
Studio Users Guide

Sybase Event Stream Processor
5.0

DOCUMENT ID: DC01613-01-0500-03
LAST REVISED: March 2012
Copyright © 2012 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
Upgrades are provided only at regularly scheduled software release dates. No part of this publication may be reproduced,
transmitted, or translated in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Sybase, Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

CHAPTER 1: Introduction to Sybase Event Stream
Processor ...1

Event Streams ..2
Event Stream Processor Compared to Databases2
Data-Flow Programming ...3
ESP Projects: Adapters, Streams, Windows, and

Continuous Queries ..4
Streams Versus Windows ...4
Schemas ...5
Inserts, Updates, and Deletes ..5
Product Components ..6
Input and Output Adapters ...7

Custom Adapters ..8
Authoring Methods ..8
Continuous Computation Language8
SPLASH ..9

CHAPTER 2: Getting Started in ESP Studio11
Starting ESP Studio ...11
Studio Workspace Basics ...11

File Explorer ..12
Learning Perspective ...13

Running Examples in the Learning Perspective13
Creating a Project ..14

Converting AleriML Models into CCL Projects15
Converting AleriML Models into New Projects15
Converting AleriML Models to Add to Existing

Projects ...15
Opening a Project ...16

Studio Users Guide iii

Importing an Existing Project ..16

CHAPTER 3: Visual Editor Authoring17
Diagrams ..17
Visual Authoring Environment ...18
Shape Reference ..19
Editing a Project in the Visual Editor23
Adding Shapes to a Diagram ..24
Adding Comments to Shapes ...24
Keyboard Shortcuts in the Visual Editor25
Changing the Display of Diagrams26
Building a Simple Project ...26

Adding an Adapter to a Project27
Schema Discovery ..28
Discovering a Schema ..28
Adding an Input Stream or Window to a Project30
Keep Policy ...30
Adding a Simple Query ...32

Simple Queries ..32
Creating and Modifying Simple Queries: Filter34
Creating and Modifying Simple Queries:

Aggregate ..34
Creating and Modifying Simple Queries:

Compute ..35
Creating and Modifying Simple Queries: Join36
Creating and Modifying Simple Queries: Union ...40
Creating and Modifying Simple Queries: Pattern

...40
Connecting Elements ..41
Setting Key Columns ..42
Editing Column Expressions for Windows, Streams,

and Delta Streams ..42
Column Expressions ..43

Deleting an Element ...44

Contents

iv Sybase Event Stream Processor

Adding Advanced Features to a Project45
Complex Queries ..45
Modularity ...46

Creating a Module ... 47
Editing a Module ..47
Creating a Module File ...48
Importing Definitions from Another CCL File49
Using a Module Within a Project49
Configuring the Loaded Module 50

Stores ... 51
Creating a Log Store ..52
Creating a Memory Store 53

Flex Operators ..54
Creating a Flex Operator in the Visual Editor 54

Creating a Schema in the Visual Editor55
Setting an Aging Policy ...55
Monitoring Streams for Errors56

Creating an Error Stream56
Displaying Error Stream Data57
Modifying an Error Stream57

Switching Between the CCL and Visual Editors58

CHAPTER 4: CCL Editor Authoring59
Editing in the CCL Editor ..59
CCL Editor Features ..60
Keyboard Shortcuts in the CCL Editor60
Searching for Text ..61
Queries in CCL ...61
Creating a Schema in the CCL Editor62
Functions ..62
Operators ..63
Adding Tooltip Comments for the Visual Editor in CCL . .66

CHAPTER 5: Project Configurations67

Contents

Studio Users Guide v

Creating a Project Configuration67
Opening an Existing Project Configuration68
Project Configuration File Editor68

Editing Cluster Parameters in Project Configuration68
Editing Bindings in Project Configuration69
Editing Adapter Property Sets in Project Configuration

..70
Setting Parameters in Project Configuration71
Editing Advanced Options in Project Configuration72

Advanced Project Deployment Options75

CHAPTER 6: Running Projects in Studio77
Connecting to the Local Cluster ..77
Connecting to a Remote Cluster ..78
Configuring a Remote Cluster Connection79
Modifying a Remote Cluster Connection80

CHAPTER 7: Running and Testing a Project81
Starting the Run-Test Perspective81
Compiling a Project ...81
Running a Project ..82

Server View ..82
Viewing a Stream ..83
Uploading Data to ESP Server83
Manually Entering Data to a Stream84

Performance Monitor ...85
Running the Monitor ...85
Saving a Performance Diagram as an Image86

Running a Snapshot SQL Query against a Window86
Playback View ..87

Recording Incoming Data in a Playback File88
Playing Recorded Data ...89

Debugging ..89
Event Tracer View ...89

Contents

vi Sybase Event Stream Processor

Tracing Data Flow in the Event Tracer90
Viewing the Topology Stream91

Debugging with Breakpoints and Watch Variables91
Breakpoints ..92
Adding Breakpoints ..93
Watch Variables ...94
Adding Watch Variables95
Pausing the Event Stream Processor95
Stepping the Event Stream Processor96

CHAPTER 8: Customizing the Studio Work
Environment ...97

Editing Studio Preferences ...97
Manual Input Settings ...98
Rearranging Views in a Perspective99
Moving the Perspective Shortcut Bar100

APPENDIX A: Adapters that Support Schema
Discovery ...101

Index ...105

Contents

Studio Users Guide vii

Contents

viii Sybase Event Stream Processor

CHAPTER 1 Introduction to Sybase Event
Stream Processor

Sybase® Event Stream Processor enables you to create and run your own complex event
processing (CEP) applications to derive continuous intelligence from streaming event data in
real time.

Event Stream Processing and CEP
Event stream processing is a form of CEP, a technique for analyzing information about events,
in real time, for situational awareness. When vast numbers of event messages are flooding in,
it is difficult to see the big picture. With event stream processing, you can analyze events as
they stream in and identify emerging threats and opportunities as they happen. Event Stream
Processor Server filters, aggregates, and summarizes data to enable better decision making
based on more complete and timely information.

Event Stream Processor is not an end-user application, but an enabling technology that
provides tools that make it easy to develop and deploy both simple and complex projects. It
provides a highly scalable runtime environment in which to deploy those projects.

Event Stream Processor as a Development Platform
As a platform for developing CEP projects, Event Stream Processor provides high-level tools
for defining how events are processed and analyzed. Developers can work in either a visual or
text-oriented authoring environment. You can define logic that is applied to incoming events
to:

• Combine data from multiple sources, producing derived event streams that include richer
and more complete information.

• Compute value-added information to enable rapid decision making.
• Watch for specific conditions or patterns to enable instantaneous response.
• Produce high-level information, such as summary data, statistics, and trends to see the big

picture, or the net effect, of many individual events.
• Continuously recompute key operating values based on complex analysis of incoming

data.
• Collect raw and result data into a historical database for historical analysis and

compliance.

Event Stream Processor Runtime Environment
As an engine for an event-driven architecture (EDA), Event Stream Processor can absorb,
aggregate, correlate, and analyze events to produce new high-level events that can trigger
responses, and high-level information that shows the current state of the business. Event
Stream Processor:

Studio Users Guide 1

• Processes data continuously as it arrives
• Processes data before it is stored on disk, thus achieving extremely high throughput and

low latency, enabling better decision making based on more complete and timely
information

• Separates business logic from data management, making it easier to maintain the business
logic and reducing total cost of ownership

• Provides enterprise class scalability, reliability, and security

Event Streams
An business event is a message that contains information about an actual business event that
occurred. Many business systems produce events when things happen.

Examples of business events that are often transmitted as streams of event messages include:

• Financial market data feeds that transmit trade and quote events. Events may consist of
ticket symbol, price, quantity, time, and so on

• Radio Frequency Identification System (RFID) sensors that transmit events indicating that
an RFID tag was sensed nearby

• Click streams, which transmit a message (a click event) each time a user clicks a link,
button, or control on a Web site

• Transaction events, which occur each time a record is added to a database or updated in a
database

Many applications are already designed to produce events in real time, typically publishing
them on a message bus. Applications that are not designed in this way can be “event enabled”
using tools such as Sybase Replication Server®, which can monitor transaction logs to
produce a real-time stream of events based on application database updates .

Event Stream Processor Compared to Databases
Sybase Event Stream Processor complements traditional databases to help solve new classes
of problems where continuous, event-driven data analysis is required.

Event Stream Processor is not a replacement for databases. Databases excel at storing and
querying static data, and reliably processing transactions. However, databases are not
effective at continuously analyzing fast moving streams of data.

• Traditional databases must store all data on disk before beginning to process it.
• Databases do not use preregistered continuous queries. Database queries are "one-time-

only" queries. To ask a question ten times a second, you must issue the query ten times a
second. This model breaks down when one or more such queries need to be executed
continuously as polling the database faster results in a performance impact to the source
systems. Additionally, the polling approach has latency.

CHAPTER 1: Introduction to Sybase Event Stream Processor

2 Sybase Event Stream Processor

• Databases do not use incremental processing. Event Stream Processor can evaluate
queries incrementally as data arrives.

Event Stream Processor is not an in-memory database. It shares some traits with in-memory
databases in that it operates in and holds all data in memory, to achieve desired speed.
However, unlike an in-memory database, that is designed to efficiently process on-demand
queries, Event Stream Processor uses a data-flow architecture that is optimized for continuous
event-driven queries.

Data-Flow Programming
In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation processes an event only when it is received from
another operation. No other coordination is needed between operations.

Figure 1: Data-Flow Programming

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 3

ESP Projects: Adapters, Streams, Windows, and
Continuous Queries

An ESP project defines a set of event streams, any other required datasources, and the business
logic applied to incoming event data to produce results.

At its most basic level, a project consists of:

• Input streams and windows – where the input data flows into the project. An input stream
can receive incoming event data on an event-driven basis, and can also receive static or
semistatic sets of data that are loaded once or periodically refreshed.

• Adapters – connect an input stream or window to a datasource. Sybase Event Stream
Processor includes a large set of built-in adapters as well as an SDK that you can use to
build custom adapters. Adapters can also connect an output stream or window to a
destination.

• Derived streams and windows – take data from one or more streams or windows and
apply a continuous query to produce a new stream or window.

Getting Results from an ESP Project
Event Stream Processor has four ways to get output from a running project:

• Applications receive information automatically from internal output adapters attached to a
stream when you build the project.

• Applications can subscribe to data streams by means of an external subscriber, which users
can create using subscription APIs provided with the product.

• Users can start a new project that binds (connects) to a stream in a running project, without
reconfiguring the project.

• Users can run on-demand queries using the esp_query tool to query output windows in a
running ESP project. For more information see the Utilities Guide.

Streams Versus Windows
Both streams and windows process events. The difference is that windows have state, meaning
they can retain and store data, while streams are stateless and cannot.

Streams process incoming events and produce output events according to the continuous
query that is attached to the stream, but no data is retained.

By contrast, a window consists of a table where incoming events can add rows, update existing
rows, or delete rows. You can set the size of the window based on time, or on the number of
events recorded. For example, a window might retain all events over the past 20 minutes, or the
most recent 1,000 events. A window can also retain all events. In this case, the incoming event
stream must be self-managing in that it contains events that both insert rows into the window

CHAPTER 1: Introduction to Sybase Event Stream Processor

4 Sybase Event Stream Processor

and delete rows from the window, so that the window does not grow infinitely large. Windows
are needed for performing aggregate operations, as this cannot be done on streams.

Input, Output, and Local Streams and Windows
Streams and windows can be designated as input, output, or local. Input streams are the point
at which data enters the project from external sources via adapters. A project may have any
number of input streams. Input streams do not have continuous queries attached to them,
although you can define filters for them.

Local and output streams and windows take their input from other streams or windows, rather
than from adapters, and they apply a continuous query to produce their output. Local streams
and windows are identical to output streams and windows, except that local streams and
windows are hidden from outside subscribers. Thus, when a subscriber selects which stream
or window to subscribe to, only output streams and windows are available.

Note: The visual authoring palette lists local and output streams as derived streams, and lists
local and output windows as derived windows.

Schemas
Each stream or window has a schema, which defines the columns in the events produced by the
stream or window.

Each column has a name and datatype. All events that output from a single stream or window
have an identical set of columns. For example:

• An input stream called RFIDRaw, coming out of an RFID reader, may have columns for a
ReaderID and a TagID, both containing string data.

• An input stream called Trades, coming from a stock exchange, may have columns for the
Symbol (string), Volume (integer), Price (float), and Time (datetime).

Inserts, Updates, and Deletes
Operation Codes (opcodes) associate insert, update, and delete events with a window. They
simplify development and improve performance by applying these events automatically.

In many Event Stream Processor use cases, events are independent of each other: each carries
information about something that happened. In these cases, a stream of events is a series of
independent events. If you define a window on this type of event stream, each incoming event
is inserted into the window. If you think of a window as a table, the new event is added to the
window as a new row.

In other use cases, events deliver new information about previous events. The ESP Server
needs to maintain a current view of the set of information as the incoming events continuously
update it. Two common examples are order books for securities in capital markets, or open

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 5

orders in a fulfillment system. In both applications, incoming events may indicate the need
to:

• Add an order to the set of open orders,
• Update the status of an existing open order, or,
• Remove a cancelled or filled order from the set of open orders.

To handle information sets that are updated by incoming events, Event Stream Processor
recognizes insert, update, and delete operations associated with incoming events. You can tag
events with an opcode, a special field that indicates whether the event is an insert event, an
update event, or a delete event. There is also an upsert opcode, which either updates an existing
record with a matching key, or inserts a new record.

Input windows apply insert, update, and delete events to the data in the window directly, as
events arrive. Inserts, updates, and deletes are propagated through the query graph, that is, all
downstream derived windows. Thus, when an event updates or deletes a record in an input
window, it automatically applies to any downstream derived windows. This native handling of
updates and deletes provides high performance and simplicity. Users do not need to manually
define the logic to examine incoming events and determine how to apply them to a window.

Product Components
Event Stream Processor includes a server component for processing and correlating streams
of data, a Studio environment for developing, testing, and starting applications that run on the
server, and administrative tools.

Components include:

• ESP Server – the software that processes and correlates data streams at runtime. Event
Stream Processor can process and analyze hundreds of thousands of messages per second.
Clustering provides scale-out support to ESP Server. A server cluster lets users run
multiple projects simultaneously; provides high availability and failover; and lets you
apply centralized security and support for managing cluster connections.

• ESP Studio – an integrated development environment for creating, modifying, and testing
ESP projects.

• CCL compiler – the compiler that translates and optimizes projects for processing by ESP
Server. It is invoked by ESP Studio or from the command line.

• Input and output adapters – the components that establish connections between Event
Stream Processor and datasources, as well as the connections between the ESP Server and
the consumers that will receive output from Event Stream Processor.

• Integration SDK – a set of APIs for creating custom adapters in C/C++, Java, and .NET,
for integrating custom function libraries, and for managing and monitoring live projects.

• Utilities – a set of executables that offer command line access to many administrative,
project development, publishing and subscription, and other features.

CHAPTER 1: Introduction to Sybase Event Stream Processor

6 Sybase Event Stream Processor

Input and Output Adapters
Input and output adapters enable Event Stream Processor to send and receive messages from
dynamic and static external sources and destinations.

External sources or destinations can include:

• Data feeds
• Sensor devices
• Messaging systems
• Radio frequency identification (RFID) readers
• E-mail servers
• Relational databases

Input adapters connect to an external datasource and translate incoming messages from the
external sources into a format that is accepted by the ESP server. Output adapters translate
rows processed by Event Stream Processor into message formats that are compatible with
external destinations and send those messages downstream.

The following illustration shows a series of input adapters that translate messages from a
temperature sensor, bar code scanner, and a Java Message Service (JMS) cloud into formats
compatible with Event Stream Processor. After the data is processed using various queries
within Event Stream Processor, output adapters convert the result rows into updates that are
sent to an external database server, e-mail server, and Web services dashboard.

Figure 2: Adapters in Event Stream Processor

For a complete list of adapters supplied by Event Stream Processor, see the Adapters
Guide.

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 7

Custom Adapters
In addition to the adapters provided by Event Stream Processor, you can write your own
adapters to integrate into the server.

Event Stream Processor provides a variety of SDKs that allow you to write adapters in a
number of programming languages, including:

• C
• C++
• Java
• .NET (C#, Visual Basic, and so on)

For detailed information about how to create custom adapters, see the Adapters Guide. For
versions supported by these SDKs, see the Installation Guide.

Authoring Methods
Event Stream Processor Studio provides visual and text authoring environments for
developing projects.

In the visual authoring environment, you can develop projects using graphical tools to define
streams and windows, connect them, integrate with input and output adapters, and create a
project consisting of queries.

In the text authoring environment, you can develop projects in the Continuous Computation
Language (CCL), as you would in any text editor. Create data streams and windows, develop
queries, and organize them in hierarchical modules and projects.

You can easily switch between the Visual editor and the CCL editor at any time. Changes made
in one editor are reflected in the other. You can also compile projects within Studio.

In addition to its visual and text authoring components, Studio includes environments for
working with sample projects, and for running and testing applications with a variety of
debugging tools. Studio also lets you record and playback project activity, upload data from
files, manually create input records, and run ad hoc queries against the server.

If you prefer to work from the command line, you can develop and run projects using the
esp_server, esp_client, and esp_compiler commands. For a full list of Event Stream
Processor utilities, see the Utilities Guide.

Continuous Computation Language
CCL is the primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CHAPTER 1: Introduction to Sybase Event Stream Processor

8 Sybase Event Stream Processor

CCL supports sophisticated data selection and calculation capabilities, including features
such as: data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous
execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time an event arrives from one of its datasources.

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
an SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. ESP servers are
optimized for incremental processing, hence the query optimization is different than for
databases. Compilation is typically performed within Event Stream Processor Studio, but it
can also be performed by invoking the CCL compiler from the command line.

SPLASH
Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has
similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

See also
• Flex Operators on page 54

CHAPTER 1: Introduction to Sybase Event Stream Processor

Studio Users Guide 9

CHAPTER 1: Introduction to Sybase Event Stream Processor

10 Sybase Event Stream Processor

CHAPTER 2 Getting Started in ESP Studio

To begin developing a project, start ESP Studio, review workspace basics, and optionally step
through an example before creating your own project.

Starting ESP Studio
Start ESP Studio from the desktop shortcut, Windows Start menu, or the command line.
From your desktop or workstation:

Platform Method

Windows • Double-click the Sybase ESP Studio shortcut on your computer
desktop, or,

• Select Start > Programs > Sybase > Event Stream Processor >
Studio > Studio.

Linux or UNIX • Double-click the Sybase ESP Studio shortcut on your computer
desktop, or,

• At the command line, enter $ESP_HOME/studio/esp-
studio/esp_studio .

Studio Workspace Basics
In the Studio workspace, you use different perspectives and views to run examples, create and
edit projects, and run and test your projects in a running Event Stream Processor server.

By default, all perspectives are open. To switch to another perspective, click its tab, just below
the main menu bar.

Studio Users Guide 11

Table 1. User Activities in Studio Perspectives

Perspective Activities

Authoring • Create and edit projects
• Develop projects and diagrams in the Visual editor, a graphical editing

environment
• Develop projects in the CCL editor, a text-oriented editing environment

where you edit CCL code
• Compile projects
• Import Aleri models

Learning • Load example projects
• Step through example projects so that you can follow what happens

when you subscribe to streams, publish demonstration data, and view
results

Note: Activities you initiate in Learning perspective open in Authoring and
Run-Test perspectives so that you can take advantage of facilities there to
learn more about the example project.

Run-Test • Start and connect to servers
• Run projects
• Enter test data by uploading data files to a server, or entering data

manually to a stream
• Publish data
• Execute a query against a running project
• Use the Event Tracer and Debugger to set breakpoints and watchpoints,

and trace the flow of data through a project
• Record incoming event data to a playback file, and play back captured

data into a running project
• Monitor performance

See also
• Chapter 3, Visual Editor Authoring on page 17

• Chapter 7, Running and Testing a Project on page 81

File Explorer
Organize and navigate among your projects using the File Explorer, which provides a tree-
structured hierarchy of folders and files

The File Explorer view lets you organize project files, navigate to files and perform various
file-based actions:

• Creating new CCL files

CHAPTER 2: Getting Started in ESP Studio

12 Sybase Event Stream Processor

• Creating new projects
• Editing existing files
• Deleting files
• Creating new folders

See also
• Editing a Project in the Visual Editor on page 23
• Editing in the CCL Editor on page 59

Learning Perspective
The Learning perspective helps you get started with Studio by performing common tasks with
example projects.

You can open the Learning perspective in three different ways:

• The Open Example shortcut on the Welcome Screen
• The Learning button on the perspective shortcuts bar
• Select Window > Open Perspective > Learning

The Examples view, which appears on the left in the Learning perspective, lists all currently
available examples. Each example item has a LOAD button, which you can click to run the
example.

The Description view, to the right of the Learning perspective, shows a detailed description of
the selected example.

Running Examples in the Learning Perspective
Load and run provided examples to demonstrate Server View, Stream View, Visual editor and
other important Studio functions.

1. Select an example project from the Examples view and click LOAD.

2. Either:

• Click Proceed to start the example project and follow prompts for the remaining steps;
or,

• Check Run in silent mode and click Proceed to run the process in the background.

Once this step is complete, the example project appears in the Visual editor.

3. Click Proceed to subscribe to the example output and view it.
The stream appears in Stream View.

4. Click Proceed to publish the example data and upload it to a server.

5. (Optional) In the Step by Step Example view, select a project from the Example project
menu.

CHAPTER 2: Getting Started in ESP Studio

Studio Users Guide 13

If the project has the same name as an existing project in your workspace, Studio
determines whether or not the existing project is also an example. If it is, studio loads the
project. If the existing project is not an example, an error results and you must either
rename the example project you initially selected, or remove the existing project that
caused the error.

6. (Optional) Click a step to review any of the actions previously described.

The Step by Step Example view lists the actions that the example performs and provides a
quick link for launching the actions. The project must be running to launch an action.

Creating a Project
Use the Studio to create new projects that can run on the ESP Server.

Continuous queries are organized into projects that also define inputs, outputs, a schema and
other options for processing event data.

1. Select File > New > Project....

2. Enter a valid project name:

• Must start with a letter, underscore, or dollar sign
• All other characters must be alphanumeric, underscore, or dollar sign
• Must not contain spaces

For example, enter MyFirstProject.

3. In the Directory field, accept the default location or browse to a directory in which to store
the new project folder.
Studio creates three files in the named directory:
• project_name.ccl – contains the CCL code.

• project_name.cclnotation – contains the diagram that corresponds to
the .ccl file.

• project_name.ccr – contains the project configuration.

For example, for a project directory named "trades," Studio creates a trades.ccl,
trades.cclnotation, and trades.ccr file in the trades directory.

4. Click Finish to create the project files.
The new project opens in the Visual editor with one input stream, NEWSTREAM, and an
inline schema ready for editing.

See also
• Opening a Project on page 16

• Importing an Existing Project on page 16

• Editing a Project in the Visual Editor on page 23

• Switching Between the CCL and Visual Editors on page 58

CHAPTER 2: Getting Started in ESP Studio

14 Sybase Event Stream Processor

Converting AleriML Models into CCL Projects
Studio allows you to convert AleriML data models into new CCL projects, or add the data to an
existing project.

Any conversion errors appear in a dialog box, wherein each error appears as a separate row,
along with line and column information.

See the Migration Guide for differences between Aleri models and ESP projects.

Converting AleriML Models into New Projects
Access AleriML conversion functionality for new projects in the File menu.

1. From any view in Studio, open the File menu.

2. Select Convert Aleri Data Model. Select whether to convert the data model into a new
CCL project or add the data file to an existing project.

3. Select Convert to new project and click Next.

4. Browse to or enter the name of the Aleri data model you wish to convert. The CCL file
name and Project name fields are populated based on the model you select.

You can overwrite the CCL file and project names after the fields are populated.

5. Accept the default Location or browse to a directory in which to store the new project
folder.

6. Click Finish to complete the conversion.

See also
• Converting AleriML Models to Add to Existing Projects on page 15

Converting AleriML Models to Add to Existing Projects
Access AleriML conversion functionality for existing projects from the File menu or File
Explorer.

1. Either:

• Open the File menu from any perspective in the Studio, or,
• Right-click a project in the File Explorer view in the Authoring perspective.

2. Select Convert Aleri Data Model. If you accessed the conversion option from the File
menu, select Convert to existing project and click Next.

Note: Your project must be located in the current workspace.

3. Browse to or enter the name of the Aleri data model.

The CCL file name and Project name fields are populated based on the name of the
model.

CHAPTER 2: Getting Started in ESP Studio

Studio Users Guide 15

4. Click Finish to complete the conversion.

See also
• Converting AleriML Models into New Projects on page 15

Opening a Project
Open an Event Stream Processor project from File Explorer when it already exists in your
workspace.

1. In File Explorer, expand project folders to see project files.

2. Double-click a file to open it for editing.

• .cclnotation files open in the Visual editor

• .ccl files open in the CCL editor

You cannot have both the .cclnotation and .ccl files for the same project open at
the same time.

See also
• Creating a Project on page 14

• Importing an Existing Project on page 16

• Editing a Project in the Visual Editor on page 23

• Switching Between the CCL and Visual Editors on page 58

Importing an Existing Project
Import an existing Event Stream Processor project from another location into your workspace.

1. Choose File > Open > Project.

2. Browse to the root directory of the project.

3. (Optional) Select Copy projects into workspace.

• Copy projects into workspace copies the project in the workspace and opens it from
there. Changes are made to the copy only.

• If this option is not checked, the project opens in its original location.

4. Click Finish.

See also
• Creating a Project on page 14

• Opening a Project on page 16

• Editing a Project in the Visual Editor on page 23

• Switching Between the CCL and Visual Editors on page 58

CHAPTER 2: Getting Started in ESP Studio

16 Sybase Event Stream Processor

CHAPTER 3 Visual Editor Authoring

The Visual editor lets you create and edit projects without learning CCL syntax.

It is also a valuable tool for experienced CCL programmers, particularly when working on
complex projects, as a way to easily visualize the data flow and navigate within the project. In
the Visual editor, the project is represented by one or more diagrams that show streams,
windows, adapters, and the data flows between them.

Begin by developing a simple project. Use the graphical tools to add streams and windows,
connect them, and associate them with adapters. Add simple queries directly in the diagram
using the visual editing tools.

Once you have a basic diagram completed, compile and run your project.

When you are confident that your simple project is working, you can progress to advanced
features: more complex queries, Flex operators for custom operations, modularity, and
custom adapters. You can access many of these features in the visual authoring environment.

For more complex queries and other advanced features, you can switch to the CCL editor. A
single CCL file can be open in only one editor at a time. The Visual and CCL editors are
completely integrated. When you save and switch to the other editor, your work is saved there
as well.

Diagrams
In visual authoring, you use diagrams to create and manipulate the streams, windows,
connections, and other components of a project, and create simple queries.

When you open a project in the Visual editor, the project shows a collection of stream and
window shapes that are connected with arrows showing the flow of data. You develop the
project by selecting new input and output streams, windows, and other elements from the
Palette, dropping them onto the diagram, connecting them, and configuring their behavior.

Every project has at least one diagram. A project can have multiple diagrams. You cannot
share a diagram among multiple projects.

When you add a shape or other element to a diagram, it is automatically added to the project
when you save. You can delete an element from a diagram only, or from the project.

Display diagrams in verbose or iconic mode:

• iconic – compartments are collapsed to save space.

Studio Users Guide 17

• verbose – all compartments in elements are visible.

You can apply verbose and iconic mode to all elements in a diagram, or to the selected shape
only. To expand or collapse all shapes in the diagram, use the "All Iconic" or "All Verbose"
buttons on the main toolbar. To expand an individual shape, click on the "+" box in the shape.
To collapse an individual shape, click on the "-" box in the shape header.

See also
• Shape Reference on page 19

• Changing the Display of Diagrams on page 26

Visual Authoring Environment
The Visual editor and other tools and views in the Authoring perspective allow you to create,
view, and edit a diagram.

• Editor – canvas at the center of the Authoring perspective where you edit the diagram.
• Palette – includes groups of tools used to create new CCL elements on the diagram. Most

shapes on the Palette correspond to a CCL statement.
• File Explorer – provides a hierarchical tree structure of folders and files.
• Properties view – displays the properties of the object selected in the diagram. You can

also set properties in this view, and edit expressions.
• Outline view – provides an index to all elements in the diagram as a hierarchical tree

structure. Also shows the order in which adapters are started. Right-click an element in this
view to show it in the diagram, delete it, modify it, or add a child element.

• Overview – helps you understand the big picture, and navigate easily to different areas of a
large, complex diagram. For large diagrams you can scroll the editor by dragging the gray
box in the overview.

CHAPTER 3: Visual Editor Authoring

18 Sybase Event Stream Processor

• Search – provides full-text search capability for finding text strings in the workspace.
Useful in navigating File Explorer, and project contents in the CCL editor. You can filter
search results, and copy, remove, or replace results found.

• Problems – displays errors found when you validate a project or upload files.
• Console – displays messages generated by Studio scripts.

Figure 3: Authoring Perspective Views

Shape Reference
Each shape in the Palette creates a specific type of stream or window, adapter, connection,
reusable schema or module, or a store, to create a data flow.

Table 2. Shapes in the Palette

Shape Purpose Usage

Connector Creates flows between streams
and windows, establishes refer-
ences between streams and
shared components, or attaches
notes to shapes.

Click to select the connector
tool, then click each of the
shapes in the diagram to be con-
nected..

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 19

Shape Purpose Usage

Note Creates a comment on the dia-
gram only. This comment does
not appear in the CCL file.

 Input Stream The entry point for unkeyed
event streams into a project.
Receives data from either an
input adapter or an external
publisher.

A stream does not retain any
data and does not have a state.
Data in an input stream is not
keyed.

 Derived Stream (Local)

 Derived Stream (Output)

Applies a continuous query to
data arriving from another
stream or window to produce a
new stream.

Streams do not retain data and
do not have keys. They are "in-
sert only," meaning that their
output consists only of inserts.
Input must be a stream or a
stream-window join.

By default, new streams (in-
cluding derived streams) are lo-
cal, but you can change that
property to output, to make
them visible to external sub-
scribers.

 Derived Window (Local)

 Derived Window (Output)

Applies a continuous query to
data arriving from another
stream or window. Retains data,
and retention rules can be set.

Data must be keyed so that ev-
ery row has a unique key. Pro-
cesses inserts, updates, and de-
letes both as local and output.
You can use the toolbar to
change the window to ouput,
which makes it visible to exter-
nal clients.

 Derived Delta Stream (Local)

 Derived Delta Stream (Out-
put)

Applies a continuous query
downstream from a window
where there is no need to retain
state but there is a need to pre-
serve insert, update, and delete
operations.

Can be used where a computa-
tion, filter, or union must be
performed, but where a state
does not need be maintained.
Use the toolbar to change the
derived delta stream to output if
needed.

CHAPTER 3: Visual Editor Authoring

20 Sybase Event Stream Processor

Shape Purpose Usage

 Input Window The entry point for event
streams into a project where in-
coming events have primary
keys and there is a desire to
maintain a window of event da-
ta. Supports opcodes (insert,
update, delete, upsert). Use this
as an entry point for event
streams if:

• The stream contains insert,
update and delete events,
or,

• You need to retain a set of
incoming events.

Window size can be set by row
count with a fixed number of
input records, or by time with
records being kept for a speci-
fied period. The window must
be keyed, that is, every row must
have a unique key value.

 Flex A programmable operator that
uses custom SPLASH scripts to
process incoming events.

A Flex operator can take input
from any number of streams
and/or windows and will pro-
duce a new derived stream or
window (either local or output).

 Aggregate Takes input from a single
stream or window and groups
records using a common attrib-
ute. Produces a single output
record for each group. Uses ag-
gregate functions like sum(),
count(), and so on.

Always creates a new window.
Requires a GROUP BY ele-
ment. You can optionally set
window size using retention
rules.

 Compute Takes input from a single
source and computes a new re-
cord for every record received.
Allows you to change the sche-
ma on events, computing new
fields and changing existing
fields.

Produces a derived stream when
the input is a stream. Produces a
derived delta stream when the
input is a window.

 Filter Takes input from a single
source and applies a filter. Cre-
ates a stream of records that
match the filter criteria.

Produces a derived stream when
the input is a stream. Produces a
derived delta stream when the
input is a window.

 Join Takes input from two or more
sources and joins them based on
common data elements.

See related information in this
guide and the CCL Program-
mers Guide for join support de-
tails.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 21

Shape Purpose Usage

 Pattern Takes input from two or more
sources and detects patterns of
events. One output record is
produced every time a pattern is
detected.

 Union Merges input from two or more
sources. One ouput record is
produced for every input re-
cord.

All inputs must have a common
schema.

 Named Schema Reusable definition of column
structure that can be referenced
by streams and windows.

 Module Represents a CCL CREATE
MODULE statement. Creates a
new module that can be used in
one or more places in the
project.

A module can contain all the
same elements as a project and
provides for reuse.

 Log Store Stores data held in windows.
Provides disk-based recovery
but is slower than a memory
store

By default, new windows are
assigned to a memory store.
Where recoverability of data in
a window is required, create a
log store and assign the window
to it.

 Memory Store Stores data held in windows. Faster than a log store but does
not recover data after shutdown.

• (Default) Created implicitly
by the CCL compiler, if no
other store is specified.

• (Optional) Created explicit-
ly, with windows assigned
to specific stores, to opti-
mize performance.

 Input Adapters Connects an input stream or in-
put window to an external data
source.

Must be connected to either an
input stream or input window.
To use schema discovery—that
is, to import the schema from
the source—add the input
adapter first, and then use sche-
ma discovery to create a con-
nected input stream or window
with the imported schema.

CHAPTER 3: Visual Editor Authoring

22 Sybase Event Stream Processor

Shape Purpose Usage

 Output Adapters Connects an output stream or
window to a destination.

Must be connected to either an
output stream or an output win-
dow.

See also
• Simple Queries on page 32

• Adding Shapes to a Diagram on page 24

• Connecting Elements on page 41

• Join Types and Restrictions on page 37

Editing a Project in the Visual Editor
Edit diagrams in a graphical user interface.

1. In the Authoring perspective, navigate to File Explorer.

2. To open a saved project in the Visual editor, double-click the .cclnotation file
name.

3. Click in the diagram to begin editing using the Palette.

Tip: To make the Visual editor window full-screen, double-click the name:Diagram tab
at the top. Double-click again to revert.

4. Save as you go (Ctrl+S).
This saves changes to both the .cclnotation file (the diagram) and the .ccl file (the
CCL).

5. To toggle between the Visual editor and the CCL editor, choose Switch to Text or
Switch to Visual (F4).

6. To close the diagram, press Ctrl+W or Ctrl+F4, or click the X on the tab at the top of the
editor .

Note: The Visual editor, like other graphical user interfaces, offers several ways to
accomplish most tasks, although this guide may not list all of them. For example, in many
contexts you can carry out an action by:
• Clicking a button or other icon in a shape, or on the main toolbar
• Using a shortcut key
• Double-clicking an element to open it
• Right-clicking to select from the context menu
• Selecting from the main menu bar
• Editing element values in the Properties view

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 23

ESP Studio also includes features common to Eclipse-based applications.

See also
• Creating a Project on page 14
• Opening a Project on page 16
• Importing an Existing Project on page 16
• Switching Between the CCL and Visual Editors on page 58
• File Explorer on page 12

Adding Shapes to a Diagram
Create streams, windows, and shared components, relate them using continuous queries, and
attach them to adapters.

1. Open a diagram in the Visual editor.

2. Click a shape tool in the Palette (Input Window, Flex, and so on), then click an empty area
in the diagram.
This creates the new shape in the diagram. Red borders indicate that the shape definition is
incomplete or incorrect. When a shape definition is complete, the border changes to gray.

Note: Do not try to drag-and-drop from the Palette into the diagram.

3. To view actions needed to complete a shape definition, hover the mouse over the shape in
the diagram.

Next
See tasks for specific shapes for more steps you may need to do.

See also
• Simple Queries on page 32
• Shape Reference on page 19
• Deleting an Element on page 44
• Keyboard Shortcuts in the Visual Editor on page 25

Adding Comments to Shapes
Add comments to shapes in the Visual editor that will appear within a toooltip when you hover
over them.

Prerequisites

'Show comments in tooltip' must be enabled in Preferences.

CHAPTER 3: Visual Editor Authoring

24 Sybase Event Stream Processor

Task

1. In the visual editor, select a shape you want to add a comment for by clicking on it.

2. Once the shape is highlighted, select the comment field in the Properties view.

3. Click the ellipsis button and enter a comment into the box. Click OK when finished.

Keyboard Shortcuts in the Visual Editor
Use keyboard shortcuts to access various functions quickly within the Visual editor.

This table lists commonly used keyboard shortcuts. For a complete list, choose Help > Key
Assist (Ctrl+Shift+L).

Key Action

F2 Edit the selected shape name or element within a shape (context dependent)

F4 Toggle between CCL editor and Visual editor

F7 Compile

F11 Toggle between Authoring and Run-Test perspectives

Insert Insert new item to a compartment

Delete Delete selected elements from project

Ctrl +Delete Delete selected elements from diagram

Ctrl + A Select all

Ctrl + N Open a new project

Ctrl + Y Redo

Ctrl + Z Undo

Ctrl + F2 Open column expression editor

Ctrl + Space Show available columns and built-in functions for column expression

Ctrl + Mouse
wheel

Zoom in or zoom out

Ctrl + Shift +
L

List all keyboard shortcut assignments

Alt + U Move compartment item up in the Outline

Alt + D Move compartment item down in the Outline

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 25

Key Action

Alt + T Toggle shape between iconic and verbose mode

See also
• Adding Shapes to a Diagram on page 24

• Deleting an Element on page 44

Changing the Display of Diagrams
Display diagrams in verbose or iconic mode. Lay out the elements in the diagram left to right
or top down.

Prerequisites
Open the diagram in the Visual editor.

• To toggle a shape between iconic and verbose mode:

• In verbose mode, click the "minus" sign in the upper-left corner to collapse it.
• In iconic mode, click the "plus" sign to expand it.

• To show all shapes as iconic or verbose, in the Visual editor toolbar click All Verbose ,
or All Iconic .

• To change the orientation, in the Visual editor toolbar click Layout left to right or
Layout top down .

Note: For more display options, right-click an object or the diagram surface and choose
from the context menu.

See also
• Editing Studio Preferences on page 97

Building a Simple Project
Build a simple project entirely in the ESP Studio Visual editor by following the steps in linked
tasks.

Prerequisites
Create the project.

Task
Some tasks are optional. The order of tasks is approximate; each project differs in detail.

CHAPTER 3: Visual Editor Authoring

26 Sybase Event Stream Processor

Tip: Work left to right, or top to bottom, starting with the inputs and then following the data
flow. This strategy allows you to copy columns and column expressions into a new query from
the input streams.

1. Adding an Adapter to a Project

Attach an adapter by inserting it in the diagram, connecting it to a stream or window, and
setting properties.

2. Discovering a Schema

Use the Schema Discovery button in the Visual editor to discover and (automatically)
create a schema based on the format of the data from the adapter.

3. Adding an Input Stream or Window to a Project

Input streams and windows accept data from a source external to the project.

4. Adding a Simple Query

Choose the type of simple query you want and use the tools in the Visual editor to create
it.

5. Connecting Elements

Connect two shapes in a diagram to create a data flow or link between them.

6. Setting Key Columns

Set primary keys in the Visual editor within the Column compartment of the delta stream,
window, and Flex operator shapes.

7. Editing Column Expressions for Windows, Streams, and Delta Streams

Modify column expressions for windows, streams, and delta streams using an inline editor
or dialog-based expression editor.

See also
• Deleting an Element on page 44

• Creating a Project on page 14

Adding an Adapter to a Project
Attach an adapter by inserting it in the diagram, connecting it to a stream or window, and
setting properties.

1. Open the Input Adapters or Output Adapters compartment in the Palette and use the up
and down arrows to scroll through the list of adapters.

2. Click an adapter shape in the Palette, then click in the diagram.

3. Attach the adapter to a stream or window. Either:

• Generate and attach the stream or window automatically, using schema discovery (best
practice for adapters that support it), or,

• Create the stream or window, then attach it:

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 27

• Input adapter – click the Connector tool, then click the Adapter shape in the
diagram, then click the stream or window.

• Output adapter – click the Connector tool, then click the stream or window in the
diagram, then click the Adapter shape.

4. (Optional) Edit the adapter name.

5. (Optional) Edit the adapter properties. Either:

• Select Use named property set to use a named property set from the project
configuration file, and then configure any properties that are not included in the
property set, or,

• Select Set properties locally to manually configure the adapter properties.

See also
• Discovering a Schema on page 28

Schema Discovery
You can use the schema discovery feature to discover external schemas and create CCL
schemas based on the format of the data from the datasource connected to an adapter.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows may use the same schema, but a stream or window can only have one
schema.

Rather than manually creating a new schema, you can use schema discovery to discover and
automatically create a schema based on the format of the data from the datasource connected
to your adapter. For example, for the Database Input adapter, you can discover a schema that
corresponds to a specific table from a database the adapter is connected to.

To discover a schema, you need to first configure the adapter properties. Each adapter that
supports schema discovery has unique properties that must be set to enable schema discovery.

See also
• Appendix A, Adapters that Support Schema Discovery on page 101

• Discovering a Schema on page 28

Discovering a Schema
Use the Schema Discovery button in the Visual editor to discover and (automatically) create a
schema based on the format of the data from the adapter.

Prerequisites
Add the adapter to the diagram.

CHAPTER 3: Visual Editor Authoring

28 Sybase Event Stream Processor

Task
In the Authoring perspective:

1. Configure the adapter for schema discovery. In the adapter shape, click Edit Properties
and complete the dialog:

• Select a named property set, or,
• Choose Set properties locally and enter property values in the Basic and (optionally)

Advanced tabs. Required properties are in red.

For example, to use schema discovery for the File CSV Input adapter, you need to first
configure the Directory and File properties for the adapter, to specify the absolute path to
the data files you want the adapter to read.

Note: To create a named property set, edit adapter properties in the project configuration
file.

2. Click Schema Discovery on the adapter toolbar.
• If the schema is successfully discovered, a dialog appears where you can view and

select a schema.
• If the schema is not successfully discovered, an error message appears stating that no

schema was discovered for the adapter. You can:
• Check that the adapter properties are configured for schema discovery.
• Check to see if the adapter supports schema discovery.

3. Select a schema, and click Next.

4. In the dialog for creating an element, select an option.

Adapter State Available Options

The adapter is
not attached to
a stream or
window.

• Create a new input stream. – Creates and attaches a new
stream to the adapter, creates an inline schema for the stream,
and populates the stream with the schema discovered from the
adapter.

• Create a new input window. – Creates and attaches a new
window to the adapter, creates an inline schema for the window,
and populates the window with the schema discovered from the
adapter.

• Create a new named schema. – Creates a new named schema
and populates it with the schema discovered from the adapter.

The adapter is
already
attached to a
stream or
window.

• Apply the schema to the connecting stream or window. –
Populates the stream or window with the schema discovered
from the adapter.

• Create a new named schema. – Creates a new named schema
and populates it with the schema discovered from the adapter.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 29

5. Click Finish.

See also
• Schema Discovery on page 28

• Appendix A, Adapters that Support Schema Discovery on page 101

• Adding an Adapter to a Project on page 27

Adding an Input Stream or Window to a Project
Input streams and windows accept data from a source external to the project.

You can create an input stream or window by adding an adapter that supports schema
discovery, and generating the stream or window to inherit the schema of the external data
source automatically. You can then add columns as needed.

1. In the Visual editor workspace, in the Palette menu under the Streams and Windows
category, select either:

• Input Stream
• Input Window

2. Select a location in the diagram and click to add the shape.

3. To set the name of the input stream or window, either:

• Click to edit the shape name, or,
• In verbose mode, click the Edit icon next to the name.

4. Click Add Column to add each new column to the schema, then set key columns and
edit column expressions.

5. To delete columns, select them and press Delete.

6. (Optional for windows, not permitted for streams) Select Set Keep Policy and choose
an option.

7. (Optional) Double-click the policy to edit its parameters.

See also
• Adding a Simple Query on page 32

• Keep Policy on page 30

• Editing Column Expressions for Windows, Streams, and Delta Streams on page 42

• Setting an Aging Policy on page 55

Keep Policy
The keep policy determines the basis for retaining rows in a window.

You can set a keep policy, also called a retention policy, for any window with a memory-based
store, including any simple query that produces a window.

CHAPTER 3: Visual Editor Authoring

30 Sybase Event Stream Processor

Retention policies for windows that use a log store are only supported for input windows.

Table 3. Keep Policy Options

Options Description

All rows Retain all rows in the window (default).

Last row Retain only the last row in the window.

Count Either:

• Enter the absolute number of rows to retain, or,
• Choose Select and select a previously declared variable or parameter

to determine a specific range of rows to retain in the window.

Tip: If the list is empty and you want to base the count on a parameter
or variable, switch to the CCL editor and define it in a DECLARE
block at the beginning of the CCL. For example:

DECLARE
integer test :=50;
end;

Then go back and select it.

Slack For a count-based policy, set the number of rows to delete when the
maximum number of rows is reached (the Count value). Default is 1, that
is, when the window contains count_value rows, each new row causes the
oldest row to be deleted. Setting slack to greater than 1 can optimize
performance.

Time Set a time limit on the window, and specify a time period to determine
what age of row to retain in the window. Press Ctrl+Space to choose the
unit of time.

Slack
Slack is an advanced feature used to enhance performance by requiring less frequent cleaning
of memory stores. It sets a maximum of N + S rows in the window, where N is the retention size
(the count setting) and S is the slack. When the window reaches N + S rows the systems purges
S rows. The larger the value of slack the better the performance is, since there is less cleaning
required.

The default value for slack is 1. When slack = 1, after the window reaches the maximum
number of records, each time a new record is inserted, the oldest record is deleted. This causes
a significant impact on performance. When slack > 1, say Y, then the window will accumulate
up to X + Y number of records. The next record inserted will then cause the deletion of Y
records. Larger slack values improve performance by reducing the need to constantly delete
rows.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 31

See also
• Creating and Modifying Simple Queries: Aggregate on page 34

• Creating and Modifying Simple Queries: Join on page 36

Adding a Simple Query
Choose the type of simple query you want and use the tools in the Visual editor to create it.

See also
• Creating and Modifying Simple Queries: Filter on page 34

• Creating and Modifying Simple Queries: Aggregate on page 34

• Creating and Modifying Simple Queries: Compute on page 35

• Creating and Modifying Simple Queries: Join on page 36

• Creating and Modifying Simple Queries: Union on page 40

• Creating and Modifying Simple Queries: Pattern on page 40

• Simple Queries on page 32

• Adding an Input Stream or Window to a Project on page 30

• Connecting Elements on page 41

Simple Queries
Accomplish most common querying tasks using a set of queries available in the Visual editor:
filter, aggregate, join, compute, union, and pattern.

The tools for these six queries are available as objects in the Palette, in Streams and Windows.

• Filter – allows you to filter a stream down to only the events of interest, based on a filter
expression.

• Aggregate – allows you to group events that have common values and compute
summary statistics for the group, such as an average. You can also define a window size,
based on either time or number of events.

• Join – allows you to combine records from multiple streams or windows, forming a
new record with information from each source.

• Compute – allows you to create a new event, with a different schema from the input,
and compute the value to be contained in each column (field) of the new event.

• Union – allows you to combine multiple streams or windows that all share a common
schema into a single stream or window.

• Pattern – lets you watch for patterns of events within a single stream or window or
across multiple streams and windows. When ESP Server detects an event pattern in a
running project, it produces an output event.

CHAPTER 3: Visual Editor Authoring

32 Sybase Event Stream Processor

Table 4. CCL Equivalents for Simple Queries (Summary)

Simple Query CCL

Filter WHERE clause

Aggregate GROUP BY clause

Join FROM clause, WHERE clause, ON clause

Compute Simple SELECT statement, with column expres-
sions

Union UNION clause

Pattern MATCHING clause

Simple Queries from CCL Statements
If you create queries in CCL and want them to appear as simple query shapes in the Visual
editor, you must insert a comment immediately preceding the CREATE STREAM, CREATE
WINDOW, or CREATE DELTA STREAM statement, in the form:
/**@SIMPLEQUERY=QUERY_TYPE*/

where QUERY_TYPE is the shape name in the Visual editor.

For example, this comment causes a CREATE WINDOW statement to map to an Aggregate
shape in the Visual editor: /**@SIMPLEQUERY=AGGREGATE*/ .

Without this comment immediately preceding the CREATE WINDOW statement, the Visual
editor shows the generic Derived Window shape.

Note: You cannot modify CCL code in the CCL editor and in the Visual editor concurrently. If
the Visual editor is open, then the CCL editor becomes read-only.

CCL Statements from Simple Queries
When you create a simply query from the Palette, the CCL element it creates is based on these
rules:

• If the input for the filter object is a stream, the filter object creates a stream. If the source is a
window, delta stream, or flex stream, the filter object creates a delta stream.

• All aggregate objects create a window.
• If the input for a compute object is a stream, the compute object creates a stream. If the

source is a window, delta stream, or flex stream, the compute object creates a delta stream.
• If a join object takes input only from streams, then the join object creates a stream. If the

source is from one or more windows, delta streams, or flex streams, then the join object
creates a window. In a stream-window join, the join object creates a stream.

• If the input of a union object is a stream, the union object creates a stream. If the source is a
window, delta stream, or flex stream, the union object creates a delta stream.

• All pattern objects create a stream.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 33

See also
• Shape Reference on page 19

• Adding Shapes to a Diagram on page 24

• Connecting Elements on page 41

• Queries in CCL on page 61

• Creating and Modifying Simple Queries: Filter on page 34

• Creating and Modifying Simple Queries: Aggregate on page 34

• Creating and Modifying Simple Queries: Compute on page 35

• Creating and Modifying Simple Queries: Join on page 36

• Creating and Modifying Simple Queries: Union on page 40

• Creating and Modifying Simple Queries: Pattern on page 40

Creating and Modifying Simple Queries: Filter
Produce a simple query that only passes on events with specific characteristics. Filter uses a
CCL WHERE clause.

1. In the Visual editor Palette, in Streams and Windows, click Filter ().

2. Select a location in the diagram and click to add the shape.

3. Attach the filter object to the appropriate stream or window.

Attach filter objects to any stream, window, or Flex operator. Filter objects can have only
one input.

4. To edit the value of the filter expression, select the value and change it as necessary. The
default value is 1.

Any expression that evaluates to '1' is true, and passes all records through. A value of zero
is false.

5. (Optional) Use the toggle option to designate the filter object as LOCAL or OUTPUT.

See also
• Creating and Modifying Simple Queries: Aggregate on page 34

• Creating and Modifying Simple Queries: Compute on page 35

• Creating and Modifying Simple Queries: Join on page 36

• Creating and Modifying Simple Queries: Union on page 40

• Creating and Modifying Simple Queries: Pattern on page 40

• Simple Queries on page 32

Creating and Modifying Simple Queries: Aggregate
Produce a simple query that combines data, similar to the CCL GROUP BY, GROUP FILTER,
and GROUP ORDER clauses.

1. In the Visual editor Palette, in Streams and Windows, select Aggregate ().

CHAPTER 3: Visual Editor Authoring

34 Sybase Event Stream Processor

2. Select a location in the diagram and click to add the shape.

3. Connect the Aggregate shape to an input.
The aggregate border changes from red to black, indicating that it is valid, now that it has
input.

4. Add columns:

a) Click Copy Columns from Input () in the shape toolbar to select the columns to
copy into the schema for the Aggregate window.

b) Add additional columns by clicking Add Column Expressions in the shape
toolbar.

c) Edit a column expression by double-clicking to open the inline editor, or by selecting
the expression and pressing Ctrl+F2 to open it in the pop-up editor.

5. Click Add GroupBy Clause () in the shape toolbar to edit the grouping of columns in
the aggregate object.

Note: The Aggregate shape must have exactly one GROUP BY expression.

6. (Optional) Click Set Keep Policy () to create a retention window.

The default policy is to keep all rows of incoming data. You can also choose to keep only
the last row, a specific number of rows, or keep the rows for a specific time. This defines the
KEEP clause.

7. (Optional) Use the Toggle option to change the aggregate object from LOCAL to
OUTPUT.

See also
• Creating and Modifying Simple Queries: Filter on page 34

• Creating and Modifying Simple Queries: Compute on page 35

• Creating and Modifying Simple Queries: Join on page 36

• Creating and Modifying Simple Queries: Union on page 40

• Creating and Modifying Simple Queries: Pattern on page 40

• Simple Queries on page 32

• Keep Policy on page 30

Creating and Modifying Simple Queries: Compute
Produce a simple query that transforms the schema or field values of each incoming record.
Each incoming event produces one new output event from the fields defined by the column
expressions.

1. In the Visual editor Palette, in Streams and Windows, select Compute ().

2. Select a location in the diagram and click to add the shape.

3. Attach the compute object to the stream or window that provides input to this query.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 35

Attach compute objects to any stream, window, or Flex operator. Compute objects can
have only one input. Any attempt to connect more than one input source is blocked.

4. Add columns:

a) Click Copy Columns from Input () in the shape toolbar to copy input fields into the
schema for this query.

b) Add additional columns by clicking Add Column Expressions in the shape
toolbar.

c) Edit a column expression by double-clicking to open the inline editor, or by selecting
the expression and pressing Ctrl+F2 to open it in the pop-up editor.

5. Add column expressions , as necessary.

6. Modify column expressions by selecting and modifying them directly, or by editing the
corresponding fields in the Properties view.

7. Use the toggle option to designate the compute object as LOCAL or INPUT.

See also
• Creating and Modifying Simple Queries: Filter on page 34

• Creating and Modifying Simple Queries: Aggregate on page 34

• Creating and Modifying Simple Queries: Join on page 36

• Creating and Modifying Simple Queries: Union on page 40

• Creating and Modifying Simple Queries: Pattern on page 40

• Simple Queries on page 32

Creating and Modifying Simple Queries: Join
Produce a simple query that combines fields from multiple input events into a single output
event.

1. In the Visual editor Palette, in Streams and Windows, select Join ().

2. Select a location in the diagram and click to add the shape.

3. Connect the join object to the streams or windows that provide the inputs to the join.

Connect join objects to two or more streams, windows, or Flex operators. Join objects can
take input from two or more objects, but can produce only one output.

Note: Streams, windows and delta streams can participate in a join. However, a delta
stream may participate in a join only if it has a KEEP clause specified. Only one stream can
participate in a join. For details of supported joins, see the CCL Programmers Guide.

Tip: To add multiple connections, Shift+click and hold the Connector tool and add
connections. To return to normal selection, press Esc or click the Select tool in the Palette
to release it.

4. Use Copy Columns from Input to select input fields to include in the output of this
query.

CHAPTER 3: Visual Editor Authoring

36 Sybase Event Stream Processor

5. Add column expressions , as necessary.

6. Edit a column expression by double-clicking to open the inline editor, or by selecting the
expression and pressing Ctrl+F2 to open it in the pop-up editor.

Or, edit the corresponding fields in the Properties view.

7. Click Add Join Condition to specify the columns to use to match incoming events
across the different sources.

Complete the Edit Join Expression dialog to define the join type, data sources for the ON
clause, and any other join constraints.

If you do not see the columns you want in the Edit Join Expression dialog, ensure you have
connected the join object to the correct input sources.

8. To join a column to itself, click Add Input Alias in the shape toolbar.

A column alias is required to provide a unique name for each join condition.

9. (Optional) Use the toggle option to designate the join object as LOCAL or OUTPUT.

10. (Optional) Select Set Keep Policy and choose an option.

To edit the keep policy, right-click the input window or stream in the Inputs menu. Select
Set Keep Policy to add a keep policy, and Delete Keep Policy to remove it.

See also
• Creating and Modifying Simple Queries: Filter on page 34
• Creating and Modifying Simple Queries: Aggregate on page 34
• Creating and Modifying Simple Queries: Compute on page 35
• Creating and Modifying Simple Queries: Union on page 40
• Creating and Modifying Simple Queries: Pattern on page 40
• Simple Queries on page 32
• Keep Policy on page 30
• Join Types and Restrictions on page 37

Join Types and Restrictions
Determine what combination of attributes your join simple query must contain.

In order to determine what type of join simple query you want to create in ESP Studio, you
must use this reference to determine how components of your join can be attached, and what
settings to modify in the Edit Join Expression dialog box.

Note: If you have created a join using comma-separated syntax in the CCL editor, and
subsequently added an ON clause using the Edit Join Expression dialog in the Visual editor,
the WHERE clause initially created in the comma-separated syntax will not be removed. This
does not affect the result, however it will negatively affect performance.

Streams, windows, or delta streams can participate in a join. However, a delta stream can
participate in a join only if it has a keep policy defined. A join can contain any number of
windows and delta streams (with their respective keep policies), but only one stream. Self

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 37

joins are also supported. For example, you can include the same window or delta stream more
than once in a join, provided each instance has its own alias.

In a stream-window join the target can be a stream or a window with aggregation. Using a
window as a target requires an aggregation because the stream-window join does not have
keys and a window requires a key. The GROUP BY columns in aggregation automatically
forms the key for the target window. This restriction does not apply to delta stream-window
joins because use of the keep policy converts a delta stream into an unnamed window.

Event Stream Processor supports all join types:

Join Type Description

Inner Join One record from each side of the join is required for the join to
produce a record.

Left Outer Join A record from the left side (outer side) of the join is produced
regardless of whether a record exists on the right side (inner side).
When a record on the right side does not exist, any column from the
inner side has a NULL value.

Right Outer Join Reverse of left outer join, where the right side is the outer side and
the left side is the inner side of the join.

Full Outer Join A record is produced whether there is a match on the right side or
the left side of the join.

Event Stream Processor also supports these cardinalities:

Type Description

One-One Keys of one side of the join are completely mapped to the keys of the other side of
the join. One incoming row produces only one row as output.

One-Many One record from the one side joins with multiple records on the many side. The
one side of the join is the side where all the primary keys are mapped to the other
side of the join. Whenever a record comes on the one-side of the join, it produces
many rows as the output.

Many-Many The keys of both side of the join are not completely mapped to the keys of the
other side of the join. A row arriving on either side of the join has the potential to
produce multiple rows as output.

Key Field Rules
Key field rules are necessary to ensure that rows are not rejected due to duplicate inserts or due
to the key fields being NULL.

CHAPTER 3: Visual Editor Authoring

38 Sybase Event Stream Processor

• The key fields of the target are always derived completely from the keys of the many side of
the join. In a many-many relationship, the keys are derived from the keys of both sides of
the join.

• In a one-one relationship, the keys are derived completely from either side of the
relationship.

• In an outer join, the key fields are derived from the outer side of the join. An error is
generated if the outer side of the join is not the many-side of a relationship.

• In a full-outer join, the number of key columns and the type of key columns need to be
identical in all sources and targets. Also, the key columns require a FIRSTNONNULL
expression that includes the corresponding key columns in the sources.

When the result of a join is a window, specific rules determine the columns that form the
primary key of the target window. In a multitable join, the same rules apply because
conceptually each join is produced in pairs, and the result of a join is then joined with another
stream or window, and so on.

This table illustrates this information in the context of join types:

One-One One-Many Many-One Many-Many

INNER Keys from at least
one side should be
included in the pro-
jection list (or a
combination of
them if keys are
composite).

Keys from the right
side should be inclu-
ded in the projection
list.

Keys from the left
side should be inclu-
ded in the project
list.

Keys from both
sides should be in-
cluded in the projec-
tion list.

LEFT Keys from the left
side alone should be
included.

Not allowed. Keys from the left
side should be inclu-
ded in the projection
list.

Not allowed.

RIGHT Keys from the right
side alone should be
included.

Keys from the right
side should be inclu-
ded in the projection
list.

Not allowed. Not allowed.

OUTER Keys should be
formed using FIRST-

NONNULL () on
each pair of keys
from both sides.

Not allowed. Not allowed. Not allowed.

These options can be defined in the Options pane of the Edit Join Expression dialog box.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 39

Nested Joins
Several important functions are necessary to note in Event Stream Processor when
implementing a nested join. Nested join syntax is supported in CCL, but you cannot create or
edit a nested join in the Visual editor. When a nested join is defined in the CCL file, and you
switch to the Visual editor, you see an empty join compartment.

See also
• Creating and Modifying Simple Queries: Join on page 36

Creating and Modifying Simple Queries: Union
Use a union object to combine two or more input streams or windows into a single output. All
inputs must have matching schema.

1. In the Visual editor Palette, in Streams and Windows, select Union ().

2. Select a location in the diagram and click to add the shape.

3. Attach the union object to two or more inputs, which can be streams, windows, or Flex
operators.

4. (Optional) Use the toggle option to designate the union object as LOCAL or OUTPUT.

See also
• Creating and Modifying Simple Queries: Filter on page 34

• Creating and Modifying Simple Queries: Aggregate on page 34

• Creating and Modifying Simple Queries: Compute on page 35

• Creating and Modifying Simple Queries: Join on page 36

• Creating and Modifying Simple Queries: Pattern on page 40

• Simple Queries on page 32

Creating and Modifying Simple Queries: Pattern
Run a pattern matching query that watches for a specific pattern of incoming events on one or
more inputs and produces an output event when the pattern is detected. Pattern uses the CCL
MATCHING clause.

1. In the Visual editor Palette, in Streams and Windows, click Pattern ().

2. Select a location in the diagram and click to add the shape.

3. Connect the Pattern shape to one or more streams or windows that are the inputs to query.

4. Add columns:

a) Click Copy Columns from Input () in the shape toolbar to select the columns to
copy into the schema for the Pattern query.

This is the schema of the new event that is produced when the pattern is detected.

CHAPTER 3: Visual Editor Authoring

40 Sybase Event Stream Processor

b) Add additional columns by clicking Add Column Expressions in the shape
toolbar.

c) Edit a column expression by double-clicking to open the inline editor, or by selecting
the expression and pressing Ctrl+F2 to open it in the pop-up editor.

5. Create and edit a pattern expression:

a) Click Add Pattern
b) Enter an alias for the event.
c) Enter either a time interval or parameters.
d) To define the expression, right-click Pattern to add an event. Continue right-clicking

elements of the expression to add operators and refine the event expression. Then click
Next.

e) Click Add to add a join condition.

For details of valid pattern expressions, see ON Clause: Pattern Matching Syntax in the
CCL Programmers Guide.

6. (Optional) Use the toggle option to designate the pattern object as LOCAL or
OUTPUT.

See also
• Creating and Modifying Simple Queries: Filter on page 34

• Creating and Modifying Simple Queries: Aggregate on page 34

• Creating and Modifying Simple Queries: Compute on page 35

• Creating and Modifying Simple Queries: Join on page 36

• Creating and Modifying Simple Queries: Union on page 40

• Simple Queries on page 32

Connecting Elements
Connect two shapes in a diagram to create a data flow or link between them.

The Connector tool creates flows between streams and windows, establishes references
between streams and shared components, or attaches notes between shapes.

1. In the Palette view, select the Connector tool.

2. Click the shape that will produce the output.

This attaches the connector line to the first shape.

3. Click the shape that will receive the data to indicate the direction of data flow.

If a connection is allowed between shapes, you see a connection icon beside your cursor. If

a connection is not allowed, you see a "not allowed" icon .

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 41

Tip: To add multiple connections, Shift+click and hold the Connector tool and add
connections. To return to normal selection, press Esc or click the Select tool in the Palette
to release it.

See also
• Simple Queries on page 32

• Shape Reference on page 19

• Adding a Simple Query on page 32

Setting Key Columns
Set primary keys in the Visual editor within the Column compartment of the delta stream,
window, and Flex operator shapes.

Multiple columns can be designated as primary keys. In the Visual editor, primary keys appear
as icons. Deduced primary keys are displayed as icons. Deduced keys are calculated
when the PRIMARY KEY DEDUCED flag is set for the target element.

Note: Only delta streams and windows support PRIMARY KEY DEDUCED. You can modify
the deduced key property for these elements from the Properties view.

1. Expand the Columns compartment of the desired query object (delta stream, window, or
Flex shape).

2. Click the icon to the left of the column name to make it a primary key.
A single-key icon now designates the column as a primary key.

3. To set a primary key for query objects with a deduced primary key, click any column or
deduced key within the target stream or window.
The column you initially selected and all other deduced key columns are now primary
keys. In addition, the target stream or window is no longer PRIMARY KEY DEDUCED.

4. To remove the primary key designation from a column, click to the left of the column
name.
A column icon replaces the single key icon, indicating that the column is no longer part of
the primary key.

Editing Column Expressions for Windows, Streams, and Delta
Streams

Modify column expressions for windows, streams, and delta streams using an inline editor or
dialog-based expression editor.

1. (Optional) To add a column expression, click Add Column Expressions in the shape
toolbar.

2. Expand the Column Expressions compartment.

3. To modify a column expression, either:

CHAPTER 3: Visual Editor Authoring

42 Sybase Event Stream Processor

• Double-Click to open the inline editor.Type into the edit box to edit the existing
expression or enter a new one. Press Ctrl+Space for a list of available columns and
functions. .

• Press Ctrl+F2 to open the expression editor. Press Ctrl+Space to show the available
input columns and built-in functions, or manually enter the expression.

• Modify the expression in the Properties view.

See also
• Column Expressions on page 43

Column Expressions
A column expression produces a result based on the value of input columns, the relationship of
column values to each other, or the computed formulas. It may include built-in or user-defined
functions, constants, parameters, or variables.

Simple Expressions
A simple CCL expression specifies a constant, NULL, or a column. A constant can be a
number or a text string. The literal NULL denotes a null value. NULL is never part of another
expression, but NULL by itself is an expression.

You can specify a column name by itself or with the name of its stream or window. To specify
both the column and the stream or window, use the format "stream_name.column_name."

Some valid simple expressions include:

• stocks.volume

• 'this is a string'

• 26

Compound Expressions
A compound CCL expression is a combination of simple or compound expressions.
Compound expressions can include operators and functions, as well as the simple CCL
expressions (constants, columns, or NULL).

You can use parentheses to change the order of precedence of the expression's components.

Some valid compound expressions include:

• sqrt (9) + 1

• ('example' + 'test' + 'string')

• (length ('example') *10) + pi()

Column Alias in Expressions
Each expression defines a unique name or alias for the column.

In the PortfolioValuation example, a derived window called VWAP takes input from an input
stream (PriceFeed) with columns Symbol, Price and TradeTime, and it includes an aggregate

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 43

expression. Columns aliases for this derived window (created in Visual editor as an aggregate
simple query) are:

Alias Column Expression

Symbol PriceFeed.Symbol

LastPrice PriceFeed.Price

VWAP (sum ((PriceFeed.Price * CAST (FLOAT , PriceFeed.Shares))) / CAST (float , sum (
PriceFeed.Shares)))

LastTime PriceFeed.TradeTime

Datatypes in Expressions
Datatypes for column expressions are inherited from the schema, either an explicitly created
inline schema, or one discovered from the input adapter. You choose from supported datatypes
in the schema editor, not in the column expression editor.

Enclose string data in expressions in single quotes, for example, 'my_string_data'.

Case Sensitivity

• All identifiers are case sensitive. This includes names of streams, windows, parameters,
variables, schemas, and columns.

• Keywords are case insensitive, and cannot be used as identifier names.
• Built-in function names (except keywords) and user-defined functions are case sensitive,

however, some built-in function names have both lowercase and mixed case forms, for
example, setOpcode and setopcode.

See also
• Functions on page 62

• Operators on page 63

• Editing Column Expressions for Windows, Streams, and Delta Streams on page 42

Deleting an Element
Delete an element from the project to remove it completely, or delete it from the diagram
only.

1. Select one or more elements in the diagram.

2. Right-click and choose either:

• Delete Element — removes the element from the project.

CHAPTER 3: Visual Editor Authoring

44 Sybase Event Stream Processor

• Delete from Diagram — removes the element from the diagram, but retains it in the
project. When you run the project, everything in the project runs, even elements that are
not on the diagram.

3. When you choose Delete Element, confirm the deletion.

See also
• Adding Shapes to a Diagram on page 24

• Keyboard Shortcuts in the Visual Editor on page 25

Adding Advanced Features to a Project
Complete your project by adding more complex operations and expressions, reusable
modules and named schemas, and custom adapters.

All of these advanced features are optional.

Complex Queries
Use the generic derived stream, derived window, and derived delta stream shapes to create
more complex continuous queries in the Visual editor than the ones you can create with the
simple query shapes.

A derived stream, derived window, or derived delta stream takes input from another stream or
window, rather than directly from an adapter, and applies a continuous query to it. All of the
simple queries in the Visual editor are a type of derived stream or derived window.

For example, to create a continuous query that applies both a set of join conditions and a
pattern matching expression, use a generic derived window.

Choose the shape type according to your input, output, and retention requirements for data,
and for preserving insert, update, and delete operations.

Table 5. Derived Stream, Derived Window, and Derived Delta Stream Rules

Shape Input Output Retains state Preserves in-
serts, updates,
and deletes

Derived Stream Another stream Stream no no

Derived Win-
dow

Another stream
or window

Window As defined in Keep
policy (default is keep
all rows)

yes

Note: In order to de-
rive a window from a
stream, a GROUP BY
clause must be inclu-
ded in the query.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 45

Shape Input Output Retains state Preserves in-
serts, updates,
and deletes

Derived Delta
Stream

Another win-
dow or delta
stream

Stream no yes

Note: A delta stream
only accepts either in-
serts or deletes.

See also
• Join Types and Restrictions on page 37
• Inserts, Updates, and Deletes on page 5
• Editing Column Expressions for Windows, Streams, and Delta Streams on page 42

Modularity
A module in Sybase Event Stream Processor offers reusability; it can be loaded and used
multiple times in a single project or in many projects.

Modularity means organizing project elements into self-contained, reusable components
called modules, which have well-defined inputs and outputs, and allow you to encapsulate
data processing procedures that are commonly repeated.

Modules, along with other objects such as import files and the main project, have their own
scope, which defines the visibility range of variables or definitions. Any variables, objects, or
definitions declared in a scope are accessible within that scope only; they are inaccessible to
the containing scope, called the parent scope, or to any other outer scope. The parent scope can
be a module or the main project. For example, if module A loads module B and the main
project loads module A, then module A's scope is the parent scope to module B. Module A's
parent scope is the main project.

Modules have explicitly declared inputs and outputs. Inputs to the module are associated with
streams or windows in the parent scope, and outputs of the module are exposed to the parent
scope using identifiers. When a module is reused, any streams, variables, parameters, or other
objects within the module replicate, so that each version of the module exists separately from
the other versions.

You can load modules within other modules, so that module A can load module B, which can
load module C, and so on. Module dependency loops, however, are invalid. For example, if
module A loads module B, which loads A, the CCL compiler generates an error indicating a
dependency loop between modules A and B.

The CREATE MODULE statement creates a module that can be loaded multiple times in a
project, where its inputs and outputs can be bound to different parts of the larger project. The
LOAD MODULE statement allows reuse of a defined module one or more times throughout a
project. Modularity is particularly useful when used with theIMPORT statement, which allows
you to use (LOAD) modules created in a separate CCL file.

CHAPTER 3: Visual Editor Authoring

46 Sybase Event Stream Processor

Note: All module-related compilation errors are fatal.

Creating a Module
Add a new module to an existing project in the Visual editor.

Create modules directly in a project when you do not plan to reuse them widely across other
projects.

1. In the Visual editor Palette, in Shared Components, select Module ().

2. Select a location in the diagram and click to add the shape.

Next
Open the module to edit it by clicking the Open Module Diagram in the toolbar of the module
shape. This will open a new diagram where you can add input streams/windows, simple
queries, and derived streams/windows. When finished, return to the diagram that has
theCREATE MODULE shape, and configure the inputs and outputs, selecting from the
elements defined in the module.

See also
• Editing a Module on page 47

• Creating a Module File on page 48

• Importing Definitions from Another CCL File on page 49

• Using a Module Within a Project on page 49

• Configuring the Loaded Module on page 50

Editing a Module
Edit basic module properties and module input, output and import functions.

Prerequisites
Create the module.

Task

Specific module inputs and outputs are determined by project developers. Imported modules
have restrictions on editing, but you can modify module input and output nodes.

1. In the Visual editor, select the module to edit.

2. Edit the module name to be unique across all object names in the scope for this module,
either:

• Click the module name.
• In verbose mode, click Edit .
• Select the module, and in the Properties view modify the name value.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 47

By default, the Properties view is in the lower left of the Authoring perspective.

3. Click Add Module Inputs ().

4. In the Module Inputs dialog, select the inputs to add or remove, then click OK.

5. Select Add Module Outputs ().

6. In the Module Outputs dialog, select the outputs to add or remove, then click OK.

7. To access and edit the contents of the CREATE MODULE statement, select Open Module
Diagram ().

8. Edit the module in the diagram that opens.

9. Add comments in the Properties view.

See also
• Creating a Module on page 47
• Creating a Module File on page 48
• Importing Definitions from Another CCL File on page 49
• Using a Module Within a Project on page 49
• Configuring the Loaded Module on page 50

Creating a Module File
Create a new, separate module file that can be imported into a project.

You can create modules within a project, or in separate files that you can then import into a
project. Create separate module files if you are likely to reuse a particular module often, in
different projects. Module files are CCL files that separately hold a CREATE MODULE
statement.

1. Choose File > New > CCL Module File.

2. Enter a file name.

This becomes the module name, and must be unique across all object names in the scope
for this module.

3. (Optional) Specify a different folder.

By default, the module is created in the workspace for the current project.

4. Modify the module as required and save.

To edit the CCL, see CREATE MODULE Statement in the CCL Programmers Guide.

See also
• Creating a Module on page 47
• Editing a Module on page 47
• Importing Definitions from Another CCL File on page 49
• Using a Module Within a Project on page 49
• Configuring the Loaded Module on page 50

CHAPTER 3: Visual Editor Authoring

48 Sybase Event Stream Processor

Importing Definitions from Another CCL File
Import a module file to use the module in your project.

You can do this either in the CCL editor using the IMPORT statement, or by using the Outline
view in the Visual editor, as described here.

1. Select the Authoring tab.

2. Open the Visual editor by clicking Switch to Visual, or pressing F4.

3. If Outline view is not visible, select Window > Show View > Outline, or press Alt+Shift
+O.

4. In the Outline view, expand the Statements list.

5. Right-click the Imports statement and select Create Child > Import.

6. Select the file or files to import and click OK.

7. Expand the imported file until you see the imported module.

8. Click and drag the module anywhere in the diagram.

See also
• Creating a Module on page 47
• Editing a Module on page 47
• Creating a Module File on page 48
• Using a Module Within a Project on page 49
• Configuring the Loaded Module on page 50

Using a Module Within a Project
Create an instance of a defined module within the project, and allow the inputs and outputs of
the module to be bound to streams or windows in the project.

Existing modules, either created within the project or imported, can be used anywhere in a
project. When you use (load) a module in a project, you attach the module inputs and outputs
to streams or windows in the project by configuring bindings, and set any parameters used in
the module.

1. In the Module drawer of the Visual editor Palette, locate and select the module to add to the
project.

The Palette lists any modules defined in the current project, either in the main CCL file or
in any imported CCL files. If no CREATE MODULE statements are found, the Palette
drawer is empty.

2. Click anywhere in the diagram to place the load module.

See also
• Creating a Module on page 47
• Editing a Module on page 47

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 49

• Creating a Module File on page 48

• Importing Definitions from Another CCL File on page 49

• Configuring the Loaded Module on page 50

Configuring the Loaded Module
Add or remove input and output bindings and parameter values (if any) for a specific module
instance.

Active modules are created when existing module definitions are used to create new module
instances.

1. In the diagram, select the module instance to edit.

2. To edit the name of the module instance, either:

• Click the load module instance name.
• In verbose mode, click Edit .

3. Set the input bindings by adding connectors: first expand the Input Bindings compartment
to that you can see the list of inputs. Then add connectors to the shape in the order of the list
of inputs. To see the schema for an input or how a particular input is used in the module,
you can look "inside" the module by clicking the Open Module Diagram on the shape
toolbar. This will open the model in a separate editor so that you can see the structure of the
module.

4. Output bindings will have been set automatically, and the outputs will appear on the
diagram attached to the module instance. You can rename the outputs as desired. Note: for
input bindings the schema on both sides of the binding needs to be compatible.

5. Further modify input or output bindings by selecting an individual binding in the load
module, and changing any of these options in the Properties window:

Property Value

inputStreamOrWindow Select the available input stream or window
components from the list.

streamOrWindowInModule Select the available stream or window to bind with
existing stream or window inputs.

comment (Output only) Add a comment or description of the output stream.

name (Output only) Add a name to the output stream.

6. If the module uses any parameters, Parameter bindings will be listed in the module
instance shape on the diagram. Set parameter values in the Properties View:

• parameterInModule: the parameter name.
• parameterValue: the value to set this parameter to, for this instance of the module.

CHAPTER 3: Visual Editor Authoring

50 Sybase Event Stream Processor

7. (Optional)Click Add Store Binding (). If you omit a store binding, the default memory
store will be used. You can optionally specify a store for windows in the module.

8. Edit the store binding by selecting and modifying the available fields in the Properties
window:

• storeInModule – the classification of the string, by default NULL.
• storeValue – value phrase that defines the parameter binding

9. To access input or output windows used inside a load module, select Open Module
Diagram ().

See also
• Creating a Module on page 47
• Editing a Module on page 47
• Creating a Module File on page 48
• Importing Definitions from Another CCL File on page 49
• Using a Module Within a Project on page 49

Stores
Set store defaults, or choose a log store or memory store to determine how data from a window
is saved.

Every window is assigned to a store, which holds the retained records. By default, all windows
are assigned to a memory store. Additional stores can be created to add data recoverability and
to optimize performance. Windows can then be assigned to specific stores.

You can also create a default store explicitly with the CREATE DEFAULT STORE statement.
By stipulating default store settings you can determine store types and locations in the event
that you do not assign new windows to specific store types.

Log Stores
Use a log store to implement persistence, which logs all data to the disk, meaning it guarantees
data state recovery in the event of a failure.

Log stores are created using the CREATE LOG STORE statement. You can set a log store as a
default store using the CREATE DEFAULT STORE statement, which overrides the default
memory store.

Memory Stores
A memory store does not use persistence and stores all data in memory. Memory stores retain
the state of queries for a project from the most recent server start-up for as long as the project is
running. Because query state is retained in memory rather than on disk, access to a memory
store is faster than to a log store.

Memory stores are created using the CREATE MEMORY STORE statement. If no default store
is defined, new windows are assigned to a memory store automatically. You can use either of

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 51

the relevant statements shown above to determine specific memory store behavior and set
default store settings.

Creating a Log Store
Create a log store to allow recovery of data in a window in the event of a server shutdown or
failure.

Prerequisites
Consult with your system administrator on the size, number, and location of log stores, to
ensure optimal performance.

Task

1. In the Visual editor Palette, in Shared Components, click Log Store.

2. Select a location in the diagram and click to add the shape.

3. Connect the log store to a window.

4. Click Set Store Properties and modify property values.

Note: The table lists property names first as shown in the Properties dialog, then as shown
in the Properties compartment of the store shape.

Table 6. Log Store Properties

Property Description

File name (FILENAME) The absolute or relative path to the folder where
log store files are written. A relative path is
preferred.

Max Size (GB) (MAXFILESIZE) The maximum size of the log store file in MB.
Default is 8MB.

Sweep Amount (%) (SWEEPAMOUNT) The amount of data, in megabytes, that can be
cleaned in a single pass. Default is 20 percent of
maxfilesize.

Reserve Percentage (%) (RESERVEPCT) The percentage of the log to keep as free space.
Default is 20 percent.

Ck Count (CKCOUNT) The maximum number of records written be-
fore writing the intermediate metadata. Default
is 10,000.

CHAPTER 3: Visual Editor Authoring

52 Sybase Event Stream Processor

Property Description

Sync (SYNC) Specifies whether the persisted data is updated
synchronously with every stream being upda-
ted. A value of true guarantees that every record
acknowledged by the system is persisted at the
expense of performance. A value of false im-
proves performance, but it may result in a loss
of data that is acknowledged, but not yet per-
sisted. Default is false.

5. (Optional) Select Default to make this the default store for the project (or module).

See also
• Creating a Memory Store on page 53

Creating a Memory Store
Create a memory store to retain the state of continuous queries in memory, from the most
recent server startup.

Prerequisites
Consult with your system administrator on the type, number, and index values for memory
stores, to ensure optimal performance.

Task

1. In the Visual editor Palette, in Shared Components, click Memory Store.

2. Select a location in the diagram and click to add the shape.

3. Connect the memory store to a window.

4. Specify a name for the store that is unique within its scope for the project or module.

5. (Optional) Click Set Store Properties and modify property values.

Table 7. Memory Store Properties

Property Description

Index Size Hint (KB) (IN-
DEXSIZEHINT)

(Optional) Determines the initial number of elements in the hash
table, when using a hash index. The value is in units of 1024.
Setting this higher consumes more memory, but reduces the chan-
ces of spikes in latency. Default is 8KB.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 53

Property Description

Index Kind (INDEXTYPE) The type of index mechanism for the stored elements. Default is
Tree.

Use Tree for binary trees. Binary trees are predictable in use of
memory and consistent in speed.

Use Tree for hash tables, as hash tables are faster, but they often
consume more memory.

6. (Optional) Select Default to make this the default store for the project (or module).

See also
• Creating a Log Store on page 52

Flex Operators
Flex operators are custom operators that let you write SPLASH scripts to operate on incoming
events.

Flex operators extend the type of business logic that can be applied to incoming events, beyond
what you can do with standard CCL or SQL queries. They extend CCL by allowing you to
write individual event handlers in SPLASH.

A Flex operator can take any combination of windows and streams as inputs, and produces an
output stream or window according to the logic contained in the attached SPLASH scripts.

See also
• SPLASH on page 9

Creating a Flex Operator in the Visual Editor
Create a Flex operator to add an event handler written in SPLASH to the project.

1. In the Visual editor Palette, in Streams and Windows , select Flex ().

2. Click anywhere in the diagram to place the Flex operator.

3. To set the name of the Flex operator, either:

• Click and press F2 to edit the operator name, or,
• In verbose mode, click the edit icon next to the name.

4. Connect the Flex shape to the appropriate input streams or windows.

Note: When you connect a stream or window to a Flex operator, by default the source is
added as an input to the Flex shape, and an On Input method is created from the source
stream or window.

CHAPTER 3: Visual Editor Authoring

54 Sybase Event Stream Processor

5. Click Add Columns to define the schema of the events produced by the Flex operator,
or set the schema to a named schema in the Properties View.

6. For each input to the Flex operator, the visual editor automatically adds a null input
method. To add input methods without first connecting the Flex shape to an input, use the
Add On Input Method in the shape toolbar.

Each method is a SPLASH script that is invoked when an event arrives on the associated
input. In other words, these are event handlers.

a) To edit the SPLASH script for each method, make sure the Flex shape is selected, and
press F4 to switch to the CCL editor.
The CCL editor opens with the cursor at the CREATE FLEX statement.

b) Edit the SPLASH script.
c) Press F4 to switch back to the Visual editor.

7. (Optional) Add an aging policy.

8. (Optional) Click Set Output Keep Policy and set keep policy options.

See also
• Keep Policy on page 30

• Setting an Aging Policy on page 55

Creating a Schema in the Visual Editor
Create a shared schema object that can be referenced from any number of streams or windows.

1. In the Palette menu under the Shared Components category, select Named Schema
().

2. Click anywhere in the Visual editor to place the schema.

3. Set the name of the schema by either:

• Double-clicking the name label, or,
• Editing the name field from within the Properties window.

4. Click Add Columns () to add individual columns.

5. Edit column names and datatypes.

6. Optional Connect the schema to one or more streams or windows using the connector tool.
Note: after selecting the connector tool, click the stream or window shape first, then the
schema shape.

Setting an Aging Policy
An aging policy can be set to flag records that have not been updated within a defined interval.
This is useful for detecting records that may be "stale".

Aging policies are an advanced, optional feature for a window or other stateful element.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 55

1. Select Set Aging Policy and set values:

Value Description

Aging Time This is an interval value. Any record in the window that has not
been updated for this much time will have the Aging Field
incremented. When the record is updated (or the Aging Time
Field changes), the timer will be reset. The period can be
specified in hours, minutes, seconds, milliseconds, or micro-
seconds.

Aging Field The field in the record that must be incremented by 1 every
time the aging time period elapses and no activity has occurred
on the record, or until a maximum defined value is reached. By
default, this value is 1.

(Optional) Max Aging Field
Value

The maximum value that the aging field can be incremented to.
If not specified, the aging field is incremented once.

(Optional) Aging Time Field The start time of the aging process. If not specified, the internal
row time is used. If specified, the field must contain a valid
start time.

2. (Optional) Double-click the policy to edit its parameters.

When the project runs, records accumulate until the Aging Time or the Max Aging Field Value
is reached. On an update to a record, the age is reset to 0.

Monitoring Streams for Errors
Modify a project to use error streams to keep track of errors in other streams in the project.

Error streams collect information from other streams about errors. Use error streams for
debugging projects in development and monitoring projects in a production environment.

1. Identify the project and the specific streams to monitor.

2. Determine whether you want to use multiple error streams. Determine the visibility for
each error stream.

3. Create the error stream in the project.

4. Display information from the error stream.

Creating an Error Stream
Add a special type of stream that collects errors and the records that cause them from other
streams in a project.

Whether you are debugging a project in development or monitoring a project in production
mode, error streams let you see errors and the records that cause them in other streams in real
time.

Note: An error stream cannot monitor other error streams.

CHAPTER 3: Visual Editor Authoring

56 Sybase Event Stream Processor

1. In the Visual editor, open the project.

2. Click the error stream shape in the Palette, then click an empty area in the diagram.

3. Click the + (plus) sign.
You see a list of streams in the project that can be monitored.

4. Specify the streams you want to monitor: click Select All or click each stream to monitor,
then click OK.
The streams you specified are connected to the Error Stream by red lines indicating that
they are sending error information.

Displaying Error Stream Data
By default, error streams are LOCAL, but you can make their information available outside of
the project.

In production mode, project monitoring may be performed externally. .

1. In the Visual editor, open the project.

2. To enable real-time monitoring of errors encountered by the project, click the Typeicon in
the Error Stream to toggle it from LOCAL to OUTPUT.

3. To enable ad hoc SQL queries, add a window (for example, ErrorState) to the project,
downstream from the error stream.
The ErrorState window preserves the state of the error stream so it can be queried using the
esp_query utility.

Modifying an Error Stream
When you are debugging a project in development or monitoring a project in production
mode, you may want to change the specific streams that an error stream is monitoring.

Note: An error stream cannot monitor other error streams.

1. In the Visual editor, open the project.

2. Locate the Error Stream shape in the work area and review the list of input streams.

3. Click the + (plus) sign, then click each stream to monitor, click OK. Or, use the Connector
in the Palette to connect an input stream to the error stream.
A red line connects each stream to the Error Stream and the new stream names appear on
the Inputs list.

4. To remove input streams from the error stream, click the X in a red circle, then select each
stream to remove. Click OK.
The red lines connecting the streams to the Error Stream and the stream names on the
Inputs list are removed.

CHAPTER 3: Visual Editor Authoring

Studio Users Guide 57

Switching Between the CCL and Visual Editors
Change between the two editors to maximize Studio's flexibility for creating and editing a
project.

• To switch from the CCL editor to the Visual editor, right-click and choose Switch to
Visual (F4), or click in the main toolbar.

• To switch from the Visual editor to the CCL editor, right-click in the diagram and choose
Switch To Text (F4), or click in the main toolbar.

See also
• Creating a Project on page 14

• Opening a Project on page 16

• Importing an Existing Project on page 16

• Editing a Project in the Visual Editor on page 23

CHAPTER 3: Visual Editor Authoring

58 Sybase Event Stream Processor

CHAPTER 4 CCL Editor Authoring

The CCL editor is a text authoring environment within ESP Studio for editing CCL code.

You can work in the CCL editor exclusively, or use it as a supplement to the Visual editor. The
CCL editor offers syntax completion options, syntax checking, and error validation.

A single CCL file can be open in only one editor at a time. The Visual and CCL editors are
completely integrated: when you save and switch to the other editor, your work is saved there
as well.

Most users new to Event Stream Processor find it easier to get started in the Visual editor. As
you gain experience with the product, and learn to successfully compile and run a simple
project, you may want to use the CCL editor to add advanced features to your projects.

For example, you can add:

• Complex queries that exceed the capabilities of the Visual editor
• DECLARE blocks for declaring project variables, parameters, datatypes, and functions
• SPLASH event handlers that you invoke with Flex operators
• User-defined functions
• Reusable modules and schemas that can be used multiple times in a project, or across

projects

For CCL language details, see the CCL Programmers Guide.

Editing in the CCL Editor
Update and edit CCL code as text in the Studio CCL editor.

1. Click the Authoring tab.

2. In File Explorer, expand the project container, and double-click the .ccl file name to
open it in the CCL editor.

Note: Advanced CCL users can include multiple CCL files in the same project, by using an
IMPORT statement to import shared schemas and module definitions from another file.

3. Begin editing text in the CCL editor window.

Note: Backslashes within string literals are used as escape characters. Any Windows
directory paths must therefore be specified with two backslashes.

4. (Optional) Press Ctrl+Space to show a syntax completion proposal.

Studio Users Guide 59

5. (Optional) To insert CREATE statement template code, right-click, choose Create, and
then choose the element to create.

6. Choose File > Save (Ctrl+S) to save the .ccl file and the project.

See also
• File Explorer on page 12

• Switching Between the CCL and Visual Editors on page 58

• Compiling a Project on page 81

CCL Editor Features
Several features simplify the process of editing CCL code in the Studio CCL editor.

Table 8. CCL Editor Features

Feature Description

Completion Proposals Activate completion proposals in workspace [Ctrl + Space]

Case-Insensitive Syntax High-
lighting

Done automatically when editing CCL code

Error Validation/Syntax Check-
ing

Access the Problems view to see errors in CCL code

Compile and Report Compila-
tion Errors

Access the Problems view to see errors in CCL code

Keyboard Shortcuts in the CCL Editor
Use keyboard shortcuts to access various functions quickly within the CCL editor.

Key Action

F3 Jump to declaration

F4 Toggle between the Visual and CCL editor

F6 Reorder CCL statements

F7 Compile

F11 Toggle between Authoring and Run-Test perspective

Ctrl + N Opens new project file

Ctrl + Y Redo

CHAPTER 4: CCL Editor Authoring

60 Sybase Event Stream Processor

Key Action

Ctrl + Z Undo

Ctrl + Shift + L List all keyboard shortcut assignments

Searching for Text
Find text in CCL code.

1. Choose Search > File.

You can also start a new search from the link in the Search view, when no search results are
visible.

2. Enter search criteria in the dialog.

3. Choose either:

• Search to show results, or
• Replace to replace results.

4. Review results in the Search view and choose from options in the Search toolbar.

Tip: Double-click a match to highlight it in the CCL editor.

Queries in CCL
CCL queries are attached to derived streams or windows to select data from one or more inputs
and transform it into the desired output.

CCL embeds queries within CREATE STREAM, CREATE WINDOW and CREATE DELTA
STREAM statements in the same way that standard SQL uses CREATE VIEW statements.
Unlike SQL, in CCL, SELECT is not a statement but rather is a clause used within a CREATE
object_type statement.

Where the Visual editor lets you select data using visual components referred to as simple
queries, these queries are actually CCL statements that create a stream or window with an
attached query.

To develop queries in CCL, see the CCL Programmers Guide:

• In Statements, see CREATE STREAM, CREATE WINDOW, and CREATE DELTA
STREAM statements for clauses they support

• In Clauses, see syntax and usage details

See also
• Simple Queries on page 32

CHAPTER 4: CCL Editor Authoring

Studio Users Guide 61

Creating a Schema in the CCL Editor
Enter a CREATE SCHEMA statement using the CCL editor to provide users with a shared
schema object that can be referenced from any number of streams or windows.
In the CCL editor, enter valid CCL for the CREATE SCHEMA statement.

• Enter text manually.
• Choose Create > Schema, and edit the draft CCL code as needed.

For example, this statement creates a shared schema object named SchemaTrades1, with four
columns:
CREATE SCHEMA SchemaTrades1 (
Symbol STRING ,
Seller STRING ,
Buyer STRING ,

Functions
A function is a self-contained, reusable block of code that performs a specific task.

The Sybase Event Stream Processor supports:

• Built-in functions - including aggregate, scalar and other functions
• User-defined SPLASH functions
• User-defined external functions

Built-in functions come with the software and include functions for common mathematical
operations, aggregations, datatype conversions, and security.

Order of Evaluation of Operations
Operations in functions are evaluated from right to left. This is important when variables
depend on another operation that must pass before a function can execute because it can cause
unexpected results. For example:

integer a := 1;
integer b := 2;
max(a + b, ++a);

The built-in function max(), which returns the maximum value of a comma-separated list of
values, returns 4 since ++a is evaluated first, so max(4, 2) is executed instead of max(3,
2), which may have been expected.

CHAPTER 4: CCL Editor Authoring

62 Sybase Event Stream Processor

Operators
CCL supports a variety of numeric, nonnumeric, and logical operator types.

Arithmetic Operators
Arithmetic operators are used to negate, add, subtract, multiply, or divide numeric values.
They can be applied to numeric types, but they also support mixed numeric types. Arithmetic
operators can have one or two arguments. A unary arithmetic operator returns the same
datatype as its argument. A binary arithmetic operator chooses the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data-type, and
returns that type.

Operator Meaning Example Usage

+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (Remainder) 8%3

^ Exponent 4^3

- Change signs -3

++ Increment

Preincrement (++argument) value is incremented before it
is passed as an argument

Postincrement (argument++) value is passed and then in-
cremented

++a (preincrement)

a++ (postincre-
ment)

-- Decrement

Predecrement (--argument) value is decremented before it
is passed as an argument

Postdecrement (argument--) value is passed and then de-
cremented

--a (predecrement)

a-- (postdecrement)

Comparison Operators
Comparison operators compare one expression to another. The result of such a comparison
can be TRUE, FALSE, or NULL.

CHAPTER 4: CCL Editor Authoring

Studio Users Guide 63

Comparison operators use this syntax:
expression1 comparison_operator expression2

Operator Meaning Example Us-
age

= Equality a0=a1

!= Inequality a0!=a1

<> Inequality a0<>a1

> Greater than a0!>a1

>= Greater than or equal to a0!>=a1

< Less than a0!<a1

<= Less than or equal to a0!<=a1

IN Member of a list of values. If the value is in the expression list's
values, then the result is TRUE.

a0 IN (a1, a2, a3)

Logical Operators

Operator Meaning Example Usage

AND Returns TRUE if all expressions are TRUE, and FALSE oth-
erwise.

(a < 10) AND (b >
12)

NOT Returns TRUE if all expressions are FALSE, and TRUE oth-
erwise.

NOT (a = 5)

OR Returns TRUE if any of the expressions are TRUE, and
FALSE otherwise.

(b = 8) OR (b = 6)

XOR Returns TRUE if one expression is TRUE and the other is
FALSE. Returns FALSE if both expressions are TRUE or both
are FALSE.

(b = 8) XOR (a > 14)

String Operators

Operator Meaning Example Usage

+ Concatenates strings and returns another string.

Note: The + operator does not support mixed datatypes (such
as an integer and a string).

'go' + 'cart'

CHAPTER 4: CCL Editor Authoring

64 Sybase Event Stream Processor

LIKE Operators
May be used in column expressions and WHERE clause expressions. LIKE supports the use of
the LIKE and REGEXP_LIKE operators to match string expressions to strings that closely
resemble each other but do not exactly match.

Operator Syntax and Meaning Example Usage

LIKE Matches WHERE clause string expressions to strings that
closely resemble each other but do not exactly match.

compare_expression LIKE pat-
tern_match_expression

The LIKE operator returns a value of TRUE if compare_ex-

pression matches pattern_match_expression, or FALSE if
it does not. The expressions can contain wildcards, where the
percent sign (%) matches any length string, and the under-
score (_) matches any single character.

Trades.StockName
LIKE "%Corp%"

[] Operator
The [] operator is only supported in the context of dictionaries and vectors.

Operator Syntax and Meaning Example Usage

[] Allows you to perform functions on rows other than the cur-
rent row in a stream or window.

stream-or-window-name[index].column

stream-or-window-name is the name of a stream or window
and column indicates a column in the stream or window.
index is an expression that can include literals, parameters, or
operators, and evaluates to an integer. This integer indicates
the stream or window row, in relation to the current row or to
the window's sort order.

MyNamedWind-
ow[1].MyColumn

Order of Evaluation for Operators
When evaluating an expression with multiple operators, the engine evaluates operators with
higher precedence before those with lower precedence. Those with equal precedence are
evaluated from left to right within an expression. You can use parentheses to override operator
precedence, since the engine evaluates expressions inside parentheses before evaluating those
outside.

Note: The ^ operator is right-associative. Thus, a ^ b ^ c = a ^ (b ^ c), not (a ^ b) ^ c.

The operators in order of preference are as follows. Operators on the same line have the same
precedence:

CHAPTER 4: CCL Editor Authoring

Studio Users Guide 65

• +.- (as unary operators)
• ^
• *, /, %
• +, - (as binary operators and for concatenation)
• =, !=, <>, <, >, <=, >= (comparison operators)
• LIKE, IN, IS NULL, IS NOT NULL
• NOT
• AND
• OR, XOR

Adding Tooltip Comments for the Visual Editor in CCL
Write comments in CCL that appear as tooltips for shapes in the Visual editor.

If you want comments to appear as tooltips in the Visual editor, you must insert a comment
immediately preceding the declaration statement for the corresponding shape in this form:
/**InsertTooltipCommentHere*/

Here is an example, in CCL, of a tooltip comment for an Input Window shape in the Visual
editor.

/**InputWindowInStudio*/
CREATE INPUT WINDOW InputWindow1 ;

Comments inputted into the CCL editor in this manner will appear as tooltips in the Visual
editor when the corresponding shapes are hovered over.

Note: 'Show comments in tooltip' must be enabled in Preferences.

CHAPTER 4: CCL Editor Authoring

66 Sybase Event Stream Processor

CHAPTER 5 Project Configurations

A project configuration is an XML document that governs specific runtime properties of a
project, including stream URI bindings, adapter properties, parameter values, and advanced
deployment options.

Project configuration files are created and edited separately from the project they are attached
to, and are identified by their .ccr file extension. View and edit project configuration files in
the File Explorer view in the Authoring perspective.

Configuration files maintain all run-time properties outside the CCL. Thus, you can maintain
CCL and CCX files under version control, while varying run-time properties. This allows a
project to be moved from a test environment to a production environment without modifying
the CCL and CCX files.

By default, when a new project is created, a new project configuration file is also created. New
configuration files are also created when Aleri models are converted to Event Stream
Processor projects. One project may have multiple configuration files attached to it, so you can
manually create new project configurations.

Creating a Project Configuration
Create a project configuration and edit configuration properties. When you create a new
project, a project configuration file is automatically generated. However, you can create
additional project configuration files as follows:

1. Select File > New > Project Configuration.

2. Select the folder in which to store the new configuration file, and assign it a file name.

3. Click Finish.
You see the CCR Project Configuration Editor window.

See also
• Opening an Existing Project Configuration on page 68

• Project Configuration File Editor on page 68

• Advanced Project Deployment Options on page 75

Studio Users Guide 67

Opening an Existing Project Configuration
Open an existing project configuration file.

By default, new projects create a project configuration so each project has at least one existing
project configuration.

1. Select Window > Open Perspective > Authoring or click the Authoring tab.

2. Select Window > Show View > File Explorer.

3. Locate the project configuration file, which appears as <projectname>.ccr. Double-
click to open the file.

See also
• Creating a Project Configuration on page 67

• Project Configuration File Editor on page 68

• Advanced Project Deployment Options on page 75

Project Configuration File Editor
Using the CCR Project Configuration File Editor you can select one of five categories of
information and edit in the project configuration file.

The CCR Project Configuration File Editor has five tabs, each one corresponding to one of the
five categories of project configuration information.

See also
• Creating a Project Configuration on page 67

• Opening an Existing Project Configuration on page 68

• Advanced Project Deployment Options on page 75

Editing Cluster Parameters in Project Configuration
Configure local or remote clusters that your project can connect to for input. These clusters
can then be used when configuring bindings.

1. In the CCR Project Configuration Editor window, select the Clusters tab.

2. Click the name of an existing cluster in the All Clusters pane to edit that cluster's
information or click Add to add a new cluster .
The editor displays the Cluster Details pane.

3. Enter the requested information in the Cluster Details pane.

CHAPTER 5: Project Configurations

68 Sybase Event Stream Processor

Field Description

Name Enter the hostname of the cluster.

Type Toggle between local (no server information necessary) and
remote (server information must be known) cluster connection
options.

User Name Enter a user name to use when logging in to the cluster, if au-
thentication is required.

Password Enter a password to use when logging in the cluster, if authen-
tication is required.

4. (Optional) Click Encrypt after entering the user name or password.

a) Fill in the required fields in the Content Encryption pane, including Cluster URI
(comprised of your host name and port number (<HOST>:<PORT>) and credential
fields.

b) Click Encrypt.
The editor redisplays Cluster Details pane with the field you chose to encrypt (either
the user name or password) filled with randomized encryption characters.

Note: To reset the encryption, click Encrypt beside the appropriate field and click
Reset when theAlready Encrypted pop-up is displayed.

5. To add a master cluster and children cluster nodes:

a) In Cluster Details, select remote as the type.
b) Right-click the cluster and select New > Cluster Manager.
c) Configure each cluster node by selecting it and adding host and port information in the

Cluster Manager field in the Cluster Manager Details pane.

See also
• Editing Bindings in Project Configuration on page 69

• Editing Adapter Property Sets in Project Configuration on page 70

• Setting Parameters in Project Configuration on page 71

• Editing Advanced Options in Project Configuration on page 72

Editing Bindings in Project Configuration
Configure bindings between input streams or windows in a project to output streams or
windows in other projects.

Prerequisites
You must have verified that the streams or windows you want to bind have:

• Compatible schema.

CHAPTER 5: Project Configurations

Studio Users Guide 69

• The same datatype for each field name.
• The same column order.
• The same number of columns.

Task

Projects can be bound to other projects, allowing one project's input stream or window to
receive its input from the output stream or window of another project. Binding projects is
similar to attaching an input adapter to an input stream or window, but is more efficient as it
directly connects the output of one project to the input of the other.

Bindings can be local, within the same cluster, or can connect a project in one cluster to a
project in a different cluster. Binding information is specified in CCL within the project
configuration file to allow binding references to be changed at runtime, so the project can be
used in multiple environments.

1. In the CCR Project Configuration editor, select the Bindings tab.

2. To add a binding, click Add.

3. To configure individual binding items, use the Binding Details pane on the right side of
the CCR Project Configuration editor.

Field Description

Binding name (Optional) Apply a name to the binding.

Local stream/window Title the binding and stream. The binding name is the name you insert
into this field.

Cluster Select the cluster to bind to.

Note: You must have previously defined one or more clusters.

Workspace Enter the workspace data (for example, ws1).

Project Enter the project to access (for example, project1).

Remote stream Enter the remote stream information (for example, remoteStream1).

4. To remove a binding, select it, and click Remove.

See also
• Editing Cluster Parameters in Project Configuration on page 68
• Editing Adapter Property Sets in Project Configuration on page 70
• Setting Parameters in Project Configuration on page 71
• Editing Advanced Options in Project Configuration on page 72

Editing Adapter Property Sets in Project Configuration
Use the CCR Project Configuration editor to configure adapter property sets in a project
configuration file. Property sets are reusable sets of properties that are stored in the project

CHAPTER 5: Project Configurations

70 Sybase Event Stream Processor

configuration file. Using an adapter property set also allows you to move adapter
configuration properties out of the CCL file and into the CCR file.

Property sets appear in a tree format, and individual property definitions are shown as children
to property sets.

1. In the CCR Project Configuration editor, select the Adapter Properties tab.

2. To create a new adapter property node, click Add.

3. Define a name for the property node in the Property Set Details pane.

4. To add a new property to a property set, right-click the set and select New > Property.

Note: You can add as many property items to a property set as required.

5. To configure a property:

a) Define a name for the property in the Property Details pane.
b) Enter a value for the property.

6. (Optional) To encrypt the property value:

a) Select the property value and click Encrypt.
b) Enter the required fields, including Cluster URI and credential fields.
c) Click Encrypt.

The value, and related fields are filled with randomized encryption characters.

Note: To reset the encryption, click Encrypt beside the appropriate field. Change the
values, as appropriate, then click Reset.

7. To remove items from the All Adapter Properties list:

• Right-click a property set and select Remove, or
• Right-click a property and select Delete.

See also
• Editing Cluster Parameters in Project Configuration on page 68

• Editing Bindings in Project Configuration on page 69

• Setting Parameters in Project Configuration on page 71

• Editing Advanced Options in Project Configuration on page 72

Setting Parameters in Project Configuration
Edit parameter definitions and remove deleted parameters.

The list of parameter definitions is automatically populated based on parameters within any
CCL documents in the project folder. You can change parameter definition values. You can
also remove parameters if the definition has been deleted from the CCL document.

1. Select the Parameters tab in the CCR Project Configuration editor.

CHAPTER 5: Project Configurations

Studio Users Guide 71

2. To modify a parameter value, click the parameter and change the value in the Parameter
Details pane.

Note: You cannot modify the parameter Name field.

3. To remove deleted parameter definitions from the list, select Remove, which is located at
the top of the list.

Note: A parameter definition marked as (removed) has been deleted from the original
CCL file and can be removed from the parameter definition list.

See also
• Editing Cluster Parameters in Project Configuration on page 68

• Editing Bindings in Project Configuration on page 69

• Editing Adapter Property Sets in Project Configuration on page 70

• Editing Advanced Options in Project Configuration on page 72

Editing Advanced Options in Project Configuration
Modify project deployment properties, project options, and instances in a project
configuration file.

1. In the CCR Project Configuration editor, select the Advanced tab.

2. If no project deployment item exists, select Add.

3. Choose a project deployment type from the Project Deployment Details window. The
options are:

Type Description

Non-HA Non-HA deployments create one project option item and one instance item as
children under the project deployment item.

HA HA deployments create one project option item and two instance items as
children under the project deployment item. HA provides for hot project fail-
over between instances.

4. To add an option, right-click the project options item and select New > option.

This table outlines all available project options that can be set using the Project
Configuration view in ESP Studio:

CHAPTER 5: Project Configurations

72 Sybase Event Stream Processor

Project Option Description

on-error-discard-record If set to true, the record being computed is discarded when a com-
putation failure occurs. If set to false, any uncomputed columns are
null-padded and record processing continues. The default value is
true.

Note: If the computation of a key column fails, the record will be
discarded regardless of this option.

on-error-log If set to true, any computation errors that occur will be logged in the
error message. The default value is true.

java-classpath Set the java classpath. Value is a filepath to the classpath file.

java-max-heap Set the max java heap for the project. Default value is 256 megabytes.

utf8 Enable UTF-8 functionality on the server (by default, this is feature is
off). Default value is false, set to true to enable.

precision Set decimal display characteristics for number characters in the
project. Default value is 6.

command-port Set the command port number. This advanced option should not
generally be set. If the port is 0, or out of range 1-65535, the program
selects an arbitrary port. To define a specific port, set a value between
1 and 65535.

sql-port Set the SQL port number. This advanced option should not generally
be set. If the port is 0, or out of range 1-65535, the program selects an
arbitrary port. To define a specific port, set a value between 1 and
65535.

gateway-port Set the gateway port number. This advanced option should not gen-
erally be set. If the port is 0, or out of range 1-65535, the program
selects an arbitrary port. To define a specific port, set a value between
1 and 65535.

time-granularity Define time granularity within the project. This option specifies, in
seconds, how often the set of performance records—one per stream
and one per gateway connection—is obtained from the running
Event Stream Processor. By default, time granularity is set to 5. Set
this option to 0 to disable monitoring; this also optimizes perform-
ance.

CHAPTER 5: Project Configurations

Studio Users Guide 73

Project Option Description

debug-level Set a logging level for debugging the project, ranging from 0-7.
Where each number is represents the following:
• 0: LOG_EMERG - system is unusable
• 1: LOG_ALERT - action must be taken immediately
• 2: LOG_CRIT - critical conditions
• 3: LOG_ERR - error conditions
• 4: LOG_WARNING - warning conditions
• 5: LOG_NORMAL - normal but significant conditions
• 6: LOG_INFO - informational
• 7: LOG_DEBUG - debug level messages

memory Set memory usage limits for the project. Default is 0, meaning un-
limited.

optimize Suppresses redundant store updates. Default value is false, set to true
to enable.

ignore-config-topology Enable this to ignore topology between projects. Default is false, set
to true to enable.

time-interval Set the constant interval expression that specifies the maximum age
of rows in a window. By default, in seconds, set to 0, meaning no
timer.

Note: Each project option can only be added once. Implemented project options are no
longer available in the drop-down list.

5. To configure an option item, complete these fields:

Option Description

Name Select from the list of available options shown in the above table.

Value Enter a value for the property option.

6. To add an affinity under the instance item, right-click the instance item and select New >
affinity. Complete these fields:

Option Description

Name Enter a name for the affinity item.

Strength Select a strength level.

Type Select a type. (for example, controller).

Charge Select a charge.

7. To remove items from the All Advanced Configurations list:

CHAPTER 5: Project Configurations

74 Sybase Event Stream Processor

• Select a project deployment item and click Remove.
• Right-click an option or affinity item and select Delete.

See also
• Editing Cluster Parameters in Project Configuration on page 68
• Editing Bindings in Project Configuration on page 69
• Editing Adapter Property Sets in Project Configuration on page 70
• Setting Parameters in Project Configuration on page 71
• Advanced Project Deployment Options on page 75

Advanced Project Deployment Options
Project deployment options determine how your project is deployed in a cluster and how it
functions at runtime. These parameters, including project options, active-active instances,
failover intervals, and project deployment type options, are set in the CCR file manually or
within Studio.

Active-Active Deployments
Active-active deployments are available only when you define the project as an ha-
project in the CCR file. An active-active deployment means that two instances of a project
run simultaneously in a cluster. The two instances of the project are started by the cluster
manager on two different hosts.

One instance of the project is elected as primary instance. If one of the instances is already
active, it is the primary instance. If the failed instance restarts, it assumes the secondary
position and maintains this position unless the current instance fails or is stopped.

Project Options
Project options are used as runtime parameters for the project, and include a predefined list of
available option names that reflect most command line entries.

Instances
The number of instances available depends on the deployment type chosen by the user, either
high availability (HA) or Non-HA. When a project is configured in HA (active-active) mode,
two instances are created: primary and secondary. You can set affinity and cold failover
options for each instance, including failover intervals and failure per interval options.

Failover
A project fails when it does not run properly or stops running properly. A failover occurs when
a failed project or server switches to another server to continue processing. Failovers may
result in a project restart, if defined. Restarts can be limited based on definition of failure
intervals and restarts per interval. Failover options, accessed using an instance configuration,
include:

CHAPTER 5: Project Configurations

Studio Users Guide 75

Field Description

Failover Either enabled or disabled. When disabled, project failover restarts are
not permitted. When enabled, failure interval and failures per interval
fields can be accessed and restarts are permitted.

Failures per interval Specifies the number of restarts the project can attempt within a given
interval. This count can be reset to zero by a manual start of the project or
if failures are dropped from the list because they are older than the size
of the interval.

Failure interval (Optional) This specifies the time, in seconds, that make up an interval.
If left blank, the interval time is infinite.

Affinities
Affinities limit where a project runs or does not run in a cluster. There are two types of
affinities:

• Controller – Used for Active-Active and non Active-Active configurations. You can have
more than one affinity for each controller, but there can only be one strong positive
controller affinity.

• Instance – Used only for Active-Active configuration, an instance creates two affinities
that can apply to each separate project server.

These parameters must be defined for each affinity:

Field Description

Name Enter the name of the object of the affinity, that is, the controller name
or instance name that the affinity is set for. For instance affinities, the
affinity for one instance should refer to the second instance.

Strength Strong or weak. Strong requires the project to run on a specific con-
troller, and no others. If weak, the project preferentially starts on the
defined controller, but if that controller is unavailable, it may start on
another available controller.

Charge Positive or negative. If positive, the project runs on the controller. If
negative, the project does not run on the controller.

See also
• Creating a Project Configuration on page 67

• Opening an Existing Project Configuration on page 68

• Project Configuration File Editor on page 68

• Editing Advanced Options in Project Configuration on page 72

CHAPTER 5: Project Configurations

76 Sybase Event Stream Processor

CHAPTER 6 Running Projects in Studio

In Studio, projects can be run on either a local or a remote cluster, using any of three methods
of authentication, and multiple projects can be run simultaneously on different clusters and in
separate workspaces.

A cluster consists of one or more workspaces, each with one or more projects. These projects
can be running or stopped. All workspaces are within one server, which allows users to work
with multiple projects simultaneously.

A local cluster allows users to work on projects from their local machine. Internet access is not
required. By default, clicking Run Project runs the project on the local cluster. If the local
cluster is not running, it is started automatically.

A remote cluster allows users to connect to a server that is more powerful than the default
server. The ability to use manual input, playback, and other Studio features is available. A
remote cluster also allows users to share a project within the cluster with other users.

To run a project on a remote cluster, the remote cluster connection must first be configured in
Studio. The administrator of the remote cluster must start it outside of ESP Studio. Once the
cluster is running, you can connect to it from Studio and run the project.

Connecting to the Local Cluster
Connect ESP Studio to the local cluster and run the project there.

Run Project enables you to run projects on the local cluster from either the Authoring
perspective or the Run-Test perspective.

1. In the Authoring perspective.

a) Select a project and open it in either the Visual Editor or the CCL Editor.
b) Select Run Project .

The Server View in the Run-Test perspective opens, showing the project connection. A
successful connection shows the server streams below the server folder, and the Console
shows the server log for the project.

If the connection is unsuccessful, you see a Server Connection error dialog.

2. In the Run-Test perspective.

a) Select Run Project .
The system displays a list of projects in the Select Project pop-up window.

b) Select the project that you want to run.

Studio Users Guide 77

Note: If you already have a project running, you need to select the drop-down menu to the
immediate right of Run Project to bring up the list of projects.

ESP Studio acts as a node (cluster manager): automatically connecting to the local cluster and
running the project on it.

Connecting to a Remote Cluster
Connecting to a remote cluster from Studio and running a project on it.

Prerequisites
The remote cluster connection must be configured in Studio and the remote cluster's
administrator must have started the remote cluster outside of ESP Studio.

Task

1. Select the Run-Test perspective.
The Server View opens, displaying a list of the available clusters.

2. Right-click on the entry for the cluster you want (for example, hudson.sybase.com:
12345).
Studio displays a pop-up menu.

3. Select Connect Server

Note: If this remote cluster employs user/password authentication, you will be prompted
to provide the required username and password. Studio does not store this information.

The Server View displays the workspaces on the remote cluster and the projects in each
workspace.

4. Right-click on the project you want to run.
Studio displays a pop-up menu.

5. Select Show in from the menu.
Studio displays a pop-up menu listing ways to view the project's progress.

6. Select the viewing method, for example Event Tracer View.
Studio starts displaying the project's progress in the specified view.

CHAPTER 6: Running Projects in Studio

78 Sybase Event Stream Processor

Configuring a Remote Cluster Connection
Use Studio preferences to manage remote cluster connections and authentication methods.

Prerequisites
The administrator of the remote cluster must have provided the necessary information about
the cluster: host name, port number, authentication method, and, if using RSA, the RSA user,
password and keystore.

Task

1. To add a new remote cluster connection, select New Server URL in the Server View
toolbar.

Note: In the Server View toolbar, you can also select Studio Preferences and add a new
connection through Sybase Event Stream Processor Studio > Run Test Preferences.
Select New.

Studio displays the New Server screen.

2. Enter the host name and port number, separated by a colon, to use when connecting to the
remote cluster. For example, hudson.sybase.com:12345.

3. (Optional) To enable encryption for Cluster Manager connections, select SSL.

4. Select an authentication method: None, RSA, or User/Password.

5. If you selected RSA, enter the following information:

• RSA User: – Provide the key alias.
• RSA Password: – Provide the keystore password.
• RSA Key store: – Provide the file name for the key store which contains the private

key.

6. Click OK.

In the Run-Test perspective, the Server view accesses the list of stored server connections.
Depending on the authentication method, Studio attempts to connect immediately (for None
and RSA modes), or shows a login dialog for each cluster configured for User/Password
authentication.

Note: To connect all listed servers, select Reconnect All in the Server View toolbar.

CHAPTER 6: Running Projects in Studio

Studio Users Guide 79

Modifying a Remote Cluster Connection
Change the authentication settings of a remote cluster connection that is already configured.

If the administrator of the remote cluster changes the authentication settings of the remote
cluster you must modify the remote cluster connection in Studio accordingly.

1. In the Server View, select Studio Preferences > Sybase Event Stream Processor Studio
> Run Test Preferences.
Studio displays the Run Test Preferences screen.

2. Select an existing server connection.
The Remove and Edit buttons are activated.

3. Click Edit.
Studio displays the Remote Server Connection screen.

4. Make your changes and click OK.
Studio displays the Run Test Preferences screen.

5. Click OK to save your changes.

CHAPTER 6: Running Projects in Studio

80 Sybase Event Stream Processor

CHAPTER 7 Running and Testing a Project

Test a project by compiling and running it on a server, accessing and filtering streams, saving
and uploading data to the Sybase Event Stream Processor Server, and setting project
configurations.

Starting the Run-Test Perspective
Access the Run-Test perspective for toolbars and views that simplify testing, monitoring,
debugging, and examining Event Stream Processor projects.
Click the Run-Test tab at the top of the Studio main window to see the Run-Test perspective.
If the Run-Test tab is not visible, from the main menu select Window > Open Perspective >
Run-Test.

Compiling a Project
Produce an executable .ccx file from CCL code. CCL code must be compiled to produce an
executable to run on Event Stream Processor.

1. (Optional) Set CCL compiler options.
a) Choose Edit > Preferences.
b) Expand the tree view to Sybase Event Stream Processor > Run Test Preferences >

Compiler Options.
c) To change the directory for your compiled projects, click Change, select a directory,

and click OK.
d) To confirm any other changes, click OK.

Note: By default, the compile directory is set to bin, which means the .ccx files are
created in a subdirectory relative to the project's directory.

2. In the Authoring perspective, in File Explorer, expand the tree view to show the .ccl file
for the project.

3. Select and open the .ccl project that you want to compile.

4. If you want to compile a project without running it, either to check for errors or just to have
an updated .ccx file, click Compile Project

on the main toolbar or press F7.

5. If you want to compile and run the project, click Run Project .
The project automatically compiles and runs. The Server View in the Run-Test perspective
opens, showing the project connection. A successful connection displays the server

Studio Users Guide 81

streams below the server folder. If the connection is unsuccessful, you see a Server
Connection error dialog.

Studio silently saves all open files belonging to the project, compiles the project, and creates
the .ccx file (the compiled executable). Compilation errors are displayed in Problems or
Console view in each perspective, depending on the type of error. And, if you selected Run
Project it also runs the compiled project.

Running a Project
Running a project automatically starts the project either on a local cluster or on another
connected cluster.

Prerequisites
To run a project in a workspace other than the default, ensure that one or more connected
workspaces are available.

Task

1. Select and open the .ccl file you want to run.

If no editors are open, pick a project to run.

2. To run the project, either:

• Click Run Project in the main toolbar (in either the Authoring or the Run-Test
perspective) to run the project in the default workspace, or,

• Click the drop-down arrow next to the Run Project tool and choose Run Project in
Workspace. Then select the workspace where this project will run.

The project runs and shows results in Run-Test perspective.

Server View
The Server View shows servers available for connecting and running projects.

You can:

• Connect a project, enabling a local or remote cluster
• Add a new server URL to the list of available connections, remove an existing server, or

reconnect all listed servers
• Show a server in Monitor View or Event Tracer View
• Load projects into a workspace
• Filter metadata streams (default).

Metadata streams are created automatically, and are typically used by administrators in a
production system to obtain health and performance information about the currently running

CHAPTER 7: Running and Testing a Project

82 Sybase Event Stream Processor

project. For details of what each stream contains, see Metadata Streams in the Administrators
Guide.

See also
• Chapter 6, Running Projects in Studio on page 77

• Performance Monitor on page 85

• Event Tracer View on page 89

Viewing a Stream
Stream View shows all of the events of an output stream and all of the retained events in an
output window for the running project.

1. In the Run-Test perspective, select the stream or window from the Server View.

2. Right-click the output stream or window, and select Show In > StreamViewer (or New
StreamViewer).
A tab opens in the Stream View showing all new events. If you selected a window, all
retained rows currently in the window are displayed.

3. To manipulate your subscription list, or individual stream subscriptions, select the
subscription to edit and choose one of these buttons at the top of the Stream View:

• Close Subscription URL disconnects and closes the Stream View.
• Clear clears contents and pauses the subscription.
• Show Current Subscription in new View . If available, the publish date of the

stream appears.

4. (Optional) To save data from the Stream View, click Clipboard Copy .

Uploading Data to ESP Server
Load event data from files into a running project. Normally used in testing a project.

Prerequisites
Ensure that the project is running, either on a local or remote cluster.

Task

1. In the Run-Test perspective, select the File Upload view in the lower-left pane.

Note: The File Upload tool uploads the data file as fast as possible. For playing back data at
controlled rates, use the Playback tool.

2. Click Select Project in the toolbar in the upper right corner of the File Upload view.

3. Select the project to which you want data uploaded, and click OK.

4. Click Browse to open the file choice dialog and navigate to the input file to upload.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 83

5. Select one or more files to upload.

Note: ESP Server supports ESP binary (.bin), ESP XML (.xml), and comma-separated
values and text (.csv or .txt) files. Refer to the Supported File Formats topic for details.

6. Click Upload. A progress bar tracks the upload status.

The File Upload view allows you to perform these additional actions:

UI control Action

Remove File Discard a previously selected file from the Input File(s) menu.

Cancel Cancel a file upload currently in progress.

Note: Any data sent before the upload is cancelled is still
processed.

Use Transaction Process multiple records as a single transaction. If Record Buffer
is specified, group that many records in each transaction. If not,
process the entire file as one transaction.

Record Buffer Specify the number of records to group together and process in a
single transaction.

Manually Entering Data to a Stream
Manually create and publish an event as input to a stream or window.

Manually publishing input events to a project is useful when testing a project.

1. In the Run-Test perspective, select the Manual Input view in the lower-left pane.

2. Click Select Stream () in the toolbar in the upper right corner of the Manual Input
view. .

3. In the Select Stream dialog, select the stream and click OK.

4. Edit available data columns as desired.

5. To edit more than one row of the data, select Edit Multiple Rows () and choose the rows
to modify.

6. If you are publishing to a window, indicate the opcode by selecting one of the data events.
If you are publishing to a stream, only insert events are supported.

7. (Optional) Select Use Current Date to change the value of any bigdatetime or date object
in the manual input view to the present date.

8. Click Publish to send the event to the project.

See also
• Manual Input Settings on page 98

CHAPTER 7: Running and Testing a Project

84 Sybase Event Stream Processor

Performance Monitor
The Monitor View shows visual indicators of queue size, throughput, and CPU use for each
stream and window (including LOCAL streams and windows) in a project.

Each node corresponds to a stream in the model with the lines outlining the path the data flows
through. The color of each node represents either QueueDepth or Rows Processed (/sec),
depending on your specifications.

For example, if you select the Color Queue Depth option, the (Red) Range >= field defaults
to 125, and the (Yellow) Range >= field defaults to 20. This means:

• If the queue depth of the stream node is greater than or equal to 125, the node is red.

• If the queue depth of the stream node is between 20 and 124, the node is yellow.

• If the queue depth of the stream node is less than 20, the node is green.
• If the nodes remain white, it indicates that the monitor is not receiving data from the stream

processor.

The Monitor View also depicts CPU utilization as a black pie wedge in the ellipses of the node.
Based on the options chosen, the remainder of the ellipses are red, yellow or green. A fully
black node represents 100% CPU use, based on a single CPU core. With multicore or
multiprocessor environments, a fully black node may be greater than 100%.

You can look at a specific node's performance statistics by moving your cursor over the node in
the diagram.

Running the Monitor
View visual indicators of queue size and CPU use for each stream and window.

Prerequisites
The project must be running before starting the monitor. You can specify a delay by changing
the performance timer interval.

Task

1. In the Run-Test perspective, select the Monitor view.

2. Click Select Running Project ().

3. Click OK.

4. Select QueueDepth or Rows Processed to specify how to color each node in the
performance diagram. For either option:

CHAPTER 7: Running and Testing a Project

Studio Users Guide 85

• Type in a number or use the arrow buttons in the (Red) Range >= field to select the
range to create a red node.

• Type in a number or use the arrow buttons in the (Yellow) Range >= field to select the
range to create a yellow node.

Note: Nodes are green when they fall within a range that is not in either the (Red) Range >=
or the (Yellow) Range >=.

5. Click Zoom In or Zoom Out to see a larger or smaller view of the diagram.

See also
• Saving a Performance Diagram as an Image on page 86

Saving a Performance Diagram as an Image
Save a performance diagram.

You can modify the performance diagram properties using the Monitor window in the Run-
Test perspective. The diagram appears in the Event Tracer window, and can be saved only
from that window.

1. In the Run-Test perspective, select the Event Tracer view.

2. Click Save().

3. Enter a file name and save location. Click Save.
The file is saved as a JPEG image in the location you specified.

See also
• Running the Monitor on page 85

Running a Snapshot SQL Query against a Window
In the SQL Query view, run a snapshot SQL query against an output window in a running
project, and show the results in the Console.

1. In the Run-Test perspective, select the SQL Query view in the lower-left pane.

2. Click Select Project ().

3. In the menu that appears, select the project and window to query, and click OK.

4. Enter your query.
For example, Select * from <stream>.

5. Click Execute.
The results are displayed in the Console.

CHAPTER 7: Running and Testing a Project

86 Sybase Event Stream Processor

Playback View
The Playback view records in-flowing data to a playback file, and plays the captured data back
into a running Event Stream Processor instance. You can also use it in place of the File Upload
tool to upload data files at a controlled rate.

Table 9. Playback View Options

Feature Description

Select playback file Select file format to use with Event Stream Processor recorder.

Start playback Starts playing the current playback file.

Stop playback Stops playback or record, closes the associated file and closes the
associated playback or record context.

Start Recording Prompts user to select the file in which to store recorded data and
starts Event Stream Processor recorder

At timestamp rate This slider is used during playback to vary the rate of playback

Table 10. Playback Mode Options

Feature Description

Full rate Full rate indicates that the speed of playback is not imposed by
ESP Studio. Full rate is dependent on factors such as the computer
that is running ESP Studio, or network latency.

Timestamp column The Timestamp column option tells the recorded file to play back
using the timing rate information from a specified column. You
must complete the Timestamp column to use it. During playback,
timestamps determine the time interval between records.

If you check Use Recorded Time, the playback file runs as if it is
the time when the data was recorded. Otherwise, the playback file
uses the current time and plays as if produced now.

Rec/ms The records-per-millisecond (rec/ms) mode lets playback occur at
a records per millisecond rate. The option allows you to set an
initial rec/ms rate that you can then modify using the At timestamp
rate slider tool.

The ESP Studio Recorder supports these file formats:

• .xml (ESP XML)

CHAPTER 7: Running and Testing a Project

Studio Users Guide 87

• .csv (comma-separated values)

• .bin (ESP Binary)

• .rec (ESP Studio recorded file)

Refer to the Supported File Formats topic for details.

Event Stream Processor records in .rec format, preserving the original timing of the
incoming data.

Note: Binary messages are architecture dependent. Binary messages created in a big-endian
machine cannot be loaded into an ESP server running in a little-endian machine, and vice-
versa.

Recording Incoming Data in a Playback File
Record data from in-flowing data to Event Stream Processor to a playback file that you can
save and view at a later time.

Prerequisites
You must be connected to ESP Server, and your streams and windows must be visible in the
Stream Viewer.

Task

In the Playback view:

1. Click Select Project ().

2. Select the project you want to record.

3. Click OK.

4. Click the Record icon.

5. Select the streams and windows to record, or click Select All to record all streams and
windows in the project.

6. Click OK.

7. Select or create a file in which to save the recording.

8. Click OK.

9. Send data to your selected streams using either:

• The Manual Input view to input data and publish to your streams, or,
• File Upload to retrieve an existing data file and publish to your streams.

10. Click Stop to stop recording.

See also
• Playing Recorded Data on page 89

CHAPTER 7: Running and Testing a Project

88 Sybase Event Stream Processor

Playing Recorded Data
View and play previously recorded data in a running Event Stream Processor instance.

Note: You may select Playback view options before or after you select a file for playback.

1. Click Playback File ().

2. Browse for and select the file you want to play back.

The playback file is added to the Playback File History. You can also playback a file
registered in the history. Double-click a history entry to activate it for playback.

Note: You can delete an item from the history using the either the Remove button or Delete
key. Modifications to the playback history are permanent.

3. Click Play to begin playback.
The data appears in the Stream Viewer, by default, at the rate it was recorded.

See also
• Recording Incoming Data in a Playback File on page 88

Debugging
The Run-Test perspective contains two tools for debugging data flow and assisting you in
locating and fixing bugs within the project: the debugger, which allows you to set breakpoints,
and the event tracer, which shows the impact of each incoming event on all streams and
windows of a project.

The debugging tools are for use during project development, not while Event Stream
Processor is in production mode. Debugging features are normally disabled. The system must
be in Trace mode before you can use the debugging features.

Studio offers an extensive suite of tools for debugging projects, but you can debug from the
command line as well. See the Utilities Guide.

Event Tracer View
The Event Tracer is one of the tools used to debug data flow. It shows the impact an event has
on each stream and window of the project.

The Event Tracer view shows the transaction flow through the model and lets you view data in
each node (stream or window). The nodes depicted in the Event Tracer view are drawn as a
data flow, depicting the relationships between the nodes.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 89

Table 11. Event Tracer View

Button Function

Select Running Project Presents a list of running projects available to monitor from Studio.

Layout TopDown Arranges shapes vertically for a top-to-bottom data flow.

Layout Left to Right Arranges shapes horizontally for a left-to-right data flow.

Save Saves the image as a JPG file.

Zoom In Enlarges the size of the image.

Zoom Out Reduces the size of the image.

Zoom Page Restores the size of the image to its original size.

Print Performance Data to Con-
sole

Prints the collected data to the console.

Close Subscription Closes the subscription and clears the view.

Show Current Subscription in
New View

Displays the current subscription in a separate view.

Fit Shape Ids Expands a shape to show the name of the stream or window.

Initialize With Base Data Sends all event data from Event Stream Processor through the
Event Tracer.

See also
• Debugging with Breakpoints and Watch Variables on page 91

Tracing Data Flow in the Event Tracer
Run the Event Tracer from the Event Tracer tab or the Server view.

Prerequisites

Ensure that the ESP Server is running.

Task

1. In the Run-Test Perspective, either:

CHAPTER 7: Running and Testing a Project

90 Sybase Event Stream Processor

Method Procedure

Event
Tracer

1. Click the Event Tracer view.
2. Click Select Running Project () to show running projects that

contain streams or windows.
3. Select a running project for the Event Tracer.
4. Click OK.

Server
View

1. Select the Server View.
2. To refresh the Server View, click Reconnect All.
3. Select a running project that contains streams.
4. Right-click the project node, and select Show in > Event Tracer

View.

The nodes depicted in the viewer are drawn as a data flow. As a transaction is processed by
each node, the color of the node changes to reflect the type of transaction.

2. Double-click a node to show the corresponding stream's data in the Console view.

3. To load test data to view the impact on each stream in the Event Tracer tab, either:

• Click the Upload File tab in the toolbar below the Activate Project pane to upload data
from a file, or,

• In the Manual Input view, manually enter individual transactions by clicking the Select
Stream icon. Select a stream. To confirm, click OK.

The shapes in the Event Tracer view change color.

Viewing the Topology Stream
The Topology Stream constructs the data-flow diagram, where relationships between the
nodes of a project are represented as line segments.

1. In the Run-Test perspective, select Event Tracer view.

2. Click Select Running Project. Select the desired project, and click OK.

3. To view the entire diagram, select Layout top down or Layout left to right.

4. To view a particular node, select the section of the data-flow diagram that contains the
desired stream.

Debugging with Breakpoints and Watch Variables
ESP Studio allows you to control a running project by enabling tracing, pausing, resuming,
and stepping of data flow through Event Stream Processor streams. You can also create
breakpoints and watch variables on a running application.

Breakpoints are locations in stream or window input or outputs that stop the flow of data in the
Event Stream Processor model. A watch variable inspects the data.

CHAPTER 7: Running and Testing a Project

Studio Users Guide 91

Table 12. Studio Breakpoint Buttons

Button Function

Trace On Instructs Event Stream Processor to begin tracing (debugging). This pa-
rameter must be set to use the Event Stream Processor breakpoint APIs.

Trace Off Stops tracing (debugging).

Step Platform Steps the running Event Stream Processor.

Pause Platform Pauses the running Event Stream Processor.

Enable All Break-
points

Enables all breakpoints in the list.

Disable All Break-
points

Disables all breakpoints in the list.

Insert Breakpoint Inserts a breakpoint item into the watch table.

Insert Watch Inserts a watch item into the watch table.

Print Breakpoint Data
to Console

Prints the breakpoint and pause state data for the current Event Stream
Processor to the console.

The following breakpoint commands initiate long-running operations. Each of these can be
cancelled before completion by clicking Cancel Current Step.

Table 13. Breakpoint Commands

Button Function

Step Quiesce from Base Automatically steps all the derived (non-base) streams until their
input queues are empty.

Step Quiesce Automatically steps the stream and all its direct and indirect de-
scendants until all of them are quiesced.

Step Transaction Automatically steps until the end of transaction.

Step Quiesce Downstream Steps the descendants of the stream but not the stream itself.

Note: Breakpoints and watch variables are persisted to the workspace.

See also
• Event Tracer View on page 89

Breakpoints
You can insert a breakpoint for any stream in the project.

Breakpoint types include:

CHAPTER 7: Running and Testing a Project

92 Sybase Event Stream Processor

• Local – breaks on input to the stream
• Input – breaks on a specific input stream to a stream (only flex, join, and union can have

multiple input streams)
• Output – breaks when data is output from the stream

A breakpoint can be associated with a counter (enableEvery). When a counter (n) is associated
with a breakpoint, the breakpoint triggers after an event flows through the breakpoint. The
counter is then reset to zero).

See also
• Adding Breakpoints on page 93

• Watch Variables on page 94

• Adding Watch Variables on page 95

• Pausing the Event Stream Processor on page 95

• Stepping the Event Stream Processor on page 96

Adding Breakpoints
Add breakpoints to Event Stream Processor.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Enable Trace mode

Task

1. Click Trace On.

2. Click Insert Breakpoint ().

3. Select the stream where you want to set a breakpoint.

4. Select the type of stream.

5. Specify when the breakpoint should trigger by entering a value in the enableEvery field.

6. Click Add.

The selected stream appears in the table within the Insert Breakpoint dialog box.

7. Click OK.

The breakpoint appears in the Debugger view within the Breakpoint table.

8. To enable, disable, or remove a specific breakpoint, right-click the breakpoint and select an
option:

• Enable Breakpoint
• Disable Breakpoint

CHAPTER 7: Running and Testing a Project

Studio Users Guide 93

• Remove Breakpoint

9. To enable or disable all breakpoints, select either Enable All Breakpoints or Disable All
Breakpoints.

10. To remove all breakpoints, right-click within the Breakpoints table and select Remove All
Breakpoints.

11. Click Trace Off to run Event Stream Processor.

See also
• Breakpoints on page 92

• Watch Variables on page 94

• Adding Watch Variables on page 95

• Pausing the Event Stream Processor on page 95

• Stepping the Event Stream Processor on page 96

Watch Variables
You can insert watch variables into the watch table of the Breakpoints view in the Debugger to
inspect data as it flows through the project.

A watch corresponds to:

• Current input of a stream
• Current output of a stream
• Queue of a stream
• Transaction input of a stream
• Transaction output of a stream
• Output history of a stream
• Input history of a stream
• Variable of a Flex stream

Add the watches you want to monitor to the watch table before running Event Stream
Processor. When Event Stream Processor runs, the watch table is dynamically updated as
run-control events (run, step, pause) are sent through Event Stream Processor.

See also
• Breakpoints on page 92

• Adding Breakpoints on page 93

• Adding Watch Variables on page 95

• Pausing the Event Stream Processor on page 95

• Stepping the Event Stream Processor on page 96

CHAPTER 7: Running and Testing a Project

94 Sybase Event Stream Processor

Adding Watch Variables
Add a watch element to a breakpoint.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Enable Trace mode

Task

1. Click Trace On.

2. Right-click in the Watch table.

3. Select Add Watch.

4. Select a stream from the Watch Choices box.

5. Select the type of watch you want to set up on that stream.

6. Click Add.
The watch appears in the table at the bottom of the dialog box.

7. Click OK.
The watch appears in the Watch table in the Debugger view.

8. To remove watches, right-click within the Watch table and select, either:

• Remove Watch to remove a single select watch variable, or,
• Remove All Watches to remove all watch variables.

See also
• Breakpoints on page 92

• Adding Breakpoints on page 93

• Watch Variables on page 94

• Pausing the Event Stream Processor on page 95

• Stepping the Event Stream Processor on page 96

Pausing the Event Stream Processor
Pause Event Stream Processor.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Enable Trace mode

CHAPTER 7: Running and Testing a Project

Studio Users Guide 95

Task

1. In the Debugger, click Pause Platform ().

2. To resume Event Stream Processor, click Trace Off followed by Trace On.

See also
• Breakpoints on page 92

• Adding Breakpoints on page 93

• Watch Variables on page 94

• Adding Watch Variables on page 95

• Stepping the Event Stream Processor on page 96

Stepping the Event Stream Processor
Single-step Event Stream Processor.

Prerequisites

• Access the Debugger view of the Run-Test perspective
• Pause the project

Task

1. In the Debugger view, click Step Platform () to perform the next step in the project.

2. Click Cancel Current Step to terminate the action.

See also
• Breakpoints on page 92

• Adding Breakpoints on page 93

• Watch Variables on page 94

• Adding Watch Variables on page 95

• Pausing the Event Stream Processor on page 95

CHAPTER 7: Running and Testing a Project

96 Sybase Event Stream Processor

CHAPTER 8 Customizing the Studio Work
Environment

Customize your Studio interface to work the way you prefer.

Note: As an Eclipse-based application, ESP Studio automatically includes many features not
specific to Sybase Event Stream Processor. Features documented here have been tested with
Studio. Other Eclipse features may not work as expected. For example, the Team
Synchronizing perspective is not supported.

Editing Studio Preferences
Edit preferences to customize the Studio environment.

You can also access many of these preferences from the related Studio view.

1. Choose Edit > Preferences.

2. Expand Sybase Event Stream Processor Studio, and then expand to the preferences you
want to set. All preference settings are optional.

• CCL Editor Settings – Set syntax coloring and template options.
• Run Test Preferences – Set defaults for server connections, add new connections, set

limits and filters for the StreamViewer and Server view, and set other options for
running projects in Studio.

• Compiler Options – Change the directory for the CCL compiler output (default is
bin folder in your workspace\project folder).

• Data Input Settings – Set file upload and SQL Query view options.
• Manual Input Settings – Choose settings for the publishing data from Manual Input

view, including defaults for all datatypes except money types.
• Manual Input Settings - Money Types – Set defaults for the money(n) datatype.
• Shapes General – Choose defaults for creating and displaying shapes in diagrams.

3. On each preference dialog, either:

• Click Apply to save the new settings, or,
• Click Restore Defaults to revert any changes you make.

Only the settings in the current dialog are applied or restored.

4. Click OK to exit the Preferences dialog.

See also
• Changing the Display of Diagrams on page 26

Studio Users Guide 97

Manual Input Settings
Set default values on datatypes for data being published to a stream from the Manual Input
view and the format in which the data is published.

Settings for most datatypes are in Manual Input Settings preferences. Settings for the
money(n) datatype are in Manual Input Settings - Money Types preferences.

Setting Description

Publish Multiple Rows Indicates whether data from an input stream is published in single
instances or as multiple rows.

Use Current Date Indicates whether data should be published under the current date
or maintain its historical date.

binary Indicates a binary value to be published to a stream. Use this setting
to monitor the binary value of a stream by placing a traceable value
in the field.

boolean May be set to True or false.

string Indicates the default value Studio accepts for string types.

integer Indicates the default value Studio accepts for integer types. Does
not accept values with decimal points.

float Indicates the default value Studio accepts for float types.

long Indicates the default value Studio accepts for long types.

interval Indicates the default value Studio accepts for interval types.

date Indicates the default value for date types. Click Select to open a
calendar dialog and choose a default date stamp with millisecond
precision.

bigdatetime Indicates the default value for bigdatetime types. Click Select to
open a calendar dialog and choose a default bigdatetime stamp with
microsecond precision.

timestamp Indicates the default value for timestamp types. Click Select to
open a calendar dialog and choose a default timestamp with mil-
lisecond precision.

CHAPTER 8: Customizing the Studio Work Environment

98 Sybase Event Stream Processor

Setting Description

money(n) Indicates the default value for money types of varying precision,
where n represents the number of places allowed after the decimal
point. Set default values for money types with up to 15 points of
precision.

Note: You see an error message at the top of the preference window when you enter incorrect
characters, or exceed the number of allowed characters in the field.

See also
• Manually Entering Data to a Stream on page 84

Rearranging Views in a Perspective
Rearrange the views in a perspective by moving a view to a new docking location in the
perspective.

1. Click in the title bar of the view that you want to move.

2. Hold down the left mouse button and drag the view to the new area.

As you move the view, the drop cursor icon changes appearance to help you determine
where the view can be docked.

Table 14. Drop cursors

Drop cursor Cursor name Description

Dock Above Dock above the view that is under the cursor.

Dock Below Dock below the view that is under the cursor.

Dock to the Right Dock to the right of the view under the cursor.

Dock to the Left Dock to the left of the view under the cursor.

Stack The view appears as a tab in the view under the cursor.

Restricted The view cannot be docked. For example, a view can-
not be docked in an editor.

3. When the view is in position, release the left mouse button to drop the view onto the new
location.

CHAPTER 8: Customizing the Studio Work Environment

Studio Users Guide 99

When you close the application, the new configuration is saved.

Moving the Perspective Shortcut Bar
The Perspective shortcut bar runs horizontally in the upper left corner of a perspective by
default.

The Perspective shortcut bar can be docked horizontally at the top right, or vertically to the left
of a perspective.

1. Right-click in the Perspective shortcut bar to open its context menu.

2. Do one of the following:

Select To dock the shortcut bar

Dock on > Top Right At the top right, horizontally adjacent to the main toolbar.

Dock on > Top Left At the top left, horizontally below the main toolbar. This is the
default.

Dock on > Left At the top right, vertically on the side of a perspective.

CHAPTER 8: Customizing the Studio Work Environment

100 Sybase Event Stream Processor

APPENDIX A Adapters that Support Schema
Discovery

The adapters that support schema discovery and the properties they use to enable it.

Adapter Supports Schema
Discovery

Properties

AtomReader Input No —

Database Input Yes Database Service

Name of database service from which the
adapter obtains the database connection.

Database Output Yes Database Service

Name of service entry to use.

File CSV Input Yes Directory

The absolute path to the data files you want
the adapter to read.

File CSV Output No —

File FIX Input No —

File FIX Output No —

File XML Input Yes Directory

The absolute path to the data files you want
the adapter to read.

File XML Output No —

FIX Input No —

FIX Output No —

Flex Output No —

HTTP Input No —

Studio Users Guide 101

Adapter Supports Schema
Discovery

Properties

JMS CSV Input Yes • Delimiter – field delimiter

• Connection Factory – connection facto-
ry class name

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS CSV Output No —

JMS Custom Input No —

JMS Custom Output No —

JMS FIX Input No —

JMS FIX Output No —

JMS Object Array Input Yes • Connection Factory – connection facto-
ry class name

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS Object Array Output No —

JMS XML Input Yes • Connection Factory – connection facto-
ry class name.

• JNDI Context Factory – context factory
for JNDI context initialization

• JNDI URL

• Destination Type

• Destination Name

JMS XML Output No —

APPENDIX A: Adapters that Support Schema Discovery

102 Sybase Event Stream Processor

Adapter Supports Schema
Discovery

Properties

Kdb Input Yes • KDB Server

• KDB Port

• KDB User

• KDB Password

Kdb Output Yes • KDB Server

• KDB Port

• KDB User

• KDB Password

Log File Input No —

Random Tuples Generator
Input

No —

Replication Server Input Yes • RSSD Host

• RSSD Port

• RSSD Database Name

• RSSD User Name

• RSSD Password

Reuters Marketfeed Input Yes Discovery Path

Reuters Marketfeed Out-
put

No —

Reuters OMM Input Yes Discovery Path

Reuters OMM Output No —

RTView Output No —

SMTP Output No —

Socket (as Client) CSV In-
put

No —

Socket (as Client) CSV
Output

No —

Socket (as Client) XML
Input

No —

APPENDIX A: Adapters that Support Schema Discovery

Studio Users Guide 103

Adapter Supports Schema
Discovery

Properties

Socket (as Client) XML
Output

No —

Socket (as Server) XML
Input

No —

Socket (as Server) XML
Output

No —

Socket (as Server) CSV In-
put

No —

Socket (as Server) CSV
Output

No —

Socket FIX Input No —

Socket FIX Output No —

Sybase IQ Output No —

Open Input and Output No —

Tibco Rendezvous Input No —

Tibco Rendezvous Output No —

NYSE Input Yes Discovery Directory Path

Absolute path to the adapter discovery di-
rectory.

See also
• Schema Discovery on page 28

• Discovering a Schema on page 28

APPENDIX A: Adapters that Support Schema Discovery

104 Sybase Event Stream Processor

Index
A
active-active 75
adapters

attaching in Visual Editor 27
creating an input stream 28
creating an input window 28
custom 8
discovering a schema 28
editing properties in project configuration 70
importing a schema 28
overview 7
properties for schema discovery 101
schema discovery 28
supporting schema discovery 101

aggregate 32
creating 34

aging policy
setting 55

AleriML 15
converting to CCL for existing projects 15
converting to CCL for new projects 15

APIs
supported languages 8

attaching
adapters, in Visual Editor 27

authentication
modifying 80

Authoring perspective
File Explorer 12
views 18

B
bindings

editing 69
breakpoints

adding 93
debugging 91
input 92
local 92
output 92

C
CCL

ccx file 81

compiling 81
creating a schema 62
editing 59
executable 81
overview 8
queries 61

CCL editor 58, 62
features 60
keyboard shortcuts 60
overview 59

CCL functions 62
ccr files

project configuration 67
cluster

editing parameters 68
master cluster 68

colors
setting preferences 97

column expressions
editing 42
rules 43

compiling a project
in File Explorer 81

compute 32
simple query 35

connecting
adapters, in Visual Editor 27
shapes 41
starting a server connection 77
to a local cluster 77

connection
remote cluster 78

connections
modifying authentication 80

continuous queries
complex 45

conversion
AleriML 15

CREATE SCHEMA
in CCL editor 62
Visual editor 55

creating a project
in Studio 14

custom adapters
overview 8

Index

Studio Users Guide 105

customizing Studio 97
setting preferences 97

D

data
manual input 84
uploading 83

data input
setting preferences 97

data-flow programming
example 3
introduction 3

databases
compared to Sybase Event Stream Processor

2
datatypes

manual input settings 98
datatypes for manual input

setting preferences 97
debugging 89

breakpoints 91–93
Event Tracer 89
pausing 95
Run-Test perspective 89
stepping 96
watch variables 91, 94, 95

deleting
elements from a diagram 44
elements from a project 44

deployment
project configurations 67

derived delta stream
complex queries 45

derived stream
complex queries 45

derived window
complex queries 45

diagrams
deleting elements 17, 44
iconic mode 26
inserting shapes 24
modifying layout 26
overview 17
setting preferences 97
shape reference 19
verbose mode 26

discovering
schemas 28

E
editing

project configuration 68
Visual editor 23

editing CCL
CCL editor 59
text editor 59

error stream
creating 56
displaying data from 57
modifying 57

Event Stream Processor
components 6

event streams
overview 2

Event Tracer
debugging 89
running 90

events
delete 5
examples 2
insert 5
update 5

examples
running 13

executable
compiling 81

external data
input and output adapters 7

F
failover 75
File Explorer

overview 12
filter 32

creating 34
filtering

metadata streams 82
Flex method

adding to a project 54
in Visual editor 54

Flex operator
creating 54

Flex operators 54
functions

built-in functions 62
external functions 62
SPLASH functions 62

Index

106 Sybase Event Stream Processor

user-defined functions 62

G
GUI authoring

See visual authoring

H
high availability 75
hot keys 25, 60

I
iconic mode

toggling 26
importing

modules 49
projects 16
schemas 28

input adapters
overview 7

See also adapters
input windows

adding to projects 30
instances 75

J
join 32
joining events

join behavior 37
join types 37
simple query 36

K
keep policy 30

count-based 30
slack 30
time-based 30

KERBEROS
server connection 78, 79

keyboard shortcuts
CCL editor 60
Visual editor 25

L
layout

modifying 26

LDAP
server connection 78, 79

Learning perspective 13
running examples 13

load modules
editing 50
importing 49
inserting into a project 49

local cluster
running projects in 82

log store 51
log stores

creating 52
login methods

See authentication

M

manual input
editing 84

manual input settings 98
Manual Input view

default settings 98
setting preferences 97

matching
simple queries 40

memory store 51
memory stores

creating 53
metadata streams

filtering 82
migration

AleriML 15
modularity

creating a module file 48
creating a module in the Visual editor 47
editing 47
editing a load module 50
importing 49
inserting load modules 49
overview 46
using modules in a project 49

modules
creating a CCL module file 48
creating in a project 47
rules for 46
using in a project 49

money datatypes
manual input settings 98

Index

Studio Users Guide 107

Monitor view 85
running 85

N
named schema 5

See also schema

O
opcodes

defined 5
insert, update, and delete events 5

operators
arithmetic operators 63
comparison operators 63
custom 54
Flex 54
LIKE operators 63
logical operators 63
SPLASH 54
string operators 63

output adapters
overview 7

See also adapters
overview 8

Sybase Event Stream Processor 1

P
Palette

adding input windows 30
Flex shape 54
shapes 19

parameters
viewing in project configurations 71

pattern 32
matching 40

performance
slack limit 30

performance diagrams
saving 86

persistence
creating a log store 52
log store 51

playback file 88
Playback file

playing 89
Playback view

features 87

file formats 87
playing 89
recording 88

preferences
manual input settings 98
Studio 97

PRIMARY KEY DEDUCED
setting key columns 42

primary keys
setting key columns 42

project
importing 16
opening 16

project configuration 67
affinities 75
creating 67
editing 68–72
opening 68
project deployment options 75

project deployment
adding affinities 72
adding project options 72
setting project type 72

projects
building simple projects 26
configuring 67–72, 75
connecting 77
creating 14
debugging 81
deleting elements 44
deploying 67
diagrams 17
introduction 4
opening 16
running 81, 82
running in local cluster 77
testing 81

properties
schema discovery 101

publishing
manual input 84
testing 84

Q
queries 32, 35, 36, 40

CCL 61
complex 45
derived delta stream 45
derived stream 45

Index

108 Sybase Event Stream Processor

derived window 45
pattern matching 40
snapshot SQL queries 86

See also simple queries

R
recording event data

Playback view 87
recording incoming data 88
records

aging data 55
remote cluster

connection 78
removing elements

from a diagram 44
from a project 44

retention
count-based 30
slack 30
time-based 30

See also keep policy
RSA

server connection 79
Run-Test perspective

debugging 89
Monitor view 85
opening 81
running Event Tracer 90

running a project
in local cluster 77

S
saving

performance diagrams 86
schema

adapters 28
column expressions 43
creating an input stream 28
creating an input window 28
creating in CCL 62
creating in Visual editor 55
discovering a schema 28
discovery 28
importing a schema 28
named 55
overview 5

schema discovery
adapter properties 101

adapters 28
adapters that support it 101
creating an input stream 28
creating an input window 28
importing a schema 28
overview 28

scope
for modules 46

SDKs
supported languages 8

searching
for text 61

SELECT clause
CCL 61

server connections
KERBEROS 79
LDAP 79
RSA 79

Server View
overview 82
showing servers in Event Tracer View 82
showing servers in Monitor View 82

servers
authentication 80
connecting to 77
connections 80
login methods 80

shapes
descriptions 19
iconic and verbose 26
in Palette 19
inserting in a diagram 24

simple queries 32, 34
aggregate 34
compute 35
filter 34
join 36
pattern matching 40
union 40

SPLASH
Flex operators 54
overview 9

SQL Query view
snapshot SQL queries 86

starting
Studio 11

statements
CREATE LOG STORE 51
CREATE MEMORY STORE 51

Index

Studio Users Guide 109

stores
creating a log store 52
creating a memory store 53
log store 51
memory store 51

Stream View
showing streams 83

streams
displaying in Stream View 83
editing column expressions 42
introduction 4
monitoring for errors 56
schema 5
schema discovery 28
structure 5

Studio
File Explorer 12
getting started 11
overview 8
starting on Linux 11
starting on UNIX 11
starting on Windows 11

Studio workspace
basics 11

subscriptions
in Stream View 83

T
testing

manually publishing 84
text authoring

overview 8
Text editor

See also CCL editor
Topology Stream 91

U
union 32

simple query 40
uploading data

ESP server 83

file types 83

V

verbose mode
toggling 26

views
Authoring perspective 18

visual authoring
diagrams 17
overview 8
views 18

Visual editor 32, 36, 58
accessing 23
aggregate 34
compute simple query 35
creating dataflow 41
keyboard shortcuts 25
modifying layout 26
overview 17
simple queries 34, 40
union simple query 40
views 18

W

watch variables 94
debugging 91

windows
adding to projects 30
aging data 55
editing column expressions 42
input 30
introduction 4
schema 5
schema discovery 28
structure 5

workspace
basics 11

Index

110 Sybase Event Stream Processor

	Studio Users Guide
	Contents
	CHAPTER 1: Introduction to Sybase Event Stream Processor
	Event Streams
	Event Stream Processor Compared to Databases
	Data-Flow Programming
	ESP Projects: Adapters, Streams, Windows, and Continuous Queries
	Streams Versus Windows
	Schemas
	Inserts, Updates, and Deletes
	Product Components
	Input and Output Adapters
	Custom Adapters

	Authoring Methods
	Continuous Computation Language
	SPLASH

	CHAPTER 2: Getting Started in ESP Studio
	Starting ESP Studio
	Studio Workspace Basics
	File Explorer

	Learning Perspective
	Running Examples in the Learning Perspective

	Creating a Project
	Converting AleriML Models into CCL Projects
	Converting AleriML Models into New Projects
	Converting AleriML Models to Add to Existing Projects

	Opening a Project
	Importing an Existing Project

	CHAPTER 3: Visual Editor Authoring
	Diagrams
	Visual Authoring Environment
	Shape Reference
	Editing a Project in the Visual Editor
	Adding Shapes to a Diagram
	Adding Comments to Shapes
	Keyboard Shortcuts in the Visual Editor
	Changing the Display of Diagrams
	Building a Simple Project
	Adding an Adapter to a Project
	Schema Discovery
	Discovering a Schema
	Adding an Input Stream or Window to a Project
	Keep Policy
	Adding a Simple Query
	Simple Queries
	Creating and Modifying Simple Queries: Filter
	Creating and Modifying Simple Queries: Aggregate
	Creating and Modifying Simple Queries: Compute
	Creating and Modifying Simple Queries: Join
	Join Types and Restrictions

	Creating and Modifying Simple Queries: Union
	Creating and Modifying Simple Queries: Pattern

	Connecting Elements
	Setting Key Columns
	Editing Column Expressions for Windows, Streams, and Delta Streams
	Column Expressions

	Deleting an Element

	Adding Advanced Features to a Project
	Complex Queries
	Modularity
	Creating a Module
	Editing a Module
	Creating a Module File
	Importing Definitions from Another CCL File
	Using a Module Within a Project
	Configuring the Loaded Module

	Stores
	Creating a Log Store
	Creating a Memory Store

	Flex Operators
	Creating a Flex Operator in the Visual Editor

	Creating a Schema in the Visual Editor
	Setting an Aging Policy
	Monitoring Streams for Errors
	Creating an Error Stream
	Displaying Error Stream Data
	Modifying an Error Stream

	Switching Between the CCL and Visual Editors

	CHAPTER 4: CCL Editor Authoring
	Editing in the CCL Editor
	CCL Editor Features
	Keyboard Shortcuts in the CCL Editor
	Searching for Text
	Queries in CCL
	Creating a Schema in the CCL Editor
	Functions
	Operators
	Adding Tooltip Comments for the Visual Editor in CCL

	CHAPTER 5: Project Configurations
	Creating a Project Configuration
	Opening an Existing Project Configuration
	Project Configuration File Editor
	Editing Cluster Parameters in Project Configuration
	Editing Bindings in Project Configuration
	Editing Adapter Property Sets in Project Configuration
	Setting Parameters in Project Configuration
	Editing Advanced Options in Project Configuration

	Advanced Project Deployment Options

	CHAPTER 6: Running Projects in Studio
	Connecting to the Local Cluster
	Connecting to a Remote Cluster
	Configuring a Remote Cluster Connection
	Modifying a Remote Cluster Connection

	CHAPTER 7: Running and Testing a Project
	Starting the Run-Test Perspective
	Compiling a Project
	Running a Project
	Server View
	Viewing a Stream
	Uploading Data to ESP Server
	Manually Entering Data to a Stream

	Performance Monitor
	Running the Monitor
	Saving a Performance Diagram as an Image

	Running a Snapshot SQL Query against a Window
	Playback View
	Recording Incoming Data in a Playback File
	Playing Recorded Data

	Debugging
	Event Tracer View
	Tracing Data Flow in the Event Tracer
	Viewing the Topology Stream

	Debugging with Breakpoints and Watch Variables
	Breakpoints
	Adding Breakpoints
	Watch Variables
	Adding Watch Variables
	Pausing the Event Stream Processor
	Stepping the Event Stream Processor

	CHAPTER 8: Customizing the Studio Work Environment
	Editing Studio Preferences
	Manual Input Settings
	Rearranging Views in a Perspective
	Moving the Perspective Shortcut Bar

	APPENDIX A: Adapters that Support Schema Discovery
	Index

