
Programmers Guide

SAP Sybase Event Stream
Processor 5.1 SP04

DOCUMENT ID: DC01612-01-0514-01
LAST REVISED: November 2013
Copyright © 2013 by SAP AG or an SAP affiliate company. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or for any purpose without the express permission of
SAP AG. The information contained herein may be changed without prior notice.
Some software products marketed by SAP AG and its distributors contain proprietary software components of other software
vendors. National product specifications may vary.
These materials are provided by SAP AG and its affiliated companies ("SAP Group") for informational purposes only,
without representation or warranty of any kind, and SAP Group shall not be liable for errors or omissions with respect to the
materials. The only warranties for SAP Group products and services are those that are set forth in the express warranty
statements accompanying such products and services, if any. Nothing herein should be construed as constituting an additional
warranty.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and other countries. Please see http://www.sap.com/corporate-en/legal/copyright/
index.epx#trademark for additional trademark information and notices.

http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark
http://www.sap.com/corporate-en/legal/copyright/index.epx#trademark

Contents

CHAPTER 1: Introduction ...1
Data-Flow Programming ...1
Continuous Computation Language2
SPLASH ..3
Authoring Methods ..3

CHAPTER 2: CCL Project Basics5
Events ...5
Operation Codes ..6
Streams ...7
Windows ...7

Retention ..8
Named Windows ...11
Unnamed Windows ...11

Delta Streams ...13
Comparing Streams, Windows, and Delta Streams14
Bindings on Streams, Delta Streams, and Windows15
Input/Output/Local ...19
Implicit Columns ..20
Schemas ...21
Stores ..21
CCL Continuous Queries ..22
Adapters ...24
Order of Elements ..24

CHAPTER 3: Developing a Project in CCL25

CHAPTER 4: CCL Language Components27

Programmers Guide iii

Datatypes ..27
Intervals ..31

Operators ..32
Expressions ...35
CCL Comments ..37
Case-Sensitivity ...38
Literals ..39

Time Literals ...39
Boolean Literals ..40
String Literals ..40
Numeric Literals ..41

CHAPTER 5: CCL Query Construction43
Filtering ...43
Splitting Up Incoming Data ...43
Unions ...45

Example: Merging Data from Streams or Windows45
Joins ...46

Key Field Rules ...48
Join Examples: ANSI Syntax ..49
Join Example: Comma-Separated Syntax51

Pattern Matching ..51
Aggregation ..52
Reference Table Queries ...54

Using a Reference Table Query in a Join55
Using a Reference Table Query in a Module57
Using a Reference Table Query in SPLASH58
Using a Reference Table Query in SPLASH to Get a

Single Row from a Table ...60

CHAPTER 6: Advanced CCL Programming
Techniques ...63

Declare Blocks ...63
Typedefs ...64

Contents

iv SAP Sybase Event Stream Processor

Parameters ...64
Variables ...65
Declaring Project Variables, Parameters, Datatypes,

and Functions ...67
Flex Operators ...68
Automatic Partitioning ..68

Guidelines for Partitioning Flex Operators72
Guidelines for Partitioning SPLASH 75
Guidelines for Partitioning Elements with Retention

Policies ...78
Guidelines for Partitioning Aggregation80
Guidelines for Partitioning Modules81
Guidelines for Partitioning Joins83
Guidelines for Partitioning Elements on Log Stores85

Modularity ...85
Module Creation and Usage ...86
Example: Creating and Using Modules 86
Example: Parameters in Modules87

Data Recovery ..89
Log Store Optimization Techniques90

Error Streams ...90
Monitoring Streams for Errors92

CHAPTER 7: Zero Data Loss ..95
Consistent Recovery ...95
Auto Checkpoint ..96
Guaranteed Delivery ..98
Achieving Zero Data Loss ...100

CHAPTER 8: Creating a Log Store103
Log Store Guidelines ...104
Sizing a Log Store ...105
Log Store Sizing Reference ..109

Contents

Programmers Guide v

CHAPTER 9: Writing SPLASH Routines113
Internal Pulsing ..113
Order Book ...114

CHAPTER 10: Integrating SPLASH into CCL117
Access to the Event ...117
Access to Input Windows ...117
Output Statement ...119
Notes on Transactions ..119

CHAPTER 11: Using SPLASH in Projects121

CHAPTER 12: ESP Datatypes in SQL Queries125

CHAPTER 13: PowerDesigner for Event Stream
Processor ...127

Getting Started ...127
Data Modeling Scenarios ...127
Sample PowerDesigner Project128

Opening the Sample Project128
Learning More About PowerDesigner128

Data Model ..129
ESP Schema Logical Data Model129
Finding an Object in a Diagram129
Data Model Tables ..129
Extensions ..131

Category Set ..132
Schema Definitions ..132
Impact and Lineage Analysis133

Extended Model Setup ..134
Extending an Existing Model134

Contents

vi SAP Sybase Event Stream Processor

Setting Up the Model Category Set File134
Merging ESP Categories135
Changing the Default Category135

Setting Datatypes for an ESP Schema135
ESP Schema Model Development136

Exploring the Sample Model137
The Sample Model ..137
Creating an ESP Schema Model139

Creating a Model Using Categories139
Creating a Logical Data Model139
Adding Schema Definition140
Defining Schema Properties141

Validating a Model ..144
PowerDesigner Validity Checks145
Custom Checks for ESP Schema Extensions ...145

Importing a CCL File ...146
Exporting a CCL File ..146

Model Generation ..146
Generating a new Sybase IQ, SAP HANA, or ASE

Model from an ESP Schema Model147
Checking Indexes ..148
Setting Physical Options148
Adding Foreign Keys ..149

Generating a new ESP Schema Model from a Sybase
IQ, SAP HANA, or ASE Model149

Updating an existing Sybase IQ, SAP HANA, or ASE
Model from an ESP Schema Model149

Updating an existing ESP Schema Model from a
Sybase IQ, SAP HANA, or ASE Model150

Impact and Lineage Analysis ...150
Launching an Impact and Lineage Analysis151
Generating an Analysis Diagram152
Reviewing an Impact and Lineage Analysis152
Sample Analysis for a Schema Definition153
Sample Analysis for a Table ..154

Contents

Programmers Guide vii

DDL Script Generation ..155
Generating Database Schema with PowerDesigner ...155

Changing the Default Database User155
Generating DDL Scripts ..156
Executing DDL Scripts for the SAP Sybase IQ

Database ..157
Executing DDL Scripts for the SAP HANA Database

..157
Executing DDL Scripts for the ASE Database158

APPENDIX A: List of Keywords159

APPENDIX B: Date and Time Programming161
Time Zones ...161

Changes to Time Zone Defaults162
List of Time Zones ..162

Date/Time Format Codes ..170
Calendar Files ..174

APPENDIX C: Performance and Tuning Tips177
Distributing Load through Parallelization177
Distributing Load through Modularization180
Data Flow in Event Stream Processor181
Log Store Considerations ...181
Batch Processing ..182
Main Memory Usage ..182
Determining Stream Memory Usage183
CPU Usage ...184
TCP Buffer and Window Sizes ..185
Improving Aggregation Performance185

Index ...189

Contents

viii SAP Sybase Event Stream Processor

CHAPTER 1 Introduction

Data-Flow Programming
SAP® Sybase® Event Stream Processor uses data-flow programming for processing event
streams.

In data-flow programming, you define a set of event streams and the connections between
them, and apply operations to the data as it flows from sources to outputs.

Data-flow programming breaks a potentially complex computation into a sequence of
operations with data flowing from one operation to the next. This technique also provides
scalability and potential parallelization, since each operation is event driven and
independently applied. Each operation processes an event only when it is received from
another operation. No other coordination is needed between operations.

The sample project shown in the figure shows a simple example of this.

Each of the continuous queries in this simple example—the VWAP aggregate, the
IndividualPositions join object, and the ValueByBook aggregate—is a type of derived stream,
as its schema is derived from other inputs in the diagram, rather than originating directly from
external sources. You can create derived streams in a diagram using the simple query elements
provided in the Studio Visual editor, or by defining your own explicitly.

Figure 1: Data-Flow Programming - Simple Example

Programmers Guide 1

Table 1. Data-Flow Diagram Contents

Element Description

PriceFeed Represents an input window, where incoming data from an external
source complies with a schema consisting of five columns, similar to a
database table with columns. The difference is that in ESP, the stream-
ing data is not stored in a database.

Positions Another input window, with data from a different external source. Both
Positions and PriceFeed are included as windows, rather than streams,
so that the data can be aggregated.

VWAP Represents a simple continuous query that performs an aggregation,
similar to a SQL Select statement with a GROUP BY clause.

IndividualPositions Represents a simple continuous query that performs a join of Positions
and VWAP, similar to a SQL FROM clause that produces a join.

ValueByBook Another simple query that aggregates data from the stream Individual
Positions.

Continuous Computation Language
CCL is the primary event processing language of the Event Stream Processor. ESP projects are
defined in CCL.

CCL is based on Structured Query Language (SQL), adapted for event stream processing.

CCL supports sophisticated data selection and calculation capabilities, including features
such as data grouping, aggregations, and joins. However, CCL also includes features that are
required to manipulate data during real-time continuous processing, such as windows on data
streams, and pattern and event matching.

The key distinguishing feature of CCL is its ability to continuously process dynamic data. A
SQL query typically executes only once each time it is submitted to a database server and must
be resubmitted every time a user or an application needs to reexecute the query. By contrast, a
CCL query is continuous. Once it is defined in the project, it is registered for continuous

CHAPTER 1: Introduction

2 SAP Sybase Event Stream Processor

execution and stays active indefinitely. When the project is running on the ESP Server, a
registered query executes each time an event arrives from one of its datasources.

Although CCL borrows SQL syntax to define continuous queries, the ESP server does not use
a SQL query engine. Instead, it compiles CCL into a highly efficient byte code that is used by
the ESP server to construct the continuous queries within the data-flow architecture.

CCL queries are converted to an executable form by the CCL compiler. ESP servers are
optimized for incremental processing, hence the query optimization is different than for
databases. Compilation is typically performed within Event Stream Processor Studio, but it
can also be performed by invoking the CCL compiler from the command line.

SPLASH
Stream Processing LAnguage SHell (SPLASH) is a scripting language that brings
extensibility to CCL, allowing you to create custom operators and functions that go beyond
standard SQL.

The ability to embed SPLASH scripts in CCL provides tremendous flexibility, and the ability
to do it within the CCL editor maximizes user productivity. SPLASH also allows you to define
any complex computations that are easier to define using procedural logic rather than a
relational paradigm.

SPLASH is a simple scripting language comprised of expressions used to compute values
from other values, as well as variables, and looping constructs, with the ability to organize
instructions in functions. SPLASH syntax is similar to C and Java, though it also has
similarities to languages that solve relatively small programming problems, such as AWK or
Perl.

Authoring Methods
SAP Sybase Event Stream Processor Studio provides visual and text authoring environments
for developing projects.

In the visual authoring environment, you can develop projects using graphical tools to define
streams and windows, connect them, integrate with input and output adapters, and create a
project consisting of queries.

In the text authoring environment, you can develop projects in the Continuous Computation
Language (CCL), as you would in any text editor. Create data streams and windows, develop
queries, and organize them in hierarchical modules and projects.

You can easily switch between the Visual editor and the CCL editor at any time. Changes made
in one editor are reflected in the other. You can also compile projects within Studio.

CHAPTER 1: Introduction

Programmers Guide 3

In addition to its visual and text authoring components, Studio includes environments for
working with sample projects, and for running and testing applications with a variety of
debugging tools. Studio also lets you record and playback project activity, upload data from
files, manually create input records, and run ad hoc queries against the server.

If you prefer to work from the command line, you can develop and run projects using the
esp_server, esp_client, and esp_compiler commands. For a full list of Event Stream
Processor utilities, see the Utilities Guide.

CHAPTER 1: Introduction

4 SAP Sybase Event Stream Processor

CHAPTER 2 CCL Project Basics

ESP projects are written in CCL, a SQL-like language which specifies a data flow (by defining
streams, windows, operations, and connections), and provides the capability to incorporate
functions written in other languages, such as SPLASH, to handle more complex
computational work.

Events
A business event is a message that contains information about an actual business event that
occurred. Many business systems produce streams of such events as things happen.

You can use streams, windows, and delta streams with adapters to create complex projects.
Streams, windows, and delta streams allow you to consume and process input events and
generate output events.

Examples of business events that are often transmitted as streams of event messages include:

• Financial market data feeds that transmit trade and quote events, where each event may
consist of ticket symbol, price, quantity, time, and so on.

• Radio Frequency Identification System (RFID) sensors that transmit events indicating that
an RFID tag was sensed nearby.

• Click streams, which transmit a message (a click event) each time a user clicks a link,
button, or control on a Web site.

• Database transaction events, which occur each time a record is added to a database or
updated in a database.

Event Blocks
Business events can be published into an ESP model in collections called Event Blocks,
improving the performance of your ESP model. Event blocks come in two different types:
envelopes and transactions. As an event block is being processed by a window, resulting rows
are not sent downstream immediately. Instead, they are stored until the last event of the block
is processed, and the resulting events are then sent downstream. Event blocks have the
following properties:

• Envelopes:
• Each row in an envelope is treated atomically; a failure in an event does not discard the

envelope. This behavior is useful if a model's performance is important, but not
necessarily the integrity of the data.

• Transactions:

Programmers Guide 5

• A transaction will be discarded if any one event in the block fails. This behavior can be
used to guarantee that logical blocks of events are completely error-free.

• Before a transaction block is sent downstream, all events in the transaction are
compressed as much as possible. For example, an event with an insert and then an
update will compress down to a single insert with updated values.

Operation Codes
The operation code (opcode) of an event record specifies the action to perform on the
underlying store of a window for that event.

In many Event Stream Processor use cases, events are independent of each other: each carries
information about something that happened. In these cases, a stream of events is a series of
independent events. If you define a window on this type of event stream, each incoming event
is inserted into the window. If you think of a window as a table, the new event is added to the
window as a new row.

In other use cases, events deliver new information about previous events. The ESP Server
needs to maintain a current view of the set of information as the incoming events continuously
update it. Two common examples are order books for securities in capital markets, and open
orders in a fulfillment system. In both applications, incoming events may indicate the need
to:

• Add an order to the set of open orders,
• Update the status of an existing open order, or,
• Remove a cancelled or filled order from the set of open orders.

To handle information sets that are updated by incoming events, Event Stream Processor
recognizes the following opcodes in incoming event records:

• insert – Insert the event record.
• update – Update the record with the specified key. If no such record exists, it is a runtime

error.
• delete – Delete the record with the specified key. If no such record exists, it is a runtime

error.
• upsert – If a record with a matching key exists, update it. If a record with a matching key

does not exist, insert this record.
• safedelete – If a record with a matching key exists, delete it. If a record with a matching key

does not exist, do nothing.

All event records include an opcode. Each stream or window in the project accepts incoming
event records and outputs event records. Output events, including opcodes, are determined by
their source (stream, window, or delta stream) and the processing specified for it.

CHAPTER 2: CCL Project Basics

6 SAP Sybase Event Stream Processor

Refer to the Streams, Windows, and Delta Streams topics in the Programmers Guide for
details on how each interprets the opcodes on incoming event records and generates opcodes
for output records.

Streams
Streams subscribe to incoming events and process the event data according to the rules you
specify (which can be thought of as a "continuous query") to publish output events. Because
they are stateless, they cannot retain data.

Streams can be designated as input or derived. Derived streams are either output or local. Input
streams are the point at which data enters the project from external sources via adapters. A
project may have any number of input streams. Input streams do not have continuous queries
attached to them, although you can define filters for them.

Because a stream does not have an underlying store, the only thing it can do with arriving input
events is insert them. Insert, update, and upsert opcodes are all treated as inserts. Delete and
safedelete are ignored. The only opcode that a stream can include in output event records is
insert.

Local and output streams take their input from other streams or windows, rather than from
adapters, and they apply a continuous query to produce their output. Local streams are
identical to output streams, except that local streams are hidden from outside subscribers.
Thus, a subscriber cannot subscribe to a local stream. You cannot create primary keys for
streams. You cannot monitor or subscribe to local streams in ESP Studio.

Windows
A window is a stateful element that can be named or unnamed, and retains rows based on a
defined retention policy.

You create a window if you need data to retain state. To create a Window, open the Streams
and Windows compartment in the Visual editor in SAP Sybase Event Stream Processor
Studio and click Input Window. When creating the window, and to retain rows, you must
assign a primary key.

Since a window is a stateful element, with an underlying store, it can perform any operation
specified by the opcode of an incoming event record. Depending on what changes are made to
the contents of the store by the incoming event and its opcode, a window can produce output
event records with different opcodes.

For example, if the window is performing aggregation logic, an incoming event record with an
insert opcode can update the contents of the store and thus output an event record with an
update opcode. The same could happen in a window implementing a left join.

CHAPTER 2: CCL Project Basics

Programmers Guide 7

A window can produce an output event record with same opcode as the input event record. If,
for example, a window implemented a simple copy or a filter without any additional clauses,
the input and output event records would have the same opcode.

An incoming event record with an insert opcode can produce an output event record with a
delete opcode. For example, a window with a count-based retention policy (say keep 5
records) will delete those records from the store when the sixth event arrives, thus producing
an output event record with a delete opcode.

Retention
A retention policy specifies the maximum number of rows or the maximum period of time that
data are retained in a window.

In CCL, you can specify a retention policy when defining a Window. You can also create an
Unnamed Window by specifying a retention policy on a Window or Delta Stream when it is
used as a source to another element.

Retention is specified through the KEEP clause. You can limit the number of records in a
window based on either the number, or age, of records in the window. These methods are
referred to as count-based retention and time-based retention, respectively. Or, you can use the
ALL modifier to explicitly specify that the window should retain all records.

Note: If you do not specify a retention policy, the window retains all records. This can be
dangerous: the window can keep growing until all memory is used and the system shuts down.
The only time you should have a window without a KEEP clause is if you know that the
window size will be limited by incoming delete events.

Including the EVERY modifier in the KEEP clause produces a Jumping Window, which deletes
all of the retained rows when the time interval expires or a row arrives that would exceed the
maximum number of rows.

Specifying the KEEP clause with no modifier produces a Sliding Window, which deletes
individual rows once a maximum age is reached or the maximum number of rows are retained.

Note: You can specify retention on input windows (or windows where data is copied directly
from its source) using either log file-based stores or memory-based stores. For other windows,
you can only specify retention on windows with memory-based stores

Count-based Retention
In a count-based policy, a constant integer specifies the maximum number of rows retained in
the window. You can use parameters in the count expression.

A count-based policy also defines an optional SLACK value, which can enhance performance
by requiring less frequent cleaning of memory stores. A SLACK value accomplishes this by
ensuring that there are no more than N + S rows in the window, where N is the retention size
and S is the SLACK value. When the window reaches N + S rows, the system purges S rows.
The larger the SLACK value, the better the performance, since there is less cleaning required.

CHAPTER 2: CCL Project Basics

8 SAP Sybase Event Stream Processor

Note: The SLACK value cannot be used with the EVERY modifier, and thus cannot be used in
a Jumping Windows retention policy.

The default value for SLACK is 1, which means that after the window reaches the maximum
number of records, every new record inserted deletes the oldest record. This causes a
significant impact on performance. Larger slack value s improve performance by reducing the
need to constantly delete rows.

Count-based retention policies can also support retention based on content/column values
using the PER sub-clause. A PER sub-clause can contain an individual column or a comma-
delimited list of columns. A column can only be used once in a PER sub-clause. Specifying the
primary key or autogenerate columns as a column in the PER sub-clause will result in a
compiler warning. This is because these are unique entities for which multiple values cannot
be retained.

The following example creates a Sliding Window that retains the most recent 100 records that
match the filter condition. Once there are 100 records in the window, the arrival of a new
record causes the deletion of the oldest record in the window.

CREATE WINDOW Last100Trades PRIMARY KEY DEDUCED
KEEP 100 ROWS
AS SELECT * FROM Trades
WHERE Trades.Volume > 1000;

Adding the SLACK value of 10 means the window may contain as many as 110 records before
any records are deleted.

CREATE WINDOW Last100Trades PRIMARY KEY DEDUCED
KEEP 100 ROWS SLACK 10
AS SELECT * FROM Trades
WHERE Trades.Volume > 1000;

This example creates a Jumping Window named TotalCost from the source stream Trades.
This window will retain a maximum of ten rows, and delete all ten retained rows on the arrival
of a new row.

CREATE WINDOW TotalCost
PRIMARY KEY DEDUCTED
AS SELECT
 trd.*,
 trd.Price * trd.Size TotalCst
FROM Trades trd
KEEP EVERY 10 ROWS;

The following example creates a sliding window that retains 2 rows for each unique value of
Symbol. Once 2 records have been stored for any unique Symbol value, arrival of a third
record (with the same Symbol value) will result in deletion of the oldest stored record with the
same Symbol value.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,

CHAPTER 2: CCL Project Basics

Programmers Guide 9

 Venue string,
 Symbol string,
 Price float,
 Shares integer)
;

CREATE INPUT WINDOW TradesWin1
 SCHEMA TradesSchema
 PRIMARY KEY(Id)
 KEEP 2 ROWS PER(Symbol)
;

Time-based Retention
In a Sliding Windows time-based policy, a constant interval expression specifies the
maximum age of the rows retained in the window. In a Jumping Window time-based retention
policy, all the rows produced in the specified time interval are deleted after the interval has
expired.

The following example creates a Sliding Window that retains each record received for ten
minutes. As each individual row exceeds the ten minute retention time limit, it is deleted.

CREATE WINDOW RecentPositions PRIMARY KEY DEDUCED
KEEP 10 MINS
AS SELECT * FROM Positions;

This example creates a Jumping Window named Win1 that keeps every row that arrives within
the 100 second interval. When the time interval expires, all of the rows retained are deleted.

CREATE WINDOW Win1
PRIMARY KEY DEDUCED
AS SELECT * FROM Source1
KEEP EVERY 100 SECONDS;

The PER sub-clause supports content-based data retention, wherein data is retained for a
specific time period (specified by an interval) for each unique column value/combination. A
PER sub-clause can contain a single column or a comma-delimited list of columns, but you
can use each column only once in the same PER clause.

Note: Time based windows retain data for a specified time regardless of their grouping.

The following example creates a jumping window that retains 5 seconds worth of data for each
unique value of Symbol.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer)
;

CREATE INPUT WINDOW TradesWin2
 SCHEMA TradesSchema

CHAPTER 2: CCL Project Basics

10 SAP Sybase Event Stream Processor

 PRIMARY KEY(Id)
 KEEP EVERY 5 SECONDS PER(Symbol)
;

Retention Semantics
When the insertion of one or more new rows into a window triggers deletion of preexisting
rows (due to retention), the window propagates the inserted and deleted rows downstream to
relevant streams and subscribers. However, the inserted rows are placed before the deleted
rows, since the inserts trigger the deletes.

Aging Policy
An aging policy can be set to flag records that have not been updated within a defined interval.
This is useful for detecting records that may be stale. Aging policies are an advanced, optional
feature for a window or other stateful element.

Named Windows
A named window is explicitly created using a CREATE WINDOW statement, and can be
referenced in other queries.

Named windows can be classed as input or derived. Derived windows are either output or
local. An input window can send and receive data through adapters. An output window can
send data to an adapter. Both input and output windows are visible externally and can be
subscribed to or queried. A local window is private and invisible externally. When a qualifier
for the window is missing, it is presumed to be of type local.

Table 2. Named Window Capabilities

Type Receives Data From Sends Data To Visible Externally

input Input adapter or external
application that sends da-
ta into ESP using the ESP
SDK

Other windows, delta
streams, and/or out-
put adapters

Yes

output Other windows, streams,
or delta streams

Other windows, delta
streams, and/or out-
put adapters

Yes

local Other windows, streams,
or delta streams

Other windows or
delta streams

No

Unnamed Windows
An unnamed window is an implicitly created stateful element that cannot be referenced or
used elsewhere in a project.

Unnamed windows are implicitly created in two situations: when using a join with a window
that produces a stream, and when the KEEP clause is used with the FROM clause of a

CHAPTER 2: CCL Project Basics

Programmers Guide 11

statement. In both situations, when an unnamed window is created it always includes a
primary key.

Note: The unnamed window uses additional memory; there is no memory reporting on
unnamed windows.

This example creates an unnamed window when using a join with a window:

CREATE INPUT WINDOW Win1 SCHEMA (Key1 INTEGER, Col1 STRING, Col2
STRING) PRIMARY KEY (Key1);
CREATE INPUT WINDOW Win2 SCHEMA (Key1 STRING, Col3 STRING) PRIMARY
KEY (Key1);

CREATE OUTPUT WINDOW Out1 PRIMARY KEY DEDUCED AS SELECT Win1.Key1,
Win1.Col1, Win1.Col2, Win.2.Col3
FROM Win1 INNER JOIN Win2 ON Win1.Col1 = Win2.Key1;

Note: The unnamed window is created to ensure that a join does not see records that have not
yet arrived at the join. This can happen because the source to the join and the join itself are
running in separate threads.

The following three examples demonstrate when an unnamed window is created using the
KEEP clause:

This example creates an unnamed window on the input Trades for the MaxTradePrice
window to keep track of a maximum trade price for all symbols seen within the last 10000
trades:

CREATE WINDOW MaxTradePrice
PRIMARY KEY DEDUCED
STORE S1
AS SELECT trd.Symbol, max(trd.Price) MaxPrice
FROM Trades trd KEEP 10000 ROWS
GROUP BY trd.Symbol;

This example creates an unnamed window on Trades, and MaxTradePrice keeps track
of the maximum trade price for all the symbols during the last 10 minutes of trades:

CREATE WINDOW MaxTradePrice
PRIMARY KEY DEDUCED
STORE S1
AS SELECT trd.Symbol, max(trd.Price) MaxPrice
FROM Trades trd KEEP 10 MINUTES
GROUP BY trd.Symbol;

This example creates a TotalCost unnamed window from the source stream Trades. The
jumping window will retain ten rows, and clear all rows on the arrival of the 11th row.

CREATE DELTA STREAM TotalCost
PRIMARY KEY DEDUCTED
AS SELECT
trd.*,
trd.Price * trd.Size TotalCst
FROM Trades trd KEEP EVERY 10 ROWS;

CHAPTER 2: CCL Project Basics

12 SAP Sybase Event Stream Processor

In all three examples, Trades can be a delta stream or a window.

Delta Streams
Delta streams are stateless elements that can understand all opcodes. Unlike streams, they are
not limited to inserts and updates.

Delta streams can be classed as derived streams. Derived streams are either output or local. A
delta stream is derived from an existing stream or window and is not an input stream. You can
use a delta stream anywhere you use a computation, filter, or union, but do not need to maintain
a state. A delta stream performs these operations more efficiently than a window because it
keeps no state, thereby reducing memory use and increasing speed.

You must provide a primary key for delta streams. Delta streams are allowed key
transformations only when performing aggregation, join, or flex operations. Because a delta
stream does not maintain state, you cannot define a delta stream on a window where the keys
differ.

While a delta stream does not maintain state, it can interpret all of the opcodes in incoming
event records. The opcodes of output event records depend on the logic implemented by the
delta stream.

Example
This example creates a delta stream named DeltaTrades that incorporates the getrowid
and now functions.
CREATE LOCAL DELTA STREAM DeltaTrades
 SCHEMA (
 RowId long,
 Symbol STRING,
 Ts bigdatetime,
 Price MONEY(2),
 Volume INTEGER,
 ProcessDate bigdatetime)
 PRIMARY KEY (Ts)
AS SELECT getrowid (TradesWindow) RowId,
 TradesWindow.Symbol,
 TradesWindow.Ts Ts,
 TradesWindow.Price,
 TradesWindow.Volume,
 now() ProcessDate
 FROM TradesWindow

CREATE OUTPUT WINDOW TradesOut
 PRIMARY KEY DEDUCED
AS SELECT * FROM DeltaTrades ;

CHAPTER 2: CCL Project Basics

Programmers Guide 13

Comparing Streams, Windows, and Delta Streams
Streams, windows, and delta streams offer different characteristics and features, but also share
common designation, visibility, and column parameters.

The terms stateless and stateful commonly describe the most significant difference between
windows and streams. A stateful element has the capacity to store information, while a
stateless element does not.

Streams, windows, and delta streams share several important characteristics, including
implicit columns and visibility rules.

Feature Capabili-
ty

Streams Windows Delta Streams

Type of element Stateless Stateful, due to reten-
tion and store capabil-
ities

Stateless

Data retention None Yes, rows (based on
retention policy)

None

Available store types Not applicable Memory store or log
store

Not applicable

Element types that can
be derived from this el-
ement

Stream or a Window
with an aggregation
clause (GROUP BY)

Stream, Window, Del-
ta Stream

Stream, Window, Delta
Stream

Primary key Required No Yes, explicit or de-
duced

Yes, explicit or de-
duced

Support for aggrega-
tion operations

No Yes No

Behavior on receiving
insert/update/delete

Produces insert. Con-
verts update to insert.
Ignores delete.

Produces insert, up-
date, or delete accord-
ing to the exceptions
listed below. Gener-
ates an error on dupli-
cate inserts, bad up-
dates, and bad deletes.
Windows with a reten-
tion policy treat up-
date as upsert.

Produces insert, up-
date, or delete accord-
ing to the exceptions
listed below. Does not
detect duplicate in-
serts, bad updates, or
bad deletes. Delta
streams produced by a
Flex Operator do not
receive updates.

CHAPTER 2: CCL Project Basics

14 SAP Sybase Event Stream Processor

Feature Capabili-
ty

Streams Windows Delta Streams

Behavior on receiving
upsert/safedelete

Converts upsert to in-
sert. Ignores safedelete.

Produces insert, up-
date, or delete accord-
ing to the exceptions
listed below.

Delta streams do not
receive upserts or safe-
deletes.

Exceptions
A window can produce output event records with different opcodes depending on what
changes are made to the contents of its store by the incoming event and its opcode. For
example:

• In a window performing aggregation logic, an incoming event record with an insert opcode
can update the contents of the store and output an event record with an update opcode. This
can also happen in a window implementing a left join.

• In a window with a count-based retention policy, an incoming event record with an insert
opcode can cause the store to exceed this count. The window deletes the excess rows,
producing an event record with a delete opcode.

For a filter, a delta stream modifies the opcode it receives.

• An input record with an insert opcode that satisfies the filter clause has an insert opcode on
the output. If it does not meet the criteria, no opcode is output.

• An input record with an update opcode, where the update meets the criteria but the original
record does not, outputs with an insert opcode. However, if the old record meets the
criteria, it outputs with an update opcode. If the original insert meets the filter criteria but
the update does not, it outputs a delete opcode.

• An input record with a delete opcode outputs with a delete opcode, as long as it meets the
filter criteria.

Bindings on Streams, Delta Streams, and Windows
Bindings enable data to flow between projects. When you create a binding, a stream, delta
stream, or window in one project subscribes or publishes to a stream, delta stream, or window
in another project.

A binding is a named connection from an input or output stream (or delta stream or window) of
one project to an input stream (or delta stream or window) of another; you can configure it at
either end.

• An input stream can subscribe to one or more streams in other projects. The stream
subscribed to need not be an output stream—you can create an output binding on an input
stream. For more information, see Example: Configuring an Output Binding on an Input
Stream or Window on page 17.

CHAPTER 2: CCL Project Basics

Programmers Guide 15

• An output stream can publish to one or more input streams in other projects. An output
stream cannot receive incoming data, whether by subscription or publication.

Bindings reside in the CCR project configuration file so you can change them at runtime. The
streams being bound must have compatible schemas.

Example: Binding to a Stream on an SSL-Enabled Cluster

This example shows a binding called BaseInputBinding that connects a local input stream
called sin to a remote output stream that is also called sin. When the SSL protocol is enabled on
the manager node of the data source stream’s cluster, the <Manager> element that specifies
the cluster hostname and port in the CCR file must include the https:// prefix, as shown here. If
you omit the https:// prefix, the binding cannot pass data, so the input stream will not receive
anything.
<Configuration>
 <Runtime>
 <Clusters>
 <Cluster name="cluster1" type="remote">
 <Username>USER_NAME</Username>
 <Password>PASSWORD</Password>
 <Managers>
 <Manager>https://CLUSTER_MANAGER_HOSTNAME:
 CLUSTER_MANAGER_RPC_PORT</Manager>
 <!-- use https:// when SSL is enabled -->
 </Managers>
 </Cluster>
 </Clusters>

 <Bindings>
 <Binding name="sin">
 <Cluster>cluster1</Cluster>
 <Workspace>ws2</Workspace>
 <Project>prj2</Project>
 <BindingName>BaseInputBinding</BindingName>
 <RemoteStream>sin</RemoteStream>
 </Binding>
 </Bindings>
 </Runtime>
</Configuration>

Example: Reconnection Intervals for Bindings

This example shows two bindings, b1 and b2, on a local input stream called MyInStream. The
b1 binding includes a reconnection interval option specifying that if the connection between
MyInStream and the remote output stream is lost, the project will attempt to reconnect every
10 seconds. Because the b2 binding does not specify a reconnection interval, its reconnection
attempts will occur at the default interval of five seconds. To suppress all reconnection
attempts, set <ReconnectInterval> to 0. Use positive whole number values to set the
reconnection interval in seconds.
<Bindings>
 <Binding name="MyInStream">
 <Cluster>c1</Cluster>

CHAPTER 2: CCL Project Basics

16 SAP Sybase Event Stream Processor

 <Workspace>w1</Workspace>
 <Project>p1</Project>
 <BindingName>b1</BindingName>
 <RemoteStream>MyInStream1</RemoteStream>
 <ReconnectInterval>10</ReconnectInterval>
 </Binding>
 <Binding name="MyInStream">
 <Cluster>c1</Cluster>
 <Workspace>w1</Workspace>
 <Project>p1</Project>
 <BindingName>b2</BindingName>
 <RemoteStream>MyInStream2</RemoteStream>
 </Binding>
</Bindings>

Example: Configuring an Input Stream or Window to Provide Output

This example shows how to configure an input stream to send data to another input stream by
setting the <Output> parameter in the <Binding> element to true.

Note: Set the <Output> parameter to true only when you configure a binding on an input
stream or window that is providing output. If you configure the binding on the stream or
window that is receiving input, do not set the <Output> parameter. (It is never necessary to set
the <Output> parameter when you configure a binding on an output stream; output streams
can only produce output.)

In this example, output from the input stream MyInStream, in the local project, is bound to the
input stream MyInStream1 in project p2. The line <Output>true</Output> tells the
binding to publish (send data out) to the remote stream. Without that line, this binding would
subscribe to data from MyInStream1 because bindings on input streams receive data by
default.
<Binding name="MyInStream">
 <Cluster>c1</Cluster>
 <Workspace>w1</Workspace>
 <Project>p2</Project>
 <BindingName>b1</BindingName>
 <RemoteStream>MyInStream1</RemoteStream>
 <Output>true</Output>
</Binding>

Example: Configuring a Window for Guaranteed Delivery

This example shows how to enable and configure guaranteed delivery (GD) on a window’s
output binding. The GD parameters are the same for input bindings.

Enable GD for a binding to guarantee that if the connection between the binding and the
remote stream is severed (by shutting down the project that contains the local stream, for
example), all transactions that are supposed to be transmitted through the binding during its
downtime are processed once the connection is re-established.

Use these parameters in the <Binding> element of your CCR file to set a binding to support
guaranteed delivery:

CHAPTER 2: CCL Project Basics

Programmers Guide 17

• <EnableGD> – Specifies whether guaranteed delivery is enabled for this binding. Values
are true and false.

Note: When you enable GD on a binding, make sure:
• The binding’s source data window is running in GD mode or GD mode with

checkpoint.
• The binding’s target data window is backed by a log store.

• <GDName> – Supply a unique name for the GD session (subscription) this binding
establishes.

• <GDBatchSize> – The number of transactions this binding may collect in a batch before
releasing the batch to the target window. The binding issues a GD commit to the source
data window after releasing the data. This setting is ignored when the source data window
is in GD mode with checkpoint and the <EnableGDCache> parameter on this binding is
set to true. Default is 10.

• <EnableGDCache> – Enable this binding to cache data. When the source data window is
in GD mode with checkpoint, the binding receives checkpoint messages indicating the last
row of data that has been checkpointed by the window. If the binding is enabled for GD
caching, it caches incoming transactions until it receives a checkpoint message from the
source window. The checkpoint message triggers the binding to send to the target window
all cached transactions up to the one indicated in the checkpoint message. The binding
issues a GD commit to the source data window after releasing cached data. If GD caching is
disabled, checkpoint messages are ignored and the binding forwards data based on the
value of <GDBatchSize>. The setting of <EnableGDCache> is ignored if the source data
window is not in GD mode with checkpoint. Values are true and false; default is true.

In this example, output from the local output stream MyOutStream is bound to MyInStream1
in project p1. GD and GD caching are enabled. The GD session name is b1_GD1 and the GD
batch size is 20 transactions.
<Binding name="MyOutStream">
 <Cluster>c1</Cluster>
 <Workspace>w1</Workspace>
 <Project>p1</Project>
 <BindingName>b1</BindingName>
 <RemoteStream>MyInStream1</RemoteStream>
 <ReconnectInterval>5</ReconnectInterval>
 <EnableGD>true</EnableGD>
 <GDName>b1_GD1</GDName >
 <GDBatchSize>20</GDBatchSize >
 <EnableGDCache>true</EnableGDCache >
</Binding>

CHAPTER 2: CCL Project Basics

18 SAP Sybase Event Stream Processor

Input/Output/Local
You can designate streams, windows, and delta streams as input or derived. Derived streams,
including delta streams, are either output or local.

Input/Output Streams and Windows
Input streams and windows can accept data from a source external to the project using an input
adapter or by connecting to an external publisher. You can attach an output adapter or connect
external subscribers directly to an input window or input stream. You can also use the SQL
interface to SELECT rows from an input window, INSERT rows in an input stream or INSERT/
UPDATE/DELETE rows in an input window.

Output windows, streams and delta streams can publish data to an output adapter or an
external subscriber. You can use the SQL interface to query (that is SELECT) rows from an
output window.

Local streams, windows, and delta streams are invisible outside the project and cannot have
input or output adapters attached to them. You cannot subscribe to or use the SQL interface to
query the contents of local streams, windows, or delta streams.

Examples
This is an input stream with a filter:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE INPUT STREAM IStr2 SCHEMA mySchema
 WHERE IStr2.Col2='abcd';

This is an output stream:
CREATE OUTPUT STREAM OStr1
 AS SELECT A.Col1 col1, A.Col2 col2
 FROM IStr1 A;

This is an input window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE INPUT WINDOW IWin1 SCHEMA mySchema
 PRIMARY KEY(Col1)
 STORE myStore;

This is an output window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE OUTPUT WINDOW OWin1
 PRIMARY KEY (Col1)
 STORE myStore
 AS SELECT A.Col1 col1, A.Col2 col2
 FROM IWin1 A;

CHAPTER 2: CCL Project Basics

Programmers Guide 19

Local Streams and Windows
Use a local stream, window, or delta stream when the stream does not need an adapter, or to
allow outside connections. Local streams, windows, and delta streams are visible only inside
the containing CCL project, which allows for more optimizations by the CCL compiler.
Streams and windows that do not have a qualifier are local.

Note: A local window cannot be debugged because it is not visible to the ESP Studio run/test
tools such as viewer or debugger.

Examples
This is a local stream:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE LOCAL STREAM LStr1
 AS SELECT i.Col1 col1, i.Col2 col2
 FROM IStr1 i;

This is a local window:
CREATE SCHEMA mySchema (Col1 INTEGER, Col2 STRING);
CREATE MEMORY STORE myStore;
CREATE LOCAL WINDOW LWin1
 PRIMARY KEY (Col1)
 STORE myStore
 AS SELECT i.Col1 col1, i.Col2 col2
 FROM IStr1 i;

Implicit Columns
All streams, windows, and delta streams use three implicit columns called ROWID,
ROWTIME, and BIGROWTIME.

Column Datatype Description

ROWID long Provides a unique row identification number for
each row of incoming data.

ROWTIME date Provides the last modification time as a date with
second precision.

BIGROWTIME bigdatetime Provides the last modification time of the row with
microsecond precision. You can perform filters
and selections based on these columns, like filter-
ing out all of those data rows that occur outside of
business hours.

You can refer to these implicit columns just like any explicit column (for example, using the
stream.column convention).

CHAPTER 2: CCL Project Basics

20 SAP Sybase Event Stream Processor

Schemas
A schema defines the structure of data rows in a stream or window.

Every row in a stream or window must have the same structure, or schema, which includes the
column names, the column datatypes, and the order in which the columns appear. Multiple
streams or windows can use the same schema, but each stream or window can only have one
schema.

There are two ways to create a schema: you can create a named schema using the CREATE
SCHEMA statement or you can create an inline schema within a stream or window definition.
Named schemas are useful when the same schema will be used in multiple places, since any
number of streams and windows can reference a single named schema.

Simple Schema CCL Example

This is an example of a CREATE SCHEMA statement used to create a named schema.
TradeSchema represents the name of the schema.

CREATE SCHEMA TradeSchema (
 Ts BIGDATETIME,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

This example uses a CREATE SCHEMA statement to make an inline schema:
CREATE STREAM trades SCHEMA (
 Ts bigdatetime,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

Stores
Set store defaults, or choose a log store or memory store to specify how data from a window is
saved.

If you do not set a default store using the CREATE DEFAULT LOG STORE or CREATE
DEFAULT MEMORY STORE statements, each window is assigned to a default memory store.
You can use default store settings for store types and locations if you do not assign new
windows to specific store types.

Memory Stores
A memory store holds all data in memory. Memory stores retain the state of queries for a
project from the most recent server start-up for as long as the project is running. Because query

CHAPTER 2: CCL Project Basics

Programmers Guide 21

state is retained in memory rather than on disk, access to a memory store is faster than to a log
store.

Use the CREATE MEMORY STORE statement to create memory stores. If no default store is
defined, new windows are automatically assigned to a memory store.

Log Stores
The log store holds all data in memory, but also logs all data to the disk, meaning it guarantees
data state recovery in the event of a failure. Use a log store to be able to recover the state of a
window after a restart.

Use the CREATE LOG STORE statement to create a log store. You can also set a log store as a
default store using the CREATE DEFAULT LOG STORE statement, which overrides the default
memory store.

Log store dependency loops are a concern when using log stores, as they cause compilation
errors. Log store loops can be created when you use multiple log stores in a project, and assign
windows to these stores. The recommended way to use a log store is to either assign log stores
to source windows only or to assign all windows in a stream path to the same store. If you use
logstore1 for n of those windows, then use logstore2 for a different window, you
should never use logstore1 again further down the chain. Put differently, if Window Y
assigned to Logstore B gets its data from Window X assigned to Logstore A, no window that
(directly or indirectly) gets its data from Window Y should be assigned to Logstore A.

CCL Continuous Queries
Build a continuous query using clauses and operators to specify its function. This section
provides reference for queries, query clauses, and operators.

Syntax
select_clause
from_clause
[matching_clause]
[where_clause]
[groupFilter_clause]
[groupBy_clause]
[groupOrder_clause]
[having_clause]

Components

select_clause Defines the set of columns to be included in the
output. See below and SELECT Clause for more
information.

from_clause Selects the source data is derived from. See below
and FROM Clause for more information.

CHAPTER 2: CCL Project Basics

22 SAP Sybase Event Stream Processor

matching_clause Used for pattern matching. See MATCHING
Clause and Pattern Matching for more informa-
tion.

where_clause Performs a filter. See WHERE Clause and Filters
for more information.

groupFilter_clause Filters incoming data in aggregation. See
GROUP FILTER Clause and Aggregation for
more information.

groupBy_clause Specifies what collection of rows to use the ag-
gregation operation on. See GROUP BY Clause
and Aggregation for more information.

groupOrder_clause Orders the data in a group before aggregation. See
GROUP ORDER BY Clause and Aggregation for
more information.

having_clause Filters data that is output by the derived compo-
nents in aggregation. See HAVING Clause and
Aggregation for more information.

Usage
CCL queries are embedded in theCREATE STREAM, CREATE WINDOW, and CREATE DELTA
STREAM statements, and are applied to the inputs specified in the FROM clause of the query
todefine the contents of the new stream or window. The example below demonstrates the use
of both the SELECT clause and the FROM clause as would be seen in any query.

The SELECT clause is used directly after the AS clause. The purpose of the SELECT clause is
to determine which columns from the source or expressions the query is to use.

Following the SELECT clause, the FROM clause names the source used by the query.
Following the FROM clause, implement available clauses to use filters, unions, joins, pattern
matching, and aggregation on the queried data.

Example
This example obtains the total trades, volume, and VWAP per trading symbol in five minute
intervals.
[...]
SELECT
 q.Symbol,
 (trunc(q.TradeTime) + (((q.TradeTime - trunc(q.TradeTime))/
300)*300)) FiveMinuteBucket,
 sum(q.Shares * q.Price)/sum(q.Shares) Vwap,
 count(*) TotalTrades,
 sum(q.Shares) TotalVolume
FROM

CHAPTER 2: CCL Project Basics

Programmers Guide 23

 QTrades q
[...]

Adapters
Adapters connect the Event Stream Processor to the external world.

An input adapter connects an input stream or window to a data source. It reads the data output
by the source and modifies it for use in an ESP project.

An output adapter connects an output stream or window to a data sink. It reads the data output
by the ESP project and modifies it for use by the consuming application.

Adapters are attached to input streams and windows, and output streams and windows, using
the ATTACH ADAPTER statement and they are started using the ADAPTER START statement.
In some cases it may be important for a project to start adapters in a particular order. For
example, it might be important to load reference data before attaching to a live event stream.
Adapters can be assigned to groups and the ADAPTER START statement can control the start
up sequence of the adapter groups.

See the Adapters Guide for detailed information about configuring individual adapters,
datatype mapping, and schema discovery.

Order of Elements
Determine the order of CCL project elements based on clause and statement syntax definitions
and limitations.

Define CCL elements that are referenced by other statements or clauses before using those
statements and clauses. Failure to do so causes compilation errors.

For example, define a schema using a CREATE SCHEMA statement before a CCL CREATE
STREAM statement references that schema by name. Similarly, declare parameters and
variables in a declare block before any CCL statements or clauses reference those parameters
or variables.

You cannot reorder subclause elements within CCL statements or clauses.

CHAPTER 2: CCL Project Basics

24 SAP Sybase Event Stream Processor

CHAPTER 3 Developing a Project in CCL

Use the CCL Editor in SAP Sybase Event Stream Processor Studio, or another supported
editor, to create and modify your CCL code. Start by developing a simple project, and test it
iteratively as you gradually add greater complexity.

For details of these high-level steps, see the rest of this CCL Programmers Guide, as well as the
Studio Users Guide, the Adapters Guide, and the Programmers Reference.

1. Create a .ccl file.

Creating a project in SAP Sybase Event Stream Processor Studio creates the .ccl file
automatically.

2. Add input streams and windows.

3. Add output streams and windows with simple continuous queries.

4. Attach adapters to streams and windows to subscribe to external sources or publish output.

5. Compile the CCL code.

6. Run the compiled project against test data, using the debugging tools in SAP Sybase Event
Stream Processor Studio and command line utilities.

Repeat this step as often as needed.

7. Add queries to the project. Start with simple queries and gradually add complexity.

8. (Optional) Use functions in your continuous queries to perform mathematical operations,
aggregations, datatype conversions, and other common tasks:

• Built-in functions for many common operations
• User-defined functions written in the SPLASH programming language
• User-defined external functions written in C/C++ or Java

9. (Optional) Create named schemas to define a reusable data structure for streams or
windows.

10. (Optional) Create memory stores or log stores to retain the state of data windows in
memory or on disk.

11. (Optional) Create modules to contain reusable CCL that can be loaded multiple times in a
project.

Programmers Guide 25

CHAPTER 3: Developing a Project in CCL

26 SAP Sybase Event Stream Processor

CHAPTER 4 CCL Language Components

To ensure proper language use in your CCL projects, familiarize yourself with rules on case-
sensitivity, supported datatypes, operators, and expressions used in CCL.

Datatypes
SAP Sybase Event Stream Processor supports integer, float, string, money, long, and
timestamp datatypes for all of its components.

Datatype Description

bigdatetime Timestamp with microsecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSSSSS.

All numeric datatypes are implicitly cast to bigdatetime.

The rules for conversion vary for some datatypes:

• All boolean, integer, and long values are converted in

their original format to bigdatetime.

• Only the whole-number portions of money(n) and float
values are converted to bigdatetime. Use the cast function to

convert money(n) and float values to bigdatetime
with precision.

• All date values are multiplied by 1000000 and converted to mi-

croseconds to satisfy bigdatetime format.

• All timestamp values are multiplied by 1000 and converted to

microseconds to satisfy bigdatetime format.

bigint An alias for long.

binary Represents a raw binary buffer. Maximum length of value is platform-
dependent, with a size limit of 2 gigabytes. NULL characters are per-
mitted.

boolean Value is true or false. The format for values outside of the allowed range
for boolean is 0/1/false/true/y/n/on/off/yes/no, which is case-insen-

sitive.

date Date with second precision. The default format is YYYY-MM-
DDTHH:MM:SS.

Programmers Guide 27

Datatype Description

decimal Used to represent numbers that contain decimal points. Accepts two
mandatory parameters, precision and scale, which determine

the range of values that can be stored in a decimal field. preci-
sion specifies the total number (from 1 to 34) of digits that can be

stored. scale specifies the number of digits (from 0 to preci-
sion) that can be stored to the right of the decimal point.

double An alias for float.

float A 64-bit numeric floating point with double precision. The range of
allowed values is approximately -10308 through +10308.

integer A signed 32-bit integer. The range of allowed values is -2147483648 to
+2147483647 (-231 to 231-1). Constant values that fall outside of this
range are automatically processed as long datatypes.

To initialize a variable, parameter, or column with a value of
-2147483648, specify (-2147483647) -1 to avoid CCL compiler errors.

interval A signed 64-bit integer that represents the number of microseconds
between two timestamps. Specify an interval using multiple units

in space-separated format, for example, "5 Days 3 hours 15 Minutes".
External data that is sent to an interval column is assumed to be in
microseconds. Unit specification is not supported for interval
values converted to or from string data.

When an interval is specified, the given interval must fit in a 64-bit

integer (long) when it is converted to the appropriate number of

microseconds. For each interval unit, the maximum allowed val-

ues that fit in a long when converted to microseconds are:

• MICROSECONDS (MICROSECOND, MICROS): +/-
9223372036854775807

• MILLISECONDS (MILLISECOND, MILLIS): +/-
9223372036854775

• SECONDS(SECOND, SEC): +/- 9223372036854

• MINUTES(MINUTE, MIN): +/- 153722867280

• HOURS(HOUR,HR): +/- 2562047788

• DAYS(DAY): +/- 106751991

The values in parentheses are alternate names for an interval unit.

When the maximum value for a unit is specified, no other unit can be
specified or it causes an overflow. Each unit can be specified only once.

CHAPTER 4: CCL Language Components

28 SAP Sybase Event Stream Processor

Datatype Description

long A signed 64-bit integer. The range of allowed values is
-9223372036854775808 to +9223372036854775807 (-263 to 263-1).

To initialize a variable, parameter, or column with a value of
-9223372036854775808, specify (-9223372036854775807) -1 to
avoid CCL compiler errors.

money A legacy datatype maintained for backward compatibility. It is a signed
64-bit integer that supports 4 digits after the decimal point. Currency
symbols and commas are not supported in the input data stream.

CHAPTER 4: CCL Language Components

Programmers Guide 29

Datatype Description

money(n) A signed 64-bit numerical value that supports varying scale, from 1 to
15 digits after the decimal point. Currency symbols and commas are not
supported in the input data stream, however, decimal points are.

The supported range of values change, depending on the specified scale.

money(1): -922337203685477580.8 to 922337203685477580.7

money(2): -92233720368547758.08 to 92233720368547758.07

money(3): -9223372036854775.808 to 9223372036854775.807

money(4): -922337203685477.5808 to 922337203685477.5807

money(5): -92233720368547.75808 to 92233720368547.75807

money(6): -92233720368547.75808 to 92233720368547.75807

money(7): -922337203685.4775808 to 922337203685.4775807

money(8): -92233720368.54775808 to 92233720368.54775807

money(9): -9223372036.854775808 to 9223372036.854775807

money(10): -922337203.6854775808 to 922337203.6854775807

money(11): -92233720.36854775808 to 92233720.36854775807

money(12): -9223372.036854775808 to 9223,372.036854775807

money(13): -922337.2036854775808 to 922337.2036854775807

money(14): -92233.72036854775808 to 92233.72036854775807

money(15): -9223.372036854775808 to 9223.372036854775807

To initialize a variable, parameter, or column with a value of
-92,233.72036854775807, specify (-9...7) -1 to avoid CCL compiler
errors.

Specify explicit scale for money constants with Dn syntax, where n

represents the scale. For example, 100.1234567D7, 100.12345D5.

Implicit conversion between money(n) types is not supported be-

cause there is a risk of losing range or scale. Perform the cast function to
work with money types that have different scale.

string Variable-length character string, with byte values encoded in UTF-8.
Maximum string length is platform-dependent, with a size limit of 2
gigabytes. This size limit is reduced proportionally by the size of other
content in the row, including the header.

CHAPTER 4: CCL Language Components

30 SAP Sybase Event Stream Processor

Datatype Description

time Stores the time of day as a two-byte field having a range of 00:00:00 to
23:59:59. The default format is HH24:MM:SS.

timestamp Timestamp with millisecond precision. The default format is YYYY-
MM-DDTHH:MM:SS:SSS.

Intervals
Interval syntax supports day, hour, minute, second, millisecond, and microsecond values.

Intervals measure the elapsed time between two timestamps, using 64 bits of precision. All
occurrences of intervals refer to this definition:
value | {value [{DAY[S] | {HOUR[S] | HR} | MIN[UTE[S]] | SEC[OND[S]]
| {MILLISECOND[S] | MILLIS} | {MICROSECOND[S] | MICROS}] [...]}

If only value is specified, the timestamp default is MICROSECOND[S]. You can specify
multiple time units by separating each unit with a space, however, you can specify each unit
only once. For example, if you specify HOUR[S], MIN[UTE[S]], and SEC[OND[S]]
values, you cannot specify these values again in the interval syntax.

Each unit has a maximum value when not combined with another unit:

Time Unit Maximum Value Allowed

MICROSECOND[S] | MICROS 9,223,372,036,854,775,807

MILLISECOND[S] | MILLIS 9,233,372,036,854,775

SEC[OND[S]] 9,223,372,036,854,775

MIN[UTE[S]] 153,722,867,280,912

HOUR[S] | HR 2,562,047,788,015

DAY[S] 106,751,991,167

These maximum values decrease when you combine units.

Specifying value with a time unit means it must be a positive value. If value is negative, it
is treated as an expression. That is, -10 MINUTES in the interval syntax is treated as -(10
MINUTES). Similarly, 10 MINUTES-10 SECONDS is treated as (10 MINUTES)-(10
SECONDS).

The time units can be specified only in CCL. When specifying values for the interval column
using the API or adapter, only the numeric value can be specified and is always sent in
microseconds.

CHAPTER 4: CCL Language Components

Programmers Guide 31

Examples
3 DAYS, 1 HOUR, 54 MINUTES
2 SECONDS, 12 MILLISECONDS, 1 MICROSECOND

Operators
CCL supports a variety of numeric, nonnumeric, and logical operator types.

Arithmetic Operators
Arithmetic operators are used to negate, add, subtract, multiply, or divide numeric values.
They can be applied to numeric types, but they also support mixed numeric types. Arithmetic
operators can have one or two arguments. A unary arithmetic operator returns the same
datatype as its argument. A binary arithmetic operator chooses the argument with the highest
numeric precedence, implicitly converts the remaining arguments to that data-type, and
returns that type.

Operator Meaning Example Usage

+ Addition 3+4

- Subtraction 7-3

* Multiplication 3*4

/ Division 8/2

% Modulus (Remainder) 8%3

^ Exponent 4^3

- Change signs -3

++ Increment

Preincrement (++argument) value is incremented before it
is passed as an argument

Postincrement (argument++) value is passed and then in-
cremented

++a (preincrement)

a++ (postincre-
ment)

-- Decrement

Predecrement (--argument) value is decremented before it
is passed as an argument

Postdecrement (argument--) value is passed and then de-
cremented

--a (predecrement)

a-- (postdecrement)

CHAPTER 4: CCL Language Components

32 SAP Sybase Event Stream Processor

Comparison Operators
Comparison operators compare one expression to another. The result of such a comparison
can be TRUE, FALSE, or NULL.

Comparison operators use this syntax:
expression1 comparison_operator expression2

Operator Meaning Example Us-
age

= Equality a0=a1

!= Inequality a0!=a1

<> Inequality a0<>a1

> Greater than a0!>a1

>= Greater than or equal to a0!>=a1

< Less than a0!<a1

<= Less than or equal to a0!<=a1

IN Member of a list of values. If the value is in the expression list's
values, then the result is TRUE.

a0 IN (a1, a2, a3)

Logical Operators

Operator Meaning Example Usage

AND Returns TRUE if all expressions are TRUE, and FALSE oth-
erwise.

(a < 10) AND (b >
12)

NOT Returns TRUE if all expressions are FALSE, and TRUE oth-
erwise.

NOT (a = 5)

OR Returns TRUE if any of the expressions are TRUE, and
FALSE otherwise.

(b = 8) OR (b = 6)

XOR Returns TRUE if one expression is TRUE and the other is
FALSE. Returns FALSE if both expressions are TRUE or both
are FALSE.

(b = 8) XOR (a > 14)

CHAPTER 4: CCL Language Components

Programmers Guide 33

String Operators

Operator Meaning Example Usage

+ Concatenates strings and returns another string.

Note: The + operator does not support mixed datatypes (such
as an integer and a string).

'go' + 'cart'

LIKE Operator
May be used in column expressions and WHERE clause expressions. Use the LIKE operator to
match string expressions to strings that closely resemble each other but do not exactly match.

Operator Syntax and Meaning Example Usage

LIKE Matches WHERE clause string expressions to strings that
closely resemble each other but do not exactly match.

compare_expression LIKE pat-
tern_match_expression
The LIKE operator returns a value of TRUE if compare_ex-

pression matches pattern_match_expression, or FALSE if
it does not. The expressions can contain wildcards, where the
percent sign (%) matches any length string, and the under-
score (_) matches any single character.

Trades.StockName
LIKE "%Corp%"

[] Operator
The [] operator is only supported in the context of dictionaries and vectors.

Operator Syntax and Meaning Example Usage

[] Allows you to perform functions on rows other than the cur-
rent row in a stream or window.

stream-or-window-name[index].column
stream-or-window-name is the name of a stream or window
and column indicates a column in the stream or window.
index is an expression that can include literals, parameters, or
operators, and evaluates to an integer. This integer indicates
the stream or window row, in relation to the current row or to
the window's sort order.

MyNamedWind-
ow[1].MyColumn

Order of Evaluation for Operators
When evaluating an expression with multiple operators, the engine evaluates operators with
higher precedence before those with lower precedence. Those with equal precedence are
evaluated from left to right within an expression. You can use parentheses to override operator

CHAPTER 4: CCL Language Components

34 SAP Sybase Event Stream Processor

precedence, since the engine evaluates expressions inside parentheses before evaluating those
outside.

Note: The ^ operator is right-associative. Thus, a ^ b ^ c = a ^ (b ^ c), not (a ^ b) ^ c.

The operators in order of preference are as follows. Operators on the same line have the same
precedence:

• +.- (as unary operators)
• ^
• *, /, %
• +, - (as binary operators and for concatenation)
• =, !=, <>, <, >, <=, >= (comparison operators)
• LIKE, IN, IS NULL, IS NOT NULL
• NOT
• AND
• OR, XOR

Expressions
An expression is a combination of one or more values, operators, and built in functions that
evaluate to a value.

An expression often assumes the datatype of its components. You can use expressions in many
places including:

• Column expressions in a SELECT clause
• A condition of the WHERE clause or HAVING clause

Expressions can be simple or compound. A built-in function such as length() or pi() can also be
considered an expression.

Simple Expressions
A simple CCL expression specifies a constant, NULL, or a column. A constant can be a
number or a text string. The literal NULL denotes a null value. NULL is never part of another
expression, but NULL by itself is an expression.

To specify a column, include both the column name and the stream or window name, using the
format source.column-name.

Some valid simple expressions include:

• stocks.volume
• 'this is a string'
• 26

CHAPTER 4: CCL Language Components

Programmers Guide 35

Compound Expressions
A compound CCL expression is a combination of simple or compound expressions.
Compound expressions can include operators and functions, as well as the simple CCL
expressions (constants, columns, or NULL).

You can use parentheses to change the order of precedence of the expression's components.

Some valid compound expressions include:

• sqrt (9) + 1
• ('example' + 'test' + 'string')
• (length ('example') *10) + pi()

Sequences of Expressions
An expression can contain a sequence of expressions; separated by semicolons and grouped
using parentheses, to be evaluated in order. The type and value of the expression is the type and
value of the last expression in the sequence. For example,

• (var1 := v.Price; var2 := v.Quantity; 0.0)
sets the values of the variables var1 and var2, and then returns the value 0.0.

Conditional Expressions

A conditional CCL expression evaluates a set of conditions to determine its result. The
outcome of a conditional expression is evaluated based on the conditions set. In CCL, the
keyword CASE appears at the beginning of these expressions and follows a WHEN-THEN-
ELSE construct.

The basic structure looks like this:

CASE
WHEN expression THEN expression
[...]
ELSE expression
END

The first WHEN expression is evaluated to be either zero or non-zero. Zero means the
condition is false, and non-zero indicates that it is true. If the WHEN expression is true, the
following THEN expression is carried out. Conditional expressions are evaluated based on the
order specified. If the first expression is false, then the subsequent WHEN expression is tested.
If none of the WHEN expressions are true, the ELSE expression is carried out.

A valid conditional expression in CCL is:

CASE
WHEN mark>100 THEN grade:=invalid
WHEN mark>49 THEN grade:=pass
ELSE grade:=fail
END

CHAPTER 4: CCL Language Components

36 SAP Sybase Event Stream Processor

CCL Comments
Like other programming languages, CCL lets you add comments to document your code.

CCL recognizes two types of comments: doc-comments and regular multi-line comments.

The visual editor in the SAP Sybase Event Stream Processor Studio recognizes a doc-
comment and puts it in the comment field of the top-level CCL statement (such as CREATE
SCHEMA or CREATE INPUT WINDOW) immediately following it. Doc-comments not
immediately preceding a top-level statement are seen as errors by the visual editor with SAP
Sybase Event Stream Processor Studio.

Regular multi-line comments do not get treated specially by the Studio and may be used
anywhere in the CCL project.

Begin a multi-line comment with /* and complete it with */. For example:

/*
This is a multi-line comment.
All text within the begin and end tags is treated as a comment.
*/

Begin a doc-comment with /** and end it with */. For example:

/**
This is a doc-comment. Note that it begins with two * characters
instead of one. All text within the begin and end tags is recognized
by the Studio visual editor and associated with the immediately
following statement (in this case the CREATE SCHEMA statement).
*/
CREATE SCHEMA S1 ...

The CREATE SCHEMA statement provided here is incomplete; it is shown only to illustrate
that the doc comment is associated with the immediately following CCL statement.

It is common to delineate a section of code using a row of asterisks. For example:
/***
Do not modify anything beyond this point without authorization
**/

CCL treats this rendering as a doc-comment because it begins with /**. To achieve the same
effect using a multi line comment, insert a space between the first two asterisks: /* *.

CHAPTER 4: CCL Language Components

Programmers Guide 37

Case-Sensitivity
Some CCL syntax elements have case-sensitive names while others do not.

All identifiers are case-sensitive. This includes the names of streams, windows, parameters,
variables, schemas, and columns. Keywords are case-insensitive, and cannot be used as
identifier names. Adapter properties also include case-sensitivity restrictions.

Most built-in function names (except those that are keywords) and user-defined functions are
case-sensitive. While the following built-in function names are case-sensitive, you can
express them in two ways:

• setOpcode, setopcode
• getOpcode, getopcode
• setRange, setrange
• setSearch, setsearch
• copyRecord, copyrecord
• deleteIterator, deleteiterator
• getIterator, getiterator
• resetIterator, resetiterator
• businessDay, businessday
• weekendDay, weekendday
• expireCache, expirecache
• insertCache, insertcache
• keyCache, keycache
• getNext, getnext
• getParam, getparam
• dateInt, dateint
• intDate, intdate
• uniqueId, uniqueid
• LeftJoin, leftjoin
• valueInserted, valueinserted

Example
Two variables, one defined as 'aVariable' and one as 'AVariable' can coexist in the same context
as they are treated as different variables. Similarly, you can define different streams or
windows using the same name, but with different cases.

CHAPTER 4: CCL Language Components

38 SAP Sybase Event Stream Processor

Literals
The terms literal and constant value are synonymous and refer to a fixed data value. For
example, STOCK, SUDDEN ALERT, and 512 are all string literals; 1024 is a numeric literal.

In Event Stream Processor, string literals are delimited by single (' ') quotation marks to
distinguish them from object names, which are delimited by double (" ") quotation marks.

Neither BLOB nor XML data types have literals.

Time Literals
Use time literals to specify timestamps and intervals.

Timestamp Literals
The syntax of a timestamp literal is: TIMESTAMP 'YYYY-MM-DD
[HH:MI[:SS[.FF]]]'
Where:

• YYYY-MM-DD are numeric designations of the year, month, and day.
• HH:MI are numeric designations for hour and minute.
• :SS is a designation for seconds, used only if the hour and minute are specified.
• .FF is a designation for fractions of a second, using zero to six digits and only if seconds are

specified.

Use one or more blank spaces to separate the date from the time specification.

Some valid timestamps are:

TIMESTAMP '2002-03-12 06:05:32.474003'
TIMESTAMP '2005-02-01'
TIMESTAMP '2003-11-30 15:04'

In some contexts, such as when putting row timestamps into CSV files, timestamps can be
entered as a number of microseconds elapsed since midnight January 1, 1970. In this case, the
numbers are treated as though they are relative to UTC, rather than local time. For example, if
you use 1 as the timestamp, and your local time zone is Pacific Standard Time (eight hours
behind UTC), the result is the following timestamp:

1969-12-31 16:00:00.000001

Interval Literals
Use either of two formats for an interval literal. The first form is similar to that of timestamp
literals:

INTERVAL '{[D [day[s]]][][HH:MI[:SS[.FF]]]}'

CHAPTER 4: CCL Language Components

Programmers Guide 39

Where:

• D is the number of days. The space between the day specification and the hour and minute
specification is optional.

• HH:MI are numeric designations for hour and minute.
• :SS is a designation for seconds, used only if the hour and minute are specified.
• .FF is a designation for fractions of a second, using zero to six digits and only if seconds are

specified.

The following sample illustrates this syntax:

INTERVAL '999 days 23:59:59.999999'

The alternative syntax for interval literals is:

{[D day[s]][][HH hour[s]][][MI minute[s]][][SS[.FF] second[s]]
[][NNN millisecond[s][][NNN microsecond[s>

All components of the interval are optional. Here is an example:

4 minutes 5.6 seconds

Both forms of interval literals require that the values in each component be in the proper range.
For example, you will get an error if you enter 61 minutes; you must enter this value as 1 hour 1
minute.

Boolean Literals
Boolean literals are True and False statements which are not sensitive to case. For example,
True, false, TRUE, FALSE, tRuE, fAlSe, true, False, truE, and falsE are all valid.

Values other than true or false - such as Y/N or 1/0 - are invalid.

String Literals
String literals appear as a part of expressions.

String literals are also sometimes called character literals or text literals. When a string literal
appears as part of an expression in this documentation, it is indicated by the word TEXT. The
syntax for for both single-line and multi-line string literals is:

'character_string'

In all cases, character_string is a combination of alphabetic characters, numeric
characters, punctuation marks, spaces, and tabs. In addition:

• Both single-line and multi-line string literals must be enclosed in single (' ') quotation
marks.

• Double (" ") quotation marks can be used as part of a string.

CHAPTER 4: CCL Language Components

40 SAP Sybase Event Stream Processor

• Two adjacent single quotation marks with no character string between represent an empty
string.

Note: Double quotation marks used to delimit a string are used for object names and not string
literals. Object names cannot be multiple lines long or contain newline (NL) characters or
double quotation marks within the string.

To include a single quotation mark (or an apostrophe) in a string delimited by single quotation
marks, enter a backslash before the quotation mark (\') for the inside quotation marks. For
example:

'And that\'s the truth.'

To include a single quotation mark (or an apostrophe) in a string literal (delimited by single
quotation marks), enter a backslash before the quotation mark or apostrophe you want to
include in the string: (\'). For example:

'He said "No!"'

Some examples of valid string literals are:

'abc123'
'abc 123'
'It\'s a good idea.'
'"What?" he asked.'

Internationalization impacts string literals. All the literals in the preceding list are 7-bit ASCII
literals. But this is also a literal:

'���123'

Numeric Literals
Numeric literals are used to specify integers, long, and floating-point numbers.

Integer Literals
Use the integer notation to specify integers in expressions, conditions, functions, and CCL
statements.

The syntax of an integer literal is:

[+|-]integer

where integer refers to any whole numbers (including negatives) or zero.

Some valid integers are:

3
-45
+10023

CHAPTER 4: CCL Language Components

Programmers Guide 41

Long Literals
Long literals follow the same rules as integer literals. To force a literal that can be either integer
or long into a long data type, add the letter "L" to the end of the literal.

For example, the following are valid long literals:

2147483648L
-2147483649L
-9223372036854775808L
0L

Float Literals
A float literal is a floating-point number, usually used to represent numbers that include a
decimal point. Use the float literal syntax whenever an expression requires a floating point
number.

The syntax of a float literal is:

[+|-]floating_point_number
[E[+|-]exponent]

where floating_point_number is a number that includes a decimal point. The optional
letter e or E indicates that the number is specified in scientific notation. The digits after the E
specify the exponent. The exponent can range from approximately -308 to +308.

Some valid float literals are:

1.234
-45.02
+10023.
3.
.024
-7.2e+22

Note that float values are accurate to 16 significant digits.

CHAPTER 4: CCL Language Components

42 SAP Sybase Event Stream Processor

CHAPTER 5 CCL Query Construction

Use a CCL query to produce a new derived stream or window from one or more other streams/
windows. You can construct a query to filter data, combine two or more queries, join multiple
datasources, use pattern matching rules, and aggregate data.

You can use queries only with derived elements, and can attach only one query to a derived
element. A CCL query consists of a combination of several clauses that indicate the
appropriate information for the derived element. A query is used with the AS clause to specify
data for the derived element.

Filtering
Use the WHERE clause in your CCL query to filter data to be processed by the derived
elements (streams, windows, or delta streams).

Using the WHERE clause and a filter expression, you can filter which incoming data is
accepted by your derived elements. The WHERE clause restricts the data captured by the
SELECT clause, reducing the number of results generated. Only data matching the value
specified in the WHERE clause is sent to your derived elements.

The output of your derived element consists of a subset of records from the input. Each input
record is evaluated against the filter expression. If a filter expression evaluates to false (0), the
record does not become part of the derived element.

This example creates a new window, IBMTrades, where its rows are any of the result rows
from Trades that have the symbol "IBM":

CREATE WINDOW IBMTrades
 PRIMARY KEY DEDUCED
 AS SELECT * FROM Trades WHERE Symbol = 'IBM';

Splitting Up Incoming Data
Use the SPLITTER construct to separate incoming data according to filtering rules and write it
out to different target streams.

When you want to separate incoming data into several subsets and process those subsets
differently, use the CREATE SPLITTER construct, which operates like the ANSI case
statement. It reads the incoming data, applies the specified filtering conditions and writes out
each subset of the data to one or more target streams.

Programmers Guide 43

The target stream or delta streams are implicitly defined by the compiler. The schema for the
target streams are derived based on the column_list specification. All the targets are defined as
either local or output depending on the visibility clause defined for the splitter. The default is
local. Note that when the splitter has an output visibility, output adapters can be directly
attached to the splitter targets, even though those targets are implicitly defined.

The first condition that evaluates to true (non-zero value) causes the record as projected in the
column_list to be inserted into the corresponding target streams. Subsequent conditions are
neither considered nor evaluated. If the source is a:

• Stream, the targets are also streams.
• Delta stream or window, the targets are delta streams.

If the source is a window or delta stream, the primary keys need to be copied as-is. The other
columns can be changed.

Note: When the source is a window or a delta stream, the warning about unpredictable results
being produced if one of the projections contains a non-deterministic expressions that applies
for delta streams also applies for splitters.

Example
The example creates a schema named TradeSchema and applies that schema to the input
window Trades. IBM_MSFT_Splitter evaluates and routes data to one of three output
windows. Event records with the symbol IBM or MSFT are sent to the
IBM_MSFT_Tradeswin window. Event records where the product of trw.Price *
trw.Volume is greater than 25,000 are sent to the Large_TradesWin window. All event
records that do not meet the conditions placed on the two previous output windows are sent to
the Other_Trades window.
CREATE SCHEMA TradeSchema (
Id long,
Symbol STRING,
Price MONEY(4),
Volume INTEGER,
TradeTime DATE
) ;
CREATE INPUT WINDOW Trades
SCHEMA TradeSchema
PRIMARY KEY (Id) ;
CREATE SPLITTER IBM_MSFT_Splitter
AS
WHEN trw.Symbol IN ('IBM', 'MSFT') THEN IBM_MSFT_Trades
WHEN trw.Price * trw.Volume > 25000 THEN Large_Trades
ELSE Other_Trades
SELECT trw. * FROM Trades trw ;
CREATE OUTPUT WINDOW IBM_MSFT_TradesWin
PRIMARY KEY DEDUCED
AS SELECT * FROM IBM_MSFT_Trades ;
CREATE OUTPUT WINDOW Large_TradesWin
PRIMARY KEY DEDUCED
AS SELECT * FROM Large_Trades ;
CREATE OUTPUT WINDOW Other_TradesWin

CHAPTER 5: CCL Query Construction

44 SAP Sybase Event Stream Processor

PRIMARY KEY DEDUCED
AS SELECT * FROM Other_Trades ;

Unions
Use a UNION operator in your CCL query to combine the results of two or more queries into a
single result.

If the UNION is on a Window or Delta Stream, duplicate rows are eliminated from the result
set due to the primary key. If the UNION is on a Stream, duplicates flow through.

The input for a UNION operator comes from one or more streams or windows. Its output is a set
of records representing the union of the inputs. This example shows a simple union between
two windows, InStocks and InOptions:

CREATE INPUT WINDOW InStocks
 SCHEMA StocksSchema
 Primary Key (Ts)
;

CREATE INPUT WINDOW InOptions
 SCHEMA OptionsSchema
 Primary Key (Ts)
;
CREATE output Window Union1
 SCHEMA OptionsSchema
 PRIMARY KEY DEDUCED
 AS SELECT s.Ts as Ts, s.Symbol as StockSymbol,
 Null as OptionSymbol, s.Price as Price, s.Volume as
Volume
 FROM InStocks s
UNION
 SELECT s.Ts as Ts, s.StockSymbol as StockSymbol,
 s.OptionSymbol as OptionSymbol, s.Price as Price,
 s.Volume as Volume
 FROM InOptions s
;

Example: Merging Data from Streams or Windows
Use the UNION clause to merge data from two streams or windows and produce a derived
element (stream, window, or delta stream).

1. Create a new window:

CREATE WINDOW name
You can also create a new stream or delta stream.

2. Specify the primary key:
PRIMARY KEY (…)

3. Specify the first derived element in the union:

CHAPTER 5: CCL Query Construction

Programmers Guide 45

SELECT * FROM StreamWindow1
4. Add the UNION clause:

UNION
5. Specify the second derived element in the union:

SELECT * FROM StreamWindow2

Joins
Use joins in your CCL query to combine multiple datasources into a single query.

Streams, windows, or delta streams can participate in a join. However, a delta stream can
participate in a join only if it has a KEEP clause. A join can contain any number of windows
and delta streams (with their respective KEEP clauses), but only one stream. Self joins are also
supported. For example, you can include the same window or delta stream more than once in a
join, provided each instance has its own alias.

In a stream-window join the target can be a stream or a window with aggregation. Using a
window as a target requires an aggregation because the stream-window join does not have
keys and a window requires a key. The GROUP BY columns in aggregation automatically
forms the key for the target window. This restriction does not apply to delta stream-window
joins because use of the KEEP clause converts a delta stream into an unnamed window.

Note: Unnamed windows are implicitly created when using a join with a window that
produces a stream. The unnamed window is created to ensure that a join does not see records
that have not yet arrived at the join. This can happen because the source to the join and the join
itself are running in separate threads.

Joins are performed in pairs but you can combine multiple joins to produce a complex
multitable join. Depending on the complexity and nature of the join, the compiler may create
intermediate joins. The comma join syntax supports only inner joins, and the WHERE clause in
this syntax is optional. When it is omitted, it means that there is a many-many relationship
between the streams in the FROM clause.

Joins in ANSI syntax can add the DYNAMIC modifier to a window or stream to indicate that its
data changes frequently. A secondary index is created on windows joining with an incomplete
primary key of a DYNAMIC window or stream. This improves performance but uses additional
memory proportional to the total data length of key columns in the index. By default, windows
and streams are STATIC and no secondary indices are created.

Event Stream Processor supports all join types:

Join Type Syntax Description

Inner Join INNER JOIN One record from each side of the join is required for the
join to produce a record.

CHAPTER 5: CCL Query Construction

46 SAP Sybase Event Stream Processor

Join Type Syntax Description

Left Outer Join LEFT JOIN A record from the left side (outer side) of the join is
produced regardless of whether a record exists on the
right side (inner side). When a record on the right side
does not exist, any column from the inner side has a
NULL value.

Right Outer Join RIGHT JOIN Reverse of left outer join, where the right side is the
outer side and the left side is the inner side of the join.

Full Outer Join FULL JOIN A record is produced whether there is a match on the
right side or the left side of the join.

Event Stream Processor also supports these cardinalities:

Type Description

One-One Keys of one side of the join are completely mapped to the keys of the other side of
the join. One incoming row produces only one row as output.

One-Many One record from the one side joins with multiple records on the many side. The
one side of the join is the side where all the primary keys are mapped to the other
side of the join. Whenever a record comes on the one-side of the join, it produces
many rows as the output.

Many-Many The keys of both side of the join are not completely mapped to the keys of the
other side of the join. A row arriving on either side of the join has the potential to
produce multiple rows as output.

Note: When a join produces multiple rows, the rows are grouped into a single transaction. If
the transaction fails, all of the rows are discarded.

This example joins two windows (InStocks and InOptions) using the FROM clause with
ANSI syntax. The result is an output window.
CREATE INPUT Window InStocks SCHEMA StocksSchema Primary Key (Ts) ;

CREATE INPUT Window InOptions SCHEMA OptionsSchema Primary Key (Ts)
KEEP ALL ;

CREATE Output Window OutStockOption SCHEMA OutSchema
 Primary Key (Ts)
 KEEP ALL
AS
 SELECT InStocks.Ts Ts,
 InStocks.Symbol Symbol,
 InStocks.Price StockPrice,
 InStocks.Volume StockVolume,
 InOptions.StockSymbol StockSymbol,
 InOptions.OptionSymbol OptionSymbol,

CHAPTER 5: CCL Query Construction

Programmers Guide 47

 InOptions.Price OptionPrice,
 InOptions.Volume OptionVolume
 FROM InStocks JOIN InOptions
 ON
 InStocks.Symbol = InOptions.StockSymbol and
 InStocks.Ts = InOptions.Ts ;

Key Field Rules
Key field rules ensure that rows are not rejected due to duplicate inserts or the key fields being
NULL.

• The key fields of the target are always derived completely from the keys of the many side of
the join. In a many-many relationship, the keys are derived from the keys of both sides of
the join.

• In a one-one relationship, the keys are derived completely from either side of the
relationship.

• In an outer join, the key fields are derived from the outer side of the join. An error is
generated if the outer side of the join is not the many-side of a relationship.

• In a full-outer join, the number of key columns and the type of key columns need to be
identical in all sources and targets. Also, the key columns require a firstnonnull expression
that includes the corresponding key columns in the sources.

When the result of a join is a window, specific rules determine the columns that form the
primary key of the target window. In a multitable join, the same rules apply because
conceptually each join is produced in pairs, and the result of a join is then joined with another
stream or window, and so on.

This table illustrates this information in the context of join types:

One-One One-Many Many-One Many-Many

INNER Keys from at least
one side should be
included in the pro-
jection list (or a
combination of
them if keys are
composite).

Keys from the right
side should be inclu-
ded in the projection
list.

Keys from the left
side should be inclu-
ded in the projection
list.

Keys from both
sides should be in-
cluded in the projec-
tion list.

LEFT Keys from the left
side alone should be
included.

Not allowed. Keys from the left
side should be inclu-
ded in the projection
list.

Not allowed.

RIGHT Keys from the right
side alone should be
included.

Keys from the right
side should be inclu-
ded in the projection
list.

Not allowed. Not allowed.

CHAPTER 5: CCL Query Construction

48 SAP Sybase Event Stream Processor

One-One One-Many Many-One Many-Many

OUTER Keys should be
formed using first-
nonnull () on each
pair of keys from
both sides.

Not allowed. Not allowed. Not allowed.

See also
• Join Examples: ANSI Syntax on page 49
• Join Example: Comma-Separated Syntax on page 51

Join Examples: ANSI Syntax
Examples of different join types using the ANSI syntax.

Refer to these inputs for the examples below.

CREATE INPUT STREAM S1 SCHEMA (Val1S1 integer, Val2S1 integer, Val3S1
string);
CREATE INPUT WINDOW W1 SCHEMA (Key1W1 integer, Key2W1 string, Val1W1
integer, Val2W1 string) PRIMARY KEY (Key1W1, Key2W1);
CREATE INPUT WINDOW W2 SCHEMA (Key1W2 integer, Key2W2 string, Val1W2
integer, Val2W2 string) PRIMARY KEY (Key1W2, Key2W2);
CREATE INPUT WINDOW W3 SCHEMA (Key1W3 integer, Val1W3 integer,
Val2W3 string) PRIMARY KEY (Key1W3);

Simple Inner Join: One-One
Here, keys can be derived from either W1 or W2.

CREATE OUTPUT WINDOW OW1
PRIMARY KEY (Key1W2, Key2W2)
AS SELECT W1.*, W2.*
FROM W1 INNER JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 =
W2.Key2W2;

Simple Left Join: One-One
The keys are derived from the outer side of the left join. It is incorrect to derive the keys from
the inner side because the values could be null.

CREATE OUTPUT WINDOW OW2
PRIMARY KEY (Key1W1, Key2W1)
AS SELECT W1.*, W2.*
FROM W1 LEFT JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 =
W2.Key2W2;

Simple Full Outer Join: One-One
The key columns all have a required firstnonnull expression in it.

CREATE OUTPUT WINDOW OW3
PRIMARY KEY (Key1, Key2)
AS SELECT firstnonnull(W1.Key1W1, W2.Key1W2) Key1,

CHAPTER 5: CCL Query Construction

Programmers Guide 49

firstnonnull(W1.Key2W1, W2.Key2W2) Key2, W1.*, W2.*
FROM W1 FULL JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 =
W2.Key2W2;

Simple Left Join: Many-One
All the keys of W2 are mapped and only one key of W1 is mapped in this join. The many-side
is W1 and the one-side is W2. The keys must be derived from the many-side.

CREATE OUTPUT WINDOW OW4
PRIMARY KEY (Key1W1, Key2W1)
AS SELECT W1.*, W2.*
FROM W1 LEFT JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Val2W1 =
W2.Key2W2;

Simple Left Join: Many-One (DYNAMIC Modifier)
W3 is DYNAMIC and only one key of W1 is mapped in this join, so a secondary index is created
on W1. W1 is also DYNAMIC, but all keys of W3 are mapped, so no secondary index is created
on W3.

CREATE OUTPUT WINDOW OW5
PRIMARY KEY DEDUCED
AS SELECT W1.*, W3.*
FROM W1 (DYNAMIC) LEFT JOIN W3 (DYNAMIC) ON W1.Key1W1 = W3.Key1W3;

Simple Inner Join: Many-Many
This is a many-many join because neither of the keys are fully mapped. The keys of the target
must be the keys of all the windows participating in the join.

CREATE OUTPUT WINDOW OW6
PRIMARY KEY (Key1W1, Key2W1, Key1W2, Key2W2)
AS SELECT W1.*, W2.*
FROM W1 JOIN W2 ON W1.Val1W1 = W2.Val1W2 AND W1.Val2W1 = W2.Val2W2;

Simple Stream-Window Left Join
When a left join involves a stream, the stream must be on the outer side. The target cannot be a
window unless it is also performing aggregation.

CREATE OUTPUT STREAM OSW1
AS SELECT S1.*, W2.*
FROM S1 LEFT JOIN W2 ON S1.Val1S1 = W2.Key1W2 AND S1.Val3S1 =
W2.Key2W2;

Complex Window-Window Join
The keys for OW4 can be derived either from W1 or W2 because of the inner join between the
two tables.

CREATE OUTPUT WINDOW OW7
PRIMARY KEY DEDUCED
AS SELECT S1.*, W1.*, W2.*, W3.* //Some column expression.
FROM S1 LEFT JOIN (W1 INNER JOIN (W2 LEFT JOIN W3 ON W2.Key1W2 =
W3.Key1W3) ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 = W2.Key2W2) ON
S1.Val1S1 = W1.Key1W1

CHAPTER 5: CCL Query Construction

50 SAP Sybase Event Stream Processor

WHERE W2.Key2W2 = 'abcd'
GROUP BY W1.Key1W1, W2.Key2W2
HAVING SUM(W3.Val1W3) > 10;

Complex Stream-Window Join
Here, the join is triggered only when a record arrives on S1. Also, because there is aggregation,
the target must be a window instead of being restricted to a stream.

CREATE OUTPUT WINDOW OW8
PRIMARY KEY DEDUCED
AS SELECT S1.*, W1.*, W2.*, W3.* //Some column expression.
FROM S1 LEFT JOIN (W1 INNER JOIN (W2 LEFT JOIN W3 ON W2.Key1W2 =
W3.Key1W3) ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 = W2.Key2W2) ON
S1.Val1S1 = W1.Key1W1
WHERE W2.Key2W2 = 'abcd'
GROUP BY W1.Key1W1, W2.Key2W2
HAVING SUM(W3.Val1W3) > 10;

See also
• Key Field Rules on page 48
• Join Example: Comma-Separated Syntax on page 51

Join Example: Comma-Separated Syntax
An example of a complex join using the comma separated syntax.

This join is a complex join of three windows using the comma-separated join syntax. The
WHERE clause specifies the conditions on which records are joined.

CREATE OUTPUT WINDOW OW4
PRIMARY KEY DEDUCED
AS SELECT W1.*, W2.*, W3.*
FROM W1, W2, W3
WHERE W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 = W2.Key2W2 AND W1.Key1W1
= W3.Key1W3;

See also
• Key Field Rules on page 48
• Join Examples: ANSI Syntax on page 49

Pattern Matching
Use the MATCHING clause in your CCL query to take input from one or more elements
(streams, windows, or delta streams) and produce records when a prescribed pattern is found
within the input data.

Pattern streams can check whether or not events (rows from the input sources matching certain
criteria) occur during a specific time interval, and then send records to downstream streams if a
match has occurred.

CHAPTER 5: CCL Query Construction

Programmers Guide 51

Pattern matching can be used to distill complex relationships between data into compact and
easily-maintainable expressions.

Attention: The pattern rule engine will use any incoming event in order to match the defined
pattern, regardless of the opcode of an incoming event. The opcode can be included in each
event's definition in order to filter out unwanted rows.

This example creates an output stream, ThreeTrades, which monitors the QTrades streams
and sends a new event when it detects three trades on the same symbol within five seconds. The
output of this stream is the symbol of the traded stock, and its latest three prices. The trades do
not have to occur consecutively, but the trades must occur within five seconds of each other.
Multiple patterns may be in the process of being matched at the same time.
CREATE OUTPUT STREAM ThreeTrades
AS
SELECT
 T1.Symbol,
 T1.Price Price1,
 T2.Price Price2,
 T3.Price Price3
FROM QTrades T1, QTrades T2, QTrades T3
MATCHING[5 SECONDS: T1, T2, T3]
ON T1.Symbol = T2.Symbol = T3.Symbol
;

For details on the MATCHING clause, see the SAP Sybase Event Stream Processor
Programmers Reference.

Aggregation
Aggregation collects input records based on the values in the columns specified with the
GROUP BY clause, applies the specified aggregation function such as min, max, sum,
count and so forth, and produces one row of output per group.

Records in a group have the same values for the columns specified in the GROUP BY clause.
The columns specified in the GROUP BY clause also needs to be included in the SELECT
clause because these columns form the key for the target. This is the reason why the primary
key for the aggregate window must use the PRIMARY KEY DEDUCED clause instead of
explicitly specifying a primary key.

In addition to the GROUP BY clause, a GROUP FILTER and GROUP ORDER BY clause can be
specified. The GROUP ORDER BY clause orders the records in a group by the specified
columns before applying the GROUP FILTER clause and the aggregation functions. With the
records ordered, aggregation functions sensitive to the order of the records such as first,
last, and nth can be used meaningfully.

The GROUP FILTER clause is executed after the GROUP ORDER BY clause and eliminates any
rows in the group that do not meet the filter condition. The filter condition that is specified is
similar to the one in the WHERE clause. The only exception being that a special rank function

CHAPTER 5: CCL Query Construction

52 SAP Sybase Event Stream Processor

can be specified. The rank function is used in conjunction with the GROUP ORDER BY clause.
After the GROUP ORDER BY clause is executed every row in the group is ranked from 1 to N.
Now in the GROUP FILTER clause one can say rank() < 11, which means that the
aggregation function is only applied to the first 10 rows in the group after it has been ordered
by the columns specified in the GROUP ORDER BY clause.

Finally an optional HAVING clause can also be specified. The HAVING clause filters records
based on the results of applying aggregation functions on the records in a given group. The
primary difference is that a HAVING clause aggregation operation is allowed and a WHERE
clause aggregation operation is not.

Note: The GROUP ORDER BY, GROUP FILTER, and HAVING clauses can only be specified in
conjunction with a GROUP BY clause.

When using aggregation, you must consider the memory usage implications. All of the input
records for which an aggregate function is to be calculated have to be stored in memory. The
data structure that holds all the records in memory is called the aggregation index.

If a stream feeds input to an aggregation window directly, the memory usage of the
aggregation index increases without bound. To prevent such unbounded growth, insert an
intermediate window between the stream and the aggregation window. In this intermediate
window, use a GROUP BY clause to set one or more of the stream columns as the primary key,
then set a retention policy to prevent runaway memory usage. Note that although this
intermediate window is an aggregation window, it does not perform any aggregation
functions, so its index does not grow indefinitely.

The intermediate aggregation window acts as the stream and feeds input into the aggregation
window directly. The aggregation window performs its aggregation functions using the input
retained from the intermediate aggregation window.

Example
The following example computes the total number of trades, maximum trade price, and total
shares traded for every Symbol. The target window only has those Symbols where the total
traded volume is greater than 5000.

CREATE INPUT STREAM Trades
SCHEMA (TradeId integer, Symbol string, Price float, Shares integer);

CREATE WINDOW TradeRetention
PRIMARY KEY DEDUCED
KEEP 1 DAY
AS
SELECT trd.TradeID, trd.Symbol, trd.Price, trd.Shares
FROM Trades trd
GROUP BY trd.TradeId;

CREATE OUTPUT WINDOW TradeSummary
PRIMARY KEY DEDUCED
KEEP 1 DAY
AS

CHAPTER 5: CCL Query Construction

Programmers Guide 53

SELECT tr.Symbol, count (tr.TradeId) NoOfTrades, max (tr.Price)
MaxPrice, sum(tr.Shares) TotalShares
FROM TradeRetention tr
GROUP BY tr.Symbol
HAVING sum(tr.Shares) > 5000;

Reference Table Queries
Reference table queries enable you to look up information in an external database table in
response to an incoming event.

Incoming events can arrive with only a portion of the information necessary to complete the
processing you wish to specify in your project. When that additional information is present in
existing tables in an external database, you can use reference table queries to look it up. There
are two parts to this: creating the reference to an external table and using the reference to
execute an ad hoc query in a join or flex operator.

When creating the reference, you must first decide what data you want to use. Then identify
the external database table containing the data by name, obtain the schema of the table, and
find out what service to use to contact the database. Decide whether you want to attempt to
reconnect if the connection is dropped, and if so, how many times, and how long to wait
between attempts.

When joining a stream or window to a reference, you need to decide what you want as the
output of the join. There are numerous restrictions on how you can use references in joins, and
what types of output you can obtain. For example, if you want the output of the join to be a
window, you must specify the primary key of the reference and use the complete primary key
in the ON or WHERE clause of the join.

There are several different ways to use references within SPLASH programs. You can iterate
over the rows in the table or grab specific rows. Basically, you can utilize a reference in the
same ways you can utilize a window. It is simply another source of data for processing in your
SPLASH routine.

You can use references - in joins and in SPLASH programs - inside a module as well as within
the main body of your project. Like stores, references used in a module must be bound to a
reference defined in the main body of your project.

Prerequisites
You must have the SAP HANA ODBC client installed on the system where you want to run
projects that include reference table queries. SAP recommends that you use the latest version
of the SAP HANA ODBC client available, but it must be at least version 1.0.67.

Database Service Definition
All connections to external databases, including reference table queries, are made using
services defined in the services.xml file. This file, as shipped with ESP, includes a
service definition, SampleHanaJdbc , that shows how to define a service for use in reference

CHAPTER 5: CCL Query Construction

54 SAP Sybase Event Stream Processor

table queries to a HANA database table. On Windows machines it is in the %ESP_HOME%
\bin folder. On UNIX and Linux machines it is in the $ESPHOME/bin directory. You can
modify entries in this file, or add new ones, for use in reference table queries.

Error Handling
When you start a project that contains a reference table query, it does a table schema
compatibility check. The reference scans the database table and verifies that:

• For each column specified in the reference, there is a column of the same name (case
insensitive) in the table.

• The datatype of the column in the table is compatible with the datatype of the column in the
reference.

• If the reference definition specifies a primary key, there is a matching primary key in the
database. (If the reference definition doesn't specify a primary key, it doesn't matter
whether or not the database has a primary key.)

In order to check the type for each mapped column, the reference attempts to pull a sample row
from the database. It's done this way to be as database-agnostic as possible. If it can pull that
column into ESP, the check succeeds. Otherwise it fails, except in the following two cases:

• If the query that the reference uses to do the type-checking is rejected by the database
(because it doesn't support SQL 2003 standards), the reference will not complete type
checking, but will allow the project to start up, providing a warning that it can't guarantee
that the type mapping is valid.

• If the table has no data in it, then the type checking will stop, and a warning will be printed
that it can't guarantee that the type mapping is valid.

While a project is running, the error scenarios are mostly connection-based. When a failure is
caused by a lost connection, the server will attempt to reconnect based on the reconnect
parameters specified in the reference's definition.

Using a Reference Table Query in a Join
This example shows the procedure for creating a reference table query, an input stream, and an
output stream that implements a join of data from the reference table query and the input
stream to add customer data to an incoming order.

1. Obtain the necessary information about the external database table containing the
information you wish to look up.

• the name of the table containing the data
• the schema for that table
• the service to use to connect to it

2. Create the reference table query in your project.

CHAPTER 5: CCL Query Construction

Programmers Guide 55

For example, for a table named customerAddr, with an integer column, customerID, a
string column, fullName, and a string column, address, that can be accessed by a service
named databaseLookup, create a reference table query named customerRef:
CREATE REFERENCE customerRef
SCHEMA (customerID integer, fullName string, address string)
PRIMARY KEY (customerID)
PROPERTIES
service='databaseLookup',source='customerAddr',sourceSchema='addr
essSchema';

The schema of the reference does not have to include all of the columns in the source table
or list them in the same order. But, for each column that you do specify in the schema, the
column name must match the column name in the database, and the datatype must be
compatible with the datatype in the database.

The customerID column is the primary key in the source table: it contains a unique
number assigned to each customer. A primary key is not required to produce a stream: only
a window. But, if you declare a primary key for the reference it must match the primary key
in the table. So, whenever the table has a primary key, it is a good practice to make it the
primary key of the reference table query (giving you the flexibility to produce either a
stream or a window).

When you specify a primary key in a reference table query, you must also include the
sourceSchema property, which identifies the schema, in this case addressSchema, of the
database containing the table.

3. Create the input stream for events to enter the project.

For an event which is an order placed by a customer, consisting of three integers, named
orderID, customerID, and itemID, create an input stream named orderStream.
CREATE INPUT STREAM orderStream
SCHEMA (orderID integer, customerID integer, itemID integer);

4. Create an output stream that implements a join of the incoming event with the data
obtained from the reference table query.

To create an output stream named orderWithCustomerInfoStream with three columns:
the integer orderID, the string customerName, and the string customerAddress, the
output stream joins the orderID from the orderStream stream, with the fullname and
address from the customerRef reference table query when the customerID in the
orderStream stream matches the customerID in the customerRef reference table query.
CREATE OUTPUT STREAM orderWithCustomerInfoStream
SCHEMA (orderID integer, customerName string, customerAddress
string)
AS SELECT orderStream.orderID, customerRef.fullName,
customerRef.address
FROM orderStream, customerRef
WHERE orderStream.customerID=customerRef.customerID;

CHAPTER 5: CCL Query Construction

56 SAP Sybase Event Stream Processor

While the column names in the output stream's schema declaration, customerName and
customerAddress, do not have to match the column names in the table, fullName and
address, the datatypes in the output stream's schema must match the datatypes in the
table.

Using a Reference Table Query in a Module
This example obtains a bibliography for the specified author using a Reference Table Query
inside of a module.

In this example, an order for a book produces a list of other books by that author. Because this
list may be desired in response to other events, it is produced within a module.

1. Obtain the necessary information about the external database table containing the
information you wish to look up.
• the name of the table containing the data
• the schema for that table
• the service to use to connect to it

2. Create the reference table query in your project. When you define a reference in a module,
it must always be mapped to a reference in your project which contains the connection
information to the database.

For example, for a table named bibliographies, with a string column, authorName, a
string column, bookTitle, and a string column, publisher, that can be accessed by a
service named databaseLookup, create a reference table query named getBiblio:
CREATE REFERENCE getBiblio
SCHEMA (authorName string, bookTitle string, publisher string)
PROPERTIES
service='databaseLookup',source='bibliographies',sourceSchema='bo
okSchema';

3. Create an input stream for order events to enter the project.

For an event which is an order placed by a customer, consisting of three integers, named
orderID, customerID, and itemID, and one string authorName create an input stream
named orderStream.
CREATE INPUT STREAM orderStream
SCHEMA (orderID integer, customerID integer, itemID integer,
authorName string)
;

4. Create an output stream named otherBooks with three string columns: authorName,
bookTitle, and publisher to display the list of other books by the author.
CREATE OUTPUT STREAM otherBooks
SCHEMA (authorName string, bookTitle string, publisher string)
;

5. Create a module that uses this table reference query. Note that in the module you only need
to specify the name and schema of the reference table query.
CREATE MODULE listOtherBooks
IN orderStream

CHAPTER 5: CCL Query Construction

Programmers Guide 57

OUT otherBooks
REFERENCES getBiblio
BEGIN
 CREATE REFERENCE getBiblio
 SCHEMA (authorName string, bookTitle string, publisher
string);
 CREATE INPUT STREAM orderStream
 SCHEMA (orderID integer, customerID integer, itemID
integer, authorName string);
 CREATE OUTPUT STREAM otherBooks
 SCHEMA (authorName string, bookTitle string, publisher
string)
 FROM orderStream, bibliography
 WHERE orderStream.authorName=bibliography.authorName;
END;

6. Load the module to generate the list of other works by the author of the book that was
ordered. Loading the module creates a mapping between the streams in the main project
and in the module. The output from the module will be visible in the otherBooks stream in
the main project.
LOAD MODULE listOtherBooks AS listAll
 IN
 orderStream = orderStream
 OUT
 otherBooks = otherBooks
 REFERENCES
 getBiblio = getBiblio
;

Using a Reference Table Query in SPLASH
This example uses a reference table query within a SPLASH routine that iterates over the rows
in a table to obtain data about a specified player's batting history that is then used to compute
statistics.

1. Obtain the necessary information about the external database table containing the
information you wish to look up.

• the name of the table containing the data
• the schema for that table
• the service to use to connect to it

2. Create the reference table query in your project.

For example, for a table named Batting, with an integer column, teamAtBat, a string
column, player, and an integer column, bases, that can be accessed by a service named
HANA, create a reference table query named AtBats:
CREATE REFERENCE AtBats
SCHEMA (teamAtBat INTEGER, player STRING, bases INTEGER)
PRIMARY KEY (teamAtBat)
PROPERTIES
service='HANA',source='Batting',sourceSchema='BattingSchema';

CHAPTER 5: CCL Query Construction

58 SAP Sybase Event Stream Processor

The teamAtBat is incremented each time a player bats, providing a unique number for
each at bat by a member of the team, so that column is the primary key in the source table. It
must also be the primary key of the reference table query. Because we have specified a
primary key in this reference, we have to include the sourceSchema property, which
identifies the schema, BattingSchema, of the database containing the table.

3. Create the input stream for events to enter the project.

For an event which is the appearance, or mention, of a player's name, create an input stream
named StatRequest, consisting of a single string, player.
CREATE INPUT STREAM StatRequest SCHEMA (player STRING);

4. Initialize the Flex operator, named Percentage, to read in the reference query AtBats and
the input stream StatRequest, specify the output stream PercentageOutput, and set the
variables atBats and hits to zero.
CREATE FLEX Percentage IN AtBats, StatRequest
OUT OUTPUT STREAM PercentageOutput SCHEMA (atBatPercentage float)
BEGIN
 ON StatRequest {
 integer atBats := 0;
 integer hits := 0;

5. Close the Flex operator by dividing the number of hits by the number of atBats to calculate
the batting average, percentage, placing that value in the atBatPercentage column of the
output stream, and outputting it.
 }
 float percentage := hits/atBats;
 output [atBatPercentage=percentage];
 };
END;

6. Between the initialization and close of the Flex operator, add a SPLASH routine to iterate
through the entries in the Batting table to find out how many times the player was at bat
and how many hits he got. There are three ways to do this.

a) Use the for and if commands to handle iterating through the records, and take
advantage of the AtBats_stream that is automatically created with the AtBats
reference query.
 for (record in AtBats_stream) {
 if (record.player = StatRequest.player) {
 if (record.bases > 0) {
 hits := hits + 1;
 }
 atBats := atBats + 1;
 }
 }

This method has the advantage of being easy to read and maintain.
b) Use the modified for command syntax that incorporates testing whether the player

name from the input stream matches the player name in the table entry.

CHAPTER 5: CCL Query Construction

Programmers Guide 59

 for (record in AtBats_stream where player =
StatRequest.player) {
 if (record.bases > 0) {
 hits:= hits + 1;
 }
 atBats := atBats + 1;
 }

This method has the advantage of reducing processing time, because the records of
other players are never pulled from the reference table.

c) Explicitly create and modify the iterator to use across the table, again taking advantage
of the AtBats_stream that is automatically created with the AtBats reference query.
 AtBats_iterator := getIterator(AtBats_stream);
 resetIterator(AtBats_iterator);
 setRange(AtBats_iterator, player, StatRequest.player);
 typeof(AtBats) result := getNext(AtBats_iterator);
 while (not(isnull(result))) {
 if (result.bases > 0) {
 hits := hits + 1;
 }
 atBats := atBats + 1;
 result := getNext(AtBats_iterator);
 }

This method has the advantage of giving you the most explicit control over the
processing.

Using a Reference Table Query in SPLASH to Get a Single Row from a
Table

This example uses a reference table query within a SPLASH routine to obtain a single row
from a table.

In this example, we want to obtain a list of chain restaurants that have a franchise in a specified
city.

1. Obtain the necessary information about the external database table containing the row you
want to obtain.

• the name of the table containing the data
• the schema for that table
• the service to use to connect to it

2. Create a second reference table query in your project.

For example, for a table named chainList, with an integer column, chainID, a string
column, city, a string column, name, and a string column, headquartersAddress, that
can be accessed by a service named HANA, create a reference table query named
chainList:
CREATE REFERENCE restaurants

CHAPTER 5: CCL Query Construction

60 SAP Sybase Event Stream Processor

SCHEMA (storeID INTEGER, city STRING, name STRING, address STRING)
PROPERTIES service='HANA',source='restaurants';

Again, because we have not specified a primary key in this reference, we can omit the
sourceSchema property.

3. Create the input stream for events to enter the project.

Create an input stream named restaurantQuery, consisting of a single string, city.
CREATE INPUT STREAM StatRequest SCHEMA (player STRING);

4. Initialize the Flex operator, named optionQuery, to read in the reference table queries
restaurants and chainList, and the input stream restaurantQuery, output the restaurant
chain names in the output stream chainsInCity when it receives the name of a city in the
restaurantQuery stream.
CREATE FLEX optionQuery IN restaurants, chainList, restaurantQuery
OUT OUTPUT STREAM chainsInCity SCHEMA (name string, address
string)
BEGIN
 ON restaurantQuery {

5. Add a SPLASH routine to produce the list of chains that have a presence in the city. For
each restaurant chain in the chainList table, it grabs the first instance of that chain name in
the restaurants table whose address is in the city specified in the restaurantQuery input
stream and outputs the restaurant chain name and address.
 for (record in chainList_stream) {
 typeof(restaurants) inCity :=
restaurants_stream{[city=restaturantQuery.city;name=record.name;]
};
 output [name=inCity.name;address=restaurants.address;];
 }

6. Since we are not performing any calculations this time, simply close the Flex operator.
 };
END;

CHAPTER 5: CCL Query Construction

Programmers Guide 61

CHAPTER 5: CCL Query Construction

62 SAP Sybase Event Stream Processor

CHAPTER 6 Advanced CCL Programming
Techniques

Use advanced CCL techniques to develop sophisticated and complex projects.

Use declare blocks to define variables, constants, SPLASH functions, and custom datatypes.

Create modules to encapsulate reusable code.

Use explicit memory stores to fine tune performance. Use log stores to retain the contents of
named windows on disk, to allow for recovery in the event of a failure.

Declare Blocks
Declare blocks allow a model designer to include elements of functional programming, such
as variables, parameters, typedefs, and function definitions in CCL data models.

CCL supports global and local declare blocks.

• Global declare blocks – accessible to an entire project; however, you can also set
individual global declare blocks for each module.

Note: Global declare blocks are merged together if more are imported from other CCL
files. Only one is possible per project.

• Local declare blocks – declared in CREATE statements, are accessible only in the
SELECT clause of the stream or window in which they are declared.

Note: The variables and functions defined in a local declare block are only accessible in
the SELECT clause and anywhere inside the Flex Operator.

CCL variables allow for the storage of values that may change during the execution of the
model. Variables are defined in the declare block using the SPLASH syntax.

CCL typedefs are user-defined datatypes and can also be used to create an alias for a standard
datatype. A long type name can be shortened using typedef. Once a typedef has been defined
in the declare block, it can be used instead of the datatype in all SPLASH statements, and
throughout the project.

CCL parameters are constants for which you can set the value at the model's runtime. You can
use these parameters instead of literal values in a project to allow behavior changes at runtime,
such as window retention policies, store sizes, and other similar changes that can be easily
modified at runtime without changing the project. You define CCL parameters in a global
declare block, and initialize them in a project configuration file. You can also set a default
value for the parameter in its declaration, so that initialization at server start-up is optional.

Programmers Guide 63

You can create SPLASH functions in a declare block to allow for operations that are more
easily handled using a procedural approach. Call these SPLASH functions from stream
queries and other functions throughout the project.

Typedefs
Declares new names for existing datatypes.

Syntax
typedef existingdatatypeName newdatatypeName;

Components

existingdatatypeName The original datatype.

newdatatypeName The new name for the datatype.

Usage
Typedefs allow giving new names for existing datatypes, which can be used to define new
variables and parameters, and specify the return type of functions. Typedefs can be declare in
declare blocks, UDFs and inside FLEX procedures. The types declared in typedefs must
resolve to simple types.

Note: For unsupported datatypes, use a typedef in a declare block to create an alias for a
supported datatype.

Example
This example declares euros to be another name for the money(2) datatype:
typedef money(2) euros;

Once you have defined the euro typedef, you can use:
euros price := 10.80d2;

which is the same as:
money(2) price := 10.80d2;

Parameters
Constants that you set during project setup using the server-command name or the project
configuration file.

Syntax
parameter typeName parameterName1 [:= constant_expression]
[,parameterName2 [:= constant_expression],…];

CHAPTER 6: Advanced CCL Programming Techniques

64 SAP Sybase Event Stream Processor

Components

typeName The datatype of the declared parameter.

parameterName The name of the declared parameter.

constant_expression An expression that evaluates to a constant.

Usage
Parameters are defined using the qualifier parameter. Optionally, you can specify a default
value. The default value is used only if no value is provided for the parameter at server start-
up.

Parameters can use only basic datatypes, and must be declared in the global DECLARE block
of a project or a module. Parameters cannot be declared with complex datatypes. Since
parameters are constant, their value cannot be changed in the model.

Parameters at Project Setup
You can define parameters inside the global declare block for a project and inside the global
declare block for a module. Project-level parameters can be bound on server start-up. Module-
level parameters are bound when the module is loaded.

Parameters can be assigned values at server start-up time by specifying the values on the
command line used to start the server or through the project configuration file. You must
provide values for any project parameters that do not have a default value. Parameters can only
be bound to a new value when a module or project is loaded.

In the parameter declaration, you can specify a default value. The default value is used for the
parameter if it is not bound to a new value when the project or module is loaded. If a parameter
does not have a default value, it must be bound when the module or project is loaded, or an
error occurs.

When a parameter is initialized with an expression, that expression is evaluated only at
compile time. The parameter is then assigned the result as its default value.

When supplying values at runtime for a parameter declared as an interval datatype, interval
values are specified with the unit notation in CCL and with a bare microsecond value in the
project configuration file. See the Studio Users Guide for more information on project
configurations and parameters in the project configuration file.

Variables
Variables represent a specific piece of information that may change throughout project
execution. Variables are declared using the SPLASH syntax.

Syntax
typeName {variableName[:=any_expression] [, ...]}

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 65

Usage
Variables may be declared within any declare block, SPLASH UDF, or Flex procedures.
Multiple variables may be declared on a single line.

The declaration of a variable can also include an optional initial value, which must be a
constant expression. Variables without an initial value initialize to NULL.

Variables can be of complex types. However, complex variables can only be used in local
declare blocks and declare blocks within a Flex stream.

Variables declared in a local declare block may subsequently be used in SELECT clauses, but
cause compiler errors when used in WHERE clauses.

Example
This example defines a variable, then uses the variable in both a regular stream and a FLEX
stream.

declare
 INTEGER ThresholdValue := 1000;
end;
//
// Create Schemas
Create Schema TradeSchema(
 Ts bigdatetime,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER
);

Create Schema ControlSchema (
 Msg STRING,
 Value INTEGER
); //
// Input Trade Window
//

CREATE INPUT WINDOW TradeWindow
 SCHEMA TradeSchema
 PRIMARY KEY (Ts);

//
// Input Stream for Control Messages
//

CREATE INPUT STREAM ControlMsg SCHEMA ControlSchema ;

//
// Output window, only has rows that were greater than the
thresholdvalue
// was when the row was received
CREATE Output WINDOW OutTradeWindow
 SCHEMA (Ts bigdatetime, Symbol STRING, Price MONEY(4), Volume

CHAPTER 6: Advanced CCL Programming Techniques

66 SAP Sybase Event Stream Processor

INTEGER)
 PRIMARY KEY (Ts)
as
select *
 from TradeWindow
 where TradeWindow.Volume > ThresholdValue;

//
//Flex Stream to process the control message
CREATE FLEX FlexControlStream
 IN ControlMsg
 OUT OUTPUT WINDOW SimpleOutput
 SCHEMA (a integer, b string, c integer)
 PRIMARY KEY (a)
BEGIN
 ON ControlMsg
 {
 // change the value of ThresholdValue
 if (ControlMsg.Msg = 'set')
{ThresholdValue:=ControlMsg.Value;}
 // The following is being populate so you can see that the
ThresholdValue is being set
 output [a=ControlMsg.Value; b=ControlMsg.Msg;
c=ThresholdValue; |];
 }
 ;
END
;

Declaring Project Variables, Parameters, Datatypes, and Functions
Declare variables, parameters, typedefs, and functions in both global and local DECLARE
blocks.

1. Create a global declare block for your project by using the DECLARE statement in your
main project file.

2. Add parameters, variables, or user-defined SPLASH functions to the global declare
block.

Elements defined in this declare block are accessible to any elements in the project that are
not inside a module.

3. Create local declare blocks by using the DECLARE statement within derived streams,
windows, or both..

4. Add variables, parameters, or user-defined SPLASH functions to the local declare block.

These elements are accessible only from within the stream, window, or flex operator in
which the block is defined.

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 67

Flex Operators
Flex operators provide extensibility to CCL, allowing custom event handlers, written in
SPLASH, to produce derived streams or windows.

A Flex operator produces derived streams, windows, or delta streams in the same way that a
CREATE statement produces these elements. However, a CREATE statement uses a CCL
query to derive a new window from the inputs, whereas a flex operator uses a SPLASH script.

Flex operators make CCL extensible, allowing you to implement event processing logic that
would be difficult to implement in a declarative SELECT statement. SPLASH gives you
process control and provides data structures that can retain state from one event to the next.

All of the features of SPLASH are available for use in a flex operator, including:

Data structures • Variables
• EventCache (windows)
• Dictionaries
• Vectors

Control structures • While
• If
• For

A Flex operator can take any number of inputs, and they can be any mix of streams, delta
streams, or windows. You can write a splash event handler for each input. When an event
arrives on that input, the associated SPLASH script or method is invoked.

You need not have a method for every input. Some inputs may merely provide data for use in
methods associated with other inputs; for inputs without an associated method, incoming
events do not trigger an action, but are accessible to other methods in the same flex operator.

You can use multiple output statements to process an event; the outputs are collected as a
transaction block. Similarly, if a Flex operator receives a transaction block, the entire
transaction block is processed and all output is collected into another transaction block. This
means that downstream streams, and the record data stored within the stream, are not changed
until the entire event (single event or transaction block) is processed.

Automatic Partitioning
You can improve the performance of a given element and complex projects, which perform
computationally expensive operations such as aggregation and joins, by using automatic
partitioning. Automatic partitioning is the creation of parallel instances of a given element and

CHAPTER 6: Advanced CCL Programming Techniques

68 SAP Sybase Event Stream Processor

partitioning input data into these instances. Partitioning data this way results in higher
performance as the workload is split across the parallel instances.

Usage
You can create parallel instances of a delta stream, stream, window, or module by using the
PARTITION BY clause. Add this clause within a CCL statement such as CREATE DELTA
STREAM, CREATE STREAM, CREATE WINDOW, or LOAD MODULE. Specify the
partitioning degree, elements to be partitioned, and a partitioning function.

The partitioning degree is the natural number of parallel instances you wish to create for a
given element (delta stream, stream, window, or module). As an alternative to specifying the
partitioning degree as a constant, you can specify it using an integer parameter with an
optional default value. You can then provide the actual value for the parameter in the CCR
project configuration file.

When using the PARTITION BY clause, partition at least one input stream of the
corresponding element by specifying a partitioning function. In the case that an element
accepts multiple input streams and some of these input streams do not have a partitioning
function defined, those streams are broadcast to all parallel instances.

The partitioning function is effectively a demultiplexer which determines the target parallel
instances for a given partitioning key. There are three valid types of partition functions:
ROUNDROBIN, HASH, and CUSTOM. Choose a type based on the calculations you are
performing on the input data. For example, ROUNDROBIN is sufficient for stateless
operations like simple filters, but not for aggregation as this would produce differing results.
HASH is necessary for grouping records together, but grouping may not evenly distribute the
data across instances.

The CUSTOM partitioning function is defined as an inline function which does not take any
parameters. This function creates an implicit global parameter called
<targetName>_partitions where <targetName> represents the name of the current element
you are partitioning and partitions is a fixed part of the parameter name. For example, if you
are partitioning an output window called maxPriceW, use maxPriceW_partitions as the
global parameter name. The value of this parameter is equal to the number of partitions.
create input stream priceW schema (isin string, price money(2));

create output window maxPriceW schema (isin string, maxPrice
money(2))
primary key deduced
keep 5 minutes
PARTITION by priceW
{
 integer hashValue := ascii(substr(priceW.isin,1,1));
 return hashValue % maxPriceW_partitions;
}
PARTITIONS 2
as
SELECT upper(left(priceW.isin,1)) isin, max(priceW.price) maxPrice
FROM priceW group by upper(left(priceW.isin,1));

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 69

Do not explicitly provide a runtime value for this parameter. To ensure uniqueness, the
compiler throws an error if you create a global variable by the same name.

The CUSTOM partitioning function returns an integer which determines the parallel instance
that should receive a given event (row). A modulo operation applies to this result, which
ensures that the returned instance number is greater than or equal to zero and is less than the
number of available instances. This prevents runtime errors. For example, if you create three
partitions, those partitions will have the IDs 0, 1, and 2.

Ordering of Partitioned Results
Note that for the same input data the output of partitioned elements may differ from the output
of a non-partitioned element. This is caused by the fact that:

• operating systems schedule threads in a non-deterministic way, and
• parallel execution of instances using multiple operating system threads introduces

indeterminism, and
• to maximize the throughput of the partitioned element, no explicit synchronization

between parallel instances takes place

The stream partitions which are instantiated by the ESP Server at runtime are local and cannot
be subscribed or published to. However, these streams are visible in Studio so you can view
their utilization and adjust the partition count accordingly.

Restrictions
You cannot apply the PARTITION BY clause to these elements: inputs, splitters, unions,
reference streams, and adapters. Doing so results in a syntax error. However, you can partition
these elements within a module that you are partitioning.

Example: Roundrobin Partitioning
Here is an example of ROUNDROBIN partitioning on a CCL query with one input window
(TradeWindow):

create input window TradeWindow
schema (
 Ts BIGDATETIME,
 Symbol STRING,
 Price MONEY(2),
 Volume INTEGER)
primary key (Ts);

create output window TradeOutWindow
schema (
 Ts BIGDATETIME,
 Symbol STRING,
 Price MONEY(2),
 Volume INTEGER)
primary key (Ts)
PARTITION
 by TradeWindow ROUNDROBIN
PARTITIONS 2

CHAPTER 6: Advanced CCL Programming Techniques

70 SAP Sybase Event Stream Processor

as
SELECT * FROM TradeWindow
WHERE TradeWindow.Volume > 10000;

This example partitions the output window, TradeOutWindow, using ROUNDROBIN
partitioning and creates two parallel instances.

Example: HASH Partitioning
Here is an example of HASH partitioning on a CCL query with one input window
(priceW):

create input stream priceW
schema (isin string, price money(2));

create output window maxPriceW
schema (isin string, maxPrice money(2))
primary key deduced keep 5 minutes
PARTITION
 by priceW HASH(isin)
PARTITIONS 5
as
SELECT upper(left(priceW.isin,1)) isin, max(priceW.price) maxPrice
FROM priceW group by upper(left(priceW.isin,1));

This example partitions the output window, maxPriceW, using HASH partitioning and
creates five parallel instances.

Here is an example of HASH partitioning on one of the input windows (priceW) on a join
while the other input window (volumeW) is broadcast:

create input window priceW
schema (isin string, price float) primary key (isin) keep 5 minutes;

create input window volumeW
schema (isin string, volume integer)
primary key (isin) keep 5 minutes;

create output window vwapW
primary key deduced keep 1 minute
PARTITION
 by priceW HASH (isin)
PARTITIONS 2
as
SELECT priceW.isin, vwap(priceW.price, volumeW.volume) vwap_val
FROM priceW LEFT JOIN volumeW ON priceW.isin = volumeW.isin
group by priceW.isin;

This example partitions the output window, vwapW, using HASH partitioning and creates two
parallel instances.

Example: CUSTOM Partitioning
Here is an example of CUSTOM partitioning on a CCL query with two input windows
(priceW and volumeW):

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 71

create input window priceW
schema (isin string, price float)
primary key (isin) keep 5 minutes;

create input window volumeW
schema (isin string, volume integer)
primary key (isin) keep 5 minutes;

create output window vwapW
schema (isin string, vwap float)
primary key deduced
partition
by priceW {
return ascii(substr(priceW.isin,1,1)) % vwapW_partitions;
},
by volumeW {
return ascii(substr(volumeW.isin,1,1)) % vwapW_partitions;
}
partitions 2
as
SELECT priceW.isin, vwap(priceW.price, volumeW.volume) vwap_val
FROM priceW LEFT JOIN volumeW ON priceW.isin = volumeW.isin
group by priceW.isin;

This example partitions the output window, vwapW, using a CUSTOM partitioning function
and creates two parallel instances.

Guidelines for Partitioning Flex Operators
General guidelines, tips, and examples of partitioning elements using flex operators.

Local Variables
Each partition has its own locally declared variables. Therefore, a counter of all input records
only counts records that arrive at a certain partition. If you wish to use a locally declared
counter, it is recommended that you use it in line with the given partition key and that you
verify the results of the partitioned element.

Globally Declared Variables
Globally declared variables can also be tricky. Multiple partitions in parallel can change a
globally declared variable in parallel and race-conditions cannot be avoided. For example, if a
window has a user-defined method which increases a global counter variable by 1 at the arrival
of each record, once this window is partitioned, each parallel instance independently changes
the counter at the arrival of a record. Since every instance runs in a separate thread, there is no
way to determine the order in which instances update the counter. Therefore, two partitions
trying to increment a globally declared counter can create inconsistencies so that increments
get overwritten.

CHAPTER 6: Advanced CCL Programming Techniques

72 SAP Sybase Event Stream Processor

Multiple Inputs
You can partition flex operators which have multiple inputs. In such cases, if you do not
specify a partitioning function, one of the inputs is automatically broadcast to the partitioned
flex instances.

Transactions
Partitioning flex operators has major implications for transactions. Transactions are
automatically broken down into smaller subtransactions. If one of these subtransactions fails,
the others do not automatically fail with it. This can change the transaction semantics and lead
to inconsistent results.

The diagram below shws a non-partitioned scenario where the transaction consists of four
records. The records are processed as one block by the flex operator and an output transaction
is produced that consists of these four records.

In a flex operator, you can write code to start and end a transaction. In the partitioned case,
these start and end codeblocks are called within each partition for each created subtransaction.
If output events are created in the start and end transaction blocks, this can lead to problems
such as key duplications, which can easily be created by partitioning. Since such duplications
lead to rollbacks of transactions, whole subtransactions are rolled back.

In the non-partitioned case, there are no issues because only one event (start, start_trans) is
created for each transaction. In the partitioned case, each partition creates one of these events
which results in duplicate keys and one of the subtransactions is rolled back.

If you wish to partition a flex operator, do not write records in the transaction start and end
blocks.

CREATE FLEX w3
 IN w2_out
 OUT OUTPUT WINDOW w3_out
 SCHEMA s1
 Primary Key (c1) KEEP 10 ROW
// PARTITION BY w2_out HASH(c1) PARTITIONS 2
BEGIN
 ON w2_out
 {
 output setOpcode([c1= w2_out;| c2 = 'event';], upsert);
 };
 on start transaction {
 output setOpcode([c1=start;| c2 = 'start_trans';], upsert);
 };
END;

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 73

Pulsed Output
You can use pulsed output (EVERY X SECONDS) in flex operators to send events every X
seconds instead of sending events with every new input record. The example of the partitioned
case below shows how doing this can lead to problems. Each of the partitions sends events
after 1 second. The partitions needs to ensure that the events produced every second do not
collide with each other and create duplicate key records.

CREATE FLEX w3
 IN w2_out
 OUT OUTPUT WINDOW w3_out
 SCHEMA s1
 Primary Key (c1) KEEP 10 ROW
// PARTITION BY w2_out HASH(c1) PARTITIONS 2
BEGIN
 ON w2_out
 {
 //collect records
 };
 EVERY 1 SECONDS{
 //i.e. output averages per group
 }
END;

Here is an example scenario that uses partitioning:

Create Schema TradeSchema (
 Ts INTEGER,
 Symbol STRING);

Create Schema TradeTotal (
 Symbol STRING,
 Counter INTEGER);

CREATE INPUT WINDOW TradeWindow
 SCHEMA TradeSchema
 PRIMARY KEY (Ts) keep 5 minutes;

CHAPTER 6: Advanced CCL Programming Techniques

74 SAP Sybase Event Stream Processor

CREATE FLEX FlexStateManager IN TradeWindow
 OUT OUTPUT WINDOW FlexOutput
 SCHEMA TradeTotal
 Primary Key (Symbol) KEEP 10 ROW
 PARTITION
 BY TradeWindow HASH(Symbol)
 PARTITIONS 3
BEGIN
 declare
 integer mycounter:=0;
 dictionary(string, integer) counterMap;
 typeof(TradeWindow) my;
 end;
 ON TradeWindow
 {
 if(isnull(counterMap[TradeWindow.Symbol])){
 counterMap[TradeWindow.Symbol]:=1;
 }
 else{
 print('counter..
',to_string(counterMap[TradeWindow.Symbol]));

counterMap[TradeWindow.Symbol]:=counterMap[TradeWindow.Symbol]+1;
 }
 };
 EVERY 1 SECONDS{
 for (k in counterMap) {
 output setOpcode([Symbol=k;| Counter=counterMap[k]],
upsert);
 }
 };
END;

If the input events are inserts, for example, (0, SAP), (1, SAP), (1, SAP), (3, XY), (4, XY),
(wait for 1 second), (5, XY), then the produced output would be (SAP, 3), (XY, 2), and after
one second (SAP, 3) and (XY, 3). The dictionary in each partition stores local data that has
been counted. Keep in mind that each partition is independent from each other.

Iterators
Normally, an iterator iterates over a complete input window. In the case of partitioning, the
iterator is only able to iterate over the subset of events that are sent to a specific partition.
Therefore, to create meaningful output in a partitioned case, ensure the use of iterators is in
line with the defined partitioning key.

Guidelines for Partitioning SPLASH
General guidelines, tips, and examples of partitioning elements using SPASH logic.

Local Variables
Each partition has its own locally declared variables. Therefore, a counter of all input records
only counts records that arrive at a certain partition. If you wish to use a locally declared

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 75

counter, it is recommended that you use it in line with the given partition key and that you
verify the results of the partitioned element.

Globally Declared Variables
Globally declared variables can also be tricky. Multiple partitions in parallel can change a
globally declared variable in parallel and race-conditions cannot be avoided. For example, if a
window has a user-defined method which increases a global counter variable by 1 at the arrival
of each record, once this window is partitioned, each parallel instance independently changes
the counter at the arrival of a record. Since every instance runs in a separate thread, there is no
way to determine the order in which instances update the counter. Therefore, two partitions
trying to increment a globally declared counter can create inconsistencies so that increments
get overwritten.

Event Caches, Dictionaries, Vectors, and Methods
When using complex data structures like event caches, dictionaries, and vectors, be aware that
partitioning may change the semantics of your original usage and lead to unexpected results.

For example, if an event cache is not defined with a key, then its original intent is to keep all
records for the given time period or the limit of the number of records. However, with
partitioning, records in the original event cache are distributed to several parallel event caches.
Therefore, if it was required to calculate a sum() over the original event cache, partitioning
would generate sum() values for each parallel event cache and as a result, break the original
semantics.

Both event caches and partitioning have a concept of key. For event caches, a key defines how
records in an event cache are distributed across buckets. For partitioning, a key defines how
incoming records are distributed over several parallel instances. Whenever the keys for the
event cache and partitioning do not match and you partition an element (stream or window)
with an event cache, this can change its original semantics of the partitioned element.

Even if the event cache key matches with the partitioning key, it may still generate unexpected
results with partitioning when the event cache applies a row-based retention policy and the
coalesce flag is not set (see Example 1). Without setting the coalesce flat, an event cache treats
records for INSERT, UPDATE, and DELETE with the same key as distinct records. When the
event cache is partitioned, the same KEEP policy is used in all parallel instances. As a result,
there will be n*k (where n is the number of partitions and k is the number of rows kept by the
event cache) records kept by all the parallel event caches, as opposed to k records in the case of
no partitioning.

Example 1:
CREATE input stream priceW schema (ts timestamp, isin string, price
float);
CREATE output stream maxPriceW schema (ts timestamp, isin string,
price float)
declare
 eventCache(priceW[isin], 10 events) cache;
end

CHAPTER 6: Advanced CCL Programming Techniques

76 SAP Sybase Event Stream Processor

PARTITION
 by priceW HASH(isin)
PARTITIONS 2
as
SELECT priceW.ts, priceW.isin isin, avg(cache.price) price FROM
priceW;

Additionally, user-defined methods or flex elements can perform more complicated
operations on an event cache. For example, you can use the keyCache() function to access any
other cache bucket independent of your current key. Partition these elements carefully since
this can also alter the intended semantics. In the example below, the Symbol and Symbol2
attributes of QTrades are in the same domain. When the flex TradesFlex element is hash
partitioned by its input, QTrades, according to Symbol, it is possible that the bucket for
Symbol2 of a record to reside in a different parallel instance and therefore, the keyCache()
statement would not be able to retrieve that bucket in the current partition.

Example 2:
CREATE FLEX TradesFlex
 IN QTrades
OUT OUTPUT WINDOW Top3Trades SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
PARTITION
 BY QTrades HASH (Symbol)
PARTITIONS 3
 BEGIN
 DECLARE
 eventCache(QTrades[Symbol], manual, Price asc)
tradesCache;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol2;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {

 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }
 output setOpcode(QTrades, upsert);
 }
 };
END;

Similar situation can happen for other complex data structure like dictionaries and vectors. In
general, if you are writing any SPLASH logic for streams or windows that are partitioned, be
aware that the logic functions only on a subset of the data and therefore, the partitioned results
may be different from non partitioned streams or windows.

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 77

Guidelines for Partitioning Elements with Retention Policies
General guidelines, tips, and examples of partitioning elements which use retention policies.

A retention policy specifies the maximum number of rows or the maximum amount of time
that data is retained in a window. If you partition a window for which you have previously
specified a retention policy, the window retains the policy.

An exception to this behavior is row-based retention because the state maintained by the ESP
project is larger. For example, in a non-partitioned project, specifying a retention policy for N
rows stores exactly N rows. However, if using stream partitioning and you create K number of
partitions, each of these partitions stores N rows.

If you specified a retention policy for a union stream, which serves as a connection point for
the other downstream elements, the policy of N rows is preserved. However, there are no
guarantees as to which rows will be stored in the union because the policy stores different row
sets based on the order in which the events arrive at the union.

Here is a non-partitioned scenario where the window stores the exact number of specified rows
(2 rows in this example):
CREATE INPUT WINDOW Trades SCHEMA (TradeId long, Brand string, Volume
integer)
PRIMARY KEY (TradeId);

CREATE OUTPUT WINDOW Last2Trades SCHEMA (Brand string, AvgVolume
integer)
PRIMARY KEY DEDUCED
KEEP 2 ROWS
AS
SELECT T.Brand, avg(T.Volume) as AvgVolume FROM Trades as T GROUP BY
(T.Brand);

Once the output window is partitioned, each partition stores the specified number of rows
(<partitionCount>*2 rows in this example). The union also carries an automatically derived
retention policy of 2 rows which ensures that the same number of rows are exposed as in the

CHAPTER 6: Advanced CCL Programming Techniques

78 SAP Sybase Event Stream Processor

non-partitioned case. However, partitions are not synchronized which may lead to different
rows in the final output, and therefore skew results.
CREATE INPUT WINDOW Trades SCHEMA (TradeId long, Brand string, Volume
integer)
PRIMARY KEY (TradeId);

CREATE OUTPUT WINDOW Last2Trades SCHEMA (Brand string, AvgVolume
integer)
PRIMARY KEY DEDUCED
KEEP 2 ROWS
PARTITION
 BY HASH (Brand)
 PARTITIONS 3
AS
SELECT T.Brand, avg(T.Volume) as AvgVolume FROM Trades as T GROUP BY
(T.Brand);

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 79

Guidelines for Partitioning Aggregation
General guidelines, tips, and examples of partitioning elements using aggregation.

When using HASH partitioning over any key aside from the GROUP BY key, the elements
with the same value for the GROUP BY clause may not be located in the same partition and
this may break the aggregation semantically.

The example below uses events that make up a part identifier for industrial parts. This
identifier contains a part number and a group ID for the group to which a part belongs. For
example, AA0001 is a part that belongs to the group AA (for example, engine) and has the part
number 0001.

CHAPTER 6: Advanced CCL Programming Techniques

80 SAP Sybase Event Stream Processor

For example, to count all parts of a certain group, specify GROUP BY
(left(T.PartId,2)). To ensure that the aggregation result is correct, you would have
to send all the elements with the same group ID (as indicated by the two leftmost character of
the PartId) to the same partition. However, this is not possible because you would have to
specify PARTITION BY HASH (left(PartId,2)).

CREATE INPUT WINDOW Trades SCHEMA (TradeId long, PartId string,
Volume integer)
PRIMARY KEY (TradeId);

CREATE OUTPUT WINDOW TradeVolumePerGroup SCHEMA (PartGroup string,
Volume integer)
PRIMARY KEY DEDUCED
PARTITION
 BY HASH (PartId)
 PARTITIONS 2
AS
SELECT left(T.PartId,2) as PartGroup, sum(T.Volume) as Volume FROM
Trades as T GROUP BY (left(T.PartId,2));

You can work around this limitation by introducing a new column through an intermediate
stream which represents the GROUP BY KEY explicitly and can, therefore, be used as a
HASH key.
CREATE INPUT WINDOW Trades SCHEMA (TradeId long, PartId string,
Volume integer)
PRIMARY KEY (TradeId);

CREATE OUTPUT WINDOW Trades1 SCHEMA (TradeId long, PartId string,
PartGroup string, Volume integer)
PRIMARY KEY (TradeId)
AS
SELECT T.TradeId as TradeId, T.PartId as PartId, left(T.PartId,2) as
PartGroup, T.Volume as Volume FROM Trades as T;

CREATE OUTPUT WINDOW TradeVolumePerGroup SCHEMA (PartGroup string,
Volume integer)
PRIMARY KEY DEDUCED
PARTITION
 BY HASH (PartGroup)
 PARTITIONS 2
AS
SELECT T.PartGroup as PartGroup, sum(T.Volume) as Volume FROM Trades1
as T GROUP BY (T.PartGroup);

Guidelines for Partitioning Modules
General guidelines, tips, and examples of partitioning modules.

You can partition an entire module when loading it (using the LOAD MODULE statement) by
specifying which stream you wish to partition and the partitioning method. You can only
partition a module by its input streams or windows. Mention them only once, even if they are
mapped to multiple internal module streams or windows.

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 81

A module can contain a partitioned stream or load other partitioned modules. However, be
aware that the total amount of partitions that your ESP project has overall can quickly grow.
Specifically, if you partition a module, all internal module partitions are partitioned again
when loading the module. For example, if a module partitions a stream by 5 and the module is
partitioned by 4, you would have 20 parallel instances of the stream that the module partitions.

If you create too many partitions, the ESP Server may not be able to start properly. It is
recommended that the number of partitions within your ESP project stays below the number
of processors on your machine.

It is not possible to partition a stream that has more than one downstream connection. As a
result, ESP Server inserts a copy of the partitioned stream between the stream and the
partitioner. This copy does the distribution to all the successor nodes. The ID of this copied
node is suffixed by .clone.

The example below displays the principle of partitioning modules. You can find the complete
and running example in $ESP_HOME/examples/ccl/SubmodulesPartitioned.
Ensure you specify the PARTITION BY clause last in the LOAD MODULE clause.
import 'module1.ccl';

CREATE INPUT Window InStocks SCHEMA StocksSchema Primary Key (Ts)KEEP
ALL;

LOAD MODULE Module1 AS Module1_instance_01
 IN rawStockFeed = InStocks
 OUT infoByStockSymbol = CompStocks2
 Parameters myparam = 1000
 STORES store1 = MyStore1
 PARTITION
BY InStocks HASH (Ts)
 PARTITIONS 3;

CHAPTER 6: Advanced CCL Programming Techniques

82 SAP Sybase Event Stream Processor

Guidelines for Partitioning Joins
General guidelines, tips, and examples of partitioning joins.

It is recommended that you partition joins using only HASH or CUSTOM partitioning
methods as the ROUNDROBIN partitioning method typically produces inconsistent join
results. You can specify a partitioning method for only a subset of the join inputs with data
from the other join inputs being broadcast to all parallel join instances. For example, if a join
element has three input windows but you only specify HASH partitioning for Input1, then the
other two inputs (Input2 and Input3) are broadcast by default.

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 83

Choosing a Partitioning Key
When using the HASH partitioning method, it is recommended that you use a hash key for
each join input that is a subset of the join key for this input. For example, for join window
InputWindow1, the join conditions are InputWindow1.key1 and InputWindow1.key2. The
join keys for InputWindow1 are InputWindow1.key1 and InputWindow1.key2, so it is
recommended that you choose a hash key for InputWindow that is either InputWindow1.key1
or InputWindow1.key2. Using different logic can break the original join semantics and
produce unexpected results.

Similarly, when using the CUSTOM partitioning method, design the partitioning logic so that
it is in line with the join keys. For example, for the join window below, you can only specify a
partition method on W1 or W2. For W1, meaningful hash keys are (Key1W1), (Key2W1), and
(Key1W1, Key2W1). For W2, meaningful hash keys are (Key1W2), (Key2W2), and
(Key1W2, Key2W2). If you use HASH partitioning for both W1 and W2, then meaningful
hash key pairs are (Key1W1) - (Key1W2), (Key2W1) - (Key2W2), and (Key1W1, Key2W1) -
(Key1W2, Key2W2).

CREATE INPUT WINDOW W1 SCHEMA (Key1W1 integer, Key2W1 string, Val1W1
integer, Val2W1 string) PRIMARY KEY (Key1W1, Key2W1);
CREATE INPUT WINDOW W2 SCHEMA (Key1W2 integer, Key2W2 string, Val1W2
integer, Val2W2 string) PRIMARY KEY (Key1W2, Key2W2);

CREATE OUTPUT WINDOW OW1
PRIMARY KEY (Key1W2, Key2W2)
AS SELECT W1.*, W2.*
FROM W1 INNER JOIN W2 ON W1.Key1W1 = W2.Key1W2 AND W1.Key2W1 =
W2.Key2W2;

Effects of Partitioning on Outer Joins
Although partitioning is generally supported for all types of joins (inner, outer, left, right, and
full), partitioning the outer side of an outer join may change the original join semantics and
lead to different results than a nonpartitioned scenario.

Here is an example of a left outer join:
CREATE INPUT WINDOW W1 SCHEMA (KeyW1 integer, ValW1 integer) PRIMARY
KEY (KeyW1);
CREATE INPUT WINDOW W2 SCHEMA (KeyW2 integer, ValW2 integer) PRIMARY
KEY (KeyW2);

CREATE OUTPUT WINDOW OW1
PRIMARY KEY (KeyW1)
PARTITION
 BY W2 HASH (KeyW2)
PARTITIONS 2
AS SELECT W1.*, W2.*
FROM W1 OUTER JOIN W2 ON W1.KeyW1 = W2.KeyW2;

The input data of W1 is: <W1 ESP_OPS="i" KeyW1=”1”, ValW1=”100”>
The input data of W2 is: <W2 ESP_OPS="i" KeyW2=”1”, ValW2=”200”>

CHAPTER 6: Advanced CCL Programming Techniques

84 SAP Sybase Event Stream Processor

Given this input data for W1 and W2, the join result in a non-partitioned case would be <W1
ESP_OPS="i" KeyW1=”1”, ValW1=”100”, KeyW2=”1”, ValW2=”200”>.

However, because the default partitioning method for W1 is broadcast and W1 is the outer side
of the given left outer join, record <W1> is sent to both instances of the join in the partitioned
case. The join instance, which also receives the record from W2, then produces the result
record <OW1 ESP_OPS="i" KeyW1=”1”, ValW1=”100”, KeyW2=”1”,
ValW2=”200”>. The other instance also produces the result record <OW1 ESP_OPS="i"
KeyW1=”1”, ValW1=”100”>. Since W1.KeyW1 is the primary key of the join window,
depending on which of the two results arrive last at the final implicit union node, the record
contained in the final join window can be either <OW1 ESP_OPS="i" KeyW1=”1”,
ValW1=”100”, KeyW2=”1”, ValW2=”200”> or <OW1 ESP_OPS="i"
KeyW1=”1”, ValW1=”100”>.

Similar scenarios can also occur for right and full joins.

Guidelines for Partitioning Elements on Log Stores
Guidelines for sizing a log store when partitioning elements that are within a log store.

The rules below assume that the log store is dedicated to a partitioned stream. For non-join
cases, the rules are:

• When there is no retention specified, the sizing calculation is 2 * N where N is the size
allocated for the stream in the non-partitioned case.

• When there is retention on the target, the sizing calculation is N * (K + 1) where N is the
size allocated for the non-partitioned case and K is the number of partitions. This is
because each partition honors the retention clause.

In the case of joins, also include the space required to store the input to the join in the log store.
This means that the sizing calculation is N when you are partitioning the input, and N * K when
you are broadcasting the input where N is the size required to store the input.

Modularity
A module in SAP Sybase Event Stream Processor offers reusability; it can be loaded and used
multiple times in a single project or in many projects.

Modularity means organizing project elements into self-contained, reusable components
called modules, which have well-defined inputs and outputs, and allow you to encapsulate
data processing procedures that are commonly repeated.

Modules, along with other objects such as import files and the main project, have their own
scope, which defines the visibility range of variables or definitions. Any variables, objects, or
definitions declared in a scope are accessible within that scope only; they are inaccessible to
the containing scope, called the parent scope, or to any other outer scope. The parent scope can
be a module or the main project. For example, if module A loads module B and the main

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 85

project loads module A, then module A's scope is the parent scope to module B. Module A's
parent scope is the main project.

Modules have explicitly declared inputs and outputs. Inputs to the module are associated with
streams or windows in the parent scope, and outputs of the module are exposed to the parent
scope using identifiers. When a module is reused, any streams, variables, parameters, or other
objects within the module replicate, so that each version of the module exists separately from
the other versions.

You can load modules within other modules, so that module A can load module B, which can
load module C, and so on. Module dependency loops, however, are invalid. For example, if
module A loads module B, which loads A, the CCL compiler generates an error indicating a
dependency loop between modules A and B.

The CREATE MODULE statement creates a module that can be loaded multiple times in a
project, where its inputs and outputs can be bound to different parts of the larger project. The
LOAD MODULE statement allows reuse of a defined module one or more times throughout a
project. Modularity is particularly useful when used with the IMPORT statement, which allows
you to use (LOAD) modules created in a separate CCL file.

Note: All module-related compilation errors are fatal.

Module Creation and Usage
Use the CREATE MODULE statement to create a reusable module, and LOAD MODULE to load
a previously created module.

When you load a module, you can connect or bind its input streams or windows to streams in
the project. A module's outputs can be exposed to its parent's scope and referenced in that
scope using the aliases provided in the LOAD MODULE statement.

Parameters inside the module are bound to parameters in the parent scope or to constant
expressions. Stores within the module are bound to stores in the parent scope. Binding a store
within a module to a store outside the module means that any windows using the module store
instead use the bound store.

Example: Creating and Using Modules
Use basic concepts of modularity to create a module that processes raw stock trade
information and outputs a list of trades with a price exceeding 1.00.

1. Create an import file to group your schemas and allow for reuse throughout the project.
In this example, the import file is called schemas.ccl and contains:

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,

CHAPTER 6: Advanced CCL Programming Techniques

86 SAP Sybase Event Stream Processor

 Shares integer
);

Note: You can define schemas directly inside a module or project; however, this example
uses an import file to decrease code duplication and increase maintainability of the CCL.

2. In the project, create a module using the CREATE MODULE statement, and import the
import file (schemas.ccl) using the IMPORT statement.

CREATE MODULE FilterByPrice IN TradeData OUT FilteredTradeData
BEGIN
 IMPORT 'schemas.ccl';

 CREATE INPUT STREAM TradeData SCHEMA TradesSchema;
 CREATE OUTPUT STREAM FilteredTradeData SCHEMA TradesSchema
 AS SELECT * FROM TradeData WHERE TradeData.Price > 1.00;
END;

The module's input stream, TradeData, takes in a raw feed from the stock market, and
its output stream, FilteredTradeData, provides filtered results. Using the IMPORT
statement inside the module allows you to use all of the schemas grouped in the
schemas.ccl file in the module streams.

3. Load the module into your main project using the LOAD MODULE statement.
This example also shows how to connect the module to a stock market stream:
IMPORT 'schemas.ccl';

CREATE INPUT STREAM NYSEData SCHEMA TradesSchema;

LOAD MODULE FilterByPrice AS FilterOver1 IN TradeData = NYSEData
OUT FilteredTradeData = NYSEPriceOver1Data;

• The first line of the project file imports schemas.ccl, which allows the use of the
same schema as the module.

• The input stream NYSEData represents trade information from the New York Stock
Exchange.

• The LOAD MODULE statement loads the module, FilterByPrice, which is
identified by the instance name of FilterOver1.

• Binding the module's input stream, TradeData, with the input stream NYSEData
allows information to flow from the NYSEData stream into the module.

• The output of the module is exposed to the project (NYSEPriceOver1Data).
• To access the output of the module, select the information from the

NYSEPriceOver1Data stream.

Example: Parameters in Modules
Develop your understanding of parameter bindings. Create a module that defines a parameter
that can be bound to an expression or to another parameter in the parent scope.

The module FilterByPrice filters all incoming trades based on price, and outputs only
the trades that have a price greater than the value in the minimumPrice parameter.

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 87

minimumPrice can be set when FilterByPrice is loaded, or it can be bound to another
parameter within the project so that the value of minimumPrice is set when the project is
loaded on the server.

The module definition is:
CREATE MODULE FilterByPrice IN TradeData OUT FilteredTradeData
BEGIN
 IMPORT 'schemas.ccl';

 DECLARE
 parameter money(2) minimumPrice := 10.00d2;
 END;

 CREATE INPUT STREAM TradeData SCHEMA TradesSchema;
 CREATE OUTPUT STREAM FilteredTradeData SCHEMA TradesSchema AS
SELECT * FROM TradeData WHERE TradeData.Price > minimumPrice;
END;

Binding a Parameter to an Expression
In parameter to expression binding, minimumPrice binds to an expression at the time of
loading:
LOAD MODULE FilterByPrice AS FilterOver20 IN TradeData = NYSEData OUT
FilteredTradeData = NYSEPriceOver20Data PARAMETERS minimumPrice =
20.00d2;

In this type of parameter binding, the module outputs stocks only with a price greater than
20.00.

Binding a Parameter in the Module to a Parameter in the Parent Scope
In this type of binding, the parameter inside the module binds to a parameter declared in the
main project, therefore modifying the value on which trades are filtered at runtime. This is
done by creating a parameter within the project's DECLARE block, then binding the parameter
(minimumPrice) within the module to the new parameter:

DECLARE
 parameter money(2) minProjectPrice := 15.00d2;
END;

LOAD MODULE FilterByPrice AS FilterOverMinProjPrice IN TradeData =
NYSEData OUT FilteredTradeData = NYSEPriceOverMinProjPrice
PARAMETERS minimumPrice = minProjectPrice;

If no value is specified for the project's parameter (minProjectPrice) at runtime, then the
module filters based on the project parameter's default value of 15.00. However, if
minProjectPrice is given a value at runtime, the module filters based on that value.

No Parameter Binding
In this example, minimumPrice has a default value in the module definition, therefore no
parameter binding is required when loading the module. The module can be loaded as:

CHAPTER 6: Advanced CCL Programming Techniques

88 SAP Sybase Event Stream Processor

LOAD MODULE FilterByPrice AS FilterOver10 IN TradeData = NYSEData OUT
FilteredTradeData = NYSEPriceOver10Data;

Since no binding is provided in the LOAD MODULE statement, the module filters on its default
value of 10.00.

Data Recovery
A log store allows data recovery inside a window if a server fails or is shut down.

Properly specified log stores recover window elements on failure, and make sure data gets
restored correctly if the server fails and restarts. You can use log stores with windows that have
no retention policy; you cannot use log stores with stateless elements.

When using log stores:

• Log stores only store window contents.
• Log stores do not directly store intermediate state, such as variables.
• Local Flex stream variables and data structures are not directly stored. However, they may

be regenerated from source data if the source data is in persistent storage.
• Log stores do not preserve opcode information. (During periodic log store compaction and

checkpointing, only the current window state is preserved. Records are then restored as
inserts.)

• Row arrival order is not preserved. In any stream, multiple operations may be collapsed
into a single record during log store compaction, changing arrival order. Inter-stream
arrival order is not maintained.

• You can define one or more log stores in a project. When using multiple stores make sure
you prevent the occurrence of log store loops. A log store loop is created when, for
example, Window1 in Logstore1 feeds Window2 in Logstore2, which feeds
Window3 in Logstore1. Log store loops cause compilation errors.

• The contents of memory store windows that receive data directly from a log store window
are recomputed once the log store window is restored from disk.

• The contents of memory store windows that receive data from a log store window via other
memory store windows are also recomputed, once the input window's contents have been
recomputed.

• In the case of partitioning, if the input of the partition target is a stream, which is a stateless
element, then operations such as filter, compute, aggregate, and join are not supported.

• If the the input of a partitioned target is on a memory store and the target is on a log store,
this is supported only if the memory store (input element) can recover its data from an
element that is on a log store.

Note: If a memory store window receives data from a log store window via a stateless element,
for example, a delta stream or a stream, its contents are not restored during server recovery.

When you shut down the server normally, it performs a quiesce and checkpoint before it shuts
down. It is therefore able to store all data currently in the project, as the data has been fully

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 89

processed and is in a stable state. When an abnormal system shutdown occurs between
checkpoints, there is no way of knowing the state of the system or where the uncheckpointed
data was. Therefore, the uncheckpointed data on the input windows attached to log stores is
replayed by streaming events down the project as though they were going through the input
windows for the first time. The uncheckpointed data is replayed in an attempt to attain a state
as close as possible to the state of ESP before the abnormal shutdown.

Log stores are periodically compacted, at which point all data accumulated in the store is
checkpointed and multiple operations on the same key are collapsed. After a checkpoint, the
store continues appending incoming data rows to the end of the store until the next checkpoint.

Note: The recovery of data written to the store, but not yet checkpointed, is available for input
windows only. SAP recommends that when you assign a window to a log store, you also assign
all of its input windows to a log store. Otherwise, data written to the window after the last
checkpoint is not restored.

Unlike memory stores, log stores do not extend automatically. Use the CCL maxfilesize
property to specify log store size. The size of a log store is extremely important. Log stores that
are too small can cause processing to stop due to overflow. They can also cause significant
performance degradation due to frequent cleaning cycles. A log store that is too large can
hinder performance due to larger disk and memory requirements.

Log Store Optimization Techniques
Specify persistence to optimize data models for maximum performance.

• Whenever possible, create a small log store to store static (dimension) data, and one or
more larger log stores for dynamic (fact) data.

• If you are using multiple log stores for larger, rapidly changing, dynamic (fact) data, try to
organize the stores on different RAID volumes.

• The correct sizing of log stores is extremely important. See Sizing a Log Store in the
Configuration and Administration Guide.

Error Streams
Error streams gather errors and the records that caused them.

Description
The error stream provides a means to capture error information along with the data that caused
the error. This can assist in debugging errors during development. It can also provide real-time
monitoring of projects in a production environment.

You can specify more than one error stream in a single project.

An error stream is identical to other user-defined streams, except it:

CHAPTER 6: Advanced CCL Programming Techniques

90 SAP Sybase Event Stream Processor

• Receives records from its source stream or window only when there is an error on the
source stream or window. The record it receives is the input to the source stream or window
that caused the error.

• Has a predefined schema that cannot be altered by the user.

Schema

Column Datatype Description

errorCode integer The numeric code for the error that was reported

errorRecord binary The record that caused the error

errorMessage string Plain text message describing the error

errorStreamName string The name of the stream on which this error was reported

sourceStream-
Name

string The name of the stream that sent the record that caused the error

errorTime bigdatetime The time the error occurred: a microsecond granularity time-
stamp

Error Codes and Corresponding Values

• NO_ERR - 0
• GENERIC_ERROR - 1
• FP_EXCEPTION - 2
• BADARGS - 3
• DIVIDE_BY_ZERO - 4
• OVERFLOW_ERR - 5
• UNDERFLOW_ERR - 6
• SYNTAX_ERR - 7

Limitations
The syntax of the error stream provides a mechanism for trapping runtime errors, subject to
these limitations:

• Only errors that occur during record computation are captured in error streams. Errors in
computations that occur at server start-up, such as evaluation of expressions used to
initialize variables and parameters, are not propagated to error streams. Other errors, such
as connection errors and noncomputational errors, are not captured in error streams.

• Errors occurring during computations that happen without a triggering record, such as in
the ON START TRANS and ON END TRANS blocks of a flex block, propagate an error
record where the errorRecord field contains an empty record.

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 91

• For the recordDataToRecord built-in, the stream name must be a string literal constant.
This limitation is so that a record type of the return value of the built-in can be determined
during compilation.

• The triggering record must be retrieved using provided built-ins. No native nested record
support is provided to refer to the record directly.

• The triggering record reported is the immediate input for the stream in which the error
happened. This may be a user-defined stream or an intermediate stream generated by the
compiler. When using the recordDataToString and recordDataToRecord built-ins, the first
argument must match the intermediate stream if one has been generated.

• The subscription utility does not automatically decrypt (convert from binary to ASCII) the
error record.

• Output adapters do not automatically decrypt (convert from binary to ASCII) the error
record.

• Arithmetic and conversion errors occurring in external functions (C and Java) are not
handled; such errors are the users responsibility.

• Error streams are not guaranteed to work within the debugger framework.

Monitoring Streams for Errors
Use error streams to monitor other streams for errors and the events that cause them.

Process

1. Identify the project and the specific streams to monitor.
2. Determine whether to use multiple error streams. Determine the visibility for each error

stream.
3. Create the error streams in that project.
4. Display some or all of the information from the error streams in the error record, that is,

information aggregated or derived from the error records.

Examples
In a project that has one input stream and two derived streams, create a locally visible error
stream to monitor all three streams using:
CREATE ERROR STREAM AllErrors ON InputStream, DerivedStream1,
DerivedStream2;

To keep a count of the errors according to the error code reported, add:
CREATE OUTPUT WINDOW errorHandlerAgg SCHEMA (errorNum integer, cnt
long)
PRIMARY KEY DEDUCED
AS
SELECT e.errorCode AS errorNum, COUNT(*) AS cnt
FROM AllErrors e
GROUP BY e.errorCode
;

CHAPTER 6: Advanced CCL Programming Techniques

92 SAP Sybase Event Stream Processor

In a project that has three derived streams, create an externally visible error stream to monitor
only the third derived stream (which calculates a volume weighted average price) using:
CREATE OUTPUT ERROR STREAM vwapErrors ON DerivedStream3;

To convert the format of the triggering record from binary to string, add:
CREATE OUTPUT vwapMessages SCHEMA (errorNum integer, streamName
string, errorRecord string) AS
SELECT e.errorcode AS errorNum,
 e.streamName AS streamName,
 recordDataToString(e.sourceStreamName, e.errorRecord) AS
errorRecord
FROM vwapErrors e;

To convert the format of the triggering record from binary to record, add:
CREATE OUTPUT vwapMessages SCHEMA (errorNum integer, streamName
string, errorRecord string) AS
SELECT e.errorcode AS errorNum,
 e.streamName AS streamName,
 recordDataToRecord(e.sourceStreamName, e.errorRecord) AS
errorRecord
FROM vwapErrors e;

CHAPTER 6: Advanced CCL Programming Techniques

Programmers Guide 93

CHAPTER 6: Advanced CCL Programming Techniques

94 SAP Sybase Event Stream Processor

CHAPTER 7 Zero Data Loss

Zero data loss protects a project against data loss in the event of a client failure, server failure,
or both. Achieving zero data loss requires a judicious use of log stores when you set up the
project, as well as configuration of project options and clients that use guaranteed delivery
(GD).

With zero data loss,

• Event Stream Processor recovers windows protected by one or more log stores to a
consistent state as of the most recent checkpoint. (Any uncheckpointed data is lost and
must be sent again by the publisher.)

• Clients can be confident they will not miss any events.
• Clients can minimize the number of duplicate events they receive by controlling how

frequently they issue GD commits.
• Publishers can ensure that the data they publish is fully processed by the server and thereby

reduce transmission of duplicates when the server restarts.
• You can optionally configure the server to control how frequently it issues automatic

checkpoints and thus control how much uncheckpointed data is liable to be lost on a server
failure.

• At the expense of performance, you can minimize (but not fully eliminate) the production
of duplicate rows on server or subscriber restart by tweaking how frequently the server
checkpoints data and how frequently GD subscribers issue GD commits.

Consistent Recovery
Consistent recovery lets you set up a project that can recover its data if it is interrupted by a
server or connection failure.

The consistent recovery feature can restore all the windows in a project to a consistent state
after a server or connection failure. (Recovery consistency depends on following guidelines
for log stores.) When consistent recovery is enabled, the server uses coordinated checkpoints
to save data in log stores. When any log store fails to complete a checkpoint, all the log stores
for that project roll back to their state as of the previous successful checkpoint. This rule
ensures that even if a server or connection fails, all log stores in a project are consistent with
one another. However, any input data that has not been checkpointed is not recovered upon
restart.

You enable consistent recovery in the project configuration (CCR file), either in Studio or by
manually editing the CCR file. See the Studio Users Guide for details.

Programmers Guide 95

Enabling consistent recovery has no effect if there are no log stores in the project. When you
enable consistent recovery for a project, place the log stores on a shared drive where all the
machines in the Event Stream Processor cluster have access to them.

In consistent recovery mode, a project treats commits issued by publishers as checkpoint
requests. When the publisher receives the return of a commit from the project, it can notify its
source that the data in question has been processed.

All guaranteed delivery subscribers to a window stored in a log store receive checkpoint
notifications. GD subscribers can use this notification as an indication that it is safe to commit
data in its target.

Consistent recovery works well with projects configured for cold failover if log stores are set
up following the log store guidelines. When a project set for cold failover stops responding,
the cluster restarts the project, typically on another host. Consistent recovery enables the
restarted project to come back up to a consistent state corresponding to the last checkpoint.
SAP does not recommend using consistent recovery with HA active-active mode (dual project
instances) because there is no guarantee that the data produced in the primary instance is
identical to the data in the secondary instance. This is a consequence of the nondeterministic
nature of Event Stream Processor.

When consistent recovery is not enabled (which is the default state), the project does not
ensure that all the log stores recover to the same point in time after a server failure. Some log
stores may recover to a checkpoint state earlier in time than other log stores because the
checkpoints across log stores are not treated as an atomic operation. When there is only one
log store in the project, this is not an issue.

When you use consistent recovery, the recommendation that all input windows in a project and
their direct or indirect dependents be placed in the same log store no longer applies. On the
contrary, SAP recommends that you use multiple log stores placed on different disks to
improve performance. Using multiple log stores is possible because consistent recovery
ensures that all the log stores in the project are always consistent with each other.

See also
• Auto Checkpoint on page 96
• Guaranteed Delivery on page 98
• Achieving Zero Data Loss on page 100
• Log Store Guidelines on page 104

Auto Checkpoint
Zero data loss relies on data being checkpointed (registered and saved in the project’s log
stores). Auto checkpoint lets you configure the checkpoint interval—the number of input
transactions that triggers a checkpoint.

Checkpoints are triggered when:

CHAPTER 7: Zero Data Loss

96 SAP Sybase Event Stream Processor

• A publisher in a client application issues a commit (if the consistent recovery project
option is enabled)

• The project server determines a checkpoint is required
• The project processes the number of transactions you specified in the auto checkpoint

option
• The project shuts down cleanly
• The project restarts after an unexpected shutdown

Auto checkpoint lets you control how often log store checkpoints occur across all input
streams and windows in the project. More frequent checkpoints mean less data is lost if the
server crashes. At the maximum checkpoint frequency of every input transaction (value of 1),
all input data is protected except the data from the last transaction, which might not be
checkpointed before a crash. When you set checkpoint frequency, you make a trade-off: with
frequent checkpoints you can reduce the amount of data at risk, but performance and latency
may suffer as a result. The alternative is to increase performance but risk a larger amount of
data loss by setting infrequent checkpoints.

Setting auto checkpoint guarantees that a checkpoint occurs at least every N rows where N is
the checkpoint interval. The checkpoint itself may include more input rows because the
system ensures that all inputs (other than the input stream that triggered the checkpoint) have
consumed all the data in its input queues. The actual checkpoint may happen earlier than
called for by the auto checkpoint interval if the system decides it is necessary.

When the server completes a checkpoint, it sends checkpoint messages to GD subscribers to
notify them that all data up to the sequence number specified in the checkpoint message can be
safely recovered by the server on restart.

Setting auto checkpoint has no effect if there are no log stores in the project. Auto checkpoint
is not dependent on consistent recovery; you can use it with consistent recovery enabled or
disabled.

Note: SAP recommends that you do only one of the following:

• Enable auto checkpoint.
• Configure publishers sending data to the project to issue commits, which trigger

checkpoints.

See also
• Consistent Recovery on page 95

• Guaranteed Delivery on page 98

• Achieving Zero Data Loss on page 100

CHAPTER 7: Zero Data Loss

Programmers Guide 97

Guaranteed Delivery
Guaranteed delivery (GD) uses log stores to ensure that a GD subscriber registered with a GD
window receives all the data processed by that window even if the client is not connected when
the data is produced.

GD is supported only on windows assigned to log stores. For streams, delta streams, or
windows assigned to memory stores, consider using persistent subscribe pattern (PSP). For
information on PSP, see the Studio Users Guide.

When you enable guaranteed delivery on a window that has registered guaranteed delivery
subscribers, the window stores a copy of every event it produces in its log store until all the
registered guaranteed delivery subscribers acknowledge receiving the events.

Note: The window stores copies of events only if there are registered guaranteed delivery
subscribers.

SAP recommends that when you enable guaranteed delivery and set up subscriptions, you also
enable the consistent recovery option in the project configuration (CCR file).

You can set up a GD window in Studio or directly in the CCL file using a CREATE WINDOW or
CREATE FLEX statement. Make sure to assign a log store to each GD-enabled window. Do not
create GD-enabled windows inside modules—this is not supported because you cannot attach
adapters or subscribe directly to elements in modules.

A window configured for GD also supports non-GD subscriptions. Enabling GD does not
significantly affect the window’s performance when it has no registered GD subscribers.

You can subscribe to windows configured for GD using adapters, bindings, the SDKs, or the
subscribe tool.

Adapters
Enable guaranteed delivery on the adapters that support it and configure the GD adapter
parameters. See the Adapters Guide for information on adapter support for GD.

Bindings
Enable GD on any project bindings to ensure that data is delivered to remote projects. See the
Studio Users Guide for details.

SDKs
In the SDKs, set up GD subscriptions so each client can receive data and checkpoint messages
from your project. The client, in turn, must periodically respond to the project server with a
commit message reporting the sequence number of the latest event the client has processed.
The server does not need to save events once it knows that all GD clients have processed them,
so it can free up their space for other uses.

CHAPTER 7: Zero Data Loss

98 SAP Sybase Event Stream Processor

See the C SDK Guide, the Java SDK Guide, and the .NET SDK Guide for more information.

Subscribe Tool
For testing or simple use cases, use the esp_subscribe tool to subscribe in GD mode. See the
Utilities Guide for details.

Recommendations for Guaranteed Delivery Subscribers
Follow these recommendations to reduce your chances of receiving duplicate rows or
inconsistent data after subscriber or server restart.

• Make sure the project you subscribe to is running in consistent recovery mode. See the
Studio Users Guide or the Configuration and Administration Guide for details on setting
project deployment options for consistent recovery.

• Subscribe to a window on which GD is enabled. You can identify GD-enabled windows:
• Using the supports_gd command in the esp_client utility (see the Utilities Guide for

more information)
• Using commands in the SDKs (see the C SDK Guide, the Java SDK Guide, and

the .NET SDK Guide for more information)
• Using the _ESP_Streams metadata window—look for streams that have a nonzero

entry in the supports_gd column (see the Configuration and Administration Guide for
more information)

• Send data on to your client as it arrives or buffer it locally. Issue commits for only those
messages for which you have received a checkpoint notification. If the client does not
support commits, deliver only those messages that have been checkpointed by the server
and cache the rest locally. This ensures that the client is always consistent with the server
on a restart after a client or server failure.

• To minimize data loss, SAP recommends that you do one of the following:
• Configure the publisher to issue commits frequently (see the C SDK Guide, the Java

SDK Guide, and the .NET SDK Guide for more information).
• Configure the Auto Checkpoint project deployment option to control how frequently

the client receives checkpoint messages (see the Studio Users Guide or the
Configuration and Administration Guide for details on setting project deployment
options for consistent recovery.)

• When the ESP server sends a checkpoint message, send a commit to the client or send the
buffered rows followed by a commit.

• Issue a GD commit with the last committed sequence number to ensure that the server does
not send the data again the next time the server or the subscription restarts. Note, however,
that if the server does not shut down cleanly, it resends committed events that were not
checkpointed.

See also
• Consistent Recovery on page 95

• Auto Checkpoint on page 96

CHAPTER 7: Zero Data Loss

Programmers Guide 99

• Achieving Zero Data Loss on page 100

Achieving Zero Data Loss
A lost connection or a server crash can cause data produced by a project to be lost before it is
delivered to a listening client. If you cannot afford to lose data, complete these tasks to
configure zero data loss.

Task For Instructions, see...

Create a project with a guaranteed delivery window or add a
GD window to an existing project. You can do this in Studio
or by adding CREATE WINDOW or CREATE FLEX state-
ments to the project’s CCL file.

Studio Users Guide

Programmers Reference

Set up log stores for any windows in the project that cannot
be recovered by an upstream provider. Review the guide-
lines, restrictions, and sizing instructions for log stores to
ensure that your project can accurately and completely re-
create its data after a restart.

Chapter 8, Creating a Log Store on
page 103 and all subsections

Variables and SPLASH data structures (dictionaries, vec-
tors, and event caches) do not persist in log stores and thus
cannot be recovered after a failure. Use these structures with
log stores only when:

• You can provide logic to reconstruct the structures on
restart, or

• Processing will not be affected if the structures are
missing after a restart.

–

Enable guaranteed delivery on any bindings associated with
GD-enabled windows.

Studio Users Guide

CHAPTER 7: Zero Data Loss

100 SAP Sybase Event Stream Processor

Task For Instructions, see...

Before you deploy the project, enable these options in the
project configuration (CCR) file:

• Failover
• (Optional) Auto Checkpoint

Note: SAP recommends that you enable Auto Check-
point only if you do not configure publishers of inbound
data to trigger checkpoints by issuing commits.

• Consistent Recovery

Note: SAP does not recommend enabling active-active
HA mode for projects where consistent recovery is en-
abled. Active-active mode does not safeguard against
data loss or data inconsistency when the project
switches from the primary instance to the secondary.

Studio Users Guide

Configuration and Administration
Guide

Enable guaranteed delivery on the project’s adapters.

Note: Some adapters do not support guaranteed delivery.
See the Adapter Summary in the Adapters Guide for infor-
mation on GD support.

Adapters Guide

If auto checkpoint is not enabled, configure publishers
sending data to your project to issue commits to trigger
server checkpoints. When the commit call returns, the pub-
lisher knows that the server has checkpointed the data.

Note: When a project receives data from more than one
publisher, a commit issued by one publisher triggers check-
pointing of data sent by all publishers.

Configure publishers to retransmit any data for which they
do not receive a commit confirmation.

C SDK Guide

Java SDK Guide

.NET SDK Guide

Set up guaranteed delivery subscriptions for client applica-
tions that consume data from your project.To confirm that
subscribers have received and processed data, configure
them to send GD commit calls in response to checkpoint
notifications.

C SDK Guide

Java SDK Guide

.NET SDK Guide

See also
• Consistent Recovery on page 95

• Auto Checkpoint on page 96

• Guaranteed Delivery on page 98

CHAPTER 7: Zero Data Loss

Programmers Guide 101

CHAPTER 7: Zero Data Loss

102 SAP Sybase Event Stream Processor

CHAPTER 8 Creating a Log Store

If failover is enabled, configure a log store to capture the data that flows through a project.

Note: Log stores do not store SAP Sybase Event Stream Processor event logs (cluster logs,
server logs, or project logs).

Create one log store per project. The preferred destination for log store files is the base
directory where project files are stored.

1. In the CCL editor, create a log store using the CREATE LOG STORE statement:
CREATE [DEFAULT] LOG STORE storename
PROPERTIES
filename='filepath'
 [sync={ true | false},]
 [sweepamount=size,]
 [reservepct=size,]
 [ckcount=size,]
 [maxfilesize=filesize];

2. For the filename property enter either a relative (preferred) or absolute file path for the
location of the log store:

Relative path
(preferred)

A relative path is relative to the ESP base directory. Using a
relative path means that your log store automatically points to
the base directory. Relative paths do not point to the directory
stack; this means that the path does not start with a drive letter or
slash (/).

Absolute path (not
recommended)

An absolute path points to any location on your machine,
regardless of the current working directory (base directory). For
Windows systems, an absolute path begins with the drive letter;
on UNIX and Solaris systems, the absolute path begins with a
slash (/).

The relative path location must be a shared disk accessible by all cluster nodes. The log
store path is specified in the filename property within the log store definition. Using a
relative path automatically places the log store under: <base-directory>/
<workspace-name>.<project-name>.<instance-number>. You can view
base directory definitions in the cluster configuration file (<node-name>.xml), under
the controller section.

SAP recommends that you use a relative path. To use an absolute path, first ensure that all
cluster nodes can read and write to the absolute path you specify. This means that the
location must be the same for all cluster nodes. You must also ensure that no two projects

Programmers Guide 103

use the same path for the log store location. If using a shared disk is not possible, configure
a strong affinity to ensure the project always runs on the same cluster node.

3. Enter appropriate values for the remaining properties in the CREATE LOG STORE
statement.

4. Click Compile (F7).

5. Click Run Project.

Log Store Guidelines
Special considerations for using log stores.

General Guidelines

• Locate log stores on a shared drive accessible to all the machines in the cluster.
• Keep streams and windows that change at substantially different rates in different log

stores. If a log store contains a large but nearly-static stream and a small but rapidly
changing stream, each cleaning cycle must process large amounts of data from the static
stream. Keeping streams separate optimizes cleaning cycles.

• Put into a log store any window fed by stateless elements (streams and delta streams).
• Put into a log store any window fed by more than one upstream source in the project data

flow. This is necessary for recovery because the arrival order of rows is not preserved.
• Put into a log store any window that cannot produce the same result before and after a

disruptive event such as a server crash, based on data replayed during the recovery process.
• Log stores use window names internally for identification. Start a new file for a log store

when renaming a window it is attached to.
• Variables and SPLASH data structures (dictionaries, vectors, and event caches) do not

persist in log stores and thus cannot be recovered after a failure. Use these structures with
log stores only when:
• You can provide logic to reconstruct the structures on restart, or
• Processing will not be affected if the structures are missing after a restart.

Guidelines for Guaranteed Delivery
All the general guidelines above apply to log stores for windows with guaranteed delivery. In
addition:

• Because copies of events are kept in the same log store the window is assigned to, the log
store for a guaranteed delivery window must be significantly larger than the log store for a
similar window without guaranteed delivery. Ensure that the log store for every guaranteed
delivery window is large enough to accommodate the required events. If the log store runs
out of room, the project server shuts down.

• Put into a log store any window on which GD is enabled and all input windows that feed
GD windows. You can put windows located between the input and GD windows in a
memory store if upon restart they can be reconstructed to exactly the same state they were

CHAPTER 8: Creating a Log Store

104 SAP Sybase Event Stream Processor

in before the server went down. If an intermediate window cannot be reconstructed to its
previous state, put it in a log store.
• If consistent recovery is not enabled, put the GD windows and all their feeder windows

into the same log store. Note, however, that placing many windows in the same log
store adversely affects performance.

• If consistent recovery is enabled, you can employ as many log stores for your GD and
feeder windows as necessary.

See also
• Sizing a Log Store on page 105

• Log Store Sizing Reference on page 109

Sizing a Log Store
Calculate the size of the log store your project requires. Correctly sizing your log store is
important, as stores that are too small or large can lead to performance issues.

You will start this procedure by calculating your project’s internal record size. An internal
record represents a row in an Event Stream Processor window. Each row contains a fixed-size
header plus a variable-size payload containing the column offsets, column data, and any
optional fields. Use this formula for the calculation in step 1 on page 106:

In the formula,

M represents the number of columns
PS represents the primitive datatype size for each of the M columns

Primitive datatypes are the building blocks that make up more complex structures such as
records, dictionaries, vectors, and event caches. This table gives the size for datatype.

Table 3. Primitive Datatype Sizes

Datatype Size in Bytes Notes

Boolean 1

Decimal 18

Integer 4

Long 8

String 1 + number of characters in the string Estimate an average length

CHAPTER 8: Creating a Log Store

Programmers Guide 105

Datatype Size in Bytes Notes

Float 8

Money(n) 8

Date 8

Time 8

Timestamp 8

BigDateTime 8

Binary 4 + number of bytes in the binary value Estimate an average length

Note: Guaranteed delivery (GD) logs hold events stored for delivery. If no GD logs are stored
in the log store, you have the option of skipping step 1 on page 106, step 2 on page 107, and
step 3 on page 107. Instead, compute the dataSize using the Playback feature in Studio or the
esp_playback utility to record and play back real data to get a better idea of the amount of data
you need to store. (See the Studio Users Guide for details on Playback or the Utilities Guide
for details on esp_playback.) The log store reports “liveSize” in the server log when the
project exits (with log level three or higher) or after every compaction (with log level six or
higher). Use the “liveSize” value for the dataSize referenced in step 2 on page 107 and
beyond.

1. For each window, calculate the size of an internal record. If the window supports GD,
compute the size for the GD logs separately.

For purposes of illustration, use this schema:
CREATE SCHEMA TradesSchema AS (
 TradeId LONG,
 Symbol STRING,
 Price MONEY(4),
 Volume INTEGER,
 TradeDate BIGDATETIME
);

a) Using the primitive sizes from the Table 3. Primitive Datatype Sizes on page 105 table,
compute the column values—the total size in bytes for the datatypes in the schema. For
the sample schema, assuming an average STRING length of 4, the calculation is:
8 + (4 + 1) + 8 + 4 + 8 = 33 bytes

b) Add the size of the offsets to the size of the column values. The offsets are calculated as
(4 * M) where M is the number of columns. Plugging in the sample schema’s five
columns, we get:
(4 * 5) + 33 = 53 bytes

c) Add the size of the row header, which is always 56 bytes:
56 + 53 = 113 bytes

CHAPTER 8: Creating a Log Store

106 SAP Sybase Event Stream Processor

d) Round up to the nearest number divisible by:

• 8 if ESP is running on a 64-bit architecture
• 4 if ESP is running on a 32-bit architecture

For a 64-bit installation, use this formula:
URS + (8 - (URS modulo 8))

where URS is the unrounded record size value you computed in step 1.c. (For a 32-bit
installation, substitute a 4 for each 8 in the formula.) Continuing with our example,
where we assume ESP is running on a 64-bit machine,
113 + (8 - (1)) = 120 bytes

e) Label your result recordSize and make a note of it.

2. Estimate the maximum amount of data, in bytes, that you expect to collect in the log store.
To do this you must determine the maximum number of records each window assigned to
the log store will contain. If the window supports guaranteed delivery, treat the GD logs as
a separate window, and for the record count use the maximum number of uncommitted
rows you expect the GD logs to contain for this window. Add 1000 to this value because
GD logs are purged only when there are at least 1000 fully committed events.

Next, for each window, determine the data size by multiplying the expected record count
by the recordSize you computed in step 1.e on page 107. Sum the data size for all the
windows and GD logs to get the total size of the data that will be stored in the log store.
Label this value dataSize.

Also sum the record counts for each window and GD log assigned to this log store and label
that value recordCount.

3. To calculate the basic indexing overhead, multiply the recordCount from step 2 by 96
bytes. Add the result to the dataSize value.

4. Choose the value of the reservePct parameter. The required store size, in bytes, including
the reserve, is calculated as:

storeBytes = dataSize * 100 / (100 - reservePct)

where dataSize is the value you computed in step 3.

Round storeBytes up to the next megabyte.

5. Ensure the reserve cannot be overrun by the uncheckpointed data.

Estimate the maximum amount of uncheckpointed data that is produced when the input
queues of all the streams, except source streams, are full. The records in the queues that are
located early in the sequence must be counted together with any records they produce as
they are processed through the project. Include the number of output records that are
produced by the stream for each of its input records.

This example shows the stream queue depth set to the default of 1024, for a log that
contains four streams ordered like this:
source --> derived1 --> derived2 --> derived3

CHAPTER 8: Creating a Log Store

Programmers Guide 107

a) Determine the number of records that are produced by each stream as it consumes the
contents of its queue:
• 1024 records may end up in derived1's input queue. Assuming the queue

produces one output record for one input record, it produces 1024 records.
• 2048 records may end up in derived2's input queue (1024 that are already

collected on its own queue, and 1024 more from derived1). Assuming that
derived2 is a join and generates on average 2 output records for each input
record, it produces 4096 records ([1024 + 1024] * 2).

• 5120 records may end up in derived3 (1024 from its own queue and 4096 from
derived2). Assuming a pass-through ratio of 1, derived3 produces 5120
records.

When the project’s topology is not linear, you must take all branches into account. The
pass-through ratio may be different for data coming from the different parent streams.
You must add up the data from all the input paths. Each stream has only one input
queue, so its depth is fixed, regardless of how many parent streams it is connected to.
However, the mix of records in each queue may vary. Assume the entire queue is
composed from the records that produce that highest amount of output. Some input
streams may contain static data that is loaded once and never changes during normal
work. You do not need to count these inputs. In the example, derived2 is a join
stream, and has static data as its second input.

b) Calculate the space required by multiplying the total number of records by the average
record size of that stream.
For example, if the records in derived1 average 100 bytes; derived2, 200 bytes;
and derived3, 150 bytes, the calculation is:

(1024 * 100) + (4096 * 200) + (5120 * 150) = 1,689,600

Trace the record count through the entire project, starting from the source streams
down to all the streams in the log store. Add the data sized from the streams located in
the log store.

c) Multiply the record count by 96 bytes to calculate the indexing overhead and add the
result to the volume in bytes:

(1024 + 4096 + 5120) * 96 = 983,040

1,689,600 + 983,040 = 2,672,640

Verify that this result is no larger than one quarter of the reserve size:

uncheckpointedBytes < storeBytes * (reservePct / 4) / 100

If the result is larger than one quarter of the reserve size, increase the reserve percent
and repeat the store size calculation. Uncheckpointed data is mainly a concern for
smaller stores. Other than through the uncheckpointed data size, this overhead does not

CHAPTER 8: Creating a Log Store

108 SAP Sybase Event Stream Processor

significantly affect the store size calculation, because the cleaning cycle removes it and
compacts the data.

6. When you create the log store, place storeBytes, the log store size value you arrive at here,
in the CREATE LOG STORE statement’s maxfilesize parameter.

See also
• Log Store Guidelines on page 104

• Log Store Sizing Reference on page 109

Log Store Sizing Reference
Set sizing parameters for a log store in a CREATE LOG STORE statement in the project’s CCL
file.

The CREATE LOG STORE parameters described here control the size and behavior of the log
store.

maxfilesize Parameter

The maximum file size is the largest size, in bytes, that the log store file is allowed to reach. See
Sizing a Log Store for instructions on calculating this value.

Unlike memory stores, log stores do not extend automatically. Sizing log stores correctly is
important. A store that is too small requires more frequent cleaning cycles, which severely
degrades performance. In the worst case, the log store can overflow and cause processing to
stop. A store that is too large also causes performance issues due to the larger memory and disk
footprint; however, these issues are not as severe as those caused by log stores that are too
small.

reservePct Parameter
The reserve is intermediate or free space maintained in every log store. It is used when the
store is resized and during periodic cleaning of the store. The reservePct value is a percentage
of the size of the log store.

Note: If the reserve space is too small and the project runs until the store fills with data, a resize
attempt may cause the store to become wedged. This means that it cannot be resized, and the
data can be extracted from it only by SAP Technical Support. It is safer to have too much
reserve than too little. The default of 20 percent is adequate in most situations. Multigigabyte
stores may use a reduced value as low as 10 percent. Small stores, under 30MB, especially
those with multiple streams, may require a higher reserve (up to 40 percent). If you find that 40
percent is still not enough, increase the size of the store.

Event Stream Processor automatically estimates the required reserve size and increases the
reserve if it is too small. This usually affects only small stores. It is a separate operation from
resizing the log store itself, which must be performed by a user.

CHAPTER 8: Creating a Log Store

Programmers Guide 109

Note: Increasing the reserve reduces the amount of space left for data. Monitor server log
messages for automatic adjustments when you start a new project. You may need to increase
the store size if these messages appear.

As the store runs, more records are written into it until the free space falls below the reserve. At
this point, the source streams are temporarily stopped, the streams quiesced, and the
checkpoint and cleaning cycle are performed. Streams do not quiesce immediately: they must
first process any data collected in their input queues. Any data produced during quiescence is
added to the store, meaning that the reserve must be large enough to accommodate this data
and still have enough space left to perform the cleaning cycle. If this data overruns the reserve,
the store becomes wedged, because it cannot perform the cleaning cycle. The automatic
reserve calculation does not account for uncheckpointed data.

Log Store Size Warnings
As the amount of data in the store grows, if the free space falls below 10 percent (excluding the
reserve), Event Stream Processor starts reporting "log store is nearing
capacity" in the server log. If the data is deleted from the store in bursts, (for example, if
data is collected during the day, and data older than a week is discarded at the end of the day),
these messages may appear intermittently even after the old data has been flushed. As the
cleaning cycle rolls over the data that has been deleted, the messages disappear.

Unless your log store is very small, these warnings appear before the store runs out of space. If
you see them, stop Event Stream Processor when convenient, and increase the store size.
Otherwise, Event Stream Processor aborts when the free space in the project falls below the
reserve size.

Recovering from a Wedged Log Store
If a log store is sized incorrectly, the entire reserve may be used up, which causes the store to
become wedged. If this happens, you cannot resize the log store or preserve the content. Delete
the store files and restart Event Stream Processor with a clean store. If you make a backup of
the store files before deleting them SAP Technical Support may be able to extract content.
Change the store size in the project, and it is resized on restart. You cannot decrease the store
size. When you restart a project after resizing the store, it will likely produce server log
messages about the free space being below the reserve until the cleaning cycle assimilates the
newly added free space.

ckcount Parameter
The ckcount (checkpointing count) parameter affects the size of uncheckpointed data. This
count shows the number of records that may be updated before writing the intermediate index
data. Setting it to a large value amortizes the overhead over many records to make it almost
constant, averaging 96 bytes per record. Setting it to a small value increases the overhead.
With the count set to zero, index data is written after each transaction, and for the single-
transaction records the overhead becomes:

96 + 32 * ceiling (log2(number_of_records_in_the_stream))

CHAPTER 8: Creating a Log Store

110 SAP Sybase Event Stream Processor

If a stream is small (for example, fewer than 1000 records), the overhead for each record is:

96 + 32 * ceiling (log2(1000)) = 96 + 32 * 10 = 416

In many cases, the record itself is smaller than its overhead of 416 bytes. Since the effect is
logarithmic, large streams are not badly affected. A stream with a million records has a
logarithm of 20 and incurs an overhead of 736 bytes per record. The increased overhead
affects performance by writing extra data and increasing the frequency of store cleaning.

If your project includes any windows configured for guaranteed delivery (GD), consider
adjusting the value of ckcount to improve performance and latency.

sweepamount Parameter
The sweepamount parameter determines how much of the log file is “swept through” during
each cleaning pass. It must be between 5 percent to 20 percent of the maxfilesize parameter. A
good lower bound for the sweep size is half the size of the write cache on your storage array.
Usually, it indicates a sweep size of 512 to 1024 megabytes. Smaller sweep sizes minimize
spikes in latency at the expense of a higher average latency. High values give low average
latency, with higher spikes when reclaiming space.

If the value of the sweepamount parameter is too small, the system performs excessive
cleaning; in some cases, this does not allow the log store to free enough space during cleaning.

The size of the sweep is also limited by the amount of free space left in reserve at the start of the
cleaning cycle. If the reserve is set lower than the sweep amount and the sweep does not
encounter much dead data, the sweep stops if the relocated live data fills up the reserve. The
swept newly cleaned area becomes the new reserve for the next cycle. Unless other factors
override, SAP recommends that you keep the sweep and the reserve sizes close to each other.
reservePct is specified in percent while sweepamount is specified in megabytes.

If your project includes any windows configured for guaranteed delivery (GD), consider
adjusting the value of sweepamount to improve performance and latency.

Log Store Size and File Locations
Ensure the total size of all log store files does not exceed the size of the machine’s available
RAM. If this occurs, the machine takes longer to process the data, causing all monitoring tools
to display low CPU utilization for each stream, and standard UNIX commands such as vmstat
to display high disk usage due to system paging.

For storing data locally using log stores, SAP recommends that you use a high-speed storage
device, for example, a redundant array of independent disks (RAID) or a storage area network
(SAN), preferably with a large dynamic RAM cache. For a moderately low throughput, place
backing files for log stores on single disk drives, whether SAS, SCSI, IDE, or SATA.

See also
• Log Store Guidelines on page 104

• Sizing a Log Store on page 105

CHAPTER 8: Creating a Log Store

Programmers Guide 111

CHAPTER 8: Creating a Log Store

112 SAP Sybase Event Stream Processor

CHAPTER 9 Writing SPLASH Routines

Reviewing samples of SPLASH code is the best way to familiarize yourself with its
constructs.

These code samples show how to use SPLASH. To see projects utilizing SPLASH that you can
run on your Event Stream Processor, refer to Using SPLASH In Projects.

Internal Pulsing
A stock market feed is a good example of several updates flowing into a stream.

Suppose the stock market feed keeps the last tick for each symbol. Some of the downstream
calculations might be computationally expensive, and you might not need to recalculate on
every change. You might want to recalculate only every second or every ten seconds. How can
you collect and pulse the updates so that the expensive recalculations are done periodically
instead of continuously?

The dictionary data structure and the timer facility allow you to code internal pulsing. Let's
suppose that the stream to control is called InStream. First, define two local variables in the
Flex operator:
integer version := 0;
dictionary(typeof(InStream), integer) versionMap;

These two variables keep a current version and a version number for each record. The
SPLASH code handling events from the input stream is:
{
 versionMap[InStream] := version;
}

The special Timer block within the Flex operator sends the inserts and updates:
{
 for (k in versionMap) {
 if (version = versionMap[k])
 output setOpcode(k, upsert);
 }
 version++;
}

You can configure the interval between runs of the Timer block in numbers of seconds. Only
those events with the current version get sent downstream, and the version number is
incremented for the next set of updates.

This code works when InStream has only inserts and updates. It's a good exercise to extend this
code to work with deletes.

Programmers Guide 113

Order Book
One example inspired by stock trading maintains the top of an order book.

Suppose there is a stream called Bid of bids of stocks (the example is kept simple by not
considering the offer side), with records of the type:
[integer Id; | string Symbol; float Price; integer Shares;]

where Id is the key field, the field that uniquely identifies a bid. Bids can be changed, so not
only might the stream insert a new bid, but also update or delete a previous bid.

The goal is to output the top three highest bids any time a bid is inserted or changed for a
particular stock. The type of the output where Position ranges from 1 to 3 is:
 [integer Position; | string Symbol; float Price; integer Shares;]

For example, suppose the Bids have been:
[Id=1; | Symbol='IBM'; Price=43.11; Shares=1000;]
[Id=2; | Symbol='IBM'; Price=43.17; Shares=900]
[Id=3; | Symbol='IBM'; Price=42.66; Shares=800]
[Id=4; | Symbol='IBM'; Price=45.81; Shares=50]

With the next event:
[Id=5; | Symbol='IBM'; Price=46.41; Shares=75]

The stream should output the records
[Position=1; Symbol='IBM'; | Price=46.41; Shares=75]
[Position=2; Symbol='IBM'; | Price=45.81; Shares=50]
[Position=3; Symbol='IBM'; | Price=43.17; Shares=900]

Note: The latest value appears at the top.

One way to solve this problem is with an event cache that groups by stock and orders the events
by price:
eventCache(Bids[Symbol], coalesce, Price desc) previous;

The following code outputs the current block of the order book, down to the level specified by
the depth variable.

{
 integer i := 0;
 string symbol := Bids.Symbol;
 while ((i < count(previous.Id)) and (i < depth)) {
 output setOpcode([Position=i; Symbol = symbol; |
 Price=nth(i,previous.Price);
 Shares=nth(i,previous.Shares);
], upsert);
 i++;
 }
 while (i < depth) {

CHAPTER 9: Writing SPLASH Routines

114 SAP Sybase Event Stream Processor

 output setOpcode([Position=i; Symbol=symbol], safedelete);
 i++;
 }
}

CHAPTER 9: Writing SPLASH Routines

Programmers Guide 115

CHAPTER 9: Writing SPLASH Routines

116 SAP Sybase Event Stream Processor

CHAPTER 10 Integrating SPLASH into CCL

CCL uses Flex operators to execute SPLASH code to process events. They have local
declaration blocks, which are blocks of SPLASH function and variable declarations. They
also have one method block per input stream and an optional timer block also written in
SPLASH.

Access to the Event
When an event arrives at a Flex operator from an input stream, the method for that input stream
is run.

The SPLASH code for that method has two implicitly declared variables for each input
stream: one for the event and one for the old version of the event. More precisely, if the input
stream is named InputStream, the variables are:

• InputStream, with the type of record events from the input stream, and

• InputStream_old, with the type of record events from the input stream.

When the method for input stream is run, the variable InputStream is bound to the event
that arrived from that stream. If the event is an update, the variable InputStream_old is
bound to the previous contents of the record, otherwise it is null.

Note: Delete events always come populated with the data previously held in the input stream.

A Flex operator can have more than one input stream. For instance, if there is another input
stream called AnotherInput, the variables AnotherInput and AnotherInput_old are
implicitly declared in the method block for InputStream. They are set to null when the method
block begins, but can be assigned within the block.

Access to Input Windows
Within method and timer code in Flex operators, you can examine records in any of the input
windows.

More precisely, there are implicitly declared variables:

• <InputWindowName>_stream and

• <InputWindowName>_iterator.

The variable <WindowName>_stream is quite useful for looking up values. The
<WindowName>_iterator is less commonly used and is for advanced users.

Programmers Guide 117

For example, suppose you are processing events from an input stream called Trades, with the
following records:
[Symbol='T'; | Shares=10; Price=22.88;]

You might have another input window called Earnings that contains recent earnings data,
storing records:
[Symbol='T'; Quarter="2008Q1"; | Value=10000000.00;]

In processing events from Earnings, you can look up the most recent Trades data using:
Trades := Trades_stream[Earnings];

The record in the Trades window that has the same key field Symbol. If there is no matching
record in the Trades window, the result is null.

When processing events from the Trades window, you can look up earnings data using:
Earnings := Earnings_stream{ [Symbol = Trades.Symbol; |] };

The syntax here uses curly braces rather than square brackets because the meaning is different.
The Trades event does not have enough fields to look up a value by key in the Earnings
window. In particular, it's missing the field called Quarter. The curly braces indicate "find any
record in the Earnings window whose Symbol field is the same as Trades.Symbol". If
there is no matching record, the result is null.

If you have to look up more than one record, you can use a for loop. For instance, you might
want to loop through the Earnings window to find negative earnings:
for (earningsRec in Earnings_stream) {
 if ((Trades.Symbol = Earnings.Symbol) and (Earnings.Value < 0)) {
 negativeEarnings := 1;
 break;
 }
}

As with other for loops in SPLASH, the variable earningsRec is a new variable whose
scope is the body of the loop. You can write this slightly more compactly:
for (earningsRec in Earnings_stream where Symbol=Trades.Symbol) {
 if (Earnings.Value < 0) {
 negativeEarnings := 1;
 break;
 }
}

This loops only over the records in the Earnings window that have a Symbol field equal to
Trades.Symbol. If you happen to list the key fields in the where section, the loop runs
very efficiently. Otherwise, the where form is only nominally faster than the first form.

Using a Flex operator, you can access records in the window itself. For instance, if the Flex
operator is called Flex1, you can write a loop just as you can with any of the input windows:

CHAPTER 10: Integrating SPLASH into CCL

118 SAP Sybase Event Stream Processor

for (rec in Flex1) {
 ...
}

Output Statement
Typically, a Flex operator method creates one or more events in response to an event. In order
to use these events to affect the store of records, and to send downstream to other streams, use
the output statement.

Here's code that breaks up an order into ten new orders for sending downstream:
integer i:= 0;
while (i < 10) {
 output setOpcode([Id = i; |
 Shares = InStream.Shares/10;
 Price = InStream.Price;], upsert);
}

Each of these is an upsert, which is a particularly safe operation; it gets turned into an insert if
no record with the key exists, and an update otherwise.

Notes on Transactions
A Flex operator method processes one event at a time. The Event Stream Processor can,
however, be fed data in transaction blocks (groups of insert, update, and delete events).

In such cases, the method is run on each event in the transaction block. The Event Stream
Processor maintains an invariant: a stream takes in a transaction block, and produces a
transaction block. It's always one block in, one block out. The Flex operator pulls apart the
transaction block, and runs the method on each event within the block. All of the events that
output are collected together. The Flex operator then atomically applies this block to its
records, and sends the block to downstream streams.

If you happen to create a bad event in processing an event, the whole block is rejected. For
example, if you try to output a record with any null key columns.
output [| Shares = InStream.Shares; Price = InStream.Price;];

This whole transaction block would be rejected. Likewise, if you try the following implicit
insert:
output [Id = 4; |
 Shares = InStream.Shares;
 Price = InStream.Price;];

If there is already a record in the Flex operator with Id set to 4, the block is rejected. You can get
a report of bad transaction blocks by starting the Event Stream Processor with the -B option.

CHAPTER 10: Integrating SPLASH into CCL

Programmers Guide 119

Often it's better to ensure that key columns are not null, and use setOpcode to create upsert
or safedelete events so that the transaction block is accepted.

Transaction blocks are made as small as possible before they are sent to other streams. For
instance, if your code outputs two updates with the same keys, only the second update is sent
downstream. If your code outputs an insert followed by a delete, both events are removed from
the transaction block. Thus, you might output many events, but the transaction block might
contain only some of them.

CHAPTER 10: Integrating SPLASH into CCL

120 SAP Sybase Event Stream Processor

CHAPTER 11 Using SPLASH in Projects

Two projects demonstrate how SPLASH is used.

This project displays the top three prices for each stock symbol.

CREATE SCHEMA TradesSchema (
 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

/* **
 * Create a Nasdaq Trades Input Window
 */
CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;

/* **
 * Use Case a:
 * Keep records corresponding to only the top three
 * distinct values. Delete records that falls of the top
 * three values.
 *
 * Here the trades corresponding to the top three prices
 * per Symbol is maintained. It uses
 * - eventcaches
 * - local UDF
 */
CREATE FLEX Top3TradesFlex
 IN QTrades
 OUT OUTPUT WINDOW Top3Trades SCHEMA TradesSchema PRIMARY
KEY(Symbol,Price)
 BEGIN
 DECLARE
 eventCache(QTrades[Symbol], manual, Price asc)
tradesCache;
 /*
 * Inserts record into cache if in top 3 prices and
returns
 * the record to delete or just the current record if it
was
 * inserted into cache with no corresponding delete.
 */
 typeof(QTrades) insertIntoCache(typeof(QTrades)
qTrades)

Programmers Guide 121

 {
 // keep only the top 3 distinct prices per symbol in
the
 // event cache
 integer counter := 0;
 typeof (QTrades) rec;
 long cacheSz := cacheSize(tradesCache);
 while (counter < cacheSz) {
 rec := getCache(tradesCache, counter);
 if(round(rec.Price,2) = round(qTrades.Price,2)) {
 // if the price is the same update
 // the record.
 deleteCache(tradesCache, counter);
 insertCache(tradesCache, qTrades);
 return rec;
 break;
 } else if(qTrades.Price < rec.Price) {
 break;
 }
 counter++;
 }

 //Less than 3 distinct prices
 if(cacheSz < 3) {
 insertCache(tradesCache, qTrades);
 return qTrades;
 } else { //Current price is > lowest price
 //delete lowest price record.
 rec := getCache(tradesCache, 0);
 deleteCache(tradesCache, 0);
 insertCache(tradesCache, qTrades);
 return rec;
 }

 return null;
 }
 END;

 ON QTrades {
 keyCache(tradesCache, [Symbol=QTrades.Symbol;|]);
 typeof(QTrades) rec := insertIntoCache(QTrades);
 if(rec.Id) {
 //When id does not match current id it is a
 //record to delete
 if(rec.Id <> QTrades.Id) {
 output setOpcode(rec, delete);
 }
 output setOpcode(QTrades, upsert);
 }
 };
 END;

This project collects data for thirty seconds and then computes the desired output values.

CREATE SCHEMA TradesSchema (

CHAPTER 11: Using SPLASH in Projects

122 SAP Sybase Event Stream Processor

 Id integer,
 TradeTime date,
 Venue string,
 Symbol string,
 Price float,
 Shares integer
)
;

/* **
 * Create a Nasdaq Trades Input Window
 */
CREATE INPUT WINDOW QTrades SCHEMA
TradesSchema PRIMARY KEY (Id)
;

/* **
 * Use Case b:
 * Perform a computation every N seconds for records
 * arrived in the last N seconds.
 *
 * Here the Nasdaq trades data is collected for 30 seconds
 * before being released for further computation.
 */
CREATE FLEX PeriodicOutputFlex
 IN QTrades
 OUT OUTPUT WINDOW QTradesPeriodicOutput SCHEMA TradesSchema
PRIMARY KEY(Symbol,Price)
 BEGIN
 DECLARE
 dictionary(typeof(QTrades), integer) cache;
 END;
 ON QTrades {
 //Whenever a record arrives just insert into
dictionary.
 //The key of the dictionary is the key to the record.
 cache[QTrades] := 0;
 };
 EVERY 30 SECONDS {
 //Cycle through event cache and output all the rows
 //and delete the rows.
 for (rec in cache) {
 output setOpcode(rec, upsert);
 }
 clear(cache);
 };
 END;

/**
 * Perform a computation from the periodic output.
 */
CREATE OUTPUT WINDOW QTradesSymbolStats
PRIMARY KEY DEDUCED
AS SELECT
 q.Symbol,
 MIN(q.Price) Minprice,

CHAPTER 11: Using SPLASH in Projects

Programmers Guide 123

 MAX(q.Price) MaxPrice,
 sum(q.Shares * q.Price)/sum(q.Shares) Vwap,
 count(*) TotalTrades,
 sum(q.Shares) TotalVolume
FROM
 QTradesPeriodicOutput q
GROUP BY
 q.Symbol
;

CHAPTER 11: Using SPLASH in Projects

124 SAP Sybase Event Stream Processor

CHAPTER 12 ESP Datatypes in SQL Queries

There are several methods of querying ESP using SQL. All SQL statements must follow these
rules for dealing with the specified datatypes in ESP.

Inserting Date and Time Data
To insert date, timestamp, and bigdatetime values into a SQL statement, use the
undate,untime, untimestamp, and unbigdatetime functions to convert the input values into
the correct datatype.
insert into win
(c_key,date,time,timestamp,bigdatetime)
values(21478,undate('2013-02-11
17:35:45'),untime(17:35:45'),untimestamp('2013-02-11 17:35:45'),
unbigdatetime('2013-02-11 17:35:45'))

Specifying Money Data
When specifying the value for money data, you must append either d or D.

insert into win
(c_key,c_money)
values(111770,8.12345d)

There are fifteen money datatypes with a fixed number of digits following the decimal point:
money1 with one digit, money2 with two digits, ... money15 with fifteen digits. When
specifying a value for one of these datatypes, you must append either d or D and the number
following money (for example d7 for money7.

insert into win
(c_key,c_money1,c_money2,c_money3,c_money4,c_money5,c_money10,c_mon
ey15)
values(111770,8.12345d1,8.12345d2,8.12345d3,8.12345d4,8.12345d5,8.1
23456789012345d10,8.123456789012345d15)

Reading and Writing Binary Data
To write binary data to ESP in a SQL statement, use the hex_binary() function to convert the
string representation of the hexadecimal value to binary.
insert into win
(c_key,c_binary)
values(111770,hex_binary('9140ACA0361856334DD319F05'))

To read binary data from ESP in an SQL statement, use the hex_string() function to convert the
binary value to a string representation of the hexadecimal value.
select c_key,hex_string(c_binary)from win

Programmers Guide 125

CHAPTER 12: ESP Datatypes in SQL Queries

126 SAP Sybase Event Stream Processor

CHAPTER 13 PowerDesigner for Event Stream
Processor

Event Stream Processor users create and manipulate the ESP schema using
PowerDesigner®.

PowerDesigner is a powerful modeling tool. Event Stream Processor users can use it develop
physical data models as well as the logical data models that define the ESP schema.

Getting Started
PowerDesigner® is a tool for creating and manipulating ESP schema. Optionally, it can be
used with physical data models.

This guide is intended for database and application development staff, and for SAP
Professional Services representatives, customer IT support, and other technical personnel
who set up and administer PowerDesigner. It includes information you need to understand,
model, and modify logical schema definitions and physical database structure when
developing schema.

Data Modeling Scenarios
Integrated modeling supports efficient schema definition and database design, and consistent
production deployments.

Using the ESP Schema and extensions, you can:

• Model schema in the ESP Schema model, a PowerDesigner logical data model
• Convert an ESP Schema logical data model to SAP HANA, ASE, or SAP Sybase IQ

physical data models
• Convert existing SAP HANA, ASE, and SAP Sybase IQ physical data models to an ESP

Schema logical data model
• Import schema definitions defined in a CCL file into an ESP Schema model
• Export schema definitions from an ESP Schema model into a CCL file
• Validate a model using custom checks for ESP Schema, in addition to the standard

PowerDesigner checks
• Analyze the impact of changes to schema, a model, or a database table on all components

in the integrated model

The corresponding adapter (IQ, HANA, ASE) schema must match the SAP Sybase IQ,
HANA, and ASE database schema for all tables in which data is inserted. After you make
changes, you can use PowerDesigner to produce a set of data definition language (DDL)

Programmers Guide 127

statements directly from the physical data models (IQ, HANA, and ASE). PowerDesigner
saves the DDL in a SQL script that you can run to generate the tables and other objects for the
target databases.

DDL generation does not require use of the extended modeling feature.

Sample PowerDesigner Project
A sample project supports integrated modeling.

You can install a PowerDesigner sample project that includes:

• A sample ESP Schema logical model
• SAP Sybase IQ, SAP HANA, and ASE physical data models

Opening the Sample Project
Open the sample model from the sample project.

1. Choose Start > Programs > Sybase > PowerDesigner 16.

2. In the Welcome dialog, under Getting started, choose Open Model or Project.

If you are not a first-time user, you may see different options in the Welcome dialog, based
on your previous work in PowerDesigner.

3. Browse to the sample project, by default in %PowerDesigner 16\Examples\ESP
\ESP.prj, and choose Open.

PowerDesigner opens a workspace for the ESP Schema sample project.

4. Double-click the ESP project ().
The sample project opens with the sample ESP Schema model, SAP Sybase IQ model,
ASE model, SAP HANA model, and the Model Relationship Diagram in the Browser
view.

Learning More About PowerDesigner
This guide tells you how to use PowerDesigner in ESP.

For more information on using PowerDesigner, press F1 to open the online help, or see the
PowerDesigner online product documentation, especially:

• Core Features Guide – PowerDesigner interface and model basics
• Data Modeling – Building, checking, and generating models and databases

To view PowerDesigner online tutorials, choose Help > Tutorial Videos.

CHAPTER 13: PowerDesigner for Event Stream Processor

128 SAP Sybase Event Stream Processor

Data Model
PowerDesigner includes a logical data model for ESP schema and three physical data models
for the SAP Sybase IQ, SAP HANA, and ASE databases.

The indexes for both physical data models are database-specific and must be defined
individually. You can open, view, modify, and extend the data models using PowerDesigner.

ESP Schema Logical Data Model
The ESP Schema model represents market data in a logical data model independent of any
data store.

The ESP Schema logical model represents the building of schema and the databases parsing
schema and storing them.

The ESP Schema model contains a definition for each schema. The schema definitions are
contained in the Market Data diagram in the sample ESP Schema model. Adding schema to
the diagram is optional.

To create a new ESP Schema model, you can:

• Create it from scratch using the ESP Schema Model category
• Create it from scratch using the ESPSchema.xem file to extend the model during or after

creation
• Generate it from an SAP Sybase IQ, SAP HANA, or ASE physical data model

Finding an Object in a Diagram
Locate any object with a symbol in a diagram or among several diagrams. Objects without
graphical symbols, such as domains, are not shown in diagrams.
Right-click an object in the Browser and select Find in Diagram.

Data Model Tables
A list of all data model tables in the Market Data diagrams with their code names and
descriptions.

Table 4. Data model tables

Table name Code Description

Bond History BOND_HISTORY Stores bond historical data, one record per
each trading date. The data includes daily
price and yield values (open/close, high/
low), trade volume (number of bonds tra-
ded), and so on, for each bond.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 129

Table name Code Description

Bond Quote BOND_QUOTE Stores real-time (intraday) quote data. Each
quote record includes a yield, bid/ask price,
and size (in other words, a number of bonds
offered at a bid/ask price).

Bond Trade BOND_TRADE Stores real-time (intraday) trade data. Each
trade record includes a bond's price and yield
and a transaction's size (number of bonds
traded).

Dividend Event DIVIDEND_EVENT Stores information on a dividend payment
event when a shareholder receives a certain
payment for each share of stock owned. The
dividend amount is commonly defined as a
certain percentage of a share price but can
also be specified as a monetary amount. The
Monetary or Percentage Indicator
(MOP_INDICATOR) column indicates how
the dividend amount is defined.

Index History INDEX_HISTORY Stores the index’s historical data, one record
per each trading date. The data includes the
index’s daily values (open/close, high/low)
and trade volume.

Index Intraday INDEX_INTRADAY Stores the index’s real-time (intraday) data
that shows its value movements during a
trading day. Each data point includes an in-
dex value and trade volume.

Mutual Fund History MUTL_FUND_HIST Stores the historical data for a mutual fund,
one record per each trading date. The data
includes a trade date and price.

Option History OPTION_HISTORY Stores the options historical data, one record
per each trading date. The data includes op-
tions daily price (open/close, high/low),
trade volume (number of contracts traded),
and so on.

Option Quote OPTION_QUOTE Stores the options real-time (intraday) quote
data. Each quote record includes a bid/ask
price, size (number of contracts offered at a
bid/ask price), and so on.

Option Trade OPTION_TRADE Stores the options real-time (intraday) trade
data. Each trade record includes a trade's
price, size (number of contracts traded), and
so on.

CHAPTER 13: PowerDesigner for Event Stream Processor

130 SAP Sybase Event Stream Processor

Table name Code Description

Split Event SPLIT_EVENT Stores information on a stock split event
when the number of outstanding shares of a
company’s stock is increased and the price
per share is simultaneously decreased so that
proportionate equity of each shareholder re-
mains the same.

The split is characterized by a split factor; a
factor of 0.5 indicates that the number of
shares is increased two times and that the
share price is decreased two times. In a less
common reverse split, the number of shares
is decreased and the price per share is in-
creased in a similar manner; a split factor of
2 indicates that the number of shares is de-
creased two times and that the share price is
increased two times.

Stock History STOCK_HISTORY Stores the stock historical data, one record
per each trading date. The data includes
stocks daily prices (open/close, high/low)
and trade volume (number of shares traded).

Stock Quote STOCK_QUOTE Stores the stocks' real-time (intraday) quote
data. Each quote record includes a bid/ask
price and corresponding size values (in other
words, a number of shares offered at bid/ask
price).

Stock Trade STOCK_TRADE Stores the stocks' real-time (intraday) trade
data. Each trade record includes a transac-
tion's price and size (in other words, a num-
ber of shares traded).

Extensions
Extensions (.xem files) provide means for customizing and extending PowerDesigner
metaclasses, parameters, and generation. Extended models can be used to store additional
information, or to change model behavior.

PowerDesigner provides four .xem files:

• ESPSchema.xem – extensions for an logical data model. Contains rules and code that let
you model ESP Schema in a PowerDesigner logical data model.

• IQ.xem – extensions for a physical data model. Contains only transformation rules needed
to convert an ESP Schema definition to an SAP Sybase IQ table definition, in an SAP
Sybase IQ model.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 131

• ASE.xem – extensions for a physical data model. Contains only transformation rules
needed to convert an ESP Schema definition to an ASE table definition, in an ASE model.

• HANA.xem – extensions for a physical data model. Contains only transformation rules
needed to convert an ESP Schema definition to an SAP HANA table definition, in a HANA
model.

When you use the models provided with PowerDesigner, the extensions are present. When
you create a new model using the ESP model category set, extensions are applied
automatically.

When you create a new model without using the ESP Model categories, or when you have an
existing model you can extend it using the PowerDesigner tools and ESP extension files.

Category Set
You can set the ESP category set to create any ESP model type.

The ESP model category set includes ESP Schema, SAP Sybase IQ, SAP HANA, and ASE
categories. To create new models from this category set, you must enable the categories in
PowerDesigner. You can either merge the ESP categories with others that you use, or change
PowerDesigner to use only the ESP categories.

Once you set up the ESP category set, you can create any ESP model type and extend it with
the appropriate extension.

The ESP.mcc file, installed with the extensions, defines the ESP categories.

Schema Definitions
A schema definition in the ESP Schema model represents a data stream in ESP.

The sample ESP Schema model contains a schema definition for each market data table. You
can customize any schema definition, or create a new one.

To create new schema in the ESP Schema model, you can either:

• Create schema in PowerDesigner, and then generate a CCL file from it, or,
• Import schema definitions that are defined in a CCL file.

Each schema definition contains:

• identifiers – associate schema with columns that are keys in the associated table.
• attributes – associate schema with a destination column name in the SAP Sybase IQ, SAP

HANA, and ASE databases with length and precision where appropriate, lookup table and
column information for columns that are foreign keys, and descriptive notes.

CHAPTER 13: PowerDesigner for Event Stream Processor

132 SAP Sybase Event Stream Processor

Sample Schema Definition List
Sample schema definitions correspond to the Market Data diagram provided with
PowerDesigner. While each schema appears in the SAP Sybase IQ, SAP HANA, and ASE
Market Data diagram, not every table in that diagram is a schema.

• Bond History
• Bond Quote
• Bond Trade
• Dividend Event
• Index History
• Index Intraday
• Mutual Fund History
• Option History
• Option Quote
• Option Trade
• Split Event
• Stock History
• Stock Quote
• Stock Trade

Impact and Lineage Analysis
PowerDesigner provides powerful tools for analyzing the dependencies between model
objects.

When you perform an action on a model object, in a single operation you can produce both:

• Impact Analysis – to analyze the effect of the action on the objects that depend on the
initial object.

• Lineage Analysis – to identify the objects that influence the initial object.

These tools can help you answer questions like these:

• If I change the precision on a column in my ASE model which I generated from the ESP
schema model, what table columns in my SAP Sybase IQ or SAP HANA model must also
change, and what schema are affected?

• Which schema fields influence each column in my ASE, SAP HANA, and SAP Sybase IQ
models?

• If I delete a column from my IQ model, what is the impact on tables and columns in my
ASE and SAP Sybase IQ models, and what schema definitions must change in my ESP
Schema model?

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 133

Extended Model Setup
Your installer will set up the use of extensions automatically for you.

To apply the extensions automatically for new models, set up and use the ESP Schema model
category set.

To integrate existing PDMs with the ESP model, extend the models by attaching the
appropriate extensions file.

Extending an Existing Model
Attach extensions to any SAP Sybase IQ, SAP HANA, or ASE physical data model, or to an
logical data model that was generated from an ESP physical data model but not extended.

1. Open the model you want to extend.

2. From the PowerDesigner main menu, choose Model > Extended Model Definitions.

Tip: If Extended Model Definitions is not in the menu, make sure that the extensions file
is unzipped in the folder where PowerDesigner is installed.

3. Click Import an Extended Model Definition .

A list shows available extensions that have not been applied to this model.

4. Select the correct model extension and choose OK.
For example, to extend an ASE physical data model, choose ASE.

5. In the List of Extended Model Definitions dialog, choose OK to extend the model.

PowerDesigner applies the ESP extensions to the model. No other changes are made. For
example, a generic logical data model is not transformed to an ESP Schema model simply by
adding the extensions.

Setting Up the Model Category Set File
Set up PowerDesigner to use the ESP category set for new models.

PowerDesigner can display only one set of categories in the New Model dialog. While not
required, using the ESP category makes it easier to develop models for use with Event Stream
Processor.

Decide which option you want to use to create new models:

Option Action required

Only the installed ESP category set Change categories

ESP category set merged with existing categories Merge ESP categories

CHAPTER 13: PowerDesigner for Event Stream Processor

134 SAP Sybase Event Stream Processor

Option Action required

Neither Manually extend any models

Merging ESP Categories
When you create a new model using categories, you can see the existing categories, as well as
the three standard ESP categories. You can merge existing model categories with the ESP
category.

1. Choose Tools > Resources > Model Category Sets.

2. From the list in the dialog, select the set you want to add to the ESP category.

3. Click the Merge button in the toolbar.

4. Select ESP from the list and choose OK.

Changing the Default Category
Change the default category to the ESP category, so that you can create new ESP models.

1. From the PowerDesigner main menu, choose Tools > General Options.

2. Under Category, select Model Creation.

3. In the Model Creation frame, with Enable categories checked, select a default category
set.

4. Choose OK.

Setting Datatypes for an ESP Schema
Manually set the datatype attribute for a ESP Schema definition if the ESP Data Type column
in the Attributes tab of an ESP schema definition is empty or shows the wrong values.

You may need to set datatypes for a logical data model you generate from a physical data
model, if the generation process cannot determine how to convert the database datatype to an
Event Stream Processor datatype. Datatypes for the shipped sample model are set correctly
and no further adjustments are necessary.

1. Right-click a schema definition and choose Properties.

2. Click the Attributes tab and review values in the ESP Data Type column.

For example, in the sample model, the Bond Quote Attributes shows these datatypes:

Attribute Name ESP Datatype

Instrument string

Quote Date date

Quote Sequence Number integer

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 135

Attribute Name ESP Datatype

Quote Time timestamp

Ask Price money(4)

Ask Size integer

Bid Price money(4)

Bid Size integer

Yield money(2)

If values are missing or incorrect, continue with steps 3 - 5.

3. Click Customize Columns and Filter (Ctrl+U).

4. If needed, adjust columns available for viewing:

a) Unselect Data Type, Length, and Precision.
b) Select:

Name
ESP Datatype
Length
Precision
Mandatory
Primary Identifier
Displayed (selected by default)

5. Use the controls below the list to adjust the order so that Primary Identifier and
Displayed are the last two checkboxes.

Performing this task once corrects the datatypes for all schema definitions.

ESP Schema Model Development
Develop schema using the PowerDesigner extensions.

You can:

• Explore the sample model
• Create a schema model using categories, or by creating and extending a logical data model
• Add schema to models
• Validate your schema with built-in checks, as well as custom ones
• Import defined schema definitions into an ESP Schema model from CCL files
• Export schema definitions from the ESP Schema model into CCL files

CHAPTER 13: PowerDesigner for Event Stream Processor

136 SAP Sybase Event Stream Processor

Exploring the Sample Model
Review the sample model from the sample project.

Prerequisites
Install the sample model and complete the extended model setup.

Task

1. Start PowerDesigner and open the sample project with the sample model.

2. To open any of the models, either:

• Double-click the model in the Model Relationship Diagram, or,
• In the Browser tree, double-click the model, or right-click and choose Open or Open

as read-only.

Note: Do not save changes to the installed sample model. Save it to another folder so that a
new version of the model and project are created.

3. To display the sample schema definitions in the ESP Schema model, expand the navigation
buttons in the Browser tree.

4. To see more information on a schema definition:

• Right-click the schema definition, an identifier, or an attribute in the tree view and
choose Properties, or,

• Right-click the schema definition in the tree view and choose Find in Diagram.

Explore the SAP Sybase IQ, SAP HANA, and ASE models in the same way.

The Sample Model
The sample model includes sample ESP schema, and the SAP Sybase IQ, SAP HANA, and
ASE data models.

The right frame shows the diagram selected. The top-level Model Relationship diagram shows
that the ESP Schema model is related to the three physical data models by generation—that is,
these physical models were generated from the logical model. You can also generate a logical
model from a physical model.

When you open the ESP Schema model and expand a schema definition and its attributes in
the Browser, you see a hierarchy like this one for Bond History.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 137

Figure 2: ESP Schema Definitions in Browser

CHAPTER 13: PowerDesigner for Event Stream Processor

138 SAP Sybase Event Stream Processor

To show the Bond History diagram, right-click it in the Browser and choose Find in
Diagram.

Figure 3: Bond History Diagram

Creating an ESP Schema Model
Create a new ESP Schema model using the ESP Schema category, either by creating a logical
model and extending it, or by generating it from an SAP Sybase IQ, SAP HANA, or ASE
model that has been extended.

Creating a Model Using Categories
Use PowerDesigner to create and automatically extend any ESP Schema model type.

Prerequisites
Designate the ESP Schema set as the default category.

Task

1. Choose File > New Model.

2. In the New Model dialog, select Categories, and choose a category item:

• ESP Schema
• SAP Sybase IQ
• ASE
• HANA

3. Enter a model name.

4. Choose OK.

Creating a Logical Data Model
Create a logical data model and add extensions to it.

1. Choose File > New Model.

2. In the New Model dialog, select Model types and Logical Data Model.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 139

3. Enter a model name.

4.
Click the Select Extensions button to the right of the Extensions box.

A dialog shows currently loaded extensions. You can apply extensions when you create the
model or later.

5. Select ESP Schema, select whether to share or copy, and choose OK.

Option Description

Share the
extended model
definitions

PowerDesigner always uses the contents of the .xem file. If the
contents of the .xem file change, the model sees those changes.
For example, if a future version of ESP Schema includes a new
version of the file, models that share it sees those changes
immediately.

Copy the
extended model
definitions

Copies the contents of the .xem file into the model. The model
uses its local copy instead of the file on disk.

With either approach, you can use other extensions besides the shipped ESP Schema
extensions by creating your own .xem file. Although it is possible to do this by adding to
the ESPSchema.xem file, SAP does not recommended this.

Adding Schema Definition
Add a schema definition by creating it, importing schema definitions in a CCL file, or
generating it from an SAP Sybase IQ, SAP HANA, or ASE table.

Creating Schema from the Schema Definitions Container
Create a new schema definition with initial properties.

1. Open the ESP Schema model.

2. In the Browser tree, right-click the ESP Schemas container and choose New.

3. Complete the information in the General tab or other tabs.

You can complete schema definition properties at any time before generating the physical
models.

4. Click OK to save the schema definition.

Creating Schema with the Entity Tool
Create schema from the diagram.

1. Open the ESP Schema model.

2. In the diagram, click the Entity tool .

CHAPTER 13: PowerDesigner for Event Stream Processor

140 SAP Sybase Event Stream Processor

A new, empty schema definition appears in the diagram, and in the Browser tree when
expanded.

3. Right-click the diagram and choose Properties.

4. Add attributes and identifiers in the properties sheet.

Creating a Schema from the ESP Schema Container
Create a new schema definition with initial properties.

1. Right-click the ESP Schema container and choose New > ESP Schema.

2. Complete the information in the General tab or other tabs.

You can complete schema definition properties at any time before generating the physical
models.

3. Click OK to save the schema definition.

Generating Schema from a Sybase IQ, SAP HANA, or ASE Table
Follow the same steps as when generating an ESPSchema model, selecting a single table to
generate.

Defining Schema Properties
Define schema details in the properties sheet.

Prerequisites
Add the schema definition to the ESP Schema model.

Task

1. Open the ESP Schema Properties sheet from the Browser tree or the diagram.

2. Edit fields on the General, Attributes, and Identifiers tabs.

3. (Optional) Right-click an attribute to open the Attribute Properties sheet.

4. (Optional) In the Attribute Properties sheet, choose More to see extended property details.

5. Choose Apply to apply changes.

6. Choose OK when done.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 141

General Tab Properties
View information about the Name, and Comment properties of a schema definition on the
General tab of the Schema Definition Properties sheet.

Table 5. Schema Definition Properties – General Tab

Property Description

Name Text that identifies the object's purpose for non-technical users, for example,
Stock Quote. This element is used for descriptive purposes only, and can contain
any string.

Comment An optional comment field. This is stored only in the model, not in the schema.

Attributes Tab Properties
The Attributes tab of the Schema Definition Properties sheet lets you quickly set information
for all fields of an ESP Schema.

Table 6. Schema Definition Properties – Attributes Tab

Property Description

Name Name of the field. The value can contain any
string. This element is used for descriptive pur-
poses only.

Code By default the code is generated from the name by
applying the naming conventions specified in the
model options. To decouple name-code synchro-
nization, click to release the = button to the right
of the Code field.

ESP Datatype Select from the list of supported ESP datatypes.

For information on ESP datatypes, see Datatypes
on page 27.

Data Type (Internal PowerDesigner datatype) Select from the list of supported datatypes.

For information on PowerDesigner datatypes, see
related information in PowerDesigner>Data
Modeling.

Length Required for money and decimal data.

Limited to precision 34. Precision must be the
same on SAP Sybase IQ and ASE.

Not used for other datatypes.

Precision Required for money and decimal data. Not used
for other datatypes.

CHAPTER 13: PowerDesigner for Event Stream Processor

142 SAP Sybase Event Stream Processor

Property Description

Domain Specifies a domain which defines the datatype
and related data characteristics for the schema
attribute. It may also indicate check parameters,
and business rules.

Select a domain from the list, or click the Ellipsis
button to create a new domain in the List of Do-
mains.

Attribute Properties Sheet
Each field in a schema definition has its own Properties sheet.

In the Attribute Properties Sheet, you can:

• View or edit the same information as in the Attributes tab of the Schema Definition
Properties sheet

• Specify validation checks for an attribute
• View attribute dependencies
• View impact and lineage analyses for an attribute

Adding an Attribute to Schema
Add fields to schema by adding attributes to the schema definition.

1. In the schema definition to which you are adding an attribute, do any of:

• From the schema definition, right-click and choose New. This opens the Attribute
Properties sheet.

• From the Attributes tab in the ESP Schema Properties sheet, type information in the
row below the last attribute.

• From the Attributes tab in the ESP Schema Properties sheet, click one of the toolbar
buttons to Insert a Row, Add a Row, or Add Attributes or Replicate Attributes
from other schema definitions.

Before replicating attributes, read Object Replications in PowerDesigner Core Features
Guide.

2. Edit information in the Attributes Properties sheet or row as needed.

Identifiers
An identifier is a column or combination of columns that uniquely defines a specific ESP
Schema.

Identifiers in the ESP Schema model become keys on tables in the SAP Sybase IQ, SAP
HANA, and ASE physical models.

Each ESP Schema can have at most one primary identifier, which becomes the primary key in
the generated table.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 143

When an identifier has multiple attributes, the primary key in the destination table is composed
of multiple columns. For example, in the sample model, the Dividend Event schema has one
identifier. Attributes for this primary identifier are Instrument and Disbursed Date. Thus the
primary key for the Dividend Event table is composed of both the Instrument and Disbursed
Date columns.

Defining Identifiers
Define identifiers to indicate which schema attributes become keys in the destination table.

1. Either:

• Right-click an ESP Schema and choose New > Identifier, or
• (Primary identifiers only) On the ESP Schema Properties sheet, select the Attributes

tab, and click the Primary Identifier column (the narrow column with the header P) for
each attribute that is part of the primary identifier. Skip the remaining steps.

Note: In the ESP Schema Properties Attributes tab, a checkmark in the P column
indicates a primary identifier.

2. Select the General tab in the Identifier Properties sheet:

a) (Optional) Set the identifier name.
b) For a primary key, select Primary Identifier.

3. On the Attributes tab in the Identifier Properties sheet, enter the fields that identify the
schema.

Validating a Model
Check the validity of your model after schema changes, and before generating schema
templates, code, or a physical model.You can check the validity of a model at any time.

1. (Optional) Select diagrams for the schema you want to validate.

2. Choose Tools > Check Model (F4).

3. In the Options tab of Check Model Parameters, expand the containers and choose
validation checks.

The Options tab lists checks to be performed with symbols indicating their severity.
• Do not disable any ESP-specific checks.
• (Default and recommended) Disable Existence of relationship or entity link under

Entity.

4. In the Selection tab, navigate to the ESP Schemas subtab and select schema definitions to
check:

• Select or unselect check boxes.
• Choose a named selection.

CHAPTER 13: PowerDesigner for Event Stream Processor

144 SAP Sybase Event Stream Processor

• If you selected schema in your diagram before starting the model check, you can select

them for checking by clicking Use Graphical Selection () in the Selection tab
toolbar.

5. Choose OK.

Next
Review results in the Check Model subtab in the status bar. It lists the checks made, and any
errors or warnings.

Correct any errors. No automatic corrections are provided.

PowerDesigner Validity Checks
Standard PowerDesigner checks determine if a model is internally consistent and correct.

For example:

• Each ESP Schema name must be unique
• Each object name in an ESP Schema model must be unique
• Each field must have an assigned ESP Data Type.

For descriptions of standard PowerDesigner checks, see Working with Data Models >
Checking a Data Model in the PowerDesigner Data Modeling guide.

Custom Checks for ESP Schema Extensions
The ESP Schema extension offers many custom checks.

Checks for Each Schema
Custom checks under Schema Definition type validate values in the General tab of the Schema
Properties sheet.

Table 7. Schema Definition Custom Checks

Option Validates

NameIsValid Names of ESP Schema must be valid java iden-
tifiers.

Checks for Each Field in a Schema
Custom checks for fields are under Entity Attribute type. They validate values in the Attributes
tab of the ESP Schema Properties sheet.

Table 8. Attribute Custom Checks

Option Validates

FieldNameIsValid Field names must be valid java identifiers.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 145

Option Validates

ESPDatatypeExists Datatype is specified

UniqueDestColumnName DestColumnName is unique within that schema

Importing a CCL File
Import the defined schema definitions in a CCL file into an ESP Schema model.

1. Open the ESP Schema model.

2. In the Browser tree, right-click the ESP Schema container and choose Import CCL
File....

3. Navigate to the CCL file you wish to import.

4. Click OK to import the schema definitions defined in the CCL file.

Note: A warning message appears if the CCL file schema definitions are not valid. You
must resolve the errors before importing the CCL file. Navigate to the User/Appdata/
Roaming/PowerDesigner/EspCompiler/compiledOutput.log file to
view the errors.

The schema defined in the CCL file is imported into the ESP Schema model.

Exporting a CCL File
Export all the defined schema from the ESP Schema model into a CCL file for compiling and
further analysis.

1. Open the ESP Schema model.

2. In the Browser tree, right-click the ESP Schema container and choose Export CCL
File....

3. Navigate to the CCL file you wish to export to.

4. Click OK to export the schema definitions.

The schema defined in the ESP Schema model is exported as a CCL file.

Model Generation
Model generation with the ESP Schema models is a critical step in ensuring the integrity of
your production environment.

You can either:

• Generate SAP Sybase IQ, SAP HANA, and ASE physical data models from an ESP
Schema model, or

CHAPTER 13: PowerDesigner for Event Stream Processor

146 SAP Sybase Event Stream Processor

• Generate an ESP Schema logical data model from an SAP Sybase IQ, SAP HANA, or ASE
physical data model

Each generation process relies on transformation rules for that model type, which are defined
in the ESP Schema extensions for PowerDesigner.

Generating a new Sybase IQ, SAP HANA, or ASE Model from an ESP
Schema Model

Generate either an SAP Sybase IQ, SAP HANA, or an SAP Sybase ASE physical data model
from an ESP Schema logical data model.

1. Open the ESPSchema model.

2. From the PowerDesigner main menu, choose Tools > Generate Physical Data Model.

3. In the General tab of the PDM Generation Options dialog, choose Generate new
Physical Data Model.

4. For a new model, choose the target DBMS and the appropriate Name and Code.

• For HANA, choose:

Field Value

DBMS SAP HANA Database 1.0

Name Keep the default, ESPSchema, or enter another name.

Code Auto-generated from Name. For example, when Name is ESPSchema, Code is
ESPSCHEMA.

• For ASE, choose:

Field Value

DBMS SAP Sybase Adaptive Server Enterprise 15.7

Name Keep the default, ESPSchema_1 (the name of the container), or enter another name.

Code Auto-generated from Name. For example, when Name is ESPSchema_1, Code is
ESPSCHEMA_1.

• For IQ, choose:

Field Value

DBMS SAP Sybase IQ 15.X

Note: Use latest version of SAP Sybase IQ available.

Name Keep the default, ESPSchema_1 (the name of the container), or enter another name.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 147

Field Value

Code Auto-generated from Name. For example, when Name is ESPSchema_1, Code is
ESPSCHEMA_1.

5. Click the Detail tab.

6. (Optional) Choose Check model and Save generation dependencies.

7. Ensure that Enable transformations is selected.

8. Click the Extensions tab and ensure that the appropriate extension is selected:

• ASE when generating a new SAP Sybase ASE model
• IQ when generating a new SAP Sybase IQ model
• HANA when generating a new SAP HANA model

9. On the Pre-generation and Post-generation tabs, ensure that all transformation rules are
selected.

The post-generation tab appears only for new models.

10. On the Selection tab, select ESPSchema to create tables for SAP Sybase IQ, SAP HANA,
or SAP Sybase ASE, and choose OK.

Next
After generation, check indexes, set physical options, and add foreign keys as needed.

Checking Indexes
PowerDesigner creates default indexes. Add, edit, or remove them as needed.

1. Open the new or updated physical data model.

2. For each table, right-click the table and choose Properties.

3. In the Indexes tab, edit indexes as needed for your data and performance requirements.

Setting Physical Options
Set physical options for each table as needed for your SAP Sybase IQ or SAP Sybase ASE
database.

1. Right-click the table and choose Properties.

2. Define any options needed.

• (SAP Sybase ASE only) In the Physical Options (Common) tab, choose from the
physical options most commonly set for the object.

• In the Physical Options tab, choose from all available options.
• (SAP Sybase ASE only) In the Partitions tab, set partitioning options for selected

columns.

For more information on partitioning, see the SAP Sybase ASE and SAP Sybase IQ
documentation sets.

CHAPTER 13: PowerDesigner for Event Stream Processor

148 SAP Sybase Event Stream Processor

Adding Foreign Keys
Add foreign-key relationships to physical data models.

1. Add tables to the physical data model that are not in your Market Data diagram and that
contain lookup columns for foreign keys.

New ASE, SAP HANA, and SAP Sybase IQ models generated from a ESP Schema model
contain only market data tables.

2. Right-click the table and choose Properties or Keys.

3. Add foreign-key relationships to tables that are not in the Market Data diagram.

Generating a new ESP Schema Model from a Sybase IQ, SAP HANA, or
ASE Model

Generate a new ESP Schema logical data model from either SAP Sybase IQ, SAP HANA, or
ASE physical data models.

1. Open either the IQ, HANA, or ASE model.

2. From the PowerDesigner main menu, choose Tools > Generate Logical Data Model.

3. In the General tab of the LDM Generation Options dialog, choose Generate new Logical
Data Model.

4. Specify a Name.

Code is autogenerated from the name.

5. On the Detail tab, choose Options:

• (Optional) Check model
• (Optional) Save generation dependencies
• (Optional) Convert names into codes
• (Required) Enable transformations

6. On the Extensions tab, choose ESPSchema.

7. On the Selection tab, choose tables from which to generate schema.

8. Choose OK.

Updating an existing Sybase IQ, SAP HANA, or ASE Model from an
ESP Schema Model

Update either an SAP Sybase IQ, SAP HANA, or a ASE physical data model from a ESP
Schema logical data model.

1. Open the ESP Schema model.

2. From the PowerDesigner main menu, choose Tools > Generate Physical Data Model.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 149

3. In the General tab of the PDM Generation Options dialog, choose Update existing
Physical Data Model.

4. Select the model and leave Preserve Modifications selected.

5. Click the Detail tab.

6. (Optional) Choose Check model and Save generation dependencies.

7. Ensure that Enable transformations is selected.

8. In the Merge Models dialog, confirm the updates you want and choose OK.

Next
After generation, check indexes, set physical options, and add foreign keys as needed.

Updating an existing ESP Schema Model from a Sybase IQ, SAP
HANA, or ASE Model

Update an existing ESP Schema logical data model from either SAP Sybase IQ, SAP HANA,
or ASE physical data models.

1. Open either the IQ, HANA, or ASE model.

2. From the PowerDesigner main menu, choose Tools > Generate Logical Data Model.

3. In the General tab of the LDM Generation Options dialog, choose Update existing
Logical Data Model.

4. Select the model and leave Preserve Modifications selected.

5. On the Detail tab, choose Options:

• (Optional) Check model
• (Optional) Save generation dependencies
• (Optional) Convert names into codes
• (Required) Enable transformations

6. On the Selection tab, choose tables from which to generate schema.

7. Choose OK.

Impact and Lineage Analysis
With impact and lineage analysis, you can determine the full impact of changes to any object
in the integrated model.

Impact analysis shows the effect of an action on the objects that depend on the initial object.

Lineage analysis identifies the objects that influence the initial object.

You can perform these analyses on:

• A schema definition or any of its properties in the ESP Schema logical data model

CHAPTER 13: PowerDesigner for Event Stream Processor

150 SAP Sybase Event Stream Processor

• A table or column in the ASE, SAP HANA, or SAP Sybase IQ physical data model

The results shows the effect of a change throughout the logical and physical data models.

Launching an Impact and Lineage Analysis
Analyze the impact of a change to your model from the Impact and Lineage Analysis dialog
box.

The Impact and Lineage Analysis dialog lets you review your analysis through:

• A preview – displays the impact and lineage analysis in a tree form (see PowerDesigner
Core Features Guide > Reviewing an Analysis in Preview).

• An impact analysis model (IAM) – displays the impact and lineage analysis in a diagram
(see PowerDesigner Core Features Guide > Reviewing an Analysis in an IAM Model).

1. Open an impact and lineage analysis in any of these ways:

• Select an object in the Browser or in the diagram and press Ctrl + F11.
• Select one or more objects in the diagram and select Tools > Impact and Lineage

Analysis.
• Right-click an object symbol in the diagram and select Edit > Impact and Lineage

Analysis.
• Right-click an object entry in the Browser and select Impact and Lineage Analysis.
• (When deleting an object) Click Impact on the Confirm Deletion dialog box.
• Open an object's property sheet, click the Dependencies tab, then click Impact

Analysis .

2. (Optional) Enter a name for your analysis result. This becomes the name of the generated
model.

3. Select an impact rule set for your analysis. Choose one of these predefined rule sets:

• Conceptual Impact Analysis – restrict the analysis to objects impacted by modeling
changes on the initial object, such as a modification on a requirement definition.

• Data Impact Analysis – identify the use, if any, of a value contained in the initial object.
• Delete Impact Analysis – (default when deleting an object) restrict the analysis to

objects that are directly impacted by the deletion of the initial object.
• Global Impact Analysis – (default when not deleting an object) identify all the objects

that depend on the initial object.
• None – no impact rule set is selected.

4. Select a lineage rule set for your analysis. Choose one of these predefined rule sets:

• Conceptual Lineage Analysis – justify the modeling existence of the initial object, and
ensure it fulfills a well-identified need.

• Data Lineage Analysis – identify the origin of the value contained in the initial object.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 151

• Global Lineage Analysis – (default when not deleting an object) identify all the objects
that influence the initial object.

• None – (default when deleting an object) no lineage rule set is selected.

5. (Optional) Click the Properties tool next to each rule set to review it (see PowerDesigner
Core Features Guide > Editing analysis rules).

The analysis appears in the Impact and Lineage tab of the dialog box (see PowerDesigner
Core Features Guide > Reviewing an Analysis in Preview).

Note: You can click the Select Path tool to change the default folder for analysis rule sets, or
click the List of Rule Sets tool to open the List of Impact and Lineage Analysis Rule Sets
window, and review a specific rule.

Generating an Analysis Diagram
Generate an analysis diagram to view the impact or lineage analysis in graphical form.

Prerequisites
Launch an impact or lineage analysis.

Task

1. In the Impact and Lineage Analysis dialog, click Generate Diagram to view a graphical
form of the analysis in its default diagram.

2. (Optional) Save (Ctrl+S) the diagram as an impact analysis model (IAM).

See PowerDesigner Core Features Guide > Reviewing an Analysis in an IAM Model.

Reviewing an Impact and Lineage Analysis
Review the analysis in the preview or the impact and lineage model diagram.

1. Review the impact of the action and the lineage of the entity in the preview.

2. In the preview List tab, save the analysis in RTF or CSV format, or print.

3. You can refine your analysis by removing or adding initial objects, changing the analysis
rule sets to be used, and customizing actions.

4. If you have generated an IAM, you can customize the display preferences and model
options, print the model, and compare it with another IAM.

5. Watch for a red dot on an object icon in a generated model.

When you generate a model to another model or create an external shortcut, you create
cross-model dependencies, which are taken into account during impact and lineage
analysis.

When an object belonging to an unavailable related model is encountered, a red dot
appears on the object icon and the analysis is interrupted. To continue, open the related

CHAPTER 13: PowerDesigner for Event Stream Processor

152 SAP Sybase Event Stream Processor

model by right-clicking the object in the IAM Browser or in the preview, and selecting
Open Model.

Sample Analysis for a Schema Definition
The sample analysis for a schema definition shows that the Bond History schema in the ESP
Schema model was used to generate the BOND_HISTORY tables in the SAP HANA, ASE,
and SAP Sybase IQ models.

Figure 4: Impact Analysis Example for Schema Definition

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 153

Sample Analysis for a Table
The sample analysis for a table shows that the STOCK_QUOTE table was generated from the
Stock Quote schema definition in the ESP Schema model.

Outgoing References shows foreign-key relationships. ESP Schema definitions become
Market Data diagram tables when generated to a PDM.

Figure 5: Impact and Lineage Analysis for STOCK_QUOTE Table in ASE

CHAPTER 13: PowerDesigner for Event Stream Processor

154 SAP Sybase Event Stream Processor

DDL Script Generation
The data models for the SAP Sybase IQ, SAP HANA, and ASE databases target different
databases; however, they share an almost identical structure. Modify data models by creating
additional tables or columns to suit your business environment.

The corresponding adapter (IQ, HANA, ASE) schema must match the SAP Sybase IQ,
HANA, and ASE database schema for all tables in which data is inserted. After you make
changes, you can use PowerDesigner to produce a set of data definition language (DDL)
statements directly from the physical data model (IQ, HANA, and ASE). PowerDesigner
saves the DDL statements in a SQL script that you can run to generate the tables and other
objects for the target databases.

Generating Database Schema with PowerDesigner
PowerDesigner includes all the resources you need to generate a set of DDL statements in
SQL scripts directly from the PowerDesigner data models. Run these scripts to generate a
schema for your SAP Sybase IQ, SAP HANA, and ASE databases.

1. In PowerDesigner, open the data model.

2. Change the default database user.

3. Generate the script that creates a schema for the new database.

4. Log in to the database and run the script.

Changing the Default Database User
Overwrite the default database owner for the SAP Sybase IQ, SAP HANA, or ASE database
with a name specific to your environment.

In the database, the user who creates an object (table, view, stored procedure, and so on) owns
that object and is automatically granted all permissions on it. Overwriting the default user
name globally changes ownership of database objects from the default owner to the new
owner.

1. Start PowerDesigner.

2. Select File > Open and choose the database that you want to change the default owner of (
IQ.pdm, HANA.pdm, or ASE.pdm).

3. Select Model > Users and Roles > Users.

4. In the Name and Code columns, change the default user to the new database user.

5. Click OK.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 155

Generating DDL Scripts
Generate DDL scripts directly from the SAP Sybase IQ, SAP HANA, or SAP Sybase ASE
data model. PowerDesigner saves the results in a SQL script that you can use to generate the
tables and other objects in the target database.

Use the model file of the database for which you wish to generate DDL scripts. For example, to
generate DDL for the SAP Sybase ASE database, use the ASE model. When you have the
model open, do not change the target database as doing so results in the loss of index
information.

By default, the ASE.pdm data model includes only those indexes that support the sample
queries. The statements that create these indexes are included in the DDL scripts, which
means the indexes supplied with the model are created automatically when you run the
corresponding DDL scripts.

You can add or remove indexes from the ASE data model. For detailed information on SAP
Sybase ASE indexes, see the SAP Sybase ASE product documentation.

1. Select Database > Generate Database.

2. Browse to the directory where you want to store the script. Click OK.

3. Enter a name for the SQL script.

4. On the Options tab, verify that the options are set correctly:

Object Options

Domain Create User-Defined Data Type

Table Create Table

Column User Data Type

Key Create Primary Key Inside

Index • Create Index
• Index Filter Foreign Key
• Index Filter Alternate Key
• Index Filter Cluster
• Index Filter Others

5. Click the Selection tab.

6. Choose the database owner.

7. On the Tables tab, click Select All.

8. On the Domains tab, choose the database owner, click Select All, click Apply, then click
OK.

CHAPTER 13: PowerDesigner for Event Stream Processor

156 SAP Sybase Event Stream Processor

PowerDesigner checks the model for any errors, builds a result list, and generates the
DDL. The Result dialog appears, which identifies the name and location of the generated
file.

9. You can click Edit to view the generated script.

The Result List dialog appears in the background and may include several warnings, for
example, "Existence of index" and "Existence of reference". You
can safely ignore these warnings.

10. Close the Result List dialog, then exit PowerDesigner.

• If PowerDesigner prompts you to save the current workspace, click No.
• If PowerDesigner prompts you to save the model, click Yes to save the modified model.

Otherwise, click No.

Executing DDL Scripts for the SAP Sybase IQ Database
Execute the DDL script in Interactive SQL and create database objects in the SAP Sybase IQ
database.

Prerequisites
Start the SAP Sybase IQ database server if it is not running.

Task

1. In a command prompt, change to the directory that contains the database files and enter:
start_iq -n server_name @config_file.cfg database_name.db.

Use the -n switch to name the server, either in the configuration file or on the command line
when you start the server.

Note: If you specify -n server_name without a database_name, you connect to the default
database on the current server. If you specify -n database_name without a server_name,
you connect to the specified database on the current server.

2. Enter dbisql.

3. Enter the correct user ID, password, and server information.

4. Open the generated DDL script for SAP Sybase IQ and click Execute SQL Statement on
the toolbar.

Executing DDL Scripts for the SAP HANA Database
Execute the DDL script using hdbsql and create database objects in the SAP HANA database.

Prerequisites
Start the SAP HANA database server if it is not running.

CHAPTER 13: PowerDesigner for Event Stream Processor

Programmers Guide 157

Task
In a command prompt, enter:
hdbsql -n <host>:<port> -u <user> -p <password> -I <script file>

Executing DDL Scripts for the ASE Database
Execute the DDL script in Interactive SQL and create database objects in the ASE database.

Prerequisites

Start the ASE server if it is not running.

Task

1. In a command prompt, enter:
isql -S <server_name> -U <user_name> -P <password> -i <ase_ddl.sql
file> -o <log_file>

2. PowerDesigner prompts:

• To save the current workspace. Click No
• To save the (modified) model. Click Yes or No.

3. Check the log file for errors.

CHAPTER 13: PowerDesigner for Event Stream Processor

158 SAP Sybase Event Stream Processor

APPENDIX A List of Keywords

Reserved words in CCL that are case-insensitive. Keywords cannot be used as identifiers for
any CCL objects.

A list of keywords present in CCL:

adapter age(s) all and as asc

attach auto begin break case cast

connection continue count create day(s) declare

deduced default delete delta desc distinct

dumpfile dynamic else end eventCache every

exit external false fby filter first

flex for foreign foreignJava from full

group groups hash having hour(s) hr

if

import in inherits inner input insert

into is join keep key last

language left library like load local

log max memory micros microsecond(s) millis

millisec-
ond(s)

min minute(s) module money name

new nostart not nth null on

or order out outfile output parameter(s)

partition partitions

pattern primary properties rank records retain

return right roundrobin row(s) safedelete schema

sec

second(s) select set setRange slack start

Programmers Guide 159

static store(s) stream sum sync switch

then times to top transaction true

type typedef typeof union update upsert

values when where while window within

xmlattri-
butes

xmlelement

APPENDIX A: List of Keywords

160 SAP Sybase Event Stream Processor

APPENDIX B Date and Time Programming

Set time zone parameters, date format code preferences, and define calendars.

Time Zones
A time zone is a geographic area that has adopted the same standard time, usually referred to as
the local time.

Most adjacent time zones are one hour apart. By convention, all time zones compute their local
time as an offset from GMT/UTC. GMT (Greenwich Mean Time) is an historical term,
originally referring to mean solar time at the Royal Greenwich Observatory in Britain. GMT
has been replaced by UTC (Coordinated Universal Time), which is based on atomic clocks.
For all SAP Sybase Event Stream Processor purposes, GMT and UTC are equivalent. Due to
political and geographical practicalities, time zone characteristics may change over time. For
example, the start date and end date of daylight saving time may change, or new time zones
may be introduced in newly created countries.

Internally, Event Stream Processor always stores date and time type information as a number
of seconds, milliseconds, or microseconds since midnight January 1, 1970 UTC, depending
on the datatype. If a time zone designator is not used, UTC time is applied.

Daylight Saving Time
Daylight saving time is considered if the time zone uses daylight saving time and if the
specified timestamp is in the time period covered by daylight savings time. The starting and
ending dates for daylight saving time are stored in a C++ library.

If the user specifies a particular time zone, and if that time zone uses daylight saving time,
Event Stream Processor takes these dates into account to adjust the date and time datatype. For
example, since Pacific Standard Time (PST) is in daylight saving time setting, the engine
adjusts the timestamp accordingly:

to_timestamp('2002-06-18 13:52:00.123456 PST','YYYY-MM-DD
HH24:MI:SS.ff TZD')

Transitioning from Standard Time to Daylight Savings Time and Vice-Versa
During the transition to and from daylight saving time, certain times do not exist. For example,
in the US, during the transition from standard time to daylight savings time, the clock changes
from 01:59 to 03:00; therefore 02:00 does not exist. Conversely, during the transition from
daylight saving time to standard time, 01:00 to 01:59 appears twice during one night because
the time changes from 2:00 to 1:00 when daylight saving time ends.

Programmers Guide 161

However, since there may be incoming data input during these undefined times, the engine
must deal with them in some manner. During the transition to daylight savings time, Event
Stream Processor interprets 02:59 PST as 01:59 PST. When transitioning back to standard
time, Event Stream Processor interprets 02:00 PDT as 01:00 PST.

Changes to Time Zone Defaults
If you do not specify a value for the optional time zone parameter in certain date and time
functions, Event Stream Processor uses Coordinated Universal Time (UTC).

Corresponding functions in Sybase CEP defaulted to the server's local time zone when no
parameter was specified. If you are migrating CEP projects that do not have a time zone
defined, they will use UTC when converted to Event Stream Processor. To continue using the
server’s local time zone, explicitly set that time zone in the time zone parameter for the
following functions:

Sybase CEP Functions Event Stream Processor Functions

dayofmonth dayofmonth

dayofweek dayofweek

dayofyear dayofyear

hour hour

maketimestamp makebigdatetime

microsecond microsecond

minute minute

month month

second second

to_string to_string

year year

List of Time Zones
Event Stream Processor supports standard time zones and their abbreviations.

Below is a list of time zones used in the Event Stream Processor from the industry-standard
Olson time zone (also known as TZ) database.

ACT AET AGT

ART AST Africa/Abidjan

APPENDIX B: Date and Time Programming

162 SAP Sybase Event Stream Processor

Africa/Accra Africa/Addis_Ababa Africa/Algiers

Africa/Asmera Africa/Bamako Africa/Bangui

Africa/Banjul Africa/Bissau Africa/Blantyre

Africa/Brazzaville Africa/Bujumbura Africa/Cairo

Africa/Casablanca Africa/Ceuta Africa/Conakry

Africa/Dakar Africa/Dar_es_Salaam Africa/Djibouti

Africa/Douala Africa/El_Aaiun Africa/Freetown

Africa/Gaborone Africa/Harare Africa/Johannesburg

Africa/Kampala Africa/Khartoum Africa/Kigali

Africa/Kinshasa Africa/Lagos Africa/Libreville

Africa/Lome Africa/Luanda Africa/Lubumbashi

Africa/Lusaka Africa/Malabo Africa/Maputo

Africa/Maseru Africa/Mbabane Africa/Mogadishu

Africa/Monrovia Africa/Nairobi Africa/Ndjamena

Africa/Niamey Africa/Nouakchott Africa/Ouagadougou

Africa/Porto-Novo Africa/Sao_Tome Africa/Timbuktu

Africa/Tripoli Africa/Tunis Africa/Windhoek

America/Adak America/Anchorage America/Anguilla

America/Antigua America/Araguaina America/Argentina/Bue-
nos_Aires

America/Argentina/Cata-
marca

America/Argentina/ComodRiva-
davia

America/Argentina/Cordoba

America/Argentina/Jujuy America/Argentina/La_Rioja America/Argentina/Mendoza

America/Argentina/
Rio_Gallegos

America/Argentina/San_Juan America/Argentina/Tucuman

America/Argentina/Ush-
uaia

America/Aruba America/Asuncion

America/Atka America/Bahia America/Barbados

America/Belem America/Belize America/Boa_Vista

APPENDIX B: Date and Time Programming

Programmers Guide 163

America/Bogota America/Boise America/Buenos_Aires

America/Cambridge_Bay America/Campo_Grande America/Cancun

America/Caracas America/Catamarca America/Cayenne

America/Cayman America/Chicago America/Chihuahua

America/Coral_Harbour America/Cordoba America/Costa_Rica

America/Cuiaba America/Curacao America/Danmarkshavn

America/Dawson America/Dawson_Creek America/Denver

America/Detroit America/Dominica America/Edmonton

America/Eirunepe America/El_Salvador America/Ensenada

America/Fort_Wayne America/Fortaleza America/Glace_Bay

America/Godthab America/Goose_Bay America/Grand_Turk

America/Grenada America/Guadeloupe America/Guatemala

America/Guayaquil America/Guyana America/Halifax

America/Havana America/Hermosillo America/Indiana/Indianapolis

America/Indiana/Knox America/Indiana/Marengo America/Indiana/Petersburg

America/Indiana/Vevay America/Indiana/Vincennes America/Indianapolis

America/Inuvik America/Iqaluit America/Jamaica

America/Jujuy America/Juneau America/Kentucky/Louisville

America/Kentucky/Monti-
cello

America/Knox_IN America/La_Paz

America/Lima America/Los_Angeles America/Louisville

America/Maceio America/Managua America/Manaus

America/Martinique America/Mazatlan America/Mendoza

America/Menominee America/Merida America/Mexico_City

America/Miquelon America/Moncton America/Monterrey

America/Montevideo America/Montreal America/Montserrat

America/Nassau America/New_York America/Nipigon

America/Nome America/Noronha America/North_Dakota/Center

APPENDIX B: Date and Time Programming

164 SAP Sybase Event Stream Processor

America/Panama America/Pangnirtung America/Paramaribo

America/Phoenix America/Port-au-Prince America/Port_of_Spain

America/Porto_Acre America/Porto_Velho America/Puerto_Rico

America/Rainy_River America/Rankin_Inlet America/Recife

America/Regina America/Rio_Branco America/Rosario

America/Santiago America/Santo_Domingo America/Sao_Paulo

America/Scoresbysund America/Shiprock America/St_Johns

America/St_Kitts America/St_Lucia America/St_Thomas

America/St_Vincent America/Swift_Current America/Tegucigalpa

America/Thule America/Thunder_Bay America/Tijuana

America/Toronto America/Tortola America/Vancouver

America/Virgin America/Whitehorse America/Winnipeg

America/Yakutat America/Yellowknife Antarctica/Casey

Antarctica/Davis Antarctica/DumontDUrville Antarctica/Mawson

Antarctica/McMurdo Antarctica/Palmer Antarctica/Rothera

Antarctica/South_Pole Antarctica/Syowa Antarctica/Vostok

Arctic/Longyearbyen Asia/Aden Asia/Almaty

Asia/Amman Asia/Anadyr Asia/Aqtau

Asia/Aqtobe Asia/Ashgabat Asia/Ashkhabad

Asia/Baghdad Asia/Bahrain Asia/Baku

Asia/Bangkok Asia/Beirut Asia/Bishkek

Asia/Brunei Asia/Calcutta Asia/Choibalsan

Asia/Chongqing Asia/Chungking Asia/Colombo

Asia/Dacca Asia/Damascus Asia/Dhaka

Asia/Dili Asia/Dubai Asia/Dushanbe

Asia/Gaza Asia/Harbin Asia/Hong_Kong

Asia/Hovd Asia/Irkutsk Asia/Istanbul

Asia/Jakarta Asia/Jayapura Asia/Jerusalem

APPENDIX B: Date and Time Programming

Programmers Guide 165

Asia/Kabul Asia/Kamchatka Asia/Karachi

Asia/Kashgar Asia/Katmandu Asia/Krasnoyarsk

Asia/Kuala_Lumpur Asia/Kuching Asia/Kuwait

Asia/Macao Asia/Macau Asia/Magadan

Asia/Makassar Asia/Manila Asia/Muscat

Asia/Nicosia Asia/Novosibirsk Asia/Omsk

Asia/Oral Asia/Phnom_Penh Asia/Pontianak

Asia/Pyongyang Asia/Qatar Asia/Qyzylorda

Asia/Rangoon Asia/Riyadh Asia/Riyadh87

Asia/Riyadh88 Asia/Riyadh89 Asia/Saigon

Asia/Sakhalin Asia/Samarkand Asia/Seoul

Asia/Shanghai Asia/Singapore Asia/Taipei

Asia/Tashkent Asia/Tbilisi Asia/Tehran

Asia/Tel_Aviv Asia/Thimbu Asia/Thimphu

Asia/Tokyo Asia/Ujung_Pandang Asia/Ulaanbaatar

Asia/Ulan_Bator Asia/Urumqi Asia/Vientiane

Asia/Vladivostok Asia/Yakutsk Asia/Yekaterinburg

Asia/Yerevan Atlantic/Azores Atlantic/Bermuda

Atlantic/Canary Atlantic/Cape_Verde Atlantic/Faeroe

Atlantic/Jan_Mayen Atlantic/Madeira Atlantic/Reykjavik

Atlantic/South_Georgia Atlantic/St_Helena Atlantic/Stanley

Australia/ACT Australia/Adelaide Australia/Brisbane

Australia/Broken_Hill Australia/Canberra Australia/Currie

Australia/Darwin Australia/Hobart Australia/LHI

Australia/Lindeman Australia/Lord_Howe Australia/Melbourne

Australia/NSW Australia/North Australia/Perth

Australia/Queensland Australia/South Australia/Sydney

Australia/Tasmania Australia/Victoria Australia/West

APPENDIX B: Date and Time Programming

166 SAP Sybase Event Stream Processor

Australia/Yancowinna BET BST

Brazil/Acre Brazil/DeNoronha Brazil/East

Brazil/West CAT CET

CNT CST CST6CDT

CTT Canada/Atlantic Canada/Central

Canada/East-Saskatche-
wan

Canada/Eastern Canada/Mountain

Canada/Newfoundland Canada/Pacific Canada/Saskatchewan

Canada/Yukon Chile/Continental Chile/EasterIsland

Cuba EAT ECT

EET EST EST5EDT

Egypt Eire Etc/GMT

Etc/GMT+0 Etc/GMT+1 Etc/GMT+10

Etc/GMT+11 Etc/GMT+12 Etc/GMT+2

Etc/GMT+3 Etc/GMT+4 Etc/GMT+5

Etc/GMT+6 Etc/GMT+7 Etc/GMT+8

Etc/GMT+0 Etc/GMT-0 Etc/GMT-1

Etc/GMT-10 Etc/GMT-11 Etc/GMT-12

Etc/GMT-13 Etc/GMT-14 Etc/GMT-2

Etc/GMT-3 Etc/GMT-4 Etc/GMT-5

Etc/GMT-6 Etc/GMT-7 Etc/GMT-8

Etc/GMT-9 Etc/GMT0 Etc/Greenwich

Etc/UCT Etc/UTC Etc/Universal

Etc/Zulu Europe/Amsterdam Europe/Andorra

Europe/Athens Europe/Belfast Europe/Belgrade

Europe/Berlin Europe/Bratislava Europe/Brussels

Europe/Bucharest Europe/Budapest Europe/Chisinau

Europe/Copenhagen Europe/Dublin Europe/Gibraltar

APPENDIX B: Date and Time Programming

Programmers Guide 167

Europe/Helsinki Europe/Istanbul Europe/Kaliningrad

Europe/Kiev Europe/Lisbon Europe/Ljubljana

Europe/London Europe/Luxembourg Europe/Madrid

Europe/Malta Europe/Mariehamn Europe/Minsk

Europe/Monaco Europe/Moscow Europe/Nicosia

Europe/Oslo Europe/Paris Europe/Prague

Europe/Riga Europe/Rome Europe/Samara

Europe/San_Marino Europe/Sarajevo Europe/Simferopol

Europe/Skopje Europe/Sofia Europe/Stockholm

Europe/Tallinn Europe/Tirane Europe/Tiraspol

Europe/Uzhgorod Europe/Vaduz Europe/Vatican

Europe/Vienna Europe/Vilnius Europe/Warsaw

Europe/Zagreb Europe/Zaporozhye Europe/Zurich

Factory GB GB-Eire

GMT GMT+0 GMT-0

GMT0 Greenwich HST

Hongkong IET IST

Iceland Indian/Antananarivo Indian/Chagos

Indian/Christmas Indian/Cocos Indian/Comoro

Indian/Kerguelen Indian/Mahe Indian/Maldives

Indian/Mauritius Indian/Mayotte Indian/Reunion

Iran Israel JST

Jamaica Japan Kwajalein

Libya MET MIT

MST MST7MDT Mexico/BajaNorte

Mexico/BajaSur Mexico/General Mideast/Riyadh87

Mideast/Riyadh88 Mideast/Riyadh89 NET

NST NZ NZ-CHAT

APPENDIX B: Date and Time Programming

168 SAP Sybase Event Stream Processor

Navajo PLT PNT

PRC PRT PST

PST8PDT Pacific/Apia Pacific/Auckland

Pacific/Chatham Pacific/Easter Pacific/Efate

Pacific/Enderbury Pacific/Fakaofo Pacific/Fiji

Pacific/Funafuti Pacific/Galapagos Pacific/Gambier

Pacific/Guadalcanal Pacific/Guam Pacific/Honolulu

Pacific/Johnston Pacific/Kiritimati Pacific/Kosrae

Pacific/Kwajalein Pacific/Majuro Pacific/Marquesas

Pacific/Midway Pacific/Nauru Pacific/Niue

Pacific/Norfolk Pacific/Noumea Pacific/Pago_Pago

Pacific/Palau Pacific/Pitcairn Pacific/Ponape

Pacific/Port_Moresby Pacific/Rarotonga Pacific/Saipan

Pacific/Samoa Pacific/Tahiti Pacific/Tarawa

Pacific/Tongatapu Pacific/Truk Pacific/Wake

Pacific/Wallis Pacific/Yap Poland

Portugal ROC ROK

SST Singapore SystemV/AST4

SystemV/AST4ADT SystemV/CST6 SystemV/CST6CDT

SystemV/EST5 SystemV/EST5EDT SystemV/HST10

SystemV/MST7 SystemV/MST7MDT SystemV/PST8

SystemV/PST8PDT SystemV/YST9 SystemV/YST9YDT

Turkey UCT US/Alaska

US/Aleutian US/Arizona US/Central

US/East-Indiana US/Eastern US/Hawaii

US/Indiana-Starke US/Michigan US/Mountain

US/Pacific US/Pacific-New US/Samoa

UTC Universal VST

APPENDIX B: Date and Time Programming

Programmers Guide 169

W-SU WET Zulu

Date/Time Format Codes
A list of valid components that can be used to specify the format of a date/time type: date,
timestamp, or bigdatetime.

Date/time type formats must be specified with either the Event Stream Processor formatting
codes, or a subset of timestamp conversion codes provided by the C++ strftime() function. The
are a number of different valid codes, however, A valid date/time type specification can
contain no more than one occurrence of a code specifying a particular time unit (for example, a
code specifying the year).

Note: All designations of year, month, day, hour, minute, or second can also read a fewer
number of digits than is specified by the code. For example, DD reads both two-digit and
one-digit day entries.

Event Stream Processor Time Formatting Codes

Column Code Description Input Output

MM Month (01-12; JAN = 01). Y Y

YYYY Four-digit year. Y Y

YYY Last three digits of year. Y Y

YY Last two digits of year. Y Y

Y Last digit of year. Y Y

Q Quarter of year (1, 2, 3, 4; JAN-MAR = 1). N Y

MON Abbreviated name of month (JAN, FEB, ..., DEC). Y Y

MONTH Name of month, padded with blanks to nine char-
acters (JANUARY, FEBRUARY, ..., DECEMBER).

Y Y

RM Roman numeral month (1-XII; JAN = I). Y Y

WW Week of year (1-53), where week 1 starts on the first
day of the year and continues to the seventh day of
the year.

N Y

W Week of month (1-5), where week 1 starts on the
first day of the month and continues to the seventh
day of the month.

N Y

D Day of week (1-7; SUNDAY = 1). N Y

APPENDIX B: Date and Time Programming

170 SAP Sybase Event Stream Processor

Column Code Description Input Output

DD Day of month (1-31). Y Y

DDD Day of year (1-366). N Y

DAY Name of day (SUNDAY, MONDAY, ..., SATUR-
DAY).

Y Y

DY Abbreviated name of day (SUN, MON, ..., SAT). Y Y

HH Hour of day (1-12). Y Y

HH12 Hour of day (1-12). Y Y

HH24 Hour of day (0-23). Y Y

AM Meridian indicator (AM/PM). Y Y

PM Meridian indicator (AM/PM). Y Y

MI Minute (0-59). Y Y

SS Second (0-59). Y Y

SSSSS Seconds past midnight (0-86399). Y Y

SE Seconds since epoch (January 1, 1970 UTC). This
format can only be used by itself, with the FF for-
mat, and/or with the time zone codes TZD, TZR,
TZH and TZM.

Y Y

MIC Microseconds since epoch (January 1, 1970 UTC). Y Y

FF Fractions of seconds (0-999999). When used in
output, FF produces six digits for microseconds.
FFFF produces twelve digits, repeating the six dig-
its for microseconds twice. (In most circumstances,
this is not the desired effect.) When used in input, FF
collects all digits until a non-digit is detected, and
then uses only the first six, discarding the rest.

Y Y

FF[1-9] Fractions of seconds. For output only, produces the
specified number of digits, rounding or padding
with trailing zeros as needed.

N Y

APPENDIX B: Date and Time Programming

Programmers Guide 171

Column Code Description Input Output

MS Milliseconds since epoch (January 1, 1970 UTC).
When used for input, this format code can only be
combined with FF (microseconds) and the time
zone codes TZD, TZR, TZH, TZM. All other format
code combinations generate errors. Furthermore,
when MS is used with FF, the MS code must pre-
cede the FF code: for example, MS.FF.

Y Y

FM Fill mode toggle: suppress zeros and blanks or not
(default: not).

Y Y

FX Exact mode toggle: match case and punctuations
exactly (default: not).

Y Y

RR Lets you store 20th century dates in the 21st century
using only two digits.

Y N

RRRR Round year. Accepts either four-digit or two-digit
input. If two-digit, provides the same return as RR.

Y N

TZD Abbreviated time zone designator such as PST. Y Y

TZH Time zone hour displacement. For example, -5 in-
dicates a time zone five hours earlier than GMT.

N Y

TZM Time zone hour and minute displacement. For ex-
ample, -5:30 indicates a time zone that is five hours
and 30 minutes earlier than GMT.

N Y

TZR Time zone region name. For example, US/Pacific
for PST.

N Y

Strftime() Timestamp Conversion Codes
Instead of using Event Stream Processor time formatting codes, output timestamp formats can
be specified using a subset of the C++ strftime() function codes. The following rules apply:

• Any timestamp format specification that includes a percent sign (%) is considered a
strftime() code.

• Strings can only include one type of formatting codes: the Event Stream Processor
formatting codes, or the strftime() codes.

• Some strftime() codes are valid only on Microsoft Windows or only on UNIX-like
operating systems. Different implementations of strftime() also include minor differences
in code interpretation. To avoid errors, ensure that both the ESP Server and the ESP Studio
are on the same platform, and are using compatible strftime() implementations. It is also
essential to confirm that the provided codes meet the requirements for the platform.

APPENDIX B: Date and Time Programming

172 SAP Sybase Event Stream Processor

• All time zones for formats specified with strftime() are assumed to be the local time zone.
• strftime() codes cannot be used to specify date/time type input, only date/time type output.

The Event Stream Processor supports the following strftime() codes:

Strftime()
Code

Description

%a Abbreviated weekday name; example: "Mon".

%A Full weekday name: for example "Monday".

%b Abbreviated month name: for example: "Feb".

%B Full month name: for example "February".

%c Full date and time string: the output format for this code differs, depending on
whether Microsoft Windows or a UNIX-like operating system is being used.
Microsoft Windows output example: 08/26/08 20:00:00 UNIX-like operating
system output example: Tue Aug 26 20:00:00 2008

%d Day of the month, represented as a two-digit decimal integer with a value
between 01 and 31.

%H Hour, represented as a two-digit decimal integer with a value between 00 and
23.

%I Hour, represented as a two-digit decimal integer with a value between 01 and
12.

%j Day of the year, represented as a three-digit decimal integer with a value be-
tween 001 and 366.

%m Month, represented as a two-digit decimal integer with a value between 01 and
12.

%M Minute, represented as a two-digit decimal integer with a value between 00 and
59.

%p Locale's equivalent of AM or PM.

%S Second, represented as a two-digit decimal integer with a value between 00 and
61.

%U Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Sunday considered the first day of the week.

%w Weekday number, represented as a one-digit decimal integer with a value be-
tween 0 and 6, with Sunday represented as 0.

APPENDIX B: Date and Time Programming

Programmers Guide 173

Strftime()
Code

Description

%W Number of the week in the year, represented as a two-digit decimal integer with a
value between 00 and 53, with Monday considered the first day of the week.

%x Full date string (no time): The output format for this code differs, depending on
whether you are using Microsoft Windows or a UNIX-like operating system.
Microsoft Windows output example: 08/26/08 UNIX-like operating system
output example: Tue Aug 26 2008

%X Full time string (no date).

%y Year, without the century, represented as a two-digit decimal number with a
value between 00 and 99.

%Y Year, with the century, represented as a four-digit decimal number.

%% Replaced by %.

Calendar Files
A text file detailing the holidays and weekends in a given time period.

Syntax
weekendStart <integer>
weekendEnd <integer>
holiday yyyy-mm-dd
holiday yyyy-mm-dd
...

Components

weekendStart An integer that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=5, and Sun-
day=6.

weekendEnd An integer that represents a day of the week, when
Monday=0, Tuesday=1, ..., Saturday=5, and Sun-
day=6.

holiday A day of the year, in the form yyyy-mm-dd. A
calendar file can have unlimited holidays.

APPENDIX B: Date and Time Programming

174 SAP Sybase Event Stream Processor

Usage
A calendar file is a text file that describes the start and end date of a weekend, and the holidays
within the year. The lines beginning with '#' characters are ignored, and can be used to provide
user clarification or comments.

Calendar files are loaded and cached on demand by the Event Stream Processor. If changes
occur in any of the calendar files, a command must be sent to refresh the cached calendar data,
the refresh_calendars command.

Example
The following is an example of a legal calendar file:
Sybase calendar data for US 1983
weekendStart 5
weekendEnd 6
holiday 1983-02-21
holiday 1983-04-01
holiday 1983-05-30
holiday 1983-07-04
holiday 1983-09-05
holiday 1983-11-24
holiday 1983-12-26

APPENDIX B: Date and Time Programming

Programmers Guide 175

APPENDIX B: Date and Time Programming

176 SAP Sybase Event Stream Processor

APPENDIX C Performance and Tuning Tips

Optimizing performance in SAP Sybase Event Stream Processor requires tuning at the project
level as well as at the infrastructure level (machine, OS, network configuration, and so on).

If you tune your projects to produce maximum throughput and minimum latency but do not
configure your infrastructure to handle the throughput, you will see sub-optimal performance.
Likewise, if you configure your infrastructure to handle maximum throughput but do not tune
your projects, your performance suffers.

Distributing Load through Parallelization
To improve performance of large ESP projects, separate the data into smaller chunks that are
processed within their own partitions. Processing on multiple partitions in parallel can
improve performance over processing in one large partition.

There are various ways to parallelize an ESP project.

1. Application-based Partitioning
You can send all incoming data to each of the input adapters within your ESP project, and then
attach each of these adapters to a stream or delta stream that filters a subset of the overall
incoming data. The output adapters receive this data and output it to the external datasource.

Advantages:

• You can improve performance and process high volumes of data since having multiple
streams processing subsets of the data divides the load on the processor.

• You also have the advantage of not having to create a custom adapter or do any custom
coding aside from specifying the filtering.

• Can partition across cores, but is best suited for partitioning across machines.

Disadvantages over other methods:

• You have to duplicate the input data feeding into the input adapters.

Programmers Guide 177

2. Partitioning Using a Custom Adapter
You can write a custom adapter to receive input data and publish it to various streams, delta
streams, or windows on separate machines. These streams or windows would then process and
send this data to separate output adapters which would then publish it to the end datasource.
The custom adapter is responsible for partitioning the input data in this scenario.

Advantages:

• You can improve performance and process high volumes of data by filtering incoming data
across multiple machines.

• You can customize your adapter to meet your partitioning requirements.
• You do not need to duplicate any data.
• Can partition across cores, but is best suited for partitioning across machines.

Disadvantage over other methods:

• Requires more effort in terms of coding because you have to write a custom adapter as you
cannot currently partition the available adapters provided with Event Stream Processor.

APPENDIX C: Performance and Tuning Tips

178 SAP Sybase Event Stream Processor

3. Partitioning Using a SPLITTER Statement
You can use the CCL SPLITTER object to subdivide input data based on specific criteria, and
then a UNION statement to consolidate the data before sending it to the output adapter.

Advantages:

• You have more flexibility in terms of the operations that you can perform on the streams
resulting from the SPLITTER. For example, you first split the data, perform operations on
the resulting streams, and then consolidate the data again.

• Can partition across cores.

Although the example in the illustration uses a single input adapter, you can use a SPLITTER
when using multiple input adapters.

Note: Using the JOIN object does not realize the same performance benefit as using the
UNION. In fact, the JOIN operation can degrade performance considerably, so to optimize
performance, parallelizing your project using the SPLITTER/UNION combination is
recommended over using JOIN.

In both the cases, the number of parallel instances is limited to the throughput of the union and,
when used, the SPLITTER. In addition, the number of parallel instances depends on the
number of available CPUs.

4. Automatic Partitioning
You can create multiple parallel instances of a given element (delta stream, stream, window,
module) and partition input data into these instance. Partitioning data this way results in higher
performance as the workload is split across the parallel instances. If using this scenario, you
can partition the CCL elements using CUSTOM, HASH, or ROUND ROBIN partitioning.

Advantages:

• Ideal for complex projects which perform computationally expensive operations, such as
aggregation and joins.

• Quick and easy to add this functionality to your project.
• Can partition across cores.

Disadvantage:

• Lacking the ability of ordering the output.

APPENDIX C: Performance and Tuning Tips

Programmers Guide 179

General Guidelines
Hash partitioning uses hash functions to partition data. The hash function determines which
partition to place a row into based on the column names you specify as keys. These do not have
to be primary keys. Round-robin partitioning distributes data evenly across partitions without
any regard to the values.

Choose a type based on the calculations you are performing on the input data. For example,
round-robin is sufficient for stateless operations like simple filters, but not for aggregation as
this would produce differing results. Hash partitioning is necessary for grouping records
together, but grouping may not evenly distribute the data across instances.

When implementing the scenarios above, you can use round-robin or key-based partitioning.
Round-robin partitioning provides the most even distribution across the multiple parallel
instances, but is recommended only for projects limited to insert operations (that is, no updates
or deletes). For projects using insert, update, and delete operations, key-based partitioning is
preferable. Any update or delete operation on a record should occur on the same path where
the record was inserted, and only key-based partitioning can guarantee this. However, key-
based partitioning can distribute load unevenly if the HASH function is not applied correctly,
which results in some partitions with a higher burden than others.

For an example of improving performance throughput using automatic partitioning, see
Performance Tuning Using Partitioning in the Examples Guide.

For more information on the SPLITTER and UNION statements, see the Programmers
Reference Guide and refer to the splitter, Union, and RAP_splitter_examples
provided in your Examples folder.

Distributing Load through Modularization
You can optimize performance by breaking projects into modules. This strategy spreads the
load out to more cores, thereby increasing throughput.

Use modules to double, quadruple, and so on, the number of partitions, with very little
additional code. The more partitions you create, the more you distribute the load.

For information on modularity, see the Programmers Reference, the Continuous Computation
Language chapter in the Getting Started Guide, and the Submodules example provided in
your examples folder.

APPENDIX C: Performance and Tuning Tips

180 SAP Sybase Event Stream Processor

Data Flow in Event Stream Processor
The throughput of an Event Stream Processor project depends on the throughput of the slowest
component in the project.

Each stream in ESP has an internal queue that holds up to 1024 messages. This queue size is
hard-coded and cannot be modified. An internal queue buffers data feeding a stream if that
stream is unable to keep up with the inflowing data.

Consider an example where data flows from an input adapter, through streams A, B, and C,
and then through an output adapter. If the destination target of the output adapter cannot
handle the volume or frequency of messages being sent by the output adapter, the internal
queue for the stream feeding the output destination fills up and stream C cannot publish
additional messages to it. As a result, the internal queue for stream C also fills up and stream B
can no longer publish to it.

This continues up the chain until the input adapter can no longer publish messages to stream A.
If, in the same example, the input adapter is slower than the other streams, messages will
continue being published from stream to stream, but the throughput is constrained by the
speed of the input adapter.

Note that if your output destination is a database, you can batch the data for faster inserts and
updates. Set the batch size for a database adapter in the service.xml file for the database.
For information on configuring the service.xml file, see the Configuration and
Administration Guide.

Batching data carries some risk of data loss because the database adapters run on an in-
memory system. To minimize the risk of data loss, set the batch size to 1.

Log Store Considerations
The size and location of your log stores can impact performance.

Sizing the log stores correctly is important. A store that is too small requires more frequent
cleaning cycles, which severely degrades performance. In the worst case, the log store can
overflow and cause the processing to stop. A store that is too large also causes performance
issues due to the larger memory and disk footprint. For detailed information on calculating the
optimal log store size, see Basic Administrative Tasks > Sizing the Log Store in the
Configuration and Administration Guide.

When storing ESP data locally using log stores, use a high-speed storage device (for example,
a raid array or SAN, preferably with a large dynamic RAM cache). Putting the backing files
for log stores on single disk drives (whether SAS, SCSI, IDE, or SATA) always yields
moderately low throughput.

APPENDIX C: Performance and Tuning Tips

Programmers Guide 181

Note: On Solaris, putting log files in /tmp uses main memory.

Batch Processing
When stream processing logic is relatively light, inter-stream communication can become a
bottleneck. To avoid such bottlenecks, you can publish data to the ESP server in micro batches.
Batching reduces the overhead of inter-stream communication and thus increases throughput
at the expense of increased latency.

ESP supports two modes of batching: envelopes and transactions.

• Envelopes – When you publish data to the server using the envelope option, the server
sends the complete block of records to the source stream. The source stream processes the
complete block of records before forwarding the ensuing results to the dependent streams
in the graph, which in turn process all the records before forwarding them to their
dependent streams. In envelope mode, each record in the envelope is treated atomically so
a failure in one record does not impact the processing of the other records in the block.

• Transactions – When you publish data to the server using the transaction option,
processing is similar to envelope mode in that the source stream processes all of the records
in the transaction block before forwarding the results to its dependent streams in the data
graph. Transaction mode is more efficient than envelope mode but there are some
important semantic differences between the two.

The key difference between envelopes and transactions is that in transaction mode, if one
record in the transaction block fails, then all records in the transaction block are rejected
and none of the computed results are forwarded downstream.

Another difference is that in transaction mode, all resultant rows produced by a stream,
regardless of which row in the transaction block produced them, are coalesced on the key
field. Consequently, the number of resulting rows may be somewhat unexpected.

In both the cases the number of records to place in a micro batch depends on the nature of the
model and needs to be evaluated by trial and error. Typically, the best performance is achieved
when using a few tens of rows per batch to a few thousand rows per batch. Note that while
increasing the number of rows per batch may increase throughput, it also increases latency.

Main Memory Usage
There are no SAP Sybase Event Stream Processor configuration settings that directly set up or
control RAM usage on the machine. However, ESP reference counts records in the system,
ensuring that at most one copy of a record is present in memory, although multiple references
to that record may exist in different streams.

Memory usage is directly proportional to the number of records in a project. To limit the
amount of memory the entire instance of ESP uses before it reports an out-of-memory

APPENDIX C: Performance and Tuning Tips

182 SAP Sybase Event Stream Processor

condition, use the ulimit command to restrict the amount of memory available to each shell
process.

Determining Stream Memory Usage
When the server is running at log level 7 and it is shutdown cleanly, it reports the amount of
memory consumed by every stream and any aggregation indices in the server log file.

The log level is a project configuration option you can set on the Advanced tab of the Project
Configuration editor in Studio.

You do not have to constantly run the server at log level 7 to print memory usage statistics; the
statistics are printed as long as the level is set at 7 when the server is shutting down. To change
the log level at run time, use the esp_client tool and execute:

esp_client -p [<host>:]<port></workspace-name/project-name> -c
<username>:<password> "loglevel 7"

Not all of the memory consumed by the server is reported when the server shuts down.
Therefore, the total of the reported memory will not be equal to the memory reported by
system utilities (Task Manager in Windows or top in Linux) for the ESP Server. Components
that potentially consume significant amounts of memory that are not reported include:

• Input queues for streams.
• SPLASH data structures such as vectors and dictionaries used.
• Indices required for handling Retention and Aging.
• Subscriber queues.
• Memory required to process SQL subscriptions that require aggregation and pulsed

subscriptions.

The following sample illustrates the memory usage statistics reported in the log file:

[SP-6-131039] (189.139) sp(21115) CompiledSourceStream(W1):
Collecting statistics (this could take awhile).
[SP-6-131040] (190.269) sp(21115) CompiledSourceStream(W1): Memory
usage: 1,329,000,000 bytes in 3,000,000 records.
[SP-6-114012] (190.269) sp(21115) Platform(cepqplinux1)::run() --
cleaning up CompiledAggregateStream(grpbyout).
[SP-6-131039] (191.065) sp(21115) CompiledAggregateStream(grpbyout):
Collecting statistics (this could take awhile).
[SP-6-124001] (191.065) sp(21115)
CompiledAggregateStream(grpbyout)::Memory usage: 1,545,000,000 bytes
in aggregation index.
[SP-6-131039] (195.957) sp(21115) CompiledAggregateStream(grpbyout):
Collecting statistics (this could take awhile).
[SP-6-131040] (196.267) sp(21115) CompiledAggregateStream(grpbyout):
Memory usage: 1,020,000,000 bytes in 3,000,000 records.
[SP-6-114012] (196.267) sp(21115) Platform(cepqplinux1)::run() --
cleaning up CompiledAggregateStream(grpbyout2).
[SP-6-131039] (197.038) sp(21115)
CompiledAggregateStream(grpbyout2): Collecting statistics (this

APPENDIX C: Performance and Tuning Tips

Programmers Guide 183

could take awhile).
[SP-6-124001] (197.039) sp(21115)
CompiledAggregateStream(grpbyout2)::Memory usage: 1,545,000,000
bytes in aggregation index.
[SP-6-131039] (202.184) sp(21115)
CompiledAggregateStream(grpbyout2): Collecting statistics (this
could take awhile).
[SP-6-131040] (202.496) sp(21115)
CompiledAggregateStream(grpbyout2): Memory usage: 1,122,000,000
bytes in 3,000,000 records.
[SP-6-114012] (202.496) sp(21115) Platform(cepqplinux1)::run() --
cleaning up CompiledStream(coutputwin).
[SP-6-131039] (202.496) sp(21115) CompiledStream(coutputwin):
Collecting statistics (this could take awhile).
[SP-6-131040] (203.654) sp(21115) CompiledStream(coutputwin): Memory
usage: 651,000,000 bytes in 3,000,000 records.

CPU Usage
SAP Sybase Event Stream Processor automatically distributes its processing load across all
the available CPUs on the machine. If the processing of a data stream seems slow, monitor
each stream's CPU utilization using either the esp_monitor utility from the command line or
through Sybase Control Center. If the monitoring tool shows one stream in the project using
the CPU more than other streams, refine the project to ensure that the CPU is used evenly
across the streams.

In addition to the CPU usage per stream as reported by the monitoring tools, the queue depth is
also a very important metric to monitor. Each stream is preceded by a queue of input records.
All input to a given stream is placed in the input queue. If the stream processing logic cannot
process the records as quickly as they arrive to the input queue, the input queue can grow to a
maximum size of 1,024 records. At that point, the queue stops accepting new records, which
results in the automatic throttling of input streams. Since throttled streams require no CPU
time, all CPU resources are distributed to the streams with the full queues, in effect performing
a CPU resource load balance of the running project. When a stream's input queue is blocked,
but the stream has managed to clear half of the pending records, the queue is unblocked, and
input streams can proceed to supply the stream with more data.

If this inherent load balancing is insufficient to clear the input queue for any given stream, the
backup of the queue can percolate upward causing blockages all the way up the dependency
graph to the source stream. If your monitoring indicates growing or full queues on any stream
or arc of streams in the directed graph, examine this collection of streams to determine the
cause of the slow processing.

APPENDIX C: Performance and Tuning Tips

184 SAP Sybase Event Stream Processor

TCP Buffer and Window Sizes
High throughput data transfers between clients and SAP Sybase Event Stream Processor rely
on the proper tuning of the underlying operating system's TCP networking system.

The data generated by clients for delivery to ESP does not always arrive at a uniform rate.
Sometimes the delivery of data is bursty. In order to accommodate large bursts of network
data, large TCP buffers, and TCP send/receive windows are useful. They allow a certain
amount of elasticity, so the operating system can temporarily handle the burst of data by
quickly placing it in a buffer, before handing it off to ESP for consumption.

If the TCP buffers are undersized, the client may see TCP blockages due to the advertised TCP
window size going to zero as the TCP buffers on the ESP server fill up. To avoid this scenario,
tune the TCP buffers and window sizes on the server on which ESP is running to between one
and two times the maximum size that is in use on all client servers sending data to ESP.

For information and best practices for determining and setting TCP buffer and window sizes,
consult the documentation provided with your operating system.

Improving Aggregation Performance
Aggregation functions typically require the server to iterate over every element in a group. For
this reason, the performance of the aggregation operator is inversely proportional to the size of
the group.

Aggregation functions can be used in a SELECT statement along with a GROUP BY clause or
over event caches in SPLASH inside UDFs and FLEX operators.

For the SUM, COUNT, AVG, and valueInserted aggregation functions, the server can perform
additive optimization, where the function executes in constant time. In such cases, the time it
takes to perform an operation is the same regardless of group size.

In a SELECT statement, the server can perform additive optimization provided functions
eligible for optimization are used in all values being selected, with the exception of the
columns referenced in the GROUP BY clause.

The following SELECT is optimized for additive optimization since all non-GROUP BY
columns (name, counter, summary) only use additive aggregation functions (that is,
valueInserted, SUM, and COUNT).

CREATE OUTPUT WINDOW AggResult
 SCHEMA (id INTEGER, name STRING, counter INTEGER, summary FLOAT)
 PRIMARY KEY DEDUCED
AS
 SELECT BaseInput.intData_1 AS id,
 valueInserted(BaseInput.strData_1) AS name,
 count(BaseInput.intData_1) AS counter,

APPENDIX C: Performance and Tuning Tips

Programmers Guide 185

 sum(BaseInput.dblData_1) AS summary
FROM BaseInput
GROUP BY BaseInput.intData_1
;

Note: For optimal peformance, when selecting only the column in a SELECT statement with a
GROUP BY clause, use the valueInserted function, where feasible.

The following SELECT is not optimized for additive optimization since one of the non-
GROUP BY columns (name) directly selects a column which cannot be computed additively.

CREATE OUTPUT WINDOW AggResult
 SCHEMA (id INTEGER, name STRING, counter INTEGER, summary FLOAT)
 PRIMARY KEY DEDUCED
AS
 SELECT BaseInput.intData_1 AS id,
 BaseInput.strData_1 AS name,
 count(BaseInput.intData_1) AS counter,
 sum(BaseInput.dblData_1) AS summary
FROM BaseInput
GROUP BY BaseInput.intData_1
;

When applying aggregation functions over an event cache, additive optimization is turned on
when using the SUM, COUNT, AVG, or valueInserted functions only in the ON clause of a
FLEX operator. The additive optimization does not apply when functions are used inside a
UDF.

The following Flex stream computes the SUM in the ON clause additively, since the SUM
function is computed additively and the used EventCaches (e0,e1) are declared locally.

CREATE INPUT WINDOW In1
 SCHEMA (c1 INTEGER, c2 STRING, c3 INTEGER, summary FLOAT)
 PRIMARY KEY (c1, c2);

CREATE FLEX MyFlex
 IN In1
 OUT OUTPUT WINDOW FlexOut
 SCHEMA (c1 INTEGER, c2 INTEGER, c3 INTEGER, c4 INTEGER)
 PRIMARY KEY (c1, c2)
BEGIN
 declare
 eventCache(In1, coalesce) e0;
 eventCache(In1, coalesce) e1;
 end;

 ON In1 {
 {
 output setOpcode([c1=In1.c1;c2=In1.c2;|
c3=sum(e0.c1);c4=sum(e1.c3);],getOpcode(In1));
 }
 };
END;

APPENDIX C: Performance and Tuning Tips

186 SAP Sybase Event Stream Processor

The following Flex stream is not computed additively , since the STDDEV function cannot be
computed additively.

CREATE INPUT WINDOW In1
 SCHEMA (c1 INTEGER, c2 STRING, c3 INTEGER)
 PRIMARY KEY (c1, c2);

CREATE FLEX MyFlex
 IN In1
 OUT OUTPUT WINDOW FlexOut
 SCHEMA (c1 INTEGER, c2 INTEGER, c3 INTEGER, c4 FLOAT)
 PRIMARY KEY (c1, c2)
BEGIN
 declare
 eventCache(In1, coalesce) e0;
 eventCache(In1, coalesce) e1;
 end;

 ON In1 {
 {
 output setOpcode([c1=In1.c1;c2=In1.c2;|
c3=sum(e0.c1);c4=stddev(e1.c3);],getOpcode(In1));
 }
 };
END;

Another restriction is that additive optimizations are disabled when functions are used inside
nonlinear statements (if, while, for, and case statements). To enable additive optimizations
when using a function within a nonlinear statement, assign the result of the function to a
variable outside of the statement. Then use the variable inside the nonlinear statement.

Note: The function used within the nonlinear statement must be from the set of functions
eligible for additive optimization.

The following SELECT is not optimized for additive optimization since one of the
expressions (CASE) in the SELECT list is a nonlinear expression.

CREATE OUTPUT WINDOW AggResult
 SCHEMA (id INTEGER, name STRING, counter INTEGER, summary FLOAT)
 PRIMARY KEY DEDUCED
AS
 SELECT BaseInput.intData_1 AS id,
 valueInserted(BaseInput.strData_1) AS name,
 CASE WHEN (count(BaseInput.intDATA_1) < 100) THEN 0 ELSE 1 END
AS counter,
 sum(BaseInput.dblData_1) AS summary
FROM BaseInput
GROUP BY BaseInput.intData_1
;

APPENDIX C: Performance and Tuning Tips

Programmers Guide 187

APPENDIX C: Performance and Tuning Tips

188 SAP Sybase Event Stream Processor

Index
A
adapters 24
Adaptive Server database

executing DDL 158
Adaptive Server Enterprise

schema 155
aggregation

GROUP BY clause 52
GROUP FILTER clause 52
GROUP ORDER BY clause 52
HAVING clause 52

Aging Policy 8
ANSI syntax 49
ASE

executing DDL 158
generating DDL scripts 156

ASE database
creating objects 158
creating schema 155

ASE model 132
creating with categories 139
extending 134
generating from ASE model 149

ASE physical data model
generate from an ESP schema logical data

model 147
ASE table

generating schema 141
ASE.pdm 156
ASE.xem

description 131
attribute properties

length 142
name 142
precision 142

attributes 142
ESP Data Type 135
schema definition 143

auto checkpoint 96

B
basic project components

queries 22
bigdatetime

format codes 170

bindings 15
Boolean

Boolean Literals 40
Boolean Literals

Boolean Literals 40

C
calendar 174
calendar functions 174
case-insensitive 38
case-sensitive 38
categories

changing 134, 135
creating a model 139
displaying 134
ESP models 132, 134
merging 134, 135
PowerDesigner 132, 134
setting up 134

category set
ESP models 132

CCL
advanced techniques overview 63
creating a model 146
language components 27
order of elements 24
overview 2

CCL keywords 159
CCR

bindings examples 15
checking a model

custom checks 144, 145
data types 145
indexes 145
lookup information 145
options 144
PowerDesigner standard checks 145
uniqueness 145

ckCount parameter 109
clauses

GROUP BY 52
GROUP FILTER 52
GROUP ORDER BY 52
HAVING 52
MATCHING 51

Index

Programmers Guide 189

UNION 45
WHERE 43

clustering
log stores 103

code names of tables 129
columns

BIGROWTIME 20
ROWID 20
ROWTIME 20

combining queries 45
comma-separated syntax 51
complex join example 51
configuration file 183
configuring

log store size 105
consistent recovery 95
continuous queries 7
count-based retention 8
CREATE SCHEMA statement 21

D
data definition language scripts

See DDL scripts
data flow 181
data model

PowerDesigner standard checks 145
validating 145

data models
integrated 127
modifying 155
overview 129
scenarios 127
tables 129

data partitioning
modules 68
streams 68
windows 68

data types
schema model checks 145

data-flow programming
example 1
introduction 1

database owner
changing from RAP_USER 155

databases
creating objects 155, 157, 158
generating schema 155

datatypes
supported datatypes in Event Stream Processor

27

date
format codes 170

date/time format codes 170
daylight saving time (DST) 161
DDL scripts

generating (overview) 155
executing for ASE 158
executing for IQ 157
executing for SAP HANA 157
executing generated script 158
for ASE 156
for HANA 156
for IQ 156
generating using Powerdesigner 155
generating using PowerDesigner 156

DDL, custom
SAP HANA 157

DDL, custom (Adaptive Server Enterprise)
executing 158

DDL, custom (Sybase IQ)
changing default database owner 155
executing 157

declaration
typedefs 64
variables 65

declare blocks
declaring 67
global 63
local 63
overview 63

declaring parameters
parameters 64

delete 119
delta streams 13, 14

bindings on 15
dependency loops 21
destination table name

schema definition attribute 142
DST 161

E
entity tool

creating schema definition 140
error streams 90
ESP 128, 129

overview 127
ESP Data Type

customizing 135
setting attribute manually 135

Index

190 SAP Sybase Event Stream Processor

ESP model category
enabling 135

ESP models
category set
See models

See also ASE model
ESP Schema

schema 155
ESP schema logical model

generating a HANA model 147
generating an ASE model 147
generating an IQ model 147

ESP Schema model 129, 132
creating with CCL 146
generating from ASE model 149, 150
generating from HANA model 149
generating from IQ model 149, 150
generating from physical data model 149, 150
overview 129

ESP Schema model generating an ASE model
generating an ASE model 149

ESP Schema model generating an IQ model
generating an IQ model 149

ESP.mcc
description 132

ESPSchema.xem
description 131

event streams
overview 5

events
definition 5
delete 6
examples 5
insert 6
update 6

example projects 121
examples

ANSI syntax 49
comma-separated syntax 51
complex join 49, 51
complex stream-window join 49
internal pulsing 113
merging data 45
order book 114
pattern matching 51
simple full outer join 49
simple inner join 49
simple left join 49
simple stream-window left join 49

using a UNION operator 45
executing SPLASH within CCL 117
expressions

compound expressions 35
simple expressions 35

extended definition files
overview 131

extended model definitions
See extensions

extending a model
manually 134

extensions
model 131
overview 131
transformations 131
.xem files 131

F

files
calendar 174

filtering data 43
flex operators 68
Flex operators 117

accessing input streams 117
accessing the event 117
transaction blocks 119
using output statements 119

foreign keys
adding 149
lineage analysis 154

format codes
bigdatetime 170
date 170
date/time 170
timestamp 170

G

generating a diagram
impact analysis 152
lineage analysis 152

guaranteed delivery 98
and log stores 104
CCR example - bindings 15

GUI authoring
See visual authoring

Index

Programmers Guide 191

H
HANA physical data model

generate from an ESP schema logical data
model 147

HANA.pdm 156
HANA.xem 131
hdbsql, HANA 157

I
identifiers

defining 144
overview 143
primary keys 143, 144

impact analysis 133
customizing 152
example 153, 154
foreign keys 154
generating a diagram 152
IAM 151
launch 151
overview 150
preview 151
printing 152
refining 152
reviewing 152
saving to RTF or CSV 152

impact analysis model (IAM)
generating 152

implicit
columns 20
windows 11

indexes
editing 148

input 19
input streams

accessing 117
insert 119
insert opcode

and streams 7
Interactive SQL

executing DDL scripts 157
internal pulsing 113
Interval

Time Literals 39
INTERVAL

Time Literals 39
Interval Literals

Time Literals 39

intervals
values 31

IQ database
creating objects 157
creating schema 155

IQ model 132
creating with categories 139
generating from IQ model 149

IQ physical datamodel
generate from an ESP schema logical data

model 147
IQ table

generating schema 141
IQ.pdm 156
IQ.xem

description 131

J

joins
ANSI syntax 49
cardinality 46
complex join example 49, 51
complex stream-window join example 49
examples 46
key field rules 48
simple full outer join example 49
simple inner join example 49
simple left join example 49
simple stream-window left join example 49
types 46

K

KEEP clause
retention policies 8

key field rules 48
keywords 159

L

length
schema definition attribute 142

lineage analysis 133
example 154
foreign keys 154
generating a diagram 152
IAM 151
launch 151

Index

192 SAP Sybase Event Stream Processor

overview 150
preview 151
reviewing 152

Literals
Literals 39
Time Literals 39

log level 183
log store

features 89
log store loops 21
optimization techniques 90
state after recovery 89

log stores
and consistent recovery 95
and guaranteed delivery 104
creating 103
guidelines 104
managing 109
sizing 105, 109

logical data model
creating 139
extending 134
generating from physical data model 149, 150

logical data models
ESPSchema.xem 131

lookup columns
adding 149
schema definition attributes 142

lookup information
schema model checks 145

M
MATCHING clause 51
memory 183
memory store 21
merging

model categories 135
model

ESP Schema 129
sample 137

model categories
merging 135

modeling
scenarios 127

models 132
analyzing impact of changes 133, 150
analyzing object lineage 133, 150
creating with categories 139
creating with CCL 146

sample project 128
setting up ESP category set 134

modularity 86, 87
overview 85

module
create 86, 87
load 86, 87
parameters 87
use 86, 87

modules 68
rules for 85

monitoring 92

N

named schema 21
naming 38
Numeric

Numeric Literals 41

O

Object
Object Names 40

opcodes
defined 6
delete 6
insert 6
safedelete 6
update 6
upsert 6

operators
arithmetic operators 32
comparison operators 32
LIKE operators 32
logical operators 32
string operators 32

order book 114
output 19
Output parameter on input streams, windows 15
output statements

using with Flex operators 119
overview 2

P

parameters 64
for sizing log stores 109
in modules 87

Index

Programmers Guide 193

initializing parameters at runtime 64
PARAMETERS clause

parameter binding 87
partitioning

in ASE model 148
joins 83
retention policies 78
windows 78

partitioning data
modules 68
streams 68
windows 68

pattern matching 51
performance

count-based retention 8
improving 177
SLACK value 8

persistence
log store 21, 89

physical data model
generating a logical data model 149, 150

physical options
in table properties 148

PowerDesigner
creating Adaptive Server database schema

155
creating IQ database schema 155
creating IQ schema 155
documentation 128
modeling overview 129
producing DDL 156
sample project 128
tutorials 128

PowerDesigner categories
See categories

PowerDesigner extensions
setting up 134

precision
schema definition attribute 142

primary keys
identifiers in schema 144
multicolumn 143

projects
configuring data flow between 15
development task flow 25
example 121

properties
schema definition, general tab 142

properties sheet
defining schema 141

Q

queries
basic syntax 22
GROUP BY clause 52
GROUP FILTER clause 52
GROUP ORDER BY clause 52
HAVING clause 52
MATCHING clause 51
UNION operator 45
WHERE clause 43

Queries
reference table 54

Query
reference table 55

query construction
aggregating data 43
combining queries 43
filtering data 43
joining multiple datasources 43
using pattern-matching rules 43

R

reconnection interval for bindings
setting in CCR 15

Reference table queries 54
Reference table query 55
Reference Table Query

in SPLASH 58, 60
reservePct parameter 109
retention

count-based 8
semantics 8
time-based 8

retention policies
description 8

retention semantics 8

S

safedelete
defined 6

sample model
exploring 137
opening 128, 137

Index

194 SAP Sybase Event Stream Processor

overview 137
sample project

opening 128
PowerDesigner 128

SAP HANA
generating DDL scripts 156

SAP HANA database
creating objects 157

SAP Sybase IQ
generating DDL scripts 156

schema 21
Adaptive Server database 155
creating a schema definition 140, 141
creating for Adaptive Server Enterprise

database 155
creating for IQ database 155
creating with PowerDesigner 155
generating from a table 141
IQ database 155

SCHEMA clause 21
schema definition

adding 140
adding attributes 143
attributes 132
creating 140, 141
creating with entity tool 140
identifiers 132
overview 132
properties 132

schema definition properties
attributes tab 142
destination table name 142
general tab 142
name 142
schema type 142

schema definitions
definining properties 141
editing 141
list 133
properties sheet 141

schema model
creating with categories 139
custom checks 144, 145
data types 145
lookup information 145
standard checks 145
uniqueness 145
validating 144, 145

Schema model

See ESP Schema model
scope

for modules 85
sizing

log stores 109
sizing log stores 105
SLACK

count-based retention 8
performance 8

SPLASH
overview 3
Reference Table Query in 58, 60

SPLASH examples
internal pulsing 113
order book 114

SPLASH routines 113
SSL

configuring bindings for 15
stateful elements 7
statements

CREATE LOG STORE 21
CREATE MEMORY STORE 21
CREATE MODULE 86, 87
IMPORT 86, 87
LOAD MODULE 86, 87

stores
log store 21, 89
log stores 103
memory store 21

stream 183
streams 7, 14, 68, 92

bindings on 15
error 90
input 19
input, configuring to provide output 15
local 19
output 19
schema 21
structure 21

String
String Literals 40

String Literals
String Literals 40

Studio
overview 3

sweepamount parameter 109
Sybase IQ

schema 155

Index

Programmers Guide 195

Sybase IQ model
extending 134

T
table

finding in model 129
tables

Bond History 129
Bond Quote 130
Bond Trade 130
code names 129
descriptions 129
Dividend Event 130
Index History 130
Index Intraday 130
Mutual Fund History 130
Option History 130
Option Quote 130
Option Trade 130
Split Event 131
Stock History 131
Stock Quote 131
Stock Trade 131

text authoring
overview 3

throughput 181
maximizing 177

Time
Time Literals 39

Time Literals
Time Literals 39

time zones 161, 162
time-based retention 8
timestamp

format codes 170
Timestamp

Time Literals 39
transaction blocks 119
transformation rules

in model generation 146
transformations

defined in extension files 131
typedefs 64

U
UNION operator 45

unions 45
uniqueness

schema model checks 145
unnamed windows 11
update 119
upsert

defined 6
usage 183

V

validating
schema model 144

variables 65
visual authoring

overview 3

W

WHERE clause 43
windows 14, 68

bindings on 15
implicit 11
input 11, 19
join 11
local 11, 19
named 7, 11
output 11, 19
persistence 89
schema 21
structure 21
unnamed 7, 11

Writing SPLASH 113

X

.xem files
overview 131

Z

zero data loss 95
achieving 100
auto checkpoint 96
consistent recovery 95
guaranteed delivery 98

Index

196 SAP Sybase Event Stream Processor

	Programmers Guide
	Contents
	CHAPTER 1: Introduction
	Data-Flow Programming
	Continuous Computation Language
	SPLASH
	Authoring Methods

	CHAPTER 2: CCL Project Basics
	Events
	Operation Codes
	Streams
	Windows
	Retention
	Named Windows
	Unnamed Windows

	Delta Streams
	Comparing Streams, Windows, and Delta Streams
	Bindings on Streams, Delta Streams, and Windows
	Input/Output/Local
	Implicit Columns
	Schemas
	Stores
	CCL Continuous Queries
	Adapters
	Order of Elements

	CHAPTER 3: Developing a Project in CCL
	CHAPTER 4: CCL Language Components
	Datatypes
	Intervals

	Operators
	Expressions
	CCL Comments
	Case-Sensitivity
	Literals
	Time Literals
	Boolean Literals
	String Literals
	Numeric Literals

	CHAPTER 5: CCL Query Construction
	Filtering
	Splitting Up Incoming Data
	Unions
	Example: Merging Data from Streams or Windows

	Joins
	Key Field Rules
	Join Examples: ANSI Syntax
	Join Example: Comma-Separated Syntax

	Pattern Matching
	Aggregation
	Reference Table Queries
	Using a Reference Table Query in a Join
	Using a Reference Table Query in a Module
	Using a Reference Table Query in SPLASH
	Using a Reference Table Query in SPLASH to Get a Single Row from a Table

	CHAPTER 6: Advanced CCL Programming Techniques
	Declare Blocks
	Typedefs
	Parameters
	Variables
	Declaring Project Variables, Parameters, Datatypes, and Functions

	Flex Operators
	Automatic Partitioning
	Guidelines for Partitioning Flex Operators
	Guidelines for Partitioning SPLASH
	Guidelines for Partitioning Elements with Retention Policies
	Guidelines for Partitioning Aggregation
	Guidelines for Partitioning Modules
	Guidelines for Partitioning Joins
	Guidelines for Partitioning Elements on Log Stores

	Modularity
	Module Creation and Usage
	Example: Creating and Using Modules
	Example: Parameters in Modules

	Data Recovery
	Log Store Optimization Techniques

	Error Streams
	Monitoring Streams for Errors

	CHAPTER 7: Zero Data Loss
	Consistent Recovery
	Auto Checkpoint
	Guaranteed Delivery
	Achieving Zero Data Loss

	CHAPTER 8: Creating a Log Store
	Log Store Guidelines
	Sizing a Log Store
	Log Store Sizing Reference

	CHAPTER 9: Writing SPLASH Routines
	Internal Pulsing
	Order Book

	CHAPTER 10: Integrating SPLASH into CCL
	Access to the Event
	Access to Input Windows
	Output Statement
	Notes on Transactions

	CHAPTER 11: Using SPLASH in Projects
	CHAPTER 12: ESP Datatypes in SQL Queries
	CHAPTER 13: PowerDesigner for Event Stream Processor
	Getting Started
	Data Modeling Scenarios
	Sample PowerDesigner Project
	Opening the Sample Project

	Learning More About PowerDesigner

	Data Model
	ESP Schema Logical Data Model
	Finding an Object in a Diagram
	Data Model Tables
	Extensions
	Category Set
	Schema Definitions
	Sample Schema Definition List

	Impact and Lineage Analysis

	Extended Model Setup
	Extending an Existing Model
	Setting Up the Model Category Set File
	Merging ESP Categories
	Changing the Default Category

	Setting Datatypes for an ESP Schema

	ESP Schema Model Development
	Exploring the Sample Model
	The Sample Model
	Creating an ESP Schema Model
	Creating a Model Using Categories
	Creating a Logical Data Model
	Adding Schema Definition
	Creating Schema from the Schema Definitions Container
	Creating Schema with the Entity Tool
	Creating a Schema from the ESP Schema Container
	Generating Schema from a Sybase IQ, SAP HANA, or ASE Table

	Defining Schema Properties
	General Tab Properties
	Attributes Tab Properties
	Adding an Attribute to Schema
	Identifiers
	Defining Identifiers

	Validating a Model
	PowerDesigner Validity Checks
	Custom Checks for ESP Schema Extensions

	Importing a CCL File
	Exporting a CCL File

	Model Generation
	Generating a new Sybase IQ, SAP HANA, or ASE Model from an ESP Schema Model
	Checking Indexes
	Setting Physical Options
	Adding Foreign Keys

	Generating a new ESP Schema Model from a Sybase IQ, SAP HANA, or ASE Model
	Updating an existing Sybase IQ, SAP HANA, or ASE Model from an ESP Schema Model
	Updating an existing ESP Schema Model from a Sybase IQ, SAP HANA, or ASE Model

	Impact and Lineage Analysis
	Launching an Impact and Lineage Analysis
	Generating an Analysis Diagram
	Reviewing an Impact and Lineage Analysis
	Sample Analysis for a Schema Definition
	Sample Analysis for a Table

	DDL Script Generation
	Generating Database Schema with PowerDesigner
	Changing the Default Database User

	Generating DDL Scripts
	Executing DDL Scripts for the SAP Sybase IQ Database
	Executing DDL Scripts for the SAP HANA Database
	Executing DDL Scripts for the ASE Database

	APPENDIX A: List of Keywords
	APPENDIX B: Date and Time Programming
	Time Zones
	Changes to Time Zone Defaults
	List of Time Zones

	Date/Time Format Codes
	Calendar Files

	APPENDIX C: Performance and Tuning Tips
	Distributing Load through Parallelization
	Distributing Load through Modularization
	Data Flow in Event Stream Processor
	Log Store Considerations
	Batch Processing
	Main Memory Usage
	Determining Stream Memory Usage
	CPU Usage
	TCP Buffer and Window Sizes
	Improving Aggregation Performance

	Index

