow prompts for the remaining steps;
or,

• Check Run in silent mode and click Proceed to run the process in the background.

Once this step is complete, the example project appears in the Visual editor.

3. Click Proceed to subscribe to the example output and view it.
The stream appears in Stream View.

4. Click Proceed to publish the example data and upload it to a server.

5. (Optional) In the Step by Step Example view, select a project from the Example project
menu.

If the project has the same name as an existing project in your workspace, Studio
determines whether or not the existing project is also an example. If it is, studio loads the
project. If the existing project is not an example, an error results and you must either
rename the example project you initially selected, or remove the existing project that
caused the error.

6. (Optional) Click a step to review any of the actions previously described.

The Step by Step Example view lists the actions that the example performs and provides a
quick link for launching the actions. The project must be running to launch an action.

Creating a Project
Use the Studio to create new projects that can run on the ESP Server.

Continuous queries are organized into projects that also define inputs, outputs, a schema and
other options for processing event data.

1. Select File > New > Project....

2. Enter a valid project name:

• Must start with a lowercase letter, underscore, or dollar sign
• All other characters must be lowercase letters, numbers, underscores, or dollar signs
• Must not contain spaces

For example, enter myfirstproject.

3. In the Directory field, accept the default location or browse to a directory in which to store
the new project folder.

CHAPTER 2: Getting Started in ESP Studio

16 Sybase Event Stream Processor

Studio creates three files in the named directory:
• project_name.ccl – contains the CCL code.

• project_name.cclnotation – contains the diagram that corresponds to
the .ccl file.

• project_name.ccr – contains the project configuration.

For example, for a project directory named "trades," Studio creates a trades.ccl,
trades.cclnotation, and trades.ccr file in the trades directory.

4. Click Finish to create the project files.
The new project opens in the Visual editor with one input stream, NEWSTREAM, and an
inline schema ready for editing.

See also
• Opening a Project on page 18

• Importing an Existing Project on page 19

• Editing a Project in the Visual Editor on page 27

• Switching Between the CCL and Visual Editors on page 65

Converting AleriML Models into CCL Projects
Studio allows you to convert AleriML data models into new CCL projects, or add the data to an
existing project.

Any conversion errors appear in a dialog box, wherein each error appears as a separate row,
along with line and column information.

See the Migration Guide for differences between Aleri models and ESP projects.

Converting AleriML Models into New Projects
Access AleriML conversion functionality for new projects in the File menu.

1. From any view in Studio, open the File menu.

2. Select Convert Aleri Data Model. Select whether to convert the data model into a new
CCL project or add the data file to an existing project.

3. Select Convert to new project and click Next.

4. Browse to or enter the name of the Aleri data model you wish to convert. The CCL file
name and Project name fields are populated based on the model you select.

You can overwrite the CCL file and project names after the fields are populated.

5. Accept the default Location or browse to a directory in which to store the new project
folder.

6. Click Finish to complete the conversion.

CHAPTER 2: Getting Started in ESP Studio

Studio Users Guide 17

See also
• Converting AleriML Models to Add to Existing Projects on page 18

Converting AleriML Models to Add to Existing Projects
Access AleriML conversion functionality for existing projects from the File menu or File
Explorer.

1. Either:

• Open the File menu from any perspective in the Studio, or,
• Right-click a project in the File Explorer view in the Authoring perspective.

2. Select Convert Aleri Data Model. If you accessed the conversion option from the File
menu, select Convert to existing project and click Next.

Note: Your project must be located in the current workspace.

3. Browse to or enter the name of the Aleri data model.

The CCL file name and Project name fields are populated based on the name of the
model.

4. Click Finish to complete the conversion.

See also
• Converting AleriML Models into New Projects on page 17

Opening a Project
Open an Event Stream Processor project from File Explorer when it already exists in your
workspace.

1. In File Explorer, expand project folders to see project files.

2. Double-click a file to open it for editing.

• .cclnotation files open in the Visual editor

• .ccl files open in the CCL editor

You cannot have both the .cclnotation and .ccl files for the same project open at
the same time.

See also
• Creating a Project on page 16

• Importing an Existing Project on page 19

• Editing a Project in the Visual Editor on page 27

• Switching Between the CCL and Visual Editors on page 65

CHAPTER 2: Getting Started in ESP Studio

18 Sybase Event Stream Processor

Importing an Existing Project
Import an existing Event Stream Processor project from another location into your workspace.

1. Choose File > Open > Project.

2. Browse to the root directory of the project.

3. (Optional) Select Copy projects into workspace.

• Copy projects into workspace copies the project in the workspace and opens it from
there. Changes are made to the copy only.

• If this option is not checked, the project opens in its original location.

4. Click Finish.

See also
• Creating a Project on page 16

• Opening a Project on page 18

• Editing a Project in the Visual Editor on page 27

• Switching Between the CCL and Visual Editors on page 65

Importing Multiple Projects
If you have multiple projects existing in the same directory outside of your default workspace,
you can import all of those projects to your workspace at once.

When importing projects, you can copy them into your workspace, or point to their original
location. If you make copies, changes you make to the workspace copies are not reflected in
the original location.

1. In the Authoring perspective, right-click the File Explorer and select Import from the
context menu.

2. In the Import dialog, expand the General folder and click Existing Projects into
Workspace.

3. Click Next.

4. Enable the Select root directory option and enter or browse to the root directory
containing the projects you want to import.

5. (Optional) Clear the check mark from any projects you do not want to import.

6. (Optional) Clear the Copy projects into workspace option.

7. Click Finish.

CHAPTER 2: Getting Started in ESP Studio

Studio Users Guide 19

CHAPTER 2: Getting Started in ESP Studio

20 Sybase Event Stream Processor

CHAPTER 3 Visual Editor Authoring

The Visual editor lets you create and edit projects without learning CCL syntax.

It is also a valuable tool for experienced CCL programmers, particularly when working on
complex projects, as a way to easily visualize the data flow and navigate within the project. In
the Visual editor, the project is represented by one or more diagrams that show streams,
windows, adapters, and the data flows between them.

Begin by developing a simple project. Use the graphical tools to add streams and windows,
connect them, and associate them with adapters. Add simple queries directly in the diagram
using the visual editing tools.

Once you have a basic diagram completed, compile and run your project.

When you are confident that your simple project is working, you can progress to advanced
features: more complex queries, Flex operators for custom operations, modularity, and
custom adapters. You can access many of these features in the visual authoring environment.

For more complex queries and other advanced features, you can switch to the CCL editor. A
single CCL file can be open in only one editor at a time. The Visual and CCL editors are
completely integrated. When you save and switch to the other editor, your work is saved there
as well.

Diagrams
In visual authoring, you use diagrams to create and manipulate the streams, windows,
connections, and other components of a project, and create simple queries.

When you open a project in the Visual editor, the project shows a collection of stream and
window shapes that are connected with arrows showing the flow of data. You develop the
project by selecting new input and output streams, windows, and other elements from the
Palette, dropping them onto the diagram, connecting them, and configuring their behavior.

Every project has at least one diagram. A diagram in the Visual editor is a projection of the
associated CCL statements in the project.

When you add a shape or other element to a diagram, it is automatically added to the project
when you save. You can delete an element from a diagram only, or from the project.

Display diagrams in verbose or iconic mode:

• iconic – compartments are collapsed to save space.

Studio Users Guide 21

• verbose – all compartments in elements are visible.

• To expand or collapse all shapes in the diagram, use the All Verbose or All Iconic
buttons on the main toolbar.

• To expand an individual shape, select it and click the "+" box in the shape.
• To collapse an individual shape, select it and click the "-" box in the shape header.

See also
• Shape Reference on page 24

• Changing the Display of Diagrams on page 30

Studio Authoring Views and Editors
The Visual editor, CCL editor, and other tools and views in the Authoring perspective allow
you to create, view, and edit a diagram or CCL file.

CHAPTER 3: Visual Editor Authoring

22 Sybase Event Stream Processor

Figure 5: Authoring Perspective Views

• Editor – canvas at the center of the Authoring perspective where you edit the diagram (in
the Visual editor) or CCL (in the CCL editor). The Visual and CCL text editors are
completely integrated. When you save and switch to the other editor, your work is saved
there as well.

• Palette – includes groups of tools used to create new CCL elements on the diagram. Most
shapes on the Palette correspond to a CCL statement.

• File Explorer – provides a hierarchical tree structure of folders and files.
• Properties view – displays the properties of the object selected in the diagram. You can

also set properties in this view, and edit expressions.
• Outline view – provides an index to all elements in the diagram as a hierarchical tree

structure. Also shows the order in which adapters are started. Right-click an element in this
view to show it in the diagram, delete it, modify it, or add a child element.

• Overview – helps you understand the big picture, and navigate easily to different areas of a
large, complex diagram. For large diagrams you can scroll the editor by dragging the gray
box in the overview.

• Search – provides full-text search capability for finding text strings in the workspace.
Useful in navigating File Explorer, and project contents in the CCL editor. You can filter
search results, and copy, remove, or replace results found.

• Problems – displays errors found when you compile a project or convert an Aleri model to
CCL.

• Console – displays messages generated when interacting with ESP components.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 23

Note: ESP Studio lets you customize the arrangement of views in your perspectives. See
Customizing the Studio Work Environment in the Studio Users Guide.

Shape Reference
Each shape in the Palette creates a specific type of stream or window, adapter, connection,
reusable schema or module, or a store, to create a data flow.

Table 3. Shapes in the Palette

Shape Purpose Usage

Connector Creates flows between streams
and windows, establishes refer-
ences between streams and
shared components, or attaches
notes to shapes.

Click to select the connector
tool, then click each of the
shapes in the diagram to be con-
nected..

Note Creates a comment on the dia-
gram only. This comment does
not appear in the CCL file.

 Input Stream The entry point for unkeyed
event streams into a project.
Receives data from either an
input adapter or an external
publisher.

A stream does not retain any
data and does not have a state.
Data in an input stream is not
keyed.

 Derived Stream (Local)

 Derived Stream (Output)

Applies a continuous query to
data arriving from another
stream or window to produce a
new stream.

Streams do not retain data and
do not have keys. They are "in-
sert only," meaning that their
output consists only of inserts.
Input must be a stream or a
stream-window join.

By default, new streams (in-
cluding derived streams) are lo-
cal, but you can change that
property to output, to make
them visible to external sub-
scribers.

CHAPTER 3: Visual Editor Authoring

24 Sybase Event Stream Processor

Shape Purpose Usage

 Derived Window (Local)

 Derived Window (Output)

Applies a continuous query to
data arriving from another
stream or window. Retains data,
and retention rules can be set.

Data must be keyed so that ev-
ery row has a unique key. Pro-
cesses inserts, updates, and de-
letes both as local and output.
You can use the toolbar to
change the window to ouput,
which makes it visible to exter-
nal clients.

 Derived Delta Stream (Local)

 Derived Delta Stream (Out-
put)

Applies a continuous query
downstream from a window
where there is no need to retain
state but there is a need to pre-
serve insert, update, and delete
operations.

Can be used where a computa-
tion, filter, or union must be
performed, but where a state
does not need be maintained.
Use the toolbar to change the
derived delta stream to output if
needed.

 Input Window The entry point for event
streams into a project where in-
coming events have primary
keys and there is a desire to
maintain a window of event da-
ta. Supports opcodes (insert,
update, delete, upsert). Use this
as an entry point for event
streams if:

• The stream contains insert,
update and delete events,
or,

• You need to retain a set of
incoming events.

Window size can be set by row
count with a fixed number of
input records, or by time with
records being kept for a speci-
fied period. The window must
be keyed, that is, every row must
have a unique key value.

 Flex A programmable operator that
uses custom SPLASH scripts to
process incoming events.

A Flex operator can take input
from any number of streams
and/or windows and will pro-
duce a new derived stream or
window (either local or output).

 Aggregate Takes input from a single
stream or window and groups
records using a common attrib-
ute. Produces a single output
record for each group. Uses ag-
gregate functions like sum(),
count(), and so on.

Always creates a new window.
Requires a GROUP BY ele-
ment. You can optionally set
window size using retention
rules.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 25

Shape Purpose Usage

 Compute Takes input from a single
source and computes a new re-
cord for every record received.
Allows you to change the sche-
ma on events, computing new
fields and changing existing
fields.

Produces a derived stream when
the input is a stream. Produces a
derived delta stream when the
input is a window.

 Filter Takes input from a single
source and applies a filter. Cre-
ates a stream of records that
match the filter criteria.

Produces a derived stream when
the input is a stream. Produces a
derived delta stream when the
input is a window.

 Join Takes input from two or more
sources and joins them based on
common data elements.

See related information in this
guide and the CCL Program-
mers Guide for join support de-
tails.

 Pattern Takes input from two or more
sources and detects patterns of
events. One output record is
produced every time a pattern is
detected.

 Union Merges input from two or more
sources. One ouput record is
produced for every input re-
cord.

All inputs must have a common
schema.

 Named Schema Reusable definition of column
structure that can be referenced
by streams and windows.

 Module Represents a CCL CREATE
MODULE statement. Creates a
new module that can be used in
one or more places in the
project.

A module can contain all the
same elements as a project and
provides for reuse.

 Log Store Stores data held in windows.
Provides disk-based recovery
but is slower than a memory
store

By default, new windows are
assigned to a memory store.
Where recoverability of data in
a window is required, create a
log store and assign the window
to it.

CHAPTER 3: Visual Editor Authoring

26 Sybase Event Stream Processor

Shape Purpose Usage

 Memory Store Stores data held in windows. Faster than a log store but does
not recover data after shutdown.

• (Default) Created implicitly
by the CCL compiler, if no
other store is specified.

• (Optional) Created explicit-
ly, with windows assigned
to specific stores, to opti-
mize performance.

 Input Adapters Connects an input stream or in-
put window to an external data
source.

Must be connected to either an
input stream or input window.
To use schema discovery—that
is, to import the schema from
the source—add the input
adapter first, and then use sche-
ma discovery to create a con-
nected input stream or window
with the imported schema.

 Output Adapters Connects an output stream or
window to a destination.

Must be connected to either an
output stream or an output win-
dow.

See also
• Simple Queries on page 38

• Adding Shapes to a Diagram on page 28

• Connecting Elements on page 48

• Join Types and Restrictions on page 44

Editing a Project in the Visual Editor
Edit diagrams in a graphical user interface.

1. In the Authoring perspective, navigate to File Explorer.

2. To open a saved project in the Visual editor, double-click the .cclnotation file
name.

3. Click in the diagram to begin editing using the Palette.

Tip: To make the Visual editor window full-screen, double-click the name:Diagram tab
at the top. Double-click again to revert.

4. Save as you go (Ctrl+S).

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 27

This saves changes to both the .cclnotation file (the diagram) and the .ccl file (the
CCL).

5. To toggle between the Visual editor and the CCL editor, choose Switch to Text or
Switch to Visual (F4).

6. To close the diagram, press Ctrl+W or Ctrl+F4, or click the X on the tab at the top of the
editor .

Note: The Visual editor, like other graphical user interfaces, offers several ways to
accomplish most tasks, although this guide may not list all of them. For example, in many
contexts you can carry out an action by:
• Clicking a button or other icon in a shape, or on the main toolbar
• Using a shortcut key
• Double-clicking an element to open it
• Right-clicking to select from the context menu
• Selecting from the main menu bar
• Editing element values in the Properties view

ESP Studio also includes features common to Eclipse-based applications.

See also
• Creating a Project on page 16

• Opening a Project on page 18

• Importing an Existing Project on page 19

• Switching Between the CCL and Visual Editors on page 65

• File Explorer on page 14

Adding Shapes to a Diagram
Create streams, windows, and shared components, relate them using continuous queries, and
attach them to adapters.

1. Open a diagram in the Visual editor.

2. Click a shape tool in the Palette (Input Window, Flex, and so on), then click an empty area
in the diagram.
This creates the new shape in the diagram. Red borders indicate that the shape definition is
incomplete or incorrect. When a shape definition is complete, the border changes to gray.

Note: Do not try to drag-and-drop from the Palette into the diagram.

3. To view actions needed to complete a shape definition, hover the mouse over the shape in
the diagram.

CHAPTER 3: Visual Editor Authoring

28 Sybase Event Stream Processor

Next
See tasks for specific shapes for more steps you may need to do.

See also
• Simple Queries on page 38

• Shape Reference on page 24

• Deleting an Element on page 51

• Keyboard Shortcuts in the Visual Editor on page 29

Adding Comments to Shapes
Add comments to shapes in the Visual editor that will appear within a toooltip when you hover
over them.

Prerequisites

'Show comments in tooltip' must be enabled in Preferences.

Task

1. In the visual editor, select a shape you want to add a comment for by clicking on it.

2. Once the shape is highlighted, select the comment field in the Properties view.

3. Click the ellipsis button and enter a comment into the box. Click OK when finished.

Keyboard Shortcuts in the Visual Editor
Use keyboard shortcuts to access various functions quickly within the Visual editor.

This table lists commonly used keyboard shortcuts. For a complete list, choose Help > Key
Assist (Ctrl+Shift+L).

Key Action

F2 Edit the selected shape name or element within a shape (context dependent)

F4 Toggle between CCL editor and Visual editor

F7 Compile

F11 Toggle between Authoring and Run-Test perspectives

Insert Insert new item to a compartment

Delete Delete selected elements from project

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 29

Key Action

Ctrl +Delete Delete selected elements from diagram

Ctrl + A Select all

Ctrl + N Open a new project

Ctrl + Y Redo

Ctrl + Z Undo

Ctrl + F2 Open column expression editor

Ctrl + Space Show available columns and built-in functions for column expression

Ctrl + Mouse
wheel

Zoom in or zoom out

Ctrl + Shift +
L

List all keyboard shortcut assignments

Alt + U Move compartment item up in the Outline

Alt + D Move compartment item down in the Outline

Alt + T Toggle shape between iconic and verbose mode

See also
• Adding Shapes to a Diagram on page 28
• Deleting an Element on page 51

Changing the Display of Diagrams
Display diagrams in verbose or iconic mode. Lay out the elements in the diagram left to right
or top down.

Prerequisites
Open the diagram in the Visual editor.

• To toggle a shape between iconic and verbose mode:

• In verbose mode, click the "minus" sign in the upper-left corner to collapse it.
• In iconic mode, click the "plus" sign to expand it.

• To show all shapes as iconic or verbose, in the Visual editor toolbar click All Verbose ,
or All Iconic .

• To change the orientation, in the Visual editor toolbar click Layout left to right or
Layout top down .

CHAPTER 3: Visual Editor Authoring

30 Sybase Event Stream Processor

Note: For more display options, right-click an object or the diagram surface and choose
from the context menu.

See also
• Editing Studio Preferences on page 111

Building a Simple Project
Build a simple project entirely in the ESP Studio Visual editor by following the steps in linked
tasks.

Prerequisites
Create the project.

Task
Some tasks are optional. The order of tasks is approximate; each project differs in detail.

Tip: Work left to right, or top to bottom, starting with the inputs and then following the data
flow. This strategy allows you to copy columns and column expressions into a new query from
the input streams.

1. Adding an Adapter to a Project

Attach an adapter by inserting it in the diagram, connecting it to a stream or window, and
setting properties.

2. Discovering a Schema

Use the Schema Discovery button in the Visual editor to discover and (automatically)
create a schema based on the format of the data from the adapter.

3. Adding an Input Stream or Window to a Project

Input streams and windows accept data from a source external to the project.

4. Adding a Simple Query

Choose the type of simple query you want and use the tools in the Visual editor to create
it.

5. Connecting Elements

Connect two shapes in a diagram to create a data flow or link between them.

6. Setting Key Columns

Set primary keys in the Visual editor within the Column compartment of the delta stream,
window, and Flex operator shapes.

7. Editing Column Expressions for Windows, Streams, and Delta Streams

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 31

Modify column expressions for windows, streams, and delta streams using an inline editor
or dialog-based expression editor.

See also
• Deleting an Element on page 51
• Creating a Project on page 16

Adding an Adapter to a Project
Attach an adapter by inserting it in the diagram, connecting it to a stream or window, and
setting properties.

1. Open the Input Adapters or Output Adapters compartment in the Palette and use the up
and down arrows to scroll through the list of adapters.

2. Click an adapter shape in the Palette, then click in the diagram.

3. Attach the adapter to a stream or window. Either:

• Generate and attach the stream or window automatically, using schema discovery (best
practice for adapters that support it), or,

• Create the stream or window, then attach it:
• Input adapter – click the Connector tool, then click the Adapter shape in the

diagram, then click the stream or window.
• Output adapter – click the Connector tool, then click the stream or window in the

diagram, then click the Adapter shape.

4. (Optional) Edit the adapter name.

5. (Optional) Edit the adapter properties. Either:

• Select Use named property set to use a named property set from the project
configuration file, and then configure any properties that are not included in the
property set, or,

• Select Set properties locally to manually configure the adapter properties.

See also
• Discovering a Schema on page 33

Schema Discovery
You can use the schema discovery feature to discover external schemas and create CCL
schemas based on the format of the data from the datasource connected to an adapter.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

Rather than manually creating a new schema, you can use schema discovery to discover and
automatically create a schema based on the format of the data from the datasource connected

CHAPTER 3: Visual Editor Authoring

32 Sybase Event Stream Processor

to your adapter. For example, for the Database Input adapter, you can discover a schema that
corresponds to a specific table from a database the adapter is connected to.

While using discovery is a convenient way to create your CCL schema, pay particular
attention to the datatypes your CCL columns inherit from the external data source. For
example, whenever possible, discovery maintains the same level of precision or greater when
mapping source data types to ESP data types. Some databases, such as Sybase IQ, support
microsecond precision for the SQL_TIMESTAMP and SQL_TYPE_TIMESTAMP data types.
As such, discovery maps these types to the ESP data type bigdatetime, which also
supports microsecond precision. If your ESP project does not require this level of precision,
you can, after generating your schema through discovery, modify the schema to use a lower-
precision data type such as timestamp (millisecond precision).

To discover a schema, you need to first configure the adapter properties. Each adapter that
supports schema discovery has unique properties that must be set to enable schema discovery.

See also
• Appendix A, Adapter Support for Schema Discovery on page 115

• Discovering a Schema on page 33

Discovering a Schema
Use the Schema Discovery button in the Visual editor to discover and (automatically) create a
schema based on the format of the data from the adapter.

Prerequisites
Add the adapter to the diagram.

Task
In the Authoring perspective:

1. Configure the adapter for schema discovery. In the adapter shape, click Edit Properties
and complete the dialog:

• Select a named property set, or,
• Choose Set properties locally and enter property values in the Basic and (optionally)

Advanced tabs. Required properties are in red.

For example, to use schema discovery for the File CSV Input adapter, you need to first
configure the Directory and File properties for the adapter, to specify the absolute path to
the data files you want the adapter to read.

Note: To create a named property set, edit adapter properties in the project configuration
file.

2. Click Schema Discovery on the adapter toolbar.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 33

• If the schema is successfully discovered, a dialog appears where you can view and
select a schema.

• If the schema is not successfully discovered, an error message appears stating that no
schema was discovered for the adapter. You can:
• Check that the adapter properties are configured for schema discovery.
• Check to see if the adapter supports schema discovery.

3. Select a schema, and click Next.

4. In the dialog for creating an element, select an option.

Adapter State Available Options

The adapter is
not attached to
a stream or
window.

• Create a new input stream. – Creates and attaches a new
stream to the adapter, creates an inline schema for the stream,
and populates the stream with the schema discovered from the
adapter.

• Create a new input window. – Creates and attaches a new
window to the adapter, creates an inline schema for the window,
and populates the window with the schema discovered from the
adapter.

• Create a new named schema. – Creates a new named schema
and populates it with the schema discovered from the adapter.

The adapter is
already
attached to a
stream or
window.

• Apply the schema to the connecting stream or window. –
Populates the stream or window with the schema discovered
from the adapter.

• Create a new named schema. – Creates a new named schema
and populates it with the schema discovered from the adapter.

5. Click Finish.

See also
• Schema Discovery on page 32

• Appendix A, Adapter Support for Schema Discovery on page 115

• Adding an Adapter to a Project on page 32

Adding an Input Stream or Window to a Project
Input streams and windows accept data from a source external to the project.

You can create an input stream or window by adding an adapter that supports schema
discovery, and generating the stream or window to inherit the schema of the external data
source automatically. You can then add columns as needed, and specify if they need an
autogenerate clause. If an autogenerate clause is added, it can be used to automatically
generate data for specified columns.

CHAPTER 3: Visual Editor Authoring

34 Sybase Event Stream Processor

1. In the Visual editor workspace, in the Palette menu under the Streams and Windows
category, select either:

• Input Stream
• Input Window

2. Select a location in the diagram and click to add the shape.

3. To set the name of the input stream or window, either:

• Click to edit the shape name, or,
• In verbose mode, click the Edit icon next to the name.

4. Click Add Column to add each new column to the schema, then set key columns and
edit column expressions.

5. To delete columns, select them and press Delete.

6. (Optional for windows, not permitted for streams) Select Set Keep Policy and choose
an option.

7. (Optional) Double-click the policy to edit its parameters.

8. (Optional for both windows and streams) Select Set Autogenerate , choose the columns
from the Candidate list (only columns with a datatype of Long will populate the Candidate
list) and click Add.

Note: You can also manually specify a column you want to add to the autogenerate list by
clicking Add Column and entering in a column name. Only columns with a datatype of
Long can be used.

9. To remove columns from the autogenerate list, select them and click Remove.

10. To set a From value for the autogenerate clause to start with, click Select and choose a
variable or parameter from the list. You can also manually enter a variable or parameter
that is used within a declare block of a column with a datatype of Long.

11. Click OK when finished.

See also
• Adding a Simple Query on page 38

• Specifying a Retention Policy on page 35

• Editing Column Expressions for Windows, Streams, and Delta Streams on page 49

• Setting an Aging Policy on page 63

Specifying a Retention Policy
The keep policy determines the basis for retaining rows in a window.

You can set a keep policy, also called a retention policy, for any window with a memory-based
store, including any simple query that produces a window.

Retention policies for windows that use a log store are only supported for input windows.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 35

Table 4. Keep Policy Options

Options Description

All rows Retain all rows in the window (default).

Last row Retain only the last row in the window.

Count Either:

• Enter the absolute number of rows to retain, or,
• Choose Select and select a previously declared variable or parameter

to determine a specific range of rows to retain in the window.

Tip: If the list is empty and you want to base the count on a parameter
or variable, switch to the CCL editor and define it in a DECLARE
block at the beginning of the CCL. For example:

DECLARE
integer test :=50;
end;

Then go back and select it.

Every (Optional) Works with the Count and Time options.

When used with the Count option, Every retains a number of rows based
on the Count value specified, and purges all of the retained rows once a
row arrives that would exceed the specified maximum number of rows.
This purge will only occur once the specified Count number has been
reached.

When used with the Time option, Every retains a number of rows within a
specified time interval. Once the time interval expires, all rows are
purged simultaneously.

Note: When this option is used, the resulting retention is based on a
Jumping Window policy. Otherwise, the resulting retention is based on a
Sliding Window policy.

Slack For a count-based policy, set the number of rows to delete when the
maximum number of rows is reached (the Count value). Default is 1, that
is, when the window contains count_value rows, each new row causes the
oldest row to be deleted. Setting slack to greater than 1 can optimize
performance.

Time Set a time limit on the window, and specify a time period to determine
what age of row to retain in the window. Press Ctrl+Space to choose the
unit of time.

CHAPTER 3: Visual Editor Authoring

36 Sybase Event Stream Processor

Options Description

PER clause (Optional) Works with the Time and Count options.

When used with the Count option, PER works in conjunction with the
specified Count number to retain the Count number of rows across each
column specified under the PER clause.

When used with the Time option, PER works in conjunction with the
specified Time interval to retain the rows within that Time interval across
each column specified under the PER clause.

List the names of the columns that need to be retained in the PER clause
box, with a comma separating each column name entered.

Count
In a Sliding Window count-based retention policy, a constant integer specifies the maximum
number of rows retained in the window. To retain the specified maximum number of rows in
the window, the policy purges the oldest entries as new entries arrive, one row at a time.

In a Jumping Window count-based retention policy, enabled by using the Every option, all
rows are purged only once a row arrives that would exceed the specified maximum number of
rows.

A Sliding Window count-based policy also defines an optional Slack value, which can
enhance performance by requiring less frequent cleaning of memory stores.

Slack
Slack is an advanced feature used to enhance performance by requiring less frequent cleaning
of memory stores. It sets a maximum of N + S rows in the window, where N is the retention size
(the count setting) and S is the slack. When the window reaches N + S rows the systems purges
S rows. The larger the value of slack the better the performance is, since there is less cleaning
required.

The default value for slack is 1. When slack = 1, after the window reaches the maximum
number of records, each time a new record is inserted, the oldest record is deleted. This causes
a significant impact on performance. When slack > 1, say Y, then the window will accumulate
up to X + Y number of records. The next record inserted will then cause the deletion of Y
records. Larger slack values improve performance by reducing the need to constantly delete
rows.

Note: The SLACK value cannot be used with the 'Every' option, and thus cannot be used in a
Jumping Window count-based retention policy.

Time
In a Sliding Window time-based retention policy, a time interval specifies the maximum age of
the rows retained in the window. Rows are purged from the window, one row at a time, when
they becomes older than the specified interval.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 37

In a Jumping Window time-based retention policy, enabled by using the Every option, all rows
produced in the specified time interval are purged after the interval has expired.

PER Clause
The PER Clause allows for rows specified by the Count or Time options to be retained across
specified columns.

For a count-based retention policy, it keeps the number of rows specified by the Count number
across each column specified under the PER Clause. The rows in each column specified to be
retained will update simultaneously to delete older entries as newer ones arrive.

For a time-based retention policy, it keeps rows within the specified Time interval across each
column specified under the PER Clause. The rows in each column specified to be retained will
update simultaneously to delete older entries as the time interval expires.

See also
• Creating and Modifying Simple Queries: Aggregate on page 41

• Creating and Modifying Simple Queries: Join on page 43

Adding a Simple Query
Choose the type of simple query you want and use the tools in the Visual editor to create it.

See also
• Creating and Modifying Simple Queries: Filter on page 40

• Creating and Modifying Simple Queries: Aggregate on page 41

• Creating and Modifying Simple Queries: Compute on page 42

• Creating and Modifying Simple Queries: Join on page 43

• Creating and Modifying Simple Queries: Union on page 46

• Creating and Modifying Simple Queries: Pattern on page 47

• Simple Queries on page 38

• Adding an Input Stream or Window to a Project on page 34

• Connecting Elements on page 48

Simple Queries
Accomplish most common querying tasks using a set of queries available in the Visual editor:
filter, aggregate, join, compute, union, and pattern.

The tools for these six queries are available as objects in the Palette, in Streams and Windows.

• Filter – allows you to filter a stream down to only the events of interest, based on a filter
expression. Similar to SQL WHERE clause.

• Aggregate – allows you to group events that have common values and compute
summary statistics for the group, such as an average. You can also define a window size,

CHAPTER 3: Visual Editor Authoring

38 Sybase Event Stream Processor

based on either time or number of events. Uses the CCL GROUP BY clause, similar to
SQL GROUP BY.

• Join – allows you to combine records from multiple streams or windows, forming a
new record with information from each source. Comparable to a join in SQL, where you
specify two or more sources in the FROM clause.

• Compute – allows you to create a new event with a different schema, and compute the
value to be contained in each column (field) of the new event. Comparable to a projection
in SQL, where you use a SELECT statement to specify the column expressions, and
FROM to specify a single source.

• Union – allows you to combine multiple streams or windows that all share a common
schema into a single stream or window. Similar to SQL UNION operator.

• Pattern – lets you watch for patterns of events within a single stream or window or
across multiple streams and windows. When ESP Server detects an event pattern in a
running project, it produces an output event. This uses the CCL MATCHING clause.

Table 5. CCL Equivalents for Simple Queries (Summary)

Simple Query CCL

Filter WHERE clause

Aggregate GROUP BY clause

Join FROM clause, WHERE clause, ON clause

Compute Simple SELECT statement, with column expres-
sions

Union UNION clause

Pattern MATCHING clause

Simple Queries from CCL Statements
If you create queries in CCL and want them to appear as simple query shapes in the Visual
editor, you must insert a comment immediately preceding the CREATE STREAM, CREATE
WINDOW, or CREATE DELTA STREAM statement, in the form:
/**@SIMPLEQUERY=QUERY_TYPE*/

where QUERY_TYPE is the shape name in the Visual editor.

For example, this comment causes a CREATE WINDOW statement to map to an Aggregate
shape in the Visual editor: /**@SIMPLEQUERY=AGGREGATE*/ .

Without this comment immediately preceding the CREATE WINDOW statement, the Visual
editor shows the generic Derived Window shape.

Note: You cannot modify CCL code in the CCL editor and in the Visual editor concurrently. If
the Visual editor is open, then the CCL editor becomes read-only.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 39

CCL Statements from Simple Queries
When you create a simply query from the Palette, the CCL element it creates is based on these
rules:

• If the input for the filter object is a stream, the filter object creates a stream. If the source is a
window, delta stream, or flex stream, the filter object creates a delta stream.

• All aggregate objects create a window.
• If the input for a compute object is a stream, the compute object creates a stream. If the

source is a window, delta stream, or flex stream, the compute object creates a delta stream.
• If a join object takes input only from streams, then the join object creates a stream. If the

source is from one or more windows, delta streams, or flex streams, then the join object
creates a window. In a stream-window join, the join object creates a stream.

• If the input of a union object is a stream, the union object creates a stream. If the source is a
window, delta stream, or flex stream, the union object creates a delta stream.

• All pattern objects create a stream.

See also
• Shape Reference on page 24

• Adding Shapes to a Diagram on page 28

• Connecting Elements on page 48

• Queries in CCL on page 69

• Creating and Modifying Simple Queries: Filter on page 40

• Creating and Modifying Simple Queries: Aggregate on page 41

• Creating and Modifying Simple Queries: Compute on page 42

• Creating and Modifying Simple Queries: Join on page 43

• Creating and Modifying Simple Queries: Union on page 46

• Creating and Modifying Simple Queries: Pattern on page 47

Creating and Modifying Simple Queries: Filter
Produce a simple query that only passes on events with specific characteristics. Filter uses a
CCL WHERE clause.

1. In the Visual editor Palette, in Streams and Windows, click Filter ().

2. Select a location in the diagram and click to add the shape.

3. Attach the filter object to the appropriate stream or window.

Attach filter objects to any stream, window, or Flex operator. Filter objects can have only
one input.

4. To edit the value of the filter expression, select the value and change it as necessary. The
default value is 1.

CHAPTER 3: Visual Editor Authoring

40 Sybase Event Stream Processor

Any expression that evaluates to '1' is true, and passes all records through. A value of zero
is false.

5. (Optional) Use the toggle option to designate the filter object as LOCAL or OUTPUT.

See also
• Creating and Modifying Simple Queries: Aggregate on page 41

• Creating and Modifying Simple Queries: Compute on page 42

• Creating and Modifying Simple Queries: Join on page 43

• Creating and Modifying Simple Queries: Union on page 46

• Creating and Modifying Simple Queries: Pattern on page 47

• Simple Queries on page 38

Creating and Modifying Simple Queries: Aggregate
Produce a simple query that combines data, similar to the CCL GROUP BY, GROUP FILTER,
and GROUP ORDER clauses.

1. In the Visual editor Palette, in Streams and Windows, select Aggregate ().

2. Select a location in the diagram and click to add the shape.

3. Connect the Aggregate shape to an input.
The aggregate border changes from red to black, indicating that it is valid, now that it has
input.

4. Add columns:

a) Click Copy Columns from Input () in the shape toolbar to select the columns to
copy into the schema for the Aggregate window.

b) Add additional columns by clicking Add Column Expression in the shape toolbar.
c) Edit a column expression by double-clicking to open the inline editor, or by selecting

the expression and pressing Ctrl+F2 to open it in the pop-up editor.

5. Click Add GroupBy Clause () in the shape toolbar to edit the grouping of columns in
the aggregate object.

Note: The Aggregate shape must have exactly one GROUP BY expression.

6. (Optional) Click Set Keep Policy () to create a retention window.

The default policy is to keep all rows of incoming data. You can also choose to keep only
the last row, a specific number of rows, or keep the rows for a specific time. This defines the
KEEP clause. You can also go further, and retain the rows defined by the KEEP clause to
span retention across multiple specified columns. This spanning of retention across
columns is done by listing column names in the PER clause.

7. (Optional) Use the Toggle option to change the aggregate object from LOCAL to
OUTPUT.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 41

See also
• Creating and Modifying Simple Queries: Filter on page 40

• Creating and Modifying Simple Queries: Compute on page 42

• Creating and Modifying Simple Queries: Join on page 43

• Creating and Modifying Simple Queries: Union on page 46

• Creating and Modifying Simple Queries: Pattern on page 47

• Simple Queries on page 38

• Specifying a Retention Policy on page 35

Creating and Modifying Simple Queries: Compute
Produce a simple query that transforms the schema or field values of each incoming record.
Each incoming event produces one new output event from the fields defined by the column
expressions.

1. In the Visual editor Palette, in Streams and Windows, select Compute ().

2. Select a location in the diagram and click to add the shape.

3. Attach the compute object to the stream or window that provides input to this query.

Attach compute objects to any stream, window, or Flex operator. Compute objects can
have only one input. Any attempt to connect more than one input source is blocked.

4. Add columns:

a) Click Copy Columns from Input () in the shape toolbar to copy input fields into the
schema for this query.

b) Add additional columns by clicking Add Column Expression in the shape toolbar.
c) Edit a column expression by double-clicking to open the inline editor, or by selecting

the expression and pressing Ctrl+F2 to open it in the pop-up editor.

5. Add column expressions , as necessary.

6. Modify column expressions by selecting and modifying them directly, or by editing the
corresponding fields in the Properties view.

7. Use the toggle option to designate the compute object as LOCAL or INPUT.

See also
• Creating and Modifying Simple Queries: Filter on page 40

• Creating and Modifying Simple Queries: Aggregate on page 41

• Creating and Modifying Simple Queries: Join on page 43

• Creating and Modifying Simple Queries: Union on page 46

• Creating and Modifying Simple Queries: Pattern on page 47

• Simple Queries on page 38

CHAPTER 3: Visual Editor Authoring

42 Sybase Event Stream Processor

Creating and Modifying Simple Queries: Join
Produce a simple query that combines fields from multiple input events into a single output
event.

1. In the Visual editor Palette, in Streams and Windows, select Join ().

2. Select a location in the diagram and click to add the shape.

3. Connect the join object to the streams or windows that provide the inputs to the join.

Connect join objects to two or more streams, windows, or Flex operators. Join objects can
take input from two or more objects, but can produce only one output.

Note: Streams, windows and delta streams can participate in a join. However, a delta
stream may participate in a join only if it has a KEEP clause specified. Only one stream can
participate in a join. For details of supported joins, see the CCL Programmers Guide.

Tip: To add multiple connections, Shift+click and hold the Connector tool and add
connections. To return to normal selection, press Esc or click the Select tool in the Palette
to release it.

4. Use Copy Columns from Input to select input fields to include in the output of this
query.

5. Add column expressions , as necessary.

6. Edit a column expression by double-clicking to open the inline editor, or by selecting the
expression and pressing Ctrl+F2 to open it in the pop-up editor.

Or, edit the corresponding fields in the Properties view.

7. Click Add Join Condition to specify the columns to use to match incoming events
across the different sources.

Complete the Edit Join Expression dialog to define the join type, data sources for the ON
clause, and any other join constraints.

If you do not see the columns you want in the Edit Join Expression dialog, ensure you have
connected the join object to the correct input sources.

8. To join a column to itself, click Add Input Alias in the shape toolbar.

A column alias is required to provide a unique name for each join condition.

9. (Optional) Use the toggle option to designate the join object as LOCAL or OUTPUT.

10. (Optional) Select Set Keep Policy and choose an option.

To edit the keep policy, right-click the input window or stream in the Inputs menu. Select
Set Keep Policy to add a keep policy, and Delete Keep Policy to remove it.

See also
• Creating and Modifying Simple Queries: Filter on page 40
• Creating and Modifying Simple Queries: Aggregate on page 41
• Creating and Modifying Simple Queries: Compute on page 42

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 43

• Creating and Modifying Simple Queries: Union on page 46

• Creating and Modifying Simple Queries: Pattern on page 47

• Simple Queries on page 38

• Specifying a Retention Policy on page 35

• Join Types and Restrictions on page 44

Join Types and Restrictions
Determine what combination of attributes your join simple query must contain.

In order to determine what type of join simple query you want to create in ESP Studio, you
must use this reference to determine how components of your join can be attached, and what
settings to modify in the Edit Join Expression dialog box.

Note: If you have created a join using comma-separated syntax in the CCL editor, and
subsequently added an ON clause using the Edit Join Expression dialog in the Visual editor,
the WHERE clause initially created in the comma-separated syntax will not be removed. This
does not affect the result, however it will negatively affect performance.

Streams, windows, or delta streams can participate in a join. However, a delta stream can
participate in a join only if it has a keep policy defined. A join can contain any number of
windows and delta streams (with their respective keep policies), but only one stream. Self
joins are also supported. For example, you can include the same window or delta stream more
than once in a join, provided each instance has its own alias.

In a stream-window join the target can be a stream or a window with aggregation. Using a
window as a target requires an aggregation because the stream-window join does not have
keys and a window requires a key. The GROUP BY columns in aggregation automatically
forms the key for the target window. This restriction does not apply to delta stream-window
joins because use of the keep policy converts a delta stream into an unnamed window.

Event Stream Processor supports all join types:

Join Type Description

Inner Join One record from each side of the join is required for the join to
produce a record.

Left Outer Join A record from the left side (outer side) of the join is produced
regardless of whether a record exists on the right side (inner side).
When a record on the right side does not exist, any column from the
inner side has a NULL value.

Right Outer Join Reverse of left outer join, where the right side is the outer side and
the left side is the inner side of the join.

Full Outer Join A record is produced whether there is a match on the right side or
the left side of the join.

CHAPTER 3: Visual Editor Authoring

44 Sybase Event Stream Processor

Event Stream Processor also supports these cardinalities:

Type Description

One-One Keys of one side of the join are completely mapped to the keys of the other side of
the join. One incoming row produces only one row as output.

One-Many One record from the one side joins with multiple records on the many side. The
one side of the join is the side where all the primary keys are mapped to the other
side of the join. Whenever a record comes on the one-side of the join, it produces
many rows as the output.

Many-Many The keys of both side of the join are not completely mapped to the keys of the
other side of the join. A row arriving on either side of the join has the potential to
produce multiple rows as output.

Key Field Rules
Key field rules are necessary to ensure that rows are not rejected due to duplicate inserts or due
to the key fields being NULL. Because regular streams do not use primary keys, these rules
apply only to windows and delta streams.

• The key fields of the target are always derived completely from the keys of the many side of
the join. In a many-many relationship, the keys are derived from the keys of both sides of
the join.

• In a one-one relationship, the keys are derived completely from either side of the
relationship.

• In an outer join, the key fields are derived from the outer side of the join. An error is
generated if the outer side of the join is not the many-side of a relationship.

• In a full-outer join, the number of key columns and the type of key columns need to be
identical in all sources and targets. Also, the key columns require a firstnonnull expression
that includes the corresponding key columns in the sources.

When the result of a join is a window, specific rules determine the columns that form the
primary key of the target window. In a multitable join, the same rules apply because
conceptually each join is produced in pairs, and the result of a join is then joined with another
stream or window, and so on.

This table illustrates this information in the context of join types:

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 45

One-One One-Many Many-One Many-Many

INNER Keys from at least
one side should be
included in the pro-
jection list (or a
combination of
them if keys are
composite).

Keys from the right
side should be inclu-
ded in the projection
list.

Keys from the left
side should be inclu-
ded in the projection
list.

Keys from both
sides should be in-
cluded in the projec-
tion list.

LEFT Keys from the left
side alone should be
included.

Not allowed. Keys from the left
side should be inclu-
ded in the projection
list.

Not allowed.

RIGHT Keys from the right
side alone should be
included.

Keys from the right
side should be inclu-
ded in the projection
list.

Not allowed. Not allowed.

OUTER Keys should be
formed using first-

nonnull () on each
pair of keys from
both sides.

Not allowed. Not allowed. Not allowed.

These options can be defined in the Options pane of the Edit Join Expression dialog box.

Nested Joins
Several important functions are necessary to note in Event Stream Processor when
implementing a nested join. Nested join syntax is supported in CCL, but you cannot create or
edit a nested join in the Visual editor. When a nested join is defined in the CCL file, and you
switch to the Visual editor, you see an empty join compartment.

See also
• Creating and Modifying Simple Queries: Join on page 43

Creating and Modifying Simple Queries: Union
Use a union object to combine two or more input streams or windows into a single output. All
inputs must have matching schema.

1. In the Visual editor Palette, in Streams and Windows, select Union ().

2. Select a location in the diagram and click to add the shape.

3. Attach the union object to two or more inputs, which can be streams, windows, or Flex
operators.

CHAPTER 3: Visual Editor Authoring

46 Sybase Event Stream Processor

Note: To add additional inputs to the union object, you can use the Connector tool in the
Palette or the Union icon () in the shape toolbar.

4. (Optional) Use the toggle option to designate the union object as LOCAL or OUTPUT.

See also
• Creating and Modifying Simple Queries: Filter on page 40

• Creating and Modifying Simple Queries: Aggregate on page 41

• Creating and Modifying Simple Queries: Compute on page 42

• Creating and Modifying Simple Queries: Join on page 43

• Creating and Modifying Simple Queries: Pattern on page 47

• Simple Queries on page 38

Creating and Modifying Simple Queries: Pattern
Run a pattern matching query that watches for a specific pattern of incoming events on one or
more inputs and produces an output event when the pattern is detected. Pattern uses the CCL
MATCHING clause.

1. In the Visual editor Palette, in Streams and Windows, click Pattern ().

2. Select a location in the diagram and click to add the shape.

3. Connect the Pattern shape to one or more streams or windows that are the inputs to query.

4. Add columns:

a) Click Copy Columns from Input () in the shape toolbar to select the columns to
copy into the schema for the Pattern query.

This is the schema of the new event that is produced when the pattern is detected.
b) Add additional columns by clicking Add Column Expression in the shape toolbar.
c) Edit a column expression by double-clicking to open the inline editor, or by selecting

the expression and pressing Ctrl+F2 to open it in the pop-up editor.

5. Create and edit a pattern expression:

a) Click Add Pattern
b) Enter an alias for the event.
c) Enter either a time interval or parameters.
d) To define the expression, right-click Pattern to add an event. Continue right-clicking

elements of the expression to add operators and refine the event expression. Then click
Next.

e) Click Add to add a join condition.

For details of valid pattern expressions, see ON Clause: Pattern Matching Syntax in the
CCL Programmers Guide.

6. (Optional) Use the toggle option to designate the pattern object as LOCAL or
OUTPUT.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 47

See also
• Creating and Modifying Simple Queries: Filter on page 40

• Creating and Modifying Simple Queries: Aggregate on page 41

• Creating and Modifying Simple Queries: Compute on page 42

• Creating and Modifying Simple Queries: Join on page 43

• Creating and Modifying Simple Queries: Union on page 46

• Simple Queries on page 38

Connecting Elements
Connect two shapes in a diagram to create a data flow or link between them.

The Connector tool creates flows between streams and windows, establishes references
between streams and shared components, or attaches notes between shapes.

1. In the Palette view, select the Connector tool.

2. Click the shape that will produce the output.

This attaches the connector line to the first shape.

3. Click the shape that will receive the data to indicate the direction of data flow.

Indicator Meaning

Connection is allowed

Connection is not allowed

Tip: To add multiple connections, Shift+click and hold the Connector tool and add
connections. To return to normal selection, press Esc or click the Select tool in the Palette
to release it.

See also
• Simple Queries on page 38

• Shape Reference on page 24

• Adding a Simple Query on page 38

Setting Key Columns
Set primary keys in the Visual editor within the Column compartment of the delta stream,
window, and Flex operator shapes.

Multiple columns can be designated as primary keys. In the Visual editor, primary keys appear
as icons. Deduced primary keys are displayed as icons. Deduced keys are calculated
when the PRIMARY KEY DEDUCED flag is set for the target element.

CHAPTER 3: Visual Editor Authoring

48 Sybase Event Stream Processor

Note: Only delta streams and windows support PRIMARY KEY DEDUCED. You can modify
the deduced key property for these elements from the Properties view.

1. Expand the Columns compartment of the desired query object (delta stream, window, or
Flex shape).

2. Click the icon to the left of the column name to make it a primary key.
A single-key icon now designates the column as a primary key.

3. To set a primary key for query objects with a deduced primary key, click any column or
deduced key within the target stream or window.
The column you initially selected and all other deduced key columns are now primary
keys. In addition, the target stream or window is no longer PRIMARY KEY DEDUCED.

4. To remove the primary key designation from a column, click to the left of the column
name.
A column icon replaces the single key icon, indicating that the column is no longer part of
the primary key.

Editing Column Expressions for Windows, Streams, and Delta
Streams

Modify column expressions for windows, streams, and delta streams using an inline editor or
dialog-based expression editor.

1. (Optional) To add a column expression, click Add Column Expressions in the shape
toolbar.

2. Expand the Column Expressions compartment.

3. To modify a column expression, either:

• Double-Click to open the inline editor.Type into the edit box to edit the existing
expression or enter a new one. Press Ctrl+Space for a list of available columns and
functions. .

• Press Ctrl+F2 to open the expression editor. Press Ctrl+Space to show the available
input columns and built-in functions, or manually enter the expression.

• Modify the expression in the Properties view.

See also
• Column Expressions on page 50

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 49

Column Expressions
A column expression produces a result based on the value of input columns, the relationship of
column values to each other, or the computed formulas. It may include built-in or user-defined
functions, constants, parameters, or variables.

Simple Expressions
A simple CCL expression specifies a constant, NULL, or a column. A constant can be a
number or a text string. The literal NULL denotes a null value. NULL is never part of another
expression, but NULL by itself is an expression.

You can specify a column name by itself or with the name of its stream or window. To specify
both the column and the stream or window, use the format "stream_name.column_name."

Some valid simple expressions include:

• stocks.volume

• 'this is a string'

• 26

Compound Expressions
A compound CCL expression is a combination of simple or compound expressions.
Compound expressions can include operators and functions, as well as the simple CCL
expressions (constants, columns, or NULL).

You can use parentheses to change the order of precedence of the expression's components.

Some valid compound expressions include:

• sqrt (9) + 1

• ('example' + 'test' + 'string')

• (length ('example') *10) + pi()

Column Alias in Expressions
Each expression defines a unique name or alias for the column.

In the PortfolioValuation example, a derived window called VWAP takes input from an input
stream (PriceFeed) with columns Symbol, Price and TradeTime, and it includes an aggregate
expression. Columns aliases for this derived window (created in Visual editor as an aggregate
simple query) are:

Alias Column Expression

Symbol PriceFeed.Symbol

LastPrice PriceFeed.Price

CHAPTER 3: Visual Editor Authoring

50 Sybase Event Stream Processor

Alias Column Expression

VWAP (sum ((PriceFeed.Price * CAST (FLOAT , PriceFeed.Shares))) / CAST (float , sum (
PriceFeed.Shares)))

LastTime PriceFeed.TradeTime

Datatypes in Expressions
Datatypes for column expressions are inherited from the schema, either an explicitly created
inline schema, or one discovered from the input adapter. You choose from supported datatypes
in the schema editor, not in the column expression editor.

Enclose string data in expressions in single quotes, for example, 'my_string_data'.

Case Sensitivity

• All identifiers are case sensitive. This includes names of streams, windows, parameters,
variables, schemas, and columns.

• Keywords are case insensitive, and cannot be used as identifier names.
• Built-in function names (except keywords) and user-defined functions are case sensitive,

however, some built-in function names have both lowercase and mixed case forms, for
example, setOpcode and setopcode.

See also
• CCL Functions on page 70
• Operators on page 71
• Editing Column Expressions for Windows, Streams, and Delta Streams on page 49

Deleting an Element
Delete an element from the project to remove it completely, or delete it from the diagram
only.

1. Select one or more elements in the diagram.

2. Right-click and choose either:

• Delete Element — removes the element from the project.
• Delete from Diagram — removes the element from the diagram, but retains it in the

project. When you run the project, everything in the project runs, even elements that are
not on the diagram.

3. When you choose Delete Element, confirm the deletion.

See also
• Adding Shapes to a Diagram on page 28
• Keyboard Shortcuts in the Visual Editor on page 29

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 51

Adding Advanced Features to a Project
Complete your project by adding more complex operations and expressions, reusable
modules and named schemas, and custom adapters.

All of these advanced features are optional.

Complex Queries
Use the generic derived stream, derived window, and derived delta stream shapes to create
more complex continuous queries in the Visual editor than the ones you can create with the
simple query shapes.

A derived stream, derived window, or derived delta stream takes input from another stream or
window, rather than directly from an adapter, and applies a continuous query to it. All of the
simple queries in the Visual editor are a type of derived stream or derived window.

For example, to create a continuous query that applies both a set of join conditions and a
pattern matching expression, use a generic derived window.

Choose the shape type according to your input, output, and retention requirements for data,
and for preserving insert, update, and delete operations.

Table 6. Derived Stream, Derived Window, and Derived Delta Stream Rules

Shape Input Output Retains state Preserves in-
serts, updates,
and deletes

Derived Stream Another stream Stream no no

Derived Win-
dow

Another stream
or window

Window As defined in Keep
policy (default is keep
all rows)

yes

Note: In order to de-
rive a window from a
stream, a GROUP BY
clause must be inclu-
ded in the query.

Derived Delta
Stream

Another win-
dow or delta
stream

Stream no yes

Note: A delta stream
only accepts either in-
serts or deletes.

See also
• Join Types and Restrictions on page 44
• Operation Codes on page 7

CHAPTER 3: Visual Editor Authoring

52 Sybase Event Stream Processor

• Editing Column Expressions for Windows, Streams, and Delta Streams on page 49

Modularity
A module in Sybase Event Stream Processor offers reusability; it can be loaded and used
multiple times in a single project or in many projects.

Modularity means organizing project elements into self-contained, reusable components
called modules, which have well-defined inputs and outputs, and allow you to encapsulate
data processing procedures that are commonly repeated.

Modules, along with other objects such as import files and the main project, have their own
scope, which defines the visibility range of variables or definitions. Any variables, objects, or
definitions declared in a scope are accessible within that scope only; they are inaccessible to
the containing scope, called the parent scope, or to any other outer scope. The parent scope can
be a module or the main project. For example, if module A loads module B and the main
project loads module A, then module A's scope is the parent scope to module B. Module A's
parent scope is the main project.

Modules have explicitly declared inputs and outputs. Inputs to the module are associated with
streams or windows in the parent scope, and outputs of the module are exposed to the parent
scope using identifiers. When a module is reused, any streams, variables, parameters, or other
objects within the module replicate, so that each version of the module exists separately from
the other versions.

You can load modules within other modules, so that module A can load module B, which can
load module C, and so on. Module dependency loops, however, are invalid. For example, if
module A loads module B, which loads A, the CCL compiler generates an error indicating a
dependency loop between modules A and B.

The CREATE MODULE statement creates a module that can be loaded multiple times in a
project, where its inputs and outputs can be bound to different parts of the larger project. The
LOAD MODULE statement allows reuse of a defined module one or more times throughout a
project. Modularity is particularly useful when used with theIMPORT statement, which allows
you to use (LOAD) modules created in a separate CCL file.

Note: All module-related compilation errors are fatal.

Creating a Module
Add a new module to an existing project in the Visual editor.

Create modules directly in a project when you do not plan to reuse them widely across other
projects.
1. In the Visual editor Palette, in Shared Components, select Module ().

2. Select a location in the diagram and click to add the shape.
Next
Open the module to edit it by clicking the Open Module Diagram in the toolbar of the module
shape. This will open a new diagram where you can add input streams/windows, simple

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 53

queries, and derived streams/windows. When finished, return to the diagram that has the
CREATE MODULE shape, and configure the inputs and outputs, selecting from the elements
defined in the module.

See also
• Editing a Module on page 54

• Creating a Module File on page 55

• Importing Definitions from Another CCL File on page 55

• Using a Module Within a Project on page 56

• Configuring the Loaded Module on page 57

• Configuring a Module Repository on page 58

Editing a Module
Edit basic module properties and module input, output and import functions.

Prerequisites
Create the module.

Task

Specific module inputs and outputs are determined by project developers. Imported modules
have restrictions on editing, but you can modify module input and output nodes.

1. In the Visual editor, select the module to edit.

2. Edit the module name to be unique across all object names in the scope for this module,
either:

• Click the module name.
• In verbose mode, click Edit .
• Select the module, and in the Properties view modify the name value.

By default, the Properties view is in the lower left of the Authoring perspective.

3. Click Add Module Inputs ().

4. In the Module Inputs dialog, select the inputs to add or remove, then click OK.

5. Select Add Module Outputs ().

6. In the Module Outputs dialog, select the outputs to add or remove, then click OK.

7. To access and edit the contents of the CREATE MODULE statement, select Open Module
Diagram ().

8. Edit the module in the diagram that opens.

9. Add comments in the Properties view.

CHAPTER 3: Visual Editor Authoring

54 Sybase Event Stream Processor

See also
• Creating a Module on page 53

• Creating a Module File on page 55

• Importing Definitions from Another CCL File on page 55

• Using a Module Within a Project on page 56

• Configuring the Loaded Module on page 57

• Configuring a Module Repository on page 58

Creating a Module File
Create a new, separate module file that can be imported into a project.

You can create modules within a project, or in separate files that you can then import into a
project. Create separate module files if you are likely to reuse a particular module often, in
different projects. Module files are CCL files that separately hold a CREATE MODULE
statement.

1. Choose File > New > CCL Module File.

2. Enter a file name.

This becomes the module name, and must be unique across all object names in the scope
for this module.

3. (Optional) Specify a different folder.

By default, the module is created in the workspace for the current project.

4. Modify the module as required and save.

To edit the CCL, see CREATE MODULE Statement in the CCL Programmers Guide.

See also
• Creating a Module on page 53

• Editing a Module on page 54

• Importing Definitions from Another CCL File on page 55

• Using a Module Within a Project on page 56

• Configuring the Loaded Module on page 57

• Configuring a Module Repository on page 58

Importing Definitions from Another CCL File
Import a module file to use the module in your project.

You can do this either in the CCL editor using the IMPORT statement, or by using the Outline
view in the Visual editor, as described here.

1. Select the Authoring tab.

2. Open the Visual editor by clicking Switch to Visual, or pressing F4.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 55

3. If Outline view is not visible, select Window > Show View > Outline, or press Alt+Shift
+O.

4. In the Outline view, expand the Statements list.

5. Right-click the Imports statement and select Create Child > Import.

6. Select the file or files to import and click OK.

7. Expand the imported file until you see the imported module.

8. Click and drag the module anywhere in the diagram.

See also
• Creating a Module on page 53

• Editing a Module on page 54

• Creating a Module File on page 55

• Using a Module Within a Project on page 56

• Configuring the Loaded Module on page 57

• Configuring a Module Repository on page 58

Using a Module Within a Project
Create an instance of a defined module within the project, and allow the inputs and outputs of
the module to be bound to streams or windows in the project.

Existing modules, either created within the project or imported, can be used anywhere in a
project. When you use (load) a module in a project, you attach the module inputs and outputs
to streams or windows in the project by configuring bindings, and set any parameters used in
the module.

1. In the Module drawer of the Visual editor Palette, locate and select the module to add to the
project.

The Palette lists any modules defined in the current project, either in the main CCL file or
in any imported CCL files. If no CREATE MODULE statements are found, the Palette
drawer is empty.

2. Click anywhere in the diagram to place the load module.

See also
• Creating a Module on page 53

• Editing a Module on page 54

• Creating a Module File on page 55

• Importing Definitions from Another CCL File on page 55

• Configuring the Loaded Module on page 57

• Configuring a Module Repository on page 58

CHAPTER 3: Visual Editor Authoring

56 Sybase Event Stream Processor

Configuring the Loaded Module
Add or remove input and output bindings and parameter values (if any) for a specific module
instance.

Active modules are created when existing module definitions are used to create new module
instances.

1. In the diagram, select the module instance to edit.

2. To edit the name of the module instance, either:

• Click the load module instance name.
• In verbose mode, click Edit .

3. Set the input bindings by adding connectors: first expand the Input Bindings compartment
to that you can see the list of inputs. Then add connectors to the shape in the order of the list
of inputs. To see the schema for an input or how a particular input is used in the module,
you can look "inside" the module by clicking the Open Module Diagram on the shape
toolbar. This will open the model in a separate editor so that you can see the structure of the
module.

4. Output bindings will have been set automatically, and the outputs will appear on the
diagram attached to the module instance. You can rename the outputs as desired. Note: for
input bindings the schema on both sides of the binding needs to be compatible.

5. Further modify input or output bindings by selecting an individual binding in the load
module, and changing any of these options in the Properties window:

Property Value

inputStreamOrWindow Select the available input stream or window
components from the list.

streamOrWindowInModule Select the available stream or window to bind with
existing stream or window inputs.

comment (Output only) Add a comment or description of the output stream.

name (Output only) Add a name to the output stream.

6. If the module uses any parameters, Parameter bindings will be listed in the module
instance shape on the diagram. Set parameter values in the Properties View:

• parameterInModule: the parameter name.
• parameterValue: the value to set this parameter to, for this instance of the module.

7. (Optional)Click Add Store Binding (). If you omit a store binding, the default memory
store will be used. You can optionally specify a store for windows in the module.

8. Edit the store binding by selecting and modifying the available fields in the Properties
window:

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 57

• storeInModule – the classification of the string, by default NULL.
• storeValue – value phrase that defines the parameter binding

9. To access input or output windows used inside a load module, select Open Module
Diagram ().

See also
• Creating a Module on page 53

• Editing a Module on page 54

• Creating a Module File on page 55

• Importing Definitions from Another CCL File on page 55

• Using a Module Within a Project on page 56

• Configuring a Module Repository on page 58

Configuring a Module Repository
Create a folder in which to store modules and configure the Studio to use it.

Modules are reusable blocks of CCL containing one or more CREATE MODULE statements.
A module repository is a directory that contains these files. Once this directory has been
created and configured in Studio, modules can be stored in it and loaded into projects using the
Studio Palette.

1. Create a new folder, or select an existing folder, to serve as the module repository.

2. In Studio, click Edit > Preferences > Sybase Event Stream Studio .

3. Enter the full path to the folder you want to use as the module repository in the Module
Repository Directory field.

4. Click Apply.

5. Click OK.

See also
• Creating a Module on page 53

• Editing a Module on page 54

• Creating a Module File on page 55

• Importing Definitions from Another CCL File on page 55

• Using a Module Within a Project on page 56

• Configuring the Loaded Module on page 57

CHAPTER 3: Visual Editor Authoring

58 Sybase Event Stream Processor

Stores
Set store defaults, or choose a log store or memory store to determine how data from a window
is saved.

Every window is assigned to a store, which holds the retained records. By default, all windows
are assigned to a memory store. Additional stores can be created to add data recoverability and
to optimize performance. Windows can then be assigned to specific stores.

You can also create a default store explicitly with the CREATE DEFAULT STORE statement.
By stipulating default store settings you can determine store types and locations in the event
that you do not assign new windows to specific store types.

Log Stores
The log store holds all data in memory, but also logs all data to the disk, meaning it guarantees
data state recovery in the event of a failure. Use a log store to be able to recover the state of a
window after a restart.

Log stores are created using the CREATE LOG STORE statement. You can set a log store as a
default store using the CREATE DEFAULT STORE statement, which overrides the default
memory store.

Memory Stores
A memory store holds all data in memory. Memory stores retain the state of queries for a
project from the most recent server start-up for as long as the project is running. Because query
state is retained in memory rather than on disk, access to a memory store is faster than to a log
store.

Memory stores are created using the CREATE MEMORY STORE statement. If no default store
is defined, new windows are assigned to a memory store automatically. You can use either of
the relevant statements shown above to determine specific memory store behavior and set
default store settings.

Creating a Log Store
Create a log store to allow recovery of data in a window in the event of a server shutdown or
failure.

Prerequisites
Consult with your system administrator on the size, number, and location of log stores, to
ensure optimal performance.

Task

1. In the Visual editor Palette, in Shared Components, click Log Store.

2. Select a location in the diagram and click to add the shape.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 59

3. Connect the log store to a window.

4. Click Set Store Properties and modify property values.

Note: The table lists property names first as shown in the Properties dialog, then as shown
in the Properties compartment of the store shape.

Table 7. Log Store Properties

Property Description

File name (FILENAME) The absolute or relative path to the folder where
log store files are written. A relative path is
preferred.

Max Size (GB) (MAXFILESIZE) The maximum size of the log store file in MB.
Default is 8MB.

Sweep Amount (%) (SWEEPAMOUNT) The amount of data, in megabytes, that can be
cleaned in a single pass. Default is 20 percent of
maxfilesize.

Reserve Percentage (%) (RESERVEPCT) The percentage of the log to keep as free space.
Default is 20 percent.

Ck Count (CKCOUNT) The maximum number of records written be-
fore writing the intermediate metadata. Default
is 10,000.

Sync (SYNC) Specifies whether the persisted data is updated
synchronously with every stream being upda-
ted. A value of true guarantees that every record
acknowledged by the system is persisted at the
expense of performance. A value of false im-
proves performance, but it may result in a loss
of data that is acknowledged, but not yet per-
sisted. Default is false.

5. (Optional) Select Default to make this the default store for the project (or module).

See also
• Creating a Memory Store on page 61

CHAPTER 3: Visual Editor Authoring

60 Sybase Event Stream Processor

Creating a Memory Store
Create a memory store to retain the state of continuous queries in memory, from the most
recent server startup.

Prerequisites
Consult with your system administrator on the type, number, and index values for memory
stores, to ensure optimal performance.

Task

1. In the Visual editor Palette, in Shared Components, click Memory Store.

2. Select a location in the diagram and click to add the shape.

3. Connect the memory store to a window.

4. Specify a name for the store that is unique within its scope for the project or module.

5. (Optional) Click Set Store Properties and modify property values.

Table 8. Memory Store Properties

Property Description

Index Size Hint (KB) (IN-
DEXSIZEHINT)

(Optional) Determines the initial number of elements in the hash
table, when using a hash index. The value is in units of 1024.
Setting this higher consumes more memory, but reduces the chan-
ces of spikes in latency. Default is 8KB.

Index Kind (INDEXTYPE) The type of index mechanism for the stored elements. Default is
Tree.

Use Tree for binary trees. Binary trees are predictable in use of
memory and consistent in speed.

Use Tree for hash tables, as hash tables are faster, but they often
consume more memory.

6. (Optional) Select Default to make this the default store for the project (or module).

See also
• Creating a Log Store on page 59

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 61

Flex Operators
Flex operators are custom operators that let you write SPLASH scripts to operate on incoming
events.

Flex operators extend the type of business logic that can be applied to incoming events, beyond
what you can do with standard CCL or SQL queries. They extend CCL by allowing you to
write individual event handlers in SPLASH.

A Flex operator can take any combination of windows and streams as inputs, and produces an
output stream or window according to the logic contained in the attached SPLASH scripts.

See also
• SPLASH on page 11

Creating a Flex Operator in the Visual Editor
Create a Flex operator to add an event handler written in SPLASH to the project.

1. In the Visual editor Palette, in Streams and Windows , select Flex ().

2. Click anywhere in the diagram to place the Flex operator.

3. To set the name of the Flex operator, either:

• Click and press F2 to edit the operator name, or,
• In verbose mode, click the edit icon next to the name.

4. Connect the Flex shape to the appropriate input streams or windows.

Note: When you connect a stream or window to a Flex operator, by default the source is
added as an input to the Flex shape, and an On Input method is created from the source
stream or window.

5. Click Add Columns to define the schema of the events produced by the Flex operator,
or set the schema to a named schema in the Properties View.

6. For each input to the Flex operator, the visual editor automatically adds a null input
method. To add input methods without first connecting the Flex shape to an input, use the
Add On Input Method in the shape toolbar.

Each method is a SPLASH script that is invoked when an event arrives on the associated
input. In other words, these are event handlers.

a) To edit the SPLASH script for each method, make sure the Flex shape is selected, and
press F4 to switch to the CCL editor.
The CCL editor opens with the cursor at the CREATE FLEX statement.

b) Edit the SPLASH script.
c) Press F4 to switch back to the Visual editor.

7. (Optional) Add an aging policy.

CHAPTER 3: Visual Editor Authoring

62 Sybase Event Stream Processor

8. (Optional) Click Set Output Keep Policy and set keep policy options.

See also
• Specifying a Retention Policy on page 35

• Setting an Aging Policy on page 63

Creating a Schema in the Visual Editor
Create a shared schema object that can be referenced from any number of streams or windows.

1. In the Palette menu under the Shared Components category, select Named Schema
().

2. Click anywhere in the Visual editor to place the schema.

3. Set the name of the schema by either:

• Double-clicking the name label, or,
• Editing the name field from within the Properties window.

4. Click Add Columns () to add individual columns.

5. Edit column names and datatypes.

6. Optional Connect the schema to one or more streams or windows using the connector tool.
Note: after selecting the connector tool, click the stream or window shape first, then the
schema shape.

Setting an Aging Policy
An aging policy can be set to flag records that have not been updated within a defined interval.
This is useful for detecting records that may be "stale".

Aging policies are an advanced, optional feature for a window or other stateful element.

1. Select Set Aging Policy and set values:

Value Description

Aging Time This is an interval value. Any record in the window that has not
been updated for this much time will have the Aging Field
incremented. When the record is updated (or the Aging Time
Field changes), the timer will be reset. The period can be
specified in hours, minutes, seconds, milliseconds, or micro-
seconds.

Aging Field The field in the record that must be incremented by 1 every
time the aging time period elapses and no activity has occurred
on the record, or until a maximum defined value is reached. By
default, this value is 1.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 63

Value Description

(Optional) Max Aging Field
Value

The maximum value that the aging field can be incremented to.
If not specified, the aging field is incremented once.

(Optional) Aging Time Field The start time of the aging process. If not specified, the internal
row time is used. If specified, the field must contain a valid
start time.

2. (Optional) Double-click the policy to edit its parameters.

When the project runs, records accumulate until the Aging Time or the Max Aging Field Value
is reached. On an update to a record, the age is reset to 0.

Monitoring Streams for Errors
Modify a project to use error streams to keep track of errors in other streams in the project.

Error streams collect information from other streams about errors. Use error streams for
debugging projects in development and monitoring projects in a production environment.

1. Identify the project and the specific streams to monitor.

2. Determine whether you want to use multiple error streams. Determine the visibility for
each error stream.

3. Create the error stream in the project.

4. Display information from the error stream.

Creating an Error Stream
Add a special type of stream that collects errors and the records that cause them from other
streams in a project.

Whether you are debugging a project in development or monitoring a project in production
mode, error streams let you see errors and the records that cause them in other streams in real
time.

Note: An error stream cannot monitor other error streams.

1. In the Visual editor, open the project.

2. Click the error stream shape in the Palette, then click an empty area in the diagram.

3. Click the + (plus) sign.
You see a list of streams in the project that can be monitored.

4. Specify the streams you want to monitor: click Select All or click each stream to monitor,
then click OK.
The streams you specified are connected to the Error Stream by red lines indicating that
they are sending error information.

CHAPTER 3: Visual Editor Authoring

64 Sybase Event Stream Processor

Displaying Error Stream Data
By default, error streams are LOCAL, but you can make their information available outside of
the project.

In production mode, project monitoring may be performed externally. .

1. In the Visual editor, open the project.

2. To enable real-time monitoring of errors encountered by the project, click the Typeicon in
the Error Stream to toggle it from LOCAL to OUTPUT.

3. To enable ad hoc SQL queries, add a window (for example, ErrorState) to the project,
downstream from the error stream.
The ErrorState window preserves the state of the error stream so it can be queried using the
esp_query utility.

Modifying an Error Stream
When you are debugging a project in development or monitoring a project in production
mode, you may want to change the specific streams that an error stream is monitoring.

Note: An error stream cannot monitor other error streams.

1. In the Visual editor, open the project.

2. Locate the Error Stream shape in the work area and review the list of input streams.

3. Click the + (plus) sign, then click each stream to monitor, click OK. Or, use the Connector
in the Palette to connect an input stream to the error stream.
A red line connects each stream to the Error Stream and the new stream names appear on
the Inputs list.

4. To remove input streams from the error stream, click the X in a red circle, then select each
stream to remove. Click OK.
The red lines connecting the streams to the Error Stream and the stream names on the
Inputs list are removed.

Switching Between the CCL and Visual Editors
Change between the two editors to maximize Studio's flexibility for creating and editing a
project.

• To switch from the CCL editor to the Visual editor, right-click and choose Switch to
Visual (F4), or click in the main toolbar.

• To switch from the Visual editor to the CCL editor, right-click in the diagram and choose
Switch To Text (F4), or click in the main toolbar.

See also
• Creating a Project on page 16

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 65

• Opening a Project on page 18

• Importing an Existing Project on page 19

• Editing a Project in the Visual Editor on page 27

Splitting Inputs into Multiple Outputs
The Splitter construct is a multi-way filter that sends data to different target streams depending
on the filter condition. It works similar to the ANSI 'case' statement.

You can create a Splitter to provide an operator that can split an input into multiple outputs.

1. In the Visual editor workspace, in the Palette menu under the Streams and Windows
category, select Splitter.

2. Select a location in the diagram and click to add the shape.

3. To set the name of the Splitter, either:

• Click to edit the shape name, or, press F2.
• In verbose mode, click the Edit icon next to the name.

4. (Optional) Click to make it an output (instead of local) if you want the splitter outputs to
be visible via subscription in the runtime model.

5. Connect the splitter to a single Input Stream or a Window.

6. (Optional) Add or remove Column Expressions for the splitter.

7. Create the splitter logic using Add When and Add Else . This will create the splitter
output elements.

8. (Optional) Connect the splitter output elements of the splitter to other Streams or
Windows.

CHAPTER 3: Visual Editor Authoring

66 Sybase Event Stream Processor

CHAPTER 4 CCL Editor Authoring

The CCL editor is a text authoring environment within ESP Studio for editing CCL code.

You can work in the CCL editor exclusively, or use it as a supplement to the Visual editor. The
CCL editor offers syntax completion options, syntax checking, and error validation.

A single CCL file can be open in only one editor at a time. The Visual and CCL editors are
completely integrated: when you save and switch to the other editor, your work is saved there
as well.

Most users new to Event Stream Processor find it easier to get started in the Visual editor. As
you gain experience with the product, and learn to successfully compile and run a simple
project, you may want to use the CCL editor to add advanced features to your projects.

For example, you can add:

• Complex queries that exceed the capabilities of the Visual editor
• DECLARE blocks for declaring project variables, parameters, datatypes, and functions
• SPLASH event handlers that you invoke with Flex operators
• User-defined functions
• Reusable modules and schemas that can be used multiple times in a project, or across

projects

For CCL language details, see the CCL Programmers Guide.

Editing in the CCL Editor
Update and edit CCL code as text in the Studio CCL editor.

1. Click the Authoring tab.

2. In File Explorer, expand the project container, and double-click the .ccl file name to
open it in the CCL editor.

Note: Advanced CCL users can include multiple CCL files in the same project, by using an
IMPORT statement to import shared schemas and module definitions from another file.

3. Begin editing text in the CCL editor window.

Tip: If you open a .ccl file in the CCL editor when the same project is open in the Visual
editor, the CCL editor opens in read-only mode and you cannot edit the file.

Close both the Visual editor and CCL editor for the project, and then reopen the project in
the CCL editor.

Studio Users Guide 67

Note: Backslashes within string literals are used as escape characters. Any Windows
directory paths must therefore be specified with two backslashes.

4. (Optional) Press Ctrl+Space to show a syntax completion proposal.

5. (Optional) To insert CREATE statement template code, right-click, choose Create, and
then choose the element to create.

6. Choose File > Save (Ctrl+S) to save the .ccl file and the project.

See also
• File Explorer on page 14

• Switching Between the CCL and Visual Editors on page 65

• Compiling a Project on page 93

CCL Editor Features
Several features simplify the process of editing CCL code in the Studio CCL editor.

Table 9. CCL Editor Features

Feature Description

Completion Proposals Activate completion proposals in workspace [Ctrl + Space]

Case-Insensitive Syntax High-
lighting

Done automatically when editing CCL code

Error Validation/Syntax Check-
ing

Access the Problems view to see errors in CCL code

Compile and Report Compila-
tion Errors

Access the Problems view to see errors in CCL code

Keyboard Shortcuts in the CCL Editor
Use keyboard shortcuts to access various functions quickly within the CCL editor.

Key Action

F3 Jump to declaration

F4 Toggle between the Visual and CCL editor

F6 Reorder CCL statements

F7 Compile

CHAPTER 4: CCL Editor Authoring

68 Sybase Event Stream Processor

Key Action

F11 Toggle between Authoring and Run-Test perspective

Ctrl + N Opens new project file

Ctrl + Y Redo

Ctrl + Z Undo

Ctrl + Shift + L List all keyboard shortcut assignments

Searching for Text
Find text in CCL code.

1. Choose Search > File.

You can also start a new search from the link in the Search view, when no search results are
visible.

2. Enter search criteria in the dialog.

3. Choose either:

• Search to show results, or
• Replace to replace results.

4. Review results in the Search view and choose from options in the Search toolbar.

Tip: Double-click a match to highlight it in the CCL editor.

Queries in CCL
CCL queries are attached to derived streams or windows to select data from one or more inputs
and transform it into the desired output.

CCL embeds queries within CREATE STREAM, CREATE WINDOW and CREATE DELTA
STREAM statements in the same way that standard SQL uses CREATE VIEW statements.
Unlike SQL, in CCL, SELECT is not a statement but rather is a clause used within a CREATE
object_type statement.

Where the Visual editor lets you select data using visual components referred to as simple
queries, these queries are actually CCL statements that create a stream or window with an
attached query.

To develop queries in CCL, see the CCL Programmers Guide:

CHAPTER 4: CCL Editor Authoring

Studio Users Guide 69

• In Statements, see CREATE STREAM, CREATE WINDOW, and CREATE DELTA
STREAM statements for clauses they support

• In Clauses, see syntax and usage details

See also
• Simple Queries on page 38

Creating a Schema in the CCL Editor
Enter a CREATE SCHEMA statement using the CCL editor to provide users with a shared
schema object that can be referenced from any number of streams or windows.
In the CCL editor, enter valid CCL for the CREATE SCHEMA statement.

• Enter text manually.
• Choose Create > Schema, and edit the draft CCL code as needed.

For example, this statement creates a shared schema object named SchemaTrades1, with four
columns:
CREATE SCHEMA SchemaTrades1 (
Symbol STRING ,
Seller STRING ,
Buyer STRING ,

CCL Functions
A function is a self-contained, reusable block of code that performs a specific task.

The Sybase Event Stream Processor supports:

• Built-in functions - including aggregate, scalar and other functions
• User-defined SPLASH functions
• User-defined external functions

Built-in functions come with the software and include functions for common mathematical
operations, aggregations, datatype conversions, and security.

Order of Evaluation of Operations
Operations in functions are evaluated from right to left. This is important when variables
depend on another operation that must pass before a function can execute because it can cause
unexpected results. For example:

integer a := 1;
integer b := 2;
max(a + b, ++a);

CHAPTER 4: CCL Editor Authoring

70 Sybase Event Stream Processor

The built-in function max(), which returns the maximum value of a comma-separated list of
values, returns 4 since ++a is evaluated first, so max(4, 2) is executed instead of max(3,
2), which may have been expected.

Operators
CCL supports a variety of numeric, nonnumeric, and logical operator types.

Arithmetic Operators
Arithmetic operators are used to negate, add, subtract, multiply, or divide numeric values.
They can be applied to numeric types, but they also support mixed numeric types. Arithmetic
operators can have one or two arguments. A unary arithmetic operator returns the same
datatype as its argument. A binary arithmetic operator chooses the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data-type, and
returns that type.

Operator Meaning Example Usage

+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (Remainder) 8%3

^ Exponent 4^3

- Change signs -3

++ Increment

Preincrement (++argument) value is incremented before it
is passed as an argument

Postincrement (argument++) value is passed and then in-
cremented

++a (preincrement)

a++ (postincre-
ment)

-- Decrement

Predecrement (--argument) value is decremented before it
is passed as an argument

Postdecrement (argument--) value is passed and then de-
cremented

--a (predecrement)

a-- (postdecrement)

CHAPTER 4: CCL Editor Authoring

Studio Users Guide 71

Comparison Operators
Comparison operators compare one expression to another. The result of such a comparison
can be TRUE, FALSE, or NULL.

Comparison operators use this syntax:
expression1 comparison_operator expression2

Operator Meaning Example Us-
age

= Equality a0=a1

!= Inequality a0!=a1

<> Inequality a0<>a1

> Greater than a0!>a1

>= Greater than or equal to a0!>=a1

< Less than a0!<a1

<= Less than or equal to a0!<=a1

IN Member of a list of values. If the value is in the expression list's
values, then the result is TRUE.

a0 IN (a1, a2, a3)

Logical Operators

Operator Meaning Example Usage

AND Returns TRUE if all expressions are TRUE, and FALSE oth-
erwise.

(a < 10) AND (b >
12)

NOT Returns TRUE if all expressions are FALSE, and TRUE oth-
erwise.

NOT (a = 5)

OR Returns TRUE if any of the expressions are TRUE, and
FALSE otherwise.

(b = 8) OR (b = 6)

XOR Returns TRUE if one expression is TRUE and the other is
FALSE. Returns FALSE if both expressions are TRUE or both
are FALSE.

(b = 8) XOR (a > 14)

CHAPTER 4: CCL Editor Authoring

72 Sybase Event Stream Processor

String Operators

Operator Meaning Example Usage

+ Concatenates strings and returns another string.

Note: The + operator does not support mixed datatypes (such
as an integer and a string).

'go' + 'cart'

LIKE Operator
May be used in column expressions and WHERE clause expressions. Use the LIKE operator to
match string expressions to strings that closely resemble each other but do not exactly match.

Operator Syntax and Meaning Example Usage

LIKE Matches WHERE clause string expressions to strings that
closely resemble each other but do not exactly match.

compare_expression LIKE pat-
tern_match_expression

The LIKE operator returns a value of TRUE if compare_ex-

pression matches pattern_match_expression, or FALSE if
it does not. The expressions can contain wildcards, where the
percent sign (%) matches any length string, and the under-
score (_) matches any single character.

Trades.StockName
LIKE "%Corp%"

[] Operator
The [] operator is only supported in the context of dictionaries and vectors.

Operator Syntax and Meaning Example Usage

[] Allows you to perform functions on rows other than the cur-
rent row in a stream or window.

stream-or-window-name[index].column

stream-or-window-name is the name of a stream or window
and column indicates a column in the stream or window.
index is an expression that can include literals, parameters, or
operators, and evaluates to an integer. This integer indicates
the stream or window row, in relation to the current row or to
the window's sort order.

MyNamedWind-
ow[1].MyColumn

Order of Evaluation for Operators
When evaluating an expression with multiple operators, the engine evaluates operators with
higher precedence before those with lower precedence. Those with equal precedence are
evaluated from left to right within an expression. You can use parentheses to override operator

CHAPTER 4: CCL Editor Authoring

Studio Users Guide 73

precedence, since the engine evaluates expressions inside parentheses before evaluating those
outside.

Note: The ^ operator is right-associative. Thus, a ^ b ^ c = a ^ (b ^ c), not (a ^ b) ^ c.

The operators in order of preference are as follows. Operators on the same line have the same
precedence:

• +.- (as unary operators)
• ^
• *, /, %
• +, - (as binary operators and for concatenation)
• =, !=, <>, <, >, <=, >= (comparison operators)
• LIKE, IN, IS NULL, IS NOT NULL
• NOT
• AND
• OR, XOR

Adding Tooltip Comments for the Visual Editor in CCL
Write comments in CCL that appear as tooltips for shapes in the Visual editor.

If you want comments to appear as tooltips in the Visual editor, you must insert a comment
immediately preceding the declaration statement for the corresponding shape in this form:
/**InsertTooltipCommentHere*/

Here is an example, in CCL, of a tooltip comment for an Input Window shape in the Visual
editor.

/**InputWindowInStudio*/
CREATE INPUT WINDOW InputWindow1 ;

Comments inputted into the CCL editor in this manner will appear as tooltips in the Visual
editor when the corresponding shapes are hovered over.

Note: 'Show comments in tooltip' must be enabled in Preferences.

CHAPTER 4: CCL Editor Authoring

74 Sybase Event Stream Processor

CHAPTER 5 Project Configurations

A project configuration is an XML document that governs specific runtime properties of a
project, including stream URI bindings, adapter properties, parameter values, and advanced
deployment options.

Project configuration files are created and edited separately from the project they are attached
to, and are identified by their .ccr file extension. View and edit project configuration files in
the File Explorer view in the Authoring perspective.

Configuration files maintain all run-time properties outside the CCL. Thus, you can maintain
CCL and CCX files under version control, while varying run-time properties. This allows a
project to be moved from a test environment to a production environment without modifying
the CCL and CCX files.

By default, when a new project is created, a new project configuration file is also created. New
configuration files are also created when Aleri models are converted to Event Stream
Processor projects. One project may have multiple configuration files attached to it, so you can
manually create new project configurations.

Creating a Project Configuration
Create a project configuration and edit configuration properties. When you create a new
project, a project configuration file is automatically generated. However, you can create
additional project configuration files as follows:

1. Select File > New > Project Configuration.

2. Select the folder in which to store the new configuration file, and assign it a file name.

3. Click Finish.
You see the CCR Project Configuration Editor window.

See also
• Opening an Existing Project Configuration on page 76

• Project Configuration File Editor on page 76

• Advanced Project Deployment Options on page 83

Studio Users Guide 75

Opening an Existing Project Configuration
Open an existing project configuration file.

By default, new projects create a project configuration so each project has at least one existing
project configuration.

1. Select Window > Open Perspective > Authoring or click the Authoring tab.

2. Select Window > Show View > File Explorer.

3. Locate the project configuration file, which appears as <projectname>.ccr. Double-
click to open the file.

See also
• Creating a Project Configuration on page 75

• Project Configuration File Editor on page 76

• Advanced Project Deployment Options on page 83

Project Configuration File Editor
Using the CCR Project Configuration File Editor you can select one of five categories of
information and edit in the project configuration file.

The CCR Project Configuration File Editor has five tabs, each one corresponding to one of the
five categories of project configuration information.

See also
• Creating a Project Configuration on page 75

• Opening an Existing Project Configuration on page 76

• Advanced Project Deployment Options on page 83

Editing Cluster Parameters in Project Configuration
Configure local or remote clusters that your project can connect to for input. These clusters
can then be used when configuring bindings.

1. In the CCR Project Configuration Editor window, select the Clusters tab.

2. Click the name of an existing cluster in the All Clusters pane to edit that cluster's
information or click Add to add a new cluster .
The editor displays the Cluster Details pane.

3. Enter the requested information in the Cluster Details pane.

CHAPTER 5: Project Configurations

76 Sybase Event Stream Processor

Field Description

Name Enter the hostname of the cluster.

Type Toggle between local (no server information necessary) and
remote (server information must be known) cluster connection
options.

User Name Enter a user name to use when logging in to the cluster.

Password Enter a password to use when logging in to the cluster.

4. (Optional) Click Encrypt after entering the user name or password.

a) Fill in the required fields in the Content Encryption pane, including Cluster URI
(comprised of your host name and port number (<HOST>:<PORT>) and credential
fields.

b) Click Encrypt.
The editor redisplays Cluster Details pane with the field you chose to encrypt (either
the user name or password) filled with randomized encryption characters.

Note: To reset the encryption, click Encrypt beside the appropriate field and click
Reset when theAlready Encrypted pop-up is displayed.

5. To add a master cluster and children cluster nodes:

a) In Cluster Details, select remote as the type.
b) Right-click the cluster and select New > Cluster Manager.
c) Configure each cluster node by selecting it and adding host and port information in the

Cluster Manager field in the Cluster Manager Details pane.

See also
• Editing Bindings in Project Configuration on page 77

• Editing Adapter Property Sets in Project Configuration on page 79

• Setting Parameters in Project Configuration on page 80

• Editing Advanced Options in Project Configuration on page 80

Editing Bindings in Project Configuration
Configure bindings between input streams or windows in a project to output streams or
windows in other projects.

Prerequisites
You must have verified that the streams or windows you want to bind have:

• Compatible schema.
• The same datatype for each field name.
• The same column order.

CHAPTER 5: Project Configurations

Studio Users Guide 77

• The same number of columns.

Task

Projects can be bound to other projects, allowing one project's input stream or window to
receive its input from the output stream or window of another project. Binding projects is
similar to attaching an input adapter to an input stream or window, but is more efficient as it
directly connects the output of one project to the input of the other. Stream binding is only
supported from the receiving project. You cannot initiate a binding from the publishing side.

Bindings can be local, within the same cluster, or can connect a project in one cluster to a
project in a different cluster. Binding information is specified in the project configuration
(CCR) file so that binding references may be changed at runtime, allowing the project to be
used in multiple environments.

1. In the CCR Project Configuration editor, select the Bindings tab.

2. To add a binding, click Add, or to display a list of available streams/windows, click
Discover.

3. To configure individual binding items, use the Binding Details pane on the right side of
the CCR Project Configuration editor.

Field Description

Binding name (Optional) Apply a name to the binding.

Local stream/window Enter the local stream/window information (for example, localStream1)
or click Discover to view and select from a list of running streams/
windows.

Cluster Select the cluster to bind to.

Note: You must have previously defined one or more clusters in the
Run-Test perspective and added the cluster of interest in the Cluster tab.

Workspace Enter the workspace data (for example, ws1) or click Discover to view
and select from a list of running workspaces.

Project Enter the project to access (for example, project1) or click Discover to
view and select from a list of running projects.

Remote stream/win-
dow

Enter the remote stream/window information (for example, remote-
Stream1) or click Discover to view and select from a list of running
streams/windows.

4. To remove a binding, select it, and click Remove.

See also
• Editing Cluster Parameters in Project Configuration on page 76
• Editing Adapter Property Sets in Project Configuration on page 79
• Setting Parameters in Project Configuration on page 80

CHAPTER 5: Project Configurations

78 Sybase Event Stream Processor

• Editing Advanced Options in Project Configuration on page 80

Editing Adapter Property Sets in Project Configuration
Use the CCR Project Configuration editor to configure adapter property sets in a project
configuration file. Property sets are reusable sets of properties that are stored in the project
configuration file. Using an adapter property set also allows you to move adapter
configuration properties out of the CCL file and into the CCR file.

Property sets appear in a tree format, and individual property definitions are shown as children
to property sets.

1. In the CCR Project Configuration editor, select the Adapter Properties tab.

2. To create a new adapter property node, click Add.

3. In the Property Set Details pane, define a name for the property node.

4. To add a new property to a property set, right-click the set and select New > Property.

Note: You can add as many property items to a property set as required.

5. To configure a property:

a) In the Property Details pane, define a name for the property.
b) Enter a value for the property.

6. (Optional) To encrypt the property value:

a) Select the property value and click Encrypt.
b) Enter the required fields, including Cluster URI and credential fields.
c) Click Encrypt.

The value, and related fields are filled with randomized encryption characters.

Note: To reset the encryption, click Encrypt beside the appropriate field. Change the
values, as appropriate, then click Reset.

7. To remove items from the All Adapter Properties list:

• Right-click a property set and select Remove, or
• Right-click a property and select Delete.

See also
• Editing Cluster Parameters in Project Configuration on page 76

• Editing Bindings in Project Configuration on page 77

• Setting Parameters in Project Configuration on page 80

• Editing Advanced Options in Project Configuration on page 80

CHAPTER 5: Project Configurations

Studio Users Guide 79

Setting Parameters in Project Configuration
Edit parameter definitions and remove deleted parameters.

The list of parameter definitions is automatically populated based on parameters within any
CCL documents in the project folder. You can change parameter definition values. You can
also remove parameters if the definition has been deleted from the CCL document.

1. Select the Parameters tab in the CCR Project Configuration editor.

2. To modify a parameter value, click the parameter and change the value in the Parameter
Details pane.

Note: You cannot modify the parameter Name field.

3. To remove deleted parameter definitions from the list, select Remove, which is located at
the top of the list.

Note: A parameter definition marked as (removed) has been deleted from the original
CCL file and can be removed from the parameter definition list.

See also
• Editing Cluster Parameters in Project Configuration on page 76
• Editing Bindings in Project Configuration on page 77
• Editing Adapter Property Sets in Project Configuration on page 79
• Editing Advanced Options in Project Configuration on page 80

Editing Advanced Options in Project Configuration
Modify project deployment properties, project options, and instances in a project
configuration file.

1. In the CCR Project Configuration editor, select the Advanced tab.

2. If no project deployment item exists, select Add.

3. Choose a project deployment type from the Project Deployment Details window. The
options are:

Type Description

Non-HA Non-HA deployments create one project option item and one instance item as
children under the project deployment item.

HA HA deployments create one project option item and two instance items as
children under the project deployment item. HA provides for hot project fail-
over between instances.

4. To add an option, right-click the project options item and select New > option.

This table outlines all available project options that can be set using the Project
Configuration view in ESP Studio:

CHAPTER 5: Project Configurations

80 Sybase Event Stream Processor

Project Option Description

on-error-discard-record If set to true, the record being computed is discarded when a com-
putation failure occurs. If set to false, any uncomputed columns are
null-padded and record processing continues. The default value is
true.

Note: If the computation of a key column fails, the record will be
discarded regardless of this option.

on-error-log If set to true, any computation errors that occur will be logged in the
error message. The default value is true.

java-classpath Set the java classpath. Value is a filepath to the classpath file.

java-max-heap Set the max java heap for the project. Default value is 256 megabytes.

utf8 Enable UTF-8 functionality on the server (by default, this is feature is
off). Default value is false, set to true to enable.

precision Set decimal display characteristics for number characters in the
project. Default value is 6.

command-port Set the command port number. This advanced option should not
generally be set. If the port is 0, or out of range 1-65535, the program
selects an arbitrary port. To define a specific port, set a value between
1 and 65535.

sql-port Set the SQL port number. This advanced option should not generally
be set. If the port is 0, or out of range 1-65535, the program selects an
arbitrary port. To define a specific port, set a value between 1 and
65535.

gateway-port Set the gateway port number. This advanced option should not gen-
erally be set. If the port is 0, or out of range 1-65535, the program
selects an arbitrary port. To define a specific port, set a value between
1 and 65535.

time-granularity Define time granularity within the project. This option specifies, in
seconds, how often the set of performance records—one per stream
and one per gateway connection—is obtained from the running
Event Stream Processor. By default, time granularity is set to 5. Set
this option to 0 to disable monitoring; this also optimizes perform-
ance.

CHAPTER 5: Project Configurations

Studio Users Guide 81

Project Option Description

debug-level Set a logging level for debugging the project, ranging from 0-7.
Where each number is represents the following:
• 0: LOG_EMERG - system is unusable
• 1: LOG_ALERT - action must be taken immediately
• 2: LOG_CRIT - critical conditions
• 3: LOG_ERR - error conditions
• 4: LOG_WARNING - warning conditions
• 5: LOG_NORMAL - normal but significant conditions
• 6: LOG_INFO - informational
• 7: LOG_DEBUG - debug level messages

Note: When changing settings, stop and remove the project from the
Server, then redeploy the project.

bad-record-file To save bad records to a file, select the bad-record-file option for
Project Type, and indicate the file name of an ESP project for Value
Field. If a file name is not specified, bad records are discarded.

memory Set memory usage limits for the project. Default is 0, meaning un-
limited.

optimize Suppresses redundant store updates. Default value is false, set to true
to enable.

ignore-config-topology Enable this to ignore topology between projects. Default is false, set
to true to enable.

time-interval Set the constant interval expression that specifies the maximum age
of rows in a window. By default, in seconds, set to 0, meaning no
timer.

Note: Each project option can only be added once. Implemented project options are no
longer available in the drop-down list.

5. To configure an option item, complete these fields:

Option Description

Name Select from the list of available options shown in the above table.

Value Enter a value for the property option.

6. To add an affinity under the instance item, right-click the instance item and select New >
affinity. Complete these fields:

Option Description

Name Enter a name for the affinity item.

CHAPTER 5: Project Configurations

82 Sybase Event Stream Processor

Option Description

Strength Select a strength level.

Type Select a type. (for example, controller).

Charge Select a charge.

7. To remove items from the All Advanced Configurations list:

• Select a project deployment item and click Remove.
• Right-click an option or affinity item and select Delete.

See also
• Editing Cluster Parameters in Project Configuration on page 76

• Editing Bindings in Project Configuration on page 77

• Editing Adapter Property Sets in Project Configuration on page 79

• Setting Parameters in Project Configuration on page 80

• Advanced Project Deployment Options on page 83

Advanced Project Deployment Options
Project deployment options determine how your project is deployed in a cluster and how it
functions at runtime. These parameters, including project options, active-active instances,
failover intervals, and project deployment type options, are set in the CCR file manually or
within Studio.

Active-Active Deployments
Active-active deployments are available only when you define the project as an ha-
project in the CCR file. An active-active deployment means that two instances of a project
run simultaneously in a cluster. The two instances of the project are started by the cluster
manager on two different hosts.

One instance of the project is elected as primary instance. If one of the instances is already
active, it is the primary instance. If the failed instance restarts, it assumes the secondary
position and maintains this position unless the current instance fails or is stopped.

Project Options
Project options are used as runtime parameters for the project, and include a predefined list of
available option names that reflect most command line entries.

Instances
The number of instances available depends on the deployment type chosen by the user, either
high availability (HA) or Non-HA. When a project is configured in HA (active-active) mode,

CHAPTER 5: Project Configurations

Studio Users Guide 83

two instances are created: primary and secondary. You can set affinity and cold failover
options for each instance, including failover intervals and failure per interval options.

Failover
A project fails when it does not run properly or stops running properly. A failover occurs when
a failed project or server switches to another server to continue processing. Failovers may
result in a project restart, if defined. Restarts can be limited based on definition of failure
intervals and restarts per interval. Failover options, accessed using an instance configuration,
include:

Field Description

Failover Either enabled or disabled. When disabled, project failover restarts are
not permitted. When enabled, failure interval and failures per interval
fields can be accessed and restarts are permitted.

Failures per interval Specifies the number of restarts the project can attempt within a given
interval. This count can be reset to zero by a manual start of the project or
if failures are dropped from the list because they are older than the size
of the interval.

Failure interval (Optional) This specifies the time, in seconds, that make up an interval.
If left blank, the interval time is infinite.

Affinities
Affinities limit where a project runs or does not run in a cluster. There are two types of
affinities:

• Controller – Used for Active-Active and non Active-Active configurations. You can have
more than one affinity for each controller, but there can only be one strong positive
controller affinity.

• Instance – Used only for Active-Active configuration, an instance creates two affinities
that can apply to each separate project server.

These parameters must be defined for each affinity:

Field Description

Name Enter the name of the object of the affinity, that is, the controller name
or instance name that the affinity is set for. For instance affinities, the
affinity for one instance should refer to the second instance.

Strength Strong or weak. Strong requires the project to run on a specific con-
troller, and no others. If weak, the project preferentially starts on the
defined controller, but if that controller is unavailable, it may start on
another available controller.

CHAPTER 5: Project Configurations

84 Sybase Event Stream Processor

Field Description

Charge Positive or negative. If positive, the project runs on the controller. If
negative, the project does not run on the controller.

See also
• Creating a Project Configuration on page 75

• Opening an Existing Project Configuration on page 76

• Project Configuration File Editor on page 76

• Editing Advanced Options in Project Configuration on page 80

CHAPTER 5: Project Configurations

Studio Users Guide 85

CHAPTER 5: Project Configurations

86 Sybase Event Stream Processor

CHAPTER 6 Running Projects in Studio

In Studio, projects can be run on either a local or a remote cluster, using any of three methods
of authentication, and multiple projects can be run simultaneously on different clusters and in
separate workspaces.

A cluster consists of one or more workspaces, each with one or more projects. These projects
can be running or stopped. All workspaces are within one server, which allows users to work
with multiple projects simultaneously.

A local cluster allows users to work on projects from their local machine. Internet access is not
required. By default, clicking Run Project runs the project on the local cluster. If the local
cluster is not running, it is started automatically.

A remote cluster allows users to connect to a server that is more powerful than the default
server. The ability to use manual input, playback, and other Studio features is available. A
remote cluster also allows users to share a project within the cluster with other users.

To run a project on a remote cluster, the remote cluster connection must first be configured in
Studio. The administrator of the remote cluster must start it outside of ESP Studio. Once the
cluster is running, you can connect to it from Studio and run the project.

Connecting to the Local Cluster
Connect ESP Studio to the local cluster and run the project there.

Run Project enables you to run projects on the local cluster from either the Authoring
perspective or the Run-Test perspective.

1. In the Authoring perspective.

a) Select a project and open it in either the Visual Editor or the CCL Editor.
b) Select Run Project .
c) You are prompted to provide the required user name and password. Use the default user

name "studio" and enter any password.

Note: The password you use is stored in memory and is valid for your entire Studio
session. If you forget your password, shut down and restart Studio.

The Server View in the Run-Test perspective opens, showing the project connection. A
successful connection shows the server streams below the server folder, and the Console
shows the server log for the project.

If the connection is unsuccessful, you see a Server Connection error dialog.

Studio Users Guide 87

2. In the Run-Test perspective.

a) Select Run Project .
b) You are prompted to provide the required user name and password. Use the default user

name "studio" and enter any password.
The system displays a list of projects in the Select Project pop-up window.

c) Select the project that you want to run.

Note: If you already have a project running, you need to select the drop-down menu to the
immediate right of Run Project to bring up the list of projects.

ESP Studio acts as a node (cluster manager): automatically connecting to the local cluster and
running the project on it.

Connecting to a Remote Cluster
Connect to a remote cluster from Studio to run a project on the cluster.

Prerequisites
The remote cluster connection must be configured in Studio and the remote cluster's
administrator must have started the remote cluster outside of ESP Studio. If using Kerberos
authentication, run a program outside of ESP Studio to obtain a current Ticket Granting Ticket
(TGT).

Task

1. Select the Run-Test perspective.
The Server View opens, displaying a list of the available clusters.

2. Right-click on the entry for the cluster you want (for example, myserver.mycompany.com:
12345).
Studio displays a pop-up menu.

3. Select Connect Server

Note: If this remote cluster employs user/password authentication, you will be prompted
to provide the required user name and password. Studio does not store this information.

The Server View displays the workspaces on the remote cluster and the projects in each
workspace.

4. Right-click on the project you want to run.
Studio displays a pop-up menu.

5. Select Show in from the menu.
Studio displays a pop-up menu listing ways to view the project's progress.

6. Select the viewing method, for example Event Tracer View.

CHAPTER 6: Running Projects in Studio

88 Sybase Event Stream Processor

Studio starts displaying the project's progress in the specified view.

Connecting to a Kerberos-Enabled Server
Connect to a remote server using Kerberos authentication.

Prerequisites
The system administrator must have provided the necessary elements for connecting to a
Kerberos enabled server: Key Distribution Center, Kerberos Realm, Service, User name, and
Cache.

Task

1. In the Server View, select Studio Preferences > Sybase Event Stream Processor Studio
> Run Test Preferences > Security Settings.
Studio displays the Security Settings screen.

2. Fill the Key Distribution Center, Kerberos Realm, Service, User name, and Cache fields
based on information provided by your system administrator.

3. Click Apply.

4. Click OK to exit Studio Preferences.

Connecting to an RSA-Enabled Server
Connect to a remote server using RSA authentication.

Prerequisites
The system administrator must have provided the necessary elements for connecting to an
RSA enabled server: RSA User, Keystore Password and RSA Keystore.

Task

1. In the Server View, select Studio Preferences > Sybase Event Stream Processor Studio
> Run Test Preferences > Security Settings.
Studio displays the Security Settings screen.

2. Enter the following information:

• RSA User – Provide the user name of the keystore.
• Keystore Password – Provide the password of the keystore.
• RSA Keystore – Provide the name of the keystore file.

3. Click Apply.

4. Click Ok to exit Studio Preferences.

CHAPTER 6: Running Projects in Studio

Studio Users Guide 89

5. Enter the following command to import the keystore to the PKCS12 type store:
$JAVA_HOME/bin/keytool -importkeystore -srckeystore
keystore.jks -destkeystore keystore.p12 -deststoretype PKCS12

Creates a PKCS12 keystore.

6. Enter the following command to extract a pem format private key:
openssl pkcs12 -in keystore.p12 -out keystore.private -nodes

Creates a private key.

7. Copy the private key file to the directory where the keystore file is located.

8. In the Server View, connect to a remote cluster using RSA authentication.

Configuring a Remote Cluster Connection
Use Studio preferences to manage remote cluster connections and authentication methods.

Prerequisites
The administrator of the remote cluster must have provided the necessary information about
the cluster: host name, port number, authentication method, and, if using RSA, the RSA user,
password and keystore.

Task

1. To add a new remote cluster connection, select New Server URL in the Server View
toolbar.

Note: In the Server View toolbar, you can also select Studio Preferences and add a new
connection through Sybase Event Stream Processor Studio > Run Test Preferences.
Select New.

Studio displays the New Server screen.

2. Enter the host name and port number, separated by a colon, to use when connecting to the
remote cluster. For example, myserver.mycompany.com:12345.

3. (Optional) To enable encryption for Cluster Manager connections, select SSL.

4. Select an authentication method: Kerberos, RSA, or User/Password.

5. If you selected RSA, enter the following information:

• RSA User: – Provide the key alias.
• RSA Password: – Provide the keystore password.
• RSA Key store: – Provide the file name for the key store which contains the private

key.

6. Click OK.

In the Run-Test perspective, the Server view accesses the list of stored server connections.
Depending on the authentication method, Studio attempts to connect immediately (for RSA

CHAPTER 6: Running Projects in Studio

90 Sybase Event Stream Processor

and Kerberos modes), or shows a login dialog for each cluster configured for User/Password
authentication.

Note: To connect all listed servers, select Reconnect All in the Server View toolbar.

Modifying a Remote Cluster Connection
Change the authentication settings of a remote cluster connection that is already configured.

If the administrator of the remote cluster changes the authentication settings of the remote
cluster you must modify the remote cluster connection in Studio accordingly.

1. In the Server View, select Studio Preferences > Sybase Event Stream Processor Studio
> Run Test Preferences.
Studio displays the Run Test Preferences screen.

2. Select an existing server connection.
The Remove and Edit buttons are activated.

3. Click Edit.
Studio displays the Remote Server Connection screen.

4. Make your changes and click OK.
Studio displays the Run Test Preferences screen.

5. Click OK to save your changes.

CHAPTER 6: Running Projects in Studio

Studio Users Guide 91

CHAPTER 6: Running Projects in Studio

92 Sybase Event Stream Processor

CHAPTER 7 Running and Testing a Project

Test a project by compiling and running it on a server, accessing and filtering streams, saving
and uploading data to the Sybase Event Stream Processor Server, and setting project
configurations.

Starting the Run-Test Perspective
Access the Run-Test perspective for toolbars and views that simplify testing, monitoring,
debugging, and examining Event Stream Processor projects.
Click the Run-Test tab at the top of the Studio main window to see the Run-Test perspective.

If the Run-Test tab is not visible, from the main menu select Window > Open Perspective >
Run-Test.

Compiling a Project
Produce an executable .ccx file from CCL code. CCL code must be compiled to produce an
executable to run on Event Stream Processor.

1. (Optional) Set CCL compiler options.

a) Choose Edit > Preferences.
b) Expand the tree view to Sybase Event Stream Processor > Run Test Preferences >

Compiler Options.
c) To change the directory for your compiled projects, click Change, select a directory,

and click OK.
d) To confirm any other changes, click OK.

Note: By default, the compile directory is set to bin, which means the .ccx files are
created in a subdirectory relative to the project's directory.

2. In the Authoring perspective, in File Explorer, expand the tree view to show the .ccl file
for the project.

3. Select and open the .ccl project that you want to compile.

4. If you want to compile a project without running it, either to check for errors or just to have
an updated .ccx file, click Compile Project on the main toolbar or press F7.

5. If you want to compile and run the project, click Run Project .

The project automatically compiles and runs. The Server View in the Run-Test perspective
opens, showing the project connection. A successful connection displays the server

Studio Users Guide 93

streams below the server folder. If the connection is unsuccessful, you see a Server
Connection error dialog.

Studio silently saves all open files belonging to the project, compiles the project, and creates
the .ccx file (the compiled executable). Compilation errors are displayed in Problems or
Console view in each perspective, depending on the type of error. And, if you selected Run
Project it also runs the compiled project.

Studio returns an error when a project refers to a schema from an imported file but the project
compiles without errors. Refresh the file by closing the project or create the files in the
opposite order.

Viewing Problems
Use the Problems view to view error details when trying to validate, upload, and compile
projects.

Prerequisites
Open the Authoring Perspective.

Task

1. Click on a problem in Problems view, or expand the group to see individual errors.

By default, Problems view is at the bottom of the screen, and problems are grouped by
severity.

Error details appear in Problems view and in the status bar at the bottom left side of the
screen.

Tip: If you double-click on a problem in the problems view while the project is open in the
Visual editor, the CCL editor opens read-only to show you where the problem is. To fix the
problem, either:
• Return to the Visual editor and fix it there, or,
• Close both the Visual editor and CCL editor for the project, and then reopen the project

in the CCL editor.

2. If the error message is too long to show the entire message, click it to read the full text in the
status bar at the bottom of the Studio window.

3. Right-click an item to choose from the context menu:

Option Action

Go to Highlight the problem in the .ccl file. The CCL editor opens in read-only
mode.

Copy Copy error details to the clipboard. When you exit Studio, the contents of
problems view are removed. Use this option to save off errors.

CHAPTER 7: Running and Testing a Project

94 Sybase Event Stream Processor

Option Action

Show in Display details in Properties view.

Quick Fix (Disabled)

Properties Display details in a dialog box.

4. (Optional) Click the View menu dropdown to see more options.

5. Click the Console tab to view compiler results.

Running a Project
Running a project automatically starts the project either on a local cluster or on another
connected cluster.

Prerequisites
To run a project in a workspace other than the default, ensure that one or more connected
workspaces are available.

Task

1. Select and open the .ccl file you want to run.

If no editors are open, pick a project to run.

2. To run the project, either:

• Click Run Project in the main toolbar (in either the Authoring or the Run-Test
perspective) to run the project in the default workspace, or,

• Click the drop-down arrow next to the Run Project tool and choose Run Project in
Workspace. Then select the workspace where this project will run.

The project runs and shows results in Run-Test perspective.

Server View
The Server View shows servers available for connecting and running projects.

You can:

• Connect a project, enabling a local or remote cluster
• Add a new server URL to the list of available connections, remove an existing server, or

reconnect all listed servers
• Show a server in Monitor View or Event Tracer View
• Load projects into a workspace
• Filter metadata streams (default).

CHAPTER 7: Running and Testing a Project

Studio Users Guide 95

Metadata streams are created automatically, and are typically used by administrators in a
production system to obtain health and performance information about the currently running
project. For details of what each stream contains, see Metadata Streams in the Administrators
Guide.

See also
• Chapter 6, Running Projects in Studio on page 87
• Performance Monitor on page 99
• Event Tracer View on page 104

Viewing a Stream
Stream View shows all of the events of an output stream and all of the retained events in an
output window for the running project.

1. In the Run-Test perspective, select the stream or window from the Server View.

2. Right-click the output stream or window, and select Show In > StreamViewer (or New
StreamViewer).
A tab opens in the Stream View showing all new events. If you selected a window, all
retained rows currently in the window are displayed.

3. To manipulate your subscription list, or individual stream subscriptions, select the
subscription to edit and choose one of these buttons at the top of the Stream View:

• Close Subscription URL disconnects and closes the Stream View.
• Clear clears contents and pauses the subscription.
• Show Current Subscription in new View . If available, the publish date of the

stream appears.

4. (Optional) To save data from the Stream View, click Clipboard Copy .

Controlling the Pulse Rate for Viewing a Stream
When a data stream contains few items with a high volume of changes, you can set a pulse rate
so that changes are delivered periodically, in optimally coalesced blocks. For example, a
stream containing three ticker symbols may generate thousands of updates every second. You
can set the pulse period to control the frequency at which you receive updates when viewing
the stream. If you set the pulse to refresh every 5 seconds, the subscription then delivers, at
most, one updated record for each of the three symbols every five seconds.

There are two preferences that control the subscription feature in ESP Studio: Streamviewer
pulsed subscribe interval and Other pulsed subscribe interval. Both preferences are measured
in seconds. If either of these preferences is set to 0, then Studio does not perform a pulsed
subscription on the related stream. Note that if you have a small data set and you set the pulse to
refresh frequently, such as once every 1 or 2 seconds, the Stream View may be empty for some
streams because there are no new updates.

To change the default settings:

CHAPTER 7: Running and Testing a Project

96 Sybase Event Stream Processor

1. Choose Edit > Preferences.

2. In the left pane, expand Sybase Event Stream Processor Studio, and then expand Run
Test Preferences.

3. Enter new values for Streamviewer pulsed subscribe interval or Other pulsed subscribe
interval or both.

4. Click Apply.

5. Click OK to close the dialog.

Uploading Data to ESP Server
Use the File Upload tool to load event data from files into a running project. Normally used in
testing a project. Date and time stamps in data loaded through the File Upload tool are
assumed to be in the local timezone.

Prerequisites
Ensure that the project is running, either on a local or remote cluster.

Task

1. In the Run-Test perspective, select the File Upload view in the lower-left pane.

Note: The File Upload tool uploads the data file as fast as possible. For playing back data at
controlled rates, use the Playback tool.

2. Click Select Project in the toolbar in the upper right corner of the File Upload view.

3. Select the project to which you want data uploaded, and click OK.

4. Click Browse to open the file choice dialog and navigate to the input file to upload.

5. Select one or more files to upload.

Note: ESP Server supports ESP binary (.bin), ESP XML (.xml), and comma-separated
values and text (.csv or .txt) files. Refer to the Supported File Formats topic for details.

6. Click Upload. A progress bar tracks the upload status.

The File Upload view allows you to perform these additional actions:

UI control Action

Remove File Discard a previously selected file from the Input File(s) menu.

Cancel Cancel a file upload currently in progress.

Note: Any data sent before the upload is cancelled is still
processed.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 97

UI control Action

Use Transaction Process multiple records as a single transaction. If Record Buffer
is specified, group that many records in each transaction. If not,
process the entire file as one transaction.

Record Buffer Specify the number of records to group together and process in a
single transaction.

Manually Entering Data to a Stream
Manually create and publish an event as input to a stream or window. By default, date and time
stamps in data loaded through the Manual Input tool are assumed to be in the local timezone.
You can change this setting to use Universal Coordinated Time (UTC) through your Studio
preferences.

Manually publishing input events to a project is useful when testing a project.

1. In the Run-Test perspective, select the Manual Input view in the lower-left pane.

2. Click Select Stream () in the toolbar in the upper right corner of the Manual Input
view. .

3. In the Select Stream dialog, select the stream and click OK.

4. Edit available data columns as desired.

5. To edit more than one row of the data, select Edit Multiple Rows () and choose the rows
to modify.

6. If you are publishing to a window, indicate the opcode by selecting one of the data events.
If you are publishing to a stream, only insert events are supported.

7. (Optional) Select Use Current Date to change the value of any bigdatetime or date object
in the manual input view to the present date.

8. Click Publish to send the event to the project.

See also
• Manual Input Settings on page 112

Activating a Project
Start monitoring the selected project using one or more input views: Playback, File Upload,
SQL Query, Monitor, and Event Tracer.

1. Open the Studio in the Run-Test Perpsective.

2. In the Activate Project pane, specify the views you want.

a) Click None to clear any existing selections.

CHAPTER 7: Running and Testing a Project

98 Sybase Event Stream Processor

b) Click All to select all of the views or click the checkbox next to those views you want to
start up.

3. If you already have a view open showing another project, click Override active view to
stop monitoring that project and monitor the project you are activating instead.

If you do not check this option, any views currently monitoring another project will
continue to do so.

4. Select the project you want to activate and click OK.
Studio displays the name of the project you activated in the upper left hand corner and
starts monitoring the project in each of the selected views.

Performance Monitor
The Monitor View shows visual indicators of queue size, throughput, and CPU use for each
stream and window (including LOCAL streams and windows) in a project.

Each node corresponds to a stream in the model with the lines outlining the path the data flows
through. The color of each node represents either QueueDepth or Rows Processed (/sec),
depending on your specifications.

For example, if you select the Color Queue Depth option, the (Red) Range >= field defaults
to 125, and the (Yellow) Range >= field defaults to 20. This means:

• If the queue depth of the stream node is greater than or equal to 125, the node is red.

• If the queue depth of the stream node is between 20 and 124, the node is yellow.

• If the queue depth of the stream node is less than 20, the node is green.
• If the nodes remain white, it indicates that the monitor is not receiving data from the stream

processor.

The Monitor View also depicts CPU utilization as a black pie wedge in the ellipses of the node.
Based on the options chosen, the remainder of the ellipses are red, yellow or green. A fully
black node represents 100% CPU use, based on a single CPU core. With multicore or
multiprocessor environments, a fully black node may be greater than 100%.

You can look at a specific node's performance statistics by moving your cursor over the node in
the diagram.

Running the Monitor
View visual indicators of queue size and CPU use for each stream and window.

Prerequisites
The project must be running before starting the monitor. You can specify a delay by changing
the performance timer interval.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 99

Task

1. In the Run-Test perspective, select the Monitor view.

2. Click Select Running Project ().

3. Click OK.

4. Select QueueDepth or Rows Processed to specify how to color each node in the
performance diagram. For either option:

• Type in a number or use the arrow buttons in the (Red) Range >= field to select the
range to create a red node.

• Type in a number or use the arrow buttons in the (Yellow) Range >= field to select the
range to create a yellow node.

Note: Nodes are green when they fall within a range that is not in either the (Red) Range >=
or the (Yellow) Range >=.

5. Click Zoom In or Zoom Out to see a larger or smaller view of the diagram.

See also
• Saving a Performance Diagram as an Image on page 100

Saving a Performance Diagram as an Image
Save a performance diagram.

You can modify the performance diagram properties using the Monitor window in the Run-
Test perspective. The diagram appears in the Event Tracer window, and can be saved only
from that window.

1. In the Run-Test perspective, select the Event Tracer view.

2. Click Save().

3. Enter a file name and save location. Click Save.
The file is saved as a JPEG image in the location you specified.

See also
• Running the Monitor on page 99

Running a Snapshot SQL Query against a Window
In the SQL Query view, run a snapshot SQL query against an output window in a running
project, and show the results in the Console.

1. In the Run-Test perspective, select the SQL Query view in the lower-left pane.

CHAPTER 7: Running and Testing a Project

100 Sybase Event Stream Processor

2. Click Select Project ().

3. Select the project and window to query, and click OK.

4. Enter your query.
For example, Select * from <stream>.

5. Click Execute.
The results are displayed in the Console.

Playback View
The Playback view records in-flowing data to a playback file, and plays the captured data back
into a running Event Stream Processor instance. You can also use it in place of the File Upload
tool to upload data files at a controlled rate. All date and time stamps within the Playback view
are assumed to be in UTC.

Table 10. Playback View Options

Feature Description

Select playback file Select file format to use with Event Stream Processor recorder.

Start playback Starts playing the current playback file.

Stop playback Stops playback or record, closes the associated file and closes the
associated playback or record context.

Start Recording Prompts user to select the file in which to store recorded data and
starts Event Stream Processor recorder

At timestamp rate This slider is used during playback to vary the rate of playback

Table 11. Playback Mode Options

Feature Description

Full rate Full rate indicates that the speed of playback is not imposed by
ESP Studio. Full rate is dependent on factors such as the computer
that is running ESP Studio, or network latency.

Timestamp column The Timestamp column option tells the recorded file to play back
using the timing rate information from a specified column. You
must complete the Timestamp column to use it. During playback,
timestamps determine the time interval between records.

If you check Use Recorded Time, the playback file runs as if it is
the time when the data was recorded. Otherwise, the playback file
uses the current time and plays as if produced now.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 101

Feature Description

Rec/ms The records-per-millisecond (rec/ms) mode lets playback occur at
a records per millisecond rate. The option allows you to set an
initial rec/ms rate that you can then modify using the At timestamp
rate slider tool.

The ESP Studio Recorder supports these file formats:

• .xml (ESP XML)

• .csv (comma-separated values)

• .bin (ESP Binary)

• .rec (ESP Studio recorded file)

Refer to the Supported File Formats topic for details.

Note: Binary files recorded in previous releases cannot be played back unless they are first
converted to the new binary format using esp_convert. See Publish and Subscribe
Executables > esp_convert for information on how to to convert binary files.

Event Stream Processor records in .rec format, preserving the original timing of the
incoming data.

Note: Binary messages are architecture dependent. Binary messages created in a big-endian
machine cannot be loaded into an ESP server running in a little-endian machine, and vice-
versa.

Recording Incoming Data in a Playback File
Record data from in-flowing data to Event Stream Processor to a playback file that you can
save and view at a later time.

Prerequisites
You must be connected to ESP Server, and your streams and windows must be visible in the
Stream Viewer.

Task

In the Playback view:

1. Click Select Project ().

2. Select the project you want to record.

3. Click OK.

4. Click the Record icon.

CHAPTER 7: Running and Testing a Project

102 Sybase Event Stream Processor

5. Select the streams and windows to record, or click Select All to record all streams and
windows in the project.

6. Click OK.

7. Select or create a file in which to save the recording.

8. Click OK.

9. Send data to your selected streams using either:

• The Manual Input view to input data and publish to your streams, or,
• File Upload to retrieve an existing data file and publish to your streams.

10. Click Stop to stop recording.

See also
• Playing Recorded Data on page 103

Playing Recorded Data
View and play previously recorded data in a running Event Stream Processor instance.

Note: You may select Playback view options before or after you select a file for playback.

1. Click Playback File ().

2. Browse for and select the file you want to play back.

The playback file is added to the Playback File History. You can also playback a file
registered in the history. Double-click a history entry to activate it for playback.

Note: You can delete an item from the history using the either the Remove button or Delete
key. Modifications to the playback history are permanent.

3. Click Play to begin playback.
The data appears in the Stream Viewer, by default, at the rate it was recorded.

See also
• Recording Incoming Data in a Playback File on page 102

Debugging
The Run-Test perspective contains two tools for debugging data flow and assisting you in
locating and fixing bugs within the project: the debugger, which allows you to set breakpoints,
and the event tracer, which shows the impact of each incoming event on all streams and
windows of a project.

The debugging tools are for use during project development, not while Event Stream
Processor is in production mode. Debugging features are normally disabled. The system must
be in Trace mode before you can use the debugging features.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 103

Studio offers an extensive suite of tools for debugging projects, but you can debug from the
command line as well. See the Utilities Guide.

Event Tracer View
The Event Tracer is one of the tools used to debug data flow. It shows the impact an event has
on each stream and window of the project.

The Event Tracer view shows the transaction flow through the model and lets you view data in
each node (stream or window). The nodes depicted in the Event Tracer view are drawn as a
data flow, depicting the relationships between the nodes.

Table 12. Event Tracer View

Button Function

Select Running Project Presents a list of running projects available to monitor from Studio.

Layout TopDown Arranges shapes vertically for a top-to-bottom data flow.

Layout Left to Right Arranges shapes horizontally for a left-to-right data flow.

Save Saves the image as a JPG file.

Zoom In Enlarges the size of the image.

Zoom Out Reduces the size of the image.

Zoom Page Restores the size of the image to its original size.

Print Performance Data to Con-
sole

Prints the collected data to the console.

Close Subscription Closes the subscription and clears the view.

Show Current Subscription in
New View

Displays the current subscription in a separate view.

Fit Shape Ids Expands a shape to show the name of the stream or window.

Initialize With Base Data Sends all event data from Event Stream Processor through the
Event Tracer.

See also
• Debugging with Breakpoints and Watch Variables on page 106

Tracing Data Flow in the Event Tracer
Run the Event Tracer from the Event Tracer tab or the Server view.

Prerequisites

Ensure that the ESP Server is running.

CHAPTER 7: Running and Testing a Project

104 Sybase Event Stream Processor

Task

1. In the Run-Test Perspective, either:

Method Procedure

Event
Tracer

1. Click the Event Tracer view.
2. Click Select Running Project () to show running projects that

contain streams or windows.
3. Select a running project for the Event Tracer.
4. Click OK.

Server
View

1. Select the Server View.
2. To refresh the Server View, click Reconnect All.
3. Select a running project that contains streams.
4. Right-click the project node, and select Show in > Event Tracer

View.

The nodes depicted in the viewer are drawn as a data flow. As a transaction is processed by
each node, the color of the node changes to reflect the type of transaction.

2. Double-click a node to show the corresponding stream's data in the Console view.

3. To load test data to view the impact on each stream in the Event Tracer tab, either:

• Click the Upload File tab in the toolbar below the Activate Project pane to upload data
from a file, or,

• In the Manual Input view, manually enter individual transactions by clicking the Select
Stream icon. Select a stream. To confirm, click OK.

The shapes in the Event Tracer view change color.

Viewing the Topology Stream
The Topology Stream constructs the data-flow diagram, where relationships between the
nodes of a project are represented as line segments.

1. In the Run-Test perspective, select Event Tracer view.

2. Click Select Running Project. Select the desired project, and click OK.

3. To view the entire diagram, select Layout top down or Layout left to right.

4. To view a particular node, select the section of the data-flow diagram that contains the
desired stream.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 105

Debugging with Breakpoints and Watch Variables
ESP Studio allows you to control a running project by enabling tracing, pausing, resuming,
and stepping of data flow through Event Stream Processor streams. You can also create
breakpoints and watch variables on a running application.

Breakpoints are locations in stream or window input or outputs that stop the flow of data in the
Event Stream Processor model. A watch variable inspects the data.

Table 13. Studio Breakpoint Buttons

Button Function

Trace On Instructs Event Stream Processor to begin tracing (debugging). This pa-
rameter must be set to use the Event Stream Processor breakpoint APIs.

Trace Off Stops tracing (debugging).

Step Project Steps the running Event Stream Processor.

Pause Project Pauses the running Event Stream Processor.

Enable All Break-
points

Enables all breakpoints in the list.

Disable All Break-
points

Disables all breakpoints in the list.

Insert Breakpoint Inserts a breakpoint item into the watch table.

Insert Watch Inserts a watch item into the watch table.

Print Breakpoint Data
to Console

Prints the breakpoint and pause state data for the current Event Stream
Processor to the console.

The following breakpoint commands initiate long-running operations. Each of these can be
cancelled before completion by clicking Cancel Current Step.

Table 14. Breakpoint Commands

Button Function

Step Quiesce from Base Automatically steps all the derived (non-base) streams until their
input queues are empty.

Step Quiesce Automatically steps the stream and all its direct and indirect de-
scendants until all of them are quiesced.

Step Transaction Automatically steps until the end of transaction.

Step Quiesce Downstream Steps the descendants of the stream but not the stream itself.

Note: Breakpoints and watch variables are persisted to the workspace.

CHAPTER 7: Running and Testing a Project

106 Sybase Event Stream Processor

See also
• Event Tracer View on page 104

Breakpoints
You can insert a breakpoint for any stream in the project.

Breakpoint types include:

• Local – breaks on input to the stream
• Input – breaks on a specific input stream to a stream (only flex, join, and union can have

multiple input streams)
• Output – breaks when data is output from the stream

A breakpoint can be associated with a counter (enableEvery). When a counter (n) is associated
with a breakpoint, the breakpoint triggers after an event flows through the breakpoint. The
counter is then reset to zero).

See also
• Adding Breakpoints on page 107

• Watch Variables on page 108

• Adding Watch Variables on page 109

• Pausing the Event Stream Processor on page 109

• Stepping the Event Stream Processor on page 110

Adding Breakpoints
Add breakpoints to Event Stream Processor.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Enable Trace mode

Task

1. Click Trace On.

2. Click Insert Breakpoint ().

3. Select the stream where you want to set a breakpoint.

4. Select the type of stream.

5. Specify when the breakpoint should trigger by entering a value in the enableEvery field.

6. Click Add.

The selected stream appears in the table within the Insert Breakpoint dialog box.

7. Click OK.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 107

The breakpoint appears in the Debugger view within the Breakpoint table.

8. To enable, disable, or remove a specific breakpoint, right-click the breakpoint and select an
option:

• Enable Breakpoint
• Disable Breakpoint
• Remove Breakpoint

9. To enable or disable all breakpoints, select either Enable All Breakpoints or Disable All
Breakpoints.

10. To remove all breakpoints, right-click within the Breakpoints table and select Remove All
Breakpoints.

11. Click Trace Off to run Event Stream Processor.

See also
• Breakpoints on page 107
• Watch Variables on page 108
• Adding Watch Variables on page 109
• Pausing the Event Stream Processor on page 109
• Stepping the Event Stream Processor on page 110

Watch Variables
You can insert watch variables into the watch table of the Breakpoints view in the Debugger to
inspect data as it flows through the project.

A watch corresponds to:

• Current input of a stream
• Current output of a stream
• Queue of a stream
• Transaction input of a stream
• Transaction output of a stream
• Output history of a stream
• Input history of a stream
• Variable of a Flex stream

Add the watches you want to monitor to the watch table before running Event Stream
Processor. When Event Stream Processor runs, the watch table is dynamically updated as
run-control events (run, step, pause) are sent through Event Stream Processor.

See also
• Breakpoints on page 107
• Adding Breakpoints on page 107
• Adding Watch Variables on page 109

CHAPTER 7: Running and Testing a Project

108 Sybase Event Stream Processor

• Pausing the Event Stream Processor on page 109

• Stepping the Event Stream Processor on page 110

Adding Watch Variables
Add a watch element to a breakpoint.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Enable Trace mode

Task

1. Click Trace On.

2. Right-click in the Watch table.

3. Select Add Watch.

4. Select a stream from the Watch Choices box.

5. Select the type of watch you want to set up on that stream.

6. Click Add.
The watch appears in the table at the bottom of the dialog box.

7. Click OK.
The watch appears in the Watch table in the Debugger view.

8. To remove watches, right-click within the Watch table and select, either:

• Remove Watch to remove a single select watch variable, or,
• Remove All Watches to remove all watch variables.

See also
• Breakpoints on page 107

• Adding Breakpoints on page 107

• Watch Variables on page 108

• Pausing the Event Stream Processor on page 109

• Stepping the Event Stream Processor on page 110

Pausing the Event Stream Processor
Pause Event Stream Processor.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Enable Trace mode

CHAPTER 7: Running and Testing a Project

Studio Users Guide 109

Task

1. In the Debugger, click Pause Project ().

2. To resume Event Stream Processor, click Trace Off followed by Trace On.

See also
• Breakpoints on page 107

• Adding Breakpoints on page 107

• Watch Variables on page 108

• Adding Watch Variables on page 109

• Stepping the Event Stream Processor on page 110

Stepping the Event Stream Processor
Single-step Event Stream Processor.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Pause the project

Task

1. In the Debugger view, click Step Project () to perform the next step in the project.

2. Click Cancel Current Step to terminate the action.

See also
• Breakpoints on page 107

• Adding Breakpoints on page 107

• Watch Variables on page 108

• Adding Watch Variables on page 109

• Pausing the Event Stream Processor on page 109

CHAPTER 7: Running and Testing a Project

110 Sybase Event Stream Processor

CHAPTER 8 Customizing the Studio Work
Environment

Customize your Studio interface to work the way you prefer.

Note: As an Eclipse-based application, ESP Studio automatically includes many features not
specific to Sybase Event Stream Processor. Features documented here have been tested with
Studio. Other Eclipse features may not work as expected. For example, the Team
Synchronizing perspective is not supported.

Editing Studio Preferences
Edit preferences to customize the Studio environment.

You can also access many of these preferences from the related Studio view.

1. Choose Edit > Preferences.

2. Expand Sybase Event Stream Processor Studio, and then expand to the preferences you
want to set. All preference settings are optional.

• CCL Editor Settings – Set syntax coloring and template options.
• Run Test Preferences – Set defaults for server connections, add new connections, set

limits and filters for the StreamViewer and Server view, and set other options for
running projects in Studio.

• Compiler Options – Change the directory for the CCL compiler output (default is
bin folder in your workspace\project folder).

• Data Input Settings – Set file upload and SQL Query view options.
• Manual Input Settings – Choose settings for the publishing data from Manual Input

view, including defaults for all datatypes except money types.
• Manual Input Settings - Money Types – Set defaults for the money(n) datatype.
• Shapes General – Choose defaults for creating and displaying shapes in diagrams.

3. On each preference dialog, either:

• Click Apply to save the new settings, or,
• Click Restore Defaults to revert any changes you make.

Only the settings in the current dialog are applied or restored.

4. Click OK to exit the Preferences dialog.

See also
• Changing the Display of Diagrams on page 30

Studio Users Guide 111

Manual Input Settings
Set default values on datatypes for data being published to a stream from the Manual Input
view and the format in which the data is published.

Settings for most datatypes are in Manual Input Settings preferences. Settings for the
money(n) datatype are in Manual Input Settings - Money Types preferences.

Setting Description

Publish Multiple Rows Indicates whether data from an input stream is published in single
instances or as multiple rows.

Use Current Date Indicates whether data should be published under the current date
or maintain its historical date.

Interpret Date values in Man-
ual Input and Stream Viewer
as UTC

Indicates whether Manual Input date values are interpreted as UTC
or in the local time zone.

Note: This has no effect on the Playback tool.

binary Indicates a binary value to be published to a stream. Use this setting
to monitor the binary value of a stream by placing a traceable value
in the field.

boolean May be set to True or false.

string Indicates the default value Studio accepts for string types.

integer Indicates the default value Studio accepts for integer types. Does
not accept values with decimal points.

float Indicates the default value Studio accepts for float types.

long Indicates the default value Studio accepts for long types.

interval Indicates the default value Studio accepts for interval types.

date Indicates the default value for date types. Click Select to open a
calendar dialog and choose a default date stamp with millisecond
precision.

bigdatetime Indicates the default value for bigdatetime types. Click Select to
open a calendar dialog and choose a default bigdatetime stamp with
microsecond precision.

CHAPTER 8: Customizing the Studio Work Environment

112 Sybase Event Stream Processor

Setting Description

timestamp Indicates the default value for timestamp types. Click Select to
open a calendar dialog and choose a default timestamp with mil-
lisecond precision.

money(n) Indicates the default value for money types of varying precision,
where n represents the number of places allowed after the decimal
point. Set default values for money types with up to 15 points of
precision.

Note: You see an error message at the top of the preference window when you enter incorrect
characters, or exceed the number of allowed characters in the field.

See also
• Manually Entering Data to a Stream on page 98

Rearranging Views in a Perspective
Rearrange the views in a perspective by moving a view to a new docking location in the
perspective.

1. Click in the title bar of the view that you want to move.

2. Hold down the left mouse button and drag the view to the new area.

As you move the view, the drop cursor icon changes appearance to help you determine
where the view can be docked.

Table 15. Drop cursors

Drop cursor Cursor name Description

Dock Above Dock above the view that is under the cursor.

Dock Below Dock below the view that is under the cursor.

Dock to the Right Dock to the right of the view under the cursor.

Dock to the Left Dock to the left of the view under the cursor.

Stack The view appears as a tab in the view under the cursor.

CHAPTER 8: Customizing the Studio Work Environment

Studio Users Guide 113

Drop cursor Cursor name Description

Restricted The view cannot be docked. For example, a view can-
not be docked in an editor.

3. When the view is in position, release the left mouse button to drop the view onto the new
location.

When you close the application, the new configuration is saved.

Moving the Perspective Shortcut Bar
The Perspective shortcut bar runs horizontally in the upper left corner of a perspective by
default.

The Perspective shortcut bar can be docked horizontally at the top right, or vertically to the left
of a perspective.

1. Right-click in the Perspective shortcut bar to open its context menu.

2. Do one of the following:

Select To dock the shortcut bar

Dock on > Top Right At the top right, horizontally adjacent to the main toolbar.

Dock on > Top Left At the top left, horizontally below the main toolbar. This is the
default.

Dock on > Left At the top right, vertically on the side of a perspective.

CHAPTER 8: Customizing the Studio Work Environment

114 Sybase Event Stream Processor

APPENDIX A Adapter Support for Schema
Discovery

Lists all adapters currently available from Sybase, whether they support schema discovery,
and if so, the properties they use to enable it.

Adapter Supports Schema
Discovery

Properties

Adaptive Server Enterprise
Output

Yes DB Service Name

The name of the database service that repre-
sents the ASE database into which informa-
tion will be loaded.

AtomReader Input No —

Database Input Yes Database Service

Name of database service from which the
adapter obtains the database connection.

Database Output Yes Database Service

Name of service entry to use.

Excel Add-In No —

File CSV Input Yes Directory

The absolute path to the data files you want
the adapter to read.

File CSV Output No —

File FIX Input No —

File FIX Output No —

File XML Input Yes Directory

The absolute path to the data files you want
the adapter to read.

File XML Output No —

FIX Input No —

Studio Users Guide 115

Adapter Supports Schema
Discovery

Properties

FIX Output No —

Flex Output No —

HTTP Input No —

JMS CSV Input Yes • Delimiter – field delimiter

• Connection Factory – connection facto-
ry class name

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS CSV Output No —

JMS Custom Input No —

JMS Custom Output No —

JMS FIX Input No —

JMS FIX Output No —

JMS Object Array Input Yes • Connection Factory – connection facto-
ry class name

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS Object Array Output No —

JMS XML Input Yes • Connection Factory – connection facto-
ry class name.

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

APPENDIX A: Adapter Support for Schema Discovery

116 Sybase Event Stream Processor

Adapter Supports Schema
Discovery

Properties

JMS XML Output No —

Kdb Input Yes • KDB Server

• KDB Port

• KDB User

• KDB Password

Kdb Output Yes • KDB Server

• KDB Port

• KDB User

• KDB Password

Log File Input No —

Random Tuples Generator
Input

No —

Replication Server Input Yes • RSSD Host

• RSSD Port

• RSSD Database Name

• RSSD User Name

• RSSD Password

Reuters Marketfeed Input Yes Discovery Path

Reuters Marketfeed Out-
put

No —

Reuters OMM Input Yes Discovery Path

Reuters OMM Output No —

RTView Output No —

Sample Input Adapter Yes Discovery Directory Path

Sample Output Adapter Yes Discovery Directory Path

SMTP Output No —

Socket (as Client) CSV In-
put

No —

APPENDIX A: Adapter Support for Schema Discovery

Studio Users Guide 117

Adapter Supports Schema
Discovery

Properties

Socket (as Client) CSV
Output

No —

Socket (as Client) XML
Input

No —

Socket (as Client) XML
Output

No —

Socket (as Server) XML
Input

No —

Socket (as Server) XML
Output

No —

Socket (as Server) CSV In-
put

No —

Socket (as Server) CSV
Output

No —

Socket FIX Input No —

Socket FIX Output No —

Sybase IQ Output Yes DB Service Name

The name of the database service that repre-
sents the IQ database into which information
will be loaded.

Open Input and Output No —

Tibco Rendezvous Input No —

Tibco Rendezvous Output No —

NYSE Input Yes Discovery Directory Path

Absolute path to the adapter discovery di-
rectory.

See also
• Schema Discovery on page 32

• Discovering a Schema on page 33

APPENDIX A: Adapter Support for Schema Discovery

118 Sybase Event Stream Processor

Index
A
active-active 83
adapters

attaching in Visual Editor 32
creating an input stream 33
creating an input window 33
custom 9
discovering a schema 33
editing properties in project configuration 79
importing a schema 33
overview 9
properties for schema discovery 115
schema discovery 32
supporting schema discovery 115

aggregate 38
creating 41

aging policy
setting 63

AleriML 17
converting to CCL for existing projects 18
converting to CCL for new projects 17

APIs
supported languages 9

attaching
adapters, in Visual Editor 32

authentication
modifying 91

Authentication 89
Authoring perspective

File Explorer 14
views 22

B
bindings

editing 77
breakpoints

adding 107
debugging 106
input 107
local 107
output 107

C
CCL

ccx file 93

compiling 93
creating a schema 70
editing 67
executable 93
overview 10
queries 69

CCL editor 65, 70
features 68
keyboard shortcuts 68
overview 67

CCL functions 70
ccr files

project configuration 75
cluster

editing parameters 76
master cluster 76

colors
setting preferences 111

column expressions
editing 49
rules 50

compiling a project
in File Explorer 93

compute 38
simple query 42

connecting
adapters, in Visual Editor 32
shapes 48
starting a server connection 87
to a local cluster 87

connection
remote cluster 88

connections
modifying authentication 91

continuous queries
complex 52

conversion
AleriML 17, 18

CREATE SCHEMA
in CCL editor 70
Visual editor 63

Create Splitter 66
creating a project

in Studio 16

Index

Studio Users Guide 119

custom adapters
overview 9

customizing Studio 111
setting preferences 111

D
data

manual input 98
uploading 97

data input
setting preferences 111

data-flow programming
example 4
introduction 4

databases
compared to Sybase Event Stream Processor

2
datatypes

manual input settings 112
datatypes for manual input

setting preferences 111
debugging 103

breakpoints 106, 107
Event Tracer 104
pausing 109
Run-Test perspective 104
stepping 110
watch variables 106, 108, 109

deleting
elements from a diagram 51
elements from a project 51

deployment
project configurations 75

derived delta stream
complex queries 52

derived stream
complex queries 52

derived window
complex queries 52

diagrams
deleting elements 21, 51
iconic mode 21, 30
inserting shapes 28
modifying layout 30
overview 21
setting preferences 111
shape reference 24
verbose mode 21, 30

discovering
schemas 33

E

editing
project configuration 76
Visual editor 27

editing CCL
CCL editor 67
text editor 67

else filter
Create Splitter 66

error stream
creating 64
displaying data from 65
modifying 65

errors
in Problems view 94

Event Stream Processor
components 8

event streams
overview 2

Event Tracer
debugging 104
running 104

events
definition 2
delete 7
examples 2
insert 7
update 7

examples
running 16

executable
compiling 93

external data
input and output adapters 9

F

failover 83
File Explorer

overview 14
filter 38

creating 40
filtering

metadata streams 95
Flex method

adding to a project 62
in Visual editor 62

Index

120 Sybase Event Stream Processor

Flex operator
creating 62

Flex operators 62
functions

built-in functions 70
external functions 70
SPLASH functions 70
user-defined functions 70

G

GUI authoring
See visual authoring

H

high availability 83
hot keys 29, 68

I

iconic mode
toggling 30

importing
modules 55
projects 19
schemas 33

input adapters
overview 9

See also adapters
input windows

adding to projects 34
instances 83

J

join 38
joining events

join behavior 44
join types 44
simple query 43

K

keep policy 35
count-based 35
slack 35
time-based 35

Kerberos 89
KERBEROS

server connection 88, 90
keyboard shortcuts

CCL editor 68
Visual editor 29

L

layout
modifying 30

LDAP
server connection 88, 90

Learning perspective 15
running examples 16

load modules
editing 57
importing 55
inserting into a project 56

local cluster
running projects in 95

Log file 15
log store 59
log stores

creating 59
Logging 15
login methods

See authentication

M

manual input
editing 98

manual input settings 112
Manual Input view

default settings 112
setting preferences 111

matching
simple queries 47

memory store 59
memory stores

creating 61
metadata streams

filtering 95
migration

AleriML 17, 18
modularity 58

creating a module file 55
creating a module in the Visual editor 53

Index

Studio Users Guide 121

editing 54
editing a load module 57
importing 55
inserting load modules 56
overview 53
using modules in a project 56

modules
creating a CCL module file 55
creating in a project 53
rules for 53
using in a project 56

money datatypes
manual input settings 112

Monitor view 99
running 99

N
named schema 7

See also schema

O
on-demand queries

command-line tool 6
in ESP Studio 6

opcodes
defined 7
delete 7
insert 7
safedelete 7
update 7
upsert 7

operators
arithmetic operators 71
comparison operators 71
custom 62
Flex 62
LIKE operators 71
logical operators 71
SPLASH 62
string operators 71

output adapters
overview 9

See also adapters
overview 10

Sybase Event Stream Processor 1

P
Palette

adding input windows 34

Flex shape 62
shapes 24

parameters
viewing in project configurations 80

pattern 38
matching 47

performance
slack limit 35

performance diagrams
saving 100

persistence
creating a log store 59
log store 59

playback file 102
Playback file

playing 103
Playback view

features 101
file formats 101
playing 103
recording 102

preferences
manual input settings 112
Studio 111

PRIMARY KEY DEDUCED
setting key columns 48

primary keys
setting key columns 48

Problems view
options 94

project
bulk import 19
importing 19
migrating 19
multiple 19
opening 19

project configuration 75
affinities 83
creating 75
editing 76, 77, 79, 80
opening 76
project deployment options 83

project deployment
adding affinities 80
adding project options 80
setting project type 80

projects
building simple projects 31
configuring 75–77, 79, 80, 83

Index

122 Sybase Event Stream Processor

connecting 87
creating 16
debugging 93
deleting elements 51
deploying 75
diagrams 21
introduction 5
on-demand queries 6
opening 18
output 6
running 93, 95
running in local cluster 87
testing 93

properties
schema discovery 115

publishing
manual input 98
testing 98

Q
queries 38, 42, 43, 46

CCL 69
complex 52
derived delta stream 52
derived stream 52
derived window 52
pattern matching 47
snapshot SQL queries 100

See also on-demand queries

R
recording event data

Playback view 101
recording incoming data 102
records

aging data 63
remote cluster

connection 88
removing elements

from a diagram 51
from a project 51

retention
count-based 35
slack 35
time-based 35

See also keep policy
RSA 89

server connection 90

Run-Test perspective
debugging 104
Monitor view 99
opening 93
running Event Tracer 104

running a project
in local cluster 87

S
safedelete

defined 7
saving

performance diagrams 100
schema

adapters 32
column expressions 50
creating an input stream 33
creating an input window 33
creating in CCL 70
creating in Visual editor 63
discovering a schema 33
discovery 32
importing a schema 33
named 63
overview 7

schema discovery
adapter properties 115
adapters 33
adapters that support it 115
creating an input stream 33
creating an input window 33
importing a schema 33
overview 32

scope
for modules 53

SDKs
supported languages 9

searching
for text 69

SELECT clause
CCL 69

server connections
KERBEROS 90
LDAP 90
RSA 90

Server View
overview 95
showing servers in Event Tracer View 95
showing servers in Monitor View 95

Index

Studio Users Guide 123

servers
authentication 91
connecting to 87
connections 91
login methods 91

shapes
descriptions 24
iconic and verbose 30
in Palette 24
inserting in a diagram 28

simple queries 38, 40, 41
aggregate 41
compute 42
filter 40
join 43
pattern matching 47
union 46

SPLASH
Flex operators 62
overview 11

Splitter
creating 66

SQL Query view
snapshot SQL queries 100

starting
Studio 13

statements
CREATE LOG STORE 59
CREATE MEMORY STORE 59

stores
creating a log store 59
creating a memory store 61
log store 59
memory store 59

Stream View
showing streams 96

streams
displaying in Stream View 96
editing column expressions 49
introduction 6
monitoring for errors 64
schema 7
schema discovery 32
structure 7

Studio
File Explorer 14
getting started 13
overview 10
starting on Linux 13

starting on UNIX 13
starting on Windows 13

Studio workspace
basics 13

subscriptions
in Stream View 96

T

testing
manually publishing 98

text authoring
overview 10

Text editor
See also CCL editor

Topology Stream 105

U

union 38
simple query 46

uploading data
ESP server 97
file types 97

upsert
defined 7

V

verbose mode
toggling 30

views
Authoring perspective 22
Console 22
File Explorer 22
Outline 22
Overview 22
Palette 22
Problems 22
Properties 22
Search 22

visual authoring
diagrams 21
overview 10
views 22

Visual editor 38, 43, 65
accessing 27
aggregate 41
compute simple query 42

Index

124 Sybase Event Stream Processor

creating dataflow 48
keyboard shortcuts 29
modifying layout 30
overview 21
simple queries 40, 47
union simple query 46
views 22

W
watch variables 108

debugging 106
when filter

Create Splitter 66

windows
adding to projects 34
aging data 63
editing column expressions 49
input 34
introduction 6
schema 7
schema discovery 32
structure 7

workspace
basics 13

Index

Studio Users Guide 125

Index

126 Sybase Event Stream Processor

	Studio Users Guide
	Contents
	CHAPTER 1: Introduction to Sybase Event Stream Processor
	Events
	Event Stream Processor Compared to Databases
	Data-Flow Programming
	ESP Projects: Streams, Windows, Adapters, and Continuous Queries
	Streams Versus Windows
	Getting Results from an ESP Project
	Schemas
	Operation Codes
	Product Components
	Input and Output Adapters
	Custom Adapters

	Authoring Methods
	Continuous Computation Language
	SPLASH

	CHAPTER 2: Getting Started in ESP Studio
	Starting ESP Studio
	Studio Workspace Basics
	File Explorer

	The Studio Log File
	Learning Perspective
	Running Examples in the Learning Perspective

	Creating a Project
	Converting AleriML Models into CCL Projects
	Converting AleriML Models into New Projects
	Converting AleriML Models to Add to Existing Projects

	Opening a Project
	Importing an Existing Project
	Importing Multiple Projects

	CHAPTER 3: Visual Editor Authoring
	Diagrams
	Studio Authoring Views and Editors
	Shape Reference
	Editing a Project in the Visual Editor
	Adding Shapes to a Diagram
	Adding Comments to Shapes
	Keyboard Shortcuts in the Visual Editor
	Changing the Display of Diagrams
	Building a Simple Project
	Adding an Adapter to a Project
	Schema Discovery
	Discovering a Schema
	Adding an Input Stream or Window to a Project
	Specifying a Retention Policy
	Adding a Simple Query
	Simple Queries
	Creating and Modifying Simple Queries: Filter
	Creating and Modifying Simple Queries: Aggregate
	Creating and Modifying Simple Queries: Compute
	Creating and Modifying Simple Queries: Join
	Join Types and Restrictions

	Creating and Modifying Simple Queries: Union
	Creating and Modifying Simple Queries: Pattern

	Connecting Elements
	Setting Key Columns
	Editing Column Expressions for Windows, Streams, and Delta Streams
	Column Expressions

	Deleting an Element

	Adding Advanced Features to a Project
	Complex Queries
	Modularity
	Creating a Module
	Editing a Module
	Creating a Module File
	Importing Definitions from Another CCL File
	Using a Module Within a Project
	Configuring the Loaded Module
	Configuring a Module Repository

	Stores
	Creating a Log Store
	Creating a Memory Store

	Flex Operators
	Creating a Flex Operator in the Visual Editor

	Creating a Schema in the Visual Editor
	Setting an Aging Policy
	Monitoring Streams for Errors
	Creating an Error Stream
	Displaying Error Stream Data
	Modifying an Error Stream

	Switching Between the CCL and Visual Editors
	Splitting Inputs into Multiple Outputs

	CHAPTER 4: CCL Editor Authoring
	Editing in the CCL Editor
	CCL Editor Features
	Keyboard Shortcuts in the CCL Editor
	Searching for Text
	Queries in CCL
	Creating a Schema in the CCL Editor
	CCL Functions
	Operators
	Adding Tooltip Comments for the Visual Editor in CCL

	CHAPTER 5: Project Configurations
	Creating a Project Configuration
	Opening an Existing Project Configuration
	Project Configuration File Editor
	Editing Cluster Parameters in Project Configuration
	Editing Bindings in Project Configuration
	Editing Adapter Property Sets in Project Configuration
	Setting Parameters in Project Configuration
	Editing Advanced Options in Project Configuration

	Advanced Project Deployment Options

	CHAPTER 6: Running Projects in Studio
	Connecting to the Local Cluster
	Connecting to a Remote Cluster
	Connecting to a Kerberos-Enabled Server
	Connecting to an RSA-Enabled Server
	Configuring a Remote Cluster Connection
	Modifying a Remote Cluster Connection

	CHAPTER 7: Running and Testing a Project
	Starting the Run-Test Perspective
	Compiling a Project
	Viewing Problems

	Running a Project
	Server View
	Viewing a Stream
	Controlling the Pulse Rate for Viewing a Stream
	Uploading Data to ESP Server
	Manually Entering Data to a Stream

	Activating a Project
	Performance Monitor
	Running the Monitor
	Saving a Performance Diagram as an Image

	Running a Snapshot SQL Query against a Window
	Playback View
	Recording Incoming Data in a Playback File
	Playing Recorded Data

	Debugging
	Event Tracer View
	Tracing Data Flow in the Event Tracer
	Viewing the Topology Stream

	Debugging with Breakpoints and Watch Variables
	Breakpoints
	Adding Breakpoints
	Watch Variables
	Adding Watch Variables
	Pausing the Event Stream Processor
	Stepping the Event Stream Processor

	CHAPTER 8: Customizing the Studio Work Environment
	Editing Studio Preferences
	Manual Input Settings
	Rearranging Views in a Perspective
	Moving the Perspective Shortcut Bar

	APPENDIX A: Adapter Support for Schema Discovery
	Index

