
Reference: Custom Unwired Server
Development

Sybase Unwired Platform 1.5.5

DOCUMENT ID: DC01333-01-0155-01
LAST REVISED: December 2010
Copyright © 2010 by Sybase, Inc. All rights reserved.
This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or
technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617)
229-9845.
Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All
other international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at
regularly scheduled software release dates. No part of this publication may be reproduced, transmitted, or translated in any
form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase,
Inc.
Sybase trademarks can be viewed at the Sybase trademarks page at http://www.sybase.com/detail?id=1011207. Sybase and
the marks listed are trademarks of Sybase, Inc. ® indicates registration in the United States of America.
SAP and other SAP products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of SAP AG in Germany and in several other countries all over the world.
Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names mentioned may be trademarks of the respective companies with which they are
associated.
Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS
52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.
Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

http://www.sybase.com/detail?id=1011207

Contents

Introducing Custom Development for Unwired Server1
Server API ..1
Interfaces ..2
Javadocs ...2
Documentation Road Map for Unwired Platform3

Result Set Filters ...7
Result Set Filter Data Flow ...8
Implementing Custom Result Set Filters8

Writing a Custom Result Set Filter9
Deploying Custom Filters to Unwired Server11
Validating Result Set Filter Performance12

Filter Class Debugging ...13
Enabling JPDA ...13

Result Checkers ...15
Implementing Customized Result Checkers15

Writing a Custom Result Checker16
Adding a Result Checker19

Default Result Checker Code22
Data Change Notifications ..27

Data Change Notification Data Flow28
Invoking upsert and delete Operations Using Data

Change Notification ..28
Basic HTTP Authentication ...31
Data Change Notification Requirements32
Data Change Notification Results35
Data Change Notification Filters36

Implementing a Data Change Notification Filter
...37

Custom XSLT Transforms ...39
Custom XSLT Use Cases ...39
Implementing Custom Transforms39

Reference: Custom Unwired Server Development iii

XSLT Stylesheet Syntax ...40
XSLT Stylesheet Example ..41

Index ..45

Contents

 iv Sybase Unwired Platform

Introducing Custom Development for Unwired
Server

This developer reference provides information about using the Sybase® Unwired Platform
Server API to customize Unwired Server. The audience is advanced developers who are
familiar working with APIs, but who may be new to Sybase Unwired Platform.

This guide describes the contents of the Server API, and how you can use packages to create
custom server code.

Companion guides include:

• System Administration of the Unwired Platform
• Sybase Unwired WorkSpace online help
• Javadocs, which provide a complete reference to the APIs.

See Fundamentals for high-level mobile computing concepts, and a description of how Sybase
Unwired Platform implements the concepts in your enterprise.

Server API
Sybase Unwired Platform includes several interfaces that open specific features and
functionality of Unwired Server for custom development. Customizing Unwired Server
allows you to better control behaviors of these features.

• Result set filter – use a custom Java class to filter the rows or columns of data returned from
a read operation for a mobile business object (MBO). You can write a filter to add, delete,
or change columns, or to add and delete rows.
Result set filters depend on the sup-ds.jar file, located in the
com.sybase.uep.tooling.api/lib subdirectory. For example, C:\Sybase
\UnwiredPlatform\Unwired_WorkSpace\Eclipse
\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.tooling.api_<version_and_timestamp>\lib.

• Result checkers – use the custom Java class to implement custom error checking for
enterprise information system (EIS) business objects.
Result checkers depend on the sup-ds.jar file, located in the
com.sybase.uep.tooling.api/lib subdirectory.

• Data change notifications (DCNs) – use an HTTP interface to immediately propagate EIS
changes to Unwired Server, rather than using the built-in cache refresh mechanism
configured by the Unwired Server administrator.
DCN requests contain the changed data (delta) of the EIS for which the Unwired Server
cache needs to be updated. This request can be in the standard JSON format that Unwired

Introducing Custom Development for Unwired Server

Reference: Custom Unwired Server Development 1

Server expects or in a different format along with a translation logic to convert it into the
standard format. This translation logic is coded in a DCN Filter.

• Custom transforms – create a transform to modify the structure of generated Web Services
message data, so it can be used by an Unwired Platform MBO.

You can program these functions in any order; each class is implemented independently.

Interfaces
There are several Server API interfaces that developers can invoke.

Interface Includes methods that

com.sybase.uep.eis.Result-
SetFilter

Define how a custom filter for the data is called, and perform the
filtering of data.

com.sybase.uep.eis.Result-
SetFilterMetaData

Obtain output column and datatype information without executing a
chain of mobile business object operations and filters with real data.

com.sybase.sup.ws.rest.Re-
stResultChecker

Implement a result checker for a RESTful Web service datasource.

com.sybase.
sup.ws.soap.WSResultCh-
ecker

Implement a result checker for a SOAP Web service datasource.

com.sybase.sup.sap.SAPRe-
sultChecker

Implement a result checker for a SAP® datasource.

com.sybase.sup.serv-
er.dcn.DCNFilter

Preprocess – digests the DCN request as blob, converts it into a valid
JSON DCN request format and returns the DCN.

PostProcess – takes the DCN result in a valid JSON format, converts
to the EIS format and returns it.

For details on these classes, and the methods that implement them, see the Javadocs for
com.sybase.sup.admin.client.

Javadocs
The Server API installation includes Javadocs. Use the Sybase Javadocs for your complete
API reference.

As you review the contents of this document, ensure you review the reference details
documented in the Javadoc delivered with this API. By default, Javadocs for Result Set Filters,
Result Checkers, and Data Change Notifications are installed in
<UnwiredPlatform_InstallDir>\UnwiredPlatform\Servers
\UnwiredServer\APIdocs\index.html.

Introducing Custom Development for Unwired Server

 2 Sybase Unwired Platform

Documentation Road Map for Unwired Platform
Learn more about Sybase® Unwired Platform documentation.

Table 1. Unwired Platform documentation

Document Description

Sybase Unwired Platform Installation Guide Describes how to install or upgrade Sybase Un-
wired Platform. Check the Sybase Unwired Plat-
form Release Bulletin for additional information
and corrections.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user installing the system.

Use: during the planning and installation phase.

Sybase Unwired Platform Release Bulletin Provides information about known issues, and
updates. The document is updated periodically.

Audience: IT installation team, training team,
system administrators involved in planning, and
any user who needs up-to-date information.

Use: during the planning and installation phase,
and throughout the product life cycle.

New Features Describes new or updated features.

Audience: all users.

Use: any time to learn what is available.

Fundamentals Describes basic mobility concepts and how Syb-
ase Unwired Platform enables you design mobi-
lity solutions.

Audience: all users.

Use: during the planning and installation phase,
or any time for reference.

Introducing Custom Development for Unwired Server

Reference: Custom Unwired Server Development 3

Document Description

System Administration Describes how to plan, configure, manage, and
monitor Sybase Unwired Platform. Use with the
Sybase Control Center for Sybase Unwired Plat-
form online documentation.

Audience: installation team, test team, system
administrators responsible for managing and
monitoring Sybase Unwired Platform, and for
provisioning device clients.

Use: during the installation phase, implementa-
tion phase, and for ongoing operation, mainte-
nance, and administration of Sybase Unwired
Platform.

Sybase Control Center for Sybase Unwired Plat-
form

Describes how to use the Sybase Control Center
administration console to configure, manage and
monitor Sybase Unwired Platform. The online
documentation is available when you launch the
console (Start > Sybase > Sybase Control Cen-
ter, and select the question mark symbol in the
top right quadrant of the screen).

Audience: system administrators responsible for
managing and monitoring Sybase Unwired Plat-
form, and system administrators responsible for
provisioning device clients.

Use: for ongoing operation, administration, and
maintenance of the system.

Troubleshooting Provides information for troubleshooting, solv-
ing, or reporting problems.

Audience: IT staff responsible for keeping Syb-
ase Unwired Platform running, developers, and
system administrators.

Use: during installation and implementation, de-
velopment and deployment, and ongoing main-
tenance.

Introducing Custom Development for Unwired Server

 4 Sybase Unwired Platform

Document Description

Getting started tutorials Tutorials for trying out basic development func-
tionality.

Audience: new developers, or any interested user.

Use: after installation.

• Learn mobile business object (MBO) basics,
and create a mobile device application:
• Tutorial: Mobile Business Object Devel-

opment
• Tutorial: BlackBerry Application Devel-

opment using Device Application De-
signer

• Tutorial: Windows Mobile Device Ap-
plication Development using Device Ap-
plication Designer

• Create native mobile device applications:
• Tutorial: BlackBerry Application Devel-

opment using Custom Development
• Tutorial: iPhone Application Develop-

ment using Custom Development
• Tutorial: Windows Mobile Application

Development using Custom Develop-
ment

• Create a mobile workflow package:
• Tutorial: Mobile Workflow Package De-

velopment

Sybase Unwired WorkSpace – Mobile Business
Object Development

Online help for developing MBOs.

Audience: new and experienced developers.

Use: after system installation.

Sybase Unwired WorkSpace – Device Applica-
tion Development

Online help for developing device applications.

Audience: new and experienced developers.

Use: after system installation.

Introducing Custom Development for Unwired Server

Reference: Custom Unwired Server Development 5

Document Description

Developer references for device application cus-
tomization

Information for client-side custom coding using
the Client Object API.

Audience: experienced developers.

Use: to custom code client-side applications.

• Developer Reference for BlackBerry
• Developer Reference for iOS
• Developer Reference for Mobile Workflow

Packages
• Developer Reference for Windows and Win-

dows Mobile

Developer reference for Unwired Server side
customization – Reference: Custom Develop-
ment for Unwired Server

Information for custom coding using the Server
API.

Audience: experienced developers.

Use: to customize and automate server-side im-
plementations for device applications, and ad-
ministration, such as data handling.

Dependencies: Use with Fundamentals and Syb-
ase Unwired WorkSpace – Mobile Business Ob-
ject Development.

Developer reference for system administration
customization – Reference: Administration APIs

Information for custom coding using administra-
tion APIs.

Audience: experienced developers.

Use: to customize and automate administration at
a coding level.

Dependencies: Use with Fundamentals and Sys-
tem Administration.

Introducing Custom Development for Unwired Server

 6 Sybase Unwired Platform

Result Set Filters

A result set filter is a custom Java class an experienced developer writes in order to specifically
manipulate the rows or columns of data returned from a read operation for an MBO.

When a read operation returns data that does not completely suit the business requirements for
your MBO, you can write and add a filter to the MBO to customize the data into the form you
need.

You can chain multiple filters together. Multiple filters are processed in the order they are
added, each applying an incremental change to the data. Consequently, Sybase recommends
that you always preview the results, taking note that the MBO has a different set of attributes
than it would have had directly from the read operation. You can map and use the altered
attributes in the same way you would a regular attribute from an unfiltered read operation.

Example: a simple SELECT statement filter

Suppose you have an MBO based on this query, and you do not want fname and lname divided
between two columns:

SELECT * FROM sampledb.customer

Instead, write a filter that replaces these columns with a single concatenated "commonName"
column.

Note: You could also implement the above example with a more advanced SQL statement
with additional computation in the MBO definition:

SELECT id, commonName=fname+' '+lname, address, city, state,
zip, phone, company_name FROM customer

Example: two separate data sources filter

Suppose you have customer data in two data sources: basic customer information is in an SAP
repository, and more complete details are contained in another database on your network, for
example, SQL Anywhere™. You can use a result set filter to combine the SAP customer data
with detailed customer data from the database, so that the MBO displays a complete set of
information in a single view. You can accomplish this by:

1. Creating a filter for the SAP backend and add it to an SAP MBO.
2. Add a JDBC connection for the SQL Anywhere backend in the filter, then use the SQL

Anywhere data to filter the SAP result.
3. Validate the results are what you expect upon completion. When you synchronize the SAP

MBO, you should see data from both SAP backend and SQL Anywhere backend.

Result Set Filters

Reference: Custom Unwired Server Development 7

Result Set Filter Data Flow
A ResultSetFilter is a custom Java class deployed to Unwired Server that manipulates
rows and columns of data before synchronization.

Result set filters are more versatile (and more complicated to implement) than an attribute
filter implemented through a synchronization parameter, since you must write code that
implements the filter, instead of simply mapping a parameter to a column to use as the filter.
See Developers Reference: Server API.

1. Enterprise information system (EIS) data is sent to Unwired Server.
2. The result set filter filters the results, and applies those results to the CDB for a given MBO.

For example, the result set filter combines two columns into one.
3. The device application synchronizes with the results contained in the CDB.

The client cannot distinguish between MBOs that have had their attributes transformed
through a ResultSetFilter from those that have not.

Implementing Custom Result Set Filters
Developers can write a filter to add, delete, or change columns as well as to add and delete
rows.

Prerequisites

To write a filter, developers must have previous experience with Java programming —
particularly with the reference implementations for javax.sql.RowSet, which is used to
implement the filter interface and described in the JDBC RowSet Implementations Tutorial.

Note: Sybase strongly encourages developers to initially create filters in Unwired
WorkSpace: a wizard assists you by autogenerating required imports, and methods correctly
generated so the implementation already compiles and runs. Then to customize the code, you

Result Set Filters

 8 Sybase Unwired Platform

http://java.sun.com/developer/onlineTraining/Database/jdbcrowsets.pdf

can cut and paste fragments from the sample, and make the required changes to get the desired
end result.

Task

Once the filter has been implemented and deployed to the server, the mobile business object
(MBO) developer can use the filter created from Unwired WorkSpace. See Sybase Unwired
WorkSpace - Mobile Business Object Development > Develop > Developing a Mobile
Business Object > Binding Mobile Business Objects to Data Sources > Adding a Result Filter
> Deploying Result Filter Classes to Unwired Server.

Note: Validate the performance of any custom result set filters, before deploying packages to
Unwired Server.

Task

1. Writing a Custom Result Set Filter

Write a custom result set filter to define specific application processing logic. Save the
compiled Java class file to location that is accessible from Unwired WorkSpace.

2. Deploying Custom Filters to Unwired Server

Deploy custom filters as part of a deployment unit.

3. Validating Result Set Filter Performance

After you deploy the filters to Unwired Server, synchronize data and ensure that filters are
performing as you expect.

Writing a Custom Result Set Filter
Write a custom result set filter to define specific application processing logic. Save the
compiled Java class file to location that is accessible from Unwired WorkSpace.

In the custom filter, configure attribute properties so that the returned record set can be better
consumed by the device client application. Sometimes, a result set returned from a data source
requires unique processing; a custom filter can perform that function before the information is
downloaded to the client.

Data in the cache is shared by all clients. If you need to identify data in the cache to a specific
client, you must define a primary key attribute that identifies the client (such as remote_id or
username).

1. (Required) Create a record set filter class that implements the
com.sybase.uep.eis.ResultSetFilter interface.

This interface defines how a custom filter for the data is called.

For example, this code fragment sets the package name and imports the required classes:

Result Set Filters

Reference: Custom Unwired Server Development 9

package com.mycompany.myname;
import java.sql.ResultSet;
import java.util.Map;

2. (Recommended) Implement the com.sybase.uep.eis.ResultSetFilter and
com.sybase.uep.eis.ResultSetFilterMetaData interface on your filter
class as required by your business requirements.

If you choose to implement this interface, you must instead execute a chain of mobile
business object operations and filters with real data before you can get actual results of the
output columns and their datatypes. This can impact information on the data source, which
may eventually need to be reverted. By first implementing these interfaces, the operation
does not need to be executed first. Instead, the getMetaData obtains the necessary
column or data type information.

This example sets the package name but uses a different combination of classes than in the
example for step 1:
package com.mycompany.myname;
import java.sql.ResultSetMetaData;
import java.util.Map;

3. Call the appropriate method, which depends on the interfaces you implement.

ResultSetFilter filters the data in the first option documented in step 1. Each filter
defines a distinct set of arguments. Therefore, use only the arguments with the appropriate
filter that defines these arguments in getArguments(), rather than use all filters and
data source operations.

The result set passed in contains the grid data, which should be considered read-only—do
not use operations that change or transform data.

public interface ResultSetFilter {
 ResultSet filter(ResultSet in, Map<String, Object> arguments)
throws
 Exception;
 Map <String, Class> getArguments();
}

Next, use ResultSetFilterMetaData to format the data from step 1. Use this
interface to avoid executing an extraneous data source operation to generate a sample data
set.

public interface ResultSetFilterMetaData {
 ResultSetMetaData getMetaData(ResultSetMetaData in, Map<String,
 Object> arguments) throws Exception;
}

Note: If the filter returns different columns depending on the argument values supplied,
the filter may not work reliably. Ensure that any arguments that affect metadata have
constant values in the final mobile business object definition, so the schema does not
dynamically change.

Result Set Filters

 10 Sybase Unwired Platform

4. Implement the class you have created, defining any custom processing logic.

5. Save the classes to an accessible Unwired WorkSpace location. This allows you to select
the class, when you configure result set filters for your mobile business object.

6. In Unwired WorkSpace, refresh configured MBO attributes, to see the result.

MBO load operations can take parameters on the enterprise information system (EIS) side.
These load parameters are defined from Unwired WorkSpace as you create the MBO. For
example, defining an MBO as:

SELECT * FROM customer WHERE region = :region

results in a load parameter named ''region''.

As an example, if you want a filter that combines fname and lname into commonName, add
MyCommonNameFilter to the MBO. When MyCommonNameFilter.filter() is
called, the ''arguments'' input value to this method is a Map<String, Object> that has an
entry with the key ''region''. Your filter may or may not care about this parameter (it is the
backed database that requires the value of region to execute the query). But your filter may
need some other information to work properly, for example the remote user's zipcode. The
ResultSetFilter interface includes
java.util.Map<java.lang.String,java.lang.Class>
getArguments() that you must implement. In order to arrange for the remote user's
zipcode (as a String) to be provided to the filter, write some custom code in the body of the
getArguments method, for example:

public Map<String, Object> getArguments {
 HashMap<String, Class> myArgs = new HashMap<String, Class>();
 myArgs.put("zipcode", java.lang.String.class);
 return myArgs;
 }

This informs Unwired WorkSpace that the ''zipcode'' parameter is required, and is of type
String. Unwired WorkSpace automatically adds the parameter for the load operation, so this
MBO now has two (region and zipcode). Your filter gets them both when its filter()
method is called, but can ignore region if it wants.

See also
• Deploying Custom Filters to Unwired Server on page 11

Deploying Custom Filters to Unwired Server
Deploy custom filters as part of a deployment unit.

There are two methods that are supported.

1. Create a JAR of the class.

2. Deploy the JAR, by packaging it in a deployment unit using either:

Result Set Filters

Reference: Custom Unwired Server Development 11

• Unwired WorkSpace development tooling. See either Unwired WorkSpace -
Developing Mobile Business Objects > Packaging and Deploying Mobile Business
Objects.

• The Deploy command line utility. See System Administration of the Unwired Platform
> System Reference > Command Line Utilities > Unwired Server Runtime Utilities >
Package Administration Utilities > Deploy Application Package (deploy) Utility.

The packaged classes are copied to <UnwiredPlatform_InstallDir>
\UnwiredPlatform\Servers\UnwiredServer\deploy\sup
\<deployment-packageName>\lib by the tool you use. In this case, the deployed
package automatically refreshes, so no server restart is required.

See also
• Writing a Custom Result Set Filter on page 9

• Validating Result Set Filter Performance on page 12

Validating Result Set Filter Performance
After you deploy the filters to Unwired Server, synchronize data and ensure that filters are
performing as you expect.

1. Confirm that the columns appear correctly after the filter has been added to the mobile
business object.

a) Refresh the object.
b) In the Properties view, select the Attribute Mapping tab.
c) Verify that columns are correctly listed in the Map to column.

2. From the device client or the device simulator, open the mobile object, and check that the
new column appears.

3. Synchronize the object from the device client or simulator.

4. Troubleshoot filters if issues arise:

• During synchronization, all System.out statements are printed to the Unwired
Server log.

• If you started Unwired WorkSpace with the -consoleLog in java.exe, System.out
statements are also printed to the console window.

See also
• Deploying Custom Filters to Unwired Server on page 11

Result Set Filters

 12 Sybase Unwired Platform

Filter Class Debugging
Sybase Unwired Platform supports various debugging models: instrumented code, and JPDA
(Java Platform Debugger Architecture).

You can also instrument code by including System.out.println() in the filter class, output from
the class is captured in the Unwired Server log when the filter is being executed by the server.

Alternatively, you can use the standard Java debugger to debug the filter class.

Enabling JPDA
To enable JPDA for Unwired Platform debugging, the Unwired Server needs to be started in
JPDA mode.

This task describes how to setup JPDA and attache the Java standard debugger to Unwired
Server.

Alternatively, you can enable Eclipse debugging in Unwired WorkSpace by first setting up a
project and switching to the Debug perspective. Within the filter source code, set breakpoints
from the context menu in the default Java editor. Then, with the breakpoints in place, a
debugging session can be created. When this is completed, double-click the remote Java
application of the Debug Configurations wizard and configure the connection type as:

• use a standard connection (Socket Attach)
• use host 0.0.0.0
• set the the port to matches the one enabled in Unwired Server (by default 5005)

1. Change to the <UnwiredPlatform_InstallDir>\Servers
\UnwiredServer\bin.

2. By default JPDA connects over port 5005. Change the port by running djc-setenv.bat from
the same folder and issuing this command:
set DJC_JPDA_PORT=5005

3. Start Unwired Server in JPDA mode . How to do this varies, depending on whether or not
Unwired Server is installed as a service:

• If Unwired Server is not a service, run:
start-unwired-server.bat -jpda

• If Unwired Server is installed as a Windows service:
1. Remove the service:

sup-server-service.bat remove

2. Recreate the service to run in JPDA mode:
sup-server-service.bat install -jpda

4. Once Unwired Server is restarted, verify that JPDA mode is working by running:
netstat -an | grep 5005

Result Set Filters

Reference: Custom Unwired Server Development 13

Look for these results:
TCP 0.0.0.0:<JPDAport> 0.0.0.0:0 LISTENING

5. Use a standard Java debugger and attach it to Unwired Server by specifying the correct
host and the JPDA port used.

Begin debugging the result filter class with the Java debugger.

Result Set Filters

 14 Sybase Unwired Platform

Result Checkers

Use the custom Java class to implement custom error checking.

A custom result checker can throw errors for both a scheduled cache refresh as well as an on
demand cache refresh:

• For a scheduled refresh – the result checker writes a log message that describes the nature
of the error to the Unwired Server log. As a consequence of this error, the transaction for
the entire cache group is rolled back. The device client user is not notified of these errors;
no client log records are generated.

• On demand refresh – instead of writing the error to the server log, the log message is
written to the Unwired Server. Services in the server handle the exception. As a
consequence of this error, the transaction for the cache group is rolled back. But in this
case, a client log record is generated, which is visible to the client application after
synchronization.

Both cases send the OperationStatusEvent. This event indicates that an operation
failed to execute properly. The server uses OperationStatusEvent to populate a
statistics repository that tracks the success or failure of EIS operation invocations. An
administrator can review these statistics in Sybase Control Center, by clicking the Monitor
node in the left navigation pane. See System Administration of the Unwired Platform >
System Maintenance and Monitoring > Status and Performance Monitoring > Reviewing
System Monitoring Data.

Implementing Customized Result Checkers
Implement a custom result checker with the required Java class to implement custom error
checking for EIS-specific business objects.

1. Writing a Custom Result Checker

A result checker is a custom Java class that implements error checking for mobile business
objects (MBOs).

2. Adding a Result Checker

Add a result checker when you edit Attribute or Operation properties for a mobile business
object derived from a data source. Add a result checker after you have either written a
custom one or use a predefined one in Unwired WorkSpace (the latter of which can be
configured when you create an object).

Result Checkers

Reference: Custom Unwired Server Development 15

Writing a Custom Result Checker
A result checker is a custom Java class that implements error checking for mobile business
objects (MBOs).

Not all MBO operations use a "standard" error reporting technique; you may want to
implement your own custom result checker. Doing so allows you to check any field for errors,
or implement logic that determines what constitutes an error, and the severity of the error. The
error code and message can be influenced in the result checker by throwing a DSException

1. Provide a Java class that implements the appropriate interface.

Data
source

Interface

SAP package com.sybase.sup.sap;
public interface SAPResultChecker
{
 /**
 *
 * @param f - JCO function that has already been
executed.
 * Use the JCO API to retrieve returned values and
determine if the RFC has executed
 * successfully.
 * @return a single Map.Entry. The boolean "key"
value should be set to true if the
 * RFC is deemed to have succeeded. Normal result
processing will ensue.<P>
 * If the String value is not empty/null, that
value will be treated as a warning message,
 * which will be logged on the server,
 * and returned as a warning in transaction logs
to the client.<P>
 * Set the key value to false if it is deemed the
RFC has failed. The String value will
 * be thrown in the body of an exception. The error
will be logged on the server, and the
 * client will receive a transaction log indicat-
ing failure, including the string value.
 */
 Map.Entry<Boolean, String> checkReturn(JCO.Func-
tion f);
}

Result Checkers

 16 Sybase Unwired Platform

Data
source

Interface

Web service
(SOAP)

package com.sybase.sup.ws.soap;
public interface WSResultChecker
{
 /**
 * @param is the method for passing a parameter,
and does not support setting a
 default value.
 * @param response – the SOAP Envelope response
from a Web service execute.
 * Use the SOAP API to retrieve values and deter-
mine if the SOAP request
 * has executed successfully.
 * @return a single Map.Entry. The boolean "key"
value should be set to true if the
 * SOAP request is deemed to have succeeded. Nor-
mal result processing will ensue.<P>
 * If the String value is not empty/null, that
value will be treated as a warning message,
 * which will be logged on the server,
 * and returned as a warning in transaction logs
to the client.<P>
 * Set the key value to false if it is deemed that
SOAP has failed. The String value will
 * be thrown in the body of an exception. The error
will be logged on the server, and the
 * client will receive a transaction log indicat-
ing failure, including the string value.
 */
 Map.Entry<Boolean, String> checkReturn(jav-
ax.xml.soap.SOAPEnvelope response);
}

Result Checkers

Reference: Custom Unwired Server Development 17

Data
source

Interface

RESTful Web
service

package com.sybase.sup.ws.rest;

import java.util.List;
import java.util.Map;

public interface RestResultChecker
{
 /**
 * REST Result Checker.
 *
 * @param responseBody HTTP response body.
 *
 * @param responseHeaders HTTP response headers in
the form
 * {{header1,value1}, {header2,value2}, ...}.
 *
 * @param httpStatusCode HTTP status code.
 *
 * @return Single Map.Entry whose boolean "key"
value is true if the
 * HTTP request succeeded, after which normal re-
sult processing will
 * ensue.<P>
 *
 * If the String value is not empty/null, that
value will be treated
 * as a warning message which will be logged on the
server and returned
 * as a warning in the transaction log sent to the
client.<P>
 *
 * Set the key value to false if it is deemed that
the service has failed.
 * The String value will be thrown in the body of
an exception. The error
 * will be logged on the server, and the client
will receive a transaction
 * log indicating failure, including the string
value.
 **/
 Map.Entry<Boolean, String> checkReturn(String
responseBody,
 List<List<String>> responseHeaders, int
httpStatusCode);
}

Result checkers depend on the sup-ds.jar file, in
com.sybase.uep.tooling.api/lib subdirectory. For example, C:\Sybase
\UnwiredPlatform-1_5\Unwired_WorkSpace\Eclipse

Result Checkers

 18 Sybase Unwired Platform

\sybase_workspace\mobile\eclipse\plugins
\com.sybase.uep.tooling.api_1.5.0.200909281740\lib

2. Save any classes you create to an accessible Unwired WorkSpace location. This allows
you to select the class when you configure the result checker for your mobile business
object.

See also
• Adding a Result Checker on page 19

Adding a Result Checker
Add a result checker when you edit Attribute or Operation properties for a mobile business
object derived from a data source. Add a result checker after you have either written a custom
one or use a predefined one in Unwired WorkSpace (the latter of which can be configured
when you create an object).

1. In the New Attributes or New Operation wizard, in the Result checker section, select from
these options:

Option Description

Default The result checker depends on the data source type:
• SAP – com.sybase.sup.sap.DefaultSAPResultCh-

eck. If a RETURN parameter is found in the selected operation, this
option is automatically selected.

• Web service (SOAP) – com.sybase.sup.ws.soap.De-
faultWSResultCheck. The default checker always returns the
status as successful.

DefaultWSResultCheck Passed.

• Web service (RESTful) – com.sybase.sup.ws.rest.De-
faultRestResultCheck. The default checker always returns
the status as successful.

DefaultRestResultCheck Passed.

None Return the status as successful with no message. The result checker used
depends on the data source type:
• SAP – com.sybase.sup.sap.NoOpSAPResultCheck
• Web service (SOAP) – com.syb-

ase.sup.ws.soap.NoOpWSResultCheck
• Web service (RESTful) – com.sybase.sup.ws.rest.NoO-

pRestResultCheck

Custom Specify a custom result checker.

Result Checkers

Reference: Custom Unwired Server Development 19

2. (Optional) If you have not yet created the result checker classes, select Custom in the
Result checker area of the New Attributes or New Operation dialog, and click Create to
run the New Java Class wizard.

3. If prompted, add a Java nature.

a) (Recommended) Click Yes to add a Java nature. In Eclipse, a Java nature adds Java-
specific behavior to projects.

In the New Java Class wizard, enter:

Option Description

Source folder By default, this is the Filters folder from
your project. Click Browse to locate the
source folder for the Java class.

Package Click Browse to locate the package for the
new Java class.

Note: Sybase recommends that you do not
leave this field blank. Otherwise, the JDK 1.4
Java class in the default package cannot be
resolved in other packages.

Enclosing type Choose a type in which to enclose the new
class. You can select either this option or the
Package option, above. Enter a valid name or
click Browse.

Name Enter a name for the result checker class.

Modifiers Select the Java class modifiers. The default
modifier is public.

Superclass 1. Click Browse.
2. In the Superclass Selection dialog, enter:

• Choose a Type
• Matching Items

3. Click OK.

Result Checkers

 20 Sybase Unwired Platform

Option Description

Interfaces By default, this is populated with the corre-
sponding interface:
• SAP – com.syb-

ase.sup.sap.SAPResultCh-
ecker

• Web service (SOAP) – com.syb-
ase.sup.ws.soap.WSRe-
sultChecker

• RESTful Web services – com.syb-
ase.sup.ws.rest.ResultCh-
ecker

Click Add to select interfaces implemented
by the new class.

Which Method Stubs Would You Like to
Create

• Public Static Void Main
• Constructors From Superclass
• (Default) Inherited Abstract Methods

Do You Want to Add Comments Select Generate Comments to add com-
ments. From here, you can modify the pref-
erences of the code templates by clicking
Configure templates and default values.

b) Click No if you do not want to add the Java nature to the selected mobile application
project.

c) Click Finish to compile the java skeleton source file and add the skeleton Java checker
class to the MBO.
The result checker appears next to the Custom option.

4. In the Result checker section, next to the Custom option, click Browse to find an existing
result checker class.

a) In the Select Result Checker Class dialog, select the result checker class and click
OK.

The result checker class appears next to the Custom option.

5. Validate the result checker:

a) To reuse input values you have already saved for previous previews, select Existing
Configuration. Otherwise, load defaults, or create a new set of input values expressly
for this preview instance.

b) Click Preview.

If the data runs successfully, Execution Succeeded appears at the top of the Preview
dialog and data appears in the Preview Result window.

Result Checkers

Reference: Custom Unwired Server Development 21

See also
• Writing a Custom Result Checker on page 16

Default Result Checker Code
This result checker is a default result checker and is used to check results in SAP data sources.

package com.sybase.sap;

import java.util.AbstractMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import com.sap.mw.jco.JCO;
import com.sybase.sup.sap.SAPResultChecker;
import com.sybase.vader.utils.logging.SybLogger;

public class DefaultSAPResultCheck implements SAPResultChecker
{
 private static Set<String> nonErrorMessages;
 static
 {
 nonErrorMessages = new HashSet<String>();
 nonErrorMessages.add("No data found");
 nonErrorMessages.add("Data was not found for the document");
 }

 public Map.Entry<Boolean, String> checkReturn(JCO.Function f)
 {
 JCO.Record returnStructure = null;
 JCO.ParameterList jpl = f.getExportParameterList();
 String msg = null;
 boolean success = true;
 if (jpl != null)
 {
 try
 {
 returnStructure = jpl.getStructure("RETURN");
 if (returnStructure != null)
 {
 String type = returnStructure.getString("TYPE");
 // generally TYPE is S for success, I for
informational,
 // or empty
 if (!(type.equals("") || type.equals("S") ||
type.equals("I")))
 {
 String message =
returnStructure.getString("MESSAGE");
 /*UWPLogger.LogWarning*/
 SybLogger.warn("SapUtils.execute: TYPE: <<" +
type + ">>, MESSAGE: <<" + message + ">>");

Result Checkers

 22 Sybase Unwired Platform

 if (!type.equals("W") && !
nonErrorMessages.contains(message))
 {
 success = false;
 msg = "TYPE: <<" + type + ">>, MESSAGE: <<" +
message + ">>";
 }
 else
 {
 msg = "TYPE: <<" + type + ">>, MESSAGE: <<" +
message + ">>";
 }
 }
 else
 {
 if (SybLogger.isDebugEnabled())
 {
 String message =
returnStructure.getString("MESSAGE");
 SybLogger.debug("SapUtils.execute: TYPE: <<"
+ type + ">>, MESSAGE: <<" + message + ">>");
 }
 }

 }
 }
 catch (Exception e)
 {
 /*
 if (UWPLogger.isTrace())
 UWPLogger.LogTrace
 */
 SybLogger.debug("SapUtils::execute: Unable to retrieve
RETURN structure - Will try to retrieve RETURN table next.", e);
 }
 }
 // if there is no RETURN structure, look for RETURN table
 if (returnStructure == null)
 {
 jpl = f.getTableParameterList();
 if (jpl != null)
 {
 try
 {
 StringBuilder retMessage = new StringBuilder();
 JCO.Table returnTable = jpl.getTable("RETURN");
 for (int i = 0; i < returnTable.getNumRows(); i++)
 {
 returnTable.setRow(i);
 String type = returnTable.getString("TYPE");
 // generally TYPE is S for success, I for
 // informational, or empty
 if (!(type.equals("") || type.equals("S") ||
type.equals("I")))
 {
 String message =

Result Checkers

Reference: Custom Unwired Server Development 23

returnTable.getString("MESSAGE");
 /*UWPLogger.LogWarning*/
SybLogger.warn("SapUtils.execute[" + i + "]: TYPE: <<" + type + ">>,
MESSAGE: <<"
 + message + ">>");
 if (!type.equals("W") && !
nonErrorMessages.contains(message))
 {
 success = false;
 retMessage
 .append("[" + i + "]TYPE: <<" +
type + ">>, MESSAGE: <<" + message + ">>");
 }
 else
 {
 retMessage
 .append("[" + i + "]TYPE: <<" +
type + ">>, MESSAGE: <<" + message + ">>");
 }
 }
 else
 {
 if (SybLogger.isDebugEnabled())
 {
 String message =
returnTable.getString("MESSAGE");
 SybLogger.debug("SapUtils.execute[" + i +
"]: TYPE: <<" + type + ">>, MESSAGE: <<" + message + ">>");
 }
 }

 }
 if(retMessage.length() > 0)
 {
 msg = retMessage.toString();
 }
 }
 catch (Exception e)
 {
 /*UWPLogger.LogWarning*/
SybLogger.warn("SapUtils::execute: error in execution while
retrieving RETURN table: ", e);
 success = false;
 msg = e.toString();
 }
 }
 }

 return new CheckReturnMapEntry<Boolean, String>(success,
msg);
 }

 class CheckReturnMapEntry<Boolean, String> extends
java.util.AbstractMap.SimpleImmutableEntry<Boolean, String> {

 public CheckReturnMapEntry(Boolean success, String msg) {

Result Checkers

 24 Sybase Unwired Platform

 super(success, msg);
 }
 }

}

Result Checkers

Reference: Custom Unwired Server Development 25

Result Checkers

 26 Sybase Unwired Platform

Data Change Notification Interface

Data change notification (DCN) provides an HTTP interface by which enterprise information
system (EIS) changes can be immediately propagated to Unwired Server.

Sybase Unwired Platform provides the gson-1.4.jar library you use to construct a DCN
URL located in the <UnwiredPlatform_InstallDir>\Servers
\UnwiredServer\lib\ext directory. All DCN commands support both GET and
POST methods. The EIS developer creates and sends a DCN to Unwired Server through
HTTP GET or POST operations. The portion of the DCN command parameters that come
after http://host:8000/dcn/DCNServlet, can all be in POST; any var=name can
be in either the URL (GET) or in the POST. The HTTP POST method is more secure than
HTTP GET methods; therefore, Sybase recommends that you include the
authenticate.password parameter in the POST method, as well as any sensitive data provided
for attributes and parameters.

Note: Enter the HTTP request on a single line.

You must be familiar with the EIS data source from which the DCN is issued. You can create
and send DCNs that are based on:

• Database triggers
• EIS system events
• External integration processes

You can use DCN with payload to instruct Unwired Server to refresh data:

• DCN with payload – calls only the two direct cache-affecting operations (:upsert
or :delete), which always exist for an MBO, and are not related to user-defined MBO
operations.
• :upsert – the message must contain name/value pairs for every required attribute, and

the name must exactly match the MBO attribute name.
• :delete – provide only the name/value pairs for the primary key column(s).
These operations respectively insert or update, or delete a row in the CDB. Calling either of
these operations does not trigger any other refresh action:
1. Some event initiates the DCN request (a database trigger for example).
2. The Unwired Server cache is updated directly from the EIS. The actual data (payload)

is applied to the cache, through either an :upsert (update or insert) or a :delete
operation.

3. Unwired Server returns a DCN status message to the requester.

Data Change Notification Interface

Reference: Custom Unwired Server Development 27

Data Change Notification Data Flow
Data change notifications (DCNs) refresh data when a change to the enterprise information
system (EIS) occurs.

DCN requests are sent to Unwired Server as HTTP GET or POST operations. Each DCN can
instruct Unwired Server to modify cached MBO data.

A DCN can be invoked by a database trigger, an EIS event, or an external process. DCNs are
more complex to implement than other data refresh methods, but ensure that changes are
immediately reflected in the cache.

1. An event initiates the DCN.
2. The DCN (HTTP POST or GET) is issued to Unwired Server.

Invoking upsert and delete Operations Using Data Change
Notification

Data change notifications (DCNs) with payload directly update the Unwired Server cache,
either with the built-in, direct cache-affecting operations :upsert (update or insert), or
with :delete.

Syntax

DCN with payload requires a JavaScript Object Notation (JSON) string (dcn_request) that
contains one or more :upsert and :delete operations that are applied to the Unwired Server
cache (CDB).
http://unwired_server_host:unwired_server_port(default 8000)/dcn/
DCNServlet
? cmd=dcn
&username=userName

Data Change Notification Interface

 28 Sybase Unwired Platform

&password=password
&domain=domainName
&package=unwired_server_PackageName
&dcn_request={"pkg":"dummy","messages":
[{"id":"1","mbo":"CustomerWithParam","op":":upsert","cols":
{"id":"10001","fname":"Adam"}}]}
&dcn_filter=fully_qualified_name_of_dcn_filter

Parameters

• unwired_server – Unwired Server host name to which the DCN is issued.
• unwired_server_port – Unwired Server port number. The default port is 8000.
• username – authorized Unwired Server user with permission to modify the MBO.
• password – authorized user's password.
• domain – Unwired Server domain that contains the package.
• package – Unwired Server package that contains the MBO. The format is

package:version. For example, e2e_package:1.0.
• dcn_request – the JSON string that contains operation name and parameters, which must

include:

• Package name (pkg) – this package name is required to support backwards
compatibility but ignored. The package value supplied in the header is the package
value used by DCN.

• A list of messages (messages). Each message includes:
• A unique message ID (id) used to report back the status. The values provided for the

"id" element of each DCN statement within a DCN request message are used only
to identify the corresponding status message in the DCN response, which means
you can select any value, including nonnumeric characters. Use unique values, so
that responses to the correlated requests can be clearly identified.

• Mobile business object name (mbo).
• Operation name (op): an operation name of the specified MBO.
• Bindings (cols): name and values of operation parameters which are mapped to

MBO attributes.
• Parameters (parameters) : name & values of operation parameters which are

unmapped

Note: For DCN with payload, parameter names must correspond to the attributes of
the MBO.

• dcn_filter – (optional) the custom filter used to preprocess the DCN request and
postprocess the DCN status message any JSON strings. By default, Unwired Server
expects all DCN requests to be a valid JSON string. A DCN filter can be used to convert
client specific DCN request strings to a valid JSON string as governed by the filter
implementation.

• ppm – personalization parameters (for either the server or client side) that need to be
explicitly defined in the DCN request. The format must conform to the JSON messaging

Data Change Notification Interface

Reference: Custom Unwired Server Development 29

synchronization format, which is a Base64-encoded map of personalization parameters.
For example, for runtime credentials sent via DCN, the PPM might be:
base64encode("{\"username\":\"supAdmin\",\"password\":\"test
\"}");

Examples

• Upsert example with header – this DCN contains a single :upsert operation that
updates or inserts (upserts) data in the Unwired Server cache for the Department MBO.

http://dsqavm5:8000/dcn/DCNServlet?cmd=dcn&username=
supAdmin&password=s3pAdmin&package=dept:
1.0&domain=default&dcn_request=
{"pkg":"dummy","messages":
[{"id":"1","mbo":"Department","op":":upsert",
"cols":{"dept_id":"2","dept_name":"D2","dept_head_id":"501"}}]}

• Upsert example without header – this JSON string included in a DCN contains a
single :upsert operation that updates or inserts (upserts) data in the Unwired Server
cache for the Department MBO.

dcn_request={"pkg":“TestPackage",
"messages":
 [{"id":"1","mbo":"Department",
 "op":":upsert",
 "cols":{"DepartmentID":"3333",
 "DepartmentName":"Test Value",
 "DepartmentHeadID":"501"}}]
}

• Delete example with header – this DCN example deletes a row of data from the Unwired
Server cache for the Department MBO:
http://dspevm5:8000/dcn/DCNServlet?cmd=dcn&username=
supAdmin&password=s3pAdmin&package=dept:
1.0&domain=default&dcn_request=
{"pkg":"dummy","messages":
[{"id":"1","mbo":"Department","op":":delete",
"cols":{"dept_id":"2"}}]}

• Delete example without header – this example JSON string included in the DCN sent to
Unwired Server, deletes a row of data from the Unwired Server cache for the Department
MBO:
dcn_request={"pkg":“TestPackage",
 "messages":[{"id":"1","mbo":"Department",
"op":":delete",
 "cols":{"DepartmentID":"3333"}}]}

Usage

Follow these guidelines when constructing a DCN:

Data Change Notification Interface

 30 Sybase Unwired Platform

• The format of non string data is the same as parameter default values in Unwired
WorkSpace. For example, specify timestamp values in a format similar to
2009-03-04T17:03:00+05:30.

• The :upsert operation requires:
• All MBO primary key attributes to be present in the payload.
• Any other MBO attributes used in the upsert.
• All columns in the operation use attribute names (not the column names to which they

are mapped).
• The :delete operation requires:

• The MBO primary key attribute be present in the payload.
• All columns in the operation use attribute names (not the column names to which they

are mapped).

Basic HTTP Authentication
When you use http://<host>:8000/dcn/DCNServlet, the user authentication is done by
Unwired Server extracting the user information from the request parameter:

username=<username>
password=<password>

Alternatively, you can use HTTP BASIC authentication instead of sending the username and
password as part of the URL. To use HTTP BASIC authentication, the URL is http://
<hostname>:<port>/dcn/HttpAuthDCNServlet..

An example of how to use HTTP BASIC authentication for a DCN request is:

URL url = new URL("http://<host>:8000/dcn/HttpAuthDCNServlet?
cmd=dcn&package=<package_name>:<package_version>");
 HttpURLConnection huc = (HttpURLConnection)
url.openConnection();
 huc.setDoOutput(true);
 huc.setRequestMethod("POST");
 final String login = "<login_name_of_user_with_DCN_role>";
 final String pwd = "<password_of_user_with_DCN_role>";
 Authenticator.setDefault(new Authenticator()
 {
 protected PasswordAuthentication
getPasswordAuthentication()
 {
 return new PasswordAuthentication(login,
pwd.toCharArray());
 }
 });
 String dcnRequest = "{\"pkg\":
\"<package_name>:<package_version>"\","
 + "\"messages\":[{\"id\":\"1\",\"mbo\":\"CustomerState
\",\"op\":\":upsert\","
 + "\"cols\":{\"id\":\"1020\",\"fname\":\"Paul\",\"city
\":\"Rutherford\"}}]}";

Data Change Notification Interface

Reference: Custom Unwired Server Development 31

 StringBuffer sb = new StringBuffer();
 sb.append(dcnRequest);
 OutputStream os = huc.getOutputStream();
 os.write(sb.toString().getBytes());
 os.close();
 BufferedReader br = new BufferedReader(new
InputStreamReader(huc.getInputStream()));
 System.out.println(huc.getURL());
 huc.connect();
 String line = br.readLine();
 while (line != null)
 {
 System.out.print(line);
 line = br.readLine();
 }

HTTP POST and DCN
You can also use the new URL http://<hostname>:8000/dcn/
HttpAuthDCNServlet if you do not want to send the DCN request as a request parameter
but as an HTTP POST body instead.

If you are using HTTP BASIC authentication, the JSON encoded DCN request is always sent
as the HTTP POST body.

Data Change Notification Requirements
Use these data change notification (DCN) requirements to familiarize yourself with possible
implementation scenarios.

Personalization parameters in DCN
Server and client personalization parameters of the MBO need to be specified separately in the
ppm parameter. The required ppm parameter in the dcn_request has to be a string
which should be a Base64-encoded map of personalization parameters. This example shows
how you must use ppmString to define the value for ppm parameter in the
dcn_request:

Map<String, String> ppm = new HashMap<String, String>();
 ppm.put("myCompany", "Sybase");
 String ppmString =
Base64Binary.toString(gson.toJson(ppm).getBytes());

DCN upsert operations and MBO relationships
When using the DCN payload mode to upsert rows to MBOs where there is a relationship
between rows of data, you must provide the data in the correct order so Unwired Server can
properly create the metadata in the cache (CDB) to reflect the data relationship. The correct
order is to send the upserts for the rows for the child MBO before upserting the related parent
rows. However, when you are using DCN to insert data into the cache, the concept of child and

Data Change Notification Interface

 32 Sybase Unwired Platform

parent may be different from what is reflected in the package definition seen in Unwired
WorkSpace.

When using DCN to upsert rows to both the parent and child MBOs in a relationship, the order
for the upserts can change depending on the nature of the relationship. This is due to the
implementation details of the cache metadata. In these examples, the Department MBO is the
parent MBO in both relationships, but notice the order of the upsert operations:

• For a one-to-one relationship between:
Dept.dept_head_id - > Employee.emp_id

(from a department to the department head) the order in which you upsert a new
department and new department head is:
1. Employee
2. Department
The foreign surrogate key reference is contained in the Department table in the cache.

• For a one-to-many relationship between:
Dept.dept_id - > Employee.dept_id

(from a department to all of the employees in the department) the order in which you upsert
a new department and a new employee is:
1. Department
2. Employee
The foreign surrogate key reference is contained in the Employee table in the cache.

Message autonomy
Unwired Server expects serialized DCN message updates to MBO instances. That is, do not
send two concurrent threads of the same MBO instance to Unwired Server.

Unwired Server expects an entire graph when sending updates to MBOs within a composite
relationship.

DCN upsert operations and binary data
When using DCN to upsert binary data to the cache (CDB), the string used for the value of the
binary type attribute of the MBO in the request message must conform to a very specific
encoding for the DCN request to be processed correctly. Read the binary data into a byte array,
then use the following code to obtain it in the correctly encoded format:

byte[] picByteArray = < < user code to read binary data into byte[] >
>
String picStringBase64Encoded =
com.sybase.djc.util.Base64Binary.toString(picByteArray);
String picStringUrlEncoded =
java.net.URLEncoder.encode(picStringBase64Encoded, "UTF-8");

Use the picStringUrlEncoded string as the value for the binary attribute in the DCN request
message.

Data Change Notification Interface

Reference: Custom Unwired Server Development 33

DCN and date, time, and datetime datatypes
DCN accepts date, time, and datetime attribute and parameter values using this format:

• date – yyyy-MM-dd

• time – HH:mm:ss

• datetime – yyyy-MM-dd'T'HH:mm:ss

For example, Unwired Server parses string or long values and upserts a valid timestamp
object:
http://localhost:8000/dcn/DCNServlet?
cmd=dcn&username=supAdmin&password=
s3pAdmin&package=testdatetime:1.0&domain=default&dcn_request=
{"pkg":"testdatetime","messages":
[{"id":"1","mbo":"TestDateTimeStamp","op":":upsert",
"ppm":null,"cols":
{"testTimestamp":"2009-08-09T12:04:05","testDate":"2009-08-09","c_i
nt":"0",
"testDateTime":"2009-08-09T12:04:05","testSmalldt":"2009-08-09T12:0
4:05","testTime":"12:04:05"},
}]}

MBOs with complex data types must be handled specifically, depending on whether you use
Unwired WorkSpace or code entirely written by a developer:

• Manually writing the code – if a package uses a complex type, and it defines MBOs from
that returned type , you can use a DCN to update that complex type. For example,
PurchaseOrder is a complex type. The MBO is defined with the returned POHeader and
POLineItem because of a DCN written to update that PurchaseOrder. The DCN code
parses the PurchaseOrder data structure, and then constructs separate DCN upsert requests
for each row from the POHeader and POLineItem MBOs that are derived from that
PurchaseOrder.

• Unwired WorkSpace – the DCN with payload requires the MBO attribute name-value
pairs as payload data. Because the DCN payload data disregards the EIS schema, the
developer needs to be aware of how the EIS schema and the MBO attributes are mapped.
The most important consideration is the logic used by the developer to flatten either the
complex type, database tables, or the Web service internal schema, or how the developer
maps to the backend as MBO attributes.

Send DCN messages only to MBOs with load operations that do not take parameters
You cannot use DCNs with MBOs that define more than one partition (that is, a load operation
mapped to synchronization parameters in Unwired WorkSpace). An MBO load operation
must be managed completely by DCN should not return any data. If the DCN initializes and
maintains the cached MBO, the MBO load operation must not return any rows.

If the load operation initializes the MBO, and you use DCNs to maintain the MBO, then
associate the MBO with a cache group that implements an infinite schedule. Do not send DCN
messages until the cache is initialized.

Data Change Notification Interface

 34 Sybase Unwired Platform

Cache update policies and DCN
Do not use an cache update policy that invalidates the cache if you use a DCN to populate the
MBO.

DCN and deadlocks
The requirements described above (Message autonomy and Send DCN messages only to
MBOs with load operations that do not take parameters) are designed to prevent deadlock
situations. However, if you do not define an order of operation execution, deadlocks might
occur depending on the DCN implementation or the locking mechanism used by the enterprise
information system (EIS). In a deadlock situation, the entire transaction is rolled back (if there
are multiple operations in a single DCN) and a replayFailed result is returned.

Data Change Notification Results
Each binding in a data change notification (DCN) request is associated with an ID. The result
status of the DCN request is returned in JavaScript Object Notation (JSON) format, and
includes a list of IDs followed by a Boolean success field and status message, in case of error.

In response to payload and MBO operation DCNs, Unwired Server sends the requester a
JSON string containing details about the success and or failure of the operations. This example
shows the JSON format for a DCN result for a request of three IDs (recID1, recID2, recID3).
The example has been formatted using new lines, and indentations, which are not present in an
actual response:
[
 {
 "recordIDs":
 [
 "recID1",
 "recID2"
],
 "success":true,
 "statusMessage":""
 },
 {
 "recordIDs":
 [
 "recID3"
],
 "success":false,
 "statusMessage":"bad msg2
 "}
]

This example is unformatted:

• Successful operation:
[{"recordIDs“:["1"],"success“:true,"statusMessage“:""}]

Data Change Notification Interface

Reference: Custom Unwired Server Development 35

• Failed operation using tildas instead of colons:
[{"recordIDs"~["1"],
 "success"~false,"statusMessage"~"Error inferring attribute
bindings from EIS bindings {DepartmentID\u003d10000,
 DepartmentAlias\u003dTest,
 DepartmentHeadID\u003d501}"}]

Data Change Notification Filters
Data change notification (DCN) requests need not always be in the format Unwired Server
expects.

You can deploy a DCN filter to Unwired Server and reference it in the DCN request. Unwired
Server allows the filter to preprocess the submitted DCN. The filter converts raw data in the
DCN request to the required JavaScript Object Notation (JSON) format. The filter can also
postprocess the JSON response returned by the Unwired Server into the format preferred by
the back end (which is governed by the implementation in the filter class).

The filter interface DCNFilter is in the com.sybase.sup.server.dcn package in
the sup-server-rt.jar file. All classes that implement a DCN filter should implement
this interface. The functions available in the interface are:

• String preprocess(String blobDCNRequest, Map<String, String requestHeaders>
requestHeaders); – takes the DCN request as a binary large object (BLOB), converts it
into a valid JSON DCN request format, and returns the same.

• String postprocess(String jsonDCNResult, Map<String, String responseHeaders>
responseHeaders); – takes the DCN result in a valid JSON format, converts it to the EIS-
specific format, and returns the same.

Data Change Notification Interface

 36 Sybase Unwired Platform

Figure 1: DCN filter flow

1. Changed data is sent from the EIS to Unwired Server via a DCN request, where any data
preprocessing occurs. For example, the EIS data could be sent to Unwired Server as XML
where the preprocess filter converts the data to JSON.

2. The DCN executes. For example, apply data changes directly to the Unwired Server cache.
3. Postprocessed DCN response is sent to the originating EIS as an HTTP response to the

original DCN request. For example, the JSON response is converted to XML.

Implementing a Data Change Notification Filter
Write and deploy preprocess and postprocess DCN filters to Unwired Server.

When specifying filters, add a dcn_filter parameter to the base URL, and to the parameters
specified in the DCN request section. The dcn_filter parameter specifies the fully qualified
name of the filter class, which must be in a valid CLASSPATH location so Unwired Server can
locate it using its fully qualified name.

JSON requires colons to define the object structure, but since colons have a special function in
HTTP URLs, use the tilda character "~" instead of colons ":" when implementing the DCN
filter, so the JSON dcn_request string can be passed as an HTTP GET or POST parameter:

dcn_request={"pkg"~“TestPackage",
 "messages"~[{"id"~"1","mbo"~"Department","op"~"~upsert",
 "cols"~{"DepartmentID"~"3333",
 "DepartmentName"~“My Department",
 "DepartmentHeadID"~"501"}}]}

The dcn_request is in a format that is specific to the back end. The filter class can
preprocess to the JSON format expected by Unwired Server.

Data Change Notification Interface

Reference: Custom Unwired Server Development 37

1. Write the filter. For example:
import java.util.Map;
import com.onepage.fw.uwp.shared.uwp.UWPLogger;
import com.sybase.sup.dcn.DCNFilter;

public class CustomDCNFilter implements DCNFilter
{
 String preprocess(String blobDCNRequest, Map<String,String>
headers) {
 String result = blobDCNRequest.replace(‘~’,’:’);
 return result;
 }

 String postprocess(String jsonDCNResult, Map<String,String>
responseHeaders) {
 String result = jsonDCNResult.replace(‘:’,’~’);
 return result;
 }

 public static void main(String[] args) { }
}

2. Package your DCN filter class in a JAR file.

3. Deploy the JAR file to Unwired Server by using the Deployment wizard from Unwired
WorkSpace:

a) Invoke the deployment wizard. For example, right-click in the Mobile Application
Diagram and select Deploy Project.

b) Select the JAR file that contains your DCN filter class files to deploy to Unwired Server
in the third screen of the wizard (Package User-defined Classes).

c) Click Finish after selecting the target Unwired Server.

4. Restart Unwired Server.

Data Change Notification Interface

 38 Sybase Unwired Platform

Custom XSLT Transforms

If you are using data from a SOAP or REST Web service, you may need to use XSLT
(Extensible Stylesheet Language Transformations) to modify the structure of the message
data generated by the service, so it can be used by an Unwired Platform MBO. Unwired
Workspace can create XSLT transforms automatically, however sometimes these generated
transforms are not sufficient and do not yield the results you require.

MBOs typically require a flat and tabular message structure from a Web service. This tabular
structure corresponds to the rows and columns that eventually materialize the MBO's
instances and attributes, respectively. Therefore the message structure used by a Web service
must align correctly. Transformation must be precise to avoid unexpected results in an MBO.

Therefore, always validate the transform before deploying it to a production environment.

Custom XSLT Use Cases
In most cases, the XSLT that is generated by Unwired WorkSpace is sufficient. However, in
some cases, you may need to modify the generated XSLT file, or to create a new one manually.

Some of these cases include:

• Web service response messages do not precisely conform to the schema required by the
WSDL schema.
For example, the schema indicated that an integer field is not nullable, but the Web service
response message failed to return a valid integer value. This omission triggers an error on
the device application. even though the root issue is the data from the Web service, not
Unwired Platform.
In this scenario, it is simpler to modify the generated XSLT slightly, by changing the single
op_nullable field from false to true.

Implementing Custom Transforms
When the generated transform does not yield expected results in the MBO, you need to either
modify the generated transform or create a custom transform outside of Unwired WorkSpace.

1. Make changes to an existing transform or write a new one.

2. Save the changes and overwrite the file that already exists. This ensures that the binding
remains intact for the MBO. See Unwired WorkSpace > Develop > Developing Mobile
Business Objects > Binding Mobile Business Objects to Data Sources.

3. Redeploy the MBO so changes implemented to Unwired Server, and include the transform
in the deployment package.

Custom XSLT Transforms

Reference: Custom Unwired Server Development 39

See Unwired WorkSpace > Develop > Developing Mobile Business Objects > Packaging
and Deploying Mobile Business Objects.

Note: If you are redeploying to a production environment, ensure the administrator
redeploys the MBO with the modified transform.

XSLT Stylesheet Syntax
XSLT stylesheet must follow Unwired Platform stylesheet syntax requirements so that the
Web service response message is formatted correctly for MBOs bound to this data source.

The stylesheet is applied to different parts of the Web service response message, depending on
the type:

• For SOAP web service response messages, the stylesheet is applied to the contents of the
SOAP body.

• For REST web service messages, the stylesheet is applied to the contents of the HTTP
response body.

Table 2. Stylesheet elements

Element Description Contains

Data The root element of the stylesheet. One or more Record el-

ements.

Record The element that corresponds to a row in
the tabular MBO data structure.

The first Record element resulting

from the transformat describes the col-
umn using metadata (that is, names, data
types, nullability, and so on). The Re-
cord element has no attributes, except

when it is a metadata element.

The contents of the Field elements

should match the corresponding
op_label values. The Record or

Field values from this first Record el-

ement will not appear in the resulting tab-
ular data structure.

One or more Field ele-

ments.

Field The element that corresponds to the col-
umn value. The Field element has a

number of attributes that can be used.

One or more attributes. See
the Attributes table.

Custom XSLT Transforms

 40 Sybase Unwired Platform

Table 3. Attributes

Attribute Applicability Description

op_label Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

The column name.

op_position Required by all. The attribute's position in the
tabular structure. The first at-
tribute is at position 1

op_nullable Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

Whether (TRUE) or not
(FALSE) the attribute is nulla-
ble.

op_datatype Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

The data type. Supported values
inlclude STRING, INT, LONG,
BOOLEAN, DECIMAL, BI-
NARY, FLOAT, DOUBLE,
DATE, TIME, DATETIME,
CHAR, BYTE, SHORT, INTE-
GER. See Sybase Unwired
WorkSpace - Mobile Business
Object Development > Develop
> Working with Mobile Busi-
ness Objects > Mobile Business
Object Data Properties > Data-
type Support.

op_xsdtype Required by the stylesheet and
the resulting transformed struc-
ture's metadata. Ignored by the
data field elements.

The XML schema primitive
type name corresponding to this
attribute.

XSLT Stylesheet Example
Use the example XSLT stylesheet to understand the structure required by Unwired Platfrom.

The bolded elements are required. The <xsl:stylesheet> needs a <xsl:template>
element. The first child element of <xsl:template> must be the <data> that also
requires the a metadata <Record> element.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/
Transform"; xmlns:ns1="urn:Sample_Enrollments" exclude-result-

Custom XSLT Transforms

Reference: Custom Unwired Server Development 41

prefixes="ns1">
 <xsl:template match="//ns1:OpGetListResponse">
 <data>
 <Record>
 <Field op_label="Class_Cost"
op_position="1" op_datatype="DECIMAL"
op_nullable="false">Class_Cost</Field>
 <Field op_label="Class_ID"
op_position="2" op_datatype="STRING" op_nullable="false">Class_ID</
Field>
 <Field op_label="Class_Start_Date___Time"
op_position="3" op_datatype="DATETIME"
op_nullable="false">Class_Start_Date___Time</Field>
 <Field op_label="Class_Title"
op_position="4" op_datatype="STRING"
op_nullable="false">Class_Title</Field>
 <Field op_label="Enrollee_Login"
op_position="5" op_datatype="STRING"
op_nullable="false">Enrollee_Login</Field>
 <Field op_label="Temp_Number"
op_position="6" op_datatype="INT" op_nullable="true">Temp_Number</
Field>
 </Record>
 <xsl:for-each select="ns1:getListValues">
 <Record>
 <Field>
 <xsl:attribute
name="op_position">1</xsl:attribute>
 <xsl:value-of
select="ns1:Class_Cost"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">2</xsl:attribute>
 <xsl:value-of
select="ns1:Class_ID"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">3</xsl:attribute>
 <xsl:value-of
select="ns1:Class_Start_Date___Time"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">4</xsl:attribute>
 <xsl:value-of
select="ns1:Class_Title"/>
 </Field>
 <Field>
 <xsl:attribute
name="op_position">5</xsl:attribute>
 <xsl:value-of
select="ns1:Enrollee_Login"/>
 </Field>
 <Field>

Custom XSLT Transforms

 42 Sybase Unwired Platform

 <xsl:attribute
name="op_position">6</xsl:attribute>
 <xsl:value-of
select="ns1:Temp_Number"/>
 </Field>
 </Record>
 </xsl:for-each>
 </data>
 </xsl:template>
</xsl:stylesheet>

If you use this style sheet, the output generated by this transform would be:
<data>
 <Record>
 <Field op_label="Class_Cost" op_position="1"
op_datatype="DECIMAL" op_nullable="false">Class_Cost</Field>
 <Field op_label="Class_ID" op_position="2"
op_datatype="STRING" op_nullable="false">Class_ID</Field>
 <Field op_label="Class_Start_Date___Time"
op_position="3" op_datatype="DATETIME"
op_nullable="false">Class_Start_Date___Time</Field>
 <Field op_label="Class_Title" op_position="4"
op_datatype="STRING" op_nullable="false">Class_Title</Field>
 <Field op_label="Enrollee_Login" op_position="5"
op_datatype="STRING" op_nullable="false">Enrollee_Login</Field>
 <Field op_label="Temp_Number" op_position="6"
op_datatype="INT" op_nullable="true">Temp_Number</Field>
 </Record>
 <Record>
 <Field op_position="1">100.00</Field>
 <Field op_position="2">00001</Field>
 <Field op_position="3">2010-07-02T10:27:35-07:00</
Field>
 <Field op_position="4">Managing Within the Law</Field>
 <Field op_position="5">Demo</Field>
 <Field op_position="6"/>
 </Record>
 <Record>
 <Field op_position="1">150.00</Field>
 <Field op_position="2">00005</Field>
 <Field op_position="3">2005-11-17T08:00:00-08:00</
Field>
 <Field op_position="4">Microsoft Word for Beginners</
Field>
 <Field op_position="5">Demo</Field>
 <Field op_position="6"/>
 </Record>
 <Record>
 <Field op_position="1">299.00</Field>
 <Field op_position="2">00006</Field>
 <Field op_position="3">2005-11-15T08:00:00-08:00</
Field>
 <Field op_position="4">Meeting Planning and
Facilitation</Field>
 <Field op_position="5">Demo</Field>

Custom XSLT Transforms

Reference: Custom Unwired Server Development 43

 <Field op_position="6"/>
 </Record>
</data>

Custom XSLT Transforms

 44 Sybase Unwired Platform

Index
C

companion documentation 1
custom development features 1
custom filters

See result set filters

D

data change notification
filters 36

data change notification filter
example 37
implementing 37

data change notification interface 27
data change notification parameters 28
data change notification syntax 28
data change notification with payload 28
data change notification, results 35
documentation roadmap

document descriptions 3

F

filters
data change notification 36
result set 13

G

guide, introducing 1

H

HTTP interface for data change notification 27

I

interfaces 2
introduction 1

J

Javadocs 2

JPDA
enabling 13

M

messages, transforming 40

P

parameters, data change notification
dcn_request 28
domain 28
package 28
password 28
unwired_server 28
unwired_server_port 28
username 28

R

response messages, transforming 40
REST

transforming data
See Transforms

result checker 19
default SAP code 22

result checker, customizing 16
result checker, implementing 15
result checkers 15
result set filters 8, 11

debugging 13
deploying 11

S

SAP result checker 15
server API features 1
SOAP

transforming data
See Transforms

stylesheet syntax, XSLT 40
syntax, XSLT 40

Index

Reference: Custom Unwired Server Development 45

T
transforms

custom, introducing 39
implementing 39
stylesheet example 41
stylesheet syntax 40
when to use custom files 39

W
Web services

transforming data
See Transforms

X

XSLTs
See Transforms

Index

 46 Sybase Unwired Platform

	Reference: Custom Unwired Server Development
	Contents
	Introducing Custom Development for Unwired Server
	Server API
	Interfaces
	Javadocs
	Documentation Road Map for Unwired Platform

	Result Set Filters
	Result Set Filter Data Flow
	Implementing Custom Result Set Filters
	Writing a Custom Result Set Filter
	Deploying Custom Filters to Unwired Server
	Validating Result Set Filter Performance

	Filter Class Debugging
	Enabling JPDA

	Result Checkers
	Implementing Customized Result Checkers
	Writing a Custom Result Checker
	Adding a Result Checker

	Default Result Checker Code

	Data Change Notifications
	Data Change Notification Data Flow
	Invoking upsert and delete Operations Using Data Change Notification
	Basic HTTP Authentication
	Data Change Notification Requirements
	Data Change Notification Results
	Data Change Notification Filters
	Implementing a Data Change Notification Filter

	Custom XSLT Transforms
	Custom XSLT Use Cases
	Implementing Custom Transforms
	XSLT Stylesheet Syntax
	XSLT Stylesheet Example

	Index

